

Direzione Progettazione e Realizzazione Lavori

S.S. 268 "DEL VESUVIO" RADDOPPIO DA DUE A QUATTRO CORSIE DELLA STATALE dal Km 19+550 al Km 29+300 IN CORRISPONDENZA DELLO SVINCOLO DI ANGRI

1° Lotto, dal Km 19+554 al Km 23+100

PROGETTO DEFINITIVO

COD. NA234

PROGETTAZIONE: R.T.I.: PROGER S.p.A. (capogruppo mandataria)

PROGIN S.p.A. - INTEGRA CONSORZIO STABILE

IDROESSE Engineering S.r.l. - Prometeoengineering.it S.r.l. - ART S.r.l.

RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE:

Prof. Ing. Antonio GRIMALDI (Progin S.p.A.)

GEOLOGO:

Dott. Geol. Nocerino GIOSAFATTE (Prometeoengineering.it S.r.l.)

COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Nicola SCIARRA (Proger S.p.A.)

PROJECT MANAGER DELL'R.T.I.:

Dott. Ing. Carlo LISTORTI (Proger S.p.A.)

VISTO: RESPONSABILE DEL PROCEDIMENTO:

Dott. Ing. Domenico PIETRAPERTOSA

CAPOCRI IDDO MANDATARIA:

Direttore Tecnico: Dott. Ing. Stefano PALLAVICINI

MANDANTI:

Consorte Stabile di Architesture e Ingegnerie Integrata
Direttore Tecnico:
Prof. Ing. Franco BRAGA

PROGETTO STRADALE PARTE GENERALE

Relazione tecnica stradale - asse principale

CODICE PR		NOME FILE T01PS00TRARE01_B.dwg	REVISIONE	SCALA:		
DPNA	0234 D N. PROG. N. PROG. 19	CODICE TO 1 PS00	В	-		
В	REV A SEGUITO SCH [DI MERITO STD DEL 11/09/2020	Maggio 2021	RICCHI	EUSEPI	BRAGA
Α	EMISSIONE		15 Luglio 2020	RICCHI	EUSEPI	BRAGA
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

S.S. 268 "DEL VESUVIO" RADDOPPIO DA DUE A QUATTRO CORSIE dal Km 19+554 al Km 29+300 1° Lotto, dal Km 19+554 al Km 23+100 2° Lotto, dal Km 23+100 al Km 29+300

PROGETTO DEFINITIVO

Relazione tecnica stradale - Asse principale 1° Lotto, dal Km 19+554 al Km 23+100

T01PS00TRARE01_B.docx

Maggio 2021 Rev. B Pag. 1 di 56

PROGETTO DEFINITIVO

INDICE

1	PRE	MESSA	\	3
2	RIFE	ERIMEN	TI NORMATIVI	4
3	INQ	UADRA	MENTO DELLA INFRASTRUTTURA	6
			SIFICAZIONE E CARATTERISTICHE FUNZIONALI NE TIPOLOGICA E DETTAGLI	
		3.2.1 3.2.2	Sezioni tipo in rilevato	
4	CAF	RATTER	ISTICHE PROGETTUALI	13
	4.2 4.3	ANDAN Distanz	MENTO PLANIMETRICO	18 20
5	DIA	GRAMM	IA DELLE VELOCITA'	22
	5.1 5.2		Carreggiata Nord	
6	VER	IFICHE	DEL TRACCIATO	26
	6.1	VERIF	ICA PLANIMETRICA	26
		6.1.1 6.1.2	ASSE SUDASSE NORD	
	6.2	VERIF	ICA ALTIMETRICA	40
		6.2.1 6.2.1	ASSE SUDASSE NORD	
	6.3	Verifica	a distanza di visibilità per l'arresto	41
		6.3.1 6.3.2	Asse Carreggiata Nord	
	6.4	Verifica	a distanza di visibilità per la manovra di cambiamento di corsia	42
		6.4.1	Asse Carreggiata Nord	43
7	SOV	'RASTR	UTTURA STRADALE	45
8	DISI	POSITIV	/I DI RITENUTA	46
	8.1 8.2 8.3	Definiz	zioni normativeione del livello di traffico e delle classi minime delle barriere da impiegaree longitudinali previste in progetto	48
		8.3.1 8.3.2	Tipologia, classe e requisiti prestazionali	52
	8.4	Elemer	nti di protezione complementare	54
9	SEG	NALET	ICA	56

T01PS00TRARE01_B.docx

Maggio 2021 Rev. B

Pag. 2 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

PREMESSA

Nell'ambito dell'intervento esteso di adeguamento funzionale della Strada Statale S.S. 268, con riferimento specifico al 1° Lotto del km 19+554 al km 23+100, la presente relazione descrive gli aspetti generali e la rappresentazione analitica del progetto di adeguamento funzionale degli assi principali. In generale il Progetto Definitivo "S.S.268 "del Vesuvio" - Raddoppio da 2 a 4 corsie della statale dal km 19+554 al km 29+300 in corrispondenza dello Svincolo di Angri" è stato affidato da Anas S.p.A. al Raggruppamento Temporaneo di Imprese (RTI) costituito da Proger S.p.A., Progin S.p.A., Integra Consorzio Stabile, Idroesse Engineering S.r.l., Prometeoengineering.it S.r.l., ART S.r.l. tramite "Accordo Quadro per l'affidamento della progettazione definitiva ed esecutiva - Lotto 6: Coordinamento territoriale Anas 7 - Campania" - CIG 72687298EB", di cui alla Gara DG 27/17. L'intero progetto risulta suddiviso in due lotti:

- 1° Lotto: dal km 19+554 al km 23+100 (tra lo svincolo di San Giuseppe Vesuviano-Poggiomarino e lo svincolo di Boscoreale compreso);
- 2° Lotto: dal km 23+100 al km 29+300 (tra lo svincolo di Boscoreale e lo svincolo di Angri).

Con riferimento al solo lotto 1, l'intervento è finalizzato a potenziare funzionalmente la S.S. 268 esistente (Tipo IV Norme CNR 78/80) nel tratto compreso tra il km 19+365 ed il km 24+100, mediante modifica della stessa in una Strada Extraurbana Secondaria (Cat. B), in prosecuzione alla sede esistente già a 4 corsie e in connessione con l'analogo intervento previsto per il 2° Lotto (dal km 24+100 al km 29+300).

L'intervento di raddoppio previsto in progetto, con passaggio da 2 a 4 corsie, prevede l'attribuzione di una sezione di Cat. B secondo il D.M. 05/11/200 1 con soluzione base a 2+2 corsie di marcia, con prevalente riutilizzo della strada esistente come sede di una delle due carreggiate della nuova strada.

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 3 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

RIFERIMENTI NORMATIVI

I principali riferimenti normativi relativamente agli aspetti geometrico-funzionali per tutte le infrastrutture in progetto risultano di seguito elencati:

- D.Lgs. 30-04-92, n. 285 e s.m.i.: "Nuovo Codice della Strada";
- D.P.R. 16-12-1992 n. 495 e s.m.i.: "Regolamento di esecuzione e di attuazione del Codice della Strada":
- DM 05-11-01, n. 6792 e s.m.i.: "Norme funzionali e geometriche per la costruzione delle strade" con cogenza limitatamente alle opere di nuova realizzazione e di riferimento per le opere in adeguamento;
- DM 19-04-2006: "Norme funzionali e geometriche per la costruzione delle intersezioni stradali"

Relativamente al progetto delle barriere di sicurezza e di tutti i dispositivi di ritenuta stradale, la progettazione ha fatto riferimento alle seguenti norme:

- D.Lgs. 30-04-92, n. 285 e s.m.i.: "Nuovo Codice della Strada";
- D.M. 18.02.1992 n. 223 Recante le Istruzioni tecniche sulla progettazione, omologazione ed impiego delle barriere di sicurezza stradale;
- D.M. 3.06.1998 Recante le Istruzioni tecniche sulla progettazione, omologazione ed impiego delle barriere di sicurezza stradale (con esclusione delle istruzioni tecniche sostituite dalle istruzioni tecniche allegate al D.M. 21.6.2004 n. 2367);
- D.M. 21.06.2004 n. 2367 Recante le Istruzioni tecniche per la progettazione, l'omologazione e l'impiego dei dispositivi di ritenuta nelle costruzioni stradali;
- D.M. 28.06.2011: Disposizioni sull'uso e l'installazione dei dispositivi di ritenuta stradale;
- EN 1317-1: 1998 Road restraint systems Part 1: Terminology and general criteria for test methods [pubblicata in Italia come UNI EN 1317-1:2000];
- EN 1317-2:1998 Road restraint systems Part 2: Performance classes, impact test acceptance criteria and test methods for safety barriers + EN 1317-2/A1:2006 [pubblicata in Italia come UNI EN 1317-2:2007];
- EN 1317-3:2000 Road restraint systems Part 3: Performance classes, impact test acceptance criteria and test methods for crash cushions [pubblicata in Italia come UNI EN 1317-3:2002];
- ENV 1317-4:2001 Road restraint systems Part 4: Performance classes, impact test acceptance criteria and test methods for terminals and transitions of safety barriers [pubblicata in Italia come UNI ENV 1317-4:2003];
- EN 1317-5:2007 Road restraint systems Part 5: Product requirements and evaluation of conformity for vehicle restraint systems [pubblicata in Italia come UNI EN 1317-5:2007] + EN 1317-5/A1:2008;
- EN 12767:2007 Passive safety of support structures for road equipment Requirements, classification and test methods [pubblicata in Italia come UNI EN 12767:2008];
- D.M. 5.11.2001 Norme funzionali e geometriche per la costruzione delle strade e s.m.i. (cogente per le strade nuove e di riferimento per l'adeguamento delle strade esistenti);

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 4 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

- D.M. 19.4.2006 Norme funzionali e geometriche per la costruzione delle intersezioni stradali (cogente per le intersezioni nuove e di riferimento per l'adeguamento delle intersezioni esistenti).
- D.M. 1.04.2019 Dispositivi stradali di sicurezza per i motociclisti (DSM).

Sono state applicate, inoltre, le indicazioni contenute nelle seguenti circolari, manuali e specifiche di progettazione, per quanto attinente ai dispositivi di ritenuta:

- Circolare 25.08.2004 n. 3065 Direttiva sui criteri di progettazione, installazione, verifica e manutenzione dei dispositivi di ritenuta nelle costruzioni stradali (per quanto ancora applicabile);
- Circolare 15.11.2007 n. 104862 Scadenza della validità delle omologazioni delle barriere di sicurezza rilasciate ai sensi delle norme antecedenti il D.M. 21.06.2004 (per quanto ancora applicabile);
- Circolare 21.7.2010 n. 62032 Uniforme applicazione delle norme in materia di progettazione, omologazione e impiego dei dispositivi di ritenuta nelle costruzioni stradali;
- Circolare 05.10.2010 n. 0080173 Omologazione dei dispositivi di ritenuta nelle costruzioni stradali. Aggiornamento norme comunitarie UNI EN 1317, parti 1, 2 e 3 in ambito nazionale.

Il progetto della segnaletica è stato sviluppato tenendo conto delle seguenti normative:

- D. L.vo 30/04/1992 n. 285: "Nuovo codice della strada";
- D.P.R. 16/12/1992 n. 495: "Regolamento di esecuzione e di attuazione del nuovo Codice della
- Direttiva Ministero LL.PP. 24.10.2000 (Direttiva sulla corretta ed uniforme applicazione delle norme del Codice della Strada in materia di segnaletica e criteri per l'installazione e la manutenzione).

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 5 di 56

PROGETTO DEFINITIVO

INQUADRAMENTO DELLA INFRASTRUTTURA

L'intervento previsto nel presente Progetto Definitivo è finalizzato a potenziare funzionalmente la S.S. 268 esistente (Tipo IV Norme CNR 78/80) nel tratto compreso tra il km 19+365 ed il km 24+100, mediante modifica della stessa in una Strada Extraurbana Secondaria (Cat. B), seguito con l'analogo intervento previsto per il 2° Lotto (dal km 24+100 al km 29+300).

CLASSIFICAZIONE E CARATTERISTICHE FUNZIONALI 3.1

L'intervento di raddoppio previsto in progetto, con passaggio da 2 a 4 corsie, prevede l'attribuzione di una sezione di Cat. B secondo il D.M. 05/11/200 1 con soluzione base a 2+2 corsie di marcia come riportato nella figura seguente.

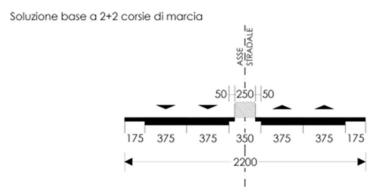


Figura 1 - Sezione Cat. B secondo il D.M. 05/11/2001: soluzione base a 2+2 corsie di marcia

Il tracciato è caratterizzato dal prevalente riutilizzo della strada esistente come sede di una delle due carreggiate della nuova strada e prevede il sostanziale riutilizzo della piattaforma stradale esistente per una delle carreggiate di progetto, con adeguamento delle opere d'arte esistenti e la realizzazione di opere d'arte in affiancamento alle opere d'arte esistenti.

La soluzione di progetto si configura, pertanto, come "adeguamento di strada esistente" per il quale la norma cogente di riferimento è costituita dal D.M. 22/04/2004 ("Modifica del decreto 5 novembre 2001, n. 6792, recante «Norme funzionali e geometriche per la costruzione delle strade»") secondo cui le "Norme funzionali e geometriche per la costruzione delle strade" di cui al D.M. 05/11/2001 sono limitate alle sole strade di nuova costruzione, ed indicate quale riferimento per l'adeguamento di quelle esistenti (art. 1 del D.M. 22/04/2004).

Alla luce dell'attuale quadro normativo che disciplina gli interventi di adeguamento delle strade esistenti, in linea con l'art. 1 del D.M. 22/04/2004, l'approccio seguito per la definizione geometrico-funzionale è stato finalizzato alla definizione di una soluzione progettuale, compatibile con i vincoli, il più possibile aderenti alle prescrizioni normative e, in ogni caso, rispondente ai criteri e requisiti di sicurezza.

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 6 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

In tal senso, in funzione delle condizioni al contorno, dovute all'inserimento in un contesto vincolato che impedisce il pieno rispetto del D.M. 05/11/2001, la successione degli elementi geometrici dell'intervento di adeguamento è stata impostata secondo parametri conformi alle prescrizioni correlate al soddisfacimento dei criteri di sicurezza contenuti nel D.M. 05/11/2001 (raggio minimo curve circolari e criterio dinamico clotoidi), ritenendo ammissibili, laddove i vincoli progettuali hanno imposto univocamente l'andamento geometrico, deviazioni rispetto alle prescrizioni legate ad aspetti di carattere ottico (lunghezza minima rettifili, lunghezza massima rettifili di flesso, sviluppo minimo curve circolari, correlazione tra raggio minimo curve circolari e lunghezza rettifili, parametro di scala delle clotoidi corrispondente al criterio ottico).

Per quanto riguarda l'andamento altimetrico, le livellette sono contenute nel limite massimo prescritto per il tipo di strada, ed i raggi dei raccordi parabolici concavi e convessi sono superiori ai minimi prescritti.

Tenendo conto che le deviazioni alla lunghezza minima dei rettifili riguardano i rettifili terminali (rettifili di estremità del tracciato) ed un unico rettifilo lungo l'asse della Carreggiata Nord, e che lo sviluppo minimo delle curve circolari è sempre garantito, l'andamento planimetrico è caratterizzato da un ottimo livello di aderenza ai criteri normativi del D.M. 05/11/2001. Risultano infatti garantite tutte le verifiche corrispondenti ai criteri di sicurezza, mentre le prescrizioni legate agli aspetti di carattere ottico per le quali sono state ritenute ammissibili deviazioni, risultano garantite per oltre il 90% dei casi con riferimento alla lunghezza minima dei rettifili e per circa il 75% con riferimento al parametro di scala delle clotoidi corrispondente al criterio ottico, ovvero:

- lunghezza minima rettifili: verificati 12/13 (92%);
- parametro di scala delle clotoidi corrispondente al criterio ottico: verificati 12/16 (75%).

Per quanto riguarda il diagramma di velocità, sono rispettate le condizioni prescritte dal D.M. 05/11/2001.

In linea con le prescrizioni contenute nell'art. 4 del D.M. 22/04/2004, per il progetto dell'intervento di adeguamento è stata svolta, attraverso la specifica relazione "Relazione ex art. 4 D.M. 22/04/2004", a cui si rimanda per i dettagli, una analisi degli aspetti di sicurezza stradale con dimostrazione che l'intervento complessivo di adeguamento comporta un innalzamento del livello di sicurezza dell'infrastruttura di progetto rispetto all'infrastruttura esistente e che l'intervento complessivo di adeguamento comporta un miglioramento funzionale della circolazione garantendo la continuità di esercizio dell'infrastruttura.

Gli elementi di carattere generale, conferiti al progetto dell'infrastruttura, in grado di elevare il livello di sicurezza offerto all'utenza dall'arteria della S.S. 268 potenziata e riqualificata riguardano:

- ampliamento della sezione trasversale ad una strada di Categoria B, con conseguente incremento di una corsia per senso di marcia ed ampliamento della piattaforma stradale da una a due carreggiate;
- successione degli elementi geometrici con parametri conformi alle prescrizioni correlate al soddisfacimento dei criteri di sicurezza contenuti nel D.M. 05/11/2001;
- tracciato caratterizzato da prestazioni in termini di visibilità per l'arresto, con adozione, ove necessario, di ampliamenti della carreggiata;
- dispositivi stradali di ritenuta rispondenti alle prescrizioni normative;

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 7 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

- adeguamento geometrico e funzionale degli svincoli al D.M. 19/04/2006;
- demolizione e rifacimento della sovrastruttura stradale con adeguamento e regolarizzazione delle pendenze trasversali del piano viabile.

Per quanto riguarda il corpo stradale, sono state adottate configurazioni tipo della piattaforma stradale, degli elementi marginali, delle scarpate e delle opere di smaltimento delle acque e delle opere di protezione, con tipologie costruttive idonee a garantire il livello prestazionale e qualitativo corrispondente all'infrastruttura stradale in esame

3.2 SEZIONE TIPOLOGICA E DETTAGLI

La sezione trasversale stradale adottata per l'asse principale è relativa ad una Strada Extraurbana Principale (Categoria B) con una sezione trasversale stradale con soluzione base a 2+2 corsie di marcia. Tale configurazione prevede due carreggiate con ciascuna carreggiata costituita da una corsia di marcia normale pari a 3,75 m, una corsia di sorpasso pari a 3,75 m, banchina in destra pari a 1,75 m, banchina in sinistra pari a 0,50 m e spartitraffico centrale pari a 2,50, per una larghezza complessiva della piattaforma stradale pari a 22 m. Nei tratti in curva, ove necessario, sono stati previsti allargamenti della carreggiata per la visibilità in corrispondenza del margine laterale per le curve in destra ed in corrispondenza del margine interno per le curve in sinistra.

Allo scopo di garantire un agevole smaltimento delle acque meteoriche interessanti la piattaforma stradale, nei tratti in rettifilo la piattaforma presenta, per ciascuna carreggiata, un'unica falda inclinata verso l'esterno con pendenza pari a 2,5%, mentre nei tratti in curva la piattaforma presenta, per ciascuna carreggiata, un'unica falda inclinata nella direzione del centro della curva con pendenza variabile, in funzione del raggio della curva.

Nel seguito sono illustrate e descritte le tipologie principali di sezioni tipo previste per l'asse principale. Le tipologie e configurazioni di sezioni tipo previste nell'ambito del progetto sono illustrate negli specifici elaborati contenuti nella sezione "SEZIONI TIPOLOGICHE E PARTICOLARI COSTRUTTIVI" e nelle specifiche sezioni relative alle "OPERE D'ARTE MAGGIORI-VIADOTTI" a cui si rimanda per i dettagli.

3.2.1 Sezioni tipo in rilevato

Nei tratti in rilevato, le banchine sono raccordate alle scarpate mediante un elemento di raccordo (arginello), di larghezza di 2,00 m, destinato ad ospitare il dispositivo di ritenuta per la protezione laterale costituito da barriera di sicurezza di classe H3.

La pavimentazione risulta delimitata dall'arginello e dallo spartitraffico mediante l'interposizione di un cordolo in cls.

Nell'ambito del progetto sono previste configurazioni sezione tipo in rilevato corrispondenti a:

- Tratti con ammorsamento parziale su rilevati esistenti;
- Tratti in affiancamento.

Le scarpate presentano una inclinazione rispetto all'orizzontale pari a 2/3, e sono rivestite con terreno vegetale, di spessore minimo pari a 30 cm, allo scopo di preservarle dall'erosione derivante dal ruscellamento delle acque meteoriche.

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 8 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

Per la base di appoggio dei rilevati, si prevede l'asportazione dello strato superficiale di terreno vegetale per uno spessore di 20 cm (scotico) e l'eventuale bonifica.

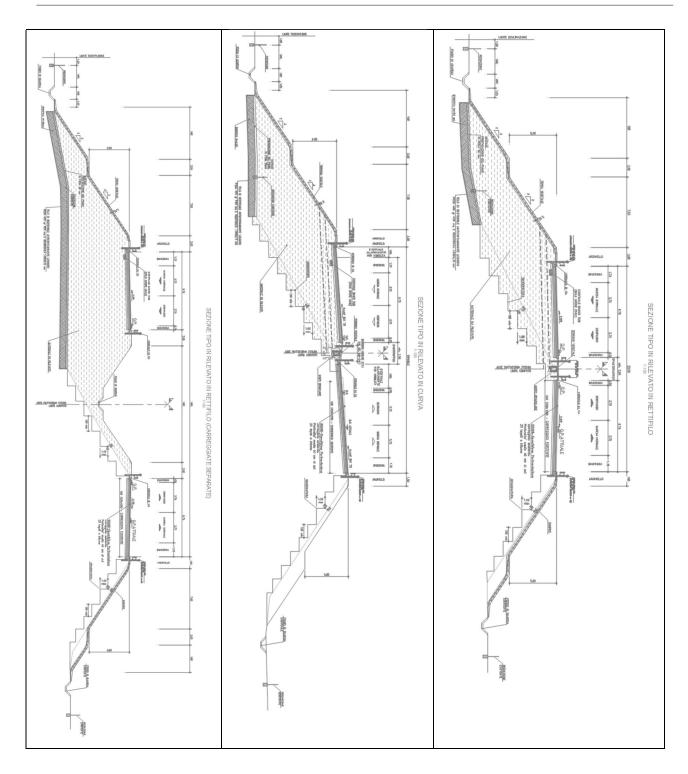
Allo scopo di garantire la protezione del corpo del rilevato dalle acque di risalita capillare, in corrispondenza dell'interfaccia tra lo strato di bonifica ed il terreno in sito è prevista l'interposizione di un telo di geotessile anticontaminante leggero.

Per altezze del corpo stradale maggiori di 5 m, allo scopo di garantire idonee condizioni di stabilità, si prevede la realizzazione di una scarpata con inclinazione pari a 2/3 rispetto all'orizzontale fino ad un'altezza pari a 5 m, con la realizzazione di una banca orizzontale di larghezza pari a 2 m dopo la quale la scarpata riprende l'inclinazione di 2/3 sull'orizzontale.

Al piede dei rilevati ad una distanza dal piede della scarpata pari a 1,00 m, si prevede la realizzazione, su entrambi i lati, di fossi di guardia a sezione trapezia per la raccolta e lo smaltimento delle acque meteoriche afferenti alla piattaforma stradale ed alle scarpate. Oltre i fossi di guardia, sono posizionate le recinzioni che definiscono il limite del confine stradale.

Nelle figure seguenti si riportano le configurazioni di sezioni tipo in rilevato previste in progetto.

T01PS00TRARE01 B.docx



Maggio 2021 Rev. A Pag. 9 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

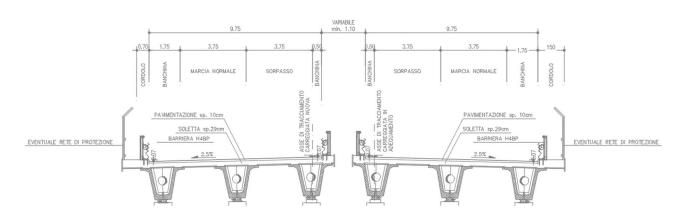
PROGETTO DEFINITIVO

T01PS00TRARE01_B.docx

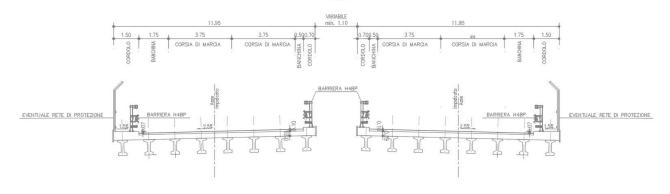
Maggio 2021 Rev. A Pag. 10 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO


3.2.2 Sezioni tipo in viadotto

Nei tratti in rilevato, le banchine sono raccordate alle scarpate mediante un elemento di raccordo (arginello), di larghezza di 2,00 m, destinato ad ospitare il dispositivo di ritenuta per la protezione laterale costituito da barriera di sicurezza di classe H3.


Per i tratti in viadotto, si prevede una sezione tipo con impalcato per ciascuna carreggiata. Il margine laterale prevede un cordolo pari a 1,50 m a destra e 0,70 m a sinistra. Per la protezione dei margini e dello spartitraffico si prevede l'installazione di barriere di sicurezza bordo ponte di classe H4.

Nelle figure seguenti si riportano le principali configurazioni di sezioni tipo in viadotto previste in progetto.

SEZIONE TIPO VIADOTTO - CASSONI IN RETTILINEO $_{\rm 1:100}$

SEZIONE TIPO VIADOTTO - TRAVI - IN RETTILINEO

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 11 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

T01PS00TRARE01_B.docx

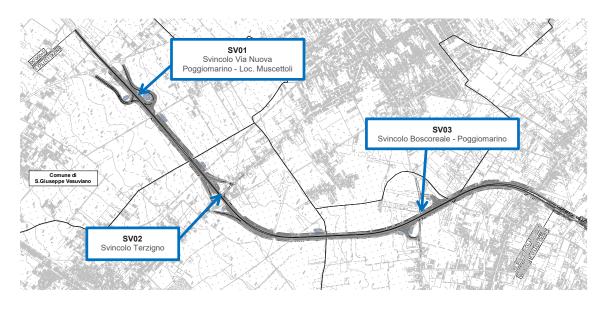
Maggio 2021 Rev. A Pag. 12 di 56

PROGETTO DEFINITIVO

CARATTERISTICHE PROGETTUALI

ANDAMENTO PLANIMETRICO 4.1

Il tracciato stradale di progetto si sviluppa per 4,7 km lungo la Carreggiata Sud e 4,7 km lungo la Carreggiata Nord e prevede il prevalente riutilizzo della strada esistente come sede di una delle carreggiate della nuova


È previsto, in particolare, il riutilizzo della strada esistente ai fini della costruzione della sede della Carreggiata Sud ad eccezione del tratto da km 4+000 a km 4+440 circa. In corrispondenza di tale tratto, è stato aumentato il raggio della curva esistente inserendo un raggio planimetrico per entrambe le carreggiate di R=550 m tale da garantire una velocità di progetto pari a 110 km (con differenze di velocità rispetto al valore V_{pmax}=120 km/h contenute nel valore massimo prescritto di 10 km/h).

Lungo tutto il tratto in oggetto, le due carreggiate sono sempre in affiancamento stretto, con scostamento massimo pari a circa 18 m nel tratto finale del lotto (dal km 4+000 al km 4+703).

Lungo il tracciato sono previsti i seguenti svincoli:

- Svincolo Via Nuova Poggiomarino Loc. Muscettoli;
- Svincolo Terzigno;
- Svincolo Boscoreale Poggiomarino.

L'andamento planimetrico è composto da 6 curve lungo la Carreggiata Nord e 5 curve lungo la Carreggiata Nord, con curve di raggio compreso tra 550 m e 7500 m sia per la Carreggiata Nord che per la Carreggiata Sud.

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 13 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

Le caratteristiche degli elementi geometrici costituenti l'andamento planimetrico sono riportate, per ciascuna carreggiata, nelle tabelle seguenti.

1° Lotto, dal Km 19+554 al Km 23+100 Asse Carreggiata Nord - Andamento planimetrico

N	n	Elemento	Progr. in. [m]	Progr. fin. [m]	L [m]	R [m]	A [m]
1		"o#ifile	0.000	60.244	60.244		
1	<u> </u>	rettifilo	0,000	69,344	69,344	∞	-
2	1	clotoide	69,344	117,829	48,485	variabile	400,000
3	1	curva	117,829	247,875	130,046	3300,000	-
4	2	clotoide	247,875	296,360	48,485	variabile	400,000
5	2	rettifilo	296,360	594,100	297,740	∞	-
7	2	curva	594,100	915,222	321,122	7500,000	-
9	3	rettifilo	915,222	1138,476	223,254	∞	-
11	3	curva	1138,476	1405,627	267,151	7500,000	-
13	4	rettifilo	1405,627	1804,908	399,281	∞	-
14	3	clotoide	1804,908	1999,353	194,445	variabile	350,000
15	4	curva	1999,353	2436,246	436,893	630,000	-
16	4	clotoide	2436,246	2543,548	107,302	variabile	260,000
17	5	rettifilo	2543,548	2950,305	406,757	∞	-
18	5	clotoide	2950,305	3065,901	115,596	variabile	339,994
19	5	curva	3065,901	3400,603	334,702	1000,000	-
20	6	clotoide	3400,603	3516,203	115,600	variabile	340,000
21	6	rettifilo	3516,203	3840,474	324,271	∞	-
22	7	clotoide	3840,474	4026,656	186,182	variabile	320,000
23	6	curva	4026,656	4431,595	404,939	550,000	-
24	8	clotoide	4431,595	4564,140	132,545	variabile	270,000
25	7	rettifilo	4564,140	4707,108	142,968	∞	-

1° Lotto, dal Km 19+554 al Km 23+100 Asse Carreggiata Sud - Andamento planimetrico

N	n	Elemento	Progr. in. [m]	Progr. fin. [m]	L [m]	R [m]	A [m]
1	1	rettifilo	0,000	44,112	44,112	∞	-
2	1	clotoide	44,112	109,047	64,935	variabile	500,000
3	1	curva	109,047	229,349	120,302	3850,000	-
4	2	clotoide	229,349	294,284	64,935	variabile	500,000
5	2	rettifilo	294,284	610,362	316,078	∞	-
7	2	curva	610,362	1051,205	440,843	7500,000	-
9	3	rettifilo	1051,205	1862,524	811,319	∞	-
10	3	clotoide	1862,524	2037,252	174,728	variabile	310,000
11	3	curva	2037,252	2368,135	330,883	550,000	-
12	4	clotoide	2368,135	2542,862	174,727	variabile	310,000
13	4	rettifilo	2542,862	2978,965	436,103	8	-

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 14 di 56

PROGETTO DEFINITIVO

1° Lotto, dal Km 19+554 al Km 23+100 Asse Carreggiata Sud - Andamento planimetrico

N	n	Elemento	Progr. in. [m]	Progr. fin. [m]	L [m]	R [m]	A [m]
14	5	clotoide	2978,965	3123,083	144,118	variabile	350,000
15	4	curva	3123,083	3356,152	233,069	850,000	-
16	6	clotoide	3356,152	3500,269	144,117	variabile	350,000
17	5	rettifilo	3500,269	3856,859	356,590	∞	-
18	7	clotoide	3856,859	3999,405	142,546	variabile	280,000
19	5	curva	3999,405	4417,559	418,154	550,000	-
20	8	clotoide	4417,559	4560,105	142,546	variabile	280,000
21	6	rettifilo	4560,105	4703,536	143,431	8	-

La notazione utilizzata nella tabella, per ciascun elemento geometrico, è la seguente:

- N = numero d'ordine progressivo;
- n = numero d'ordine per elemento geometrico omogeneo (rettifilo/curva/clotoide);
- Elemento = tipo di elemento geometrico;
- Progr. in. = progressiva iniziale;
- Progr. fin. = progressiva finale;
- L = sviluppo;
- R = raggio di curvatura;
- A = parametro di scala delle clotoidi.

In funzione delle condizioni al contorno, dovute all'inserimento in un contesto vincolato che impedisce il pieno rispetto del D.M. 05/11/2001, la successione degli elementi geometrici dell'intervento di adeguamento è stata impostata secondo parametri conformi alle prescrizioni correlate al soddisfacimento dei criteri di sicurezza contenuti nel D.M. 05/11/2001 (raggio minimo curve circolari e criterio dinamico clotoidi), ritenendo ammissibili, laddove i vincoli progettuali hanno imposto univocamente l'andamento geometrico, deviazioni rispetto alle prescrizioni legate prevalentemente ad aspetti di carattere ottico (lunghezza minima rettifili, lunghezza massima rettifili di flesso, sviluppo minimo curve circolari, correlazione tra raggio minimo curve circolari e lunghezza rettifili, valore minimo del parametro A delle curve di transizione (clotoidi) con riferimento al criterio ottico).

In particolare, sulla base dei criteri progettuali adottati, gli elementi geometrici risultano pienamente conformi alle prescrizioni del D.M. 05/11/2001 a meno dei seguenti elementi, per i quali, in funzione dei vincoli e condizionamenti imposti, sono state ammesse deviazioni secondo i criteri di flessibilità ammessi.

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 15 di 56

PROGETTO DEFINITIVO

1° Lotto, dal Km 19+554 al Km 23+100

Asse Carreggiata Nord - Andamento planimetrico: elementi con deviazioni secondo i criteri di flessibilità ammessi

N	n	Elemento	Progr. in. [m]	Progr. fin. [m]	L [m]	R [m]	A [m]
1	1	rettifilo	0,000	69,344	69,344	∞	-
2	1	clotoide	69,344	117,829	48,485	variabile	400,000
4	2	clotoide	247,875	296,360	48,485	variabile	400,000
9	3	rettifilo	915,222	1138,476	223,254	∞	-
25	7	rettifilo	4564,140	4707,108	142,968	∞	-

1° Lotto, dal Km 19+554 al Km 23+100

Asse Carreggiata Sud - Andamento planimetrico elementi con deviazioni secondo i criteri di flessibilità ammessi

N	n	Elemento	Progr. in. [m]	Progr. fin. [m]	L [m]	R [m]	A [m]
1	1	rettifilo	0,000	44,112	44,112	∞	-
2	1	clotoide	44,112	109,047	64,935	variabile	500,000
4	2	clotoide	229,349	294,284	64,935	variabile	500,000
21	6	rettifilo	4560,105	4703,536	143,431	8	-

Per gli elementi geometrici di cui sopra, nelle tabelle seguenti è riportata giustificazione e motivazione dei valori dei parametri adottati con corrispondente analisi e valutazione delle criticità.

1° Lotto, dal Km 19+554 al Km 23+100

Asse Carreggiata Nord - Criteri di flessibilità andamento planimetrico

Elemento	Progr. in. [m]	Progr. fin. [m]	Parametro limite		Parametro limite		Criterio	Note
Rettifilo n°1 - Lunghezza (m): 69,344	0,000	69,344	Lunghezza minima (m)	250,000	(lunghezza minima rettifili terminali)	Il parametro limite è correlato alla necessità di assicurare la percezione dei tratti rettilinei del tracciato. La lunghezza del rettifilo n.1 è stata adottata in funzione del limite di intervento delle opere di progetto del 1° Lotto, nonché dai vincoli imposti dall'allineamento in congruenza con l'infrastruttura esistente		
Clotoide n°1 – A= 400,000 -	247,875	117,829	Lunghezza minima del raccordo	1100,00	(valore minimo del parametro A criterio ottico)	Il parametro limite è correlato alla necessità di assicurare la percezione ottica corretta dell'andamento del tracciato durante la percorrenza. Le caratteristiche geometriche della transizione n.1 sono state adottate in funzione dei vincoli imposti dal completo riutilizzo della carreggiata esistente. Il parametro A=400 garantisce la verifica al criterio 1 (Limitazione del contraccolpo) e al criterio 2 (Sovrapendenza longitudinale delle linee di estremità della carreggiata).		
Clotoide n°2 – A= 400,000 -	247,875	296,360	Lunghezza minima del raccordo	1100,00	(valore minimo del parametro A criterio ottico)	Il parametro limite è correlato alla necessità di assicurare la percezione ottica corretta dell'andamento del tracciato durante la		

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 16 di 56

PROGETTO DEFINITIVO

1° Lotto, dal Km 19+554 al Km 23+100

Asse Carreggiata Nord - Criteri di flessibilità andamento planimetrico

Elemento	Progr. in. [m]	Progr. fin. [m]	Parametro		Criterio	Note
						percorrenza. Le caratteristiche geometriche della transizione n.2 sono state adottate in funzione dei vincoli imposti dal completo riutilizzo della carreggiata esistente. Il parametro A=400 garantisce la verifica al criterio 1 (Limitazione del contraccolpo) e al criterio 2 (Sovrapendenza longitudinale delle linee di estremità della carreggiata).
Rettifilo n°3 - Lunghezza (m): 223,254	915,222	1138,476	Lunghezza minima (m)	250,000	(lunghezza minima rettifili)	Il parametro limite è correlato alla necessità di garantire la corretta percezione del raccordo di flesso. La lunghezza del rettifilo n.6 è stata adottata in funzione dei vincoli imposti dal completo riutilizzo della carreggiata esistente.
Rettifilo n°7 - Lunghezza (m): 142,968	4564,140	4707,108	Lunghezza minima (m)	250,000	(lunghezza minima rettifili terminali)	Il parametro limite è correlato alla necessità di assicurare la percezione dei tratti rettilinei del tracciato. La lunghezza del rettifilo n.7 è stata adottata in funzione del limite di intervento delle opere di progetto del 1° Lotto, nonché dai vincoli imposti dall'allineamento in congruenza con l'infrastruttura di progetto dell'adiacente 2° Lotto. La lunghezza del rettifilo considerando l'intero itinerario di progetto (1° Lotto e 2° Lotto), pari a 273,524 m =142,968 m + 130,556 m (rettifilo iniziale del 2° Lotto adiacente), risulta compatibile con il parametro limite.

1° Lotto, dal Km 19+554 al Km 23+100

Asse Carreggiata Sud - Criteri di flessibilità andamento planimetrico

Elemento	Progr. in. [m]	Progr. fin. [m]	Parametro limite		Criterio	Note
Rettifilo n°1 - Lunghezza (m): 44,112	0,000	44,112	Lunghezza minima (m)	250,000	(lunghezza minima rettifili terminali)	Il parametro limite è correlato alla necessità di assicurare la percezione dei tratti rettilinei del tracciato. La lunghezza del rettifilo n.1 è stata adottata in funzione del limite di intervento delle opere di progetto del 1° Lotto, nonché dai vincoli imposti dall'allineamento in congruenza con l'infrastruttura esistente
Clotoide n°1 – A= 500,000 -	44,112	109,047	Lunghezza minima del raccordo	1283.30	(valore minimo del parametro A criterio ottico)	Il parametro limite è correlato alla necessità di assicurare la percezione ottica corretta dell'andamento del tracciato durante la percorrenza. Le caratteristiche geometriche della transizione n.1 sono state adottate in funzione dei vincoli imposti dal completo riutilizzo della carreggiata esistente. Il parametro A=500 garantisce la verifica al criterio 1 (Limitazione del contraccolpo) e al criterio 2 (Sovrapendenza longitudinale delle linee di estremità della carreggiata).

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 17 di 56

PROGETTO DEFINITIVO

1° Lotto, dal Km 19+554 al Km 23+100 Asse Carreggiata Sud - Criteri di flessibilità andamento planimetrico

Elemento	Progr. in. [m]	Progr. fin. [m]	Parametro limite		Criterio	Note
Clotoide n°2 – A= 500,000 -	229,349	294,284	Lunghezza minima del raccordo	1283.30	(valore minimo del parametro A criterio ottico)	Il parametro limite è correlato alla necessità di assicurare la percezione ottica corretta dell'andamento del tracciato durante la percorrenza. Le caratteristiche geometriche della transizione n.2 sono state adottate in funzione dei vincoli imposti dal completo riutilizzo della carreggiata esistente. Il parametro A=500 garantisce la verifica al criterio 1 (Limitazione del contraccolpo) e al criterio 2 (Sovrapendenza longitudinale delle linee di estremità della carreggiata).
Rettifilo n°6 - Lunghezza (m): 143,431	4560,105	4703,536	Lunghezza minima (m)	250,000	(lunghezza minima rettifili terminali)	Il parametro limite è correlato alla necessità di assicurare la percezione dei tratti rettilinei del tracciato. La lunghezza del rettifilo n.6 è stata adottata in funzione del limite di intervento delle opere di progetto del 1° Lotto, nonché dai vincoli imposti dall'allineamento in congruenza con l'infrastruttura di progetto dell'adiacente 2° Lotto. La lunghezza del rettifilo considerando l'intero itinerario di progetto (1° Lotto e 2° Lotto), pari a 403,344 m =143,431m + 259,913m (rettifilo iniziale del 2° Lotto adiacente), risulta compatibile con il parametro limite.

4.2 ANDAMENTO ALTIMETRICO

Per quanto riguarda l'andamento altimetrico, lungo la Carreggiata Sud la pendenza longitudinale massima è pari a 1,58% con raccordi altimetrici concavi con raggi variabili tra 5000 m e 10000 m e raccordi altimetrici convessi con raggi variabili tra 8500 m e 30000 m, lungo la Carreggiata Nord la pendenza longitudinale massima è pari a 1,54 % con raccordi altimetrici concavi con raggi variabili tra 5000 m e 30000 m e raccordi altimetrici convessi con raggi variabili tra 8500 m e 30000 m.

Le caratteristiche degli elementi geometrici costituenti l'andamento altimetrico sono riportate, per ciascuna carreggiata, nelle tabelle seguenti.

1° Lotto, dal Km 19+554 al Km 23+100 Asse Carreggiata Nord - Andamento altimetrico

N	n	Elemento	Progr. in. [m]	Progr. fin. [m]	L [m]	i [%]	R [m]
1	1	livelletta	0,000	115,721	115,721	0,249%	∞
2	1	raccordo concavo	115,721	222,123	106,402	variabile	10000
3	2	livelletta	222,123	321,589	99,466	1,313%	8
4	2	raccordo convesso	321,589	522,293	200,704	variabile	8500
5	3	livelletta	522,293	614,470	92,177	-1,048%	∞

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 18 di 56

PROGETTO DEFINITIVO

1° Lotto, dal Km 19+554 al Km 23+100 Asse Carreggiata Nord - Andamento altimetrico

N	n	Elemento	Progr. in. [m]	Progr. fin. [m]	L [m]	i [%]	R [m]
6	1	raccordo concavo	614,470	729,933	115,463	variabile	8000
7	4	livelletta	729,933	1598,716	868,783	0,395%	8
8	3	raccordo convesso	1598,716	1883,398	284,682	variabile	15000
9	5	livelletta	1883,398	2016,903	133,505	-1,503%	8
10	2	raccordo concavo	2016,903	2182,806	165,903	variabile	30000
11	6	livelletta	2182,806	2319,985	137,179	-0,950%	8
12	4	raccordo convesso	2319,985	2379,816	59,831	variabile	30000
13	7	livelletta	2379,816	2732,901	353,085	-1,149%	8
14	5	raccordo convesso	2732,901	2785,014	52,113	variabile	20000
15	8	livelletta	2785,014	2968,851	183,837	-1,410%	8
16	3	raccordo convesso	2968,851	3006,082	37,231	variabile	30000
17	9	livelletta	3006,082	3242,238	236,156	-1,534%	∞
18	6	raccordo concavo	3242,238	3277,629	35,391	variabile	10000
19	10	livelletta	3277,629	4019,540	741,911	-0,826%	8
20	4	raccordo convesso	4019,540	4090,901	71,361	variabile	10000
21	11	livelletta	4090,901	4209,660	118,759	-1,540%	8
22	7	raccordo concavo	4209,660	4256,271	46,611	variabile	5000
23	12	livelletta	4256,271	4707,108	450,837	-0,608%	∞

1° Lotto, dal Km 19+554 al Km 23+100 Asse Carreggiata Sud - Andamento altimetrico

N	n	Elemento	Progr. in. [m]	Progr. fin. [m]	L [m]	i [%]	R [m]
1	1	livelletta	0,000	115,851	115,851	0,249%	∞
2	1	raccordo concavo	115,851	222,242	106,391	variabile	10000
3	2	livelletta	222,242	321,715	99,473	1,313%	∞
4	2	raccordo convesso	321,715	522,408	200,693	variabile	8500
5	3	livelletta	522,408	614,607	92,199	-1,048%	∞
6	1	raccordo concavo	614,607	730,092	115,485	variabile	8000
7	4	livelletta	730,092	1598,211	868,119	0,395%	∞
8	3	raccordo convesso	1598,211	1881,002	282,791	variabile	15000
9	5	livelletta	1881,002	2016,347	135,345	-1,490%	∞
10	2	raccordo concavo	2016,347	2183,624	167,277	variabile	30000
11	6	livelletta	2183,624	2330,672	147,048	-0,932%	∞
12	4	raccordo convesso	2330,672	2395,718	65,046	variabile	30000
13	7	livelletta	2395,718	2740,961	345,243	-1,149%	∞
14	5	raccordo convesso	2740,961	2793,093	52,132	variabile	20000
15	8	livelletta	2793,093	2974,561	181,468	-1,410%	∞
16	3	raccordo convesso	2974,561	3008,949	34,388	variabile	30000
17	9	livelletta	3008,949	3251,052	242,103	-1,524%	∞
18	6	raccordo concavo	3251,052	3320,870	69,818	variabile	10000

T01PS00TRARE01_B.docx

Maggio 2021 Rev. A Pag. 19 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

1° Lotto, dal Km 19+554 al Km 23+100 Asse Carreggiata Sud - Andamento altimetrico

N	n	Elemento	Progr. in. [m]	Progr. fin. [m]	L [m]	i [%]	R [m]
19	10	livelletta	3320,870	4025,348	704,478	-0,826%	∞
20	4	raccordo convesso	4025,348	4100,333	74,985	variabile	10000
21	11	livelletta	4100,333	4219,382	119,049	-1,576%	∞
22	7	raccordo concavo	4219,382	4267,773	48,391	variabile	5000
23	12	livelletta	4267,773	4703,536	435,763	-0,608%	∞

La notazione utilizzata nella tabella, per ciascun elemento geometrico, è la seguente:

- N = numero d'ordine progressivo;
- n = numero d'ordine per elemento geometrico omogeneo (livelletta/raccordo concavo/raccordo convesso);
- Elemento = tipo di elemento geometrico;
- Progr. in. = progressiva iniziale;
- Progr. fin. = progressiva finale;
- L = sviluppo;
- i = pendenza;
- R = raggio di curvatura.

4.3 Distanze di visuale libera

È stata verificata la sussistenza di visuali libere commisurate alla distanza di visibilità per l'arresto ai sensi del D.M. 05/11/2001, prevedendo, ove necessario, ampliamenti della carreggiata lungo i tratti curvilinei.

È stata condotta, inoltre, la verifica della distanza di visibilità per la manovra di cambiamento di corsia, valutando la lunghezza del tratto di strada occorrente per il passaggio dalla corsia di sorpasso alla corsia di marcia nella manovra di deviazione in corrispondenza dei punti singolari corrispondenti alle corsie di diversione degli svincoli.

In particolare, la verifica è stata condotta con punto di vista localizzato nella corsia di sorpasso e punto da osservare sulla striscia di separazione tra la carreggiata dell'asse principale e l'inizio della corsia di diversione.

4.4 Piazzole di sosta

Lungo l'asse di ciascuna carreggiata sono state previste piazzole di sosta lungo ciascun senso di marcia, di dimensioni conformi alle prescrizioni normative (par. 3.6.2 del D.M. 05/11/2001), ovvero:

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 20 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

- lunghezza totale pari a 65 m (25 m il tratto centrale e 20 m i tratti di raccordo);
- larghezza complessiva, oltre la banchina, pari a 3,50 m.

Il criterio seguito per l'ubicazione delle piazzole di sosta nei tratti all'aperto è stato quello di garantire, compatibilmente la presenza degli svincoli e con la successione delle diverse configurazioni del corpo stradale, un interasse pari a circa 1 km.

L'ubicazione e l'interasse delle piazzole di sosta, nonché le opere interessate dalle stesse è riportata nella tabella seguente.

	Car	reggiata Sud			Carr	eggiata Nord	
n	Progr. [m]	Interasse [m]	Opera	n	Progr. [m]	Interasse [m]	Opera
1	1+209	-	rilevato	1	1+210	-	rilevato
2	2+675	1466	rilevato	2	2+666	1456	rilevato
3	3+871	1196	rilevato	3	4+117	1451	rilevato

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 21 di 56

PROGETTO DEFINITIVO

DIAGRAMMA DELLE VELOCITA'

Il diagramma delle velocità è la rappresentazione grafica dell'andamento della velocità di progetto in funzione della progressiva dell'asse stradale ed è stato costruito sulla base del solo tracciato planimetrico, calcolando, per ogni elemento, l'andamento della velocità di progetto.

Il diagramma di velocità è stato redatto secondo l'intervallo di velocità di progetto (70÷120) km/h prescritto per la categoria di strada.

In particolare, il diagramma di velocità è stato redatto sulla base sulle seguenti ipotesi:

- a) sui rettifili, sulle curve circolari con raggio non inferiore a R* e lungo le clotoidi, la velocità tende al limite superiore dell'intervallo di velocità di progetto V_{pmax} pari a:
- b) su tutte le curve con raggio inferiore a R* la velocità è costante e si valuta attraverso l'equazione di stabilità allo slittamento del veicolo in curva;
- c) gli spazi di accelerazione e di decelerazione, rispettivamente, in uscita o in ingresso ad una curva circolare, ricadono sugli elementi indicati in a);
- d) le variazioni avvengono con moto uniformemente vario con a = 0,8 m/s². Lo spazio necessario per passare da una velocità V1 ad una velocità V2, denominata dalle Norme distanza di transizione D_T, si valuta con la relazione:

$$D_T = (V_1^2 - V_2^2) / 2a$$

- e) la decelerazione termina all'inizio della curva circolare, mentre l'accelerazione comincia all'uscita della curva circolare, pertanto è a partire da questi punti che vanno riportate le distanze di transizione;
- affinché il conducente possa attuare la decelerazione, è necessario che la curva sia vista e percepita come tale; la distanza D_T deve, pertanto, essere minore della visuale libera disponibile e della distanza di riconoscimento Dr che può essere calcolata moltiplicando per 12 la velocità espressa in m/s.

5.1 Asse Carreggiata Nord

Il rispetto congiunto dei vincoli progettuali (riutilizzo della sede stradale esistente, distanziamento tra le due carreggiate di progetto, congruenza e continuità con i tratti stradali contigui) ha comportato l'adozione di un tracciato caratterizzato da differenze di velocità contenute nei limiti massimi corrispondenti alle condizioni prescritte dall'esame del diagramma di velocità.

L'andamento del diagramma di velocità riferito all'asse della Carreggiata Nord è riportato nella figura seguente.

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 22 di 56

PROGETTO DEFINITIVO

Al fine di garantire idonee condizioni di sicurezza, si prevedono opportune limitazioni alla massima velocità consentita all'utenza tramite limiti amministrativi di velocità.

La sequenza dei limiti di velocità imposti, definita secondo valori dei limiti di velocità compatibili con le variazioni ammissibili richieste dall'esame del diagramma di velocità, è riportata nella tabella seguente.

1° Lotto, dal Km 19+554 al Km 23+100 Asse Carreggiata Nord - Limiti di velocità

Progr. in.	Progr. fin.	L	Vlim
[m]	[m]	[m]	[km/h]
4+550	3+700	850	100

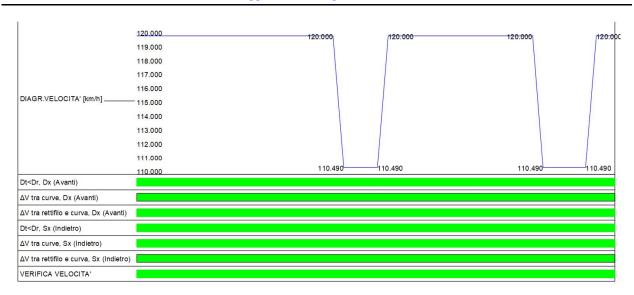
La notazione utilizzata nella tabella, con riferimento a ciascuna tratta omogenea, a cui è associato un determinato valore del limite di velocità imposto, è la seguente:

- Progr. in. = progressive iniziale;
- Progr. fin. = progressiva finale;
- L = sviluppo;
- Vlim = valore del limite di velocità imposto.

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 23 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).


PROGETTO DEFINITIVO

5.2 Asse Carreggiata Sud

Il rispetto congiunto dei vincoli progettuali (riutilizzo della sede stradale esistente, distanziamento tra le due carreggiate di progetto, congruenza e continuità con i tratti stradali contigui) ha comportato l'adozione di un tracciato caratterizzato da differenze di velocità contenute nei limiti massimi corrispondenti alle condizioni prescritte dall'esame del diagramma di velocità.

L'andamento del diagramma di velocità riferito all'asse della Carreggiata Nord è riportato nella figura seguente.

1° Lotto, dal Km 19+554 al Km 23+100 Asse Carreggiata Sud - Diagramma delle velocità

Al fine di garantire idonee condizioni di sicurezza, si prevedono opportune limitazioni alla massima velocità consentita all'utenza tramite limiti amministrativi di velocità.

La sequenza dei limiti di velocità imposti, definita secondo valori dei limiti di velocità compatibili con le variazioni ammissibili richieste dall'esame del diagramma di velocità, è riportata nella tabella seguente.

1° Lotto, dal Km 19+554 al Km 23+100 Asse Carreggiata Sud - Limiti di velocità

Progr. in.	Progr. fin.	Г	Vlim
[m]	[m]	[m]	[km/h]
1+910	2+480	570	100
3+800	4+570	770	100

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 24 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

La notazione utilizzata nella tabella, con riferimento a ciascuna tratta omogenea, a cui è associato un determinato valore del limite di velocità imposto, è la seguente:

- Progr. in. = progressive iniziale;
- Progr. fin. = progressiva finale;
- L = sviluppo;
- Vlim = valore del limite di velocità imposto.

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 25 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

VERIFICHE DEL TRACCIATO

VERIFICA PLANIMETRICA 6.1

Di seguito si riportano le verifiche per ogni asse principale.

T01PS00TRARE01_B.docx

Maggio 2021 Rev. A Pag. 26 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

ASSE SUD 6.1.1

B		7
Progressiva Iniziale (m): 0.0000 Progressiva Finale (m): 4703.5370 Strada Tipo : B Strada extraurbana Intervallo di Velocità di progetto		Lunghezza (m) : 4703.5370
Rettifilo 1 ProgI 0.0000 - Prog	gF 44.1115	
Coordinate P.to Iniziale X: Y:	149360.6322 94232.9317	
	4.1115	Azimut : 277.75g
Vp (Km/h) = 120.0 L >= Lmin = 250.0000 No L <= Lmax = 2640.0000 OK	Rsucc =	3850.0000 Rsucc > Rmin = 44.1100 OK
Coordinate vertice X:	149302.6963	Coordinate I punto Tg X: 149345.529. Coordinate I punto Tg Y: 94191.4862
		Coordinate II punto Tg X: 149265.5660 Coordinate II punto Tg Y: 93954.473
	 2.6366	
Tangente Prim. 2: 92	2.6366 96.94q	TT1 Tangente 1: 125.1052 TT2 Tangente 2: 125.1052 Numero Archi : 1
	1115 - Dunier 100 0	
Clotoide in entrata ProgI 44.3	1115 - ProgF 109.0 	4 00
Coordinate vertice X:	149330.7079	Coordinate I punto Tg X: 149345.5294 Coordinate I punto Tg Y: 94191.4862
Coordinate vertice Y:	94150.8123	Coordinate II punto Tg X: 149323.4688 Coordinate II punto Tg Y: 94130.4130
Raggio : 3850	 0.0000	Angolo : 0.54g
	1.0000	Tangente lunga : 43.2902
	0.0000 0.0456	Tangente corta : 21.6452 Sviluppo : 64.9351
	-2.5	Ptf (%) : 2.5
Pti (%) :		
Pti (%) : Vp (Km/h) = 120.0 A >= radq[(Vp^3-gVR(Ptf-Pti))/c] A >= radq(R/dimax*Bi* Pti-Ptf *100) A >= R/3 A <= R	= 0.000 OK) = 358.200 OK =1283.300 No =3850.000 OK	A/Au = 1.000 $A/Au >= 2/3 = 0.670$ OK $A/Au = 1.000$ $A/Au <= 3/2 = 1.500$ OK
Vp (Km/h) = 120.0 A >= radq[(Vp^3-gVR(Ptf-Pti))/c] A >= radq(R/dimax*Bi* Pti-Ptf *100) A >= R/3) = 358.200 OK =1283.300 No =3850.000 OK	, , , , , , , , , , , , , , , , , , , ,
<pre>Vp (Km/h) = 120.0 A >= radq[(Vp^3-gVR(Ptf-Pti))/c] A >= radq(R/dimax*Bi* Pti-Ptf *100] A >= R/3 A <= R Arco</pre>) = 358.200 OK =1283.300 No =3850.000 OK	A/Au = 1.000 A/Au <= 3/2 = 1.500 OK
<pre>Vp (Km/h) = 120.0 A >= radq[(Vp^3-gVR(Ptf-Pti))/c] A >= radq(R/dimax*Bi* Pti-Ptf *100) A >= R/3 A <= R</pre>	9.3490 149303.3501 94073.7215	A/Au = 1.000 A/Au <= 3/2 = 1.500 OK Coordinate I punto Tg X: 149323.4688 Coordinate I punto Tg Y: 94130.4136

T01PS00TRARE01_B.docx

Maggio 2021 Pag. 27 di 56 Rev. A

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

Saetta : 0.4699	po : 120.3024 120.2975
Pt (%) : 2.5 Vp (Km/h) = 120.0	nate I punto Tg X: 149285.012 nate I punto Tg Y: 94016.428 nate II punto Tg X: 149265.566 nate II punto Tg Y: 93954.473 : 0.54g te lunga : 43.2902 te corta : 21.6452
R >= Rmin = 44,994 OK Sv >= Smin = 83.330 OK Pt >= Ptmin = 2.500 OK Clotoide in uscita	nate I punto Tg Y: 94016.428 nate II punto Tg X: 149265.566 nate II punto Tg Y: 93954.473 : 0.54g te lunga : 43.2902 te corta : 21.6452
Sev >= Smin = 83.330 OK Pt >= Ptmin = 2.500 OK Clotoide in uscita	nate I punto Tg Y: 94016.428 nate II punto Tg X: 149265.566 nate II punto Tg Y: 93954.473 : 0.54g te lunga : 43.2902 te corta : 21.6452
Pt >= Ptmin = 2.500 OK Clotoide in uscita	nate I punto Tg Y: 94016.428 nate II punto Tg X: 149265.566 nate II punto Tg Y: 93954.473 : 0.54g te lunga : 43.2902 te corta : 21.6452
Clotoide in uscita	nate I punto Tg Y: 94016.428 nate II punto Tg X: 149265.566 nate II punto Tg Y: 93954.473 : 0.54g te lunga : 43.2902 te corta : 21.6452
Coordinate vertice X: 149278.4142 Coordi Coordinate vertice Y: 93995.8135 Coordi Raggio : 3850.0000	nate I punto Tg Y: 94016.428 nate II punto Tg X: 149265.566 nate II punto Tg Y: 93954.473 : 0.54g te lunga : 43.2902 te corta : 21.6452
Coordinate vertice X: 149278.4142 Coordi Coordinate vertice Y: 93995.8135 Coordi Coordinate vertice Y: 93995.8135 Coordi Coordi Coordinate vertice Y: 93995.8135 Coordi Coordi Coordi Coordi Raggio : 3850.0000	nate I punto Tg Y: 94016.428 nate II punto Tg X: 149265.566 nate II punto Tg Y: 93954.473 : 0.54g te lunga : 43.2902 te corta : 21.6452
Coordinate vertice X: 149278.4142 Coordinate Coordinate vertice Y: 93995.8135 Coordinate Vertice X: 14906.3181 Coordinate Vertice X: 149106.3181 Coordinate Coordinate Vertice X: 149106.3181 Coordinate Coordinate Vertice Y: 93442.0874 Coordinate Vertice Y	nate I punto Tg Y: 94016.428 nate II punto Tg X: 149265.566 nate II punto Tg Y: 93954.473 : 0.54g te lunga : 43.2902 te corta : 21.6452
Coordinate vertice Y: 93995.8135 Coordinate Raggio	nate II punto Tg X: 149265.566 nate II punto Tg Y: 93954.473 : 0.54g te lunga : 43.2902 te corta : 21.6452
Coordi Raggio	nate II punto Tg Y: 93954.473
Raggio : 3850.0000 Angolo Parametro N : 1.0000 Tanger Scostamento A : 500.0000 Tanger Pit (%) : 2.5 Ptf (%) Vp (Km/h) = 120.0 A >= radq[(Vp^3-gVR(Ptf-Pti))/c] = 0.000 OK A >= radq(R/dimax*Bi* Pti-Ptf *100) = 358.200 OK A >= R/3 =1283.300 No Ae/A A <= R =3850.000 OK Ae/A Rettifilo 3 ProgI 294.2841 - ProgF 610.3622 Coordinate P.to Iniziale X: 149265.5660 Coordinate Vp (Km/h) = 120.0 L >= Lmin = 250.0000 OK Rprec = 3850.00 L <= Lmax = 2640.0000 OK Rsucc = 7500.00 Curva 4 Destra ProgI 610.3622 - ProgF 1051.2048 Coordinate vertice X: 149106.3181 Coordinate P.to Iniziale Y: 93442.0874 Coordinate Vertice Y: 93442.0874	: 0.54g te lunga : 43.2902 te corta : 21.6452
Parametro N : 1.0000 Tanger Parametro A : 500.0000 Tanger Scostamento : 0.0456 Svilup Pti (%) : 2.5 Ptf (%) A >= radq[(Vp^3-gVR(Ptf-Pti))/c] = 0.000 OK A >= radq[(Vp^3-gVR(Ptf-Pti))/c] = 0.000 OK A >= R/3 = 1283.300 No Ae/A A <= R = 3850.000 OK Ae/A Rettifilo 3 ProgI 294.2841 - ProgF 610.3622 Coordinate P.to Iniziale X: 149265.5660 Coordinate P.to Iniziale X: 93954.4739 Cunghezza : 316.0781 Azimu	te lunga : 43.2902 te corta : 21.6452
Parametro A : 500.0000 Tanger Scostamento : 0.0456 Svilup Ptf (%) : 2.5 Ptf (%) Pri (%) : 2.5 Ptf (%) A >= radq[(Vp^3-gVR(Ptf-Pti))/c] = 0.000 OK A >= radq[(Vp^3-gVR(Ptf-Pti))/c] = 358.200 OK A >= R/3 = 1283.300 No Ae/A A <= R = 3850.000 OK Ae/A A <= R = 3850.000 OK Ae/A Ae/A Ac = R = 3850.000 OK Ae/A	te corta : 21.6452
Scostamento : 0.0456 Svilup Ptf (%)	
<pre>Typ (Km/h) = 120.0 A >= radq[(Vp^3-gVR(Ptf-Pti))/c] = 0.000 OK A >= radq(R/dimax*Bi* Pti-Ptf *100) = 358.200 OK A >= R/3</pre>) : -2.5
A >= radq[(Vp^3-gVR(Ptf-Pti))/c] = 0.000 OK A >= radq(R/dimax*Bi* Pti-Ptf *100) = 358.200 OK A >= R/3 = 1283.300 No Ae/A A <= R = 3850.000 OK Ae/A Rettifilo 3 ProgI 294.2841 - ProgF 610.3622 Coordinate P.to Iniziale X: 149265.5660 Coordinate P.to Iniziale X: 93954.4739 Coordinate P.to Iniziale X: 149265.5660 Coordinate P.to Iniziale X: 93954.4739 Coordinate P.to Iniziale X: 149265.5660 Coor	
A >= radq(R/dimax*Bi* Pti-Ptf *100) = 358.200 OK A >= R/3 = 1283.300 No Ae/A A <= R = 3850.000 OK Ae/A Rettifilo 3 ProgI 294.2841 - ProgF 610.3622 Coordinate P.to Iniziale X: 149265.5660 Coordinate Y: 93954.4739 Cunghezza : 316.0781 Azimu	
A >= R/3	
A <= R	= 1.000 Ae/A >= $2/3$ = 0.670 OK
Rettifilo 3	= 1.000 Ae/A <= $3/2$ = 1.500 OK
Lunghezza : 316.0781 Azimu Tp (Km/h) = 120.0 L >= Lmin = 250.0000 OK Rprec = 3850.0 L <= Lmax = 2640.0000 OK Rsucc = 7500.0 Curva 4 Destra ProgI 610.3622 - ProgF 1051.2048 Coordinate vertice X: 149106.3181 Coordinate vertice Y: 93442.0874 Coordinate vertice Coordinate ve	
<pre>Wp (Km/h) = 120.0 L >= Lmin = 250.0000 OK</pre>	Y: 93652.637
Curva 4 Destra ProgI 610.3622 - ProgF 1051.2048 Coordinate vertice X: 149106.3181 Coordinate vertice Y: 93442.0874 Coordinate Coordinate vertice Y: 93442.0874 Coordinate Coordinate vertice Coordinate Vertice Coordinate Coordinate vertice Y: 93442.0874 Coordinate Coordinate Vertice Coordinate Vertice Coordinate Vertice Coordinate Vertice Y: 93442.0874 Coordinate Vertice Coordin	t : 280.82g
Curva 4 Destra ProgI 610.3622 - ProgF 1051.2048 Coordinate vertice X: 149106.3181 Coordinate vertice Y: 93442.0874 C	
Curva 4 Destra ProgI 610.3622 - ProgF 1051.2048 Coordinate vertice X: 149106.3181 Coordinate vertice Y: 93442.0874 C	000 Rprec >= Rmin = 400.0000 OK 000 Rsucc >= Rmin = 400.0000 OK
Coordinate vertice X: 149106.3181 Coordi 	
Coordinate vertice X: 149106.3181 Coordi Coordinate vertice Y: 93442.0874 Coordi Coordi	
Coordinate vertice	
Coordi	
	nate I punto Tg X: 149171.756 nate I punto Tg Y: 93652.637
	nate I punto Tg X: 149171.756 nate I punto Tg Y: 93652.637 nate II punto Tg X: 149028.624
Tangente Prim. 2: 220.4848 TT2 Ta	nate I punto Tg X: 149171.756 nate I punto Tg Y: 93652.637
	nate I punto Tg X: 149171.756 nate I punto Tg Y: 93652.637 nate II punto Tg X: 149028.624 nate II punto Tg Y: 93235.745
Alfa Ang. al Vert.: 196.26g Numero	nate I punto Tg X: 149171.756 nate I punto Tg Y: 93652.637 nate II punto Tg X: 149028.624 nate II punto Tg Y: 93235.745 ngente 1: 220.4848 ngente 2: 220.4848
	nate I punto Tg X: 149171.756 nate I punto Tg Y: 93652.637 nate II punto Tg X: 149028.624 nate II punto Tg Y: 93235.745 ngente 1: 220.4848 ngente 2: 220.4848 Archi : 1
Arco ProgI 610.3622 - ProgF 1051.2048	nate I punto Tg X: 149171.756 nate I punto Tg Y: 93652.637
Coordinate vertice X: 149106.3181 Coordi	nate I punto Tg X: 149171.756 nate I punto Tg Y: 93652.637
Coordinate vertice Y: 93442.0874 Coordi	nate I punto Tg X: 149171.756 nate I punto Tg Y: 93652.637 nate II punto Tg X: 149028.624 nate II punto Tg Y: 93235.745 ngente 1: 220.4848 ngente 2: 220.4848 Archi : 1
Coordinate centro curva X: 142009.6920 Coordi	nate I punto Tg X: 149171.756 nate I punto Tg Y: 93652.637

T01PS00TRARE01_B.docx

Maggio 2021 Rev. A Pag. 28 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

		95878.5818	Coordinate II	I punto To	y Y:	93235.7450
Raggio : Tangente : Saetta : Pt (%) :	74	199.9996 220.4848 3.2388 0.0	Angolo al ver Sviluppo Corda			3.74g 440.8427 440.7792
Rettifilo 5 Prog						
Coordinate P.to Iniz	Y:	149028.6241 93235.7450			Υ:	92476.4653
Lunghezza :		311.3196	Azimut	:		277.07g
Vp (Km/h) = 120.0 L >= Lmin = 250 L <= Lmax = 2640		Rprec = Rsucc =	= 7500.0000 = 550.0000	Rprec >= Rsucc >=	Rmin =	400.0000 OK 400.0000 OK
Curva 6 Sinistra	ProgI 1862.5		 3620			
Coordinate vertice	х:		Coordinate I Coordinate I	punto To	y:	148742.7327 92476.4653
Coordinate vertice	Υ:		Coordinate II Coordinate II	I punto To I punto To	g X: g Y:	148806.9760 91833.1606
Tangente Prim. 1:		272.2542	TT1 Tangente	1:		360.6882 360.6883
Tangente Prim. 2: Alfa Ang. al Vert.:		272.2542 141.48g 	TT2 Tangente Numero Archi	2: :		1
Alfa Ang. al Vert.:	ProgI 18	862.5244 - ProgF 203	7.2517 Coordinate I	punto To		1
Alfa Ang. al Vert.:	ProgI 18	862.5244 - ProgF 203	37.2517	punto To	y:	1 148742.7327 92476.4653
Alfa Ang. al Vert.:	ProgI 18	148701.6316 92367.3077	Coordinate I Coordinate I Coordinate II Coordinate II	punto Topunto	y Y: y X: y Y:	1 148742.7327 92476.4653 148689.9602 92310.1034
Alfa Ang. al Vert.: Clotoide in entrata Coordinate vertice Coordinate vertice Raggio : Parametro N : Parametro A : Scostamento :	ProgI 18 X: Y:	362.5244 - ProgF 203 148701.6316 92367.3077 1.0000 1.0000 2.3108	Coordinate I Coordinate I Coordinate II Coordinate II Angolo Tangente lung Tangente cort Sviluppo	punto Topunto	y Y: y X: y Y:	1 148742.7327 92476.4653 148689.9602 92310.1034 10.11g 116.6392 58.3827 174.7273
Alfa Ang. al Vert.: Clotoide in entrata Coordinate vertice Coordinate vertice Raggio : Parametro N : Parametro A :	ProgI 18 X: Y: 5 String Ptf-Pti))/c]	362.5244 - ProgF 203 148701.6316 92367.3077 550.0000 1.0000 10.0000 2.3108 -2.5	Coordinate I Coordinate II Coordinate II Coordinate II Angolo Tangente lung Tangente cort Sviluppo Ptf (%) A/Au = 1	punto Topunto	y Y: y X: y Y:	1 148742.7327 92476.4653 148689.9602 92310.1034 10.11g 116.6392 58.3827
Alfa Ang. al Vert.: Clotoide in entrata Coordinate vertice Coordinate vertice Raggio : Parametro N : Parametro A : Scostamento : Pti (%) : Vp (Km/h) = 120.0 A >= radq[(Vp^3-gVR(A)) = radq[(Vp^3	ProgI 18 X: Y: 5 25 Ptf-Pti))/c)* Pti-Ptf *10	148701.6316 92367.3077 92367.3077 92367.3077 92367.3077 92367.3077 92368.1347	Coordinate I Coordinate II Coordinate II Coordinate II Angolo Tangente lung Tangente cort Sviluppo Ptf (%) A/Au = 1	punto Topunto	y Y: y X: y Y:	1 148742.7327 92476.4653 148689.9602 92310.1034 10.11g 116.6392 58.3827 174.7273 7.0 >= 2/3 = 0.670 OK
Alfa Ang. al Vert.: Clotoide in entrata Coordinate vertice Coordinate vertice Raggio : Parametro N : Parametro A : Scostamento : Pti (%) :	ProgI 18 X: Y: Standard	148701.6316 92367.3077 1550.0000 1.0000	Coordinate I Coordinate II Coordinate II Coordinate II Coordinate II Angolo Tangente lung Tangente cort Sviluppo Ptf (%) A/Au = 1 A/Au = 1 Coordinate II Coordinate I	punto Topunto	A/Au : A/	1 148742.7327 92476.4653 148689.9602 92310.1034 10.11g 116.6392 58.3827 174.7273 7.0 >= 2/3 = 0.670 OK <= 3/2 = 1.500 OK
Alfa Ang. al Vert.: Clotoide in entrata Coordinate vertice Coordinate vertice Raggio : Parametro N : Parametro A : Scostamento : Pti (%) : Vp (Km/h) = 120.0 A >= radq[(Vp^3-gVR)(A) >= radq[(Vp^3-gVR)(A) >= radq[(Vp^3-gVR)(A) >= radq(Vp^3-gVR)(A) >= radq(Vp	ProgI 18 X: Y: S S Ptf-Pti))/c] * Pti-Ptf *10 2517 - ProgF X: Y: rva X: rva Y:	148701.6316 92367.3077 92367.3077 92367.3077 92367.3077 92367.3077 92367.3070 92367.3070 92368.1347 92368.1347	Coordinate I Coordinate II Coordinate II Coordinate II Angolo Tangente lunc Tangente cort Sviluppo Ptf (%) A/Au = 1 A/Au = 1 Coordinate I Coordinate I Coordinate I Coordinate I Coordinate II	punto Topunto	A/Au :	1 148742.7327 92476.4655 148689.9602 92310.1034 10.11g 116.6392 58.3827 174.7273 7.0 >= 2/3 = 0.670 OK <= 3/2 = 1.500 OK 148689.9602 92310.1034

T01PS00TRARE01_B.docx

Maggio 2021 Rev. A Pag. 29 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

Pt (%) :		7.0		
	4.994 OK 6.730 OK 7.000 OK			
Clotoide in uscita		1347 - ProgF 254	.8620	
Coordinate vertice		148745.0999	Coordinate I punto Tg X Coordinate I punto Tg Y	91985.8009
Coordinate vertice	Υ:		Coordinate II punto Tg X Coordinate II punto Tg Y	
Raggio : Parametro N : Parametro A : Scostamento :	1 310 2	.0000 .0000 .0000 .3108	Angolo : Tangente lunga : Tangente corta : Sviluppo :	10.11g 116.6392 58.3828 174.7273
Pti (%) :		7.0	Ptf (%) :	-2.5
<pre>Vp (Km/h) = 120.0 A >= radq[(Vp^3-gVR(A >= radq(R/dimax*BiA >= R/3) A <= R</pre>			Ae/A = 1.000 Ae/A Ae/A = 1.000 Ae/A	>= 2/3 = 0.670 OK <= 3/2 = 1.500 OK
Rettifilo 7 Prog 	I 2542.8620 - P iale X: Y:	148806.9760	Coordinate P.to Finale X	
	iale X: Y:			
Coordinate P.to Iniz Lunghezza : Vp (Km/h) = 120.0 L >= Lmin = 250	iale X: Y: 436	148806.9760 91833.1606 1030	Azimut :	91463.4803 335.60g = 400.0000 OK
Coordinate P.to Iniz Lunghezza : Vp (Km/h) = 120.0 L >= Lmin = 250	iale X: Y: 436	148806.9760 91833.1606 1030	Y Azimut : 550.0000 Rprec >= Rmin Rsucc >= Rmin	91463.4803 335.60g = 400.0000 OK
Coordinate P.to Iniz Lunghezza :	iale X: Y: 436 .0000 OK .0000 OK ProgI 2978.965	148806.9760 91833.1606 .1030 Rprec Rsucc 0 - ProgF 3500.	Azimut : 550.0000 Rprec >= Rmin Rsucc >= Rm	: 91463.4803 335.60g = 400.0000 OK = 400.0000 OK : 149038.3256 : 91463.4803
Coordinate P.to Iniz Lunghezza : Vp (Km/h) = 120.0 L >= Lmin = 250 L <= Lmax = 2640 Curva 8 Sinistra	iale X: Y: 436 .0000 OK .0000 OK ProgI 2978.965	148806.9760 91833.1606 .1030 Rprec Rsucc 0 - ProgF 3500	Y Azimut : 550.0000 Rprec >= Rmin Rsucc >= R	: 91463.4803 335.60g = 400.0000 OK = 400.0000 OK : 149038.3250 : 91463.4803
Coordinate P.to Iniz Lunghezza :	iale X:	148806.9760 91833.1606 .1030 Rprec Rsucc 0 - ProgF 3500	Azimut : 550.0000 Rprec >= Rmin 850.0000 Rsucc >= Rmin 850.00000 Rsucc >= Rmin 850.0000 Rsucc >= Rmin 850.00000 Rsucc >= Rmin 850.0000 R	: 91463.4803 335.60g = 400.0000 OK = 400.0000 OK : 149038.3250 : 91463.4803
Coordinate P.to Iniz Lunghezza : Vp (Km/h) = 120.0 L >= Lmin = 250 L <= Lmax = 2640 Curva 8 Sinistra Coordinate vertice Coordinate vertice Tangente Prim. 1: Tangente Prim. 2:	iale X:	148806.9760 91833.1606 .1030 Rprec Rsucc 0 - ProgF 3500 149178.3861 91239.6720 .7502 .7502 1.75g	Azimut : 550.0000 Rprec >= Rmin 850.0000 Rsucc >= Rmin X Coordinate I punto Tg X Coordinate II punto Tg X X X X X X X X X X X X X X X X X X	: 91463.4803 335.60g = 400.0000 OK = 400.0000 OK : 149038.3250 : 91463.4803 : 149400.9693 : 91097.6723
Coordinate P.to Iniz Lunghezza : Vp (Km/h) = 120.0 L >= Lmin = 250 L <= Lmax = 2640 Curva 8 Sinistra Coordinate vertice Coordinate vertice Tangente Prim. 1: Tangente Prim. 2: Alfa Ang. al Vert.:	iale X: Y: 436 .0000 OK .0000 OK ProgI 2978.965 X: Y: 191 191 17 ProgI 2978	148806.9760 91833.1606 .1030 Rprec : Rsucc : 0 - ProgF 3500 149178.3861 91239.6720 .7502 1.75g	Azimut : 550.0000 Rprec >= Rmin 850.0000 Rsucc >= Rmin 7 X Coordinate I punto Tg X Coordinate II punto Tg Y TT1 Tangente 1: TT2 Tangente 2: Numero Archi : 3.0826 Coordinate I punto Tg X Coordinate I punto Tg Y TT1 Tangente 1: TT2 Tangente 2: Numero Archi :	: 91463.4803 335.60g = 400.0000 OK = 400.0000 OK : 149038.3256 : 91463.4803 : 149400.9693 : 91097.6723 264.0214 264.0213 1 : 149038.3256 : 91463.4803
Coordinate P.to Iniz Lunghezza : Vp (Km/h) = 120.0 L >= Lmin = 250 L <= Lmax = 2640 Curva 8 Sinistra Coordinate vertice Coordinate vertice Tangente Prim. 1: Tangente Prim. 2: Alfa Ang. al Vert.: Clotoide in entrata Coordinate vertice Coordinate vertice	iale X:	148806.9760 91833.1606 .1030 Rprec Rsucc 0 - ProgF 3500. 149178.3861 91239.6720 .7502 1.75g .9650 - ProgF 31: 149089.3130 91382.0049	Azimut : 550.0000 Rprec >= Rmin 850.0000 Rsucc >= Rmin X Coordinate I punto Tg X Coordinate II punto Tg Y Y TT1 Tangente I: TT2 Tangente 2: Numero Archi : 3.0826 Coordinate I punto Tg X X X X X X X X X X X X X X X X X X	: 91463.4803 335.60g = 400.0000 OK = 400.0000 OK : 149038.3256 : 91463.4803 : 149400.9693 : 91097.6723 264.0214 264.0213 1 : 149038.3256 : 91463.4803 : 149118.1733 : 91343.5603

T01PS00TRARE01_B.docx

Maggio 2021 Rev. A Pag. 30 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

Parametro A Scostamento Pti (%)	: : :	1.	.0000 .0179 -2.5	Tangente cor Sviluppo Ptf (%)				8.0721 4.1176 6.0
Vp (Km/h) = 120 A >= radq[(Vp^3 A >= radq(R/dim A >= R/3 A <= R	-gVR(Ptf-			A/Au = A/Au =	1.000			= 0.670 C
Arco ProgI	3123.0826	- ProgF 335	56.1516					
Coordinate vert Coordinate vert	ice	X: Y:	149188.5784 91249.7762	Coordinate Coordinate		Tg Y		149118.17 91343.56
Coordinate cent	ro curva ro curva	X:	149797.9420	Coordinate Coordinate	II punto	Tg X	:	149281.74 91178.55
Raggio Tangente Saetta Pt (%)	: : :	117. 7.	.0000 .2701 .9759 6.0	Angolo al ve Sviluppo Corda	:		233	17.46g 3.0690 2.3395
Vp (Km/h) = 120 R >= Rmin = Sv >= Smin = Pt >= Ptmin =	44.99 83.33	0 OK						
	ita	ProgI 3356.1	1516 - ProgF 3500).2692 Coordinate 1	 I punto	 Tq X	·	149281.74
Clotoide in usc					I punto	Tg Y	·:	91178.55
Clotoide in usc	ice	x:	149319.9399 149319.9399 91149.3659	Coordinate 1 Coordinate 1 Coordinate 1 Coordinate 1 Coordinate 1	I punto II punto II punto	Tg Y Tg X Tg Y	: ::	91178.55
Clotoide in usc Coordinate vert Coordinate vert Raggio Parametro N Parametro A Scostamento Pti (%)	ice	X: Y: 850. 1. 349.	149319.9399 149319.9399 91149.3659	Coordinate 1 Coordinate 1 Coordinate 1 Coordinate 1 Coordinate 1	I punto II punto	Tg Y Tg X Tg Y	96	91178.55 149400.96
Clotoide in usc Coordinate vert Coordinate vert Raggio Parametro N Parametro A Scostamento Pti (%) Vp (Km/h) = 120 A >= radq[(Vp^3 A >= radq[(Vp^3 A >= R/3)]	ice ice : : : : : : :	X: Y: 850. 1 349. 1. Pti))/c]	149319.9399 91149.3659 0000 0000 9999 0179 6.0 = 178.800 OK	Coordinate Coordinate Coordinate Coordinate Coordinate Tangente Tangente Coordinate Angolo	I punto II punto II punto II punto II punto II rita II I punto II I punto II I I I I I I I I I I I I I I I I I I	Tg Y Tg X Tg Y Ae/A	96 48 144 	91178.55 149400.96 91097.67 5.40g 6.1146 8.0721 4.1176 -2.5
Clotoide in usc Coordinate vert Coordinate vert Raggio Parametro N Parametro A Scostamento Pti (%) Vp (Km/h) = 120 A >= radq (Vp^3 A A >= radq (R/dim A >= R/3 A <= R Rettifilo 9	ice ice :: :: :: :: :: :: :: :: :: :: :: :: ::	X: Y: 850. 1. 349. 1. Pti))/c] i-Ptf *100)	149319.9399 91149.3659 9114	Coordinate 1 Coordinate 1 Coordinate 1 Coordinate 1 Coordinate 1 Angolo Tangente lur Tangente cor Sviluppo Ptf (%) Ae/A = Ae/A =	I punto II p	Tg Y Tg Y Ae/A	96 48 144 3 >= 2/3 4 <= 3/2	91178.55 149400.96 91097.67 5.40g 6.1146 8.0721 4.1176 -2.5 = 0.670 C = 1.500 C
Clotoide in usc Coordinate vert Coordinate vert Raggio Parametro N Parametro A Scostamento Pti (%) Vp (Km/h) = 120 A >= radq[(Vp^3 A >= radq[R/dim A >= R/3 A <= R Rettifilo 9 Coordinate P.to	ice ice : : : : : : ProgI 35	X: Y: 850. 1. 349. 1. Pti))/c] i-Ptf *100) 00.2692 - Pi	149319.9399 91149.3659 91149.3659 91097.6721 91149.3659 9114	Coordinate Coordinate Coordinate Coordinate Angolo Tangente lur Tangente cor Sviluppo Ptf (%) Ae/A = Ae/A = Coordinate Coordinate Coordinate Angolo Tangente cor Sviluppo Ptf (%) Ae/A =	I punto II punto III punto	Tg Y Tg X Tg Y Ae/A Ae/A	96 48 144 14 <= 2/3 A <= 3/2	91178.55 149400.96 91097.67 5.40g 6.1146 8.0721 4.1176 -2.5 = 0.670 C = 1.500 C
Clotoide in usc Coordinate vert Coordinate vert Raggio Parametro N Parametro A Scostamento Pti (%) Vp (Km/h) = 120 A >= radq[(Vp^3 A >= radq[R/dim A >= R/3 A <= R Rettifilo 9 Coordinate P.to Lunghezza	ice ice :: :: :: : : : : : : : : : : : : : :	X: Y: 850. 1. 349. 1. Pti))/c] i-Ptf *100) X: Y: 356.	149319.9399 91149.3659 91149.3659 910000 9999 910179 9	Coordinate I Coordinate I Coordinate I Coordinate I Coordinate I Angolo Tangente lur Tangente cor Sviluppo Ptf (%) Ae/A = Ae/A = Ae/A = Ae/A = Ae/A =	I punto II punto II punto : : : : : : : : : : : : : : : : : : :	Tg Y Tg X Tg Y Ae/A Ae/A	96 48 144 14 >= 2/3 A <= 3/2	91178.55 149400.96 91097.67 5.40g 6.1146 8.0721 4.1176 -2.5 = 0.670 C = 1.500 C

T01PS00TRARE01_B.docx

Maggio 2021 Rev. A Pag. 31 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

Coordinate vertice	х:	150021.5665	Coordinate I punto Tg X: 149701.592 Coordinate I punto Tg Y: 90905.885
Coordinate vertice		90701.7537	Coordinate II punto Tg X: 150015.294 Coordinate II punto Tg Y: 90322.262
Tangente Prim. 1: Tangente Prim. 2: Alfa Ang. al Vert.:	3	07.4504 07.4504 135.10g	TT1 Tangente 1: 379.5432 TT2 Tangente 2: 379.5432 Numero Archi : 1
Clotoide in entrata	ProgI 38	56.8593 - ProgF 39	99.4048
Coordinate vertice	Х:	149781.7785	Coordinate I punto Tg X: 149701.592 Coordinate I punto Tg Y: 90905.885
Coordinate vertice			Coordinate II punto Tg X: 149818.256 Coordinate II punto Tg Y: 90824.163
Raggio : Parametro N :	5	50.0000	Angolo : 8.25g Tangente lunga : 95.1140
Parametro A : Scostamento :		30.0000 1.5384	Tangente corta : 47.5913
Pti (%) :		-2.5	Sviluppo : 142.5454 Ptf (%) : -7.0
<pre>Vp (Km/h) = 120.0 A >= radq[(Vp^3-gVR(Ptf A >= radq(R/dimax*Bi* P A >= R/3 A <= R</pre>)) = 128.500 OK	A/Au = 1.000 A/Au >= 2/3 = 0.670 0 A/Au = 1.000 A/Au <= 3/2 = 1.500 0
Arco ProgI 3999.404		4417.5594	
Coordinate vertice Coordinate vertice	X: Y:	90683.0142	Coordinate I punto Tg X: 149818.25 Coordinate I punto Tg Y: 90824.16
Coordinate centro curva Coordinate centro curva	Х:	149465.0087	Coordinate II punto Tg X: 150011.49' Coordinate II punto Tg Y: 90464.65
Raggio : Tangente : Saetta : Pt (%) :	2	50.0000 19.7666 39.2631 7.0	Angolo al vertice : 48.40g Sviluppo : 418.1546 Corda : 408.1561
	94 OK 30 OK 00 OK		
Clotoide in medita	ProgT 441	7 5594 - Progr 456	1048
Clotoide in uscita	ProgI 441		
		150016.8665	Coordinate I punto Tg X: 150011.49° Coordinate I punto Tg Y: 90464.650
Coordinate vertice	X: Y:	150016.8665 90417.3633	Coordinate I punto Tg X: 150011.49' Coordinate I punto Tg Y: 90464.65 Coordinate II punto Tg X: 150015.29 Coordinate II punto Tg Y: 90322.26
Coordinate vertice Coordinate vertice	X: Y:	150016.8665 90417.3633	Coordinate I punto Tg X: 150011.49 Coordinate I punto Tg Y: 90464.65 Coordinate II punto Tg X: 150015.29 Coordinate II punto Tg Y: 90322.262 Angolo : 8.25g
Coordinate vertice Coordinate vertice Raggio : Parametro N :	x: Y:	150016.8665 90417.3633	Coordinate I punto Tg X: 150011.497 Coordinate I punto Tg Y: 90464.650 Coordinate II punto Tg X: 150015.294 Coordinate II punto Tg Y: 90322.262
Coordinate vertice Raggio : Parametro N :	x: Y:	150016.8665 90417.3633 50.0000 1.0000	Coordinate I punto Tg X: 150011.497 Coordinate I punto Tg Y: 90464.650 Coordinate II punto Tg X: 150015.294 Coordinate II punto Tg Y: 90322.262 Angolo : 8.25g Tangente lunga : 95.1140

T01PS00TRARE01_B.docx

Maggio 2021 Rev. A Pag. 32 di 56

PROGETTO DEFINITIVO

Vp (Km/h) = 120.0					
$ A >= radq[(Vp^3-gVR(Ptf-Pti))/c]$	= 262.500 OK				
A >= radq(R/dimax*Bi* Pti-Ptf *100)	= 128.500 OK				1
$ A \rangle = R/3$	= 183.300 OK	Ae/A	= 1.000	Ae/A >= 2/3	= 0.670 OK
A <= R	= 550.000 OK	Ae/A	= 1.000	Ae/A <= 3/2	= 1.500 OK

Rettifilo 11	ProgI 4560.1	048 - ProgF 4703.537)				
Coordinate F	P.to Iniziale X: Y:	150015.2947 90322.2623	 	Coordinate	P.to Finale	X: Y:	150012.9246 90178.8496
Lunghezza	:	143.4322		Azimut	:		298.95g
Vp (Km/h) = L >= Lmin L <= Lmax	120.0 = 250.0000 No = 2640.0000 OK	Rpre	c =	550.0000	Rprec > Rm	in =	143.4300 OK

6.1.2 ASSE NORD

Dati generali sul tracciato Asse Nord L1		
Progressiva Iniziale (m): 0.0000 Progressiva Finale (m): 4707.1091 Strada Tipo : B Strada extraurbana Intervallo di Velocità di progetto (Km/h)	Lunghezza (m) : 4707.1091 : 5 <= Vp <= 10	

Rettifilo 1	1 ProgI 0.00	00 - ProgF 69.34	43					
Coordinate	P.to Iniziale X		2.7856 2.1466	Coordinate	P.to Finale	X: Y:	149339.043 94166.9934	
Lunghezza	:	69.3443		Azimut	:		277.75g	
Vp (Km/h) = L >= Lmin L <= Lmax	= 120.0 = 250.0000 = 2640.0000		Rsucc =	3300.0000	Rsucc > Rm	in =	69.3400 OK	

Curva 2 Sinistra	ProgI 69.3	443 - ProgF 296.36	503				
 Coordinate vertice	Х:	149300.1735		Coordinate I Coordinate I		X: Y:	149339.0437 94166.9934
Coordinate vertice	Υ:	94060.3243		Coordinate II Coordinate II		X: Y:	149267.1281 93951.7094
Tangente Prim. 1: Tangente Prim. 2: Alfa Ang. al Vert.:		89.2874 89.2874 196.56g		TT1 Tangente TT2 Tangente Numero Archi	1: 2: :		113.5306 113.5306 1

Clotoide in entrata	ProgI 6	9.3443 - ProgF 117	.82	91		
 Coordinate vertice	х:	149327.9770		Coordinate Coordinate	1 2	149339.0437 94166.9934
Coordinate vertice	Y:	94136.6236		Coordinate Coordinate		149322.5553 94121.3984

T01PS00TRARE01_B.docx

Maggio 2021 Rev. A Pag. 33 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

Raggio Parametro N Parametro A Scostamento Pti (%)	: 1 : 400	0.0000 1.0000 0.0000 0.0297 2.5	Angolo Tangente lunga Tangente corta Sviluppo Ptf (%)		0.47g 32.3233 16.1617 48.4848 2.5
	o gVR(Ptf-Pti))/c] *Bi* Pti-Ptf *100)				>= 2/3 = 0.670 OK <= 3/2 = 1.500 OK
Arco ProgI 11	7.8291 - ProgF 247	7.8754			
Coordinate vertic			Coordinate I pun Coordinate I pun	nto Tg X:	149322.5553
Coordinate centro	curva X:	152431.3282 93014.3615	Coordinate II pun Coordinate II pun		
Raggio Tangente Saetta Pt (%)	: 65	0.0000 5.0316 0.6406 2.5	Angolo al vertice Sviluppo Corda	:	2.51g 130.0463 130.0379
Sv >= Smin = Pt >= Ptmin =	83.330 OK 2.517 OK				
	2.517 OK	3754 - ProgF 296.3			
Pt >= Ptmin = Clotoide in uscit	2.517 OK 2.517 OK 2.52 ProgI 247.8 2.52 X:	 149276.5365 	Coordinate I pun Coordinate I pun 	nto Tg X:	149281.3541 93998.0602
Pt >= Ptmin = Clotoide in uscit	2.517 OK 2.517 OK 2.52 ProgI 247.8 2.52 X:	149276.5365 93982.6332	Coordinate I pun Coordinate I pun	nto Tg X: nto Tg Y: nto Tg X:	149281.3541 93998.0602 149267.1281
Pt >= Ptmin = Clotoide in uscit	2.517 OK a ProgI 247.8 be X: ce Y: 3300 1 400	149276.5365 93982.6332	Coordinate I pun Coordinate I pun 	ato Tg X: ato Tg Y: ato Tg X: ato Tg X: ato Tg Y: ato Tg Y:	149281.3541 93998.0602 149267.1281
Pt >= Ptmin = Clotoide in uscit Coordinate vertice Coordinate vertice Raggio Parametro N Parametro A Scostamento Pti (%) Vp (Km/h) = 120.0 A >= radq[(Vp^3-querical New Year) New Y	2.517 OK Ca ProgI 247.8 Ce X: Ce Y: Ca 3300 Ca 400 Ca C	149276.5365 93982.6332 0.0000 0.0000 0.0000 0.0297 2.5 = 296.200 OK = 19.300 OK	Coordinate I pun Coordinate I pun 	ato Tg X: ato Tg Y: ato Tg X: ato Tg Y: : : : : : : : Ae/A	149281.3541 93998.0602 149267.1281 93951.7094 0.47g 32.3233 16.1617 48.4848
Pt >= Ptmin = Clotoide in uscit Coordinate vertice Raggio Parametro N Parametro A Scostamento Pti (%) Vp (Km/h) = 120.0 A >= radq[(Vp^3-c) A >= radq(R/dimax A >= R/3 A <= R	2.517 OK 2.517	149276.5365 93982.6332 0.0000 0.0000 0.0000 0.0297 2.5 = 296.200 OK = 19.300 OK = 1100.000 No = 3300.000 OK	Coordinate I pun Coordinate II pun Coordinate II pun Coordinate II pun Coordinate II pun Angolo Tangente lunga Tangente corta Sviluppo Ptf (%) Ae/A = 1.000	ato Tg X: to Tg Y: to Tg X: to Tg Y: : : : : : : : Ae/A Ae/A	149281.3541 93998.0602 149267.1281 93951.7094 0.47g 32.3233 16.1617 48.4848 2.5
Pt >= Ptmin = Clotoide in uscit Coordinate vertice Raggio Parametro N Parametro A Scostamento Pti (%) Vp (Km/h) = 120.0 A >= radq[(Vp^3-c) A >= radq(R/dimax A >= R/3 A <= R	2.517 OK Ta ProgI 247.8 Te X: Te Y: The Y:	149276.5365 93982.6332 0.0000 0.0000 0.0000 0.0000 0.0297 2.5 = 296.200 OK = 1100.000 No = 3300.000 OK 0.000 O	Coordinate I pun Coordinate I pun Coordinate II pun Coordinate II pun Coordinate II pun Angolo Tangente lunga Tangente corta Sviluppo Ptf (%) Ae/A = 1.000 Ae/A = 1.000	ato Tg X: ato Tg Y: ato Tg X: ato Tg Y: ato Tg Y: ato Tg Ae/A Ae/A	149281.3541 93998.0602 149267.1281 93951.7094 0.47g 32.3233 16.1617 48.4848 2.5 >= 2/3 = 0.670 OK <= 3/2 = 1.500 OK
Pt >= Ptmin = Clotoide in uscit Coordinate vertic Coordinate vertic Raggio Parametro N Parametro A Scostamento Pti (%) Vp (Km/h) = 120.0 A >= radq(R/dimax A >= R/3 A <= R Rettifilo 3 Rettifilo 3 Coordinate P.to I	2.517 OK 2. 2.517	149276.5365 93982.6332 0.0000 0.0000 0.0000 0.0000 0.0297 2.5 0.0000	Coordinate I pun Coordinate II pun Coordinate II pun Coordinate II pun Coordinate II pun Angolo Tangente lunga Tangente corta Sviluppo Ptf (%) Ae/A = 1.000 Ae/A = 1.000	ato Tg X: ato Tg Y: ato Tg X: ato Tg Y: ato Tg X: ato Tg	149281.3541 93998.0602 149267.1281 93951.7094 0.47g 32.3233 16.1617 48.4848 2.5 >= 2/3 = 0.670 OK <= 3/2 = 1.500 OK

T01PS00TRARE01_B.docx

Maggio 2021 Rev. A Pag. 34 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

93513.2289 1 160.5851 160.5851 197.27g	Coordinate I punto Tg X: Coordinate I punto Tg Y: Coordinate II punto Tg X: Coordinate II punto Tg Y: TT1 Tangente 1: TT2 Tangente 2: Numero Archi : Coordinate I punto Tg X: Coordinate I punto Tg X: Coordinate I punto Tg X: Coordinate II punto Tg X:	
93513.2289 1 160.5851 160.5851 197.27g	Coordinate I punto Tg Y: Coordinate II punto Tg X: Coordinate II punto Tg Y: TT1 Tangente 1: TT2 Tangente 2: Numero Archi : Coordinate I punto Tg X: Coordinate I punto Tg X: Coordinate I punto Tg X:	93666.861 149080.448 93361.738 160.5851 160.5851 1
93513.2289 1 160.5851 160.5851 197.27g	Coordinate II punto Tg X: Coordinate II punto Tg Y: TT1 Tangente 1: TT2 Tangente 2: Numero Archi : Coordinate I punto Tg X: Coordinate I punto Tg Y:	149080.448 93361.738 160.5851 160.5851 1
160.5851 160.5851 197.27g 	Coordinate II punto Tg Y: TT1 Tangente 1: TT2 Tangente 2: Numero Archi : Coordinate I punto Tg X: Coordinate I punto Tg Y:	93361.738 160.5851 160.5851 1
160.5851 197.27g 	TT2 Tangente 2: Numero Archi : Coordinate I punto Tg X: Coordinate I punto Tg Y:	160.5851 1
197.27g F 915.2215 149133.7232 93513.2289 142005.2023	Numero Archi : Coordinate I punto Tg X: Coordinate I punto Tg Y:	1
F 915.2215 149133.7232 93513.2289 142005.2023	Coordinate I punto Tg X: Coordinate I punto Tg Y:	149180.46
149133.7232 93513.2289 	Coordinate I punto Tg X: Coordinate I punto Tg Y:	
149133.7232 93513.2289 	Coordinate I punto Tg X: Coordinate I punto Tg Y:	
93513.2289 142005.2023	Coordinate I punto Tg X: Coordinate I punto Tg Y:	
93513.2289 142005.2023	Coordinate I punto Tg Y:	
	Coordinate II punto Ta X:	
	coordinate ii punto Ta X:	140000 444
JJ049.000J	Coordinate II punto Tq Y:	149080.448 93361.738
		93301.730
7500.0000	Angolo al vertice :	2.73g
160.5851	Sviluppo :	321.1211
	corda :	321.0966
93361.7384	Υ:	149006.383 93151.12
223.2548	Azimut :	278.47g
Rprec =	= 7500.0000 Rprec > Rmin =	223.2500 OK
Rsucc =	= 7500.0000 Rsucc > Rmin =	223.2500 OK
4763 - ProgF 1405.627		
I	Coordinate I punto Tg X:	149006.383
148962.0642	Coordinate I punto Tg Y:	93151.12
93023.1034		
122 5007	mm1 manganta 1.	122 5007
	3	133.5897 133.5897
197.73g	Numero Archi :	133.3097
gF 1405.6275		
148962.0642	Coordinate I punto Tg X:	149006.383
148962.0642 93025.1034	Coordinate I punto Tg Y:	93151.127
148962.0642 93025.1034	Coordinate I punto Tg Y:	93151.12
148962.0642 93025.1034 	Coordinate I punto Tg Y: Coordinate II punto Tg X: Coordinate II punto Tg Y:	93151.12 148913.28 92900.73
148962.0642 93025.1034 	Coordinate I punto Tg Y: Coordinate II punto Tg X: Coordinate II punto Tg Y:	93151.12
148962.0642 93025.1034 	Coordinate I punto Tg Y: Coordinate II punto Tg X: Coordinate II punto Tg Y: Angolo al vertice :	148913.285 92900.737 2.27g
148962.0642 93025.1034 	Coordinate I punto Tg Y: Coordinate II punto Tg X: Coordinate II punto Tg Y:	93151.127
	149080.4486 93361.7384 223.2548 Rprec = Rsucc = 4763 - ProgF 1405.627	0.0 - ProgF 1138.4763 149080.4486 Coordinate P.to Finale X: 93361.7384 Y: 223.2548

T01PS00TRARE01_B.docx

Maggio 2021 Rev. A Pag. 35 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

Rettifilo 7 Pro	ogI 1405.6275	- ProgF 1804.9085							
Coordinate P.to In	iziale X: Y:	148913.2855 92900.7376	Coordinate					148767. 92529.	
Lunghezza	:	399.2810	Azimut		:		276.	20g	
Vp (Km/h) = 120. L >= Lmin = 2 L <= Lmax = 26			7500.0000 630.0000	Rprec :				000 OK	
 Curva 8 Sinistra	ProgI 1804	.9085 - ProgF 2543.5							
Coordinate vertice	х:	148616.5168	Coordinate Coordinate	I punto I punto	Tg Tg	X: Y:		148767. 92529.	4926 0257
Coordinate vertice		92144.0995	Coordinate Coordinate	II punto	Tg	Х:		148814. 91827.	6118
Tangente Prim. 1 Tangente Prim. 2 Alfa Ang. al Vert.	: :	317.2345 317.2345 140.61g	TT1 Tangento TT2 Tangento Numero Arch	e 2:			413. 373.	4754 4179 1	
Clotoide in entrata	a ProgI i		9.3529						
Coordinate vertice		148720.1006	Coordinate Coordinate	I punto	Tg Tg	X: Y:		148767. 92529.	
Coordinate vertice	Υ:	92408.1957	Coordinate Coordinate	II punto	Tg	Х:		148705. 92344.	
Parametro A	: : : :	630.0000 1.0000 350.0000 2.4984 2.5	Angolo Tangente lu: Tangente co: Sviluppo Ptf (%)				129.	9622	
<pre>Vp (Km/h) = 120.0 A >= radq[(Vp^3-gV) A >= radq(R/dimax*) A >= R/3 A <= R</pre>			A/Au = A/Au =	1.350			= 2/3 = 3/2	= 0.670 = 1.500	
Arco ProgI 1999 Coordinate vertice	9.3529 - Prog! X:	7 2436.2460 	Coordinate		 Ta	 X:		148705.	
Coordinate vertice	Y:	92122.6081	Coordinate	I punto	Tg	Υ:		92344.	7916
Coordinate centro (curva X: curva Y:	149320.8476 92207.6386	Coordinate Coordinate	II punto II punto	Tg Tg	X: Y:		148760. 91920.	311
Raggio Tangente Saetta Pt (%)	: : :	630.0000 227.6436 37.4942 7.0	Angolo al vo Sviluppo Corda	ertice : :			44 436. 428.	.15g 8931	
Vp (Km/h) = 117.1 R >= Rmin = Sv >= Smin = Pt >= Ptmin =	44.994 OK 81.330 OK								

T01PS00TRARE01_B.docx

Maggio 2021 Rev. A Pag. 36 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

Clotoide in uscita	ProgI 24	36.2460 - ProgF 254			
Coordinate vertice	Х:	148776.6490	Coordinate I punto Tg Coordinate I punto Tg	X: Y:	148760.3112 91920.0643
Coordinate vertice			Coordinate II punto Tg Coordinate II punto Tg	Х:	148814.611
Raggio :		630.0000	Angolo :		5.42g
Parametro N :		1.0000	Tangente lunga :		1.5616
Parametro A :		260.0000	Tangente corta :		5.7919
Scostamento : Pti (%) :		0.7613 7.0	Sviluppo : Ptf (%) :		7.3016 2.5
Vp (Km/h) = 120.0 A >= radq[(Vp^3-gVR() A >= radq(R/dimax*Bi A >= R/3 A <= R		00) = 137.500 OK = 210.000 OK			s = 0.670 OK = 1.500 OK
Rettifilo 9 Prog					
Coordinate P.to Iniz	Υ:	91827.5568	Coordinate P.to Finale	Y:	149030.393 91482.752
Lunghezza :		406.7578 	Azimut : = 630.0000	33 nin = 400	5.60g
Lunghezza :	.0000 OK .0000 OK 	406.7578 Rprec Rsucc .3054 - ProgF 3516	Azimut : = 630.0000	min = 400	.0000 OK .0000 OK
Lunghezza : Vp (Km/h) = 120.0 L >= Lmin = 250 L <= Lmax = 2640 Curva 10 Sinistra	0000 OK 0000 OK ProgI 2950	Rprec Rsucc 	Azimut : = 630.0000	nin = 400 nin = 400	149030.393 91482.752
Lunghezza : Vp (Km/h) = 120.0 L >= Lmin = 250 L <= Lmax = 2640 Curva 10 Sinistra	0000 OK 0000 OK ProgI 2950	Rprec Rsucc .3054 - ProgF 3516 149182.6191 91239.5056	Azimut : = 630.0000 Rprec >= Rr = 1000.0000 Rsucc >= Rr .2030 Coordinate I punto Tg Coordinate I punto Tg Coordinate II punto Tg Coordinate II punto Tg Coordinate II punto Tg	333 min = 400 min = 400 X: Y:	149030.393 91482.752 149425.541 91086.759
Lunghezza : Vp (Km/h) = 120.0 L >= Lmin = 250 L <= Lmax = 2640 Curva 10 Sinistra Coordinate vertice Coordinate vertice	0000 OK 0000 OK ProgI 2950	Rprec Rsucc 	Azimut : = 630.0000 Rprec >= Rr = 1000.0000 Rsucc >= Rr .2030 Coordinate I punto Tg Coordinate I punto Tg Coordinate II punto Tg Coordinate II punto Tg	min = 400 min = 400 	149030.393 91482.752 149425.541 91086.759
Lunghezza : Vp (Km/h) = 120.0 L >= Lmin = 250 L <= Lmax = 2640 Curva 10 Sinistra Coordinate vertice	0000 OK 0000 OK 	Rprec Rsucc .3054 - ProgF 3516 149182.6191 91239.5056	Azimut : = 630.0000 Rprec >= Rr = 1000.0000 Rsucc >= Rr .2030 Coordinate I punto Tg Coordinate I punto Tg Coordinate II punto Tg Coordinate II punto Tg Coordinate II punto Tg	33 min = 400 min = 400 X: Y: X: Y: 28	149030.393 91482.752 149425.541 91086.759
Lunghezza : Vp (Km/h) = 120.0 L >= Lmin = 250 L <= Lmax = 2640 Curva 10 Sinistra Coordinate vertice Coordinate vertice Tangente Prim. 1: Tangente Prim. 2: Alfa Ang. al Vert.:	0000 OK 0000 OK ProgI 2950 X: Y:	Rprec Rsucc .3054 - ProgF 3516 149182.6191 91239.5056 229.0331 229.0331 171.33g	Azimut : = 630.0000 Rprec >= Rr = 1000.0000 Rsucc >= Rr .2030 Coordinate I punto Tg Coordinate II punto Tg Coordinate II punto Tg Coordinate II punto Tg Tangente II punto Tg Ttl Tangente 1: Ttl Tangente 2: Numero Archi :	33 min = 400 min = 400 X: Y: X: Y: 28	149030.393 91482.752 149425.541 91086.759
Lunghezza : Vp (Km/h) = 120.0 L >= Lmin = 250 L <= Lmax = 2640 Curva 10 Sinistra Coordinate vertice Coordinate vertice Tangente Prim. 1: Tangente Prim. 2: Alfa Ang. al Vert.:	0000 OK 0000 OK ProgI 2950 X: Y:	Rprec Rsucc .3054 - ProgF 3516 149182.6191 91239.5056 229.0331 229.0331	Azimut : = 630.0000 Rprec >= Rr = 1000.0000 Rsucc >= Rr .2030 Coordinate I punto Tg Coordinate II punto Tg Coordinate II punto Tg Coordinate II punto Tg Tangente II punto Tg Ttl Tangente 1: Ttl Tangente 2: Numero Archi :	33 min = 400 min = 400 X: Y: X: Y: 28	149030.393 91482.752 149425.541 91086.759
Lunghezza : Vp (Km/h) = 120.0 L >= Lmin = 250 L <= Lmax = 2640 Curva 10 Sinistra Coordinate vertice Coordinate vertice Tangente Prim. 1: Tangente Prim. 2: Alfa Ang. al Vert.: Clotoide in entrata	0000 OK 0000 OK ProgI 2950 X: Y:	Rprec Rsucc .3054 - ProgF 3516 149182.6191 91239.5056 229.0331 229.0331 171.33g	Azimut : = 630.0000 Rprec >= Rr = 1000.0000 Rsucc >= Rr .2030 Coordinate I punto Tg Coordinate II punto Tg Coordinate II punto Tg Toordinate II punto Tg TT1 Tangente 1: TT2 Tangente 2: Numero Archi : 65.9012 Coordinate I punto Tg Coordinate I punto Tg	x: y: 28 28 X: y: X: y:	149030.393 91482.752 149425.541 91086.759 149030.393
Lunghezza : Vp (Km/h) = 120.0 L >= Lmin = 250 L <= Lmax = 2640 Curva 10 Sinistra Coordinate vertice Coordinate vertice Tangente Prim. 1: Tangente Prim. 2: Alfa Ang. al Vert.: Clotoide in entrata Coordinate vertice Coordinate vertice	0000 OK 0000 OK ProgI 2950 X: Y: ProgI 2	Rprec Rsucc .3054 - ProgF 3516 149182.6191 91239.5056 229.0331 229.0331 171.33g 950.3054 - ProgF 30 149071.2823 91417.4144	Azimut : = 630.0000	x: y: 28 28 X: y: X: X: y: X: X: y: X:	149030.393 91482.752 149030.393 91482.759 149425.541 91086.759 149425.41 1
Lunghezza : Vp (Km/h) = 120.0 L >= Lmin = 250 L <= Lmax = 2640 Curva 10 Sinistra Coordinate vertice Coordinate vertice Tangente Prim. 1: Tangente Prim. 2: Alfa Ang. al Vert.: Clotoide in entrata Coordinate vertice Coordinate vertice	0000 OK 0000 OK ProgI 2950 X: Y: ProgI 2	Rprec Rsucc .3054 - ProgF 3516 .3054 - ProgF 3516 .3054 - ProgF 3056 .229.0331 .229.0331 .171.33g .950.3054 - ProgF 30 .149071.2823 .91417.4144	Azimut : = 630.0000	x: y: 28 28 X: y: X: X: y: X: X: y: X:	149030.393 91482.752 149030.393 91482.759 149425.541 91086.759 149425.41 1
Lunghezza : Vp (Km/h) = 120.0 L >= Lmin = 250 L <= Lmax = 2640 Curva 10 Sinistra Coordinate vertice Coordinate vertice Tangente Prim. 1: Tangente Prim. 2: Alfa Ang. al Vert.: Clotoide in entrata Coordinate vertice Coordinate vertice	0000 OK 0000 OK ProgI 2950 X: Y: ProgI 2	Rprec Rsucc .3054 - ProgF 3516 .149182.6191 .91239.5056 .229.0331 .171.33g .950.3054 - ProgF 30 .149071.2823 .91417.4144 .000.0000 .10000	Azimut : = 630.0000 Rprec >= Rr = 1000.0000 Rsucc >= Rr .2030 Coordinate I punto Tg Coordinate II punto Tg Coordinate II punto Tg Toordinate II punto Tg TT1 Tangente 1: TT2 Tangente 2: Numero Archi : 65.9012 Coordinate I punto Tg Coordinate I punto Tg Coordinate I punto Tg Coordinate I punto Tg Coordinate II punto Tg Coordinate II punto Tg	x: y: x: y: x: y: x: y: x: y:	149030.393 91482.752 149425.541 91086.759 66.9522 6.9541 1
Lunghezza : Vp (Km/h) = 120.0 L >= Lmin = 250 L <= Lmax = 2640 Curva 10 Sinistra Coordinate vertice Coordinate vertice Tangente Prim. 1: Tangente Prim. 2: Alfa Ang. al Vert.: Clotoide in entrata Coordinate vertice Coordinate vertice Coordinate vertice	0000 OK 0000 OK ProgI 2950 X: Y: ProgI 2	Rprec Rsucc .3054 - ProgF 3516 149182.6191 91239.5056 229.0331 229.0331 171.33g 950.3054 - ProgF 30 149071.2823 91417.4144	Azimut : = 630.0000 Rprec >= Rr = 1000.0000 Rsucc >= Rr .2030 Coordinate I punto Tg Coordinate II punto Tg Coordinate II punto Tg Toordinate II punto Tg TT1 Tangente 1: TT2 Tangente 2: Numero Archi : 65.9012 Coordinate I punto Tg Coordinate I punto Tg Coordinate II punto Tg	x: y: 28 28 X: y: X: y: 28 28	149030.393 91482.752 149425.541 91086.759 149030.393 91482.752 149425.541 91086.759

T01PS00TRARE01_B.docx

Maggio 2021 Rev. A Pag. 37 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

A >= R/3 A <= R	= 333.300 OK =1000.000 OK	A/Au = 1.000 A/Au >= 2/3 = 0.670 OK A/Au = 1.000 A/Au <= 3/2 = 1.500 OK
Arco ProgI 3065.9012 - Prog		
Coordinate vertice X: Coordinate vertice Y:	149191.3218 91248.1914	Coordinate I punto Tg X: 149093.5829 Coordinate I punto Tg Y: 91385.9766
Coordinate centro curva X: Coordinate centro curva Y:	149909.2134 91964.5497	Coordinate II punto Tg X: 149328.8977 Coordinate II punto Tg Y: 91150.1581
Raggio :	1000.0000 168.9309 13.9705 5.4	Angolo al vertice: 21.31g Sviluppo: 334.7018 Corda: 333.1417
Vp (Km/h) = 120.0 R >= Rmin = 44.994 OK Sv >= Smin = 83.330 OK Pt >= Ptmin = 5.402 OK		
Clotoide in uscita ProgI 3	400.6030 - ProgF 3516	
Coordinate vertice X:	149360.2889	Coordinate I punto Tg X: 149328.897' Coordinate I punto Tg Y: 91150.1581
Coordinate vertice Y:		Coordinate II punto Tg X: 149425.5415 Coordinate II punto Tg Y: 91086.759
Raggio : Parametro N :	1000.0000 1.0000 340.0000 0.5567 5.4	Angolo : 3.68g Tangente lunga : 77.0802 Tangente corta : 38.5456 Sviluppo : 115.6000 Ptf (%) : 2.5
Vp (Km/h) = 120.0 A >= radq[(Vp^3-gVR(Ptf-Pti))/c A >= radq(R/dimax*Bi* Pti-Ptf * A >= R/3 A <= R	100) = 139.100 OK = 333.300 OK	Ae/A = 1.000 Ae/A >= 2/3 = 0.670 OK Ae/A = 1.000 Ae/A <= 3/2 = 1.500 OK
Rettifilo 11 ProgI 3516.203		
Coordinate P.to Iniziale X: Y:		Coordinate P.to Finale X: 149700.0540 Y: 90914.1500
	324.2708	Azimut : 364.27g
Vp (Km/h) = 120.0 L >= Lmin = 250.0000 OK L <= Lmax = 2640.0000 OK	Rprec = Rsucc =	= 1000.0000
	4738 - ProgF 4564.14	
		Coordinate I punto Tg X: 149700.0540
Coordinate vertice X:		

T01PS00TRARE01_B.docx

Maggio 2021 Rev. A Pag. 38 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

Tangente Prim. 1: Tangente Prim. 2: Alfa Ang. al Vert.:	309	.8191 .8191 4.68g	TT1 Tangente 1: 402.7870 TT2 Tangente 2: 378.3211 Numero Archi : 1
Clotoide in entrata	ProgI 3840	.4738 - ProgF 40	
Coordinate vertice	х:	149805.2882	Coordinate I punto Tg X: 149700.0546 Coordinate I punto Tg Y: 90914.1500
Coordinate vertice	Υ:	90847.9808	Coordinate II punto Tg X: 149851.6369 Coordinate II punto Tg Y: 90806.4547
Raggio : Parametro N : Parametro A : Scostamento : Pti (%) :	1 320	.0000 .0000 .0000 .0000 .6233 2.5	Angolo : 10.78g Tangente lunga : 124.3080 Tangente corta : 62.2304 Sviluppo : 186.1818 Ptf (%) : -7.0
<pre>Vp (Km/h) = 120.0 A >= radq[(Vp^3-gVR(Pt A >= radq(R/dimax*Bi* A >= R/3 A <= R</pre>			A/Au = 1.190
Arco ProgI 4026.65	556 - ProgF 44		
Coordinate vertice Coordinate vertice	X: Y:	150009.6374 90664.8943	Coordinate I punto Tg X: 149851.6369 Coordinate I punto Tg Y: 90806.4547
Coordinate centro curv Coordinate centro curv	7a X:	149484.6240	Coordinate II punto Tg X: 150031.6540
Raggio : Tangente : Saetta : Pt (%) :	212 36	.0000 .1403 .8483 7.0	Angolo al vertice: 46.87g Sviluppo: 404.9393 Corda: 395.8550
Sv >= Smin = 76	994 OK 730 OK 000 OK		
Clotoide in uscita	Prog 1 4431	 5949 - ProgF 456	1 1403
			Coordinate I punto Tg X: 150031.6540
Coordinate vertice	X: Y:	150036.2457 90409.8955	Coordinate I punto Tg Y: 90453.8996
	· · ·		Coordinate II punto Tg Y: 90321.4767
Raggio : Parametro N : Parametro A : Scostamento : Pti (%) :	1 270 1	.0000 .0000 .0000 .3302 -7.0	Angolo : 7.67g Tangente lunga : 88.4309 Tangente corta : 44.2430 Sviluppo : 132.5455 Ptf (%) : 2.5
Vp (Km/h) = 120.0 A >= radq[(Vp^3-gVR(Pi A >= radq(R/dimax*Bi* A >= R/3 A <= R			Ae/A = 1.190 Ae/A >= 2/3 = 0.670 OK Ae/A = 1.190 Ae/A <= 3/2 = 1.500 OK

T01PS00TRARE01_B.docx

Maggio 2021 Rev. A Pag. 39 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

Rettifilo 13	ProgI 4564.14	03 - ProgF 4707.1091			
Coordinate P	.to Iniziale X: Y:	150034.7844 90321.4767	Coordinat	te P.to Finale X:	150032.4219 90178.5274
Lunghezza	:	142.9688	Azimut	:	298.95g
Vp (Km/h) = L >= Lmin L <= Lmax	120.0 = 250.0000 No = 2640.0000 OK	Rprec	= 550.0000	Rprec > Rmin =	 142.9700 OK

6.2 VERIFICA ALTIMETRICA

6.2.1 ASSE SUD

	Asse Sud L1										
Prog. V	Quota. V	i (%)	Disl.	L	R	R min	Verifica R	i max	Verifica i	Vp	
0.00	59.46	0.00	0.00	0.00							
169.05	59.88	0.25	0.42	169.05	10 000	1 852	ОК	6	OK	120	
422.06	63.21	1.31	3.32	253.04	8 500	8 323	OK	6	OK	120	
672.35	60.58	-1.05	-2.62	250.30	8 000	1 852	ОК	6	OK	120	
1739.61	64.80	0.40	4.22	1067.26	15 000	8 318	ОК	6	OK	120	
2099.99	59.43	-1.49	-5.37	360.42	30 000	1 624	ОК	6	OK	112	
2363.20	56.98	-0.93	-2.45	263.22	30 000	1 641	ОК	6	OK	113	
2767.03	52.34	-1.15	-4.64	403.86	20 000	1 852	ОК	6	OK	120	
2991.76	49.17	-1.41	-3.17	224.75	30 000	1 852	ОК	6	OK	120	
3285.96	44.69	-1.52	-4.48	294.24	10 000	1 852	ОК	6	OK	120	
4062.84	38.27	-0.83	-6.42	776.91	10 000	1 570	OK	6	ОК	110	
4243.58	35.42	-1.58	-2.85	180.76	5 000	1 570	ОК	6	OK	110	
4703.54	32.62	-0.61	-2.80	459.97							

6.2.1 ASSE NORD

	Asse Nord L1										
Prog. V	Quota. V	i (%)	Disl.	L	R	R min	Verifica R	i max	Verifica i	Vp	
0.00	59.46	0.00	0.00	0.00							
168.92	59.88	0.25	0.42	168.92	10 000	1 852	ОК	6	ОК	120	
421.94	63.21	1.31	3.32	253.04	8 500	8 323	ОК	6	OK	120	
672.20	60.58	-1.05	-2.62	250.27	8 000	1 852	OK	6	ОК	120	
1741.06	64.81	0.40	4.22	1068.86	15 000	8 334	ОК	6	ОК	120	
2099.85	59.42	-1.50	-5.39	358.84	30 000	1 764	ОК	6	OK	117	
2349.90	57.04	-0.95	-2.37	250.06	30 000	1 764	OK	6	ОК	117	
2758.96	52.34	-1.15	-4.70	409.08	20 000	1 852	ОК	6	OK	120	
2987.47	49.12	-1.41	-3.22	228.53	30 000	1 852	OK	6	ОК	120	
3277.63	44.67	-1.53	-4.45	290.20	10 000	1 852	OK	6	OK	120	

T01PS00TRARE01_B.docx

Pag. 40 di 56 Maggio 2021 Rev. A

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

4055.26	38.24	-0.83	-6.42	777.66	10 000	1 588	OK	6	OK	111
4232.97	35.51	-1.54	-2.74	177.73	5 000	1 570	OK	6	ОК	110
4707.11	32.62	-0.61	-2.88	474.15						

6.3 Verifica distanza di visibilità per l'arresto

La verifica della sussistenza di visuali libere commisurate alla distanza di visibilità per l'arresto ai sensi del D.M. 05/11/2001 è stata svolta considerando l'andamento plano-altimetrico del tracciato attraverso un modello tridimensionale.

Il modello tridimensionale adottato ai fini della verifica ha previsto una sezione trasversale semplificata avente come ostacolo alla visibilità un elemento verticale di altezza pari a 1,10 m in corrispondenza del limite esterno della banchina.

La verifica delle distanze di visuale libera considerando l'andamento plano-altimetrico del tracciato attraverso il modello tridimensionale utilizzato è dettagliata negli specifici elaborati "Diagramma di velocità e visuale libera" redatti per ciascuna carreggiata.

Da tali elaborati, a cui si rimanda per i dettagli, si evince che, in conformità alle prescrizioni del D.M. 05/11/2001, lungo l'intero tracciato risulta assicurata, per entrambe le corsie di ciascuna carreggiata, una distanza di visuale libera superiore alla visuale libera richiesta per l'arresto.

Le verifiche hanno evidenziato la necessità di operare, lungo alcuni tratti, arretramenti degli ostacoli laterali (barriere di sicurezza), mediante ampliamento della carreggiata, al fine di rendere congruenti le distanze di visuale libera con le distanze di visibilità richieste per l'arresto.

I valori e l'estensione degli allargamenti richiesti (applicati quale supplemento alla piattaforma standard, come fascia zebrata esterna alle banchine) sono riportati negli elaborati "Diagramma di velocità e visuale libera", a cui si rimanda, nonché nelle tabelle successive.

6.3.1 Asse Carreggiata Nord

I valori e l'estensione degli allargamenti applicati lungo la piattaforma della Carreggiata Nord sono riportati nelle tabelle sequenti riportanti, rispettivamente, le tratte di applicazione con i valori massimi ed i valori puntuali in funzione della progressiva unitamente ai corrispondenti elementi geometrici planimetrici.

Asse Carreggiata Nord Allargamenti per visibilità

Progr. in.	Progr. fin.	L	Allargamento massimo [m]			
[m]	[m]	[m]	ciglio interno	ciglio esterno		
2+327	2+361	34	var	-		
2+361	2+395	34	2.40	-		
2+395	2+557	162	var	-		

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 41 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

	3+883	4+039	156	var	-
Ī	4+039	4+305	266	3.00	-
I	4+305	4+537	232	var	-

6.3.2 Asse Carreggiata Sud

I valori e l'estensione degli allargamenti applicati lungo la piattaforma della Carreggiata Nord sono riportati nelle tabelle seguenti riportanti, rispettivamente, le tratte di applicazione con i valori massimi ed i valori puntuali in funzione della progressiva unitamente ai corrispondenti elementi geometrici planimetrici.

Asse Carreggiata Sud Allargamenti per visibilità

	7 margamenti per vielema										
Progr. in.	Progr. fin.	L	Allargamento massimo [m]								
[m]	[m]	[m]	ciglio interno	ciglio esterno							
1+890	2+120	230	var	-							
2+120	2+343	223	3.10	-							
2+343	2+500	157	var	-							
3+008	3+169	161	var	-							
3+169	3+324	155	2.40	-							
3+324	3+444	120	var	-							
3+904	4+135	231	-	var							
4+135	4+393	258	-	1.90							
4+393	4+478	85	-	var							

6.4 Verifica distanza di visibilità per la manovra di cambiamento di corsia

La verifica della sussistenza della distanza di visibilità per la manovra di cambiamento di corsia è stata svolta valutando, nella manovra di deviazione in corrispondenza dei punti singolari corrispondenti alle corsie di diversione degli svincoli, la lunghezza richiesta Dc del tratto di strada occorrente per il passaggio dalla corsia di sorpasso alla corsia di marcia:

$$Dc = 2.6 \cdot Vp$$

dove Vp è la velocità di progetto desunta puntualmente dal diagramma di velocità.

In particolare, la verifica è stata svolta, con riferimento a punto di vista localizzato al centro della corsia di sorpasso e punto da osservare sulla striscia di separazione tra la carreggiata dell'asse principale e l'inizio della corsia di diversione, confrontando la distanza richiesta Dc con la visuale libera disponibile Dv.

A seguito della verifica, i cui risultati sono riportati nel seguito, si evince che, in funzione dei vincoli e condizionamenti imposti, derivanti dalla localizzazione degli svincoli di progetto (ubicati in corrispondenza

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 42 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

degli svincoli esistenti) dall'andamento geometrico e dal distanziamento degli assi delle carreggiate di progetto, non è possibile assicurare visuali libere disponibili Dv compatibili con le distanze richieste Dc. Il rispetto della verifica è associato, infatti, ad un potenziale andamento planimetrico di progetto notevolmente discosto dal corridoio individuato dall'infrastruttura esistente, con conseguente sensibile differenza di localizzazione degli svincoli rispetto alla posizione degli svincoli esistenti.

Tuttavia, al fine di garantire adeguate condizioni di sicurezza, sono stati previsti interventi mitigativi consistenti in opportuno posizionamento della segnaletica verticale di indicazione in corrispondenza dei tratti dell'asse principale in approccio alle uscite degli svincoli, prevedendo:

- segnali alti di indicazione con installazione a portale su corsia ad una distanza di 40 m dall'inizio della corsia di decelerazione;
- segnale di preavviso su pannello laterale a 500 m ed a 250 m dall'inizio della corsia di decelerazione;
- segnale di itinerario a 700 m ed a 1000 m dall'inizio della corsia di decelerazione.

6.4.1 Asse Carreggiata Nord

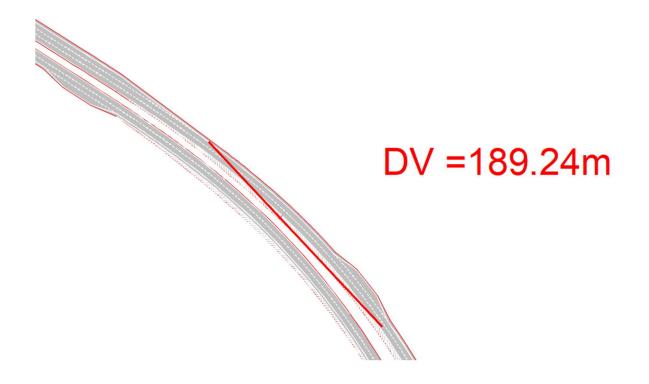
I risultati della verifica della distanza di visibilità per la manovra di cambiamento di corsia lungo l'asse della Carreggiata Nord sono riportati nella tabella e figura seguenti.

1° Lotto, dal Km 19+554 al Km 23+100

Asse Carreggiata Nord - verifica della distanza di visibilità per la manovra di cambiamento di corsia

Punto singolare	Progr.	Dv	Vp	Dc
	[m]	[m]	[km/h]	[m]
Corsia di diversione Svincolo Boscoreale - Poggiomarino	3+961.85	189.24	120	312,00

T01PS00TRARE01 B.docx



Maggio 2021 Rev. A Pag. 43 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

T01PS00TRARE01_B.docx

Maggio 2021 Pag. 44 di 56 Rev. A

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

SOVRASTRUTTURA STRADALE

Coerentemente con quanto indicato all'interno della relazione tecnica stradale relativa all'asse principale, per l'intera infrastruttura in progetto è stata adottata la seguente stratigrafia di cassonetto stradale:

strato	materiale	spessore [cm]
usura	conglomerato bituminoso	5
collegamento (binder)	conglomerato bituminoso	6
base	conglomerato bituminoso	12
fondazione	misto cementato	15
	misto granulare	15

53

La pavimentazione è stata verificata impiegando la procedura proposta dalla "AASHTO GUIDE". Tale procedura prevede l'impiego dell'algoritmo di calcolo dell'"AASHTO GUIDE FOR DESIGN OF PAVEMENT STRUCTURES" basato sui risultati sperimentali e pubblicato dall' "American Association of State Highway and Trasportation Officials". Tutti i dettagli specifici sono contenuti all'interno della "Relazione tecnica pavimentazioni".

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 45 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

DISPOSITIVI DI RITENUTA

Lungo i margini stradali è stata prevista l'installazione di barriere di sicurezza longitudinali allo scopo di realizzare accettabili condizioni di sicurezza, garantendo, entro certi limiti, il contenimento dei veicoli che dovessero tendere alla fuoriuscita dalla carreggiata stradale. La scelta delle barriere (caratterizzata da una certa classe alla quale è associato un determinato livello di contenimento) è avvenuta coerentemente alle prescrizioni normative contenute nel D.M. 21/06/2004 (Istruzioni tecniche per la progettazione, l'omologazione e l'impiego dei dispositivi di ritenuta nelle costruzioni stradali), ovvero in funzione del tipo di strada, del tipo di traffico e della destinazione della barriera.

I dispositivi di ritenuta sono stati definiti tenendo conto del Decreto 18 febbraio 1992 n. 223, così come modificato dal D.M. 3.6.1998, dal D.M. 21.6.2004 e dal D.M. 28.6.2011, ed alle prescrizioni di cui al D.M. 28.6.2011 "Disposizioni sull'uso e l'installazione dei dispositivi di ritenuta stradale". Inoltre, sono state prese in considerazione le indicazioni contenute nella Circolare del Ministero delle Infrastrutture e dei Trasporti del 21.7.2010 n. 62032 "Uniforme applicazione delle norme in materia di progettazione, omologazione e impiego dei dispositivi di ritenuta nelle costruzioni stradali".

Per l'ubicazione dei dispositivi di ritenuta lungo i tratti stradali di progetto si rimanda agli specifici elaborati contenuti nella sezione "BARRIERE DI SICUREZZA".

Tali elaborati forniscono indicazioni riguardo la tipologia e l'ubicazione dei dispositivi di ritenuta. Il progetto e la disposizione finale dei dispositivi di ritenuta, l'adattamento degli stessi alla sede stradale (in termini di supporti, drenaggio delle acque, collegamenti tra i diversi tipi di protezione, zone di approccio alle barriere ecc.) e l'individuazione delle protezioni dei punti singolari, saranno definiti in fase costruttiva in funzione delle caratteristiche e prestazioni dei dispositivi certificati disponibili del produttore/fornitore individuato.

8.1 Prescrizioni normative

II D.M. 2367 del 21/06/2004 fornisce la classe minima da adottare per le barriere di sicurezza per le diverse destinazioni (spartitraffico, bordo laterale e bordo ponte) in funzione del livello di traffico (cfr. par. 7.2) e del tipo di strada, come riportato nella tabella successiva.

Tipo di strada	Tipo di traffico	Barriere spartitraffico	Barriere bordo laterale	Barriere bordo ponte (1)
Autostrade (A) e	I	H2	H1	H2
strade extraurbane	II	H3	H2	H3
principali (B)	III	H3-H4 (2)	H2-H3 (2)	H3-H4 (2)
Strade extraurbane secondarie (C) e strade urbane di scorrimento (D)	 	HI H2 H2	N2 H1 H2	H2 H2 H3
Strade urbane di	I	N2	N1	H2
quartiere (E) e strade	II	H1	N2	H2
locali (F)	III	H1	H1	H2

⁽¹⁾ Per ponti o viadotti si intendono opere di luce superiore a 10 metri; per luci minori sono equiparate al bordo laterale

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 46 di 56

⁽²⁾ La scelta tra le due classi sarà determinata dal progettista

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

Le prescrizioni di cui alla tabella precedente sono valide per l'asse stradale e per le zone di svincolo.

La destinazione "Barriere bordo ponte" si riferisce solo ad "opere di luce superiore a 10 metri"; per luci minori sono equiparate al bordo laterale", indipendentemente dalla loro altezza sul piano campagna. Come chiarito dalla Circolare 62032/2010, i muri di sostegno, che sono evidentemente opere di luce nulla, sono pertanto da equiparare anch'essi al bordo laterale, indipendentemente dall'altezza sul piano campagna e dalla loro estensione. In ogni caso i muri e le opere d'arte, indipendentemente dalla loro luce e dalla loro altezza sul piano campagna, devono essere sempre protetti con barriere di classe non inferiore ad H2.

Si evidenzia che il criterio definito dalla norma si riferisce alla luce dell'opera e non alla lunghezza dell'eventuale cordolo soprastante, che può interessare anche eventuali muri andatori. Nel caso in cui la barriera sia da installare su cordolo in cemento armato, la tipologia di barriera dovrà essere del tipo "da bordo opera d'arte" sebbene della classe corrispondente al bordo laterale, quindi già provata su cordolo in cemento armato (non una barriera provata su terra, installata successivamente su cordolo in cemento armato, circostanza che ne modificherebbe in modo sostanziale il funzionamento).

Il D.M. 21/06/2004 non prevede invece l'obbligo di protezione nel caso di sezione in trincea o di muri di controripa. In queste situazioni occorre valutare, caso per caso, le situazioni in cui risulti preferibile l'aggiunta di una protezione anche in considerazione della eventuale presenza di ostacoli (pali della luce, strutture di segnaletica non cedevoli, pile da ponte etc). Analogamente non sono prescritte specifiche protezioni per le sezioni in galleria dove il profilo redirettivo richiesto dal D.M. 6792 del 05/11/2001 e s.m.i., per le gallerie realizzate su strade nuove, rappresenta, nella configurazione riportata, una mera configurazione geometrica dell'elemento marginale e non una barriera omologata o provata conformemente alle norme della serie UNI EN 1317. Viceversa, la sezione iniziale di una galleria o di un muro di controripa, se non opportunamente sagomata (per evitare il possibile urto frontale), dovrà essere protetta ai sensi dell'art. 3 delle istruzioni tecniche allegate al D.M. 21/06/2004.

Tali condizioni rappresentano le minime ammesse dalla norma e, come richiamato dall'art. 6 delle istruzioni tecniche allegate al D.M. 21/06/2004, "ove reputato necessario, il progettista potrà utilizzare dispositivi della classe superiore a quella minima indicata". Per quanto attiene agli attenuatori d'urto testati ai sensi della norma EN1317-3 il D.M. 21/06/2004 prevede l'obbligo di impiego di questo tipo di dispositivi nel caso in cui sia presente l'inizio delle barriere in corrispondenza di cuspidi con la sola eccezione di cuspidi tra rampe percorse a velocità < 40 km/h.

La classe minima per la protezione delle cuspidi è definita dal D.M. 21/06/2004 solo in funzione della velocità imposta nella strada da cui diverge la rampa, come mostrato nella tabella seguente.

Velocità imposta nel sito da proteggere	Classe degli attenuatori	
Con velocità V ≥ 130 km/h	100	
Con velocità 90 ≤ V < 130 km/h	80	
Con velocità V < 90 km/h	50	

II D.M. 21/06/2004 chiarisce altresì che ogniqualvolta sia possibile si preferiranno soluzioni di minore pericolosità quali letti di arresto o simili, da testare con la sola prova tipo TB11 della norma EN 1317. Per quanto attiene ai terminali speciali testati ai sensi della norma ENV1317-4, che il D.M. 21/06/2004 ammette di utilizzare, laddove ritenuto necessario, in sostituzione dei terminali semplici, non testati ma

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 47 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

progettati in modo da minimizzare il rischio di urto frontale contro l'elemento terminale, questi, se impiegati, dovranno essere di classe non inferiore alla minima della tabella seguente.

Velocità imposta nel sito da proteggere		Classe dei terminali
Con velocità	V > 130 km/h	P3
Con velocità	90 ≤ V < 130 km/h	P2
Con velocità	V < 90 km/h	P1

Il D.M. 223/1992 e s.m.i. si applica solo alle strade ad uso pubblico extraurbane ed urbane che hanno velocità di progetto maggiore o uguale a 70 km/h. Sono espressamente escluse dal campo di applicazione della norma in argomento le progettazioni inerenti le strade extraurbane ed urbane con velocità di progetto inferiore a 70 km/h.

8.2 Definizione del livello di traffico e delle classi minime delle barriere da impiegare

Per la definizione delle classi di barriere da adottare in progetto risulta necessario, secondo quanto previsto dal D.M. 21/06/2004, definire, oltre alla classe funzionale ed alla destinazione delle protezioni (bordo rilevato e bordo ponte), la classe di traffico a cui appartiene la strada oggetto di progettazione.

La classe di traffico si definisce in funzione del Traffico Giornaliero Medio (TGM) bidirezionale (o totale ma monodirezionale nel caso di tratti a senso unico di marcia) e della percentuale di veicoli pesanti (di massa > 3.5 t), secondo lo schema della tabella seguente.

Tipo di traffico	TGM bidirezionale	% pes	
I	≤ 1000 > 1000	qualunque %pes ≤ 5	
II	> 1000	5 < %pes ≤ 15	
III	> 1000	%pes > 15	

Per l'attribuzione del livello di traffico è stato considerato quanto contenuto nello studio di impatto del traffico di cui all'"Analisi trasportistica" svolta nell'ambito delle attività del Progetto Definitivo.

In particolare, con riferimento allo scenario di progetto PRJ_4 (scenario di progetto a lungo termine, corrispondente all'anno di riferimento 2030, in cui si prevede la realizzazione della doppia carreggiata della SS268, con relativo passaggio da categoria funzionale C a categoria B "extraurbana principale" affiancato all'aumento della velocità) è desumibile un TGM > 1000 veicoli/giorno ed una %pes > 15. Pertanto il traffico è classificabile come traffico di Tipo III.

Sulla base di tale livello di traffico ed in funzione del tipo di strada (Strada Extraurbana Principale-Cat.B), il D.M. 21/06/2004 individua le seguenti classi minime di barriere da impiegare (per l'asse principale e per i rami di svincolo):

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 48 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

Barriere spartitraffico	Barriere bordo laterale	Barriere bordo ponte (1)
H3-H4 (2)	H2-H3 (2)	H3-H4 (2)

⁽²⁾ La scelta tra le due classi sarà determinata dal progettista

Barriere longitudinali previste in progetto 8.3

8.3.1 Tipologia, classe e requisiti prestazionali

Sulla base della classe di traffico, delle indicazioni e prescrizioni normative, delle caratteristiche del corpo stradale e delle condizioni geometriche e vincoli esistenti, il progetto delle barriere longitudinali ha previsto l'impiego delle classi e tipologie seguenti:

- Barriera metallica classe H3 bordo laterale;
- Barriera metallica classe H4 bordo ponte.

Per la protezione dello spartitraffico in sede naturale (rilevato) è stato previsto un sistema bifilare di barriere composto da due barriere metalliche di classe H3 bordo laterale. Tale scelta, in linea con i criteri del D.M. 21/06/2004, è conseguita dalla necessità di minimizzare i tipi di barriera da utilizzare, con adozione delle medesime barriere sia per la protezione del margine esterno che per la protezione del margine interno.

Per quanto riguarda la protezione bordo ponte, in considerazione del fitto sistema insediativo ricadente nell'ambito del contesto territoriale attraversato dalle opere in viadotto (caratterizzate da estensioni significative, con valori massimi superiori a 2 km), nonché dell'entità del traffico pesante (superiore al 19% del TGM), si è scelto di applicare la classe superiore tra le due prescritte dalla normativa, ovvero la classe H4.

In corrispondenza dell'installazione lungo il cordolo interno (di larghezza pari a 70 cm), lungo i tratti in cui la distanza tra i due cordoli interni degli impalcati è superiore a 2 m, la protezione bordo ponte è prevista attraverso barriere bordo ponte integrate con rete. Nei tratti in cui la distanza tra i due cordoli interni è inferiore o uguale a 2 m, è prevista la chiusura dello spazio tra gli impalcati tramite griglia.

La larghezza dei cordoli degli impalcati è compatibile con la larghezza minima dei cordoli corrispondenti a barriere bordo ponte testate e certificate (70 cm). Tuttavia, il cordolo in destra da 1,50 m è stato adottato al fine di garantire un passaggio pedonale di servizio, collocato oltre la barriera di sicurezza, con accesso protetto, ad utilizzo da parte del personale di servizio proposto alle operazioni di ispezione e manutenzione.

In corrispondenza dei muri di sostegno è prevista l'installazione di barriere bordo ponte di classe H3, ovvero barriere di classe corrispondente a quella adottata per la protezione bordo laterale e testate e certificate per installazione su cordolo.

Per quanto riguarda i requisiti prestazionali, con riferimento alle tipologie di barriere previste in progetto è previsto l'impiego di barriere caratterizzate dai seguenti parametri.

Classe e tipologia barriere	Livello di	Classe di larghezza	Classe di intrusione del

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 49 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

	severità (ASI)	operativa normalizzata (W _N)	veicolo normalizzata (VI _N)
Barriera metallica classe H3 bordo laterale	Α	$W5 (1,3 < W_N \le 1,7 \text{ m})$	$VI5 (1,3 < VI_N \le 1,7 \text{ m})$
Barriera metallica classe H3 bordo ponte	≤B	$W4 (1,0 < W_N \le 1,3 \text{ m})$	$V17 (2,1 < VI_N \le 2,5 \text{ m})$
Barriera metallica classe H4 bordo ponte	≤B	$W3 (0.8 < W_N \le 1.0 \text{ m})$	$VI3 (0.8 < VI_N \le 1.0 \text{ m})$
Barriera metallica classe H4 bordo ponte con rete integrata	≤B	$W3 (0.8 < W_N \le 1.0 \text{ m})$	$VI5 (1,3 < VI_N \le 1,7 \text{ m})$

I parametri associati alle barriere previste in progetto sono adeguati alle caratteristiche di almeno due barriere installabili secondo normativa presenti sul mercato.

In particolare, la larghezza operativa ("distanza tra la posizione iniziale del fronte del sistema di contenimento e la massima posizione dinamica laterale di qualsiasi componente principale del sistema", ovvero posizione laterale estrema del dispositivo durante l'urto in condizioni dinamiche valutata dal fronte del dispositivo) è stata scelta, in funzione delle condizioni di installazione, al fine di assicurare un corretto comportamento dei dispositivi.

La classe di larghezza operativa normalizzata prevista per le barriere di classe H3 bordo laterale è compatibile con il corretto funzionamento in corrispondenza delle modalità di installazione previste in progetto:

- installazione su arginello: la posizione laterale estrema del dispositivo durante l'urto in condizioni dinamiche (W al massimo pari a 1,7 m) è contenuta nella larghezza dell'arginello (di larghezza pari a 2 m);
- installazione quale sistema bifilare per la protezione dello spartitraffico: la larghezza operativa consente la deformazione dinamica senza interazione tra i due dispositivi, ovvero la somma della posizione laterale estrema del dispositivo durante l'urto in condizioni dinamiche (W al massimo pari a 1,7 m) sommata alla larghezza del dispositivo sul lato opposto (pari al valore massimo di riferimento di 60 cm e corrispondente a barriere installabili secondo normativa presenti sul mercato) è pari a m ed è contenuta nella larghezza dello spartitraffico (di larghezza minima pari a 2,50 m).

La classe di larghezza operativa normalizzata prevista per le barriere di classe H3 bordo ponte è compatibile con il corretto funzionamento in corrispondenza delle modalità di installazione previste in progetto:

installazione su muri di sostegno, con cordoli sommitali di larghezza compatibile con la larghezza minima dei cordoli corrispondenti a barriere bordo ponte testate e certificate (70 cm), a tergo dei quali non sono previsti ostacoli.

La classe di larghezza operativa normalizzata prevista per le barriere bordo ponte di classe H4 è compatibile con il corretto funzionamento in corrispondenza delle modalità di installazione previste in progetto:

installazione lungo il cordolo esterno (di larghezza pari a 1,50 m) con reti di protezione a tergo: la posizione laterale estrema del dispositivo durante l'urto in condizioni dinamiche (W al massimo pari a

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 50 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

1 m) non interferisce con la posizione delle reti di protezione a tergo (posizionate ad una distanza pari a circa 1,30 m dal fronte della barriera). La posizione delle reti di protezione è, inoltre, compatibile con la posizione laterale massima del veicolo pesante (VI al massimo pari ad 1 m).

installazione lungo i cordoli interni (entrambi di larghezza pari a 0,70 m con distanziamento minimo pari a 1,10 m): la larghezza operativa consente la deformazione dinamica senza interazione tra i due dispositivi, ovvero la somma della posizione laterale estrema del dispositivo durante l'urto in condizioni dinamiche (W al massimo pari a 1,3 m) sommata alla larghezza del dispositivo sul lato opposto (pari al valore massimo di riferimento di 60 cm e corrispondente a barriere installabili secondo normativa presenti sul mercato) è pari a 1,90 m ed è contenuta nella distanza tra i fronti dei dispositivi (pari a 2,50 m).

La classe di larghezza operativa normalizzata prevista per le barriere bordo ponte di classe H4 con rete integrata è compatibile con il corretto funzionamento in corrispondenza delle modalità di installazione previste in progetto:

installazione lungo i cordoli interni (entrambi di larghezza pari a 0,70 m con distanziamento minimo pari a 2,00 m): la larghezza operativa consente la deformazione dinamica senza interazione tra i due dispositivi, ovvero la somma della posizione laterale estrema del dispositivo durante l'urto in condizioni dinamiche (W al massimo pari a 1,3 m) sommata alla larghezza del dispositivo sul lato opposto (pari al valore massimo di riferimento di 60 cm e corrispondente a barriere installabili secondo normativa presenti sul mercato) è pari a 1,90 m ed è contenuta nella distanza tra i fronti dei dispositivi (pari a 3,40 m). Inoltre, la posizione laterale massima del veicolo pesante (VI al massimo pari a 1,7 m), essendo contenuta nella distanza tra i fronti dei dispositivi (pari a 3,40 m) non interferisce con il dispositivo sul lato opposto.

I dispositivi di ritenuta che possono essere impiegati su strada ai sensi del decreto ministeriale 18 febbraio 1992 n. 223, in tutte le procedure di affidamento avviate successivamente al 20.8.2007, sono:

- dispositivi omologati ai sensi del decreto ministeriale 21.6.2004;
- dispositivi che hanno ottenuto la marcatura CE ai sensi della norma UNI EN 1317-5;
- dispositivi rispondenti alle norme UNI EN 1317, parti 1, 2, 3 e 4 in quanto dotati di rapporti di prova eseguiti con le modalità suddette.

L'impiego di dispositivi che hanno ottenuto la marcatura CE ai sensi della norma UNI EN 1317-5 è subordinato alla verifica, da parte degli Enti Appaltanti, di rispondenza alle norme UNI EN 1317, parti 1, 2, 3 e 4, qualora ciò non sia espressamente indicato nei rapporti rilasciati da campi prova certificati secondo le norme UNI CEI EN ISO/IEC 17025.

Il produttore dovrà fornire copia dei rapporti di prova, del progetto del dispositivo e del manuale di uso per consentire di valutare tramite, i disegni e le indicazioni in essi contenuti, le corrette modalità di installazione

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 51 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

in opera: detti rapporti dovranno anche contenere le caratteristiche dei materiali con cui è stato realizzato il dispositivo su cui sono state effettuate le prove ai sensi delle norme della serie UNI EN 1317.

Con riferimento alle prescrizioni contenute nel D.M. 01/04/2019 "Dispositivi di sicurezza per i motociclisti (DSM)", si rileva che per l'asse principale non vi sono raggi che obbligano l'applicazione del DSM, mentre per gli svincoli, in corrispondenza dei tratti di rampa con raggi di curvatura inferiori a 250 m, in conformità alle prescrizioni normative, si è ritenuto opportuno applicarli.

L'applicazione dei DSM può avvenire tramite profilo salva motociclista aggiunto su barriere discontinue certificate (l'installazione del profilo comporta una modifica di prodotto), oppure attraverso l'installazione di barriere certificate già dotate di DSM. L'eventuale adozione di barriere tipo Anas (tutte dotate di DSM), garantisce, in ogni caso, nei confronti della protezione dei motociclisti.

8.3.2 Sviluppo delle barriere di sicurezza

Al fine di consentire un corretto funzionamento delle barriere, il D.M. 21/06/2004 prevede che si estenda la protezione con una barriera della medesima classe per uno sviluppo sufficiente a garantire che la barriera funzioni opportunamente nel punto di inizio e di fine del tratto da proteggere. A monte del primo punto in cui la protezione deve esplicare il suo pieno funzionamento è stato pertanto previsto un tratto di barriera denominato "ala prima" e, analogamente, a valle è stata prevista una "ala dopo". Entrambe le "ali" sono caratterizzate dal medesimo livello di contenimento della barriera previsto nel tratto da proteggere. Per quanto attiene allo sviluppo delle "ali" il D.M. 21/06/2004 prevede che "Le protezioni dovranno in ogni caso essere effettuate per una estensione almeno pari a quella indicata nel certificato di omologazione, ponendone circa due terzi prima dell'ostacolo, integrando lo stesso dispositivo con eventuali ancoraggi e con i terminali semplici indicati nel certificato di omologazione, salvo diversa prescrizione del progettista secondo i criteri indicati nell'art. 6.". La circolare 62032/2010 chiarisce altresì che "l'estensione minima pari a quella indicata nel certificato di omologazione ha valore prescrittivo mentre il posizionamento di due terzi prima ha carattere indicativo. Il progettista può stabilire lo sviluppo di barriera da porre a monte dell'ostacolo, tenendo conto delle modalità con cui sono state effettuate le prove sulla barriera per l'omologazione e della morfologia della strada. Nelle strade a doppio senso di marcia, dove non è possibile individuare il tratto "prima dell'ostacolo", le medesime protezioni andranno realizzate da entrambi i lati dell'ostacolo, fermo restando il vincolo dell'estensione minima di barriera da installare. Nelle strade a senso unico di marcia la barriera dovrà in tutti i casi essere estesa oltre l'ultimo punto da proteggere, in modo da assicurare che le condizioni di funzionamento siano soddisfacenti in tutto il tratto di interesse.".

Per quanto attiene alla distanza tra il punto d'urto e l'elemento iniziale della barriera la norma EN1317-2 prevede che l'urto avvenga in un punto a circa un terzo della lunghezza della barriera di sicurezza dall'estremità di avvicinamento. Pertanto la misura di "ala prima" strettamente necessaria è stimabile in 1/3 della lunghezza minima di funzionamento (L_f).

Nel presente progetto sono state pertanto adottate le seguenti misure per le "ali":

"ala prima" di un'opera d'arte su rampe monodirezionali: L₁=2/3 L₁ come da raccomandazione del D.M. 21/06/2004;

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 52 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

- "ala dopo" di un'opera d'arte su rampe monodirezionali: L₂=1/3 L_f;
- "ala prima" ed "ala dopo" su asse principale e rampe bidirezionali: L₁=L₂=1/3 L_f come da EN 1317-2;
- 🎈 "ala prima" ed "ala dopo" il punto in cui è previsto il cambio di classe di una barriera (ad esempio il punto in cui cessa l'esigenza di avere una barriera di classe H3 sul bordo laterale dell'asse e si può passare all'H2): L₁=L₂=1/3 L_f come da EN 1317-2;
- "ala prima" ed "ala dopo" i punti di inizio e fine del tratto in cui la barriera posta a protezione degli ostacoli isolati deve esplicare il suo pieno funzionamento L₁=L₂=1/3 L_f come da EN 1317-2.

Il valore di L_f (lunghezza di funzionamento) è stato adottato in progetto pari a 90 m in modo concorde con la quasi totalità delle lunghezze di crash test effettuate nei campi prova per la certificazione. Nel caso in cui la barriera in fornitura abbia una lunghezza minima di funzionamento (L_f) maggiore di 90 m, le previsioni progettuali dovranno essere adattate al valore di L_f e, di conseguenza, di L₁ (=2/3 L_f) e di L₂ (=1/3 L_f), della barriera che si intende installare.

Secondo l'art. 3 delle istruzioni tecniche allegate al del D.M. 21.6.2004, lo sviluppo complessivo della barriera installata non deve essere comunque inferiore alla lunghezza di funzionamento (Lf).

L'art. 6 delle istruzioni tecniche allegate al D.M. 21.6.2004 prevede che, laddove non sia possibile installare un dispositivo con una lunghezza minima pari a quella effettivamente testata (per esempio ponti o ponticelli aventi lunghezze in alcuni casi sensibilmente inferiori all'estensione minima del dispositivo) sarà possibile installare una estensione di dispositivo inferiore a quella effettivamente testata, provvedendo però a raggiungere la estensione minima attraverso un dispositivo diverso (per esempio testato con pali infissi nel terreno), ma di pari classe di contenimento (o di classe ridotta - H3 - nel caso di affiancamento a barriere bordo ponte di classe H4) garantendo inoltre la continuità strutturale. L'estensione minima che il tratto di dispositivo "misto" dovrà raggiungere sarà costituita dalla maggiore delle lunghezze di funzionamento dei due tipi di dispositivo da impiegare. Ovviamente il riferimento all'estensione delle opere d'arte implica che il "non sia possibile" vada inteso non in senso assoluto ma relativamente allo stato dei luoghi previsto in progetto senza necessità di prevedere opere addizionali come la realizzazione di appositi cordoli su rilevato per l'installazione delle barriere di sicurezza del tipo "da bordo opera d'arte" sull'intera estesa della lunghezza minima di funzionamento. Nel caso di dispositivi "misti" l'estensione di "ala" necessaria a garantire nel complesso la Lf non dovrà essere intesa come una barriera a sé stante (che a sua volta richiederebbe una lunghezza minima di L_f) ma come parte del sistema misto che nel suo complesso deve garantire la lunghezza minima di funzionamento maggiore tra quelle dei dispositivi da installare.

Per realizzare un dispositivo "misto" la barriera bordo opera d'arte e la barriera da bordo laterale devono garantire la continuità strutturale degli elementi longitudinali. Si considerano elementi longitudinali strutturalmente "resistenti" la lama principale a tripla onda, l'eventuale lama secondaria sottostante o soprastante la lama principale, ed i profilati aventi funzione strutturale. Non sono considerati elementi strutturali "resistenti" i correnti superiori con esclusiva funzione di antiribaltamento ed i correnti inferiori pararuota. La continuità degli elementi longitudinali delle 2 barriere può essere garantita anche se questi sono installati ad altezze leggermente diverse.

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 53 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

8.4 Elementi di protezione complementare

Nell'ambito del progetto sono stati previsti i seguenti elementi di protezione complementare:

Attenuatori d'urto

In corrispondenza delle cuspidi delle corsie di uscita si prevede l'installazione di attenuatori d'urto frontali redirettivi di classe 80 conformi alla norma EN1317-3.

E' prevista, inoltre, l'installazione di attenuatori d'urto di classe 50 conformi alla norma EN1317-3 in corrispondenza delle cuspidi individuate dalle diramazioni delle rampe di svincolo.

Transizioni

Tra barriere di diverso tipo sono previsti elementi di transizione. Le transizioni non sono prodotti soggetti a prova o a marcatura CE, ma sono elementi di raccordo tra dispositivi diversi che devono rispondere a specifici requisiti di carattere geometrico e funzionale e sono finalizzati a garantire la continuità strutturale tra i dispositivi raccordati.

Terminali

Qualsiasi interruzione della continuità longitudinale delle barriere esposte al flusso di traffico dovrà essere dotata di un sistema terminale che prevenga, per quanto possibile, l'urto frontale dei veicoli contro la parte iniziale della barriera.

I terminali semplici di cui sopra non sono parte del sistema testato ai sensi della norma EN1317-2 e sono dispositivi diversi dagli eventuali sistemi di ancoraggio che possono essere presenti durante il crash che, non essendo testati rispetto ad eventuali urti frontali, non garantiscono alcun livello di sicurezza come elementi terminali installati su strada.

In particolare, si definisce terminale semplice il tratto di barriera al suo inizio e quello alla sua fine (che spesso sono diversi) riportate nei disegni delle omologazioni o dei rapporti di prova delle diverse soluzioni; si tratta in genere di interramenti e deviazioni della parte terminale d'inizio, combinate o meno tra loro, senza ancoraggi speciali.

I terminali di inizio e fine vanno previsti in zone della strada dove la loro presenza non generi problemi in caso d'urto (non causi cioè fuoriuscite pericolose, urti su oggetti esterni o simili) per questo motivo le barriere poste su rilevato devono iniziare e finire all'interno delle trincee ad esso adiacenti e terminare a terra e/o deviando sulla parete della trincea.

Barriere rimovibili chiusure varchi

Al fine di garantire il passaggio dei veicoli da una carreggiata ad un'altra, in presenza di situazioni di emergenza, nonché di esigenze di transito temporaneo (manutenzione), sono stati previsti varchi in corrispondenza dello spartitraffico.

L'ubicazione dei varchi (costituiti da una zona pavimentata atta a consentire lo scambio di carreggiata) è stata prevista in corrispondenza delle progressive 0+100 e 3+060, ovvero prendendo in considerazione le prescrizioni contenute nel par. 4.3.1 del D.M. 05/11/2001 e compatibilmente con la configurazione

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 54 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

geometrica ed il distanziamento delle carreggiate, nonché con la successione delle diverse configurazioni del corpo stradale e tenendo conto dell'ubicazione dei varchi prevista per l'analogo intervento previsto per il 1° Lotto (dal km 19+554 al km 23+100).

In corrispondenza dei varchi si prevede l'installazione di barriere rimovibili "chiusure varchi", testate ai sensi della norma EN 1317-2 e 4 (che prevede diverse prove d'urto in base alla lunghezza del dispositivo), di classe H2 che si attestano alle barriere a protezione dello spartitraffico mediante opportune transizioni.

La differenza di classe tra la barriera spartitraffico (H3) e quella del varco (H2), dovuta principalmente al carattere di amovibilità della barriera ed alla presenza delle transizioni, rientra nella massima ammissibile di due classi prescritta dal D.M. 21/06/2004.

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 55 di 56

S.S. 268 TRATTO TRA LO SVINCOLO DI COLLEGAMENTO CON L'A3 E SAN GIUSEPPE VESUVIANO SUD/POGGIOMARINO. RADDOPPIO DA 2 A 4 CORSIE (SEZIONE CAT. B DM 05/11/2001).

PROGETTO DEFINITIVO

SEGNALETICA

Il progetto della segnaletica orizzontale e verticale è stato sviluppato coerentemente alle prescrizioni contenute nel "Nuovo Codice della Strada D.L. n. 285 del 30/04/1992" (Artt. 38, 39, 40, 41, 42) e nel "Regolamento d'esecuzione ed attuazione del Nuovo Codice della Strada D.P.R. n. 495 del 16/12/1992". Allo scopo di consentire una buona leggibilità del tracciato in tutte le condizioni climatiche e di visibilità e garantire informazioni utili per l'attività di guida, il progetto della segnaletica orizzontale e verticale è stato redatto in modo da rispondere ai seguenti requisiti:

- congruenza con la situazione stradale che si vuole descrivere;
- coerenza sul medesimo itinerario;
- omogeneità sul medesimo itinerario.

Si precisa che la segnaletica sarà concordata con l'Ente gestore della viabilità in oggetto, per cui essa potrà essere modificata rispetto al progetto sviluppato.

Per i dettagli riguardanti la configurazione della segnaletica orizzontale ed il tipo ed ubicazione della segnaletica verticale, si rimanda agli specifici elaborati contenuti nella sezione "SEGNALETICA ORIZZONTALE E VERTICALE".

T01PS00TRARE01 B.docx

Maggio 2021 Rev. A Pag. 56 di 56