COMMITTENTE

PROGETTAZIONE:

DIRE	ZIONE	TECNI	CA	
U.O.	INFRAS	STRUT	TURE	NORD

PROGETTO DEFINITIVO

LINEA AC: TORINO - VENEZIA
TRATTA TORINO - MILANO

NODO DI NOVARA 1º FASE PRG DI NOVARA BOSCHETTO

OPERE MINORI

Bretella merci - Tombino circolare ferroviario DN500 - Relazione di calcolo

							SCALA:
							-
COMMESSA	LOTTO FASE	ENTE	TIPO DOC.	OPERA/DISCIPLI	NA PROGR	. RE	V.
N M 0 Y	0 0 D	1 1	CL	R I 0 0 0	3 0 0 2	2 A	

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
А	Emissione esecutiva	A. Ingletti	Maggio 2021	M.Milovanovic	Maggio 2021	F. Perrone	Maggio 2021	D. Maranzano Maggio 2021
						71***		Ing. DANIELE MARANZANO
							(MARANZANO CO
								AND TO THE BUILD AND THE BUILDING

File: NM0Y00D11CLRI0003002A.doc		n. Elab.: 112
•	•	

CL

RELAZIONE DI CALCOLO

COMMESSA NM0Y

LOTTO CODIFICA

00 D 11

DOCUMENTO RI0003 002

REV.

FOGLIO 2 di 166

INDICE

1.	PREMESSA	5
2.	SCOPO DEL DOCUMENTO	5
3.	NORMATIVA E DOCUMENTAZIONE DI RIFERIMENTO	10
3.1	NORMATIVA DI RIFERIMENTO	10
3.2	UNITÀ DI MISURA E SIMBOLOGIA	11
4.	CARATTERISTICHE DEI MATERIALI	12
4.1	CALCESTRUZZO	12
4.2	ACCIAIO PER C.A.	13
5.	PARAMETRI GEOTECNICI	16
6.	VITA NOMINALE E CLASSE D'USO	17
6.1	VITA NOMINALE	17
6.2	CLASSE D'USO	18
6.3	PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA	18
6.4	TEMPO DI RITORNO DELL'EVENTO SISMICO	18
6.5	ACCELERAZIONE MASSIMA SU SUOLO ROCCIOSO	19
6.6	PARAMETRI DI RISENTIMENTO IN SUPERFICIE	21
	6.6.1 Effetti stratigrafici	21
	6.6.2 Effetti topografici	21
6.7	ACCELERAZIONE MASSIMA AL SITO	21
7.	ANALISI DEI CARICHI	22
7.1	PESI PROPRI	22
7.2	PERMANENTI NON STRUTTURALI	22
7.3	SPINTA STATICA DEL TERRENO	23
7.4	SPINTA DOVUTA AL SOVRACCARICO PERMANENTE	24
7.5	CARICHI MOBILI DA TRAFFICO FERROVIARIO	24

RELAZIONE DI CALCOLO

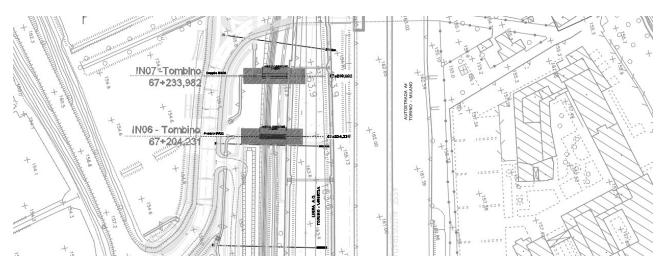
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM0Y	00 D 11	CL	RI0003 002	Α	3 di 166

	7.5.	.1	Determinazione delle larghezze di diffusione dei carichi mobili	26
	7.5.	.2	Coefficiente di amplificazione dinamica	26
7.6	5	Spii	NTA DOVUTA AL SOVRACCARICO ACCIDENTALE	27
7.7	A	Azı	ONE DI AVVIAMENTO / FRENATURA	27
7.8	A	Azı	ONE CENTRIFUGA	27
7.9	A	Azı	ONE DI SERPEGGIO	28
7.10) <i>A</i>	Azı	ONE DEL SISMA	29
7.1	l F	RITI	RO DEL CALCESTRUZZO	33
7.12	2 \	VAF	RIAZIONE TERMICA	33
7.13	3 5	S٥١	/RASPINTA SISMICA	33
7.14	1 (Cor	MBINAZIONI DEI CARICHI	33
8.	VEF	RIF	ICHE STRUTTURALI	62
8.1	١	VEF	RIFICHE PER GLI STATI LIMITE ULTIMI A FLESSIONE-PRESSOFLESSIONE	62
8.2	١	VEF	RIFICA AGLI STATI LIMITE ULTIMI A TAGLIO	62
8.3	١	VEF	RIFICA AGLI STATI LIMITE D'ESERCIZIO	64
9.	ANA	ALI	SI E VERIFICHE	66
9.1	N	Moi	DELLO DI CALCOLO	66
	9.1.	.1	Modello di calcolo e dati di input	68
9.2	F	Rıs	ULTATI DELLE ANALISI	79
9.3	١	VEF	RIFICHE STRUTTURALI	86
	9.3.	.1	Piedritti	87
	9.3.	.2	Soletta superiore	105
	9.3.	.3	Soletta inferiore	122
10.	VEF	RIF	ICHE GEOTECNICHE	140
	10.1	1.1	Verifica di capacità portante verticale	140
	10.1	1.2	Verifica dei cedimenti	164

 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 4 di 166

11.	INCIDENZA	.166
12.	CONCLUSIONI	.166


GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO						
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA	DOCUMENTO RI0003 002	REV.	FOGLIO 5 di 166	

1. PREMESSA

Il presente documento viene emesso nell'ambito della redazione degli elaborati tecnici relativi alla progettazione definitiva del nodo di Novara della linea AC Torino - Venezia nella tratta di Novara Boschetto.

L'opera oggetto delle analisi riportate nei paragrafi seguenti rientra fra quelle inserite nella categoria denominata "TOMBINI FERROVIARI".

Quanto riportato di seguito consentirà di verificare che il dimensionamento delle strutture è stato effettuato nel rispetto dei requisiti di resistenza e deformabilità richiesti all'opera.

Tab. 1 – Planimetria generale e inquadramento dell' opera

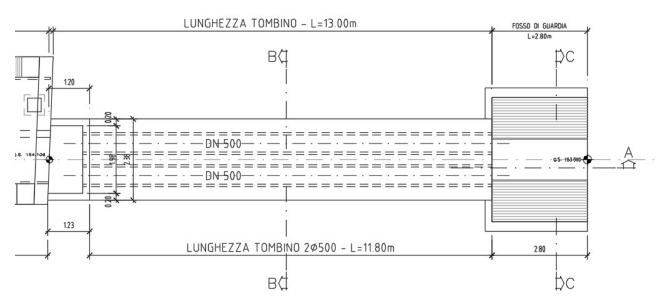
2. SCOPO DEL DOCUMENTO

Nella seguente relazione, in particolare, vengono descritte le verifiche agli Stati Limite del Tombino Idraulico al Km 67+233,982, che risultano valide anche per il tombino al Km 67+204,231. Di seguito verranno illustrati i calcoli relativi solamente alla prima opera.

Descrizione Opera:

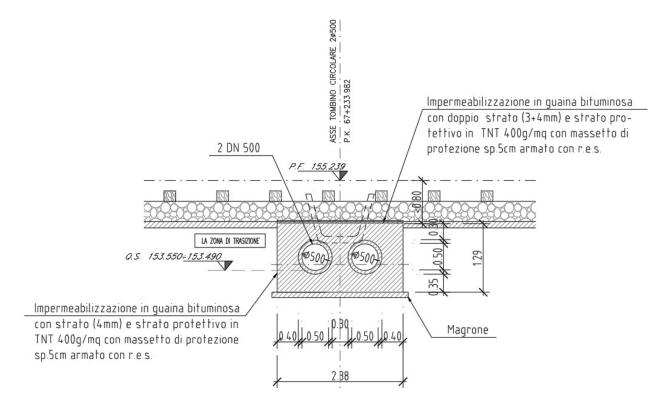
La tipologia del tombino è di tipo circolare a doppia canna ϕ 500 con spessore della soletta superiore, inferiore rispettivamente di 0.3 m, 0.35m e spessore dei piedritti laterali e centrale rispettivamente di 0.4m e 0.3m.

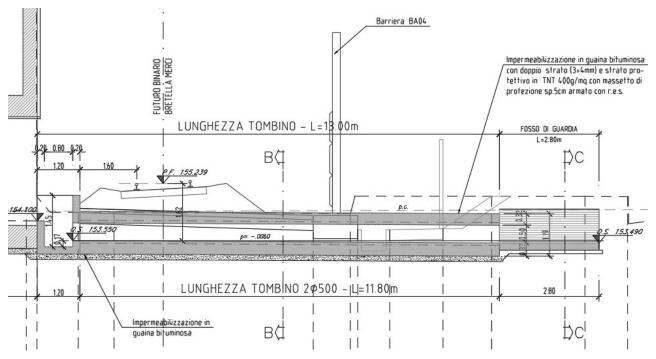
La sezione complessiva presenta una larghezza di 2.38 m ed un'altezza di 1.29m.


L'estradosso della soletta di copertura (+154.439 m s.l.m.) è posto a 0.8 m rispetto al piano del ferro del BP di progetto (+155.239 m s.l.m.), mentre l'estradosso della soletta di fondazione è a quota +153.619 m s.l.m. e presenta una lunghezza totale di 13.00 m. Di seguito si riporta la tabella riassuntiva della geometria del tombino scatolare alla progressiva 67+233,982.

TOMBINO IDRAULICO 67+233.982							
GEOMETRIA							
Larghezza	В	2.38	[m]				
Lunghezza	L	13.00	[m]				
Altezza	Н	1.29	[m]				
Spessore della soletta superiore	Ss	0.30	[m]				
Spessore della soletta di fondazione	Sf	0.35	[m]				
Spessore del piedritto centrale	Sp	0.30	[m]				
Spessore dei piedritti	Sp	0.40	[m]				
Altezza netta	Hint	0.64	[m]				
Larghezza netta	Lint	1.58	[m]				
Spessore del ballast+armamento	Hb	0.80	[m]				
Spessore del rilevato	Hr	0.05	[m]				
Profondità della falda	Zw	3.54	[m]				

Di seguito si mostrano una pianta, una sezione trasversale e una longitudinale del tombino idraulico in esame:


GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO						
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 7 di 166	


Tab. 2 - Tombino scatolare 67+233,982 - Pianta

Tab. 3 – Tombino scatolare 67+233,982 – Sezione trasversale

Tab. 4 - Tombino scatolare idraulico -67+233,982 - Sezione longitudinale

Le caratteristiche di dettaglio e la descrizione dei singoli elementi componenti sono desumibili dagli specifici elaborati grafici e tutte le prescrizioni tecniche desumibili dal Progetto Definitivo.

Nei capitoli successivi si riportano le ipotesi assunte alla base del calcolo e le verifiche delle strutture secondo il metodo semiprobabilistico agli stati limite.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA TO	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO							
RELAZIONE DI CALCOLO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
	NM0Y	00 D 11	CL	RI0003 002	Α	10 di 166			

3. NORMATIVA E DOCUMENTAZIONE DI RIFERIMENTO

3.1 Normativa di riferimento

Si riporta di seguito la normativa di riferimento per la redazione del seguente documento:

- [1] LEGGE n. 1086 del 05.11.1971 "Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica".
- [2] Circolare n.11951 del 14.02.1974 "Istruzioni per l'applicazione della legge 5/11/1971 n. 1086".
- [3] D.M. 17 gennaio 2018 Norme Tecniche per le Costruzioni.
- [4] Circolare 21 gennaio 2019 Istruzioni per l'applicazione dell' "Aggiornamento delle Nuove norme tecniche per le costruzioni" di cui al D.M. 17 gennaio 2018.
- [5] Eurocodice 2 Progettazione delle strutture in calcestruzzo Parte 1.1: Regole generali e regole per gli edifici.
- [6] UNI ENV 1992-1-1 Parte 1-1: Regole generali e regole per gli edifici.
- [7] UNI EN 1997-1: Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali;
- [8] UNI EN 1998-5: Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici;
- [9] UNI EN 206-1:2016 "Calcestruzzo. Specificazione, prestazione, produzione e conformità".
- [10] UNI 11104:2016 "Calcestruzzo Specificazione, prestazione, produzione e conformità Specificazioni complementari per l'applicazione della EN 206".
- [11] RFI DTC SI MA IFS 001 D del 20.12.2019 Manuale di Progettazione delle Opere Civili.
- [12] RFI DTC SI PS MA IFS 001 D del 20.12.2019 Manuale di Progettazione delle Opere Civili Parte II Sezione 2 Ponti e Strutture.
- [13] RFI DTC SI CS MA IFS 001 D del 20.12.2019 Manuale di Progettazione delle Opere Civili Parte II Sezione 3 Corpo Stradale.
- [14] RFI DTC SI SP IFS 001 D del 20.12.2019 "Capitolato generale tecnico di appalto delle opere civili".
- [15] Regolamento (UE) N° 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 776/2019 della Commissione del 16 maggio 2019.
- [16] Regolamento (UE) N. 1300/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per l'accessibilità del sistema ferroviario dell'Unione europea per le persone con disabilità e le

LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO.

NODO DI NOVARA 1º FASE PRG DI NOVARA BOSCHETTO

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

COMMESSA LOTTO

NM0Y 00 D 11

CODIFICA

DOCUMENTO RI0003 002

V. FOGLIO 11 di 166

persone a mobilità ridotta, modificato con il Regolamento di esecuzione (UE) N° 772/2019 della Commissione del 16 maggio 2019.

- [17] Regolamento di Esecuzione (UE) 776/2019 della Commissione del 16 maggio 2019 che modifica i regolamenti (UE) n. 321/2013, (UE) n. 1299/2014, (UE) n. 1301/2014, (UE) n. 1302/2014, (UE) n. 1303/2014 e (UE) 2016/919 della Commissione e la decisione di esecuzione 2011/665/UE della Commissione per quanto riguarda l'allineamento alla direttiva (UE) 2016/797 del Parlamento europeo e del Consiglio e l'attuazione di obiettivi specifici stabiliti nella decisione delegata (UE) 2017/1474 della Commissione
- [18] Regolamento di Esecuzione (UE) 2019/772 DELLA COMMISISONE del 16 maggio 2019 che modifica il regolamento (UE) n. 1300/2014 per quanto riguarda l'inventario delle attività al fine di individuare le barriere all'accessibilità, fornire informazioni agli utenti e monitorare e valutare i progressi compiuti in materia di accessibilità.

3.2 Unità di misura e simbologia

Unità di misura principali

N (Newton) unità di forzam (metro) unità di lunghezza

kg (kilogrammo-massa) unità di massa

s (secondo) unità di tempo

Unità di misura derivate

kN(kiloNewton) 10³ N

MN (megaNewton) 10⁶ N

kgf (kilogrammo-forza) 1 kgf = 9.81 N

cm (centimetro) 10^{-2} m mm (millimetro) 10^{-3} m

Pa(Pascal) 1 N/m²

kPa (kiloPascal) 10^3 N/m^2 MPa (megaPascal) 10^6 N/m^2

N/m³ (peso specifico)

g (accelerazione di gravità) ~9.81 m/s²

Corrispondenze notevoli

 $1 \text{ MPa} = 1 \text{ N/mm}^2$

1 MPa ~ 10 kgf/cm²

 $1 \text{ kN/m}^3 \sim 100 \text{ kgf/m}^3$

Si utilizzano i seguenti principali simboli con le relative unità di misura normalmente adottate:

FOGLIO

12 di 166

y(gamma) peso dell'unità di volume (kN/m^3) σ(sigma) tensione normale (N/mm^2) т (tau) tensione tangenziale (N/mm2)

ε (epsilon) deformazione (m/m - adimensionale)

angolo di resistenza (° sessagesimali) φ(fi)

4. CARATTERISTICHE DEI MATERIALI

Per la realizzazione delle opere in esame si impiegheranno calcestruzzo e acciaio in accordo ai p.ti. 11.2 e 11.3 delle NTC2018.

Nell'approccio agli stati limite, i valori di calcolo delle resistenze dei materiali per le verifiche agli SLU si ottengono dividendo il valore caratteristico della generica resistenza rk per il coefficiente di sicurezza del materiale relativo γ:

$$r_d = r_k / \gamma$$

È previsto, pertanto, l'utilizzo dei materiali riportati nei successivi paragrafi, in cui si illustrano le caratteristiche meccaniche.

4.1 Calcestruzzo

Le caratteristiche meccaniche dei calcestruzzi distinte per parte d'ora sono di seguito riportate:

X0

Magroni

Classe di esposizione:

•	Classe di resistenza:	C12/15
---	-----------------------	--------

 $R_{ck} = 15 \text{ N/mm}^2$ Resistenza caratteristica cubica: • Resistenza caratteristica cilindrica:

 $f_{ck} = 12 \text{ N/mm}^2$

· Classe di consistenza slump: S3

 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 13 di 166

• Contenuto minimo di cemento: 150 Kg/m³

• Rapporto A/C: ≤ 0.60

Acqua: Conforme a UNI EN 1008

Cemento: CEM II/B-M 32.5 R

Strutture in c.a. in elevazione e fondazione:

Classe di resistenza:
 C30/37

Classe di esposizione:

XA1

Classe di consistenza slump:
 S4

• Contenuto minimo di cemento: 300 Kg/m³

• Rapporto A/C: ≤ 0.55

Aggregato: Conforme a UNI EN 12620

Massima dimensione aggregato:
 25 mm

• Copriferro: 40 mm

Acqua: Conforme a UNI EN 1008

Cemento: CEM IV/A 42.5 R

Resistenza caratteristica cubica:
 R_{ck} = 37 N/mm²

• Coefficiente sicurezza SLU $\gamma_C = 1,50$

• Resistenza di calcolo a compressione SLU $f_{cd} = 0.85 f_{ck} / \gamma_C = 17.40 \text{ N/mm}^2$

• Resistenza di calcolo a trazione semplice (5%) SLU $f_{ctd} = 0.7 f_{ctk} / \gamma_C = 0.96 \text{ N/mm}^2$

4.2 Acciaio per c.a.

Acciaio per c.a. tipo B 450 C secondo DM 14.01.2018 avente le seguenti caratteristiche:

Tensione caratteristica di snervamento
 f_{vk} > 450 N/mm²

Tensione caratteristica di rottura
 f_{tk} > 540 N/mm²

Rapporto
 1,15 < (ft/fy)k < 1,35 (frattile 10%)

• Rapporto (fy/f_{y,nom})k < 1,25 (frattile 10%)

Allungamento (A_{at})_k > 7,5% (frattile 10%)

• Coefficiente sicurezza SLU $\gamma_{\rm S}$ = 1,15

• Resistenza di calcolo SLU

 $f_{yd} = f_{yk} / \gamma_S = 391,30 \text{ N/mm}^2$

Tensione di calcolo SLE

$$\sigma_{y,ad} = 0.80 \text{ f}_{yk} = 360 \text{ N/mm}^2$$

La rispondenza dei materiali ai requisiti sarà valutata mediante le prescritte prove di accettazione. Con riferimento al p.to 4.1.6.1.3 delle NTC, al fine della protezione delle armature dalla corrosione il valore minimo dello strato di ricoprimento di calcestruzzo (copriferro) deve rispettare quanto indicato nella tabella C4.1.IV della Circolare n.7 del 21.1.2019 (Tab. 5), riportata di seguito, nella quale sono distinte le tre condizioni ambientali di Tabella 4.1.III delle NTC 2018 (Tab. 6).

		barre da c.a.		barre da c.a. altri elementi		cavi da c.a.p		cavi da c.a.p altri elementi		
C _{min}	Co	ambiente	C≥C₀	C _{min} ≤C <c<sub>o</c<sub>						
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C28/35	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

Tab. 5 - Tabella C4.1.IV della Circolare n.7 del 21.1.2019

Tab. 4.1.III - Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tab. 6 – Tabella 4.1.III delle NTC 2018

La classe di esposizione delle strutture in conglomerato cementizio del sottopasso di stazione è XA1; la corrispondente condizione ambientale desunta da Tab. 6 è "Aggressiva". Con riferimento a Tab. 5 pertanto il valore nominale del copriferro di progetto sarà pari a 35 mm; tale valore è riferito a

GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA T	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO					
RELAZIONE DI CALCOLO	COMMESSA	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO	REV.	FOGLIO 15 di 166	

costruzioni con vita nominale pari a 50 anni. Nel caso di costruzioni con vita nominale pari a 100 anni, la circolare prescrive di aumentare il copriferro di 10 mm; visto che nel caso specifico la vita nominale è pari a 75 anni, il copriferro verrà aumentato di 5 mm. Il copriferro di progetto è quindi pari a **40 mm**.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO					
RELAZIONE DI CALCOLO	COMMESSA	LOTTO 00 D 11	CODIFICA	DOCUMENTO	REV.	FOGLIO

5. PARAMETRI GEOTECNICI

I valori caratteristici dei parametri geotecnici e la stratigrafia di riferimento sono stati ottenuti mediante l'interpretazione di prove e misure effettuate in sito.

Di seguito si riportano i valori caratteristici dei parametri geotecnici della stratigrafia:

• <u>Terreno – Strato 1 (0.0 ÷0.25 m)</u>

Descrizione: Unità D Limo con argilla, debolmente sabbioso.

- ➤ Coesione efficace c' = 0-10 kPa
- > Angolo di resistenza al taglio φ = 26°-28°
- ➤ Modulo di deformabilità E = 8-10 MPa
- Peso per unità di volume γ = 18.0-19.0 kN/m³

• <u>Terreno - Strato 2 (0.25 ÷2.75 m)</u>

Descrizione: Unità C Sabbia da media a fine con locale presenza di ghiaia e limo.

- Coesione efficace c' = 0 kPa
- Resistenza non drenata c_u = kPa
- Angolo di resistenza al taglio φ' = 34°- 36°
- ➤ Modulo di deformabilità E = 20-40 MPa
- \triangleright Peso per unità di volume γ = 18.00 19.0 kN/m³

• Terreno - Strato 3 (2.75 ÷14.75 m)

Descrizione: Unità B Ghiaia eterometrica, con clasti poligenici arrotondati, con sabbia da grossolana, talora debolmente limosa.

- Coesione efficace c' = 0 kPa
- Resistenza non drenata c_u = kPa
- Angolo di resistenza al taglio φ' = 40°- 44°
- ➤ Modulo di deformabilità E = 35-60 MPa per 0>z>10, 45-70 MPa per z>10
- Peso per unità di volume γ = 20.0 kN/m³

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO					
RELAZIONE DI CALCOLO	COMMESSA	LOTTO 00 D 11	CODIFICA	DOCUMENTO	REV.	FOGLIO

Il livello di falda a vantaggio di sicurezza è stato posto alla quota di imposta della fondazione.

6. VITA NOMINALE E CLASSE D'USO

6.1 Vita nominale

La vita nominale di una costruzione, così come definita al punto 2.4.1 di [3], è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve essere usata per lo scopo al quale è destinata. Essa è la durata alla quale deve farsi espresso riferimento in sede progettuale, in relazione alla durabilità delle costruzioni, nel dimensionare le strutture ed i particolari costruttivi, nella scelta dei materiali e delle eventuali applicazioni e misure protettive per garantire il mantenimento della resistenza e della funzionalità. Facendo riferimento al punto 2.5.1.1.1 di [12] la vita nominale V_N delle infrastrutture ferroviarie può, di norma, assumersi come indicato in Tab. 7:

TIPO DI COSTRUZIONE (1)	Vita Nominale
	$[V_N]^{(4)}$
OPERE NUOVE SU INFRASTRUTTURE FERROVIARIE ESISTENTI (2)	50
INFRASTRUTTURE FERROVIARIE NUOVE AD ALTA VELOCITA' (V > 250 km/h)	100
INFRASTRUTTURE FERROVIARIE NUOVE NON AV (V ≤ 250 km/h)	75
OPERE DI GRANDI DIMENSIONI: PONTI E VIADOTTI CON CAMPATE DI LUCE MAGGIORE DI 150 m	≥ 100 ⁽³⁾

- (1) La medesima V_N si applica a tutte le opere dell'infrastruttura ferroviaria cui appartengono.
- (2) -Rientrano in questa classe i raddoppi in affiancamento mentre interventi in variante planimetrica di infrastrutture esistenti di lunghezza superiore a 10 km devono classificarsi infrastrutture nuove.
 - (3) Da definirsi per il singolo progetto.
 - (4) La stessa V_N si applica anche ad apparecchi di appoggio, coprigiunti e impermeabilizzazione di ponti e viadotti ferroviari.

Tab. 7 – Vita Nominale delle infrastrutture ferroviarie

In particolare, visto che la linea ferroviaria Torino – Venezia non rientra nell'elenco delle linee e tratte ferroviarie facenti parte del sistema "Sistema di grande viabilità ferroviaria" ai sensi dell'OPCM N°3274 del 2003 (cfr. Allegato 5 della parte II – Sezione 2 del MdP RFI [12]) l'opera in oggetto avrà una vita nominale VN pari a 75 anni.

6.2 Classe d'uso

La norma [3] attribuisce alle costruzioni, in funzione della loro destinazione d'uso e quindi delle conseguenze di un'interruzione di operatività o di un eventuale collasso in conseguenza di un evento sismico, diverse classi d'uso; a ciascuna classe corrisponde un coefficiente d'uso CU.

Facendo riferimento al punto 2.5.1.1.2 di [12], la classe d'uso delle infrastrutture ferroviarie può, di norma, assumersi come indicato in Tab. 8:

TIPO DI COSTRUZIONE	Classe d'uso	Coefficiente d'uso [CU]
INFRASTRUTTURE FERROVIARIE STRATEGICHE	CIV	2.0
INFRASTRUTTURE FERROVIARIE AD ALTA VELOCITA' (V>250 km/h)	CIII	1,5
INFRASTRUTTURE FERROVIARIE NON STRATEGICHE	CII	1,0

Tab. 8 – Tabella della Classe d'uso e del coefficienti d'uso per le infrastrutture ferroviarie

In particolare per l'opera in oggetto la classe d'uso a cui far riferimento sarà C = II, a cui corrisponde un coefficiente d'uso CU pari a 1,0.

6.3 Periodo di riferimento per l'azione sismica

In riferimento a quanto detto nei paragrafi precedenti, il periodo di riferimento VR da prendere a riferimento per valutare le azioni sismiche sulla struttura è pari a:

$$V_R = V_N \cdot C_U = 75 \cdot 1,0 = 75 \text{ anni}$$

6.4 Tempo di ritorno dell'evento sismico

Fissato il periodo di riferimento V_R e stabilita la probabilità di superamento nel periodo di riferimento P_{VR} (funzione dello stato limite considerato come indicato in tabella n.4.3), è possibile stimare il periodo di ritorno dell'azione sismica T_R attraverso l'espressione:

$$T_R = -\frac{V_R}{\ln(1 - P_{VR})}$$

Stati limite di esercizio (P _{VR})	Stati limite ultimi (P _{VR})
SLO – Stato limite di operatività (81%)	SLV – Stato limite di salvaguardia (10%)
SLD – Stato limite di danno (63%)	SLD – Stato limite di prevenzione del collasso (5%)

Tab. 9 – Stati limite secondo le NTC e relative probabilità di superamento P_{VR}

Nel caso specifico in studio si fa riferimento allo stato limite SLV, cui corrisponde il seguente valore del tempo di ritorno dell'evento sismico:

$$T_R = 949$$
 anni

6.5 Accelerazione massima su suolo roccioso

Il valore di accelerazione orizzontale massima nello specifico sito di interesse va determinato con riferimento ai valori puntuali già definiti per un'apposita griglia (10x10km) da uno studio dell'INGV e riassunti nelle tabelle di cui all'allegato B delle NTC08 a cui si rimanda.

In particolare, il valore al sito viene definito mediando (in funzione della distanza) l'entità dell'accelerazione caratteristica dei 4 nodi più prossimi al sito stesso come di seguito indicato (analogo procedimento può essere adottato per gli altri parametri sismici [F₀ e T*_C]):

$$a_{g} = \frac{\sum_{i=1}^{4} \frac{a_{g,i}}{d_{i}}}{\sum_{i=1}^{4} \frac{1}{d_{i}}}$$

dove:

a_g = accelerazione massima suolo tipo A nel sito;

 $a_{g,i}$ = accelerazione massima suolo tipo A nell'i-esimo punto;

d_i = distanza del sito da i-esimo punto

Qualora la pericolosità sismica su reticolo di riferimento (cfr. Allegato B delle NTC DM 14 Gennaio 2008) non contempli il periodo di ritorno corrispondente al V_R , ed alla probabilità di superamento nel

periodo di riferimento P_{VR} fissate in progetto, il valore del generico parametro p (a_g , F_o , T^*_c) ad esso corrispondente potrà essere ricavato per interpolazione, a partire dai dati relativi ai T_R previsti nella pericolosità sismica, utilizzando l'espressione seguente:

$$\log(p) = \log(p_1) + \log\left(\frac{p_2}{p_1}\right) \cdot \log\left(\frac{T_R}{T_{R1}}\right) \cdot \left\lceil \log\left(\frac{T_{R2}}{T_{R1}}\right) \right\rceil^{-1}$$

nella quale:

- p è il valore del parametro di interesse corrispondente al periodo di ritorno T_R desiderato;
- T_{R1} , T_{R2} sono i periodi di ritorno più prossimi a T_R per i quali si dispone dei valori p₁ e p₂ del generico parametro p.

I valori dei parametri a_g, F_o, T*_c relativi alla pericolosità sismica su reticolo di riferimento sono forniti nelle tabelle riportate nell'ALLEGATO B delle NTC08; in particolare per le opere del tratto in esame, come riportato nelle tabelle 6.3 e 6.4 della relazione geotecnica per i diversi stati limite (SLD eSLV), si ha:

SLATO	T _R	a _g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	45	0.017	2.503	0.168
SLD	75	0.021	2.554	0.180
SLV	712	0.041	2.647	0.293
SLC	1462	0.048	2.702	0.316

Alla base dei calcoli si sono considerati i valori massimi dei parametri sismici (a_g , F_0 e T^*_C) di cui alla tabella relativi agli stati limite ed al tempo di ritorno considerati di seguito riportata

	Classe d'uso II (V _R = 75 anni)				
STATI LIMITE	T _R	T _R a _g		T _C *	
	(anni)	(g)	(-)	(-)	
SLD	75	0.021	2.554	0.180	
SLV	712	0.041	2.647	0.293	

Tab. 10 – Valori massimi dei parametri sismici in sito (a_g , F_0 e T^*_C)

6.6 Parametri di risentimento in superficie

Gli effetti di amplificazione locale dovuti alla stratigrafia ed alla conformazione topografica vengono messi in conto mediante i seguenti parametri:

Parametro S_S: Effetti stratigrafici;

Parametro S_T: Effetti topografici.

6.6.1 Effetti stratigrafici

Il parametro S_S che tiene conto degli effetti di amplificazione locale dovuti alla stratigrafia, viene calcolato in funzione della categoria di sottosuolo e della sismicità locale.

Nel caso specifico in studio si assume quanto segue (vedere anche relazione geotecnica):

Categoria di suolo tipo B

S_S = 1.20

6.6.2 Effetti topografici

Per quanto concerne gli effetti topografici si fa riferimento alla tabella n.3.2.VI delle NTC2018. Nel caso specifico in studio (terreno pressoché pianeggiante) si assume:

- Categoria pendio: T1
- $S_T = 1.0$

6.7 Accelerazione massima al sito

L'accelerazione massima orizzontale al sito (a_{max}) è calcolata come prodotto dell'accelerazione al substrato (a_g) e dei fattori di amplificazione $(S_S \text{ ed } S_T)$.

Si ottiene pertanto:

$$a_{\max} = S_S \cdot S_T \cdot a_g$$

da cui:

$$a_{max} \cong 1.2 \cdot 1 \cdot 0.021 = 0.025g$$
 (SLD)

$$a_{max} \cong 1.2 \cdot 1 \cdot 0.041 = 0.04g$$
 (SLV)

7. ANALISI DEI CARICHI

Si riporta nel seguito l'analisi dei carichi considerata nel calcolo delle sollecitazioni sulle strutture in oggetto. La sezione considerata è quella in corrispondenza dell'asse ferroviario.

7.1 Pesi propri

I carichi permanenti sono costituiti dai pesi propri delle strutture portanti e sono valutati automaticamente dal programma di calcolo a partire dalla geometria del problema e dai pesi specifici dei materiali.

Pesi propri

Peso specifico del calcestruzzo	γο	=	25,00	[kN/m³]
---------------------------------	----	---	-------	---------

Il peso dei differenti elementi strutturali riguarda:

- soletta di fondazione;
- piedritti;
- soletta di copertura.

7.2 Permanenti non strutturali

I carichi permanenti non strutturali agenti sulla soletta superiore sono i sequenti:

- peso del ballast e armamento;
- peso dell'eventuale terreno di ricoprimento sopra la soletta superiore.

	Pesi permane	nti non strutturali					
peso specifico spessore carico distribuito							
	[kN/m³]	[m]	[kN/m²]				
ballast e armamento	18.00	0.80	14.40				
terreno di ricoprimento	20.00	0.05	1.00				
		g ₂	15.40				

Per tener conto della differenza tra la larghezza geometrica effettiva del tombino idraulico e quella di calcolo, si incrementa il carico distribuito dei pesi permanenti non strutturali del rapporto tra le due larghezze, ottenendo un carico distribuito equivalente:

Geometria e geometria di calcolo					
Larghezza	В	2.38	[m]		
Larghezza di calcolo	Bc	1.98	[m]		
Rapporto B/Bc	r=B/B _c	1.20			

Pesi permanenti non strutturali equivalenti								
	peso specifico spessore carico distribuito equivalente							
[kN/m³] [m] [kN/m²]								
ballast e armamento	18.00	0.80	17.31					
terreno di								
ricoprimento	nento 20.00 0.05		1.20					
g _{2_eq} =g ₂ *r		*r	18.51					

7.3 Spinta statica del terreno

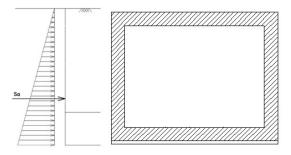
Le spinte del terreno a monte degli elementi verticali dello scatolare sono calcolate con la teoria di Rankine, con distribuzione triangolare delle tensioni e conseguente risultante della spinta al metro pari a:

$$S_1 = k_0 \cdot \gamma^t_t \cdot \frac{H}{2}$$

dove:

- k₀ è il coefficiente di spinta a riposo;
- γ'_t è il peso specifico efficace del terreno;
- H è l'altezza del piedritto

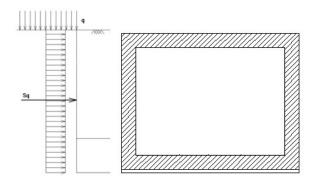
La spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta a riposo k₀.


$$k_0 = 1 - \sin \varphi =$$

Per i tre strati di terreno che interessano il tombino in esame si ha:

	angolo di attrito φ [°]		
strato 1	35	$k_{01} = 1 - \text{sen} \phi_1$	0.426
strato 2	42	$k_{01} = 1 - \operatorname{sen} \varphi_2$	0.331

Con questi valori si valutano i valori delle spinte sulle pareti.

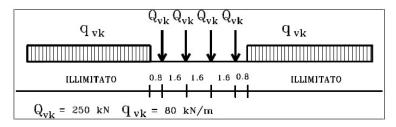

Tab. 11 – Schema per il calcolo degli effetti della spinta statica del terreno

7.4 Spinta dovuta al sovraccarico permanente

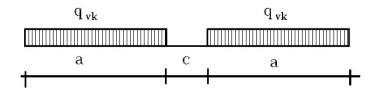
Per considerare la presenza di un sovraccarico permanente gravante a tergo dello scatolare si considera un carico uniformemente distribuito. Il valore della spinta risultante al metro associata è pari a:

$$S_2 = k_0 \cdot q \cdot H$$

Nella relazione "q" rappresenta il carico variabile per unità di superficie.



Tab. 12 – Schema per il calcolo degli effetti della spinta dovuta al sovraccarico accidentale


7.5 Carichi mobili da traffico ferroviario

Il carico variabile associato al traffico ferroviario si determina in accordo con il paragrafo 5.2.2.2.1 delle NTC 2018, considerando il peggiore tra il carico verticale del treno LM71 (traffico normale) e il carico verticale del treno SW/2 (traffico pesante).

Tab. 13 – Treno di carico LM71

Tab. 5.2.I - Caratteristiche Modelli di Carico SW

Tipo di Carico	q _{vk} [kN/m]	a [m]	c [m]
SW/0	133	15,0	5,3
SW/2	150	25,0	7,0

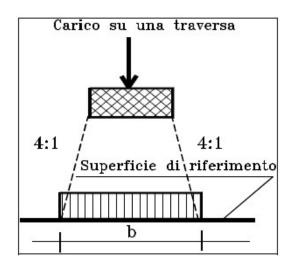
Tab. 14 – Treno di carico SW

Il carico ferroviario si moltiplica per il coefficiente di adattamento e per il coefficiente di amplificazione dinamica. Per quanto riguarda il coefficiente di adattamento, per ponti di categoria A, questo assume il valore mostrato in Tab. 15.

MODELLO	COEFFICIENTE "α"					
DI CARICO	PONTI CAT. "A"	PONTI CAT. "B"				
LM 71	1.1	0.83				
SW / 0	1.1	0.83				
SW / 2	1.0	0.83				

Tab. 15 - Coefficienti di adattamento

Per il treno di carico LM71, si considera la situazione più gravosa con il carico distribuito trasmesso dai quattro assi. Tale carico si distribuisce longitudinalmente su una lunghezza di 6.40 m. Per quanto attiene il sovraccarico ferroviario si applica il peggiore tra il carico verticale del treno SW/2 pari a 150.00 kN/m x 1.00 = 150.00 kN/m e il carico verticale del treno LM71 pari a: 1000.00 kN / 6.4 m x 1.10 = 171.87 kN/m per il carico concentrato e di 80.00 kN/m x 1.10 = 88.00 kN/m per il carico distribuito. Tali


TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA T	ORINO - IOVARA	1^ FASE PR	· VENEZIA. G DI NOVARA	воѕсні	ΕΤΤΟ
RELAZIONE DI CALCOLO		LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NMOY	00 D 11	CL	RI0003 002	Α	26 di 166

carichi si considerano poi come uniformemente distribuiti su una larghezza trasversale di calcolo fino a livello del piano d'asse della soletta di copertura.

Per il caso in esame si applicherà sia il carico dovuto al treno LM71 che SW. La disposizione del carico viene effettuata tenendo conto di tutte le possibilità disposizioni sui due binari.

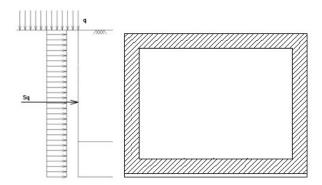
7.5.1 Determinazione delle larghezze di diffusione dei carichi mobili

Il carico distribuito longitudinalmente si distribuisce trasversalmente in modo da definire il carico per unità di superficie associato. La diffusione del carico si sviluppa su una larghezza trasversale di calcolo fino a livello del piano d'asse della soletta. La diffusione dei carichi attraverso ballast avviene con pendenza 4:1, attraverso il ricoprimento (qualora presente) con angolo di attrito e nella soletta con pendenza 1:1.

Tab. 16 – Diffusione longitudinale del carico ferroviario

7.5.2 Coefficiente di amplificazione dinamica

Le sollecitazioni e gli spostamenti determinati sulle strutture dall'applicazione statica dei treni di carico debbono essere incrementati per tener conto della natura dinamica del transito dei convogli. Tale coefficiente si determina in accordo con paragrafo 5.2.2.3.3 delle NTC 2018. La linea ferroviaria si considera soggetta ad un ridotto standard manutentivo. Per la lunghezza caratteristica si considera il caso delle strutture scatolari.



7.6 Spinta dovuta al sovraccarico accidentale

Per considerare la presenza di un sovraccarico accidentale associato al traffico gravante a tergo dello scatolare si considera un carico uniformemente distribuito. Il valore della spinta risultante al metro associata è pari a:

$$S_2 = k_0 \cdot q \cdot H$$

Nella relazione "q" rappresenta il carico variabile per unità di superficie.

Tab.17 – Schema per il calcolo degli effetti della spinta dovuta al sovraccarico accidentale

7.7 Azione di avviamento / frenatura

Si associano al convoglio di progetto le azioni di avviamento del carico LM71 in quanto maggiormente gravose per la struttura in esame. Visto che il treno sfavorevole è quello LM71, anche per il calcolo della frenatura si considera il carico LM71 in avviamento, determinato in accordo con il paragrafo 5.2.2.3.3 delle NTC 2018.

I valori caratteristici da considerare sono i seguenti: avviamento: $Q_{la,k} = 33 \text{ [kN/m]} \cdot L[m] \leq 1000 \text{ kN}$ per modelli di carico LM 71, SW/0, SW/2 frenatura: $Q_{lb,k} = 20 \text{ [kN/m]} \cdot L[m] \leq 6000 \text{ kN}$ per modelli di carico LM 71, SW/0

 $Q_{lb,k} = 35 [kN/m] \cdot L[m]$ per modelli di carico SW/2

7.8 Azione centrifuga

La forza centrifuga si considera agente verso l'esterno della curva, in direzione orizzontale ed applicata alla quota di 1,80 m al di sopra del P.F. Tale azione si determina in accordo con il paragrafo 5.2.2.3.1 delle NTC 2018. Le azioni centrifughe sono state valutate secondo le seguenti espressioni:

$$Q_{\rm nk} = \frac{v^2}{g \cdot r} \cdot \left(f \cdot \alpha Q_{\rm nk} \right) = \frac{V^2}{127 \cdot r} \cdot \left(f \cdot \alpha Q_{\rm nk} \right)$$
 [5.2.9.a]

$$q_{tk} = \frac{v^2}{g \cdot r} \cdot \left(f \cdot \alpha q_{vk} \right) = \frac{V^2}{127 \cdot r} \cdot \left(f \cdot \alpha q_{vk} \right)$$
 [5.2.9.b]

dove:

 Q_{tk} - q_{tk} = valore caratteristico della forza centrifuga [kN -kN/m];

Q_{vk}-q_{vk} = valore caratteristico dei carichi verticali [kN -kN/m];

α = coefficiente di adattamento;

v = velocità di progetto espressa in m/s;

V = velocità di progetto espressa in km/h;

f = fattore di riduzione (definito in seguito nella 5.2.10);

g = accelerazione di gravità in m/s²;

r = raggio di curvatura in m.

Le azioni centrifughe si valutano secondo quanto riportato nella seguente tabella Tab. 18.

Valore di α	Massima velocità		Azi	traffico verticale			
v alore di α	della linea [Km/h]	v	α	f		associato	
	≥ 100	100	1	1	1 x 1 x SW/2		
SW/2	< 100	v	1	1	1 x 1 x SW/2	Φ x 1 x SW/2	
		v	1	f	1 x f x (LM71"+"SW/0)	Φ x 1 x 1 x (LM71"+"SW/0)	
LM71 e SW/0	> 120	120	α	1	α x 1 x (LM71"+"SW/0)	Φzαz1z	
	≤ 120	v	α	1	α x 1 x (LM71"+"SW/0)	(LM71"+"SW/0)	

Tab. 18 - Parametri per determinazione della forza centrifuga

Tali azioni vengono trascurate in quanto con un modello piano non si possono considerare gli effetti trasversali. Tale azione non si considera per lo studio della fondazione in quanto la linea ferroviaria si trova in rettilineo.

7.9 Azione di serpeggio

L'azione di serpeggio si determina in accordo con il paragrafo 5.2.2.3.2 delle NTC 2018. La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario. Tale azione si applicherà sia in rettifilo che in curva. Il valore caratteristico di tale forza sarà assunto pari a Q_{sk} = 100.00 kN. Tale valore deve essere moltiplicato per α , (se α >1), ma non per il coefficiente ϕ . Questa forza laterale deve essere sempre combinata con i carichi verticali.

Tale azione viene trascurata in quanto con un modello piano non si possono considerare gli effetti trasversali, mentre si considera nell'analisi longitudinale dello scatolare. Tale azione si prende a riferimento per lo studio geotecnico della fondazione superficiale.

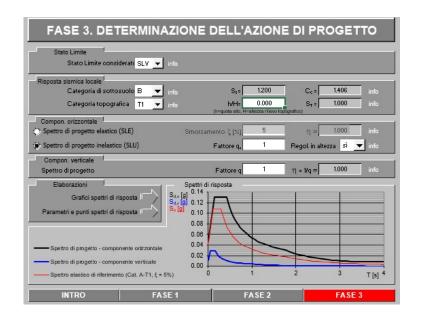
7.10 Azione del sisma

Per tutte le opere d'arte di progetto vengono utilizzati, a vantaggio di sicurezza, i seguenti valori: V_N =75 anni e classe d'uso II a cui corrisponde un coefficiente d'uso C_U = 1.00. La vita di riferimento V_R è quindi pari a 75 anni. I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.

- Classe d'uso: II;
- Coefficiente d'uso C_U = 1.0;
- Vita nominale V_N = 75 anni;
- Categoria di suolo: B;
- Condizione topografica: T1;
- Fattore di struttura q = 1.

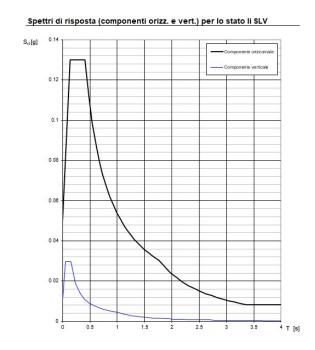
L'azione sismica è stata calcolata per mezzo del foglio di calcolo Spettri-NTCver.1.0.3 messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.

I parametri per la determinazione dei punti dello spettro di risposta orizzontale e verticale sono riportati a seguire.


RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

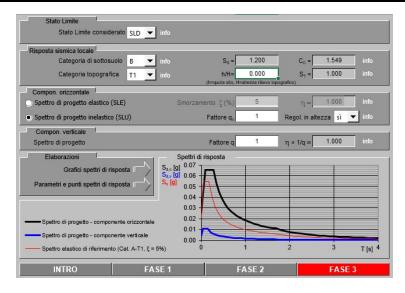
 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 30 di 166

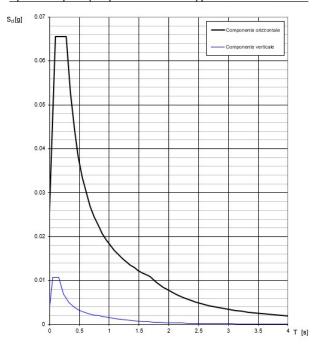


SLATO LIMITE	T _R [anni]	a _g [g]	F _o [-]	T _c * [s]
SLO	45	0.017	2.503	0.168
SLD	75	0.021	2.554	0.180
SLV	712	0.041	2.647	0.293
SLC	1462	0.048	2.702	0.316

GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA TO	ORINO - IOVARA	1^ FASE PR	- VENEZIA. :G DI NOVARA	воѕсні	≣тто
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 31 di 166

Di seguito si riporta a titolo di esempio lo **spettro di progetto** per lo **Stato Limite di salvaguardia della Vita SLV** relativamente alle componenti **orizzontali**, con coefficiente di smorzamento strutturale canonico pari al 5%.


Di seguito si riporta a titolo di esempio lo **spettro di progetto** per lo **Stato Limite di salvaguardia della Vita SLD** relativamente alle componenti **orizzontali**, con coefficiente di smorzamento strutturale canonico pari al 5%.


RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 32 di 166

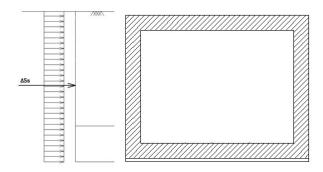
Spettri di risposta (componenti orizz. e vert.) per lo stato li SLD

7.11 Ritiro del calcestruzzo

Gli effetti del ritiro del calcestruzzo sono valutati impiegando i coefficienti indicati al punto 11.2.10.6 delle NTC 2018. La deformazione totale da ritiro è data dalla somma della deformazione per ritiro da essiccamento e della deformazione da ritiro autogeno. Il ritiro è stato applicato mediante una variazione termica equivalente pari a 10°, ed un'umidità relativa del 75% a 7 gg.

Il fenomeno del ritiro è stato applicato solo alla soletta di copertura.

7.12 Variazione termica


La variazione termica applicata sulla struttura è pari a ΔT = +15°C, con una variazione termica a aggiuntiva a farfalla pari a ΔT = +5°C applicata sulle solette di copertura.

Per il coefficiente di dilatazione termica si assume:

$$\alpha = 10 \times 10^{-6} = 0.00001$$

7.13 Sovraspinta sismica

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio. La sovraspinta sismica è calcolata con la teoria di Wood, risultando in un valore di spinta al metro, distribuito uniformemente sull'intera altezza del piedritto, da applicare ad una quota pari ad H/2.

Tab. 19 – Schema per il calcolo degli effetti della sovraspinta sismica del terreno

7.14 Combinazioni dei carichi

In linea con quanto riportato nel quadro normativo vigente, le azioni descritte nei paragrafi precedenti, sono combinate nel modo seguente:

combinazione fondamentale (SLU):

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NMOY
 00 D 11
 CL
 RI0003 002
 A
 34 di 166

$$\gamma_{\text{G1}} \cdot \textbf{G}_{\text{1}} + \gamma_{\text{G2}} \cdot \textbf{G}_{\text{2}} + \gamma_{\text{p}} \cdot \textbf{P} + \gamma_{\text{O1}} \cdot \textbf{Q}_{\text{k1}} + \gamma_{\text{O2}} \cdot \psi_{\text{02}} \cdot \textbf{Q}_{\text{k2}} + \gamma_{\text{O3}} \cdot \psi_{\text{03}} \cdot \textbf{Q}_{\text{k3}} + \dots$$

combinazione sismica:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

combinazione eccezionale:

$$\boldsymbol{G_{_{1}}} + \boldsymbol{G_{_{2}}} + \boldsymbol{P} + \boldsymbol{A_{_{d}}} + \boldsymbol{\psi_{_{21}}} \cdot \boldsymbol{Q_{_{k1}}} + \boldsymbol{\psi_{_{22}}} \cdot \boldsymbol{Q_{_{k2}}} + ...$$

combinazione Rara (SLE irreversibile):

$$G_{1}+G_{2}+P+Q_{k1}+\psi_{02}\cdot Q_{k2}+\psi_{03}\cdot Q_{k3}+...$$

combinazione Frequente (SLE reversibile):

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

• combinazione Quasi Permanente (SLE per gli effetti a lungo termine):

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati nella tabella sequente.

TIPO DI CARICO	Azioni v	Azioni verticali		Azioni orizzontali			
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti	
Gruppo 1 (2)	1,00	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale	
Gruppo.2 (2)	-	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale	
Gruppo 3 (2)	1,0 (0,5)	570	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale	
Gruppo 4	0,8 (0,6; 0,4)	4	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione	

Azione dominante

Tab. 20 -Valutazione dei carichi da traffico

Per le verifiche agli stati limite ultimi si adottano i valori dei coefficienti parziali ed i coefficienti di combinazione ψ delle tabelle seguenti.

Includendo tutti i fattori ad essi relativi (Φ,α, ecc..)

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze progettuali.

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 35 di 166

Tab. 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Coefficie	ente		EQU(1)	A1	A2
Azioni permanenti	favorevoli sfavorevoli	YG1	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	YG2	0,00 1,50	0,00 1,50	0,00
Ballast(3)	favorevoli sfavorevoli	ΥВ	0,90 1,50	1,00 1,50	1,00 1,30
Azioni variabili da traffi- co ⁽⁴⁾	favorevoli sfavorevoli	ΥQ	0,00 1,45	0,00 1,45	0,00 1,25
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Precompressione	favorevole sfavorevo- le	ΥP	0,90 1,00 ⁽⁵⁾	1,00 1,00 ⁽⁶⁾	1,00 1,00
Ritiro, viscosità e cedi- menti non imposti appo- sitamente	favorevole sfavorevo- le	γCe d	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Tab. 21 – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Per la sovrastruttura ferroviaria si considerano i coefficienti in tabella 5.2.VI e 5.2.VII delle NTC 2018.

 ${\bf Tab.\,5.2.VI \cdot Coefficienti\ di\ combinazione\ }\Psi\ delle\ azioni$

Azioni		ψ_0	ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80(2)	0,80(1)	0,0
Gruppi di	gr_2	0,80(2)	0,800	· -
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tab. 22 –Coefficienti di combinazione ψ delle azioni.

⁽³⁾Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

RELAZIONE DI CALCOLO

OMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM0Y	00 D 11	CL	RI0003 002	Α	36 di 166

Tab. 5.2.VII - Ulteriori coefficienti di combinazione y delle azioni

	Azioni	Ψ0	Ψ1	Ψ_2
Azioni singole	Treno di carico LM 71	0,80(3)	(1)	0,0
	Treno di carico SW /0	0,80(3)	0,80	0,0
	Treno di carico SW/2	0,00(3)	0,80	0,0
da traffico	Treno scarico	1,00(3)	20	· ·
	Centrifuga	(2) (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tab. 23 – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Si riportano di seguito le combinazioni di carico utilizzate per le verifiche strutturali e geotecniche.

Le combinazioni riportate si distinguono nei seguenti sottogruppi:

		GRUPPO CARICHI MOBILI	AZIONE
NUMERO	COMBINAZIONI	FERROVIARI	PRINCIPALE
1-26	SLU	1	CARICHI MOBILI
26-52	SLU	1	AZIONE TERMICA
53-70	SLU	3	CARICHI MOBILI
71-86	SISMICA	-	-
87-104	SLE-RARA	4	CARICHI MOBILI
105-122	SLE-RARA	4	AZIONE TERMICA
123-140	SLE-RARA	1	CARICHI MOBILI
141-158	SLE-RARA	1	AZIONE TERMICA
159-176	SLE-RARA	3	CARICHI MOBILI
177-194	SLE-RARA	3	AZIONE TERMICA
195-212	SLE-FREQUENTE	1	CARICHI MOBILI
213-230	SLE-FREQUENTE	3-4	CARICHI MOBILI
	SLE-QUASI		
231-232	PERMANENTE	1-3-4	-

⁽³⁾ Si usano gli stessi coefficienti V adottati per i carichi che provocano dette azioni.

[🚇] Quando come azione di base venga assunta quella del vento, i coefficienti ψη relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

LINEA FERROVIARIA TORINO - VENEZIA.
TRATTA TORINO - MILANO.
NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO
PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 37 di 166

Nelle matrici di combinazioni presentate i casi di carico sono i seguenti:

PERM: carichi permanenti strutturali;

PERM-G2: carichi permanenti non strutturali;

ACC-M71: carichi da traffico concentrato (disposizione per massimizzare il momento);

ACC-T71: carichi da traffico concentrato (disposizione per massimizzare il taglio);

AVV: azione di accelerazione e frenatura;

SPTSX: spinta del terreno statica sulla parete sinistra;

SPTDX: spinta del terreno statica sulla parete destra;

SPQSX71: spinta del terreno statica sulla parete sinistra per il sovraccarico accidentale LM71;

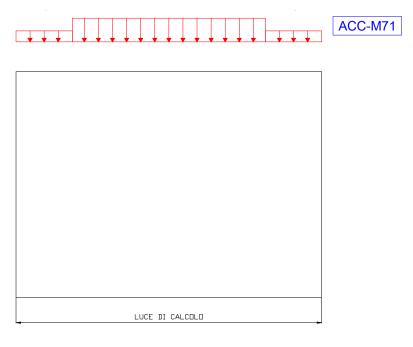
SPQDX71: spinta del terreno statica sulla parete destra per il sovraccarico accidentale LM71;

ACC-SW: carichi da traffico distribuito:

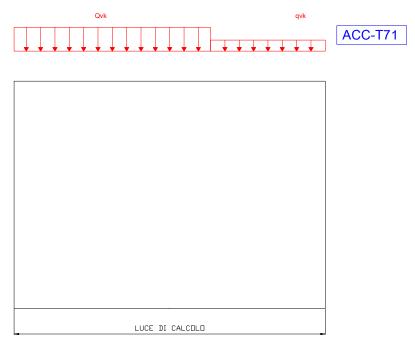
SPQSXSW: spinta del terreno statica sulla parete sinistra per il sovraccarico accidentale SW;

SPQDXSW: spinta del terreno statica sulla parete destra per il sovraccarico accidentale SW

TERM: azione termica; **RITIRO**: azione da ritiro:


SISMAH: azione sismica sulla struttura dello scatolare;

SISMAV: azione sismica verticale sulla struttura dello scatolare;


SPSDX: sovraspinta sismica del terreno.

Nelle immagini che seguono si mostrano le generiche disposizioni relative ai casi di carico da traffico concentrato ACC-M71 e ACC-T71, relative rispettivamente alla massimizzazione del momento flettente e del taglio:

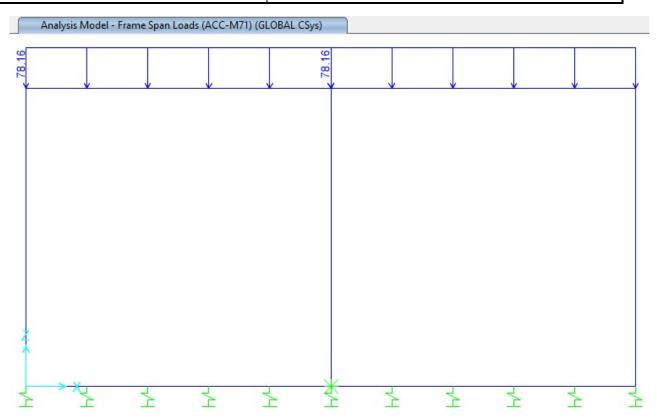
Tab. 24 – Disposizione carico ACC-M71

Tab. 25 – Disposizione carico ACC-T71

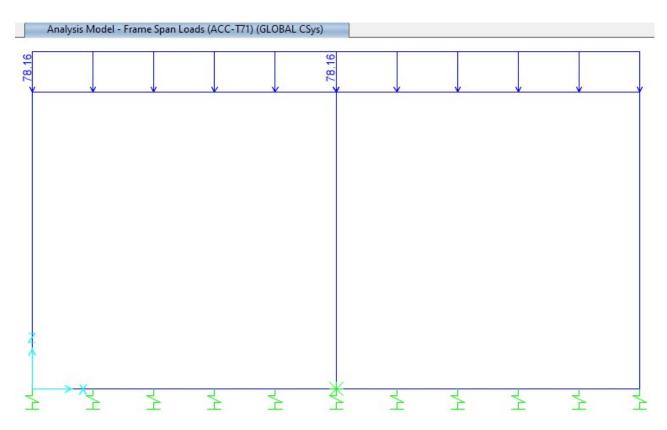
GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA T	ORINO - IOVARA	1^ FASE PR	VENEZIA. G DI NOVARA	воѕсні	ЕТТО
RELAZIONE DI CALCOLO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NMOY	00 D 11	CL	RI0003 002	Α	39 di 166

Si fa notare che tali disposizioni di carico sono distinte solo per luci di calcolo maggiori della lunghezza del carico LM71 pari a 6.40m, in caso contrario esse sono coincidenti tra loro e pari alla condizione ACC-M71. Nelle pagine che seguono si riportano i casi ACC-M71 e ACC-T71 per lo scatolare in esame.

Di seguito si riportano le immagini dei singoli casi di carico con i valori applicati al modello:


Tab. 26 - Modello - PERM-G2: carichi permanenti non strutturali

GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA TO	ORINO - IOVARA	1^ FASE PR	VENEZIA. G DI NOVARA	воѕсн	≣тто
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 40 di 166


Tab. 27 – Modello - PERM-G2: carichi permanenti non strutturali

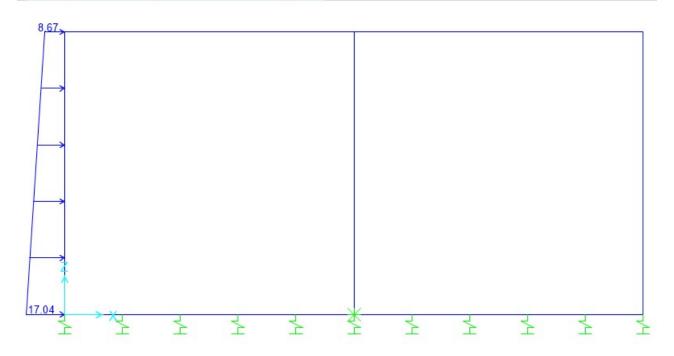
GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA TO	ORINO - I	1^ FASE PR	VENEZIA. G DI NOVARA	ВОЅСНЕ	≣тто
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 41 di 166

Tab. 28 –Modello - ACC-M71: carichi da traffico concentrato

GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA TO	ORINO - IOVARA	1^ FASE PR	VENEZIA. G DI NOVARA	воѕсне	ĒΤΤΟ
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 42 di 166

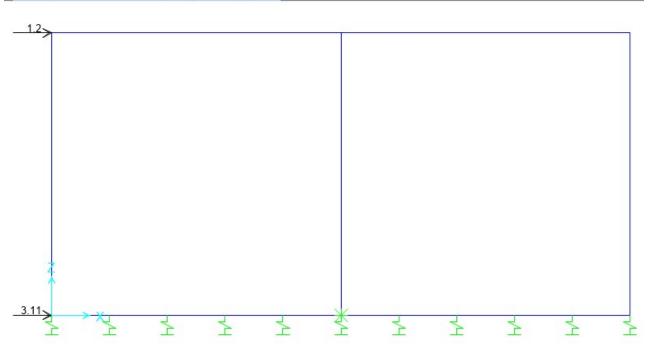
Tab. 29 – Modello - ACC-T71: carichi da traffico concentrato

GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA TO	ORINO - I	1^ FASE PR	VENEZIA. G DI NOVARA	воѕсне	≣тто
RELAZIONE DI CALCOLO	COMMESSA	LOTTO 00 D 11	CODIFICA	DOCUMENTO	REV.	FOGLIO


Analysis Model - Frame Span Loads (AVV) (GLOBAL CSys)

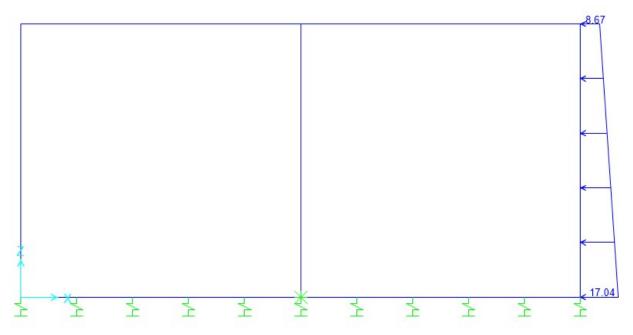
Tab. 30 –Modello - AVV: azione di accelerazione e frenatura

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO							
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 44 di 166		


Analysis Model - Frame Span Loads (SPTSX) (GLOBAL CSys)

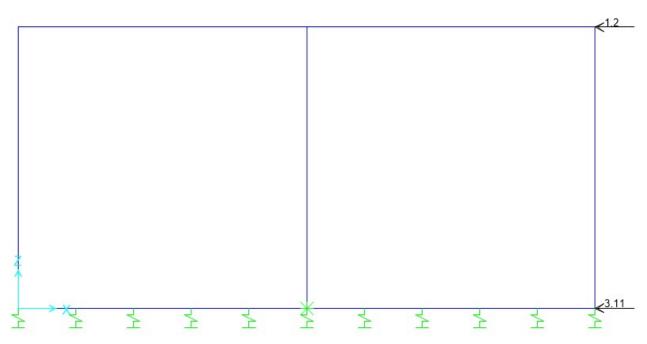
Tab. 31 –Modello - SPTSX: spinta del terreno statica sulla parete sinistra

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO							
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 45 di 166		

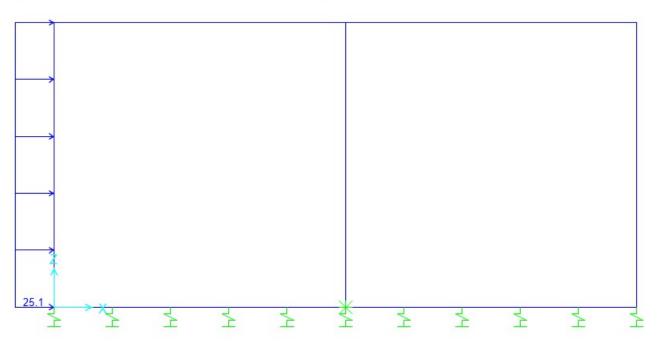

Analysis Model - Joint Loads (SPTSX) (GLOBAL CSys)

Tab. 32 –Modello - SPTSX: spinta del terreno statica sulla parete sinistra

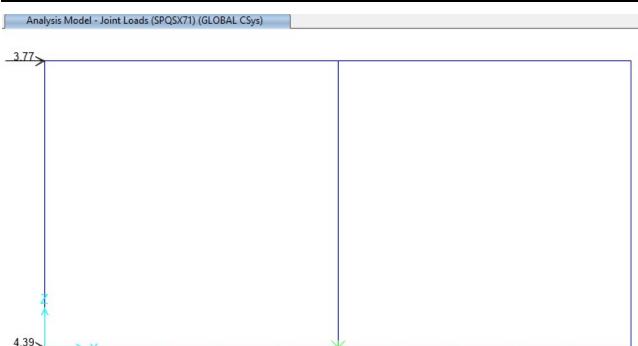
GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA TO	ORINO - IOVARA	1^ FASE PR	· VENEZIA. G DI NOVARA	воѕсне	≣тто
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 46 di 166


Analysis Model - Frame Span Loads (SPTDX) (GLOBAL CSys)

Tab. 33 – Modello - SPTDX: spinta del terreno statica sulla parete destra

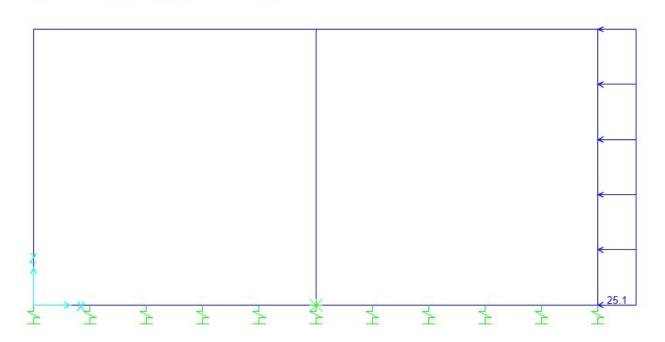

Analysis Model - Joint Loads (SPTDX) (GLOBAL CSys)

Tab. 34 - Modello - SPTDX: spinta del terreno statica sulla parete destra


GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA TO	ORINO - IOVARA	1^ FASE PR	· VENEZIA. G DI NOVARA	воѕсне	≣тто
RELAZIONE DI CALCOLO	COMMESSA NMOY	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 48 di 166

Analysis Model - Frame Span Loads (SPQSX71) (GLOBAL CSys)

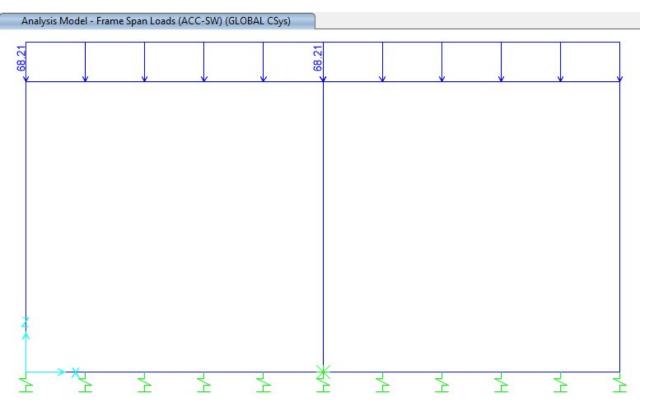
Tab. 35 – Modello - SPQSX71: spinta del terreno statica sulla parete sinistra per il sovraccarico accidentale LM71


GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA T	ORINO - IOVARA	1^ FASE PR	- VENEZIA. :G DI NOVARA	воѕсні	ЕТТО
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 49 di 166

Tab. 36 – Modello - SPQSX71: spinta del terreno statica sulla parete sinistra per il sovraccarico accidentale LM71

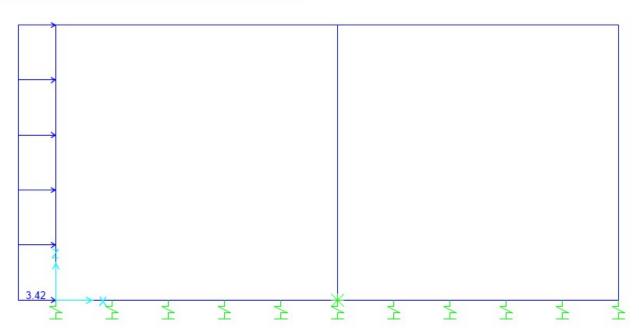

Analysis Model - Frame Span Loads (SPQDX71) (GLOBAL CSys)

Tab. 37 – Modello - SPQDX71: spinta del terreno statica sulla parete destra per il sovraccarico accidentale LM71


GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA TO	ORINO - I	1^ FASE PR	VENEZIA. G DI NOVARA	воѕсне	ĒΤΤΟ
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 51 di 166

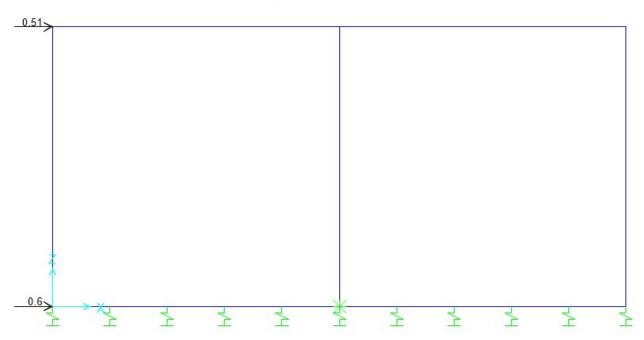
Analysis Model - Joint Loads (SPQDX71) (GLOBAL CSys)

Tab. 38 – Modello - SPQDX71: spinta del terreno statica sulla parete destra per il sovraccarico accidentale LM71

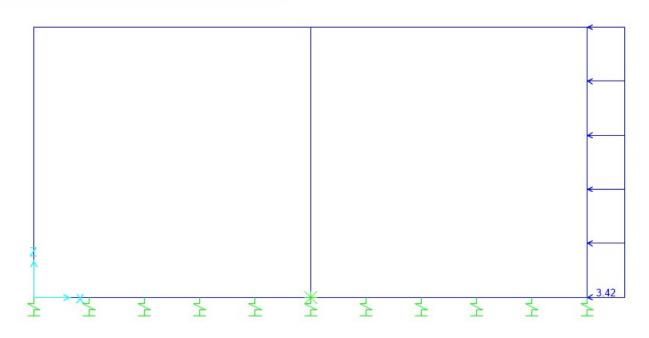


Tab. 39 - Modello - ACC-SW: carichi da traffico distribuito

GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA T	ORINO - IOVARA	1^ FASE PR	VENEZIA. G DI NOVARA	воѕсні	≣тто
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 53 di 166

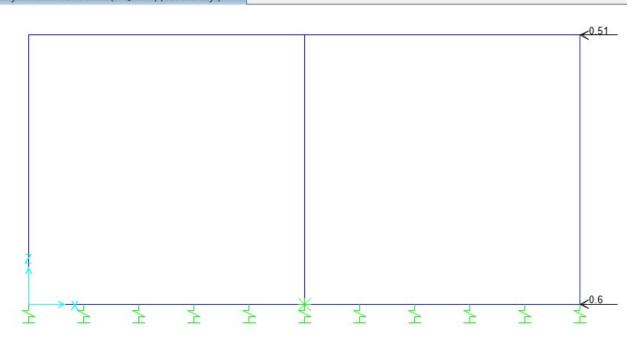

Analysis Model - Frame Span Loads (SPQSXSW) (GLOBAL CSys)

Tab. 40 –Modello - SPQSXSW:spinta del terreno statica sulla parete sinistra per il sovraccarico accidentale SW

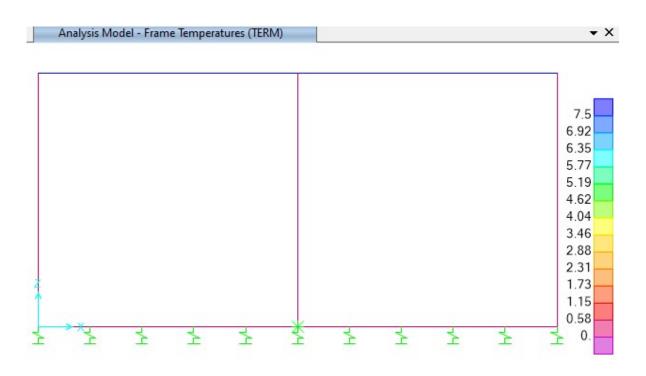

Analysis Model - Joint Loads (SPQSXSW) (GLOBAL CSys)

Tab. 41 –Modello - SPQSXSW:spinta del terreno statica sulla parete sinistra per il sovraccarico accidentale SW

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO					
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 55 di 166


Analysis Model - Frame Span Loads (SPQDXSW) (GLOBAL CSys)

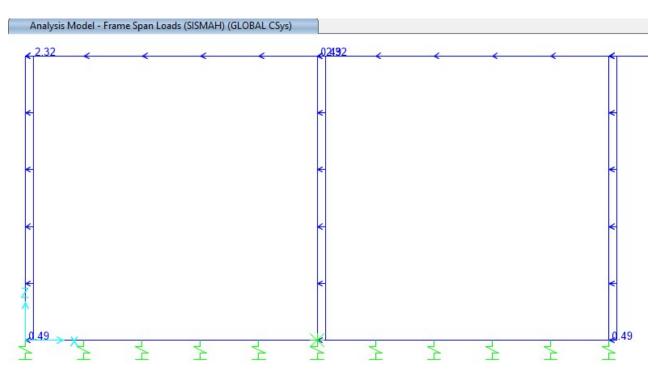
Tab. 42 – Modello - SPQDXSW: spinta del terreno statica sulla parete destra per il sovraccarico accidentale SW



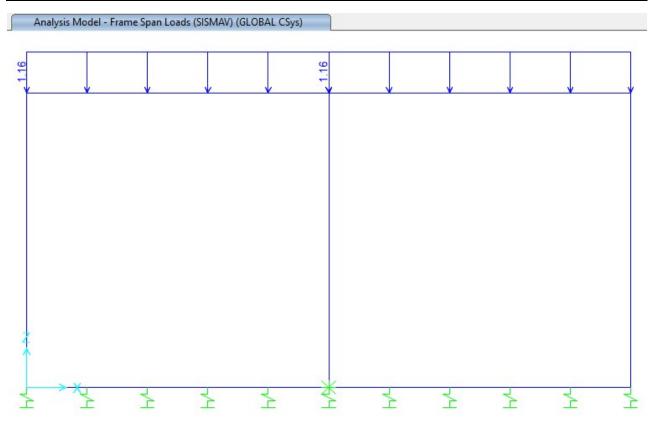
Analysis Model - Joint Loads (SPQDXSW) (GLOBAL CSys)

Tab. 43 – Modello - SPQDXSW: spinta del terreno statica sulla parete destra per il sovraccarico accidentale SW

GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA T	ORINO - IOVARA	1^ FASE PR	VENEZIA. G DI NOVARA	воѕсні	ΕΤΤΟ
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 57 di 166

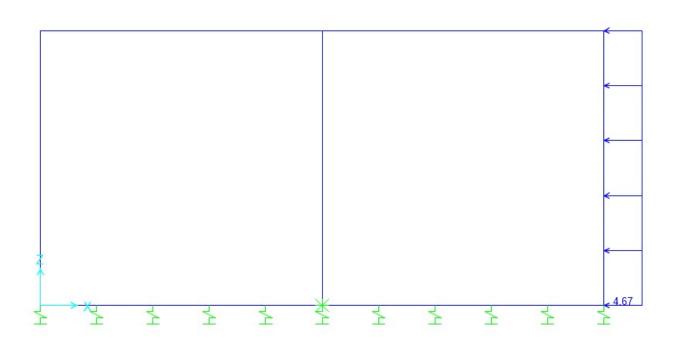

Tab. 44 – Modello - TERM : azione termica

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO						
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 58 di 166	


Tab. 45 – Modello - RITIRO: azione da ritiro

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO						
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 59 di 166	

Tab. 46 – Modello - SISMAH: azione sismica sulla struttura dello scatolare


GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA TO	ORINO - I	1^ FASE PR	VENEZIA. G DI NOVARA	воѕсн	≣тто
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 60 di 166

Tab. 47 – Modello - SISMAV: azione sismica verticale sulla struttura dello scatolare

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO					≣тто
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA	DOCUMENTO RI0003 002	REV.	FOGLIO 61 di 166

Analysis Model - Frame Span Loads (SPSDX) (GLOBAL CSys)

Tab. 48 – Modello - SPSDX: sovraspinta sismica del terreno

8. VERIFICHE STRUTTURALI

Le verifiche sono condotte nel rispetto di quanto dichiarato nel paragrafo 4.1.2 delle NTC 2018.

Le verifiche di resistenza delle sezioni sono eseguite secondo il metodo semiprobabilistico agli stati limite. I coefficienti di sicurezza adottati sono i seguenti:

- coefficiente parziale di sicurezza per il calcestruzzo: 1.50;
- coefficiente parziale di sicurezza per l'acciaio in barre: 1.15.

Il paragrafo in oggetto illustra nel dettaglio i criteri generali adottati per le verifiche strutturali condotte nel progetto. Ulteriori dettagli specifici, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche.

Per le sezioni in cemento armato si effettuano:

- verifiche per gli stati limite ultimi a presso-flessione;
- verifiche per gli stati limite ultimi a taglio;
- verifiche per gli stati limite di esercizio.

8.1 Verifiche per gli stati limite ultimi a flessione-pressoflessione

Allo stato limite ultimo, le verifiche a flessione o presso-flessione sono condotte confrontando (per le sezioni più significative) le resistenze ultime e le sollecitazioni massime agenti, valutando di conseguenza il corrispondente fattore di sicurezza.

8.2 Verifica agli stati limite ultimi a taglio

La verifica di resistenza nei confronti delle sollecitazioni taglianti si esegue nel rispetto delle prescrizioni riportate al paragrafo 4.1.2.3 delle NTC 2018.

Per prima cosa si valuta il soddisfacimento delle verifiche considerando elementi strutturali senza armature trasversali resistenti a taglio (paragrafo 4.1.2.3.5.1 delle NTC 2018). Qualora tale verifica non risultasse soddisfatta si procede con il calcolo del taglio resistente considerando il caso di elementi con armature trasversali resistenti al taglio (paragrafo 4.1.2.3.5.2 delle NTC 2018).

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dal DM14/01/2018, per elementi con armatura a taglio verticali.

Si fa, pertanto, riferimento ai seguenti valori della resistenza di calcolo:

LINEA FERROVIARIA TORINO - VENEZIA.
TRATTA TORINO - MILANO.
NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO
PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

OMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM0Y	00 D 11	CL	RI0003 002	Α	63 di 166

$$V_{\text{Rd,c}} = max \Biggl\{ \Biggl[\frac{0.18}{\gamma_c} \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck} \right)^{\!\!1/3} + 0.15 \cdot \sigma_{cp} \Biggr] \cdot b_w \cdot d; \\ \left(v_{\text{min}} + 0.15 \cdot \sigma_{cp} \right) \cdot b_w \cdot d \Biggr\} \right. \\ \text{, resistenze}$$

di calcolo dell'elemento privo di armatura a taglio

$$\begin{aligned} V_{\text{Rd,s}} &= 0.9 \cdot \frac{A_{\text{sw}}}{\text{s}} \cdot z \cdot f_{\text{ywd}} \cdot (\cot \alpha + \cot \theta) \cdot \textit{sen}\alpha \\ &\quad \text{, valore di progetto dello sforzo di taglio che può essere sopportato dall'armatura a taglio alla tensione di snervamento} \end{aligned}$$

 $V_{\rm Rd,max} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd}^{'} (\cot \alpha + \cot \beta)/(1 + \cot^2 \beta)$, valore di progetto del massimo sforzo di taglio che può essere sopportato dall'elemento, limitato dalla rottura delle bielle compresse.

Nelle espressioni precedenti, i simboli hanno i seguenti significati:

$$k = 1 + \sqrt{\frac{200}{d}} \leq 2$$
 con d in mm;

$$\rho_1 = \frac{A_{sl}}{b_w \cdot d} \le 0.02$$

A_{sl} è l'area dell'armatura tesa;

 $^{
m b_{
m w}}$ è la larghezza minima della sezione in zona tesa;

$$\sigma_{cp} = \frac{N_{Ed}}{A_c} < 0.2 \cdot f_{cd}$$

 N_{Ed} è la forza assiale nella sezione dovuta ai carichi;

A_c è l'area della sezione di calcestruzzo;

$$v_{min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$
.

 $1 \le \cot \vartheta \le 2.5$ è l'inclinazione dei puntoni di calcestruzzo rispetto all'asse della trave

 ${
m A}_{
m sw}\,$ è l'area della sezione trasversale dell'armatura a taglio;

^S è il passo delle staffe;

LINEA FERROVIARIA TORINO - VENEZIA.
TRATTA TORINO - MILANO.
NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO
PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NMOY
 00 D 11
 CL
 RI0003 002
 A
 64 di 166

 $f_{\ {
m ywd}}\,$ è la tensione di snervamento di progetto dell'armatura a taglio;

 $f^{'}_{cd} = 0.5 \cdot f_{cd}$ è la resistenza ridotta a compressione del calcestruzzo d'anima;

 $\alpha_{\scriptscriptstyle CW}$ = 1 è un coefficiente che tiene conto dell'interazione tra la tensione nel corrente compresso e qualsiasi tensione di compressione assiale.

8.3 Verifica agli stati limite d'esercizio

Si effettuano le seguenti verifiche agli stati limite di esercizio secondo quanto riportato nel Manuale di Progettazione delle Opere Civili - Parte II - Sezione 2 - Ponti e Strutture:

- stato limite delle tensioni in esercizio;
- stato limite di fessurazione;

Le verifiche si eseguono considerando le combinazioni per come riportato nel Manuale 2 di Progettazione di RFI. Per la verifica sullo stato tensionale si prendono a riferimento le prescrizioni riportate al paragrafo 2.5.1.8.3.2.1 del Manuale 2 di Progettazione di RFI.

Per la verifica sullo stato fessurativo si prendono a riferimento le prescrizioni riportate al paragrafo 2.5.1.8.3.2.4 del Manuale 2 di Progettazione di RFI. Nel caso in esame considerando condizioni ambientali aggressive.

Stato limite delle tensioni in esercizio

Si esegue il controllo delle tensioni nei materiali supponendo una legge costitutiva tensionideformazioni di tipo lineare. In particolare si controlla la tensione massima di compressione del calcestruzzo e di trazione dell'acciaio, verificando:

 σ_{ε} < 0.55 · $f_{\varepsilon k}$ per combinazione di carico caratteristica (rara)

 σ_{c} < 0.40 · f_{ck} per combinazione di carico quasi permanente

 σ_s < $0.75 \cdot f_{yk}$ per combinazione di carico caratteristica (rara).

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO					
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA	DOCUMENTO RI0003 002	REV.	FOGLIO 65 di 166

Stato limite di fessurazione

Si verifica che le aperture delle fessure siano inferiori al valore limite dell'apertura determinato in funzione della classe di esposizione e delle condizioni ambientali del singolo elemento:

Tab. 4.1.III - Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tab. 49 - Condizioni ambientali

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

pi	Condizioni	tura				
Gruppi di Esigenze	ambientali azioni		Sensibile	Poco sensibile		
GES			Stato limite	wk	Stato limite	wk
Α.	Oudinania	frequente	apertura fessure	≤ w ₂	apertura fessure	≤ w ₃
A	A Ordinarie quasi permanente		apertura fessure	≤ w ₁	apertura fessure	≤ W ₂
ъ	Ai	frequente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂
В	Aggressive	quasi permanente decompressione -		-	apertura fessure	≤ w ₁
-	Molto	frequente	formazione fessure	-	apertura fessure	≤w ₁
С	aggressive	quasi permanente	ente decompressione		apertura fessure	≤ w

Tab. 50 - Criteri di scelta dello stato limite di fessurazione

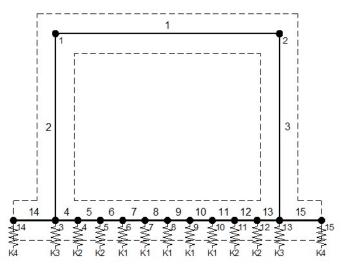
L'apertura convenzionale delle fessure, calcolata con la combinazione caratteristica (rara) per gli SLE, dovrà risultare inferiore al valore nominale di riferimento w₁ per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili:

 $w_1 = 0.20 \text{ mm}$

In particolare si effettuano le seguenti verifiche:

VERIFICA A FESSURAZIONE	VALORI LIMITE DELLE APERTURE					
	CLASSE ESPOSIZIONE	CONDIZIONI AMBIENTALI	RARA			
SOLETTA INFERIORE	XA1	AGGRESSIVE	W 1			
SOLETTA SUPERIORE	XA1	AGGRESSIVE	W 1			
PIEDRITTI	XA1	AGGRESSIVE	W 1			

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO					≣тто
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA	DOCUMENTO RI0003 002	REV.	FOGLIO 66 di 166


9. ANALISI E VERIFICHE

9.1 Modello di calcolo

Il modello di calcolo adottato è quello di un telaio con elementi frame a cui sono state assegnate le sezioni in base alla geometria e alle caratteristiche dei materiali.

Si è analizzata una lunghezza unitaria di 1 m dello scatolare a cui sono stati assegnati le sezioni ed i carichi corrispondenti.

Di seguito si riportano i dati geometrici, le caratteristiche dei materiali e del terreno e le rigidezze delle molle applicate in corrispondenza dei nodi in cui è stato diviso l'elemento frame corrispondente alla fondazione.

Tab. 51 – Schematizzazione del modello scatolare

Per simulare il comportamento del terreno di fondazione sono state inserite molle alla Winkler.

La soletta inferiore viene divisa in elementi per poter schematizzare, tramite molle applicate, l'interazione terreno- struttura. In particolare nella modellazione su ciascun frame in cui è stata discretizzata la soletta di fondazione sono state inserite molle verticali k_w in corrispondenza dei nodi.

Le molle verticali sono state inserite assegnando alle stesse valori di rigidezza variabili, con valori crescenti dalla mezzeria della fondazione verso i piedritti. Per la rigidezza delle molle, nell' opera in esame si considera un modulo di reazione verticale k_w pari a 7871.8 kN/m 3 .

Il coefficiente di sottofondo alla Winkler è stato determinato con la seguente relazione (Bowles,1960):

$$k_w = \frac{E}{(1 - v^2) \cdot B \cdot c_t}$$

con:

E: modulo elastico del terreno (variabile con la profondità)

v: coefficiente di Poisson

B: larghezza della fondazione

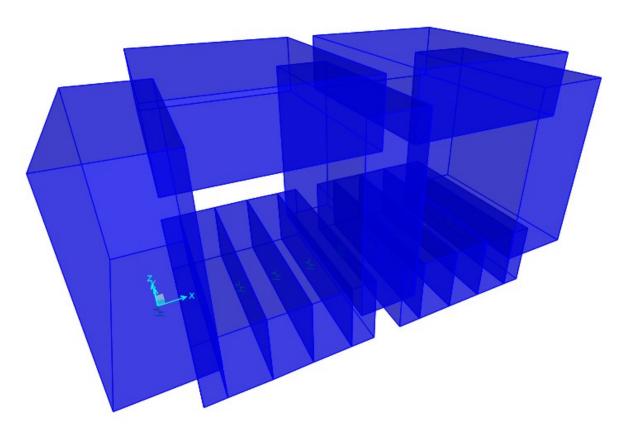
ct: fattore di forma

Fattore di forma per la stima del coefficiente di Winkler							
Fondazione Rigida	ct	ct					
Rettangolare con L/B < 10	c _t = 0.853 + 0.534 ln(L/B)	c _t = 0.853 + 0.534 ln(L/B)					
Rettangolare con L/B>10	c _t = 2 + 0.0089 (L/B)	$c_t = 2 + 0.0089$ (L/B)					

L = lunghezza della fondazione

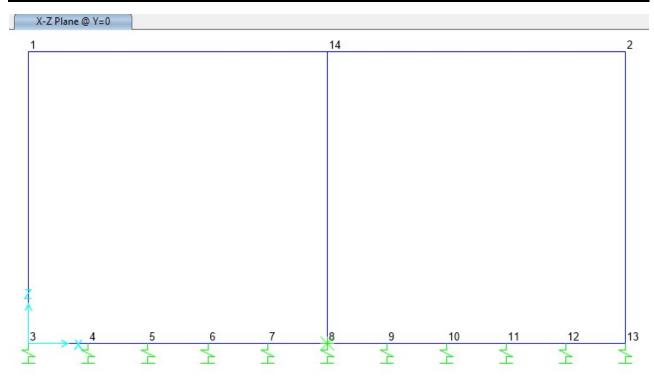
Per lo scatolare in esame si ha:

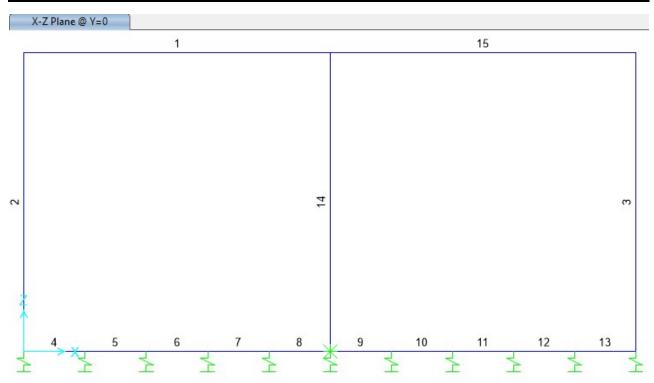
	COSTANTE DI WINKLER SCATOLARE								
L=	13.00	m							
B =	2.38	m							
E =	30000	kN/m²		modulo elastico del terreno coefficiente di					
v =	0.3			Poisson					
ct =	1.760			fattore di forma					
k _w =	$E/(1-v^2)xBxc_t =$		7871.8	kN/m³					


GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO						
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 68 di 166	

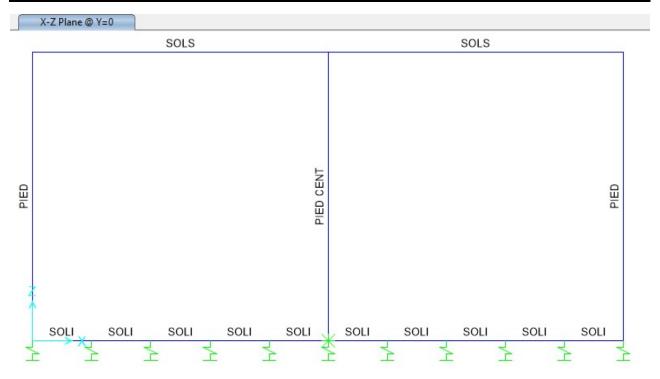
9.1.1 Modello di calcolo e dati di input

Geometria				
Spessore soletta superiore	Ss		0.30	m
Spessore soletta di fondazione	Sf		0.35	m
Spessore piedritto centrale	Spc		0.30	m
Spessore piedritti	Sp		0.40	m
Altezza netta	Hint		0.64	m
Larghezza netta	Lint		1.58	m
Lunghezza risvolti sol. inf.	Lr		0.00	m
Rigidezze molle verticali				
Interasse molle	i	(0.40/2 + 1.58 + 0.40/2) / 10 =	0.20	m
Molle centrali	K1	7871.8 · 0.20 =	1,559	kN/m
Molle intermedie	K2	1.5 · 7871.8 · 0.20 =	2,338	kN/m
Molle laterali	K3	2.0 · 7871.8 · (0.20/2 + 0.40/2) =	4,707	kN/m
Molle risvolto	K4		0	kN/m
Caratteristiche materiali e terreno Calcestruzzo armato - Peso specifico	γ		25	kN/m³
Calcestruzzo armato - Tipo			C30/37	
Calcestruzzo armato - Res. caratt. cubica	Rek	0202002		N/mm²
Calcestruzzo armato - Res. caratt. cilindrica	f_{ck}	0.83 · 37 =	30.7	N/mm²
Calcestruzzo armato - Modulo elastico	E			N/mm²
Ballast - Peso specifico	Yb		18	kN/m³
Terreno del rilevato -Peso specifico	Υ		20	kN/m³
Terreno del rilevato - Angolo di attrito	Φ		34.5	
Terreno di riempimento laterale - Peso specifico	Υ			kN/m³
Terreno di riempimento laterale - Angolo di attrito	φ		34.5	0
Terreno di fondazione	Kw		7871.8	kN/m³
Condizioni ambientali per ver. a fessurazione			aggressive	
Ricoprimento				
Spessore ballast+armamento	Hb		0.80	
Spessore medio traversina+binario	Ht		0.40	
Spessore ballast sotto la traversina			0.40	
Spessore del rinterro	Hr		0.05	m

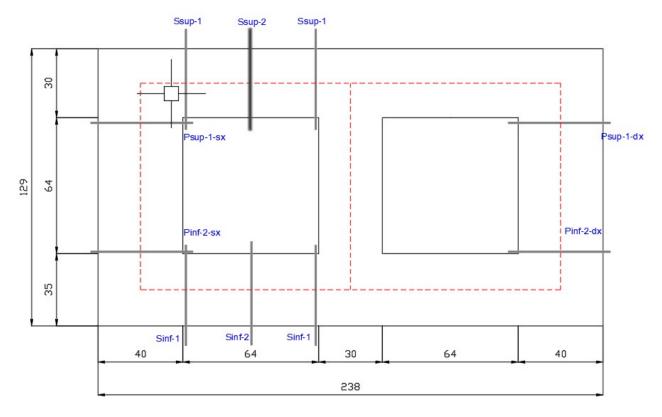

Di seguito si riportano le immagini del modello SAP dello scatolare in esame con le indicazioni delle sezioni di verifica:


Tab. 52 – Modello scatolare - vista estrusa

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO						
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 70 di 166	


Tab. 53 – Modello scatolare - numerazione nodi e vincoli assegnati

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO						
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 71 di 166	


Tab. 54 – Modello scatolare - numerazione frames

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO						
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 72 di 166	

Tab. 55 – Modello scatolare - sezioni assegnate

Tab. 56 – Modello Tombino scatolare - sezioni di verifica

RELAZIONE DI CALCOLO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RELAZIONE DI GALGOLO	NM0Y	00 D 11	CL	RI0003 002	Α	74 di 166

Soletta superiore				
Peso ballast	Ps	0.80 · 18 =		kN/m ²
Peso del rinterro	Pr			kN/m ²
Totale	(Pr+	Ps)*r	18.51	kN/m²
Risvolti soletta inferiore				
Peso ballast		2		kN/m²
Peso del rinterro	Pr	=		kN/m²
Totale			0.00	kN/m²
Carichi accidentali sulla copertura LM71 (Co	ndizioni <i>AC</i>	C-M71 e ACC-T71)		
Lunghezza caratteristica per coeff. din.	1	= 1.3 · 1/3 · (0.79 + 1.98 + 0.79)	1.54	m
Coefficiente dinamico				1111
	Φ_3	= 1.35 se Lint ≤ 8 m e Hint ≤ 5 m	1.35	
Qvk Coefficiente di adattamento	α		1.10	
Larghezza traversa	Lt		2.40	m
Impronta di carico y		2.40 + 2 x (0.40/4+0.05 x TAN(35°)+0.30/2) =	2.97	
Impronta di carico x		0.8+1.6+1.6+1.6+0.8=	6.40	
Carico Qvk (totale)			1000	
Carico Qvk (ripartito)		1.1 · 1.35 · 1000 / (2.97 · 6.40) =	78.16	kN/m ²
qvk		NAME OF THE OWNER OWNER OF THE OWNER OWNE		and the second
Carico qvk			80	kN/m
Carico qvk (ripartito)		1.1 · 1.35 · 80 / 2.97 =	40.02	kN/m²
Carichi accidentali sulla copertura SW/2 (Co	ndizioni AC	CC-MSW e ACC-TSW)		
Coefficiente di adattamento	α		1.00	
Carico qvk				kN/m
Carico qvk (ripartito)		1 · 1.35 · 150 / 2.97 =	68.21	kN/m ²
Avviamento e frenatura (Condizione AVV)				
Q1ak (= a*33 / Ld1)		a*33 / 2.97 =	12.23	kN/m²
Azione termica (Condizione TERM)				
Variazione termica uniforme	ΔT_U		15	0
Variazione termica a farfalla	ΔT_F		5	0
Variazione termica uniforme di calcolo	ΔT_{U^*}	15 / 2 =	7.50	0
Variazione termica a farfalla di calcolo	ΔT _{F*}	5 / 2 =	2.50	0
Ritiro (Condizione RITIRO)				
Ritiro applicato alla sol. Superiore	ΔT_{p}		-10	

I ITALFERR
GRUPPO FERROVIE DELLO STATO ITALIANE

GRUPPO FERROVIE DELLO STATO ITALIANE		PROGETT			RG DI NOVARA B	OSCHET	10
RELAZIONE DI CALCOLO		COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 75 di 166
Spinta del terreno (Condizioni SPTSX e SPTI	DX)						
K01		1 - sen (34.	5°) =			0.434	
K02		1 - sen (34.				0.434	
Spinta alla quota di estradosso sol. sup.	p1	0.434 17.0					kN/m²
Spinta in asse sol. sup.		0.434 (17.		.30/2) =			kN/m²
Spinta in asse sol, inf.				0.30+0.64+0.	35/2)] =		kN/m²
Spinta alla quota di intradosso sol. inf.	p4			0.30+0.64+0.			kN/m²
Spinta semispessore sol. sup.	F1	(7.37+8.67)			/1		kN/m
Spinta semispessore sol. inf.	F2	(17.04+18.					kN/m
Spinta del carico accidentale LM71 (Condizio	ni <i>SPACCS</i>	X e SPACCI	(XC				
Spinta dovuta al q1	р	0.434 · 1.1	1000 / (2.97 · 6.40) =		25.10	kN/m²
Spinta del carico accidentale SW/2 (Condizio	ni <i>SPACCS</i>	X e SPACCI	OX)				
Spinta dovuta al q1	р	0.434 · 1 · :	150 / (2.9)	7 · 6.40) =		3.42	kN/m²
Sisma orizzontale (Condizione SISMAH)							
Stato limite		Salvaguardia	della vita	- SLU -		SLV	
Vita nominale	VN					75	anni
Classe d'uso						П	
Coefficiente Cu	Cu					1	
Periodo di riferimento	V _R						anni
Accelerazione orizzontale	a _d /g					0.041	
Amplificazione spettrale	Fo					2.634	
Categoria sottosuolo		A, B, C, D, E	E			В	
Coeff. Amplificazione stratigrafica	Ss					1.200	
Coeff. Amplificazione topografica	St					1	
Coefficiente S	S	=Ss · St				1.200	
accellerazione orizzontale max	a _{mav} /	c =ag/g · S				0.049	
Fattore di struttura	q					1.00	
Coeff, sismico orizzontale	k _h	=a _{max} /g				0.049	
Coeff. sismico verticale	k,	= ±0.5·k _h				0.025	
Carico accidentale totale gravante sulla cop.		1.1.1000/(2	.97·6.40)·	2.38 + 1.1.80	/2.97·2.38 =	208.3	kN/m
Forza orizz, sulla sol, di cop.	FHs	0.049 (0.3	0.25 + 18	.51 + 0.2.208	.3/1.98) / 1.00 =	2.32	kN/m²
Forza orizz. sui piedritti		0.049 (0.4				0.49	kN/m²
Sisma verticale (Condizione SISMAV)	<u> </u>				2272247820	100 300	
Forza vert. sulla sol. di cop.	FVs	0.025 (0.3	0.25 + 18	.51 + 0.2.208	.3/1.98) / 1.00 =	1.16	kN/m²
Spinta del terreno in fase sismica (Condizion	e <i>SPSDX</i>)						
Risultante della spinta sismica					r) ² = 0.049 · 20 · 2	4.5	kN/m
Pressione risultante	Δp_E	= ΔSE / H =	4.5 / 0.9	7		4.67	kN/m²

Combinazioni:

N			PERM	PERM-G2	ACC-M 71	ACC-T71	AVV	SPTSX	SPTDX	SPQSX71	SP QDX71	TERM	RITIRO	SISM AH	SISM AV	SPSDX	ACC-SW	SPQSXSW	SPQDXSW
01		01S1-11M	1.35	1.50	1.45	0	0.725	1.00	1.00	0	0	0.9	1.2	0	0	0	0	0	0
02		02S1-11T	1.35	1.50	0	1.45	0.725	1.00	1.00	0	0	0.9	1.2	0	0	0	0	0	0
03		03S1-111	1.35	1.50	1.45	0	0.725	1.35	1.35	1.45	1.45	0.9	1.2	0	0	0	0	0	0
		04S1-12M	1.35	1.50	0	1.45	0.725	1.35	1.35	1.45	1.45	0.9	1.2	0	0	0	0	0	0
04			l			0	0.725							0	0	0	0	0	0
0.5		05S1-13M	1.35 1.35	1.50 1.50	1.45 0	1.45	0.725	1.00 1.00	1.35 1.35	0	1.45 1.45	0.9	1.2 1.2	0	0	0	0	0	0
06	l G	06S1-13T	l											-	-	-	-	-	
07	MOBILI)	0781-14-	1.35	1.50 1.50	0	0	0	1.35	1.35	1.45 0	1.45	0.9	1.2 1.2	0	0	0	0	0	0
08	≥	0881-15-	1.35					1.00	1.35		1.45	0.9							
09	CARICHI	09S1-16S	1.35	1.5	0	0	0.725	1.00	1.00	0.00	0.00	0.90	1.20	0.00	0.00	0.00	1.45	0	0
10	품	10S1-17S	1.35	1.5	0	0	0.725	1.35	1.35	0.00	0.00	0.90	1.20	0.00	0.00	0.00	1.45	1.45	1.45
11		11S1-18S	1.35	1.5	0	0	0.725	1.00	1.35	0.00	0.00	0.90	1.20	0.00	0.00	0.00	1.45	0	1.45
12		12S1-19S	1.35	1.5	0	0	0.00	1.35	1.35	0.00	0.00	0.90	1.20	0.00	0.00	0.00	0	1.45	1.45
13	PRINCIPALE:	13S1-20S	1.35	1.5	0	0	0.00	1.00	1.35	0.00	0.00	0.90	1.20	0.00	0.00	0.00	0	0	1.45
14	2	14S1-21M	1.35	1.50	1.45	0	0.725	1.00	1.00	0	0	-0.9	1.2	0	0	0	0	0	0
15	<u> </u>	15S1-21T	1.35	1.50	0	1.45	0.725	1.00	1.00	0	0	-0.9	1.2	0	0	0	0	0	0
16	SLU (AZIONE	16S1-22M	1.35	1.50	1.45	0	0.725	1.35	1.35	1.45	1.45	-0.9	1.2	0	0	0	0	0	0
17	ZIC	17S1-22T	1.35	1.50	0	1.45	0.725	1.35	1.35	1.45	1.45	-0.9	1.2	0	0	0	0	0	0
18	_ ₹	18S1-23M	1.35	1.50	1.45	0	0.725	1.00	1.35	0	1.45	-0.9	1.2	0	0	0	0	0	0
19	SLL	19S1-23T	1.35	1.50	0	1.45	0.725	1.00	1.35	0	1.45	-0.9	1.2	0	0	0	0	0	0
20		2081-24-	1.35	1.50	0	0	0	1.35	1.35	1.45	1.45	-0.9	1.2	0	0	0	0	0	0
21		2181-25-	1.35	1.50	0	0	0	1.00	1.35	0	1.45	-0.9	1.2	0	0	0	0	0	0
22 _		22S1-26S	1.35	1.5	0	0	0.725	1.00	1.00	0	0	-0.9	1.2	0	0	0	1.45	0	0
23 2		23S1-27S	1.35	1.5	0	0	0.725	1.35	1.35	0	0	-0.9	1.2	0	0	0	1.45	1.45	1.45
24 🔓		24S1-28S	1.35	1.5	0	0	0.725	1.00	1.35	0	0	-0.9	1.2	0	0	0	1.45	0	1.45
25 5		25S1-29S	1.35	1.5	0	0	0.00	1.35	1.35	0	0	-0.9	1.2	0	0	0	0	1.45	1.45
23 24 25 26 27 28 29 30		26S1-30S	1.35	1.5	0	0	0.00	1.00	1.35	0	0	-0.9	1.2	0	0	0	0	0	1.45
27 8		27S1T11M	1.35	1.50	1.16	0	1.16	1.00	1.00	0	0	1.5	1.2	0	0	0	0.00	0.00	0.00
28		28S1T11T	1.35	1.50	0	1.16	1.16	1.00	1.00	0	0	1.5	1.2	0	0	0	0.00	0.00	0.00
29 5		29S1T12M	1.35	1.50	1.16	0	1.16	1.35	1.35	1.16	1.16	1.5	1.2	0	0	0	0.00	0.00	0.00
30 X		30S1T12T	1.35	1.50	0	1.16	1.16	1.35	1.35	1.16	1.16	1.5	1.2	0	0	0	0.00	0.00	0.00
31		31S1T13M	1.35	1.50	1.16	0	1.16	1.00	1.35	0	1.16	1.5	1.2	0	0	0	0.00	0.00	0.00
32	व	32S1T13T	1.35	1.50	0	1.16	1.16	1.00	1.35	0	1.16	1.5	1.2	0	0	0	0.00	0.00	0.00
33	♀	33S1T14-	1.35	1.50	0	0	0	1.35	1.35	1.16	1.16	1.5	1.2	0	0	0	0.00	0.00	0.00
34		34S1T15-	1.35	1.50	0	0	0	1.00	1.35	0	1.16	1.5	1.2	0	0	0	0.00	0.00	0.00
35	F	35S1T16S	1.35	1.5	0	0	1.16	1.00	1.00	0	0	1.5	1.2	0	0	0	1.16	0	0
36	NO	36S1T17S	1.35	1.5	0	0	1.16	1.35	1.35	0	0	1.5	1.2	0	0	0	1.16	1.16	1.16
37	ķ	37S1T18S	1.35	1.5	0	0	1.16	1.00	1.35	0	0	1.5	1.2	0	0	0	1.16	0	1.16
38	jü	38S1T19S	1.35	1.5	0	0	0	1.35	1.35	0	0	1.5	1.2	0	0	0	0.00	1.16	1.16
39	l A	39S1T20S	1.35	1.5	0	0	0	1.00	1.35	0	0	1.5	1.2	0	0	0	0.00	0	1.16
40	PRINCIPALE: AZIONE TERMICA)	40S1T21M	1.35	1.50	1.16	0	1.16	1.00	1.00	0	0	-1.5	1.2	0	0	0	0.00	0.00	0.00
41	₩	41S1T21T	1.35	1.50	0	1.16	1.16	1.00	1.00	0	0	-1.5	1.2	0	0	0	0.00	0.00	0.00
42	ų ų	42S1T22M	1.35	1.50	1.16	0	1.16	1.35	1.35	1.16	1.16	-1.5	1.2	0	0	0	0.00	0.00	0.00
43	Į į	43S1T22T	1.35	1.50	0	1.16	1.16	1.35	1.35	1.16	1.16	-1.5	1.2	0	0	0	0.00	0.00	0.00
44	SLU (AZIONE	44S1T23M	1.35	1.50	1.16	0	1.16	1.00	1.35	0	1.16	-1.5	1.2	0	0	0	0.00	0.00	0.00
45	3	45S1T23T	1.35	1.50	0	1.16	1.16	1.00	1.35	0	1.16	-1.5	1.2	0	0	0	0.00	0.00	0.00
46	S	46S1T24-	1.35	1.50	0	0	0	1.35	1.35	1.16	1.16	-1.5	1.2	0	0	0	0.00	0.00	0.00
47		47S1T25-	1.35	1.50	0	0	0	1.00	1.35	0	1.16	-1.5	1.2	0	0	0	0.00	0.00	0.00
48		48S1T26S	1.35	1.5	0	- 0	1.16	1.00	1.00	0	0	-1.5	1.2	0	0	0	1.16	0	0
49		49S1T27S	1.35	1.5	0	0	1.16	1.35	1.35	0	0	-1.5	1.2	0	0	0	1.16	1.16	1.16
50		50S1T28S	1.35	1.5	0	0	1.16	1.00	1.35	0	0	-1.5	1.2	0	0	0	1.16	0	1.16
51		51S1T29S	1.35	1.5	0	0	0	1.35	1.35	0	0	-1.5	1.2	0	0	0	0	1.16	1.16
52		5181T298 5281T308	1.35	1.5	0	0	0	1.00	1.35	0	0	-1.5 -1.5	1.2	0	0	0	0	0	1.16
4	1	J25113US	1.00	1.0	U	U	U	1.00	1.33	v	v	-1.0	1.4		U	U			1.10

<u> </u>		AZIONE DI CALCOLO						COMMI	ESSA	LOTTO)	CC	DIFICA	\	DOCUM	MENTO	RE	īV.	FOGLIO			
KE	:LA	ZION	IE DI C	ALCO	LO						NMO	ΣY	00 D 1	1		CL		RI000	3 002	,		77 di 166
53			53S3-11M	1.35	1.50	1.45	0		1.45	1.00	1.00	0	0		0.9	1.2	0	0	0	0		0 0
54 55		<u> </u>	5483-11T 5583-12M	1.35 1.35	1.50 1.50	0 1.45	1.45 0		1.45 1.45	1.00	1.00 1.35	0 1.45	0 1.45		0.9 0.9	1.2	0	0	0	0		0 0
56		OBIL	56S3-12T	1.35	1.50	0	1.45		1.45	1.35	1.35	1.45	1.45		0.9	1.2	0	0	0	0		0 0
57	6	ž	57S3-13M	1.35	1.50	1.45	0		1.45	1.00	1.35	0	1.45		0.9	1.2	0	0	0	0		0 0
58 59	GRUPPO	CARICHI MOBILI)	5883-13T 5983-148	1.35	1.50	0	1.45		1.45	1.00	1.35	0	1.45		0.9	1.2	0	0	0	1.45	0	0 0
60	<u>8</u>	ü	60S3-15S	1.35	1.5	0	0		1.45	1.35	1.35	0	0		0.9	1.2	0	0	0	1.45	1.45	1.45
61	CARICHI MOBILI :	SLU (AZIONE PRINCIPALE:	61S3-16S 62S3-21M	1.35	1.50	1.45	0		1.45	1.00	1.35	0	0		-0.9	1.2	0	0	0	1.45	0	1.45 0
62 63	Θ	SINC SINC	62S3-21M 63S3-21T	1.35	1.50	0	1.45		1.45	1.00	1.00	0	0		-0.9	1.2	0	0	0	0	0	0
64	SCH	E E	64S3-22M	1.35	1.50	1.45	0		1.45	1.35	1.35	1.16	1.16		-0.9	1.2	0	0	0	0	0	0
65 66	Ş	ZION	65S3-22T 66S3-23M	1.35 1.35	1.50 1.50	0 1.45	1.45 0		1.45 1.45	1.35	1.35 1.35	1.16 0	1.16 1.16		-0.9 -0.9	1.2 1.2	0	0	0	0	0	0
67		٠ ۲	67S3-23M	1.35	1.50	0	1.45		1.45	1.00	1.35	0	1.16		-0.9	1.2	0	0	0	0	0	0
68		SL	68S3-24S	1.35	1.5	0	0		1.45	1.00	1.00	0	0		-0.9	1.2	0	0	0	1.45	0	0
69 70			69S3-25S 70S3-26S	1.35 1.35	1.5 1.5	0	0		1.45 1.45	1.35	1.35 1.35	0	0		-0.9 -0.9	1.2 1.2	0	0	0	1.45 1.45	1.16 0	1.16 1.16
71	\dashv		718881	1.35	1.5	0.2	0		0	0.6	1.35	0	0.2		0.5	1.2	1	0.3	1	0	0	0
72			72SSS2	1	1	0.2	0		0	0.6	1	0	0.2		0.5	1	1	-0.3	1	0	0	0
73 74			73SSS3 74SSS4	1	1	0.2 0.2	0		0	0.6	1	0	0.2		0.5 0.5	1	0.3	1 -1	0.3	0	0	0
75			75SSS5	1	1	0.2	0		0	0.6	1	0	0.2		-0.5	1	1	0.3	1	0	0	0
76		₹	76SSS6	1	1	0.2	0		0	0.6	1	0	0.2		-0.5	1	1	-0.3	1	0	0	0
77 78	δĀ	SLU (SISMICA)	77SSS7 78SSS8	1	1 1	0.2 0.2	0		0	0.6 0.6	1 1	0	0.2		-0.5 -0.5	1	0.3	1 -1	0.3	0	0	0
79	SISMICA	SIS)	7988898	1	1	0.2		0	0	0.6	1		0	0	0.5	1	1	0.3	1	0.2	0	0.2
80	"	SLU	80SSS10S	1	1	0		0	0	0.6	1		0	0	0.5	1	1	-0.3	1	0.2	0	0.2
81 82			81SSS11S 82SSS12S	1	1	0		0	0	0.6 0.6	1		0	0	0.5 0.5	1	0.3	1 -1	0.3	0.2 0.2	0	0.2 0.2
83			83SSS13S	1	1	0		0	0	0.6	1		0	0	-0.5	1	1	0.3	1	0.2	0	0.2
84			84SSS14S	1	1	0		0	0	0.6	1		0	0	-0.5	1	1	-0.3	1	0.2	0	0.2
85 86			85SSS15S 86SSS16S	1	1 1	0		0	0	0.6 0.6	1		0	0	-0.5 -0.5	1	0.3	1 -1	0.3	0.2	0	0.2 0.2
00			00000100							0.0					0.0		0.0		0.0	0.2		0.2
87		_	87R4-11M	1	1	0.8	0		0.8	0.6	0.6	0	0		0.6	1	0	0	0	0	0	0
88		⊒	88R4-11T 89R4-12M	1	1	0 0.8	0.8 0		0.8	0.6 1	0.6 1	0 0.8	0 0.8		0.6 0.6	1	0	0	0	0	0	0
90		9 ■	90R4-12T	1	1	0	0.8		0.8	1	1	0.8	0.8		0.6	1	0	0	0	0	0	0
91		CARICHI MOBILI)	91R4-13M	1	1	0.8	0		0.8	0.6	1 1	0	0.8		0.6	1	0	0	0	0	0	0 0
92 93			92R4-13T 93R4-14S	1	1	0 0	0.8	0	0.8	0.6	0.6	0	0.8	0	0.6	1	0	0	0	0.8	0	0
94		ALE	94R4-15S	1	1	0		0	0.8	1	1		0	0	0.6	1	0	0	0	0.8	0.8	0.8
95		(AZIONE PRINCIPALE:	95R4-16S	1	11	0		0	0.8	0.6	1		0	0	0.6	1	0	0	0	0.8	0	0.8
96 97		<u>R</u>	96R4-21M 97R4-21T	1	1 1	0.8 0	0 0.8		0.8	0.6	0.6 0.6	0	0		-0.6 -0.6	1	0	0	0	0	0	0 0
98		ONE	98R4-22M	1	1	0.8	0		0.8	1	1	0.8	0.8		-0.6	1	0	0	0	0	0	0
99		<u>§</u>	99R4-22T	1	1 1	0 0.8	0.8 0		0.8	1 0.6	1	0.8	0.8		-0.6 -0.6	1	0	0	0	0	0	0
100 101	004	ZARA	100R4-23M 101R4-23T	1	1	0.8	0.8		0.8	0.6	1	0	0.8		-0.6	1	0	0	0	0	0	0
102	N P	SLE RARA	102R4-24S	1	1	0		0	0.8	0.6	0.6		0	0	-0.6	1	0	0	0	0.8	0	0
103 104	5	Ø	103R4-25S	1	1 1	0		0	0.8 0.8	1 0.6	1 1		0	0	-0.6 -0.6	1	0	0	0	0.8 0.8	0.8	0.8 0.8
104	MOBILI : GRUPPO		104R4-26S 105R1T11M	1	1	0.8	0	U	0.8	0.6	0.6	0	0	J	1	1	0	0	0	0.8	0	0.6
106		ICA)	106R1T11T	1	1	0	0.8		0.8	0.6	0.6	0	0		1	1	0	0	0	0	0	0
107 108	CARICHI	TERMICA	107R1T12M 108R1T12T	1	1	0.8 0	0 0.8		0.8	1	1	0.8	0.8		1	1	0	0	0	0	0	0
109	Ö	뿌	108R1T12T	1	1	0.8	0.8		0.8	0.6	1	0.8	0.8		1	1	0	0	0	0	0	0
110		AZIOI	110R1T13T	1	1	0	0.8		0.8	0.6	1	0	0.8		1	1	0	0	0	0	0	0
111 112		LE: 4	111R1T14S 112R1T15S	1	1 1	0		0	0.8	0.6 1	0.6 1		0	0	1	1	0	0	0	0.8 0.8	0 0.8	0 0.8
113		(AZIONE PRINCIPALE:	113R1T16S	1	1	0		0	0.8	0.6	1		0	0	1	1	0	0	0	0.8	0.6	0.8
114		RIN	114R1T21M	1	1	0.8	0		0.8	0.6	0.6	0	0	_	-1	1	0	0	0	0	0	0
115 116		Ä	115R1T21T 116R1T22M	1	1 1	0 0.8	0.8 0		0.8	0.6 1	0.6 1	0 0.8	0 0.8		-1 -1	1	0	0	0	0	0	0
117		AZIO	117R1T22T	1	1	0	0.8		0.8	1	1	0.8	0.8		-1	1	0	0	0	0	0	0
118		₹ S	118R1T23M	1	1	0.8	0		0.8	0.6	1	0	0.8		-1	1	0	0	0	0	0	0
119 120		E RARA	119R1T23T 120R1T24S	1	1	0 0	0.8	0	0.8	0.6	0.6	0	0.8	0	-1 -1	1	0	0	0	0.8	0	0
121		SLE	121R1T25S	1	1	0		0	0.8	1	1		0	0	-1	1	0	0	0	0.8	0.8	0.8
122			122R1T26S	1	1	0		0	0.8	0.6	1		0	0	-1	1	0	0	0	8.0	0	0.8

	CUPP	O FERM	COVIE DE	LLO SIAIO	IIALIANE					FROG		O DLI		1100						
										COMME	SSA	LOTTO)	COD	IFICA	DOCL	JMENTO	R	EV.	FOGLIO
R	ELA	ZION	E DI C	ALCOLO)					NM0		00 D 1			CL		003 002		Α	78 di 166
<u> </u>										141110	•									
123			123R1-11M	1	1 1	0		0.5	0.6	0.6	0	0		0.6	1 0	0	0	0	0	0
124		Ê	124R1-11T		1 0	1		0.5	0.6	0.6	0	0		0.6	1 0		0	0	0	0
125		MOBILI)	125R1-12M 126R1-12T	1	1 1 1	0		0.5 0.5	1	1	1	1		0.6 0.6	1 0	0	0	0	0	0
127		Ŧ	127R1-13M		1 1	0		0.5	0.6	1	0	1		0.6	1 0	0	0	0	0	0
128		CARICHI	128R1-13T		1 0	1		0.5	0.6	1	0	1		0.6	1 0		0	0	0	0
129		Ä	129R1-14S 130R1-15S		1	0	0	0.5 0.5	0.6 1	0.6 1		0		0.6	1 0		0	1 1	0 1	0 1
131		PRINCIPALE:	131R1-16S		1	0	0	0.5	0.6	1		0		0.6	1 0		0	1	0	1
132		Ž.	132R1-21M 133R1-21T		1 1 1 0	0		0.5 0.5	0.6	0.6 0.6	0	0		-0.6 -0.6	1 0		0	0	0	0
134		NE -	134R1-22M		1 1	0		0.5	1	1	1	1		-0.6	1 0	0	0	0	0	0
135		RARA (ZIONE	135R1-22T	1	1 0	1		0.5	1	1	1	1		-0.6	1 0	0	0	0	0	0
136	0	ZAR/	136R1-23M 137R1-23T		1 1 1	0		0.5 0.5	0.6	1 1	0	1		-0.6 -0.6	1 0	0	0	0	0	0
138	불	SLE	138R1-24S		1	0	0	0.5	0.6	0.6		0	0 -	-0.6	1 0		0	1	0	0
139 140	MOBILI : GRUPPO	0,	139R1-25S 140R1-26S		1	0	0	0.5 0.5	1 0.6	1 1		0		-0.6 -0.6	1 0		0	1 1	1 0	1
141	ෂ		141R1T11M		1 0.8	0	0	0.4	0.6	0.6	0	0	0 -	1	1 0		0	0	0	0
142	É	IICA,	142R1T11T		1 0	0.8		0.4	0.6	0.6	0	0		1	1 0	0	0	0	0	0
143	CARICHI	ER	143R1T12M 144R1T12T	1	1 0.8 1 0	0		0.4 0.4	1	1 1	0.8 0.8	0.8 0.8		1	1 0	0	0	0	0	0
145	ਹ	NE T	145R1T13M	1	1 0.8	0		0.4	0.6	1	0	0.8		1	1 0	0	0	0	0	0
146		(AZIONE PRINCIPALE: AZIONE TERMICA)	146R1T13T 147R1T14S		1 0	0.8	0	0.4	0.6	0.6	0	0.8	0	1	1 0		0	0	0	0
147		Ë	147RITI4S 148RITI5S		1	0	0	0.4	1	1		0	0	1	1 0		0	0.8	0.8	0.8
149		CIPA	149R1T16S		1	0	0	0.4	0.6	1		0	0	1	1 0	0	0	0.8	0	0.8
150 151		A N	150R1T21M 151R1T21T		1 0.8 1 0	0 0.8		0.4 0.4	0.6	0.6 0.6	0	0		-1 -1	1 0	0	0	0	0	0
152		ONE	152R1T22M		1 0.8	0		0.4	1	1	0.8	0.8		-1	1 0	0	0	0	0	0
153		¥Ž.	153R1T22T		1 0	0.8		0.4	1	1	0.8	0.8		-1	1 0	0	0	0	0	0
154		RARA	154R1T23M 155R1T23T		1 0.8 1 0	0		0.4 0.4	0.6	1 1	0	0.8 0.8		-1 -1	1 0	0	0	0	0	0
156		SLE R	156R1T24S		1	0	0	0.4	0.6	0.6		0		-1	1 0		0	0.8	0	0
157 158		σ	157R1T25S 158R1T26S		1	0	0	0.4 0.4	1 0.6	1 1		0		-1 -1	1 0		0	0.8	0.8 0	0.8 0.8
100			1301111100			-														
159			159R3-11M		1 1	0		1	0.6	0.6	0	0		0.6	1 0		0	0	0	0
160		САРСНІ МОВІСІ)	160R3-11T 161R3-12M	1	1 0	1		1	0.6 1	0.6 1	0	0		0.6 0.6	1 0	0	0	0	0	0
162		M M	162R3-12T	1	1 0	1		1	1	1	1	1		0.6	1 0	0	0	0	0	0
163		E CE	163R3-13M		1 1 1 0	0		1 1	0.6	1 1	0	1		0.6 0.6	1 0	0	0	0	0	0
164			164R3-13T 165R3-14S		1	0	0	1	0.6	0.6	U	0		0.6	1 0		0	1	0	0
166		ALE	166R3-15S		1	0	0	1	1	1		0		0.6	1 0		0	1	1	1
167		NCIP	167R3-16S 168R3-21M		1 1	0 0	0	1	0.6	0.6	0	0 0		0.6 -0.6	1 0		0	0	0	0
169		<u> </u>	169R3-21T		1 0	1		1	0.6	0.6	0	0		-0.6	1 0	0	0	0	0	0
170		ZIONE PRINCIPALE:	170R3-22M 171R3-22T	1 1	1 1 1 0	0		1	1	1 1	1 1	1 1		-0.6 -0.6	1 0	0	0	0	0	0
171 172	e	₹ (Z	171R3-22T 172R3-23M		1 1	0		1	1 0.6	1	0	1		-0.6 -0.6	1 0		0	0	0	0
173		RARA	173R3-23T		1 0	1		1 .	0.6	1	0	1	-	-0.6	1 0	0	0	0	0	0
174	GRUPPO	SLE	174R3-24S 175R3-25S		1	0	0	1	0.6 1	0.6 1		0		-0.6 -0.6	1 0		0	1 1	0 1	0
176	<u>:</u>		176R3-26S	1	1	0	0	1	0.6	1		0		-0.6	1 0	0	0	1	0	1
177	MOBILI:	â	177R1T11M 178R1T11T		1 0.8 1 0	0 0.8		0.8	0.6 0.6	0.6 0.6	0	0		1	1 0		0	0	0	0
178 179		MIC	178RITIIT 179R1T12M	1	1 0.8	0.0		0.8	1	1	0.8	0.8		1	1 0	0	0	0	0	0
180	CARICH	AZIONE TERMICA)	180R1T12T	1	1 0	0.8		0.8	1	1	8.0	0.8		1	1 0		0	0	0	0
181 182		IONE	181R1T13M 182R1T13T	1	1 0.8 1 0	0 0.8		0.8	0.6	1 1	0	0.8		1	1 0	0	0	0	0	0
183		:: AZ	183R1T14S	1	1	0	0	0.8	0.6	0.6		0		1	1 0		0	0.8	0	0
184		PRINCIPALE:	184R1T15S 185R1T16S		1	0	0	0.8 0.8	1	1		0	0	1	1 0		0	0.8	0.8	0.8 0.8
185 186		NG.	185R1T16S 186R1T21M		1 0.8	0 0	U	0.8	0.6	0.6	0	0		-1	1 0		0	0.8	0	0.8
187		E PR	187R1T21T	1	1 0	0.8		0.8	0.6	0.6	0	0		-1	1 0	0	0	0	0	0
188 189		ZION.	188R1T22M 189R1T22T		1 0.8 1 0	0 0.8		0.8	1	1 1	0.8 0.8	0.8		-1 -1	1 0	0	0	0	0	0
190		RARA (AZIONE	190R1T23M		1 0.8	0.0		0.8	0.6	1	0.0	0.8		-1	1 0		0	0	0	0
191			191R1T23T		1 0	0.8		0.8	0.6	1	0	0.8	0	-1	1 0	0	0	0	0	0
192		SLE	192R1T24S 193R1T25S		1	0	0	0.8 0.8	0.6 1	0.6 1		0		-1 -1	1 0		0	0.8	0 0.8	0
194			194R1T26S		1	0	0	0.8	0.6	1		0		-1	1 0		0	0.8	0.0	0.8

RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

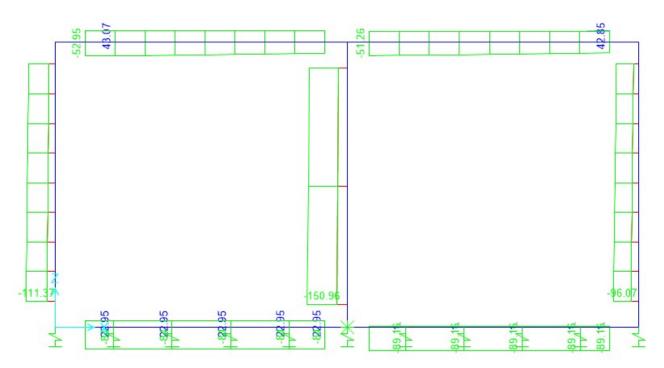
NMOY 00 D 11 CL RI0003 002 A 79 di 166

9.2 Risultati delle analisi

Si riportano i risultati delle analisi svolte sia in forma grafica che tabellare, dove le sollecitazioni massime mostrate sia in termini di sforzo normale che taglio e momento flettente corrispondono ai valori in corrispondenza dei nodi tra gli elementi del modello di calcolo, ovvero i punti di intersezione tra gli assi geometrici degli elementi. Nelle verifiche le sollecitazioni in corrispondenza dei nodi si considerano secondo il seguente criterio:

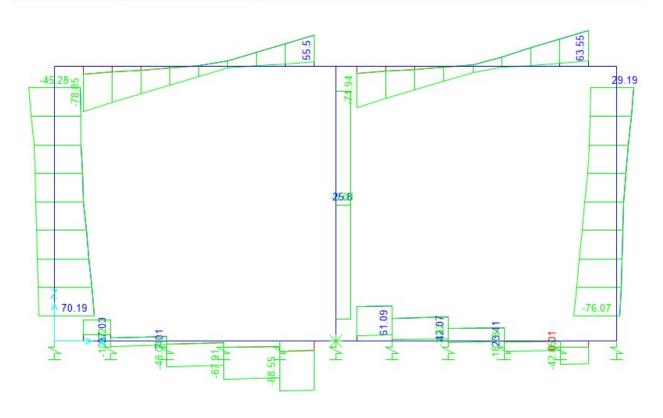
sforzo normale: valori in corrispondenza dei punti posti ad s/4 del punto di intersezione tra gli assi geometrici degli elementi (nodi);

taglio: valori in corrispondenza del filo interno degli elementi;

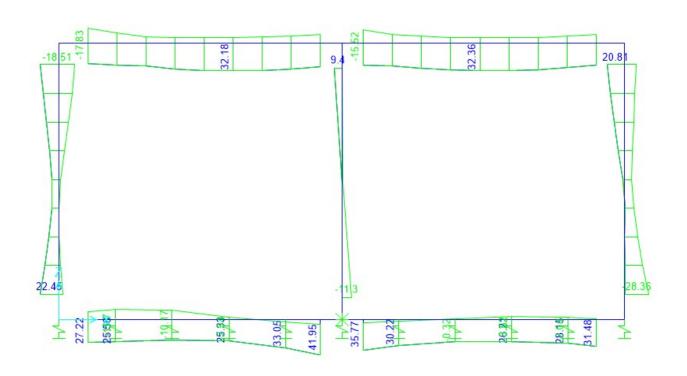

momento flettente: valori in corrispondenza dei punti posti ad s/4 dei punti di intersezione tra gli assi geometrici degli elementi (nodi);

dove s è lo spessore dell'elemento strutturale considerato.

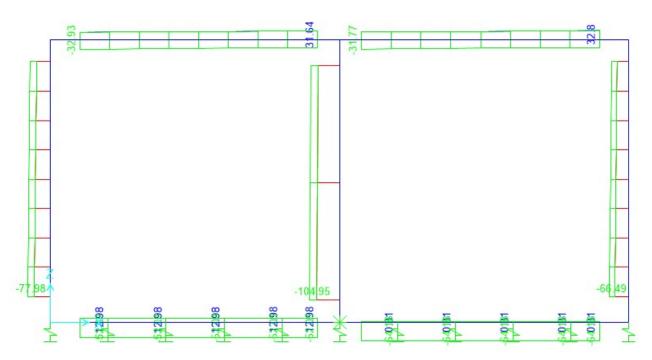
Nelle immagini che seguono si riportano gli inviluppi dei diagrammi delle sollecitazioni ottenuti dall'analisi dei risultati:


Axial Force Diagram (INVLSU - Max/Min)

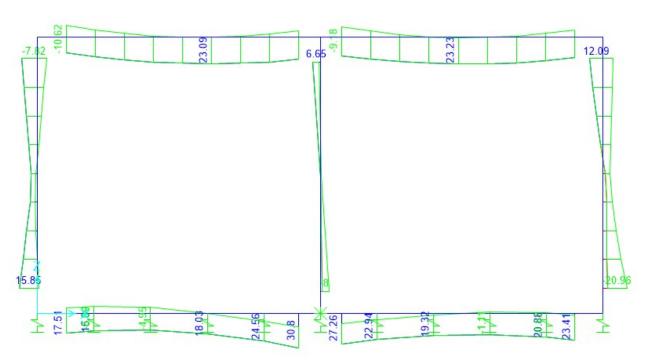
Tab. 57 – Modello scatolare – Inviluppo SLU sforzo normale


Shear Force 2-2 Diagram (INVLSU - Max/Min)

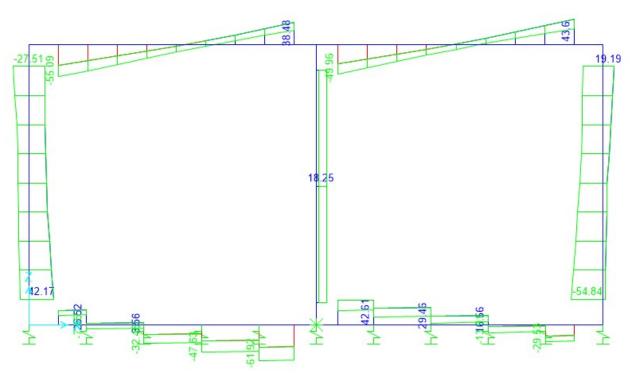
Tab. 58 – Modello scatolare - Inviluppo SLU sforzo di taglio


Moment 3-3 Diagram (INVLSU - Max/Min)

Tab. 59 – Modello scatolare - Inviluppo SLU momento flettente

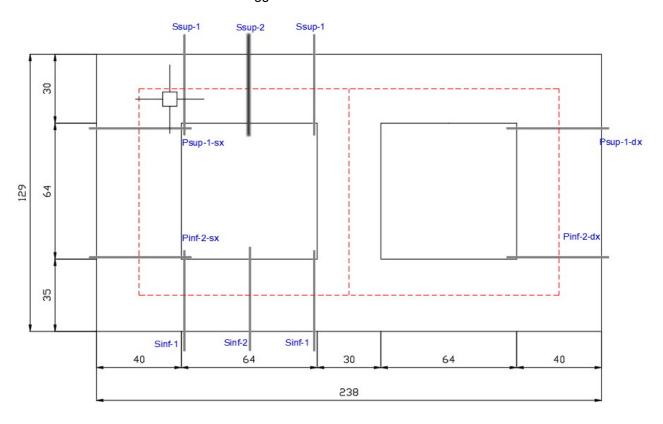

Axial Force Diagram (INVCA - Max/Min)

Tab. 60 – Modello scatolare – Inviluppo SLE RARA sforzo normale


Moment 3-3 Diagram (INVCA - Max/Min)

Tab. 61 – Modello scatolare - Inviluppo SLE RARA momento flettente

Shear Force 2-2 Diagram (INVCA - Max/Min)



Tab. 62 – Modello scatolare – Inviluppo SLE RARA sforzo di taglio

GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA TO	ORINO - IOVARA	1^ FASE PR	· VENEZIA. G DI NOVARA	воѕсні	≣тто
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 86 di 166

9.3 Verifiche strutturali

Le verifiche riportate nei paragrafi successivi sono effettuate considerando il valore assoluto delle sollecitazioni. Per le sezioni di estremità dei piedritti e delle solette si riportano le verifiche delle sezioni più sollecitate; in particolare per le solette inferiore e superiore si riportano le verifiche in assenza di sforzo normale. Nell'immagine che segue si mostra la sezione trasversale del tombino con le sezioni oggetto di verifica:

Tab. 63 – Tombino scatolare - sezioni di verifica

Per ciascuna tipologia di elemento (solette e piedritti) si riporta uno schema grafico con l'indicazione della sezione oggetto di verifica.

GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA TO	ORINO - IOVARA	1^ FASE PR	VENEZIA. G DI NOVARA	воѕсні	ЕТТО
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 87 di 166

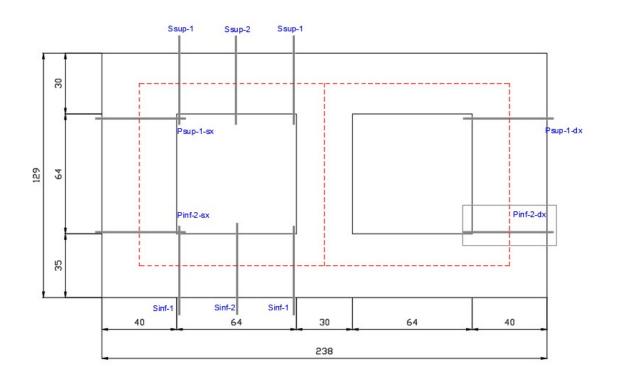
9.3.1 Piedritti

Armatura a flessione:

➤ Sommità Psup-1: Armatura tesa ∮14/20 cm

Armatura compressa \$14/20 cm

➤ Spiccato Pinf-2: Armatura tesa ∮14/20 cm


Armatura compressa ϕ 14/20 cm

Armatura a taglio:Spille \phi10/40x40 cm

Armatura longitudinale: \$\phi14/20 cm

• Verifica a pressoflessione

Spiccato Pinf-2

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 88 di 166

Acciaio				
Tensione car. di rottura	ftk	=	540	N/mm²
Tensione car. di snervamento	f_{yk}	=	450	N/mm²
Coeff. parziale di sicurezza	V _s	=	1.15	
Resistenza di calcolo	fyd	=	391	N/mm²
Modulo elastico	E _s	=	200000	N/mm²
	Ewd	=	0.00196	

Calcestruzzo									
Tipo	C30/37								
Rck	37	N/mm²							
f_{ck}	30.71	N/mm²							
Vc	1.5								
f_{cd}	20.5	N/mm²							
f_{cc}	17.4	N/mm²							

Geometria della sezione		
Altezza geometrica della sezioi h	=	40 cm
Base della sezione b	=	100 cm
Copriferro netto c	=	40 mm
Armatura a taglio ф	= 3	10 mm
Armatura di ripartizione	=	14 mm
Copriferro c'	= "	7.1 cm
Altezza utile della sezione d	=	32.9 cm

		0.00	cm²
		0.00	cm ²
5	14	7.70	cm²
N° ferri	Diametro	Area	
Armatura	tesa		

Armatura	compressa		
N° ferri	Diametro	Area	
5	14	7.70	cm ²
		0.00	cm ²
		0.00	cm ²
		7.70	cm ²

RELAZIONE DI CALCOLO

COMMESSA NM0Y

LOTTO CODIFICA

CL

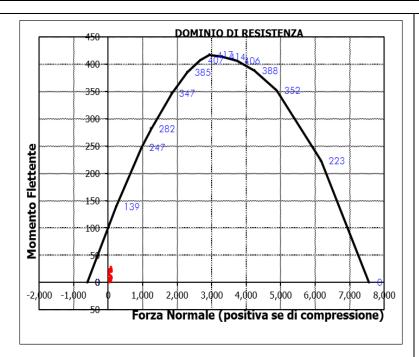
00 D 11

DOCUMENTO RI0003 002

REV.

FOGLIO **89 di 166**

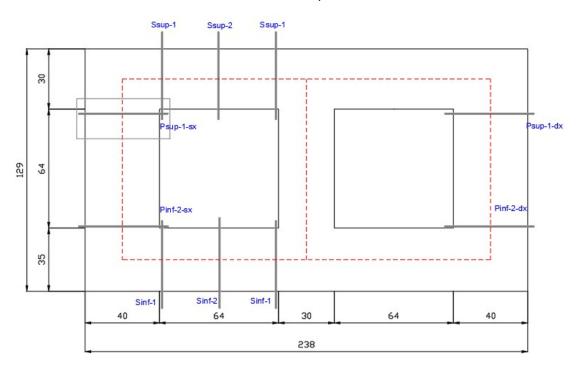
Caratteristic	he di solle	citazione
Comb.	Nsd	Msd
01S1-11M	93.29	7.39
02S1-11T	93.29	7.39
03S1-12M	95.29	7.44
04S1-12T	95.29	7.44
05S1-13M	89.32	10.50
06S1-13T	89.32	10.50
07S1-14-	37.91	5.12
08S1-15-	31.95	8.18
09S1-16S	85.48	7.38
1051-175	85.94	7.37
1151-185	84.65	8.03
1251-195	36.38	5.07
13S1-20S	35.08	5.73
14S1-21M	95.71	20.16
15S1-21T	95.71	20.16
16S1-22M	97.71	20.21
17S1-22T	97.71	20.21
18S1-23M	91.74	23.27
19S1-23T	91.74	23.27
2051-24-	40.33	17.89
2151-25-	34.36	20.95
22S1-26S	87.90	20.14
23S1-27S	88.36	20.14
2451-285	87.07	20.80
25S1-29S	38.79	17.83
26S1-30S	37.50	18.50
27S1T11M	77.83	4.41
28S1T11T	77.83	4.41
29S1T12M	79.47	4.44
30S1T12T	79.47	4.44
31S1T13M	74.58	6.95
32S1T13T	74.58	6.95
33S1T14-	36.75	0.85
34S1T15-	31.87	3.36
35S1T16S	71.58	4.40
36S1T17S	71.99	4.39
37S1T18S	70.85	4.97
38S1T19S	35.52	0.81
39S1T20S	34.38	1.40
40S1T21M	81.86	25.69
41S1T21T	81.86	25.69
42S1T22M	83.50	25.72
43S1T22T	83.50	25.72


Caratteristic	he di solle	citazione
Comb.	Nsd	Msd
44S1T23M	78.61	28.23
45S1T23T	78.61	28.23
46S1T24-	40.78	22.13
47S1T25-	35.89	24.64
48S1T26S	75.61	25.68
49S1T27S	76.02	25.67
50S1T28S	74.87	26.25
51S1T29S	39.55	22.09
52S1T30S	38.41	22.68
53S3-11M	89.31	9.57
54S3-11T	89.31	9.57
55S3-12M	91.31	9.61
56S3-12T	91.31	9.61
57S3-13M	85.34	12.67
58S3-13T	85.34	12.67
5953-145	81.50	9.55
60S3-15S	81.96	9.54
61S3-16S	80.67	10.20
62S3-21M	91.73	22.33
63S3-21T	91.73	22.33
64S3-22M	93.37	22.37
65S3-22T	93.37	22.37
66S3-23M	88.49	24.87
67S3-23T	88.49	24.87
6853-245	83.92	22.31
6953-255	84.33	22.31
7053-265	83.19	22.89
71SSS1	31.50	7.53
72SSS2	31.12	7.53
73SSS3	32.97	6.88
74SSS4	31.71	6.88
75SSS5	32.84	14.63
76SSS6	32.47	14.63
77SSS7	34.31	13.97
78SSS8	33.06	13.97
79SSS9S	30.86	7.19
80SSS10S	30.48	7.19
81SSS11S	32.32	6.54
82SSS12S	31.07	6.54
83555135	32.20	14.29
84SSS14S	31.82	14.29
85SSS15S	33.67	13.63
86SSS16S	32.41	13.63

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NMOY
 00 D 11
 CL
 RI0003 002
 A
 90 di 166



	Caratteristi	iche di solle	ecitazione
	Comb.	Nsd [kN]	Msd [kNm]
(Nmax)	16S1-22M	97.71	20.21
(Nmin)	80SSS10S	30.48	7.19
(Mmax)	44S1T23N	78.61	28.23
(Mmin)	38S1T19S	35.52	0.81

		SISTENZA
PUNTO	NRd [kN]	MRd [kNm
1	-602	0
2	-602	0
3	231	139
4	976	247
5	1250	282
6	1841	347
7	2290	385
8	2672	407
9	2938	417
10	3303	414
11	3730	406
12	4245	388
13	4881	352
14	6171	223
15	7563	0

Sommità Psup-1

Acciaio				
Tensione car. di rottura	ftk	=	540	N/mm²
Tensione car. di snervamento	fyk	=	450	N/mm²
Coeff. parziale di sicurezza	٧s	=	1.15	
Resistenza di calcolo	fyd	=	391	N/mm²
Modulo elastico	Es	=	200000	N/mm²
	Ewd	=	0.00196	

Geometria della sezione					
Altezza geometrica della sez	ioı h	=	40	cm	Π
Base della sezione	b	=	100	cm	
Copriferro netto	C	=	40	mm	
Armatura a taglio	Ф	=	10	mm	
Armatura di ripartizione	ф	=	14	mm	
Copriferro	c'	= "	7.1	cm	
Altezza utile della sezione	d	=	32.9	cm	

Calcestruz	ZO	
Tipo	C30/37	
Rck	37	N/mm²
f_{ck}	30.71	N/mm²
Vc	1.5	
f_{cd}	20.5	N/mm²
f_{cc}	17.4	N/mm²

Armatura	tesa	0.5.011.0	
N° ferri	Diametro	Area	
5	14	7.70	cm ²
		0.00	cm ²
		0.00	cm ²
		7.70	cm ²

		7.70	cm ²
		0.00	cm ²
		0.00	cm ²
5	14	7.70	cm ²
N° ferri	Diametro	Area	
	compressa		

RELAZIONE DI CALCOLO

COMMESSA LOTTO

NM0Y 00 D 11

CODIFICA

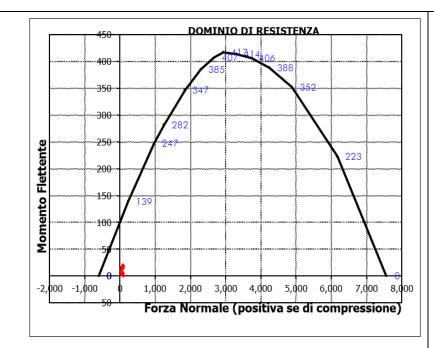
DOCUMENTO RI0003 002

REV.

FOGLIO **92 di 166**

Caratteristic	che di solle	citazione
Comb.	Nsd	Msd
01C1 11M	00.42	14.00

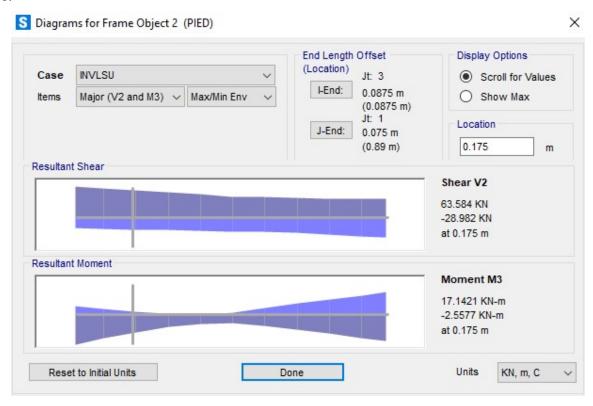
Comb.	Nsd	Msd
01S1-11M	90.42	14.99
02S1-11T	90.42	14.99
03S1-12M	92.41	15.01
04S1-12T	92.41	15.01
05S1-13M	96.39	17.68
06S1-13T	96.39	17.68
07S1-14-	27.08	3.68
08S1-15-	31.05	6.36
09S1-16S	82.61	13.78
10S1-17S	83.07	13.80
1151-185	83.90	14.37
1251-195	25.54	3.68
13S1-20S	26.38	4.25
14S1-21M	92.84	0.53
15S1-21T	92.84	0.53
16S1-22M	94.83	0.51
17S1-22T	94.83	0.51
18S1-23M	98.80	2.17
19S1-23T	98.80	2.17
2051-24-	29.49	11.83
2151-25-	33.46	9.15
2251-265	85.03	1.73
2351-275	85.49	1.71
2451-285	86.32	1.15
25S1-29S	27.96	11.83
26S1-30S	28.79	11.27
27S1T11M	79.73	19.39
28S1T11T	79.73	19.39
29S1T12M		19.41
30S1T12T	81.37	19.41
31S1T13M	84.62	21.60
32S1T13T	84.62	21.60
33S1T14-	25.92	8.85
34S1T15-	29.16	11.04
35S1T16S	73.48	18.43
36S1T17S	73.90	18.44
37S1T18S	74.63	18.94
38S1T19S	24.69	8.85
39S1T20S	25.42	9.35
40S1T21M	83.76	6.47
	83.76	6.47
42S1T22M	85.40	6.45
43S1T22T	85.40	6.45


Caratteristi	The state of the s		
Comb.	Nsd	Msd	
44S1T23M	88.64	4.26	
45S1T23T	88.64	4.26	
46S1T24-	29.94	17.00	
47S1T25-	33.19	14.81	
48S1T26S	77.51	7.43	
49S1T27S	77.92	7.41	
50S1T28S	78.66	6.91	
51S1T29S	28.72	17.00	
52S1T30S	29.45	16.51	
53S3-11M	94.40	16.86	
54S3-11T	94.40	16.86	
55S3-12M	96.39	16.88	
56S3-12T	96.39	16.88	
57S3-13M	100.37	19.56	
58S3-13T	100.37	19.56	
5953-145	86.59	15.65	
60S3-15S	87.05	15.67	
61S3-16S	87.88	16.24	
62S3-21M	96.82	1.34	
63S3-21T	96.82	1.34	
64S3-22M	98.46	1.36	
65S3-22T	98.46	1.36	
66S3-23M	101.70	3.55	
67S3-23T	101.70	3.55	
6853-245	89.01	0.14	
69S3-25S	89.42	0.16	
70S3-26S	90.15	0.66	
71SSS1	28.91	3.22	
72SSS2	28.54	3.16	
73SSS3	28.16	2.73	
74SSS4	26.91	2.53	
75SSS5	30.26	5.40	
76SSS6	29.88	5.46	
77SSS7	29.51	5.89	
78SSS8	28.25	6.08	
7955595	27.19	2.76	
80SSS10S	26.82	2.71	
81SSS11S	26.44	2.27	
82SSS12S	25.19	2.08	
83SSS13S	28.53	5.86	
84SSS14S	28.16	5.91	
85SSS15S	27.79	6.35	
86SSS16S	26.53	6.54	

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

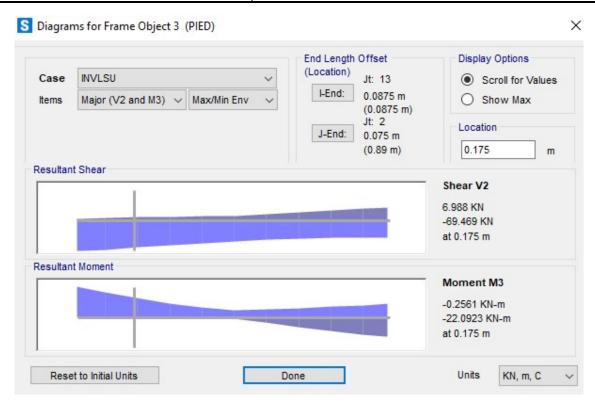
 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 93 di 166


	Caratteristiche di sollecitazion		
	Comb.	Nsd [kN]	Msd [kl
(Nmax)	66S3-23M	101.70	3.
(Nmin)	38S1T19S	24.69	8.
(Mmax)	31S1T13N	84.62	21.
(Mmin)	6853-245	89.01	0.

DOMINIO DI RESISTENZA			
PUNTO	NRd [kN]	MRd [kNm	
1	-602	0	
2	-602	0	
3	231	139	
4	976	247	
5	1250	282	
6	1841	347	
7	2290	385	
8	2672	407	
9	2938	417	
10	3303	414	
11	3730	406	
12	4245	388	
13	4881	352	
14	6171	223	
15	7563	0	

Verifica a taglio

Si riportano i valori delle sollecitazioni taglianti in corrispondenza del filo interno degli elementi in esame:



RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NMOY
 00 D 11
 CL
 RI0003 002
 A
 95 di 166

COMMESSA NM0Y

LOTTO CODIFICA 00 D 11

DOCUMENTO RI0003 002

FOGLIO 96 di 166

Calcestruzzo

RELAZIONE DI CALCOLO

Tipo	C30/37	
Rck	37	N/mm²
f _{ck}	30.7	N/mm²
Yc	1.5	
α_{cc}	0.85	
f_{cd}	17.4	N/mm²

rcia	io

recidio		
f _{tk}	540	N/mm²
fyk	450	N/mm²
V _s	1.15	
f _{vd}	391	N/mm²

Sollecitazioni	1197	Piedritto sx	Piedritto dx
V _{Ed}	kN	63.58	69.47
N _{Ed}	kN	0	0

CL

Armatura a taglio

Diametro	mm	10	10
Numero barre		2.5	2.5
A _{sw}	cm ²	1.96	1.96
Passo s	cm	40	40
Angolo α	• •	90	90

Armatura longitudinale

n ₁	Lally	5	5
Ø ₁	mm	14	14
n ₂		20	-
Ø ₂	mm	21	92 "
Asl	cm ²	7.70	7.70

Sezione

b _w	cm	100	100
Н	cm	40	40
С	cm	7.1	7.1
d	cm	32.9	32.9
k	N/mm²	1.78	1.78
V _{min}	N/mm²	0.46	0.46
ρ		0.0023	0.0023
σср	N/mm²	0.00	0.00
α_c	2030254000	1.00	1.00

Resistenza senza armatura a taglio

Tresistenza senza armatara a tagno			
V _{Rd}	kN	152	152

Resistenza con armatura a taglio

coefficiente di sic	2.24	2.05	
V _{Rd}	kN	142	142
V _{RCd}	kN	888	888
V _{RSd}	kN	142	142
Inclinazione puntone θ		21.8	21.8

Elementi senza armatura a taglio

$$V_{\text{Rd}} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} \, / \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \, (v_{min} \, + \, 0.15 \cdot \, \sigma_{cp}) \, \cdot b_w d \quad (4.1.14)$$

Elementi con armature trasversali resistenti al taglio

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$$

 $V_{\text{Rsd}} = 0,9 \cdot d \cdot \frac{A_{\text{sw}}}{c} \cdot f_{\text{yd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) \cdot \sin\alpha \qquad V_{\text{Rcd}} = 0,9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta)$

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO					
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA	DOCUMENTO RI0003 002	REV.	FOGLIO 97 di 166

• Verifica a fessurazione e delle tensioni

Spiccato Pinf-2

Sollecitazioni				
Momento flettente	M	20.87	kN m	RARA
Sforzo normale	N	54.29	kN	118R1T23M
Materiali				
Resistenza caratteristica cubica calcestruzzo	R _{ck}	37	N/mm ²	
Resistenza caratteristica cilindrica calcestruzzo	fck	30.71	N/mm ²	
Modulo elastico del calcestruzzo	E _{cm}	33019.43	N/mm ²	
Tensione ammissibile ds	σc _{amm}	16.9	N/mm ²	
Res. media a trazione ds	f _{ctm}	2.94	N/mm ²	
Res. caratteristica a trazione ds	f _{ctk}	2.1	N/mm ²	
Tensione di snervamento acciaio	fyk	450.00	N/mm ²	
Modulo elastico dell'acciaio	Es	200000.00	N/mm ²	
Tensione ammissibile acciaio	σs _{amm}	337.5	N/mm ²	
Coefficiente omog. acciaio-cls	n	15		
2 02 2000 1				
Caratteristiche geometriche		40		
Altezza sezione	Н	40	cm	
Larghezza sezione	B	100	cm	F G 14 - 171
Armatura compressa (1º strato)	As ₁	7.70	cm ²	5 Ø 14 c _{s1} = 7.1 cm
Armatura compressa (2º strato)	As ₂	0.00	cm ²	0 Ø 0 c _{s2} = 7.8 cm
Armatura tesa (2º strato)	As ₂	0.00	cm ²	0 Ø 0 c ₁₂ = 7.1 cm
Armatura tesa (1º strato)	As ₁	7.70	cm ²	5 Ø 14 c ₁₁ = 7.1 cm
Tensioni nei materiali				
Compressione max nel cls.	σς	1.7	N/mm ²	< oc_amm
Trazione nell'acciaio (1º strato)	σs	53.7	N/mm²	< σa _{amm}
Eccentricità	e (M)	38.4	cm	> H/6 Sez. parzializzata
Lecendrata	u (M)	18.4	cm	> 11/0 Sez. pai zializzata
Posizione asse neutro	y (M)	10.6	cm	
Area ideale (sez. int. reagente)	Aid	4216	cm ²	
Mom. di inerzia ideale (sez. int. reaq.)	J _{id}	571758.577	cm ⁴	
		98208.6581	cm ⁴	
Mom. di inerzia ideale (sez. parz. N=0)	J _{Id*}	90208.0581	CIII	

Momento di fessurazione (f 🖽)	M _{fess} *	63	kN m	La sezione non è fessurata
Momento di fessurazione (f _{em})	Mess	88	kN m	
Eccentricità per M≠M _{tess}	e (M _{ess})	161.7	cm	
	u (M _{tess})	141.7	cm	
Compressione max nel ds. per M=M	acr	7.5		
Traz. nell'acciaio (1º str.) per M=M _{less}	asr	339.6	N/mm²	
Posizione asse neutro per M=M _{less}	y (M)	8.2	cm	
Coefficiente dipendente dalla durata del carico	ı k.	0.4		
Altezza efficace	h _{cer}	10.61	cm	
Rapporto tra moduli elastici	a,	6.1	-	
Armatura nell'area efficace	As _e	7.70	cm²	
Area efficace	Aces	1061.40	cm²	
Rapporto geometrico di armatura	Per	0.0073	•	
Deformazione unitaria media dell'armatura Copriferro netto	Esm c'	0.00085111 4.0	- cm	
Coefficiente dipendente dall'aderenza dell'acci	aK ₁	0.80		
Coefficiente dipendente dal diagramma tensio	1 K2	0.50		
Coefficiente adimensionale	K ₃	3,40	-	
Coefficiente adimensionale	K4	0.425	_	
Diametro equivalente delle barr edi armatura	Фес	14.00	mm	
Distanza massima tra le fessure	Δs _{max}	464.201184	mm	
Distanza media tra le fessure	Δsm	273.05952	mm	
Valore medio dell'apertura delle fessure	W _m	0.23	mm	
Valore di calcolo dell'apertura delle fessure	We	-	mm	
Tipo di armatura	Poco sensi	bile		
Condizioni ambientali	Aggressive	2		
Stato limite	Rara			
Valore limite di apertura delle fessure	w1 = 0.2 m	m		
	wd=	-	5.0	
	wmax =	- C - C - C - C - C - C - C - C - C - C		
	wk	<	wmax	verifica soddisfatta

-		
Soll	 	:

Momento flettente	M	12.97 kN m	QUASI PERMANENTE
Sforzo normale	N	26.55 kN	232QPT2

Materiali

Resistenza caratteristica cubica calcestruzzo	R _{dk}	37	N/mm²
Resistenza caratteristica cilindrica calcestruzzo	fck	30.71	N/mm ²
Modulo elastico del calcestruzzo	E _{cm}	33019.43	N/mm ²
Tensione ammissibile ds	σc _{amm}	12.3	N/mm ²
Res. media a trazione ds	f _{ctm}	2.94	N/mm ²
Res. caratteristica a trazione ds	f _{ctk}	2.1	N/mm ²
Tensione di snervamento acciaio	f _{vk}	450.00	N/mm ²
Modulo elastico dell'acciaio	E _s	200000.00	N/mm ²
Tensione ammissibile acciaio	σs _{amm}	337.5	N/mm ²
Coefficiente omog. acciaio-cls	n	15	

Caratteristiche geometriche

curacteristicine geometricine									
Altezza sezione	Н	40	cm						
Larghezza sezione	В	100	cm						
Armatura compressa (1º strato)	As ₁	7.70	cm ²	5	Ø	14	C ₅₁ =	7.1	cm
Armatura compressa (2º strato)	As ₂	0.00	cm ²	0	Ø	0	C ₅₂ =	7.8	cm
Armatura tesa (2º strato)	As ₂	0.00	cm ²	0	Ø	0	C12 =	7.1	cm
Armatura tesa (1º strato)	As ₁	7.70	cm ²	5	Ø	14	C11 =	7.1	cm

Tensioni nei materiali

Compressione max nel ds.	σς	1.1	N/mm ²	<	σc _{amm}
Trazione nell'acciaio (1º strato)	σs	38.0	N/mm ²	<	σa _{amm}
Eccentricità	e (M)	48.9	cm	>	H/6 Sez. parzializzata
	u (M)	28.9	cm		
Posizione asse neutro	y (M)	9.8	cm		
Area ideale (sez. int. reagente)	A _{id}	4216	cm ²		
Mom. di inerzia ideale (sez. int. reag.)	J _{id}	571758.577	cm ¹		
Mom, di inerzia ideale (sez, parz, N=0)	Just	93735,4721	cm ¹		

Momento di fessurazione (f _{ct})	M _{fess} *	61	kN m	La sezione non è fessurata
Momento di fessurazione (f _{an})	М.,,	86	kN m	
Eccentricità per M≔M _{tem}	e (M _{ress})	323.6	cm	
	u (M _{fess})	303.6	cm	
Compressione max nel ds. per M=M _{ess}	acr	7.3		
Traz. nell'acciaio (1º str.) per M≕M _{tess}	OSI	350.4	N/mm²	
Posizione asse neutro per M=M _{less}	y (M ₁₀₀₀)	7.9	cm	
Coefficiente dipendente dalla durata del carico	k,	0.4		
Altezza efficace	h _{ceff}	10.71	cm	
Rapporto tra moduli elastici	O ₀	6,1	-	
Armatura nell'area efficace	As _e	7.70	cm²	
Area efficace	Ac	1071.37	cm²	
Rapporto geometrico di armatura	Per	0.0072		
Deformazione unitaria media dell'armatura	Esm	0.00089716	-	
Copriferro netto	c'	4.0	cm	
Coefficiente dipendente dall'aderenza dell'accia	iΚı	0.80		
Coefficiente dipendente dal diagramma tension	1 K2	0.50		
Coefficiente adimensionale	K ₃	3,40		
Coefficiente adimensionale	K4	0.425		
Diametro equivalente delle barr edi armatura	Фес	14.00	mm	
Distanza massima tra le fessure	Δs_{max}	467.284374	mm	
Distanza media tra le fessure	Δs _m	274.873161	mm	
Valore medio dell'apertura delle fessure	Wm	0.25	mm	
Valore di calcolo dell'apertura delle fessure	We	-	mm	
Tipo di armatura	Poco sensi	bile		
Condizioni ambientali	Aggressive	2		
Stato limite	Rara			
Valore limite di apertura delle fessure	w1=0.2 m	m		
	wd= wmax =	0.2		
	wmax =	<	-	verifica soddisfatta

Sommità Psup-1

Momento flettente	M	13.69	kN m	RARA		
Sforzo normale	N	58.37	kN	109R1T13M		
Materiali						
Resistenza caratteristica cubica calcestruzzo	R _{ak}	37	N/mm ²			
Resistenza caratteristica cilindrica calcestruzzo	fck	30.71	N/mm ²			
Modulo elastico del calcestruzzo	E _{cm}	33019.43	N/mm ²			
Tensione ammissibile cls	σc _{amm}	16.9	N/mm ²			
Res. media a trazione ds	f _{ctm}	2.94	N/mm ²			
Res. caratteristica a trazione ds	f _{ctk}	2.1	N/mm²			
Tensione di snervamento acciaio	fyk	450.00	N/mm²			
Modulo elastico dell'acciaio	E _s	200000.00	N/mm²			
Tensione ammissibile acciaio	σs _{amm}	337.5	N/mm²			
Coefficiente omog. acciaio-cls	n	15				
Altezza sezione Larghezza sezione Armatura compressa (1º strato)	H B As.'	40 100 7,70	cm cm ²	5 Ø 14	c. = 7.1	cm
Armatura compressa (1º strato)	As ₁		cm ²	5 Ø 14		cm
Armatura compressa (2º strato)	As ₂	0.00	cm ²	0 Ø 0	_	cm
Armatura tesa (2º strato)	As ₂	0.00	cm ²	0 Ø 0		cm
Armatura tesa (1º strato)	As ₁	7.70	cm ²	5 Ø 14	C ₁₁ = ' /.1	cm
Tensioni nei materiali						
Compressione max nel cls.	σς	1.0	N/mm ²	< oc _{amm}		
Trazione nell'acciaio (1º strato)	σs	22.0	N/mm ²	< σa _{amm}		
	0.0	23.5	cm	> H/6 Sez. pa	rzializzata	
Eccentricità	e (M) u (M)	3.5	cm			
thora for the second			cm cm			
Eccentricità Posizione asse neutro Area ideale (sez. int. reagente)	u (M)	3.5	7.00			
Posizione asse neutro	u (M) y (M)	3.5 13.6	cm			

Momento di fessurazione (f _{ds})	M _{fess} *	63	kN m	La sezione non è fessurata
Momento di fessurazione (f _{ess})	Mess	88	kN m	
Eccentricità per M=M _{tess}	e (M _{ess})	150.9	cm	
	u (M _{tess})	130.9	cm	
Compressione max nel ds. per M=M	acr	7.5		
Traz. nell'acciaio (1º str.) per M=M _{tess}	OSI	338.1	N/mm²	
Posizione asse neutro per M=M _{test}	у (М _{ена})	8.2	cm	
Coefficiente dipendente dalla durata del carico) k.	0.4		
Altezza efficace	h _{eat}	10.60	cm	
Rapporto tra moduli elastici	o.	6.1	-	
Armatura nell'area efficace	Asen	7.70	cm²	
Area efficace	Aces	1059.92	cm²	
Rapporto geometrico di armatura	ρω	0.0073		
Deformazione unitaria media dell'armatura	Esm	0.00084439		
Copriferro netto	ď	4.0	cm	
Coefficiente dipendente dall'aderenza dell'acci	aK ₁	0.80		
Coefficiente dipendente dal diagramma tensio	n K ₂	0.50		
Coefficiente adimensionale	K ₃	3.40		
Coefficiente adimensionale	K4	0.425		
Diametro equivalente delle barr edi armatura	Фес	14.00	mm	
Distanza massima tra le fessure	Δs _{max}	463.744719	mm	
Distanza media tra le fessure	Δ5	272.791011	mm	
Valore medio dell'apertura delle fessure	Wm	0.23	mm	
Valore di calcolo dell'apertura delle fessure	We		mm	1
Tipo di armatura	Poco sens	ibile		
Condizioni ambientali	Aggressive	e		
Stato limite	Rara			
Valore limite di apertura delle fessure	w1=0.2 m	ım		
	wd=	-		

wmax = 0.2

wmax verifica soddisfatta

wk

RELAZIONE DI CALCOLO

COMMESSA LOTTO

NM0Y 00 D 11

CODIFICA CL DOCUMENTO RI0003 002

REV.

FOGLIO 103 di 166

- 1			
SOL	lecit	37IC	ını

Momento flettente	М	8.16 kN m	QUASI PERMANENTE
Sforzo normale	N	18.52 kN	232QPT2

Materiali

Resistenza caratteristica cubica calcestruzzo	R _{dk}	37	N/mm ²
Resistenza caratteristica cilindrica calcestruzzo	fck	30.71	N/mm ²
Modulo elastico del calcestruzzo	E _{cm}	33019.43	N/mm ²
Tensione ammissibile ds	σc _{amm}	12.3	N/mm ²
Res. media a trazione ds	f _{ctm}	2.94	N/mm ²
Res. caratteristica a trazione ds	f _{ctk}	2.1	N/mm ²
Tensione di snervamento acciaio	fyk	450.00	N/mm ²
Modulo elastico dell'acciaio	Es	200000.00	N/mm ²
Tensione ammissibile acciaio	σs _{amm}	337.5	N/mm ²
Coefficiente omog. acciaio-ds	n	15	

Caratteristiche geometriche

caracteristicine geometricine									
Altezza sezione	Н	40	cm						
Larghezza sezione	В	100	cm						
Armatura compressa (1º strato)	As ₁	7.70	cm ²	5	Ø	14	C ₅₁ =	7.1	cm
Armatura compressa (2º strato)	As ₂	0.00	cm ²	0	Ø	0	C ₅₂ =	7.8	cm
Armatura tesa (2º strato)	As ₂	0.00	cm ²	0	Ø	0	C12 =	7.1	cm
Armatura tesa (1º strato)	As ₁	7.70	cm ²	5	Ø	14	C11 =	7.1	cm

Tensioni nei materiali

Compressione max nel cls.	σς	0.7	N/mm²	<	σc _{amm}
Trazione nell'acciaio (1º strato)	σs	22.7	N/mm ²	<	σa _{amm}

Eccentricità	e (M)	44.0	cm	>	H/6 Sez. parzializzata
	u (M)	24.0	cm		
Posizione asse neutro	y (M)	10.1	cm		
Area ideale (sez. int. reagente)	A _{id}	4216	cm ²		
Mom. di inerzia ideale (sez. int. reag.)	J _{id}	571758.577	cm ⁴		
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	95304.6143	cm ⁴		

Momento di fessurazione (fඎ)	M _{fess} *	60	kN m	La sezione non è fessurata
Momento di fessurazione (f _{ee})	M	85	kN m	
Eccentricità per M=M _{tess}	e (M _{fess})	460.8	cm	
	u (M _{fess})	440.8	cm	
Compressione max nel ds. per M=M	acr	7.3		
Traz. nell'acciaio (1º str.) per M=M _{less}	OSI	353.5	N/mm²	
Posizione asse neutro per M=M _{tess}	y (M _{tess})	7.8	cm	
Coefficiente dipendente dalla durata del carico) ke	0.4		
Altezza efficace	h _{ear}	10.74	cm	
Rapporto tra moduli elastici	o _e	6.1		
Armatura nell'area efficace	Asee	7.70	cm²	
Area efficace	Ac	1074.24	cm²	
Rapporto geometrico di armatura	P _{er}	0.0072		
Deformazione unitaria media dell'armatura	Esm	0.00091062		
Copriferro netto	c	4.0	cm	
Coefficiente dipendente dall'aderenza dell'acci	aK ₁	0.80		
Coefficiente dipendente dal diagramma tensio	n K ₂	0.50		
Coefficiente adimensionale	К3	3,40	-	
Coefficiente adimensionale	K4	0.425		
Diametro equivalente delle barr edi armatura	Фас	14.00	mm	
Distanza massima tra le fessure	Δs _{max}	468, 171218	mm	
Distanza media tra le fessure	Δ5	275.394834	mm	
Valore medio dell'apertura delle fessure	Wm	0.25	mm	
Valore di calcolo dell'apertura delle fessure	We	-	mm	
Tipo di armatura	Poco sens	ibile		
Condizioni ambientali	Aggressiv	e		
Stato limite	Rara			
Valore limite di apertura delle fessure	w1=0.2 m	ım		
	wd=		- 0	

wmax = 0.2

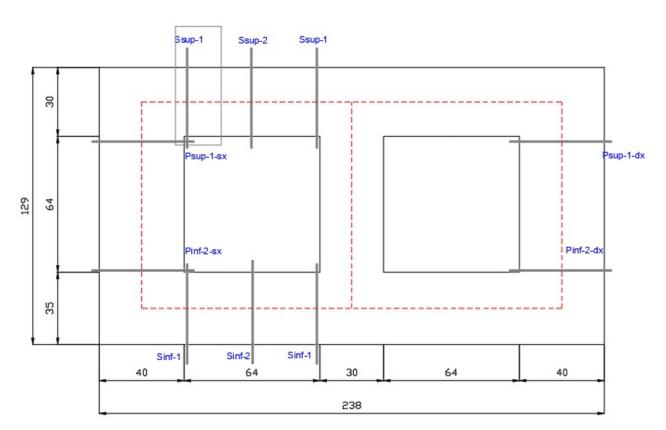
wk

wmax verifica soddisfatta

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO					
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 105 di 166

9.3.2 Soletta superiore

Armatura a flessione:


Armatura compressa ∮14/20 cm

Armatura compressa \phi14/20 cm

Armatura a taglio:Spille \phi10/20x40 cm

• Verifica a flessione

Appoggio Ssup-1

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 106 di 166

Acciaio				
Tensione car. di rottura	f_{tk}	=	540	N/mm²
Tensione car. di snervamento	fyk	=	450	N/mm²
Coeff. parziale di sicurezza	V _s	=	1.15	
Resistenza di calcolo	fyd	=	391	N/mm ²
Modulo elastico	Es	=	205000	N/mm²
	Ewd	=	0.00191	

Calcestruz	Z0	
Tipo	C30/37	
Rck	37	N/mm²
f_{ck}	30.71	N/mm²
Vc	1.5	
fcd	20.5	N/mm²
f_{cc}	17.4	N/mm²

30 cm
100 cm
40 mm
10 mm
14 mm
7.1 cm
22.9 cm

Armatura	tesa		
N° ferri	Diametro	Area	-
5	14	7.70	cm ²
		0.00	cm ²
80		0.00	cm ²
\$ 6.		7.70	cm ²

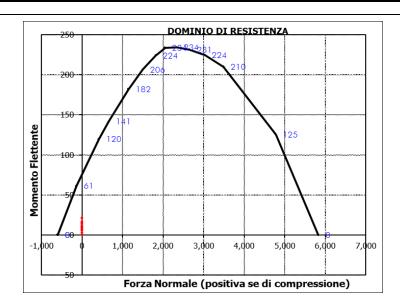
	Diametro	Area	100000
5	14	7.70	cm ²
		0.00	cm ²
		0.00	cm ²
		7.70	cm ²

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 107 di 166

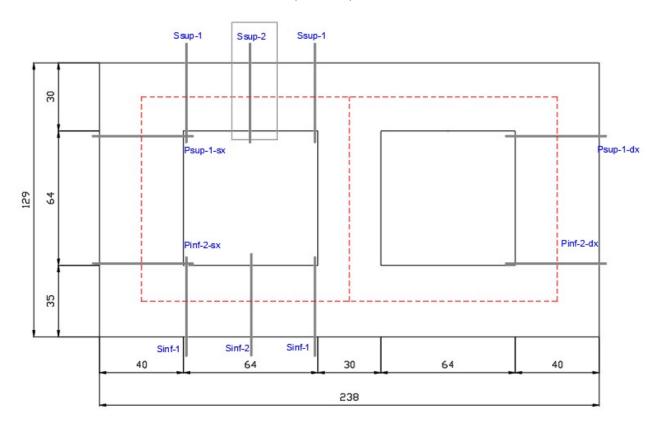
Caratteristi	che di solle	citazione
Comb.	Nsd	Msd
01S1-11M	0.00	8.85
02S1-11T	0.00	8.85
03S1-12M	0.00	10.00
04S1-12T	0.00	10.00
05S1-13M	0.00	11.49
06S1-13T	0.00	11.49
07S1-14-	0.00	3.39
08S1-15-	0.00	4.89
09S1-16S	0.00	8.24
1051-175	0.00	8.51
1151-185	0.00	8.81
12S1-19S	0.00	2.51
1351-205	0.00	2.82
14S1-21M	0.00	9.55
15S1-21T	0.00	9.55
16S1-22M	0.00	8.40
17S1-22T	0.00	8.40
18S1-23M	0.00	6.91
19S1-23T	0.00	6.91
20S1-24-	0.00	15.01
2151-25-	0.00	13.51
22S1-26S	0.00	10.16
2351-275	0.00	9.89
2451-285	0.00	9.59
25S1-29S	0.00	15.88
26S1-30S	0.00	15.58
27S1T11M	0.00	15.14
28S1T11T	0.00	15.14
29S1T12M	0.00	16.09
30S1T12T	0.00	16.09
31S1T13M	0.00	17.30
32S1T13T	0.00	17.30
33S1T14-	0.00	9.32
34S1T15-	0.00	10.54
35S1T16S	0.00	14.66
36S1T17S	0.00	14.90
37S1T18S	0.00	15.16
38S1T19S	0.00	8.62
39S1T20S	0.00	8.88
40S1T21M	0.00	15.53
41S1T21T	0.00	15.53
42S1T22M	0.00	14.58
43S1T22T	0.00	14.58
		-


Caratteristi	che di solle	citazione
Comb.	Nsd	Msd
44S1T23M	0.00	13.36
45S1T23T	0.00	13.36
46S1T24-	0.00	21.34
47S1T25-	0.00	20.13
48S1T26S	0.00	16.01
49S1T27S	0.00	15.77
50S1T28S	0.00	15.50
51S1T29S	0.00	22.05
52S1T30S	0.00	21.78
53S3-11M	0.00	10.70
54S3-11T	0.00	10.70
55S3-12M	0.00	11.85
56S3-12T	0.00	11.85
57S3-13M	0.00	13.34
58S3-13T	0.00	13.34
5953-145	0.00	10.09
60S3-15S	0.00	10.36
61S3-16S	0.00	10.66
62S3-21M	0.00	7.70
63S3-21T	0.00	7.70
64S3-22M	0.00	6.76
65S3-22T	0.00	6.76
66S3-23M	0.00	5.54
67S3-23T	0.00	5.54 8.31
68S3-24S	0.00	8.31
6953-255	0.00	8.06
70S3-26S	0.00	7.80
71SSS1	0.00	1.10
72SSS2	0.00	1.07
73SSS3	0.00	0.59
74SSS4	0.00	0.49
75SSS5	0.00	9.13
76SSS6	0.00	9.15
77SSS7	0.00	9.63
78SSS8	0.00	9.73
7955595	0.00	0.73
80SSS10S	0.00	0.70
81SSS11S	0.00	0.22
82SSS12S	0.00	0.12
83SSS13S	0.00	9.49
84SSS14S	0.00	9.52
85SSS15S	0.00	10.00
86SSS16S	0.00	10.10

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 108 di 166



	Caratteristiche di sollecitazione		
	Comb.	Nsd [kN]	Msd [kNm]
(Nmax)	01S1-11M	0.00	8.85
(Nmin)	01S1-11M	0.00	8.85
(Mmax)	51S1T29S	0.00	22.05
(Mmin)	82555125	0.00	0.12

DOMINIO DI RESISTENZA			
PUNTO	NRd [kN]	MRd [kNm	
1	-602	0	
2	-602	0	
3	-139	61	
4	417	120	
5	659	141	
6	1148	182	
7	1503	206	
8	1817	224	
9	2049	234	
10	2338	234	
11	2656	231	
12	3031	224	
13	3489	210	
14	4779	125	
15	5823	0	

Campata Ssup-2

Acciaio				
Tensione car. di rottura	ftk	=	540	N/mm²
Tensione car. di snervamento	f_{yk}	=	450	N/mm²
Coeff. parziale di sicurezza	Vs.	=	1.15	
Resistenza di calcolo	f_{yd}	=	391	N/mm ²
Modulo elastico	Es	=	205000	N/mm²
	Eyd	=	0.00191	

Geometria della sezione			
Altezza geometrica della sezi	oı h	=	30 cm
Base della sezione	b	=	100 cm
Copriferro netto	C	=	40 mm
Armatura a taglio	Φ	=	10 mm
Armatura di ripartizione	φ	=	14 mm
Copriferro	c'	= "	7.1 cm
Altezza utile della sezione	d	=	22.9 cm

Calcestruzzo				
Tipo	C30/37			
Rck	37	N/mm²		
f_{ck}	30.71	N/mm²		
Yc	1.5			
f_{cd}	20.5	N/mm²		
f_{cc}	17.4	N/mm²		

Armatura tesa				
N° ferri	Diametro	Area		
5	14	7.70	cm ²	
		0.00	cm ²	
		0.00	cm ²	
		7.70	cm ²	

Armatura compressa				
N° ferri	Diametro	Area		
5	14	7.70	cm ²	
		0.00	cm ²	
		0.00	cm ²	
		7.70	cm ²	

RELAZIONE DI CALCOLO

COMMESSA

LOTTO CODIFICA

DOCUMENTO

REV.

FOGLIO

NM0Y

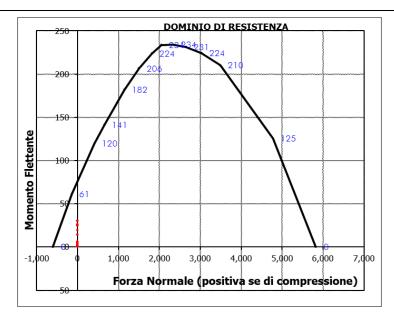
00 D 11

CL

RI0003 002

110 di 166

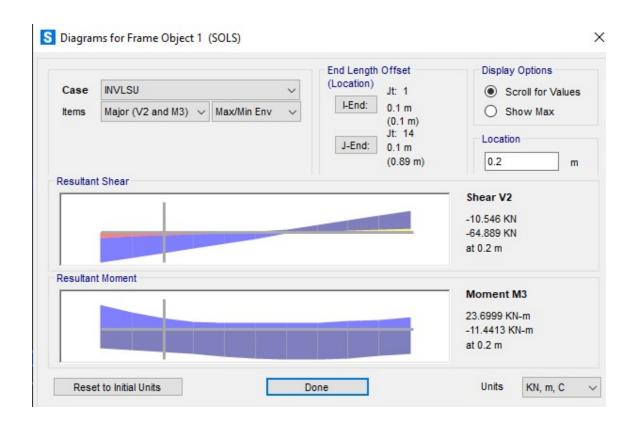
Caratteristi	che di solle	citazione
Comb.	Nsd	Msd
01S1-11M	0.00	6.50
02S1-11T	0.00	6.50
03S1-12M	0.00	6.14
04S1-12T	0.00	6.14
05S1-13M	0.00	6.22
06S1-13T	0.00	6.22
07S1-14-	0.00	0.26
08S1-15-	0.00	0.33
09S1-16S	0.00	5.72
10S1-17S	0.00	5.63
11S1-18S	0.00	5.66
12S1-19S	0.00	0.53
13S1-20S	0.00	0.56
14S1-21M	0.00	25.86
15S1-21T	0.00	25.86
16S1-21T	0.00	25.50
17S1-22T	0.00	25.50
	0.00	25.57
18S1-23M	0.00	25.57
19S1-23T		
20S1-24-	0.00	19.61
2151-25-	0.00	19.69
22S1-26S	0.00	25.07
23S1-27S	0.00	24.99
24S1-28S	0.00	25.01
25S1-29S	0.00	19.88
26S1-30S	0.00	19.91
27S1T11M	0.00	1.35
28S1T11T	0.00	1.35
29S1T12M	0.00	1.64
30S1T12T	0.00	1.64
31S1T13M	0.00	1.58
32S1T13T	0.00	1.58
33S1T14-	0.00	6.13
34S1T15-	0.00	6.07
35S1T16S	0.00	1.97
36S1T17S	0.00	2.05
37S1T18S	0.00	2.03
38S1T19S	0.00	5.91
39S1T20S	0.00	5.89
40S1T21M	0.00	30.91
41S1T21T	0.00	30.91
42S1T22M	0.00	30.61
43S1T22T	0.00	30.61
-		'


Caratteristiche di sollecitazione			
Nsd	Msd		
0.00	30.68		
0.00	30.68		
0.00	26.12		
0.00	26.19		
0.00	30.28		
0.00	30.20		
0.00	30.23		
0.00	26.34		
0.00	26.37		
0.00	6.23		
0.00	6.23		
0.00	5.87		
0.00	5.87		
0.00	5.94		
0.00	5.94		
0.00	5.44		
0.00	5.35		
	5.38		
0.00	25.58		
0.00	25.58		
0.00	25.28		
0.00	25.28		
0.00	25.35		
0.00	25.35		
0.00	24.79		
0.00	24.72		
0.00	24.74		
0.00	3.63		
0.00	3.59		
0.00	3.75		
0.00	3.62		
0.00	14.38		
0.00	14.35		
0.00	14.50		
0.00	14.37		
0.00	3.55		
0.00	3.52		
0.00	3.67		
0.00	3.55		
0.00	14.31		
0.00	14.27		
0.00	14.42		
0.00	14.30		
	Nsd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 111 di 166


	Caratteristiche di sollecitazione			
	Comb. Nsd [kN] Msd [kNm]			
(Nmax)	01S1-11M	0.00	6.50	
(Nmin)	01S1-11M	0.00	6.50	
(Mmax)	40S1T21№	0.00	30.91	
(Mmin)	0751-14-	0.00	0.26	

DOMINIO DI RESISTENZA			
PUNTO	NRd [kN]	MRd [kNm]	
1	-602	0	
2	-602	0	
3	-139	61	
4	417	120	
5	659	141	
6	1148	182	
7	1503	206	
8	1817	224	
9	2049	234	
10	2338	234	
11	2656	231	
12	3031	224	
13	3489	210	
14	4779	125	
15	5823	0	

Verifica a taglio

Si riportano i valori delle sollecitazioni taglianti in corrispondenza del filo interno dell'elemento in esame:

RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO RI0003 002 113 di 166 NM0Y 00 D 11 CL

Calcestruzzo

Tipo	C30/37	
R.	37	N/mm²
f _{ck}	30.7	N/mm²
V _C	1.5	
α_{cc}	0.85	
f_{cd}	17.4	N/mm²

Acciaio

Accidio		
f _{tk}	540	N/mm²
fyk	450	N/mm²
V _s	1.15	
f _{yd}	391	N/mm²

Sollecitazioni			Soletta sup
V _{Ed}	1000	kN	64.89
N _{Ed}		kN	0

Armatura a taglio

Diametro		mm	10
Numero barre			5
Asw		cm ²	3.93
Passo s		cm	40
Angolo α	•	0	90

Armatura longitudinale

n ₁	- 1	5
\emptyset_1	mm	14
n ₂		-
\emptyset_2	mm	-
Asl	cm ²	7.70

Sezione

b _w		cm	100
Н		cm	30
С	•	cm	7.1
d		cm	22.9
k		N/mm²	1.93
V _{min}		N/mm²	0.52
ρ			0.0034
σср		N/mm²	0.00
a_c			1.00

Resistenza senza armatura a taglio

		1 27 17 17 1
V _{Rd}	kN	120

Resistenza con armatura a taglio

Inclinazione puntone θ		21.8
V _{RSd}	kN	198
V _{RCd}	kN	618
V _{Rd}	kN	198
coefficiente di sicu	rezza C.S.	3.05

coefficiente di sicurezza C.S.

Elementi senza armatura a taglio

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \ge (v_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d$$

$$(4.1.14)$$

Elementi con armature trasversali resistenti al taglio

$$V_{\text{Rsd}} = 0.9 \cdot d \cdot \frac{A_{\text{sw}}}{\text{s}} \cdot f_{\text{yd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) \cdot \sin\alpha$$

$$V_{\text{Rcd}} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta)$$

• Verifica a fessurazione e delle tensioni

Appoggio Ssup-1- N≠0

Momento flettente	M	10.42	kN m	RARA		
Sforzo normale	N	22.30	kN	109R1T13M		
Materiali						
Resistenza caratteristica cubica calcestruzzo	R _{ck}	37	N/mm ²			
Resistenza caratteristica cilindrica calcestruzzo	fck	30.71	N/mm ²			
Modulo elastico del calcestruzzo	E _{cm}	33019.43	N/mm ²			
Tensione ammissibile ds	σc _{amm}	16.9	N/mm ²			
Res. media a trazione ds	form	2.94	N/mm ²			
Res. caratteristica a trazione ds	f _{ctk}	2.1	N/mm ²			
Tensione di snervamento acciaio	fuk	450.00	N/mm ²			
Modulo elastico dell'acciaio	E _s	205000.00	N/mm ²			
Tensione ammissibile acciaio	OS _{amm}	337.5	N/mm²			
Coefficiente omog, acciaio-cls	n	15	1000			
Country in the constraints						
Caratteristiche geometriche Altezza sezione	Н	30	cm			- 10
Larghezza sezione	В	100	cm			
Armatura compressa (1º strato)	As ₁ '	7.70	cm ²	5 Ø 14	c _{s1} = 7.1	cm
Armatura compressa (2º strato)	As ₂	0.00	cm ²		C ₅₂ = 7.8	cm
Armatura tesa (2º strato)	As ₂	0.00	cm ²	0 Ø 0	c ₁₂ = 7.8	cm
Armatura tesa (1º strato)	As ₁	7.70	cm ²	5 Ø 14	c ₁₁ = 7.1	cm
Tensioni nei materiali						
Compressione max nel cls.	σς	1.6	N/mm²	< ocamm		
Trazione nell'acciaio (1º strato)	σs	48.8	N/mm²	< σa _{amm}		
Eccentricità	e (M)	46.7	cm	> H/6 Sez. par:	zializzata	
	u (M)	31.7	cm			
Posizione asse neutro	y (M)	7.5	cm			
Area ideale (sez. int. reagente)	A _{Id}	3216	cm ²			
Mom. di inerzia ideale (sez. int. reag.)	J _{id}	239410.9096	cm ⁴			
Mom. di inerzia ideale (sez. parz. N=0)	Just	41409.36331	cm ⁴			

Verifica a	fessurazione

Momento di fessurazione (f _{ds})	M _{fess} *	34	kN m	La sezione non è fessurata
Momento di fessurazione (f _{em})	M _{tess}	48	kN m	
Eccentricità per M=M _{tess}	e (M)	215.6	cm	
	u (M _{ess})	200.6	cm	
Compressione max nel ds. per M=M _{tess}	aar	7.5		
Traz. nell'acciaio (1º str.) per M=M _{tess}	asr	281.3	N/mm²	
Posizione asse neutro per M=M _{fess}	y (M _{ess})	6.6	cm	
Coefficiente dipendente dalla durata del carico	k.	0.4		
Altezza efficace	hoet	7.82	cm	
Rapporto tra moduli elastici	o,	6.2		
Armatura nell'area efficace	Aser	7.70	cm²	
Area efficace	Acer	781.65	cm²	
Rapporto geometrico di armatura	Per	0.0098		
Deformazione unitaria media dell'armatura	Esm	0.000753392		
Copriferro netto	c'	4.0	cm	
Coefficiente dipendente dall'aderenza dell'acciaio	K ₁	0.80		
Coefficiente dipendente dal diagramma tensioni	K ₂	0.50		
Coefficiente adimensionale	K3	3,40		
Coefficiente adimensionale	K4	0.425	-	
Diametro equivalente delle barr edi armatura	Фес	14.00	mm	
Distanza massima tra le fessure	Δεπικ	377.6979932	mm	
Distanza media tra le fessure	Δs	222.1752901	mm	
Valore medio dell'apertura delle fessure	W _m	0.17	mm	
Valore di calcolo dell'apertura delle fessure	w.	-	mm	
Tipo di armatura	Poco sens	ibile		
Condizioni ambientali	Aggressiv	e		
Stato limite	Rara			
Valore limite di apertura delle fessure	w1=0.2 m	im		
	wd= wmax =	0.2		
	whax =	<	wmax	verifica soddisfatta

Posizione asse neutro

Area ideale (sez. int. reagente)

Mom. di inerzia ideale (sez. int. reag.)

Mom. di inerzia ideale (sez. parz. N=0)

LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 116 di 166

Momento flettente	M	0.84	kN m	QU	ASI I	PERI	MANENTE	
Sforzo normale	N	2.82	kN		2	31QI	PT1]
Materiali								
Resistenza caratteristica cubica calcestruzzo	R _{dk}	37	N/mm ²					
Resistenza caratteristica cilindrica calcestruzzo	fck	30.71	N/mm ²					
Modulo elastico del calcestruzzo	E _{cm}	33019.43	N/mm ²					
Tensione ammissibile ds	σc _{amm}	12.3	N/mm ²					
Res. media a trazione ds	f _{ctm}	2.94	N/mm ²					
Res. caratteristica a trazione cls	f _{ctk}	2.1	N/mm ²					
Tensione di snervamento acciaio	f _{vk}	450.00	N/mm ²					
Modulo elastico dell'acciaio	E _s	205000.00	N/mm ²					
Tensione ammissibile acciaio	σs _{amm}	337.5	N/mm ²					
Coefficiente omog. acciaio-cls	n	15						
Caratteristiche geometriche								
Altezza sezione	Н	30	cm					
Larghezza sezione	В	100	cm					
Armatura compressa (1º strato)	As ₁	7.70					$c_{s1} = 7.1$	cm
Armatura compressa (2º strato)	As ₂	0.00	cm ²				$c_{s2} = 7.8$	cm
Armatura tesa (2º strato)	As ₂	0.00	cm ²				c ₁₂ = 7.8	
Armatura tesa (1º strato)	As ₁	7.70	cm ²		5 Ø	14	c ₁₁ = 7.1	cm
Tensioni nei materiali								
Compressione max nel cls.	σε	0.1	N/mm ²	< σ	Camm		1	
Trazione nell'acciaio (1º strato)	σs	3.3	N/mm²		a _{amm}]	
Eccentricità	e (M)	29.9	cm	> H	/6 Se	ez. p	arzializzata	
	u (M)	14.9	cm					

A_{id}

8.3 cm

3216 cm²

239410.91 cm⁴

43798.2326 cm⁻¹

Momento di fessurazione (f _{db})	M _{fess} *	33	kN m	La sezione non è fessurata
Momento di fessurazione (f)	Mess	47	kN m	
Eccentricità per M=M _{tess}	e (M _{ress})	1668.3	cm	
	u (M _{tess})	1653.3	cm	
Compressione max nel ds. per M=M _{tess}	acr	7.4		
Traz. nell'acciaio (1º str.) per M=M _{tess}	asr	289.1	N/mm²	
Posizione asse neutro per M=M _{less}	у (М.,,,)	6.4	cm	
Coefficiente dipendente dalla durata del carico	ı k.	0.4		
Altezza efficace	h _{ceff}	7.88	cm	
Rapporto tra moduli elastici	αο	6.2		
Armatura nell'area efficace	As _{eff}	7.70	cm²	
Area efficace	Acet	788.12	cm²	
Rapporto geometrico di armatura	Pet	0.0098		
Deformazione unitaria media dell'armatura	8sm	0.00078659	-	
Copriferro netto	c'	4.0	cm	
Coefficiente dipendente dall'aderenza dell'acci	aK ₁	0.80		
Coefficiente dipendente dal diagramma tension	n K ₂	0.50	-	
Coefficiente adimensionale	K ₃	3,40	-	
Coefficiente adimensionale	K4	0.425	-	
Diametro equivalente delle barr edi armatura	Фес	14.00	mm	
Distanza massima tra le fessure	Δs _{max}	379.699813	mm	
Distanza media tra le fessure	Δs_m	223.352831	mm	
Valore medio dell'apertura delle fessure	Wm	0.18	mm	
Valore di calcolo dell'apertura delle fessure	Wd	-	mm	
Tipo di armatura	Poco sens	ibile		
Condizioni ambientali	Aggressiv	e		
Stato limite	Rara			
Valore limite di apertura delle fessure	w1=0.2 m	m		
	wd=	-	-	
	wmax =	0.2		verifica soddisfatta

Campata Ssup-2 - N≠0

_		-					
So	Пα			71	^	n	
JU	ш		La	4	v	•	ı

Momento flettente	М	22.81	kN m	RARA
Sforzo normale	N	21.69	kN	118R1T23M

Materiali

Resistenza caratteristica cubica calcestruzzo	R _{ck}	37	N/mm ²
Resistenza caratteristica cilindrica calcestruzzo	fck	30.71	N/mm ²
Modulo elastico del calcestruzzo	Ecm	33019.43	N/mm ²
Tensione ammissibile cls	σc _{amm}	16.9	N/mm ²
Res. media a trazione cls	f _{ctm}	2.94	N/mm ²
Res. caratteristica a trazione cls	f _{ctk}	2.06	N/mm ²
Tensione di snervamento acciaio	fyk	450.00	N/mm ²
Modulo elastico dell'acciaio	Es	205000.00	N/mm ²
Tensione ammissibile acciaio	σs _{amm}	337.5	N/mm ²
Coefficiente omog. acciaio-cls	n	15	100

Caratteristiche geometriche

Altezza sezione	Н	30	cm					
Larghezza sezione	В	100	cm					
Armatura compressa (1º strato)	As ₁	7.70	cm ²	5	Ø	14	C _{s1} = 7.1	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²	0	Ø	0	C _{s2} = 7.8	cm
Armatura tesa (2º strato)	As ₂	0.00	cm ²	0	Ø	0	C ₁₂ = 7.1	cm
Armatura tesa (1º strato)	As ₁	7.70	cm ²	5	Ø	14	C _{i1} = 7.1	cm

Tensioni nei materiali

Compressione max nel cls.	σς	3.5	N/mm ²	<	σc _{amm}
Trazione nell'acciaio (1º strato)	σs	125.7	N/mm²	<	σa _{amm}
Eccentricità	e (M)	105.2	cm	>	H/6 Sez. parzializzata
	u (M)	90.2	cm		
Posizione asse neutro	y (M)	6.8	cm		
Area ideale (sez. int. reagente)	Aid	3216	cm ²		
Mom. di inerzia ideale (sez. int. reag.)	J_{id}	239410.91	cm ⁴		
Mom. di inerzia ideale (sez. parz. N=0)	late.	40416.5657	cm ⁴		

Verifica a fessurazione

Verifica a fessurazione			Company of the species of the state of the s	
Momento di fessurazione (f _{ctk})	M _{fess} *	34	kN m La sezione non è fessu	ırata
Momento di fessurazione (f _{ctin})	M _{fess}	48	kN m	
Eccentricità per M=M _{fess}	e (M _{fess})	221.4	cm	
	u (M _{fess})	206.4	cm	
Compressione max nel cls. per M=M _{fess}	ocr	7.5		
Traz. nell'acciaio (1° str.) per M=M _{fess}	osr -	281.5	N/mm²	
Posizione asse neutro per M=M _{fess}	y (M _{fess})	6.5	cm	
Coefficiente dipendente dalla durata del caric	ok,	0.4		
Altezza efficace	hoer	7.82	cm	
Rapporto tra moduli elastici	a.	6.2	-	
Armatura nell'area efficace	Asen	7.70	cm²	
Area efficace	Acer	781.85	cm²	
Rapporto geometrico di armatura	Per	0.0098	-	
Deformazione unitaria media dell'armatura	Esm .	0.00075442	-	
Copriferro netto	c'	4.0	cm	
Coefficiente dipendente dall'aderenza dell'acc	cia K ₁	0.80	-	
Coefficiente dipendente dal diagramma tensi	or K ₂	0.50	-	
Coefficiente adimensionale	K ₃	3.40	-	
Coefficiente adimensionale	K4	0.425	-	
Diametro equivalente delle barr edi armatura	Фец	14.00	mm	
Distanza massima tra le fessure	Δs _{max}	377.760455	mm	
Distanza media tra le fessure	Δs _n	222.212032	mm	
Valore medio dell'apertura delle fessure	Wm	0.17	mm	
Valore di calcolo dell'apertura delle fessure	Wa	-	mm	
Tipo di armatura	Poco sens			
Condizioni ambientali	Aggressive	е		
Stato limite	Rara	000		
Valore limite di apertura delle fessure	w1=0.2 n wd=			
	wmax =	0.2	- 24	
	wk	<	wmax verifica soddisfatta	

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 120 di 166

SO	locit	azio	m

Momento flettente	М	13.68 kN m	QUASI PERMANENTE	
Sforzo normale	N	22.40 kN	232QPT2	

Materiali

Resistenza caratteristica cubica calcestruzzo	R _{ck}	37	N/mm ²
Resistenza caratteristica cilindrica calcestruzzo	fck	30.71	N/mm ²
Modulo elastico del calcestruzzo	Ecm	33019.43	N/mm ²
Tensione ammissibile cls	σc _{amm}	12.3	N/mm ²
Res. media a trazione cls	f _{ctm}	2.94	N/mm ²
Res. caratteristica a trazione cls	f _{ctk}	2.06	N/mm ²
Tensione di snervamento acciaio	fyk	450.00	N/mm ²
Modulo elastico dell'acciaio	Es	205000.00	N/mm ²
Tensione ammissibile acciaio	σs _{amm}	337.5	N/mm ²
Coefficiente omog. acciaio-cls	n	15	The second

Caratteristiche geometriche

Altezza sezione	Н	30	cm				
Larghezza sezione	В	100	cm				
Armatura compressa (1º strato)	As ₁	7.70	cm ²	5	Ø 1	4 C _{s1} = 7.1	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²	0	Ø	c _{s2} = 7.8	cm
Armatura tesa (2º strato)	As ₂	0.00	cm ²	0	Ø) C ₁₂ = 7.1	cm
Armatura tesa (1º strato)	As ₁	7.70	cm ²	5	Ø 1	4 C ₁₁ = 7.1	cm

Tensioni nei materiali

parzializzata

Verifica a fessurazione

Verifica a fessurazione			1	
Momento di fessurazione (f _{ctk})	M _{fess} *	34	kN m	La sezione non è fessurata
Momento di fessurazione (f _{clin})	Miless	48	kN m	
Eccentricità per M=M _{ress}	e (M _{fess})	214.6	cm	
	u (M _{tess})	199.6	cm	
Compressione max nel cls. per M=M _{fess}	ocr	7.5		
Traz. nell'acciaio (1° str.) per M=M _{fess}	σsr	281.2	N/mm²	1
Posizione asse neutro per M=M _{fess}	y (M _{fess})	6.6	cm	
Coefficiente dipendente dalla durata del carico) kį	0.4		
Altezza efficace	hoen	7.82	cm	
Rapporto tra moduli elastici	O _e	6.2	-	
Armatura nell'area efficace	As _{er}	7.70	cm²	
Area efficace	Ac _{et}	781.61	cm²	
Rapporto geometrico di armatura	Per	0.0098	-	
Deformazione unitaria media dell'armatura	Esm	0.00075321	-	
Copriferro netto	c'	4.0	cm	
Coefficiente dipendente dall'aderenza dell'acci	e K ₁	0.80	-	
Coefficiente dipendente dal diagramma tensio	r K ₂	0.50		
Coefficiente adimensionale	K ₃	3.40		
Coefficiente adimensionale	K4	0.425	-	
Diametro equivalente delle barr edi armatura	Фес	14.00	mm	
Distanza massima tra le fessure	Δs _{max}	377.687151	mm	
Distanza media tra le fessure	Δs_{m}	222.168912	mm	
Valore medio dell'apertura delle fessure	Wm	0.17	mm	
Valore di calcolo dell'apertura delle fessure	Wd	-	mm	1
Tipo di armatura	Poco sens			
Condizioni ambientali	Aggressive			
Stato limite	Rara			
Valore limite di apertura delle fessure	w1=0.2 m wd=	nm		
	wmax =	0.2		
	wk	<	wmax	verifica soddisfatta

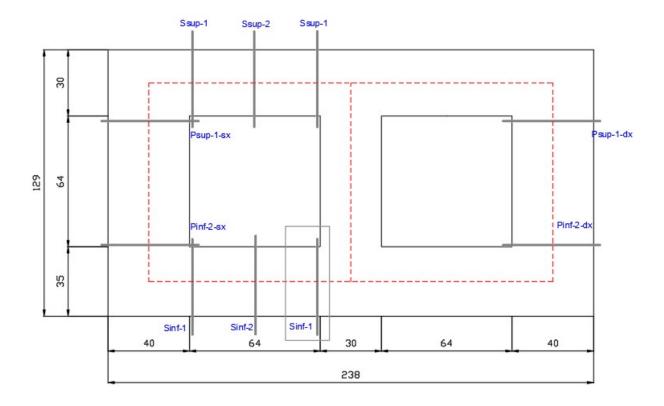
9.3.3 Soletta inferiore

Armatura a flessione:

Appoggio Sinf-1: Armatura tesa φ14/20 cm

Armatura compressa \$\phi14/20 cm

Campata Sinf-2: Armatura tesa φ14/20 cm


Armatura compressa \$14/20 cm

Armatura a taglio:Spille \phi10/40x40 cm

Armatura longitudinale: \$\phi14/20 cm

• Verifica a flessione

Appoggio Sinf-1

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 123 di 166

Acciaio				
Tensione car. di rottura	ftk	=	540	N/mm²
Tensione car. di snervamento	fyk	=	450	N/mm²
Coeff. parziale di sicurezza	Vs	=	1.15	
Resistenza di calcolo	fyd	=	391	N/mm²
Modulo elastico	Es	=	200000	N/mm²
	Ε _{vd}	=	0.00196	

Z0	
C30/37	
37	N/mm²
30.71	N/mm²
1.5	
20.5	N/mm²
17.4	N/mm²
	37 30.71 1.5 20.5

Geometria della sezione					
Altezza geometrica della sezioi	h	=	35	cm	
Base della sezione	b	=	100	cm	
Copriferro netto	C	=	40	mm	
Armatura a taglio	φ	=	10	mm	
Armatura di ripartizione	ф	=	14	mm	
Copriferro	c'	= "	7.1	cm	
Altezza utile della sezione	d	=	27.9	cm	

Armatura tesa					
N° ferri	Diametro	Area			
5	14	7.70	cm²		
		0.00	cm ²		
		0.00	cm ²		
60		7.70	cm ²		

		7.70	cm ²
		0.00	cm ²
		0.00	cm ²
5	14	7.70	cm ²
N° ferri	Diametro	Area	
	compressa		

RELAZIONE DI CALCOLO

COMMESSA NM0Y

LOTTO CODIFICA

CL

00 D 11

DOCUMENTO RI0003 002

REV.

FOGLIO **124 di 166**

Caratteristi	che di solle	citazione
Comb.	Nsd	Msd
01S1-11M	0.00	21.09
02S1-11T	0.00	21.09
03S1-12M	0.00	20.92
04S1-12T	0.00	20.92
05S1-13M	0.00	23.07
06S1-13T	0.00	23.07
0751-14-	0.00	9.85
08S1-15-	0.00	12.00
09S1-16S	0.00	19.87
10S1-17S	0.00	19.82
11S1-18S	0.00	20.29
12S1-19S	0.00	9.98
13S1-20S	0.00	10.45
14S1-21M	0.00	34.65
15S1-21T	0.00	34.65
16S1-22M	0.00	34.47
17S1-22T	0.00	34.47
18S1-23M	0.00	36.62
19S1-23T	0.00	36.62
20S1-24-	0.00	23.40
21S1-25-	0.00	25.55
22S1-26S	0.00	33.42
23S1-27S	0.00	33.37
24S1-28S	0.00	33.84
25S1-29S	0.00	23.53
26S1-30S	0.00	24.00
27S1T11M	0.00	15.51
28S1T11T	0.00	15.51
29S1T12M	0.00	15.37
30S1T12T	0.00	15.37
31S1T13M	0.00	17.13 17.13
32S1T13T	0.00	
33S1T14-	0.00	5.36
34S1T15-	0.00	7.12
35S1T16S	0.00	14.53
36S1T17S	0.00	14.49
37S1T18S	0.00	14.91
2004 T4 00	0.00	- 15

38S1T19S

39S1T20S

40S1T21M

41S1T21T

42S1T22M

43S1T22T

0.00

0.00

0.00

0.00

0.00

0.00

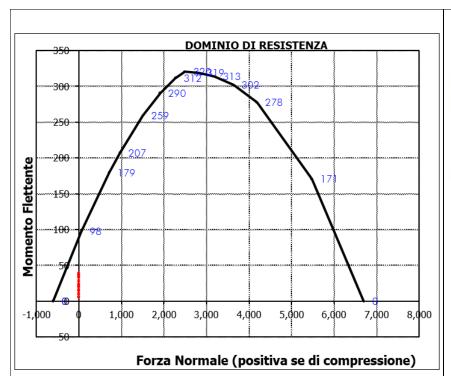
5.46

5.88

38.10 38.10

37.95

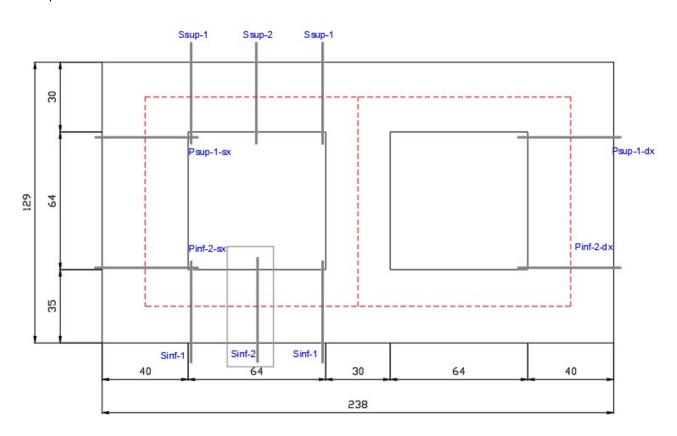
37.95


Country sinks	ماد خاند الد	
Caratteristi	Nsd	
Comb. 44S1T23M		Msd 39.72
45S1T23M	0.00	39.72
46S1T24-	0.00	27.95
47S1T25-	0.00	29.71
48S1T26S	0.00	
49S1T27S	0.00	37.12 37.08
50S1T28S	0.00	37.49
51S1T29S	0.00	28.05
52S1T30S	0.00	28.47
53S3-11M	0.00	22.53
54S3-11M	0.00	22.53
55S3-12M		
56S3-12M	0.00	22.36
57S3-121	0.00	24.51
58S3-13T	0.00	24.51
59S3-14S	0.00	21.31
60S3-15S	0.00	
61S3-16S	0.00	21.26
62S3-21M	0.00	21.73 36.08
63S3-21M	0.00	36.08
64S3-22M	0.00	35.94
65S3-22T	0.00	35.94
66S3-23M	0.00	37.70
67S3-23T	0.00	37.70
68S3-24S	0.00	34.86
69S3-25S	0.00	34.82
70S3-26S	0.00	35.23
71SSS1	0.00	12.19
72SSS2	0.00	12.13
73SSS3	0.00	11.82
74SSS4	0.00	11.62
75SSS5	0.00	19.72
76SSS6	0.00	19.66
77SSS7	0.00	19.35
78SSS8	0.00	19.33
79SSS9S	0.00	11.80
80SSS10S	0.00	11.74
81SSS11S	0.00	11.44
82SSS12S	0.00	11.24
83SSS13S	0.00	19.33
84SSS14S	0.00	19.33
85SSS15S	0.00	18.97
86SSS16S	0.00	18.77
00333103	0.00	10.77

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 125 di 166



Caratteristiche di sollecitazione				
	Comb.	Nsd [kN]	Msd [kNm]	
(Nmax)	01S1-11M	0.00	21.09	
(Nmin)	01S1-11M	0.00	21.09	
(Mmax)	44S1T23N	0.00	39.72	
(Mmin)	33S1T14-	0.00	5.36	

DOMI	DOMINIO DI RESISTENZA				
PUNTO	NRd [kN]	MRd [kNm			
1	-602	0			
2	-602	0			
3	65	98			
4	715	179			
5	969	207			
6	1504	259			
7	1905	290			
8	2266	312			
9	2491	320			
10	2812	319			
11	3186	313			
12	3634	302			
13	4185	278			
14	5475	171			
15	6693	0			

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO					≣тто
RELAZIONE DI CALCOLO	COMMESSA NMOY	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 126 di 166

Campata Sinf-2

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 127 di 166

Acciaio			11,100	
Tensione car. di rottura	ftk	=	540	N/mm²
Tensione car. di snervamento	fyk	=	450	N/mm²
Coeff. parziale di sicurezza	Vs.	=	1.15	
Resistenza di calcolo	fyd	=	391	N/mm²
Modulo elastico	Es	=	200000	N/mm²
	Ewi	=	0.00196	

Calcestruz	Z0		
Tipo	C30/37		
Rck	37	N/mm²	
fck	30.71	N/mm²	
Vc	1.5		
f_{cd}	20.5	N/mm²	
f_{cc}	17.4	N/mm²	

Geometria della sezione				
Altezza geometrica della sezioi	h	=	35	cm
Base della sezione	b	= 3	100	cm
Copriferro netto	C	= 1	40	mm
Armatura a taglio	ф	=	10	mm
Armatura di ripartizione	ф	=	14	mm
Copriferro	c'	= "	7.1	cm
Altezza utile della sezione	d	=	27.9	cm

Armatura	tesa		
N° ferri	Diametro	Area	545.50
5	14	7.70	cm²
		0.00	cm ²
		0.00	cm ²
or.		7.70	cm ²

0.00	cm ²
0.00	cm ²
7.70	cm ²
Area	

RELAZIONE DI CALCOLO

COMMESSA NM0Y

LOTTO

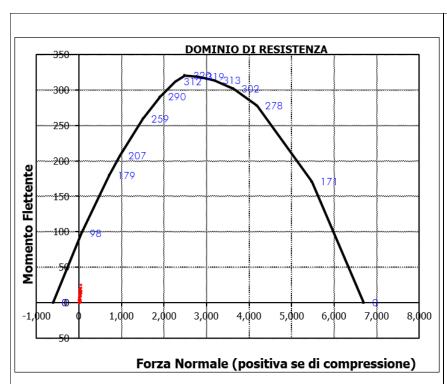
00 D 11

CODIFICA CL DOCUMENTO RI0003 002

REV.

FOGLIO 128 di 166

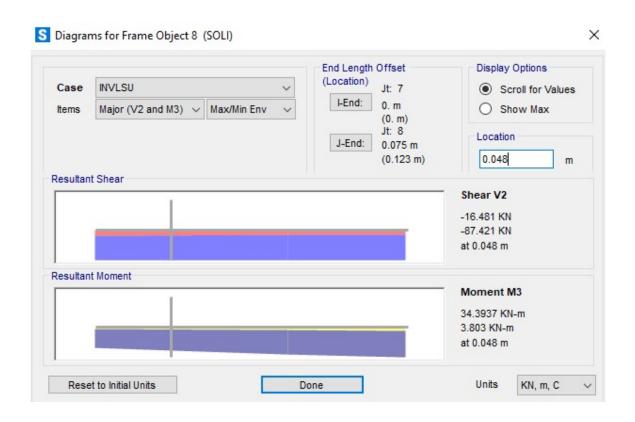
Caratteristic	he di solle	citazione
Comb.	Nsd	Msd
01S1-11M	0.00	4.16
02S1-11T	0.00	4.16
03S1-12M	0.00	2.91
04S1-12T	0.00	2.91
05S1-13M	0.00	7.46
06S1-13T	0.00	7.46
07S1-14-	0.00	4.55
08S1-15-	0.00	0.01
09S1-16S	0.00	3.51
10S1-17S	0.00	3.22
11S1-18S	0.00	4.22
12S1-19S	0.00	3.58
13S1-20S	0.00	2.58
14S1-21M	0.00	11.19
15S1-21T	0.00	11.19
16S1-22M	0.00	12.44
17S1-22T	0.00	12.44
18S1-23M	0.00	7.88
19S1-23T	0.00	7.88
2051-24-	0.00	19.90
21S1-25-	0.00	15.34
22S1-26S	0.00	11.84
23S1-27S	0.00	12.13
24S1-28S	0.00	11.13
25S1-29S	0.00	18.93
26S1-30S	0.00	17.93
27S1T11M	0.00	9.64
28S1T11T	0.00	9.64
29S1T12M	0.00	8.61
30S1T12T	0.00	8.61
31S1T13M	0.00	12.34
32S1T13T	0.00	12.34
33S1T14-	0.00	0.79
34S1T15-	0.00	4.52
35S1T16S	0.00	9.12
36S1T17S	0.00	8.86
37S1T18S	0.00	9.75
38S1T19S	0.00	1.57
39S1T20S	0.00	2.45
40S1T21M	0.00	15.94
41S1T21T	0.00	15.94
42S1T22M	0.00	16.97
43S1T22T	0.00	16.97


Caratteristi	che di solle	citazione
Comb.	Nsd	Msd
44S1T23M	0.00	13.24
45S1T23T	0.00	13.24
46S1T24-	0.00	24.79
47S1T25-	0.00	21.06
48S1T26S	0.00	16.47
49S1T27S	0.00	16.72
50S1T28S	0.00	15.83
51S1T29S	0.00	24.01
52S1T30S	0.00	23.13
53S3-11M	0.00	6.48
54S3-11T	0.00	6.48
55S3-12M	0.00	5.22
56S3-12T	0.00	5.22
57S3-13M	0.00	9.78
58S3-13T	0.00	9.78
5953-145	0.00	5.82
60S3-15S	0.00	5.54
61S3-16S	0.00	6.54
62S3-21M	0.00	8.87
63S3-21T	0.00	8.87
64S3-22M	0.00	9.90
65S3-22T	0.00	9.90
66S3-23M	0.00	6.17
67S3-23T	0.00	6.17
68S3-24S	0.00	9.53
69S3-25S	0.00	9.78
70S3-26S	0.00	8.89
71SSS1	0.00	2.57
72SSS2	0.00	2.60
73SSS3	0.00	3.23
74SSS4	0.00	3.34
75SSS5	0.00	11.09
76SSS6	0.00	11.13
77SSS7	0.00	11.76
78SSS8	0.00	11.87
79SSS9S	0.00	3.01
80SSS10S	0.00	3.05
81SSS11S	0.00	3.68
82SSS12S	0.00	3.79
83SSS13S	0.00	11.54
84SSS14S	0.00	11.57
85SSS15S	0.00	12.21
86SSS16S	0.00	12.31
30000100	0.00	12.01

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 129 di 166


	Caratteristi		
	Comb.	Nsd [kN]	Msd [kNm]
(Nmax)	01S1-11M	0.00	4.16
(Nmin)	01S1-11M	0.00	4.16
(Mmax)	46S1T24-	0.00	24.79
(Mmin)	0851-15-	0.00	0.01
DOM	INIO DI R	ESISTEN	ZA
PUNTO	NRd [kN]	MRd [dNm]
1	-602	0	
-	500		

DOTTINIO DI REGISTENZA			
PUNTO	NRd [kN]	MRd [kNm	
1	-602	0	
2	-602	0	
3	65	98	
4	715	179	
5	969	207	
6	1504	259	
7	1905	290	
8	2266	312	
9	2491	320	
10	2812	319	
11	3186	313	
12	3634	302	
13	4185	278	
14	5475	171	
15	6693	0	

• Verifica a taglio

Si riportano i valori delle sollecitazioni taglianti in corrispondenza del filo interno dell'elemento in esame:

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM0Y	00 D 11	CL	RI0003 002	Α	131 di 166

Calcestruzzo

Tipo	C30/37	
Rck	37	N/mm²
fck	30.7	N/mm²
V _c	1.5	
α_{cc}	0.85	
f_{cd}	17.4	N/mm²

Acciaio

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
ftk	540	N/mm²
fyk	450	N/mm²
Vs	1.15	
f _{yd}	391	N/mm²

Sollecitazioni		Soletta inf
V _{Ed}	kN	87.42
N _{Ed}	kN	0

Armatura a taglio

Diametro		mm	10
Numero barre		11111111	2.5
A _{sw}		cm ²	1.96
Passo s		cm	40
Angolo α	•	0	90

Armatura longitudinale

n ₁		5
\emptyset_1	mm	14
n ₂	400.094.000	_
\emptyset_2	mm	7.23
Asl	cm ²	7.70

Sezione

O CEIOILE		
b _w	cm	100
Н	cm	35
С	cm	7.1
c d	cm	27.9
k	N/mm²	1.85
V _{min}	N/mm²	0.49
ρ		0.0028
σср	N/mm²	0.00
α_{c}		1.00

Resistenza senza armatura a taglio

V _{Rd}	kN	136
-----------------	----	-----

Resistenza con armatura a taglio

Inclinazione puntone θ	0	21.8
V _{RSd}	kN	121
V _{RCd}	kN	753
V _{Rd}	kN	121

coefficiente di sicurezza C.S. 1.38

Elementi senza armatura a taglio

$$V_{\text{Rd}} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{\text{ck}})^{1/3} / \gamma_{\text{c}} + 0.15 \cdot \sigma_{\text{cp}} \right\} \cdot b_w \cdot d \geq \left(v_{\text{min}} \ + \ 0.15 \cdot \ \sigma_{\text{cp}} \right) \cdot b_w d \quad (4.1.14)$$

Elementi con armature trasversali resistenti al taglio

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot sin\alpha$$

$$V_{\text{Rsd}} = 0,9 \cdot d \cdot \frac{A_{\text{sw}}}{s} \cdot f_{\text{yd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) \cdot \sin\alpha \qquad V_{\text{Rcd}} = 0,9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta)$$

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO					
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA	DOCUMENTO RI0003 002	REV.	FOGLIO 132 di 166

• Verifica a fessurazione e delle tensioni

Appoggio Sinf-1- N≠0

Momento flettente	M	29.15	kN m	RARA	
Sforzo normale	N	25.91	kN	118R1T23M	'
Materiali					
Resistenza caratteristica cubica calcestruzzo	R _{dk}	37	N/mm²		
Resistenza caratteristica cilindrica calcestruzzo	fck	30.71	N/mm ²		
Modulo elastico del calcestruzzo	E _{cm}	33019.43	N/mm ²		
Tensione ammissibile ds	σc _{amm}	16.9	N/mm ²		
Res. media a trazione ds	f _{ctm}	2.94	N/mm²		
Res. caratteristica a trazione ds	f _{ctk}	2.1	N/mm ²		
Tensione di snervamento acciaio	f _{vk}	450.00	N/mm ²		
Modulo elastico dell'acciaio	Es	200000.00	N/mm ²		
Tensione ammissibile acciaio	σs _{amm}	337.5	N/mm ²		
Coefficiente omog. acciaio-cls	n	15	559 61 600		
Altezza sezione Larghezza sezione Armatura compressa (1º strato) Armatura compressa (2º strato) Armatura tesa (2º strato)	H B As ₁ ' As ₂ ' As ₂	35 100 7.70 0.00 0.00	cm cm ² cm ² cm ²	5 Ø 14 c _{s1} = 7. 0 Ø 0 c _{s2} = 7. 0 Ø 0 c ₁₂ = 7.	8 cm
Armatura tesa (1º strato)	As ₁	7.70	cm ²	5 Ø 14 c ₁₁ = 7.	
Tensioni nei materiali					
Compressione max nel ds.	σς	3.2	N/mm²	< oc _{amm}	
Trazione nell'acciaio (1º strato)	σs	130.0	N/mm²	< σa _{amm}	
Eccentricità	e (M) u (M)	112.5 95.0	cm cm	> H/6 Sez. parzializzata	
Posizione asse neutro	y (M)	7.6	cm		8
Area ideale (sez. int. reagente)	A _{id}	3716	cm ²		- 7
Mom. di inerzia ideale (sez. int. reag.)	J _{Id}	382266.574	cm ⁴		
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	62244,4381	cm ¹		

Momento di fessurazione (f)	M _{fess} *	47	kN m	La sezione non è fessurata
Momento di fessurazione (f _{dm})	Mag	66	kN m	
Eccentricità per M=M _{ress}	e (M _{tess})	253.9	cm	
	u (M _{tess})	236.4	cm	
Compressione max nel ds. per M=M _{tess}	acr	7.4		
Traz. nell'acciaio (1º str.) per M=M _{less}	osr	315.8	N/mm²	
Posizione asse neutro per M=M _{tess}	у (М _{енн})	7.2	cm	
Coefficiente dipendente dalla durata del caric	o ke	0.4		
Altezza efficace	h _{ear}	9.25	cm	
Rapporto tra moduli elastici	o.	6.1		
Armatura nell'area efficace	Asar	7.70	cm²	
Area efficace	Ac	925.25	cm²	
Rapporto geometrico di armatura	ρω	0.0083		
Deformazione unitaria media dell'armatura	Esm	0.00083628		
Copriferro netto	ď	4.0	cm	
Coefficiente dipendente dall'aderenza dell'acc	iaK ₁	0.80		
Coefficiente dipendente dal diagramma tensio	n K ₂	0.50	-	
Coefficiente adimensionale	К3	3.40		
Coefficiente adimensionale	K4	0.425		
Diametro equivalente delle barr edi armatura	Фес	14.00	mm	
Distanza massima tra le fessure	Δs_{max}	422, 100952	mm	

Δs...

wk

We -

248.294678

0.21

mm

mm

mm

wmax verifica soddisfatta

Tipo di armatura Poco sensibile
Condizioni ambientali Aggressive
Stato limite Rara
Valore limite di apertura delle fessure w1=0.2 mm
wd= wmax = 0.2

Verifica a fessurazione

Distanza media tra le fessure

Valore medio dell'apertura delle fessure

Valore di calcolo dell'apertura delle fessure

Posizione asse neutro

Area ideale (sez. int. reagente)

Mom. di inerzia ideale (sez. int. reag.)

Mom. di inerzia ideale (sez. parz. N=0)

LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1º FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO

.AZIOI		

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO NM0Y 00 D 11 CL RI0003 002 Α 134 di 166

Sollecitazioni									
Momento flettente	M	17.28	kN m	(QUAS	SI P	ERI	1ANENTE	
Sforzo normale	N	32.43	kN			23	2QF	T2	
Materiali									
Resistenza caratteristica cubica calcestruzzo	Rck	37	N/mm ²						
Resistenza caratteristica cilindrica calcestruzzo	fck	30.71	N/mm ²						
Modulo elastico del calcestruzzo	Ecm	33019.43	N/mm ²						
Tensione ammissibile cls	σc _{amm}	12.3	N/mm ²						
Res. media a trazione cls	f _{ctm}	2.94	N/mm ²						
Res. caratteristica a trazione cls	f _{ctk}	2.1	N/mm ²						
Tensione di snervamento acciaio	f _{yk}	450.00	N/mm²						
Modulo elastico dell'acciaio	E _s	200000.00	N/mm²						
Tensione ammissibile acciaio	σs _{amm}	337.5	N/mm²						
Coefficiente omog. acciaio-cls	n	15	01,000						
Caratteristiche geometriche Altezza sezione	Н	35	cm						
Larghezza sezione	В	100	cm						
Armatura compressa (1º strato)	As ₁ '	7.70	cm ²		5	Ø	14	C _{s1} = 7.1	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²					C ₅₂ = 7.8	
Armatura tesa (2º strato)	AS ₂	0.00	cm ²					$c_{52} = 7.0$ $c_{12} = 7.1$	
	_	7.70	cm ²					$c_{i2} = 7.1$ $c_{i1} = 7.1$	
Armatura tesa (1º strato)	As ₁	7.70	CIII-		3	Ø	14	C _{i1} - 7.1	CII
Tensioni nei materiali									
Compressione max nel cls.	σς	1.9	N/mm²	<	σca	mm]	
Trazione nell'acciaio (1º strato)	σs	65.6	N/mm²	<	σa _a	mm	-		
Eccentricità	e (M)	53.3	cm	>	H/6	Se	z. p	arzializzata	
	u (M)	35.8	cm		63		7,0		
	()		M. Control						

y (M)

Aid

Jid

 J_{id^*}

cm

cm²

cm⁴

cm⁴

8.4

3716

382266.574

63903.3064

Verifica a fessurazione

Momento di fessurazione (f _{ctk})	M _{fess} *	47	kN m	La sezione non è fessurata
Momento di fessurazione (f _{esm})	M _{fess}	66	kN m	
Eccentricità per M=M _{ress}	e (M _{fess})	204.0	cm	
	u (M _{fess})	186.5	cm	
Compressione max nel cls. per M=M _{fess}	σcr	7.4		
Traz. nell'acciaio (1° str.) per M=M _{fes}	OST .	313.3	N/mm ²	2
Posizione asse neutro per M=M _{fess}	y (M _{fess})	7.3	cm	
Coefficiente dipendente dalla durata del caric	o k _t	0.4		
Altezza efficace	h _{cerr}	9.23	cm	
Rapporto tra moduli elastici	α _e	6.1	-	
Armatura nell'area efficace	As _{err}	7.70	cm²	
Area efficace	Acut	922.97	cm²	
Rapporto geometrico di armatura	Per	0.0083		
Deformazione unitaria media dell'armatura Copriferro netto	Esm C'	0.00082524 4.0	- cm	
Coefficiente dipendente dall'aderenza dell'acc	Të K <u>i</u>	0.80	-	
Coefficiente dipendente dal diagramma tensio	or K ₂	0.50		
Coefficiente adimensionale	K ₃	3.40	-	
Coefficiente adimensionale	K4	0.425		
Diametro equivalente delle barr edi armatura	Фец	14.00	mm	
Distanza massima tra le fessure	Δs _{max}	421.396667	mm	
Distanza media tra le fessure	Δs_{m}	247.880392	mm	
Valore medio dell'apertura delle fessure	Wm	0.20	mm	_
Valore di calcolo dell'apertura delle fessure	Wd	-	mm	
Tipo di armatura	Poco sens			
Condizioni ambientali	Aggressive	9		
Stato limite Valore limite di apertura delle fessure	Rara w1=0.2 m	nm.		
valore inflice di apercura delle ressule	wd=			
	wmax =	0.2		
	wk	<	wmax	verifica soddisfatta

Campata Sinf-2- N≠0

Momento flettente	M	6.60	kN m	RARA	
Sforzo normale	N	13.25	kN	109R1T13M	
Materiali					
Resistenza caratteristica cubica calcestruzzo	R _{dk}	37	N/mm²		
Resistenza caratteristica cilindrica calcestruzzo	fck	30.71	N/mm ²		
Modulo elastico del calcestruzzo	Eam	33019.43	N/mm ²		
Tensione ammissibile cls	σc _{amm}	16.9	N/mm ²		
Res. media a trazione ds	f _{ctm}	2.94	N/mm ²		
Res. caratteristica a trazione ds	fetk	2.1	N/mm ²		
Tensione di snervamento acciaio	f _{vk}	450.00	N/mm ²		
Modulo elastico dell'acciaio	Es	200000.00	N/mm ²		
Tensione ammissibile acciaio	σs _{amm}	337.5	N/mm ²		
Coefficiente omog. acciaio-cls	n	15	i i		
Caratteristiche geometriche Altezza sezione	Н	35	cm		
Larghezza sezione	В	100	cm		
Armatura compressa (1º strato)	As ₁ '	7.70	cm ²	5 Ø 14 c _{s1} = 7.1	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²		cm
Armatura tesa (2º strato)	As ₂	0.00	cm ²		cm
Armatura tesa (1º strato)	As ₁	7.70	cm ²		cm
amatara tesa (1 sada)	7151	7170	Cili	5 5 1 C ₁ 712	Citi
Tensioni nei materiali					
Compressione max nel ds.	σς	0.7	N/mm ²	< occamm	
Trazione nell'acciaio (1º strato)	σs	24.5	N/mm ²	< σa _{amm}	
Eccentricità	e (M)	49.8	cm	> H/6 Sez. parzializzata	
	u (M)	32.3	cm	AND THE PROPERTY OF THE PROPER	
Posizione asse neutro	y (M)	8.5	cm		
Area ideale (sez. int. reagente)	A _{Id}	3716	cm ²		
Mom. di inerzia ideale (sez. int. reag.)	J _{Id}	382266.574	cm ⁴		
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	64261,3698	cm ⁴		

Momento di fessurazione (fඎ)	M _{fess} *	46	kN m	La sezione non è fessurata
Momento di fessurazione (f _{on})	M.,	65	kN m	
Eccentricità per M=M _{fess}	e (M _{fess})	491.0	cm	
	u (M _{tess})	473.5	cm	
Compressione max nel ds. per M=M _{ess}	act	7.3		
Traz. nell'acciaio (1º str.) per M=M _{tess}	osr	320.8	N/mm²	
Posizione asse neutro per M=M _{less}	y (M _{mm})	7.1	cm	
Coefficiente dipendente dalla durata del carico	k _e	0.4		
Altezza efficace	h _{cat}	9.30	cm	
Rapporto tra moduli elastici	a,	6.1	-	
Armatura nell'area efficace	Asee	7.70	cm²	
Area efficace	Aces	929.66	cm²	
Rapporto geometrico di armatura	Pes	0.0083	-	
Deformazione unitaria media dell'armatura	Esm	0.00085785	-	
Copriferro netto	ď	4.0	cm	
Coefficiente dipendente dall'aderenza dell'accia	K ₁	0.80	-	
Coefficiente dipendente dal diagramma tension	K ₂	0.50	-	
Coefficiente adimensionale	K ₃	3,40		
Coefficiente adimensionale	K4	0.425	-	
Diametro equivalente delle barr edi armatura	Фес	14.00	mm	
Distanza massima tra le fessure	Δs _{max}	423,464245	mm	
Distanza media tra le fessure	Δs _m	249.096615	mm	
Valore medio dell'apertura delle fessure	W _m	0.21	mm	
Valore di calcolo dell'apertura delle fessure	We	-	mm	
Tipo di armatura	Poco sensi	bile	11.1	
Condizioni ambientali	Aggressive	2		
Stato limite	Rara			
Valore limite di apertura delle fessure	w1=0.2 m	m		
	wd=	0.3		
	wmax =	< .2	-	verifica soddisfatta

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NMOY
 00 D 11
 CL
 RI0003 002
 A
 138 di 166

Momento flettente	M	4.77	kN m		QUA	5I F	PERM	1ANENT	E	
Sforzo normale	N	12.85	kN			23	1QF	T1		
Materiali										
Resistenza caratteristica cubica calcestruzzo	R _{dk}	37	N/mm²							
Resistenza caratteristica cilindrica calcestruzzo	fck	30.71	N/mm ²							
Modulo elastico del calcestruzzo	E _{cm}	33019.43	N/mm ²							
Tensione ammissibile ds	σc _{amm}	12.3	N/mm ²							
Res. media a trazione ds	f _{ctm}	2.94	N/mm ²							
Res. caratteristica a trazione cls	f _{ctk}	2.1	N/mm ²							
Tensione di snervamento acciaio	f _{vk}	450.00	N/mm ²							
Modulo elastico dell'acciaio	E _s	200000.00	N/mm ²							
Tensione ammissibile acciaio	σs _{amm}	337.5	N/mm ²							
Coefficiente omog, acciaio-cls	n	15	C. C. Control							
Caratteristiche geometriche Altezza sezione	Н	35	cm							
Larghezza sezione	В	100	cm							
Armatura compressa (1º strato)	As ₁ '	7.70	cm ²		5	Ø	14	C ₅₁ =	7.1	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²		0	Ø	0	C ₅₂ =	7.8	cm
Armatura tesa (2º strato)	As ₂	0.00	cm ²		0	Ø	0	C12 =	7.1	cm
Armatura tesa (1º strato)	As ₁	7.70	cm ²		5			C11 =		cm
Tensioni nei materiali										
Compressione max nel ds.	σς	0.5	N/mm ²	<	σc _{ar}	mm		1		
Trazione nell'acciaio (1º strato)	σs	15.5	N/mm²	<						
Eccentricità	e (M)	37.1	cm	>	H/6	Se	z. pa	arzializza	ata	
200	u (M)	19.6	cm							
Posizione asse neutro	y (M)	9.2	cm							
Area ideale (sez. int. reagente)	A _{id}	3716	cm ²							
Mom. di inerzia ideale (sez. int. reag.)	J _{id}	382266.5743	cm ¹							

Mom. di inerzia ideale (sez. parz. N=0) J_{Id*} 66862.67148 cm⁴

Momento di fessurazione (f 🖽)	M _{fesss} *	46	kN m	La sezione non è fessurata
Momento di fessurazione (f _{cm})	M _{ess}	65	kN m	
Eccentricità per M=M _{test}	e (M _{ess})	505.9	cm	
	u (M _{ress})	488.4	cm	
Compressione max nel ds. per M=M _{ress}	acr	7.3		
Traz. nell'acciaio (1° str.) per M=M _{text}	osr -	321.0	N/mm²	
Posizione asse neutro per M=M _{tess}	y (M _{ess})	7.1	cm	
Coefficiente dipendente dalla durata del carico	k,	0.4		
Altezza efficace	hos	9,30	cm	
Rapporto tra moduli elastici	O ₂	6.1	-	
Armatura nell'area efficace	As _{er}	7,70	cm²	
Area efficace	Acer	929.79	cm²	
Rapporto geometrico di armatura	Per	0.0083	-	
Deformazione unitaria media dell'armatura Copriferro netto	Esm c'	0.000858528 4.0	- cm	
Coefficiente dipendente dall'aderenza dell'acciaio	Kı .	0.80	- 11	
Coefficiente dipendente dal diagramma tensioni	K ₂	0.50	•	
Coefficiente adimensionale	K3	3,40		
Coefficiente adimensionale	K4	0.425		
Diametro equivalente delle barr edi armatura	Фес	14.00	mm	
Distanza massima tra le fessure	Δs_{max}	423,5065532	mm	
Distanza media tra le fessure	Δs_m	249.1215019	mm	
Valore medio dell'apertura delle fessure	Wm	0.21	mm	_
Valore di calcolo dell'apertura delle fessure	We	-	mm	
Tipo di armatura	Poco sensi			
Condizioni ambientali	Aggressive	2		
Stato limite	Rara			
Valore limite di apertura delle fessure	w1=0.2 mr wd=	n -		
	wu= wmax =	0.2	-	
	wk	<	wmax	verifica soddisfatta

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO						
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 140 di 166	

10. VERIFICHE GEOTECNICHE

10.1.1 Verifica di capacità portante verticale

La verifica geotecnica presa a riferimento per lo studio dello scatolare in esame è la verifica al carico limite della fondazione.

L'approccio di verifica adottato per la verifica geotecnica è l'approccio A1+M1+R3. I coefficienti parziali per le azioni e per i materiali sono riportati nelle tabelle che seguono:

Tabella 10-1. Coefficienti parziali dei parametri geotecnici

Tabella 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)	
	APPLICARE IL	PARZIALE			
	COEFFICIENTE PARZIALE	γм			
Tangente dell'angolo di tan φ' _k resistenza al taglio		γφ'	1,0	1,25	
Coesione efficace	c' _k	γe	1,0	1,25	
Resistenza non drenata	c _{uk}	Yeu	1,0	1,4	
Peso dell'unità di volume	γ	Ϋ́γ	1.0	1,0	

Per le verifiche geotecniche in condizioni statiche, si adottano i seguenti coefficienti di sicurezza:

Tab. 6.4.I – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali

Verifica	Coefficiente parziale		
	(R3)		
Carico limite	$\gamma_R = 2.3$		
Scorrimento	$\gamma_R = 1.1$		

Per le verifiche geotecniche in condizioni sismiche si adottano i coefficienti di sicurezza come indicato nei paragrafi corrispondenti.

Nel dettaglio la verifica al carico limite di fondazione è una verifica a rottura del terreno di fondazione. Tale verifica si ritiene soddisfatta se il rapporto tra il carico limite in fondazione Qu e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione risulta superiore al fattore di sicurezza definito dalle NTC 18.

La verifica di capacità portante verticale si esegue in accordo con le espressioni di Brinch-Hansen del 1970, prendendo a riferimento una condizione di terreno incoerente.

Metodo di calcolo della capacità portante verticale

Per la valutazione della capacità portante verticale della fondazione superficiale si ricorre all'utilizzo delle formule di Terzaghi. Secondo tale approccio di calcolo il carico limite è definito come:

$$q_{lim} = N_q \gamma_1 D + N_c c + N_\gamma \gamma_2 \frac{B}{2}$$

dove:

- D è la profondità di terreno compreso fra il piano di posa della fondazione e la superficie del terreno;
- » ¡¡¹è il peso dell'unità di volume del terreno compreso fra il piano di posa della fondazione e la superficie del terreno;
- c è la coesione del terreno sottostante il piano di posa;
- p₁ è il peso dell'unità di volume del terreno sottostante il piano di posa interessato dal meccanismo
 di rottura (in presenza di falda tale peso viene valutato opportunamente);
- y₁sono coefficienti di carico limite i cui valori sono valutati in funzione dell'angolo di attrito del terreno
 sottostante il piano di posa.

I coefficienti di capacità portante N_c , N_q , N_γ sono espressi come:

$$N_c = (N_o - 1)ctg\phi$$

$$N_q = \frac{1 + sen\phi}{1 - sen\phi} e^{\pi t g\phi}$$

$$N_y = 2(N_q + 1)tg\phi$$

Tale formulazione del carico limite è valida solo nelle ipotesi di stato di deformazione piana, rottura generale, carichi verticali e centrati, piano di posa e piano di campagna orizzontali e terreno omogeneo.

Nelle applicazioni queste limitazioni sono rimosse moltiplicando i tre termini a secondo membro per adatti coefficienti correttivi, ottenuti per via analitica o semi empirica. Diversi coefficienti possono essere

usati contemporaneamente per tener conto di più di un fattore. Di seguito sono riportate le espressioni più accreditate di tali coefficienti. Tali espressioni si riferiscono al caso di sottosuolo omogeneo.

Fattore di forma: nel passare dalla condizione ideale di una striscia indefinita di carico (problema piano) ad una fondazione reale avente dimensioni (B trasversale e L longitudinale) in pianta confrontabili (problema tridimensionale), la capacità portante è influenzata dagli effetti di bordo, di cui si tiene conto con i fattori di forma.

Forma della fondazione

$$s_c$$
 (>1)
 s_q (>1)
 s_γ (<1)

 Rettangolare
 $1 + \frac{B'}{L'} \cdot \frac{N_q}{N_c}$
 $1 + \frac{B'}{L'} \cdot \tan \varphi'$
 $1 - 0.4 \cdot \frac{B'}{L'}$

 Circolare o quadrata
 $1 + \frac{N_q}{N_c}$
 $1 + \tan \varphi'$
 0.6

Fattori di inclinazione del carico: nel caso di carico inclinato con componente orizzontale H e componente verticale V, si introducono i fattori di inclinazione del carico (in relazione al rapporto H/V la rottura può avvenire anche per slittamento) che tengono conto della riduzione della resistenza a rottura del terreno di fondazione.

Fattori di profondità: si utilizzano per mettere in conto anche la resistenza al taglio del terreno sopra il piano di fondazione, ovvero per considerare la superficie di scorrimento estesa fino al piano campagna.

Fattori di inclinazione del piano di posa della fondazione: se i carichi permanenti sono sensibilmente inclinati si può realizzare il piano di posa della fondazione con un'inclinazione ε . La capacità portante nella direzione ortogonale al piano di posa deve essere valutata utilizzando i fattori di inclinazione del piano di posa

$$\begin{array}{ccc} b_c \text{ (< 1)} & b_q \text{ (< 1)} & b_r \text{ (< 1)} \\ \\ b_q - \frac{1 - b_q}{N_c \cdot \tan \varphi} & (1 - \varepsilon \cdot \tan \varphi)^2 & (1 - \varepsilon \cdot \tan \varphi)^2 \end{array}$$

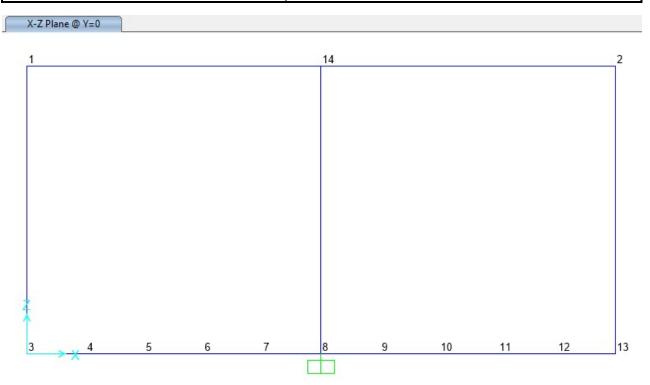
Fattori di inclinazione del terreno: se il piano campagna è inclinato di un angolo ω rispetto all'orizzontale.

$$g_{q} = \frac{g_{c}(<1)}{N_{c} \cdot \tan \phi} \qquad \frac{g_{q}(<1)}{(1 - \tan \omega)^{2} \cdot \cos \omega} \qquad \frac{g_{q}}{\cos \omega}$$

Fattori di inerzia: in presenza di verifica in condizioni sismiche si considerano ulteriori fattori riduttivi pari a:

$$z_{e} = 1 - 0.32 \cdot k_{h}$$

$$z_{q} = \left(1 - \frac{k_{h}}{\tan \varphi}\right)^{0.35}$$


 $z_v = z_a$

L'eccentricità del carico riduce la capacità portante di una fondazione superficiale. Nel caso di carico eccentrico si assume che l'area resistente a rottura sia quella per la quale il carico risulta centrato. Ad

esempio per una fondazione a base rettangolare, se la risultante dei carichi trasmessi ha eccentricità es nella direzione del lato minore B ed eccentricità es nella direzione del lato maggiore L, per il calcolo della capacità portante si assume una fondazione rettangolare equivalente di dimensioni B*x L*, dove: B*= B-

Per quanto riguarda il calcolo delle sollecitazioni da applicare sulla platea di fondazione, si prende il modello strutturale dello scatolare e si vincola questo con un incastro in corrispondenza del baricentro della struttura di fondazione.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO						
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 144 di 166	

Tab. 64 – Modello di calcolo per lo studio della struttura di fondazione

Dallo sviluppo dell'analisi si definiscono le reazioni vincolari verticali, orizzontali e di momento rispetto l'asse baricentrico della struttura di fondazione. Per la verifica geotecnica del sistema di fondazione, si riportano tali reazioni vincolari all'intradosso della fondazione, tenendo in conto per le reazioni di momento, della coppia di trasporto data dal prodotto tra la reazione vincolare orizzontale e metà spessore della soletta inferiore.

Nella tabella che segue si riportano le reazioni vincolari massime e minime verticali, le reazioni massime orizzontali e le reazioni massime di momento. Queste si determinano sia per le combinazioni statiche allo SLU, sia per le combinazioni sismiche allo SLV. Le combinazioni adottate sono le stesse prese a riferimento per le verifiche strutturali (Approccio A1+M1+R3).

	AZIONI ALL'INTRADOSSO DELLA FONDAZIONE									
Combinazi	ione	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]			
Comb. Nmax	01S1-11M	17.56	0.00	369.74	0.00	20.01	0.00			
Comb. Nmin	07\$1-14-	0.90	0.00	145.35	0.00	0.16	0.00			
Comb. Mx,max	01S1-11M	17.56	0.00	369.74	0.00	20.01	0.00			
Comb. My,max	57S3-13M	87.02	0.00	369.74	0.00	73.61	0.00			
Comb. Fx,max	57S3-13M	87.02	0.00	369.74	0.00	73.61	0.00			
Comb. Fy,max	01S1-11M	17.56	0.00	369.74	0.00	20.01	0.00			

Tab. 65 – Combinazioni di verifica generali

Per la verifica della capacità portante verticale del sistema di fondazione si individuano le condizioni limite di verifica: massima reazione verticale e massimo momento. Mentre, per l'opera in oggetto, essendo completamente incassata nel terreno, si ritiene che la verifica a scorrimento si automaticamente soddisfatta, in quanto le eventuali azioni spingenti su un lato dello scatolare sono compensate dalle corrispondenti spinte passive sul lato opposto dello stesso.

Nella tabella che segue si riportano in forma riassuntiva le reazioni vincolari prese a riferimento per lo

studio della struttura di fondazione in condizioni statiche:

AZIONI ALL'INTRADOSSO DELLA FONDAZIONE									
Combinaz	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]			
Comb. Nmax	01S1-11M	17.56	0.00	369.74	0.00	20.01	0.00		
Comb. Nmin	07\$1-14-	0.90	0.00	145.35	0.00	0.16	0.00		
Comb. Mx,max	01S1-11M	17.56	0.00	369.74	0.00	20.01	0.00		
Comb. My.max	57S3-13M	87.02	0.00	369.74	0.00	73.61	0.00		

Tab. 66 – Combinazioni di verifica

Nelle pagine a seguire si riportano la verifiche di capacità portante per entrambe le condizioni di carico.

Si riportano i valori dei coefficienti parziali utilizzati per le proprietà del terreno e le resistenze.

RELAZIONE DI CALCOLO

PROGETTO DEFINITIVO

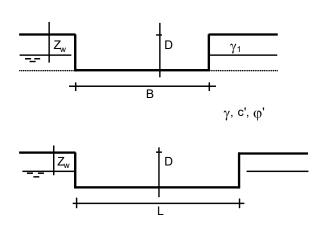
COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 00 D 11 RI0003 002 146 di 166 NM0Y CL

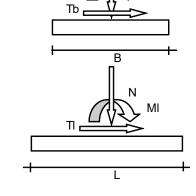
Fondazioni Dirette Verifica in tensioni efficaci

D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme $e_L = 0$; $L^* = L$)


 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)


L* = Lunghezza fittizia della fondazione (L* = L - 2*e_L)

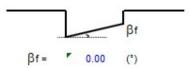
(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

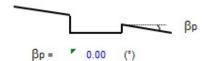
coefficienti parziali

			az	ioni	proprietà d	el terreno	resistenze	
Metodo di calcolo		permanenti	temporanee variabili	tan _φ '	c'	qlim	scorr	
•	A1+M1+R1	Ü	1.30	1.50	1.00	1.00	1.00	1.00
Stato Limite Ultimo	A2+M2+R2	Ū	1.00	1.30	1.25	1.25	1.80	1.00
	SISMA	Ū	1.00	1.00	1.25	1.25	1.80	1.00
Stat U	A1+M1+R3	ভ	1.30	1.50	1.00	1.00	2.30	1.10
	SISMA	Ū	1.00	1.00	1.00	1.00	2.30	1.10
Tensioni Ammissibili		1.00	1.00	1.00	1.00	3.00	3.00	
Definiti dal Progettista		1.35	1.50	1.00	1.00	1.40	1.00	

(Per fondazione nastriforme L = 100 m)

RELAZIONE DI CALCOLO


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 147 di 166

Mymax

(Per fondazione nastriforme L = 100 m)

B = 2.38 (m) L = 13.00 (m) D = 2.00 (m)

	AZIONI	
	Valori di calcolo	
N [kN]	369.74	
Mb [kNm]	73.61	Mb=My
MI [kNm]	0.00	MI=Mx
Tb [kN]	87.02	Tb=Tx
TI [kN]	0.00	TI=Ty
H [kN]	87.02	

Peso unità di volume del terreno

 $\gamma_1 = 18.50$ (kN/mc) $\gamma = 18.50$ (kN/mc)

Valori caratteristici di resistenza del terreno

c' = 0.00 (kN/mq) p' = 35.00 (°) Valori di progetto

c' = 0.00 (kN/mq) $\phi' = 35.00 \text{ (°)}$

Profondità della falda

Zw = 3.54 (m)

 $e_B = 0.20$ (m) $e_L = 0.00$ (m) B* = 1.98 (m) L* = 13.00 (m)

q : sovraccarico alla profondità D

q = 37.00 (kN/mq)

y: peso di volume del terreno di fondazione

 $\gamma = 14.97$ (kN/mc)

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM0Y	00 D 11	CL	RI0003 002	Α	148 di 166

Nc, Nq, Nγ: coefficienti di capacità portante

Nq =
$$tan^2(45 + \Phi'/2)^*e^{(\pi^*tg\phi')}$$

Nq = 33.30

Nc = (Nq - 1)/tanφ'

Nc = 46.12

 $N\gamma = 2*(Nq + 1)*tan\phi'$

 $N\gamma = 48.03$

so, sq, sy: fattori di forma

s_c = 1 + B*Nq / (L* Nc)

s_c = 1.11

s₀ = 1 + B*tanφ' / L*

s_a = 1.11

s, = 1 - 0,4*B*/L*

s, = 0.94

io, iq, iq: fattori di inclinazione del carico

 $m_b = (2 + B^*/L^*)/(1 + B^*/L^*) =$

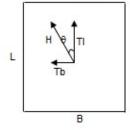
1.87 θ = arctg(Tb/Tl) = 90.00 (°)

 $m_i = (2 + L^* / B^*) / (1 + L^* / B^*) =$

1.13 m = 1.87 (-)

 $i_a = (1 - H/(N + B*L*c' \cot g\phi'))^m$

(m=2 nel caso di fondazione nastriforme e m=(m,sin²θ+m,cos²θ) in tutti gli altri casi)


i_a = 0.61

 $i_c = i_q - (1 - i_q)/(Nq - 1)$

i. = 0.59

 $i_v = (1 - H/(N + B*L*c' \cot g\phi'))^{(m+1)}$

i_v = 0.46

RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO NM0Y 00 D 11 CL RI0003 002 149 di 166

do, dq, dy: fattori di profondità del piano di appoggio

per D/B*≤ 1; do = 1 +2 D tano (1 - seno) / B*

per D/B*> 1; do = 1 +(2 tang' (1 - seng')2) * arctan (D / B*)

d_a = 1.20

 $d_c = d_q - (1 - d_q) / (N_c \tan \varphi')$

d_c = 1.21

 $d_{\gamma} = 1$

 $d_{\gamma} = 1.00$

bo, bq, b7: fattori di inclinazione base della fondazione

 $b_{o} = (1 - \beta_{f} \tan \phi')^{2}$

 $\beta_1 + \beta_0 = 0.00$

 $\beta_1 + \beta_p < 45^\circ$

 $b_0 = 1.00$

 $b_c = b_q - (1 - b_q) / (N_c \tan \phi')$

b_c = 1.00

 $b_{\gamma} = b_{\alpha}$

1.00 b., =

go, gq, g7: fattori di inclinazione piano di campagna

 $g_q = (1 - \tan \beta_p)^2$

 $\beta_1 + \beta_p = 0.00$

 $\beta_1 + \beta_p < 45^\circ$

 $g_0 = 1.00$

 $g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$

g_c =

1.00

 $g_{\gamma} = g_{q}$

1.00 $g_{\gamma} =$

CL

RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA NM0Y 00 D 11

DOCUMENTO RI0003 002

Α

FOGLIO 150 di 166

Carico limite unitario

 $q_{iim} = 1302.12$ (kN/m²)

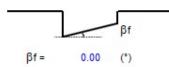
Pressione massima agente

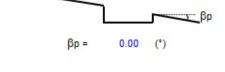
q = N / B* L*

q = 14.35 (kN/m²)

Verifica di sicurezza capacità portante

 $q_{lim}/\gamma_R = 566.14 \ge q = 14.35 (kN/m^2)$


RELAZIONE DI CALCOLO


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 151 di 166

Nmax

(Per fondazione nastriforme L = 100 m)

Valori di progetto

(kN/mq) (°)

	8	AZIONI Valori di calcolo	
N	[kN]	369.74	
Mb	[kNm]	20.01	Mb=My
MI	[kNm]	0.00	MI=Mx
Tb	[kN]	17.56	Tb=Tx
TI	[kN]	0.00	TI=Ty
Н	[kN]	17.56	

Peso unità di volume del terreno

$$\gamma_1 = 18.50 \text{ (kN/mc)}$$

 $\gamma = 18.50 \text{ (kN/mc)}$

Valori caratteristici di resistenza del terreno

C"	=	0.00	(kN/mq)	c'	=	0.00
φ"	=	35.00	(°)	φ"	=	35.00

Profondità della falda

$$Zw = 3.54$$
 (m)

e _B =	0.05	(m)	B* =	2.27	(m)
e _L =	0.00	(m)	L* =	13.00	(m)

q : sovraccarico alla profondità D

γ: peso di volume del terreno di fondazione

$$\gamma = 14.97$$
 (kN/mc)

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM0Y	00 D 11	CL	RI0003 002	Α	152 di 166

Nc, Nq, Nγ: coefficienti di capacità portante

$$Nq = tan^{2}(45 + \phi'/2)*e^{(\pi^{*}tg\phi')}$$

Nq = 33.30

Nc = (Nq - 1)/tanφ'

Nc = 46.12

 $N\gamma = 2*(Nq + 1)*tan\phi'$

 $N\gamma = 48.03$

so, sq, sy: fattori di forma

sc = 1 + B*Nq / (L* Nc)

s_c = 1.13

s_o = 1 + B*tanφ' / L*

s_q = 1.12

s, = 1 - 0,4*B* / L*

s, = 0.93

i,, i, i,: fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

 $m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$

i_α = (1 - H/(N + B*L* c' cotgφ'))^m

i_o = 0.91

 $i_c = i_q - (1 - i_q)/(Nq - 1)$

i_c = 0.91

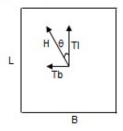
i_y = (1 - H/(N + B*L* c' cotgφ'))^(m+1)

i_v = 0.87

 θ = arctg(Tb/Tl) =

m =

1.85


1.15

90.00

(°)

1.85 (-)

(m=2 nel caso di fondazione nastriforme e m= $(m_b sin^2\theta + m_i cos^2\theta)$ in tutti gli altri

RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO NM0Y 00 D 11 CL RI0003 002 Α 153 di 166

do, dq, dy: fattori di profondità del piano di appoggio

per D/B*≤ 1; d_q = 1 +2 D tanφ' (1 - senφ')² / B*

per D/B*> 1; dq = 1 +(2 tanq' (1 - senq')2) * arctan (D / B*)

d_o = 1.22

 $d_c = d_q - (1 - d_q) / (N_c \tan \varphi')$

 $d_c = 1.23$

 $d_{y} = 1$

d, = 1.00

bo, bq, by: fattori di inclinazione base della fondazione

 $b_o = (1 - \beta_t \tan \varphi')^2$

 $\beta_t + \beta_p = 0.00$ $\beta_t + \beta_p < 45^\circ$

 $b_{q} = 1.00$

 $b_c = b_q - (1 - b_q) / (N_c \tan \varphi')$

 $b_c =$ 1.00

 $b_2 = b_0$

b., = 1.00

go, gq, gq: fattori di inclinazione piano di campagna

 $g_0 = (1 - \tan \beta_0)^2$

 $\beta_1 + \beta_0 = 0.00$ $\beta_1 + \beta_0 < 45^\circ$

 $q_0 = 1.00$

 $g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$

1.00 g_c =

 $g_{\gamma} = g_{q}$

1.00 $g_{\gamma} =$

Carico limite unitario

 $q_{lim} = 2208.15 (kN/m^2)$

Pressione massima agente

q = N / B* L*

q = 12.52 (kN/m²)

Verifica di sicurezza capacità portante

 $q_{\text{lim}}/\gamma_{\text{R}} = 960.07 \ge q = 12.52 \text{ (kN/m}^2)$

Nella tabella che segue si riportano in forma riassuntiva le reazioni vincolari prese a riferimento per lo studio della struttura di fondazione in condizioni sismiche:

	AZIONI ALL'INTRADOSSO DELLA FONDAZIONE										
Combinazio	one	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]				
Comb. Nmax	73SSS3	16.19	0.00	136.02	0.00	10.68	0.00				
Comb. Nmin	82SSS12S	10.72	0.00	127.48	0.00	7.08	0.00				
Comb. Mx,max	71SSS1	23.56	0.00	134.41	0.00	17.08	0.00				
Comb. My,max	71SSS1	23.56	0.00	134.41	0.00	17.08	0.00				
Comb. Fx,max	71SSS1	23.56	0.00	134.41	0.00	17.08	0.00				
Comb. Fy,max	71SSS1	23.56	0.00	134.41	0.00	17.08	0.00				

Tab. 67 – Combinazioni di verifica sismiche

AZIONI ALL'INTRADOSSO DELLA FONDAZIONE									
Combinazi	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]			
Comb. Nmax 73SSS3		16.19	0.00	136.02	0.00	10.68	0.00		
Comb. Nmin	82SSS12S	10.72	0.00	127.48	0.00	7.08	0.00		
Comb. Mx,max	73SSS3	16.19	0.00	136.02	0.00	10.68	0.00		
Comb. My,max	23.56	0.00	134.41	0.00	17.08	0.00			

Tab. 68 – Combinazioni di verifica sismiche

Nelle pagine a seguire si riportano la verifiche di capacità portante per entrambe le condizioni di carico.

Si riportano i valori dei coefficienti parziali utilizzati per le proprietà del terreno e le resistenze.

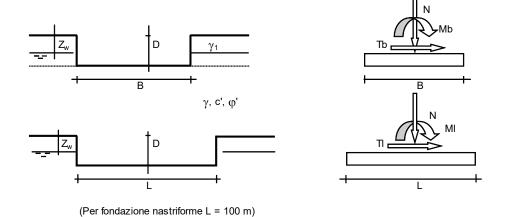
<u>Fondazioni Dirette</u> Verifica in tensioni efficaci

 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N_{\gamma} \cdot s_{\gamma} \cdot d_{\gamma} \cdot i_{\gamma} \cdot b_{\gamma} \cdot g_{\gamma}$

D = Profondità del piano di appoggio

e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)


 B^* = Larghezza fittizia della fondazione (B^* = $B - 2^*e_B$)

L* = Lunghezza fittizia della fondazione (L* = L - 2*e_L)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			az	ioni	proprietà d	el terreno	resistenze	
Metodo di calcolo		permanenti	temporanee variabili	tan _φ '	c'	qlim	scorr	
,	A1+M1+R1	Ü	1.30	1.50	1.00	1.00	1.00	1.00
Stato Limite Ultimo	A2+M2+R2		1.00	1.30	1.25	1.25	1.80	1.00
	SISMA	Ū	1.00	1.00	1.25	1.25	1.80	1.00
Stat U	A1+M1+R3	U	1.30	1.50	1.00	1.00	2.30	1.10
•	SISMA	◉	1.00	1.00	1.00	1.00	2.30	1.10
Tensioni Ammissibili		1.00	1.00	1.00	1.00	3.00	3.00	
Definiti dal Progettista		1.35	1.50	1.00	1.00	1.40	1.00	

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 156 di 166

Nmax

(Per fondazione nastriforme L = 100 m)

В	=	2.38	(m)
L	=	13.00	(m)
D	=	2.00	(m)

,
$$\beta f$$
 $\beta f = 0.00$ (°)

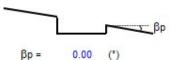
Peso unità di volume del terreno

 $\gamma_1 = 18.50$ (kN/mc) $\gamma = 18.50$ (kN/mc)

Valori caratteristici di resistenza del terreno

C.	=	0.00	(kN/mq)		
Φ"	=	35.00	(°)		

Profondità della falda


$$Zw = 3.54$$
 (m)

$$e_B = 0.08$$
 (m)
 $e_L = 0.00$ (m)

q : sovraccarico alla profondità D

γ: peso di volume del terreno di fondazione

$$\gamma = 14.97$$
 (kN/mc)

Valori di progetto

φ"

kh

B* =

L* =

0.00

35.00

0.21

2.22

13.00

(kN/mq)

(°)

(m)

(m)

DOCUMENTO RI0003 002

REV. FOO

FOGLIO 157 di 166

Nc, Nq, Nγ: coefficienti di capacità portante

$$Nq = tan^{2}(45 + \phi'/2)*e^{(\pi^{*}tg\phi')}$$

$$N\gamma = 2*(Nq + 1)*tan\phi'$$

$$N\gamma = 48.03$$

so, sq, sy: fattori di forma

io, ia, ir: fattori di inclinazione del carico

$$m_b = (2 + B^*/L^*)/(1 + B^*/L^*) =$$

1.85

θ = arctg(Tb/Tl) = 90.00 (°)

1.85

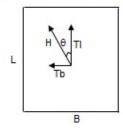
 $m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$

1.15 m =

(-)

i_α = (1 - H/(N + B*L* c' cotgφ'))^m

i_o = 0.79


 $i_c = i_a - (1 - i_a)/(Nq - 1)$

i_c = 0.78

 $i_v = (1 - H/(N + B*L*c' \cot q\phi'))^{(m+1)}$

i_v = 0.70

(m=2 nel caso di fondazione nastriforme e m= $(m_b sin^2\theta + m_i cos^2\theta)$ in tutti gli altri

RELAZIONE DI CALCOLO

COMMESSA LOTTO

NM0Y 00 D 11

CODIFICA CL DOCUMENTO RI0003 002 REV. **A 1**

FOGLIO 158 di 166

do, do, do : fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan ϕ ' (1 - sen ϕ ')² / B*
per D/B*> 1; d_q = 1 +(2 tan ϕ ' (1 - sen ϕ ')²) * arctan (D / B*)

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi')$$

$$d_{y} = 1$$

bo, bq, by: fattori di inclinazione base della fondazione

 $b_q = (1 - \beta_1 \tan \varphi')^2$

 $\beta_1 + \beta_p = 0.00$

 $\beta_1 + \beta_0 < 45^\circ$

$$b_c = b_q - (1 - b_q) / (N_c \tan \phi')$$

 $b_y = b_q$

b, = 1.00

go, gq, g7: fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

 $\beta_1 + \beta_p =$

0.00

 $\beta_1 + \beta_p < 45^\circ$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$$

g_c = 1.00

 $g_7 = g_q$

 $g_{\gamma} = 1.00$

CL

RELAZIONE DI CALCOLO

COMMESSA LOTTO 00 D 11 NM0Y

CODIFICA DOCUMENTO RI0003 002

Α

FOGLIO 159 di 166

zo, zq, zq: fattori di correzioni sismiche secondo PAOLUCCI & PECKER

 $z_o = (1 - kh/tan\beta_o)^{U,55}$

 $z_{q} = 0.88$

 $z_c = (1 - 0.32k_h)$

z_c = 0.93

 $z_{\gamma} = z_{q}$

 $z_{2} = 0.88$

Carico limite unitario

 $q_{iim} = 1640.80 \text{ (kN/m}^2\text{)}$

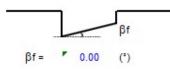
Pressione massima agente

q = N / B* L*

 $q = 4.71 (kN/m^2)$

Verifica di sicurezza capacità portante

 $q_{\text{lim}}/\gamma_{\text{R}} = 713.39 \ge q = 4.71 \text{ (kN/m}^2)$


RELAZIONE DI CALCOLO


COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO RI0003 002 NM0Y 00 D 11 CL Α 160 di 166

Mymax

(Per fondazione nastriforme L = 100 m)

В	=	2.38	(m)
L	=	13.00	(m)
D	=	2.00	(m)

	AZIONI	
1	Valori di	
200	calcolo	
N [kN]	134.41	
Mb [kNm]	17.08	Mb=My
MI [kNm]	0.00	MI=Mx
Tb [kN]	23.56	Tb=Tx
TI [kN]	0.00	TI=Ty
H [kN]	23.56	

Peso unità di volume del terreno

$$\gamma_1 = 18.50$$
 (kN/mc)
 $\gamma = 18.50$ (kN/mc)

Valori caratteristici di resistenza del terreno

c' φ'	= "	0.00	(kN/mq)		
φ"	=	35.00	(°)		

Valori di progetto c' 0.00 (kN/mq) φ'

35.00 0.21 kh

(°)

Profondità della falda

$$e_B = 0.13$$
 (m)
 $e_L = 0.00$ (m)

B* = 2.13 (m) L* = 13.00 (m)

q : sovraccarico alla profondità D

γ: peso di volume del terreno di fondazione

$$\gamma = 14.97$$
 (kN/mc)

CODIFICA

DOCUMENTO RI0003 002 REV. FOGLIO **A** 161 di 166

Nc, Nq, Ny: coefficienti di capacità portante

Ng =
$$tan^2(45 + \phi'/2)*e^{(\pi^*tg\phi')}$$

Ng = 33.30

Nc = (Nq - 1)/tanφ'

Nc = 46.12

 $N\gamma = 2*(Nq + 1)*tan\phi'$

Ny = 48.03

so, sq, sy: fattori di forma

s_c = 1 + B*Nq / (L* Nc)

s_c = 1.12

s = 1 + B*tanp' / L*

s_o = 1.11

s, = 1 - 0,4*B* / L*

s., = 0.93

io, ia, i7: fattori di inclinazione del carico

 $m_b = (2 + B^*/L^*)/(1 + B^*/L^*) =$

1.86

 $\theta = arctg(Tb/Tl) =$

(°)

(-)

m_i = (2 + L* / B*) / (1 + L* / B*) =

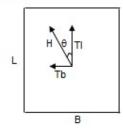
1.14 m

1.86

90.00

 $i_a = (1 - H/(N + B*L*c' \cot g\phi'))^m$

i_q = 0.70


 $i_c = i_q - (1 - i_q)/(Nq - 1)$

i_o = 0.69

 $i_v = (1 - H/(N + B*L*c' \cot g\phi'))^{(m+1)}$

i_v = 0.58

(m=2 nel caso di fondazione nastriforme e m=($m_b sin^2\theta + m_i cos^2\theta$) in tutti gli altri

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 162 di 166

do, dq, d7: fattori di profondità del piano di appoggio

per D/B* \leq 1; $d_q = 1 + 2 D \tan \varphi' (1 - \sec \varphi')^2 / B*$ per D/B*> 1; $d_q = 1 + (2 \tan \varphi' (1 - \sec \varphi')^2) * \arctan (D / B*)$

d_o = 1.24

 $d_c = d_o - (1 - d_o) / (N_c \tan \phi')$

d_c = 1.25

 $d_{y} = 1$

d, = 1.00

bo, bq, by: fattori di inclinazione base della fondazione

 $b_a = (1 - \beta_1 \tan \varphi')^2$

 $\beta_f + \beta_p = 0.00$

 $\beta_1 + \beta_0 < 45^\circ$

b_q = 1.00

 $b_c = b_q - (1 - b_q) / (N_c \tan \phi')$

b_c = 1.00

 $b_{y} = b_{0}$

b, = 1.00

g_o, g_q, g_y : <u>fattori di inclinazione piano di campagna</u>

 $g_q = (1 - \tan \beta_p)^2$

 $\beta_1 + \beta_0 = 0.00$

 $\beta_1 + \beta_p < 45^\circ$

g_o = 1.00

 $g_c = g_o - (1 - g_o) / (N_c \tan \varphi')$

g_c = 1.00

 $g_{\gamma} = g_{q}$

 $g_{\gamma} = 1.00$

RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA

NM0Y 00 D 11 CL

DOCUMENTO RI0003 002

REV. F0 A 163

FOGLIO 163 di 166

z_o, z_q, z_γ: fattori di correzioni sismiche secondo PAOLUCCI & PECKER

 $z_q = (1 - kh/tan\beta_p)^{U,35}$

 $z_{q} = 0.88$

 $z_c = (1 - 0.32k_h)$

 $z_c = 0.93$

 $z_{\gamma} = z_{q}$

 $z_{\gamma} = 0.88$

Carico limite unitario

q_{mm} = 1601.13 (kN/m²)

Pressione massima agente

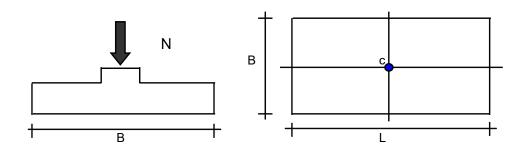
q = N / B* L*

 $q = 4.86 \text{ (kN/m}^2\text{)}$

Verifica di sicurezza capacità portante

 $q_{lim}/\gamma_R = 696.14 \ge q = 4.86 (kN/m^2)$

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA FERROVIARIA TORINO - VENEZIA. TRATTA TORINO - MILANO. NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO PROGETTO DEFINITIVO		ЕТТО			
RELAZIONE DI CALCOLO	COMMESSA NM0Y	LOTTO 00 D 11	CODIFICA CL	DOCUMENTO RI0003 002	REV.	FOGLIO 164 di 166


10.1.2 Verifica dei cedimenti

STRATO C (E=30000 kN/m²)				
z (profondità fondazione)	E	z (profondità strato cedimento)	E medio	
m	kN/m²	m	kN/m²	
0.00	30000	2.50	30000	
0.00	30000	2.50	30000	
STRATO B (E=35000-70000 kN/m ²		_		
z (profondità)	E	E medio		
m	kN/m²	kN/m²		
2.5	47500	52500		
15.0	57500	32300		

Si riporta la verifica dei cedimenti della fondazione in corrispondenza del massimo sforzo normale agente.

CEDIMENTI DI UNA FONDAZIONE RETTANGOLARE

LAVORO:

RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00 D 11
 CL
 RI0003 002
 A
 165 di 166

Formulazione Teorica (H.G. Poulos, E.H. Davis; 1974)

 $\Delta \sigma z i = (q/2\pi)^* (tan^{-1}((L/2)(B/2))/(zR_3)) + ((L/2)(B/2)z)/R_3)(1/R_1^2 + 1/R_2^2))$

 $\Delta \sigma xi = (q/2\pi)^*(tan^{-1}((L/2)(B/2))/(zR_3))-((L/2)(B/2)z)/R_3R_1^2))$

 $\Delta \sigma yi = (q/2\pi)*(tan^{-1}((L/2)(B/2))/(zR_3))-((L/2)(B/2)z)/R_3R_2^{-2})$

R1 = $((L/2)^2 + z^2)^{0.5}$

 $R2 = ((B/2)^2 + z^2)^{0.5}$

R3 = $((L/2)^2 + (B/2)^2 + z^2)^{0.5}$

 $\delta_{\text{tot}} = \Sigma \delta \iota = \Sigma (((\Delta \sigma z i - \nu i (\Delta \sigma x i + \Delta \sigma y i)) \Delta z i / E i)$

DATI DI INPUT:

B = 2.38 (m) (Larghezza della Fondazione)

L = 13.00 (m) (Lunghezza della Fondazione)

N = 258 (kN) (Carico Verticale Agente)

q = 8.34 (kN/mq) (Pressione Agente (q = N/(B*L)))

ns = 2 (-) (numero strati) (massimo 6)

Strato	Litologia	Spessore	da z _i	a Z _{I+1}	ΔZİ	E	ν	δci
(-)	(-)	(m)	(m)	(m)	(m)	(kN/m ²)	(-)	(cm)
1	STRATO C	2.50	0.0	2.5	1.0	25000	0.30	0.04
2	STRATO B	12.00	2.5	14.5	1.0	9000	0.30	0.63
-	A A VIII A VIII -	5	0.0	0.0			5	
			0.0	0.0				
-		9 9	0.0	0.0			50	
10-10			0.0	0.0				-

 $\delta_{ctot} = 0.66$ (cm)

RELAZIONE DI CALCOLO

COMMESSA LOTTO

NM0Y 00 D 11

CODIFICA DO

DOCUMENTO RI0003 002 REV. F

FOGLIO 166 di 166

11. INCIDENZA

I valori delle incidenze di armatura lenta sono indicati nella seguente tabella:

Piedritti laterali 60 kg/mc
Piedritto centrale 80 kg/mc
Soletta superiore 80 kg/mc
Soletta inferiore 70 kg/mc

Come previsto dall' Eurocodice (UNI EN 1992-1-1) per le piastre a portanza unidirezionale si raccomanda di prevedere un'armatura secondaria in quantità non minore del 20% dell'armatura principale.

Pertanto nel calcolo è stata considerata un' armatura longitudinale diffusa $\phi 14/20$ ed un incremento del 15% per tener conto della presenza di legature e spille.

12. CONCLUSIONI

Con la presente relazione si è proceduto al progetto e alla verifica del tombino ferroviario alla progressiva 67+233.982

Le verifiche strutturali e geotecniche rispettano le indicazioni delle Normative tecniche di riferimento.