COMMITTENTE:

PROGETTAZIONE:

PROGETTO DEFINITIVO

NODO DI NOVARA 1º FASE PRG DI NOVARA BOSCHETTO

OPERE D'ARTE PRINCIPALI

Nuovo sottovia via delle Rosette

Relazione di calcolo opere provvisionali

SCALA:

REV.

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR.

NM0Y 00 D 11 CL SL0100 004 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
		A.Ingletti		M.Milovanovic	Maggio 2021	F. Perrone		D. Maranzano
A	Emissione		Maggio 2021	Manhammhet -		Jungane	Maggio 2021	Maggio 2021
								greri della so

File: NM0Y00D11CLSL0100004A		n. Elab.:
-----------------------------	--	-----------

1^ FASE PRG DI NOVARA BOSCHETTO

LOTTO

NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA

NM0Y

CODIFICA

DOCUMENTO

REV. FO

FOGLIO

00 D 11 CL SL0100 004 A 3 di 75

INDICE

,		DDEMECCA.	,
1		PREMESSA	
2		SCOPO DEL DOCUMENTO	6
3		NORMATIVA DI RIFERIMENTO	9
4		DOCUMENTI DI RIFERIMENTO	11
5		MATERIALI UTILIZZATI	12
	5.1	ACCIAIO PER CARPENTERIA METALLICA S275: PALANCOLA E TRAVI DI RIPARTIZIONE	12
	5.2	ACCIAIO ARMONICO DI TIPO STABILIZZATO: TREFOLI	12
6		STRATIGRAFIA E PARAMETRI GEOTECNICI	13
7		MODELLO DI CALCOLO	16
	7.1	PARAMETRI DI SPINTA DEL TERRENO	17
	7.2	PARAMETRI DI DEFORMABILITÀ DEL TERRENO	18
8		APPROCCI DA NORMATIVA	19
9		PALANCOLA TIPO 1	21
	9.1	FASI DI CALCOLO	21
	9.2	SPOSTAMENTI ORIZZONTALI (INVILUPPO SLE)	25
	9.3	SOLLECITAZIONI (INVILUPPO SLU)	26
	9.4	VERIFICHE GEOTECNICHE	27
	9.5	VERIFICHE IDRAULICHE	28
	9.6	5 VERIFICHE STRUTTURALI	29
	9.7	7 VERIFICA TAPPO DI FONDO IN JET-GROUTING	31
1	0	PALANCOLA TIPO 2	32
	10	.1 FASI DI CALCOLO	32
	10	.2 SPOSTAMENTI ORIZZONTALI (INVILUPPO SLE)	37
	10	.3 SOLLECITAZIONI (INVILUPPO SLU)	38
	10	.4 VERIFICHE GEOTECNICHE	39
	10.	.5 Verifiche idrauliche	41

1^ FASE PRG DI NOVARA BOSCHETTO

NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NMOY
 00
 D 11 CL
 SL0100 004
 A
 4 di 75

10.6	VERIFICHE STRUTTURALI	42
10.7	VERIFICA TAPPO DI FONDO IN JET-GROUTING	44
11 PA	LANCOLA TIPO 3	45
11.1	FASI DI CALCOLO	45
11.2	SPOSTAMENTI ORIZZONTALI (INVILUPPO SLE)	51
11.3	SOLLECITAZIONI (INVILUPPO SLU)	52
11.4	VERIFICHE GEOTECNICHE	53
11.5	VERIFICHE IDRAULICHE	55
11.6	VERIFICHE STRUTTURALI	56
11.7	VERIFICA TAPPO DI FONDO IN JET-GROUTING	58
12 PA	LANCOLA TIPO 4	59
12.1	FASI DI CALCOLO	59
12.2	SPOSTAMENTI ORIZZONTALI (INVILUPPO SLE)	66
12.3	SOLLECITAZIONI (INVILUPPO SLU)	67
12.4	VERIFICHE GEOTECNICHE	68
12.5	VERIFICHE IDRAULICHE	70
12.6	VERIFICHE STRUTTURALI	71
12.7	VERIFICA TAPPO DI FONDO IN JET-GROUTING	74
13 CO	DNCLUSIONI	75

1^ FASE PRG DI NOVARA BOSCHETTO

Nuovo sottovia via delle Rosette - Relazione di calcolo opere provvisionali

NM0Y	00	D 11 CL	SL0100 004		5 di 75	
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	

1 PREMESSA

Il presente documento viene emesso nell'ambito della redazione degli elaborati tecnici relativi alla Progettazione definitiva del Nodo di Novara, 1º Fase PRG di Novara Boschetto.

L'opera oggetto delle analisi riportate nei paragrafi seguenti rientra fra quelle inserite nella categoria denominata "OPERE D'ARTE PRINCIPALI".

Quanto riportato di seguito consentirà di verificare che il dimensionamento delle strutture è stato effettuato nel rispetto dei requisiti di resistenza e deformabilità richiesti all'opera.

2 SCOPO DEL DOCUMENTO

La presente relazione ha per oggetto le analisi e le verifiche delle opere provvisionali relative al sottovia Via delle Rosette (opera SL01) previsto nell'ambito della Progettazione definitiva del Nodo di Novara, 1^ Fase PRG di Novara Boschetto.

Le opere provvisionali sono costituite da palancole tipo Larssen L607k tirantate. È possibile dividere l'opera in quattro tipologie, ovvero:

- Palancola tipo 1: palancola con un ordine di tiranti;
- Palancola tipo 2: palancola con due ordini di tiranti;
- Palancola tipo 3: palancola con tre ordini di tiranti;
- Palancola tipo 4: palancola con quattro ordini di tiranti;

Ai fini dei calcoli si individuano le seguenti sezioni di studio, con riferimento a quanto riportato al § 6.5.2.2 delle NTC 2018 le altezze di scavo sono incrementate nel calcolo:

	Palancola tipo 1								
H _{scavo,max}	H _{scavo,calcolo}	Tipo	Livelli tiranti	Travi di					
(m)	(m)	palancola	Zivoiii tii tii tii	ripartizione					
4.45	4.80	Larssen L607k	1° livello (-1 m da testa paratia)	2 HEB240					

Palancola tipo 2								
H _{scavo,max}	H _{scavo,calcolo}	Tipo	Livelli tiranti	Travi di				
(m)	(m)	palancola		ripartizione				
			1° livello					
	7.70		(-1 m da testa	2 HEB240				
7.40		Larssen	paratia)					
7.40		L607k	2° livello					
			(-4 m da testa	2 HEB240				
			paratia)					

PROVVISIONALI

1^ FASE PRG DI NOVARA BOSCHETTO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00
 D 11 CL
 SL0100 004
 A
 7 di 75

	Palancola tipo 3							
H _{scavo,max}	H _{scavo,calcolo}	Tipo	Livelli tiranti	Travi di				
(m)	(m)	palancola		ripartizione				
			1° livello					
			(-1 m da testa	2 HEB240				
	8.60		paratia)					
		Larssen	2° livello					
8.25		L607k	(-4 m da testa	2 HEB240				
			paratia)					
			3° livello					
			(-7 m da testa	2 HEB240				
			paratia)					

	Palancola tipo 4							
H _{scavo,max} (m)	H _{scavo,calcolo} (m)	Tipo palancola	Livelli tiranti	Travi di ripartizione				
12.15			1° livello (-1 m da testa paratia)	2 HEB240				
	12.50	Larssen	2° livello (-4 m da testa paratia)	2 HEB240				
		L607k	3° livello (-7 m da testa paratia)	2 HEB240				
			4° livello (-10 m da testa paratia)	2 HEB240				

Le caratteristiche dei tiranti sono riportate nella tabella sottostante.

Livello	α [°]	Interasse orizzontale [m]	Lunghezza libera [m]	Lunghezza fondazione [m]	Metodo iniezione	φ perforazione [cm]	n° trefoli 0.6"	Pretiro [kN]
1° livello		2.4	8	5		20	4	300
2° livello	15	2.4	7	9	IDC		6	400
3° livello	15 o	2.4	5	14	IRS		7	600
4° livello		1.2	4	15			7	600

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETT NODO DI N 1^ FASE PRG DI	NOVARA					
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
PROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	8 di 75	

Si riporta la sezione longitudinale della struttura.

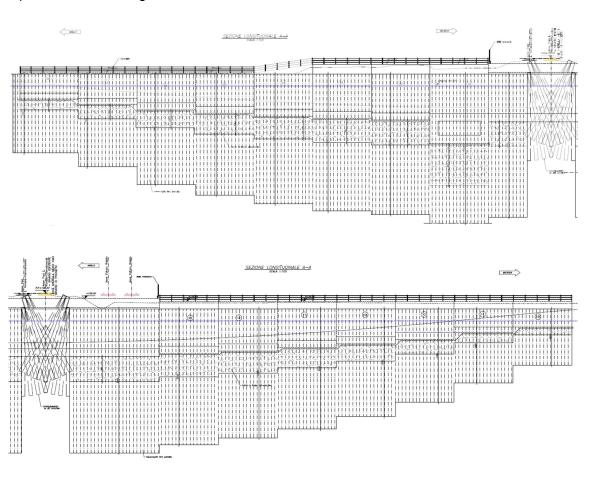


Figura 1 – Sezione longitudinale

1^ FASE PRG DI NOVARA BOSCHETTO

Nuovo sottovia via delle Rosette - Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM0Y	00	D 11 CL	SL0100 004	Α	9 di 75

3 NORMATIVA DI RIFERIMENTO

Si riporta nel seguito l'elenco delle leggi e dei decreti di carattere generale, assunti come riferimento.

- Legge 5-1-1971 n° 1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica".
- Legge. 2 febbraio 1974, n. 64. Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.
- D.M. 14 gennaio 2008 Norme Tecniche per le Costruzioni
- Circolare 2 febbraio 2009, n. 617 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008.
- D.M. 17 gennaio 2018 Aggiornamento delle "Norme Tecniche per le Costruzioni"
- Circolare 21 gennaio 2019, n. 7 Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018.
- UNI EN 1992-1 "Progettazione delle strutture di calcestruzzo Regole generali".
- UNI EN 1992-2 "Progettazione delle strutture di calcestruzzo Ponti".
- UNI EN 1998-5 (Eurocodice 8) Gennaio 2005: "Progettazione delle strutture per la resistenza sismica – Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici".
- UNI EN 206-1: "Calcestruzzo Specificazione, prestazione, produzione e conformità".
- UNI 11104: "Calcestruzzo Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1".
- "Linee guida sul calcestruzzo strutturale Servizio Tecnico Centrale della Presidenza del Consiglio Superiore dei LL.PP.".

1^ FASE PRG DI NOVARA BOSCHETTO

NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00
 D 11 CL
 SL0100 004
 A
 10 di 75

Si riporta, ora, l'elenco delle norme tecniche, delle circolari e delle istruzioni F.S. delle quali si è tenuto conto.

- RFI_DTC_INC_PO_SP_IFS_001_A Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario.
- RFI_DTC_INC_PO_SP_IFS_002_A Specifica per la progettazione e l'esecuzione di cavalcavia e
 passerelle pedonali sulla sede ferroviaria.
- RFI_DTC_INC_PO_SP_IFS_005_A Specifica per il progetto, la produzione, il controllo della produzione e la posa in opera dei dispositivi di vincolo e dei coprigiunti degli impalcati ferroviari e dei cavalcavia.
- RFI_DTC_INC_CS_SP_IFS_001_A Specifica per la progettazione geotecnica delle opere civili ferroviarie.
- RFI DTC INC CS LG IFS 001 A Linee guida per il collaudo statico delle opere in terra.

1^ FASE PRG DI NOVARA BOSCHETTO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NMOY
 00
 D 11 CL
 SL0100 004
 A
 11 di 75

NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE PROVVISIONALI

4 DOCUMENTI DI RIFERIMENTO

Nella presente relazione, si è fatto riferimento ai seguenti elaborati di progetto definitivo:

Νι	ıov	o s	ott	ovi	a v	ia c	lell	e R	los	ette)										
Ν	М	0	Υ	0	0	D	1	1	R	G	s	L	0	1	0	0	0	0	1	Α	Relazione tecnica descrittiva
N	М	0	Υ	0	0	D	1	1	С	L	s	L	0	1	0	0	0	0	1	Α	Relazione di calcolo del sottovia
Ν	М	0	Υ	0	0	D	1	1	С	L	s	L	0	1	0	0	0	0	2	Α	Relazione di calcolo del sottovia a spinta
Ν	М	0	Υ	0	0	D	1	1	С	L	s	L	0	1	0	0	0	0	3	Α	Relazione di calcolo muri ad "U"
Ν	М	0	Υ	0	0	D	1	1	L	Z	s	L	0	1	0	0	0	0	3	Α	Planimetria generale dell'opera
Ν	М	0	Υ	0	0	D	1	1	Р	9	s	L	0	1	0	0	0	0	1	Α	Pianta scavi
Ν	М	0	Υ	0	0	D	1	1	В	Х	s	L	0	1	0	0	0	0	1	Α	Planimetria sezioni e dettagli monolite a spinta
Ν	М	0	Υ	0	0	D	1	1	В	Α	s	L	0	1	0	0	0	0	1	Α	Sezione longitudinale
N	М	0	Υ	0	0	D	1	1	В	Α	s	L	0	1	0	0	0	0	2	Α	Sezioni trasversali
Ν	М	0	Υ	0	0	D	1	1	В	Α	s	L	0	1	0	0	0	0	3	Α	Fasi costruttive
Ν	М	0	Υ	0	0	D	1	1	В	Α	s	L	0	1	0	0	0	0	4	Α	Opere Provvisionali - pianta e sezione longitudinale tav.1/2
Ν	М	0	Υ	0	0	D	1	1	В	Α	s	L	0	1	0	0	0	0	5	Α	Opere Provvisionali - pianta e sezione longitudinale tav.2/2
Ν	М	0	Υ	0	0	D	1	1	В	В	s	L	0	1	0	2	0	0	1	Α	Carpenteria - Pianta tav 1/ 2
Ν	М	0	Υ	0	0	D	1	1	В	В	s	L	0	1	0	2	0	0	2	Α	Carpenteria - Pianta tav 2/ 2
Ν	М	0	Υ	0	0	D	1	1	В	В	s	L	0	1	0	2	0	0	3	Α	Carpenteria - Sezioni tav 1/3
Ν	М	0	Υ	0	0	D	1	1	В	В	s	L	0	1	0	2	0	0	4	Α	Carpenteria - Sezioni tav 2/3
Ν	М	0	Υ	0	0	D	1	1	В	В	s	L	0	1	0	2	0	0	5	Α	Carpenteria - Sezioni tav 3/3
Ν	М	0	Υ	0	0	D	1	1	В	В	s	L	0	1	0	2	0	0	6	Α	Carpenteria - pianta e sezione monolite a spinta
N	М	0	Υ	0	0	D	1	1	В	В	s	L	0	1	0	6	0	0	1	Α	Recinzione di protezione - pianta e particolari
Ν	М	0	Υ	0	0	D	1	1	В	В	s	L	0	1	0	Χ	0	0	1	Α	Carpenteria - vasca sollevamento acque meteoriche pianta e sezioni
Ν	М	0	Υ	0	0	D	1	1	В	Z	s	L	0	1	0	2	0	0	1	Α	Particolari costruttivi e finiture

1^ FASE PRG DI NOVARA BOSCHETTO

NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE PROVVISIONALI

NM0Y	00	D 11 CL	SL0100 004	Α	12 di 75	
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	

5 MATERIALI UTILIZZATI

5.1 Acciaio per carpenteria metallica S275: palancola e travi di ripartizione

f_{yk} = 275 MPa tensione caratteristica di snervamento

 f_{yd} = f_{yk} /1.05 =261.9 MPa tensione caratteristica di calcolo

Es = 210000 MPa modulo elastico

5.2 Acciaio armonico di tipo stabilizzato: trefoli

f_{ptk} = 1860 MPa tensione caratteristica al carico massimo

 $f_{p(1)k}$ = 1670 MPa tensione caratteristica all'1% di deformazione totale

 $f_{yd} = f_{p(1)k} / 1.15 = 1452.1$ MPa tensione di calcolo

1^ FASE PRG DI NOVARA BOSCHETTO

Nuovo sottovia via delle Rosette - Relazione di calcolo opere provvisionali
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00
 D 11 CL
 SL0100 004
 A
 13 di 75

6 STRATIGRAFIA E PARAMETRI GEOTECNICI

Nel rispetto dell'elaborato contenente la definizione dei parametri geotecnici, la seguente tabella riepiloga la stratigrafia di calcolo adottata (valori caratteristici) con riferimento agli elaborati geotecnici (cfr. profilo geotecnico e relazione geotecnica).

Tipologia	Profondità	γ	c'	ф	E'	Nspt
Tipologia	da p.f. (m)	(kN/m³)	(kPa)	(°)	(MPa)	(-)
Unità A	0.0 – 1.5	18.5	0	28	7.0	-
Unità C	1.5 – 4.7	18.5	0	35	30.0	22.5
Unità B	4.7 – 11.2	20.0	0	42	47.5	35.0
Unità C	11.2 – 31.0	18.5	0	35	30.0	22.5
Unità B	31.0 – 44.9	20.0	0	42	57.5	45.0
Unità C	> 44.9	18.5	0	35	30.0	22.5

In accordo con quanto riportato negli elaborati grafici geologici e geotecnici, la falda è collocata alla profondità di 4.7 m da P.F.

Per la stima della tensione di aderenza dei tiranti (q_s) è stato utilizzato il metodo di Bustamante e Doix. I tiranti saranno realizzati all'interno di terreni sabbiosi e ghiaiosi; in questo caso la tensione di aderenza è fornita dal seguente abaco (la retta da considerare è la SG1 ovvero quella relativa all'iniezione di tipo IRS), in cui il valore della pressione limite può essere correlato ai risultati delle prove penetrometriche tramite la seguente relazione:

 $p_{lim} = N_{SPT}/20 [MPa]$

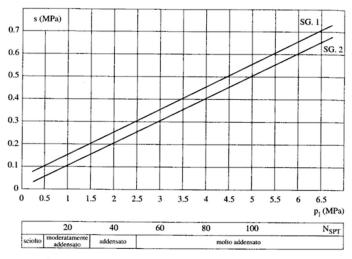


Fig. 13.16. Abaco per il calcolo di s per sabbie e ghiaie

Figura 2 – Abaco di Bustamente e Doix (caso di sabbie e ghiaie)

Tra il diametro della zona iniettata d_{in} e quello della perforazione d_{perf} esiste la seguente relazione:

$$d_{in} = \alpha d_{perf}$$

Il valore di α può essere ricavato dalla seguente tabella:

Valori d	el coeffici	ente oz (Vs	s = Ls*π*ds²/-	4)		
TERRENO	Valor	idioc.	Quantità minima di miscela consigliata			
	IRS	IGU	IRS	IGU		
Ghiaia	1,8	1.3 - 1.4	1.5 Vs	1.5 Vs		
Ghiaia sabbiosa	1.6 - 1.8	1.2 - 1.4	1.5 Vs	1.5 Vs		
sabbia ghiaiosa	1.5 - 1.6	1.2 - 1.3	1.5 Vs	1.5 Vs		
Sabbia grossa	1.4 - 1.5	1.1 - 1.2	1.5 Vs	1.5 Vs		
Sabbia media	1.4 - 1.5	1.1 - 1.2	1.5 Vs	1.5 Vs		
Sabbia fine	1.4 - 1.5	1.1 -1.2	1.5 Vs	1.5 Vs		
Sabbia limosa	1.4 - 1.5	1.1 - 1.2	(1.5 - 2) Vs	1.5 Vs		
Limo	1.4 - 1.6	1.1 - 1.2	2 Vs	1.5 Vs		
Argilla	1.8 - 2.0	1,2	(2.5 - 3) Vs	(1.5 - 2) Vs		
Marne	1,8	1.1 - 1.2		s perstrati patti		
Calcari marnosi	1,8	1.1 - 1.2	(2 - 6) Vs o più perstrat			
Calcari alterati o fratturati	1,8	1.1 - 1.2	fratturati			
Roccia alterata e/o fratturata	1,2	1,1	poco frattu	/s per strati rati; 2 Vs o ati fratturati		

1^ FASE PRG DI NOVARA BOSCHETTO

Nuovo sottovia via delle Rosette - Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
NM0Y	00	D 11 CL	SL0100 004	Α	15 di 75	

In definitiva, per la resistenza dei tiranti si adottano i seguenti parametri:

Unità B:

$$- \alpha = 1.6$$

$$- q_s = 230 \text{ kPa}$$

Unità C:

$$- \alpha = 1.4$$

$$- q_s = 170 \text{ kPa}$$

1^ FASE PRG DI NOVARA BOSCHETTO

Nuovo sottovia via delle Rosette - Relazione di calcolo opere provvisionali
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00
 D 11 CL
 SL0100 004
 A
 16 di 75

7 MODELLO DI CALCOLO

Al fine di rappresentare il comportamento delle paratie durante le varie fasi di lavoro (scavi e/o inserimento degli elementi di contrasto) è opportuno l'impiego di un metodo di calcolo iterativo atto a simulare l'interazione in fase elasto-plastica terreno-paratia.

Allo scopo si impiega il programma di calcolo "PARATIEPLUS" della HarpaCeas s.r.l. di Milano.

Lo studio del comportamento di un elemento di paratia inserito nel terreno viene effettuato tenendo conto della deformabilità dell'elemento stesso, considerato in regime elastico, e soggetto alle azioni derivanti dalla spinta dei terreni, dalle eventuali differenze di pressione idrostatiche, dalle spinte dovute ai sovraccarichi esterni e dalla presenza degli elementi di contrasto.

La paratia viene discretizzata con elementi finiti monodimensionali a due gradi di libertà per nodo (spostamento orizzontale e rotazione).

Il terreno viene schematizzato con delle molle secondo un modello elasto-plastico; esso reagisce elasticamente sino a valori limite dello spostamento, raggiunti i quali la reazione corrisponde, a seconda del segno dello stesso spostamento, ai valori limite della pressione attiva o passiva.

Gli spostamenti vengono computati a partire dalla situazione di spinta "a riposo".

Con tale metodo, si può quindi seguire analiticamente la successione delle fasi di costruzione, di carico e di contrasto, consentendo di fornire informazioni attendibili sull'entità delle deformazioni e sugli effetti che esse inducono sul diagramma delle pressioni esercitate dal terreno sulla paratia.

I parametri che caratterizzano il modello dunque possono essere distinti in due classi: parametri di spinta e parametri di deformabilità del terreno che compaiono nella definizione della rigidezza delle molle.

1^ FASE PRG DI NOVARA BOSCHETTO

Nuovo sottovia via delle Rosette - Relazione di calcolo opere provvisionali
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00
 D 11 CL
 SL0100 004
 A
 17 di 75

7.1 Parametri di spinta del terreno

I parametri di spinta sono:

pressione a riposo: P'o = Ko \cdot σ 'v

con: Ko = coefficiente di spinta a riposo.

 $\sigma'v$ = tensione verticale efficace;

pressione attiva: P'a = $Ka \cdot \sigma'v - c' \cdot Kac$.

con: Ka = coefficiente di spinta attiva, funzione di φ' e δa ;

 $Kac = 2 \cdot (Ka)0.5$;

 δa = angolo di attrito terreno-paratia;

pressione passiva: P'p = $Kp \cdot \sigma'v + c' \cdot Kpc$.

con: Kp = coefficiente di spinta passiva, funzione di φ' e δp ;

 $Kpc = 2 \cdot (Kp)0.5$;

 δp = attrito terreno-paratia;

Il coefficiente di spinta a riposo è stato calcolato con la relazione di Mayne & Kulhavy:

$$k_{0.NC} = (1 - \sin \varphi')$$

Mentre i coefficienti di spinta attiva e passiva sono stati calcolati con la relazione di Lancellotta (2002) considerando un valore dell'angolo di attrito parete-terreno pari a 2/3 di ϕ ':

1^ FASE PRG DI NOVARA BOSCHETTO

Nuovo sottovia via delle Rosette - Relazione di calcolo opere provvisionali
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00
 D 11 CL
 SL0100 004
 A
 18 di 75

$$k_{a,p} = \left[\frac{\cos\delta}{1\mp\sin\varphi'} \left(\cos\delta \pm \sqrt{\sin^2\varphi' - \sin^2\delta}\right)\right] e^{\pm 2\theta t a}$$

$$\theta_{p,a} = arcsen\left(\frac{\sin\delta}{\sin\varphi'}\right) \pm \delta$$

7.2 Parametri di deformabilità del terreno

Per la definizione del modulo di Young si utilizza il modello elasto-plastico inserendo il valore di E manualmente. Il programma provvede automaticamente a calcolare le costanti di sottofondo per ogni fase di scavo come:

$$K_{monte} = \frac{E_m \cdot \Delta}{B_m} \quad e \quad K_{valle} = \frac{E_v \cdot \Delta}{B_v}$$

Dove Δ è il valore fornito dalla schematizzazione agli elementi finiti e B_m e B_v sono rispettivamente le estensioni laterali del cuneo di spinta attiva e passiva del terreno alla quota del baricentro del cuneo stesso, per ogni fase di scavo:

$$B_m = \frac{2}{3} \cdot A \cdot \tan\left(45^\circ - \frac{\varphi'}{2}\right)$$

$$B_V = \frac{2}{3} \cdot (A - H) \cdot \tan\left(45^\circ + \frac{\varphi'}{2}\right)$$

con $A = min(2H_{scavo}; H_{paratia})$

Il valore del modulo in fase incrudente si assume pari a due volte il modulo di primo carico:

$$E_{ur} = 2 \cdot E_{vc}$$

1^ FASE PRG DI NOVARA BOSCHETTO

Nuovo sottovia via delle Rosette - Relazione di calcolo opere provvisionali
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00
 D 11 CL
 SL0100 004
 A
 19 di 75

8 APPROCCI DA NORMATIVA

Le analisi di verifica della paratia sono state effettuate secondo le NTC 2018 tenendo conto di possibili SLU di tipo geotecnico, idraulico e strutturale. Nello specifico sono state effettuate le verifiche dei seguenti stati limite:

- SLU di tipo geotecnico (GEO)
 - collasso per raggiungimento della resistenza del terreno con rotazione attorno ad un punto della paratia stessa;
 - verifica a sfilamento della fondazione dei tiranti.
- SLU di tipo idraulico (UPL)
 - verifica a sollevamento
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza strutturale della palancola
 - verifica dell'armatura dei tiranti;
 - verifica delle travi di ripartizione.

Le verifiche per il dimensionamento strutturale sono state effettuate con la Combinazione 1 (A1+M1+R1) che prevede coefficienti unitari sui parametri del terreno e sulle resistenze globali del sistema, mentre vengono amplificate le azioni permanenti e variabili con i coefficienti del gruppo A1.

Le verifiche relative al dimensionamento geotecnico sono state effettuate con la combinazione 2 dell'approccio 1 (A2+M2+R1) che prevede l'amplificazione delle azioni variabili e permanenti e la riduzione dei parametri di resistenza a taglio, mentre risultano unitari i coefficienti γ_R sulla resistenza globale del terreno.

Le verifiche idrauliche sono state effettuate utilizzando i coefficienti per le azioni riportati nella Tab.6.2.III delle NTC2018.

In condizioni di esercizio sono stati valutati gli spostamenti dell'opera per valutare la compatibilità con la funzionalità della stessa e con la sicurezza e funzionalità di eventuali preesistenze.

		Coefficiente	EQU ¹	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	YG1	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali	favorevoli sfavorevoli	Y _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Ballast	favorevoli sfavorevoli	Yв	0,90 1,50	1,00 1,50	1,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	Ya	0,00 1,45	0,00 1,45	0,00 1,25
Carichi variabili	favorevoli sfavorevoli	Yai	0,00 1,50	0,00 1,50	0,00 1,30
Precompressione	favorevole sfavorevole	ΎР	0,90 1,00	1,00 1,00	1,00 1,00
Ritiro, viscosità e cedimenti non imposti appositamente	favorevole sfavorevole	Yoed	0,00 1,20	0,00 1,20	0,00 1,00

Figura 3 – Coefficienti parziali per le azioni o per l'effetto delle azioni

PARAMETRO	GRANDEZZA ALLA QUALE APPLICARE IL COEFFICIENTE PARZIALE	COEFFICIENTE PARZIALE YM	(MI)	(M2)
Tangente dell'angolo di resistenza al taglio	tan φ′ _k	γψ	1,0	1,25
Coesione efficace	c'i	Ye.	1,0	1,25
Resistenza non drenata	c _{uk}	Yeu	1,0	1,4
Peso dell'unità di volume	γ	γ	1,0	1,0

Figura 4 – Coefficienti parziali per i parametri geotecnici del terreno

Tab. 6.2.III – Coefficienti parziali sulle azioni per le verifiche nei confronti di stati limite di sollevamento

	Effetto	Coefficiente Parziale γ_F (o γ_E)	Sollevamento (UPL)
0.11.	Favorevole	.,	0,9
Carichi permanenti G1	Sfavorevole	γgı	1,1
Carichi permanenti	Favorevole		0,8
$G_{2^{(1)}}$	Sfavorevole	γ _{G2}	1,5
A = i = mi = m = i = l : 11: O	Favorevole	- 10	0,0
Azioni variabili Q	Sfavorevole	γ_{Qi}	1,5

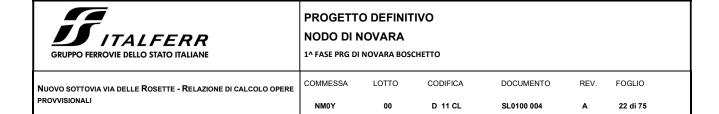
⁽i) Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γςι

Figura 5 – Coefficienti parziali per le azioni nelle verifiche idrauliche

1^ FASE PRG DI NOVARA BOSCHETTO

Nuovo sottovia via delle Rosette - Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NMOY	00	D 11 CL	SL0100 004	Α	21 di 75


9 PALANCOLA TIPO 1

Le analisi sono state eseguite nelle sole condizioni statiche, trattandosi di opere a carattere provvisionale.

9.1 Fasi di calcolo

L'analisi si compone complessivamente di 5 fasi di calcolo:

- 1) Ricostruzione dello stato tensionale
- 2) Attivazione palancole, carichi accidentali (q=10 kPa)
- 3) Scavo 2.0 m
- 4) Inserimento 1° livello di tiranti
- 5) Scavo di 4.8 m (sovrascavo di calcolo)

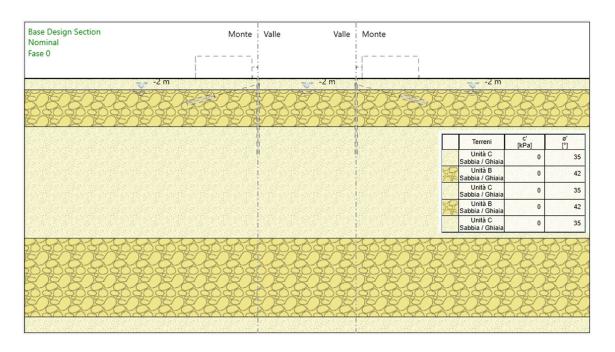


Figura 6 - Fase 1

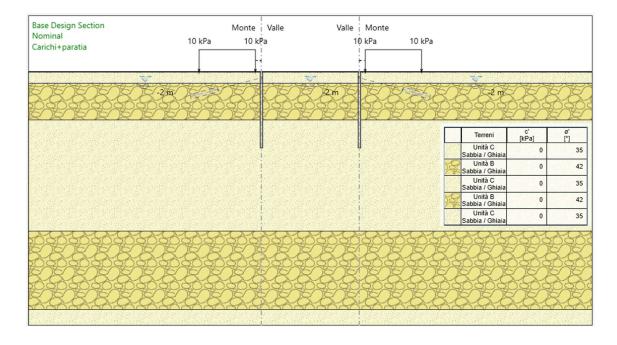
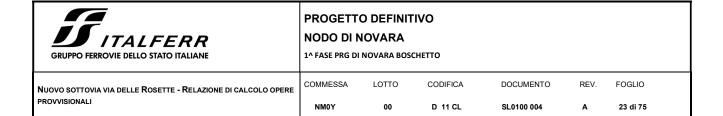



Figura 7 - Fase 2

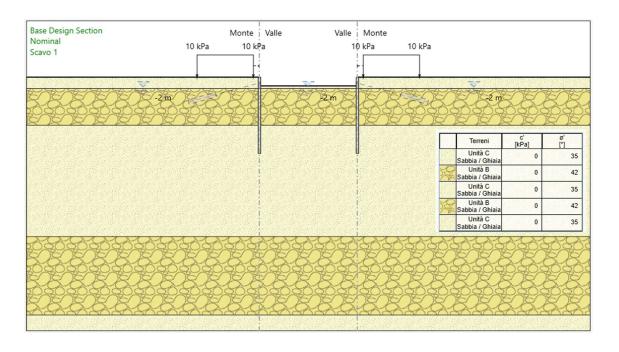


Figura 8 - Fase 3

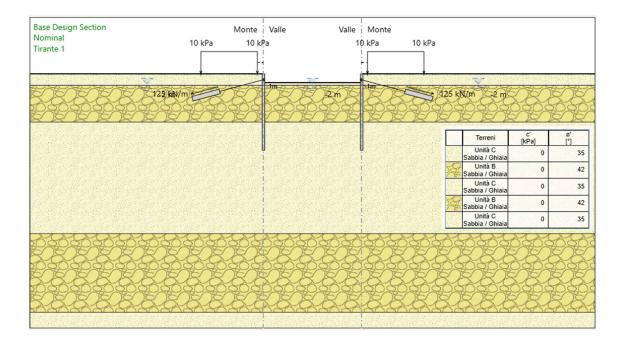


Figura 9 - Fase 4

II ITALFERR	PROGETTO DEFINITIVO NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO								
GRUPPO FERROVIE DELLO STATO ITALIANE	1^ FASE PRG D	I NOVARA BOS	CHETTO						
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
PROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	24 di 75			

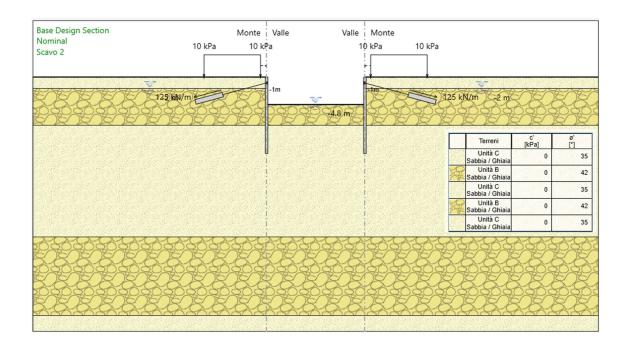


Figura 10 – Fase 5

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO							
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
PROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	25 di 75		

9.2 Spostamenti orizzontali (Inviluppo SLE)

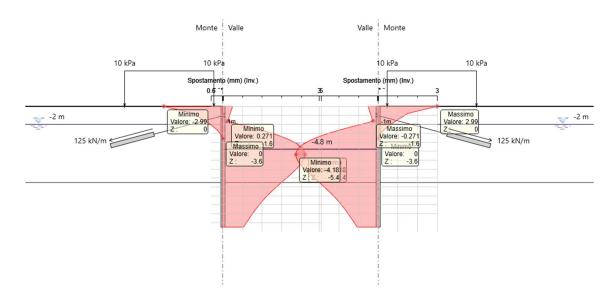


Figura 11 – Inviluppo spostamenti orizzontali SLE

Il massimo spostamento orizzontale SLE è pari a 4.18 mm e si ottiene alla profondità di 5.4 m dalla testa della paratia.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO						
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
PROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	26 di 75	

9.3 Sollecitazioni (Inviluppo SLU)

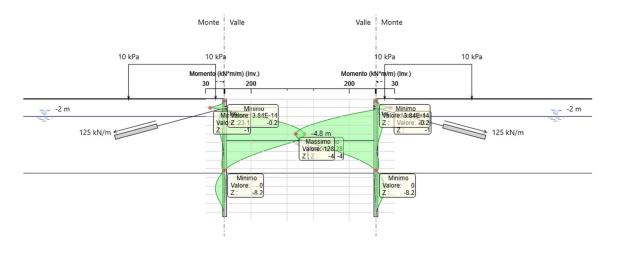


Figura 12 - Inviluppo momento flettente SLU

Il massimo momento flettente SLU è pari a 128 kNm/m e si ottiene alla profondità di 4 m dalla testa della paratia.

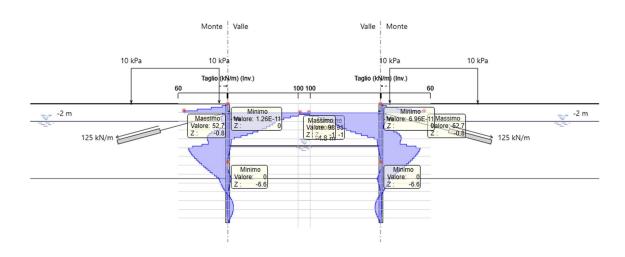
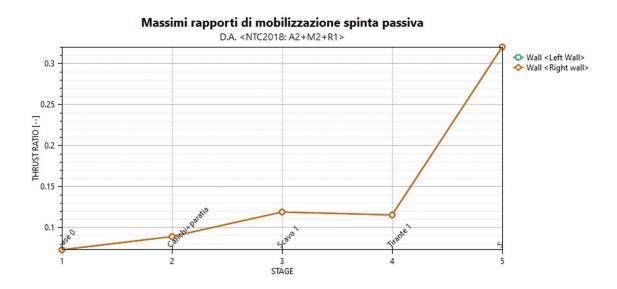


Figura 13 - Inviluppo taglio SLU

Il massimo taglio SLU è pari a 98 kN/m e si ottiene alla profondità di 1 m dalla testa della paratia.



9.4 Verifiche geotecniche

Le verifiche geotecniche sono effettuate seguendo l'approccio 1 combinazione 2 (A2+M2+R1).

Per valutare la capacità geotecnica della struttura il programma fornisce per via diretta il raggiungimento di un risultato di convergenza nel modello. Quando tale situazione si presenta è possibile ritenere soddisfatta automaticamente la condizione di equilibrio attorno a un punto di rotazione.

Un modo indiretto per valutare la capacità geotecnica della struttura, consiste nel valutare la percentuale di mobilitazione della spinta passiva relativa al tratto infisso di paratia. L'entità di tale rapporto permette di valutare il livello di sfruttamento geotecnico della struttura rispetto le condizioni limite. Naturalmente tale rapporto deve essere minore o uguale all'unità, affinché non sia violato il criterio di resistenza della struttura.

Per la sezione di riferimento il massimo rapporto di mobilitazione della spinta passiva è pari a 0.321.

NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE							
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
	NM0Y	00	D 11 CL	SL0100 004	Α	28 di 75	

9.5 Verifiche idrauliche

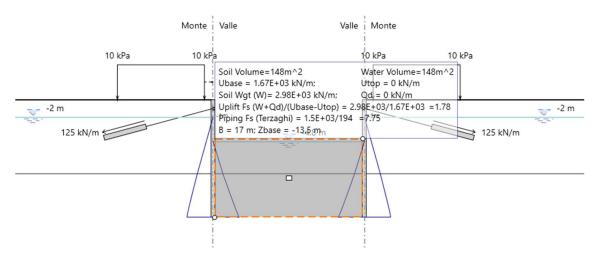


Figura 14 – Verifica a sollevamento

Come evidenziato dall'immagine, il coefficiente di sicurezza a sollevamento è pari a

$$FS_{UPLIFT} = (W + Q_d) / (U_{base} - U_{top}) = 1.78 > FS_{min} = 1.1/0.9 = 1.22$$

quindi la verifica idraulica risulta soddisfatta.

9.6 Verifiche strutturali

<u>Palancola</u>

La palancola ha un profilo tipo Larssen L607k avente le seguenti caratteristiche:

Area, A
 244 cm²/m

Momento d'inerzia, J 70'030 cm⁴/m

Modulo di resistenza, W 3'220 cm³/m

Nelle seguenti immagini sono riportati gli inviluppi SLU dello sfruttamento della sezione.

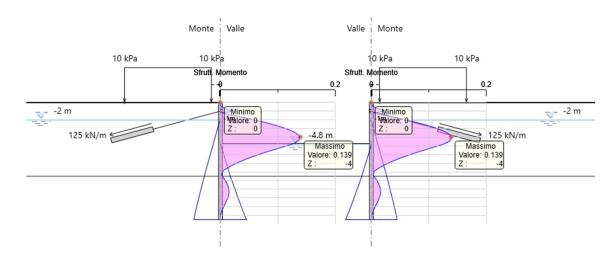
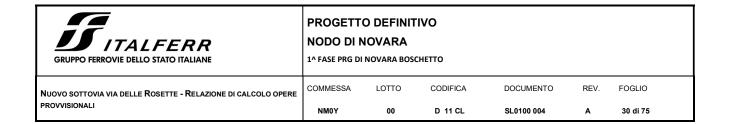



Figura 15 – Diagramma di sfruttamento a momento flettente (SLU)

Il massimo sfruttamento a flessione della paratia è pari a 0.139.

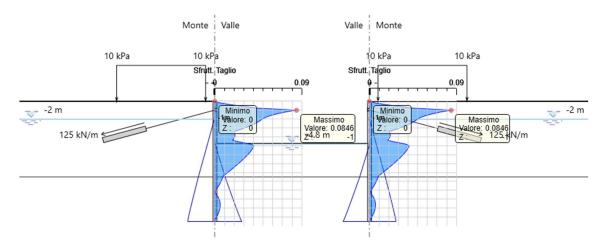
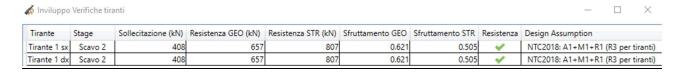



Figura 16 - Diagramma di sfruttamento a taglio (SLU)

Il massimo sfruttamento a taglio della paratia è pari a 0.085.

Tiranti

Nella tabella sottostante si riporta l'inviluppo delle verifiche strutturali e geotecniche dei tiranti.

Travi di ripartizione

Le travi di ripartizione sono costituite da 2 HEB240.

Trave di Ripartizione	Connession e	Sezione	Materiale	Passo orizz. (m)	D.A.	Stage	Carico distribuito (kN/m)	Azione Assiale (kN)	Sfruttamento Momento	Sfruttamento Taglio	Instabilità
Default Waler	Tirante 1 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Tirante 1	169	0	0.262	0.271	0
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Tirante 1	169	0	0.262	0.271	0
Default Waler	Tirante 1 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Scavo 2	170	0	0.264	0.273	0
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Scavo 2	170	0	0.264	0.273	0

NM0Y

9.7 Verifica tappo di fondo in jet-grouting

Sul fondo dello scavo è previsto un tappo costituito da jet-grouting. L'altezza delle colonne sarà pari a:

00

D 11 CL

SL0100 004

FOGLIO

31 di 75

Dislivello falda $\Delta h = 2.44 \text{ [m]}$ Peso specifico jet-grouting $\gamma_{jt} = 16 \text{ [kN/m}^3]$ Coefficiente di sicurezza minimo $F_{smin} = 1.222 \text{ [-]}$ Altezza colonne jet-grouting a = 1.86 [m]

in cui è stato considerato come minimo coefficiente di sicurezza il rapporto tra i coefficienti parziali delle azioni (coefficiente "sfavorevole" per la sottospinta della falda e coefficiente "favorevole" per il peso del jet-grouting), ovvero:

 $FS_{min} = 1.1 / 0.9 = 1.222$

1^ FASE PRG DI NOVARA BOSCHETTO

Nuovo sottovia via delle Rosette - Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM0Y	00	D 11 CL	SL0100 004	A	32 di 75

10 PALANCOLA TIPO 2

Le analisi sono state eseguite nelle sole condizioni statiche, trattandosi di opere a carattere provvisionale.

10.1 Fasi di calcolo

L'analisi si compone complessivamente di 7 fasi di calcolo:

- 1) Ricostruzione dello stato tensionale
- 2) Attivazione palancole, carichi accidentali (q=10 kPa)
- 3) Scavo 2.0 m
- 4) Inserimento 1° livello di tiranti
- 5) Scavo di 4.5 m
- 6) Inserimento 2° livello di tiranti
- 7) Scavo di 7.7 m (sovrascavo di calcolo)

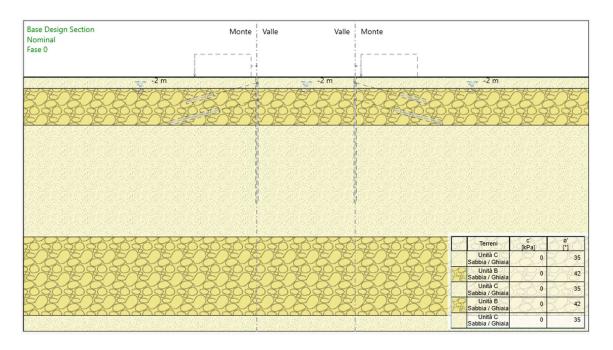


Figura 17 - Fase 1

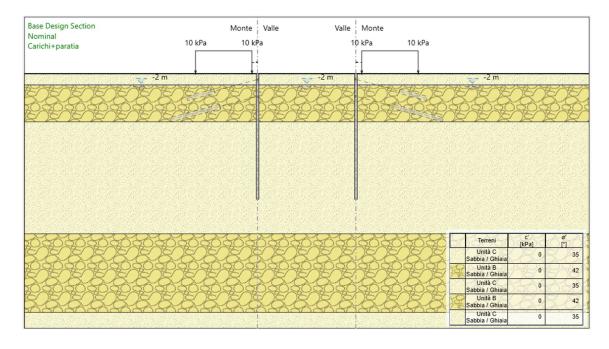


Figura 18 – Fase 2

	PROGETTO DEFINITIVO NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO						
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
PROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	34 di 75	

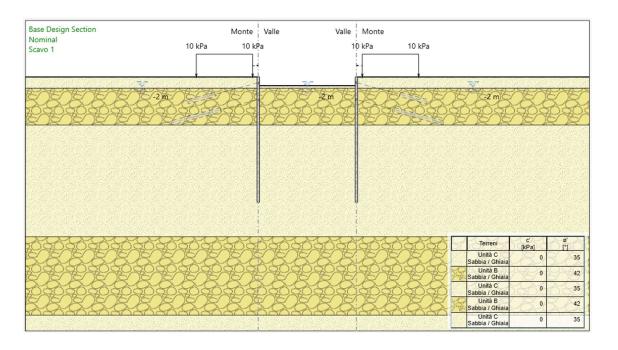


Figura 19 - Fase 3

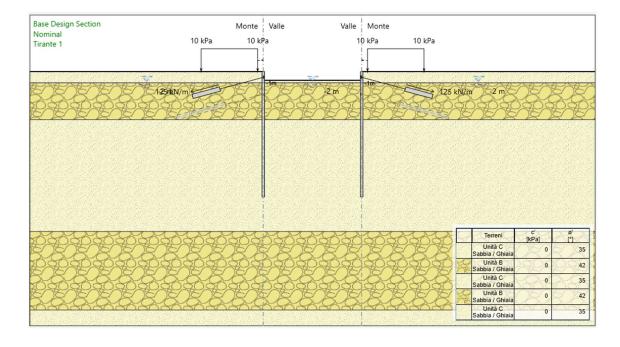


Figura 20 - Fase 4

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETT NODO DI N 1^ FASE PRG DI	NOVARA					
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
PROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	35 di 75	

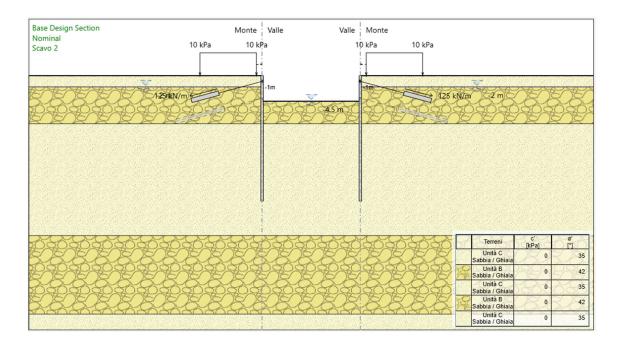


Figura 21 – Fase 5

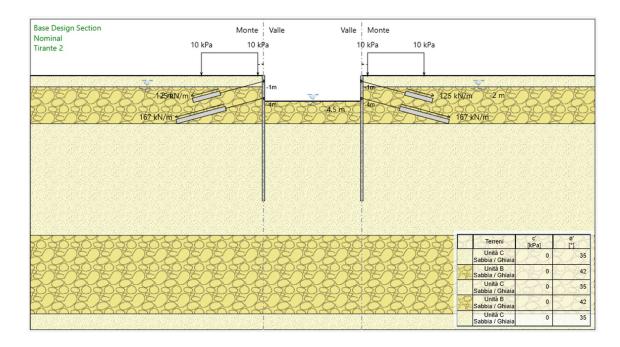


Figura 22 - Fase 6

JTALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO DI NOVARA 1º FASE PRG DI NOVARA BOSCHETTO							
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE PROVVISIONALI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
	NM0Y	00	D 11 CL	SL0100 004	Α	36 di 75		

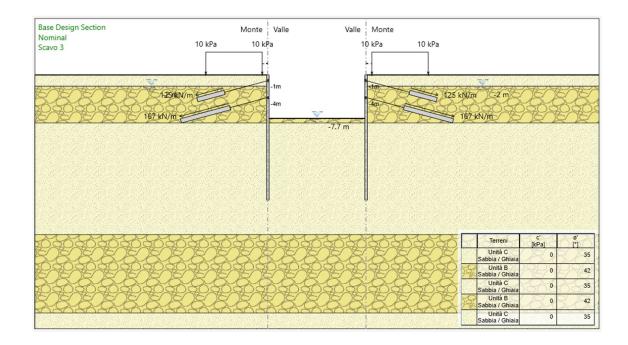


Figura 23 – Fase 7

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETT NODO DI N 1^ FASE PRG DI	NOVARA					
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
ROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	37 di 75	

10.2 Spostamenti orizzontali (Inviluppo SLE)

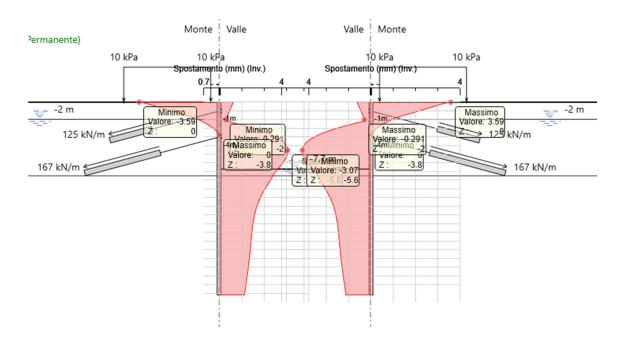


Figura 24 - Inviluppo spostamenti orizzontali SLE

Il massimo spostamento orizzontale SLE è pari a 3.07 mm e si ottiene alla profondità di 5.6 m dalla testa della paratia.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETT NODO DI N 1^ FASE PRG DI	NOVARA				
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
PROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	38 di 75

10.3 Sollecitazioni (Inviluppo SLU)

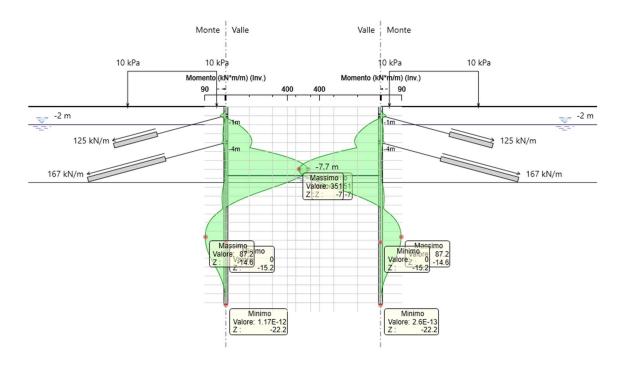


Figura 25 – Inviluppo momento flettente SLU

Il massimo momento flettente SLU è pari a 351 kNm/m e si ottiene alla profondità di 7 m dalla testa della paratia.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETT NODO DI I 1^ FASE PRG DI	NOVARA					
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
ROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	39 di 75	

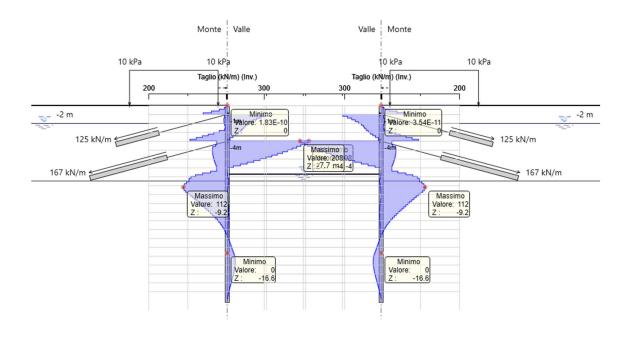
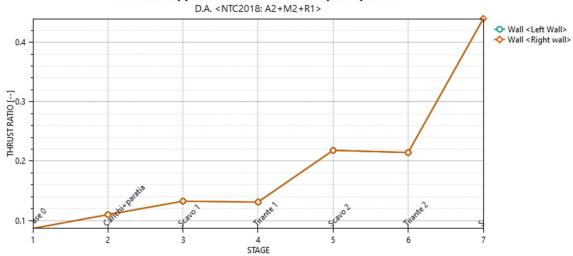


Figura 26 - Inviluppo taglio SLU

Il massimo taglio SLU è pari a 208 kN/m e si ottiene alla profondità di 4 m dalla testa della paratia.

10.4 Verifiche geotecniche

Le verifiche geotecniche sono effettuate seguendo l'approccio 1 combinazione 2 (A2+M2+R1).


Per valutare la capacità geotecnica della struttura il programma fornisce per via diretta il raggiungimento di un risultato di convergenza nel modello. Quando tale situazione si presenta è possibile ritenere soddisfatta automaticamente la condizione di equilibrio attorno a un punto di rotazione.

Un modo indiretto per valutare la capacità geotecnica della struttura, consiste nel valutare la percentuale di mobilitazione della spinta passiva relativa al tratto infisso di paratia. L'entità di tale rapporto permette di valutare il livello di sfruttamento geotecnico della struttura rispetto le condizioni

	PROGETT NODO DI N 1^ FASE PRG DI	NOVARA					
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
ROVVISIONALI	NMOY	00	D 11 CL	SL0100 004	Α	40 di 75	

limite. Naturalmente tale rapporto deve essere minore o uguale all'unità, affinché non sia violato il criterio di resistenza della struttura.

Massimi rapporti di mobilizzazione spinta passiva

Per la sezione di riferimento il massimo rapporto di mobilitazione della spinta passiva è pari a 0.440.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO						
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
ROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	41 di 75	

10.5 Verifiche idrauliche

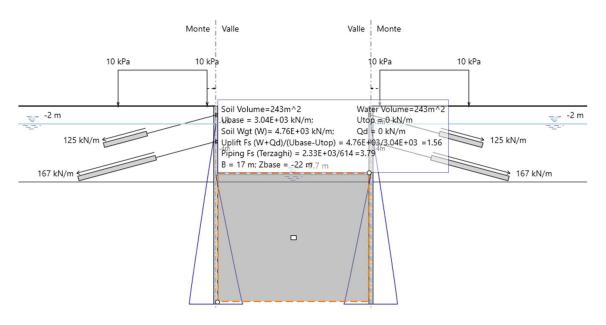


Figura 27 – Verifica a sollevamento

Come evidenziato dall'immagine, il coefficiente di sicurezza a sollevamento è pari a

$$FS_{UPLIFT} = (W + Q_d) / (U_{base} - U_{top}) = 1.56 > FS_{min} = 1.1/0.9 = 1.22$$

quindi la verifica idraulica risulta soddisfatta.

10.6 Verifiche strutturali

<u>Palancola</u>

La palancola ha un profilo tipo Larssen L607k avente le seguenti caratteristiche:

Area, A
 244 cm²/m

Momento d'inerzia, J 70'030 cm⁴/m

Modulo di resistenza, W 3'220 cm³/m

Nelle seguenti immagini sono riportati gli inviluppi SLU dello sfruttamento della sezione.

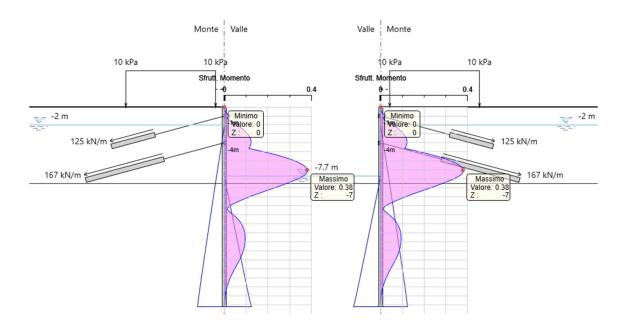


Figura 28 – Diagramma di sfruttamento a momento flettente (SLU)

Il massimo sfruttamento a flessione della paratia è pari a 0.380.

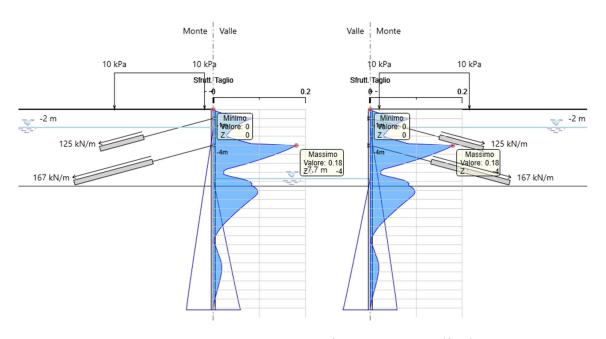


Figura 29 - Diagramma di sfruttamento a taglio (SLU)

Il massimo sfruttamento a taglio della paratia è pari a 0.180.

<u>Tiranti</u>

Nella tabella sottostante si riporta l'inviluppo delle verifiche strutturali e geotecniche dei tiranti.

Travi di ripartizione

Le travi di ripartizione sono costituite da 2 HEB240.

Default Waler Tirante 2 dx

PROGETTO DEFINITIVO NODO DI NOVARA

1^ FASE PRG DI NOVARA BOSCHETTO

NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00
 D 11 CL
 \$L0100 004
 A
 44 di 75

271

0.422

0.436

Design Assump	otion: NTC201	8: A1+M1+R1 (R	3 per tiranti)	•							
ranti Puntoni	Travi di Ripar	tizione in Acciaio	Travi di Ri	partizione in Cald	cestruzzo						
Trave di Ripartizione	Connessione	Sezione	Materiale	Passo orizz. (m)	D.A.	Stage	Carico distribuito (kN/m)	Azione Assiale (kN)	Sfruttamento Momento	Sfruttamento Taglio	Instabilità
Default Waler	Tirante 1 sx	HE 240B	\$275	2.4	NTC2018: A1+N	Tirante 1	169	0	0.262	0.271	
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+N	Tirante 1	169	0	0.262	0.271	
Default Waler	Tirante 1 sx	HE 240B	S275	2.4	NTC2018: A1+N	Scavo 2	169	0	0.263	0.271	
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+N	Scavo 2	169	0	0.263	0.271	
Default Waler	Tirante 1 sx	HE 240B	S275	2.4	NTC2018: A1+N	Tirante 2	167	0	0.26	0.269	1
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+N	Tirante 2	167	0	0.26	0.269	
Default Waler	Tirante 2 sx	HE 240B	S275	2.4	NTC2018: A1+N	Tirante 2	225	0	0.35	0.361	
Default Waler	Tirante 2 dx	HE 240B	S275	2.4	NTC2018: A1+N	Tirante 2	225	0	0.35	0.361	
Default Waler	Tirante 1 sx	HE 240B	S275	2.4	NTC2018: A1+N	Scavo 3	155	0	0.24	0.248	
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+N	Scavo 3	155	0	0.24	0.248	
Default Waler	Tirante 2 sx	HF 240B	\$275	2.4	NTC2018: A1+1	Scavo 3	271	0	0.422	0.436	

NTC2018: A1+N

Scavo 3

10.7 Verifica tappo di fondo in jet-grouting

S275

2.4

HE 240B

Sul fondo dello scavo è previsto un tappo costituito da jet-grouting. L'altezza delle colonne sarà pari a:

 $\begin{array}{llll} \text{Dislivello falda} & \Delta h = & 5.3 \text{ [m]} \\ \text{Peso specifico jet-grouting} & \gamma_{jt} = & 16 \text{ [kN/m}^3]} \\ \text{Coefficiente di sicurezza minimo} & F_{smin} = & 1.222 \text{ [-]} \\ \text{Altezza colonne jet-grouting} & a = & \textbf{4.05} \text{ [m]} \\ \end{array}$

in cui è stato considerato come minimo coefficiente di sicurezza il rapporto tra i coefficienti parziali delle azioni (coefficiente "sfavorevole" per la sottospinta della falda e coefficiente "favorevole" per il peso del jet-grouting), ovvero:

 $FS_{min} = 1.1 / 0.9 = 1.222$

Nuovo sottovia via delle Rosette - Relazione di calcolo opere Provvisionali

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00
 D 11 CL
 SL0100 004
 A
 45 di 75

11 PALANCOLA TIPO 3

Le analisi sono state eseguite nelle sole condizioni statiche, trattandosi di opere a carattere provvisionale.

11.1 Fasi di calcolo

L'analisi si compone complessivamente di 9 fasi di calcolo:

- 1) Ricostruzione dello stato tensionale
- 2) Attivazione palancole, carichi accidentali (q=10 kPa)
- 3) Scavo 2.0 m
- 4) Inserimento 1° livello di tiranti
- 5) Scavo di 4.5 m
- 6) Inserimento 2° livello di tiranti
- 7) Scavo di 7.5 m
- 8) Inserimento 3° livello di tiranti
- 9) Scavo di 8.6 m (sovrascavo di calcolo)

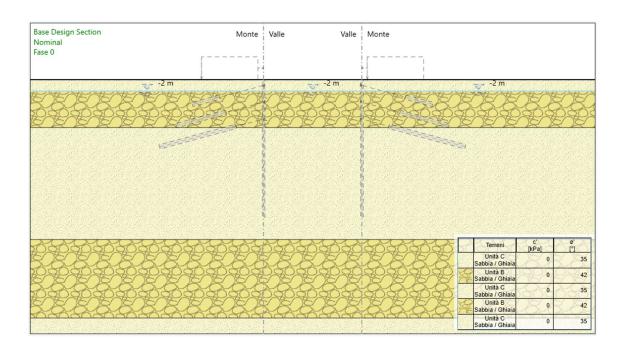


Figura 30 - Fase 1

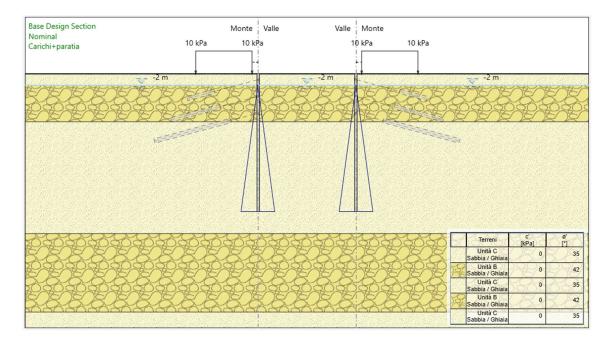


Figura 31 - Fase 2

GRUPPO FERROVIE DELLO STATO ITALIANE	NODO DI I	PROGETTO DEFINITIVO NODO DI NOVARA LA FASE PRG DI NOVARA BOSCHETTO					
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
PROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	47 di 75	

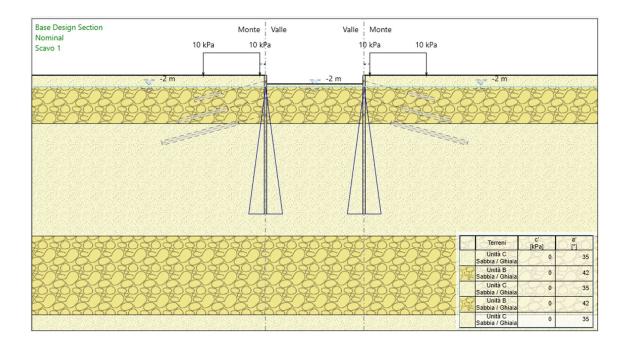


Figura 32 - Fase 3

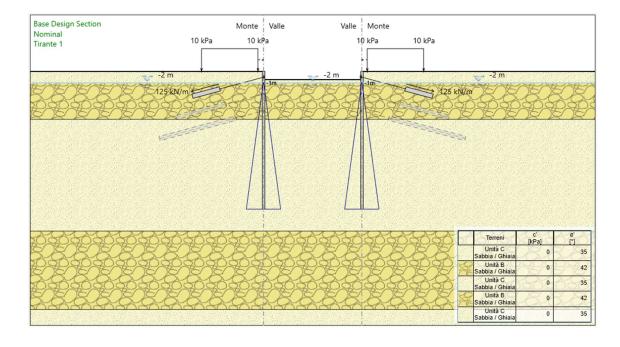


Figura 33 – Fase 4

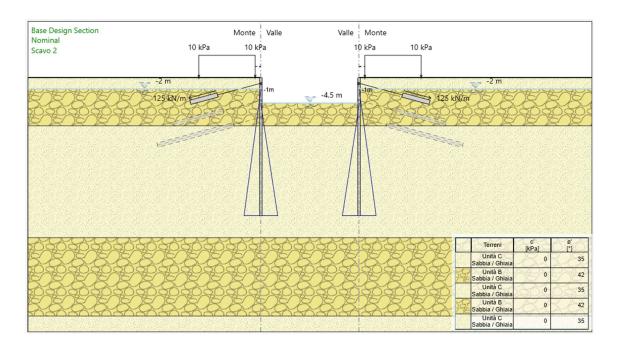


Figura 34 - Fase 5

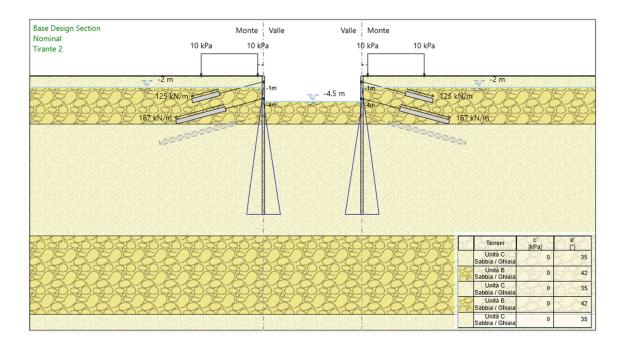


Figura 35 - Fase 6

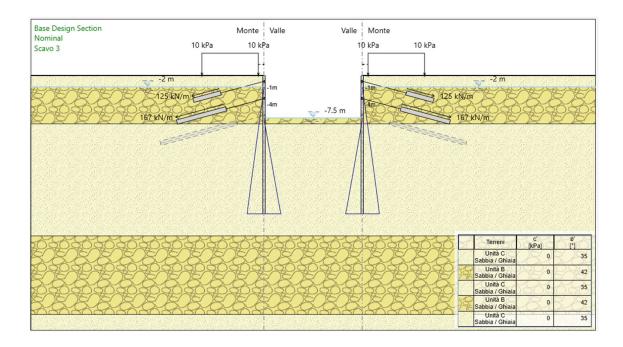


Figura 36 - Fase 7

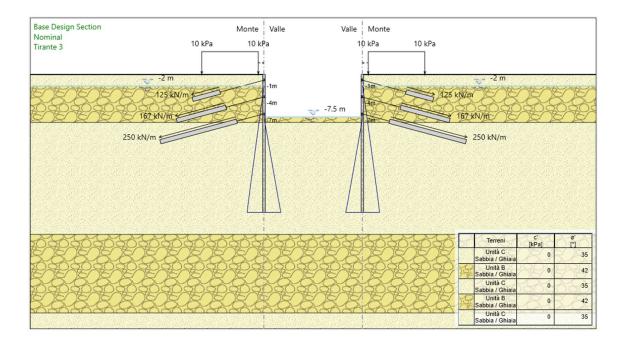


Figura 37 - Fase 8

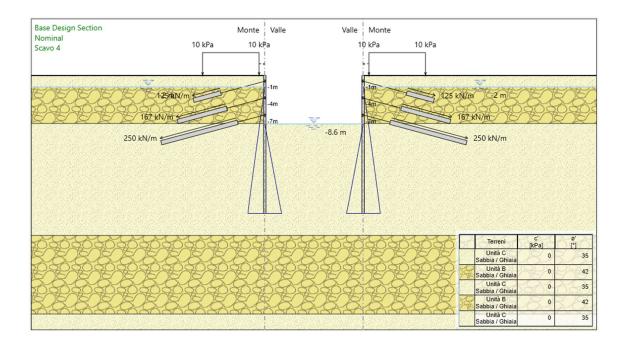


Figura 38 - Fase 9

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETT NODO DI N 1^ FASE PRG DI	NOVARA					
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
ROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	51 di 75	

11.2 Spostamenti orizzontali (Inviluppo SLE)

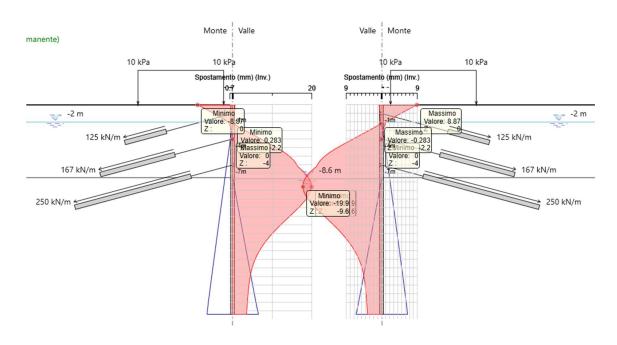


Figura 39 - Inviluppo spostamenti orizzontali SLE

Il massimo spostamento orizzontale SLE è pari a 19.9 mm e si ottiene alla profondità di 9.6 m dalla testa della paratia.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETT NODO DI N 1^ FASE PRG DI	NOVARA				
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
PROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	52 di 75

11.3 Sollecitazioni (Inviluppo SLU)

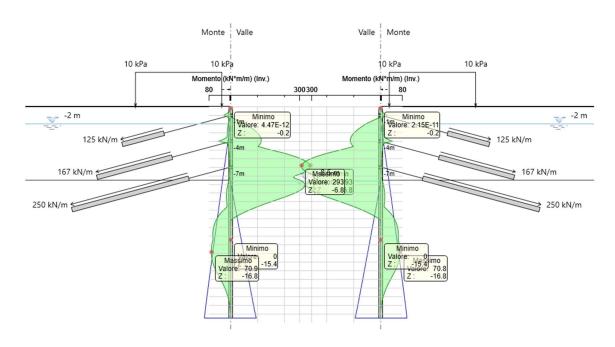


Figura 40 - Inviluppo momento flettente SLU

Il massimo momento flettente SLU è pari a 293 kNm/m e si ottiene alla profondità di 6.8 m dalla testa della paratia.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETT NODO DI I 1^ FASE PRG DI	NOVARA					
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
PROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	53 di 75	

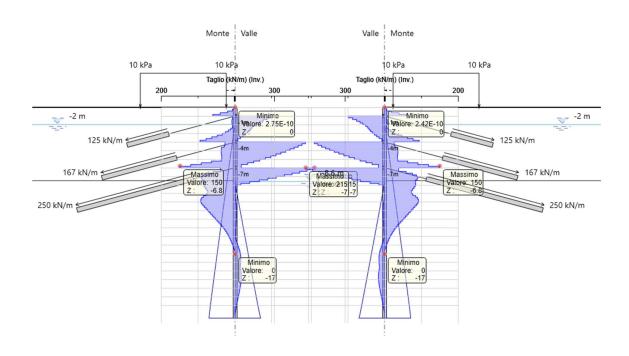
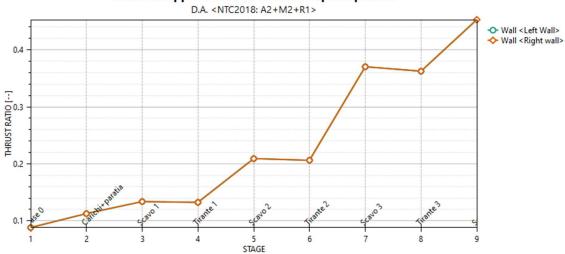


Figura 41 – Inviluppo taglio SLU

Il massimo taglio SLU è pari a 215 kN/m e si ottiene alla profondità di 7 m dalla testa della paratia.

11.4 Verifiche geotecniche

Le verifiche geotecniche sono effettuate seguendo l'approccio 1 combinazione 2 (A2+M2+R1).


Per valutare la capacità geotecnica della struttura il programma fornisce per via diretta il raggiungimento di un risultato di convergenza nel modello. Quando tale situazione si presenta è possibile ritenere soddisfatta automaticamente la condizione di equilibrio attorno a un punto di rotazione.

Un modo indiretto per valutare la capacità geotecnica della struttura, consiste nel valutare la percentuale di mobilitazione della spinta passiva relativa al tratto infisso di paratia. L'entità di tale rapporto permette di valutare il livello di sfruttamento geotecnico della struttura rispetto le condizioni

NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE		PROGETTO DEFINITIVO NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO							
NM0Y 00 D 11 CL SL0100 004 A 54 di 75	NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE PROVVISIONALI								

limite. Naturalmente tale rapporto deve essere minore o uguale all'unità, affinché non sia violato il criterio di resistenza della struttura.

Massimi rapporti di mobilizzazione spinta passiva

Per la sezione di riferimento il massimo rapporto di mobilitazione della spinta passiva è pari a 0.453.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETT NODO DI N 1^ FASE PRG DI	NOVARA					
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
PROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	55 di 75	

11.5 Verifiche idrauliche

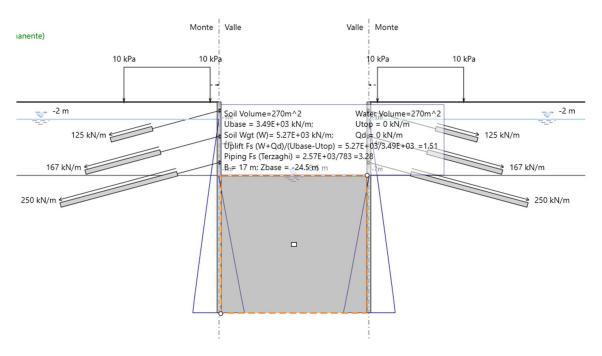


Figura 42 – Verifica a sollevamento

Come evidenziato dall'immagine, il coefficiente di sicurezza a sollevamento è pari a

$$FS_{UPLIFT} = (W + Q_d) / (U_{base} - U_{top}) = 1.51 > FS_{min} = 1.1/0.9 = 1.22$$

quindi la verifica idraulica risulta soddisfatta.

11.6 Verifiche strutturali

<u>Palancola</u>

La palancola ha un profilo tipo Larssen L607k avente le seguenti caratteristiche:

Area, A
 244 cm²/m

Momento d'inerzia, J 70'030 cm⁴/m

Modulo di resistenza, W 3'220 cm³/m

Nelle seguenti immagini sono riportati gli inviluppi SLU dello sfruttamento della sezione.

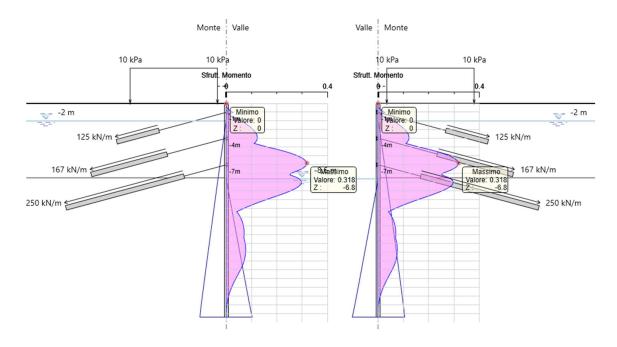


Figura 43 – Diagramma di sfruttamento a momento flettente (SLU)

Il massimo sfruttamento a flessione della paratia è pari a 0.318.

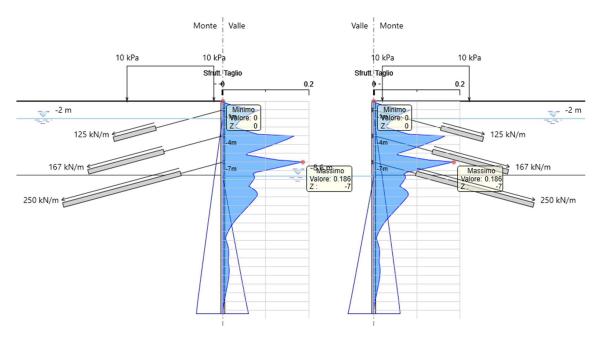


Figura 44 – Diagramma di sfruttamento a taglio (SLU)

Il massimo sfruttamento a taglio della paratia è pari a 0.186.

Tiranti

Nella tabella sottostante si riporta l'inviluppo delle verifiche strutturali e geotecniche dei tiranti.

Travi di ripartizione

Le travi di ripartizione sono costituite da 2 HEB240.

PROGETTO DEFINITIVO NODO DI NOVARA

1^ FASE PRG DI NOVARA BOSCHETTO

Nuovo sottovia via delle Rosette - Relazione di calcolo opere provvisionali

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NM0Y
 00
 D 11 CL
 SL0100 004
 A
 58 di 75

Trave di Ripartizione	Connessione	Sezione	Materiale	Passo orizz. (m)	D.A.	Stage	Carico distribuito (kN/m)	Azione Assiale (kN)	Sfruttamento Momento	Sfruttamento Taglio	Instabilità
Default Waler	Tirante 1 sx	HE 240B	\$275	2.4	NTC2018: A1+M1+R1 (Tirante 1	169	0	0.262	0.271	
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Tirante 1	169	0	0.262	0.271	
Default Waler	Tirante 1 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Scavo 2	169	0	0.263	0.271	
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Scavo 2	169	0	0.263	0.271	
Default Waler	Tirante 1 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Tirante 2	167	0	0.26	0.268	
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Tirante 2	167	0	0.26	0.268	
Default Waler	Tirante 2 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Tirante 2	225	0	0.35	0.361	
Default Waler	Tirante 2 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Tirante 2	225	0	0.35	0.361	
Default Waler	Tirante 1 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Scavo 3	156	0	0.243	0.251	
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Scavo 3	156	0	0.243	0.251	
Default Waler	Tirante 2 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Scavo 3	259	0	0.403	0.416	
Default Waler	Tirante 2 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Scavo 3	259	0	0.403	0.416	
Default Waler	Tirante 1 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Tirante 3	159	0	0.246	0.255	
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Tirante 3	159	0	0.246	0.255	
Default Waler	Tirante 2 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Tirante 3	253	0	0.393	0.406	
Default Waler	Tirante 2 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Tirante 3	253	0	0.393	0.406	
Default Waler	Tirante 3 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Tirante 3	338	0	0.525	0.542	
Default Waler	Tirante 3 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Tirante 3	338	0	0.525	0.542	
Default Waler	Tirante 1 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Scavo 4	156	0	0.243	0.251	
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Scavo 4	156	0	0.243	0.251	
Default Waler	Tirante 2 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Scavo 4	253	0	0.393	0.406	
Default Waler	Tirante 2 dx	HE 240B	\$275	2.4	NTC2018: A1+M1+R1 (Scavo 4	253	0	0.393	0.406	
Default Waler	Tirante 3 sx	HE 240B	\$275	2.4	NTC2018: A1+M1+R1 (Scavo 4	353	0	0.548	0.566	
Default Waler	Tirante 3 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1 (Scavo 4	353	0	0.548	0.566	

11.7 Verifica tappo di fondo in jet-grouting

Sul fondo dello scavo è previsto un tappo costituito da jet-grouting. L'altezza delle colonne sarà pari a:

 $\begin{array}{lll} \mbox{Dislivello falda} & \Delta h = & 6.22 \ [m] \\ \mbox{Peso specifico jet-grouting} & \gamma_{jt} = & 16 \ [kN/m^3] \\ \mbox{Coefficiente di sicurezza minimo} & F_{smin} = & 1.222 \ [-] \\ \mbox{Altezza colonne jet-grouting} & a = & \textbf{4.75} \ [m] \end{array}$

in cui è stato considerato come minimo coefficiente di sicurezza il rapporto tra i coefficienti parziali delle azioni (coefficiente "sfavorevole" per la sottospinta della falda e coefficiente "favorevole" per il peso del jet-grouting), ovvero:

PROGETTO DEFINITIVO NODO DI NOVARA

1^ FASE PRG DI NOVARA BOSCHETTO

Nuovo sottovia via delle Rosette - Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NM0Y	00	D 11 CL	SL0100 004	Α	59 di 75

12 PALANCOLA TIPO 4

Le analisi sono state eseguite nelle sole condizioni statiche, trattandosi di opere a carattere provvisionale.

12.1 Fasi di calcolo

L'analisi si compone complessivamente di 11 fasi di calcolo:

- 1) Ricostruzione dello stato tensionale
- 2) Attivazione palancole, carichi accidentali (q=10 kPa)
- 3) Scavo 2.0 m
- 4) Inserimento 1° livello di tiranti
- 5) Scavo di 4.5 m
- 6) Inserimento 2° livello di tiranti
- 7) Scavo di 7.5 m
- 8) Inserimento 3° livello di tiranti
- 9) Scavo di 10.5 m
- 10) Inserimento 4° livello di tiranti
- 11) Scavo di 12.5 m (sovrascavo di calcolo)

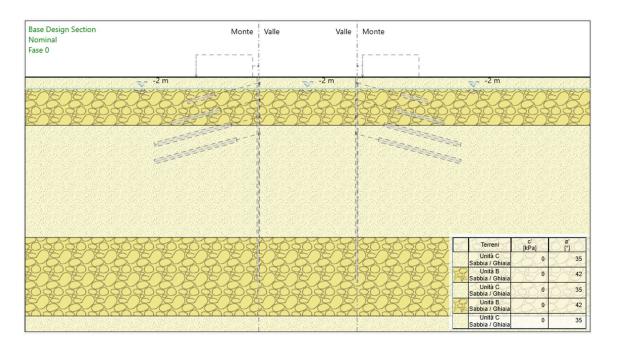


Figura 45 - Fase 1

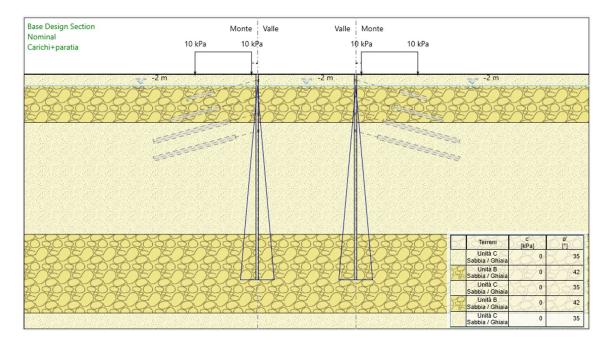


Figura 46 - Fase 2

S ITALFERR	PROGETTO DEFINITIVO NODO DI NOVARA								
GRUPPO FERROVIE DELLO STATO ITALIANE	1^ FASE PRG DI		СНЕТТО						
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
PROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	61 di 75			

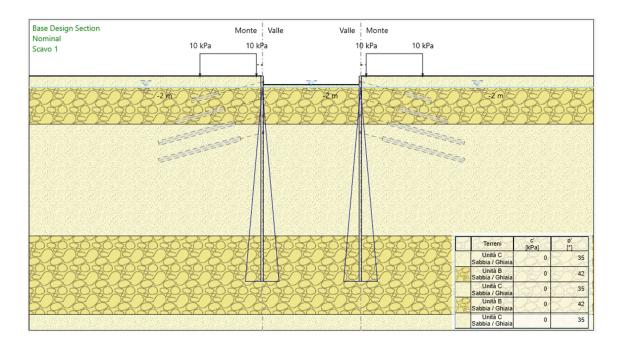


Figura 47 - Fase 3

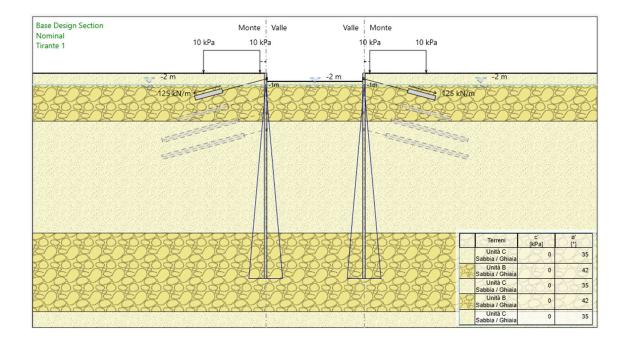


Figura 48 – Fase 4

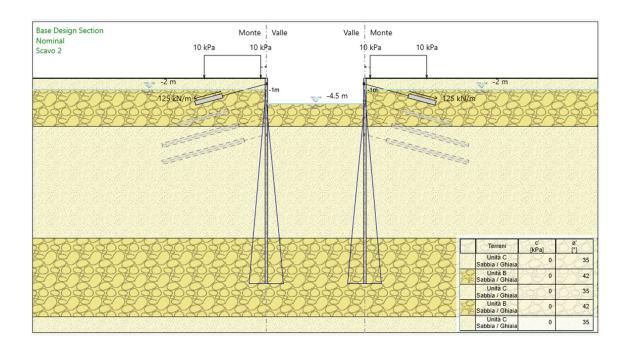


Figura 49 - Fase 5

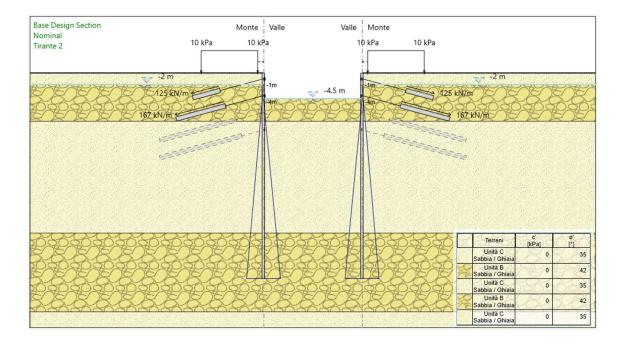
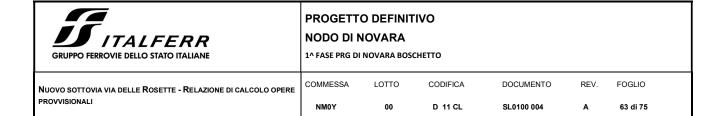



Figura 50 - Fase 6

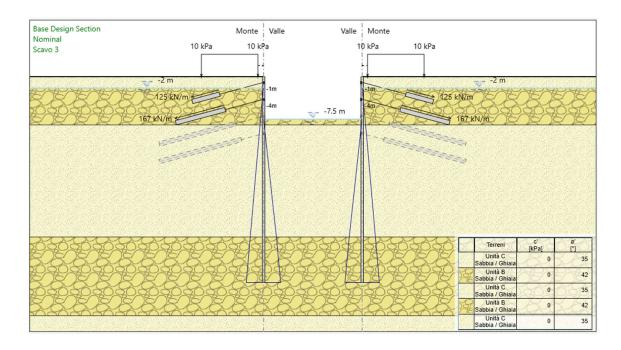


Figura 51 - Fase 7

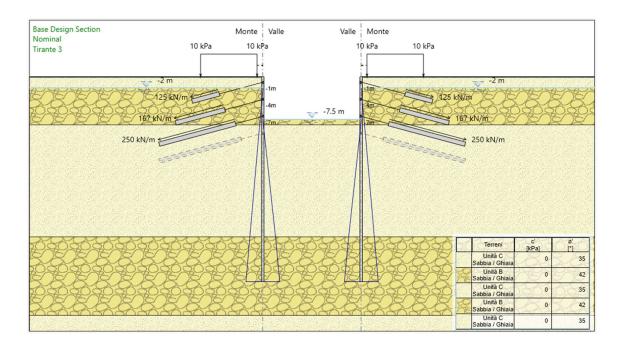


Figura 52 - Fase 8

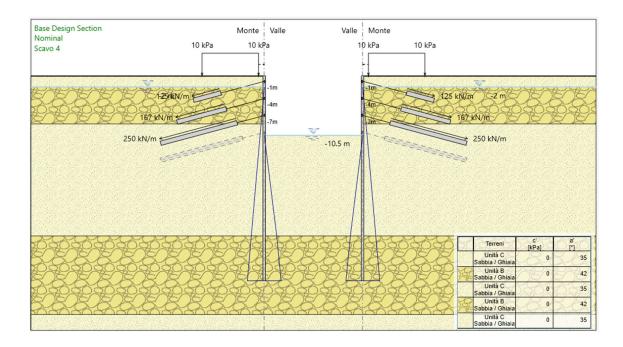


Figura 53 - Fase 9

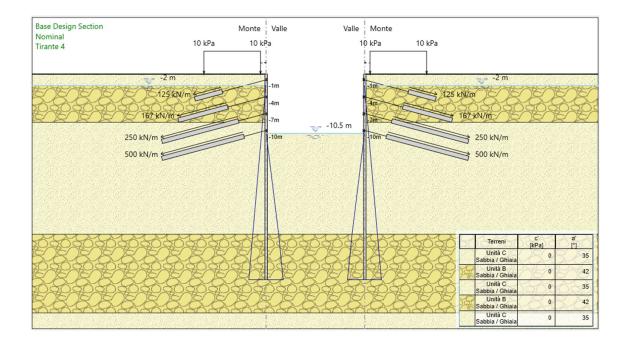


Figura 54 - Fase 10

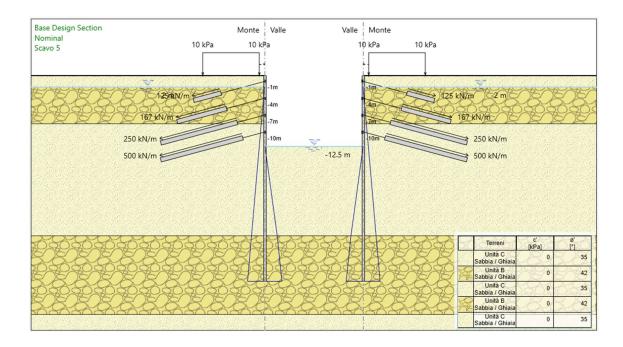


Figura 55 - Fase 11

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO							
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
PROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	66 di 75		

12.2 Spostamenti orizzontali (Inviluppo SLE)

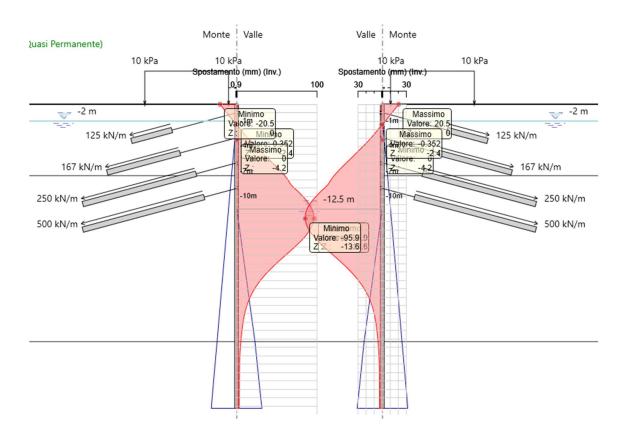


Figura 56 - Inviluppo spostamenti orizzontali SLE

Il massimo spostamento orizzontale SLE è pari a 95.9 mm e si ottiene alla profondità di 13.6 m dalla testa della paratia.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETT NODO DI N 1^ FASE PRG DI	NOVARA				
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
PROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	67 di 75

12.3 Sollecitazioni (Inviluppo SLU)

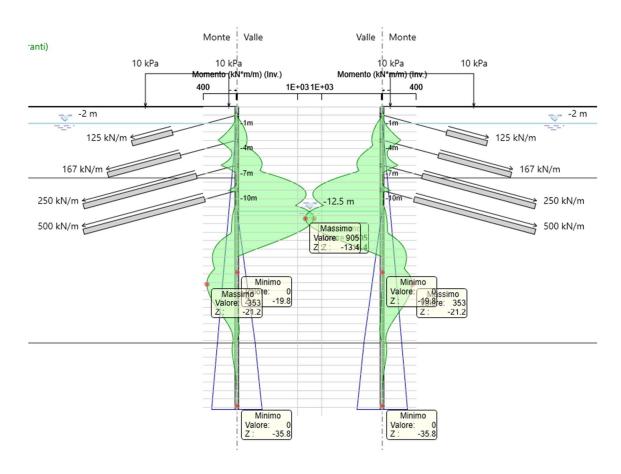


Figura 57 - Inviluppo momento flettente SLU

Il massimo momento flettente SLU è pari a 905 kNm/m e si ottiene alla profondità di 13.4 m dalla testa della paratia.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETT NODO DI N 1^ FASE PRG DI	NOVARA					
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
PROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	68 di 75	

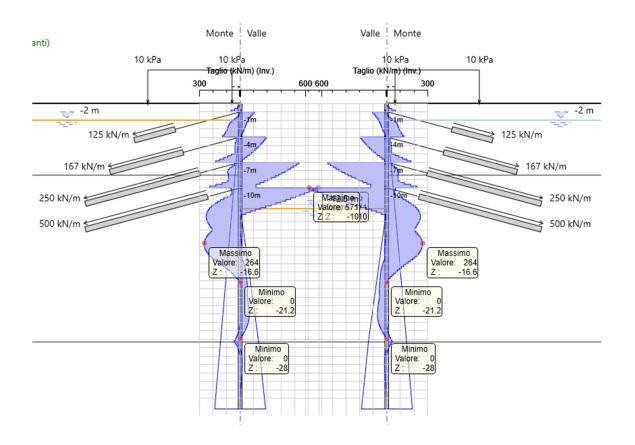
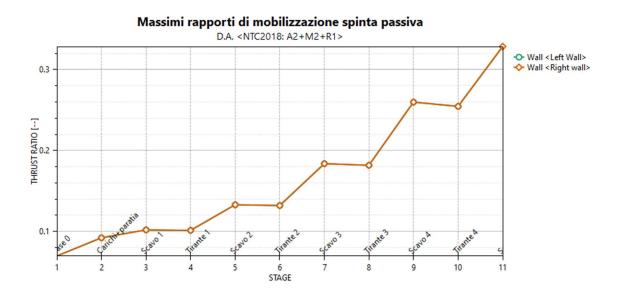


Figura 58 – Inviluppo taglio SLU

Il massimo taglio SLU è pari a 571 kN/m e si ottiene alla profondità di 10 m dalla testa della paratia.


12.4 Verifiche geotecniche

Le verifiche geotecniche sono effettuate seguendo l'approccio 1 combinazione 2 (A2+M2+R1).

Per valutare la capacità geotecnica della struttura il programma fornisce per via diretta il raggiungimento di un risultato di convergenza nel modello. Quando tale situazione si presenta è possibile ritenere soddisfatta automaticamente la condizione di equilibrio attorno a un punto di rotazione.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETT NODO DI N 1^ FASE PRG DI	IOVARA					
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE PROVVISIONALI	COMMESSA	LOTTO	CODIFICA D 11 CL	DOCUMENTO SL0100 004	REV.	FOGLIO 69 di 75	

Un modo indiretto per valutare la capacità geotecnica della struttura, consiste nel valutare la percentuale di mobilitazione della spinta passiva relativa al tratto infisso di paratia. L'entità di tale rapporto permette di valutare il livello di sfruttamento geotecnico della struttura rispetto le condizioni limite. Naturalmente tale rapporto deve essere minore o uguale all'unità, affinché non sia violato il criterio di resistenza della struttura.

Per la sezione di riferimento il massimo rapporto di mobilitazione della spinta passiva è pari a 0.329.

	PROGETT	O DEFINIT	IVO						
ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO								
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	\exists		
PROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	70 di 75			

12.5 Verifiche idrauliche

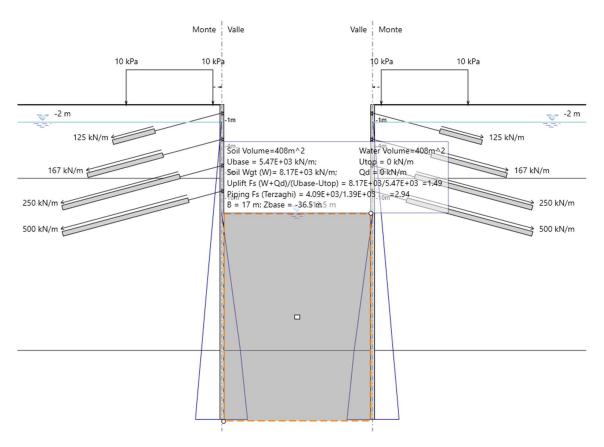


Figura 59 – Verifica a sollevamento

Come evidenziato dall'immagine, il coefficiente di sicurezza a sollevamento è pari a

$$FS_{UPLIFT} = (W + Q_d) / (U_{base} - U_{top}) = 1.49 > FS_{min} = 1.1/0.9 = 1.22$$

quindi la verifica idraulica risulta soddisfatta.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETT NODO DI N 1^ FASE PRG DI	NOVARA					
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
PROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	71 di 75	

12.6 Verifiche strutturali

<u>Palancola</u>

La palancola ha un profilo tipo Larssen L607k avente le seguenti caratteristiche:

Area, A
 244 cm²/m

Momento d'inerzia, J
 70'030 cm⁴/m

Modulo di resistenza, W 3'220 cm³/m

Nelle seguenti immagini sono riportati gli inviluppi SLU dello sfruttamento della sezione.

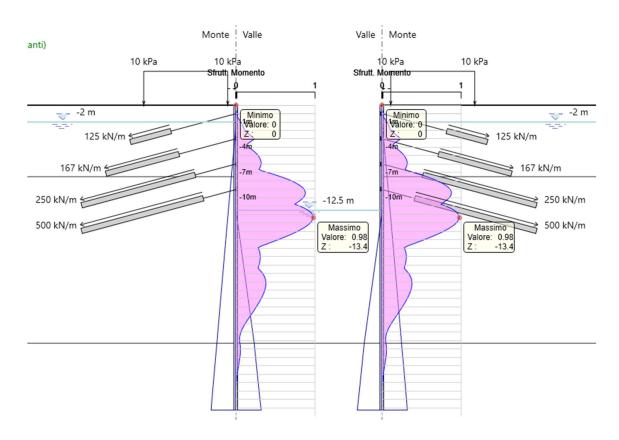


Figura 60 – Diagramma di sfruttamento a momento flettente (SLU)

Il massimo sfruttamento a flessione della paratia è pari a 0.980.

GRUPPO FERROVIE DELLO STATO ITALIANE	NODO DI I	PROGETTO DEFINITIVO NODO DI NOVARA 1^ FASE PRG DI NOVARA BOSCHETTO							
NUOVO SOTTOVIA VIA DELLE ROSETTE - RELAZIONE DI CALCOLO OPERE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
PROVVISIONALI	NM0Y	00	D 11 CL	SL0100 004	Α	72 di 75			

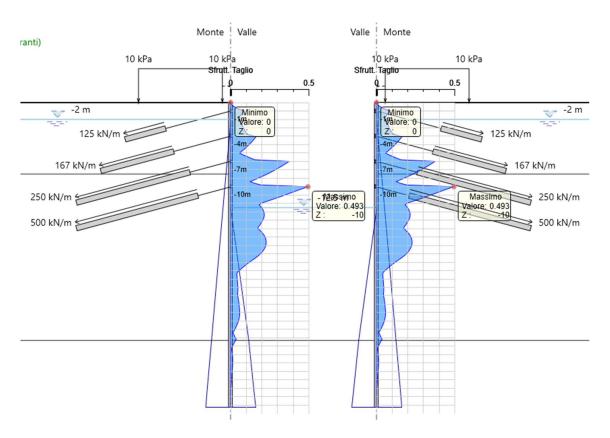


Figura 61 – Diagramma di sfruttamento a taglio (SLU)

Il massimo sfruttamento a taglio della paratia è pari a 0.493.

<u>Tiranti</u>

Nella tabella sottostante si riporta l'inviluppo delle verifiche strutturali e geotecniche dei tiranti.

nviluppo V	erifiche tiran	ti						-
Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (kN)	Sfruttamento GEO	Sfruttamento STR	Resistenza	Design Assumption
Tirante 1 sx	Tirante 1	405	657	807	0.617	0.502	~	NTC2018: A1+M1+R1 (R3 per tiranti)
Tirante 1 dx	Tirante 1	405	657	807	0.617	0.502	· ·	NTC2018: A1+M1+R1 (R3 per tiranti)
Tirante 2 sx	Scavo 4	711	1.18E+03	1.21E+03	0.601	0.587	~	NTC2018: A1+M1+R1 (R3 per tiranti)
Tirante 2 dx	Scavo 4	711	1.18E+03	1.21E+03	0.601	0.587	~	NTC2018: A1+M1+R1 (R3 per tiranti)
Tirante 3 sx	Scavo 4	1.22E+03	1.23E+03	1.41E+03	0.996	0.864	~	NTC2018: A1+M1+R1 (R3 per tiranti)
Tirante 3 dx	Scavo 4	1.22E+03	1.23E+03	1.41E+03	0.996	0.864	~	NTC2018: A1+M1+R1 (R3 per tiranti)
Tirante 4 sx	Scavo 5	984	1.27E+03	1.41E+03	0.772	0.696	~	NTC2018: A1+M1+R1 (R3 per tiranti)
Tirante 4 dx	Scavo 5	984	1.27E+03	1.41E+03	0.772	0.696	~	NTC2018: A1+M1+R1 (R3 per tiranti)

Travi di ripartizione

Le travi di ripartizione sono costituite da 2 HEB240.

Trave di Ripartizione	Connessione	Sezione	Materiale	Passo orizz. (m)	D.A.	Stage	Carico distribuito (kN/m)	Azione Assiale (kN)	Sfruttamento Momento	Sfruttamento Taglio	Instabilità
Default Waler	Tirante 1 sx	HE 240B	\$275	2.4	NTC2018: A1+M1+R1	Tirante 1	169	0	0.262	0.271	(
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Tirante 1	169	0	0.262	0.271	(
Default Waler	Tirante 1 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Scavo 2	169	0	0.262	0.271	(
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Scavo 2	169	0	0.262	0.271	(
Default Waler	Tirante 1 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Tirante 2	167	0	0.259	0.268	(
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Tirante 2	167	0	0.259	0.268	(
Default Waler	Tirante 2 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Tirante 2	225	0	0.35	0.361	(
Default Waler	Tirante 2 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Tirante 2	225	0	0.35	0.361	(
Default Waler	Tirante 1 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Scavo 3	156	0	0.242	0.25	(
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Scavo 3	156	0	0.242	0.25	(
Default Waler	Tirante 2 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Scavo 3	259	0	0.402	0.415	(
Default Waler	Tirante 2 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Scavo 3	259	0	0.402	0.415	(
Default Waler	Tirante 1 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Tirante 3	158	0	0.246	0.254	(
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Tirante 3	158	0	0.246	0.254	(
Default Waler	Tirante 2 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Tirante 3	252	0	0.392	0.405	(
Default Waler	Tirante 2 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Tirante 3	252	0	0.392	0.405	(
Default Waler	Tirante 3 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Tirante 3	338	0	0.525	0.542	(
Default Waler	Tirante 3 dx	HE 240B	\$275	2.4	NTC2018: A1+M1+R1	Tirante 3	338	0	0.525	0.542	(
Default Waler	Tirante 1 sx	HE 240B	\$275	2.4	NTC2018: A1+M1+R1	Scavo 4	126	0	0.196	0.202	(
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Scavo 4	126	0	0.196	0.202	(
Default Waler	Tirante 2 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Scavo 4	296	0	0.46	0.475	(
Default Waler	Tirante 2 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Scavo 4	296	0	0.46	0.475	(
Default Waler	Tirante 3 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Scavo 4	509	0	0.791	0.817	(
Default Waler	Tirante 3 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Scavo 4	509	0	0.791	0.817	(
Default Waler	Tirante 1 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Tirante 4	131	0	0.203	0.21	(
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Tirante 4	131	0	0.203	0.21	(
Default Waler	Tirante 2 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Tirante 4	296	0	0.46	0.476	(
Default Waler	Tirante 2 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Tirante 4	296	0	0.46	0.476	(
Default Waler	Tirante 3 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Tirante 4	485	0	0.754	0.779	(
Default Waler	Tirante 3 dx	HE 240B	\$275	2.4	NTC2018: A1+M1+R1	Tirante 4	485	0	0.754	0.779	(
Default Waler	Tirante 4 sx	HE 240B	\$275	1.2	NTC2018: A1+M1+R1	Tirante 4	675	0	0.262	0.542	(
Default Waler	Tirante 4 dx	HE 240B	\$275	1.2	NTC2018: A1+M1+R1	Tirante 4	675	0	0.262	0.542	(
Default Waler	Tirante 1 sx	HE 240B	\$275	2.4	NTC2018: A1+M1+R1	Scavo 5	130	0	0.201	0.208	(
Default Waler	Tirante 1 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Scavo 5	130	0	0.201	0.208	(
Default Waler	Tirante 2 sx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Scavo 5	288	0	0.448	0.463	(
Default Waler	Tirante 2 dx	HE 240B	S275	2.4	NTC2018: A1+M1+R1	Scavo 5	288	0	0.448	0.463	(
Default Waler	Tirante 3 sx	HE 240B	\$275	2.4	NTC2018: A1+M1+R1	Scavo 5	485	0	0.754	0.779	(
Default Waler	Tirante 3 dx	HE 240B	\$275	2.4	NTC2018: A1+M1+R1	Scavo 5	485	0	0.754	0.779	(
Default Waler	Tirante 4 sx	HE 240B	\$275	1.2	NTC2018: A1+M1+R1	Scavo 5	820	0	0.318	0.658	(
Default Waler	Tirante 4 dx	HE 240B	\$275	1.2	NTC2018: A1+M1+R1	Scavo 5	820	0	0.318	0.658	(

PROGETTO DEFINITIVO NODO DI NOVARA

1^ FASE PRG DI NOVARA BOSCHETTO

Nuovo sottovia via delle Rosette - Relazione di calcolo opere provvisionali

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
NM0Y	00	D 11 CL	SL0100 004	Α	74 di 75	

12.7 Verifica tappo di fondo in jet-grouting

Sul fondo dello scavo è previsto un tappo costituito da jet-grouting. L'altezza delle colonne sarà pari a:

Dislivello falda $\Delta h = 10.12 \text{ [m]}$ Peso specifico jet-grouting $\gamma_{jt} = 16 \text{ [kN/m}^3]$ Coefficiente di sicurezza minimo $F_{smin} = 1.222 \text{ [-]}$ Altezza colonne jet-grouting a = 7.73 [m]

in cui è stato considerato come minimo coefficiente di sicurezza il rapporto tra i coefficienti parziali delle azioni (coefficiente "sfavorevole" per la sottospinta della falda e coefficiente "favorevole" per il peso del jet-grouting), ovvero:

 $FS_{min} = 1.1 / 0.9 = 1.222$

PROGETTO DEFINITIVO NODO DI NOVARA

1^ FASE PRG DI NOVARA BOSCHETTO

Nuovo sottovia via delle Rosette - Relazione di calcolo opere provvisionali
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 NMOY
 00
 D 11 CL
 SL0100 004
 A
 75 di 75

13 CONCLUSIONI

La presente relazione ha per oggetto le analisi e le verifiche delle opere provvisionali relative al sottovia Via delle Rosette (opera SL01) previsto nell'ambito della Progettazione definitiva del Nodo di Novara, 1[^] Fase PRG di Novara Boschetto I risultati ottenuti, mostrano che il dimensionamento delle strutture è stato effettuato nel rispetto dei requisiti di resistenza richiesti all'opera.