

Società per Azioni Autostrada Brescia Verona Vicenza Padova Via Flavio Gioia 71 37135 Verona tel. 0458272222 Fax 0458200051 Casella Postale 460M www.autobspd.it AREA COSTRUZIONI AUTOSTRADALI

AUTOSTRADA VALDASTICO A31 NORD

PROGETTO PRELIMINARE						CUP G19J1 0	0001 40005		
								/ COMMESSA	25 2005
COMMITTENTE S.p.A. AUTOSTRADA BRESCIA VERONA VICENZA PADOVA Area Costruzioni Autostradali						CAPO COMMI PER LA PROGET Dott. Ing. Sergic	ESSA TAZIONE 9 Mutti		
PROC	PROGETTISTA CAPO PROGETTO: Dott. Ing. Massimo Raccosta RESPONSABILE DELL'INTEGRAZIONE TRA LE PRESTAZIONI SPECIALISTICHE: Dott. Ing. Massimo Raccosta RESPONSABILE DEL COORDINAMENTO: Dott. Ing. Andrea Renso								
ELABORATO Studi ed indagini del tracciato scelto Indagini geognostiche Indagini geognostiche 2011 Relazione descrittiva					Rev.				
Rev.	Data	Descrizione		Redazione	Controllo	Approvazione	SCALA -		
00	Agosto 2011	Prima Emissione		TECHNITAL	E. Fresia	A. Renso	/ NOME FILE	2505_050501001_010)7_0PP_00.pdf
							CM 2 5 0	5 ELAB. 0505	01007
							1 LIV. 0 P P	REV. 00	
IL PRESE THIS DOO	L PRESENTE DOCUMENTO NON POTRA' ESSERE COPIATO, RIPRODOTTO O ALTRIMENTI PUBBLICATO, IN TUTTO O IN PARTE, SENZA LI CONSENSO SCRITTO DELLA AUTOSTRADA BS-VR-VI-PD S.P.A. OGNI UTILIZZO NON AUTORIZZATO SARA' PERSEGUITO A NORMA DI LEGGE. THIS DOCUMENT MAY NOT BE COPIED, REPRODUCED OR PUBLISHED, EITHER IN PART OR IN ITS ENTIRETY, WITHOUT THE WRITTEN PERMISSION OF AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.P.A., UNAUTHORIZZATO USE WILL BE PROSECUTE BY LAW.								

AUTOSTRADA VALDASTICO

CAMPAGNA INDAGINI GEOGNOSTICHE PER LA PROGETTAZIONE PRELIMINARE ANNO 2011

INDAGINI GEOGNOSTICHE ANNO 2011 RELAZIONE ILLUSTRATIVA

AUTOSTRADA VALDASTICO

CAMPAGNA INDAGINI GEOGNOSTICHE PER LA PROGETTAZIONE PRELIMINARE ANNO 2011

SISMICA A RIFRAZIONE

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

INDICE

1	Premessa	3
2	Metodologia di indagine	4
	2.1 Indagini sismiche	5
	2.2 Inversione tomografica del dato sismico	6
	2.2.1 Sismica a rifrazione	9
	2.2.2 Metodo reciproco generalizzato (GRM) 1	0
3	Strumentazione utilizzata1	3
	3.1 Acquisizione dati	13
	3.2 Sorgenti 1	13
	3.3 Ricevitori	4
4	Descrizione del rilievo eseguito1	5
5	Elaborazione dati1	6
6	Risultati del rilievo e conclusioni1	8
	6.1 Indagini sismiche	18
	6.1.1 Sismica a rifrazione	18
7	Documentazione fotografica2	1

Elaborati di riferimento al presente documento

Rif.	Descrizione
All 1 al testo	Elaborazione GRM
0505010080106	Sezioni in tomografia sismica a rifrazione e profilo interpretativo: Linee TR1a – TR3b
0505010080206	Sezioni in tomografia sismica a rifrazione e profilo interpretativo: Linee TR04 – TR7b
0505010080306	Sezioni in tomografia sismica a rifrazione e profilo interpretativo: Linee TR8a – TR11
0505010080406	Sezioni in tomografia sismica a rifrazione Vp e Vs: Linee TR1a – TR3b
0505010080506	Sezioni in tomografia sismica a rifrazione Vp e Vs: Linee TR04 – TR7b
0505010080606	Sezioni in tomografia sismica a rifrazione Vp e Vs: Linee TR8a – TR11

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

1 Premessa

Su incarico di Technital sono state realizzate delle indagini in tomografia sismica a rifrazione, volte ad indagare il sottosuolo in corrispondenza della Valdastico Nord.

Nella presente relazione sono stati riportati la metodologia di indagine, le specifiche tecniche del rilievo, la strumentazione utilizzata e la descrizione dei risultati del rilievo geofisico stesso.

Le indagini sono state eseguite nel periodo compreso tra giugno e luglio 2011 ed hanno previsto l'esecuzione di 19 linee di rilievo.

In nº 6 tavole delle indagini geognostiche 2011 allegate al progetto (0505010080106-0606) si riporta la planimetria con l'ubicazione delle linee sismiche di rilievo ed i risultati delle indagini effettuate.

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

2 Metodologia di indagine

2.1 Indagini sismiche

I metodi sismici sono le tecniche geofisiche più comunemente utilizzate in ambito ingegneristico. Le varie metodologie di indagine si basano sulla propagazione delle onde sismiche da una sorgente di energia artificiale a una serie di ricevitori. Il passaggio delle onde attraverso il mezzo indagato e le variazioni che esse ne subiscono permettono di ricostruire le caratteristiche meccaniche e geometriche del sottosuolo.

Un qualunque segnale sismico può essere descritto come la sovrapposizione di quattro differenti fasi (fase è il movimento che compie una particella nel mezzo investito dal fronte d'onda sismico):

- \neg onde di volume
 - P: onde primarie o di compressione
 - S: onde secondarie o di taglio
- ¬ onde di superficie
 - L: onde di Love (caratterizzate da un movimento longitudinale e trasversale)
 - o R: onde di Rayleigh (caratterizzate da un movimento ellittico retrogrado)

Le onde sismiche generate dalla sorgente attraversando il sottosuolo possono incontrare limiti tra materiali con differenti proprietà. Il fronte d'onda potrà essere riflesso, rifratto oppure convertito in una diversa tipologia. Le caratteristiche del mezzo e l'angolo di incidenza dei raggi sismici determineranno la traiettoria dell'onda sismica.

Quando un'onda longitudinale piana incide un'interfaccia tra due materiali con differenti proprietà elastiche, dove il mezzo a profondità maggiore ha una velocità superiore, è possibile applicare i principi dell'ottica e in particolare le leggi di Snell. Il fronte d'onda che incide obliquamente sull'interfaccia genera onde longitudinali e trasversali che si propagano in entrambi i mezzi. Le onde che si propagano nello stesso mezzo del fronte d'onda sono riflesse, mentre quelle che si propagano nel mezzo sottostante sono rifratte.

La presenza di discontinuità o anisotropie nel mezzo modifica ampiezza e periodo delle onde sismiche. La velocità delle onde dipende dalle caratteristiche meccaniche del materiale attraversato, in particolare da: densità (γ), coefficiente di Poisson (ρ), modulo di Young (E) e modulo di taglio (G).

$$\rho = \frac{V_p^2 - 2 \cdot V_s^2}{2 \cdot (V_p^2 - V_s^2)}$$
$$E = V_p^2 \cdot \gamma \frac{(1+\rho) \cdot (1-2\rho)}{1-\rho}$$
$$G = \frac{\gamma \cdot V_s^2}{g}$$

Nome Relazione: Indagini geognostiche 2011 Relazione descrittiva

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

- V_p = velocità delle onde P
- V_s = velocità delle onde S

g = accelerazione di gravità

Nella tabella di seguito vengono indicati valori di riferimento della velocità P per i vari materiali:

MATERIALE	Vp (m/s)
Granito	5.000
Calcare	1.500-4.200
Arenaria	1.400-4.000
Sabbie	1.200-1.800
Argilla	1.100-2.500

2.2 Inversione tomografica del dato sismico

La tomografia è una tecnica di ricostruzione per immagini che permette di caratterizzare un'area non accessibile per mezzo di impulsi di energia che attraversano l'area oggetto di indagine. L'esempio più efficace di tecnica tomografica è la TAC (tomografia assiale computerizzata) di largo impiego nel settore medicale.

I metodi di inversione tomografica applicati a metodologie di prospezione sismica attiva trovano numerose applicazioni per indagini di tipo geotecnico:

- ricostruzione stratigrafica;
- caratterizzazione di contrasti di impedenza;
- caratterizzazione delle zone a gradiente di velocità o attenuazione;
- individuazione di faglie e fratture;
- ─ localizzazione di oggetti sepolti, massi erratici.

Gli obiettivi elencati possono essere raggiunti poiché la velocità sismica è un parametro che dipende dalle caratteristiche meccaniche del materiale quali: porosità, resistenza al taglio, compressibilità, quantità di fratture, saturazione e contenuto di argilla.

Misurando i tempi di arrivo o le ampiezze delle onde sismiche è possibile ottenere la distribuzione nel mezzo indagato di velocità sismica (modello di velocità) o attenuazione (modello cinematico); parametri che permettono di definire le caratteristiche meccaniche del sottosuolo.

Esistono differenti geometrie di acquisizione comunemente utilizzate per le elaborazioni tomografiche:

- ¬ sismica superficiale a riflessione o rifrazione;
- ¬ VSP (Vertical Seismic Profile);
- cross-hole;
- ¬ sismica 3D.

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

L'obiettivo della tomografia è definire le caratteristiche di un oggetto/sezione mediante la misura delle proiezioni esterne (somma di alcune proprietà interne) di queste caratteristiche.

Le serie di proiezioni utilizzate in tomografia corrispondono a integrali lineari di alcune funzioni del mezzo. Nelle indagini sismiche i parametri misurati sono il tempo di arrivo e l'ampiezza delle onde sismiche, mentre la funzione può essere lo smorzamento (reciproco della velocità) o il fattore di attenuazione. Per un'analisi bidimensionale il problema tomografico è rappresentato dalla seguente equazione:

(una serie completa di somme di raggi ad un determinato angolo è definita proiezione o profilo)

Dove x, y, r, l e a sono rappresentati nello schema di seguito:

Dal punto di vista teorico f(x,y) è una funzione 2D continua e per essere ricostruita necessita di un numero infinito di proiezioni. Per ovvi motivi di discretizzazione f(x,y) è calcolata per un numero finito di punti attraverso un numero finito di proiezioni.

Il mezzo da ricostruire viene quindi discretizzato in un grid a elementi rettangolari (celle) in ciascuno dei quali il valore di smorzamento si suppone costante. Il tempo di arrivo calcolato per un raggio (impulso sismico - perturbazione ondulatoria) che attraversa le celle del grid può essere espresso dalla formula:

$$t_k^{calc} = \sum_{j=1}^N d_{kj} \cdot s_j$$

 t_k^{calc} = tempo di arrivo calcolato per il raggio k_{esimo}

 d_{ki} = lunghezza del percorso del raggio k_{esimo} nella cella j_{esima}

 s_i = smorzamento della cella j_{esima}

N = numero di elementi del grid

Nome Relazione: Indagini geognostiche 2011 Relazione descrittiva

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

I tempi di arrivo di tutti i raggi possono essere tradotti in forma matriciale:

T = D * S

T = vettore di lunghezza M (tempi di arrivo)

S = vettore di lunghezza N (celle)

D = vettore (MxN) con lunghezza dei raggi in ogni cella

Ricostruire una funzione attraverso il suo integrale comporta una soluzione non unica poiché un infinito numero di integrali possono essere misurati. Il numero di soluzioni può essere ridotto introducendo dei vincoli nel modello quali: limiti di velocità, limiti di gradiente delle velocità (damping), conoscenza delle strutture geologiche presenti nell'area, dimensioni e tipologia di celle da utilizzare nella ricostruzione.

Esistono differenti approcci alla risoluzione del problema:

- ¬ Back Projection (BP);
- ¬ matrice di inversione;
- ¬ ricostruzione analitica;
- ¬ ricostruzioni iterative (ART, SIRT).

I processi di tipo iterativo risultano più appropriati per l'ambito geologico poiché i dati geofisici possono essere distorti dal rumore di fondo, oppure essere campionati irregolarmente e discontinuamente.

I metodi iterativi si basano sulla definizione di un modello iniziale di velocità del sottosuolo (modello a priori) costruito attribuendo un valore di velocità a tutte le celle del grid. Attraverso il modello iniziale è possibile calcolare i tempi di arrivo teorici delle onde sismiche.

Successivamente è possibile calcolare i tempi residui, ossia la differenza tra tempo osservato e tempo calcolato, e pertanto definire l'approssimazione del modello teorico al modello sperimentale/reale:

 $D_i = t_{obs_i} - t_{calc_i}$ dove $i = 1, 2 \dots N$

Lo step successivo è dato dalla costruzione di un sistema di equazioni lineari che stabilisce la relazione tra i residui e la variazione che deve essere apportata al modello iniziale di velocità per ottenere un modello quanto più possibile attendibile. La soluzione del sistema di equazioni, che risulta sovradeterminato poiché ha un numero di equazioni superiore al numero di incognite, definisce la variazione da applicare al modello iniziale (matrice di risoluzione).

L'iterazione del calcolo prosegue fino a quando la differenza tra tempi calcolati e tempi osservati risulta compresa in un range di errore accettabile.

La risoluzione delle sezioni tomografiche è proporzionale al numero e alla dimensione delle celle del grid ed è limitata dalla media della lunghezza d'onda del segnale che determina la

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

dimensione minima della cella. Una anomalia può essere individuata solamente se l'effetto prodotto sul tempo di arrivo è maggiore della precisione della lettura del tempo di arrivo stesso.

La dimensione minima (Δ /) che un'anomalia dovrebbe avere per generare una variazione misurabile nei tempi di arrivo dei raggi che vi passano attraverso può essere calcolata con la seguente equazione:

$$\Delta I = \frac{\Delta t}{\Delta v} \cdot (v_a \cdot v_m)$$

 V_a = velocità dell'anomalia

 v_m = velocità media nel mezzo

$$\Delta \mathbf{v} = |\mathbf{v}_a - \mathbf{v}_m|$$

 Δt = errore nella lettura dei primi arrivi

Al fine di evitare artefatti matematici senza corrispondenza fisica e geologica, le dimensioni della cella devono risultare inferiori alle dimensioni dell'anomalia, inoltre occorre tenere in considerazione il numero di raggi che attraversano le celle, i quali a loro volta dipendono dalla distanza sorgente-ricevitore, dal numero di sorgenti e ricevitori e dalla loro distribuzione.

2.2.1 Sismica a rifrazione

Il metodo sismico a rifrazione utilizza le onde sismiche che vengono rifratte dalle discontinuità presenti nel sottosuolo ad es. l'interfaccia tra due mezzi a differente velocità (si ipotizza che la velocità aumenti con la profondità).

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

Misurando i tempi di primo arrivo (FBP First Break Point) degli impulsi ai geofoni e le distanze tra gli stessi viene costruito un diagramma (dromocrona) nel quale in ascisse vengono rappresentate le distanze e in ordinate i tempi.

Le onde dirette viaggiano dalla sorgente al ricevitore con velocità V1 (nella dromocrona sono rappresentate dalla linea che dall'origine ha una pendenza pari a 1/V1) e raggiungono i ricevitori in un tempo:

$$t = \frac{X}{V_1}$$

Le onde rifratte viaggiano lungo l'interfaccia a una profondità z (nella dromocrona sono rappresentate dalla linea retta con pendenza 1/V2 che intercetta l'asse dei tempi a x=0) e raggiungono i ricevitori in un tempo (tempo di intercetta):

$$T_{i} = \frac{X}{V_{2}} + \frac{2Z\sqrt{V_{2}^{2} - V_{1}^{2}}}{V_{2} * V_{1}}$$

Il punto di intersezione tra le due rette, definito come punto di ginocchio, permette di calcolare la profondità del rifrattore.

2.2.2 Metodo reciproco generalizzato (GRM)

I metodi di interpretazione della sismica a rifrazione di superficie variano in funzione della situazione d'interesse. La tabella di seguito riportata rappresenta una sintesi che illustra i casi d'applicazione per ogni metodologia d'indagine:

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

Metodi di interpretazione	Caso d'applicazione
Delle intercette (o convenzionale)	Strati paralleli e sub-orizzontali
Reciproco generalizzato (GRM)	Morfologie degli strati articolate e con inclinazioni > 20°
Reciproco di Hawkins o Delay time	Morfologie degli strati articolate e con inclinazioni < 20°
Tomografico	Morfologie complesse

Il G.R.M. è un metodo interpretativo che si basa su tempi d'arrivo da energizzazioni coniugate, effettuate cioè da parti opposte del profilo sismico: tramite la determinazione di due funzioni:

✓ analisi-velocità, che corrisponde al tempo necessario al raggio sismico a percorrere un tratto di lunghezza nota sul rifrattore (distanza intergeofonica). La determinazione di tale funzione permette di ottenere una precisa stima della velocità delle onde sismiche e dunque del rifrattore stesso.

$$T_{V} = \frac{(T_{SY} - T_{S1X} + T_{SS1})}{2}$$

FUNZIONE TEMPO - VELOCITA'

✓ tempo-profondità, che è una misura della profondità del rifrattore, espressa in unità di tempo.

$$T_G = \frac{\left[T_{SY} + T_{S_1X} - \left(T_{SS_1} + \frac{XY}{V_n}\right)\right]}{2}$$

FUNZIONE TEMPO - PROFONDITA'

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

L'analisi sismica si basa sulla determinazione del tempo di tragitto delle onde sismiche tra due geofoni separati da una distanza variabile XY che entra nel calcolo della velocità di propagazione delle onde nel rifrattore e della sezione tempo – profondità.

Il problema consiste nel calcolare con precisione la distanza XY ottimale per la quale i segmenti dei raggi che viaggiano verso l'alto e arrivano a ciascun geofono, emergano quasi dallo stesso punto del riflettore. Ciò permette di valutare tutte le eventuali variazioni laterali di velocità del rifrattore, e quindi di ricostruire anche morfologie complesse.

La sismica a rifrazione con il metodo del reciproco di Hawkins rappresenta un caso particolare del GRM in cui viene posto XY = 0. Tale semplificazione comporta delle significative limitazioni:

- ✓ La morfologia dell'orizzonte fisico può avere un andamento irregolare, ma i tratti singoli non devono avere variazioni laterali eccessive (<20°).</p>
- ✓ Non si possono intercettare variazioni laterali di velocità.

Il metodo ha comunque il vantaggio di essere più speditivo e di semplice applicazione, visto che non è necessaria la determinazione del valore ottimale XY.

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

3 Strumentazione utilizzata

Le prove sono state effettuate con la seguente strumentazione:

3.1 Acquisizione dati

I dati sono stati acquisiti con il sismografo GEODE della Geometrics dotato di 24 canali a 24 bit, possibilità di stacking, filtri analogici e digitali. Nella tabella si riportano le caratteristiche tecniche del sismografo.

A/D Conversion	24 bit result using Crystal Semiconductor sigma-delta converters and Geometrics proprietary oversampling		
Dynamic Range	144 dB (system), 110 dB (instantaneous, measured) at 2ms, 24dB		
Sample Interval	0.02, 0.3125, 0.0625, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0 ms		
Record Length	16,000 samples		
Maximum Input Signal	2.8 VPP		
Distortion	0.0005% @ 2 ms, 1.75 to 208 Hz		
Bandwidth	1.75 Hz to 20 kHz		
Common Mode Rejection	>-100 dB at <=100 Hz, 36 dB		
Crosstalk	-125 dB at 23.5 Hz, 24 dB, 2 ms		
Noise Floor	0.2uV, RFI at 2 ms, 36 dB, 1.75 to 208 Hz		
Stacking Trigger Accuracy	1/32 of sample interval		
Input Impedance	20 kOhm, 0.02 uf		
Anti-alias Filters	-3 dB at 83% of Nyquist frequency, down 90 dB		
Delay	0 to 9999 ms in 1 ms steps		
Acquisition and DisplayFilters	 LowCut: OUT, 10, 15, 25, 35, 50, 70, 100, 140, 200, 280, 400 Hz, 24 or 48 dB/octave, Butterworth. Notch: 50, 60, 150, 180 Hz and OUT, with the 50 dB rejection bandwidth 2% of center frequency. HighCut: OUT, 250, 500 or 1000 Hz, 24 or 48 dB/octave. 		
Triggering	Positive, negative or contact closure, software adjustable threshold		
Power	12V external battery		

3.2 Sorgenti

Per le indagini sismiche a rifrazione è stata utilizzata come sorgente di energia la massa battente, costituita da un martello avente massa da 10 kg utilizzato da un operatore.

L'impulso viene generato attraverso il colpo del martello su una piastra in teflon appoggiata al terreno.

L'istante di trigger è fornito da un geofono posizionato in prossimità del punto di battuta.

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

3.3 Ricevitori

Geofoni

Per le indagini sismiche a rifrazione sono stati utilizzati geofoni con asse verticale con frequenza pari a 14 Hz agganciati in parallelo tramite take-out a geofoni orizzontali che permettono di registrare rispettivamente le onde di compressione (P) e quelle di taglio (S) generate in fase di energizzazione.

I geofoni sono sensori di tipo elettromagnetico che generano una tensione proporzionale alla velocità della perturbazione sismica.

I cavi utilizzati per l'acquisizione sono cavi con guaina in polipropilene schermati con connettori tipo militare Bendix o Cannon a 36 pin.

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

4 Descrizione del rilievo eseguito

L'indagine ha previsto l'esecuzione di 19 linee di sismica a rifrazione; nella tabella si riporta la lunghezza delle sezioni, il numero di posizioni di ricezione (geofoni) e di energizzazione:

CEZIONE	PUNTI DI	INTERDISTANZA	PUNTI DI	LUNGHEZZA
SEZIONE	RICEZIONE	(m)	ENERGIZZAZIONE	LINEA (m)
TR01a	24	10	9	230
TR01b	20	10	11	190
TR02a	24	10	8	230
TR02b	24	10	9	230
TR03a	24	10	7	230
TR03b	24	10	9	230
TR04	24	10	9	230
TR05a	12	10	7	110
TR05b	24	10	9	230
TR06	24	10	9	230
TR07a	24	10	9	230
TR07b	12	10	7	110
TR08a	12	10	7	110
TR08b	12	10	7	110
TR08c	12	10	7	110
TR09a	12	10	7	110
TR09b	12	10	7	110
TR10	12	10	7	110
T11	22	10	12	210
			TOTALE	3350

Ogni tiro è stato ripetuto almeno una volta per migliorare mediante operazione di stacking (somma di più impulsi sismici generati nella medesima posizione) la qualità del segnale acquisito (aumento del rapporto segnale/disturbo).

La planimetria con la posizione delle linee di rilievo, dei punti di ricezione e di energizzazione è riportata nelle tavole allegate al progetto (Tavole 01 - 06).

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

5 Elaborazione dati

Le linee di sismica a rifrazione sono state analizzate sia tramite elaborazione tomografica sia con metodo reciproco generalizzato (G.R.M. di R. Palmer).

TOMOGRAFIA SISMICA

L'elaborazione in tomografia sismica ha previsto i seguenti step:

1. Definizione dei tempi di arrivo

I dati acquisiti sono stati convertiti da formato SEG 2 a SU (Seismic Unix) con il software SeisOpt Picker. Utilizzando lo stesso software, sono stati analizzati i film sismici acquisiti e successivamente determinati per ogni traccia i tempi di primo arrivo delle onde compressionali P e delle trasversali S (FBP - First Break Peak).

2. Elaborazione tomografica

L'elaborazione tomografica è stata effettuata con il software Rayfract che utilizza il metodo di inversione WET (Wavepath Eikonal Traveltime).

L'algoritmo di inversione utilizza l'approccio basato sulle zone di Fresnel che costituisce un'alternativa ai metodi di inversione basati sul ray tracing.

Gli assunti di base di tale modellizzazione sono:

- ¬ i raggi sismici sono considerati come fronti d'onda sferici;
- il range di frequenza dell'impulso sismico è considerato finito (condizione rappresentativa della realtà);
- la perturbazione sismica indotta si propaga in uno spazio finito 3D (zona di Fresnel) attorno al raggio sismico.

L'analisi dei tempi di primo arrivo permette di definire il modello iniziale di velocità (gradiente), attraverso il quale calcolare i tempi di arrivo teorici delle onde sismiche. Calcolando i tempi residui (T_r), ossia la differenza tra tempo osservato e tempo calcolato, viene definita l'approssimazione del modello teorico al modello sperimentale.

Lo step successivo è dato dalla costruzione di un sistema di equazioni lineari che stabilisce la relazione tra i residui (T_r) e la variazione che deve essere apportata al modello iniziale di velocità per ottenere un modello quanto più possibile attendibile. L'iterazione del calcolo prosegue fino a quando la differenza tra tempi calcolati e tempi osservati risulta accettabile.

I risultati dell'inversione tomografica sono:

¬ matrice Vp, Vs;

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

- ¬ dromocrone calcolate;
- ¬ valori di RMS dei tempi residui;
- matrice di copertura (coverage): copertura dei raggi sismici nello spazio indagato;
- matrice di risoluzione: scostamento del modello finale dal modello iniziale (variazione apportata dal processo tomografico al modello iniziale).

3. Restituzione e interpretazione e delle sezioni sismiche

I dati delle matrici Vp e Vs sono rappresentati in contouring 2D (con opportuna scala colore) mediante il software Surfer. L'algoritmo utilizzato per tale rappresentazione è il kriging con un valore di smoothing (filtro spaziale) basso. Questa funzione di interpolazione spaziale si basa sull'autocorrelazione della grandezza (in questo caso le velocità Vp o Vs a seconda della situazione), cioè l'assunto che la grandezza in oggetto vari nello spazio con continuità. Le sezioni ottenute sono state riportate su tavole costruite con il software Autocad.

METODO G.R.M.

Il metodo del reciproco generalizzato (G.R.M. di R. Palmer) consente di ricostruire rifrattori ondulati a qualunque profondità utilizzando la geometria dei profili coniugati.

Gli aspetti di base dell'elaborazione sono:

- Il calcolo della funzione analisi-velocità, dalla quale si ottiene la velocità del rifrattore.
- Il calcolo della funzione tempo-profondità, che è una misura della profondità del rifrattore, espressa in unità di tempo.

L'analisi sismica si basa sulla determinazione del tempo di tragitto delle onde sismiche tra due geofoni separati da una distanza variabile XY, che entra nel calcolo della velocità di propagazione delle onde nel rifrattore e della sezione tempo – profondità.

Il problema consiste nel calcolare con precisione la distanza XY ottimale per la quale i segmenti dei raggi che viaggiano verso l'alto e arrivano a ciascun geofono, emergano quasi dallo stesso punto del riflettore. Ciò permette di valutare tutte le eventuali variazioni laterali di velocità del rifrattore, e quindi di ricostruire anche morfologie complesse.

Il metodo G.R.M.si sviluppa attraverso due fasi:

- 1. Definizione delle funzioni.
- 2. Stima del valore ottimale di XY.

In allegato (All. 01) sono riportati i grafici z-x e v-x delle linee di rilievo elaborate con metodo G.R.M..

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

6 Risultati del rilievo e conclusioni

Su incarico di Technital sono state realizzate delle indagini in tomografia sismica a rifrazione, volte ad indagare il sottosuolo in corrispondenza della Valdastico Nord.

In allegato si riporta:

- ✓ Allegato 1 in calce al testo. Elaborazione GRM
- ✓ Tavola 01- Sezioni in tomografia sismica a rifrazione e profilo interpretativo: Linee TR1a TR3b
- ✓ Tavola 02 Sezioni in tomografia sismica a rifrazione e profilo interpretativo: Linee TR04 TR7b
- ✓ Tavola 03 Sezioni in tomografia sismica a rifrazione e profilo interpretativo: Linee TR8a TR11
- ✓ Tavola 04 Sezioni in tomografia sismica a rifrazione Vp e Vs: Linee TR1a TR3b
- ✓ Tavola 05 Sezioni in tomografia sismica a rifrazione Vp e Vs: Linee TR04 TR7b
- ✓ Tavola 06 Sezioni in tomografia sismica a rifrazione Vp e Vs: Linee TR8a TR11

6.1 Indagini sismiche

Si fa presente che la velocità sismica è un parametro che dipende dalle caratteristiche meccaniche del materiale quali: porosità, resistenza al taglio, compressibilità, quantità di fratture, saturazione.

Ai fini dell'interpretazione del rilievo geofisico è opportuno ricordare alcune delle osservazioni riguardanti le proprietà dei materiali:

- i materiali sciolti presentano valori di velocità inferiori rispetto a materiali lapidei;
- i materiali sciolti presentano velocità proporzionali al materiale costituente i grani e alla percentuale di vuoti;
- le velocità sono proporzionali in modo diretto allo stato di addensamento dei materiali.

6.1.1 Sismica a rifrazione

L'elaborazione dei dati sismici delle velocità P e S ha portato all'individuazione delle seguenti unità:

- La prima unità superficiale, con valori di velocità P inferiori a 1200-1400 m/s e valori di velocità S inferiori a 450-550m/s, caratterizzata dalla presenza di materiale sciolto.
- La seconda unità, con velocità P comprese tra 1200-1400 e 2800 m/s e velocità S comprese tra 450-550 e 1100-1200 m/s, caratterizzata da materiale granulare

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

maggiormente addensato o da materiale lapideo dall'elevato grado di fatturazione ed alterazione.

- La terza unità, con velocità P maggiori di 2800 m/s e velocità S maggiori di 1100-1200 m/s, si riferisce a materiale lapideo di buone caratteristiche geomeccaniche.

Nella seguente tabella si riportano le unità individuate e le relative velocità P e S:

UNITA'	Velocità P (m/s)	Velocità S (m/s)
1	< 1200-1400	< 450-550
2	1200 < Vp < 2800	450-550 < Vs < 1100- 1200
3	> 2800	> 1100-1200

Le interfacce tra le differenti unità sono state identificate tramite un'analisi del gradiente di velocità sismica effettuata sulle sezioni tomografiche; tale tecnica di elaborazione è infatti la migliore in contesti di variazione graduale delle velocità sismiche del sottosuolo, come nel caso in esame.

Nella seguente tabella si riporta lo spessore delle unità in ogni sezione effettuata:

	UNITA' 1		UNITA' 2			UNITA' 3
SEZIONE	Spessore	Spessore	Spessore	Spessore	Quota	Quota
	MIN (m)	MAX (m)	MIN (m)	MAX (m)	MAX (m)	MAX (m)
TR01a	16	23	20	27	256	232
TR01b	4	28	-	-	299	-
TR02a	27	33	26	36	289	259
TR02b	13	28	-	-	276	-
TR03a	4	12	4	13	336	327
TR03b	4	10	6	12	331	323
TR04	7	16	10	26	327	316
TR05a	2	8	9	23	371	361
TR05b	1	7	4	13	400	395
TR06	5	10	9	17	372	350
TR07a	10	23	-	-	427	388
TR07b	10	12	-	-	419	-
TR08a	4	17	-	-	473	-
TR08b	8	12	-	-	505	-
TR08c	7	17	-	-	496	-
TR09a	6	12	7	15	530	520
TR09b	2	11	6	13	516	510
T10	8	12	5	13	518	511
T11	18	26	22	35	194	160

In corrispondenza delle sezioni TR03b e TR05b sono state identificate delle discontinuità laterali che interessano le unità sismiche 2 e 3, come si riporta nella seguente tabella:

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

SEZIONE	Distanza (m)		Quota MAX (m.s.l.m.)	Unità interessate
TDOOK	28	62	323	3
TRUSD	152	175	310	3
TDOEL	4	42	392	3 – parzialmente 2
TROOD	146	166	368	3 – parzialmente 2

I risultati delle indagini sono riportati nelle tavole allegate al progetto (Tavole 01-06).

Su parte delle linee d'indagine è stato inoltre applicato il metodo di analisi G.R.M., che non ha dato risultati significativi a causa della mancanza di contrasti netti tra le diverse unità, dell'interdistanza geofonica utilizzata, e dunque di punti di ginocchio chiaramente identificabili.

Si fa presente che il G.R.M. ha confermato l'andamento crescente o decrescente delle isolinee di velocità identificate dalla tomografia, nonostante i valori riscontrati non siano da considerarsi corretti a causa della mancanza di un punto di ginocchio preciso.

Grazie all'analisi G.R.M. è stata comunque identificata un'interfaccia a 800 m/s che indica il passaggio da detrito superficiale sciolto a materiale comunque sciolto, ma con un grado di addensamento maggiore. Tale orizzonte lento è stato confrontato con i risultati ottenuti dall'elaborazione tomografica e riportato sulle sezioni allegate al progetto (Tavole 01-06) come interfaccia interna all'unità superficiale (unità 1) identificata grazie all'analisi del gradiente di velocità sismica.

I risultati dell'elaborazione con metodo G.R.M. sono riportati in allegato (Allegato 01).

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

7 Documentazione fotografica

Indagine sismica a rifrazione

Indagine sismica a rifrazione

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

ALLEGATO 1

ELABORAZIONE CON METODO GRM

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

Linea TR02b

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

Linea TR04

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

Linea TR06

TRONCO TRENTO - VALDASTICO - PIOVENE ROCCHETTE

Linea TR11

AUTOSTRADA VALDASTICO

CAMPAGNA INDAGINI GEOGNOSTICHE PER LA PROGETTAZIONE PRELIMINARE ANNO 2011

MAGNETOTELLURICA

Consorzio Raetia Via C. Cattaneo 20 37121 Verona

A31 Nord Tronco Trento – Valdastico - Piovene Rocchette

Risultati delle indagini geofisiche profonde con tecnica magnetotellurica

Relazione n.:	1795/11
Redatto da:	Dott. Geol. Mario Naldi
Data:	Luglio 2011
Revisione	0

1.		1
2.	DESCRIZIONE DEL METODO DI INDAGINE MAGNETOTELLURICO	2
3.	STRUMENTAZIONE UTILIZZATA	5
4.	UBICAZIONE DEI PROFILI MAGNETOTELLURICI	7
5.	RISULTATI OTTENUTI	9

Allegati:

- Bibliografia scientifica e tecnica
- Sezione 7 BESENELLO
- Sezione 4 COSTA
- Sezione 5 COSTA
- Sezione 7 COSTA
- Intersezione sezioni 4 e 7 COSTA
- Sezione 3 NOSELLARI
- Sezione 10 NOSELLARI
- Sezione 2 SOSTERI
- Sezione 1 VALPEGARA

1. INTRODUZIONE

La presente relazione illustra e descrive le indagini geofisiche con metodologia magnetotellurica (MT) realizzate nel periodo Giugno-Luglio 2011 sul tracciato in progetto del tronco dell'Autostrada A31 Trento – Valdastico-Piovene Rocchette.

Scopo principale dell'indagine è stata la caratterizzazione litostratigrafica del sottosuolo, in particolare nelle zone di elevata copertura delle gallerie (in ambiento montano a morfologia irregolare) dove risulta difficoltoso realizzare indagini alternative.

Più in dettaglio, la tecnica di indagine MT determina le caratteristiche di resistività elettrica del sottosuolo, consentendo di valutare sia le variazioni verticali (attribuibili a cambi litologici o a cambi delle proprietà fisiche dell'ammasso roccioso, quali fatturazione o contenuto d'acqua) e sia le variazioni laterali, generalmente collegate a discontinuità tettoniche (con riduzione della resistività elettrica legata a fenomeni di cataclasi o per circolazione idrica).

Sono stati tracciate complessivamente n. 7 sezioni MT. Per la relativa ubicazione si rimanda alle planimetrie di progetto di cui alle tavole 0505020010105/0205/0305/0505/0505. I risultati sono descritti nel proseguo del presente documento anche mediante l'utilizzo di alcune sezioni interpretative.

2. DESCRIZIONE DEL METODO DI INDAGINE MAGNETOTELLURICO

I sistemi MT (si definiscono AMT quelli che lavorano su bande di frequenza >=10Hz) appartengono tipologicamente al gruppo di indagini EM (elettromagnetiche) e sono impiegati per rilevare l'impedenza elettrica alla superficie terrestre utilizzando una serie di misure simultanee delle fluttuazioni del campo elettrico e magnetico locale.

Tali misurazioni di terreno sono fatte per un periodo di diversi minuti secondo bande di frequenza stabilite che, per la strumentazione impiegata, variano da 10Hz fino a 10 kHz (da qui classificabile di tipo audiomagnetotellurica); ad esse viene applicata la trasformata di Fourier e quindi memorizzate come spettri di impedenza (Figura 1).

Figura 1 - Serie temporali e loro trasformazione nel dominio della frequenza con scomposizione nella componente reale ed immaginaria (parte dx del grafico)

Durante il rilievo il parametro che viene misurato è l'**impedenza**; nella prospezione MT, se con E_x si indica la componente del campo elettrico in una arbitraria direzione orizzontale e con H_y il campo magnetico associato, in una direzione ortogonale, l'**impedenza di superficie** Z_s vale:

 $Z_s = E_x/H_y$

L'impedenza di superficie è un numero complesso a causa della differenza di fase tra H_y e $E_{x.}$ Le misure di impedenza di superficie in funzione della frequenza possono essere interpretate in termini di proprietà elettriche del sottosuolo. L'impedenza di superficie, che dipende dalla frequenza, è un tensore (misure del vettore totale del campo magnetico ed elettrico) se la struttura della conducibilità non è stratificata (cioè se il mezzo è omogeneo). Diventa uno scalare in presenza di una struttura stratificata isotropa.

L'impedenza di superficie calcolata da questi valori spettrali è una funzione complessa della frequenza dove i dati di frequenza più elevati sono influenzati dalle strutture poco profonde e vicine e quelli di frequenza più bassa dalle strutture allocate a profondità più elevata e a maggiore distanza dal sito di misura.

I moderni sistemi di magnetotellurica sono progettati per registrare variazioni di entrambi i campi, magnetico ed elettrico, in due direzioni ortogonali, ed utilizzano queste registrazioni per calcolare l'impedenza di superficie nel sito di misura. La formulazione tensoriale è preferita a quella scalare quando i campi sorgente sono assimilabili a onde piane in quanto gli elementi di impedenza Z non variano nel tempo (l'impedenza di superficie scalare è più facile da calcolare ma può variare quando variano i campi sorgente).

Il passaggio dalla variazione di impedenza alla resistività elettrica reale del sottosuolo avviene grazie alla'applicazione di un algoritmo di calcolo iterativo (si veda allegato 1), con restituzione delle curve di resistività elettrica reale (Figura 2).

Per lo scopo delle indagini geologiche, un sondaggio MT fornisce quindi una stima della resistività verticale al di sotto del punto ove è localizzato il ricevitore indicando inoltre la complessità geoelettrica dell'area del sondaggio. In zone dove la distribuzione della resistività non varia rapidamente tra diversi punti di misura, il sondaggio di resistività costituisce una ragionevole stima della stratificazione geoelettrica del sottosuolo.

Più in dettaglio, l'elaborazione dei dati viene effettuata con una procedura di 2D Analysis. Essa consiste nel plottaggio bidimensionale dei parametri calcolati per i singoli sondaggi punti di sondaggio opportunamente filtrati (utilizzando la funzione di Bostick). Quella che si ottiene quindi, una volta selezionati i punti che si intendono inserire nel profilo, è una rappresentazione della distribuzione delle unità fisiche misurate (resistività/profondità, resistività/frequenza e fase/frequenza).

Nella realizzazione dell'immagine bidimensionale del sottosuolo si può scegliere il fattore di *smoothing* che rappresenta la lunghezza del filtro spaziale che viene applicato ai dati. Il significato del fattore di smoothing è immediato: un valore elevato tenderà a fornire

un'immagine piuttosto piatta e con poca risoluzione orizzontale, ma con una buona stima della profondità. La scelta dovrà quindi essere un compromesso, il migliore ottenibile, tra l'esigenza di dettaglio orizzontale e precisione nella scala verticale. Non si tratta, in questo caso, di un procedimento di inversione, peraltro realizzabile quando le necessità e caratteristiche dell'indagine lo consigliano, bensì dell'applicazione di un filtro allo scalare (o al tensore) della resistività apparente misurata.

La profondità minima di "lettura" è regolata dalla legge della *skin depth* ed è funzione della radice quadrata del rapporto resistività/frequenza.

Il prodotto finale è costituito da una sezione che definisce la distribuzione della resistività elettrica in funzione della profondità, molto simile ad una sezione geoelettrica.

Figura 2 - Ampiezza, fase e coerenza (in funzione della frequenza) del segnale magnetico (Hx e Hy) ed elettrico (Ex e Ey), con derivazione della resistività reale

3. STRUMENTAZIONE UTILIZZATA

La configurazione in campo dello strumentazione MT prevede (Figura 3)

- la disposizione di 4 elettrodi disposti a croce (per comodità secondo i quattro punti cardinali)
- la disposizione dei due sensori elettromagnetici tra loro ortogonali ad una distanza di circa 25 m dallo strumento ricevente. Nel caso in esame sono stati usati sensori Phoenix con frequenza massima centrata di 10000 hz
- un'unità ricevente. Nel caso in esame, si è utilizzata l'unità Phoenix MTU-5

Trattandosi di un'indagine di tipo passivo, i sensori registrano le correnti elettriche naturali tempi di acquisizione variabili, ma generalmente sono compresi tra un minimo di 30 minuti fino a 12 ore per punto di misura (a seconda del disturbo presente).

Poiché si acquisiscono dei dati su un punto (sondaggio), per ottenere una sezione è necessario acquisire più punti lungo un allineamento, con una spaziatura tra i punti adeguata alla risoluzione richiesta (normalmente tra 50 e 100 m).

L'interpolazione tra dati adiacenti consente la definizione di una sezione di resistività elettrica (esattamente come nel caso di una sezione geoelettrica di resistività).

4. UBICAZIONE DEI PROFILI MAGNETOTELLURICI

L'ubicazione delle sezioni magnetotelluriche è riportato nella planimetria ubicazione indagini allegata al progetto, nonché nelle tavole relative alle singole sezioni contenute in allegato al testo. L'elenco di punti di acquisizione (e delle relative sezioni) è riportato in tabella 1.

Tabella 1 - Elenco punti di misura

Sezione	PUNTO MT	UTC TIME	ZOI	NA	Х	Y	QUOTA
	02P01	14.42.00	32	Т	676336	5088436	1103
	04P01	8.41.38	32	Т	668574	5088814	1667
	04P02	9.45.05	32	Т	668718	5088769	1660
	04P03	10.41.02	32	Т	668852	5088741	1665
	04P04	11.58.36	32	Т	668990	5088696	1646
	04P05	13.57.30	32	Т	669175	5088674	1684
	04P06	15.05.35	32	Т	669273	5088641	1676
	04P07	15.21.08	32	Т	669419	5088689	1661
	04P08	17.05.15	32	Т	669517	5088657	1631
4	04P09	17.47.12	32	Т	669617	5088741	1647
one	04P10	8.22.43	32	Т	669696	5088723	1619
ezio	04P11	9.16.41	32	Т	669840	5088747	1625
Ň	04P12	9.57.57	32	Т	669978	5088764	1627
	04P13	10.44.03	32	Т	670101	5088718	1614
	04P14	11.53.39	32	Т	670239	5088752	1656
	04P15	12.41.44	32	Т	670347	5088747	1623
	04P16	14.06.43	32	Т	670441	5088711	1581
	04P17	15.06.54	32	Т	670577	5088751	1613
	04P18	16.02.04	32	Т	670696	5088720	1605
	04P19	16.41.26	32	Т	670827	5088709	1581
	04P20	17.29.08	32	Т	670943	5088695	1556
	07ALT01	8.27.46	32	Т	670202	5089111	1764
	07ALT02	9.25.56	32	Т	670221	5089013	1734
6 /	07ALT03	10.40.19	32	Т	670228	5088892	1692
ion	07ALT04	11.46.44	32	Т	670231	5088654	1627
Sez	07ALT05	12.13.37	32	Т	670234	5088531	1597
07	07ALT06	12.43.32	32	Т	670239	5088423	1564
	07ALT07	13.33.36	32	Т	670273	5088270	1520
~	03P01	14:08:17	32	Т	673407	5088873	851
ē	03P02	14:58:42	32	Т	673432	5088818	875
ion	03P03	15:55:23	32	Т	673488	5088788	834
Sez	03P04	17:20:34	32	Т	673633	5088683	835
0)	03P05	18:14:00	32	Т	673664	5088603	824
	01P01	9:38:17	32	Т	682490	5083124	598
	01P02	10:41:35	32	Т	682479	5083216	568
e 1	01P03	11:24:48	32	Т	682455	5083282	565
Sezione	01P04	12:35:52	32	Т	682468	5083360	575
	01P05	14:29:26	32	Т	682432	5083438	561
	01P06	15:43:39	32	Т	682423	5083501	564
	01P07	16.41.12	32	Т	682419	5083605	565

▶ Techgea S.r.L.

Via Carlo Viola, 78 10026 Pont-Saint-Martin (AO) Tel 011 700113 - Fax 011 7077673 - e-mail: info@techgea.eu

- 7 Io	07P01	9:37:08	32	Т	664018	5090116	318
	07P02	10:57:38	32	Т	663969	5090159	294
	07P03	12:36:21	32	Т	663941	5090261	290
nel	07P04	12:52:02	32	Т	663851	5090356	273
ziol	07P05	13:54:18	32	Т	663814	5090413	268
Вã	07P06	14:55:04	32	Т	663776	5090478	264
	07P07	15:51:40	32	Т	663743	5090552	249
	07P08	16:46:55	32	Т	663722	5090621	246
	02P01b	8:48:08	32	Т	676161	5088428	1112
	02P02	10:02:35	32	Т	676229	5088420	1110
	02P03	10:28:33	32	Т	676300	5088425	1107
ē	02P04	11:19:43	32	Т	676385	5088426	1107
lior	02P05	12:15:46	32	Т	676453	5088421	1097
Sez	02P06	14:42:03	32	Т	676523	5088400	1099
0,	02P07	15:48:09	32	Т	676615	5088403	1120
	02P08	14:42:03	32	Т	676679	5088366	1125
	02P09	15:48:09	32	Т	676760	5088348	1116
	04P00	15:31:42	32	Т	670027	5088707	1601
	05P01	8:24:27	32	Т	668641	5088820	1652
10	05P02	9:21:13	32	Т	668637	5088740	1641
ē	05P03	9:55:49	32	Т	668646	5088677	1633
ior	05P04	11:23:42	32	Т	668647	5088602	1621
Sez	05P05	11:24:37	32	Т	668647	5088526	1607
0,	05P06	12:05:39	32	Т	668640	5088456	1604
	05P07	12:41:51	32	Т	668636	5088387	1592
	06P01	17:20:15	32	Т	672626	5088759	1106
	06P02	18:00:50	32	Т	672677	5088685	1092
0	10P01	8:36:25	32	Т	674727	5088418	1022
е 1	10P02	9:01:36	32	Т	674655	5088434	1019
ion	10P03	9:53:44	32	Т	674588	5088452	1015
Sezi	10P04	10:37:12	32	Т	674520	5088470	1003
	10P05	12:04:47	32	Т	674454	5088503	1005

5. RISULTATI OTTENUTI

I risultati delle sezioni di resistività elettrica derivanti dalla modellazione dei singoli punti di misura MT sono riportati nelle sezioni allegate in calce al testo.

In generale, si rileva (soprattutto nelle sezioni più lunghe e con maggiore densità di dati, quale la sezione Costa 4, Tavola 3) una netta stratificazione a differente resistività elettrica, con variazioni verticali corrispondenti a variazioni litostratigrafica e a variazioni laterali più legate a presenza di faglie o (più in generale) discontinuità tettoniche.

Il modello elettrostratigrafico è confermato dalla precisa intersezione di linee ortogonali, quali le linee 4 e 7 Costa. Come illustrato in Tavola 6, si osserva una coincidenza tra i diversi elettrostrati. In particolare, si osserva generalmente la presenza di:

- un elettrostrato superiore a resistività da media (ρ > 500 Ω.m) a elevata (ρ > 1000 Ω.m), con tonalità di colore rosso
- un elettrostrato intermedio a resistività da medio-bassa a bassa (100 < ρ < 250 Ω .m) con tonalità di colore blu
- un elettrostrato basale (e generalmente molto profondo) con resistività simili o addirittura più elevate dell'elettrostrato superiore (ρ > 1000 Ω.m), tonalità di colore rosso

Con riferimento alla sezione più lunga (sezione 4, Costa) si può fornire una correlazione del solo strato superficiale, sulla base delle indicazioni geologiche ricavabili dal Foglio Schio della Carta Geologica d'Italia a scala 1:100000. Lo strato superiore resistivo corrisponde con la sequenza calcarea triassica (dal Biancone, ai calcari Grigi, alla Dolomia Principale), i cui spessori possono variare lateralmente per effetto dei rigetti e delle dislocazioni tettoniche.

La sequenza conduttiva sottostante (che interessa in parte la galleria) è costituita a sua volta da "blocchi" tettonici dislocati da linee strutturali di svincolo che, in alcuni casi, proseguono fino a grande profondità. Si tratta verosimilmente di una sequenza litologica con frazione terrigena non indifferente (componente marnosa o argillitica) tale da ridurre notevolmente i valori di resistività elettrica.

Il passaggio dal modello geofisico al modello geologico non è possibile senza una conoscenza dettagliata dell'assetto geologico locale. I "motivi" geofisici salienti, elettrostratigrafia (sequenza litostratigrafica) e discontinuità verticali (faglie) forniscono tuttavia un fondamentale ausilio per la definizione del modello geologico.

Techgea S.r.l.

Relazione redatta da: Dott. Geol. Mario Naldi

Mario Wald.

ALLEGATI

Cenni teorici ed esempi da bibliografia scientifica

C4.4: Applications of magnetotelluric exploration

C4.4.1. Geothermal exploration

- Many geothermal fields have a shallow zone of clay alteration, with a low resistivity due to the presence of clay minerals. In Geophysics 325, we saw how DC resistivity can locate this shallow region. То image geothermal reservoirs below the clay cap, combined MT and controlled source EM methods are widely used. Reservoirs are generally lower in resistivity than the host rock, but the brine resistivity can rise at high temperatures (C2.2).
- In C4.1.4 we saw that MT cannot image a **weak** conductor below a **strong** conductor. Thus the overlying clay cap, can make it difficult to image the reservoir.
- Also note that when a geothermal reservoir is exhausted, the clay cap remains and can confuse exploration. For a general overview, see *Pellerin et al*, (1996).
- Once a geothermal field has been developed, subsequent MT exploration is more difficult because pipes and pumps generate a lot of EM noise that will contaminate the natural EM signals.

C4.4.2. Hydrocarbon exploration

C4.4.2.1 Imaging potential reservoirs and source rocks

General overview

- EM methods were widely used in the Soviet Union for hydrocarbon exploration, as reviewed by *Spies* (1983).
- In the west, EM has generally been used in situations where conventional exploration methods have difficulties, or data quality is low. MT cannot give the same vertical detail as a seismic reflection survey. However, it can provide valuable information on bulk material properties. This works in a very similar way to the original application of Archie's Law, which was developed for the interpretation of well logs. For general reviews on this topic, see the articles by *Unsworth* (2005) and *Christophersen* (2002).

FIG. 1. Conceptual model of a geothermal system.

Sub-salt imaging

- Subsalt imaging can challenge seismic exploration, because of the high velocity contrast between the salt sheet and underlying sedimentary rocks (why?). The top of a salt sheet can be detected with confidence in a seismic reflection survey, but the base is more difficult to locate.
- Salt sheets generally exhibit a higher electrical resistivity than the surrounding sedimentary rocks. Thus **the base of salt** represents a **decrease** in electrical resistivity (increase in conductivity). This geometry is favourable for detection with MT.

Offshore sub-salt exploration

- MT instruments are placed dropped to the seafloor with a heavy anchor attached. They are recovered when an acoustic command releases the anchor and flotation spheres pull the instrument to the surface.
- The presence of overlying seawater will attenuate the EM signals, so high frequency data will not be recorded at the seafloor. Simple skin depth arguments can be used to determine the frequency band that will work in a given water depth.
- Electric fields are measured by placing the electrodes at the end of flexible plastic pipes. Seafloor currents can cause the instrument to move and generates magnetic noise as the magnetic field sensors move in the Earth's magnetic field.

Details of measurements can be found at: http://www.aoageophysics.com/Electrical/MarineMT/WhatsNew.htm

Several case studies in the Gulf of Mexico have shown that MT can be applied in this context. Details : *http://marineemlab.ucsd.edu/resources/concepts/mtsalt.html*

- Note the **small range** of resistivity in the MT derived resistivity model. This model used a **smooth inversion** to overcome the non-uniqueness that is inherent in the MT inverse problem.
- When generating models, the use of seismic and gravity data can give a much clearer model. If the location of some boundaries is known independently, then the MT inversion does not need to smear out structure in this region.
- The figure below shows an alternative resistivity model derived by a Sharp Boundary Inversion (*Hoversten et al*, 2000).

Onshore sub-salt exploration

• MT has also been used onshore to assist in sub-salt imaging. For a case study that studied salt domes, see *den Boer et al*, 2000).

Onshore sub-basalt exploration

• MT can determine the thickness of basalt flows that overly sedimentary rocks. Applications in Columbia Plateau (Washington) and Deccan Traps in India

Overthrusts

- Overthrusts are often associated with effective hydrocarbon traps. As with subsalt exploration, this geometry can place **high velocity** thrust sheets above **lower velocity** rocks, and resolution at depth with seismic reflection exploration is compromised.
- In addition, weathering and static problems can seriously degrade the quality of seismic data in this context.
- Can MT contribute in this situation? Again this geometry usually corresponds to a low resistivity layer (a conductor) below a high resistivity layer, which is again favourable for detection with MT.

- The above figure shows an MT model for a profile in the Foothills extending from Rocky Mountain House to the Front Ranges of the Rockies (*Xiao and Unsworth*, 2006).
- The Alberta Basin is characterized by a low resistivity layer some 4 km thick. The Cretaceous sedimentary rocks have been thrust beneath a sequence of older rocks to form the Brazeau Thrust Fault.
- The agreement between the MT model and a resistivity log at W3 is shown below.

• Why is the MT derived resistivity smoother than that measured in the well log?

Another overthrust example

• *Watts and Pince* (1998) reported a similar example from SE Turkey. Here karst terrain produces very poor seismic reflection data.

C4.4.2.2 Direct imaging of hydrocarbons with MT (onshore)

- Claimed, but not yet 100% convincing (well, to me at least!). Shallow gas pockets can be readily located with DC resistivity, as they are associated with a high resistivity anomaly (e.g. Northern Alberta).
- However, at greater depth the signal from a reservoir becomes smaller, and will be masked by resistivity variations within a particular formation.
- Many papers on this topic (e.g. *Ingerov et al*, 2003)

• Example of time changes during production using controlled source EM see the paper by *Ziolkowski et al*, (2002). Controlled source methods are better in detecting these changes, since the transmitted signal is known, and constant from one day to the next.

C4.4.3. Hydrogeology and environmental geophysics

General overview

See review by Christophersen (2002).

Application to environmental studies at the Amchitka Island nuclear test site

- In 2004 MT was used to study subsurface porosity and salinity on Amchitka Island in the Aleutian arc. This was the location of 3 underground nuclear tests conducted by the United States from 1965-1971.
- The goal was to provide data that would constrain hydrogeological modeling that is being used to determine how long it will take for radiation to leak into the marine environment.

Cannikin Lake, 2004

- The results are summarized in a (lengthy) report that can be found at:
- A detailed description of MT results are listed at: http://www.instrm.org/Amchitka_Final_Report/finalreport/chapters/06_Chapter6_F7_26_05.pdf

The following figures are taken from this report

Figure 1 : Theoretical study of the effect of subsurface porosity and salinity on the overall resistivity of a rock (a) Variation of salinity as a function of depth (TDS = total dissolved solids) (b) resistivity of the ground water assuming the empirical relationship of *Block* (2001). (c)+(d) The porosity is constant with depth, resulting in a uniformly decreasing bulk resistivity with increasing depth. (e)+(f) Porosity decreases with depth, resulting in a more complex variation of bulk resistivity with depth. TZ = transition zone from fresh to salt water. Note that in (f) the resistivity decreases through the transition zone, and increases in the saltwater layer.

Figure 26: Hydrogeology for Cannikin Ground Zero. (a) Shows the salinity (TDS) at the nearby UAe-1 well (red circles) and the blue line denotes a simplified form. The maximum value permitted is 35 g/l equivalent to seawater. (b) resistivity of the pore fluid derived from (a) using the empirical equation of *Block* (2001). (c) Effective porosity required to give agreement between bulk resistivity and that determined by the MT data. Computation uses Archies' Law with exponents m=1, 1.5 and 2 (d) Resistivity from MT data (red circles) compared to that predicted by data (blue line) in panels (a)-(c). The asterisk (*) denotes the depth of the shot cavity.

Figure 29: Hydrogeology at the Cannikin Ground Zero. An exponential porosity depth variation was assumed and the salinity required to reproduce the variation of resistivity with depth was computed. Note again that a significant increase in salinity is predicted below the depth of the shot cavity.

C4.4.4. Mineral exploration

- Controlled source EM methods are widely used in mineral exploration (as we will see in the next section of this class).
- AMT and MT is generally used for deeper exploration (>1 km). A good review is provided by *Sheard et al*, (2002).

Massive sulphide deposits

- Generally located with other types of EM survey (Airborne EM, VLF etc).
- However AMT has been used to try and define the geometry in more detail. See the case study by *Jones and Garcia* (2003).

Uranium exploration

- Uranium deposits are not usually large enough to be located from the surface through their low resistivity. However, they are often co-deposited with graphite where fluid bearing basement faults reach an unconformity.
- These graphitic conductors can easily be located with airborne EM if they are close to the surface.
- However at greater depths (1 km), AMT data are needed to detect them. The figure below shows sample resistivity model from a test case at the McArthur River Mine in the Athabasca Basin (NW Saskatchewan). AMT data were collected on a grid at the surface to allow 3-D imaging (*Tuncer et al*, 2006).

• Induction vectors were very useful in giving additional constraints on the location of basement conductors. Can you see the trend of arrow reversals in the data? Details in Tuncer et al., (2006)

Kimberlite exploration

- Induction vectors from 500 Hz AMT data collected over a kimberlite pipe.
- Data courtesy of NordWest
- Top of pipe is characterized by low resistivity due to weathering.
- Induction vectors point at the kimberlite pipe in the Parkinson convention.

C4.4.5. Tectonic and lithospheric studies with MT

• Before considering tectonically active regions, it is important to understand what is considered a normal resistivity structure in stable regions. In the figure, all resistivity values are in ohm-m.

- Sedimentary basins are generally low in resistivity. Connected pore fluids conduct electricity quite well. Compaction reduces pore space and thus resistivity increases with depth. Changes in salinity have a major effect on bulk resistivity. e.g. saline aquifers in WCSB
- Freshly intruded igneous rocks can be highly resistive, as the melting process effectively expels all volatiles that can act as charge carriers.
- Beneath the sedimentary cover, upper crustal rocks are generally resistive.
- The lower continental crust is generally much lower in resistivity than the upper crust, with a conductance of 200-500 S. The decrease in resistivity is roughly coincident with the brittle-ductile transition. Some researchers suggest this is due to interconnected, saline fluids (*Marquis and Hyndman*, 1992). Others argue that this is petrologically impossible, and that carbon films are responsible for the low resistivity (*Yardley and Valley*, 1997).
- The **upper mantle** is generally more resistive, but the resistivity is difficult to image. This is because it usually below a conductor (the lower crust). The Moho is a seismically defined discontinuity. There is not always a distinct change in resistivity across the Moho (*Jones and Ferguson*, 2001).
- The **asthenosphere** is typically seen at 150-200 km depth as a low resistivity zone (not shown in the figure above). This is due to the presence of small amounts of interconnected partial melt.

With the above model as background, a number of studies have shown that anomalous resistivity structures are often associated with present (and past) tectonic activity.

San Andreas Fault, California:

- Shallow zone of fractured rock in upper few kilometers of the fault (*Unsworth et al*, 1997; *Unsworth et al*, 2004).
- May be typical of most large-scale strike-slip faults worldwide.
- MT data provided guidance for the SAFOD drilling project.

Tibetan Plateau

- Widespread fluid zone at 20 km depth with resistivity around 5-10 ohm-m. Likely due to partial melting, with contribution from aqueous fluids (*Wei et al*, 2001; *Unsworth et al*, 2005).
- Note that in the figure below, **two independent geophysical studies** indicate the presence of fluids (1) low resistivity (2) strong, negative polarity seismic reflections.
- Similar features are seen in other areas of convergent tectonics, such as the Altiplano in South America (*Brasse et al*, 2002).

Pre-Cambrian basement tectonics

- Geological sutures represent the locations where blocks of continental crust were joined together as the continents grew. In pre-Cambrian basement these regions are often characterized by zones of low resistivity extending for 100's or 1000's of kilometers.
- Several examples are found in Canada (Red Deer Conductor, Trans-Hudson Orogen) and they may be due to graphite. For details see *Boerner et al* (1999).
- Now how did the carbon get down there?

References

- Block, D., 2001, Water Resistivity Atlas of Western Canada Abstract, presented at Rock the Foundation Convention of Canadian Society of Petroleum Geologists, June 18-22, Calgary.
- Boerner, D.E., R.D. Kurtz, J.A. Craven, G.M. Ross, F.W. Jones and W.J. Davis, Electrical conductivity in the pre-Cambrian lithosphere of Western Canada, *Science*, **283**, 668, 1999.
- Brasse, H., P. Lezaeta, V. Roth, K. Schwalenberg, W. Soyer and V. Haak, The Bolivian Altiplano Conductivity Anomaly, *J. Geophys. Res*, **107**, doi 10.1029/2001JB000391, 2002.
- Christophersen, K, EM in the 21st century looking for oil, gas and water, review presented at 2002 EM workshop, Santa Fe, New Mexico. 2002.
- den Boer, E., Eikelboom, J., van Driel, P. and Watts, D., 2000, Resistivity imaging of shallow salt with magnetotellurics as a new aid to prestack depth migration: First Break, **18**, no. 1, 19-26.
- Hoversten, G. M., Constable, S. C. and Morrison, H. F., 2000, Marine magnetotellurics for base of-salt mapping: Gulf of Mexico field test at the Gemini structure: Geophysics, Soc. of Expl. Geophys., 65, 1476-1488.
- Ingerov et al; Resistivity signature of hydrocarbon deposits: MT surveys in Western Uzbekistan Poster No. P054, presented at the EAGE Annual Meeting, June 01-04, 2003, Stavanger, Norway (available on www.phoenix-geophysics.com)
- Jones, A. G., I. J. Ferguson, The electric Moho, Nature, 409, 331-333, 2001.
- Jones, A.G., X. Garcia, Okak Bay (Labrador) audiomagnetotellurics (AMT) dataset case study: Lessons in dimensionality and scale, Geophysics, **68**, 70-91, 2003.
- Marquis, G. and R. Hyndman, Geophysical support for aqueous fluids in the deep crust: seismic and electrical relationships, GJI, **110**, 91, 1992.
- Pellerin, L., J. Johnston and G. Hohmann, Geophysics, 61, 121, 1996.
- Sheard, S.N. E.Brand, T.Ritchie, Industry applications of EM base metal and environment, , review presented at 2002 EM workshop, Santa Fe, New Mexico.
- Spies, B., Recent development in the use of surface electrical methods for oil and gas exploration in the Soviet Union, *Geophysics*, 48, 1102-1112, 1983.
- Tuncer, V., M.J. Unsworth, W. Siripunvaraporn and J. Craven, Exploration for unconformity type uranium deposits with audio-magnetotelluric data: A case study from the McArthur River Mine, Saskatchewan (Canada), *Geophysics*, **71** (6), B201-B209, 2006.
- Unsworth, M. J., P.E. Malin, G.D. Egbert and J. R. Booker, Internal Structure of the San Andreas Fault Zone at Parkfield, California, *Geology*, **25**, 359-362, 1997.
- Unsworth, M.J. A.G. Jones, W. Wei, G Marquis, S. Gokarn, J. Spratt, Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data, *Nature*, **438**, 78-81, doi:10.1038/nature04154, 2005.
- Unsworth, M.J., and P.A. Bedrosian, Electrical resistivity at the SAFOD site from MT exploration, *Geophys. Res. Lett.*, 31, L12S05, doiL10.1029/2003GL019405, 2004.
- Unsworth, M.J., New developments in conventional hydrocarbon exploration with electromagnetic methods, *CSEG Recorder*, pp 34-38, April 2005.
- Watts, M.D. and A. Pince, Petroleum exploration in overthrust areas using MT and seismic data, SEG Expanded Abstracts, 1998.
- Wei, W., M.J. Unsworth, A.G. Jones, J.R. Booker, H. Tan, K. D. Nelson, L. Chen, S. Li, K. Solon, P.A. Bedrosian, S. Jin, M. Deng, J. Ledo, D. Kay, B. Roberts, Detection of widespread fluids in the Tibetan crust by magnetotelluric studies, *Science*, **292**, 716-718, 2001.
- Xiao, W., and M.J. Unsworth, Structural imaging in the Rocky Mountain Foothills (Alberta) using magnetotelluric exploration, *AAPG Bulletin*, 90, 321-333, 2006.
- Yardley, B. and J. Valley, The petrologic case for a dry lower crust, JGR, 102, 12,173, 1997.
- Ziolkowski, A., Hobbs, B. and Wright, D., 2002, First direct hydrocarbon detection and reservoir monitoring using transient electromagnetics: First Break, 20 (4) pp 224-225.

SEZIONI INTERPRETATIVE

Sezione 07 – Besenello

Profili MT P01 ÷ P08

▲ Techgea Srl Indagini geofisiche - www.techgea.eu					
Committente: Consorzio Raetia					
Progetto:	Indagine magnetotellurica				
Sito:	A31 tronco Nord				
Data:	Luglio 2011	Tavola:			
Relazione:	1795/11	2			

Sezione 04 – Costa

Profili MT P01 ÷ P20

▲ Techgea Srl Indagini geofisiche - www.techgea.eu				
Committente: Consorzio Raetia				
Progetto:	Indagine magnetotellurica			
Sito:	A31 tronco Nord			
Data:	Luglio 2011	Tavola:		
Relazione:	1795/11	3		

Sezione 05 – Costa

Profili MT P01 ÷ P07

1000 950

M Techgea Indagini geofisich	Markov Techgea Srl Indagini geofisiche - www.techgea.eu				
Committente: Consorzio Raetia					
Progetto:	Indagine magnetotellurica				
Sito:	A31 tronco Nord				
Data:	Luglio 2011	Tavola:			
Relazione:	1795/11	4			

Committente:	Consorzio Raetia		
Progetto:	Indagine magnetotellurica		
Sito:	A31 tronco Nord		
Data:	Luglio 2011	Tavola:	
Relazione:	1795/11	5	

Profili MT P01 ÷ P05

M Techgea Srl Indagini geofisiche - www.techgea.eu				
Committente: Consorzio Raetia				
Progetto:	Indagine magnetotellurica			
Sito:	A31 tronco Nord			
Data:	Luglio 2011	Tavola:		
Relazione:	1795/11	8		

