

Direzione Progettazione e Realizzazione Lavori

S.G.C. E78 GROSSETO-FANO

Tratto Siena Bettolle (A1) Adeguamento a 4 corsie del tratto Siena-Ruffolo (Lotto 0)

PROGETTO DEFINITIVO

cod. **FI-81**

R.T.I. di PROGETTAZIONE: Mandataria

Mandante

PROGETTISTI:

Ing. Riccardo Formichi - Pro Iter srl (Integratore prestazioni specialistiche) Ordine Ing. di Milano n. 18045

Ing. Stefano Muffato - Sinergo SpA Ordine Ing. di Venezia n. 2087

IL GEOLOGO

Dott. Geol. Massimo Mezzanzanica - Pro Iter srl Albo Geol. Lombardia n. A762

COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE

DATA

Ing. Enrico Moretti - Erre.vi.a. srl Ordine Ing. di Milano n. 16237

VISTO: IL RESP. DEL PROCEDIMENTO

Ing. Raffaele Franco Carso

PROTOCOLLO

ORMICHI RICCARDO

06 - OPERE D'ARTE

06.02 - Opere d'arte maggiori - Viadotti

06.02.06 - Viadotto Valli carreggiata Ovest (VI040) Relazione tecnica e di calcolo

CODICE PR	ROGETTO LIV. PROG. N. PROG.	NOME FILE T00VI06STRCP01B.pdf			REVISIONE	SCALA
	081 D 20	CODICE TOOVIO	TRRE	01	В	-
D						
С						
В	Revisione per istruttoria Al	NAS	Maggio 2021	Malandrin	Imbiscuso	Muffato
А	Emissione		Ottobre 2020	Malandrin	Caobianco	Caobianco
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

INDICE

1. C	GGETTO E DESCRIZIONE DELLE OPERE	5
1.1	Premessa	5
1.2	DESCRIZIONE DELLE OPERE	
2. N	IORMATIVE E CODICI DI RIFERIMENTO	10
2.1	NORMATIVA NAZIONALE COGENTE	10
2.2	NORME DI RIFERIMENTO	
2.2.1	Norme UNI	
2.2.2	Eurocodici strutturali pubblicati dal CEN	10
2.2.3	Norme CNR	
3. V	ITA NOMINALE E CLASSI D'USO	11
4. N	IATERIALI	12
4.1	ACCIAIO DA CARPENTERIA METALLICA	
4.1.1	Caratteristiche meccaniche	
4.1.2	Coefficienti parziali di sicurezza	
4.1.3	Classe di resistenza	
4.2	COLLEGAMENTI	
4.2.1	Bulloni	
4.2.2	Connettori acciaio calcestruzzo	
4.2.3	Saldature	
4.3	CALCESTRUZZO SOLETTA IMPALCATO	
4.3.1	Prescrizioni di durabilità	
4.3.2	Copriferro	
4.3.3	Caratteristiche meccaniche e valori di progetto	
4.3.4	Requisiti di limitazione della fessurazione	
4.4	CALCESTRUZZO SPALLE ED ELEVAZIONI	
4.4.1	Prescrizioni di durabilità	
4.4.2	Copriferro	
4.4.3	Caratteristiche meccaniche e valori di progetto	
4.4.4	Requisiti di limitazione della fessurazione	
4.5	CALCESTRUZZO BATOLI DI FONDAZIONE E PALI	
4.5.1	Prescrizioni di durabilità	
4.5.2	Copriferro	
4.5.3	Caratteristiche meccaniche e valori di progetto	
4.5.4	Requisiti di limitazione della fessurazione	
4.6	ACCIAIO PER ARMATURA LENTA	
4.6.1	Caratteristiche meccaniche	
4.6.2	Valori di progetto	19
	ARAMETRI GEOTECNICI	
	OFTWARE DI CALCOLO	
6.1	ANALISI STRUTTURALE DELL'IMPALCATO E DELLE SOTTOSTRUTTURE	
6.2	Analisi di dettaglio agli elementi finiti:	
6.3	VERIFICHE DI RESISTENZA	
6.3.1	Per le sezioni in c.a.	
6.3.2	Per le sezioni miste acciaio-calcestruzzo	22
7. A	NALISI DEI CARICHI	23
7.1	PESI PROPRI STRUTTURALI	23
7.1.1	Carpenteria metallica	
	·	

7.1.2	Calcestruzzo di soletta	23
7.1.3	Carichi permanenti portati	
7.1.4	Pavimentazione	
7.1.5	Guard rail impiantistica	
7.1.6	Cordoli e veletta	
7.2	RITIRO E VISCOSITÀ DEL CALCESTRUZZO	
7.3	SPINTA DELLE TERRE	
7.4	CARICO DA TRAFFICO SUL RILEVATO	
7. 4 7.5	AZIONE SISMICA	
7.5 7.6	SPINTA SISMICA SILEVATO	
7.7	AZIONI TERMICHE	
7.8	AZIONE DEL VENTO	
7.9	ATTRITI VINCOLARI	
7.10	AZIONI VARIABILI DA TRAFFICO	
7.10.1	Schema di carico 1	
7.10.2	Schema di carico 2	
7.10.3	Schema di carico 5	
7.10.4	Diffusione dei carichi	
7.10.5	Azione longitudinale di frenamento o di accelerazione q3	35
7.11	CARICHI DA FATICA	35
	OMPINAZIONI E FATTORI	0=
_	OMBINAZIONI E FATTORI	_
9. IM	IPALCATO METALLICO	38
9.1	Analisi statica - Modellazione FEM	38
9.1.1	Carichi applicati	
9.1.1 9.1.2	Sollecitazioni agenti	
9.1.3	Travi principali – geometrie e inerzie	
9.2	ANALISI SISMICA – MODELLAZIONE FEM	
9.2.1	Sollecitazioni agenti in corrispondenza degli appoggi q=1	
9.2.2	Sollecitazioni agenti sulle sottostrutture q=1.5	
9.3	VERIFICHE TRAVI PRINCIPALI	
9.3.1	Verifiche tensionali SLU	
9.3.2	Verifiche di instabilità a taglio e di interazione taglio-momento	
9.3.3	Verifica di instabilità delle anime	
	9.3.3.1 Concio C10 di campata	
	9.3.3.2 Concio C4 in appoggio	
9.3.4	Verifiche a fatica	
9.4	DEFORMAZIONI	
9.4.1	Valutazione della contro-monta	
9.5	VERIFICHE DEI TRAVERSI	
9.6	DIMENSIONAMENTO DEI GIUNTI	80
9.7	DIMENSIONAMENTO DEGLI APPOGGI	81
40 \/F	ERIFICA DEI PIOLI	0.5
10. VE	ERIFICA DEI PIOLI	85
10.1	SEZIONE DI CAMPATA	85
10.2	SEZIONE DI APPOGGIO	
11. TF	RALICCI PREDALLES	87
12. SC	OLETTA DI IMPALCATO	88
40.4	Manage FEM	0.0
12.1	MODELLAZIONE FEM	
12.1.1	Carichi applicati	
12.2	VERIFICHE SLU/SLE	92
13 90	OTTOSTRUTTURE	20
.5. 50		
13.1	PILE	
13.1.1	Combinazioni statiche con Nmax	98
Relazione	e tecnica e di calcolo	3

S.G.C. E78 "Grosseto-Fano" - Tratto Siena Bettolle (A1) - Adeguamento a 4 corsie del tratto Siena-Ruffolo - Lotto 0 Progetto Definitivo

13.1.2	Combinazioni statiche con Nmin	98
13.1.3		
13.1.4	·	
13.2	ZATTERE	
13.2.1		
10.2.1	13.2.1.1 Combinazioni con Nmax	
	13.2.1.2 Combinazioni con Nmin	
	13.2.1.3 Combinazioni sismiche	110
13.2.2	2 Verifiche SLU	110
14. S	SOTTOSTRUTTURE - SPALLE	115
14.1	MODELLAZIONE FEM	115
14.1.1	Carichi applicati	116
14.2	VERIFICHE SLU	
14.2.1		
	14.2.1.1 Sollecitazioni SLU	
	14.2.1.2 Verifiche SLU	
14.2.2	Strutture di elevazione: paramento verticale	127
	14.2.2.1 Sollecitazioni SLU	
	14.2.2.2 Verifiche SLU	
14.2.3		
	14.2.3.1 Sollecitazioni SLU	
1101	14.2.3.2 Verifiche SLU	
14.2.4	Struttura di fondazione 14.2.4.1 Sollecitazioni SLU	
	14.2.4.2 Verifiche SLU	
15. V	/ERIFICA DELLE FONDAZIONI PROFONDE DELLA SPALLA	
15.1	STIMA ANALITICA DELLA CAPACITÀ PORTANTE PER CARICO VE	
15.1	VERIFICA DEI PALI	
15.2 15.2.1		
15.2.1	COSTANTE DI WINKLER ORIZZONTALE PER I PALI	
15.3 15.3.1		
15.3.1 15.3.2	· ·	
15.3.2 15.3.3	, , ,	
		_
16. V	'ERIFICA DELLE FONDAZIONI PROFONDE DELLA PILA	
16.1	STIMA ANALITICA DELLA CAPACITÀ PORTANTE PER CARICO VE	
16.2	VERIFICA DEI PALI	
16.2.1	SOLLECITAZIONI AGENTI	161
	16.2.1.1 Combinazioni con Nmax	
	16.2.1.2 Combinazioni con Nmin	
40.0	16.2.1.3 Combinazioni sismiche	
16.3	COSTANTE DI WINKLER ORIZZONTALE PER I PALI	
16.3.1	·	
16.3.2	, , ,	
16.3.3	Nerifica a carico limite orizzontale	

1. OGGETTO E DESCRIZIONE DELLE OPERE

1.1 Premessa

La presente relazione ha come oggetto il dimensionamento e la verifica delle strutture relative all'adeguamento a 4 corsie del tratto Siena-Ruffolo, nello specifico l'opera in oggetto è il viadotto Valli. La relazione riporta le verifiche delle strutture di impalcato e relative sottostrutture (pile/spalle) comprese le verifiche delle fondazioni.

Le figure che seguono descrivono i tratti essenziali delle strutture oggetto di verifica.

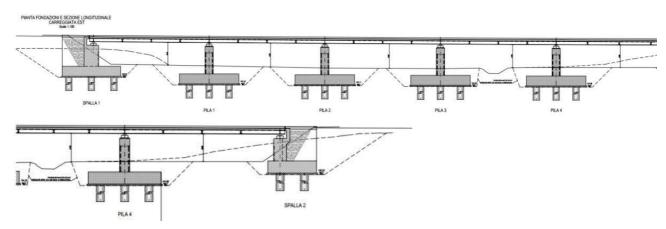


Figura 1: viste e sezioni principali – prospetto longitudinale

Figura 2: viste e sezioni principali – pianta e prospetti travata

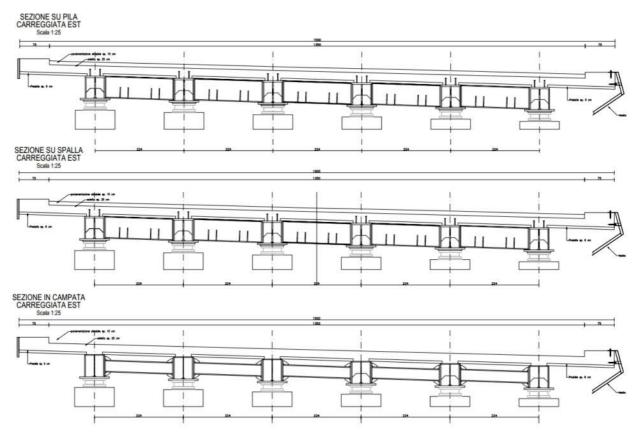


Figura 3: viste e sezioni principali – sezioni tipologiche impalcato

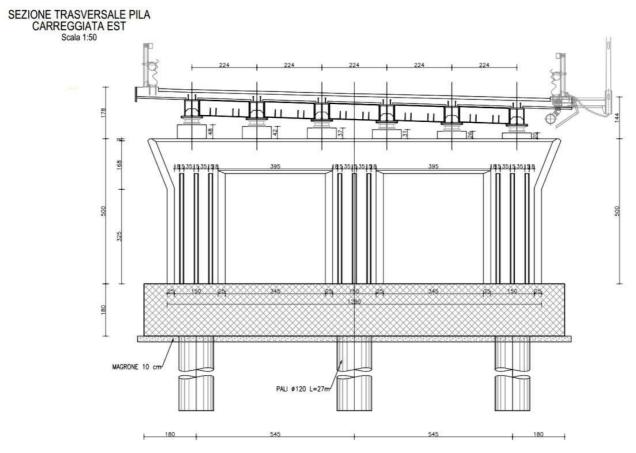


Figura 4: viste e sezioni principali – sezione trasversale in pila

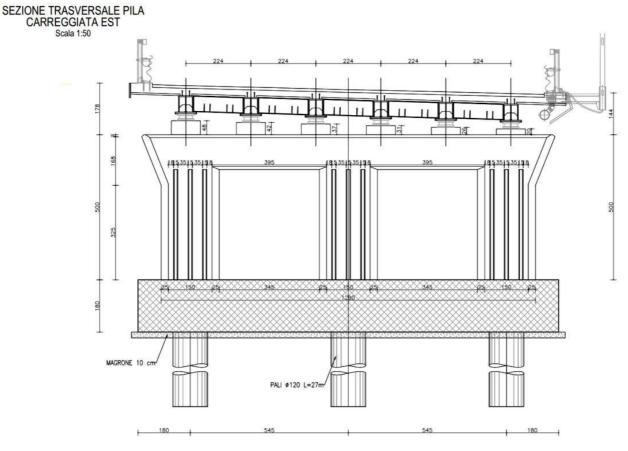
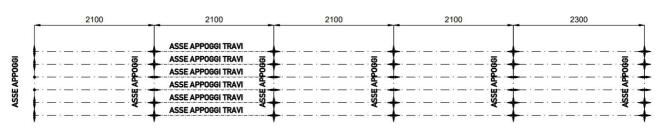



Figura 5: viste e sezioni principali – sezione trasversale in spalla

PIANTA SCHEMA APPOGGI

LEGENDA APPOGGI A DISCO ELASTOMERICO CONFINATO

- APPOGGIO TIPO MOBILE MULTIDIREZIONALE
- APPOGGIO TIPO MOBILE UNIDIREZIONALE TRASVERSALE
- APPOGGIO TIPO FISSO
- APPOGGIO TIPO MOBILE UNIDIREZIONALE LONGITUDINALE

Figura 6: schema di vincolo - pianta

1.2 Descrizione delle opere

La struttura è composta da 5 campate, 4 da 21 metri consecutive e una da 23 metri, per una lunghezza totale di 107 metri. L'asse del viadotto in oggetto si presenta in rettifilo. Lo schema statico è a campata continua. Gli appoggi fissi in direzione longitudinale sono previsti per la spalla A (lato Grosseto). Su di essa si scaricano le forze longitudinali dovute alle forze di attrito ed alla frenatura, oltre che le azioni sismiche longitudinali. Sulle altre pile e spalle sono previsti appoggi mobili unidirezionale longitudinali e multidirezionali, pertanto le azioni trasversali si distribuiscono su tutti gli elementi.

La sezione trasversale dell'impalcato è mista acciaio-calcestruzzo e si compone di 6 travi in acciaio di altezza costante e pari a 600mm, poste ad interasse 2.24 metri che sorreggono la soletta di spessore costante 25cm. La soletta è gettata su lastre predalle dello spessore di 6cm che fungono da cassero a perdere. La larghezza complessiva dell'impalcato è pari a 13.50 metri, la sede stradale è di larghezza 12.00, delimitata da cordoli di larghezza 75cm e spessore 15cm. Le travi principali presentano piattabande aventi larghezza superiormente di 500mm e inferiormente 700mm, con spessori variabili. I traversi sono di tipo pieno costituiti da profili a doppio T di altezza 550mm per i traversi in appoggio e 300mm per quelli di campata. Il passo dei traversi varia da un minimo di 5250mm ad un massimo di 5750mm. L'accoppiamento fra travi in acciaio e soletta in calcestruzzo è garantito da pioli nelson di altezza 175mm e diametro da 19mm.

Le elevazioni delle pile hanno forma rettangolare con degli smussi agli spigoli di 25 cm e dimensione complessiva in pianta di 2.0x1.5 m. Sul perimetro sono ricavati dei negativi ornamentali della profondità di 15 cm. Le fondazioni sono su plinto di spessore 1.8 m che insiste su 9 pali di diametro 1.2 m.

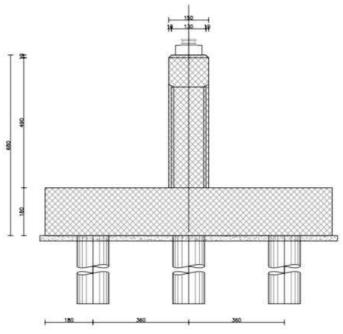


Figura 7: sezione longitudinale della pila

Le spalle sono costituite da un paramento di spessore 265cm e altezza 526cm (compreso il paraghiaia) con relativi muri di risvolto lateriali posteriori. Le fondazioni sono su pali di 1.2 m di diametro; per la spalla fissa sono previsti 15 pali, la zattera ha dimensione in pianta 10.60x13.80 m.

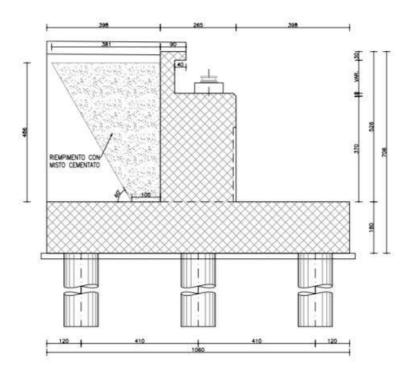


Figura 8: sezione longitudinale della spalla

Per le caratteristiche strutturali e ulteriori dettagli sul ponte, si faccia riferimento alla documentazione grafica del progetto.

2. NORMATIVE E CODICI DI RIFERIMENTO

I seguenti codici sono presi a riferimento per la progettazione:

2.1 Normativa nazionale cogente

- [1] Legge 5 novembre 1971, N. 1086 Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica
- [2] D.M. 17/01/2018 Norme tecniche per le Costruzioni (NTC)
- [3] C.M. 21/01/2019 n.7 Istruzioni per l'applicazione delle "Norme tecniche per le Costruzioni" di cui al D.M. 17/01/2018

2.2 Norme di riferimento

In ottemperanza a NTC §12, per riferimenti di calcolo o in mancanza di specifiche indicazioni si farà inoltre riferimento alle sequenti:

2.2.1 Norme UNI

- [4] UNI 11104:2016 Calcestruzzo Specificazione, prestazione, produzione e conformità Specificazioni complementari per l'applicazione della EN 206
- [5] UNI EN 206: 2017 "Calcestruzzo: specificazione, prestazione, produzione e conformità".

2.2.2 Eurocodici strutturali pubblicati dal CEN

(Con le precisazioni riportate nelle Appendici Nazionali, la lista che segue è indicativa e non esaustiva dei codici eventualmente utilizzati nel seguito)

- [6] UNI EN 1991-1-5:2004 Eurocodice 1 Azioni sulle strutture Parte 1-5: Azioni in generale Azioni termiche
- [7] UNI EN 1992-1-1:2015 Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici
- [8] UNI EN 1993-1-1:2005 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici
- [9] UNI EN 1993-1-5:2007 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-5: Elementi strutturali a lastra
- [10] UNI EN 1993-1-8:2005 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Progettazione dei collegamenti
- [11] UNI EN 1993-2:2007 Eurocodice 3 Progettazione delle strutture di acciaio Parte 2: Ponti di acciaio
- [12] UNI EN 1993-1-10:2005 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-10: Resilienza del materiale e proprietà attraverso lo spessore
- [13] UNI EN 1993-1-11:2007 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-11: Progettazione di strutture con elementi tesi
- [14] UNI EN 1994-1-1:2005 Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo Parte 1-1: Regole generali e regole per gli edifici
- [15] UNI EN 1994-2:2006 Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo Parte 2: Regole generali e regole per i ponti

2.2.3 Norme CNR

Per eventuali ulteriori riferimenti si sono considerate anche le Istruzioni e documenti tecnici del Consiglio Nazionale delle Ricerche (C.N.R.):

- [16] CNR-DT207-2008 Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni
- [17] CNR-UNI 10011/97 Costruzioni in acciaio: istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione;
- [18] CNR-UNI 10016/98 Travi composte acciaio-calcestruzzo: istruzioni per il calcolo e l'esecuzione;
- [19] CNR-UNI 10030/87 Anime irrigidite di travi in parete piena

Relazione tecnica e di calcolo

10

3. VITA NOMINALE E CLASSI D'USO

Con riferimento alla definizione delle azioni sismiche (si veda nel seguito) si definiscono i parametri di prestazione dell'opera.

In accordo al D.M. 17.01.2018, le azioni sismiche di progetto, in base alle quali viene valutato il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se (T), con riferimento a prefissate probabilità di eccedenza PV_R nel periodo di riferimento V_R .

- a_q accelerazione orizzontale massima al sito;
- Fo valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
- T periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale

Coerentemente con quanto prescritto dalle NTC e tenendo conto dell'importanza della costruzione in esame, si è prevista per l'opera una vita nominale V_N di 50 anni e una classe d'uso IV, cui corrisponde un coefficiente d'uso CU pari a 2.0.

Il periodo di riferimento per le azioni sismiche risulta quindi pari a V_R = 100 anni.

Vita nominale (V _N):	50 anni
Classe d'uso:	IV (Cu = 2.0)
Periodo di riferimento azione sismica (V _R = V _N *	100 anni
Cu):	
Categoria di sottosuolo	С

Stato limite	PVR (Probabilità di superamento nel
	periodo VR)
SL Operatività	81 %
SL Danno	63 %
SL salvaguardia Vita	10 %
SL prevenzione Collasso	5 %

Con T_R = tempo di ritorno = $-V_R/In(1-PV_R)$: Da cui: V_R = V_R × Cu = V_R

MATERIALI

4.1 Acciaio da carpenteria metallica

S355J2 per spessori ≤ 40mm S355K2 per spessori > 40 mm S355J0 per elementi non saldati, angolari e piastre (UNI EN10025-1, 2 E 5)

4.1.1 Caratteristiche meccaniche

Modulo elastico:	$E_s = 210000 \text{ MPa}$
Coefficiente di dilatazione termica: S355:	$\alpha = 1.2 \times 10^{-5} {}^{\circ}\text{C}^{-1}$
	f = 255 MDo
Resistenza allo snervamento (sp. t≤40mm):	f _{yk} = 355 MPa f _{tk} = 510 MPa
Resistenza ultima (t≤40mm):	***
Resistenza allo snervamento (sp. 40 <t≤80mm): Resistenza ultima (40<t≤80mm):< td=""><td>f_{yk} = 335 MPa f_{tk} = 490 MPa</td></t≤80mm):<></t≤80mm): 	f _{yk} = 335 MPa f _{tk} = 490 MPa
Nesistenza uttina (40×t≥0011111).	1tk - 430 IVIF a

4.1.2 Coefficienti parziali di sicurezza

Resistenza sezioni (cl. 1÷4):	$\gamma_{s,M0} = 1.05$
Resistenza instabilità membrature (ponti):	$\gamma_{s,M1} = 1.10$
Resistenza sezioni indebolite dai fori:	$\gamma_{s,M2} = 1.25$
Resistenza a fatica, rispetto a $\Delta \sigma_D$ e $\Delta \tau_D$:	$\gamma_{M,f} = 1.35$

4.1.3 Classe di resistenza

La classe di resistenza adotatta è K2 o J2 a temperature di servizio T_{Ed} = -10°C (si veda nel seguito la valutazione della temperatura minima secondo [2]), lo spessore massimo e la tensione massima corrispondente in combinazione frequente sono date dal prospetto 2.1 di UNI EN 1993-1-10:2005.

73	prospetto	2.1 Massir	ni valor	i amm	Issibili	dello s	pessor	e dell'el	emento	t in mi	ilimetri		_			_		_	_	_			_	
Classe di	Sotto-	Energia della										Tem	peratura	di riferim	ento T _E	[°C]								
acciaio	classe	CVN	/	10	0	-10	-20	-30	-40	-50	10	0	-10	-20	-30	-40	-50	10	0	-10	-20	-30	-40	-50
		alla temperatura T [°C]	J _{min}			σ	_{Ed} = 0,7	5 f _y (t)					$\sigma_{\scriptscriptstyle extsf{E}}$	$t_{d} = 0,50$	$f_{y}(t)$					σ	Ed = 0,2	$5 t_{y}(t)$		
	JR	20	27	60	50	40	35	30	25	20	90	75	65	55	45	40	35	135	115	100	85	75	65	60
S235	JO	0	27	90	75	60	50	40	35	30	125	105	90	75	65	55	45	175	155	135	115	100	85	75
	J2	-20	27	125	105	90	75	60	50	40	170	145	125	105	90	75	65	200	200	175	155	135	115	100
	JR	20	27	55	45	35	30	25	20	15	80	70	55	50	40	35	30	125	110	95	80	70	60	55
	JO	0	27	75	65	55	45	35	30	25	115	95	80	70	55	50	40	165	145	125	110	95	80	70
S275	J2	-20	27	110	95	75	65	55	45	35	155	130	115	95	80	70	55	200	190	165	145	125	110	95
	M,N	-20	40	135	110	95	75	65	55	45	180	155	130	115	95	80	70	200	200	190	165	145	125	110
5	ML,NL	-50	27	185	160	135	110	95	75	65	200	200	180	155	130	115	95	230	200	200	200	190	165	145
	JR	20	27	40	35	25	20	15	15	10	65	55	45	40	30	25	25	110	95	80	70	60	55	45
Î	JO	0	27	60	50	40	35	25	20	15	95	80	65	55	45	40	30	150	130	110	95	80	70	60
S355	J2	-20	27	90	75	60	50	40	35	25	135	110	95	80	65	55	45	200	175	150	130	110	95	80
	K2,M,N	-20	40	110	90	75	60	50	40	35	155	135	110	95	80	65	55	200	200	175	150	130	110	95
8	ML,NL	-50	27	155	130	110	90	75	60	50	200	180	155	135	110	95	80	210	200	200	200	175	150	130
S420	M,N	-20	40	95	80	65	55	45	35	30	140	120	100	85	70	60	50	200	185	160	140	120	100	85
5420	ML,NL	-50	27	135	115	95	80	65	55	45	190	165	140	120	100	85	70	200	200	200	185	160	140	120
	Q	-20	30	70	60	50	40	30	25	20	110	95	75	65	55	45	35	175	155	130	115	95	80	70
	M,N	-20	40	90	70	60	50	40	30	25	130	110	95	75	65	55	45	200	175	155	130	115	95	80
S460	QL	-40	30	105	90	70	60	50	40	30	155	130	110	95	75	65	55	200	200	175	155	130	115	95
8	ML,NL	-50	27	125	105	90	70	60	50	40	180	155	130	110	95	75	65	200	200	200	175	155	130	115
8	QL1	-60	30	150	125	105	90	70	60	50	200	180	155	130	110	95	75	215	200	200	200	175	155	130
9	Q	0	40	40	30	25	20	15	10	10	65	55	45	35	30	20	20	120	100	85	75	60	50	45
8	Q	-20	30	50	40	30	25	20	15	10	80	65	55	45	35	30	20	140	120	100	85	75	60	50
0000	QL	-20	40	60	50	40	30	25	20	15	95	80	65	55	45	35	30	165	140	120	100	85	75	60
S690	QL	-40	30	75	60	50	40	30	25	20	115	95	80	65	55	45	35	190	165	140	120	100	85	75
9	QL1	-40	40	90	75	60	50	40	30	25	135	115	95	80	65	55	45	200	190	165	140	120	100	85
8	QL1	-60	30	110	90	75	60	50	40	30	160	135	115	95	80	65	55	200	200	190	165	140	120	100

Tabella 1: spessore in funzione dei requisiti di resilienza

In base ai requisiti richiesti di resilienza si contiene lo spessore delle lamiere ai valori indicati in rosso per i materiali di progetto, potendo così non limitare le tensioni massime in termini di resistenza. Infatti la limitazione sulla tensione nominale di esercizio è compensata dal fattore di combinazione per i carichi ultimi è mediamente 1.35 (1/1.35=0.74 <0.75); conseguentemente si ha che mantenendo gli spessori massimi impiegato entro i valori indicati non occorre penalizzare la resistenza.

4.2 Collegamenti

4.2.1 <u>Bulloni</u>

Bulloni per giunzioni ad attrito): cl. 10.9 Tensione di snervamento: f_{vb} = 1000 MPa

Tensione di rottura: ftb = 900 MPa

Coeff. sicurezza materiali: $\gamma_{M2} = 1.25$

Per giunzioni ad attrito, secondo la verifica condotta agli stati limite ultimi (giunti di tipo 3 resistenti ad attrito in condizioni ultime):

 $Vd \le V_{s,Rd} = n f Ns / \gamma_{M3}$

n: numero di superficie di attrito

f (= μ) = 0.30: coefficiente di attrito cautelativo, con superficie delle giunzioni sabbiate a metallo bianco e protette sino al serraggio dei bulloni

Resist. Scorrimento SLU: $\gamma_{M3} = 1.25$ Resist. Scorrimento SLE: $\gamma_{M3} = 1.10$

Forza di precarico del bullone: Ns = $F_{\rm p,Cd} = 0.70 \cdot \frac{f_{\rm tb} \cdot A_{\rm res}}{}$

Relazione tecnica e di calcolo

Precarico bulloni: $\gamma_{M7} = 1.10$

È prescritto solo l'uso di bulloni a serraggio controllato.

Le superfici di unione ad attrito devono essere preparate mediante sabbiatura a metallo bianco e opportunamente protette nei riguardi dell'ossidazione.

4.2.2 Connettori acciaio calcestruzzo

Connettori a piolo con testa, tipo KB NELSON o equivalenti, collegati con saldatura automatica.

S235J2G3 + C 450 (EN ISO 13918 – UNI EN 10025) o similari (ST 37 – 3K DIN 50049)

Tensione di snervamento f_{vk} = 350 MPa

Tensione di rottura f_{tk} = 450 MPa

Coeff. sicurezza lato acciaio: $\gamma_{v,1} = 1.25$

Coeff. sicurezza lato calcestruzzo: γ_{v,2}= 1.25

4.2.3 Saldature

Sono previste giunzioni a doppio cordone d'angolo.

Coefficienti di sicurezza:

Resistenza collegamenti saldati $\gamma_{s,M2}$ = 1.25

Sezione di gola nella reale posizione (acciaio S355) β = 0.90

Per S355: $f_{tk}/(\beta \gamma_{M2}) = 453 \text{ MPa}$

I cordoni d'angolo hanno dimensione z (lato della saldatura parallela al piatto) = 0.7 volte lo spessore minimo delle lamiere da collegare. Si prevedono inoltre saldature testa a testa tra i piatti orizzontali dei traversi e quelli delle travi, con preparazione dei lembi.

4.3 Calcestruzzo soletta impalcato

Il calcestruzzo strutturale deve essere prodotto secondo i criteri proposti nella UNI EN 11104:2016 (aggregati EN 12620 ed acqua d'impasto EN 1008).

In considerazione della protezione della soletta rispetto all'ambiente (impermeabilizzazione), si adottano le seguenti prescrizioni.

4.3.1 Prescrizioni di durabilità

Con riferimento a:

• [4] UNI 11104:2016 - Calcestruzzo - Specificazione, prestazione, produzione e conformità - Specificazioni complementari per l'applicazione della EN 206 e [5] UNI EN 206: 2017 "Calcestruzzo: specificazione, prestazione, produzione e conformità".

Si hanno le seguenti caratteristiche del conglomerato:

- Nei confronti della corrosione indotta da carbonatazione: XC4 Ciclicamente asciutto e bagnato.
- Nei confronti della corrosione indotta da gelo e disgelo: XF4 Elevata saturazione d'acqua, con presenza di agente antigelo oppure acqua di mare.
- Classe di resistenza: C35/45
- Classe di lavorabilità: S5
- Massimo rapporto a/c: 0.45
- Contenuto minimo in aria 4%
- Minimo contenuto in cemento 360 kg/m3
- Diametro massimo inerte: 25 mm

4.3.2 Copriferro

Calcolo copriferro - § C4.1.6.1.3 ISTRUZIONI NTC

			re da c.a. nti a piastra		re da c.a. i elementi		i da c.a.p. nti a piastra	cavi da c.a.p. altri elementi		
Cmin	C _o	ambiente	C≥C _o	C _{min} ≤C <c₀< th=""><th>C≥C_o</th><th>C_{min}≤C<c<sub>o</c<sub></th><th>C≥C_o</th><th>C_{min}≤C<c₀< th=""><th>C≥C₀</th><th>C_{min}≤C<c₀< th=""></c₀<></th></c₀<></th></c₀<>	C≥C _o	C _{min} ≤C <c<sub>o</c<sub>	C≥C _o	C _{min} ≤C <c₀< th=""><th>C≥C₀</th><th>C_{min}≤C<c₀< th=""></c₀<></th></c₀<>	C≥C₀	C _{min} ≤C <c₀< th=""></c₀<>
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C28/35	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

(ai fini della valutazione dell'ambiente si considera ambiente ordinario per effetto delle condizioni di protezione esterna applicate ai getti di calcestruzzo – impermeabilizzazione)

Elementi a piastra

Classe Calcestruzzo: C35/45

Condizioni ambientali: molto aggressive

Vita nominale costruzione: 50 [anni] Tolleranza di posa: 10 [mm] c = 40 (C>C0) + 10 (tolleranza) = 50 mm

4.3.3 Caratteristiche meccaniche e valori di progetto

Con riferimento alla resistenza meccanica sono considerati nella progettazione i seguenti valori. Classe normata: 35/45 **MPa** Classe di resistenza cubica: 45 MPa Rck = Resist. a compr. cilindrica caratteristica: $fck = 0.83 \times Rck =$ 37.35 MPa Resist. a compr. cilindrica media: fcm = fck + 8 =45.35 **MPa** $fctm = 0.30 \times fck^2/3 =$ Resist. a trazione media: 3.35 **MPa** Resist, a trazione caratteristica: $fctk = 0.70 \times fctm =$ 2.35 **MPa** Resist. a trazione ap. fessure: $\sigma t = fctm/1,2 =$ 1.96 **MPa** Modulo elastico: Ecm= 22000×[fcm/10]^0.3 34600 **MPa** Coeff. sicurezza materiali: 1.50 $\gamma M =$ Coeff. riduttivo carichi lunga durata: 0.85 $\alpha c =$ Resistenza a compr. di progetto: $fcd = \alpha c \times fck / \gamma M =$ 21.17 MPa Resistenza a traz. di progetto: 1.56 MPa $fctd = fctk / \gamma M =$ Tensione di aderenza caratteristica: $fbk = 2,25 \times n \times fctk =$ 5.28 **MPa** Tens. ader. di progetto (cls teso): fbd = fbk/ γ M/1,50 = 2.35 MPa Tens. ader. di progetto (cls compr.): 3.52 MPa $fbd = fbk/\gamma M =$ Tens. massima compressione comb. rara: 22.41 **MPa** $\sigma c = 0.60 \times fck =$ 16.81 MPa Tens. massima compressione comb. quasi perm.: $\sigma c = 0.45 \times fck =$

4.3.4 Requisiti di limitazione della fessurazione

Condizioni ambientali ([2] D.M. 17/01/2018 – Norme tecniche per le Costruzioni (NTC) §4.1.2.2.4.3).

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Gruppo di armature ([2] D.M. 17/01/2018 – Norme tecniche per le Costruzioni (NTC) §4.1.2.2.4.4): poco sensibile.

Relazione tecnica e di calcolo

15

Scelta dello stato limite di fessurazione ([2] D.M. 17/01/2018 – Norme tecniche per le Costruzioni (NTC) §4.1.2.2.4.5):

Communit di	Condizioni	Combinations	Armatura							
Gruppi di esigenze	10/21/10 10/21	Combinazione di azioni	Sensibile	Poco sensibile						
	ambientali	di azioni	Stato limite	Wd	Stato limite	Wd				
a	Ordinarie	frequente	ap. fessure	$\leq W_2$	ap. fessure	$\leq W_3$				
		quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq W_2$				
b	Aggressive	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq W_2$				
		quasi permanente	decompressione	2	ap. fessure	$\leq w_1$				
c	V(-)	frequente	formazione fessure	S1_0	ap. fessure	$\leq w_1$				
	Molto aggressive	quasi permanente	decompressione	4	ap. fessure	$\leq w_1$				

Le verifiche di fessurazione sono condotte con le limitazioni seguenti:

- quasi permanente w1 = 0.2 mm;
- frequente w1 = 0.2 mm

4.4 Calcestruzzo spalle ed elevazioni

Il calcestruzzo strutturale deve essere prodotto secondo i criteri proposti nella UNI EN 11104:2016 (aggregati EN 12620 ed acqua d'impasto EN 1008).

4.4.1 Prescrizioni di durabilità

Con riferimento a:

[4] UNI 11104:2016 - Calcestruzzo - Specificazione, prestazione, produzione e conformità -Specificazioni complementari per l'applicazione della EN 206 e [5] UNI EN 206: 2017 "Calcestruzzo: specificazione, prestazione, produzione e conformità".

Si hanno le seguenti caratteristiche del conglomerato:

- Nei confronti della corrosione indotta da carbonatazione: XC4 Ciclicamente asciutto e bagnato.
- Nei confronti della corrosione indotta da gelo e disgelo: XF2 Moderata saturazione d'acqua in presenza di agente disgelante.

Classe di resistenza: C32/40

Classe di lavorabilità: S4

Massimo rapporto a/c: 0.50

Contenuto minimo in aria 4%

Minimo contenuto in cemento 340 kg/m3

Diametro massimo inerte: 25 mm

4.4.2 Copriferro

Calcolo copriferro - § C4.1.6.1.3 ISTRUZIONI NTC

				re da c.a. nti a piastra		re da c.a. i elementi		i da c.a.p. nti a piastra		i da c.a.p. i elementi
Cmin	C _o	ambiente	C≥C _o	C _{min} ≤C <c₀< th=""><th>C≥C_o</th><th>C_{min}≤C<c<sub>o</c<sub></th><th>C≥C_o</th><th>C_{min}≤C<c₀< th=""><th>C≥C₀</th><th>C_{min}≤C<c,< th=""></c,<></th></c₀<></th></c₀<>	C≥C _o	C _{min} ≤C <c<sub>o</c<sub>	C≥C _o	C _{min} ≤C <c₀< th=""><th>C≥C₀</th><th>C_{min}≤C<c,< th=""></c,<></th></c₀<>	C≥C₀	C _{min} ≤C <c,< th=""></c,<>

Relazione tecnica e di calcolo RTP di progettazione:

16

C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C28/35	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

Elementi altri

Classe Calcestruzzo: C35/45
Condizioni ambientali: aggressive
Vita nominale costruzione: 50 [anni]
Tolleranza di posa: 10 [mm]
c = 30 (C>Cmin) + 10 (tolleranza) = 40 mm

4.4.3 <u>Caratteristiche meccaniche e valori di progetto</u>

Con riferimento alla resistenza meccanica sono considerati nella progettazione i seguenti valori.

Con meninente ana resistenza meddanida sono don	Siderati ricila progettazione i	ocgaciili ve	alori.
Classe normata:	-	32/40	MPa
Classe di resistenza cubica:	Rck =	40	MPa
Resist. a compr. cilindrica caratteristica:	fck = 0.83×Rck =	33.20	MPa
Resist. a compr. cilindrica media:	fcm = fck + 8 =	41.20	MPa
Resist. a trazione media:	$fctm = 0.30 \times fck^2/3 =$	3.10	MPa
Resist. a trazione caratteristica:	fctk = 0.70×fctm =	2.17	MPa
Resist. a trazione ap. fessure:	σt = fctm/1,2 =	2.58	MPa
Modulo elastico:	Ecm=22000×[fcm/10]^0.3 =	33643	MPa
Coeff. sicurezza materiali:	$\gamma M =$	1.50	
Coeff. riduttivo carichi lunga durata:	α c =	0.85	
Resistenza a compr. di progetto:	$fcd = \alpha c \times fck / \gamma M =$	18.81	MPa
Resistenza a traz. di progetto:	fctd = fctk / γ M =	1.45	MPa
Tensione di aderenza caratteristica:	fbk = 2,25×n×fctk =	4.88	MPa
Tens. ader. di progetto (cls teso):	fbd = fbk/ γ M/1,50 =	2.17	MPa
Tens. ader. di progetto (cls compr.):	$fbd = fbk/\gamma M =$	3.25	MPa
Tens. massima compressione comb. rara:	$\sigma c = 0.60 \times fck =$	19.92	MPa
Tens. massima compressione comb. quasi perm.:	$\sigma c = 0.45 \times fck =$	14.94	MPa

4.4.4 Requisiti di limitazione della fessurazione

Condizioni ambientali ([2] D.M. 17/01/2018 – Norme tecniche per le Costruzioni (NTC) §4.1.2.2.4.3).

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Gruppo di armature ([2] D.M. 17/01/2018 – Norme tecniche per le Costruzioni (NTC) §4.1.2.2.4.4): poco sensibile.

Scelta dello stato limite di fessurazione ([2] D.M. 17/01/2018 – Norme tecniche per le Costruzioni (NTC) §4.1.2.2.4.5):

Communit At	Condizioni	Combinazione	Armatura							
Gruppi di	ambientali	di azioni	Sensibile	Poco sensibile						
esigenze	amoientan	di azioni	Stato limite	Wd	Stato limite	Wd				
a	Ordinarie	frequente	ap. fessure	$\leq W_2$	ap. fessure	$\leq W_3$				
	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq W_2$				
b	A	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq W_2$				
D	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$				
c	Maltanamanian	frequente	formazione fessure	+	ap. fessure	$\leq w_1$				
	Molto aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$				

Relazione tecnica e di calcolo

17

PRO ITER Progetto Infrastrutture

Le verifiche di fessurazione sono condotte con le limitazioni seguenti:

- quasi permanente w1 = 0,2 mm;
- frequente w2 = 0,3 mm.

4.5 Calcestruzzo batoli di fondazione e pali

Il calcestruzzo strutturale deve essere prodotto secondo i criteri proposti nella UNI EN 11104:2016 (aggregati EN 12620 ed acqua d'impasto EN 1008).

4.5.1 Prescrizioni di durabilità

Con riferimento a:

 [4] UNI 11104:2016 - Calcestruzzo - Specificazione, prestazione, produzione e conformità -Specificazioni complementari per l'applicazione della EN 206 e [5] UNI EN 206: 2017 "Calcestruzzo: specificazione, prestazione, produzione e conformità".

Si hanno le seguenti caratteristiche del conglomerato:

 Nei confronti della corrosione indotta da carbonatazione: XC2 Bagnato, raramente asciutto (batoli).

Classe di resistenza: C28/35
Classe di lavorabilità: S4
Massimo rapporto a/c: 0.55

Minimo contenuto in cemento 320 kg/m3

Diametro massimo inerte: 32 mm

4.5.2 Copriferro

Calcolo copriferro - § C4.1.6.1.3 ISTRUZIONI NTC

				re da c.a. nti a piastra		re da c.a. i elementi		i da c.a.p. nti a piastra	cavi da c.a.p. altri elementi		
Cmin	C _o	ambiente	C≥C _o	C _{min} ≤C <c₀< th=""><th>C≥C_o</th><th>C_{min}≤C<c<sub>o</c<sub></th><th>C≥C_o</th><th>C_{min}≤C⊂C_o</th><th>C≥C_o</th><th>C_{min}≤C<c₀< th=""></c₀<></th></c₀<>	C≥C _o	C _{min} ≤C <c<sub>o</c<sub>	C≥C _o	C _{min} ≤C⊂C _o	C≥C _o	C _{min} ≤C <c₀< th=""></c₀<>	
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35	
C28/35	C40/50	aggressivo	25	30	30	35	35	40	40	45	
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50	

Elementi altri

Classe Calcestruzzo: C28/35 Condizioni ambientali: ordinarie Vita nominale costruzione: 50 [anni]

Tolleranza di posa: 10 [mm]

c = 25 (C>Cmin) + 10 (tolleranza) = 35 mm

4.5.3 Caratteristiche meccaniche e valori di progetto

Con riferimento alla resistenza meccanica sono considerati nella progettazione i seguenti valori.

Classe normata:		28/35	MPa
Classe di resistenza cubica:	Rck =	35	MPa
Resist. a compr. cilindrica caratteristica:	fck = 0.83×Rck =	29.05	MPa
Resist. a compr. cilindrica media:	fcm = fck + 8 =	37.05	MPa
Resist. a trazione media:	$fctm = 0.30 \times fck^2/3 =$	2.83	MPa
Resist. a trazione caratteristica:	$fctk = 0.70 \times fctm =$	1.98	MPa
Resist. a trazione ap. fessure:	st = fctk/1,2 =	1.65	MPa
Relazione tecnica e di calcolo			18

RTP di progettazione:

Mandataria:

Modulo elastico:	Ecm= 22000×[fcm/10]^0.3 =	32588	MPa
Coeff. sicurezza materiali:	$\gamma M =$	1.50	
Coeff. riduttivo carichi lunga durata:	α c =	0.85	
Resistenza a compr. di progetto:	$fcd = \alpha c \times fck / gM =$	16.46	MPa
Resistenza a traz. di progetto:	fctd = fctk / γM =	1.32	MPa
Tensione di aderenza caratteristica:	fbk = 2,25×n×fctk =	4.46	MPa
Tens. ader. di progetto (cls teso):	fbd = fbk/ γ M/1,50 =	1.98	MPa
Tens. ader. di progetto (cls compr.):	fbd = fbk/ γ M=	2.97	MPa
Tens. massima compressione comb. rara:	$sc = 0.60 \times fck =$	17.93	MPa
Tens. massima compressione comb. quasi	$sc = 0.45 \times fck =$	13.07	MPa
perm.:			

4.5.4 Requisiti di limitazione della fessurazione

Condizioni ambientali ([2] D.M. 17/01/2018 – Norme tecniche per le Costruzioni (NTC) §4.1.2.2.4.3).

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Gruppo di armature ([2] D.M. 17/01/2018 – Norme tecniche per le Costruzioni (NTC) §4.1.2.2.4.4): poco sensibile.

Scelta dello stato limite di fessurazione ([2] D.M. 17/01/2018 – Norme tecniche per le Costruzioni (NTC) §4.1.2.2.4.5):

Communit At	Condizioni	Combinazione	Armatura							
Gruppi di	ambientali	800 000 000	Sensibile	Poco sensibile						
esigenze	amoientan	di azioni	Stato limite	Wa	Stato limite	Wa				
a	Ordinarie	frequente	ap. fessure	$\leq \mathbf{W}_2$	ap. fessure	$\leq W_3$				
	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq W_2$				
	A	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$				
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_{1}$				
c	Malta annualisa	frequente	formazione fessure	St	ap. fessure	$\leq w_1$				
	Molto aggressive	quasi permanente	decompressione	4	ap. fessure	$\leq w_1$				

Limitazioni:

- quasi permanente w2 = 0,3 mm;
- frequente w3 = 0,4 mm.

Le verifiche di fessurazione possono essere condotte in favore della sicurezza con le limitazioni previste per l'ambiente aggressivo:

- quasi permanente w1 = 0,2 mm;
- frequente w2 = 0,3 mm.

4.6 Acciaio per armatura lenta

Tipo B450C

4.6.1 <u>Caratteristiche meccaniche</u>

Modulo elastico: $E_s = 210000 \text{ MPa}$ Tensione di snervamento $f_{y k} = f_{y nom} = 450 \text{ MPa}$ Tensione di rottura $f_{t k} = f_{t nom} = 540 \text{ MPa}$

4.6.2 Valori di progetto

Coeff. sicurezza materiali: $Y_{s,M} = 1.15$

Snervam. progetto materiali: $f_{yd} = f_{yk}/Y_{s,M} = 391.3 \text{ MPa}$

Relazione tecnica e di calcolo

Mandanti:

19

5. PARAMETRI GEOTECNICI

Si riporta di seguito un estratto della tavola 2/3 del profilo geotecnico della carreggiata Grosseto-Fano, redatto per ANAS S.p.A. in occasione della progettazione definitiva delle opere di adeguamento a 4 corsie del tratto compreso tra lo svincolo con la Siena-Firenze e lo svincolo di Ruffolo. Il viadotto valli, oggetto della presente relazione di calcolo, è localizzato tra la sezione G122 e la G130. Si riportano inoltre i parametri caratteristici delle principali unità geotecniche riconosciute.

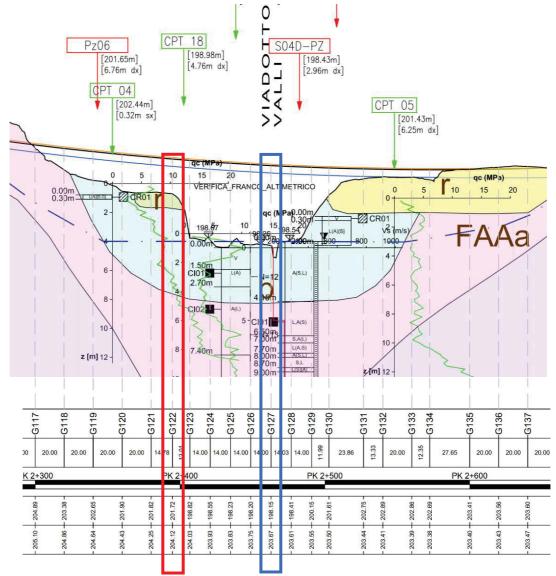


Figura 9:Estratto Tab.2/3 - Profilo geotecnico carreggiata Grosseto-Fano - ANAS S.p.A.

Caratterizzazione geo	tecnica E78	Grosseto-l	Fano - Lott	to 0			
Unità geotecniche	volume volume		Coesione efficace	Angolo di resistenza a taglio	Coesione non drenata	Modulo di elasticità	
	$\gamma_N \; [kN/m^3]$	$\gamma_{\omega\tau} \left[kN/m^3 \right]$	c' [kPa]	Ф' [°]	c, [kPa]	E [MPa]	
Unità FAA - Argille azzurre plioceniche	20	21	30	28.0	150	20	
Unità FAAa - Argille azzurre plioceniche alterate	19.5	20.5	20	24.0	75	10	
Unità b - Depositi alluvionali (sabbie limose e limi sabbiosi)	19.5	20.5	15	30.0	75	10	

Relazione tecnica e di calcolo

La sezione G122, evidenziata in rosso, localizza le unità litologiche al di sotto della Spalla Ovest Fissa, mentre la sezione G127 viene presa in considerazione per le verifiche geotecniche delle pile in quanto ritenuta quella qualitativamente inferirore.

Superficialmente si ha la presenza di un'unità litotecnica caratterizzata da depositi di tipo alluvionali, per uno spessore di circa 5,90 m nella G122 e di circa 4,00 m nella sezione G127; più in profondità si sono riscontrate argille azzurre plioceniche alterate, con spessori nelle due sezioni rispettivamente di 9,40 m e di 11,75 m. Infine, si riscontra uno strato di argilla compatto.

Si denota presenza di falda acquifera ad una profondità minima di 3,30 m dal piano campagna nella sezione G122, mentre nella G127 è superficiale.

6. SOFTWARE DI CALCOLO

Si fornisce l'elenco del software utilizzato nel presente progetto.

I programmi vengono usati in forza di regolari licenze d'uso e sono testati periodicamente mediante procedure di controllo codificate, tali da verificare l'attendibilità delle applicazioni e dei risultati ottenuti ed individuare eventuali vizi ed anomalie.

6.1 Analisi strutturale dell'impalcato e delle sottostrutture

STRAUS 7 Release 2.4.6 prodotto dalla G+D Computing, ed è commercializzato in Italia da HSH S.r.l. di Padova. Si tratta di un software completo e versatile per condurre analisi numerica agli elementi finiti (dei quali possiede una amplissima libreria) adatto ad una molteplicità di analisi.

6.2 Analisi di dettaglio agli elementi finiti:

STRAUS 7 Release 2.4.6 prodotto dalla G+D Computing, ed è commercializzato in Italia da HSH S.r.l. di Padova. Si tratta di un software completo e versatile per condurre analisi numerica agli elementi finiti (dei quali possiede una amplissima libreria) adatto ad una molteplicità di analisi.

6.3 Verifiche di resistenza

6.3.1 Per le sezioni in c.a.

- RC-SEC vers. 2010.4 rev. 212, prodotto da GEOSTRU srl. Il programma consente di effettuare il calcolo di verifica delle sezioni di travi e pilastri in c.a. agli stati limite ultimi e di esercizio tenendo conto, nel caso di calcolo sismico, della classe di duttilità richiesta e della posizione della sezione nell'asta (se ricade in zona critica o meno). Per le verifiche di resistenza (e semi-progetto delle armature) a presso-tenso flessione (retta e deviata) è previsto l'uso del diagramma tensioni-deformazione parabola rettangolo per il conglomerato e bilineare per l'acciaio. Nelle verifiche a taglio è stata implementata la nuova metodologia che prevede l'uso dell'inclinazione variabile delle bielle compresse. Vengono inoltre costruiti diagrammi momenti curvature utilizzando più leggi di comportamento del calcestruzzo (parabola rettangolo, Kent-Park, EC2) nel nucleo confinato della sezione e valutando per ogni combinazione il valore della duttilità in curvatura (CCDF) anche in regime di pressoflessione deviata. Possono essere analizzate sezioni di qualsiasi forma, da quelle più comuni (rettangolari, a T, T doppio, ad L, circolari) a quelle più complesse (a contorno poligonale costituite da uno o più domini di conglomerato, cave, miste).
- VCaSLU v7.7 del professor Pietro Gelfi (software freeware) per il calcolo e la verifica delle sezioni in calcestruzzo armato;
- Fogli di calcolo excel.

6.3.2 Per le sezioni miste acciaio-calcestruzzo

Per le sezioni miste degli impalcati si impiegano tool di calcolo dedicati e sviluppati in ambiente excel e Visual Basic.

22

ANALISI DEI CARICHI 7.

7.1 Pesi propri strutturali

7.1.1 Carpenteria metallica

Il peso degli elementi in acciaio è calcolato con il seguente valore per unità di volume, tenendo conto di una maggiorazione cautelativa pari al 10%:

 $y = 78.50 \times 1.10 = 86.35 \text{ kN/m}^3$

Le stime di pre-dimensionamento conducono ad una incidenza cautelativa di 250kg/mg di impalcato. Il carico per unità di lunghezza delle sole strutture metalliche utilizzato nelle analisi risulta:

G_{1,1}=2.5x13.50=33.75 kN/m

7.1.2 Calcestruzzo di soletta

Il peso degli elementi in calcestruzzo è calcolato con il seguente valore per unità di volume: $v = 25.00 \text{ kN/m}^3$

La soletta ha spessore 25 cm e larghezza sostanzialmente costante pari a 13.50 m; il carico per unità di lunghezza risulta pertanto:

G_{1,2}=0.25x25x13.50=84.38 kN/m

Il peso complessivo delle strutture risulta:

 $G_1 = G_{1,1} + G_{1,2} = 118.13 \text{ kN/m}$

7.1.3 Carichi permanenti portati

I carichi permanenti da considerare vengono elencati nel seguito nel loro valore a metro di sviluppo di implacato:

7.1.4 **Pavimentazione**

Si considera un peso per unità di volume della pavimentazione (B=12.0 m) di 24 kN/m³ e uno spessore di 15 cm (per considerare eventuali riasfaltatura senza scarifica). $G_{2,1}=0.15x24x12=43.2 \text{ kN/m}$

7.1.5 Guard rail impiantistica

Si considera un peso per unità di lunghezza dei guard rail 1.5 kN/m per ciascun elemento. G_{2.2}=1.5x2=3 kN/m

7.1.6 Cordoli e veletta

Si considera una veletta di peso 1.50kN/m e un cordolo di dimensioni 75x15 cm.

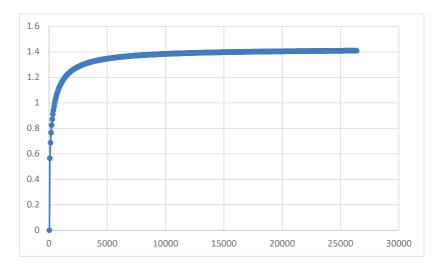
G_{2.3}=0.15x0.75x25=2.82 kN/m (cordoli) $G_{2.4}=1.50kN/m$ (veletta)

Il valore complessivo dei permanenti portati risulta quindi:

 $G_2 = G_{2,1} + G_{2,2} + G_{2,3} + G_{2,4} = 54.84 \text{ kN/m}$

Relazione tecnica e di calcolo

23



7.2 Ritiro e viscosità del calcestruzzo

Le considerazioni circa gli effetti del ritiro e della viscosità sull'impalcato sono valutati come riportato di seguito.

Dati di input:														
B tot	13500	mm												
S soletta	190	mm												
S predalle	60	mm												
Rck	45	MPa												
Es	206000	MPa												
									/Viscosit			ungo te		
Ac =	2.57	mq	ε_c0 =		00025			Ecm =	34625.49		Ecm =	34625		MPa
u =	13.88	m	k_h =).73			f_cm =	45.35	MPa	f_cm =	45.3		MPa
h0 =	369.60	mm	ε_cd_inf =		00182			φ(inf,t0) =			φ(inf,t0) =	1.4		
U.R. =	0.80		ε_ca_inf=		00068			E'c =	15247.90	MPa	E'c =	13577		MPa
f_ck =	37.35	MPa	ε_cs =		002500	_		ψ=	0.55	\perp	ψ=	1.1	_	
			Es/Ec	5	5.95			Es/Ec	13.51	E	s/Ec	15.1	17	
	Ri	tiro/\	/iscosit	à					Caric	hi lu	ngo ter	mine		
φ(t,t0) =	2.3	31					φ(t,t0) =	1.4	41				
α1 =	0.834	1488	3				(χ1 =	0.83	4149)			
α2 =	0.94	9507	7				(χ2 =	0.94	9507	•			
α3 =	0.878	35073	3				(χ3 =	0.87	8507	'			
$\beta(fcm) =$	2.494	7133	3				β(fcm) =	2.49	4713	3			
$\beta(t0) =$	0.800	8339)				β	(t0) =	0.4	8845	5			
t0 =	2	2	gg					t0 =	2	8	gg			
t =	260	000	gg					t =	260	000	gg			
φ(RH) =	1.170	2375					φ(RH) =	1.17	0237				
$\beta c(t,t0) =$	0.988	3028	3				βο	(t,t0) =	0.98	8291				
βH =	1039	9112	<		150	00		3H =	1039	9.911	<	:	1	500

Il calcolo del coefficiente di viscosità è eseguito secondo l'Annesso B della UNI EN 1992-1-1:2005, considerando t0 (età del calcestruzzo al momento dell'applicazione del carico) pari a 2gg.

Si ottiene:

 N_r = $E_{c,\infty}$ ϵ_{cs} A_c = 9778.7 kN \rightarrow forza di trazione nella soletta che genera una deformazione pari a quella per ritiro, da dividere per il numero di travi.

Ne deriva: $N_{r,trave} = 1630kN$

Sulla sezione mista graverà oltre ad una forza assiale anche un momento dovuto all'eccentricità tra baricentro della soletta e il baricentro della sezione mista.

7.3 Spinta delle terre

La spinta delle terre a tergo delle spalle, peraltro molto basse e costituite soltanto dal plinto e dal paraghiaia viene valutata cautelativamente come spinta a riposo di un terreno di buona qualità (rilevato) qualificabile con un angolo d'attrito di:

 γ =20 kN/m³ (peso in volume del terreno di rilevato)

φ=35°

 $K_0=(1-sen\phi)=0.426$

La spinta alla profondità h sarà valutata con la relazione seguente:

7.4 Carico da traffico sul rilevato

La spinta delle terre a tergo delle spalle è tenuta in conto con il seguente sovrraccarico: $q=20 \text{ kN/m}^2$

tenendo conto di un coefficiente di spinta pari a:

 $\phi = 35^{\circ} \text{ (rad 0.471)}$

 $K_0 = (1-sen\phi) = 0.426$

La spinta alla, costante con la profondità sarà valutata con la relazione sequente:

 $S=qxK_0=8.52 \text{ kN/m}^2$

7.5 Azione sismica

Coordinate del sito: 43.30025, 11.35198

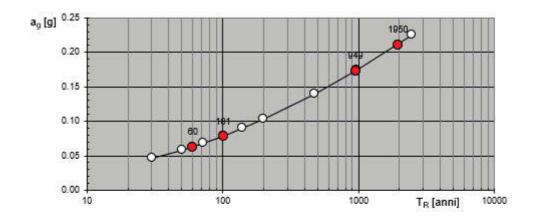
Vita nominale:

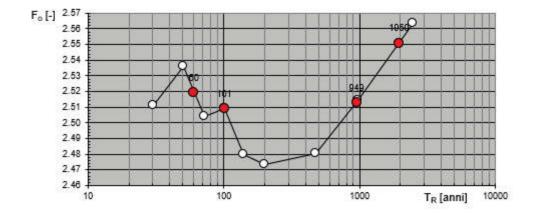
Vn = 50 anni

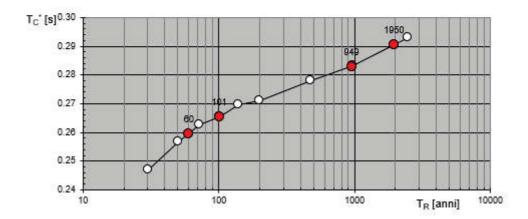
Classe d'uso:

IV - Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra

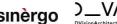
Relazione tecnica e di calcolo

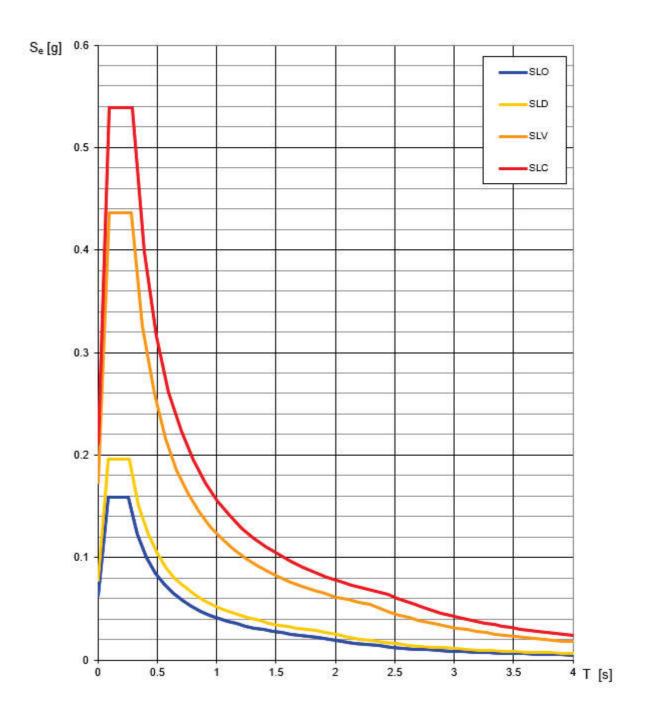



capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica. Categoria del sottosuolo:


C - Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15 < NSPT,30 < 50 nei terreni a grana grossa e 70 < cu,30 < 250 kPa nei terreni a grana fina).

Categoria topografica:


- Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°



Valori dei parametri a_g, F_o, T_C^{*} per i periodi di ritorno T_R associati

SLATO LIMITE	T _R [anni]	a _g [9]	F. [-]	T _C *
SLD	101	0.078	2.509	0.265
SLV	949	0.174	2.513	0.283
SLC	1950	0.211	2.551	0.290

Si assume fattore di struttura seguente:

q = 1

adottando quindi lo spettro elastico senza particolari richieste di duttilità alla struttura.

Parametri indipendenti

STATO LIMITE	SLV
a,	0.174 g
F _o	2.513
T _C	0.283 s
Ss	1.438
Cc	1.593
ST	1.000
q	1.000

Parametri dipendenti

S	1.438
jη	1.000
Tg	0.150 s
Tc	0.451 s
Tn	2.294 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0,55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; \$. 3.2.3.5)

$$T_B = T_C / 3$$
 (NTC-07 Eq. 3.2.8)

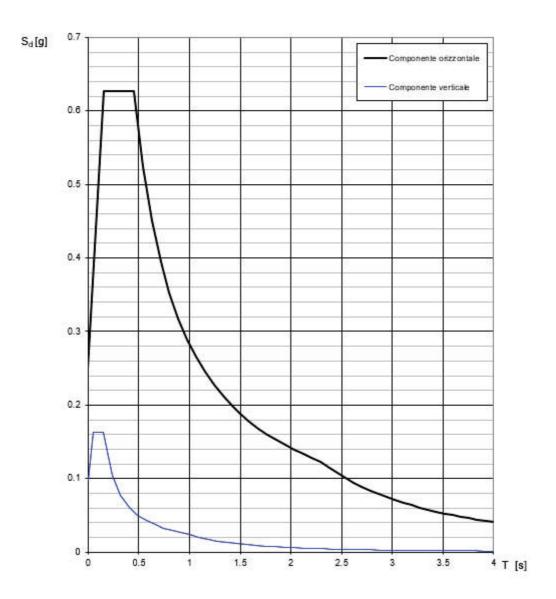
$$T_{c} = C_{c} \cdot T_{c}^{*}$$
 (NTC-07 Eq. 3.2.7)

$$T_0 = 4.0 \cdot a_c / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

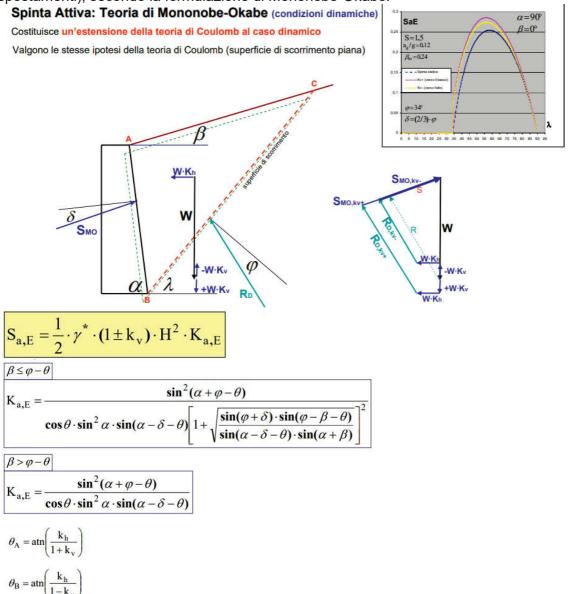
Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \! \le \! T < \! T_{\!B} & \quad S_e(T) \! = \! a_g \cdot S \cdot \eta \cdot F_o \cdot \! \left[\frac{T}{T_{\!\scriptscriptstyle B}} \! + \! \frac{1}{\eta \cdot F_o} \! \left(1 \! - \! \frac{T}{T_{\!\scriptscriptstyle B}} \right) \right] \\ T_{\!B} \! \le \! T < \! T_C & \quad S_e(T) \! = \! a_g \cdot S \cdot \eta \cdot F_o \\ T_C \! \le \! T < \! T_D & \quad S_e(T) \! = \! a_g \cdot S \cdot \eta \cdot F_o \cdot \! \left(\frac{T_C}{T} \right) \\ T_D \! \le \! T & \quad S_e(T) \! = \! a_g \cdot S \cdot \eta \cdot F_o \cdot \! \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto S_a(T) per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico S_a(T) sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)


Punti dello spettro di risposta

40	T[s]	Se [g]
200	0.000	0.250
Te	0.150	0.627
Tc◀	0.451	0.627
	0.538	0.525
75	0.626	0.451
0	0.714	0.396
4.0	0.802	0.353
135	0.890	0.318
	0.977	0.289
	1.065	0.265
	1.153	0.245
2	1.241	0.228
-	1.328	0.213
- 6	1.416	0.200
-	1.504	0.188
130	1.592	0.178
	1.680	0.168
	1.767	0.160
	1.855	0.152
100	1.943	0.145
-	2.031	0.139
- 6	2.118	0.133
	2.206	0.128
T _p •	2.294	0.123
	2.375	0.115
	2.457	0.107
	2.538	0.101
100	2.619	0.095
100	2.700	0,089
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.781	0.084
	2.863	0.079
	2.944	0.075
	3.025	0.071
	3,106	0.067
	3.188	0.064
	3,269	0.061
7	3.350	0.058
	3,431	0.055
	3.513	0.053
	3.594	0.050
	3.675	0.048
	3.756	0.046
	3.838	0.044
9	3.919	0.042
	4.000	0.041



7.6 Spinta sismica del rilevato

L'azione è valutata nell'ipotesi d'interfaccia deformabile col terreno (manufatto che matura spostamenti), secondo la formulazione di Mononobe-Okabe:

7.7 Azioni termiche

Ai fini degli effetti globali è considerata la variazione termica uniforme in conformità al §3.5 del DM 17/01/2018 con il sito che ricade in zona II e a quota as=210 m s.l.m.:

Zona II

Liguria, Toscana, Umbria, Lazio, Sardegna, Campania, Basilicata:

$$T_{min} = -8 - 6 \cdot a_s / 1000$$
 [3.5.3]
 $T_{max} = 42 - 2 \cdot a_s / 1000$ [3.5.4]

T_{max}=42-2x210/1000=41.58°C T_{min}=-8-6x210/1000=-9.26°C

La temperatura iniziale, salvo diverse indicazioni viene assunta T_o=15°C; risulta dunque: $\Delta T = +26.58/-24.26$ °C

Relazione tecnica e di calcolo

Mandanti:

30

Che viene arrotondata per eccesso in +/-27°C

La variazione termica uniforme è presa in considerazione nella determinazione degli effetti globali per l'impalcato (dimensionamento giunti e scorrimenti appoggi).

Per quanto riguarda invece gli effetti locali sulla struttura mista acciaio-calcestruzzo dell'impalcato, e limitatamente alle relative membrature, si considera una differenza di temperatura di \pm 10 °C tra la soletta in calcestruzzo e la trave in acciaio.

Ne deriva per tale azione termica la seguente sollecitazione assiale:

 N_r = $E_m \Delta T \alpha A_c$ = 11686.1 kN \rightarrow forza di trazione/compressione nella soletta che genera una deformazione pari a quella termica, da dividere per il numero di travi.

Ne deriva: $N_{\Delta T,trave} = 1947.7kN$

Sulla sezione mista graverà oltre ad una forza assiale anche un momento dovuto all'eccentricità tra baricentro della soletta e il baricentro della sezione mista.

7.8 Azione del vento

Le azioni del vento sono valutate prendendo in conto la pressione cinetica di riferimento da applicarsi alla sagoma trasversale del ponte tenendo conto dell'ingombro dei carichi da traffico presenti (3.0 m da piano stradale).

Considerando una velocità di riferimento (con TR = 50 anni) pari a $v_{b,0}$ = 27 m/s, si ottiene:

 $q_r = 0.5 \times \rho v_r^2 = 0.46 \text{ kN/m}^2 (\rho = 1.25 \text{ kg/m}^3)$

Pressione sull'impalcato:

Coefficiente C per ponti:

 $c_{f,x0} = cf_{,x} = 1.50$ [b/dtot=13.50/(0.60+0.15+3.0)=3.60] (fig. 8.3 EC1-1-4)

Coeff. di esposizione (z = 8 m):

C_e = 2.21 [Cat. II, (classe rugosità D)]

 $C = C_e x c_{f,x} = 1.50 x 2.21 = 3.32 (par. 8.3.2 di EC1-1-4)$

Considerando, come da Normativa, una sagoma d'ingombro attribuita ai carichi viaggianti a "ponte carico" di altezza pari a 3.0 m, si ha:

Ponte carico: $d_{tot} = 0.60+0.15+3.0 = 3.75 \text{ m}$

Azione orizzontale trasversale su impalcato:

 $F_{h,wind} = q_r x C x d_{tot} = 0.49x3.32x3.75 = 5.67 kN/m$

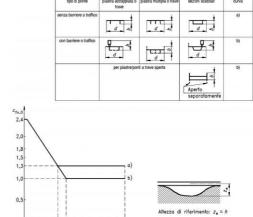
Momento torcente su impalcato:

$$Mw = F_{h.wind} x e = 5.67x0.315 = 1.79 kNm/m$$

Le travi longitudinali sono sollecitate da un'azione

verticale pari a ±0.16 kN/m e da un'azione orizzontale di 5.67 kN/m.

Pressione sulle pile

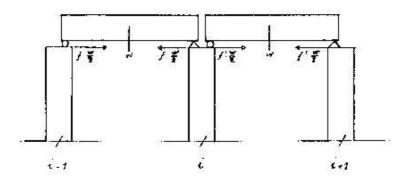

$$p = q_r x c_e x c_p x c_d (con c_p = c_d = 1.0)$$

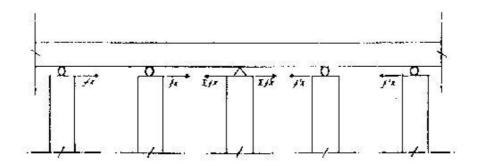
Si assume un valore di riferimento sull'altezza delle pile (Hmax = 8m) del coefficiente di esposizione: $c_e = 2.21$

$$p = 0.46 \times 2.21 = 1.01 \text{ kN/m}^2$$

Le colonne hanno larghezza pari a 1.50 m nella direzione ortogonale a quella considerata prevalente per il vento per cui la pressione è pari a:

 $P_{w} = 1.52kN/m$





7.9 Attriti vincolari

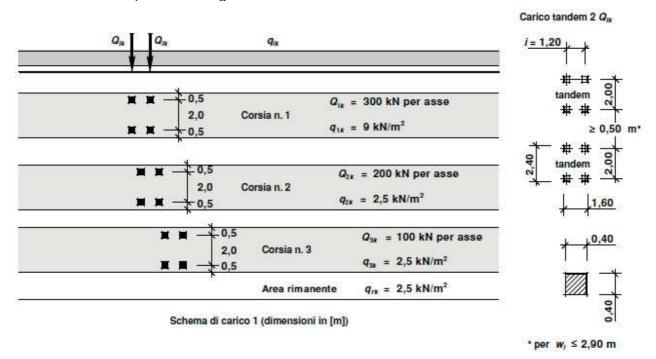
Si assume come valore della resistenza vincolare il 3% della somma dei pesi propri e dei carichi permanenti.

In particolare, per le pile va considerata l'eventualità, se del caso, che si abbiano coefficienti di attrito diversi tra apparecchi di appoggio mobili di una stessa opera come esemplificato in figura.

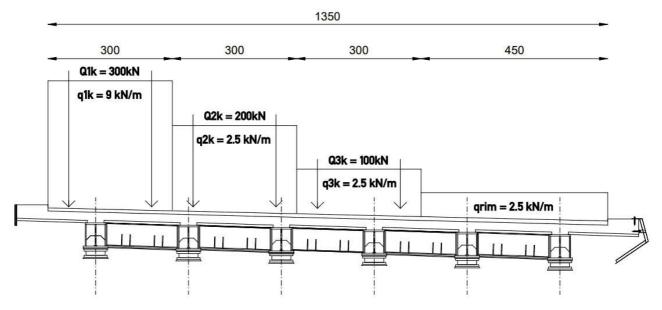
Quindi, definita quale sia la pila fissa longitudinalmente, l'attrito vincolare che le compete si calcola applicando la sommatoria degli attriti vincolari delle pile e della spalla da un lato meno la metà della somma degli attriti vincolari del lato opposto; nello specifico:

 $\sum (f_x) - \sum (f'_x)$ e $\sum (f'_x) - \sum (f_x)$ prendendo come valido il valore maggiore dei due, con: f'x = 0.5fx e fx = 3% (p.p.+ permanente).

Mandataria:

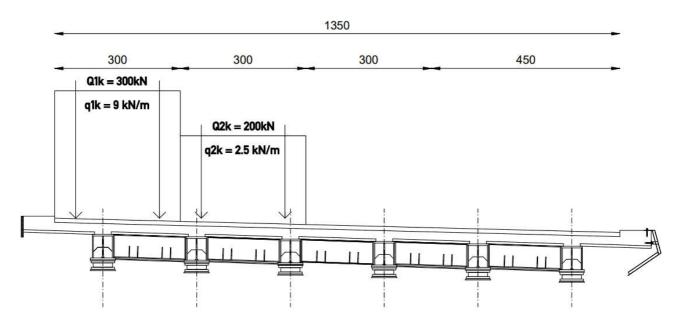

32

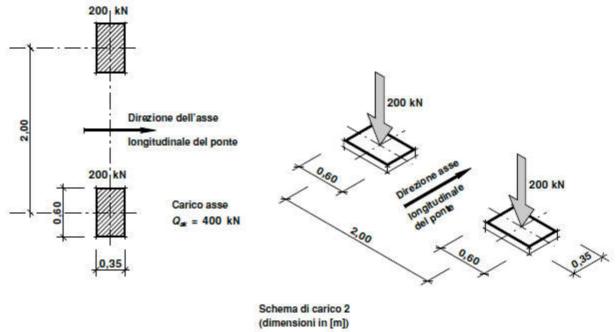
7.10 Azioni variabili da traffico


Sono definite dai seguenti schemi di carico comprensivi degli effetti dinamici.

7.10.1 Schema di carico 1

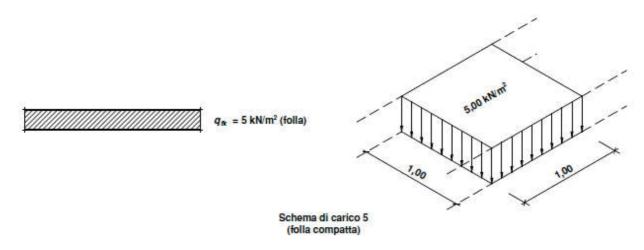
 Carichi Qik concentrati su due assi in tandem su impronta quadrata di pneumatico con lato I = 0,40 m e carichi ripartiti uniformi, per ponti di 1a categoria. Questo schema è utilizzato per verifiche globali e locali.


Nella fattispecie si individuano la disposizione 1 che massimizza i carichi verticali e la disposizione 2 che massimizza invece le torsioni. La figura che segue illustra le disposizioni considerate.

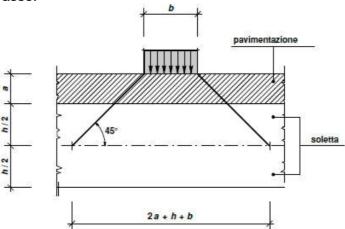


7.10.2 Schema di carico 2

 Un solo asse con peso complessivo Qk = 400 kN, disposto in asse alla corsia; il carico Qk di ogni pneumatico grava su un'impronta rettangolare di 0,60×0,35 m2; questo schema è utilizzato per verifiche locali.


7.10.3 Schema di carico 5

 Schema di carico 5 (fig. 6): folla compatta considerata come carico ripartito uniforme con intensità nominale qk = 5,00 kN/m2, compresi gli effetti dinamici, e con valore di combinazione qk = 2,50 kN/m2.



7.10.4 Diffusione dei carichi

I carichi concentrati si considerano uniformemente ripartiti sulla relativa impronta con una diffusione a 45° fino al piano medio della soletta; nel caso di elementi monodimensionali il carico si diffonde solo nel senso del suo asse.

7.10.5 Azione longitudinale di frenamento o di accelerazione q3

Si considera uniformemente distribuita sulla lunghezza L della zona caricata e dipende dal carico verticale che grava sulla corsia convenzionale n. 1.

Agisce a livello della pavimentazione e lungo l'asse della corsia con intensità fornita da (ponti di 1a categoria):

 $180 \text{ kN} \le q3 = 0.6 \times (2 \text{ Q1k}) + 0.10 \times q1k \times wl \times L \le 900 \text{ kN}$ dove:

wl = larghezza della corsia

F fren. corsia 1 = 0.6*2*300+0.1*9*3*(107) = 649 kN

7.11 Carichi da fatica

Sono condotte verifiche per vita illimitata.

Le verifiche sono condotte, per dettagli caratterizzati da limite di fatica ad ampiezza costante, controllando che il massimo delta di tensione indotto nel dettaglio stesso dallo spettro di carico significativo risulti minore del limite di fatica del dettaglio stesso.

Secondo quanto previsto dalle NTC18 al § 5.1.4.3, per la verifica a vita illimitata si prevede il modello di carico di fatica 2, sulla corsia identificata come lenta. Si riportano le cinque configurazioni di sagoma del veicolo.

Relazione tecnica e di calcolo

35

PRO ITER Progetto Infrastruture Territorio aut

Tabella 2-7. Mezzi tipologici per verifica a fatica

SAGOMA del VEICOLO	Distanza tra gli assi (m)	Carico frequente per asse (kN)	Tipo di ruota (Tab. 5.1.IX)
	4,5	90 190	A B
0	4,20 1,30	80 140 140	A B B
000	3,20 5,20 1,30 1,30	90 180 120 120 120	A B C C
	3,40 6,00 1,80	90 190 140 140	A B B B
0 0 00	4,80 3,60 4,40 1,30	90 180 120 110	A B C C

Il veicolo adottato per le verifiche è il 5 assi evidenziato in figura.

8. **COMBINAZIONI E FATTORI**

Si riporta di seguito la visualizzazione delle verifiche con le amplificazioni dei carichi secondo la combinazioni principali analizzate.

	Peso proprio strutture (g.)	Sovraccarichi permanenti (g ₂)	Altre azioni permanenti (g ₃)	Distorsioni di progetto (ɛˌ)	Ritiro del cis (s ₀)	Variazioni termiche (₅₃)	Scorrimenti viscosi (s _{s.})	Cedimenti vincolari (_{16,})	(tandem Q _i)	Carichi mobili (q,)	Folls impalcato	Folia marciapled e piste	Frenamanto (q ₃)	Forza centrifuga (q ₄)	Vento (q _o)	Resistenze dei vincoli (q,)	Urto (q _b)
A1 ₁	1.35	1.5	1.5	1	1.2	0.72	1.2	1.2	1.35	1.35	0	0.675	0	0	0.9	1.5	1.5
A1 _{1 vento}	1.35	1.5	1.5	1	1.2	0.72	1.2	1.2	1.02	0.54	0	0.675	0	0	1.5	1.5	1.5
A1 _{1 temperatura}	1.35	1.35	1.5	1	1.2	1.2	1.2	1.2	1.02	0.54	0	0.675	0	0	0.9	1.5	1.5
A1 _{2a}	1.35	1.5	1.5	1	1.2	0.72	1.2	1.2	1.02	0.54	0	0	1.5	0	0.9	1.5	1.5
A1 _{2b}	1.35	1.5	1.5	1	1.2	0.72	1.2	1.2	1.02	0.54	0	0	0	1.5	0.9	1.5	1.5
A1 ₃	1.35	1.5	1.5	1	1.2	0.72	1.2	1.2	0	0	0	1.5	0	0	0.9	1.5	1.5
A1 ₄	1.35	1.5	1.5	1	1.2	0.72	1.2	1.2	0	0	1.5	1.5	0	0	0.9	1.5	1.5

Tabella 3 – coefficienti di amplificazione dei carichi per A1 STR

	Peso proprio strutture (g ₁)	Sovraccarichi permanenti (g ₂)	Aftre azioni permanenti (g ₃)	Distorsioni di progetto (ɛ,ı)	Rifro del cls	Variazioni termiche (s ₀)	Scorrimenti viscosi (s ₆)	Cedimenti vincolari (ɛ ₆)	Carichi mobili (tandem Q _i)	Carichi mobili (q,)	Folla impalcato	Folla marclapiedi e piste	Frenamanto (q ₃)	Forza centrifuga (q ₄)	Vento (q _s)	Resistenze dei vincol (q ₇)	Urto (q _b)
A2 ₁	1	1.3	1.5	1	1	0.6	1	1	1.15	1.15	0	0.575	0	0	0.78	1	1.3
A2 _{1 vento}	1	1.3	1.5	1	1	0.6	1	1	0.87	0.46	0	0.575	0	0	1.3	1	1.3
A2 _{1 temperatura}	1	1.3	1.5	1	1	1	1	1	0.87	0.46	0	0.575	0	0	0.78	1	1.3
A2 _{2a}	1	1.3	1.5	1	1	1	1	1	0.87	0.46	0	0	1.3	0	0.8	1	1.3
A2 _{2b}	1	1.3	1.5	1	1	1	1	1	0.87	0.46	0	0	0	1.3	0.8	1	1.3
A2 ₃	1	1.3	1.5	1	1	1	1	1	0	0	0	1.15	0	0	1.3	1	1.3
A2 ₄	1	1.3	1.5	1	1	1	1	1	0	0	1.15	1.15	0	0	1.3	1	1.3

Tabella 4 – coefficienti di amplificazione dei carichi per A2 GEO

Per i coefficienti di combinazione si è fatto riferimento alle seguenti tabelle.

Tabella 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	Ye2, Ye3, Ye4	0,00 1,20	0,00 1,20	0,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potramo adottare gli stessi coefficienti validi per le azioni permanenti.

1.20 per instilibiti in strutture con precompressione esterna

1.20 per enfettul locali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente \(\psi_1\) (valori frequenti)	Coefficiente ψ (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0.0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
1	Vento a ponte scarico			
**	SLU e SLE	0,6	0,2	0,0
Vento q5	Esecuzione	0,8	****	0,0
	Vento a ponte carico	0,6		
	SLU e SLE	0,0	0,0	0.0
Neve q_5	esecuzione	0,8	0,6	0,5
Temperatura	Tk	0.6	0.6	0.5

9. IMPALCATO METALLICO

La verifica delle strutture di impalcato è stata condotta considerando un'analisi per fasi come meglio descritto di seguito.

9.1 Analisi statica - Modellazione FEM

Trattasi di un modello FEM della struttura realizzato per fasi. La struttura metallica dell'impalcato, compresi i traversi è stata discretizzata mediante elementi *beam*; la soletta in c.a. è inserita considerata mediante elementi beam orditi in senso trasversale con funzione di trasferimento del carico. Il corretto orientamento e posizionamento dei vari elementi è assicurato mediante elementi *rigid-link*. I nodi di appoggio risultano vincolati coerentemente rispetto a quanto indicato nello schema di vincolo.

Di seguito si descricono le fasi di calcolo analizzate.

- 1. Fase 1: la struttura è composta dai soli elementi metallici con le loro inerzie e rigidezze. I carichi applicati sono il peso proprio della carpenteria metallica e il peso del getto della soletta (non collaborante);
- 2. Fase2: la struttura è composta dagli elementi di impalcato metallico considerando le inerzie delle travi principali a tempo infinito. I carichi agenti sono i permanenti non strutturali e l'azione del ritiro, concomitante a quello della viscosità;
- 3. Fase 3: la struttura è composta dagli elementi dell'impalcato metallico consoderando le inerzie a tempo 0. I carichi agenti sono le azioni accidentali da traffico, il vento e l'azione termica.

Si riportano alcune viste del modello di calcolo.

Figura 10: modello di calcolo dell'impalcato – vista globale solida

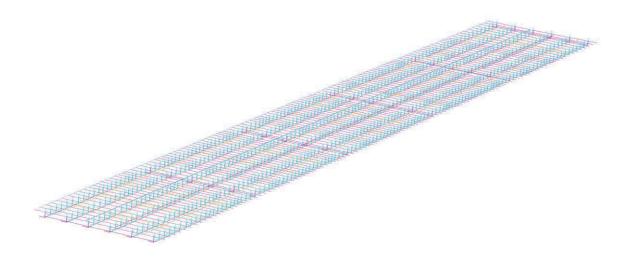


Figura 11: modello di calcolo dell'impalcato – vista globale wireframe

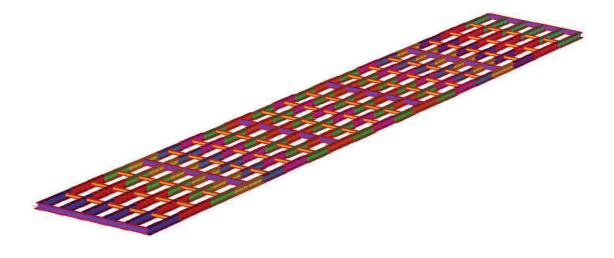


Figura 12: modello di calcolo dell'impalcato – sola struttura metallica

9.1.1 Carichi applicati

Si riportano di seguito i carichi applicati alla struttura dell'impalcato (il peso proprio delle strutture metalliche è applicato mediante l'azione della gravità).

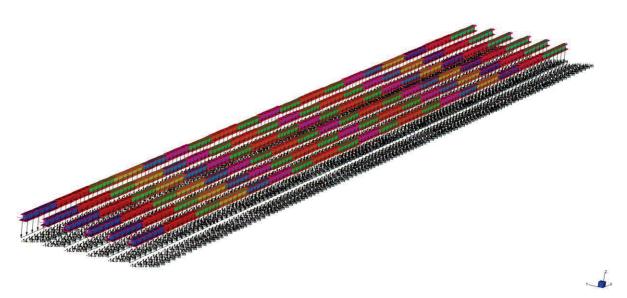


Figura 13: carico del getto liquido della soletta

Figura 14: carichi permanenti non strutturali

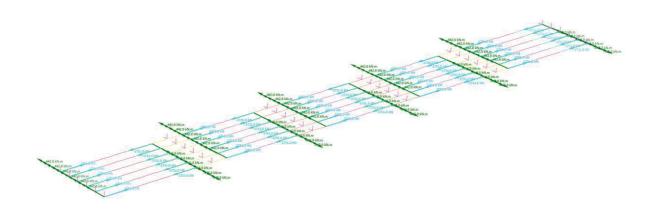


Figura 15: azione del ritiro concomitante alla viscosità

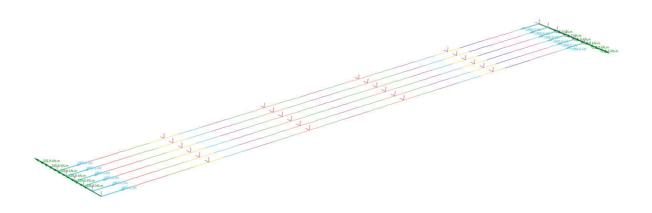


Figura 16: azione della deformazione termica

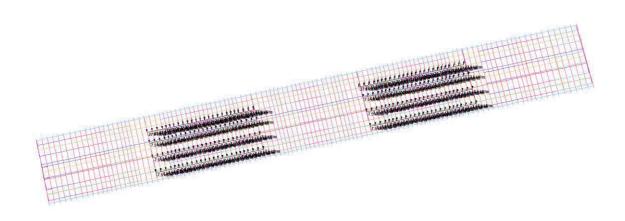


Figura 17: carichi accidentali da traffico q – campate pari

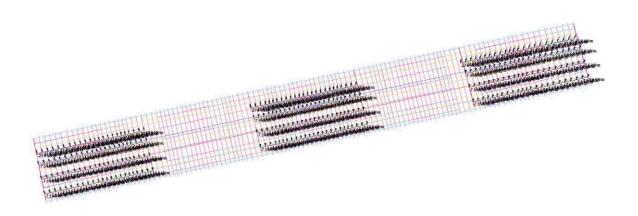


Figura 18: carichi accidentali da traffico q – campate dispari

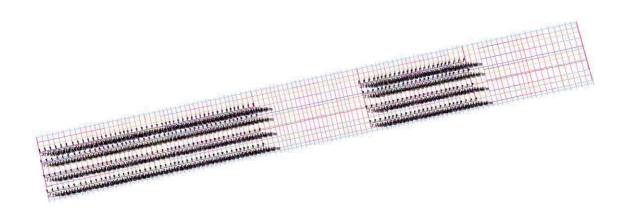


Figura 19: carichi accidentali da traffico q – pila 1

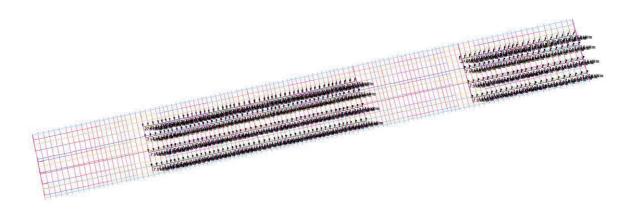


Figura 20: carichi accidentali da traffico q – pila 2

ENCERCA VABUTA AMBENTE SINÈTGO

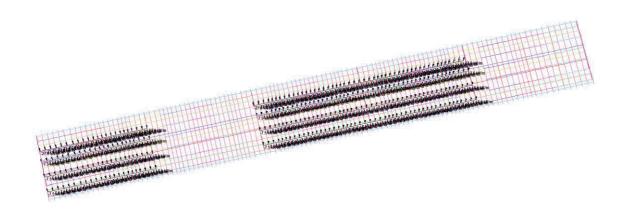


Figura 21: carichi accidentali da traffico q – pila 3

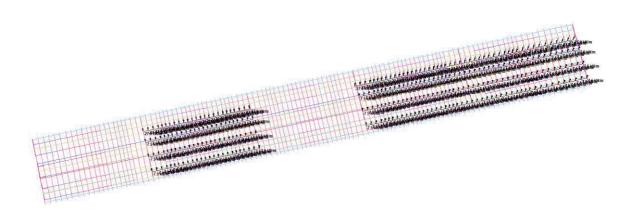


Figura 22: carichi accidentali da traffico q – pila 4

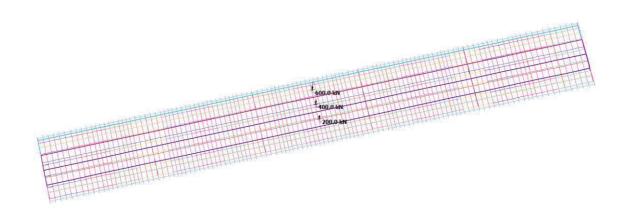


Figura 23: carichi accidentali da traffico Q – carico mobile

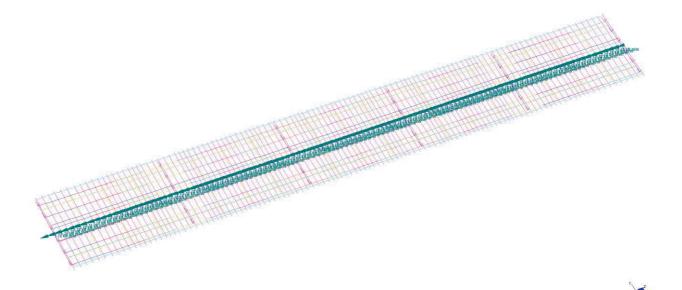


Figura 24: carichi accidentali da vento

9.1.2 Sollecitazioni agenti

	MIN	MAX
SF2(kN)	-73	85
38/03/8/37/27	[Bm:44]	[Bm:454]
BM2(kN.m)	-325	235
	[Bm:246	6[Bm:495]

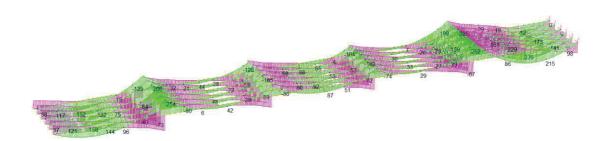


Figura 25: sollecitazioni per peso proprio struttura metallica

	MIN	MAX	
SF2(kN)	-184	199	
38/03/8/37/27	[Bm:532]	[Bm:623]	
BM2(kN.m)	-828	567	
	IBm:2470	IBm:504	

Relazione tecnica e di calcolo

RTP di progettazione:

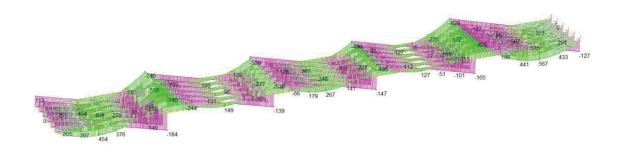


Figura 26: sollecitazioni per fase di getto della soletta

Mandanti: Mandataria: **e**sinèrgo

	MIN	MAX
SF2(kN)	-163	174
2002/01/27/27	[Bm:532]	[Bm:623]
BM2(kN.m)	-589	482
	[Bm:458]	[Bm:503]

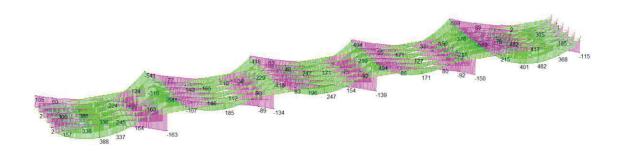


Figura 27: sollecitazioni per carichi permanenti

	MIN	MAX
SF2(kN)	-18	17
	[Bm:587]	[Bm:543]
BM2(kN.m)	-388	442
	[Bm:44]	[Bm:238]
AxForce(kN)	-1711	0
	[Bm:99]	[Bm:276]

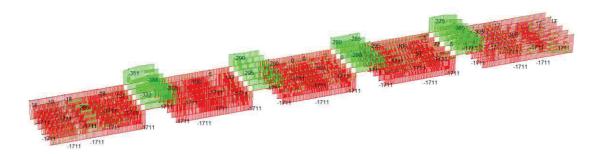


Figura 28: sollecitazioni per azione da ritiro

Relazione tecnica e di calcolo Mandanti: RTP di progettazione: Mandataria:

	MIN	MAX
SF2(kN)	-20	18
3803.0037527	[Bm:234]	[Bm:18]
BM2(kN.m)	-76	335
	[Bm:43]	[Bm:238]
AxForce(kN)	-1950	-1950
	[Bm:99]	[Bm:546]

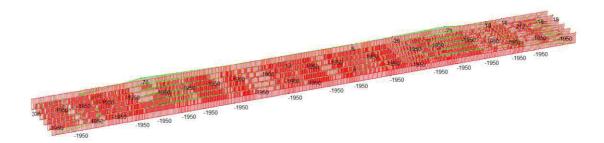


Figura 29: sollecitazioni per azione da azione termica

	MIN	MAX
SF2(kN)	-154	150
	[Bm:46]	[Bm:288]
BM2(kN.m)	-521	515
	[Bm:288]	[Bm:502]
AxForce(kN)	-14	14
	[Bm:46]	[Bm:500]

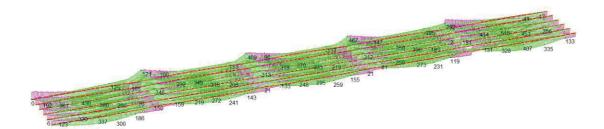


Figura 30: sollecitazioni per carichi accidentali q (inviluppo)

Relazione tecnica e di calcolo Mandanti: RTP di progettazione: Mandataria:

	MIN	MAX
SF2(kN)	-254	306
	[Bm:2498]	[Bm:2423]
BM2(kN.m)	-497	1074
	[Bm:458]	[Bm:502]
AxForce(kN)	-53	57
	[Bm:2461]	[Bm:2507]

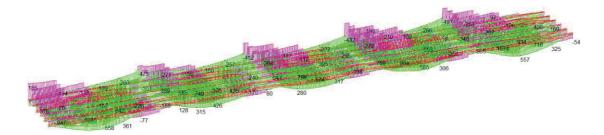


Figura 31: sollecitazioni per carichi accidentali Q (inviluppo)

	MIN	MAX
SF2(kN)	-3	3
	[Bm:452]	[Bm:454]
BM2(kN.m)	-4	4
	[Bm:454]	[Bm:452]

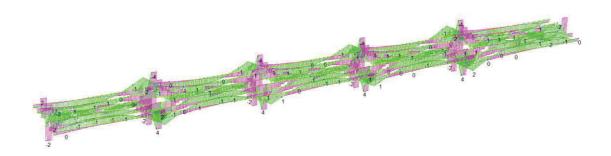


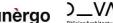
Figura 32: sollecitazioni per carico da vento

RTP di progettazione: Mandataria:

9.1.3 Travi principali – geometrie e inerzie

Si riportano di seguito le caratteristiche geometriche e inerziali dei conci che compongono l'impalcato.

			Travi r	niste accia	aio-cls	secondo CN	R 10016/85	
	B coll =	2270	[mm]					
	Ssol =	190	[mm]	- 100	0409040		47	
	Spredalle=	60	[mm]	*	Bcoll		+	
CA	b1 =	400	[mm]		, b1	43		
	yg ca =	748	[mm]		1			
	A ca =	4553	[cm^2]		Asup	1	Ssol	
	J ca =	165993	[cm ⁴]		Ainf •••	X2		
					Ann W	X1	Spred	
					ye.			
					1 b2	:III		
	A sup =	2281	[mm^2]	i			460	
	X2 =	220	[mm]	Htot	→ s	1	h	
Acciao della soletta in		2281,35	[mm^2]					
CA	X1 =	80	[mm]					
UA.	yAs =	750	-		- 			
	-		[mm]	-	*		550	
	As tot =	4563	[mm^2]		1 b3			
	1.0	500	F 3					
	b2 =	500	[mm]					
	s2 =	30	[mm]					
	H tot =	600	[mm]					
	s1 =	25	[mm]					
a io	h anima	540	[mm]					
Acciaio	b3 =	750	[mm]					
∢	s3 =	30	[mm]		PP =	-,	[kN/m]	
	E ac =	206,00	[GPa]		W sup =	9614	[cm^3]	
	yg ac =	258	[mm]		W inf =	12737	[cm^3]	
	A ac =	510	[cm^2]		Sx=	6120	[cm^3]	
	J ac =	328721	[cm ⁴]		Sx/(Jx*b)=	7,45E-03	[1/cm^2]	
Calcolo della sezione r	mista al tempo	t=infinito (carich	ni permanenti)	n =	15,17	di omogeneiz	zazione all'Acci	aio
				Ec =	13,58	[GPa]		
	yG =	456,27	[mm]	456,27				
	yo –							
	A tot =	855,72	[cm^2]	855,72	W sup cls=	21219	[cm^3]	
	A tot =	· · · · · · · · · · · · · · · · · · ·	[cm^2]	855,72	•		[cm^3]	
	A tot = Jx tot =	835449,92	[cm^4]	855,72 835449,92	Wb sup=	22969	[cm^3]	
	A tot = Jx tot = W sup ac=	835449,92 58125,15	[cm^4] [cm^3]	855,72 835449,92 58125,15	Wb sup= Wb inf=	22969 37341	[cm^3] [cm^3]	
	A tot = Jx tot = W sup ac= W inf ac=	835449,92 58125,15 18310,55	[cm^4] [cm^3] [cm^3]	855,72 835449,92 58125,15 18310,55	Wb sup=	22969	[cm^3]	
	A tot = Jx tot = W sup ac=	835449,92 58125,15	[cm^4] [cm^3] [cm^3] [cm^3]	855,72 835449,92 58125,15 18310,55 8766,90	Wb sup= Wb inf=	22969 37341	[cm^3] [cm^3]	
Palcolo dalla sazione	A tot = Jx tot = W sup ac= W inf ac= Sn soletta =	835449,92 58125,15 18310,55 8766,90	[cm^4] [cm^3] [cm^3] [cm^3]	855,72 835449,92 58125,15 18310,55 8766,90 ato all'acciaio	Wb sup= Wb inf= W inf cls=	22969 37341 58125	[cm^3] [cm^3] [cm^3]	ain
Calcolo della sezione r	A tot = Jx tot = W sup ac= W inf ac= Sn soletta =	835449,92 58125,15 18310,55 8766,90	[cm^4] [cm^3] [cm^3] [cm^3]	855,72 835449,92 58125,15 18310,55 8766,90 ato all'acciaio n =	Wb sup= Wb inf= W inf cls=	22969 37341 58125 di omogeneiz	[cm^3] [cm^3]	aio
Calcolo della sezione r	A tot = Jx tot = W sup ac= W inf ac= Sn soletta =	835449,92 58125,15 18310,55 8766,90	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza	855,72 835449,92 58125,15 18310,55 8766,90 ato all'acciaio n = Ec =	Wb sup= Wb inf= W inf cls=	22969 37341 58125	[cm^3] [cm^3] [cm^3]	aio
Calcolo della sezione r	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG =	835449,92 58125,15 18310,55 8766,90 t=0	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza	855,72 835449,92 58125,15 18310,55 8766,90 ato all'acciaio n = Ec = 559,15	Wb sup= Wb inf= W inf cls= 5,95 34,63	22969 37341 58125 di omogeneiz [GPa]	[cm^3] [cm^3] [cm^3] zazione all'Acci	aio
Calcolo della sezione r	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot =	835449,92 58125,15 18310,55 8766,90 t=0 559 1320,917	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2]	855,72 835449,92 58125,15 18310,55 8766,90 ato all'acciaio n = Ec = 559,15 1320,92	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls=	22969 37341 58125 di omogeneiz [GPa] 38152	[cm^3] [cm^3] [cm^3] zazione all'Acci	aio
Calcolo della sezione r	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot =	835449,92 58125,15 18310,55 8766,90 t=0 559 1320,917 1109620,79	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4]	855,72 835449,92 58125,15 18310,55 8766,90 ato all'acciaio n = Ec = 559,15 1320,92 1109620,79	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup=	22969 37341 58125 di omogeneiz [GPa] 38152 42539	[cm^3] [cm^3] zazione all'Acci [cm^3] [cm^3]	aio
Calcolo della sezione r	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac=	835449,92 58125,15 18310,55 8766,90 t=0 559 1320,917 1109620,79 271663	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4] [cm^3]	855,72 835449,92 58125,15 18310,55 8766,90 ato all'acciaio n = Ec = 559,15 1320,92 1109620,79 271663,22	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf=	22969 37341 58125 di omogeneiz [GPa] 38152 42539 91821	[cm^3] [cm^3] zazione all'Acci [cm^3] [cm^3] [cm^3]	aio
Calcolo della sezione r	A tot =	835449,92 58125,15 18310,55 8766,90 t=0 559 1320,917 1109620,79 271663 19845	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4] [cm^3] [cm^3]	855,72 835449,92 58125,15 18310,55 8766,90 ato all'acciaio n = Ec = 559,15 1320,92 1109620,79 271663,22 19844,62	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup=	22969 37341 58125 di omogeneiz [GPa] 38152 42539	[cm^3] [cm^3] zazione all'Acci [cm^3] [cm^3]	aio
Calcolo della sezione i	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac=	835449,92 58125,15 18310,55 8766,90 t=0 559 1320,917 1109620,79 271663	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4] [cm^3] [cm^3]	855,72 835449,92 58125,15 18310,55 8766,90 ato all'acciaio n = Ec = 559,15 1320,92 1109620,79 271663,22 19844,62 14483,61	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf=	22969 37341 58125 di omogeneiz [GPa] 38152 42539 91821	[cm^3] [cm^3] zazione all'Acci [cm^3] [cm^3] [cm^3]	aio
	A tot =	835449,92 58125,15 18310,55 8766,90 t=0 559 1320,917 1109620,79 271663 19845 14484	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4] [cm^3] [cm^3]	855,72 835449,92 58125,15 18310,55 8766,90 ato all'acciaio n = Ec = 559,15 1320,92 1109620,79 271663,22 19844,62 14483,61 ato all'acciaio	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf= W inf cls=	22969 37341 58125 di omogeneiz [GPa] 38152 42539 91821 271663	[cm^3] [cm^3] [cm^3] zazione all'Acci [cm^3] [cm^3] [cm^3]	
	A tot =	835449,92 58125,15 18310,55 8766,90 t=0 559 1320,917 1109620,79 271663 19845 14484	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4] [cm^3] [cm^3]	855,72 835449,92 58125,15 18310,55 8766,90 ato all'acciaio n = Ec = 559,15 1320,92 1109620,79 271663,22 19844,62 14483,61 ato all'acciaio n =	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf= W inf cls=	22969 37341 58125 di omogeneiz [GPa] 38152 42539 91821 271663 di omogeneiz	[cm^3] [cm^3] zazione all'Acci [cm^3] [cm^3] [cm^3]	
	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta =	835449,92 58125,15 18310,55 8766,90 t=0 559 1320,917 1109620,79 271663 19845 14484 t=infinito (ritiro)	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4] [cm^3] [cm^3] [cm^3]	855,72 835449,92 58125,15 18310,55 8766,90 ato all'acciaio n = Ec = 559,15 1320,92 1109620,79 271663,22 19844,62 14483,61 ato all'acciaio n = Ec =	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf= W inf cls=	22969 37341 58125 di omogeneiz [GPa] 38152 42539 91821 271663	[cm^3] [cm^3] [cm^3] zazione all'Acci [cm^3] [cm^3] [cm^3]	
	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo	835449,92 58125,15 18310,55 8766,90 t=0 559 1320,917 1109620,79 271663 19845 14484 t=infinito (ritiro)	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4] [cm^3] [cm^3] [cm^3] [cmm]	855,72 835449,92 58125,15 18310,55 8766,90 ato all'acciaio n = Ec = 559,15 1320,92 1109620,79 271663,22 19844,62 14483,61 ato all'acciaio n = Ec = 468,35	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf= W inf cls=	22969 37341 58125 di omogeneiz [GPa] 38152 42539 91821 271663 di omogeneiz [GPa]	[cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3]	
	A tot =	835449,92 58125,15 18310,55 8766,90 t=0 559 1320,917 1109620,79 271663 19845 14484 t=infinito (ritiro) 468 892,635	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3]	855,72 835449,92 58125,15 18310,55 8766,90 ato all'acciaio n = Ec = 559,15 1320,92 1109620,79 271663,22 19844,62 14483,61 ato all'acciaio n = Ec =	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf= W inf cls=	22969 37341 58125 di omogeneiz [GPa] 38152 42539 91821 271663 di omogeneiz [GPa]	[cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3]	
	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo	835449,92 58125,15 18310,55 8766,90 t=0 559 1320,917 1109620,79 271663 19845 14484 t=infinito (ritiro)	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4] [cm^3] [cm^3] [cm^3] [cmm]	855,72 835449,92 58125,15 18310,55 8766,90 ato all'acciaio n = Ec = 559,15 1320,92 1109620,79 271663,22 19844,62 14483,61 ato all'acciaio n = Ec = 468,35	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls= Wb sup cls=	22969 37341 58125 di omogeneiz [GPa] 38152 42539 91821 271663 di omogeneiz [GPa] 22717 24655	[cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3]	
	A tot =	835449,92 58125,15 18310,55 8766,90 t=0 559 1320,917 1109620,79 271663 19845 14484 t=infinito (ritiro) 468 892,635	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3]	855,72 835449,92 58125,15 18310,55 8766,90 ato all'acciaio n = Ec = 559,15 1320,92 1109620,79 271663,22 19844,62 14483,61 ato all'acciaio n = Ec = 468,35 892,64	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls=	22969 37341 58125 di omogeneiz [GPa] 38152 42539 91821 271663 di omogeneiz [GPa]	[cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3]	
Calcolo della sezione r	A tot =	835449,92 58125,15 18310,55 8766,90 t=0 559 1320,917 1109620,79 271663 19845 14484 t=infinito (ritiro) 468 892,635 867002,7867	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4] [cm^3] [cm^3] [cm^3] [cm^2] [cm^4]	855,72 835449,92 58125,15 18310,55 8766,90 ato all'acciaio n = Ec = 559,15 1320,92 1109620,79 271663,22 19844,62 14483,61 ato all'acciaio n = Ec = 468,35 892,64 867002,79	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls= Wb sup cls=	22969 37341 58125 di omogeneiz [GPa] 38152 42539 91821 271663 di omogeneiz [GPa] 22717 24655	[cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3]	
	A tot =	835449,92 58125,15 18310,55 8766,90 t=0 559 1320,917 1109620,79 271663 19845 14484 t=infinito (ritiro) 468 892,635 867002,7867 65857	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4]	855,72 835449,92 58125,15 18310,55 8766,90 ato all'acciaio n = Ec = 559,15 1320,92 1109620,79 271663,22 19844,62 14483,61 ato all'acciaio n = Ec = 468,35 892,64 867002,79 65856,73	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls= Wb sup= Wb inf=	22969 37341 58125 di omogeneiz [GPa] 38152 42539 91821 271663 di omogeneiz [GPa] 22717 24655 40964	[cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3]	



			Travi r	miste accia	aio-cls	secondo CN	IR 10016/85
	B coll =	2270	[mm]				
	Ssol =	190	[mm]				
	Spredalle=	60	[mm]	<u> </u>	Bcoll		- }
CA	b1 =	400	[mm]		, b1	48	
	yg ca =	748	[mm]	li li	1		
	A ca =	4553	[cm^2]		Asup•••••	1	Ssol
	J ca =	165993	[cm ⁴]	-2	Ainf •••	X2	
					Anni	XI	1 Spred
					Je.		* s2
					1 b2		
	A sup =	2281	[mm^2]				150
	X2 =	220	[mm]	Htot	-	1	h
Acciao della soletta in	A inf =	2281,35	[mm^2]				
CA	X1 =	80	[mm]				
O/A	yAs =	750	[mm]				1 s3
	As tot =	4563	[mm^2]		1 12	7	
	AS 101 -	4000	[[[[]]]]		1 b3	. 15	
	h2 =	500	[mm]				
	b2 =	500	[mm]				
	s2 =	30	[mm]				
	H tot =	600	[mm]				
_	s1 =	15	[mm]				
Acciaio	h anima	530	[mm]				
. <u>0</u>	b3 =	750	[mm]				
∢	s3 =	40	[mm]		PP =	, .	[kN/m]
	E ac =	206,00	[GPa]		W sup =		[cm^3]
	yg ac =	223	[mm]		W inf =		[cm^3]
	A ac =	530	[cm^2]		Sx=		[cm^3]
	J ac =	344661	[cm^4]	ļ	Sx/(Jx*b)=	1,23E-02	[1/cm^2]
Calcolo della sezione r	nista al tempo	t=infinito (carich	i permanenti)	n =	15,17		zzazione all'Acciaio
				Ec =	13,58	[GPa]	
	yG =	430,53	[mm]	430,53			
	A tot =	875,22	[cm^2]	875,22	W sup cls=	22261	[cm^3]
	Jx tot =	933788,03	[cm^4]	933788,03	Wb sup=	23976	[cm^3]
	W sup ac=	55100,77	[cm^3]	55100,77	Wb inf=		[cm^3]
	W inf ac=	21689,22	[cm^3]	21689,22	W inf cls=		[cm^3]
	Sn soletta =	9539,22	[cm^3]	9539,22	2.0	1	
		- ,		ato all'acciaio			
Calcolo della sezione r	nista al tempo	t=0	. 3	n =	5,95	di omogeneiz	zzazione all'Acciaio
				Ec =	34,63	[GPa]	
	yG =	541	[mm]	540,85	2 1,00		
	A tot =	1340,417	[cm^2]	1340,42	W sup cls=	40682	[cm^3]
	Jx tot =	1257680,926	[cm^4]	1257680,93	Wb sup=		[cm^3]
	W sup ac=	212638	[cm^3]	212638,34	Wb inf=		[cm^3]
	W inf ac=	23254	[cm^3]	23253,63	W inf cls=		[cm^3]
	Sn soletta =	15884	[cm^3]	15884,17	** ***	212000	Loui ol
	on soletta -	10007		ato all'acciaio			
2-111-11:	nista al tempo	t=infinito (ritiro)	Jiiogeneizze	n =	13,51	di omogenei	zzazione all'Acciaio
	msta ar terripu	. mmmo (mmo)		Ec =	15,25	[GPa]	
Salcolo della sezione r	yG =	443	[mm]	443,40	10,20	[Or a]	
Salcolo della sezione n	vu –		[cm^2]		W sup cls=	22070	[cm^2]
Salcolo della sezione r			IUIII ZI	912,14	-		[cm^3]
∍aicoio della sezione r	A tot =	912,135		070000 40			
Çaicolo della sezione r	A tot = Jx tot =	970930,4023	[cm^4]	970930,40	Wb sup=		
Calcolo della sezione r	A tot = Jx tot = W sup ac=	970930,4023 62000	[cm^4] [cm^3]	61999,62	Wb inf=	41036	[cm^3]
Calcolo della sezione r	A tot = Jx tot =	970930,4023 62000 21898	[cm^4] [cm^3] [cm^3]			41036	
Calcolo della sezione r	A tot = Jx tot = W sup ac=	970930,4023 62000	[cm^4] [cm^3]	61999,62	Wb inf=	41036	[cm^3]

			Travi r	miste accia	aio-cls	secondo CN	R 10016/85	
	B coll =	2270	[mm]					
	Ssol =	190	[mm]		04/97/41			
	Spredalle=	60	[mm]	k	Bcoll		<i>→</i>	
CA	b1 =	400	[mm]		, b1	2		
	yg ca =	748	[mm]	<u> </u>	1			
	A ca =	4553	[cm^2]		Asup	1	Ssol	
	J ca =	165993	[cm ⁴]		Ainf •••	X2		
					Aut 400	XI	Spred	
					у	1		
					1 b2	:111		
	A sup =	2281	[mm^2]				462	
	X2 =	220	[mm]	Htot	→ - \$	1	h -	
Acciao della soletta in	A inf =	2281,35	[mm^2]					
CA	X1 =	80	[mm]					
O/A	yAs =	750	[mm]		4		s3	
	As tot =	4563	[mm^2]		* 12	-4	350	
	AS 101 -	4000	[[[[]]]]		1 b3			
	h2 =	500	[mm]					
	b2 =	500	[mm]					
	s2 =	30	[mm]					
	H tot =	600	[mm]					
_	s1 =	20	[mm]					
Acciaio	h anima	535	[mm]					
<u></u>	b3 =	750	[mm]					
∢	s3 =	35	[mm]		PP =	,	[kN/m]	
	E ac =	206,00	[GPa]		W sup =	9406	[cm^3]	
	yg ac =	240	[mm]		W inf =	14104	[cm^3]	
	A ac =	520	[cm^2]		Sx=	6263	[cm^3]	
	J ac =	338573	[cm^4]	<u> </u>	Sx/(Jx*b)=	9,25E-03	[1/cm^2]	
Calcolo della sezione r	nista al tempo	t=infinito (carich	i permanenti)	n =	15,17		zazione all'Acciaio	
				Ec =	13,58	[GPa]		
	yG =	443,27	[mm]	443,27				
	A tot =	865,22	[cm^2]	865,22	W sup cls=	21793	[cm^3]	
	Jx tot =	886380,26	[cm^4]	886380,26	Wb sup=	23528	[cm^3]	
	W sup ac=	56553,33	[cm^3]	56553,33	Wb inf=	37442	[cm^3]	
	W inf ac=	19996,55	[cm^3]	19996,55	W inf cls=	56553	[cm^3]	
	Sn soletta =	9157,04	[cm^3]	9157,04				
		,- -	-	ato all'acciaio				
			. 35				iana all'Anninia	
Calcolo della sezione r	nista al tempo	t=0		n =	5,95	di omogeneiz	Zazione ali Acciaio	
Calcolo della sezione r	nista al tempo	t=0			5,95 34.63	di omogeneiz	Zazione all Accialo	
Calcolo della sezione r			[mm]	Ec =	5,95 34,63	di omogeneiz [GPa]	zazione all'Accialo	
Calcolo della sezione r	yG =	550	[mm]	Ec = 549,97	34,63	[GPa]		
Calcolo della sezione r	yG = A tot =	550 1330,417	[cm^2]	Ec = 549,97 1330,42	34,63 W sup cls=	[GPa] 39497	[cm^3]	
Calcolo della sezione r	yG = A tot = Jx tot =	550 1330,417 1185041,819	[cm^2] [cm^4]	Ec = 549,97 1330,42 1185041,82	34,63 W sup cls= Wb sup=	[GPa] 39497 43885	[cm^3]	
Calcolo della sezione r	yG = A tot = Jx tot = W sup ac=	550 1330,417 1185041,819 236843	[cm^2] [cm^4] [cm^3]	Ec = 549,97 1330,42 1185041,82 236843,33	34,63 W sup cls= Wb sup= Wb inf=	[GPa] 39497 43885 91133	[cm^3] [cm^3] [cm^3]	
Calcolo della sezione r	yG = A tot = Jx tot = W sup ac= W inf ac=	550 1330,417 1185041,819 236843 21548	[cm^2] [cm^4] [cm^3] [cm^3]	Ec = 549,97 1330,42 1185041,82 236843,33 21547,58	34,63 W sup cls= Wb sup=	[GPa] 39497 43885	[cm^3]	
Calcolo della sezione r	yG = A tot = Jx tot = W sup ac=	550 1330,417 1185041,819 236843	[cm^2] [cm^4] [cm^3] [cm^3]	Ec = 549,97 1330,42 1185041,82 236843,33 21547,58 15186,87	34,63 W sup cls= Wb sup= Wb inf=	[GPa] 39497 43885 91133	[cm^3] [cm^3] [cm^3]	
	yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta =	550 1330,417 1185041,819 236843 21548 15187	[cm^2] [cm^4] [cm^3] [cm^3]	Ec = 549,97 1330,42 1185041,82 236843,33 21547,58 15186,87 ato all'acciaio	34,63 W sup cls= Wb sup= Wb inf= W inf cls=	[GPa] 39497 43885 91133 236843	[cm^3] [cm^3] [cm^3]	
	yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta =	550 1330,417 1185041,819 236843 21548 15187	[cm^2] [cm^4] [cm^3] [cm^3]	Ec = 549,97 1330,42 1185041,82 236843,33 21547,58 15186,87 ato all'acciaio n =	34,63 W sup cls= Wb sup= Wb inf= W inf cls=	[GPa] 39497 43885 91133 236843 di omogeneiz	[cm^3] [cm^3] [cm^3]	
	yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta =	550 1330,417 1185041,819 236843 21548 15187 t=infinito (ritiro)	[cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizza	Ec = 549,97 1330,42 1185041,82 236843,33 21547,58 15186,87 ato all'acciaio n = Ec =	34,63 W sup cls= Wb sup= Wb inf= W inf cls=	[GPa] 39497 43885 91133 236843	[cm^3] [cm^3] [cm^3]	
	yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta =	550 1330,417 1185041,819 236843 21548 15187 t=infinito (ritiro)	[cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizza	Ec = 549,97 1330,42 1185041,82 236843,33 21547,58 15186,87 ato all'acciaio n = Ec = 455,75	34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25	[GPa] 39497 43885 91133 236843 di omogeneiz [GPa]	[cm^3] [cm^3] [cm^3] [cm^3]	
	yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot =	550 1330,417 1185041,819 236843 21548 15187 t=infinito (ritiro) 456 902,135	[cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2]	Ec = 549,97 1330,42 1185041,82 236843,33 21547,58 15186,87 ato all'acciaio n = Ec = 455,75 902,14	34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls=	[GPa] 39497 43885 91133 236843 di omogeneiz [GPa] 23353	[cm^3] [cm^3] [cm^3] [cm^3] zazione all'Acciaio	
	yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot =	550 1330,417 1185041,819 236843 21548 15187 t=infinito (ritiro) 456 902,135 920696,361	[cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizzz [mm] [cm^2] [cm^4]	Ec = 549,97	34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls= Wb sup=	[GPa] 39497 43885 91133 236843 di omogeneiz [GPa] 23353 25277	[cm^3] [cm^3] [cm^3] zazione all'Acciaio [cm^3] [cm^3]	
	yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac=	550 1330,417 1185041,819 236843 21548 15187 t=infinito (ritiro) 456 902,135 920696,361 63828	[cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz	Ec = 549,97	34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls= Wb sup= Wb inf=	[GPa] 39497 43885 91133 236843 di omogeneiz [GPa] 23353 25277 41058	[cm^3] [cm^3] [cm^3] zazione all'Acciaio [cm^3] [cm^3] [cm^3]	
	yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot =	550 1330,417 1185041,819 236843 21548 15187 t=infinito (ritiro) 456 902,135 920696,361	[cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizzz [mm] [cm^2] [cm^4]	Ec = 549,97 1330,42 1185041,82 236843,33 21547,58 15186,87 ato all'acciaio n = Ec = 455,75 902,14 920696,36	34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls= Wb sup=	[GPa] 39497 43885 91133 236843 di omogeneiz [GPa] 23353 25277	[cm^3] [cm^3] [cm^3] zazione all'Acciaio [cm^3] [cm^3]	
Calcolo della sezione r	yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac=	550 1330,417 1185041,819 236843 21548 15187 t=infinito (ritiro) 456 902,135 920696,361 63828	[cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz	Ec = 549,97	34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls= Wb sup= Wb inf=	[GPa] 39497 43885 91133 236843 di omogeneiz [GPa] 23353 25277 41058	[cm^3] [cm^3] [cm^3] zazione all'Acciaio [cm^3] [cm^3] [cm^3]	

			Trav	i miste accia	aio-cls	secondo CNR	10016/85	
	A sup =	4563	[mm^2]					
	X2 =	220	[mm]	-	- Asup	-		
	A inf =	4563	[mm^2]					
Acciao della soletta	X1 =	80	[mm]		- Ainf	[x1]		
in CA	yAs =	750	[mm]	y_				
111 0/1	As tot =	9125	[mm^2]		b2 ′	E -		
	A intermedia =		[mm^2]			h		
	X3 =		[mm]	Htot	-¥+ s1	" -		
	,0		[]			_		
	b2 =	500	[mm]			s3		
	s2 =	64	[mm]		† b3 *	1 -		
	H tot =	600	[mm]					
	s1 =	25	[mm]					
0	h anima	468	[mm]					
Acciaio	b3 =	750	[mm]					
Acc	s3 =	68	[mm]		PP =	7,43	[kN/m]	
•	E ac =	206,00	[GPa]		W sup =	16714	[cm^3]	
	yg ac =	248	[mm]		W inf =	23795	[cm^3]	
	A ac =	947,00	[cm^2]		Sx=	11294	[cm^3]	
	Jac=	589062	[cm/4]		Sx/(Jx*b)=		[1/cm^2]	
	0 40	000002	[OIII I]		CAI(CA D)	.,0.200	[
Calcolo della sezione	mista al tempo	t=0		n =	1,0000	di om. Acciaio-/	Acciaio	
	yG =	291,72	[mm]	291,72				
	A tot =	1038,25	[cm^2]	1038,25				
	Jx tot =	799186	[cm^4]	799186,11				
	W sup ac=	25924	[cm^3]	25923,63	Wb sup=	15128	[cm^3]	
	W inf ac=	27396	[cm^3]	27396,11	Wb interm=	25924	[cm^3]	
	n armatura =	4182	[cm^3]	4182,03	Wb inf=	20582	[cm^3]	
				omogeneizzato	all'acciaio			

			Travi r	miste accia	aio-cls	secondo CN	R 10016/85	
	B coll =	2270	[mm]					
	Ssol =	190	[mm]		04000041			
	Spredalle=	60	[mm]	k	Bcoll		<i>→</i>	
CA	b1 =	400	[mm]		, b1	2		
	yg ca =	748	[mm]	10	1			
	A ca =	4553	[cm^2]		Asup	1	Ssol	
	J ca =	165993	[cm ⁴]		Ainf •••	X2	and the second s	
					Aut 400	XI	Spred	
					у	1		
					1 b2	:111		
	A sup =	2281	[mm^2]				462	
	X2 =	220	[mm]	Htot	→ - \$	1	h -	
Acciao della soletta in	A inf =	2281,35	[mm^2]					
CA	X1 =	80	[mm]					
O/A	yAs =	750	[mm]		4		s3	
	As tot =	4563	[mm^2]		* 12	-4	350	
	AS 101 -	4000	[[[[]]]]		1 b3			
	h2 =	500	[mm]					
	b2 =	500	[mm]					
	s2 =	30	[mm]					
	H tot =	600	[mm]					
_	s1 =	20	[mm]					
Acciaio	h anima	535	[mm]					
<u></u>	b3 =	750	[mm]					
∢	s3 =	35	[mm]		PP =	,	[kN/m]	
	E ac =	206,00	[GPa]		W sup =	9406	[cm^3]	
	yg ac =	240	[mm]		W inf =	14104	[cm^3]	
	A ac =	520	[cm^2]		Sx=	6263	[cm^3]	
	J ac =	338573	[cm^4]	<u> </u>	Sx/(Jx*b)=	9,25E-03	[1/cm^2]	
Calcolo della sezione r	nista al tempo	t=infinito (carich	i permanenti)	n =	15,17		zazione all'Acciaio	
				Ec =	13,58	[GPa]		
	yG =	443,27	[mm]	443,27				
	A tot =	865,22	[cm^2]	865,22	W sup cls=	21793	[cm^3]	
	Jx tot =	886380,26	[cm^4]	886380,26	Wb sup=	23528	[cm^3]	
	W sup ac=	56553,33	[cm^3]	56553,33	Wb inf=	37442	[cm^3]	
	W inf ac=	19996,55	[cm^3]	19996,55	W inf cls=	56553	[cm^3]	
	Sn soletta =	9157,04	[cm^3]	9157,04				
		,- -	-	ato all'acciaio				
			. 35				iana all'Anninia	
Calcolo della sezione r	nista al tempo	t=0		n =	5,95	di omogeneiz	Zazione ali Acciaio	
Calcolo della sezione r	nista al tempo	t=0			5,95 34.63	di omogeneiz	Zazione all Accialo	
Calcolo della sezione r			[mm]	Ec =	5,95 34,63	di omogeneiz [GPa]	zazione all'Accialo	
Calcolo della sezione r	yG =	550	[mm]	Ec = 549,97	34,63	[GPa]		
Calcolo della sezione r	yG = A tot =	550 1330,417	[cm^2]	Ec = 549,97 1330,42	34,63 W sup cls=	[GPa] 39497	[cm^3]	
Calcolo della sezione r	yG = A tot = Jx tot =	550 1330,417 1185041,819	[cm^2] [cm^4]	Ec = 549,97 1330,42 1185041,82	34,63 W sup cls= Wb sup=	[GPa] 39497 43885	[cm^3]	
Calcolo della sezione r	yG = A tot = Jx tot = W sup ac=	550 1330,417 1185041,819 236843	[cm^2] [cm^4] [cm^3]	Ec = 549,97 1330,42 1185041,82 236843,33	34,63 W sup cls= Wb sup= Wb inf=	[GPa] 39497 43885 91133	[cm^3] [cm^3] [cm^3]	
Calcolo della sezione r	yG = A tot = Jx tot = W sup ac= W inf ac=	550 1330,417 1185041,819 236843 21548	[cm^2] [cm^4] [cm^3] [cm^3]	Ec = 549,97 1330,42 1185041,82 236843,33 21547,58	34,63 W sup cls= Wb sup=	[GPa] 39497 43885	[cm^3]	
Calcolo della sezione r	yG = A tot = Jx tot = W sup ac=	550 1330,417 1185041,819 236843	[cm^2] [cm^4] [cm^3] [cm^3]	Ec = 549,97 1330,42 1185041,82 236843,33 21547,58 15186,87	34,63 W sup cls= Wb sup= Wb inf=	[GPa] 39497 43885 91133	[cm^3] [cm^3] [cm^3]	
	yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta =	550 1330,417 1185041,819 236843 21548 15187	[cm^2] [cm^4] [cm^3] [cm^3]	Ec = 549,97 1330,42 1185041,82 236843,33 21547,58 15186,87 ato all'acciaio	34,63 W sup cls= Wb sup= Wb inf= W inf cls=	[GPa] 39497 43885 91133 236843	[cm^3] [cm^3] [cm^3]	
	yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta =	550 1330,417 1185041,819 236843 21548 15187	[cm^2] [cm^4] [cm^3] [cm^3]	Ec = 549,97 1330,42 1185041,82 236843,33 21547,58 15186,87 ato all'acciaio n =	34,63 W sup cls= Wb sup= Wb inf= W inf cls=	[GPa] 39497 43885 91133 236843 di omogeneiz	[cm^3] [cm^3] [cm^3]	
	yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta =	550 1330,417 1185041,819 236843 21548 15187 t=infinito (ritiro)	[cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizza	Ec = 549,97 1330,42 1185041,82 236843,33 21547,58 15186,87 ato all'acciaio n = Ec =	34,63 W sup cls= Wb sup= Wb inf= W inf cls=	[GPa] 39497 43885 91133 236843	[cm^3] [cm^3] [cm^3]	
	yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta =	550 1330,417 1185041,819 236843 21548 15187 t=infinito (ritiro)	[cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizza	Ec = 549,97 1330,42 1185041,82 236843,33 21547,58 15186,87 ato all'acciaio n = Ec = 455,75	34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25	[GPa] 39497 43885 91133 236843 di omogeneiz [GPa]	[cm^3] [cm^3] [cm^3] [cm^3]	
	yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot =	550 1330,417 1185041,819 236843 21548 15187 t=infinito (ritiro) 456 902,135	[cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2]	Ec = 549,97 1330,42 1185041,82 236843,33 21547,58 15186,87 ato all'acciaio n = Ec = 455,75 902,14	34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls=	[GPa] 39497 43885 91133 236843 di omogeneiz [GPa] 23353	[cm^3] [cm^3] [cm^3] [cm^3] zazione all'Acciaio	
	yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot =	550 1330,417 1185041,819 236843 21548 15187 t=infinito (ritiro) 456 902,135 920696,361	[cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizzz [mm] [cm^2] [cm^4]	Ec = 549,97 1330,42 1185041,82 236843,33 21547,58 15186,87 ato all'acciaio n = Ec = 455,75 902,14 920696,36	34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls= Wb sup=	[GPa] 39497 43885 91133 236843 di omogeneiz [GPa] 23353 25277	[cm^3] [cm^3] [cm^3] zazione all'Acciaio [cm^3] [cm^3]	
	yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac=	550 1330,417 1185041,819 236843 21548 15187 t=infinito (ritiro) 456 902,135 920696,361 63828	[cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz	Ec = 549,97	34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls= Wb sup= Wb inf=	[GPa] 39497 43885 91133 236843 di omogeneiz [GPa] 23353 25277 41058	[cm^3] [cm^3] [cm^3] zazione all'Acciaio [cm^3] [cm^3] [cm^3]	
	yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot =	550 1330,417 1185041,819 236843 21548 15187 t=infinito (ritiro) 456 902,135 920696,361	[cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizzz [mm] [cm^2] [cm^4]	Ec = 549,97 1330,42 1185041,82 236843,33 21547,58 15186,87 ato all'acciaio n = Ec = 455,75 902,14 920696,36	34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls= Wb sup=	[GPa] 39497 43885 91133 236843 di omogeneiz [GPa] 23353 25277	[cm^3] [cm^3] [cm^3] zazione all'Acciaio [cm^3] [cm^3]	
Calcolo della sezione r	yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac=	550 1330,417 1185041,819 236843 21548 15187 t=infinito (ritiro) 456 902,135 920696,361 63828	[cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz	Ec = 549,97	34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls= Wb sup= Wb inf=	[GPa] 39497 43885 91133 236843 di omogeneiz [GPa] 23353 25277 41058	[cm^3] [cm^3] [cm^3] zazione all'Acciaio [cm^3] [cm^3] [cm^3]	

			Traviı	miste accia	aio-cls	secondo CN	R 10016/85	
	B coll =	2270	[mm]					
	Ssol =	190	[mm]		Bcoll			
CA	Spredalle= b1 =	60	[mm]		Beom		7	
CA		400	[mm]	N	y b1			
	yg ca =	748 4553	[mm]		Asup	1	- 1	
	A ca =		[cm^2]			X2	Ssol	
	J ca =	165993	[cm ⁴]		Ainf •••	X1 . [Spred	
							_ ≠s2	
					₹ b2	1		
					15-15			
	A sup =	2281	[mm^2]	Htot	→ s	1	h	
	X2 =	220	[mm]	ritot	1	72.		
Acciao della soletta in		2281,35	[mm^2]					
CA	X1 =	80	[mm]				- 3	
	yAs =	750	[mm]	4			s3	
	As tot =	4563	[mm^2]		b3	1		
	b2 =	500	[mm]					
	s2 =	20	[mm]					
	H tot =	600	[mm]					
	s1 =	15	[mm]					
Acciaio	h anima	540	[mm]					
ÖÖ	b3 =	750	[mm]					
⋖	s3 =	40	[mm]		PP =	3,78	[kN/m]	
	E ac =	206,00	[GPa]		W sup =	6522	[cm^3]	
	yg ac =	184	[mm]		W inf =	14775	[cm^3]	
	A ac =	477	[cm^2]		Sx=	5175	[cm^3]	
	J ac =	271474	[cm ⁴]	ļ	Sx/(Jx*b)=	1,24E-02	[1/cm^2]	
Calcolo della sezione r	nista al tempo	t=infinito (carich	i permanenti)	n =	15,17		zazione all'Acciaio	
				Ec =	13,58	[GPa]		
	yG =	421,19	[mm]	422,06				
	A tot =	822,45	[cm^2]	826,72	W sup cls=	21498	[cm^3]	
	Jx tot =	921857,94	[cm^4]	923067,54	Wb sup=	23115	[cm^3]	
	W sup ac=	51553,80	[cm^3]	51873,89	Wb inf=	35618	[cm^3]	
	W inf ac=	21887,23	[cm^3]	21870,76	W inf cls=	51554	[cm^3]	
	Sn soletta =	9819,67	[cm^3]	9793,55				
			omogeneizza	ato all'acciaio				
Calcolo della sezione r	mista al tempo	t=0		n =	5,95	di omogeneiz	zazione all'Acciaio	
				Ec =	34,63	[GPa]		
	yG =	539	[mm]	539,57				
	A tot =	1287,656	[cm^2]	1291,92	W sup cls=	40470	[cm^3]	
	Jx tot =	1256980,005	[cm^4]	1257090,15	Wb sup=	44797	[cm^3]	
	W sup ac=	207439	[cm^3]	208029,77	Wb inf=	89404	[cm^3]	
	W inf ac=	23303	[cm^3]	23297,93	W inf cls=	207439	[cm^3]	
	Sn soletta =	15995	[cm^3]	15982,27				
				ato all'acciaio				
Calcolo della sezione r	mista al tempo	t=infinito (ritiro)		n =	13,51	di omogeneiz	zazione all'Acciaio	
				Ec =	15,25	[GPa]		
	yG =	435	[mm]	436,01				
	A tot =	859,374	[cm^2]	863,64	W sup cls=	23171	[cm^3]	
	Jx tot =	961037,8239	[cm^4]	962054,80	Wb sup=	24978	[cm^3]	
	W sup ac=	58331	[cm^3]	58664,32	Wb inf=	39265	[cm^3]	
	W inf ac=	22080	[cm^3]	22065,13	W inf cls=	58331	[cm^3]	
	Sn soletta =	10554	[cm^3]	10528,27			L	
	Jii soletta -	10004						
			omogeneizza	ato all'acciaio				

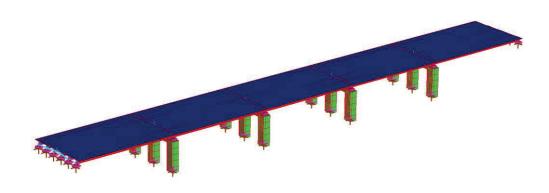
			Travi r	niste accia	aio-cls	secondo CN	R 10016/85
	B coll =	2270	[mm]				
	Ssol =	190	[mm]		1200000		
	Spredalle=	60	[mm]	<u> </u>	Bcoll		- -
CA	b1 =	400	[mm]		ь b1	43	
	yg ca =	748	[mm]	li li	1	- 1	
	A ca =	4553	[cm^2]		Asup	1	Ssol
	J ca =	165993	[cm ⁴]	-2	Ainf •••	X2	
					Aimong	XI	Spred
					Je.		
					1 b2	1111	
	A sup =	2281	[mm^2]				482
	X2 =	220	[mm]	Htot	-	1	h
Acciao della soletta in	A inf =	2281,35	[mm^2]				
CA	X1 =	80	[mm]				
O/A	yAs =	750	[mm]				s3
	As tot =	4563	[mm^2]		т ыз		
	A3 tot -	4505	[111111 2]				
	b2 =	500	[mm]				
	s2 =	30					
	S2 = H tot =	600	[mm]				
	s1 =	20	[mm]				
0			[mm]				
<u>ai</u>	h anima	540	[mm]				
Acciaio	b3 =	750	[mm]				
4	s3 =	30	[mm]		PP =	-, -	[kN/m]
	E ac =	206,00	[GPa]		W sup =		[cm^3]
	yg ac =	256	[mm]		W inf =		[cm^3]
	A ac =	483	[cm^2]		Sx=		[cm^3]
	J ac =	321660	[cm ⁴]		Sx/(Jx*b)=	9,21E-03	[1/cm^2]
0 1 1 1 " .		, , , , , , , , , , , , , , , , , , , ,		-	45.45	<u>.</u>	
Calcolo della sezione n	nista al tempo	t=ınfınıto (carıch	i permanenti)	n =	15,17		zazione all'Acciaio
	_			Ec =	13,58	[GPa]	
	yG =	461,36	[mm]	461,36			
	A tot =	828,72	[cm^2]	828,72	W sup cls=	21153	[cm^3]
	Jx tot =	822080,87	[cm^4]	822080,87	Wb sup=	22922	[cm^3]
	W sup ac=	59295,36	[cm^3]	59295,36	Wb inf=	37599	[cm^3]
	W inf ac=	17818,71	[cm^3]	17818,71	W inf cls=	59295	[cm^3]
	Sn soletta =	8614,12	[cm^3]	8614,12			
			omogeneizza	ato all'acciaio			
Calcolo della sezione n	nista al tempo	t=0		n =	5,95	di omogeneiz	zazione all'Acciaio
				Ec =	34,63	[GPa]	
	yG =	565	[mm]	564,56			
	A tot =	1293,917	[cm^2]	1293,92	W sup cls=	37996	[cm^3]
	Jx tot =	1084547,91	[cm^4]	1084547,91	Wb sup=	42458	[cm^3]
	W sup ac=	306043	[cm^3]	306043,43	Wb inf=		[cm^3]
	W inf ac=	19210	[cm^3]	19210,42	W inf cls=		[cm^3]
	Sn soletta =	14070	[cm^3]	14069,76			•
				ato all'acciaio			
Calcolo della sezione n	nista al tempo	t=infinito (ritiro)	<u> </u>	n =	13,51	di omogeneiz	zazione all'Acciaio
		(Ec =	15,25	[GPa]	
	yG =	474	[mm]	473,60	- ,		
	A tot =	865,635	[cm^2]	865,64	W sup cls=	22650	[cm^3]
	Jx tot =	852550,8241	[cm^4]	852550,82	Wb sup=		[cm^3]
	W sup ac=	67449	[cm^3]	67449,27	Wb inf=		[cm^3]
	W inf ac=		-				
		18001	[cm^3]	18001,45	W inf cls=	67449	[cm^3]
	Sn soletta =	9261	[cm^3]	9261,31			
				ato all'acciaio			

			Trav	i miste accia	aio-cls	secondo CNR	10016/85	
	A sup =	4563	[mm^2]					
	X2 =	220	[mm]	-	- Asup	+		
	A inf =	4563	[mm^2]					
Acciao della soletta	X1 =	80	[mm]		- Ainf	[x1]		
in CA	yAs =	750	[mm]	y_				
111 0/1	As tot =	9125	[mm^2]		b2	E -		
	A intermedia =		[mm^2]			h		
	X3 =		[mm]	Htot	-¥4 s1	" -		
	70		[]			_		
	b2 =	500	[mm]			s3		
	s2 =	40	[mm]		₹ b3 ₹	1 -		
	H tot =	600	[mm]					
	s1 =	25	[mm]					
0	h anima	492	[mm]					
Acciaio	b3 =	750	[mm]					
Acc	s3 =	68	[mm]		PP =	6,54	[kN/m]	
	E ac =	206,00	[GPa]		W sup =	11993	[cm^3]	
	yg ac =	206	[mm]		W inf =	22865	[cm^3]	
	A ac =	833,00	[cm^2]		Sx=	9034	[cm^3]	
	J ac =	472019	[cm^4]		Sx/(Jx*b)=		[1/cm^2]	
	0.00	2010	[5]		- CM (CM 2)	.,002.00	[
Calcolo della sezione	mista al tempo	t=0		n =	1,0000	di om. Acciaio-	Acciaio	
	yG =	260,10	[mm]	260,10				
	A tot =	924,25	[cm^2]	924,25				
	Jx tot =	715018	[cm^4]	715018,46				
	W sup ac=	21036	[cm^3]	21036,41	Wb sup=	12771	[cm^3]	
	W inf ac=	27490	[cm^3]	27489,68	Wb interm=	21036	[cm^3]	
	n armatura =	4470	[cm^3]	4470,49	Wb inf=	17028	[cm^3]	
				omogeneizzato	all'acciaio			

			Travi r	niste accia	aio-cls	secondo CN	R 10016/85	
	B coll =	2270	[mm]					
	Ssol =	190	[mm]		(2009)		17	
	Spredalle=	60	[mm]	<u> </u>	Bcoll			
CA	b1 =	400	[mm]		, b1	i.		
	yg ca =	748	[mm]		1	<u> </u>		
	A ca =	4553	[cm^2]		Asup	1	Ssol	
	J ca =	165993	[cm ⁴]		Ainf •••	X2		
						NI)	Spred	
					Jr. 10			
					1 b2			
	A sup =	2281	[mm^2]				183	
	X2 =	220	[mm]	Htot	→ <mark>+</mark> - s	1	h	
Acciao della soletta in	A inf =	2281,35	[mm^2]					
CA	X1 =	80	[mm]				-	
<u></u>	yAs =	750	[mm]				s3	
	As tot =	4563	[mm^2]		/ ыз	4		
	7.3 (0) =	7000	[[[]]]		DJ			
	b2 =	500	[mm]					
	s2 =	30	[mm]					
	H tot =	600	[mm]					
	s1 =	20	[mm]					
0	h anima	530						
iai			[mm]					
Acciaio	b3 =	750	[mm]		DD -	4.00	Flah I / a a 3	
4	s3 =	40	[mm]		PP =	,	[kN/m]	
	E ac =	206,00	[GPa]		W sup =		[cm^3]	
	yg ac =	227	[mm]		W inf =		[cm^3]	
	A ac =	556	[cm^2]		Sx=		[cm^3]	
	J ac =	352567	[cm ⁴]		Sx/(Jx*b)=	9,29E-03	[1/cm^2]	
					45.45			
Calcolo della sezione n	nista al tempo	t=infinito (carich	i permanenti)	n =	15,17		zazione all'Acciaio	
				Ec =	13,58	[GPa]		
	yG =	426,84	[mm]	426,84				
	A tot =	901,72	[cm^2]	901,72	W sup cls=	22309	[cm^3]	
	Jx tot =	944044,38	[cm^4]	944044,38	Wb sup=	24012	[cm^3]	
	W sup ac=	54519,15	[cm^3]	54519,15	Wb inf=	37291	[cm^3]	
	W inf ac=	22116,97	[cm^3]	22116,97	W inf cls=	54519	[cm^3]	
	Sn soletta =	9649,92	[cm^3]	9649,92				
			-	ato all'acciaio				
Calcolo della sezione n	nista al tempo	t=0		n =	5,95	di omogeneiz	zazione all'Acciaio	
				Ec =	34,63	[GPa]		
	yG =	536	[mm]	536,28				
	A tot =	1366,917	[cm^2]	1366,92	W sup cls=	40748	[cm^3]	
	Jx tot =	1278339,477	[cm^4]	1278339,48	Wb sup=		[cm^3]	
	W sup ac=	200622	[cm^3]	200621,71	Wb inf=		[cm^3]	
	W inf ac=	23837	[cm^3]	23837,12	W inf cls=		[cm^3]	
	Sn soletta =	16234	[cm^3]	16234,09				
				ato all'acciaio				
Calcolo della sezione n	nista al tempo	t=infinito (ritiro)		n =	13,51	di omogeneiz	zazione all'Acciaio	
				Ec =	15,25	[GPa]		
	yG =	439	[mm]	439,49	.0,20	, C. G		
	A tot =	938,635	[cm^2]	938,64	W sup cls=	23923	[cm^3]	
	Jx tot =	982066,0743	[cm^4]	982066,07	Wb sup=		[cm^3]	
	W sup ac=	61184	[cm^3]	61184,13	Wb inf=		[cm^3]	
			-					
	W inf ac=	22346	[cm^3]	22345,58	W inf cls=	61184	[cm^3]	
	Sn soletta =	10411	[cm^3]	10410,88				

			Traviı	niste accia	aio-cls	secondo CN	R 10016/85	
	B coll =	2270	[mm]					
	Ssol =	190	[mm]		02000000		111	
	Spredalle=	60	[mm]	<u> </u>	Bcoll		→	
CA	b1 =	400	[mm]		, b1	42		
	yg ca =	748	[mm]		1	-1		
	A ca =	4553	[cm^2]		Asup•••••	1	Ssol	
	J ca =	165993	[cm ⁴]		Ainfana d	X2		
			1		Ainf •••	X1	Spred	
						,		
					1 b2	1		
	A sup =	2281	[mm^2]				150	
	X2 =	220		Htot	→ s	1	h	
A:			[mm]					
Acciao della soletta in		2281,35	[mm^2]					
CA	X1 =	80	[mm]	<u> </u>		- P	s3	
	yAs =	750	[mm]	4	ye		7.5	
	As tot =	4563	[mm^2]		1 b3	1		
	b2 =	500	[mm]					
	s2 =	30	[mm]					
	H tot =	600	[mm]					
	s1 =	15	[mm]					
. <u>Q</u>	h anima	511,34	[mm]					
<u>ci</u>	b3 =	750	[mm]					
Acciaio	s3 =	58,66	[mm]		PP =	5,23	[kN/m]	
	E ac =	206,00	[GPa]		W sup =	9144	[cm^3]	
	yg ac =	187	[mm]		W inf =	20171	[cm^3]	
	A ac =	667	[cm^2]		Sx=	7067	[cm^3]	
	J ac =	377499	[cm ⁴]		Sx/(Jx*b)=	1,25E-02	[1/cm^2]	
	Jac –	377499	[CIII ⁴]		3x/(JX b)-	1,25E-02	[1/0111-2]	
Calcolo della sezione n		t_infinita /aaviak	i marmanananti\		45 47	di amananai-	iana all'Assisia	
Calcolo della sezione fi	nista ai tempo	t=inirinito (caricr	ii permanenti)	n =	15,17		zazione all'Acciaio)
		070.00		Ec =	13,58	[GPa]		
		378,89	[mm]	378,89				
	yG =	•						
	A tot =	1012,37	[cm^2]	1012,37	W sup cls=	23479	[cm^3]	
	_	•	[cm^2] [cm^4]	1012,37 1106127,30	W sup cls= Wb sup=	23479 25076	[cm^3]	
	A tot =	1012,37	-	-	-			
	A tot = Jx tot =	1012,37 1106127,30	[cm^4]	1106127,30	Wb sup=	25076	[cm^3]	
	A tot = Jx tot = W sup ac=	1012,37 1106127,30 50025,53	[cm^4] [cm^3]	1106127,30 50025,53	Wb sup= Wb inf=	25076 36735	[cm^3] [cm^3]	
	A tot = Jx tot = W sup ac= W inf ac=	1012,37 1106127,30 50025,53 29194,09	[cm^4] [cm^3] [cm^3] [cm^3]	1106127,30 50025,53 29194,09	Wb sup= Wb inf=	25076 36735	[cm^3] [cm^3]	
Calcolo della sezione n	A tot = Jx tot = W sup ac= W inf ac= Sn soletta =	1012,37 1106127,30 50025,53 29194,09 11088,98	[cm^4] [cm^3] [cm^3] [cm^3]	1106127,30 50025,53 29194,09 11088,98	Wb sup= Wb inf=	25076 36735 50026	[cm^3] [cm^3])
Calcolo della sezione n	A tot = Jx tot = W sup ac= W inf ac= Sn soletta =	1012,37 1106127,30 50025,53 29194,09 11088,98	[cm^4] [cm^3] [cm^3] [cm^3]	1106127,30 50025,53 29194,09 11088,98 ato all'acciaio	Wb sup= Wb inf= W inf cls=	25076 36735 50026 di omogeneiz	[cm^3] [cm^3] [cm^3]	
Calcolo della sezione n	A tot = Jx tot = W sup ac= W inf ac= Sn soletta =	1012,37 1106127,30 50025,53 29194,09 11088,98	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza	1106127,30 50025,53 29194,09 11088,98 ato all'acciaio n = Ec =	Wb sup= Wb inf= W inf cls=	25076 36735 50026	[cm^3] [cm^3] [cm^3]	
Calcolo della sezione n	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG =	1012,37 1106127,30 50025,53 29194,09 11088,98 t=0	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza	1106127,30 50025,53 29194,09 11088,98 ato all'acciaio n = Ec = 495,23	Wb sup= Wb inf= W inf cls= 5,95 34,63	25076 36735 50026 di omogeneiz [GPa]	[cm^3] [cm^3] [cm^3]	
Calcolo della sezione n	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot =	1012,37 1106127,30 50025,53 29194,09 11088,98 t=0 495 1477,568	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2]	1106127,30 50025,53 29194,09 11088,98 ato all'acciaio n = Ec = 495,23 1477,57	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls=	25076 36735 50026 di omogeneiz [GPa] 43925	[cm^3] [cm^3] [cm^3]	
Calcolo della sezione n	A tot =	1012,37 1106127,30 50025,53 29194,09 11088,98 t=0 495 1477,568 1558314,543	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4]	1106127,30 50025,53 29194,09 11088,98 ato all'acciaio n = Ec = 495,23 1477,57 1558314,54	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup=	25076 36735 50026 di omogeneiz [GPa] 43925 47982	[cm^3] [cm^3] [cm^3] [cm^3] [cm^3]	
Calcolo della sezione n	A tot =	1012,37 1106127,30 50025,53 29194,09 11088,98 t=0 495 1477,568 1558314,543 148736	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4] [cm^3]	1106127,30 50025,53 29194,09 11088,98 ato all'acciaio n = Ec = 495,23 1477,57 1558314,54 148735,69	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf=	25076 36735 50026 di omogeneiz [GPa] 43925 47982 84338	[cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3]	
Calcolo della sezione n	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac= W inf ac=	1012,37 1106127,30 50025,53 29194,09 11088,98 t=0 495 1477,568 1558314,543 148736 31467	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4] [cm^3] [cm^3]	1106127,30 50025,53 29194,09 11088,98 ato all'acciaio n = Ec = 495,23 1477,57 1558314,54 148735,69 31466,53	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup=	25076 36735 50026 di omogeneiz [GPa] 43925 47982	[cm^3] [cm^3] [cm^3] [cm^3] [cm^3]	
Calcolo della sezione n	A tot =	1012,37 1106127,30 50025,53 29194,09 11088,98 t=0 495 1477,568 1558314,543 148736	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizz: [mm] [cm^2] [cm^4] [cm^3] [cm^3]	1106127,30 50025,53 29194,09 11088,98 ato all'acciaio n = Ec = 495,23 1477,57 1558314,54 148735,69 31466,53 19375,75	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf=	25076 36735 50026 di omogeneiz [GPa] 43925 47982 84338	[cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3]	
	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta =	1012,37 1106127,30 50025,53 29194,09 11088,98 t=0 495 1477,568 1558314,543 148736 31467 19376	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizz: [mm] [cm^2] [cm^4] [cm^3] [cm^3]	1106127,30 50025,53 29194,09 11088,98 ato all'acciaio n = Ec = 495,23 1477,57 1558314,54 148735,69 31466,53 19375,75 ato all'acciaio	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf= W inf cls=	25076 36735 50026 di omogeneiz [GPa] 43925 47982 84338 148736	[cm^3] [cm^3] [cm^3] [zazione all'Acciaio [cm^3] [cm^3] [cm^3] [cm^3]	
	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta =	1012,37 1106127,30 50025,53 29194,09 11088,98 t=0 495 1477,568 1558314,543 148736 31467 19376	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizz: [mm] [cm^2] [cm^4] [cm^3] [cm^3]	1106127,30 50025,53 29194,09 11088,98 ato all'acciaio n = Ec = 495,23 1477,57 1558314,54 148735,69 31466,53 19375,75 ato all'acciaio n =	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf= W inf cls=	25076 36735 50026 di omogeneiz [GPa] 43925 47982 84338 148736 di omogeneiz	[cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3]	
	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo	1012,37 1106127,30 50025,53 29194,09 11088,98 t=0 495 1477,568 1558314,543 148736 31467 19376 t=infinito (ritiro)	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4] [cm^3] [cm^3] [cm^3]	1106127,30 50025,53 29194,09 11088,98 ato all'acciaio n = Ec = 495,23 1477,57 1558314,54 148735,69 31466,53 19375,75 ato all'acciaio n = Ec =	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf= W inf cls=	25076 36735 50026 di omogeneiz [GPa] 43925 47982 84338 148736	[cm^3] [cm^3] [cm^3] [zazione all'Acciaio [cm^3] [cm^3] [cm^3] [cm^3]	
	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG =	1012,37 1106127,30 50025,53 29194,09 11088,98 t=0 495 1477,568 1558314,543 148736 31467 19376 t=infinito (ritiro)	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizz: [mm] [cm^2] [cm^4] [cm^3] [cm^3] [cm^3] [cm^3]	1106127,30 50025,53 29194,09 11088,98 ato all'acciaio n = Ec = 495,23 1477,57 1558314,54 148735,69 31466,53 19375,75 ato all'acciaio n = Ec = 391,89	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf= W inf cls=	25076 36735 50026 di omogeneiz [GPa] 43925 47982 84338 148736 di omogeneiz [GPa]	[cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3]	
	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = A tot =	1012,37 1106127,30 50025,53 29194,09 11088,98 t=0 495 1477,568 1558314,543 148736 31467 19376 t=infinito (ritiro) 392 1049,286	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizza	1106127,30 50025,53 29194,09 11088,98 ato all'acciaio n = Ec = 495,23 1477,57 1558314,54 148735,69 31466,53 19375,75 ato all'acciaio n = Ec = 391,89 1049,29	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls=	25076 36735 50026 di omogeneiz [GPa] 43925 47982 84338 148736 di omogeneiz [GPa]	[cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3]	
	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot =	1012,37 1106127,30 50025,53 29194,09 11088,98 t=0 495 1477,568 1558314,543 148736 31467 19376 t=infinito (ritiro) 392 1049,286 1156112,292	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizz: [mm] [cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizz: [mm] [cm^2] [cm^4]	1106127,30 50025,53 29194,09 11088,98 ato all'acciaio n = Ec = 495,23 1477,57 1558314,54 148735,69 31466,53 19375,75 ato all'acciaio n = Ec = 391,89 1049,29 1156112,29	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls= Wb sup cls=	25076 36735 50026 di omogeneiz [GPa] 43925 47982 84338 148736 di omogeneiz [GPa] 25237 27005	[cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3]	
	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = A tot =	1012,37 1106127,30 50025,53 29194,09 11088,98 t=0 495 1477,568 1558314,543 148736 31467 19376 t=infinito (ritiro) 392 1049,286	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizza	1106127,30 50025,53 29194,09 11088,98 ato all'acciaio n = Ec = 495,23 1477,57 1558314,54 148735,69 31466,53 19375,75 ato all'acciaio n = Ec = 391,89 1049,29	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls=	25076 36735 50026 di omogeneiz [GPa] 43925 47982 84338 148736 di omogeneiz [GPa]	[cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3]	
	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot =	1012,37 1106127,30 50025,53 29194,09 11088,98 t=0 495 1477,568 1558314,543 148736 31467 19376 t=infinito (ritiro) 392 1049,286 1156112,292	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizz: [mm] [cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizz: [mm] [cm^2] [cm^4]	1106127,30 50025,53 29194,09 11088,98 ato all'acciaio n = Ec = 495,23 1477,57 1558314,54 148735,69 31466,53 19375,75 ato all'acciaio n = Ec = 391,89 1049,29 1156112,29	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls= Wb sup cls=	25076 36735 50026 di omogeneiz [GPa] 43925 47982 84338 148736 di omogeneiz [GPa] 25237 27005	[cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3] [cm^3]	
Calcolo della sezione n	A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac= W inf ac= Sn soletta = mista al tempo yG = A tot = Jx tot = W sup ac= Mista al tempo	1012,37 1106127,30 50025,53 29194,09 11088,98 t=0 495 1477,568 1558314,543 148736 31467 19376 t=infinito (ritiro) 392 1049,286 1156112,292 55553	[cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4] [cm^3] [cm^3] [cm^3] omogeneizza [mm] [cm^2] [cm^4]	1106127,30 50025,53 29194,09 11088,98 ato all'acciaio n = Ec = 495,23 1477,57 1558314,54 148735,69 31466,53 19375,75 ato all'acciaio n = Ec = 391,89 1049,29 1156112,29 55552,75	Wb sup= Wb inf= W inf cls= 5,95 34,63 W sup cls= Wb sup= Wb inf= W inf cls= 13,51 15,25 W sup cls= Wb sup= Wb inf=	25076 36735 50026 di omogeneiz [GPa] 43925 47982 84338 148736 di omogeneiz [GPa] 25237 27005 40127	[cm^3]	

			Travi	niste accia	aio-cls	secondo CN	R 10016/85
	B coll =	2270	[mm]				
	Ssol =	190	[mm]		1200000		
	Spredalle=	60	[mm]	<u> </u>	Bcoll		<i>→</i>
CA	b1 =	400	[mm]		ь b1	45	
	yg ca =	748	[mm]	li li	1	- 1	
	A ca =	4553	[cm^2]		Asup	1	Ssol
	J ca =	165993	[cm ⁴]	-2	Ainf •••	X2	
					Aimong	X1	Spred
					y	1	
					1 b2	10111	
	A sup =	2281	[mm^2]				482
	X2 =	220	[mm]	Htot	-	1	h
Acciao della soletta in	A inf =	2281,35	[mm^2]				
CA	X1 =	80	[mm]				
O/A	yAs =	750	[mm]				\$ s3
	As tot =	4563	[mm^2]		* 10	_ /	
	A9 101 -	+000	[[iiiii 2]		1 b3	2.	
	b2 =	500	[mm]				
	s2 =	30	[mm]				
	S2 = H tot =	600	[mm]				
	s1 =	25	[mm]				
0			[mm]				
Acciaio	h anima	530	[mm]				
Ö	b3 =	750	[mm]				
4	s3 =	40	[mm]		PP =	, -	[kN/m]
	E ac =	206,00	[GPa]		W sup =	9747	[cm^3]
	yg ac =	230	[mm]		W inf =	15644	[cm^3]
	A ac =	583	[cm^2]		Sx=	6762	[cm^3]
	J ac =	360319	[cm ⁴]	ļ	Sx/(Jx*b)=	7,51E-03	[1/cm^2]
<u> </u>				-	45.45		
Calcolo della sezione n	nista al tempo	t=infinito (carich	i permanenti)	n =	15,17		zazione all'Acciaio
	_			Ec =	13,58	[GPa]	
	yG =	423,36	[mm]	423,36			
	A tot =	928,22	[cm^2]	928,22	W sup cls=	22363	[cm^3]
	Jx tot =	954069,31	[cm^4]	954069,31	Wb sup=	24054	[cm^3]
	W sup ac=	54013,05	[cm^3]	54013,05	Wb inf=	37176	[cm^3]
	W inf ac=	22535,48	[cm^3]	22535,48	W inf cls=	54013	[cm^3]
	Sn soletta =	9754,31	[cm^3]	9754,31			
			omogeneizza	ato all'acciaio			
Calcolo della sezione n	nista al tempo	t=0		n =	5,95	di omogeneiz	zazione all'Acciaio
				Ec =	34,63	[GPa]	
	yG =	532	[mm]	531,88			
	A tot =	1393,417	[cm^2]	1393,42	W sup cls=	40817	[cm^3]
	Jx tot =	1298448,204	[cm^4]	1298448,20	Wb sup=	45067	[cm^3]
	W sup ac=	190619	[cm^3]	190619,16	Wb inf=	87663	[cm^3]
	W inf ac=	24412	[cm^3]	24412,31	W inf cls=	190619	[cm^3]
	Sn soletta =	16571	[cm^3]	16570,71			
				ato all'acciaio			
Calcolo della sezione n	nista al tempo	t=infinito (ritiro)		n =	13,51	di omogeneiz	zazione all'Acciaio
		, , ,		Ec =	15,25	[GPa]	
	yG =	436	[mm]	435,80	, -	<u> </u>	
	A tot =	965,135	[cm^2]	965,14	W sup cls=	23972	[cm^3]
	Jx tot =	992930,8822	[cm^4]	992930,88	Wb sup=	25844	[cm^3]
	W sup ac=	60470	[cm^3]	60469,84	Wb inf=	40660	[cm^3]
	W inf ac=	22784	[cm^3]	22784,24	W inf cls=	60470	[cm^3]
			-		** 1111 CIS-	30470	rom ol
	Sn soletta =	10535	[cm^3]	10535,33			
				ato all'acciaio			



9.2 Analisi sismica – Modellazione FEM

Nel modello FEM sismico sono state discretizzate gli elementi delle sottostrutture (fusti delle pile, traversoni) mediante elementi *beam*. Le pile sono considerate incastrate alla base. Per gli elementi di impalcato si è ricorso ad un elemento *beam* unico avente la sezione dell'intero impalcato, omogeneizzato all'acciaio. Si riportano di seguito alcune visualizzazioni del modello.

Y _____X

Figura 33: modello FEM sismico

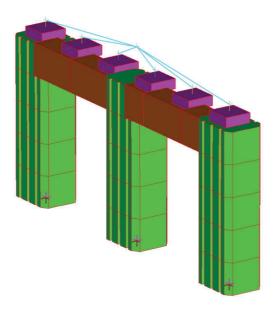


Figura 34: modello FEM sismico - Pila generica

Per gli elementi di appoggio sono stati considerati elementi *connection* che consentono di simulare un grado di rigidezza differente per ogni asse locale in funzione del grado di vincolo offerto dall'appoggio.

I carichi permanenti strutturali e non e il 20% dei carichi accidentali sono stati applicati a livello di densità degli elementi di impalcato. L'analisi sismica è di tipo modale a spettro di risposta con fattore di comportamento q=1.0, per le verifiche degli appoggi, e q=1.5 per le verifiche delle elevazioni. Come riportato al §7.2.5 delle NTC2018, per gli elementi di fondazione sono state considerate le

Relazione tecnica e di calcolo

61

azioni derivanti dagli elementi sovrastanti amplificate di un fattore 1.1 (valido per CD"B"). Si riportano di seguito i carichi considerati in combinazione sismica e la loro applicazione all'elemento beam dell'impalcato:

Impalcato metallico	3755.7	kN
Getto	9028.125	kN
Cordolo	601.875	kN
Permanenti	4622.4	kN
Barriera	321	kN
Accidentali	2262.3	kN
Somma dei carichi	20591.4	kN
	2059140	kg
Sez trasversale impalcato Densità beam	0.888 21700	mq kg/mc

Le sollecitazioni ottenute per ciascuna direzione di applicazione del sisma sono state combinate secondo quando riportato alle NTC2018.

9.2.1 Sollecitazioni agenti in corrispondenza degli appoggi g=1

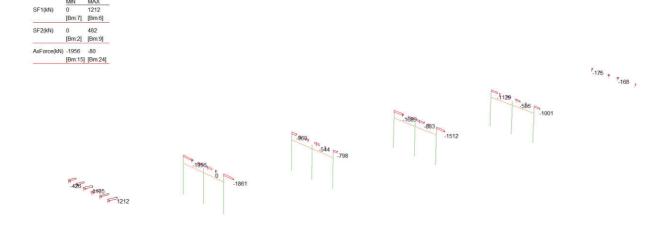


Figura 35: sollecitazioni agli appoggi – q=1 – X+0.3Y

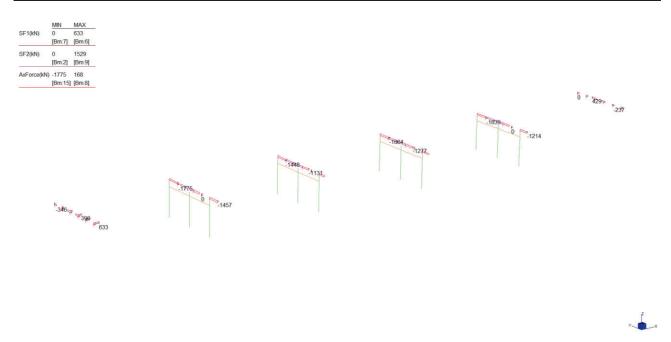


Figura 36: sollecitazioni agli appoggi – q=1 – Y+0.3X

9.2.2 Sollecitazioni agenti sulle sottostrutture q=1.5

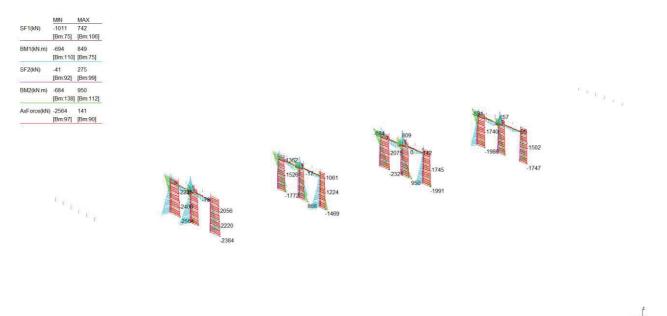


Figura 37: sollecitazioni pile e traverso – q=1.5 – X+0.3Y

ERICERCA VABILITÀ AMBIENTE =

63

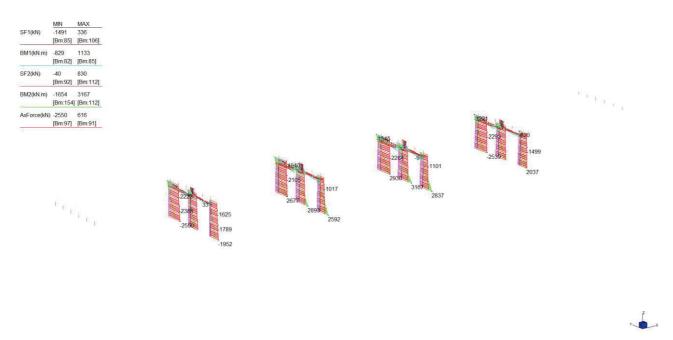


Figura 38: sollecitazioni pile e traverso – q=1.5 – Y+0.3X

Relazione tecnica e di calcolo RTP di progettazione:

64

9.3 Verifiche travi principali

9.3.1 Verifiche tensionali SLU

Le verifiche delle travi principali sono state eseguite per via tensionale, controllando che le tensioni si mantengano al di sotto del limite elastico dei diversi materiali. I limiti di snervamento considerati sono i seguenti:

Acciaio S355: f_{vd}=338MPa Acciaio B450c: f_{yd}=391MPa

Calcestruzzo R_{ck}45: f_{cd}=21.17MPa

L'armatura longitudinale in soletta è pari a 5∮16/m superori e inferiori per i conci di campata e 10∮ 16/m superiori e inferiori per i conci in appoggio.

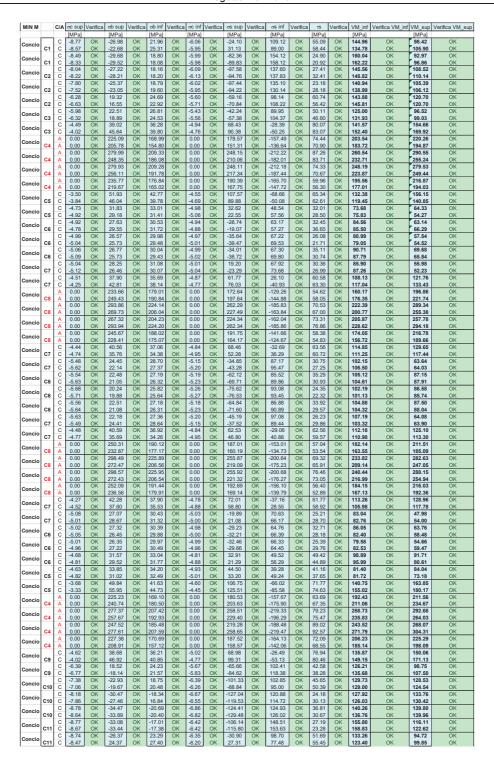
Si riporta a titolo di esempio la verifica del concio C2 in campata.

SOLLECITAZION	TOTALI CO	MBINAZIONE			A1-STR		(v. cella G56 per alti	e combinazio	oni)									
	A11	A11	A11 vento	A11 vento	A11 temperatura	A11 temperatura	A12a	A12a	A12b	A12b	A13	A13	A14	A14				
	+DT	-DT	+DT	-DT	+DT	-DT	+DT	-DT	+DT	-DT	+DT	-DT	+DT	-DT				
Momento																		
Mo	788.4	788.4	788.4	788.4	788.4	788.4	788.4	788.4	788.4	788.4	788.4	788.4	788.4	788.4				
M1	942.9	942.9	942.9	942.9	887.25	887.25	942.9	942.9	942.9	942.9	942.9	942.9	942.9	942.9				
M2	1800.36	1500.84	1206.18	906.66	1305.42	806.22	1205.58	906.06	1205.58	906.06	150.66	-148.86	150.66	-148.86				
Mtot	3531.66	3232.14	2937.48	2637.96	2981.07	2481.87	2936.88	2637.36	2936.88	2637.36	1881.96	1582.44	1881.96	1582.44	Msd max	3531.66	kNm	
Taglio																		
Vo	37.8	37.8	37.8	37.8	37.8	37.8	37.8	37.8	37.8	37.8	37.8	37.8	37.8	37.8				
V1	51.6	51.6	51.6	51.6	48.6	48.6	51.6	51.6	51.6	51.6	51.6	51.6	51.6	51.6				
V2	175.05	146.25	126.18	97.38	135.78	87.78	126.18	97.38	126.18	97.38	14.4	-14.4	14.4	-14.4				
Vtot	264.45	235.65	215.58	186.78	222.18	174.18	215.58	186.78	215.58	186.78	103.8	75	103.8	75	Vsd max	264.45	kN	
Assiale																		
No	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
N1	2062.2	2062.2	2062.2	2062.2	2061.3	2061.3	2062.2	2062.2	2062.2	2062.2	2062.2	2062.2	2062.2	2062.2				
N2	1404	-1404	1404	-1404	2340	-2340	1404	-1404	1404	-1404	1404	-1404	1404	-1404				
Ntot	3466.2	658.2	3466.2	658.2	4401.3	-278.7	3466.2	658.2	3466.2	658.2	3466.2	658.2	3466.2	658.2	Nsd max	4401.3	kN	
tensioni																		
	g1	g2	ε2	ε3	Q1	q1		q3	q4	q5								
	Getto	Perm	Ritiro	[DT]	Acc Q	Acc q		Frenamento		Vento								
σc sup =		-1.03	-3.37	-2.70	-3.40	-1.65	0.00	0.00		0.00								
σb sup =		-14.43	6.27	-15.55	-18.27	-8.86	0.00	0.00		-0.02								
σb inf =		-8.87	10.91	-13.23	-9.11	-4.41	0.00	0.00		-0.01								
ac inf =		-0.38	-2.75	-2.00	-0.65	-0.32	0.00	0.00		0.00								
σs sup =	-63.91	-6.66	13.56	13.57	-3.87	-1.88	0.00	0.00		0.00								
os inf =	37.76	17.17	33.46	23.49	35.39	17.16	0.00	0.00		0.04								
TS =	3.43	2.45	2.21	2.45	12.13	2.45	0.00	0.00	0.00	0.00								
TENSIONI TOTA	LI COMBINA			A1-STR		(v. cella G56 per altre												
	У	A11	A11	A11 vento	A11 vento	A11 temperatura	A11 temperatura	A12a	A12a	A12b	A12b	A13	A13	A14	A14	TENSIONI	MAX	MIN
	[mm]	+DT	-DT	+DT	-DT	+DT	-DT	+DT	-DT	+DT	-DT	+DT	-DT	+DT		MASSIME		
σc sup =	850.00	-14.35	-10.46	-11.89	-8.01	-13.03	-6.56	-11.89		-11.89	-8.01	-7.53	-3.65	-7.53	-3.65	-14.35		-14.35
σb sup =	820.00	-61.96	-39.57	-48.77	-26.38	-54.06	-16.74	-48.76		-48.76	-26.37	-25.34	-2.95	-25.34	-2.95	-61.96		-61.96
σb inf =	680.00	-28.00	-8.95	-21.43	-2.37	-26.44	5.32	-21.42		-21.42	-2.37	-9.75	9.31	-9.75	9.31	-28.00	9.31	-28.00
σc inf =	600.00	-6.61	-3.73	-6.14	-3.26	-7.05	-2.24	-6.14	-3.26	-6.14	-3.26	-5.31	-2.43	-5.31	-2.43	-7.05	-2.24	-7.05
σs sup =	600.00	-77.98	-97.52	-75.19	-94.73	-67.67	-100.24	-75.19		-75.19	-94.73	-70.23	-89.77	-70.23	-89.77	-100.24	-67.67	-100.24
σs inf =	0.00	204.79 32.41	170.96 28.88	179.24	145.41 22.89	187.91 27.23	131.53	179.21	145.38	179.21	145.38	133.85	100.02	133.85	100.02	204.79		100.02
TS =				26.42			21 35	26.42	22 89	26.42	22 89	12 72	9 19	12 72	9 19	32.41	32.41	9.19

Si riporta a titolo di esempio la verifica del concio C8 in appondio

21 Libor			COCIII		VCIIIIC	a aci oo	11010 01	<u> </u>	ישפיי	ggio.								
SOLLECITAZION					A1-STR		(v. cella G56 per											
	A11	A11		A11 vento	A11 temperatura		A12a	A12a	A12b	A12b	A13	A13	A14	A14				
	+DT	-DT	+DT	-DT	+DT	-DT	+DT	-DT	+DT	-DT	+DT	-DT	+DT	-DT				
Momento																		
Mo	-621	-621	-621	-621	-621	-621	-621	-621	-621	-621	-621	-621	-621	-621				
M1	-742.5	-742.5	-742.5	-742.5	-701.85	-701.85	-742.5	-742.5		-742.5	-742.5	-742.5	-742.5	-742.5				
M2	-942.66	-959.94	-555.9	-573.18	-549.54	-578.34	-2490.3	-2507.58	-555.3	-572.58	7.74	-9.54	7.74	-9.54				
Mtot	-2306.16	-2323.44	-1919.4	-1936.68	-1872.39	-1901.19	-3853.8	-3871.08	-1918.8	-1936.08	-1355.76	-1373.04	-1355.76	-1373.04	Msd max	3871.08	kNm	
Taglio																		
V0	241.65	241.65	241.65	241.65	241.65	241.65	241.65	241.65		241.65	241.65	241.65	241.65	241.65				
V1	192	192	192	192	172.8	172.8	192	192		192	192	192	192	192				
V2	434.7	434.7	259.32	259.32	259.32	259.32		259.32		259.32	0	0	0	0				
Vtot	868.35	868.35	692.97	692.97	673.77	673.77	692.97	692.97	692.97	692.97	433.65	433.65	433.65	433.65	Vsd max	868.35	kN	
Assiale	_	_			_	_	_	_	_									
No	0	0	0	0	0	0	0	0		0	0	0	0	40.5				
N1	-16.5	-16.5	-16.5 1404	-16.5	-14.85	-14.85	-16.5	-16.5		-16.5	-16.5	-16.5	-16.5	-16.5	ļ			
N2 Ntot	1404 1387.5	-1404		-1404	2340	-2340	1404	-1404	1404	-1404	1404	-1404	1404	-1404				
	1307.5	-1420.5	1387.5	-1420.5	2325.15	-2354.85	1387.5	-1420.5	1387.5	-1420.5	1387.5	-1420.5	1387.5	-1420.5	Nsd max	2354.85	kN	
tensioni							1387.5				1387.5	-1420.5	1387.5	-1420.5	Nsd max	2354.85	kN	
	g1	g2	٤2	ε3	Q1	q1		q3	q4	q5	1387.5	-1420.5	1387.5	-1420.5	Nsd max	2354.85	kN	
tensioni		g2 Perm	ε2 Ritiro	ε3 DT	Q1 Acc Q	q1 Acc q	Folla	q3 Frenamento	q4 ForzaCent	q5 Vento	1387.5	-1420.5	1387.5	-1420.5	Nsd max	2354.85	kN	
	g1	g2	٤2	ε3	Q1	q1		q3	q4	q5	1387.5	-1420.5	1387.5	-1420.5	Nsd max	2354.85	kN	
tensioni db sup =	g1 Getto	g2 Perm 21.37	ε2 Ritiro 22.19	ε3 DT 21.81	Q1 Acc Q 30.20	q1 Acc q 25.60	Folla 0.00	q3 Frenamento 102.25	q4 ForzaCent 0.00	q5 Vento 0.08	1387.5	-1420.5	1387.5	-1420.5	Nsd max	2354.85	kN	
tensioni ab sup = ab inf =	g1 Getto	g2 Perm 21.37	ε2 Ritiro 22.19	ε3 DT 21.81	Q1 Acc Q 30.20	q1 Acc q 25.60	Folla 0.00	q3 Frenamento 102.25 75.95	q4 ForzaCent 0.00	q5 Vento 0.08	1387.5	-1420.5	1387.5	-1420.5	Nsd max	2354.85	kN	
tensioni db sup =	g1 Getto	g2 Perm 21.37	ε2 Ritiro 22.19	ε3 DT 21.81 22.06 20.01	Q1 Acc Q 30.20 22.43 17.99	q1 Acc q 25.60	Folla 0.00	q3 Frenamento 102.25	q4 ForzaCent 0.00	q5 Vento 0.08	1387.5	-1420.5	1387.5	-1420.5	Nsd max	2354.85	kN	
db sup = db inf = ds sup =	g1 Getto 38.35 -22.06	g2 Perm 21.37 15.84 12.68	ε2 Ritiro 22.19 16.49 13.22	ε3 DT 21.81	Q1 Acc Q 30.20	q1 Acc q 25.60 19.02 15.26	Folla 0.00 0.00 0.00	q3 Frenamento 102.25 75.95 60.93	q4 ForzaCent 0.00 0.00	q5 Vento 0.08 0.06 0.05	1387.5	-1420.5	1387.5	-1420.5	Nsd max	2354.85	kN	
ab sup = ab inf = as sup = as inf =	g1 Getto 38.35 -22.06 13.59	g2 Perm 21.37 15.84 12.68 -10.99 9.72	ε2 Ritiro 22.19 16.49 13.22 -11.24 0.00	ε3 DT 21.81 22.06 20.01 21.06	Q1 Acc Q 30.20 22.43 17.99 -15.29 13.51	q1 Acc q 25.60 19.02 15.26 -12.97	Folia 0.00 0.00 0.00 0.00 0.00	q3 Frenamento 102.25 75.95 60.93 -51.78	q4 ForzaCent 0.00 0.00 0.00 0.00	q5 Vento 0.08 0.06 0.05 -0.04	1387.5	-1420.5	1387.5	-1420.5	Nsd max	2354.85	kN	
tensioni ab sup = ab inf = as sup = as inf = as =	g1 Getto 38.35 -22.06 13.59	g2 Perm 21.37 15.84 12.68 -10.99 9.72	22.19 22.19 16.49 13.22 -11.24	21.81 22.06 20.01 21.06 0.00	Q1 Acc Q 30.20 22.43 17.99 -15.29 13.51	q1 Acc q 25.60 19.02 15.26 -12.97 10.93	Folla 0.00 0.00 0.00 0.00 0.00 0.00	q3 Frenamento 102.25 75.95 60.93 -51.78 0.00	q4 ForzaCent 0.00 0.00 0.00 0.00	q5 Vento 0.08 0.06 0.05 -0.04	A12b	-1420.5	1387.5	-1420.5	Nsd max	2354.85		MIN
tensioni ab sup = ab inf = as sup = as inf = as =	g1 Getto 38.35 -22.06 13.59 LI COMBINAZIO y	g2 Perm 21.37 15.84 12.68 -10.99 9.72 NE A11 +DT	£2 Ritiro 22.19 16.49 13.22 -11.24 0.00 A11 -DT	22.06 20.01 21.81 22.06 20.01 21.06 0.00 A1-STR A11 vento +DT	Q1 Acc Q 30.20 22.43 17.99 -15.29 13.51 A11 vento	q1 Acc q 25.60 19.02 15.26 -12.97 (v. cella G56 per altra A11 temperatura +DT	Folla 0.00 0.00 0.00 0.00 0.00 0.00 e combinazioni) A11 temperatura -DT	q3 Frenamento 102.25 75.95 60.93 -51.78 0.00 A12a +DT	94 ForzaCent 0.00 0.00 0.00 0.00 0.00	q5 Vento 0.08 0.06 0.05 -0.04 0.00	A12b -DT	A13 +DT	A13 -DT	A14 +DT	A14 -DT	TENSION MASSIME	MAX	
tensioni ab sup = ab inf = as sup = as inf = as =	g1 Getto 38.35 -22.06 13.59 LI COMBINAZIO	g2 Perm 21.37 15.84 12.68 -10.99 9.72 NE	22.19 22.19 16.49 13.22 -11.24 0.00	£3 DT 21.81 22.06 20.01 21.06 0.00 A1-STR A11 vento	Q1 Acc Q 30.20 22.43 17.99 -15.29 13.51	q1 Acc q 25.60 19.02 15.26 -12.97 10.93 (v. cella G56 per altra A11 temperatura	Folla 0.00 0.00 0.00 0.00 0.00 0.00 e combinazioni) A11 temperatura -DT	q3 Frenamento 102.25 75.95 60.93 -51.78 0.00	94 ForzaCent 0.00 0.00 0.00 0.00 0.00	q5 Vento 0.08 0.06 0.05 -0.04 0.00	A12b	A13	A13	A14	A14 -DT	TENSION MASSIME	MAX	
tensioni ab sup = ab inf = as sup = as inf = rs = TENSIONI TOTA	g1 Getto 38.35 -22.06 13.59 LI COMBINAZIO y	g2 Perm 21.37 15.84 12.68 -10.99 9.72 NE A11 +DT	£2 Ritiro 22.19 16.49 13.22 -11.24 0.00 A11 -DT	22.06 20.01 21.81 22.06 20.01 21.06 0.00 A1-STR A11 vento +DT	Q1 Acc Q 30.20 22.43 17.99 -15.29 13.51 A11 vento	q1 Acc q 25.60 19.02 15.26 -12.97 (v. cella G56 per altra A11 temperatura +DT	Folla 0.00 0.00 0.00 0.00 0.00 0.00 e combinazioni) A11 temperatura -DT	q3 Frenamento 102.25 75.95 60.93 -51.78 0.00 A12a +DT	94 ForzaCent 0.00 0.00 0.00 0.00 0.00	q5 Vento 0.08 0.06 0.05 -0.04 0.00	A12b -DT	A13 +DT	A13 -DT	A14 +DT	A14 -DT	TENSION MASSIME	MAX	
tensioni ab sup = ab inf = as sup = as inf = rs = TENSIONI TOTA	g1 Getto 38.35 -22.06 13.59 LI COMBINAZIO y [mm] 820.00	g2 Perm 21.37 15.84 12.68 -10.99 9.72 NE A11 +DT 149.79	£2 Ritiro 22.19 16.49 13.22 -11.24 0.00 A11 -DT 118.38	21.81 22.06 20.01 21.06 0.00 A1-STR A11 vento +DT 119.14 92.67	Q1 Acc Q 30.20 22.43 17.99 -15.29 13.51 A11 vento -DT 87.72	q1 Acc q 25.60 19.02 15.26 -12.97 10.93 (v. cella GS6 per altra A11 temperatura +DT 126.36	Folia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	q3 Frenamento 102.25 75.95 60.93 -51.78 0.00 A12a +DT 272.47	q4 ForzaCent 0.00 0.00 0.00 0.00 0.00 A12a -DT 241.06	q5 Vento 0.08 0.06 0.05 -0.04 0.00 A12b +DT 119.09	A12b -DT 87.68	A13 +DT 74.46	A13 -DT 43.05	A14 +DT 74.46	A14 -DT 43.05	TENSION MASSIME 272.47	MAX 272.47 206.56	43.05
tensioni ab sup = ab inf = as sup = as inf = rs = TENSIONI TOTA ab sup = ab inf = ab sup = ab sup =	g1 Getto 38.35 -22.06 13.59 LI COMBINAZIO y [mm] 820.00 680.00 600.00	92 Perm 21.37 15.84 12.68 -10.99 9.72 NE A11 +DT 149.79	22 Ritiro 22.19 16.49 13.22 -11.24 0.00 A11 -DT 118.38 83.67	22.06 20.01 21.81 22.06 20.01 21.06 0.00 A1.STR A11 vento +DT 119.14	Q1 Acc Q 30.20 22.43 17.99 -15.29 13.51 A11 vento -DT 87.72 60.90 99.92	q1 Acc q 25.60 19.02 15.26 11.297 10.93 (v. cella G56 per altri +DT 126.36 10.84 135.40	Folia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	q3 Frenamento 102.25 75.95 60.93 -51.78 0.00 A12a +DT 272.47	q4 ForzaCent 0.00 0.00 0.00 0.00 0.00 A12a -DT 241.06 174.80 190.28	q5 Vento 0.08 0.06 0.05 -0.04 0.00 A12b +DT 119.09 92.63 127.70	A12b -DT 87.68 60.87 98.89	A13 +DT 74.46 59.48	A13 -DT 43.05 27.71 72.30	A14 +DT 74.46 59.48	A14 -DT 43.05 27.71 72.30	TENSION MASSIME 272.47 206.56 219.09	MAX 272.47 206.56 219.09	43.05 27.71 72.30
tensioni cb sup = cb inf = cs sup = cs inf = rs = TENSION TOTA cb sup = cb inf =	g1 Getto 38.35 -22.06 13.59 LI COMBINAZIO y [mm] 820.00 680.00 600.00 0.00	g2 Perm 21.37 15.84 12.68 -10.99 9.72 NE A11 +DT 149.79	£2 Ritiro 22.19 16.49 13.22 -11.24 0.00 A11 -DT 118.38	21.81 22.06 20.01 21.06 0.00 A1-STR A11 vento +DT 119.14 92.67	Q1 Acc Q 30.20 22.43 17.99 -15.29 13.51 A11 vento -DT 87.72	q1 Acc q 25.60 19.02 15.26 -12.97 10.93 (v. cella GS6 per altra A11 temperatura +DT 126.36	Folia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	q3 Frenamento 102.25 75.95 60.93 -51.78 0.00 A12a +DT 272.47	q4 ForzaCent 0.00 0.00 0.00 0.00 0.00 A12a -DT 241.06	q5 Vento 0.08 0.06 0.05 -0.04 0.00 A12b +DT 119.09	A12b -DT 87.68	A13 +DT 74.46	A13 -DT 43.05	A14 +DT 74.46	A14 -DT 43.05 27.71 72.30	TENSION MASSIME 272.47 206.56 219.09 -175.23	MAX 272.47 206.56 219.09 -44.63	43.05

Nelle tabelle che seguono sono riassunte le verifiche relative a tutti i conci.


		C/A	σc sup [MPa]	Verifica	(MPa)	Verifica	ob inf [MPa]	Verifica	σc inf [MPa]	Verifica	σs sup [MPa]	Verifica	os inf [MPa]	Verifica	τs [MPa]	Verifica	VM_inf [MPa]	Verifica VM_int	VM_sup [MPa]	ventica VM_
	П	С	-9.96	OK	-33.32	ОК	19.02	OK	-6.23	ОК	-25.09	OK	122.71	ОК	55.09	OK	155.45	OK	98.66	OK
oncio	C1	C	-8.60	OK	-22.82	OK	25.24	OK	-5.95	OK	31.11	OK	89.31	OK	58.44	OK	134.99	OK	105.90	OK
oncio	C1	C	-15.44	OK OK	-67.55	OK OK	-28.03 -27.43	OK	-6.76	OK OK	-86.96 -94.13	OK OK	237.58 237.96	OK OK	24.90	OK OK	241.47	OK OK	97.06	OK OK
	C1	C	-14.96 -13.93	OK	-65.80 -59.77	OK	-27.43	OK	-6.70 -6.97	OK	-94.13 -102.79	OK	202.16	OK	20.92	OK	240.70	OK OK	100.86	OK OK
oncio	C2	C	-14.35	OK	-61.96	OK	-28.00	OK	-7.05	OK	-100.24	OK	204.79	OK	32.41	OK	212.34	OK	114.89	OK
oncio		С	-14.32	OK	-61.28	OK	-27.46	OK	-6.98	OK	-103.16	OK	206.22	OK	23.18	OK	210.10	OK	110.70	OK
	C2	С	-14.64	OK	-62.15	OK	-27.69	OK	-6.99	OK	-100.44	OK	207.48	OK	28.18	OK	213.14	OK	111.68	OK
oncio	C2	C	-12.07 -13.18	OK OK	-42.87 -50.66	OK OK	-17.01 -21.32	OK OK	-6.47 -6.68	OK OK	-64.38 -76.64	OK OK	158.35 177.19	OK OK	60.74 56.42	OK OK	190.11 202.35	OK OK	123.34 124.19	OK OK
		C	-11.22	OK	-36.09	OK	17.75	OK	-6.15	OK	-46.54	OK	147.09	OK	50.11	OK	170.79	OK	98.48	OK
oncio	C3	С	-12.28	OK	-44.24	OK	-16.84	OK	-6.35	OK	-62.06	OK	169.40	OK	46.60	OK	187.64	OK	101.82	OK
oncio		С	-7.41	OK	26.04	OK	27.55	OK	-5.51	OK	65.07	OK	50.48	OK	80.07	OK	147.59	OK	153.20	OK
	C3	C A	-5.95 0.00	OK OK	31.71 191.66	OK OK	32.93 144.43	OK OK	-5.20 0.00	OK OK	87.74 159.07	OK OK	-21.86 -139.03	OK OK	83.07 74.44	OK OK	145.54	OK OK	168.52 204.76	OK OK
ncio	C4	A	0.00	OK	164.24	OK	124.27	OK	0.00	OK	127.08	OK	-113.71	OK	70.90	OK	167.36	OK	176.71	OK
ncio		Α	0.00	OK	231.70	OK	173.84	OK	0.00	OK	219.97	OK	-185.55	OK	87.26	OK	239.31	OK	266.89	OK
	C4	A	0.00	OK OK	211.34	OK OK	158.88 173.84	OK OK	0.00	OK OK	188.46 219.97	OK	-161.58 -185.55	OK OK	83.71	OK OK	217.10	OK OK	237.79 254.87	OK
ncio	C4	A	0.00	OK	214.38	OK	161.11	OK	0.00	OK	192.98	OK	-164.39	OK	74.33 70.67	OK	204.96	OK	228.53	OK
mala	-	A	0.00	OK	199.81	OK	150.42	OK	0.00	OK	169.40	OK	-145.85	OK	59.96	OK	179.04	OK	198.70	OK
ncio	C4	Α	0.00	OK	177.30	OK	133.87	OK	0.00	OK	143.02	OK	-124.32	OK	56.30	OK	158.01	OK	173.10	OK
ncio		С	-5.19	OK	36.02	OK	35.75	OK	-5.00	OK	104.87	OK	-36.27	OK	65.34	OK	118.85	OK	154.30	OK
	C5	С	-6.09 -9.54	OK OK	31.46 20.08	OK OK	31.70 24.63	OK OK	-5.21 -5.69	OK OK	86.78 28.41	OK OK	21.21 100.91	OK OK	62.61 32.01	OK OK	110.50	OK OK	138.89 62.29	OK OK
ncio	C5	C	-10.11	OK	-24.29	OK	23.14	OK	-5.79	OK	18.20	OK	114.20	OK	28.50	OK	124.41	OK	52.61	OK
ncio		С	-10.30	OK	-25.79	OK	22.52	OK	-5.80	OK	-33.85	OK	118.73	OK	32.45	OK	131.36	OK	65.62	OK
iicio	C6	С	-9.84	OK	-22.28	OK	23.61	OK	-5.71	OK	-24.03	OK	109.53	OK	36.65	OK	126.60	OK	67.88	OK
ncio	C6	C	-10.65 -10.98	OK OK	-28.17 -30.29	OK OK	22.15 21.81	OK OK	-5.86 -5.92	OK OK	-40.89 -44.86	OK OK	125.79 130.94	OK OK	26.08 21.71	OK OK	133.66 136.23	OK OK	60.93 58.53	OK OK
	- 00	C	-10.98	OK	-24.83	OK	22.08	OK	-5.78	OK	-38.70	OK	118.45	OK	35.11	OK	135.23	OK	72.09	OK
ncio	C6	С	-10.48	OK	-27.79	OK	21.64	OK	-5.86	OK	-43.67	OK	125.47	OK	30.74	OK	136.31	OK	68.87	OK
ncio		С	-9.99	OK	-24.03	OK	23.08	OK	-5.53	OK	-20.20	OK	126.25	OK	30.36	OK	136.77	OK	56.33	OK
	C7	C	-10.40 -7.27	OK OK	-27.05 24.92	OK OK	22.21	OK OK	-5.58 -5.28	OK OK	-26.47 59.35	OK OK	135.81 58.64	OK OK	26.99	OK OK	143.63	OK OK	53.72 120.55	OK OK
ncio	C7	C	-6.14	OK	28.79	OK	31.72	OK	-5.11	OK	74.06	OK	31.78	OK	63.30	OK	114.16	OK	132.32	OK
ncio		A	0.00	OK	186.26	OK	143.46	OK	0.00	OK	143.87	OK	-107.24	OK	54.62	OK	143.00	OK	172.18	OK
iicio	C8	A	0.00	OK	208.60	OK	160.21	OK	0.00	OK	172.85	OK	-125.91	OK	58.05	OK	161.13	OK	199.97	OK
ncio	С8	A	0.00	OK OK	241.46 223.62	OK OK	184.84 171.46	OK OK	0.00	OK OK	230.48 199.50	OK OK	-161.48 -142.42	OK OK	70.53 67.00	OK OK	202.49 183.71	OK OK	260.85 230.79	OK OK
		A	0.00	OK	221.61	OK	169.95	OK	0.00	OK	196.59	OK	-140.81	OK	73.31	OK	189.60	OK	234.03	OK
ncio	C8	Α	0.00	OK	241.46	OK	184.84	OK	0.00	OK	230.48	OK	-161.48	OK	76.86	OK	209.28	OK	266.16	OK
ncio		A	0.00	OK	205.00	OK	157.52	OK	0.00	OK	167.07	OK	-122.77	OK	58.38	OK	159.05	OK	195.28	OK
	C8	A C	0.00 -6.19	OK OK	184.74 27.23	OK OK	142.32 31.12	OK OK	0.00 -5.14	OK OK	137.65 66.64	OK OK	-104.38 38.21	OK OK	54.83 63.56	OK OK	141.12 116.54	OK OK	167.24 128.69	OK OK
ncio	C7	C	-7.10	OK	22.74	OK	27.38	OK	-5.31	OK	50.13	OK	64.04	OK	60.72	OK	123.13	OK	116.50	OK
ncio		С	-11.10	OK	-32.70	OK	20.51	OK	-5.72	OK	-38.26	OK	153.30	OK	30.75	OK	162.29	OK	65.57	OK
iicio	C7	С	-11.31	OK	-35.08	OK	19.27	OK	-5.76	OK	-46.62	OK	162.37	OK	27.25	OK	169.09	OK	66.34	OK
ncio	C6	C	-10.87 -10.98	OK OK	-32.61 -33.90	OK OK	19.00 18.24	OK OK	-6.01 -6.04	OK OK	-67.03 -74.53	OK OK	140.55 145.13	OK OK	35.29 30.93	OK OK	153.27 154.70	OK OK	90.72 91.78	OK OK
	- 00	C	-12.09	OK	-40.31	OK	17.78	OK	-6.21	OK	-81.31	OK	159.30	OK	24.35	OK	164.78	OK	91.60	OK
ncio	C6	С	-11.58	OK	-37.57	OK	17.78	OK	-6.14	OK	-81.69	OK	154.39	OK	22.32	OK	159.16	OK	90.37	OK
ncio		С	-11.11	OK	-34.00	OK	18.87	OK	-6.05	OK	-70.00	OK	144.23	OK	33.92	OK	155.74	OK	91.39	OK
	C6	С	-11.74 -11.55	OK OK	-38.13 -36.50	OK OK	18.12 19.15	OK OK	-6.16 -5.79	OK OK	-77.12 -48.69	OK OK	153.92 166.72	OK OK	29.57	OK OK	162.21 172.80	OK OK	92.58 66.59	OK OK
ncio	C7	C	-10.74	OK	-31.02	OK	20.31	OK	-5.69	OK	-40.76	OK	151.21	OK	29.86	OK	159.81	OK	65.85	OK
ncio		С	-6.13	OK	27.11	OK	30.98	OK	-5.15	OK	60.70	OK	42.10	OK	62.56	OK	116.24	OK	124.20	OK
iicio	C7	С	-7.17	OK	22.18	OK	27.02	OK	-5.33	OK	44.58	OK	69.06	OK	59.57	OK	124.16	OK	112.40	OK
ncio	С8	A	0.00	OK OK	206.70 188.48	OK OK	157.73 144.19	OK OK	0.00	OK OK	161.03 133.74	OK OK	-130.93 -112.25	OK OK	57.04 53.54	OK OK	164.02 145.60	OK OK	188.92 162.74	OK OK
		A	0.00	OK	243.38	OK	184.95	OK	0.00	OK	223.03	OK	-172.73	OK	69.32	OK	210.36	OK	253.29	OK
ncio	C8	A	0.00	OK	223.44	OK	170.14	OK	0.00	OK	189.88	OK	-150.40	OK	65.91	OK	188.82	OK	221.55	OK
ncio		A	0.00	OK	243.38	OK	184.95	OK	0.00	OK	223.03	OK	-172.73	OK	76.46	OK	217.65	OK	259.38	OK
	C8	A	0.00	OK OK	226.97	OK OK	172.77 156.94	OK OK	0.00	OK OK	194.23 165.01	OK OK	-153.25 -132.58	OK OK	73.05 56.40	OK OK	198.74	OK OK	231.81 191.76	OK OK
ncio	C8	A	0.00	OK	190.55	OK	145.73	OK	0.00	OK	141.73	OK	-116.49	OK	52.89	OK	148.19	OK	168.76	OK
ncio		С	-6.08	OK	28.45	OK	31.72	OK	-5.10	OK	70.11	OK	34.05	OK	61.77	OK	112.28	OK	127.91	OK
	C7	С	-7.09	OK	24.71	OK	28.04	OK	-5.27	OK	56.50	OK	58.70	OK	58.92	OK	117.74	OK	116.65	OK
ncio	C7	C	-11.17 -11.39	OK OK	-30.77 -31.22	OK OK	22.58 23.33	OK OK	-5.64 -5.65	OK OK	-23.53 -19.12	OK OK	142.24 141.22	OK OK	25.21 28.70	OK OK	148.79 149.72	OK OK	49.60 53.26	OK OK
	01	C	-10.72	OK	-28.35	OK	22.44	OK	-5.88	OK	-19.12	OK	123.68	OK	32.71	OK	136.04	OK	66.38	OK
ncio	C6	С	-10.47	OK	-27.35	OK	22.08	OK	-5.84	OK	-37.23	OK	122.47	OK	28.18	OK	131.84	OK	61.38	OK
ncio	[_]	С	-10.82	OK	-29.01	OK	22.37	OK	-5.88	OK	-37.72	OK	126.34	OK	25.39	OK	133.78	OK	57.94	OK
	C6	C	-11.34 -10.92	OK OK	-31.41	OK OK	22.75	OK OK	-5.94 -5.83	OK OK	-35.49 26.82	OK OK	130.38	OK OK	29.76 49.42	OK OK	140.20	OK OK	62.58 89.71	OK
ncio	C6	С	-11.90	OK	-33.40	OK	23.67	OK	-6.00	OK	-22.16	OK	129.46	OK	44.89	OK	151.01	OK	80.84	OK
ncio		С	-10.05	OK	21.74	OK	25.66	OK	-5.73	OK	39.73	OK	98.36	OK	41.16	OK	121.48	OK	81.62	OK
	C5	С	-11.22	OK	-29.32	OK	24.08	OK	-5.91	OK	27.87	OK	118.97	OK	37.65	OK	135.67	OK	70.92	OK
ncio	C5	C	-7.59 -5.97	OK OK	33.96 38.69	OK OK	32.49 35.46	OK OK	-5.36 -5.08	OK OK	102.27 121.76	OK OK	-33.69 -50.43	OK OK	71.77 74.63	OK OK	128.79 138.74	OK OK	160.97 177.57	OK OK
no'-	- 55	A	0.00	OK	166.41	OK	125.88	OK	0.00	OK	146.20	OK	-125.20	OK	63.69	OK	166.86	OK	183.15	OK
ncio	C4	Α	0.00	OK	197.03	OK	148.38	OK	0.00	OK	178.13	OK	-151.76	OK	67.35	OK	191.41	OK	212.92	OK
ncio		A	0.00	OK	236.00	OK	177.01	OK	0.00	OK	234.37	OK	-196.49	OK	79.23	OK	239.67	OK	271.59	OK
	C4	A	0.00	OK OK	218.47 215.77	OK OK	164.12 162.14	OK OK	0.00	OK OK	206.53 200.75	OK OK	-174.65 -170.94	OK OK	75.47 89.02	OK OK	218.15 230.21	OK OK	244.42 253.13	OK OK
ncio	C4	Ä	0.00	OK	235.97	OK	176.98	OK	0.00	OK	234.35	OK	-196.47	OK	92.57	OK	253.59	OK	283.94	OK
ncio	П	Α	0.00	OK	187.04	OK	141.04	OK	0.00	OK	163.98	OK	-141.85	OK	72.09	OK	188.98	OK	206.11	OK
	C4	A	0.00	OK	168.60	OK	127.48	OK	0.00	OK	135.04	OK	-119.80	OK	68.55	OK	168.66	OK	179.81	OK
ncio	С9	C	-7.12 -5.81	OK OK	25.32 32.65	OK OK	27.82 33.99	OK OK	-5.64 -5.28	OK OK	65.26 96.27	OK OK	43.94 -26.17	OK OK	76.94 80.46	OK OK	140.32 141.80	OK OK	148.38 169.38	OK OK
	03	C	-12.77	OK	-47.62	OK	-20.06	OK	-6.69	OK	-71.76	OK	167.26	OK	42.58	OK	182.80	OK	102.91	OK
ncio	С9	С	-13.44	OK	-54.01	OK	-23.91	OK	-6.86	OK	-90.78	OK	186.17	OK	38.28	OK	197.62	OK	112.41	OK
ncio		С	-13.87	OK	-59.16	OK	-31.92	OK	-7.86	OK	-110.13	OK	158.50	OK	45.65	OK	177.12	OK	135.58	OK
	C10	С	-13.11	OK	-53.32	OK	-28.28	OK	-7.65	OK	-97.14	OK	146.31	OK	50.39	OK	170.36	OK	130.59	OK
ncio	C10	C	-15.94 -15.28	OK OK	-73.79 -68.86	OK OK	-40.65 -37.59	OK OK	-8.41 -8.22	OK OK	-138.14 -129.85	OK OK	188.13 179.15	OK OK	24.18 30.13	OK OK	192.74 186.60	OK OK	144.35 139.94	OK OK
	010	C	-13.92	OK	-63.43	OK	-34.80	OK	-8.05	OK	-129.85	OK	179.15	OK	36.81	OK	181.93	OK	146.13	OK
ncio	C10	С	-14.62	OK	-67.56	OK	-37.21	OK	-8.18	OK	-137.73	OK	178.59	OK	30.67	OK	186.32	OK	147.62	OK
ncio		С	-13.35	OK	-58.62	OK	-27.65	OK	-7.20	OK	-110.76	OK	197.73	OK	27.19	OK	203.26	OK	120.36	OK
	C11	С	-14.32	OK	-64.96	OK	-31.13	OK	-7.34	OK	-121.32	OK	213.69	OK	23.28	OK	217.46	OK	127.85	OK
		C	-9.60 -8.49	OK OK	-30.97 24.23	OK OK	20.93 27.33	OK OK	-6.53 -6.21	OK OK	-31.99 27.28	OK OK	107.20 77.74	OK OK	51.69 55.45	OK OK	139.67 123.56	OK OK	95.08 99.85	OK OK

Legenda:

C/A: concio di campata o di appoggio

 $\sigma_{c,sup}$: tensione al lembo superiore del calcestruzzo

 $\sigma_{\text{c,inf}}\!\!:$ tensione al lembo inferiore del calcestruzzo

 $\sigma_{b,sup}$: tensione in corrispondenza delle armature in soletta layer superiore

σ_{b,inf}: tensione in corrispondenza delle armature in soletta layer inferiore

σ_{s,sup}: tensione in corrispondenza del lembo superiore della trave in acciaio

 $\sigma_{s,inf}$: tensione in corrispondenza del lembo inferiore della trave in acciaio

τ_s: tensione di taglio in anima

VM_{inf}: tensione di Von Mises al lembo inferiore (collegamento con l'anima)

VM_{sup}: tensione di Von Mises al lembo superiore (collegamento con l'anima)

Relazione tecnica e di calcolo

67

9.3.2 Verifiche di instabilità a taglio e di interazione taglio-momento

Si riportano di seguito le verifiche di instabilità a taglio e di interazione taglio-momento secondo EN1993-1-5 §5.1-5.2-5.3-5.4-5.5.

Si riporta a titolo di esempio la verifica del concio C1.

Posistonza a taglio	•										
Resistenza a taglio RESISTENZA ALL'INSTABILITA' PER TAGLIO			Caratte	eristich	ne sezi	ione composta					
Reazione appoggio	1091.55	kN	B ptb sup	_	500	sp. ptb sup	64	mm			
n campate	4		Braddoppio		0	sp. Raddoppio		mm			
Ved	1091.55	kN	sp. Anima		25	H tot	600	mm			
			B raddoppio		0	sp. raddoppio	0	mm			
hw	468 mm		B ptb inf		750	sp. Ptb inf	68	mm			
tw	25	mm									
hw/tw	18.72		Af		3000						
Aw	11700	mm2	Aw		1700	mm2					
	6255		Af/Aw calcolo τm		7.094	14D-					
tipo acciaio fv	S355 355	MPa	Carcolo till	9	93.29	IVIPa					
γ m0	1.05	IVIF d									
γ m1	1.1										
Tipo di analisi	е				λ _w =	0.26	parametro d	i snellezza a taglio			
tipo di montante	2		> 1. montante ri	gido	χ _c =	1.257		di instabilità elastica			
Vbw,Rd	2741	kN	2. altro tipo di monta			1.257		di instabilità elastica			
V bw,ku	2/41	KIN	2. aitio tipo di monta	inte	χ _c =	1.237	coefficiente	ui ilistabilita elastica			
Ved < Vbw,Rd	0.398	VERIFICATO	RESISTENZA ALL'INS	TABILIT	ΓA' PEI	R TAGLIO					
			e geometriche								
H tot tr				mm							
				mm							
ptb sup	b sup										
	t sup			mm							
ptb sup impilaggio	b sup		0	mm							
	t sup		0	mm							
anima	h w		468.00	mm							
	t w		25	mm							
ptb inf impilaggio	b inf		0	mm							
	t inf		0	mm							
ptb inf	b inf		750	mm							
	tinf		68								
			Materiale								
fy		355	MPa								
			IVIF a								
3		0.81									
		So	llecitazioni								
Ved		1092	kN								
Ned		2356	kN								
Med		4569	kNm								
MRd		9571	kNm								
		Sollecitazio	oni sulle piattak	oand	de						
Acciaio						lavoro dell	la niattah	ando			
		210	Ì	ta550	ui	lavoro dell	-	anut			
σ sup		210	0.62	η1							
σ inf		-182	-0.54	η1							

	Shear buckling re	sitence - cont	tributo anima
a	2625	mm	
η	1.2		
kτ	5.47		
λw	0.26		
χw	1.200		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
VEd	1091.550	kN	
Vbw,Rd	2616.03	kN	
v o v o, na	2010.03	KIV	
VEDIEIGA			
VERIFICA	0.40		
<u>η3</u>	0.42	<u><1</u>	INTERAZIONE
VEd/Vb,Rd	VERIFICATO	MA CALCOLARE	INTERAZIONE
	Vanifi-	o opine . fl.	900
	verific	a anima + flar	ıge
	200-		
C =	2227	mm	514000 4 5 C5 0/4)
Vbf, Rd =	62.08	kN	EN1993-1-5:§5,2(1)
NAC 4 /NAE D4	0.0		
Med /Mf,Rd = Vbf,Rd limite =	0.8 1562.14	valore limite per	r lo flango
Vbf, Rd =	62.08	valore illilite per	Te Hallge
VDI, Ru –	02.00		
Vb, Rd = (Vbw, Rd +Vbf, Rd)=	2678.11	kN	
75, Na = (750, Na : 751, Na)=	2070.11	KIV	
VERIFICA			
<u>n3</u>	0.41	<1	
VEd/Vb,Rd		MA CALCOLARE	INTERAZIONE
	tes	t interazione	
<u>η3</u>		<	0.5
MEd/Mf,Rd=	0.79	<	1
	NON SERVE INTERAZIONE		
	\/ou:f: TA /	CHO PRESSOR	TESSIONE
	Verifica a TAC	LIU-PKESSUF	LESSIUNE
200 7 1 (1)		LAI	
Mf,Rd (k)	5777.37	kNm	
Med	4568.73	kNm	
Mpl,Rd Ved	9570.70	kNm	
Vea Vbw,Rd	1091.55 2678.11	kN kN	
vuw,nd	20/0.11	KIN	
VERIFICA			
/	0.49	-1	VERIFICATO
$\frac{1}{\eta_1} + \left(1 - \frac{M_{f,Rd}}{M_{g,Rd}}\right) \left(2 - \frac{1}{\eta_3} - 1\right)^2$	0.49	<u><1</u>	VERIFICATO
$M_{pl,Rd}$			
no control of the con			

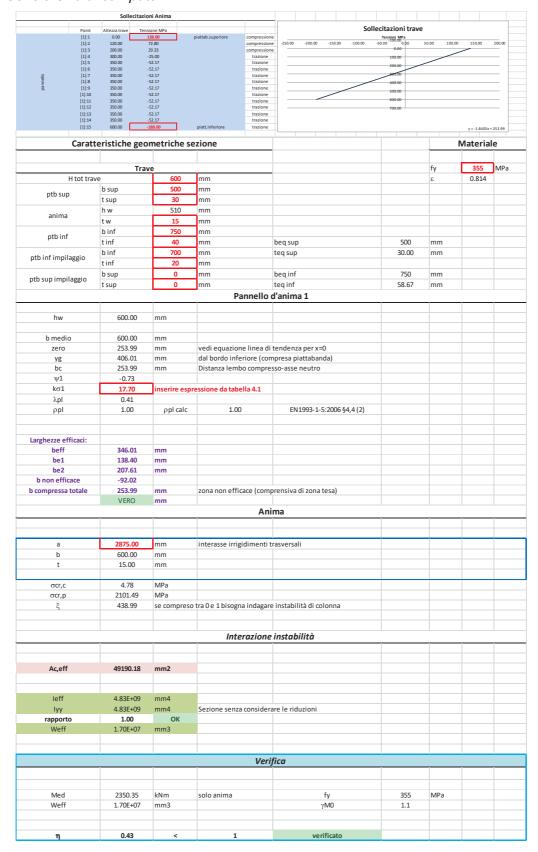
69

Nella tabella che segue sono riportate le verifiche di tutti i conci.

MAX M	Ved < Vbw,Rd A/C 0.23 0.25 0.25 0.11 0.09 0.12 0.12 0.12 0.12 0.27 0.25 0.25 0.20 0.36 0.36 0.36 0.36 0.36 0.36 0.35	A/C 0.25 0.26 0.11 0.09 0.13 0.15 0.11 0.13 0.28 0.26 0.23 0.21 0.36 0.38 0.37	1 - Muse (56-1) 0.37 0.28 0.87 0.90 0.80 0.76 0.85 0.81 0.46 0.53 0.56
Concio C1 922.25 784.80 4381.05 Concio C2 3591.63 280.95 4399.95 Concio C2 3591.63 299.95 4401.30 Concio C2 3595.83 229.95 4402.65 Concio C3 2614.47 495.60 4399.95 Concio C3 2616.42 495.60 4399.95 Concio C3 2616.42 495.60 4399.95 Concio C3 2616.42 503.85 4399.95 Concio C3 2616.42 503.85 4399.95 Concio C4 400.87 970.65 2350.80 Concio C4 400.87 970.65 2350.80 Concio C5 2729.85 924.45 2350.80 Concio C6 4306.87 1091.55 2356.20 Concio C7 400.87 734.13 2349.45 Concio C8 366.82 781.83 2349.45 Concio C9 1707.84 308.13 4399.95 Concio C6 1707.84 308.13 4399.95 Concio C7 1827.12 292.96 4399.95 Concio C7 1827.12 292.96 4399.95 Concio C7 1827.12 292.96 4399.95 Concio C8 2977.77 758.28 2348.10 Concio C9 272.37 368.18 4399.95 Concio C9 386.24 16 657.63 4399.95 Concio C9 386.24 16 657.63 4399.95 Concio C9 272.37 368.18 4399.95 Concio C9 386.24 16 657.63 4399.95 Concio C9 386.24 16 657.63 4399.95 Concio C9 386.24 177.78 38.98 29.95 Concio C9 386.24 16 657.63 4399.95 Concio C9 386.24 177.78 38.98 29.95 Concio C9 386.24 177.78 38.98 29.95 Concio C9 386.24 16 657.63 4399.95 Concio C9 386.24 177.78 38.98 29.95 Concio C9 387.79 346.08 4399.95 Concio C9 272.37 368.78 4399.95 Concio C9 386.24 177.78 38.98 29.95 Concio C9 386.24 178 28.38 4401.30	0.25 0.11 0.09 0.12 0.14 0.10 0.12 0.27 0.25 0.22 0.20 0.36 0.36 0.35 0.34 0.42 0.40 0.35	0.26 0.11 0.09 0.13 0.15 0.11 0.13 0.28 0.26 0.23 0.21 0.36 0.38 0.37	0.28 0.87 0.90 0.80 0.76 0.85 0.81 0.46 0.53 0.49
Concio C1 3531.66 280.95 4399.95 Concio C2 3531.66 284.95 4401.30 283.81.66 284.85 4401.30 283.85 229.95 4402.65 283.85 229.95 4402.65 283.85 229.95 4402.65 283.85 229.95	0.11 0.09 0.12 0.14 0.10 0.12 0.27 0.25 0.22 0.20 0.35 0.36 0.36 0.34 0.42 0.42	0.11 0.09 0.13 0.15 0.11 0.28 0.26 0.23 0.21 0.36 0.38	0.87 0.90 0.80 0.76 0.85 0.81 0.46 0.53
Concio C2 3531.66 264.45 4401.30 265 Concio C2 3531.66 264.47 495.60 4399.95 Concio C2 3999.19 460.35 4399.95 Concio C3 2616.42 503.85 4398.60 Concio C3 2516.42 503.85 4398.60 Concio C3 2516.42 503.85 4398.60 Concio C4 2728.53 924.45 2356.20 Concio C4 4100.67 921.48 2356.20 Concio C5 410.67 734.13 2349.45 Concio C5 549.60 676.98 4386.45 Concio C6 1703.64 295.83 4399.95 Concio C7 1827.12 292.98 4399.95 Concio C6 1707.84 308.13 4399.95 Concio C6 1707.84 308.13 4399.95 Concio C6 1707.84 308.13 4399.95 Concio C7 1827.12 292.98 4399.95 Concio C6 2710.45 210.48 4401.30 Concio C6 2710.47 175.23 4401.30 Concio C7 1827.12 292.98 4399.95 Concio C8 3368.88 875.13 2354.85 Concio C8 3386.88 875.13 2354.85 Concio C8 3386.81 1997.33 2354.85 C	0.12 0.14 0.10 0.12 0.27 0.25 0.22 0.20 0.35 0.36 0.35 0.34 0.42 0.42 0.40	0.13 0.15 0.11 0.13 0.28 0.26 0.23 0.21 0.36 0.38 0.37	0.80 0.76 0.85 0.81 0.46 0.53
Concio C2 3531.66 264.45 4401.30 Concio C3 3552.03 189.15 4402.65 Concio C3 2564.47 495.60 4399.95 Concio C3 2616.42 503.85 4398.60 C3 2115.12 503.85 4398.60 C3 215.12 503.85 4398.60 C3 515.19 898.20 4386.45 Concio C4 400.87 297.48 2356.20 Concio C4 400.87 791.65 2356.20 Concio C4 400.87 791.48 2356.20 Concio C5 440.88 Concio C5 440.88 Concio C6 1975.68 248.13 4401.30 Concio C6 2110.47 717.23 4401.30 Concio C6 2110.47 717.52 3401.30 Concio C7 212.37 283.88 4401.30 Concio C8 2917.74 758.28 2348.10 Concio C8 3368.88 875.13 2354.85 Concio C8 3368.88 875.13 2354.85 Concio C8 3366.47 957.60 2354.85 Concio C8	0.10 0.12 0.27 0.25 0.22 0.20 0.35 0.36 0.35 0.34 0.42 0.40	0.11 0.13 0.28 0.26 0.23 0.21 0.36 0.38	0.85 0.81 0.46 0.53 0.49
Concio C2 3595.83 229.95 4402.65 Concio C2 2999.91 4402.65 Concio C2 2999.91 480.35 4399.95 Concio C3 2616.42 503.85 4398.60 Concio C3 2616.42 503.85 4398.60 Concio C3 508.59 865.80 4386.45 Concio C4 2728.53 924.45 2350.80 Concio C4 464.84 969.18 2356.20 Concio C4 4008.67 1091.55 2366.20 Concio C5 548.64 899.95 Concio C5 549.66 80.9 3294.95 Concio C6 1707.65 236.80 4399.95 Concio C6 1703.64 2258.3 4399.95 Concio C7 1707.84 308.13 4399.95 Concio C6 1703.64 2258.3 4399.95 Concio C7 1827.12 292.98 4399.95 Concio C7 1827.12 292.98 4399.95 Concio C7 272.37 687.18 12348.10 Concio C7 1827.12 292.98 4399.95 Concio C7 1827.17 29	0.12 0.27 0.25 0.22 0.20 0.35 0.36 0.35 0.34 0.42 0.40 0.35	0.13 0.28 0.26 0.23 0.21 0.36 0.38 0.37	0.81 0.46 0.53 0.49
Concio C3 2999.91 460.35 4399.95 Concio C3 2916.42 503.85 4398.60 Concio C3 2616.42 503.85 4398.60 Concio C3 2616.42 503.85 4398.60 Concio C3 215.19 865.80 4386.45 Concio C4 2728.53 924.45 2350.80 Concio C4 400.887 1091.55 2356.20 Concio C4 4100.67 970.65 2356.20 Concio C5 366.82 781.83 2349.45 Concio C6 4306.82 781.83 2349.45 Concio C7 3064.82 734.13 2349.45 Concio C8 1707.84 308.13 4399.95 Concio C7 1827.12 292.98 4399.95 Concio C8 1875.68 248.13 4401.30 Concio C8 1975.68 248.13 4401.30 Concio C7 1827.12 292.98 4399.95 Concio C8 2010.45 210.48 4401.30 Concio C8 1975.68 248.13 4401.30 Concio C8 1975.68 248.13 4401.30 Concio C8 1975.68 248.13 4401.30 Concio C7 1827.12 292.98 4399.95 Concio C8 3386.88 875.13 2354.85 Concio C8 3386.88 875.13 2354.85 Concio C8 3386.81 1923.33 2354.85 Concio C8 3386.81 875.13 2354.85 Concio C8 3386.81 1923.33 2354.85 Concio C8	0.25 0.22 0.20 0.35 0.36 0.35 0.34 0.42 0.40 0.35	0.26 0.23 0.21 0.36 0.38 0.37	0.53 0.49
Concio Ca 2616.42 (235.85 4398.60	0.22 0.20 0.35 0.36 0.35 0.34 0.42 0.40	0.23 0.21 0.36 0.38 0.37	0.49
Concio Co	0.35 0.36 0.35 0.34 0.42 0.40	0.36 0.38 0.37	
Concio C4 2728.53 924.45 2350.80 Concio C4 4008.87 1091.55 2356.20 Concio C4 4100.67 921.48 2356.20 Concio C5 391.62 970.65 2356.20 Concio C6 4306.82 781.83 2349.45 Concio C7 1876.52 346.08 4399.95 Concio C8 549.60 676.98 4386.45 Concio C8 1975.68 281.93 4399.95 Concio C8 1975.68 248.13 4401.30 Concio C9 1975.68 248.13 4401.30 Concio C9 1877.74 788.28 2348.10 Concio C7 1827.12 292.98 4399.95 Concio C7 1827.12 292.98 4399.95 Concio C8 3386.88 875.13 2354.85 Concio C8 3386.81 1924.45 2350.80 Concio C8 3386.81 1924.45 2350.80 Concio C9 1877.74 785.28 2348.10 Concio C8 3386.81 875.13 2354.85 Concio C8 3386.88 875.13 2354.85 Concio C8 3386.88 875.13 2354.85 Concio C8 3386.81 1924.32 2354.85 Concio C8 3386.81 1924.32 2350.80 Concio C8 3386.81 1924.32 2356.20 Concio C8 3386.81 1924.32 2356.20 Concio C8 3386.81 1924.32 2369.80 Concio C9 1827.17 292.98 4399.95 Concio C9 3386.81 875.13 2354.85 Concio C8 3386.88 875.13 2354.85 Concio C8 3386.81 1921.33 2354.85 Concio C8 3386.81 1924.35 2356.20 Concio C8 3386.81 1924.35 2356.20 Concio C8 3386.81 1924.45 2350.80 Concio C8 3386.81 1924.45 2350.80 C7 1827.12 292.98 4399.95 Concio C8 3386.81 875.13 2354.85 Concio C8 3386.81 1924.35 2356.20 Concio C8 3386.81 1924.35 2356.20 Concio C8 3386.81 1924.35 2356.20 Concio C9 272.37 687.18 4387.80 Concio C9 377.44 308.13 4401.30 Concio C9 272.37 687.18 4387.80 Concio C9 272.37 687.18 4387.80 Concio C9 3386.81 875.13 2354.85 Concio C9 3386.81 1924.35 2356.20 Concio C9 377.44 308.13 4399.95 Concio C9 487.20 448 4401.30 Concio C9 477.20	0.35 0.34 0.42 0.40 0.35	0.37	0.13
Concio C4 2728.53 924.45 2350.80 Concio C4 464.84 969.18 2356.20 Concio C4 4100.67 921.48 2356.20 Concio C5 436.82 781.83 2349.45 Concio C5 540.60 676.93 4306.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.65 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 3436.45 210.45 770.65 210.45	0.34 0.42 0.40 0.35		0.12 0.44
Concio C4 4008.87 1091.55 2356.20 Concio C4 4568.73 1091.55 2356.20 Concio C4 4100.67 921.48 2356.20 Concio C5 366.82 781.83 2349.45 Concio C5 549.60 676.98 4386.45 Concio C6 1707.84 308.13 4399.95 Concio C6 1703.64 2958.38 4399.95 Concio C7 1827.12 292.98 4399.95 Concio C7 1827.12 292.98 4399.95 Concio C7 272.37 687.18 4399.95 Concio C7 272.37 687.18 4399.95 Concio C7 3827.12 292.98 4399.95 Concio C7 3867.8 4386.85 Concio C7 3867.8 4387.80 Concio C8 3386.88 875.13 2354.85 Concio C8 3386.81 71 957.50 2354.85 Concio C8 3386.81 71 957.50 2354.85 Concio C8 3386.81 71 957.50 2354.85 Concio C8 3386.81 1923.33 2354.85 Concio C8 3366.21 1903.95 2354.85 Concio C8 3362.21 1903.95 2354.8	0.40 0.35	0.35	0.39
Concio Concio 4644.84 969.18 2356.20 292.148 2356.20 2356.20 Concio C4 470.06 5374.44 969.18 2356.20 2349.45 Concio C4 4732.05 221.48 2356.20 Concio	0.35	0.43 0.42	0.57 0.49
Concio Co		0.37	0.59
Concio C5 549 60 676 98 4386.45	0.34	0.35	0.53 0.51
Concio C5	0.27 0.28	0.28	0.47
Concio C6 1707.84 308.13 4399.95 Concio C6 487.44 308.13 4399.95 Concio C6 1703.64 2958.3 4399.95 Concio C6 2110.47 175.23 4401.30 Concio C6 1975.68 248.13 4401.30 Concio C7 1827.12 292.98 4399.95 Concio C7 1827.12 292.98 4399.95 Concio C7 272.37 687.18 438.10 Concio C7 3867.19 438.10 Concio C7 3867.19 438.10 Concio C8 3386.88 875.13 2354.85 Concio C8 3386.88 875.13 2354.85 Concio C8 3862.11 1003.95 2354.85 Concio C8 380.42 1 1003.95 2354.85 Concio C8 380.43 1 1003.95 2354.85 Concio C8 487.44 309.95 Concio C8 3975.78 875.13 2354.85 Concio C8 3862.11 1003.95 2354.85 Concio C8 487.44 309.95 Concio C8 485.04 309.95 Concio C8 309.95 C0 C8 3	0.27	0.28	0.20
Concio C6 1876.26 261.93 4399.95 Concio C6 581.61 261.93 4399.95 Concio C6 2170.36 4295.83 4399.95 Concio C6 485.94 295.83 4399.95 Concio C6 2110.47 175.23 4401.30 Concio C6 679.47 175.23 4401.30 Concio C6 1975.68 248.13 4401.30 concio C6 679.47 175.23 4401.30 Concio C7 1827.12 292.98 4399.95 Concio C7 687.63 2483.84 A401.30 Concio C7 1627.12 292.98 4399.95 Concio C7 547.59 329.58 4399.95 Concio C7 272.37 687.18 4387.80 Concio C7 867.78 4387.80 Concio C8 2977.74 758.28 2348.10 Concio C8 3499.95 Concio 677.76 687.63 4387.80 </th <td>0.14 0.12</td> <td>0.14 0.13</td> <td>0.52 0.57</td>	0.14 0.12	0.14 0.13	0.52 0.57
Concio Concio<	0.14	0.14	0.62
Concio Co	0.16 0.11	0.16 0.12	0.56 0.70
Concio Co	0.09 0.15	0.10 0.16	0.76 0.59
Concio C7 1827.12 292.98 4399.95 Concio C7 633.72 292.98 4399.95 Concio C7 272.37 687.18 4387.80 Concio C8 2977.74 758.28 2348.10 Concio C8 3868.211 921.33 2354.85 Concio C8 3386.88 875.13 2354.85 Concio C8 3662.11 1003.95 2354.85 Concio C8 3662.31 1003.95 2354.85 Concio C8 362.31 1003.95 2354.85 Concio C8 432.31 1003.95 2354.85	0.13	0.14	0.65
Concio C3 272.37 687.18 4387.80 Concio C7 867.72 687.18 4387.80 Concio C8 2977.74 758.28 2348.10 concio C8 3499.20 758.28 2348.10 Concio C8 33862.11 921.33 2354.85 90ncio C8 3499.20 758.28 2348.10 Concio C8 3386.81 875.13 2354.85 90ncio C8 3975.78 875.13 2354.85 Concio C8 3662.11 1003.95 2354.85 60ncio C8 4532.31 1003.95 2354.85	0.13 0.12	0.14 0.12	0.56 0.60
Concio C8 2501.79 713.43 2348.10 Concio C8 3462.11 921.33 2368.81 Concio C8 3499.20 758.28 2348.10 Concio C8 3499.20 758.28 2346.10 C8 3499.20 758.28 2346.10 C9 C9 C9 251.33 2354.85 C9 C9 C8 3975.78 875.13 2354.85 C9	0.26 0.27	0.27 0.28	0.22 0.16
Concio C8 3386.88 875.13 2354.85 Concio C8 3366.211 1003.95 2354.85 Concio C8 3366.211 1003.95 2354.85 Concio C8 3366.21 1003.95 2354.85 Concio C8 3366.21 1003.95 2354.85 Concio C8 3662.11 1003.95 2354.85 Concio C8 3662.11 1003.95 2354.85 Concio C8 4532.31 1003.95 2354.85 CONCI	0.25	0.26	0.52
Concio C8 3386.88 875.13 2354.85 Concio C8 3975.78 875.13 2354.85 Concio 3346.71 957.60 2354.85 Concio 3930.45 957.60 2354.85 C8 3862.11 1003.95 2354.85 Cell 4532.31 1003.95 2354.85	0.26	0.28	0.55 0.63
Concio C8 3862.11 1003.95 2354.85 Concio C8 4532.31 1003.95 2354.85	0.30	0.32	0.57
	0.33 0.35	0.35 0.37	0.54 0.61
Concio 2900.16 762.60 2348.10 Concio 3419.52 762.60 2348.10 C8 2436.18 716.25 2348.10 Concio C8 2993.88 716.25 2348.10	0.26 0.25	0.28 0.26	0.54 0.50
Concio 177.06 690.00 4387.80 Concio 746.16 690.00 4387.80	0.27	0.29	0.15
C7 615.66 659.10 4387.80 C7 464.16 659.10 4387.80 2075.46 333.75 4399.95 805.11 333.75 4399.95	0.26 0.13	0.27 0.14	0.22
C7 2208.36 295.80 4399.95 Concid C7 923.16 295.80 4399.95	0.12	0.12	0.66
Concio 2204.16 284.85 4401.30 Concio 921.66 284.85 4401.30 C6 2282.46 249.60 4401.30 Concio C6 994.56 249.60 4401.30	0.15 0.13	0.16 0.14	0.64 0.69
Concio 2590.56 196.50 4401.30 Concio 1047.51 196.50 4401.30 C6 2473.11 180.15 4401.30 Concio C6 1052.91 180.15 4401.30	0.10 0.09	0.11 0.10	0.79 0.80
Concio 2279.49 273.75 4401.30 Concio 942.99 273.75 4401.30	0.14	0.15	0.66
Concio C6 2480.01 238.65 4401.30 C6 1011.21 238.65 4401.30 Concio C6 2282.34 284.70 4399.95 Concio C002.20 282.34 284.70	0.13 0.11	0.13 0.12	0.73 0.67
C7 2021.94 324.15 4399.95 C7 835.29 324.15 4399.95 221.04 679.05 4387.80 706.14 679.05 4387.80	0.13 0.27	0.13 0.28	0.61 0.16
Concio C7 684.69 646.65 4387.80 Concio C7 427.44 646.65 4387.80	0.26	0.27	0.24
Concio 2813.52 751.50 2348.10 Concio 3363.66 751.50 2348.10 C8 2386.56 705.30 2348.10 Concio C8 2946.54 705.30 2348.10	0.26 0.24	0.27 0.25	0.55 0.51
Concio C8 3759.21 913.20 2354.85 Concio C8 3252.48 868.35 2354.85 Concio C8 3871.08 868.35 2354.85	0.31 0.30	0.33 0.31	0.64 0.58
Concio 3759.21 1007.28 2354.85 Concio 4455.51 1007.28 2354.85	0.34	0.36	0.62
C8 3318.30 962.43 2354.85 C8 3891.84 962.43 2354.85 2843.97 742.98 2348.10 3429.99 742.98 2348.10	0.33 0.25	0.34	0.55 0.56
Concio C8 2476.44 696.78 2348.10 Concio C8 3056.82 696.78 2348.10	0.24	0.25	0.53
Concio 227.70 670.53 4387.80 Concio 814.95 670.53 4387.80 C7 548.91 639.63 4387.80 Concio C7 578.61 639.63 4387.80	0.27 0.25	0.28 0.26	0.16 0.22
Concio 1966.05 273.63 4399.95 Concio 590.40 273.63 4399.95 C7 1963.47 311.58 4399.95 Concio C7 521.67 311.58 4399.95	0.11 0.12	0.11 0.13	0.64 0.61
Concio 1963.35 264.03 4401.30 Concio 590.40 264.03 4401.30	0.14	0.15	0.63
Concio C6 1928.61 227.43 4401.30 C6 621.81 227.43 4401.30 C7	0.12 0.11	0.13	0.67 0.71
C6 2130.78 240.18 4402.65 C6 594.48 240.18 4402.65 1861.08 398.88 4401.30 357.18 398.88 4401.30	0.13 0.21	0.13 0.22	0.68 0.47
C6 2172.57 362.28 4401.30 C6 467.52 362.28 4401.30	0.19	0.20	0.55
Concio C5 1858.83 407.13 4399.95 Concio C5 356.28 407.13 4399.95	0.18 0.16	0.19 0.17	0.45 0.52
Concio 747.87 775.98 4387.80 Concio 1444.47 775.98 4387.80 C5 1020.78 806.88 4387.80 Concio C5 1778.13 806.88 4387.80	0.31 0.32	0.32 0.34	0.19 0.21
Concio 3059.34 830.43 2348.10 Concio 3949.08 830.43 2348.10	0.30	0.32	0.47
Concio 4908.03 1033.08 2353.50 Concio 5533.89 1033.08 2353.50	0.32	0.34	0.51
C4 4348.47 984.03 2353.50 C4 4941.45 984.03 2353.50 4237.41 1160.76 2353.50 4717.83 1160.76 2353.50	0.36 0.42	0.38 0.44	0.54 0.50
Conclo C4 4907.49 1206.96 2353.50 Conclo C4 5537.49 1206.96 2353.50	0.44	0.46	0.58
Concio C4 3467.01 939.96 2346.75 Concio C4 4077.33 939.96 2346.75 C884.26 893.76 2346.75 Concio C4 3494.16 893.76 2346.75	0.34 0.33	0.36 0.34	0.46 0.41
Concio 429.39 828.06 4389.15 Concio 765.54 828.06 4389.15	0.33	0.35	0.12
Concio 2859.93 458.31 4404.00 Concio 1314.18 458.31 4404.00	0.35 0.18	0.37	0.14
3533 61 365 76 4405 35 1782 66 365 76 4405 35	0.17 0.20	0.17 0.21	0.67 0.67
C10 3213.06 403.71 4405.35 Conclo C10 1598.46 403.71 4405.35	0.22	0.24	0.60
Concio 4335.54 193.71 4409.40 Concio 2190.39 193.71 4409.40 C10 4090.59 241.41 4409.40 Concio C10 2057.49 241.41 4409.40		0.11	0.95 0.87
Concio C10 3791.04 294.96 4410.75 4410.75 Concio C10 4022.94 245.76 4410.75 Concio C10 2284.14 245.76 4410.75	0.11 0.13	0.14	0.07
Concio 3453.18 362.16 4410.75 Concio 2135.58 362.16 4410.75	0.13 0.16	0.17	0.77
1503 45 688 56 4307 25 1286 85 688 56 4307 25	0.13 0.16 0.14 0.12	0.17 0.14 0.12	0.77 0.85 0.79
Concio C11 929.70 738.66 4397.25 Concio C11 923.52 738.66 4397.25	0.13 0.16 0.14	0.17 0.14	0.77 0.85

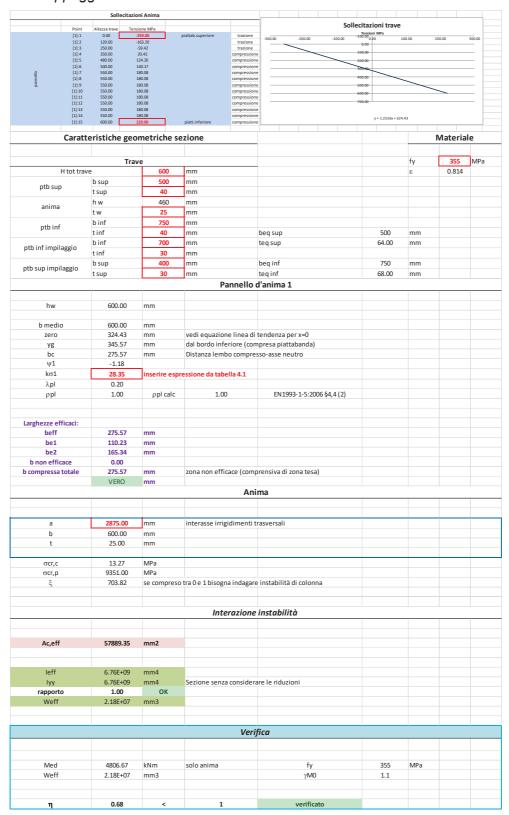
Relazione tecnica e di calcolo

70



9.3.3 Verifica di instabilità delle anime

Si riportano di seguito le verifiche di instabilità dei pannelli d'anima in appoggio e in campata.


9.3.3.1 Concio C10 di campata

9.3.3.2 Concio C4 in appoggio

Relazione tecnica e di calcolo

9.3.4 Verifiche a fatica

Vengono svolte le verifiche a fatica per "vita illimitata" adottando gli spettri di carico associati. In assenza di studi specifici, volti alla determinazione dell'effettivo spettro di carico che interessa il ponte, si può far riferimento ai modelli descritti nel seguito.

Secondo quanto previsto dalle NTC18 al § 5.1.4.3, per la verifica a vita illimitata si prevede il modello di carico di fatica 2, sulla corsia identificata come lenta. Si riportano le cinque configurazioni di sagoma del veicolo.

SAGOMA del VEICOLO Distanza tra Tipo di ruota Carico gli assi (Tab. 5.1.IX) frequente per (m) asse (kN) 4,5 90 A 190 В 4,20 80 A 1 30 140 B 140 B 3,20 5,20 180 В 1.30 120 C 1.30 120 C 120 C 3,40 Α 6,00 190 В 1.80 140 В 140 В 4.80 90 A 180 В 3,60 4,40 120 C 1.30 110 C 110 C

Tabella 4-7. Mezzi tipologici per verifica a fatica

I delta di tensione si determinano in base agli effetti più severi dell'autocarro scelto (nel riquadro), viaggiante sulla corsia lenta, a massimizzare gli effetti sulla trave di bordo.

I valori dei coefficienti γ_{Mf} adottati nelle verifiche a fatica sono i seguenti:

 $\gamma_{\rm f}$ = 1 coefficiente pa $\gamma_{\rm M}$ = 1.35 coefficiente pa $\gamma_{\rm Mf}$ = $\gamma_{\rm f}$ x $\gamma_{\rm M}$ = 1.35 coefficiente pa

coefficiente parziale di sicurezza relativo alle azioni di fatica coefficiente parziale di sicurezza relativo alla resistenza a fatica coefficiente parziale di sicurezza per le verifiche a fatica

Metodo di valutazione	Conseguenze del collasso				
	Basse conseguenze	Alte conseguenze			
metodo del "danneggiamento accettabile"	1,00	1,15			
metodo della "vita sicura"	1,15	1,35			

Per la verifica a fatica secondo il criterio della vita illimitata, l'ampiezza di tensione di riferimento è quella ad ampiezza costante, definita come:

 $\Delta \sigma_D = 0.737 \times \Delta \sigma_C$

dove $\Delta\sigma_{\mathbb{C}}$ è il valore della classe del dettaglio.

La verifica a vita illimitata si esegue controllando che sia

 $\Delta \sigma_{\text{max}} x \gamma_{\text{Mf}} \leq \Delta \sigma_{\text{D}}$

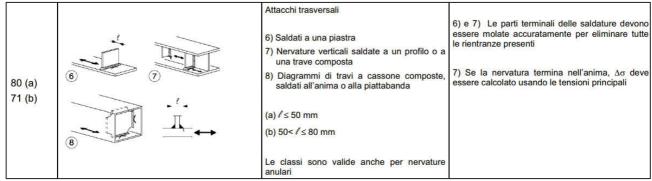
dove $\Delta\sigma_D$ sono i valori di progetto delle massime escursioni di tensioni normali indotte nel dettaglio considerato dallo spettro di carico per vita illimitata.

Nelle verifiche a fatica le tensioni considerate sono coerenti con quelle alle quali è riferita la curva S-N del dettaglio. Per le successive verifiche si farà riferimento a tre dettagli tipologici di classe 80 e

Relazione tecnica e di calcolo

73

Mandataria:



125 ritenuti rappresentativi dei dettagli previsti per l'impalcato metallico. A tali dettagli si associa una curva S-N riferita alle tensioni nominali e pertanto ad esse si fa riferimento. Le resistenze a fatica dei dettagli tipici sono:

Dettaglio 80: per le giunzioni previste per realizzare il collegamento degli irrigidimenti verticali.

Tabella 5-7. Dettaglio 80

Caratteristiche resistenziali del dettaglio a fatica

 $\Delta \sigma_{\rm C}$ = 80 MPa $\Delta \sigma_D = 0.737 \ \Delta \sigma_C = 58.96 \ MPa$ classe del particolare: limite di fatica per 2x10⁶ cicli limite di fatica ad ampiezza costante per 5x10⁶ cicli

Dettaglio 125: per le saldature tra piattabande e anima della trave.

Tabella 6-7. Dettaglio 125

Saldature longitudinali continue 1) Saldatura automatica a piena penetrazione effettuata da entrambi i lati 1) e 2) Non sono consentite interruzioni/riprese, a 125 Saldatura automatica a cordoni d'angolo. meno che la riparazione sia eseguita da un Le parti terminali dei piatti di rinforzo tecnico qualificato e siano eseguiti controlli atti a devono essere verificate considerando verificare la corretta esecuzione della riparazione dettagli 5) e 6) della tabella C4.2.XVI.a)

Caratteristiche resistenziali del dettaglio a fatica

 $\Delta \sigma_{\rm C}$ = 125 MPa $\Delta \sigma_{D} = 0.737 \ \Delta \sigma_{C} = 92.12 \ MPa$ classe del particolare: limite di fatica per 2x10⁶ cicli limite di fatica ad ampiezza costante per 5x10⁶ cicli

Il dettaglio più gravoso risulta il dettaglio 80.

Si riportano di seguito le tensioni longitudinali di fibra per le distribuzioni di carico assunte a base di verifica e per i vari componenti strutturali principali dell'impalcato metallico riferite ad ogni concio in esame.

				· · c			1				14 16			Ι.		1	
MAX M		C/A	σs sup [MPa]	Verifica	σs inf [MPa]	Verifica	MIN M		C/A	σs sup [MPa]	Verifica	σs inf [MPa]	Verifica	Δσsup [MPa]	Δσinf [MPa]		
Concio		С	-1.05	OK	14.35	OK	Concio		С	0.07	OK	-0.95	OK	1.12	15.31	58.96	
	C1	C	-0.02 -3.04	OK OK	0.27 41.63	OK OK		C1	C	0.10	OK OK	-1.36 -4.69	OK OK	0.12 3.38	1.63	58.96 58.96	
Concio	C1	C	-3.79	OK	51.84	OK	Concio	C1	С	0.45	OK	-6.19	OK	4.24	58.03	58.96	
Concio		С	-5.42	OK	49.58	OK	Concio		С	0.67	OK	-6.10	OK	6.09	55.68	58.96	
	C2	C	-4.79 -5.36	OK OK	43.77 49.06	OK OK		C2	C	0.56	OK OK	-5.11 -6.85	OK OK	5.35 6.11	48.88 55.91	58.96 58.96	
Concio	C2	C	-5.07	OK	46.39	OK	Concio	C2	С	0.86	OK	-7.84	OK	5.93	54.22	58.96	
Concio	-	С	-4.30	OK	39.36	OK	Concio		С	1.23	OK	-11.20	OK	5.53	50.57 49.87	58.96	
0	C2	C	-4.32 -3.43	OK OK	39.54 37.72	OK OK	0	C2	C	1.13	OK OK	-10.33 -13.16	OK OK	5.45 4.63	50.87	58.96 58.96	
Concio	C3	С	-3.89	OK	42.73	OK	Concio	C3	С	1.10	OK	-12.09	OK	4.99	54.82	58.96	OK
Concio	СЗ	C	-1.26 -0.70	OK OK	13.85 7.71	OK OK	Concio	C3	C	1.61 1.69	OK OK	-17.67 -18.61	OK OK	2.87	31.51 26.31	58.96 58.96	
Concio	-	A	73.35	OK	-69.41	OK	Concio		A	81.29	OK	-76.92	OK	7.94	7.51	58.96	OK
Concio	C4	A	71.79	OK	-67.93	OK	Concio	C4	Α	80.89	OK	-76.54	OK	9.10	8.61	58.96	
Concio	C4	A	73.16 73.23	OK OK	-69.23 -69.29	OK OK	Concio	C4	A	83.81 81.97	OK OK	-79.30 -77.57	OK OK	10.64 8.75	10.07 8.28	58.96 58.96	
Concio		Α	73.12	OK	-69.19	OK	Concio		Α	83.56	OK	-79.07	OK	10.44	9.88	58.96	OK
0011010	C4	A	73.54 73.85	OK OK	-69.59 -69.88	OK OK	00.10.0	C4	A	82.97 82.14	OK OK	-78.51 -77.73	OK OK	9.44 8.29	8.93 7.84	58.96 58.96	
Concio	C4	A	71.04	OK	-67.22	OK	Concio	C4	A	81.60	OK	-77.21	OK	10.56	9.99	58.96	
Concio		С	-0.92	OK	10.09	OK	Concio		С	1.89	OK	-20.74	OK	2.80	30.82	58.96	
	C5	C	-1.33 -3.22	OK OK	14.60 35.40	OK OK	-	C5	C	1.78	OK OK	-19.55 -13.78	OK OK	3.11 4.47	34.15 49.18	58.96 58.96	
Concio	C5	С	-3.69	OK	40.60	OK	Concio	C5	С	1.13	OK	-12.41	OK	4.82	53.00	58.96	OK
Concio	C6	C	-4.18	OK	37.25	OK	Concio	CE	C	1.16	OK OK	-10.31 -11.47	OK	5.34 5.45	47.56 48.55	58.96 58.96	
Concie	50	С	-4.17 -4.00	OK OK	37.08 35.57	OK OK	Consis	C6	С	1.29	OK	-9.21	OK OK	5.03	44.78	58.96	
Concio	C6	С	-3.85	OK	34.24	OK	Concio	C6	С	0.90	OK	-8.05	OK	4.75	42.29	58.96	OK
Concio	C6	C	-4.05 -3.96	OK OK	36.09 35.28	OK OK	Concio	C6	C	1.07 0.95	OK OK	-9.50 -8.46	OK OK	5.12 4.91	45.59 43.74	58.96 58.96	
Concio		С	-2.53	OK	40.27	OK	Concio		С	0.81	OK	-12.86	OK	3.33	53.13	58.96	OK
	C7	C	-2.78 -0.98	OK OK	44.34 15.67	OK OK	-	C7	C	0.72 1.16	OK OK	-11.45 -18.55	OK OK	3.50 2.15	55.80 34.22	58.96 58.96	OK OK
Concio	C7	C	-0.96	OK	9.77	OK	Concio	C7	С	1.10	OK	-19.68	OK	1.85	29.44	58.96	OK
Concio		Α	88.18	OK	-67.48	OK	Concio		Α	99.25	OK	-75.95	OK	11.06	8.47	58.96	
	C8	A	90.44 89.88	OK OK	-69.21 -68.78	OK OK		C8	A	99.81 101.38	OK OK	-76.38 -77.58	OK OK	9.37 11.50	7.17 8.80	58.96 58.96	
Concio	C8	Α	90.29	OK	-69.09	OK	Concio	C8	Α	100.71	OK	-77.07	OK	10.42	7.98	58.96	OK
Concio	C8	A	90.06 89.93	OK OK	-68.92 -68.82	OK OK	Concio	C8	A	100.02 101.56	OK OK	-76.54 -77.72	OK OK	9.96 11.63	7.62 8.90	58.96 58.96	
Canala		A	90.24	OK	-69.05	OK	Canaia		A	99.30	OK	-75.99	OK	9.06	6.93	58.96	
Concio	C8	A	86.26	OK	-66.01	OK	Concio	C8	Α	98.76	OK	-75.58	OK	12.50	9.57	58.96	
Concio	C7	C	-0.94 -1.35	OK OK	14.90 21.50	OK OK	Concio	C7	C	1.15 1.09	OK OK	-18.34 -17.29	OK OK	2.09	33.24	58.96 58.96	
Concio		С	-2.35	OK	37.39	OK	Concio	٠.	С	0.76	OK	-12.09	OK	3.11	49.47	58.96	OK
0011010	C7	C	-2.71 -3.96	OK OK	43.22 35.22	OK OK	00.10.0	C7	C	1.00	OK OK	-10.82 -8.92	OK OK	3.39 4.96	54.04 44.14	58.96 58.96	
Concio	C6	C	-4.30	OK	38.24	OK	Concio	C6	C	0.90	OK	-7.99	OK	5.19	46.23	58.96	
Concio		С	-4.14	OK	36.84	OK	Concio		С	0.88	OK	-7.82	OK	5.02	44.67	58.96	
	C6	C	-4.21 -4.04	OK OK	37.48 35.98	OK OK	-	C6	C	0.76 1.10	OK OK	-6.78 -9.79	OK OK	4.97 5.14	44.26 45.77	58.96 58.96	
Concio	C6	С	-4.09	OK	36.44	OK	Concio	C6	С	0.98	OK	-8.75	OK	5.08	45.19	58.96	OK
Concio	C7	C	-2.77 -2.60	OK OK	44.06 41.46	OK OK	Concio	C7	C	0.74 0.83	OK OK	-11.81 -13.28	OK OK	3.51	55.87 54.74	58.96 58.96	
0	C/	С	-0.61	OK	9.77	OK	0	C/	С	1.27	OK	-20.24	OK	1.88	30.01	58.96	
Concio	C7	С	-0.96	OK	15.32	OK	Concio	C7	С	1.20	OK	-19.04	OK	2.16	34.36	58.96	
Concio	C8	A	89.38 87.62	OK OK	-75.96 -74.47	OK OK	Concio	C8	A	99.40 98.84	OK OK	-84.48 -84.00	OK OK	10.02 11.22	8.52 9.54	58.96 58.96	
Concio		Α	89.04	OK	-75.68	OK	Concio		Α	101.03	OK	-85.87	OK	11.99	10.19	58.96	OK
0011010	C8	A	89.17 88.97	OK OK	-75.79 -75.61	OK OK	00.10.0	C8	A	100.32 101.18	OK OK	-85.26 -86.00	OK OK	11.15 12.22	9.47 10.38	58.96 58.96	
Concio	C8	A	89.68	OK	-76.22	OK	Concio	C8	A	99.96	OK	-84.96	OK	10.28	8.74	58.96	
Concio		A	90.01	OK	-76.50	OK	Concio		Α	99.02	OK	-84.16	OK	9.00	7.65	58.96	
	C8	A C	84.20 -1.16	OK OK	-71.56 18.55	OK OK		C8	A C	98.45 1.21	OK OK	-83.68 -19.33	OK OK	14.26 2.38	12.12 37.88	58.96 58.96	
Concio	C7	С	-1.68	OK	26.77	OK	Concio	C7	С	1.14	OK	-18.13	OK	2.82	44.91	58.96	OK
Concio	C7	C	-2.96	OK OK	47.15 38.23	OK	Concio	C7	C	0.71	OK OK	-11.31 -12.72	OK OK	3.67	58.47	58.96	
Concio		С	-2.40 -4.35	OK	38.70	OK OK	Concio	,	С	1.05	OK	-9.39	OK	3.20 5.40	50.95 48.08	58.96 58.96	OK
2011010	C6	С	-4.85 4.86	OK	43.22	OK	2011010	C6	С	0.94	OK	-8.34	OK	5.79	51.56	58.96	
Concio	C6	C	-4.86 -4.64	OK OK	43.28 41.31	OK OK	Concio	C6	C	0.90 1.06	OK OK	-8.05 -9.44	OK OK	5.77	51.33 50.75	58.96 58.96	
Concio		С	-4.00	OK	35.63	OK	Concio		С	1.49	OK	-13.27	OK	5.49	48.89	58.96	OK
	C6	C	-4.23 -3.31	OK OK	37.66 36.40	OK OK	-	C6	C	1.33	OK OK	-11.88 -15.98	OK OK	5.56 4.77	49.53 52.38	58.96 58.96	
Concio	C5	С	-3.52	OK	38.72	OK	Concio	C5	С	1.31	OK	-14.35	OK	4.83	53.07	58.96	OK
Concio	C5	C	-1.33 -0.77	OK OK	14.66 8.46	OK OK	Concio	C5	C	2.06 2.18	OK OK	-22.62 -24.00	OK OK	3.39 2.95	37.28 32.45	58.96 58.96	
Consi-	55	A	71.66	OK	-67.81	OK	Consis	- 55	A	82.68	OK	-78.24	OK	11.02	10.43	58.96	
Concio	C4	Α	73.89	OK	-69.92	OK	Concio	C4	Α	83.31	OK	-78.83	OK	9.42	8.91	58.96	OK
Concio	C4	A A	73.16 73.56	OK OK	-69.23 -69.61	OK OK	Concio	C4	A	84.85 84.25	OK OK	-80.29 -79.72	OK OK	11.69 10.69	11.06 10.11	58.96 58.96	
Concio		Α	73.29	OK	-69.35	OK	Concio		Α	82.04	OK	-77.63	OK	8.75	8.28	58.96	OK
COLICIO	C4	A	73.23 73.39	OK	-69.29	OK	COLLCIO	C4	A	85.37 81.37	OK	-80.78	OK	12.14	11.49	58.96	
Concio	C4	A	73.39	OK OK	-69.45 -67.26	OK OK	Concio	C4	A	81.00	OK OK	-77.00 -76.64	OK OK	7.98 9.92	7.55 9.38	58.96 58.96	
Concio	-	С	-2.21	OK	18.63	OK	Concio		С	1.92	OK	-16.14	OK	4.13	34.77	58.96	
	C9	C	-1.08 -4.74	OK OK	9.12 39.93	OK OK		C9	C	2.03 1.40	OK OK	-17.10 -11.78	OK OK	3.12 6.14	26.22 51.71	58.96 58.96	
Concio	С9	С	-5.69	OK	47.91	OK	Concio	C9	С	1.27	OK	-10.70	OK	6.96	58.62	58.96	OK
Concio	C10	C	-7.93 7.63	OK	37.50	OK	Concio	C40	C	1.60	OK	-7.55 9.15	OK	9.53	45.05	58.96	
	010	C	-7.63 -7.61	OK OK	36.08 35.95	OK OK	-	C10	C	1.72	OK OK	-8.15 -5.75	OK OK	9.36 8.82	44.23 41.70	58.96 58.96	
Concio	C10	С	-7.73	OK	36.55	OK	Concio	C10	С	1.38	OK	-6.52	OK	9.11	43.07	58.96	OK
Concio	C10	C	-7.33 -8.14	OK OK	34.67 38.48	OK OK	Concio	C10	C	0.80 0.95	OK OK	-3.78 -4.50	OK OK	8.13 9.09	38.44 42.99	58.96 58.96	
Concio	510	C	-8.14 -4.98	OK	38.88	OK	Concio	210	C	0.50	OK	-3.93	OK	5.48	42.80	58.96	
COLICIO	C11	С	-5.78	OK	45.12	OK	SOLICIO	C11	С	0.64	OK	-4.98	OK	6.42	50.10	58.96	
Concio	C11	C	-1.27 -0.02	OK OK	9.90 0.17	OK OK	Concio	C11	C	0.10 0.14	OK OK	-0.77 -1.11	OK OK	1.37 0.16	10.67	58.96 58.96	
	_					_			-								_

Relazione tecnica e di calcolo

9.4 Deformazioni

9.4.1 Valutazione della contro-monta

La contro-monta viene conferita alla carpenteria metallica al fine di contro bilanciare la deformazione legata alla azione dei pesi propri e quelli permanenti. Viene inoltre conferito un 15% delle deformazioni per accidentali.

Nelle figure che seguono si riportano le deformate principali per carichi permanenti e per sovraccaricchi accidentali.

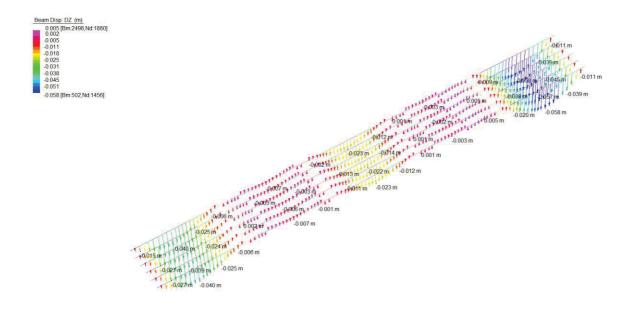


Figura 39: abbassamenti SLE per carichi permanenti

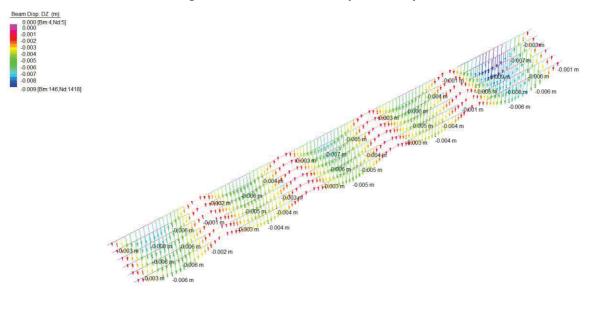


Figura 40: abbassamenti SLE per carichi accidentali q

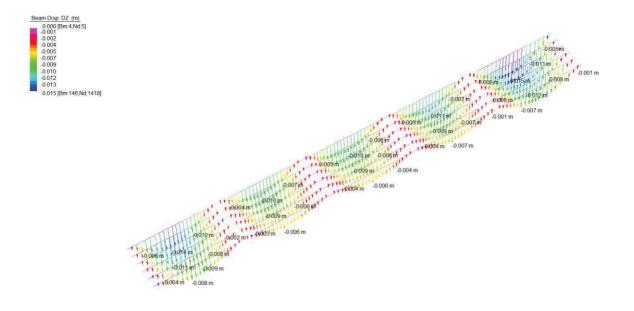


Figura 41: abbassamenti SLE per carichi accidentali Q

Si riportano di seguito le contro-monte da applicare alle diverse campate.

	dZ Permanenti	dZ Accidentali	dZ Perm+15%Acc	Contro-monta
	[mm]	[mm]	[mm]	[mm]
Campata 1	-40	-22	-43,3	45
Campata 2	-7	-16	-9,4	10
Campata 3	-23	-17	-25,55	26
Campata 4	-3	-17	-5,55	10
Campata 5	-58	-24	-61,6	62

Verifiche dei traversi 9.5

Per lo studio dei traversi di pila e di spalla vengono approntati 2 modelli agli elementi finiti per lo studio di dettaglio. Trattandosi di elementi a parete piena vengono schematizzati con elementi plate che simulano anche la presenza delle costole di ripartizione e l'interazione con le anime del ponte. I modelli sono implementati su Straus 7 e risolti con solutore statico lineare, al fine di avere la restituzione della mappa tensionale sulle varie membrature.

La geometria del traverso riprodotta è quella realmente progettata e viene schematizzato anche uno spezzone della trave; vengono poi realizzati link rigidi fra i nodi di estremità della trave schematizzata e un nodo baricentrico della sezione della trave principale. Tale nodo viene vincolato in modo da mantenere isostatico l'intero modello; i carichi applicati sono quindi le reazioni vincolari massime. E' inoltre stata applicata, nella reale posizione ed in un'altra condizione di carico la reazione vincolare durante il sollevamento per manutenzione/sostituzione degli appoggi.

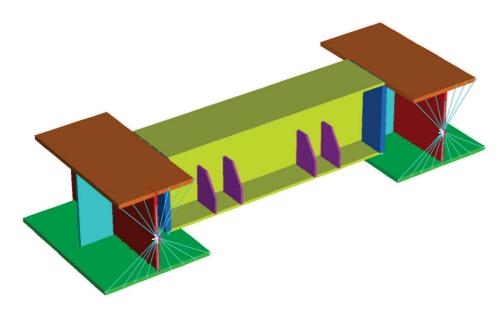


Figura 42: modello di calcolo locale del traverso di spalla

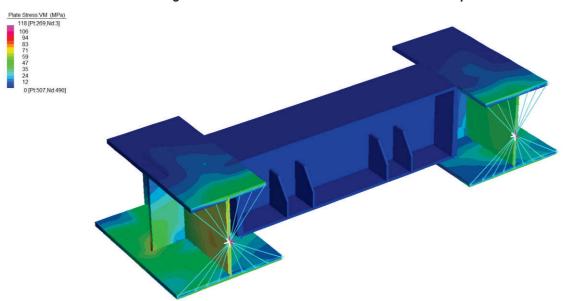


Figura 43: tensioni di Von Mises SLU – traverso di spalla

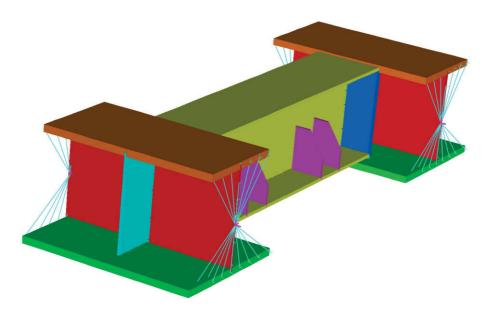


Figura 44: modello di calcolo locale del traverso di pila

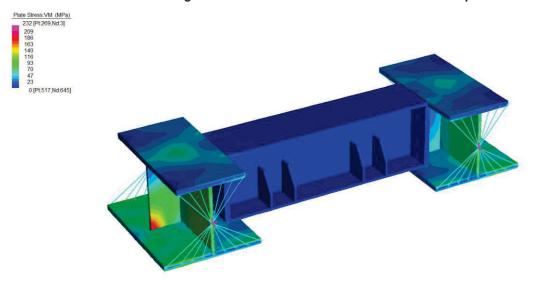


Figura 45: tensioni di Von Mises SLU – traverso di pila

Le tensioni risultano inferiori al limite elastico del materiale, pari a f_{yd} =338MPa.

9.6 Dimensionamento dei giunti

Si riportano di seguito gli spostamenti massimi ottenuti in combinazione sismica con q=1. Si riportano di seguito gli spostamenti massimi ottenuti in combinazione sismica con q=1.

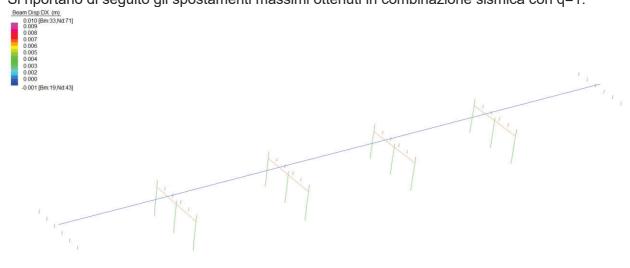


Figura 46: Spostamenti Appoggi SLV X+0.3Y q=1

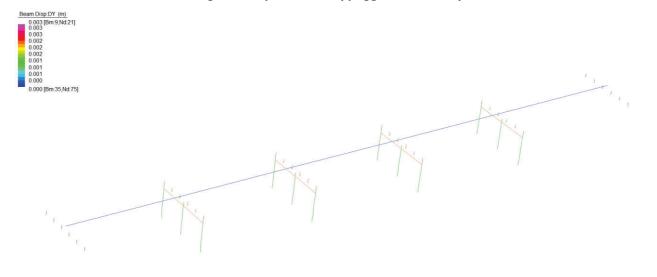


Figura 47: Spostamenti Appoggi SLV Y+0.3X q=1

Lo spostamento massimo è pari a circa 10mm.

In condizioni statiche, la deformazione dovuta all'azione termica risulta: ϵ = α L Δ T=1.2x10⁻⁵x107x27°=34.66mm In condizioni ultime si ottiene: ϵ SLU=34.66x1.2=41.61mm

Si prevede pertanto un giunto GPE100 che consente un escursione pari a ±50mm.

Mandataria:

CIRVAS.R.L.

9.7 Dimensionamento degli appoggi

Si riportano di seguito le reazioni in appoggio per la combinazione più gravosa SLU e SLE.

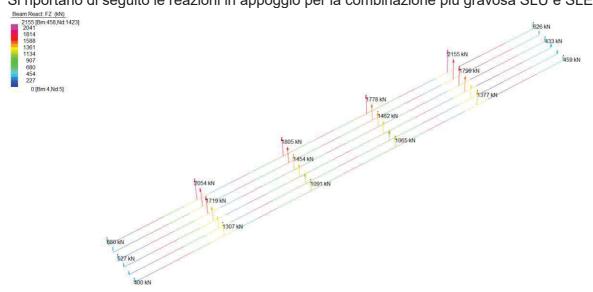


Figura 48: reazioni SLU

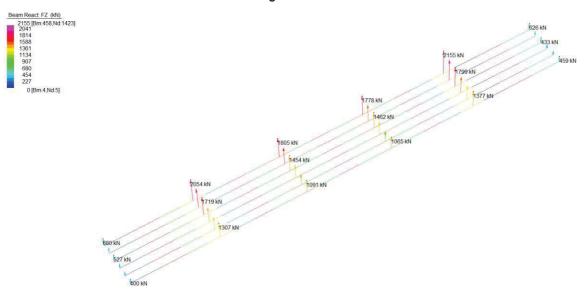


Figura 49: reazioni SLE

Mandataria:

والعلاك عدد

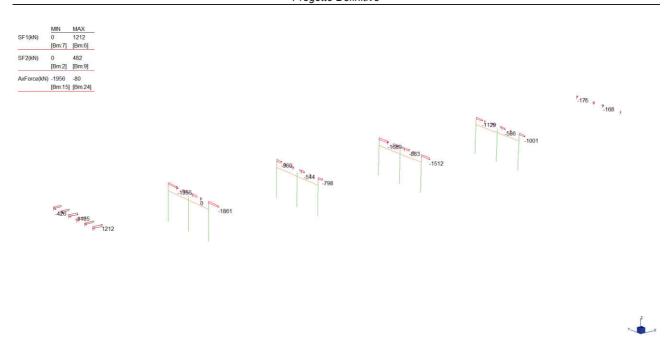


Figura 50: sollecitazioni agli appoggi – q=1 – X+0.3Y

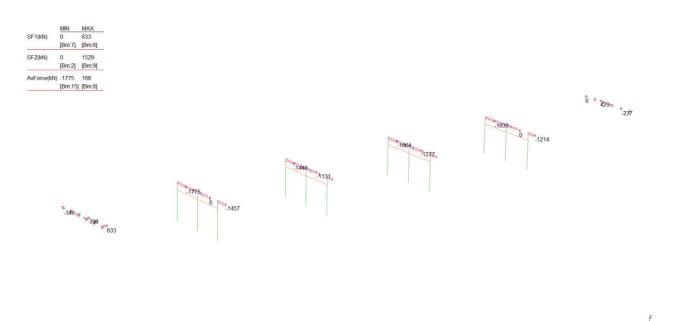


Figura 51: sollecitazioni agli appoggi – q=1 – Y+0.3X

Nella tabella seguente si riportano i valori dimensionanti per ciascun appoggio.

	Spalla A										
		SLU		SLV							
	Fx [kN]	Fy [kN]	Fz [kN]	Fx [kN]	Fy [kN]	Fz [kN]					
UNI Trasv	290	0	680	1034	0	269					
UNI Trasv	290	0	564	1069	0	269					
Fisso	290	51	527	1105	390	269					
Fisso	290	51	439	1141	390	269					
UNI Trasv	290	0	370	1176	0	269					
UNI Trasv	290	0	328	1212	0	269					

Relazione tecnica e di calcolo

Mandanti:

Mandataria:

	_		Pila 1			
		SLU			SLV	
	Fx [kN]	Fy [kN]	Fz [kN]	Fx [kN]	Fy [kN]	Fz [kN]
Multi	0	0	2054	0	0	1491
Multi	0	0	1848	0	0	1491
UNI Long	0	82.5	1719	0	856	1491
UNI Long	0	82.5	1464	0	752	1491
Multi	0	0	1262	0	0	1491
Multi	0	0	1307	0	0	1491
	-		Pila 2			
		SLU			SLV	
	Fx [kN]	Fy [kN]	Fz [kN]	Fx [kN]	Fy [kN]	Fz [kN]
Multi	0	0	1805	0	0	1305
Multi	0	0	1597	0	0	1305
UNI Long	0	90	1454	0	1411	1305
UNI Long	0	90	1236	0	1302	1305
Multi	0	0	1061	0	0	1305
Multi	0	0	1091	0	0	1305
			Pila 3			
		SLU			SLV	
	Fx [kN]	Fy [kN]	Fz [kN]	Fx [kN]	Fy [kN]	Fz [kN]
Multi	0	0	1778	0	0	1268
Multi	0	0	1586	0	0	1268
UNI Long	0	91.5	1462	0	1529	1268
UNI Long	0	91.5	1214	0	1439	1268
Multi	0	0	1015	0	0	1268
Multi	0	0	1065	0	0	1268
			Pila 4			
		SLU			SLV	
	Fx [kN]	Fy [kN]	Fz [kN]	Fx [kN]	Fy [kN]	Fz [kN]
Multi	0	0	2155	0	0	1581
Multi	0	0	1932	0	0	1581
UNI Long	0	88.5	1799	0	1138	1581
UNI Long	0	88.5	1544	0	1007	1581
Multi	0	0	1338	0	0	1581
Multi	0	0	1377	0	0	1581

Di seguito è riportata la tipologia di ciascun appoggio scelta in funzione dei valori di carico dimensionanti.

SLV:

	Fx [kN]	Fy [kN]	Fz [kN]	Tipo Appoggio
UNI Trasv	1212	0	680	VUH* 450-135/50
Fisso	1141	390	527	VF _H 500-150
Multi	0	0	2155	VM 250/100/50
UNI Long	0	1529	2155	VUH 600-100/180

SLC:

	Fx [kN]	Fy [kN]	Fz [kN]	Tipi Appoggio
UNI Trasv	1454	0	680	VUH* 500-150/50
Fisso	1396	468	527	VFH 500-150
Multi	0	0	2155	VM 250/100/50
UNI Long	0	1834	2155	VUH 700-100/210

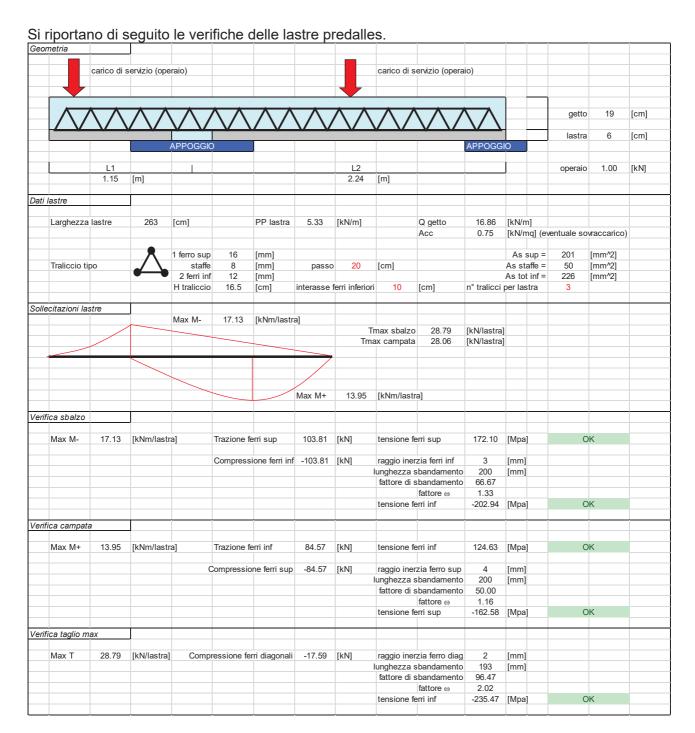
10. VERIFICA DEI PIOLI

Si riportano di seguito le verifiche dei pioli per le sezioni di campata e di appoggio.

10.1 Sezione di campata

Verifica pioli					
Diametro del gambo del piolo	d	=	16	[mm]	
Lunghezza del piolo	h	=	175	[mm]	
Resistenza ultima a trazione	f _u	=	450	[N/mm ²]	
Classe del calcestruzzo	С	=	(35/45) 🔻		
Resistenza caratteristica cilindrica	f _{ck}	=	35	[N/mm ²]	
Valore medio del modulo secante	E _{cm}	=	34.07715	[kN/mm ²]	
Coefficiente paraziale di sicurezza	γν	=	1.25		
Resistenza a taglio di progetto	P _{Rd.1}	=	57.91	[kN]	$P_{Rd.1}=0.8 f_u (\pi d^2/4)/\gamma_v$
Resistenza a taglio di progetto	P _{Rd.2}	=	64.86	[kN]	$P_{Rd.2} = (0.29 \alpha d^2 (f_{ck} E_{cm})^{0.5})/\gamma_V$
			57.91	[kN]	
Forza di taglio agente sul giunto tempo 0	V_{Sd0}	=	150	[kN]	
Momento d'inerzia sezione mista tempo 0	Jn0	=	1.26E+06	[cm ⁴]	
Momento statico sezione mista tempo 0	Sn0	=	1.59E+04	[cm ³]	
Forza di scorrimento tempo 0	Fsc0	=	189.45	[kN/m]	
Forza di taglio agente sul giunto tempo infinito	V _{Sd∞}	=	45.00	[kN]	
Momento d'inerzia sezione mista tempo infinito	Jn∞	=	9.34E+05	[cm ⁴]	
Momento statico sezione mista tempo infinito	Sn∞	=	9.54E+03	[cm ³]	
Forza di scorrimento tempo infinito	Fsc∞	=	45.97	[kN/m]	
Forza di scorrimento totale/m	Fsc tot	=	235.42	[kN/m]	
lunghezza	I	=	1.00	[m]	
Numero di pioli presenti nella lunghezza	n _p	=	10		
Forza di taglio agente singolo piolo	F _{b,Sd}	=	23.54	[kN]	Verifica soddisfatta
Coefficiente paraziale di sicurezza	γMb	=	1.25		
Resistenza a trazione del piolo	$F_{t,Rd}$	=	65.14	[kN]	$F_{Rd.t}$ =0,9 f _u (π d ² /4)/ γ _{Mb}
Forza di trazione di sfilamento	$F_{t,Sd}$	=	5.79	[kN]	Verifica soddisfatta

Sezione di appoggio 10.2


Verifica pioli - sezione 2					
			10		
Diametro del gambo del piolo	d	=	16	[mm]	
Lunghezza del piolo	h	=	175	[mm]	
Resistenza ultima a trazione	f _u	=	450	[N/mm ²]	
Classe del calcestruzzo	С	=	(35/45) 🔻		
Resistenza caratteristica cilindrica	f _{ck}	=	35	[N/mm ²]	
Valore medio del modulo secante	E _{cm}	=	34.07715	[kN/mm ²]	
Coefficiente paraziale di sicurezza	γv	=	1.25		
Resistenza a taglio di progetto	P _{Rd.1}	=	57.91	[kN]	$P_{Rd.1}=0.8 f_{\mu} (\pi d^2/4)/\gamma_{\nu}$
Resistenza a taglio di progetto	P _{Rd.2}	=	64.86	[kN]	$P_{Rd,2}$ =(0,29 α d ² (f _{ck} E _{cm}) ^{0,5})/ γ_v
	Tu.2		57.91	[kN]	THE CONTROL OF THE CO
				I	
Forza di taglio agente sul giunto tempo 0	V_{Sd0}	=	528	[kN]	
Momento d'inerzia sezione mista tempo 0	J _n 0	=	1.81E+06	[cm ⁴]	
Momento statico sezione mista tempo 0	Sn0	=	2.16E+04		
Forza di scorrimento tempo 0	Fsc ₀	=	630.78	[kN/m]	
Forza di taglio agente sul giunto tempo infinito	V _{Sd∞}	=	250	[kN]	
Momento d'inerzia sezione mista tempo infinito	Jn∞	=	1.38E+06	[cm ⁴]	
Momento statico sezione mista tempo infinito	Sn∞	=	1.25E+04	[cm ³]	
Forza di scorrimento tempo infinito	Fsc∞	=	226.23	[kN/m]	
Forza di scorrimento totale/m	Fsc tot	=	857.01	[kN/m]	
lunghezza	I	=	1.20	[m]	
Numero di pioli presenti nella lunghezza	n _p	=	20		
Forza di taglio agente singolo piolo	F _{b,Sd}	=	51.42	[kN]	Verifica soddisfatta
Coefficiente paraziale di sicurezza	γ _{Mb}	=	1.25		
Resistenza a trazione del piolo	F _{t.Rd}	=	65.14	[kN]	$F_{Rd.t}$ =0,9 $f_u (\pi d^2/4)/\gamma_{Mb}$
Forza di trazione di sfilamento	· '	=	5.79	[kN]	Verifica soddisfatta
I OIZA UI LI AZIONE UI SINANENIO	$F_{t,Sd}$		5.18	נעואן	verillea suudistatta

11. TRALICCI PREDALLES

Si prevedono lastre di larghezza 120cm a tre tralicci con le seguenti caratteristiche:

Altezza traliccio: 16.5cm Armatura superiore: 1\psi16 Armatura inferiore: 2\psi12

Staffe _{\$\psi 8\$}

12. SOLETTA DI IMPALCATO

Si riporta di seguito la verifica della soletta di impalcato con il dimensionamento delle armature traversali.

12.1 Modellazione FEM

Il modello di calcolo considerato per la determinazione delle sollecitazioni rappresenta lo sviluppo trasversale della soletta in appoggio sulle sottostanti travi metalliche per un campo di 4 metri. La soletta e i cordoli sono discretizzati mediante elementi *plate/shell* aventi il reale spessore delle

strutture, il peso delle barriere è applicato a *beam* fittizi aventi la sola funzione di trasmissione del carico.

La forza d'urto sulla barriera è valutata pari a 100kN, come indicato nelle NTC2018.

Le azioni accidentali sono applicate sia prendendo come riferimento sia lo schema 1 che lo schema 2 (quest'ultimo disposto ortogonalmente all'asse dell'impalcato in modo da massimizzare la componente flettente). La soletta è vincolata verticalmente in corrispondenza delle piattabande delle travi metalliche e nel piano mediante vincoli nodali in XY in corrispondenza delle piolature. Si riporta di seguito il modello di calcolo.

Figura 52: Modello FEM della soletta

12.1.1 Carichi applicati

I carichi applicati sono elencati di seguito:

- > Peso proprio strutturale della soletta e del cordolo
- Carichi permanenti della pavimentazione e delle barriere
- Carico accidentale secondo schema 1
- > Carico accidentale secondo schema 2 (due impronte da 200kN di dimensioni in pianta 0.6x0.35mg
- Forza d'urto pari a 100kN, applicata ad un metro di altezza

Si riportano di seguito le visualizzazioni dei carichi applicati.

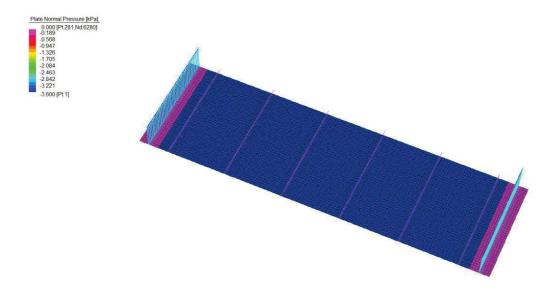


Figura 53: Carichi permanenti non strutturali

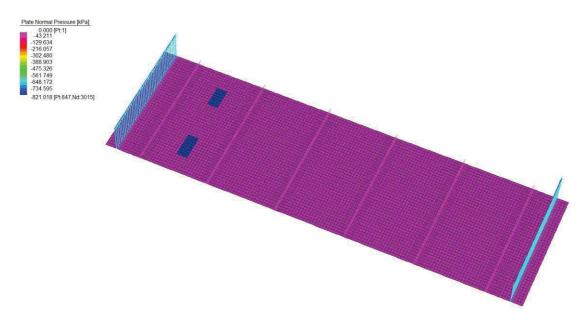


Figura 54: Carichi accidentali – schema 2 – pos.1

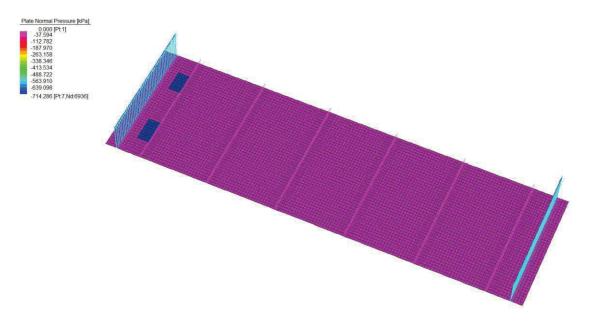


Figura 55: Carichi accidentali – schema 2 – pos.2

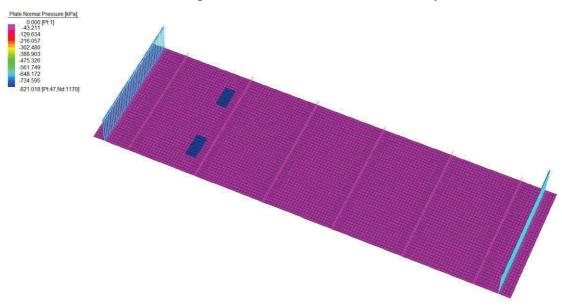


Figura 56: Carichi accidentali – schema 2 – pos.3

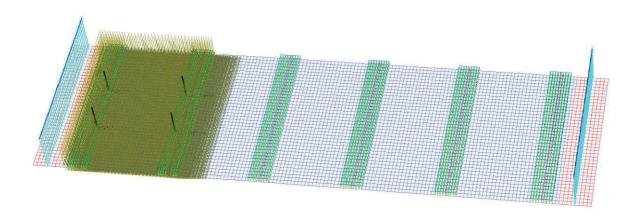


Figura 57: Carichi accidentali – schema 1 – sbalzo

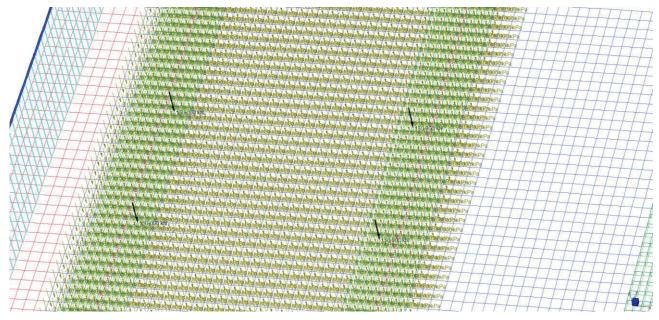


Figura 58: Carichi accidentali – schema 1 – sbalzo (zoom carichi)

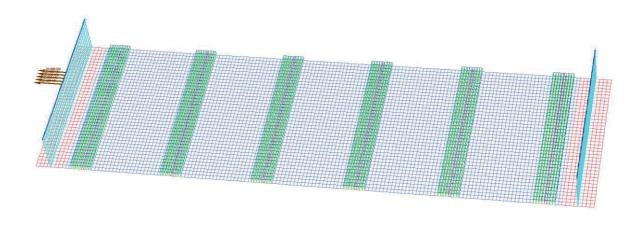


Figura 59: Carichi accidentali - Urto

12.2 **Verifiche SLU/SLE**

Si riportano di seguito le sollecitazioni ottenute per le combinazioni più gravose.

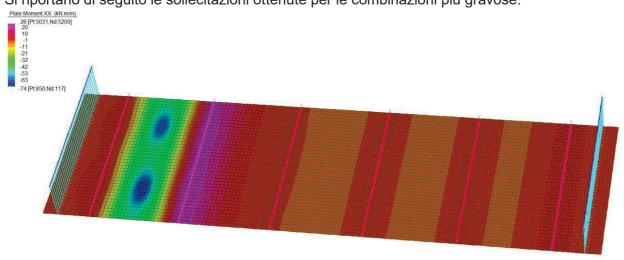


Figura 60: Massimo momento in campata SLU

Mandataria:

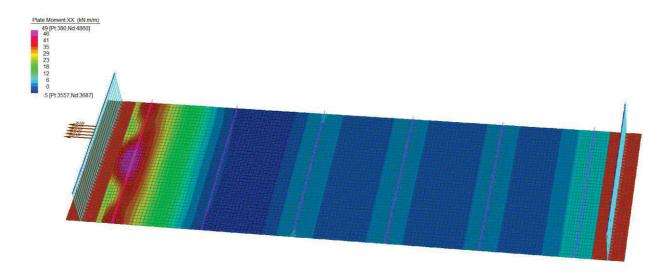


Figura 61: Massimo momento in appoggio SLU (urto)

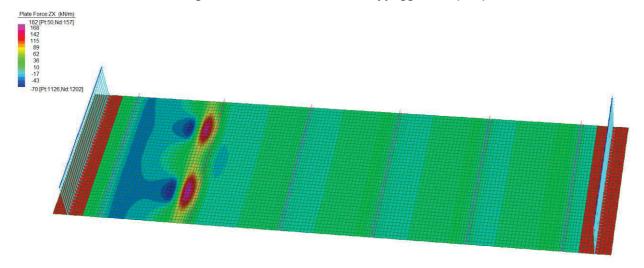


Figura 62: Massimo taglio SLU

La sezione tipologica, di spessore 25cm, risulta armata mediante 5φ20/m superiori e 10φ/m inferiori. Si riportano di seguito le verifiche a flessione della sezione. Non si prevede armatura a taglio specifica.

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Sezione generica di Trave (solette, nervature solai) senza staffe Tipologia sezione:

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Molto aggressive Assi x,y principali d'inerzia Riferimento Sforzi assegnati: Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -Classe: C35/45

Relazione tecnica e di calcolo Mandataria: Mandanti: RTP di progettazione:

Resis. compr. di progetto fcd:	21.170	MPa
Def.unit. max resistenza ec2:	0.0020	
Def.unit. ultima ecu:	0.0035	
Diagramma tensione-deformaz.:	Parabola-Rettangolo	
Modulo Elastico Normale Ec:	34625.0	MPa
Resis. media a trazione fctm:	3.350	MPa
Coeff. Omogen. S.L.E.:	15.00	
Coeff. Omogen. S.L.E.:	15.00	
Sc limite S.L.E. comb. Frequenti:	210.00	daN/cm ²
Ap.Fessure limite S.L.E. comb. Frequer	nti: 0.200	mm
Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
Tipo:	B450C	
Resist. caratt. snervam. fyk:	450.00	MPa
Resist, caratt, rottura ftk:	450.00	MPa
Resist. snerv. di progetto fyd:	391.30	
Resist. ultima di progetto ftd:	391.30	MPa
Deform. ultima di progetto Epu:	0.068	
Modulo Elastico Ef	2000000	daN/cm²
Diagramma tensione-deformaz.:	Bilineare finito	
Coeff. Aderenza istantaneo ß1*ß2:	1.00	
Coeff. Aderenza differito \$1*\$2:	0.50	
Sf limite S.L.E. Comb. Rare:	360.00	MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C35/45
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	25.0
3	50.0	25.0
4	50.0	0.0

DATI BARRE ISOLATE

ACCIAIO -

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.0	5.0	20
2	-45.0	20.0	20
3	45.0	20.0	20
4	45.0	5.0	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. N°Barra Ini. N°Barra Fin. N°Barre Ø		Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazion Diametro in mm delle barre della generazione				
N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø		
1	2	3	3	20		
2	1	1	Q	20		

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez. Vy Componente del Taglio [kN] parallela all'asse princ.d'inerzia y

Mandataria:

Relazione tecnica e di calcolo

94

Vx		Componente del	Taglio [kN] paralle	ela all'asse princ.d'ine	erzia x
N°Comb.	N	Mx	My	Vy	Vx
1	0.00	74.00	0.00	0.00	0.00
2	-74.00	-49.00	0.00	0.00	0.00
3	0.00	0.10	0.00	182.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale	[kN] applicato nel Baricentro (-	se di compressione)	
Mx		te [kNm] intorno all'asse x prin vo se tale da comprimere il len	\ '	m.Fessurazione)
Му		te [kNm] intorno all'asse y prin vo se tale da comprimere il len		m.Fessurazione)
N°Comb.	N	Mx	Му	
1	0.00	55.00	0.00	
2	0.00	-24.00	0.00	

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My	Momento fl con verso p Momento fl	nale [kN] applicato nel Baricent ettente [kNm] intorno all'asse x cositivo se tale da comprimere i ettente [kNm] intorno all'asse y cositivo se tale da comprimere i	princ. d'inerzia (tra parentesi I lembo superiore della sezion princ. d'inerzia (tra parentesi	ne
N°Comb.	N	Mx	My	
1 2	0.00 0.00	55.00 (47.38) -24.00 (-43.38)	0.00 (0.00) 0.00 (0.00)	

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My	Momento fle con verso p Momento fle	ositivo se tale da comprimere i	princ. d'inerzia (tra parentesi Mo I lembo superiore della sezione princ. d'inerzia (tra parentesi Mo	,
N°Comb.	N	Mx	Му	
1	0.00	3.00 (47.38)	0.00 (0.00)	
2	0.00	-5.00 (-43.38)	0.00 (0.00)	

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 4.0 cm Interferro netto minimo barre longitudinali: 8.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx	Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My	Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res	Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)
Mx Res	Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res	Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)
	Verifica positiva se tale rapporto risulta >=1.000
As Tesa	Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb Ver Ν Mx Му N Res Mx Res My Res Mis.Sic. As Tesa

Relazione tecnica e di calcolo 95

1	S	0.00	74.00	0.00	0.00	210.12	0.00	2.84	31.4(3.9)
2	S	-74.00	-49.00	0.00	-73.84	-110.81	0.00	2.22	15.7(3.9)
3	S	0.00	0.10	0.00	0.00	210.12	0.00	999.00	31.4(3.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max x/d Xc max	Deform. unit. massima del conglomerato a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.303	-50.0	25.0	0.00061	45.0	20.0	-0.00807	-45.0	5.0
2	0.00350	0.226	-50.0	0.0	-0.00037	-45.0	5.0	-0.01200	45.0	20.0
3	0.00350	0.303	-50.0	25.0	0.00061	45.0	20.0	-0.00807	-45.0	5.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000578322	-0.010958038	0.303	0.818
2	0.000000000	-0.000774796	0.003500000	0.226	0.722
3	0.000000000	0.000578322	-0.010958038	0.303	0.818

METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (\$ 4.1.2.1.3.1 NTC)

Ver	S = comb.verificata a taglio/ N = comb. non verificata
Ved	Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)
Vwct	Taglio trazione resistente [kN] in assenza di staffe [formula (4.1.23)NTC]
d	Altezza utile sezione [cm]
bw	Larghezza minima sezione [cm]
Ro	Rapporto geometrico di armatura longitudinale [<0.02]
Scp	Tensione media di compressione nella sezione [Mpa]

N°Comb	Ver	Ved	Vwct	d	bw	Ro	Scp
1	_	0.00	182.52				
2	S	0.00	0.00	20.0	100.0	0.0000	0.00
3	S	182.00	182.52	20.0	100.0	0.0157	0.00

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max. Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff

N°Comb	Ver	Sc max	Xc max `	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	5.90	-50.0	25.0	-105.5	-25.0	5.0	550	31.4
2	S	3.06	50.0	0.0	-89.8	22.5	20.0	600	15.7

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	5.90	-50.0	25.0	-105.5	-25.0	5.0	550	31.4

Relazione tecnica e di calcolo 96 Mandanti:

2 S 3.06 22.5 20.0 600 15.7 50.0 0.0 -89.8

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm sr ma wk Mx fe	ess.	Esito della ve Massima deformation deformation e 0.8 per ba = 0.4 per cc = 0.5 per fles = 3.400 Coei = 0.425 Coei Diametro [m Copriferro [m Differenza tr. Tra parentes Massima dis	erifica formazione un formazione un formazione un formazione un formazione un formazione un formazione, =(e1 ff. in eq.(7.1 ff. in eq.(7.1 ff. in eq.(7.1 ff. in etto cal ff.	unitaria di tra itaria di tra enza miglio ermanenti + e2)/(2*e 1) come da 1) come da 1) come da dicolato con nizioni medi irimo = 0.6 s fessure [mr calcolata = li prima fes	razione n zione nel rata [eq.(/= 0.6 pe 1) per tra: a nnessi a annessi in annessi riferimen e di accia Smax / E: m] sr max*(e surazione	el calcestruzzo 7.11)EC2] er comb.frequizione eccenti nazionali nazionali barra nio e calcestrus [(7.9)EC2] e_sm - e_cme intomo all'a	.uzzo [(7.8)EC2 e (C4.1.7)NTC] ? e (C4.1.8)NTC]) [(7.8)EC2 e (C4.1.7)NTC]. Valor sse X [kNm]	fessurata essurata	a	otm	
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00077	0	0.500	20.0	40	0.00032 (0.00032)	196	0.062 (0.20)	47.38	
0.00 2 0.00	S	-0.00062	0	0.500	20.0	40	0.00027 (0.00027)	266	0.072 (0.20)	-43.38	

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	0.32	-50.0	25.0	-5.8	-45.0	5.0	550	31.4
2	S	0.64	50.0	0.0	-18.7	22.5	20.0	600	15.7

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1 0.00	S	-0.00004	0	0.500	20.0	40	0.00002 (0.00002)	196	0.003 (0.20)	47.38	
2 0.00	S	-0.00013	0	0.500	20.0	40	0.00006 (0.00006)	266	0.015 (0.20)	-43.38	

13. SOTTOSTRUTTURE

13.1 **Pile**

Si riportano di seguito le sollecitazioni agenti alla base delle pile, statiche e sismiche. La convenzione sulle direzione di sollecitazione è la seguente:

Fz: Forza vert Fy: Forza trasv Fx: Forza Long Mz: Torsione

My: Flessione dir Long Mx: Flessione dir Trasv

13.1.1 Combinazioni statiche con Nmax

				SLU Tr	raffico					SLU'	Vento		
	ID	FX	FY	FZ	MX	MY	MZ	FX	FY	FZ	MX	MY	MZ
		(kN)	(kN)	(kN)	(kN.m)	(kN.m)	(kN.m)	(kN)	(kN)	(kN)	(kN.m)	(kN.m)	(kN.m)
pila	1-A	40	-271	3927	391	5	29	31	-287	3584	470	8	20
pila	1-B	9	86	4804	95	-2	44	7	31	4422	209	-2	32
pila	1-C	45	205	2724	-40	-2	67	33	158	2625	71	-5	50
pila	2-A	35	-244	3670	414	-5	32	26	-265	3340	496	-3	24
pila	2-B	9	63	4398	143	0	47	7	11	4037	259	0	35
pila	2-C	47	157	2453	29	5	66	35	114	2366	140	3	50
pila	3-A	39	-255	3655	399	4	35	29	-272	3324	487	3	26
pila	3-B	8	72	4384	132	0	47	6	18	4016	253	0	35
pila	3-C	47	159	2432	13	-4	68	35	114	2344	131	-3	51
pila	4-A	36	-296	4100	457	-40	59	26	-310	3738	532	-34	46
pila	4-B	12	90	4897	118	6	62	10	32	4526	236	6	47
pila	4-C	62	177	2593	9	34	83	47	136	2547	114	28	62

				SLE T	raffico					SLE '	Vento		
	ID	FX	FY	FZ	MX	MY	MZ	FX	FY	FZ	MX	MY	MZ
		(kN)	(kN)	(kN)	(kN.m)	(kN.m)	(kN.m)	(kN)	(kN)	(kN)	(kN.m)	(kN.m)	(kN.m)
pila	1-A	30	-194	2854	275	3	21	23	-203	2599	326	5	15
pila	1-B	7	66	3498	59	-1	32	5	28	3215	137	-1	24
pila	1-C	33	151	1968	-37	-1	49	25	119	1896	37	-3	37
pila	2-A	26	-174	2669	291	-3	24	20	-187	2423	344	-2	18
pila	2-B	7	50	3206	93	0	35	5	13	2938	171	0	26
pila	2-C	35	117	1773	12	3	49	26	87	1710	86	2	37
pila	3-A	29	-182	2659	280	3	26	22	-193	2412	337	2	20
pila	3-B	6	57	3197	85	0	35	5	18	2924	167	0	26
pila	3-C	35	118	1758	0	-3	50	26	87	1695	79	-2	38
pila	4-A	26	-212	2979	323	-29	44	19	-220	2710	371	-25	34
pila	4-B	9	69	3563	75	4	46	7	28	3288	155	4	35
pila	4-C	46	130	1868	-2	25	62	35	103	1836	68	21	46

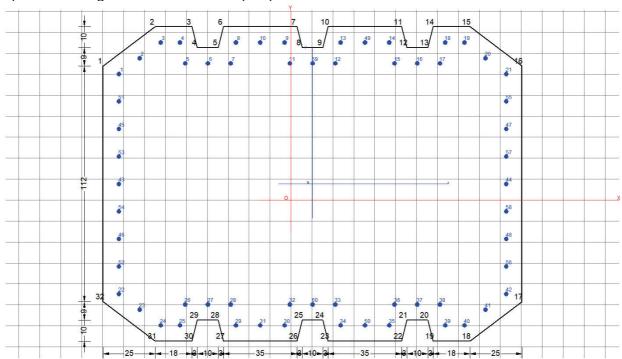
13.1.2 Combinazioni statiche con Nmin

				SLU Tı	affico					SLU'	Vento		
	ID	FX	FY	FZ	MX	MY	MZ	FX	FY	FZ	MX	MY	MZ
		(kN)	(kN)	(kN)	(kN.m)	(kN.m)	(kN.m)	(kN)	(kN)	(kN)	(kN.m)	(kN.m)	(kN.m)
pila	1-A	40	-222	3242	348	5	29	31	-237	2898	427	7	21
pila	1-B	9	86	3894	95	-1	44	7	31	3512	209	-1	32
pila	1-C	45	156	2039	3	-3	66	33	109	1940	114	-5	49
pila	2-A	35	-201	3045	376	-5	32	26	-221	2716	458	-3	24
pila	2-B	9	63	3581	143	0	47	7	11	3219	259	0	35
pila	2-C	47	114	1829	68	5	66	35	70	1742	178	3	50
pila	3-A	39	-212	3037	361	4	35	29	-230	2706	449	3	26
pila	3-B	8	72	3579	132	0	47	6	18	3211	253	0	35
pila	3-C	47	116	1815	51	-4	68	35	71	1726	168	-3	51
pila	4-A	36	-244	3388	411	-39	58	26	-258	3027	486	-33	45
pila	4-B	12	90	3948	118	4	62	9	32	3577	236	4	47
pila	4-C	62	125	1881	54	35	84	47	85	1835	160	29	63

Relazione tecnica e di calcolo

98

Mandataria:


				SLE T	raffico					SLE '	Vento		
	ID	FX	FY	FZ	MX	MY	MZ	FX	FY	FZ	MX	MY	MZ
		(kN)	(kN)	(kN)	(kN.m)	(kN.m)	(kN.m)	(kN)	(kN)	(kN)	(kN.m)	(kN.m)	(kN.m)
pila	1-A	30	-194	2854	275	3	21	23	-203	2599	326	5	15
pila	1-B	7	66	3498	59	-1	32	5	28	3215	137	-1	24
pila	1-C	33	151	1968	-37	-1	49	25	119	1896	37	-3	37
pila	2-A	26	-174	2669	291	-3	24	20	-187	2423	344	-2	18
pila	2-B	7	50	3206	93	0	35	5	13	2938	171	0	26
pila	2-C	35	117	1773	12	3	49	26	87	1710	86	2	37
pila	3-A	29	-182	2659	280	3	26	22	-193	2412	337	2	20
pila	3-B	6	57	3197	85	0	35	5	18	2924	167	0	26
pila	3-C	35	118	1758	0	-3	50	26	87	1695	79	-2	38
pila	4-A	26	-212	2979	323	-29	44	19	-220	2710	371	-25	34
pila	4-B	9	69	3563	75	4	46	7	28	3288	155	4	35
pila	4-C	46	130	1868	-2	25	62	35	103	1836	68	21	46

13.1.3 Combinazioni sismiche q=1.5

				SLV	<+0.3Y					SLV \	/+0.3X		
	ID	FX	FY	FZ	MX	MY	MZ	FX	FY	FZ	MX	MY	MZ
		(kN)	(kN)	(kN)	(kN.m)	(kN.m)	(kN.m)	(kN)	(kN)	(kN)	(kN.m)	(kN.m)	(kN.m)
pila	1-A	-118	-188	2564	533	-567	3	-3	-454	2550	1629	-15	-47
pila	1-B	-147	-136	2163	519	-694	-9	-44	-454	1976	1729	-208	-31
pila	1-C	118	-47	2384	412	567	3	3	-328	1952	1521	15	-47
pila	2-A	124	-239	1772	827	595	-27	58	-704	2351	2677	277	-38
pila	2-B	-133	-227	1449	868	632	-6	-40	-758	1639	2893	189	-20
pila	2-C	-124	-154	1469	754	-595	-27	-58	-604	1344	2592	-277	-38
pila	3-A	102	-275	2321	916	493	-10	19	-770	2530	2930	93	13
pila	3-B	-121	-249	1897	950	574	3	-36	-830	1748	3167	172	11
pila	3-C	-102	-155	1991	814	-493	-10	-19	-662	1428	2837	-93	13
pila	4-A	-96	-206	1986	670	-459	28	-62	-578	2539	2139	-294	57
pila	4-B	97	-180	1654	688	458	9	29	-601	1884	2293	137	31
pila	4-C	96	-105	1747	583	459	28	62	-459	1744	2037	294	57

13.1.4 Verifiche SLU/SLE

La sezione è armata mediante 60φ20 longitudinali e φ16/200 trasversali. Si riportano di seguito le verifiche delle pile per le diverse combinazioni.

Descrizione Sezione:

Mandataria:

Resistenze agli Stati Limite Ultimi Metodo di calcolo resistenza: Sezione generica di Pilastro Tipologia sezione:

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Relazione tecnica e di calcolo

Assi x,y principali d'inerzia Riferimento Sforzi assegnati: Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Resis. compr. ridotta fcd': Def.unit. max resistenza ec2: Def.unit. ultima ecu: Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: Resis. media a trazione fctm: Coeff. Omogen. S.L.E.:	C30/37 17.000 8.500 0.0020 0.0035 Parabola-Rettangolo 32836.0 2.900 15.00	MPa MPa MPa MPa
	Coeff. Omogen. S.L.E.:	15.00	
ACCIAIO -	Tipo: Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: Resist. snerv. di progetto fyd: Resist. ultima di progetto ftd: Deform. ultima di progetto Epu: Modulo Elastico Ef Diagramma tensione-deformaz.: Coeff. Aderenza istantaneo ß1*ß2: Coeff. Aderenza differito ß1*ß2:	B450C 450.00 450.00 391.30 391.30 0.068 2000000 Bilineare finito 1.00 0.50	MPa MPa MPa MPa daN/cm²
	Sf limite S.L.E. Comb. Rare:	360.00	MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del D Classe Congle		Poligonale C30/37
N°vertice:	X [cm]	Y [cm]
N°vertice: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	X [cm] -89.7 -64.7 -47.2 -44.7 -34.7 -32.2 -2.8 -5.3 -15.3 -17.8 -52.8 -55.3 -65.3 -67.8 -85.4 -110.3 -110	Y [cm] 63.9 82.7 82.7 72.7 72.7 82.7 72.7 82.7 72.7 82.7 72.7 82.7 72.7 82.7 72.7 82.7 63.9 -48.5 -67.3 -67.3 -57.3 -57.3 -67.3 -67.3
28 29 30	-34.7 -44.7 -47.2	-57.3 -57.3 -67.3
31 32	-64.7 -89.7	-67.3 -48.5

Relazione tecnica e di calcolo

100

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1 2 3 4 5 6 7 8 9 10 11	-82.2 -72.2 -62.2 -53.0 -50.5 -39.7 -28.8 -26.3 -3.0 -14.7 -0.5	60.2 67.7 75.2 75.2 65.2 65.2 65.2 75.2 75.2 75.2 65.2	20 20 20 20 20 20 20 20 20 20 20 20
12 13 14 15 16 17 18 19 20 21	21.2 23.7 47.0 49.5 60.3 71.2 73.7 82.9 92.9 102.8 -82.2	65.2 75.2 75.2 65.2 65.2 65.2 75.2 75.2 67.7 60.2 -44.8	20 20 20 20 20 20 20 20 20 20 20
23 24 25 26 27 28 29 30 31 32	-72.2 -62.2 -53.0 -50.5 -39.7 -28.8 -26.3 -3.0 -14.7 -0.5	-52.3 -59.8 -59.8 -49.8 -49.8 -49.8 -59.8 -59.8 -59.8	20 20 20 20 20 20 20 20 20 20 20
33 34 35 36 37 38 39 40 41 42 43	21.2 23.7 47.0 49.5 60.3 71.2 73.7 82.9 92.9 102.8 -82.2	-49.8 -59.8 -49.8 -49.8 -49.8 -59.8 -59.8 -52.3 -44.8 7.7	20 20 20 20 20 20 20 20 20 20 20
44 45 46 47 48 49 50 51 52 53	102.8 -82.2 -82.2 102.8 102.8 35.3 35.3 -82.2 -82.2	7.7 7.7 33.9 -18.5 33.9 -18.5 75.2 -59.8 47.1 -31.6 20.8	20 20 20 20 20 20 20 20 20 20 20
54 55 56 57 58 59 60	-82.2 102.8 102.8 102.8 102.8 10.3 10.3	-5.4 47.1 -31.6 20.8 -5.4 65.2 -49.8	20 20 20 20 20 20 20 20

ARMATURE A TAGLIO

Diametro staffe: 16 mm

Relazione tecnica e di calcolo

101

Mandataria:

Passo staffe: 20.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

Vx		Componente d	el Taglio [kN] paralle	ela all'asse princ.d'in	erzia x
N°Comb.	N	Mx	Му	Vy	Vx
1	3241.90	4.60	347.60	40.05	221.85
2	2898.48	7.00	426.80	30.86	237.49
3	2563.51	567.40	532.61	117.82	187.73
4	2550.10	14.93	1629.03	2.60	454.44
5	3894.20	1.00	94.50	9.45	85.50
6	3512.15	1.00	209.48	7.09	31.13
7	2162.51	694.44	518.82	146.50	136.11
8	1976.24	208.34	1729.41	43.95	453.71
9	2038.60	2.60	3.40	45.00	155.70
10	1939.90	5.00	113.65	32.93	108.68
11	2384.17	567.40	412.47	117.82	47.09
12	1952.28	14.93	1521.24	2.60	328.31
13	3045.35	4.50	375.65	35.10	201.00
14	2715.54	2.55	458.04	26.33	221.40
15	1771.69	594.94	826.76	123.83	238.81
16	2351.16	276.67	2677.24	57.97	704.21
17	3580.85	0.10	142.65	9.45	63.00
18	3219.39	0.10	258.79	7.09	10.95
19	1448.75	631.53	867.90	133.24	227.47
20	1638.55	189.45	2893.01	39.97	758.24
21	1828.55	4.50	67.60	47.25	114.15
22	1741.89	2.55	178.00	35.44	70.46
23	1469.47	594.94	753.97	123.83	153.76
24	1343.75	276.67	2591.85	57.97	604.38
25	3037.35	4.05	361.15	39.15	212.15
26	2706.11	3.04	449.39	29.36	229.51
27	2321.36	493.22	916.39	102.44	274.84
28	2529.94	93.43	2930.12	19.06	770.41
29	3578.85	0.10	131.85	8.10	72.45
30	3210.64	0.10	253.16	6.08	18.04
31	1896.70	573.89	950.00	121.07	249.00
32 33	1748.39	172.20	3166.68 51.05	36.31	830.00 115.85
33 34	1814.70 1726.43	4.05 3.04	168.31	47.25 35.44	71.49
35	1990.63	493.22	813.89	102.44	154.89
36	1427.51	93.43	2837.46	19.06	662.02
37	3388.25	39.35	411.30	35.55	244.05
38	3026.71	33.31	486.23	25.84	258.11
39	1985.80	459.36	669.69	95.67	206.13
40	2538.89	293.80	2139.06	61.62	578.16
41	3947.65	4.00	117.90	11.80	89.55
42	3576.74	4.00	236.10	9.10	31.69
43	1654.41	457.95	687.91	96.61	180.36
44	1884.32	137.40	2293.02	28.99	601.19
45	1881.20	35.35	54.45	61.65	125.25
46	1835.38	29.31	160.09	47.06	84.86
47	1747.29	459.36	583.24	95.67	105.08
48	1743.84	293.80	2037.36	61.62	459.20

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Relazione tecnica e di calcolo

Ν

Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
	con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom. Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	2854.40	3.40	274.80
2	2598.50	5.00	326.00
2	3498.00	1.00	58.80
4	3215.00	1.00	136.50
5	1967.60	1.40	37.20
6	1896.00	3.00	37.00
7	2669.20	3.40	291.40
8	2423.25	2.00	344.25
9	3206.00	0.00	93.40
10	2938.25	0.00	171.25
11	1772.80	3.40	12.40
12	1710.25	2.00	86.00
13	2658.80	3.00	280.20
14	2411.75	2.25	337.25
15	3197.00	0.00	85.20
16	2924.25	0.00	166.75
17	1758.20	3.00	0.20
18	1694.50	2.25	78.75
19	2979.20	29.40	323.00
20	2709.75	24.75	370.50
21	3563.00	4.00	75.40
22	3288.25	4.00	155.00
23	1867.80	25.40	2.00
24	1835.50	20.75	68.25

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

6.5 cm Copriferro netto minimo barre longitudinali: Interferro netto minimo barre longitudinali: 7.2 cm Copriferro netto minimo staffe: 4.9 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.) My N Res

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r, Mx Res, My Res) e (N, Mx, My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	3241.90	4.60	347.60	3242.10	93.02	8880.23	25.55 188.5(84.9)
2	S	2898.48	7.00	426.80	2898.76	114.66	8646.85	20.26 188.5(84.9)
3	S	2563.51	567.40	532.61	2563.75	5285.69	5004.47	9.35 188.5(84.9)
4	S	2550.10	14.93	1629.03	2550.26	66.71	8409.84	5.16 188.5(84.9)
5	S	3894.20	1.00	94.50	3894.09	75.63	9308.98	98.50 188.5(84.9)
6	S	3512.15	1.00	209.48	3512.33	36.73	9063.99	43.27 188.5(84.9)
7	S	2162.51	694.44	518.82	2162.50	5424.39	4052.42	7.81 188.5(84.9)
8	S	1976.24	208.34	1729.41	1976.48	943.75	7910.68	4.57 188.5(84.9)
9	S	2038.60	2.60	3.40	2038.49	4483.11	5890.54	999.00 188.5(84.9)
10	S	1939.90	5.00	113.65	1939.71	372.22	7965.97	70.10 188.5(84.9)
11	S	2384.17	567.40	412.47	2384.09	5552.87	4034.19	9.78 188.5(84.9)
12	S	1952.28	14.93	1521.24	1952.34	71.55	7994.18	5.26 188.5(84.9)
13	S	3045.35	4.50	375.65	3045.51	84.13	8748.22	23.29 188.5(84.9)
14	S	2715.54	2.55	458.04	2715.29	40.90	8525.11	18.61 188.5(84.9)
15	S	1771.69	594.94	826.76	1771.69	4253.87	5931.11	7.17 188.5(84.9)

Relazione tecnica e di calcolo RTP di progettazione:

Mandataria:

Mandanti:

16	S	2351.16	276.67	2677.24	2351.01	834.60	8191.26	3.06 188.5(84.9)
17	S	3580.85	0.10	142.65	3580.81	3.44	9113.11	63.88 188.5(84.9)
18	S	3219.39	0.10	258.79	3219.54	1.92	8869.99	34.27 188.5(84.9)
19	S	1448.75	631.53	867.90	1448.61	4156.79	5756.73	6.62 188.5(84.9)
20	S	1638.55	189.45	2893.01	1638.41	508.03	7738.76	2.68 188.5(84.9)
21	S	1828.55	4.50	67.60	1828.42	517.64	7874.20	116.47 188.5(84.9)
22	S	1741.89	2.55	178.00	1741.86	102.37	7844.07	44.07 188.5(84.9)
23	S	1469.47	594.94	753.97	1469.33	4376.68	5499.55	7.32 188.5(84.9)
24	S	1343.75	276.67	2591.85	1343.65	834.94	7481.11	2.89 188.5(84.9)
25	S	3037.35	4.05	361.15	3037.38	77.38	8743.79	24.21 188.5(84.9)
26	S	2706.11	3.04	449.39	2706.08	46.49	8519.98	18.96 188.5(84.9)
27	S	2321.36	493.22	916.39	2321.50	3706.17	6891.84	7.52 188.5(84.9)
28	S	2529.94	93.43	2930.12	2530.11	287.64	8383.71	2.86 188.5(84.9)
29	S	3578.85	0.10	131.85	3578.96	3.72	9112.06	69.11 188.5(84.9)
30	S	3210.64	0.10	253.16	3210.60	1.96	8863.99	35.01 188.5(84.9)
31	S	1896.70	573.89	950.00	1896.77	3899.11	6401.97	6.75 188.5(84.9)
32	S	1748.39	172.20	3166.68	1748.68	438.16	7824.55	2.47 188.5(84.9)
33	S	1814.70	4.05	51.05	1814.52	598.91	7855.67	153.84 188.5(84.9)
34	S	1726.43	3.04	168.31	1726.29	128.29	7831.25	46.53 188.5(84.9)
35	S	1990.63	493.22	813.89	1990.54	3930.35	6447.11	7.93 188.5(84.9)
36	S	1427.51	93.43	2837.46	1427.55	224.45	7610.54	2.68 188.5(84.9)
37	S	3388.25	39.35	411.30	3388.33	856.73	8886.07	21.61 188.5(84.9)
38	S	3026.71	33.31	486.23	3026.94	610.13	8683.65	17.86 188.5(84.9)
39	S	1985.80	459.36	669.69	1985.91	4218.73	6150.07	9.18 188.5(84.9)
40	S	2538.89	293.80	2139.06	2538.72	1121.96	8262.06	3.86 188.5(84.9)
41	S	3947.65	4.00	117.90	3947.75	317.66	9319.81	79.05 188.5(84.9)
42	S	3576.74	4.00	236.10	3576.74	121.11	9100.80	38.54 188.5(84.9)
43	S	1654.41	457.95	687.91	1654.34	4035.93	6067.10	8.82 188.5(84.9)
44	S	1884.32	137.40	2293.02	1884.30	475.82	7918.19	3.45 188.5(84.9)
45	S	1881.20	35.35	54.45	1880.98	4068.89	6220.67	114.50 188.5(84.9)
46	S	1835.38	29.31	160.09	1835.49	1447.39	7690.78	48.08 188.5(84.9)
47	S	1747.29	459.36	583.24	1747.38	4477.32	5626.74	9.69 188.5(84.9)
48	S	1743.84	293.80	2037.36	1743.73	1091.39	7713.81	3.78 188.5(84.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	110.3	63.9	0.00281	102.8	60.2	-0.01412	-82.2	-44.8
2	0.00350	110.3	63.9	0.00279	102.8	60.2	-0.01468	-82.2	-44.8
3	0.00350	85.4	82.7	0.00299	82.9	75.2	-0.00904	-62.2	-59.8
4	0.00350	110.3	63.9	0.00276	102.8	60.2	-0.01553	-82.2	-44.8
5	0.00350	110.3	63.9	0.00285	102.8	60.2	-0.01311	-82.2	-44.8
6	0.00350	110.3	63.9	0.00283	102.8	60.2	-0.01383	-82.2	-44.8
7	0.00350	85.4	82.7	0.00292	82.9	75.2	-0.00993	-62.2	-59.8
8	0.00350	110.3	63.9	0.00283	102.8	60.2	-0.01384	-82.2	-44.8
9	0.00350	110.3	63.9	0.00302	102.8	60.2	-0.00943	-82.2	-44.8
10	0.00350	110.3	63.9	0.00276	102.8	60.2	-0.01566	-82.2	-44.8
11	0.00350	85.4	82.7	0.00293	82.9	75.2	-0.00977	-62.2	-59.8
12	0.00350	110.3	63.9	0.00271	102.8	60.2	-0.01678	-82.2	-44.8
13	0.00350	110.3	63.9	0.00280	102.8	60.2	-0.01451	-82.2	-44.8
14	0.00350	110.3	63.9	0.00277	102.8	60.2	-0.01529	-82.2	-44.8
15	0.00350	110.3	63.9	0.00301	102.8	60.2	-0.00961	-82.2	-44.8
16	0.00350	110.3	63.9	0.00284	102.8	60.2	-0.01357	-82.2	-44.8
17	0.00350	110.3	63.9	0.00283	102.8	60.2	-0.01380	-82.2	-44.8
18	0.00350	110.3	63.9	0.00280	102.8	60.2	-0.01445	-82.2	-44.8
19	0.00350	110.3	63.9	0.00300	102.8	60.2	-0.00996	-82.2	-44.8
20	0.00350	110.3	63.9	0.00275	102.8	60.2	-0.01578	-82.2	-44.8

Relazione tecnica e di calcolo

Mandanti:

21	0.00350	110.3	63.9	0.00277	102.8	60.2	-0.01537	-82.2	-44.8
22	0.00350	110.3	63.9	0.00270	102.8	60.2	-0.01713	-82.2	-44.8
23	0.00350	85.4	82.7	0.00299	82.9	75.2	-0.01003	-62.2	-59.8
24	0.00350	110.3	63.9	0.00278	102.8	60.2	-0.01518	-82.2	-44.8
25	0.00350	110.3	63.9	0.00280	102.8	60.2	-0.01455	-82.2	-44.8
26	0.00350	110.3	63.9	0.00277	102.8	60.2	-0.01529	-82.2	-44.8
27	0.00350	110.3	63.9	0.00303	102.8	60.2	-0.00911	-82.2	-44.8
28	0.00350	110.3	63.9	0.00279	102.8	60.2	-0.01480	-82.2	-44.8
29	0.00350	110.3	63.9	0.00283	102.8	60.2	-0.01381	-82.2	-44.8
30	0.00350	110.3	63.9	0.00280	102.8	60.2	-0.01447	-82.2	-44.8
31	0.00350	110.3	63.9	0.00302	102.8	60.2	-0.00942	-82.2	-44.8
32	0.00350	110.3	63.9	0.00275	102.8	60.2	-0.01581	-82.2	-44.8
33	0.00350	110.3	63.9	0.00278	102.8	60.2	-0.01511	-82.2	-44.8
34	0.00350	110.3	63.9	0.00270	102.8	60.2	-0.01706	-82.2	-44.8
35	0.00350	110.3	63.9	0.00302	102.8	60.2	-0.00933	-82.2	-44.8
36	0.00350	110.3	63.9	0.00269	102.8	60.2	-0.01734	-82.2	-44.8
37	0.00350	110.3	63.9	0.00290	102.8	60.2	-0.01206	-82.2	-44.8
38	0.00350	110.3	63.9	0.00286	102.8	60.2	-0.01312	-82.2	-44.8
39	0.00350	110.3	63.9	0.00302	102.8	60.2	-0.00937	-82.2	-44.8
40	0.00350	110.3	63.9	0.00288	102.8	60.2	-0.01259	-82.2	-44.8
41	0.00350	110.3	63.9	0.00288	102.8	60.2	-0.01249	-82.2	-44.8
42	0.00350	110.3	63.9	0.00284	102.8	60.2	-0.01349	-82.2	-44.8
43	0.00350	110.3	63.9	0.00301	102.8	60.2	-0.00967	-82.2	-44.8
44	0.00350	110.3	63.9	0.00277	102.8	60.2	-0.01540	-82.2	-44.8
45	0.00350	110.3	63.9	0.00302	102.8	60.2	-0.00944	-82.2	-44.8
46	0.00350	110.3	63.9	0.00288	102.8	60.2	-0.01274	-82.2	-44.8
47	0.00350	85.4	82.7	0.00301	82.9	75.2	-0.00973	-62.2	-59.8
48	0.00350	110.3	63.9	0.00283	102.8	60.2	-0.01380	-82.2	-44.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000090872	0.000001203	-0.006603129		
2	0.000093584	0.000001535	-0.006923677		
3	0.000028779	0.000058195	-0.003771015		
4	0.000098332	0.000000901	-0.007407052		
5	0.000085784	0.000000908	-0.006022980		
6	0.000089759	0.000000428	-0.006430900		
7	0.000024240	0.000069116	-0.004286612		
8	0.000083478	0.000011724	-0.006459771		
9	0.000038989	0.000049916	-0.003992174		
10	0.000096603	0.000005201	-0.007491085		
11	0.000023489	0.000068767	-0.004193675		
12	0.000104758	0.000001028	-0.008124148		
13	0.000092927	0.000001113	-0.006824197		
14	0.000097307	0.000000542	-0.007271004		
15	0.000041161	0.000047752	-0.004093465		
16	0.000082887	0.000010214	-0.006298154		
17	0.000089847	0.00000063	-0.006417278		
18	0.000093229	0.00000036	-0.006788690		
19	0.000042087	0.000049350	-0.004297761		
20	0.000096049	0.000007237	-0.007560121		
21	0.000093953	0.000007181	-0.007325213		
22	0.000106291	0.000001523	-0.008324890		
23	0.000039349	0.000054211	-0.004344358		
24	0.000090543	0.000011467	-0.007222913		
25	0.000093159	0.000001045	-0.006845377		
26	0.000097237	0.000000657	-0.007270605		
27	0.000045528	0.000035382	-0.003784684		
28	0.000092896	0.000003875	-0.006997364		
29	0.000089860	0.000000068	-0.006419061		
30	0.000093314	0.00000037	-0.006798155		
31	0.000044282	0.000040414	-0.003968772		

Relazione tecnica e di calcolo

Mandanti:

 	-0.007577354	0.000006217	0.000096796	32
 	-0.007180833	0.000008212	0.000092047	33
 	-0.008284716	0.000001908	0.000105704	34
 	-0.003917583	0.000040212	0.000043935	35
 	-0.008450603	0.000003500	0.000106285	36
 	-0.005435761	0.000009474	0.000075500	37
 	-0.006039493	0.000007260	0.000082254	38
 	-0.003947266	0.000045019	0.000041419	39
 	-0.005744126	0.000012791	0.000076373	40
 	-0.005671906	0.000003548	0.000081073	41
 	-0.006237758	0.000001481	0.000087399	42
 	-0.004120006	0.000044729	0.000043153	43
 	-0.007345528	0.000006593	0.000094478	44
 	-0.003987262	0.000043317	0.000042767	45
 	-0.005836541	0.000016778	0.000074901	46
 	-0.004169738	0.000052961	0.000038515	47
 	-0.006439097	0.000013515	0.000082253	48

VERIFICHE A TAGLIO

Diam. Staffe: 16 mm

Passo staffe: 20.0 cm [Passo massimo di normativa = 24.0 cm]

Ver	S = comb. verificata a taglio / N = comb. non verificata
Ved	Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro
Vcd	Taglio resistente ultimo [kN] lato conglomerato compresso [(4.1.28) NTC]
Vwd	Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]
d z	Altezza utile media pesata sezione ortogonale all'asse neutro Braccio coppia interna [cm]
	Vengono prese nella media le strisce con almeno un estremo compresso.
	I pesi della media sono costituiti dalle stesse lunghezze delle strisce.
bw	Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro
	E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.
Ctg	Cotangente dell'angolo di inclinazione dei puntoni di conglomerato
Acw	Coefficiente maggiorativo della resistenza a taglio per compressione
Ast	Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff	Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
	Tra parentesi è indicata la guota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	222.36	7205.56	3437.51 187.7	174.8	131.8	2.500	1.067	1.3	20.1(0.0)
2	S	237.96	7200.12	3445.90 187.7	175.2	132.3	2.500	1.060	1.4	20.1(0.0)
3	S	188.83	6410.82	2631.35 146.0	133.8	155.2	2.500	1.053	1.4	20.1(0.0)
4	S	454.45	7187.94	3459.51 187.9	175.9	132.4	2.500	1.053	2.6	20.1(0.0)
5	S	85.60	7294.53	3425.13 188.1	174.1	132.2	2.500	1.081	0.5	20.1(0.0)
6	S	31.16	7244.67	3435.58 188.0	174.7	131.9	2.500	1.073	0.2	20.1(0.0)
7	S	183.29	6512.78	2552.18 140.7	129.8	163.9	2.500	1.045	1.4	20.1(0.0)
8	S	455.41	6723.45	3386.61 183.8	172.2	128.0	2.500	1.041	2.7	20.1(0.0)
9	S	131.31	5740.65	2804.28 156.5	142.6	131.8	2.500	1.042	0.9	20.1(0.0)
10	S	110.29	6999.19	3450.51 186.8	175.4	130.8	2.500	1.040	0.6	20.1(0.0)
11	S	126.71	6724.12	2527.04 139.4	128.5	170.1	2.500	1.050	1.0	20.1(0.0)
12	S	328.32	7147.73	3474.55 187.9	176.7	132.7	2.500	1.041	1.9	20.1(0.0)
13	S	201.41	7186.38	3443.18 187.8	175.1	131.7	2.500	1.063	1.2	20.1(0.0)
14	S	221.54	7194.60	3456.39 188.0	175.7	132.2	2.500	1.056	1.3	20.1(0.0)

Relazione tecnica e di calcolo

106

15	S	249.71	5255.72	2873.28 160.9 146.1	118.4	2.500	1.037	1.7	20.1(0.0)
16	S	706.01	6787.45	3389.04 184.3 172.3	128.1	2.500	1.049	4.2	20.1(0.0)
17	S	63.01	7280.25	3437.73 188.2 174.8	132.3	2.500	1.074	0.4	20.1(0.0)
18	S	10.95	7253.65	3447.27 188.2 175.3	132.3	2.500	1.067	0.1	20.1(0.0)
19	S	248.98	5225.34	2885.48 161.1 146.7	118.0	2.500	1.030	1.7	20.1(0.0)
20	S	759.10	6901.44	3439.84 185.9 174.9	130.2	2.500	1.034	4.4	20.1(0.0)
21	S	117.42	6918.90	3434.52 185.9 174.6	130.2	2.500	1.038	0.7	20.1(0.0)
22	S	70.96	7104.46	3475.77 187.7 176.7	132.4	2.500	1.036	0.4	20.1(0.0)
23	S	190.54	5480.21	2805.56 155.9 142.6	127.2	2.500	1.031	1.4	20.1(0.0)
24	S	606.87	6740.67	3415.40 184.5 173.6	128.8	2.500	1.028	3.6	20.1(0.0)
25	S	212.58	7239.04	3447.36 188.0 175.3	132.5	2.500	1.063	1.2	20.1(0.0)
26	S	229.71	7186.96	3456.02 187.9 175.7	132.1	2.500	1.056	1.3	20.1(0.0)
27	S	279.87	6090.67	3013.79 168.8 153.2	129.4	2.500	1.048	1.9	20.1(0.0)
28	S	770.53	7111.34	3443.64 187.2 175.1	131.7	2.500	1.053	4.5	20.1(0.0)
29	S	72.46	7280.49	3437.78 188.2 174.8	132.3	2.500	1.074	0.4	20.1(0.0)
30	S	18.04	7253.12	3447.51 188.2 175.3	132.4	2.500	1.067	0.1	20.1(0.0)
31	S	265.53	5763.30	2983.63 166.8 151.7	124.7	2.500	1.039	1.8	20.1(0.0)
32	S	830.62	6969.84	3448.26 186.5 175.3	130.9	2.500	1.036	4.8	20.1(0.0)
33	S	119.59	6852.39	3425.48 185.4 174.2	129.4	2.500	1.038	0.7	20.1(0.0)
34	S	72.12	7115.62	3479.50 188.0 176.9	132.5	2.500	1.036	0.4	20.1(0.0)
35	S	183.42	5768.39	2979.58 166.8 151.5	124.8	2.500	1.041	1.2	20.1(0.0)
36	S	662.28	7040.10	3477.04 187.4 176.8	132.0	2.500	1.030	3.8	20.1(0.0)
37	S	246.58	6877.26	3361.42 184.4 170.9	128.3	2.500	1.070	1.5	20.1(0.0)
38	S	259.38	6987.81	3399.26 185.7 172.8	129.8	2.500	1.063	1.5	20.1(0.0)
39	S	209.97	5449.91	2897.49 162.5 147.3	121.2	2.500	1.041	1.5	20.1(0.0)
40	S	580.40	6702.19	3356.01 183.3 170.6	127.3	2.500	1.053	3.5	20.1(0.0)
41	S	89.98	7160.13	3402.96 187.0 173.0	130.5	2.500	1.082	0.5	20.1(0.0)
42	S	31.84	7242.45	3431.43 187.9 174.5	131.8	2.500	1.074	0.2	20.1(0.0)
43	S	194.75	5506.15	2946.12 164.5 149.8	121.2	2.500	1.034	1.3	20.1(0.0)
44	S	601.75	6943.07	3438.28 186.1 174.8	130.4	2.500	1.039	3.5	20.1(0.0)
45	S	131.87	5579.36	2941.45 164.5 149.5	122.5	2.500	1.039	0.9	20.1(0.0)
46	S	93.10	6513.49	3339.04 182.0 169.8	126.1	2.500	1.038	0.6	20.1(0.0)
47	S	139.17	5777.24	2795.00 155.2 142.1	133.8	2.500	1.036	1.0	20.1(0.0)
48	S	463.11	6623.67	3377.74 183.2 171.7	127.0	2.500	1.036	2.8	20.1(0.0)

Relazione tecnica e di calcolo

Mandataria:

Mandanti:

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

۸ در	٧ د	V:-	V	Of main	V	V	C	\/~~	NIOCamala
As eff.	Ac eff.	18 111111	Xs min	SI IIIII	Yc max	vc max	Sc max	Ver	N°Comb
		-44.8	-82.2	10.0	63.9	110.3	1.19	S	1
		-44.8	-82.2	8.1	63.9	110.3	1.16	S	2
		-44.8	-82.2	16.0	63.9	110.3	1.18	S	3
		-44.8	-82.2	13.6	63.9	110.3	1.17	S	4
		-44.8	-82.2	9.0	63.9	110.3	0.67	S	5
		-44.8	-82.2	8.6	63.9	110.3	0.65	S	6
		-44.8	-82.2	8.9	63.9	110.3	1.14	S	7
		-44.8	-82.2	7.0	63.9	110.3	1.11	S	8
		-5.4	-82.2	14.2	-48.5	110.3	1.12	S	9
		-5.4	-82.2	11.8	-48.5	110.3	1.11	S	10
		-44.8	-82.2	8.3	63.9	110.3	0.58	S	11
		-44.8	-82.2	7.1	63.9	110.3	0.63	S	12
		-44.8	-82.2	9.0	63.9	110.3	1.13	S	13
		-44.8	-82.2	7.0	63.9	110.3	1.10	S	14
		-5.4	-82.2	14.3	-48.5	110.3	1.11	S	15
		-5.4	-82.2	11.8	-48.5	110.3	1.10	S	16
		-59.8	-62.2	8.4	82.7	85.4	0.57	S	17
		-44.8	-82.2	7.1	63.9	110.3	0.62	S	18
		-44.8	-82.2	9.6	63.9	110.3	1.30	S	19
		-44.8	-82.2	7.7	63.9	110.3	1.25	S	20
		-44.8	-82.2	16.1	63.9	110.3	1.22	S	21
		-44.8	-82.2	13.7	63.9	110.3	1.21	S	22
		-59.8	-62.2	8.5	82.7	85.4	0.63	S	23
		-44.8	-82.2	7.6	63.9	110.3	0.68	S	24

13.2 Zattere

Le zattere di fondazione sono a pianta rettangolare 14.50x10.80 metri, di spessore 180cm.

Le verifiche delle zattere sono eseguite ricorrendo ad un modello FEM a *plate/shell* in cui le azioni di base delle pile sono applicate al nodo baricentrico di ogni singolo fusto. I pali sono considerati mediante molle nodali di rigidezza coerente con la sezione e la lunghezza del palo. Ogni zattera presenenta in totale 9 pali in calsetruzzo di diametro 120cm.

Si riporta di seguito la visualizzazione del modello.

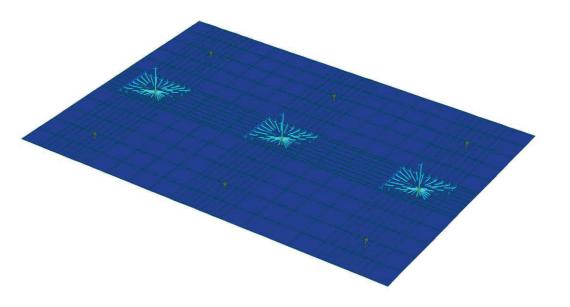


Figura 63: Modello FEM globale

13.2.1 <u>Sollecitazioni agenti</u>

Si riportano di seguito le sollecitazioni agenti alla base della pila applicate al modello di calcolo della zattera di fondazione.

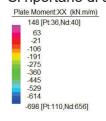
I valori della combinazione sismica sono otteuti dall'analisi spettrale con q=1.5, poi amplificati per 1.1 come definito dalle NTC2018 per le fondazioni dimensionate in CD"B".

12211	1 Com	hinazioni	con Nmax
1.3 / 1	(.()//	101112/1011	CONTININAX

			pila											
	ID		1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C	4-A	4-B	4-C
SLU Traffico	FX	(kN)	40.05	9.45	45.00	35.10	9.45	47.25	39.15	8.10	47.25	35.55	11.80	61.65
	FY	(kN)	-221.85	85.50	155.70	-201.00	63.00	114.15	-212.15	72.45	115.85	-244.05	89.55	125.25
	FZ	(kN)	3241.90	3894.20	2038.60	3045.35	3580.85	1828.55	3037.35	3578.85	1814.70	3388.25	3947.65	1881.20
	MX	(kN.m)	347.60	94.50	3.40	375.65	142.65	67.60	361.15	131.85	51.05	411.30	117.90	54.45
	MY	(kN.m)	4.60	-1.00	-2.60	-4.50	0.00	4.50	4.05	0.00	-4.05	-39.35	4.00	35.35
	MZ	(kN.m)	29.15	43.65	66.25	32.40	47.25	66.15	35.10	47.25	67.50	58.25	61.65	83.95
SLU Vento	FX	(kN)	30.86	7.09	32.93	26.33	7.09	35.44	29.36	6.08	35.44	25.84	9.10	47.06
	FY	(kN)	-237.49	31.13	108.68	-221.40	10.95	70.46	-229.51	18.04	71.49	-258.11	31.69	84.86
	FZ	(kN)	2898.48	3512.15	1939.90	2715.54	3219.39	1741.89	2706.11	3210.64	1726.43	3026.71	3576.74	1835.38
	MX	(kN.m)	426.80	209.48	113.65	458.04	258.79	178.00	449.39	253.16	168.31	486.23	236.10	160.09
	MY	(kN.m)	7.00	-1.00	-5.00	-2.55	0.00	2.55	3.04	0.00	-3.04	-33.31	4.00	29.31
	MZ	(kN.m)	20.79	31.91	49.11	24.30	35.44	49.61	26.33	35.44	50.63	45.01	47.06	63.29
SLE Traffico	FX	(kN)	29.60	7.00	33.40	26.00	7.00	35.00	29.00	6.00	35.00	26.40	9.00	45.60
	FY	(kN)	-193.80	66.00	151.20	-174.20	49.60	116.80	-182.20	56.60	117.80	-211.60	69.20	130.40
	FZ	(kN)	2854.40	3498.00	1967.60	2669.20	3206.00	1772.80	2658.80	3197.00	1758.20	2979.20	3563.00	1867.80
	MX	(kN.m)	274.80	58.80	-37.20	291.40	93.40	12.40	280.20	85.20	0.20	323.00	75.40	-2.00
	MY	(kN.m)	3.40	-1.00	-1.40	-3.40	0.00	3.40	3.00	0.00	-3.00	-29.40	4.00	25.40
	MZ	(kN.m)	21.40	32.40	49.40	24.00	35.00	49.00	26.00	35.00	50.00	43.60	45.60	61.60
SLE Vento	FX	(kN)	22.75	5.25	24.50	19.50	5.25	26.25	21.75	4.50	26.25	19.25	7.00	34.75
	FY	(kN)	-203.25	27.50	118.50	-187.00	13.00	86.75	-192.75	18.25	87.25	-219.75	28.25	102.75
	FZ	(kN)	2598.50	3215.00	1896.00	2423.25	2938.25	1710.25	2411.75	2924.25	1694.50	2709.75	3288.25	1835.50
	MX	(kN.m)	326.00	136.50	37.00	344.25	171.25	86.00	337.25	166.75	78.75	370.50	155.00	68.25
	MY	(kN.m)	5.00	-1.00	-3.00	-2.00	0.00	2.00	2.25	0.00	-2.25	-24.75	4.00	20.75
	MZ	(kN.m)	15.25	23.75	36.75	18.00	26.25	36.75	19.50	26.25	37.50	33.75	34.75	46.25

Relazione tecnica e di calcolo

13.2.1.2 Combinazioni con Nmin

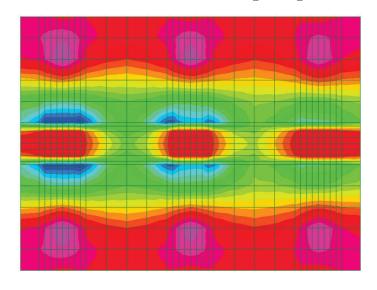

			pila											
	ID		1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C	4-A	4-B	4-C
SLU Traffico	FX	(kN)	40.05	9.45	45.00	35.10	9.45	47.25	39.15	8.10	47.25	35.55	11.80	61.65
	FY	(kN)	-221.85	85.50	155.70	-201.00	63.00	114.15	-212.15	72.45	115.85	-244.05	89.55	125.25
	FZ	(kN)	3241.90	3894.20	2038.60	3045.35	3580.85	1828.55	3037.35	3578.85	1814.70	3388.25	3947.65	1881.20
	MX	(kN.m)	347.60	94.50	3.40	375.65	142.65	67.60	361.15	131.85	51.05	411.30	117.90	54.45
	MY	(kN.m)	4.60	-1.00	-2.60	-4.50	0.00	4.50	4.05	0.00	-4.05	-39.35	4.00	35.35
	MZ	(kN.m)	29.15	43.65	66.25	32.40	47.25	66.15	35.10	47.25	67.50	58.25	61.65	83.95
SLU Vento	FX	(kN)	30.86	7.09	32.93	26.33	7.09	35.44	29.36	6.08	35.44	25.84	9.10	47.06
	FY	(kN)	-237.49	31.13	108.68	-221.40	10.95	70.46	-229.51	18.04	71.49	-258.11	31.69	84.86
	FZ	(kN)	2898.48	3512.15	1939.90	2715.54	3219.39	1741.89	2706.11	3210.64	1726.43	3026.71	3576.74	1835.38
	MX	(kN.m)	426.80	209.48	113.65	458.04	258.79	178.00	449.39	253.16	168.31	486.23	236.10	160.09
	MY	(kN.m)	7.00	-1.00	-5.00	-2.55	0.00	2.55	3.04	0.00	-3.04	-33.31	4.00	29.31
	MZ	(kN.m)	20.79	31.91	49.11	24.30	35.44	49.61	26.33	35.44	50.63	45.01	47.06	63.29
SLE Traffico	FX	(kN)	29.60	7.00	33.40	26.00	7.00	35.00	29.00	6.00	35.00	26.40	9.00	45.60
	FY	(kN)	-193.80	66.00	151.20	-174.20	49.60	116.80	-182.20	56.60	117.80	-211.60	69.20	130.40
	FZ	(kN)	2854.40	3498.00	1967.60	2669.20	3206.00	1772.80	2658.80	3197.00	1758.20	2979.20	3563.00	1867.80
	MX	(kN.m)	274.80	58.80	-37.20	291.40	93.40	12.40	280.20	85.20	0.20	323.00	75.40	-2.00
	MY	(kN.m)	3.40	-1.00	-1.40	-3.40	0.00	3.40	3.00	0.00	-3.00	-29.40	4.00	25.40
	MZ	(kN.m)	21.40	32.40	49.40	24.00	35.00	49.00	26.00	35.00	50.00	43.60	45.60	61.60
SLE Vento	FX	(kN)	22.75	5.25	24.50	19.50	5.25	26.25	21.75	4.50	26.25	19.25	7.00	34.75
	FY	(kN)	-203.25	27.50	118.50	-187.00	13.00	86.75	-192.75	18.25	87.25	-219.75	28.25	102.75
	FZ	(kN)	2598.50	3215.00	1896.00	2423.25	2938.25	1710.25	2411.75	2924.25	1694.50	2709.75	3288.25	1835.50
	MX	(kN.m)	326.00	136.50	37.00	344.25	171.25	86.00	337.25	166.75	78.75	370.50	155.00	68.25
	MY	(kN.m)	5.00	-1.00	-3.00	-2.00	0.00	2.00	2.25	0.00	-2.25	-24.75	4.00	20.75
	MZ	(kN.m)	15.25	23.75	36.75	18.00	26.25	36.75	19.50	26.25	37.50	33.75	34.75	46.25

13.2.1.3 Combinazioni sismiche

			pila											
	ID		1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C	4-A	4-B	4-C
SLV X+0.3Y	FX	(kN)	-129.60	-161.15	129.60	136.21	-146.56	-136.21	112.68	-133.17	-112.68	-105.23	106.27	105.23
	FY	(kN)	-206.51	-149.72	-51.80	-262.69	-250.22	-169.14	-302.32	-273.90	-170.38	-226.75	-198.39	-115.58
	FZ	(kN)	2819.86	2378.76	2622.58	1948.86	1593.62	1616.41	2553.49	2086.37	2189.69	2184.38	1819.85	1922.02
	MX	(kN.m)	585.87	570.70	453.71	909.44	954.69	829.36	1008.03	1045.00	895.27	736.66	756.70	641.56
	MY	(kN.m)	-624.14	-763.88	624.14	654.44	694.69	-654.44	542.55	631.27	-542.55	-505.30	503.75	505.30
	MZ	(kN.m)	3.46	-10.33	3.46	-29.83	-6.57	-29.83	-11.52	3.68	-11.52	31.29	10.38	31.29
SLV Y+0.3X	FX	(kN)	-2.86	-48.35	2.86	63.77	-43.97	-63.77	20.97	-39.94	-20.97	-67.78	31.89	67.78
	FY	(kN)	-499.89	-499.08	-361.14	-774.63	-834.06	-664.81	-847.45	-913.00	-728.22	-635.98	-661.31	-505.12
	FZ	(kN)	2805.11	2173.86	2147.51	2586.28	1802.41	1478.12	2782.93	1923.23	1570.26	2792.78	2072.75	1918.23
	MX	(kN.m)	1791.93	1902.35	1673.36	2944.96	3182.31	2851.04	3223.14	3483.35	3121.20	2352.97	2522.33	2241.10
	MY	(kN.m)	-16.42	-229.17	16.42	304.34	208.39	-304.34	102.77	189.42	-102.77	-323.18	151.14	323.18
	MZ	(kN.m)	-51.94	-34.43	-51.94	-41.70	-21.89	-41.70	14.06	12.26	14.06	62.44	34.61	62.44

13.2.2 Verifiche SLU

Si riportano di seguito le sollecitazioni massime e minime agenti agli SLU/SLV.



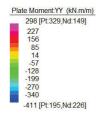


Figura 64: Mxx SLU

Relazione tecnica e di calcolo

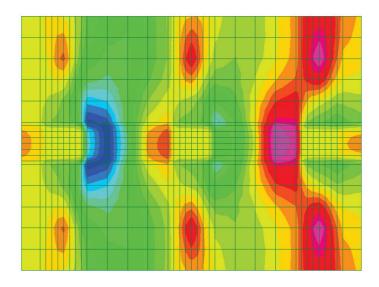
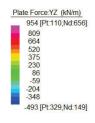



Figura 65: Myy SLU

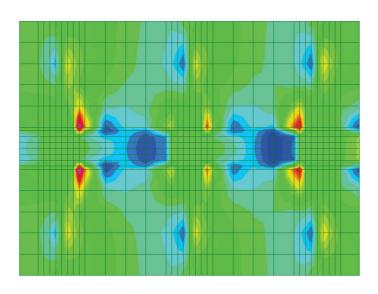
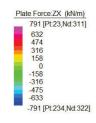



Figura 66: Fzx SLU

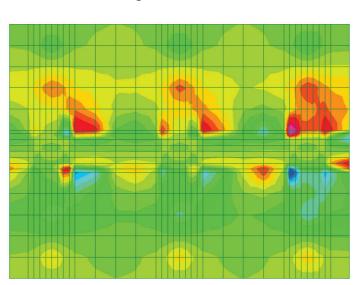


Figura 67: Fzx SLU - Inviluppo assoluto

La sezione di spessore 180cm risulta armata mediante 10∮24/m superiori e inferiori in entrambe le direzioni. A taglio si dispongono 9 ganci \(\psi 12/mq. \)

Descrizione Sezione:

Resistenze agli Stati Limite Ultimi Metodo di calcolo resistenza:

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

N.T.C. Normativa di riferimento:

Percorso sollecitazione: A Sforzo Norm. costante Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Def.unit. max resistenza ec2: Def.unit. ultima ecu:	C28/35 15.860 0.0020 0.0035	MPa
	Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: Resis. media a trazione fctm:	Parabola-Rettangolo 32308.0 2.760	MPa MPa
ACCIAIO -	Tipo: Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: Resist. snerv. di progetto fyd: Resist. ultima di progetto ftd: Deform. ultima di progetto Epu: Modulo Elastico Ef Diagramma tensione-deformaz.:	B450C 450.00 450.00 391.30 0.068 2000000 Bilineare finito	MPa MPa MPa MPa daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

	Forma del Dominio: Classe Conglomerato:				
N°vertice:	X [cm]	Y [cm]			
1	-50.0	0.0			
2	-50.0	180.0			
3	50.0	180.0			
4	50.0	0.0			

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.0	5.0	24
2	-45.0	175.0	24
3	45.0	175.0	24
4	45.0	5.0	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
N°Barre	Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	2	3	8	24
2	1	4	8	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Relazione tecnica e di calcolo

ERCERCA WABUTA AMBENTE =

N Mx		Momento flettent	e [kNm] intorno all'a	aric. (+ se di compre asse x princ. d'inerzi	a ′			
Му		con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.						
Vy				a all'asse princ.d'ine				
Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia x						
N°Comb.	N	Mx	Му	Vy	Vx			
1	0.00	698.00	0.00	0.00	0.00			
2	0.00	-411.00	0.00	0.00	0.00			

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 3.8 cm Interferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx	Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My	Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res	Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)
Mx Res	Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res	Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)
	Verifica positiva se tale rapporto risulta >=1.000
As Tesa	Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	698.00	0.00	0.00	3027.79	0.00	4.34	45.2(27.9)
2	S	0.00	-411.00	0.00	0.00	-3027.79	0.00	7.37	45.2(27.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00297	0.042	-50.0	180.0	0.00095	-45.0	175.0	-0.06750	-45.0	5.0
2	0.00297	0.042	-50.0	0.0	0.00095	-45.0	5.0	-0.06750	-45.0	175.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue						
N°Comb	а	b	С	x/d	C.Rid.		
1	0.000000000	0.000402675 -0.000402675	-0.069513373 0.002968063	0.042 0.042	0.700 0.700		

Mandataria:

Relazione tecnica e di calcolo

Dati CA								Calcolo sez	zione in C	:.A.						
sezione																
	B =	1000	[mm]		• 1		•		k =	1.34	ρ1 =	0.00259	v min =	0.29		
	H =	1800	[mm]				I I		σ cp =	0.00	[MPa]	====>	αc=	1		
	d =	1750	[mm]		Ш		С			SE	ZIONE NO	NARMATA	A TAGLI	0		
	c =	50	[mm]						1	V _{Rd calc}	1	V _R	d min			
	Rck =	35	[MPa]		d							7	-	1 _		
	γ CLS =	1.5		Н				1	$V_{Rd} = \{0, 18 \cdot k \cdot ($	$(100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c$	$+0.15 \cdot \sigma_{cp} \cdot b_w$	$\cdot d \ge (v_{min} + 0)$.15 · σ _{cp}) · b _w d	(4.1.14)		
	V=	0.5							Sec. 18-10.		1896 20	SARCIA I	100.00			
Armature	longitudinali ler	nbo teso:							V _{Rd, min} =	510.97	[kN]	\/ _	EEO	26	LANI	
		Base	Agg		, • [_	As		V _{Rd, calc} =	550.26	[kN]	V _{Rd} -	550	.20	kN	
	n° barre	10			•		•									
	Φ barre	24														
armatura						В				SEZI	ONE ARM	ATA A TAC	SLIO (NTC	08)		
	As =	4524	[mm^2]					1	aglio traz	zione						
	φ braccio =	12	[mm]					,		A _{sw} c						
	A braccio =	113	[mm^2]						$V_{Rsd} = 0.9 \cdot d \cdot -$	$\frac{A_{vw}}{s} \cdot f_{yd} \cdot (ctg\alpha +$	cigo) sina					
	p staffe =	300.0	[mm]						V _{Rsd} =	1742.56	[kN]		١/ _	17/	12 56	kN
	α staffe =	90.0	[°]					1	aglio con	npressione			v _{Rd} -	174	2.56	VIA
	n° bracci =	3							V ₂ , = 0.9 · d · l	b _w ·α _c ·f' _{cd} ·(ctgr	$\alpha + cto\theta$)/(1+ct	to ² θ)				
	A _{sw} /s	1.131							- Red 3,5 G	-w -c + cs (*'e'		TO TA				
	fyk =	450	[MPa]						V _{Rcd} =	4470.19	[kN]					
	θ puntoni =	13.41	[°]													
	γ ACC =	1.15														

Relazione tecnica e di calcolo

14. SOTTOSTRUTTURE - SPALLE

14.1 Modellazione FEM

Le verifiche della spalla sono state eseguite sulla base delle sollecitazioni ottenute dal seguente modello FEM, dove le strutture della spalla (zattera e muri) sono modellate mediante elementi plate/shell; le azioni derivanti dall'impalcato sono state applicate a livello degli appoggi, discretizzati mediante elementi beam.

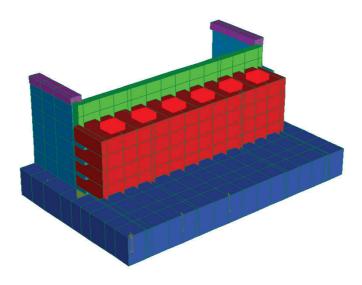


Figura 68: Modello FEM globale

La fondazione è stata modellata considerandola poggiante integralmente su molle verticali nodali a simulare la rigidezza offerta dai pali. Tali molle traslazionali sono state dimensionate coerentemente con le rigidezze delle strutture di fondazione.

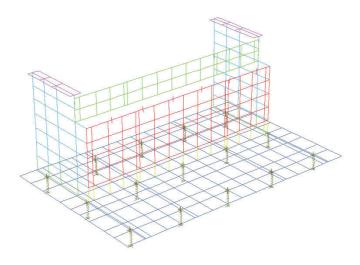


Figura 69: Modello FEM wireframe - Molle nodali

14.1.1 Carichi applicati

Si riportano di seguito i carichi applicati alla struttura della spalla. I pesi propri strutturali sono considerati per mezzo dell'azione della forza di gravità.

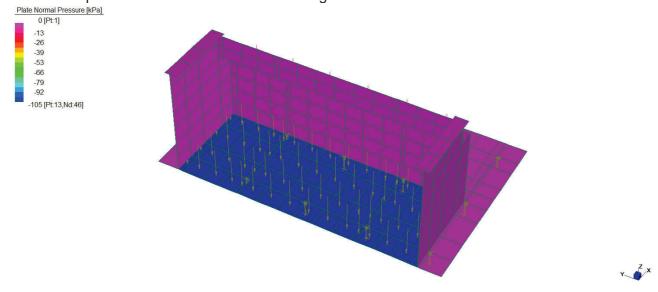


Figura 70: Carico verticale del del terreno

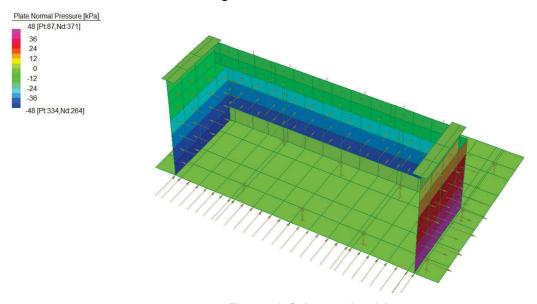


Figura 71: Spinta statica del terreno

ERICERCA VABILITÀ AMBIENTE =

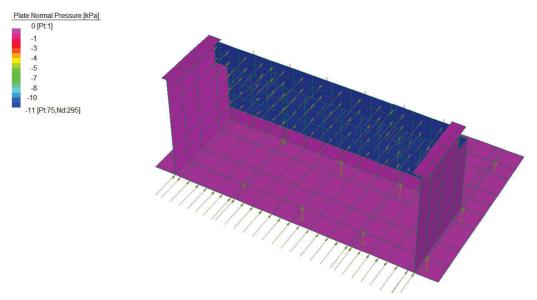


Figura 72: Spinta sismica del terreno longitudinale

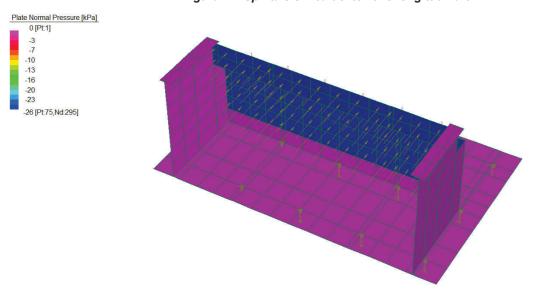


Figura 73: Inerzia del terreno longitudinale

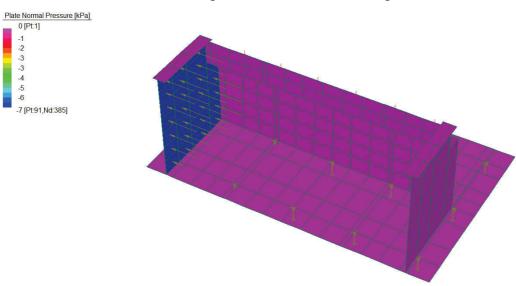


Figura 74: Spinta sismica del terreno trasversale

Relazione tecnica e di calcolo 117 Mandanti:

Y X

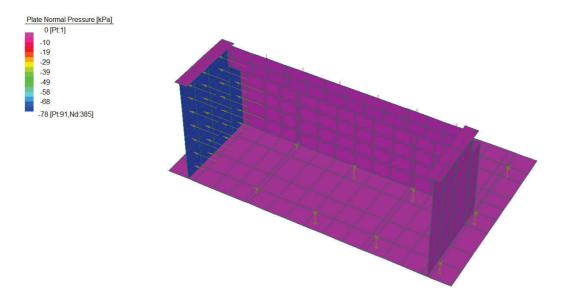


Figura 75: Inerzia del terreno trasversale

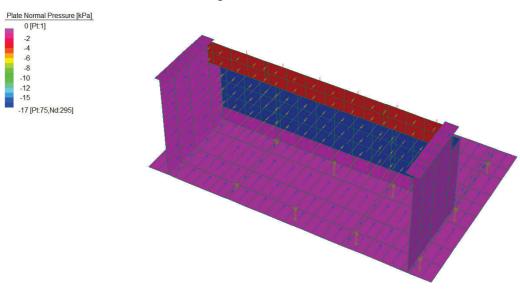


Figura 76: Inerzia strutturale longitudinale

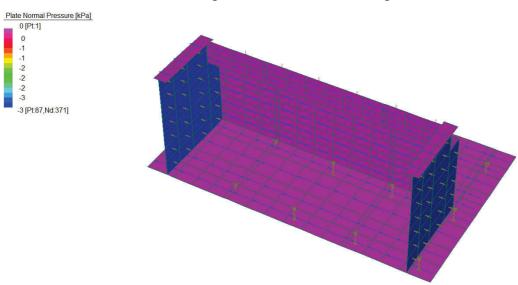


Figura 77: Inerzia strutturale trasversale

Y X

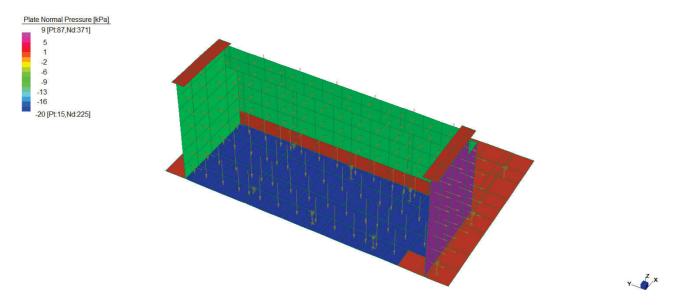


Figura 78: Sovraccarico accidentale

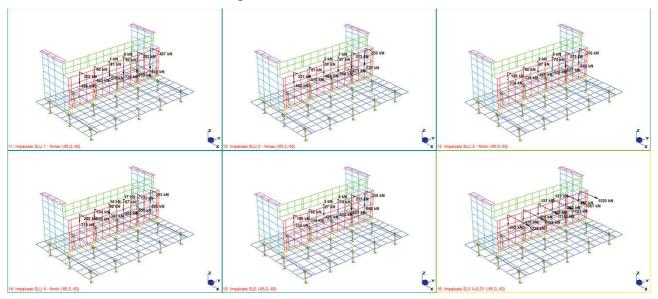


Figura 79: Carichi derivanti dagli appoggi dell'impalcato

14.2 VERIFICHE SLU

14.2.1 Struttura in elevazione: paraghiaia

14.2.1.1 Sollecitazioni SLU

Si riportano di seguito le visualizzazioni delle sollecitazioni agenti sui vari elementi per le combinazioni più gravose.

PRO ITER Projetto Infrastruture Territorio s.r.l.

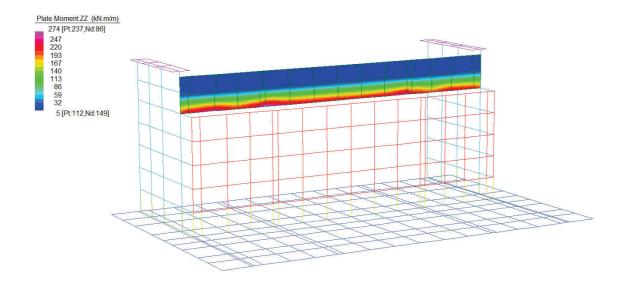


Figura 80: Momenti ZZ – SLU – Inviluppo massimo

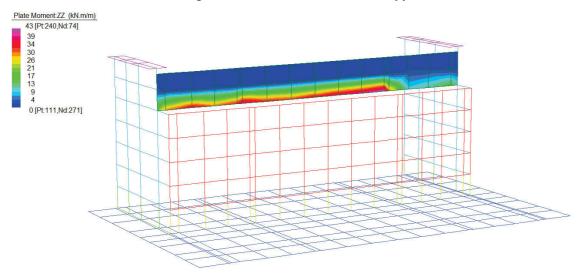


Figura 81: Momenti ZZ - SLU - Inviluppo minimo

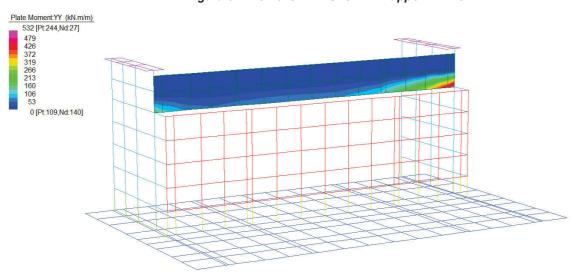


Figura 82: Momenti YY - SLU - Inviluppo massimo

Relazione tecnica e di calcolo 120

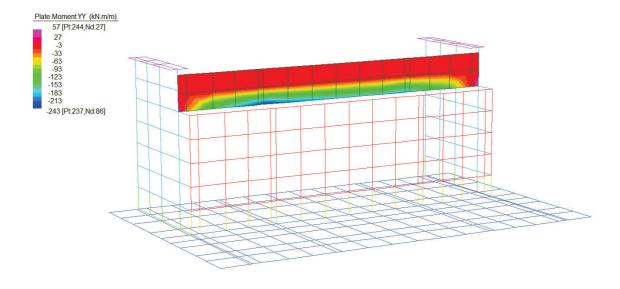


Figura 83: Momenti YY - SLU - Inviluppo minimo

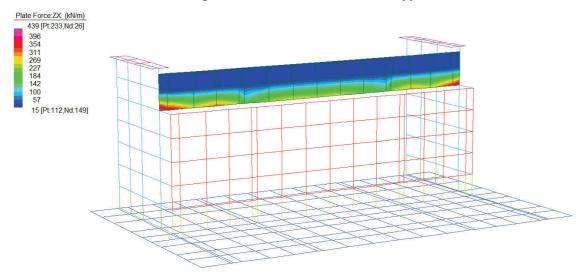


Figura 84: Taglio ZX – SLU – Inviluppo assoluto

Mandataria:

14.2.1.2 Verifiche SLU

La sezione di spessore 50cm risulta armata mediante $10\phi20/m$ interni ed esterni in direzione verticale e mediante $10\phi20/m$ interni ed esterni in direzione orizzontale. A taglio si dispongono 9 ganci $\phi12/mq$.

NOME SEZIONE: Paraghiaia_direzione verticale

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Def.unit. max resistenza ec2: Def.unit. ultima ecu: Diagramma tensione-deformaz.:	C30/37 17.000 0.0020 0.0035 Parabola-Rettangolo	MPa
	Modulo Elastico Normale Ec:	32836.0	MPa
	Resis. media a trazione fctm:	2.900	MPa
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C30/37
N°vertice:	X [cm]	Y [cm]
1 2 3	-50.0 -50.0 50.0	0.0 50.0 50.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.0	5.0	20
2	-45.0	45.0	20
3	45.0	45.0	20
4	45.0	5.0	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

 N°Gen.
 N°Barra Ini.
 N°Barra Fin.
 N°Barre
 Ø

 1
 2
 3
 8
 20

Relazione tecnica e di calcolo 122

2 1 4 8 20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
Му	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	0.00	277.00	0.00	0.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 4.0 cm Interferro netto minimo barre longitudinali: 8.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia

My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	277.00	0.00	0.00	512.35	0.00	1.85	31.4(7.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.135	-50.0	50.0	0.00062	-45.0	45.0	-0.02239	-45.0	5.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 0.000575415 -0.025270738 0.135 0.700

Relazione tecnica e di calcolo

123

NOME SEZIONE: Paraghiaia_direzione orizzontale

Descrizione Sezione:

Resistenze agli Stati Limite Ultimi Metodo di calcolo resistenza:

Sezione generica di Trave (solette, nervature solai) senza staffe Tipologia sezione:

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Assi x,y principali d'inerzia Riferimento Sforzi assegnati:

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C30/37	
	Resis. compr. di progetto fcd:	17.000	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32836.0	MPa
	Resis. media a trazione fctm:	2.900	MPa
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C30/37
N°vertice:	X [cm]	Y [cm]
1 2	-50.0 -50.0	0.0 50.0
3	50.0	50.0
4	50.0	0.0

DATI BARRE ISOLATE

X [cm]	Y [cm]	DiamØ[mm]
-45.0	5.0	20
-45.0	45.0	20
45.0	45.0	20
45.0	5.0	20
	-45.0 -45.0 45.0	-45.0 5.0 -45.0 45.0 45.0 45.0

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione

Numero di barre generate equidistanti cui si riferisce la generazione N°Barre

Diametro in mm delle barre della generazione Ø

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	2	3	8	20
2	1	4	8	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Relazione tecnica e di calcolo

124

N Mx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez.						
Му		Momento flettent	asse y princ. d'inerzi	а				
Vy		con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse princ.d'inerzia y						
Vx		Componente del	Taglio [kN] parallel	a all'asse princ.d'ine	rzia x			
N°Comb.	N	Mx	Му	Vy	Vx			
1	0.00	249.00	0.00	0.00	0.00			
2	0.00	418.00	0.00	0.00	0.00			

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

4.0 cm Copriferro netto minimo barre longitudinali: Interferro netto minimo barre longitudinali: 8.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx	Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My	Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res	Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)
Mx Res	Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res	Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)
	Verifica positiva se tale rapporto risulta >=1.000
As Tesa	Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	249.00	0.00	0.00	512.35	0.00	2.06	31.4(7.5)
2	S	0.00	418.00	0.00	0.00	512.35	0.00	1.23	31.4(7.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max x/d	Deform. unit. massima del conglomerato a compressione Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
	11 10 1
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.135	-50.0	50.0	0.00062	-45.0	45.0	-0.02239	-45.0	5.0
2	0.00350	0.135	-50.0	50.0	0.00062	-45.0	45.0	-0.02239	-45.0	5.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue								
N°Comb	a	b	С	x/d	C.Rid.				
1	0.000000000	0.000575415	-0.025270738	0.135	0.700				
2	0.000000000	0.000575415	-0.025270738	0.135	0.700				

Relazione tecnica e di calcolo

Dati CA							Calcolo sezione in (C.A.						
sezione														
	B =	1000	[mm]		• 1		k =	1.67	ρ1 =	0.00698	v min =	0.41		
	H =	500	[mm]			—	σ cp =	0.00	[MPa]	====>	α c =	1		
	d =	450	[mm]			С		S	EZIONE NOI	V ARMATA	A TAGLI	0		
	c =	50	[mm]	\perp	\perp			V _{Rd calc}		V _R	d min	_		
	Rck =	35	[MPa]		d					7	-	1 _		
	γ CLS =	1.5		Н			$V_{Rd} = \{0.18 \cdot k \cdot$	$(100 \cdot \rho_1 \cdot f_{ek})^{1/3}$	$\gamma_c + 0.15 \cdot \sigma_{cp} \cdot b_w$	$\cdot d \ge (v_{min} + 0)$.15 · σ _{co}) · b _w d	(4.1.14)		
	V=	0.5							20 00 10	Salara da				
Armature	longitudinali len	nbo teso:					V _{Rd, min} =	182.65	[kN]	\ / _	045	11	LANI	
		Base	Agg		• [As	V _{Rd, calc} =	245.44	[kN]	V_{Rd} =	245	.44	kN	
	n° barre	10			•	•								
	Φ barre	20												
armatura						В		SEZ	ZIONE ARMA	ATA A TAC	SLIO (NTC	08)		
	As =	3142	[mm^2]				Taglio tra	zione						
	φ braccio =	12	[mm]				77 00 1	A _{sw} c						
	A braccio =	113	[mm^2]				$V_{Rsd} = 0, 9 \cdot 0$	$\frac{A_{vw}}{s} \cdot f_{yd} \cdot (ctg\alpha)$	+ ctgu) · sin α					
	p staffe =	300.0	[mm]				V _{Rsd} =	448.09	[kN]		١/ _	11	8.09	kN
	α staffe =	90.0	[°]				Taglio co	mpressione			$V_{Rd}=$	44	0.09	KIN
	n° bracci =	3					V0 9.4	h . m . f! (ct.	$g\alpha + ctg\theta)/(1 + ct$	(σ ² θ)				
	A _{sw} /s	1.131					Red = 0,5 G	A C . CQ . (C.)	B					
	fyk =	450	[MPa]				V _{Rcd} =	1149.48	[kN]					
	θ puntoni =	13.41	[°]											
	γ ACC =	1.15												

Relazione tecnica e di calcolo

14.2.2 Strutture di elevazione: paramento verticale

14.2.2.1 Sollecitazioni SLU

Si riportano di seguito le visualizzazioni delle sollecitazioni agenti sui vari elementi per le combinazioni più gravose.

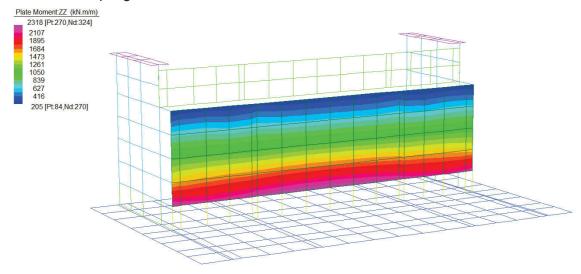


Figura 85: Momenti ZZ – SLU – Inviluppo massimo

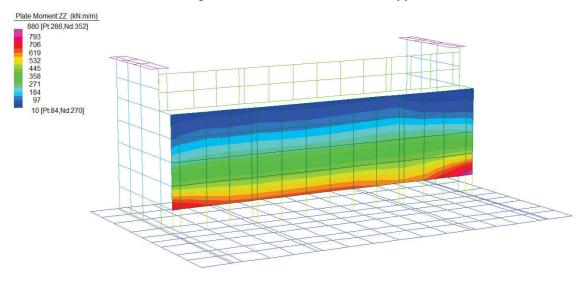


Figura 86: Momenti ZZ - SLU - Inviluppo minimo

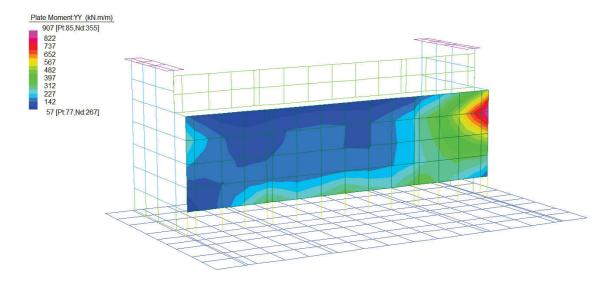


Figura 87: Momenti YY - SLU - Inviluppo massimo

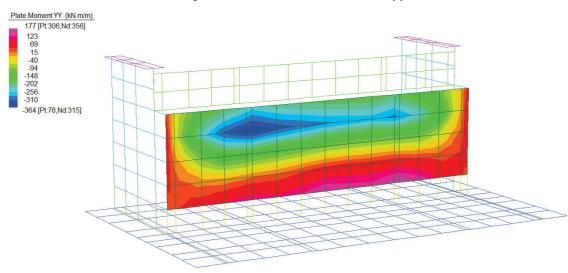


Figura 88: Momenti YY - SLU - Inviluppo minimo

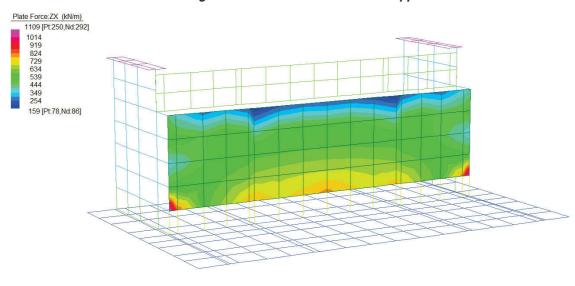


Figura 89: Taglio ZX – SLU – Inviluppo assoluto

Relazione tecnica e di calcolo 128 RTP di progettazione: Mandataria: Mandanti:

14.2.2.2 Verifiche SLU

La sezione di spessore 265cm risulta armata mediante 10\psi24/m interni ed esterni in direzione verticale e mediante 10\phi20/m interni ed esterni in direzione orizzontale. A taglio si dispongono 9 ganci \phi12/mq.

NOME SEZIONE: Paramento_direzione verticale

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C30/37	
	Resis. compr. di progetto fcd:	17.000	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32836.0	MPa
	Resis. media a trazione fctm:	2.900	MPa
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C30/37	
N°vertice:	X [cm]	Y [cm]
1 2	-50.0 -50.0	0.0 265.0
3	50.0	265.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.0	5.0	24
2	-45.0	260.0	24
3	45.0	260.0	24
4	45.0	5.0	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen. N°Barre Ø N°Barra Ini. N°Barra Fin. 3 24

Relazione tecnica e di calcolo 129

2 1 4 8 2

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
•	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	0.00	2875.00	0.00	0.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 3.8 cm Interferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata
N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	2875.00	0.00	0.00	4532.40	0.00	1.58	45.2(43.6)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00221	0.032	-50.0	265.0	0.00087	-45.0	260.0	-0.06750	-45.0	5.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 0.000268131 -0.068840655 0.032 0.700

NOME SEZIONE: Paramento verticale_direzione orizzontale

Relazione tecnica e di calcolo 130

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Def.unit. max resistenza ec2: Def.unit. ultima ecu:	C30/37 17.000 0.0020 0.0035	MPa
	Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: Resis. media a trazione fctm:	Parabola-Rettangolo 32836.0 2.900	MPa MPa
ACCIAIO -	Tipo: Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: Resist. snerv. di progetto fyd: Resist. ultima di progetto ftd: Deform. ultima di progetto Epu: Modulo Elastico Ef Diagramma tensione-deformaz.:	B450C 450.00 450.00 391.30 0.068 2000000 Bilineare finito	MPa MPa MPa MPa daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C30/37
N°vertice:	X [cm]	Y [cm]
1 2 3 4	-50.0 -50.0 50.0 50.0	0.0 265.0 265.0 0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.0	5.0	20
2	-45.0	260.0	20
3	45.0	260.0	20
4	45.0	5.0	20

DATI GENERAZIONI LINEARI DI BARRE

Numero assegnato alla singola generazione lineare di barre N°Gen. N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin.

Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazione N°Barre

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	2	3	8	20
2	1	4	8	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia Mx

Relazione tecnica e di calcolo

My Vy Vx		Momento flettent con verso positiv Componente del	e [kNm] intorno all'a o se tale da comprir Taglio [kN] parallela	mere il lembo sup. d Isse y princ. d'inerzi mere il lembo destro a all'asse princ.d'ine a all'asse princ.d'ine	a o della sez. erzia y
N°Comb.	N	Mx	My	Vy	Vx
1 2	0.00 0.00	861.00 -379.00	0.00 0.00	0.00 0.00	0.00 0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 4.0 cm Interferro netto minimo barre longitudinali: 8.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx	Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My	Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res	Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)
Mx Res	Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res	Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)
	Verifica positiva se tale rapporto risulta >=1.000
As Tesa	Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	N	0.00	861.00	0.00	0.00	3153.47	0.00	3.66	31.4
2	N	0.00	-379.00	0.00	0.00	-3153.47	0.00	8.32	31.4

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00197	0.028	-50.0	265.0	0.00064	-45.0	260.0	-0.06750	-45.0	5.0
2	0.00197	0.028	-50.0	0.0	0.00064	-45.0	5.0	-0.06750	-45.0	260.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue								
N°Comb	а	b	С	x/d	C.Rid.			
1	0.000000000	0.000267198	-0.068835988	0.028	0.700			
2	0.000000000	-0.000267198	0.001971359	0.028	0.700			

Dati CA								Calcolo sez	ione in C	:.A.						
sezione																
	B =	1000	[mm]		• -				k =	1.28	ρ1 =	0.00121	v min =	0.27		
	H =	2650	[mm]				J		σ cp =	0.00	[MPa]	====>	αc=	1		
	d =	2600	[mm]				С			SE	ZIONE NOI	<i>V ARMATA</i>	A TAGLIC	0		
	c =	50	[mm]		ш				1	V _{Rd calc}	1	V _R	d min			
	Rck =	35	[MPa]		d							7		l _		
	γ CLS =	1.5		Н	Ш			V	$k_d = \begin{cases} 0.18 \cdot k \cdot ($	$(100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c$	$+0.15 \cdot \sigma_{cp} \cdot b_w$	$\cdot d \ge (v_{min} + 0)$	$15 \cdot \sigma_{cp}) \cdot b_w d$	(4.1.14)		
	V=	0.5									10000	5-1923-1				
Armature	ongitudinali len	nbo teso:			ш			,	V _{Rd, min} =	708.08	[kN]	\/ _	700	\cap 0	LANI	
		Base	Agg	•	•	_	As	\	/ _{Rd, calc} =	605.67	[kN]	v _{Rd} -	708	.00	kN	
	n° barre	10)		•		•									
	Φ barre	20)													
armatura						В				SEZI	ONE ARMA	ATA A TAC	SLIO (NTC	08)		
	As =	3142	[mm^2]					Т	aglio traz	ione						
	φ braccio =	12	[mm]							A., .	1					
	A braccio =	113	[mm^2]					V	Rsd = 0,9 · d · -	$\frac{A_{uw}}{s} \cdot f_{yd} \cdot (ctg\alpha +$	ctgθ)⋅smα					
	p staffe =	300.0	[mm]						V _{Rsd} =	2588.95	[kN]		\/ _	250	00 05	kN
	α staffe =	90.0	[°]					Т	aglio con	npressione			$V_{Rd}=$	250	00.90	KIN
	n° bracci =	3							-00.4.1	b _w ·α _c ·f' _{cd} ·(ctge	v + ctoθ) //1 + ct	α ² Ω)				
	A _{sw} /s	1.131						,	Red - 0, 5 ti	A . eve . y cq. (critic	A + 61gO)/(1 + 61	8.97				
	fyk =	450	[MPa]						V _{Rcd} =	6641.43	[kN]					
	θ puntoni =	13.41	[°]													
	γ ACC =	1.15														

Relazione tecnica e di calcolo

14.2.3 Muri laterali

14.2.3.1 Sollecitazioni SLU

Si riportano di seguito le visualizzazioni delle sollecitazioni agenti sui vari elementi per le combinazioni più gravose.

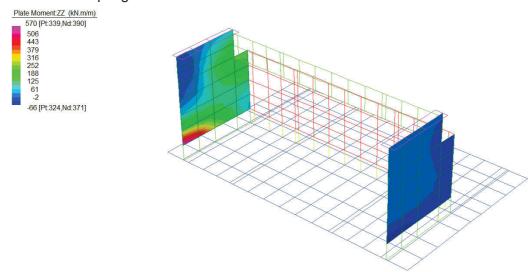
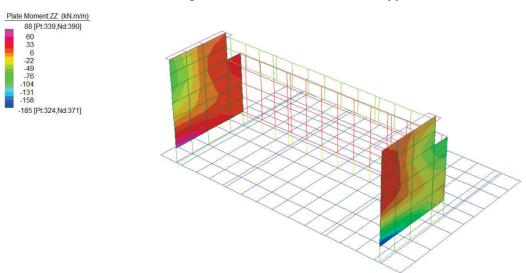
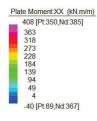


Figura 90: Momenti ZZ - SLU - Inviluppo massimo




Figura 91: Momenti ZZ - SLU - Inviluppo minimo

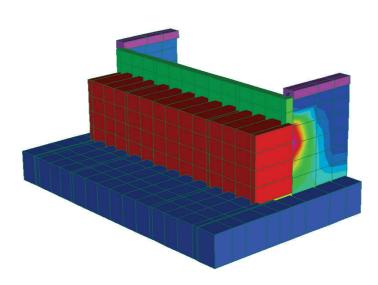
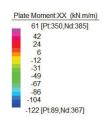



Figura 92: Momenti XX - SLU - Inviluppo massimo

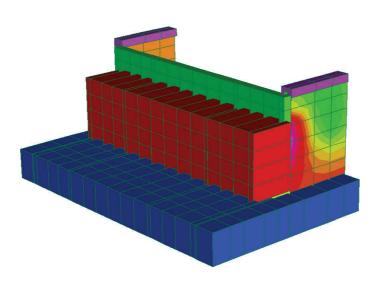
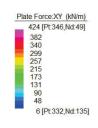



Figura 93: Momenti XX - SLU - Inviluppo minimo

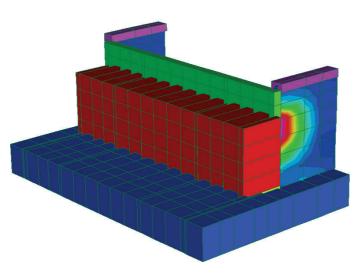


Figura 94: Taglio XY – SLU – Inviluppo assoluto

Relazione tecnica e di calcolo

135

Mandataria:

14.2.3.2 Verifiche SLU

La sezione di spessore 50cm risulta armata mediante $10\phi24/m$ interni ed esterni in direzione verticale e mediante $10\phi20/m$ interni ed esterni in direzione orizzontale. A taglio si dispongono 9 ganci $\phi12/mq$.

NOME SEZIONE: Muri laterali direzione verticale

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C30/37	
	Resis. compr. di progetto fcd:	17.000	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	32836.0	MPa
	Resis. media a trazione fctm:	2.900	MPa
ACCIAIO -	Tipo:	B450C	
710011110	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist, caratt, rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	· · · · · ·
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz	Bilineare finito	GG1 1/ 0111

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Poliga Classe Conglomerato: C3	30/37
N°vertice: X [cm] Y	[cm]
1 -50.0	0.0
2 -50.0	50.0
3 50.0	50.0
4 50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.0	5.0	24
2	-45.0	45.0	24
3	45.0	45.0	24
4	45.0	5.0	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.

Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.

Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.

Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

 N° Gen. N° Barra Ini. N° Barra Fin. N° Barre \emptyset

RTP di progettazione: Mandataria: Mandanti:

1	2	3	8	24 24
2	1	4	8	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ Mx Momento flettente [kNm] intorno all'asse x con verso positivo se tale da comprimere il					a ´		
Му	•				princ. d'inerzia		
Vy							
Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia x					
N°Comb.	N	Mx	Му	Vy	Vx		
1	0.00	477.00	0.00	0.00	0.00		
2	0.00	-235.00	0.00	0.00	0.00		

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 3.8 cm Interferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx	Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My	Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res	Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)
Mx Res	Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res	Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)
	Verifica positiva se tale rapporto risulta >=1.000
As Tesa	Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	477.00	0.00	0.00	728.44	0.00	1.53	45.2(7.5)
2	S	0.00	-235.00	0.00	0.00	-728.44	0.00	3.10	45.2(7.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.151	-50.0	50.0	0.00092	-45.0	45.0	-0.01968	-45.0	5.0
2	0.00350	0.151	-50.0	0.0	0.00092	-45.0	5.0	-0.01968	45.0	45.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue x/d

C.Rid.

N°Comb b x/d C.Rid. С

Relazione tecnica e di calcolo

Mandanti:

S.G.C. E78 "Grosseto-Fano" - Tratto Siena Bettolle (A1) - Adeguamento a 4 corsie del tratto Siena-Ruffolo - Lotto 0 Progetto Definitivo

1	0.000000000	0.000515137	-0.022256839	0.151	0.700
2	0.000000000	-0.000515137	0.003500000	0.151	0.700

Relazione tecnica e di calcolo

NOME SEZIONE: Muri laterali direzione orizzontale

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Def.unit. max resistenza ec2: Def.unit. ultima ecu: Diagramma tensione-deformaz.:	C30/37 17.000 0.0020 0.0035 Parabola-Rettangolo	MPa
	Modulo Elastico Normale Ec:	32836.0	MPa
	Resis. media a trazione fctm:	2.900	MPa
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C30/37
N°vertice:	X [cm]	Y [cm]
1 2 3	-50.0 -50.0 50.0	0.0 50.0 50.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.0	5.0	20
2	-45.0	45.0	20
3	45.0	45.0	20
4	45.0	5.0	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione
N°Barre	Numero di barre generate equidistanti cui si riferisce la generazione
Ø	Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	2	3	8	20
2	1	4	8	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione)

Relazione tecnica e di calcolo

Mx		Momento flettente [kNm] intorno all'asse x princ. d'inerzia				
Му	con verso positivo se tale da comprimere il My Momento flettente [kNm] intorno all'asse y con verso positivo se tale da comprimere il				а	
Vy		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y				
Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia x				
N°Comb.	N	Mx	Му	Vy	Vx	
1	0.00	401.00	0.00	0.00	0.00	
2	0.00	-237.00	0.00	0.00	0.00	

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 4.0 cm Interferro netto minimo barre longitudinali: 8.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Му Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia N Res Mx Res My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	401.00	0.00	0.00	512.35	0.00	1.28	31.4(7.5)
2	S	0.00	-237.00	0.00	0.00	-512.35	0.00	2.16	31.4(7.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.135	-50.0	50.0	0.00062	-45.0	45.0	-0.02239	-45.0	5.0
2	0.00350	0.135	-50.0	0.0	0.00062	-45.0	5.0	-0.02239	45.0	45.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue										
N°Comb	а	b	С	x/d	C.Rid.						
1 2	0.00000000 0.00000000	0.000575415 -0.000575415	-0.025270738 0.003500000	0.135 0.135	0.700 0.700						

Relazione tecnica e di calcolo

Dati CA								Calcolo sez	ione in C	.A.						
sezione																
	B =	1000	[mm]		• 1				k =	1.67	ρ1 =	0.00698	v min =	0.41		
	H =	500	[mm]				J		σ cp =	0.00	[MPa]	====>	αc=	1		
	d =	450	[mm]				С			SE	ZIONE NO	NARMATA	A TAGLI	0		
	c =	50	[mm]					·		V _{Rd calc}	1	V _R	d min			
	Rck =	35	[MPa]		d							7	-	1		
	γ CLS =			Н				V_R	$_{a} = \begin{cases} 0.18 \cdot \mathbf{k} \cdot ($	$100 \cdot \rho_1 \cdot f_{ek})^{1/3} / \gamma_c$	$+0.15 \cdot \sigma_{cp} \cdot b_w$	$\cdot d \ge (v_{min} + 0)$	$15 \cdot \sigma_{cp}) \cdot b_w d$	(4.1.14)		
	V=	0.5									1000					
Armature	longitudinali ler	nbo teso:	bo teso:					\	/ _{Rd, min} =	182.65	[kN]	\/ _	245	11	LAL	
		Base	Agg	•	• [_	As	\	/ _{Rd, calc} =	245.44	[kN]	$V_{Rd}=$	245	.44	kN	
	n° barre	10			•		•									
	Φ barre	20														
armatura						В		SEZIONE ARMATA A TA				ATA A TAG	GLIO (NTC 08)			
	As =	3142	[mm^2]					Ta	Taglio trazione							
	φ braccio =	12	[mm]							A., .						
	A braccio =	113	[mm^2]					V	$R_{sd} = 0, 9 \cdot d \cdot -$	$\frac{A_{vw}}{s} \cdot f_{yd} \cdot (ctg\alpha +$	ctgθ) · smα					
	p staffe =	300.0	[mm]						V _{Rsd} =	448.09	[kN]		١/ _	11	8.09	kN
	α staffe =	90.0	[°]					Ta	aglio con	npressione			$V_{Rd}=$	44	0.09	KIN
	n° bracci =	3						V	-09.4.1	o _w ·α _c ·f' _{cd} ·(ctge	y + ctoθ) /(1 + ct	to ² O)				
	A _{sw} /s	1.131						71	Red - 0.5 CI-C	A . w.c. r cq. (cigi	A + Cigo)/(1 + Ci	18. 97				
	fyk =	450	[MPa]						V _{Rcd} =	1149.48	[kN]					
	θ puntoni =	13.41	[°]													
	γ ACC =	1.15														

Relazione tecnica e di calcolo

14.2.4 Struttura di fondazione

14.2.4.1 Sollecitazioni SLU

Si riportano di seguito le visualizzazioni delle sollecitazioni agenti sui vari elementi per le combinazioni più gravose.

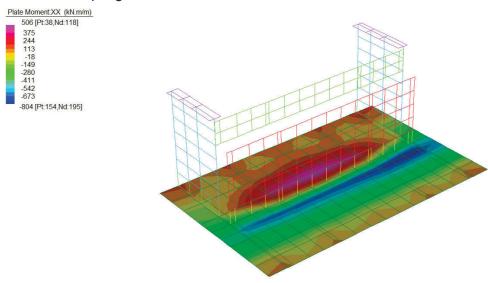
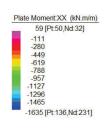



Figura 95: Momenti XX - SLU - Inviluppo massimo

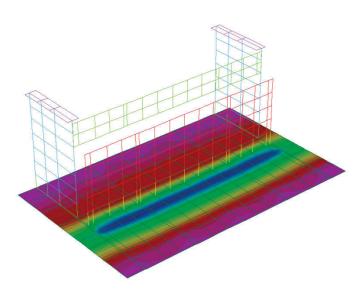
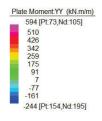


Figura 96: Momenti XX - SLU - Inviluppo minimo


RTP di progettazione:

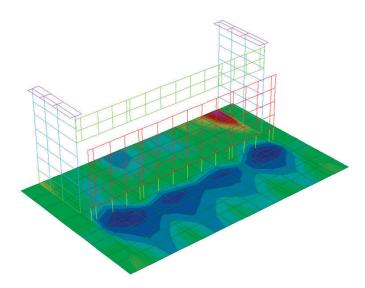
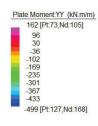



Figura 97: Momenti YY - SLU - Inviluppo massimo

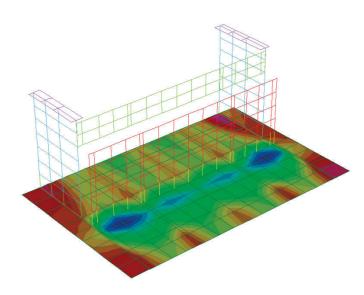
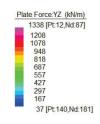



Figura 98: Momenti YY - SLU - Inviluppo minimo

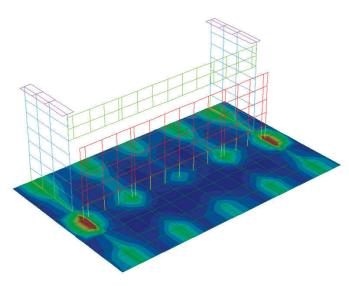


Figura 99: Taglio YZ – SLU – Inviluppo assoluto

Relazione tecnica e di calcolo RTP di progettazione:

143

Mandanti:

Mandataria:

14.2.4.2 Verifiche SLU

La sezione di spessore 180cm risulta armata mediante 10\psi24/m superiori e inferiori in entrambe le direzioni. A taglio si dispongono 9 ganci \(\psi 12/mg. \)

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave (solette, nervature solai) senza staffe

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C28/35
CALCESTRUZZO -	Classe.	UZ0/33

Resis. compr. di progetto fcd: 15.860 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 32308.0 MPa Resis, media a trazione fctm: 2.760 MPa

ACCIAIO -B450C Tipo:

> Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068

2000000 Modulo Elastico Ef daN/cm²

Diagramma tensione-deformaz.: Bilineare finito

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C28/35
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	180.0
3	50.0	180.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.0	5.0	24
2	-45.0	175.0	24
3	45.0	175.0	24
4	45.0	5.0	24

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	2	3	8	24
2	1	4	8	24

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Relazione tecnica e di calcolo 144

N Mx		Momento flettent	e [kNm] intorno all'a	aric. (+ se di compre asse x princ. d'inerzi mere il lembo sup. d	a ´
Му		Momento flettent	e [kNm] intorno all'a	asse y princ. d'inerzi mere il lembo destro	а
Vy				a all'asse princ.d'ine	
Vx				a all'asse princ.d'ine	
N°Comb.	N	Mx	My	Vy	Vx
1	0.00	1622.00	0.00	0.00	0.00
2	0.00	-553.00	0.00	0.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 3.8 cm Interferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)
Mx	Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My	Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res	Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)
Mx Res	Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res	Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)
	Verifica positiva se tale rapporto risulta >=1.000
As Tesa	Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	1622.00	0.00	0.00	3027.79	0.00	1.87	45.2(27.9)
2	S	0.00	-553.00	0.00	0.00	-3027.79	0.00	5.48	45.2(27.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00297	0.042	-50.0	180.0	0.00095	-45.0	175.0	-0.06750	-45.0	5.0
2	0.00297	0.042	-50.0	0.0	0.00095	-45.0	5.0	-0.06750	-45.0	175.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Rapp. di	duttilità (travi e solette)[§	eutro aX+bY+c=0 nel rif. 2 3 4.1.2.1.2.1 NTC]: deve flessione in travi continue	essere < 0.45	
N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000402675	-0.069513373	0.042	0.700
2	0.000000000	-0.000402675	0.002968063	0.042	0.700

Relazione tecnica e di calcolo

Dati CA								Calcolo se	zione in C	.A.						
sezione																
	B =	1000	[mm]		• 1		•		k =	1.34	ρ1 =	0.00259	v min =	0.29		
	H =	1800	[mm]				J		σ cp =	0.00	[MPa]	====>	αc=	1		
	d =	1750	[mm]		Ш		С			SE	ZIONE NO	NARMATA	A TAGLI	0		
	c =	50	[mm]		Ш				1	V _{Rd calc}		V _R	d min			
	Rck =	35	[MPa]		d							$\neg \vdash$	-	1 _		
	γ CLS =	1.5		Н				1	$V_{Rd} = \begin{cases} 0.18 \cdot \mathbf{k} \cdot ($	$(100 \cdot \rho_1 \cdot f_{ek})^{1/3} / \gamma_e$	$+0.15 \cdot \sigma_{cp} \cdot b_{q}$	$\cdot d \ge (v_{min} + 0)$.15 · σ _{cp}) · b _w d	(4.1.14)		
	V=	0.5							0.00		1000					
Armature	longitudinali ler	mbo teso:							V _{Rd, min} =	510.97	[kN]	\/ _	EEO	26	LANI	
		Base	Agg		•	_	As		V _{Rd, calc} =	550.26	[kN]	v _{Rd} -	550	.20	kN	
	n° barre	10			•		•									
	Φ barre	24														
armatura						В				SEZI	ONE ARM	ATA A TAC	SLIO (NTC	08)		
	As =	4524	[mm^2]						Taglio traz	ione						
	φ braccio =	12	[mm]							Α						
	A braccio =	113	[mm^2]						$V_{Rad} = 0, 9 \cdot d \cdot -$	$\frac{A_{uw}}{s} \cdot f_{yd} \cdot (ctg\alpha +$	ctgθ) · smα					
	p staffe =	300.0	[mm]						V _{Rsd} =	1742.56	[kN]		١/ _	17/	2 56	kN
	α staffe =	90.0	[°]						Taglio con	npressione			$V_{Rd}=$	174	12.50	KIN
	n° bracci =	3							V 0.0 d.1	b _w ·α _c ·f' _{cd} ·(ctge	y + ctoθ) /(1 + c	to ² O)				
	A _{sw} /s	1.131							Red - 0, 5 d	m cq. (critic	x + cigo)/(1+c	18. 17				
	fyk =	450	[MPa]						V _{Rcd} =	4470.19	[kN]					
	θ puntoni =	13.41	[°]													
	γ ACC =	1.15														

Relazione tecnica e di calcolo

15. VERIFICA DELLE FONDAZIONI PROFONDE DELLA SPALLA

Relativamente alla fondazione su pali della spalla, ai fini della verifica di sicurezza nei riguardi delle azioni assiali, si è adottato l'approccio 2 (A1+M1+R3) delle NTC18. Le azioni di progetto E_d sono state ricavate dal calcolo strutturale con riferimento alle combinazioni statiche SLU-STR e sismiche SLV. Il valore di progetto R_d della resistenza si ottiene a partire dal valore caratteristico R_k applicando i coefficienti parziali γ_R della Tab. 6.4.II.

Tab. 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali infissi	Pali trivellati	Pali ad elica continua
	γ_R	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	Ys	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	Yet	1,25	1,25	1,25

[&]quot;da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Verranno impiegati i coefficienti y collegati ai pali ad elica continua, visto l'impiego di pali CFA.

I valori caratteristici delle resistenze R_{c,k} (o R_{t,k}) è dato dal minore dei valori ottenuti applicando al valore medio e al valore minimo delle resistenze calcolate R_{c,cal} (R_{t,cal}) i fattori di correlazione B riportati nella Tab. 6.4.IV, in funzione del numero numero di verticali di indagine:

$$R_{\mathrm{c,k}} = Min \left\{ \frac{\left(R_{\mathrm{c,cal}}\right)_{media}}{\xi_{3}}; \frac{\left(R_{\mathrm{c,cal}}\right)_{min}}{\xi_{4}} \right.$$

$$R_{t,k} = Min \left\{ \frac{\left(R_{t,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{t,cal}\right)_{min}}{\xi_4} \right\}$$

Tab. 6.4.IV - Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ ₄	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Si sono impiegati i fattori di correlazione ξ_3 = 1,70 e ξ_4 = 1,70.

Per la determinazione del valore di progetto R_{tr,d} della resistenza di pali soggetti a carichi trasversali valgono le indicazioni del §6.4.3.1.1, applicando il coefficiente parziale 'T della Tab. 6.4.VI.

Tab. 6.4.VI - Coefficiente parziale γ_{τ} per le verifiche agli stati limite ultimi di pali soggetti a carichi trasversali

Co	efficiente parziale (R3)
	$\gamma_T = 1.3$

15.1 STIMA ANALITICA DELLA CAPACITÀ PORTANTE PER CARICO VERTICALE

Tra i metodi di calcolo analitici vi è la stima di capacità limite secondo le prescrizioni contenute nelle Raccomandazioni AGI del giugno 1982 "Raccomandazioni sui pali di fondazione", a cura della Commissione AGI per la normativa geotecnica.

Per il calcolo della capacità portante limite a compressione (Rc,k) di un palo di fondazione cilindrico si considerano i due distinti meccanismi interagenti e collaboranti attraverso i quali esso è in grado di trasferire le sollecitazioni nel sottosuolo: la resistenza di base e l'aderenza laterale.

$$Q_{LIM} + W_P = Q_S + Q_P$$

Dove con Q_P si indica la resistenza unitaria alla punta, con Q_S la resistenza laterale e W_P il peso proprio del palo. I due termini di capacità portante non si influenzano reciprocamente e possono essere determinati separatamente.

Stima di Qs

La capacità portante per aderenza e/o per attrito laterale per un palo di diametro D e lunghezza L è per definizione:

$$Q_{S} = \pi \cdot D \cdot \int_{0}^{L} \tau_{s} \cdot dz$$

Le tensioni tangenziali limite di attrito e/o di aderenza laterale all'interfaccia tra la superficie del palo e il terreno coesivo saturo circostante, Ts, sono molto difficili da valutare analiticamente poiché dipendono dal grado di disturbo e dall'alterazione delle pressioni efficaci e interstiziali che le modalità di costruzione del palo producono nel terreno. I metodi più utilizzati sono il metodo α ed il metodo β , e nella presente relazione la stima verrà eseguita tramite il primo metodo.

Si è assunto pertanto che le tensioni tangenziali limite siano una quota parte della resistenza al taglio non drenata originaria del terreno indisturbato:

$$\tau_s = \alpha \cdot c_u$$

In cui α è un coefficiente empirico di aderenza che dipende dal tipo di terreno, dalla resistenza al taglio non drenata del terreno idisturbato, dal metodo di costruzione del palo, dal tempo, dalla profondità e dal cedimento del palo. L'Associazione Geotecnica Italiana suggerisce di assumere per α i valori indicati nella seguente tabella.

Tipo di palo	Materiale	c_u (kPa)	α	α c _{u,max} (kPa)		
		≤ 25	1			
		25 - 50	0,85			
	Calcestruzzo	50 - 75	0,65	120		
Infisso (senza asportazione di terreno)		> 75	0,50			
	Acciaio	≤ 25	1			
di terreno)		25 - 50	0,80	100		
		50 - 75	0,65	100		
		> 75	0,50			
		≤ 25	0,90			
Trivellato	61	25 - 50	0,80	100		
(con asportazione di terreno)	Calcestruzzo	50 - 75	0,60	100		
		> 75 0,40				

L'Associazione Americana del Petrolio (A.P.I., 1984) consiglia di utilizzare le seguenti relazioni:

$$c_u < 25$$
 $\alpha = 1$
 $25 < c_u < 75$ $\alpha = -0.01 c_u + 1.25$
 $75 < c_u$ $\alpha = 0.5$

Altri autori (Viggiani, 1999) suggeriscono invece (cu in kPa) per i pali battuti:

RTP di progettazione:

 $c_{\rm u} < 25$ $\alpha = 1$ $25 < c_u < 70$ $\alpha = 1 - 0.011 (c_u - 25)$ $70 < c_{u}$ $\alpha = 0.5$

E per i pali trivellati:

 $c_{u} < 25$ $\alpha = 0.7$ $25 < c_u < 70$ $\alpha = 0.7 - 0.008 (c_u - 25)$ $70 < c_{\rm u}$ $\alpha = 0.35$

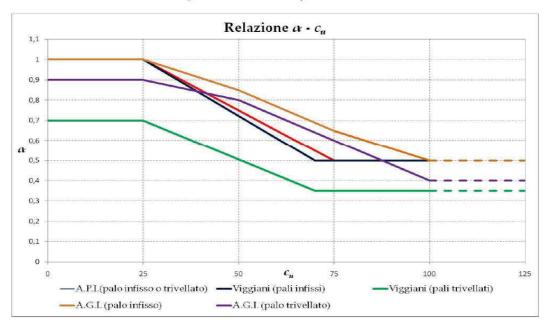


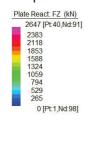
Figura 100: Metodi per il calcolo della capacità portante: formule statiche

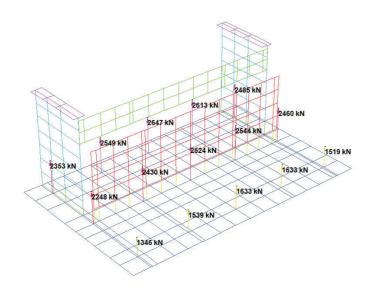
Stima di Q_P

La stima della capacità portante di punta si esegue in termini di tensioni totali, effettuando un'anali in condizioni non drenate. L'equazione di riferimento è la seguente:

$$Q_{P} = A_{P} \cdot q_{P} = A_{P} \cdot (c_{u} \cdot N_{c} + \sigma_{v0,P})$$

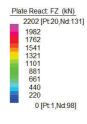
In cui A_p è l'area di base del palo, q_p è la capacità portante unitaria, c_u è la resistenza al taglio in condizione non drenate del terreno alla profondità della base del palo, $\sigma_{v0,P}$ è la tensione verticale totale alla punta ed N_c è un fattore di capacità portante, il cui valore è assunto pari a 9.





15.2 VERIFICA DEI PALI

15.2.1 SOLLECITAZIONI AGENTI


Si riportano di seguito le visualizzazioni delle reazioni alla testa dei pali.

Z Y

Figura 101: Sollecitazioni massime di compressione in testa ai pali (SLU Nmax)

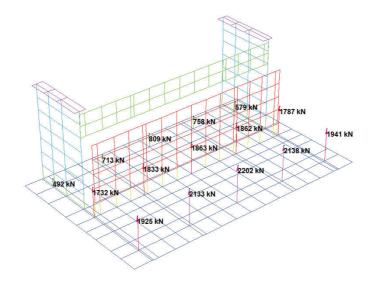


Figura 102: Sollecitazioni massime di compressione in testa ai pali (SLV Long)

Relazione tecnica e di calcolo RTP di progettazione:

PRO ITEI

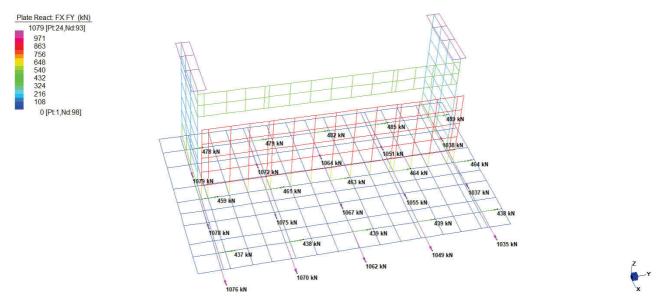


Figura 103: Sollecitazioni massime di taglio in testa ai pali (inviluppo assoluto)

Si riporta di seguito la tabella riepilogativa delle sollecitazioni riscontrate per i vari stati limite.

	SOLLECITAZIONI ALLA TESTA DEI PALI						
	Combinazione	N [kN]	Vlong [kN]	Vtrasv [kN]	Vxy [kN]		
Sollecitazioni relative a N _{Ed,comprSLU,max}	SLU N _{max}	2647	407	15	407		
Sollecitazioni relative a N _{Ed,comprSLV,max}	Sisma Long	2202	1062	28	1062		
Sollecitazioni relative a V _{Ed,max}	Sisma Long	492	1079	5	1079		

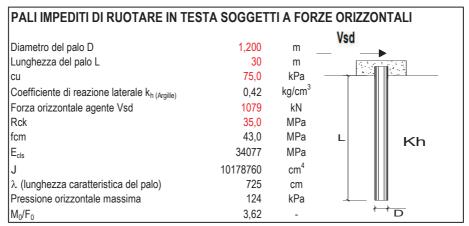
15.3 COSTANTE DI WINKLER ORIZZONTALE PER I PALI

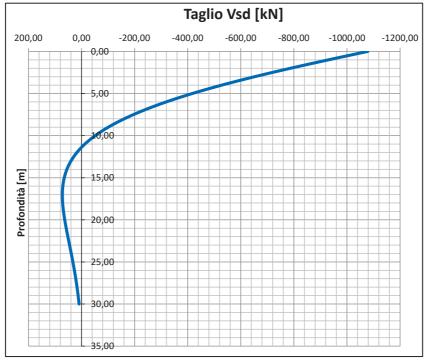
Il terreno viene abitualmente simulato come un mezzo alla Winkler, e ciò avviene anche nel caso dei pali, per carichi orizzontali. La reazione del terreno, quindi, è assimilata ad un letto di molle di costante K_h. Essendo il palo una struttura di elevata snellezza, in termini di modello di Winkler, essi risultano "infinitamente lunghi"; inoltre i carichi applicati sono azioni concentrate all'estremità del palo, pertanto in tali condizioni il modello alla Winkler fornisce risultati senz'altro accettabili. È evidente, infine, che il regime di sollecitazioni e deformazioni è fortemente influenzato da variazioni delle caratteristiche del terreno lungo l'asse del palo; tali variazioni sono assai frequenti per i pali di fondazione, che spesso attraversano stratificazioni di terreni diversi, e quindi diventa assai utile la possibilità offerta dal metodo di Winkler di simulare agevolmente tali variazioni. Nella pratica, per terreni uniformi, si considera K_h costante con la profondità e, per i terreni argillosi come quelli in oggetto, correlato con la coesione non drenata cu dalla relazione (Terzaghi, 1955; Davisson, 1970):

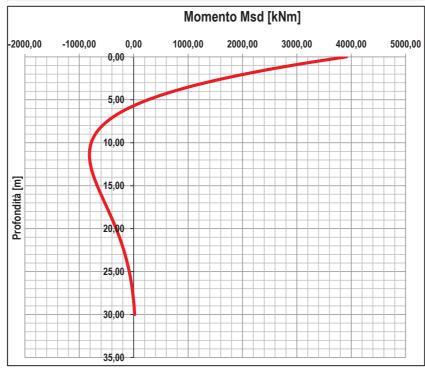
$$K_h = 67 \cdot \frac{c_u}{d}$$

dove d è il diametro del palo e cu la già citata coesione non drenata.

Dalla caratterizzazione geotecnica del sito, si è appurato che il terreno dello strato più superficiale presenta una c_u pari a 75kPa.


Tale valore è stato inserito nel seguente foglio di calcolo, unitamente ai dati relativi al palo più sollecitato a taglio, ricavando le sollecitazioni in testa all'elemento nonché, al variare della profondità, i valori di deformata, rotazione, momento, taglio e pressione sul terreno.





Relazione tecnica e di calcolo

152

Il momento massimo agente è localizzato in testa al palo ed è pari a 3911 kNm. Inserendo nel precedente foglio di calcolo le forze orizzontali di taglio riscontrate nei vari stati limite, si è aggiornata la tabella delle sollecitazioni in testa ai pali.

		SOLLECITAZIONI ALLA TESTA DEI PALI							
	Combinazione	N [kN]	Vlong [kN]	Vtrasv [kN]	Vxy [kN]	M [kNm]			
Sollecitazioni relative a N _{Ed,compr,max}	SLU N _{max}	2647	407	15	407	1475			
Sollecitazioni relative a N _{Ed,comprSLV,max}	Sisma Long	2202	1062	28	1062	3849			
Sollecitazioni relative a V _{Ed,max}	Sisma Long	492	1079	5	1079	3911			

15.3.1 Verifiche strutturali dei pali

Con riferimento alle caratteristiche dei materiali indicati al capitolo 4, si riportano di seguito le verifiche strutturali dei pali, che risultano armati longitudinalmente con $50\phi26$, copriferro 6 cm ed una spirale $\phi12/15$. La verifica a pressoflessione è stata eseguita impiegando il programma Vca SLU, inserendo al suo interno lo sforzo normale relativo alla combinazione di carico correlato alla massima sollecitazione di taglio (e conseguentemente di momento) agente sul palo.

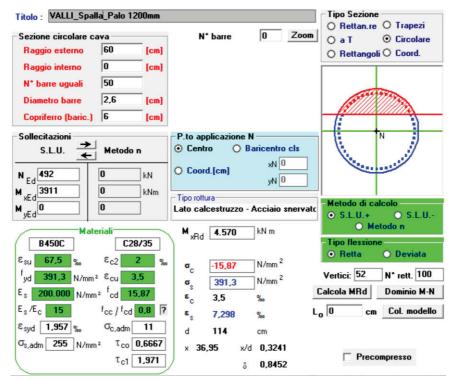


Figura 104: Vca SLU, MRd palo

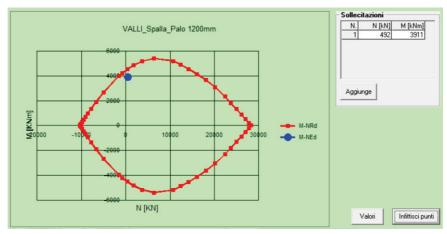
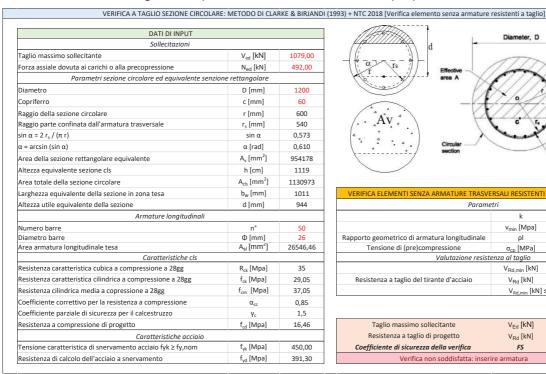
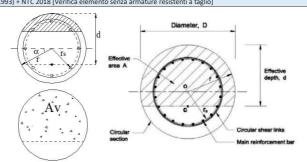


Figura 105: Vca SLU, dominio M-N

La verifica risulta soddisfatta.

PRO ITER Progetto Infractruture


Mandataria:



La resistenza a taglio del palo è determinata secondo quanto previsto dalle NTC18, riconducendosi ad una sezione rettangolare equivalente secondo il metodo proposto da Clarke & Birjandi (1993).

VERIFICA ELEMENTI SENZA ARMATURE TRASVEI	KSALI KESISTENTI /	AL TAGLIO - 94	.1.2.3.5.1
Paramet	tri		
	k	1,46	< 2
	v _{min} [Mpa]	0,33	
Rapporto geometrico di armatura longitudinale	ρΙ	0,02	≤ 0,02
Tensione di (pre)compressione	σ _{cp} [MPa]	0,44	
Valutazione resiste	nza al taglio		
	V _{Rd,min} [kN]	379,92	
Resistenza a taglio del tirante d'acciaio	V _{Rd} [kN]	709,89	
	$V_{Rd.min}[kN] \leq$	OK	

Taglio massimo sollecitante	V _{Ed} [kN]	1079,00				
Resistenza a taglio di progetto	V _{Rd} [kN]	709,89				
Coefficiente di sicurezza della verifica	FS	0,66				
Verifica non soddisfatta: inserire armatura						

VERIFICA A TAGLIO SEZIONE CIRCOLARE: METODO DI CLARKE & BIRJANDI (1993) + NTC 2018 [Verifica elemento con armature resistenti a taglio]

DATI DI INPUT							
Taglio massimo sollecitante	V _{ed} [kN]	1079,00					
Larghezza minima della sezione in zona tesa	b _w [mm]	1011					
Altezza utile della sezione	d [mm]	944					
Resistenza caratteristica cubica a compressione a 28gg	R _{ck} [Mpa]	35					
Resistenza caratteristica cilindrica a compressione a 28gg	f _{ck} [Mpa]	29,05					
Resistenza cilindrica media a copressione a 28gg	f _{cm} [Mpa]	37,05					
Coefficiente correttivo per la resistenza a compressione	α_{cc}	0,85					
Coefficiente parziale di sicurezza per il calcestruzzo	Υ _c	1,5					
Resistenza a compressione di progetto	f _{cd} [Mpa]	16,46					
Tensione caratteristica di snervamento acciaio fyk ≥ fy,nom	f _{yk} [Mpa]	450,00					
Resistenza di calcolo dell'acciaio a snervamento	f _{yd} [Mpa]	391,30					

Con riferimento all'armatura trasversale, la resistenza di progetto a "taglio trazione" si calcola co $V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{a} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$ [4.1.27] Con riferimento al calcestruzzo d'anima, la resistenza di progetto a "taglio $V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c v \cdot f_{cd} (ctg\alpha + ctg\theta)/(1 + ctg^2 \theta)$ za di progetto a taglio della trave è la minore delle due sop $V_{Rd} = min (V_{Rsd}, V_{Rcd})$ [4.1.29]

VERIFICA ELEMENTI CON ARMATURE TRASVERSALI RESISTENTI AL	TAGLIO - §4.1.2.3	.5.2
Resistenza a compressione ridotta del calcestruzzo	f'cd	8,23
Coefficiente maggiorativo per (pre)compressione	α_{cw}	1,03
Diametro delle staffe	Φ _{sw} [mm]	12
Numero di bracci staffe	n°b	2
Passo delle staffe	s [cm]	15
Quantitativo di staffe al metro	A _{sw} /s [mm ² /m]	1508
Inclinazione θ dei puntoni di calcestruzzo rispetto all'asse della trave, che	ctg θ	2,50
deve rispettare i seguenti limiti: 1 ≤ ctg θ ≤ 2.5 (cioè 21.8°≤ θ ≤ 45°)	θ [°]	21,8
A	α [°]	90
Angolo di inclinazione dell'armatura trasversale rispetto all'asse della trave	α [rad]	1,57
Cotangente dell'angolo di inclinazione dell'armatura trasversale	ctg α	0,00
Resistenza a taglio del puntone di cls	V _{Rcd} [kN]	2501,76
Resistenza a taglio del tirante d'acciaio	V _{Rsd} [kN]	1253,02

Taglio massimo sollecitante	VE _d [kN]	1079,00
Resistenza a taglio di progetto	V _{Rd} [kN]	1253,02
Coefficiente di sicurezza della verifica	FS	1,16
Verifica soddisfatta		

RTP di progettazione:

15.3.2 Calcolo capacità portante pali

La verifica viene effettuata con l'Approccio 2, vale a dire che il calcolo delle azioni è stato condotto con i coefficienti A1-M1, mentre il calcolo delle resistenze secondo i coefficienti R3.

Le massime sollecitazioni assiali di compressione in testa al palo sono:

 $N_{\text{max,compr,STR}} = 2647 \text{ kN}$

 $N_{\text{max,compr,SLV}} = 2202 \text{ kN}$

STRATIGRAFIA E PAR	AMETRI	GEOTEC	CNICI													
Descrizione	Quota _{SUP}	Quota _{INF}	H _{STRATO}	H _{ATTIVA}	φ'	C'	Cu	γnat	κ	$tg\delta$	$\alpha(Cu)$	α(c')	β	σ 'v (h _{med})	$\sigma'v~(h_{inf})$	Qlat
strato	[m]	[m]	[m]	[m]	[°]	[kPa]	[kPa]	[kN/m³]	-	-	-	-	-	[kPa]	[kPa]	[kN]
1	0,00	0,98	0,98	0,98			75,00	19,50	1,25	0,00	0,42	0,00	0,00	9,56	19,11	116,32
2	0,98	4,58	3,60	3,60			75,00	19,50	1,25	0,00	0,42	0,00	0,00	36,21	53,31	427,29
3	4,58	13,99	9,41	9,41			75,00	19,50	1,25	0,00	0,42	0,00	0,00	98,01	142,71	1116,89
4	13,99	40,00	26,01	16,01			150,00	20,00	1,25	0,00	0,42	0,00	0,00	222,76	302,81	3800,52

CARATTERISTICHE PALO								
Diametro Palo	1,20	m						
Lunghezza Palo	30,00	m						
Quota testa palo	0,00	m						
Quota punta palo	30,00	m						
TIPO (B/T/E)	E	(BATTUTO / TRIVELLATO / ELICA / FDP / JET)						
Materiale	CLS	(CLS / ACCIAIO)						
Quota falda	0,98	m						
Rck	35,00	Мра						
E _{palo}	32.588,11	МРа						
J_{palo}	1,41E-01	m ⁴						
γ palo	25,00	kN/m³						
Ар	1,13	m ²						
Alat	3,77	m²/m						
Alat, _{Tot}	113,04	m ²						
L/D	25,00	m						
T: fattore di rigidezza relativa	3,08	m						
2T	6,16	m						
4T	12,32	m						
Comportamento	Comportamento L>4T; Palo flessibile o lungo							

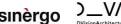
PORTATA LIMITE LATERATE E DI	PUNTA		
Peso Palo	Wp	847,80	kN
Peso Palo Immerso	Wp'	355,91	kN
Caratteristiche a fondo palo	φ'	0,00	[°]
Caratteristiche a fondo palo	C'	0,00	kPa
Caratteristiche a fondo palo	Cu	150,00	kPa
Pressione a fondo palo	σ'v	302,81	kPa
Condizione di rottura	Nq	-	
(δ _{max} ≤5%D)	Nq [*]	-	
Caratteristiche a fondo palo	Rc	0,8	
Portata di punta a rottura	QP	1.528	kN
Portata di punta con δmax	Qp*	1.528	kN
Q _{lim, PUNTA}	QP	1.528	kN
Q _{lim, LATERALE}	QL	5.461	kN
Q _{lim, TOTALE}	Qlim	6.989	kN

Relazione tecnica e di calcolo

155

Mandataria:

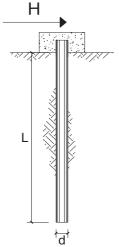
NTC 2008	(NTC 6.4.3.1)			
PORTATE LIMITE DI COMPRESSIO	NE E TRAZIONE			
Tipo Pali	ELICA			
Rbk,punta	1.528	kN		
Rsk,laterale	5.461	kN		
Rck, TOTALE	6.989	kN		
N	1			
ζ3	1,7			
ζ4	1,7			
Rbk,punta	899	kN		
Rsk,laterale	3.212	kN		
COMBINAZIONI E PORTATE DI	A1C1 STRU	A1C2 GEO	A2	
CALCOLO	A1+M1+R1	A2+M1+R2	A2*(γ=1)+M1+R3	
Resistenza	R1	R2	R3	
γb	1,00	1,60	1,30	
γs	1,00	1,45	1,15	
γst	1,00	1,60	1,25	
Rsdt	3.533	2.328	2.890	kN
Rbd,punta	899	562	691	kN
Rsd,laterale	3.212	2.215	2.793	kN
Resistenza a compressione Rcd	4.111	2.777	3.485	kN
Wp'	355,9	355,9	355,9	kN
γ _{G1}	1,3	1,0	1,0	
Rcd-γ _{G1} xWp'	3.648	2.421	3.129	kN


FATTORE DI EFFICIENZA - PALI IN GRUPPO									
fattore di efficienza E	0,73	0,73	0,73	-					

PORTATA A COMPRESSIONE: Ro	cd-γ _{G1} ·Wp [kN]	Nsd [kN]	CS	
A1C1 STRU (A1+M1+R1)	2.679	2.647	1,01	VERIFICATO
A1C2 SISMA (A2*+M1+R3)	2.297	2.202	1,04	VERIFICATO

15.3.3 Verifica a carico limite orizzontale

Si riporta di seguito la verifica a carico limite orizzontale per un palo immerso in terreni coesivi, condotta applicando la teoria di Broms (1964), la cui rotazione in testa è impedita. Si è inserita la massima sollecitazione tagliante riscontrata in combinazione sismica, pari a V_{Ed,SLV} = 1079 kN.


CARICO LIMITE ORIZZONTALE DI UN PALO IN TERRENI COESIVI PALI CON ROTAZIONE IN TESTA IMPEDITA

OPERA: Viadotto Valli - Spalle

TEORIA DI BASE:

(Broms, 1964)

C	pefficienti parz	iali	А		M	R
N	letodo di calco	olo	permanenti γ _G	variabili γο	γ _{cu}	γт
	A1+M1+R1	0	1,30	1,50	1,00	1,00
⊃	A2+M1+R2	0	1,00	1,30	1,00	1,60
SLU	A1+M1+R3	0	1,30	1,50	1,00	1,30
	SISMA	•	1,00	1,00	1,00	1,30
DM88		0	1,00	1,00	1,00	1,00
definiti dal	definiti dal progettista		1,30	1,50	1,40	1,00

n	1 •	2 O	3 O	4 O	5 O	60	≥10 O	T.A.	prog.
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40	1,00	1,00
ξ ₄	1,70	1,55	1,48	1,42	1,34	1,28	1,21	1,00	1,00

$$\begin{array}{ll} \textit{Palo corto:} & H = 9c_u d^2 \bigg(\frac{L}{d} - 1.5 \bigg) \\ \\ \textit{Palo intermedio:} & H = -9c_u d^2 \bigg(\frac{L}{d} + 1.5 \bigg) + 9c_u d^2 \sqrt{2 \bigg(\frac{L}{d} \bigg)^2 + \frac{4}{9} \frac{M_y}{c_u d^3} + 4.5} \\ \\ \textit{Palo lungo:} & H = -13.5c_u d^2 + c_u d^2 \sqrt{182.25 + 36 \frac{M_y}{c_u d^3}} \end{array}$$

DATI DI INPUT:

Lunghezza del palo L = 30,00 (m) Diametro del palo 1,20 (m) Momento di plasticizzazione della sezione My = 4861,00 (kN m) Coesione non drenata 75,00 (kPa) 75,00 (kPa) c_{u med}= Cu min= Coesione non drenata di progetto 75,00 (kPa) 75,00 (kPa) c_{u med,d}= Cu min.d= Carico orizzontale agente $H_{Ed} =$ 1079 (kN)

Palo corto:

H1 _{med}= 22842,00 (kN) H1 min= 22842.00 (kN) Palo intermedio: H2 med= 8897.18 (kN) H2_{min}= 8897,18 (kN) Palo lungo: H3 _{min}= H3 med= 2769,93 2769,93 (kN) (kN) H med = 2769,93 (kN) palo lungo H _{min} = 2769,93 (kN) palo lungo $H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4)$ 1629.37 (kN) $H_d = H_k/\gamma_T =$ 1253,36 (kN) 1079,00 (kN) $H_{Ed} =$

1,16

La verifica è soddisfatta.

 $FS = H_d / H_{Ed} =$

Mandataria:

16. VERIFICA DELLE FONDAZIONI PROFONDE DELLA PILA

Relativamente ai pali delle fondazioni delle pile, ai fini della verifica di sicurezza nei riguardi delle azioni assiali, si è deciso di adottare l'approccio 2 (A1+M1+R3) delle NTC18. Le azioni di progetto Ed sono state ricavate dal calcolo strutturale con riferimento alle combinazioni statiche SLU-STR e sismiche SLV. Il valore di progetto R_d della resistenza si ottiene a partire dal valore caratteristico R_k applicando i coefficienti parziali y_R della Tab. 6.4.II.

Tab. 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali infissi	Pali trivellati	Pali ad elica continua
	γ_R	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	Ys	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	Yet	1,25	1,25	1,25

[&]quot;da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Verranno impiegati i coefficienti y collegati ai pali ad elica continua, visto l'impiego di pali CFA.

I valori caratteristici delle resistenze R_{c,k} (o R_{t,k}) è dato dal minore dei valori ottenuti applicando al valore medio e al valore minimo delle resistenze calcolate R_{c,cal} (R_{t,cal}) i fattori di correlazione B riportati nella Tab. 6.4.IV, in funzione del numero numero di verticali di indagine:

$$R_{c,k} = Min \left\{ \frac{\left(R_{c,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{c,cal}\right)_{min}}{\xi_4} \right\}$$

$$R_{t,k} = Min \left\{ \frac{\left(R_{t,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{t,cal}\right)_{min}}{\xi_4} \right\}$$

Tab. 6.4.IV - Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ ₄	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Si sono impiegati i fattori di correlazione ξ_3 = 1,70 e ξ_4 = 1,70.

Per la determinazione del valore di progetto R_{tr,d} della resistenza di pali soggetti a carichi trasversali valgono le indicazioni del §6.4.3.1.1, applicando il coefficiente parziale 'T della Tab. 6.4.VI.

Tab. 6.4.VI - Coefficiente parziale γ_{τ} per le verifiche agli stati limite ultimi di pali soggetti a carichi trasversali

Coefficiente parziale (R3)
$\gamma_T = 1.3$

16.1 STIMA ANALITICA DELLA CAPACITÀ PORTANTE PER CARICO VERTICALE

Tra i metodi di calcolo analitici vi è la stima di capacità limite secondo le prescrizioni contenute nelle Raccomandazioni AGI del giugno 1982 "Raccomandazioni sui pali di fondazione", a cura della Commissione AGI per la normativa geotecnica.

Per il calcolo della capacità portante limite a compressione (Rc,k) di un palo di fondazione cilindrico si considerano i due distinti meccanismi interagenti e collaboranti attraverso i quali esso è in grado di trasferire le sollecitazioni nel sottosuolo: la resistenza di base e l'aderenza laterale.

$$Q_{LIM} + W_P = Q_S + Q_P$$

Dove con Q_P si indica la resistenza unitaria alla punta, con Q_S la resistenza laterale e W_P il peso proprio del palo. I due termini di capacità portante non si influenzano reciprocamente e possono essere determinati separatamente.

Stima di Qs

La capacità portante per aderenza e/o per attrito laterale per un palo di diametro D e lunghezza L è per definizione:

$$Q_{S} = \pi \cdot D \cdot \int_{0}^{L} \tau_{s} \cdot dz$$

Le tensioni tangenziali limite di attrito e/o di aderenza laterale all'interfaccia tra la superficie del palo e il terreno coesivo saturo circostante, τ_s , sono molto difficili da valutare analiticamente poiché dipendono dal grado di disturbo e dall'alterazione delle pressioni efficaci e interstiziali che le modalità di costruzione del palo producono nel terreno. I metodi più utilizzati sono il metodo α ed il metodo β , e nella presente relazione la stima verrà eseguita tramite il primo metodo.

Si è assunto pertanto che le tensioni tangenziali limite siano una quota parte della resistenza al taglio non drenata originaria del terreno indisturbato:

$$\tau_s = \alpha \cdot c_u$$

In cui α è un coefficiente empirico di aderenza che dipende dal tipo di terreno, dalla resistenza al taglio non drenata del terreno idisturbato, dal metodo di costruzione del palo, dal tempo, dalla profondità e dal cedimento del palo. L'Associazione Geotecnica Italiana suggerisce di assumere per α i valori indicati nella seguente tabella.

Tipo di palo	Materiale	c_u (kPa)	α	α c _{u,max} (kPa)				
		≤ 25	1					
		25 - 50	0,85					
	Calcestruzzo	50 - 75	0,65	120				
Infisso		> 75	0,50					
(senza asportazione di terreno)		≤ 25 1						
di terreno)	Acciaio	25 - 50	0,80	100				
		50 - 75	0,65	100				
		> 75	0,50					
		≤ 25	0,90					
Trivellato		25 - 50 0,80						
(con asportazione di terreno)	Calcestruzzo	50 - 75	0,60	100				
di terreno)	·	> 75	0,40					

L'Associazione Americana del Petrolio (A.P.I., 1984) consiglia di utilizzare le seguenti relazioni:

$$c_u < 25$$
 $\alpha = 1$
 $25 < c_u < 75$ $\alpha = -0.01 c_u + 1.25$
 $75 < c_u$ $\alpha = 0.5$

Altri autori (Viggiani, 1999) suggeriscono invece (cu in kPa) per i pali battuti:

Mandataria:

 $\begin{aligned} c_u &< 25 & \alpha = 1 \\ 25 &< c_u &< 70 & \alpha = 1 &-0.011 \ (c_u - 25) \\ 70 &< c_u & \alpha = 0.5 \end{aligned}$

E per i pali trivellati:

$$\begin{split} c_u < 25 & \alpha = 0,7 \\ 25 < c_u < 70 & \alpha = 0,7 \text{ -0,008 } (c_u - 25) \\ 70 < c_u & \alpha = 0,35 \end{split}$$

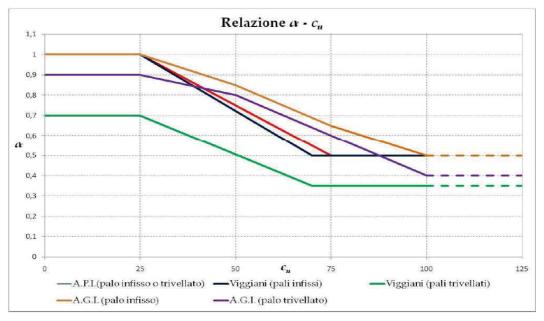


Figura 106: Metodi per il calcolo della capacità portante: formule statiche

Stima di Q_P

La stima della capacità portante di punta si esegue in termini di tensioni totali, effettuando un'anali in condizioni non drenate. L'equazione di riferimento è la seguente:

$$Q_{\scriptscriptstyle P} = A_{\scriptscriptstyle P} \cdot q_{\scriptscriptstyle P} = A_{\scriptscriptstyle P} \cdot (c_{\scriptscriptstyle u} \cdot N_{\scriptscriptstyle c} + \sigma_{\scriptscriptstyle v0,P})$$

In cui A_p è l'area di base del palo, q_p è la capacità portante unitaria, c_u è la resistenza al taglio in condizione non drenate del terreno alla profondità della base del palo, $\sigma_{v0,P}$ è la tensione verticale totale alla punta ed N_c è un fattore di capacità portante, il cui valore è assunto pari a 9.

16.2 **VERIFICA DEI PALI**

16.2.1 SOLLECITAZIONI AGENTI

Si riportano di seguito le sollecitazioni agenti alla base della pila applicate al modello di calcolo della zattera di fondazione.

I valori della combinazione sismica sono otteuti dall'analisi spettrale con q=1.5, poi amplificati per 1.1 come definito dalle NTC2018 per le fondazioni dimensionate in CD"B".

16.2.1.1 Combinazioni con Nmax

			pila											
	ID		1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C	4-A	4-B	4-C
SLU Traffico	FX	(kN)	40.05	9.45	45.00	35.10	9.45	47.25	39.15	8.10	47.25	35.55	11.80	61.65
	FY	(kN)	-221.85	85.50	155.70	-201.00	63.00	114.15	-212.15	72.45	115.85	-244.05	89.55	125.25
	FZ	(kN)	3241.90	3894.20	2038.60	3045.35	3580.85	1828.55	3037.35	3578.85	1814.70	3388.25	3947.65	1881.20
	MX	(kN.m)	347.60	94.50	3.40	375.65	142.65	67.60	361.15	131.85	51.05	411.30	117.90	54.45
	MY	(kN.m)	4.60	-1.00	-2.60	-4.50	0.00	4.50	4.05	0.00	-4.05	-39.35	4.00	35.35
	MZ	(kN.m)	29.15	43.65	66.25	32.40	47.25	66.15	35.10	47.25	67.50	58.25	61.65	83.95
SLU Vento	FX	(kN)	30.86	7.09	32.93	26.33	7.09	35.44	29.36	6.08	35.44	25.84	9.10	47.06
	FY	(kN)	-237.49	31.13	108.68	-221.40	10.95	70.46	-229.51	18.04	71.49	-258.11	31.69	84.86
	FZ	(kN)	2898.48	3512.15	1939.90	2715.54	3219.39	1741.89	2706.11	3210.64	1726.43	3026.71	3576.74	1835.38
	MX	(kN.m)	426.80	209.48	113.65	458.04	258.79	178.00	449.39	253.16	168.31	486.23	236.10	160.09
	MY	(kN.m)	7.00	-1.00	-5.00	-2.55	0.00	2.55	3.04	0.00	-3.04	-33.31	4.00	29.31
	MZ	(kN.m)	20.79	31.91	49.11	24.30	35.44	49.61	26.33	35.44	50.63	45.01	47.06	63.29
SLE Traffico	FX	(kN)	29.60	7.00	33.40	26.00	7.00	35.00	29.00	6.00	35.00	26.40	9.00	45.60
	FY	(kN)	-193.80	66.00	151.20	-174.20	49.60	116.80	-182.20	56.60	117.80	-211.60	69.20	130.40
	FZ	(kN)	2854.40	3498.00	1967.60	2669.20	3206.00	1772.80	2658.80	3197.00	1758.20	2979.20	3563.00	1867.80
	MX	(kN.m)	274.80	58.80	-37.20	291.40	93.40	12.40	280.20	85.20	0.20	323.00	75.40	-2.00
	MY	(kN.m)	3.40	-1.00	-1.40	-3.40	0.00	3.40	3.00	0.00	-3.00	-29.40	4.00	25.40
	MZ	(kN.m)	21.40	32.40	49.40	24.00	35.00	49.00	26.00	35.00	50.00	43.60	45.60	61.60
SLE Vento	FX	(kN)	22.75	5.25	24.50	19.50	5.25	26.25	21.75	4.50	26.25	19.25	7.00	34.75
	FY	(kN)	-203.25	27.50	118.50	-187.00	13.00	86.75	-192.75	18.25	87.25	-219.75	28.25	102.75
	FZ	(kN)	2598.50	3215.00	1896.00	2423.25	2938.25	1710.25	2411.75	2924.25	1694.50	2709.75	3288.25	1835.50
	MX	(kN.m)	326.00	136.50	37.00	344.25	171.25	86.00	337.25	166.75	78.75	370.50	155.00	68.25
	MY	(kN.m)	5.00	-1.00	-3.00	-2.00	0.00	2.00	2.25	0.00	-2.25	-24.75	4.00	20.75
	MZ	(kN.m)	15.25	23.75	36.75	18.00	26.25	36.75	19.50	26.25	37.50	33.75	34.75	46.25

16.2.1.2 Combinazioni con Nmin

			pila											
	ID		1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C	4-A	4-B	4-C
SLU Traffico	FX	(kN)	40.05	9.45	45.00	35.10	9.45	47.25	39.15	8.10	47.25	35.55	11.80	61.65
	FY	(kN)	-221.85	85.50	155.70	-201.00	63.00	114.15	-212.15	72.45	115.85	-244.05	89.55	125.25
	FZ	(kN)	3241.90	3894.20	2038.60	3045.35	3580.85	1828.55	3037.35	3578.85	1814.70	3388.25	3947.65	1881.20
	MX	(kN.m)	347.60	94.50	3.40	375.65	142.65	67.60	361.15	131.85	51.05	411.30	117.90	54.45
	MY	(kN.m)	4.60	-1.00	-2.60	-4.50	0.00	4.50	4.05	0.00	-4.05	-39.35	4.00	35.35
	MZ	(kN.m)	29.15	43.65	66.25	32.40	47.25	66.15	35.10	47.25	67.50	58.25	61.65	83.95
SLU Vento	FX	(kN)	30.86	7.09	32.93	26.33	7.09	35.44	29.36	6.08	35.44	25.84	9.10	47.06
	FY	(kN)	-237.49	31.13	108.68	-221.40	10.95	70.46	-229.51	18.04	71.49	-258.11	31.69	84.86
	FZ	(kN)	2898.48	3512.15	1939.90	2715.54	3219.39	1741.89	2706.11	3210.64	1726.43	3026.71	3576.74	1835.38
	MX	(kN.m)	426.80	209.48	113.65	458.04	258.79	178.00	449.39	253.16	168.31	486.23	236.10	160.09
	MY	(kN.m)	7.00	-1.00	-5.00	-2.55	0.00	2.55	3.04	0.00	-3.04	-33.31	4.00	29.31
	MZ	(kN.m)	20.79	31.91	49.11	24.30	35.44	49.61	26.33	35.44	50.63	45.01	47.06	63.29
SLE Traffico	FX	(kN)	29.60	7.00	33.40	26.00	7.00	35.00	29.00	6.00	35.00	26.40	9.00	45.60
	FY	(kN)	-193.80	66.00	151.20	-174.20	49.60	116.80	-182.20	56.60	117.80	-211.60	69.20	130.40
	FZ	(kN)	2854.40	3498.00	1967.60	2669.20	3206.00	1772.80	2658.80	3197.00	1758.20	2979.20	3563.00	1867.80
	MX	(kN.m)	274.80	58.80	-37.20	291.40	93.40	12.40	280.20	85.20	0.20	323.00	75.40	-2.00
	MY	(kN.m)	3.40	-1.00	-1.40	-3.40	0.00	3.40	3.00	0.00	-3.00	-29.40	4.00	25.40
	MZ	(kN.m)	21.40	32.40	49.40	24.00	35.00	49.00	26.00	35.00	50.00	43.60	45.60	61.60
SLE Vento	FX	(kN)	22.75	5.25	24.50	19.50	5.25	26.25	21.75	4.50	26.25	19.25	7.00	34.75
	FY	(kN)	-203.25	27.50	118.50	-187.00	13.00	86.75	-192.75	18.25	87.25	-219.75	28.25	102.75
	FZ	(kN)	2598.50	3215.00	1896.00	2423.25	2938.25	1710.25	2411.75	2924.25	1694.50	2709.75	3288.25	1835.50
	MX	(kN.m)	326.00	136.50	37.00	344.25	171.25	86.00	337.25	166.75	78.75	370.50	155.00	68.25
	MY	(kN.m)	5.00	-1.00	-3.00	-2.00	0.00	2.00	2.25	0.00	-2.25	-24.75	4.00	20.75
	MZ	(kN.m)	15.25	23.75	36.75	18.00	26.25	36.75	19.50	26.25	37.50	33.75	34.75	46.25

16.2.1.3 Combinazioni sismiche

			pila											
	ID		1-A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C	4-A	4-B	4-C
SLV X+0.3Y	FX	(kN)	-129.60	-161.15	129.60	136.21	-146.56	-136.21	112.68	-133.17	-112.68	-105.23	106.27	105.23
	FY	(kN)	-206.51	-149.72	-51.80	-262.69	-250.22	-169.14	-302.32	-273.90	-170.38	-226.75	-198.39	-115.58
	FZ	(kN)	2819.86	2378.76	2622.58	1948.86	1593.62	1616.41	2553.49	2086.37	2189.69	2184.38	1819.85	1922.02
	MX	(kN.m)	585.87	570.70	453.71	909.44	954.69	829.36	1008.03	1045.00	895.27	736.66	756.70	641.56
	MY	(kN.m)	-624.14	-763.88	624.14	654.44	694.69	-654.44	542.55	631.27	-542.55	-505.30	503.75	505.30
	MZ	(kN.m)	3.46	-10.33	3.46	-29.83	-6.57	-29.83	-11.52	3.68	-11.52	31.29	10.38	31.29
SLV Y+0.3X	FX	(kN)	-2.86	-48.35	2.86	63.77	-43.97	-63.77	20.97	-39.94	-20.97	-67.78	31.89	67.78
	FY	(kN)	-499.89	-499.08	-361.14	-774.63	-834.06	-664.81	-847.45	-913.00	-728.22	-635.98	-661.31	-505.12
	FZ	(kN)	2805.11	2173.86	2147.51	2586.28	1802.41	1478.12	2782.93	1923.23	1570.26	2792.78	2072.75	1918.23
	MX	(kN.m)	1791.93	1902.35	1673.36	2944.96	3182.31	2851.04	3223.14	3483.35	3121.20	2352.97	2522.33	2241.10
	MY	(kN.m)	-16.42	-229.17	16.42	304.34	208.39	-304.34	102.77	189.42	-102.77	-323.18	151.14	323.18
	MZ	(kN.m)	-51.94	-34.43	-51.94	-41.70	-21.89	-41.70	14.06	12.26	14.06	62.44	34.61	62.44

Relazione tecnica e di calcolo

161

Mandataria:

Si riportano di seguito le visualizzazioni delle reazioni alla testa dei pali.

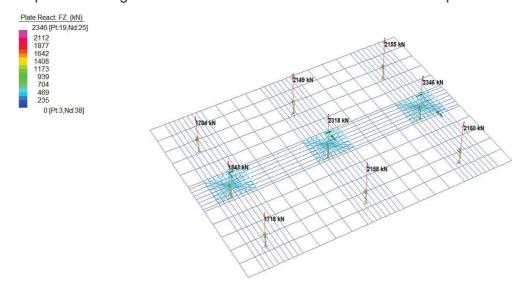


Figura 107: Sollecitazioni massime di compressione in testa ai pali (SLU Nmax)

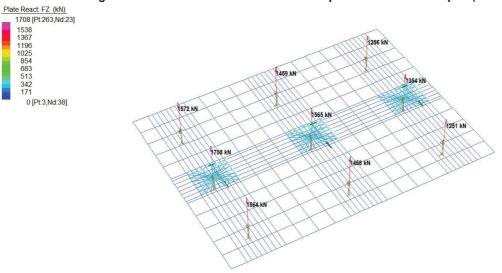


Figura 108: Sollecitazioni massime di compressione in testa ai pali (SLV X+0.3Y)

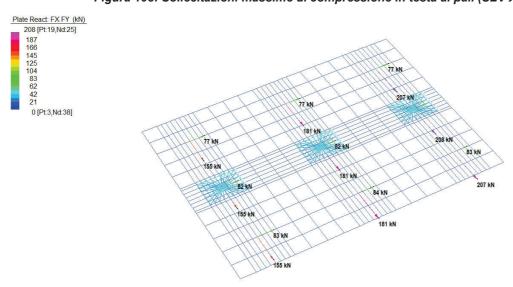


Figura 109: Sollecitazioni massime di taglio in testa ai pali (inviluppo assoluto)

Si riporta di seguito la tabella riepilogativa delle sollecitazioni riscontrate per i vari stati limite.

	SOLLECITAZIONI ALLA TESTA DEI PALI						
	Combinazione	N [kN]	Vlong [kN]	Vtrasv [kN]	Vxy [kN]		
Sollecitazioni relative a N _{Ed,comprSLU,max}	SLU N _{max}	2346	9	4	10		
Sollecitazioni relative a N _{Ed,comprSLV,max}	SLV X+0,3Y	1708	50	82	96		
Sollecitazioni relative a V _{Ed,max}	SLV X+0,3Y	492	208	25	209		

16.3 COSTANTE DI WINKLER ORIZZONTALE PER I PALI

Il terreno viene abitualmente simulato come un mezzo alla Winkler, e ciò avviene anche nel caso dei pali, per carichi orizzontali. La reazione del terreno, quindi, è assimilata ad un letto di molle di costante K_h. Essendo il palo una struttura di elevata snellezza, in termini di modello di Winkler, essi risultano "infinitamente lunghi"; inoltre i carichi applicati sono azioni concentrate all'estremità del palo, pertanto in tali condizioni il modello alla Winkler fornisce risultati senz'altro accettabili. È evidente, infine, che il regime di sollecitazioni e deformazioni è fortemente influenzato da variazioni delle caratteristiche del terreno lungo l'asse del palo; tali variazioni sono assai frequenti per i pali di fondazione, che spesso attraversano stratificazioni di terreni diversi, e quindi diventa assai utile la possibilità offerta dal metodo di Winkler di simulare agevolmente tali variazioni. Nella pratica, per terreni uniformi, si considera K_h costante con la profondità e, per i terreni argillosi come quelli in oggetto, correlato con la coesione non drenata cu dalla relazione (Terzaghi, 1955; Davisson, 1970):

$$K_h = 67 \cdot \frac{c_u}{d}$$

dove d è il diametro del palo e cu la già citata coesione non drenata.

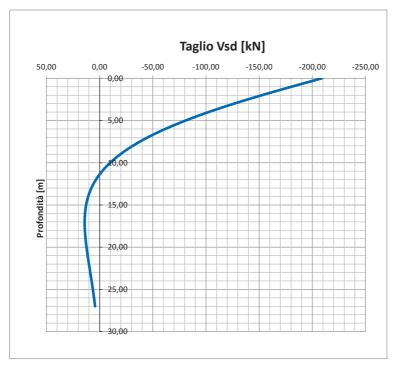
Dalla caratterizzazione geotecnica del sito, si è appurato che il terreno dello strato più superficiale presenta una cu pari a 75kPa.

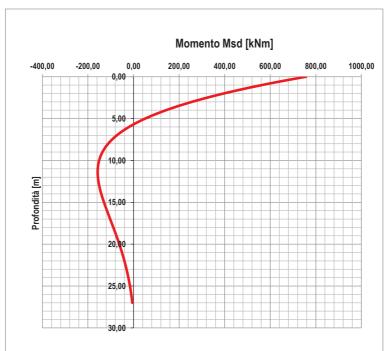
Tale valore è stato inserito nel seguente foglio di calcolo, unitamente ai dati relativi al palo più sollecitato a taglio, ricavando le sollecitazioni in testa all'elemento nonché, al variare della profondità, i valori di deformata, rotazione, momento, taglio e pressione sul terreno.

PALI IMPEDITI DI RUOTARE IN TESTA SOGGETTI A FORZE ORIZZONTALI

Diametro del palo D	1,200	m	Vsd
Lunghezza del palo L	27	m	বিভিন্ন মনির
cu	75,0	kPa	
Coefficiente di reazione laterale k _{h (Argille)}	0,42	kg/cm ³	
Forza orizzontale agente Vsd	209	kN	
Rck	35,0	MPa	
fcm	43,0	MPa	└
E _{cls}	34077	MPa	
J	10178760	cm ⁴	
λ (lunghezza caratteristica del palo)	725	cm	
Pressione orizzontale massima	24	kPa	<u> </u>
M_0/F_0	3,62	-	/

RTP di progettazione: Manda





Wall

Il momento massimo agente è localizzato in testa al palo ed è pari a 758 kNm.

Inserendo nel precedente foglio di calcolo le forze orizzontali di taglio riscontrate nei vari stati limite, si è aggiornata la tabella delle sollecitazioni in testa ai pali.

	SOLLECITAZIONI ALLA TESTA DEI PALI							
	Combinazione	N [kN]	Vlong [kN]	Vtrasv [kN]	Vxy [kN]	M [kNm]		
Sollecitazioni relative a N _{Ed,compr,max}	SLU N _{max}	2346	9	4	10	36		
Sollecitazioni relative a N _{Ed,comprSLV,max}	SLV X+0,3Y	1708	50	82	96	348		
Sollecitazioni relative a V _{Ed,max}	SLV X+0,3Y	492	208	25	209	758		

Relazione tecnica e di calcolo RTP di progettazione:

164

16.3.1 Verifiche strutturali dei pali

Con riferimento alle caratteristiche dei materiali indicati al capitolo 4, si riportano di seguito le verifiche strutturali dei pali, che risultano armati longitudinalmente con $40\phi24$, copriferro 6 cm ed una spirale $\phi12/20$. La verifica a pressoflessione è stata eseguita impiegando il programma Vca SLU, inserendo al suo interno lo sforzo normale relativo alla combinazione di carico correlato alla massima sollecitazione di taglio (e conseguentemente di momento) agente sul palo.

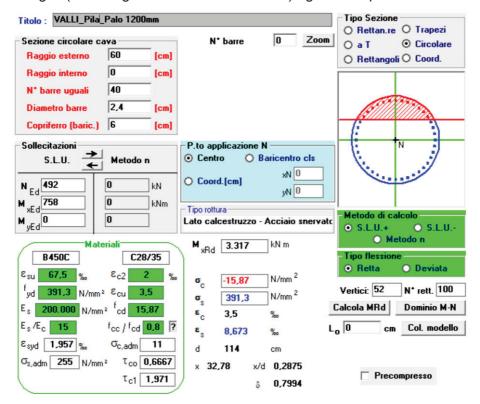


Figura 110: Vca SLU, MRd palo

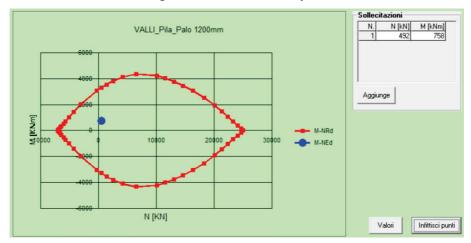
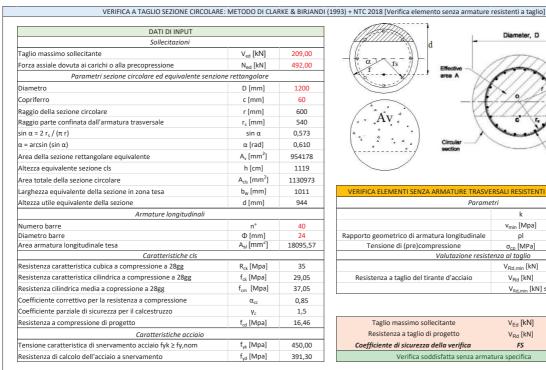
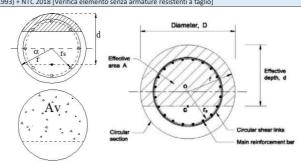


Figura 111: Vca SLU, dominio M-N

La verifica risulta soddisfatta.





La resistenza a taglio del palo è determinata secondo quanto previsto dalle NTC18, riconducendosi ad una sezione rettangolare equivalente secondo il metodo proposto da Clarke & Birjandi (1993).

Paramet	tri		
	k	1,46	< 2
	v _{min} [Mpa]	0,33	
Rapporto geometrico di armatura longitudinale	ρΙ	0,02	≤ 0,02
Tensione di (pre)compressione	σ _{cp} [MPa]	0,44	
Valutazione resiste	nza al taglio		
	V _{Rd,min} [kN]	379,92	
Resistenza a taglio del tirante d'acciaio	V _{Rd} [kN]	698,51	
	$V_{Rd.min}[kN] \leq$	OK	

Taglio massimo sollecitante	V _{Ed} [kN]	209,00					
Resistenza a taglio di progetto	V _{Rd} [kN]	698,51					
Coefficiente di sicurezza della verifica	FS	3,34					
Verifica soddisfatta senza armatura specifica							

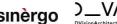
VERIFICA A TAGLIO SEZIONE CIRCOLARE: METODO DI CLARKE & BIRJANDI (1993) + NTC 2018 [Verifica elemento con armature resistenti a taglio]

DATI DI INPUT		
Taglio massimo sollecitante	V _{ed} [kN]	209,00
Larghezza minima della sezione in zona tesa	b _w [mm]	1011
Altezza utile della sezione	d [mm]	944
Resistenza caratteristica cubica a compressione a 28gg	R _{ck} [Mpa]	35
Resistenza caratteristica cilindrica a compressione a 28gg	f _{ck} [Mpa]	29,05
Resistenza cilindrica media a copressione a 28gg	f _{cm} [Mpa]	37,05
Coefficiente correttivo per la resistenza a compressione	α _{cc}	0,85
Coefficiente parziale di sicurezza per il calcestruzzo	γ _c	1,5
Resistenza a compressione di progetto	f _{cd} [Mpa]	16,46
Tensione caratteristica di snervamento acciaio fyk ≥ fy,nom	f _{yk} [Mpa]	450,00
Resistenza di calcolo dell'acciaio a snervamento	f _{yd} [Mpa]	391,30

Con riferimento all'armatura trasversale, la resistenza di progetto a "taglio trazione" si calcola cor $V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{a} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot sin \alpha$ [4.1.27] Con riferimento al calcestruzzo d'anima, la resistenza di progetto a "taglio o $V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \, v \cdot f_{cd} \, (ctg\alpha + ctg\theta) / (1 + ctg^2 \, \theta)$ za di progetto a taglio della trave è la minore delle due sop $V_{Rd} = min (V_{Rsd}, V_{Rcd})$ [4.1.29]

VERIFICA ELEMENTI CON ARMATURE TRASVERSALI RESISTENTI AL	TAGLIO - §4.1.2.3	.5.2
Resistenza a compressione ridotta del calcestruzzo	f'cd	8,23
Coefficiente maggiorativo per (pre)compressione	α_{cw}	1,03
Diametro delle staffe	Φ _{sw} [mm]	12
Numero di bracci staffe	n°b	2
Passo delle staffe	s [cm]	20
Quantitativo di staffe al metro	A _{sw} /s [mm ² /m]	1131
Inclinazione θ dei puntoni di calcestruzzo rispetto all'asse della trave, che	ctg θ	2,50
deve rispettare i seguenti limiti: 1 ≤ ctg θ ≤ 2.5 (cioè 21.8°≤ θ ≤ 45°)	θ [°]	21,8
A	α [°]	90
Angolo di inclinazione dell'armatura trasversale rispetto all'asse della trave	α [rad]	1,57
Cotangente dell'angolo di inclinazione dell'armatura trasversale	ctg α	0,00
Resistenza a taglio del puntone di cls	V _{Rcd} [kN]	2501,76
Resistenza a taglio del tirante d'acciaio	V _{Rsd} [kN]	939,76

Taglio massimo sollecitante	VE _d [kN]	209,00
Resistenza a taglio di progetto	V _{Rd} [kN]	939,76
Coefficiente di sicurezza della verifica	FS	4,50
Verifica soddisfatta		


Relazione tecnica e di calcolo

16.3.2 Calcolo capacità portante pali

La verifica viene effettuata con l'Approccio 2, vale a dire che il calcolo delle azioni è stato condotto con i coefficienti A1-M1, mentre il calcolo delle resistenze secondo i coefficienti R3.

Le massime sollecitazioni assiali di compressione in testa al palo sono:

 $N_{\text{max,compr,STR}} = 2346 \text{ kN}$

 $N_{\text{max,compr,SLV}} = 1708 \text{ kN}$

STRATIGRAFIA E PA	STRATIGRAFIA E PARAMETRI GEOTECNICI															
Descrizione	Quota _{SUP}	Quota _{INF}	H _{STRATO}	H _{ATTIVA}	φ'	C'	Cu	γnat	κ	$tg\delta$	α (Cu)	$\alpha(c')$	β	$\sigma'v$ (h_{med})	σ'v (h _{inf})	Qlat
strato	[m]	[m]	[m]	[m]	[°]	[kPa]	[kPa]	[kN/m³]	-	-	-	-	-	[kPa]	[kPa]	[kN]
1	0.00	1.18	1.18	1.18			75.00	19.50	1.25	0.00	0.42	0.00	0.00	5.61	11.21	140.06
2	1.18	12.93	11.75	11.75			75.00	19.50	1.25	0.00	0.42	0.00	0.00	67.02	122.84	1394.63
3	12.90	40.00	27.10	27.10			150.00	20.00	1.25	0.00	0.42	0.00	0.00	258.34	393.84	6433.11

CARATTERISTICHE PALO		
Diametro Palo	1,20	m
Lunghezza Palo	27,00	m
Quota testa palo	0,00	m
Quota punta palo	27,00	m
TIPO (B/T/E)	Е	(BATTUTO / TRIVELLATO / ELICA / FDP / JET)
Materiale	CLS	(CLS / ACCIAIO)
Quota falda	0,00	m
Rck	35,00	Мра
E _{palo}	32.588,11	MPa
J_{palo}	1,41E-01	m ⁴
γ palo	25,00	kN/m³
Ар	1,13	m²
Alat	3,77	m²/m
Alat, _{тот}	101,74	m ²
L/D	22,50	m
T: fattore di rigidezza relativa	3,08	m
2T	6,16	m
4T	12,32	m
Comportamento	L>4T; Palo fless	ibile o lungo

PORTATA LIMITE LATERATE E DI	PUNTA		
Peso Palo	Wp	763,02	kN
Peso Palo Immerso	Wp'	305,35	kN
Caratteristiche a fondo palo	φ'	0,00	[°]
Caratteristiche a fondo palo	C'	0,00	kPa
Caratteristiche a fondo palo	Cu	150,00	kPa
Pressione a fondo palo	σ'v	263,84	kPa
Condizione di rottura	Nq	-	
(δ _{max} ≤5%D)	Nq [*]	-	
Caratteristiche a fondo palo	Rc	0,8	
Portata di punta a rottura	Qp	1.484	kN
Portata di punta con δmax	Qp*	1.484	kN
Q _{lim, PUNTA}	QP	1.484	kN
Q _{lim, LATERALE}	QL	4.882	kN
Q _{lim, TOTALE}	Qlim	6.366	kN

Relazione tecnica e di calcolo

167

NTC 2008	(NTC 6.4.3.1)			
PORTATE LIMITE DI COMPRESSIO	NE E TRAZIONE			
Tipo Pali	ELICA			
Rbk,punta	1.484	kN		
Rsk,laterale	4.882	kN		
Rck, TOTALE	6.366	kN		
N	1			
ζ3	1,7			
ζ4	1,7			
Rbk,punta	873	kN		
Rsk,laterale	2.872	kN		
COMBINAZIONI E PORTATE DI	A1C1 STRU	A1C2 GEO	A2	
CALCOLO	A1+M1+R1	A2+M1+R2	A2*(γ=1)+M1+R3	
Resistenza	R1	R2	R3	
γb	1,00	1,60	1,30	
γs	1,00	1,45	1,15	
γst	1,00	1,60	1,25	
Rsdt	3.146	2.070	2.572	kN
Rbd,punta	873	546	671	kN
Rsd,laterale	2.872	1.980	2.497	kN
Resistenza a compressione Rcd	3.745	2.526	3.169	kN
Wp'	305,4	305,4	305,4	kN
γ _{G1}	1,3	1,0	1,0	
Rcd-γ _{G1} xWp'	3.348	2.221	2.863	kN

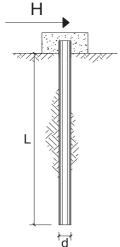
FATTORE DI EFFICIENZA - PALI IN GRUPPO							
fattore di efficienza E 0,73 0,73 -							

PORTATA A COMPRESSIONE: Ro	Nsd [kN]	CS		
A1C1 STRU (A1+M1+R1) 2.433		2.346	1,04	VERIFICATO
A2	2.081	1.708	1,22	VERIFICATO

Relazione tecnica e di calcolo RTP di progettazione:

16.3.3 Verifica a carico limite orizzontale

Si riporta di seguito la verifica a carico limite orizzontale per un palo immerso in terreni coesivi, condotta applicando la teoria di Broms (1964), la cui rotazione in testa è impedita. Si è inserita la massima sollecitazione tagliante riscontrata in combinazione sismica, pari a V_{Ed,SLV} = 209 kN.


CARICO LIMITE ORIZZONTALE DI UN PALO IN TERRENI COESIVI PALI CON ROTAZIONE IN TESTA IMPEDITA

OPERA: Viadotto Valli - Pila

TEORIA DI BASE:

(Broms, 1964)

coefficienti parziali			Α		М	R
Metodo di calcolo			permanenti	variabili	٧,	21
	Wetodo di Calcolo			γο	γ _{cu}	γт
	A1+M1+R1	0	1,30	1,50	1,00	1,00
SLU	A2+M1+R2	0	1,00	1,30	1,00	1,60
SI	A1+M1+R3	0	1,30	1,50	1,00	1,30
	SISMA	•	1,00	1,00	1,00	1,30
DM88		0	1,00	1,00	1,00	1,00
definiti dal progettista		1,30	1,50	1,40	1,00	

n	1 •	2	3	4 O	5 O	6	≥10 ○	T.A. O	prog.
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40	1,00	1,00
ξ ₄	1,70	1,55	1,48	1,42	1,34	1,28	1,21	1,00	1,00

DATI DI INPUT:

L= Lunghezza del palo 27,00 (m) Diametro del palo d =1,20 (m) Momento di plasticizzazione della sezione My = 3314,00 (kN m) (kPa) Coesione non drenata 75,00 (kPa) 75 00 Coesione non drenata di progetto 75,00 (kPa) 75,00 (kPa) Carico orizzontale agente $H_{Ed} =$ 209 (kN)

Palo corto:

H1 _{med} =	20412,00	(kN)		H1 _{min} =	20412,00	(kN)	
Palo interm	edio:						
H2 med=	7842,22	(kN)		H2 _{min} =	7842,22	(kN)	
Palo lungo:							
H3 med=	2128,52	(kN)		H3 _{min} =	2128,52	(kN)	
H _{med} =	2128,52	(kN)	palo lungo	H _{min} =	2128,52	(kN)	palo lungo
$H_k = Min$	$(H_{med}/\xi_3; R)$	$_{min}/\xi_4)$:	= 1252,07	(kN)			
	$H_d = H_k/\gamma_T$	=	963,13	(kN)			
	H _{Ed} =		209,00	(kN)			

4,61

La verifica è soddisfatta.

 $FS = H_d / H_{Ed} =$

RTP di progettazione:

