

Direzione Progettazione e Realizzazione Lavori

S.S.131 "Carlo Felice" Completamento itinerario Sassari – Olbia. Potenziamento e messa in sicurezza S.S.131 dal km 192+500 al km 209+500. 2° Lotto dal km 202+000 al km 209+500

INDICE

1	PREMESS	SA	5
2	RIFERIME		7
3	CENNO G	EOMORFOLOGICO E GEOLOGICO	8
4	INDAGINI	GEOTECNICHE	9
4.1	Campag	na d'indagini 1999	10
4.2	Campag	na d'indagini 2020:	12
5	CARATTE	RIZZAZIONE GEOTECNICA DEI TERRENI	20
5.1	Terreni	sciolti	25
	5.1.1	Materiale di riporto – TR	25
	5.1.2	Alluvioni a grana fine – ALF	25
	5.1.3	Alluvioni a grana grossa – ALG	30
	5.1.4	Limo sabbioso argilloso – LSA	32
	5.1.5	Sabbia limosa - SL	38
	5.1.6	Argilla marnosa - AM	41
5.2	Rocce la	ıpidee	46
	5.2.1	Marne e marne argillose - M	46
	5.2.2	Marne calcarenitiche - MC	51
	5.2.3	Calcari bioclastici - CB	56
	5.2.4	Calcareniti - CL	61
	5.2.5	Siltiti - Si	67
5.3	Falda		73
5.4	Caratte	rizzazione fisico – meccanica dei terreni	73
5.5	Caratte	rizzazione sismica dei terreni	75
6	RAPPORT	OPERE TERRENI	77
G 1	\/ : ~d-	tti Calloria	
0.1		111 – Gallerie	
	6.1.1	VI01	77
	0.1.2	DO01	/9 01
	0.1.3 6 1 <i>1</i>	1 001 VI02	83 83
	615	GN01	85
	616	VI03	86
	617	VI04	88
	6.1.8	VI05	90
	6.1.9	GN02	92

SS 131 "Carlo Felice" Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500 CA357 Relazione Geotecnica

	6.1.10 VI06	93
6.2	2 Rilevati	95
7	QUESTIONI GEOTECNICHE	98
8	CALCOLO DEI CEDIMENTI DEI RILEVATI	99
8.1	Caratteristiche geotecniche dei terreni di fondazione	99
8.2	Calcolo dei cedimenti in terreni a grana grossa	99
8.3	Calcolo dei cedimenti in terreni a grana fine	100
8.4	Risultati dei calcoli	101
9	VERIFICHE DI STABILITÀ GLOBALE	105
9.1	Procedura di calcolo	105
9.2	Codice di calcolo	106
9.3	Caratteristiche geotecniche dei terreni	106
9.4	Risultati delle verifiche 9.4.1 Rilevati 9.4.2 Trincee 9.4.3 Scavi provvisionali	107 107 108
		110

Relazione Geotecnica

ELENCO DELLE FIGURE

Figura 1.1: Area d'intervento CA357	5
Figura 5.1: Terreni ALF – Andamento del passante in peso con la profondità	25
Figura 5.2: Terreni Al F – Andamento del contenuto naturale d'acqua e dei limiti di Atterberg con la profondità	
Figura 5.3: Terreni ALE – Carta di attività	27
Figura 5.4: Terreni Al F – Carta di plasticità	27
Figura 5.5. Tarrani Al F. – Valori di Neo da prove SPT	28
Figura 5.6: Terreni ALF – Valori della coesione non drenata da prove SPT	20
Figura 5.7. Terreni ALC – Andramento del possone non de index da prove Gr 1	20
Figura 5.7. Terreni ALG – Valori di N30 da provo SPT	30
Figura 3.6. Terreni ALG – Valori ul NSO da prove 3.7 1	31
Figura 3.9. Terreni LSA – Andamento del passante in peso con la protondità di Attachara con la profondità	32 22
Figura 5.10. Terreni LSA – Andamento dei contenuto naturale d'acqua e dei limiti di Atterberg con la protondita	33
Figura 5.11. Terreni LSA – Carta di allivita	34
Figura 5.12. Terreni LSA – Carta ul prasticita.	34
Figura 5.13: Terreni LSA – Valori di N30 da prove SP1	35
Figura 5.14: Terreni LSA – Valori della coesione non drenata da prove SPT.	30
Figura 5.15: Terreni LSA – Valori della coesione non drenata da prove di laboratorio	37
Figura 5.16: Terreni LSA – Valon dell'angloro di resistenza al taglio e della coesione da prove di laboratorio	38
Figura 5.1/: Terreni SL – Andamento del passante in peso con la profondita	39
Figura 5.18: Terreni SL – Valori di N30 da prove SP1	40
Figura 5.19: Terreni AM – Andamento del passante in peso con la protondita	41
Figura 5.20: Terreni AM – Andamento del contenuto naturale d'acqua e dei limiti di Atterberg con la profondita	42
Figura 5.21: Terreni AM – Carta di attivita.	
Figura 5.22: Terreni AM – Carta di plasticita	43
Figura 5.23: Terreni AM – Valori dell'angolo di resistenza al taglio e della coesione da prove di laboratorio	44
Figura 5.24: Terreni AM – Valori della coesione non drenata da prove di laboratorio	45
Figura 5.25: Roccia M – distribuzione σ_{ci} da prove di compressione monoassiale	47
Figura 5.26: Roccia M – valore medio di RQD nello strato	47
Figura 5.27: Roccia M – RMR	48
Figura 5.28: Roccia M – caratteristiche di resistenza e deformabilità	49
Figura 5.29: Roccia M – modulo elastico secante E _{s50}	50
Figura 5.30: Roccia M – modulo elastico tangente E _{t50}	50
Figura 5.31: Roccia M – coefficiente di Poisson v ₅₀	51
Figura 5.32: Roccia MC – distribuzione σ_{ci} da prove di compressione monoassiale	52
Figura 5.33: Roccia MC – valore medio di RQD nello strato	52
Figura 5.34: Roccia MC – RMR	53
Figura 5.35: Roccia MC – caratteristiche di resistenza e deformabilità	54
Figura 5.36: Roccia MC – modulo elastico secante E_{s50}	55
Figura 5.37: Roccia MC – modulo elastico tangente Et50	55
Figura 5.38: Roccia MC – coefficiente di Poisson v ₅₀	56
Figura 5.39: Roccia CB – distribuzione σ_{ci} da prove di compressione monoassiale	56
Figura 5.40: Roccia CB – valore medio di RQD nello strato	57
Figura 5.41: Roccia CB – RMR	58
Figura 5.42: Roccia CB – caratteristiche di resistenza e deformabilità	59
Figura 5.43: Roccia CB – modulo elastico secante E_{s50}	60
Figura 5.44: Roccia CB – modulo elastico tangente E_{t50}	60
Figura 5.45: Roccia CB – coefficiente di Poisson v ₅₀	61
Figura 5.46: Roccia CL – distribuzione σ_{ci} da prove di compressione monoassiale	62
Figura 5.47: Roccia CL – valore medio di RQD nello strato	63
Figura 5.48: Roccia CL – RMR	64
Figura 5.49: Roccia CL – caratteristiche di resistenza e deformabilità	65
Figura 5.50: Roccia CL – modulo elastico secante E _{s50}	66
Figura 5.51: Roccia CL – modulo elastico tangente Et50	66
Figura 5.52: Roccia CL – coefficiente di Poisson v50	67
Figura 5.53: Roccia Si – distribuzione σ_{ci} da prove di compressione monoassiale	67
Figura 5.54: Roccia Si – valore medio di RQD nello strato	68
Figura 5.55: Roccia Si – RMR	69
Figura 5.56: Roccia Si – caratteristiche di resistenza e deformabilità	70
Figura 5.57: Roccia Si – modulo elastico secante Es50	71
Figura 5.58: Roccia Si – modulo elastico tangente Et50	71

SS 131 "Carlo Felice"	1
Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km	
192+500 al km 209+500	
2° lotto dal km 202+000 al km 209+500	<u> </u>

Relazione Geotecnica

Figura 5.59: Roccia Si – coefficiente di Poisson v50 Figura 6.1: VI01 asse DX – schema fisico di riferimento	72 78
Figura 6.2: CV01 – schema fisico di riferimento Figura 6.3: PO01 asse DX – schema fisico di riferimento	80 82
Figura 6.4: VI02 asse DX – schema fisico di riferimento	84
Figura 6.5: GNUT asse DX – schema fisico di nierimento Figura 6.6: VI03 asse DX – schema fisico di riferimento	80
Figura 6.7: VI04 asse DX – schema fisico di riferimento	89
Figura 6.8: VI05 – schema fisico di riferimento Figura 6.9: GN02 asse DX – schema fisico di riferimento	91 93
Figura 6.10: VI06 asse DX – schema fisico di riferimento	94
Figura 6.11: progressiva 0+340, schema di calcolo dei cedimenti	96
Figura 6.12: progressiva 0+740, schema di calcolo dei cedimenti Figura 6.13: progressiva 1+720, schema di calcolo dei cedimenti	90 97
Figura 8.1: Cedimento previsto in corrispondenza del km 0+340	. 102
Figura 8.2: Schema di calcolo B Figura 8.3: Schema di calcolo B.– deformata scalata 50x a 200 anni	. 103
Figura 8.4: Schema di calcolo B – mappa dei cedimenti a 200 anni	. 103
Figura 9.1: Rilevato di altezza massima - Verifica di stabilità in condizioni statiche - Superficie di scorrimento critica	. 107
Figura 9.2. Schema di calcolo A Figura 9.3: Schema di calcolo B	. 108
Figura 9.4: Schema di calcolo A – Fattore di sicurezza minimo – Superficie di scorrimento critica	. 109
Figura 9.5: Schema di calcolo B – Fattore di sicurezza minimo – Superficie di scorrimento critica Figura 9.6: Verifica di stabilità a breve termine viadotto VI03 spalla B – Superficie di scorrimento critica	. 109

ELENCO DELLE TABELLE

Tabella 4.2: Livello di falda riportato nella campagna d'indagini 1999 11 Tabella 4.3: Risultati delle prove penetrometriche dinamiche SPT 12 Tabella 4.4: Risultati delle prove di permeabilità Lugeon 12 Tabella 4.5: Sondaggi eseguiti nella campagna d'indagini 2020 13 Tabella 4.6: Risultati delle Prove Penetrometriche Dinamiche SPT 14 Tabella 4.6: Risultati delle prove Penetrometriche Dinamiche SPT 14 Tabella 4.6: Risultati delle prove Lugeon e pressiometriche 17 Tabella 4.8: Posizione delle prove Lugeon e pressiometriche 18 Tabella 5.1: Classificazione geotecnica dei terreni 20 Tabella 5.2: Coefficiente A funzione dell'epoca geologica del deposito 22 Tabella 5.3: Coefficiente B funzione della composizione granulometrica del deposito 23 Tabella 5.4: Terreni ALF – risultati delle prove edometriche 30 Tabella 5.5: Caratteristiche di progetto dei terreni sciolti 74 Tabella 5.6: Caratteristiche di progetto delle rocce lapidee 75 Tabella 5.8: Categorie di sottosuolo e velocità di taglio equivalenti 76 Tabella 5.1: Caratteristiche di terreni di fondazione 98 Tabella 5.2: coefficienti parziali per le azioni (Tabella 6.2.1 - D.M. 17/01/2018) 105 Tabella 8.1: Caratteristich	Tabella 4.1: Sondaggi eseguiti nella campagna di indagini del 1999	11
Tabella 4.3: Risultati delle prove penetrometriche dinamiche SPT 12 Tabella 4.4: Risultati delle prove di permeabilità Lugeon 12 Tabella 4.5: Sondaggi eseguiti nella campagna d'indagini 2020 13 Tabella 4.5: Sondaggi eseguiti nella campagna d'indagini 2020 13 Tabella 4.6: Risultati delle Prove Penetrometriche Dinamiche SPT 14 Tabella 4.7: Campioni litoidi, indisturbati e rimaneggiati prelevati 17 Tabella 4.8: Posizione delle prove Lugeon e pressiometriche 18 Tabella 4.9: Basi sismiche. 18 Tabella 5.1: Classificazione geotecnica dei terreni 20 Tabella 5.2: Coefficiente A funzione dell'epoca geologica del deposito 22 Tabella 5.4: Terreni ALF – risultati delle prove edometriche 30 Tabella 5.5: Terreni LSA – risultati delle prove edometriche 38 Tabella 5.7: Caratteristiche di progetto dei terreni sciolti 74 Tabella 5.8: Categorie di sottosuolo e velocità di taglio equivalenti 76 Tabella 8.1: Caratteristiche dei terreni di fondazione 99 Tabella 8.2: Coefficienti parziali per le azioni (Tabella 6.2.1 - D.M. 17/01/2018) 102 Tabella 9.2: Coefficienti parziali per le azioni (Tabella 6.2.1 - D.M. 17/01/2018) 105 Tabella 9.2: Coefficienti parziali per le azioni (Tabella 6.2.1	Tabella 4.2: Livello di falda riportato nella campagna d'indagini 1999	11
Tabella 4.4: Risultati delle prove di permeabilità Lugeon 12 Tabella 4.5: Sondaggi eseguiti nella campagna d'indagini 2020 13 Tabella 4.6: Risultati delle Prove Penetrometriche Dinamiche SPT 14 Tabella 4.7: Campioni litoidi, indisturbati e rimaneggiati prelevati 17 Tabella 4.8: Posizione delle prove Lugeon e pressiometriche 18 Tabella 4.9: Basi sismiche. 18 Tabella 5.1: Classificazione geotecnica dei terreni 20 Tabella 5.2: Coefficiente A funzione dell'epoca geologica del deposito 22 Tabella 5.4: Terreni ALF – risultati delle prove edometriche 30 Tabella 5.5: Terreni LSA – risultati delle prove edometriche 30 Tabella 5.6: Caratteristiche di progetto dei terreni sciolti 74 Tabella 5.7: Caratteristiche di progetto delle rocce lapidee 75 Tabella 5.1: Caratteristiche di sottosuolo e velocità di taglio equivalenti 76 Tabella 5.1: Caratteristiche dei terreni di fondazione 99 Tabella 8.1: Caratteristiche dei terreni di calcolo A. 102 Tabella 8.2: coefficienti parziali per le azioni (Tabella 6.2.1 - D.M. 17/01/2018). 105 Tabella 9.3: Coefficienti parziali per i parametri geotecnici del terreno (Tabella 6.2.11 - D.M. 17/01/2018). 105 Tabella 9.4: Fattore di sicurezza minim	Tabella 4.3: Risultati delle prove penetrometriche dinamiche SPT	12
Tabella 4.5: Sondaggi eseguiti nella campagna d'indagini 2020	Tabella 4.4: Risultati delle prove di permeabilità Lugeon	12
Tabella 4.6: Risultati delle Prove Penetrometriche Dinamiche SPT. 14 Tabella 4.7: Campioni litoidi, indisturbati e rimaneggiati prelevati. 17 Tabella 4.8: Posizione delle prove Lugeon e pressiometriche 18 Tabella 4.9: Basi sismiche. 18 Tabella 5.1: Classificazione geotecnica dei terreni 20 Tabella 5.2: Coefficiente A funzione dell'epoca geologica del deposito 22 Tabella 5.3: Coefficiente B funzione della composizione granulometrica del deposito 23 Tabella 5.4: Terreni ALF – risultati delle prove edometriche 30 Tabella 5.5: Terreni LSA – risultati delle prove edometriche 38 Tabella 5.6: Caratteristiche di progetto dei terreni sciolti. 74 Tabella 5.7: Caratteristiche di progetto delle rocce lapidee 75 Tabella 5.1: Classori di scotico e bonifica 98 Tabella 5.1: Caratteristiche dei terreni di fondazione 99 Tabella 5.1: Caratteristiche dei terreni di calcolo A. 102 Tabella 5.2: Coefficienti parziali per le azioni (Tabella 6.2.1 - D.M. 17/01/2018). 105 Tabella 9.1: Coefficienti parziali per i parametri geotecnici del terreno (Tabella 6.2.11 - D.M. 17/01/2018). 105 Tabella 9.3: Coefficienti parziali per i parametri geotecnici del terreno (Tabella 6.2.11 - D.M. 17/01/2018). 105	Tabella 4.5: Sondaggi eseguiti nella campagna d'indagini 2020	13
Tabella 4.7: Campioni litoidi, indisturbati e rimaneggiati prelevati17Tabella 4.8: Posizione delle prove Lugeon e pressiometriche18Tabella 4.9: Basi sismiche.18Tabella 5.1: Classificazione geotecnica dei terreni20Tabella 5.2: Coefficiente A funzione dell'epoca geologica del deposito22Tabella 5.3: Coefficiente B funzione della composizione granulometrica del deposito23Tabella 5.4: Terreni ALF – risultati delle prove edometriche30Tabella 5.5: Terreni LSA – risultati delle prove edometriche38Tabella 5.6: Caratteristiche di progetto dei terreni sciolti.74Tabella 5.7: Caratteristiche di progetto delle rocce lapidee75Tabella 5.8: Categorie di sottosuolo e velocità di taglio equivalenti76Tabella 8.1: Caratteristiche dei terreni di fondazione99Tabella 8.2: cedimento immediato – schema di calcolo A.102Tabella 9.1: Coefficienti parziali per le azioni (Tabella 6.2.1 - D.M. 17/01/2018).105Tabella 9.2: Coefficienti parziali per i parametri geotecnici del terreno (Tabella 6.2.II - D.M. 17/01/2018).105Tabella 9.3: Coefficiente parziale di resistenza γR2 (Tabella 6.8.I - D.M. 17/01/2018).105Tabella 9.4: Fattore di sicurezza minimo del lilevato di massima altezza107	Tabella 4.6: Risultati delle Prove Penetrometriche Dinamiche SPT	14
Tabella 4.8: Posizione delle prove Lugeon e pressiometriche 18 Tabella 4.9: Basi sismiche. 18 Tabella 5.1: Classificazione geotecnica dei terreni 20 Tabella 5.2: Coefficiente A funzione dell'epoca geologica del deposito 22 Tabella 5.3: Coefficiente B funzione della composizione granulometrica del deposito 23 Tabella 5.4: Terreni ALF – risultati delle prove edometriche 30 Tabella 5.6: Caratteristiche di progetto dei terreni sciolti. 74 Tabella 5.7: Caratteristiche di progetto dei le rocce lapidee 75 Tabella 5.8: Categorie di sottosuolo e velocità di taglio equivalenti 76 Tabella 8.1: Caratteristiche dei terreni di fondazione 99 Tabella 8.2: cedimento immediato – schema di calcolo A. 102 Tabella 9.2: Coefficienti parziali per le azioni (Tabella 6.2.1 - D.M. 17/01/2018). 105 Tabella 9.3: Coefficiente parziale di resistenza γR2 (Tabella 6.8.1 - D.M. 17/01/2018). 105 Tabella 9.4: Fattore di sicurezza minimo del rilevato di massima altezza 107 Tabella 9.5: Terteri di sicurezza minimo del rilevato di massima altezza 107	Tabella 4.7: Campioni litoidi, indisturbati e rimaneggiati prelevati	17
Tabella 4.9: Basi sismiche	Tabella 4.8: Posizione delle prove Lugeon e pressiometriche	18
Tabella 5.1: Classificazione geotecnica dei terreni20Tabella 5.2: Coefficiente A funzione dell'epoca geologica del deposito22Tabella 5.3: Coefficiente B funzione della composizione granulometrica del deposito23Tabella 5.4: Terreni ALF – risultati delle prove edometriche30Tabella 5.5: Terreni LSA – risultati delle prove edometriche38Tabella 5.6: Caratteristiche di progetto dei terreni sciolti74Tabella 5.7: Caratteristiche di progetto delle rocce lapidee75Tabella 5.8: Categorie di sottosuolo e velocità di taglio equivalenti76Tabella 8.1: Caratteristiche dei terreni di fondazione99Tabella 8.2: cedimento immediato – schema di calcolo A102Tabella 9.1: Coefficienti parziali per le azioni (Tabella 6.2.I - D.M. 17/01/2018)105Tabella 9.3: Coefficiente parziale di resistenza γR2 (Tabella 6.8.I - D.M. 17/01/2018)105Tabella 9.4: Fattore di sicurezza minimo del rilevato di massima altezza107Tabella 9.5: Fattore di sicurezza minimo del resistenza γR2 (Tabella 6.8.I - D.M. 17/01/2018)105	Tabella 4.9: Basi sismiche	18
Tabella 5.2: Coefficiente A funzione dell'epoca geologica del deposito22Tabella 5.3: Coefficiente B funzione della composizione granulometrica del deposito23Tabella 5.4: Terreni ALF – risultati delle prove edometriche30Tabella 5.5: Terreni LSA – risultati delle prove edometriche38Tabella 5.6: Caratteristiche di progetto dei terreni sciolti74Tabella 5.7: Caratteristiche di progetto delle rocce lapidee75Tabella 5.8: Categorie di sottosuolo e velocità di taglio equivalenti76Tabella 8.1: Caratteristiche dei terreni di fondazione99Tabella 8.2: cedimento immediato – schema di calcolo A102Tabella 9.2: Coefficienti parziali per le azioni (Tabella 6.2.I - D.M. 17/01/2018)105Tabella 9.3: Coefficiente parziale di resistenza yR2 (Tabella 6.8.I - D.M. 17/01/2018)105Tabella 9.4: Fattore di sicurezza minimo del rilevato di massima altezza107Tabella 9.5: Fattore di sicurezza minimo del rilevato di massima altezza109	Tabella 5.1: Classificazione geotecnica dei terreni	20
Tabella 5.3: Coefficiente B funzione della composizione granulometrica del deposito 23 Tabella 5.4: Terreni ALF – risultati delle prove edometriche 30 Tabella 5.5: Terreni LSA – risultati delle prove edometriche 38 Tabella 5.6: Caratteristiche di progetto dei terreni sciolti 74 Tabella 5.7: Caratteristiche di progetto delle rocce lapidee 75 Tabella 5.8: Categorie di sottosuolo e velocità di taglio equivalenti 76 Tabella 8.1: Caratteristiche dei terreni di fondazione 99 Tabella 9.2: coefficienti parziali per le azioni (Tabella 6.2.I - D.M. 17/01/2018). 105 Tabella 9.3: Coefficiente parziale di resistenza yR2 (Tabella 6.8.I - D.M. 17/01/2018). 105 Tabella 9.4: Fattore di sicurezza minimo del rilevato di massima altezza 107	Tabella 5.2: Coefficiente A funzione dell'epoca geologica del deposito	22
Tabella 5.4: Terreni ALF – risultati delle prove edometriche 30 Tabella 5.5: Terreni LSA – risultati delle prove edometriche 38 Tabella 5.6: Caratteristiche di progetto dei terreni sciolti 74 Tabella 5.7: Caratteristiche di progetto delle rocce lapidee 75 Tabella 5.8: Categorie di sottosuolo e velocità di taglio equivalenti 76 Tabella 8.1: Caratteristiche dei terreni di fondazione 99 Tabella 8.2: cedimento immediato – schema di calcolo A 102 Tabella 9.1: Coefficienti parziali per le azioni (Tabella 6.2.I - D.M. 17/01/2018) 105 Tabella 9.3: Coefficiente parziale di resistenza yR2 (Tabella 6.8.I - D.M. 17/01/2018) 105 Tabella 9.4: Fattore di sicurezza minimo del rilevato di massima altezza 107 Tabella 9.5: Fattore di sicurezza minimo del rilevato di massima altezza 107	Tabella 5.3: Coefficiente B funzione della composizione granulometrica del deposito	23
Tabella 5.5: Terreni LSA – risultati delle prove edometriche 38 Tabella 5.6: Caratteristiche di progetto dei terreni sciolti 74 Tabella 5.7: Caratteristiche di progetto delle rocce lapidee 75 Tabella 5.8: Categorie di sottosuolo e velocità di taglio equivalenti 76 Tabella 7.1: Spessori di scotico e bonifica 98 Tabella 8.1: Caratteristiche dei terreni di fondazione 99 Tabella 8.2: cedimento immediato – schema di calcolo A 102 Tabella 9.1: Coefficienti parziali per le azioni (Tabella 6.2.I - D.M. 17/01/2018) 105 Tabella 9.3: Coefficiente parziale di resistenza $\gamma R2$ (Tabella 6.8.I - D.M. 17/01/2018) 105 Tabella 9.4: Fattore di sicurezza minimo del rilevato di massima altezza 107 Tabella 9.5: Fattore di sicurezza minimo delle trincee 109	Tabella 5.4: Terreni ALF – risultati delle prove edometriche	30
Tabella 5.6: Caratteristiche di progetto dei terreni sciolti	Tabella 5.5: Terreni LSA – risultati delle prove edometriche	38
Tabella 5.7: Caratteristiche di progetto delle rocce lapidee 75 Tabella 5.8: Categorie di sottosuolo e velocità di taglio equivalenti 76 Tabella 7.1: Spessori di scotico e bonifica 98 Tabella 8.1: Caratteristiche dei terreni di fondazione 99 Tabella 8.2: cedimento immediato – schema di calcolo A 102 Tabella 9.1: Coefficienti parziali per le azioni (Tabella 6.2.I - D.M. 17/01/2018) 105 Tabella 9.2: Coefficienti parziali per i parametri geotecnici del terreno (Tabella 6.2.II - D.M. 17/01/2018) 105 Tabella 9.3: Coefficiente parziale di resistenza yR2 (Tabella 6.8.I - D.M. 17/01/2018) 105 Tabella 9.4: Fattore di sicurezza minimo del rilevato di massima altezza 107 Tabella 9.5: Fattore di sicurezza minimo delle trincee 109	Tabella 5.6: Caratteristiche di progetto dei terreni sciolti	74
Tabella 5.8: Categorie di sottosuolo e velocità di taglio equivalenti 76 Tabella 7.1: Spessori di scotico e bonifica 98 Tabella 8.1: Caratteristiche dei terreni di fondazione 99 Tabella 8.2: cedimento immediato – schema di calcolo A 102 Tabella 9.1: Coefficienti parziali per le azioni (Tabella 6.2.I - D.M. 17/01/2018) 105 Tabella 9.2: Coefficienti parziali per i parametri geotecnici del terreno (Tabella 6.2.II - D.M. 17/01/2018) 105 Tabella 9.3: Coefficiente parziale di resistenza γR2 (Tabella 6.8.I - D.M. 17/01/2018) 105 Tabella 9.4: Fattore di sicurezza minimo del rilevato di massima altezza 107 Tabella 9.5: Fattore di sicurezza minimo delle trincee 109	Tabella 5.7: Caratteristiche di progetto delle rocce lapidee	75
Tabella 7.1: Spessori di scotico e bonifica 98 Tabella 8.1: Caratteristiche dei terreni di fondazione 99 Tabella 8.2: cedimento immediato – schema di calcolo A 102 Tabella 9.1: Coefficienti parziali per le azioni (Tabella 6.2.I - D.M. 17/01/2018) 105 Tabella 9.2: Coefficienti parziali per i parametri geotecnici del terreno (Tabella 6.2.II - D.M. 17/01/2018) 105 Tabella 9.3: Coefficiente parziale di resistenza γR2 (Tabella 6.8.I - D.M. 17/01/2018) 105 Tabella 9.4: Fattore di sicurezza minimo del rilevato di massima altezza 107 Tabella 9.5: Fattore di sicurezza minimo delle trincee 109	Tabella 5.8: Categorie di sottosuolo e velocità di taglio equivalenti	76
Tabella 8.1: Caratteristiche dei terreni di fondazione 99 Tabella 8.2: cedimento immediato – schema di calcolo A 102 Tabella 9.1: Coefficienti parziali per le azioni (Tabella 6.2.I - D.M. 17/01/2018) 105 Tabella 9.2: Coefficienti parziali per i parametri geotecnici del terreno (Tabella 6.2.II - D.M. 17/01/2018) 105 Tabella 9.3: Coefficiente parziale di resistenza γR2 (Tabella 6.8.I - D.M. 17/01/2018) 105 Tabella 9.4: Fattore di sicurezza minimo del rilevato di massima altezza 107 Tabella 9.5: Fattore di sicurezza minimo delle trincee 109	Tabella 7.1: Spessori di scotico e bonifica	98
Tabella 8.2: cedimento immediato – schema di calcolo A	Tabella 8.1: Caratteristiche dei terreni di fondazione	99
Tabella 9.1: Coefficienti parziali per le azioni (Tabella 6.2.I - D.M. 17/01/2018)	Tabella 8.2: cedimento immediato – schema di calcolo A	. 102
Tabella 9.2: Coefficienti parziali per i parametri geotecnici del terreno (Tabella 6.2.II - D.M. 17/01/2018)	Tabella 9.1: Coefficienti parziali per le azioni (Tabella 6.2.I - D.M. 17/01/2018)	. 105
Tabella 9.3: Coefficiente parziale di resistenza $\gamma R2$ (Tabella 6.8.1 - D.M. 17/01/2018)105Tabella 9.4: Fattore di sicurezza minimo del rilevato di massima altezza107Tabella 9.5: Fattore di sicurezza minimo delle trincee109	Tabella 9.2: Coefficienti parziali per i parametri geotecnici del terreno (Tabella 6.2.II - D.M. 17/01/2018)	. 105
Tabella 9.4: Fattore di sicurezza minimo del rilevato di massima altezza 107 Tabella 9.5: Fattore di sicurezza minimo delle trincee 109	Tabella 9.3: Coefficiente parziale di resistenza γ R2 (Tabella 6.8.1 - D.M. 17/01/2018)	. 105
Tabella 9.5: Fattore di sicurezza minimo delle trincee	Tabella 9.4: Fattore di sicurezza minimo del rilevato di massima altezza	. 107
	Tabella 9.5: Fattore di sicurezza minimo delle trincee	. 109
Tabella 9.6: Scavo provvisionale – fattore di sicurezza	Tabella 9.6: Scavo provvisionale – fattore di sicurezza	. 110

ALLEGATO A: Colonne stratigrafiche dei sondaggi

Relazione Geotecnica

1 PREMESSA

Nella seguente relazione sono presentati i risultati degli studi svolti e delle verifiche eseguite nell'ambito della caratterizzazione geotecnica in ambito del progetto definitivo dell'intervento riguardante i lavori di potenziamento e messa in sicurezza della S.S.131 "Carlo Felice" del lotto 2 dal km 202 al km 209+500.

L'intervento è inserito con codice CA357 nel Contratto di Programma 2016 - 2020 sottoscritto tra Ministero delle Infrastrutture ed Anas, approvato con Delibera CIPE n.65 del 7 agosto 2017, pubblicata sulla gazzetta Ufficiale n.292 del 15 dicembre 2017.

L'intervento in oggetto costituisce una parte dei lavori di adeguamento e messa in sicurezza della SS131 nel tratto dal nuovo svincolo con la SS729 "Sassari-Olbia", nel comune di Codrongianus (km 192+500 ca) fino all'abitato di Sassari (km 209+500 ca). Inserendosi al termine dell'ultimo lotto della Sassari-Olbia l'ammodernamento di questo tratto della SS131 costituisce, di fatto, il completamento del nuovo itinerario della SS729 verso Sassari.

Il presente 2° lotto riguarda gli interventi di adeguamento da eseguire nel tratto dal km 202 ca. fino al km 209+500, essendo il tratto dal km 192+500 al km 198+500 ca. oggetto di adeguamento con l'intervento di Piano CA349 (1° lotto) e quello dal km 199+500 al km 202 ca. già con sezione adeguata ed accessi regolati.

Figura 1.1: Area d'intervento CA357

L'asse stradale attraversa unità geotecniche differenti ed eterogenee, che sono state analizzate sulla base di ricostruzioni geologiche dei terreni e dell'analisi delle indagini eseguite nel corso delle campagne svolte durante le differenti fasi progettuali.

Sulla base della caratterizzazione esposta nei successivi capitoli si è inoltre proceduto al calcolo delle condizioni di stabilità dei fronti di scavo e dei rilevati e al calcolo dei cedimenti nelle situazioni ritenute più gravose.

Relazione Geotecnica

2 **RIFERIMENTI NORMATIVI**

- Aggiornamento delle «Norme tecniche per le costruzioni» (G.U. Serie Generale n.42 del 20-02-2018 - Suppl. Ordinario n. 8).
- Circolare Ministero dei LL.PP. 02/02/09 n. 617 Istruzione per l'applicazione delle "Nuove Norme tecniche per le costruzioni".
- D.M. 14/01/2008 "Nuove Norme tecniche per le costruzioni".
- Ordinanza del Presidente del Consiglio dei Ministri nº 3274/2003. Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica."; modificata dall'O.P.C.M. 3431 del 03/05/2005.
- Eurocodice 7.2 (2002): Progettazione geotecnica Parte II: Progettazione assistita da prove di laboratorio (2002). UNI.
- Eurocodice 7.3 (2002): Progettazione geotecnica Parte II: Progettazione assistita con prove in sito (2002). UNI.
- Eurocodice 8 (1998). Progettazione delle strutture per la resistenza sismica.
- Eurocodice 7.1 (1997): Progettazione geotecnica Parte I: Regole Generali. UNI.
- Circolare ministeriale LL.PP. 24/09/88 n. 30483 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- D.M. 11/03/88 Istruzioni per l'applicazione delle "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".

Relazione Geotecnica

3 CENNO GEOMORFOLOGICO E GEOLOGICO

Dal punto di vista geologico, nella successione stratigrafica dell'area interessata dal tracciato si possono riconoscere, dal basso verso l'alto, le seguenti unità litologiche:

- SUCCESSIONE SEDIMENTARIA OLIGO-MIOCENICA DEL LOGUDORO-SASSARESE
 - Formazione di Mores. Calcareniti e calciduriti algali spesso clinostratificati con enchidi e bivalvi. Arenarie e conglomerati ad elementi di quarzo, metamorfiti, vulcaniti e calcari mesozoici con locali intercalazioni carbonatiche. Presenza di livelli conglomeratici in genere di debole spessore alla base dei depositi carbonatici.
 - **Formazione di Borutta**. Marne, marne arenacee, calcareniti, siltiti in alternanza ritmiche e sabbie siltose.
 - Formazione di Monte santo. Calcari bioclastici di piattaforma interna con rare intercalazioni silicoclastiche ed episodi biohermali. A tratti più fratturate con resti di conchiglie.
 - Formazione di Florinas. Arenarie quarzoso-feldspatiche biancastre, più o meno cementate, con siltiti scure alla base, di ambiente deltaico. Nella parte alta intercalazioni di arenarie e microconglomerati di ambiente marino.
- DEPOSITI ALLUVIONALI OLOCENICI
 - **Depositi alluvionali**. Sabbie siltose, ghiaiose o siltoso argillose alternate a argille e sabbie ghiaiose.
 - **Depositi di versante**. Accumuli dentritici di clasti eterometrici angolosi, spesso immersi in abbondante matrice sabbiosa limosa, talora parzialmente cementati.
 - **Terreno vegetale**. Sabbia, limo e argilla con presenza di conglomerati sub-arrotondati. Presenza di materiale organico.

Per maggiori dettagli si rimanda alla Relazione Geologica (vedi elaborato T00GE00GE0RE01A).

Relazione Geotecnica

4 INDAGINI GEOTECNICHE

Per lo sviluppo della progettazione delle opere sono state eseguite indagini di carattere geotecnico finalizzate:

- al riconoscimento ed alla caratterizzazione geotecnica dei terreni di fondazione, allo scopo di fornire i parametri fisico-meccanici per l'esecuzione dei calcoli strutturali e geotecnici delle opere d'arte;
- alla ricostruzione dei rapporti opere-terreni finalizzata alla progettazione delle fondazioni delle opere d'arte (viadotti, ponti, gallerie).

Le caratteristiche geotecniche dei terreni e delle rocce interessati dal tracciato sono state investigate con diverse campagne di indagini geognostiche, geofisiche e geotecniche svolte nel corso del 1999 e nel corso del 2020.

Le campagne di indagini sono state condotte su incarico ANAS dalla ditta Geolavori S.R.L., dalla ditta TEA S.R.L. e dalla società Tecno In S.p.A., nel rispetto delle disposizioni, delle specifiche tecniche e del capitolato d'appalto ANAS, nonché delle raccomandazioni AGI 1977/1994 e hanno previsto:

Campagna 1999 ad opera della Geolavori:

- n° 18 sondaggi;
- n° 9 prove penetrometriche dinamiche S.T.P.;
- n° 5 pozzetti geognostici;
- n° 6 prove pressiometriche;
- n° 20 prove di permeabilità di cui n° 16 Léfranc e n° 4 Lugeon;
- n° 8 basi sismiche;
- Analisi e prove geotecniche di laboratorio;
- Prove di resistenza meccanica (point load test).

Campagna 1999 ad opera della TEA:

- n° 34 sondaggi;
- n° 58 prove penetrometriche dinamiche S.T.P.;
- n° 2 prove di permeabilità Lugeon;
- n° 17 basi sismiche;
- Analisi e prove geotecniche di laboratorio.
- Prove di resistenza meccanica (point load test).

Campagna 2020 ad opera della Tecno In:

 n° 26 sondaggi geognostici verticali a carotaggio continuo (di cui n° 10 condizionati a piezometro e n° 8 condizionati con tubo per prove Down-Hole);

Relazione Geotecnica

- n° 2 sondaggi geognostici orizzontali a carotaggio continuo;
- n° 49 prove penetrometriche dinamiche S.T.P.;
- n° 6 prove di permeabilità Lugeon;
- n° 8 prove pressiometriche;
- n° 10 piezometri;
- n° 8 prove Down-Hole;
- n° 15 pozzetti esplorativi fino ad una profondità massima di 2,0m;
- n° 25 prelievi di campioni rimaneggiati da pozzetti esplorativi;
- n° 14 prospezioni sismiche a rifrazione;
- n° 109 campioni di terreno (di cui n° 21 indisturbati, n° 88 rimaneggiati) e n° 87 campioni di roccia lapidea, da sottoporre a prove di laboratorio geotecnico.

Per le prove di laboratorio si è fatto riferimento alla normativa ASTM.

I risultati delle indagini in sito e delle prove di laboratorio sono illustrati negli elaborati redatti dalle società incaricate delle indagini, allegati al progetto. La posizione dei punti d'indagine è riportata nelle apposite Tavole di progetto.

Nel seguito si descrivono le principali attività svolte durante ciascuna campagna.

4.1 Campagna d'indagini 1999

Nel corso del 1999 è stata eseguita, sotto commissione dell'ANAS, una campagna di indagini geognostiche articolata in due lotti:

- Primo lotto da km 203+000 a km 205+000, con indagini ad opera della ditta Geolavori S.R.L.;
- Secondo lotto da km 205+000 a km 209+000, con indagini ad opera della ditta TEA S.R.L..
 Di questi sondaggi vengono considerati unicamente quelli ricadenti in prossimità del tratto di interesse:
- Sondaggi S1, S2, S3, S4, S7, S8, S9, S10, S11, S14, S15, S17 ad opera della Geolavori;
- Sondaggi Ss2, Ss25, Ss27, Ss28, Ss29, Ss30, Ss31, Ss32, Ss33, Ss34 ad opera della TEA.
 Nella tabella seguente si riporta l'elenco dei sondaggi, con l'indicazione della profondità d'indagine raggiunta e le relative prove eseguite.

Sondaggio	Profondità [m]	SPT	Permeabilità
S1	20	4	-
S2	15	2	-
S3	20	1	-
S4	15	2	-
S7	50	-	2
S8	48	-	1
S9	48	-	2
S10	58	-	-

Relazione Geotecnica

Sondaggio	Profondità [m]	SPT	Permeabilità
S11	60	-	2
S14	80	-	2
S15	62	-	2
S17	40	-	2
Ss2	20	-	-
Ss25	25	-	-
Ss27	25	2	-
Ss28	30	2	-
Ss29	30	2	-
Ss30	30	2	-
Ss31	25	-	-
Ss32	42	-	-
Ss33	20	-	-
Ss34	20	-	-

Tabella 4.1: Sondaggi eseguiti nella campagna di indagini del 1999

Durante le perforazioni sono stati prelevati cinque campioni nel sondaggio Ss2. Vengono inoltre indicati i livelli di falda, che si posizionano alle seguenti profondità:

Sondaggio	Profondità falda [m]
S4	15,0
S7	22,8
S8	20,5
S9	35,0
S10	23,5
S11	18,5
S14	16,0
S15	13,5

Tabella 4.2: Livello di falda riportato nella campagna d'indagini 1999

Nel seguito si riporta i valori NSPT ricavati dalle prove penetrometriche dinamiche.

Sondaggio	da [m]	NSPT
S1	1,8	12
S1	6,0	7
S1	8,7	8
S1	13,0	5
S2	3,5	13
S2	4,5	16
S3	13,5	6
S4	5,0	12

SS 131 "Carlo Felice"			
Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km			
192+500 al km 209+500			
2° lotto dal km 202+000 al km 209+500			

Relazione Geotecnica

Sondaggio	da [m]	N _{SPT}
S4	7,0	12
Ss27	2,5	28
Ss27	7,0	R
Ss28	4,0	14
Ss28	6,3	4
Ss29	4,3	3
Ss29	6,0	2
Ss30	2,0	18
Ss30	7,5	50

Tabella 4.3: Risultati delle prove penetrometriche dinamiche SPT

Sono infine riportati i valori di permeabilità ottenuti dalle 13 prove di permeabilità Lugeon nell'ambito dei sondaggi di interesse:

Sondaggio	Profondità [m]	k [m/s]
S7	40	2,35E-06
S7	45	1,51E-06
S8	40	6,17E-07
S9	42	1,81E-06
S9	47	4,02E-06
S11	55	1,54E-06
S11	60	1,46E-06
S14	72	2,22E-06
S14	77	1,60E-06
S15	55	1,60E-06
S15	60	1,54E-06
S17	32	2,35E-06
S17	37	1,98E-06

Tabella 4.4: Risultati delle prove di permeabilità Lugeon

4.2 Campagna d'indagini 2020:

Nel corso della presente fase di progettazione la campagna di indagini geognostiche ha compreso 28 sondaggi tra orizzontali e verticali, svolti tra febbraio e dicembre 2020. Durante l'esecuzione dei carotaggi si è proceduto con il condizionamento dei fori per prove SPT, prove down-hole e installazione di piezometri. Sono stati prelevati 219 campioni tra rimaneggiati, indisturbati e litoidi. Nelle tabelle che seguono si riportano l'elenco dei sondaggi e le strumentazioni installate.

Relazione Geotecnica

Sondaggio	Data	Profondità [m]	Strumentazione
S01D-DH	19/02/2020	35	Down-Hole
S02D-PZ	22/02/20-24/02/20	30	Piezometro a tubo aperto
S03D-DH	05/02/20-04/03/20	35	Down-Hole
S04D-PZ	06/03/20-08/03/20	30	Piezometro a tubo aperto
S05D-PZ	09/03/20-10/03/20	30	Piezometro a tubo aperto
S06D	11/03/2020	20	
S07D-DH	03/07/20-06/07/20	35	Down-Hole
S08hD	22/11/20-09/12/20	150	Sondaggio orizzontale
S12D-PZ	28/10/20-03/11/20	70	Piezometro a tubo aperto
S13D-PZ	17/02/20-18/02/20	30	Piezometro a tubo aperto
S14D-DH	13/02/20-15/02/20	35	Down-Hole
S15D-PZ	25/02/20-26/02/20	25	Piezometro a tubo aperto
S16D-DH	12/02/20-13/02/20	35	Down-Hole
S17D	10/12/20-12/12/20	85	
S18D	13/12/20-15/12/20	75	
S19D-PZ	30/07/20-04/08/20	60	Piezometro a tubo aperto
S20D	10/07/20-14/07/20	45	
S21D-PZ	07/07/20-08/07/20	35	Piezometro a tubo aperto
S22D	09/07/20-10/07/20	30	
S23D-PZ	27/07/20-28/07/20	25	Piezometro a tubo aperto
S24D-PZ	14/07/20-21/07/20	35	Piezometro a tubo aperto
S25D-DH	22/07/20-24/07/20	35	Down-Hole
S26D-DH	05/02/20-06/02/20	30	Down-Hole
S27D-PZ	01/02/20-04/02/20	28	Piezometro a tubo aperto
S28D	28/07/20-29/07/20	25	
S29D	24/07/20-26/07/20	25	
S30D	12/02/20-13/02/20	25	
S31hD	03/11/20-21/11/20	130	Sondaggio orizzontale

Tabella 4.5: Sondaggi eseguiti nella campagna d'indagini 2020

Di seguito si riporta una tabella riepilogativa delle prove SPT eseguite.

Sondaggio	da [m]	SPT	Sondaggio	da [m]	SPT
	3,00	7-13-13		3,00	R
	9,30	18-24-26		7,00	21-28-32
SUID-DH	12,00	23-29-35		10,00	15-19-20
	14,50	14-20-21		14,00	17-22-24
	3,00	4-6-12	310D-DH	17,00	13-17-21
302D-FZ	5,50	10-17-19		20,00	20-21-26
S03D-DH	2,60	4-6-7		23,30	15-18-20
	8,25	13-12-9		27,00	18-19-21

Relazione Geotecnica

Sondaggio	da [m]	SPT	Sondaggio	da [m]	SPT
S04D-PZ	2,60	9-10-14		30,50	22-21-23
	2,70	8-10-13	604D DZ	2,00	23-32-39
500-PZ	6,00	7-8-10	SZID-PZ	5,00	36-R
	4,50	29-37-R		2,50	19-26-33
S06D	15,00	14-17-23	S22D	5,00	28-21-38
	18,00	20-24-26		8,50	15-19-28
	1,50	5-8-9		1,50	49-35-7
	3,50	7-10-12	320D-DH	3,00	4-8-9
	5,50	6-9-11	507D D7	1,50	2-2-2
307D-DH	13,50	17-21-23	327D-FZ	5,00	R
	15,50	10-22-23		3,00	26-18-23
	17,50	18-20-24	S30D	6,00	19-25-28
S14D-DH	2,60	5-8-8		20,50	7-11-14
	3,70	R			
	6,00	19-23-29			
	9,00	25-31-R			
S15D-PZ	12,00	22-31-R			
	16,00	29-26-R			
	19,00	19-29-27			
	22,30	22-23-25			

Tabella 4.6: Risultati delle Prove Penetrometriche Dinamiche SPT

Di seguito si riporta l'elenco dei campioni prelevati, distinguendoli in:

- CR: campioni rimaneggiati;
- CI: campioni indisturbati;
- CL: campioni di roccia lapidea.

Sondaggio Idontificativo	Idantificativa	Profondità [m]			Sondoggio	Identificativa	Profondità [m]	
Sonuayyio	Identificativo	da	а		Sundayyiu	Identificativo	da	а
	CI01	5,75	6,25			CR01	7,50	8,00
	CR01	10,00	10,50			CL01	9,50	9,80
	CR02	18,05	18,55			CR02	15,50	20,00
301D-DH	CL01	25,30	25,80		S18D	CL02	20,00	20,40
	CL02	28,30	28,80			CR03	24,00	24,50
	CL03	31,00	31,50			CL03	29,00	29,40
	CR01	7,25	7,75			CR04	33,00	33,40
	CR02	14,00	14,50			CR05	42,00	42,50
S02D-PZ	CI01	18,05	18,55			CR06	55,50	56,00
	CR03	25,00	25,50			CR07	62,00	62,40
	CI02	26,40	26,90			CL04	67,50	68,00

SS 131 "Carlo Felice" Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500

Relazione Geotecnica

CA357

O an la	lala a CC a C	Profon	dità [m]		lala a CC a C	Profon	dità [m]
Sondaggio	Identificativo	da	а	Sondaggio	Identificativo	da	а
	CI01	5,00	5,50		CR08	72,50	73,00
	CR01	7,00	7,50		CR01	9,50	10,00
	CR02	11,00	11,50		CR02	18,95	19,45
S03D-DH	CI02	18,00	18,50		CR03	26,90	27,40
	CL01	27,25	27,75		CR04	34,55	35,05
	CR03	30,35	30,85	S19D-PZ	CR05	39,00	39,50
	CR04	34,50	35,00		CL01	43,00	43,50
	CR01	0,55	1,05		CR06	49,00	49,50
	CR02	3,50	4,00		CR07	52,05	52,55
	CI01	7,50	8,00		CL02	58,00	58,50
	CR03	11,15	11,65		CL01	5,60	6,10
504D-PZ	CL01	15,40	15,90		CL02	17,35	17,85
	CL02	19,50	20,00		CL03	21,55	22,05
	CR04	21,10	21,60	S20D	CL04	23,90	24,40
	CL03	24,90	25,40	3200	CL05	28,90	29,40
	CR01	0,10	0,60		CL06	33,45	33,95
	CR02	2,25	2,75		CL07	37,95	38,45
	CR03	7,00	7,50		CL08	41,95	42,45
	CI01	9,00	9,50	S21D-PZ	CR01	4,50	5,00
S05D-PZ	CR04	12,05	12,55		CR02	10,00	10,50
	CI02	15,20	15,70		CR03	14,00	14,50
	CR05	17,90	18,40		CR04	18,35	18,85
	CI03	22,50	23,00		CL01	21,00	21,50
	CR06	27,40	27,90		CL02	24,50	25,00
	CR01	6,60	7,10		CL03	29,95	30,45
	CL01	9,25	9,75		CR01	4,00	4,50
S06D	CR02	10,10	10,60		CR02	9,00	9,50
	CI01	12,00	12,50	S22D	CR03	14,50	15,00
	CR03	17,00	17,50	5220	CR04	17,00	17,50
	CR01	5,00	5,50		CL01	22,40	22,90
	CI01	7,75	8,25		CL02	27,95	28,45
	CL01	9,85	10,35		CR01	0,10	0,60
S07D-DH	CR02	14,55	15,05		CR02	2,50	3,00
	CI02	22,00	22,50		CL01	4,45	4,95
	CR03	30,00	30,50	S23D-D7	CR03	8,90	9,40
	CL02	34,50	35,00	020D-FZ	CR04	12,90	13,40
	CL01	0,20	0,50		CL02	15,00	15,50
SUSPD	CL02	2,40	2,60		CR05	15,60	16,10
JUOID	CR01	5,60	6,00		CR06	22,55	23,05
	CR02	9,60	10,00	S24D-PZ	CR01	3,90	4,40

SS 131 "Carlo Felice" Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500

CA357

Relazione Geotecnica

Sondaggia	Identificative	Profon	dità [m]	Sondaggia	Identificative	Profon	dità [n
Sondaggio	identificativo	da	а	Sonuaggio	Identificativo	da	а
	CL03	12,00	12,30		CL01	7,35	7,8
	CL04	17,40	18,00		CR02	13,60	14,1
	CL05	29,20	29,70		CR03	16,90	17,4
	CL06	38,40	39,00		CR04	21,50	22,0
	CL07	48,00	48,50		CR05	23,85	24,3
	CL08	53,00	53,30		CR06	28,55	29,0
	CL09	61,30	61,70		CR07	32,95	33,4
	CL10	73,40	74,00		CR01	0,60	1,1
	CL11	82,00	82,40		CR02	2,60	3,1
	CL12	91,60	92,00		CL01	4,90	5,4
	CL13	102,50	103,00	S25D-DH	CR03	13,50	14,0
	CL14	109,30	109,60		CL02	18,00	18,5
	CL15	119,50	120,00		CL03	23,00	23,5
	CL16	132,00	132,60		CL04	29,00	29,5
	CL17	148,30	149,00		CR01	3,90	4,4
	CL01	12,20	12,50	S26D-DH	CI01	5,00	5,5
	CL02	29,60	29,80		CR02	7,95	8,4
	CL03	35,70	36,00		CI02	10,00	10,
	CL04	43,40	43,70		CR03	12,55	13,0
S12D-PZ	CL05	48,40	48,60		CL01	15,15	15,6
	CL06	54,30	54,50		CL02	19,50	20,0
	CR01	58,50	58,80		CL03	23,45	23,9
	CL07	61,50	61,80		CI01	3,00	3,5
	CL08	68,40	69,00		CI02	6,30	6,8
	CR01	3,00	3,50	S27D-PZ	CI03	9,50	10,0
	CL01	9,40	9,90		CI04	15,00	15,5
	CL02	12,07	12,57		CL01	24,95	25,4
S13D-PZ	CL03	16,90	17,40		CR01	0,10	0,6
	CI01	25,20	25,70		CR02	2,60	3,1
	CR02	25,95	26,45		CR03	5,95	6,4
	CR03	29,30	29,80	0005	CR04	10,60	11,
	CR01	3,00	3,50	S28D	CL01	12,85	13,3
	CL01	5,85	6,35		CR05	15,00	15,
	CI01	10,45	10,95		CL02	18,35	18,8
S14D-DH	CI02	17,05	17,55		CL03	23,15	23,6
	CR02	21,15	21,65		CR01	0,60	1,1
	CR03	26,25	26,75		CR02	2,50	3,0
	CL02	30,00	30,50	S29D	CR03	3,60	4,1
0455 55	CR01	1,00	1,50		CL01	5,95	6,4
S15D-PZ	CL01	3,60	4,10		CL02	12,00	12.5

SS 131 "Carlo Felice" Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500

Relazione Geotecnica

CA357

Sondoggio	Identificative	Profondità [m]			Sondoggio	Identificativa	Profondità [m]		
Sondaggio	Identificativo	da	а		Sondaggio	Identificativo	da	а	
	CR02	14,00	14,50			CR04	18,30	18,80	
	CR03	20,50	21,00			CL03	22,00	22,50	
	CR01	0,50	1,00			CR01	0,10	0,60	
	CR02	6,50	7,00			CR02	1,55	2,05	
310D-DH	CR03	10,40	10,90		S30D	CR03	5,40	5,90	
	CR04	21,25	21,75			CL01	9,90	10,40	
	CL01	5,20	5,40			CR04	22,30	22,80	
	CR02	14,50	15,00			CR01	2,50	2,70	
	CR03	24,60	25,00			CL01	7,30	7,60	
	CR04	32,50	33,00			CL02	12,50	13,00	
	CR05	41,60	42,00			CL03	22,50	23,00	
S17D	CL02	52,50	53,00			CL04	34,00	34,50	
	CL03	59,00	59,40			CL05	44,20	44,60	
	CL04	65,30	65,60		C216D	CL06	51,00	51,40	
	CL05	73,00	73,40		33 IID	CL07	64,00	64,50	
	CL06	77,00	77,40			CL08	79,30	79,70	
	CL07	82,00	82,40			CL09	89,00	89,50	
						CL10	99,50	100,00	
						CL11	108,50	109,00	
						CL12	121,00	121,40	
						CL13	128,00	128,40	

Tabella 4.7: Campioni litoidi, indisturbati e rimaneggiati prelevati

Sono state eseguite, durante la campagna, 6 prove di permeabilità Lugeon e 8 prove pressiometriche:

Sondaggio	Profon	dità [m]	Identificativo	Identificativo prova	
Sonuayyio	da	а	prova Lugeon	pressiometrica	
S12D D7	50,0	52,8	LUG1	-	
312D-FZ	65,0	67,6	LUG2	-	
	55,0	58,0	LUG1	-	
0470	60,0	61,0	-	MPM1	
3170	65,0	68,0	LUG2	-	
	70,0	71,0	-	MPM2	
	45,0	48,0	LUG1	-	
C10D	50,0	51,0	-	MPM1	
5100	55,0	58,0	LUG2	-	
	60,0	61,0	-	MPM2	
S19D-PZ	41,0	42,0	-	MPM1	

Relazione Geotecnica

Condoggio	Profon	dità [m]	Identificativo	Identificativo prova pressiometrica	
Sonuayyio	da	а	prova Lugeon		
	54,0	55,0	-	MPM2	
6000	24,8	25,8	-	MPM1	
520D	35,0	36,0	-	MPM2	

Tabella 4.8: Posizione delle prove Lugeon e pressiometriche

Infine si sono svolte le seguenti tomografie sismiche a rifrazione (BSxxD) e le geoelettriche (BHxx):

Indagine di riferimento	Lunghezza base sismica
BS01D	175
BS02D	115
BS05D	175
BS06D	360
BS07D	240
BS07Dbis	240
BS07Dtris	480
BS08D	115
BS09D	175
BS10D	200
BS11D	410
BS12D	350
BS13D	46
BS14D	46
BS15D	46
BS16D	175
BS17D	175
BS18D	69
BH06	442
BH07bis	242
BH07tris	450
T I II 40	- · · · ·

Tabella 4.9: Basi sismiche

In laboratorio si è proceduto all'esecuzione di cicli completi di prove d'identificazione consistenti in determinazioni del contenuto d'acqua naturale, del peso di volume naturale, secco e dei granuli, della massa volumica reale, della porosità, dell'indice dei vuoti, del grado di saturazione, dei limiti di Atterberg, del limite di ritiro, della composizione granulometrica per stacciatura e sedimentazione.

Sono state anche eseguite prove meccaniche (prove di compressione edometrica, prove di taglio diretto consolidate drenate CD, prove di compressione triassiale consolidate isotropiche non

Relazione Geotecnica

drenate CIU, prove di compressione monoassiale ad espansione laterale libera ELL, prove di compressione triassiale consolidate isotropiche drenate CID).

Su campioni di roccia lapidea sono state eseguite prove di compressione monoassiale con misura delle deformazioni assiali e prove di compressione triassiale.

Relazione Geotecnica

5 CARATTERIZZAZIONE GEOTECNICA DEI TERRENI

Ai fini della caratterizzazione geotecnica dei terreni e delle rocce interessati dal tracciato stradale si è fatto riferimento ai risultati delle due campagne di indagini, richiamate nel paragrafo precedente, a conoscenze acquisite dallo studio delle carte geologiche e a dati di letteratura. I terreni e le rocce che ricadono nel volume di terreno significativo ai fini geotecnici sono stati raggruppati in 2 classi, per ciascuna delle quali possono distinguersi i termini principali indicati nella tabella che segue.

	Terreni sciolti
TR	Materiale di riporto di varia natura (asfalto, cemento, etc.), rimaneggiato, avente in genere la granulometria da sabbia e ghiaia a limo con sabbia ghiaioso con frequenti ciottoli a spigoli vivi e materiali inerti, colore dal marrone-bruno al beige-biancastro. Raramente terreno vegetale.
ALF	Alluvioni a grana fine. Da limi con sabbia a sabbia con limo, talvolta argillosi o ghiaiosi con numerosi elementi lapidei a spigoli arrotondati, con colore dall'avana-beige al bruno-marrone.
ALG	Alluvioni a grana grossa . Sabbie e ghiaie spesso limose, poco addensate e con colore dal grigio-bruno al nocciola.
LSA	Limo con sabbia e limo sabbioso, argilloso, con qualche elemento lapideo, consistente di colore grigio cenere.
SL	Sabbia con limo o limosa, con ghiaia, addensata, colore dal grigio al verdastro.
АМ	Argilla marnosa con granulometria estremamente fine e struttura lamellare, da molto a mediamente consistente, colore dal grigio all'azzurro.
	Rocce lapidee
м	Marna e marna argillosa compatta a struttura lamellare, di colore dal beige al marrone al grigio, a tratti fratturate.
MC	Marna calcarea di colore grigio brunastro poco fratturata.
СВ	Calcare bioclastico debolmente cementato, a grana grossolana, di colore dal giallastro al biancastro al beige, spesso prelevato come sabbie e ghiaie.
Si	Siltite mediamente fratturata a grana fine di colore dal grigio chiaro al grigio-verdastro.
CL	Calcarenite di colore biancastro a tratti grigiastro-rosata, porosa a tratti vacuolare, con numerose discontinuità sub-orizzontali e talora variamente inclinate o sub-verticali, presenti numerosi livelli sabbiosi. A tratti debolmente cementata e prelevata come ghiaia.
	Tabella 5.1: Classificazione geotecnica dei terreni

Con riferimento alla classificazione geotecnica sopra riportata, in Appendice A si allegano le colonne stratigrafiche di sintesi dei sondaggi distinte per campagna d'indagine. Per ciascun sondaggio sono indicati i terreni riconosciuti dall'esame delle stratigrafie, la posizione dei campioni indisturbati e dei piezometri, i valori N₃₀ ricavati dalle prove SPT, la profondità della falda ove presente.

Oltre alle unità esposte si riconosce la presenza di uno strato superficiale di arenarie Ar tra il km 1+800 e il km 2+900. Tale unità non è stata esaminata nei seguenti capitoli non interessa le aree influenzate dal tracciato, come è possibile osservare nell'elaborato P00GN01GETFG01A.

Dal punto di vista geotecnico è possibile osservare come il tracciato attraversi stratigrafie a tratti omogenee:

- Dal km 0+000 fino al km 0+800 la stratigrafia mostra limo sabbioso argilloso LSA con spessori fino a 16 m a ricoprimento di uno strato profondo composto da una fitta alternanza di argilla marnosa AM e marna argillosa M con delle lenti di spessore fino a 4 m di sabbia limosa SL.
- Dal km 0+800 al km 1+800 si individuano, fino alla profondità massima di 6 m, alluvioni a grana fine ALF con lenti a grana grossa ALG. L'alternanza di argille marnose e marne argillose lascia spazio ad uno strato più uniforme di argille marnose AM, che con la progressiva si riduce in spessore fino a scomparire nel sondaggio S05D-PZ. In profondità si rileva un'alternanza di limo sabbioso argilloso LSA, sabbia limosa SL e siltiti Si con spessori fino alla ventina di metri e contatti non ben definiti.
- Dal km 1+800 al km 3+000 il tracciato stradale si sviluppa in galleria. Questo attraversa uno strato di marne M a tratti calcaree MC, con lenti di calcareniti CL di ridotto spessore. A loro volta queste ultime si presentano anche a ricoprimento delle marne che interessano il tracciato, con spessori fino a 60 – 70 m. In superficie, non di interesse per lo studio in esame, si presentano arenarie Ar.
- Dal km 3+000 al km 4+100 uno strato di alluvioni a grana fine ALF con lenti di alluvioni a grana grossa ALG si osserva al di sopra di calcari bioclastici CB, che proseguono fino a quota di fine sondaggio.
- Dal km 4+100 al km 6+707 si nota un'inversione degli strati, portando in superficie i calcari bioclastici CB con spessori dai 30 ai 15 m, e nel substrato un'alternanza di argille marnose AM e marne argillose M. Queste ultime con la progressiva tendono a uniformarsi e inglobare le argille. Si fa presente una depressione in corrispondenza del viadotto VI06 tra il km 6+000 e il km 6+180, dove si individuano strati superficiali di alluvioni a grana fine ALF e limi sabbiosi LSA a copertura di marne calcaree MC e marne argillose M.

Il tracciato si mantiene, con leggere variazioni nella posizione dei contatti stratigrafici, omogeneo sia in asse sinistro che in asse destro.

Nelle pagine che seguono si illustrano, per ciascuno dei terreni indicati nella classificazione geotecnica, le principali caratteristiche fisiche e meccaniche determinate con le indagini in sito e di laboratorio. In particolare, si è fatto riferimento alle campagne di indagine recenti eseguite sui terreni di fondazione, i cui risultati sono riportati negli specifici elaborati allegati al progetto, corredati di tabelle di sintesi, ai quali si rimanda per i dettagli sui valori sperimentali analizzati nella presente relazione.

I parametri di resistenza dei terreni a grana fina in termini di sforzi effettivi sono stati determinati sulla base dei risultati delle prove di laboratorio (prove di taglio diretto CD, prove di compressione triassiale CIU e CID).

La resistenza a taglio non drenata dei terreni a grana fina Cu è stata valutata facendo riferimento sia ai risultati delle prove di laboratorio (prove di compressione monoassiale ad espansione laterale

Relazione Geotecnica

libera ELL), sia all'interpretazione dei risultati delle misure con il penetrometro tascabile sulle carote estratte nel corso dei sondaggi e delle prove penetrometriche dinamiche SPT.

Per le prove SPT si è fatto riferimento a Stroud (1974), che correla Cu a N_{60} , con N_{60} numero di colpi corretto per tenere conto dei fenomeni dissipativi durante il passaggio da energia cinetica del maglio a onda di energia di compressione delle aste (Schmertmann 1978).

Per la determinazione del modulo edometrico si fa riferimento ai risultati delle prove di compressione edometrica e più in generale anche alle formule di Stroud & Butler per l'interpretazione delle prove SPT.

I terreni a granulometria prevalentemente sabbioso-ghiaiosa sono stati caratterizzati da parametri di resistenza in termini di sforzi effettivi, determinati sulla base dei risultati di prove di laboratorio (taglio diretto CD, triassiali CIU e CID) e di correlazioni con i risultati delle prove penetrometriche dinamiche SPT utilizzando le seguenti correlazioni:

- Shioi & Fukuni (1982): φ' = 0,3×N₆₀+27°;
- Peck, Hanson and Thornburn (1956): $\varphi' = 0.28 \times N_{SPT}+27.2^{\circ}$.

Per la determinazione della densità relativa Dr dei terreni sabbioso-ghiaiosi si è fatto riferimento alle correlazioni che legano il numero di colpi N_{SPT} a Dr:

• Gibbs & Holtz (1957):

$$N_{SPT} = \left(17 + 24 \cdot \frac{\sigma_{v0}}{p_a}\right) \cdot D_R^2$$

 Schultze & Mezembach (1961): ln(Dr%) = 0,478×ln(N_{SPT})-0,262×ln(σ'_{v0})+2,84.

I valori del modulo di taglio G₀ e del modulo di elasticità E₀ iniziali sono stati ricavati a partire dai valori della velocità delle onde di taglio Vs ottenuti indirettamente a partire dai valori di N_{SPT}. La velocità di propagazione delle onde di taglio Vs può essere ricavata direttamente dai risultati delle prove Down-Hole oppure valutata indirettamente, dai risultati delle prove SPT, per mezzo dell'equazione di Ohta & Goto (1978):

$$Vs = 67,3 \times N_{60}^{0.17} \times Z^{0.199} \times A \times B$$

dove:

- ✓ z è la profondità di calcolo (m dal p.c.) della velocità di propagazione delle onde di taglio;
- ✓ A è il fattore che tiene conto dell'età geologica del deposito (v. tabella sotto);
- ✓ B è il fattore che tiene conto della granulometria del deposito (v. tabella sotto).

	Depositi recenti	Depositi antichi
А	1,0	1,3

Tabella 5.2: Coefficiente A funzione dell'epoca geologica del deposito

Relazione Geotecnica

	Ghiaia	Sabbia ghiaiosa	Sabbia grossa	Sabbia media	Sabbia fina
В	3500	3287	20336	329	62

Tabella 5.3: Coefficiente B funzione della composizione granulometrica del deposito

Il modulo di taglio a piccolissime deformazioni G₀ si ricava dalla seguente espressione:

$$G_0 = Vs^2 \gamma/g$$

dove:

- \checkmark γ è il peso dell'unità di volume del terreno (kN/m³);
- ✓ g è l'accelerazione di gravità pari a 9.81 m/sec².

Pertanto, risulta:

$$E_0 = 2 G_0 (1+v)$$

con v modulo di Poisson.

Per la stima del modulo elastico operativo E'op dei terreni a granulometria prevalentemente sciolta a partire dai risultati delle prove SPT, si è fatto ricorso a relazioni empiriche:

 \Box E'_{op} = 2,0×N₆₀ (Schmertmann - per sabbia a grana grossa)

□ E'_{op} = (191+7,71×N₆₀)/10 (D'Appolonia – per sabbia e ghiaia normalmente consolidata)

 \Box E'_{op} = 1,2×(6+N₆₀/60×55) (European Conference on SPT, 1974 – per sabbia ghiaiosa e ghiaia. Per caratterizzare l'ammasso roccioso si ricorre alla classificazione di Bieniawsky e ai criteri di rottura di Hoek-Brown e Mohr-Coulomb.

La classificazione di Bieniawsky prevede la determinazione dell'indice RMR (Rock Mass Rating) attraverso lo studio delle caratteristiche della roccia intatta e dei sistemi di discontinuità dell'ammasso, determinabili tramite prove in laboratorio e misure in sito.

$$RMR = A_1 + A_2 + A_3 + A_4 + A_5 + A_6$$

con:

- A₁ parametro dipendente dalla resistenza a compressione monoassiale della roccia intatta σci;
- A₂ parametro dipendente dall'indice RQD (Rock Quality Designation), determinabile dall'osservazione delle cassette dei carotaggi;
- A₃ parametro dipendente dalla spaziatura delle discontinuità;
- A₄ parametro dipendente dalle caratteristiche delle discontinuità (persistenza, apertura, rugosità, alterazione, riempimento);
- A₅ parametro dipendente dalle condizioni idrauliche riferite ad un fronte di 10 m;
- A₆ parametro di correzione per l'orientamento delle discontinuità rispetto al fronte di scavo, differenziato per gallerie e fondazioni.

Il criterio di Hoek-Brown permette di determinare le caratteristiche dell'ammasso roccioso sulla base dei seguenti parametri:

Relazione Geotecnica

- σ_{ci};
- GSI, Geological Strength Index, calcolato dall'RMR nelle condizioni di assenza di venute d'acqua, orientazione molto favorevole delle discontinuità e riducendo tale valore di 5;
- m_i, parametro costante dipendente dal materiale dell'ammasso;
- D, grado di disturbo dell'ammasso causato dallo scavo;
- γ_{rm}, densità dell'ammasso roccioso;
- h, profondità rispetto al piano campagna della galleria.

Durante i successivi calcoli si utilizzeranno i parametri di resistenza alla Mohr-Coulomb, determinati in funzione dei parametri di Hoek-Brown attraverso le seguenti relazioni:

$$\varphi' = \sin^{-1} \left(\frac{6am_b(s+m_b\sigma'_{3n})^{a-1}}{2(1+a)(2+a) + 6am_b(s+m_b\sigma'_{3n})^{a-1}} \right)$$
$$c' = \frac{\sigma_{ci} \left((1+2a)s + (1-a)m_b\sigma'_{3n} \right) (s+m_b\sigma'_{3n})^{a-1}}{(1+a)(2+a) \sqrt{1 + \frac{(6am_b(s+m_b\sigma'_{3n})^{a-1})}{(1+a)(2+a)}}} \right)$$

con:

- a, s costanti per l'ammasso roccioso calcolati sulla base del GSI e del grado di disturbo D;
- m_b, valore ridotto dell'mi per l'ammasso;

$$- \sigma_{3n}' = \frac{\sigma_{3max}'}{\sigma_{ci}}.$$

Relazione Geotecnica

5.1 Terreni sciolti

5.1.1 Materiale di riporto – TR

Il terreno di riporto, di spessore generalmente pari a 50-100 cm, ha in genere la granulometria da sabbia e ghiaia a limo con sabbia ghiaioso con frequenti ciottoli a spigoli vivi e materiali inerti di varia natura (asfalto, cemento, etc.), è rimaneggiato e il colore varia dal marrone-bruno al beigebiancastro. Raramente terreno vegetale.

5.1.2 Alluvioni a grana fine – ALF

Le alluvioni a grana fine ALF sono state rinvenute in maniera omogenea lungo tutto il tracciato in corrispondenza degli attraversamenti fluviali. Si presentano in strati superficiali con frequenti lenti ridotte di alluvioni a grana grossa ALG.

Si individuano i depositi maggiori tra le progressive 0+500 e 1+600 e tra 3+200 e 4+000, con spessori massimi fino a 6 m..

La composizione granulometrica è variabile dal limo con sabbia ghiaioso a sabbia con limo argilloso con frequenti elementi lapidei a spigoli arrotondati. Le percentuali di passante in peso di limo e di sabbia variano tra il 60% e il 20%, la percentuale ghiaiosa ha il valore massimo nel campione S07D-DH_CR01, raggiungendo il 30%, mentre la frazione argillosa si mantiene inferiore al 20%. Si osserva, di seguito, la distribuzione delle percentuali del passante in peso con la profondità:

Figura 5.1: Terreni ALF – Andamento del passante in peso con la profondità

SS 131 "Carlo Felice" Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500		Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

Nel grafico successivo è illustrato l'andamento del contenuto naturale d'acqua w_n e dei limiti di Atterberg W_l e W_p in funzione della profondità.

Figura 5.2: Terreni ALF – Andamento del contenuto naturale d'acqua e dei limiti di Atterberg con la profondità

Il contenuto naturale d'acqua W_N varia tra 25% e 35%. I limiti plasticità W_P e liquidità W_L rientrano nei seguenti campi di valori:

$$W_P = 27 \div 29\%;$$
 $W_L = 36 \div 44\%$

Risulta sempre WP < WL.

Nei grafici che seguono si riportano la "Carta di plasticità" e la "Carta di attività".

Si tratta di limi di media compressibilità, da inattivi a normali. L'indice di plasticità le è compreso tra il 7% ed il 15%.

Figura 5.3: Terreni ALF – Carta di attività

- 1 limi inorganici di bassa compressibilità;
- 2 limi inorganici di media compressibilità e limi organici;
- 3 limi inorganici di alta compressibilità e argille organiche;
- argille inorganiche di bassa plasticità;
- argille inorganiche di media plasticità;
- 6 argille inorganiche di alta plasticità.

Figura 5.4: Terreni ALF – Carta di plasticità

Completan	SS 131 "Carlo Felice" Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500	
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

Il peso dell'unità di volume naturale γ varia nell'intervallo 16,7-18,4 kN/m³.

Dall'elaborazione delle prove SPT si ricava un valore medio di coesione non drenata $C_u \cong 35$ kPa.

Figura 5.5: Terreni ALF – Valori di N₃₀ da prove SPT

Figura 5.6: Terreni ALF – Valori della coesione non drenata da prove SPT

Dalle stesse prove SPT si ottiene:

con M modulo edometrico.

I risultati delle prove di taglio diretto CD, delle triassiali consolidate drenate CID e delle triassiali consolidate non drenate CIU forniscono i seguenti intervalli per i parametri di resistenza:

$$\varphi' = 26 \div 32^{\circ};$$
 c' = 15 ÷ 22 kPa

Dalla prova monoassiale ad espansione laterale libera ELL effettuata sul campione S26D-DH_CR01 si ottiene un valore di coesione non drenata pari a 15 kPa.

Sono state eseguite tre prove di compressione edometrica su campioni prelevati ad una profondità rispettivamente di 5,0, 3,0 e 6,3 m. I campioni hanno fornito i seguenti risultati:

SS 131 "Carlo Felice" Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500		Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

	m _v [MPa⁻¹]	E _{ed} [MPa]	k [cm/s]	c _v [cm ² /s]	e ₀ [-]	Cc [-]	Cs [-]
S03D-DH_CI01	0,18	5,6	2,61E-07	1,46E-02	0,735	2,19E-01	2,20E-02
S27D-PZ_CI01	0,50	2,0	5,00E-07	1,00E-02	0,935	2,43E-01	2,53E-02
S27D-PZ_CI02	0,41	2,3	8,20E-07	2,00E-02	0,855	1,76E-01	1,62E-02

Tabella 5.4: Terreni ALF – risultati delle prove edometriche
--

Dalle prove Down-Hole si ottengono i seguenti valori della velocità delle onde di taglio V_s e del modulo di taglio G_0 .

 $V_s = 200 \div 400 \text{ m/s},$ $G_0 = 70 \div 282 \text{ MPa}$

5.1.3 Alluvioni a grana grossa – ALG

Le alluvioni a grana grossa ALG sono state rinvenute come lenti all'interno delle alluvioni a grana fine. Si individuano localmente alle progressive 0+600, 3+400 e 6+000 con spessori ridotti fino a 3 m.

La composizione granulometrica è variabile da sabbia con ghiaia a ghiaia con sabbia, spesso limosa e con frequenti elementi lapidei a spigoli arrotondati. Le percentuali di passante in peso di ghiaia e di sabbia variano tra il 30% e il 40% mentre la percentuale fine si mantiene inferiore al 35%.

Si osserva, di seguito, la distribuzione delle percentuali del passante in peso con la profondità per i campioni identificati come ALG:

Figura 5.7: Terreni ALG – Andamento del passante in peso con la profondità

	SS 131 "Carlo Felice"	
	nento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km	Сс
	192+500 al km 209+500	
anas	2° lotto dal km 202+000 al km 209+500	

Relazione Geotecnica

In corrispondenza del campione S04D-PZ_CR02 sono stati valutati i limiti di Atterberg, ottenendo i seguenti valori di limite di liquidità W_L e di plasticità W_P:

W∟ = 39,40 %

W_P = 26,38 %

Il contenuto naturale d'acqua W_N varia tra 2% e 33% ed è talora prossimo al limite di plasticità W_P .

L'indice di plasticità le risulta pari al 13%.

Il peso dell'unità di volume naturale γ è compreso tra 18 e 19 kN/m³.

Sono disponibili i risultati delle prove SPT, riportati di seguito:

Figura 5.8: Terreni ALG – Valori di N30 da prove SPT

Dal'elaborazione delle prove SPT si ricavano i seguenti valori medi di angolo d'attrito ϕ ' e del modulo elastico operativo E'_{op SPT} in termini di pressioni effettive:

$$\phi' = 34 \div 44$$
 °; $E'_{op SPT} = 24 \div 66 Mpa.$

Dalla prova di taglio diretto effettuata sul campione S16D-DH_CR02 si ottiene un valore di angolo di resistenza al taglio pari a 33°.

5.1.4 Limo sabbioso argilloso – LSA

Limi sabbiosi argillosi LSA sono stati rinvenuti con spessori dai pochi metri fino alla ventina di metri, spesso ricoperti da alluvioni a grana fine. I depositi maggiori di LSA si individuano principalmente in due sezioni del profilo, tra le progressive 0+000 e 1+700 e tra le progressive 5+950 e 6+150. Si identifica infine una piccola lente in corrispondenza del viadotto VI03 con spessore massimo di 6 m.

La composizione granulometrica è variabile dal limo con sabbia a sabbia con limo, spesso argillosa. Le percentuali di passante in peso di limo e di sabbia variano rispettivamente tra il 70% e il 20% e tra il 60% e il 20%, mentre la percentuale argillosa si mantiene intorno al 20% nella maggior parte dei campioni. Ridotta risulta invece la frazione ghiaiosa, con rari picchi oltre il 20% e mediamente intorno al 10%.

Si osserva, di seguito, la distribuzione delle percentuali del passante in peso con la profondità:

Figura 5.9: Terreni LSA – Andamento del passante in peso con la profondità

Nel grafico successivo è illustrato l'andamento del contenuto naturale d'acqua w_n e dei limiti di Atterberg W_l e W_p in funzione della profondità.

Figura 5.10: Terreni LSA – Andamento del contenuto naturale d'acqua e dei limiti di Atterberg con la profondità

Il contenuto naturale d'acqua W_N varia tra 20% e 35%. I limiti plasticità W_P e liquidità W_L rientrano nei seguenti campi di valori:

 $W_{P} = 20 \div 45\%; \qquad \qquad W_{L} = 30 \div 50\%$

Risulta sempre W_P < W_L.

Nei grafici che seguono si riportano la "Carta di plasticità" e la "Carta di attività".

Si tratta di limi di media compressibilità, normalmente attivi. L'indice di plasticità l_P è compreso tra il 5% ed il 25%.

Figura 5.11: Terreni LSA – Carta di attività

- 1 limi inorganici di bassa compressibilità;
- limi inorganici di media compressibilità e limi organici;
- 3 limi inorganici di alta compressibilità e argille organiche;
- argille inorganiche di bassa plasticità;
- argille inorganiche di media plasticità;
- 6 argille inorganiche di alta plasticità.

Figura 5.12: Terreni LSA – Carta di plasticità

SS 131 "Carlo Felice" Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500		Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

Il peso dell'unità di volume naturale γ varia nell'intervallo 16,7-18,4 kN/m³.

Figura 5.13: Terreni LSA – Valori di N₃₀ da prove SPT

Dall'elaborazione delle prove SPT si osserva come il valore della coesione non drenata sia sostanzialmente differente nei primi metri e in profondità, risultando un valore medio di 50 kPa nei primi 6 m e di 140 kPa inferiormente.

Figura 5.14: Terreni LSA – Valori della coesione non drenata da prove SPT

A causa della poca affidabilità delle prove SPT nei terreni a grana fine si utilizzano le prove di laboratorio ad espansione laterale libera ELL per confermare i risultati finora ottenuti e per completare la caratterizzazione:

Figura 5.15: Terreni LSA – Valori della coesione non drenata da prove di laboratorio

Si esclude il valore di coesione non drenata pari a 655 kPa poiché difforme dai restanti risultati e si conferma l'intervallo derivato dall'analisi delle prove penetrometriche dinamiche.

I risultati delle prove di taglio diretto CD, delle triassiali consolidate drenate CID e delle triassiali consolidate non drenate CIU forniscono i seguenti intervalli per i parametri di resistenza:

φ'

Si riporta di seguito l'andamento dei parametri calcolato nelle varie prove in funzione della profondità di estrazione del sondaggio:

Relazione Geotecnica

Sono state eseguite tre prove di compressione edometrica su campioni prelevati ad una profondità rispettivamente di 5,7, 5,0 e 10,0 m. I campioni hanno fornito i seguenti risultati:

	m _v [MPa ⁻¹]	E _{ed} [MPa]	k [cm/s]	c _v [cm ² /s]	e ₀ [-]	C _c [-]	C _s [-]
S01D-DH_CI01	0,18	5,5	1,12E-06	6,20E-02	1,044	1,59E-01	1,66E-02
S26D-DH_CI01	0,25	4,0	1,65E-07	6,60E-03	0,979	3,42E-01	3,32E-02
S26D-DH_CI02	0,16	6,1	1,60E-07	1,00E-02	0,766	1,93E-01	2,95E-02

Tabella 5.5: Terreni LSA – risultati delle prove edometriche

Dalle prove Down-Hole si ottengono i seguenti valori della velocità delle onde di taglio V_s e del modulo di taglio G_0 .

 $V_s = 200 \div 600 \text{ m/s}, \qquad \quad G_0 = 70 \div 633 \text{ MPa}$

5.1.5 Sabbia limosa - SL

Sabbie limose SL sono state rinvenute con spessori da pochi metri fino alla ventina di metri soprattutto nei primi kilometri del tracciato, principalmente come lenti all'interno di formazioni di

Completar	nento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2º lotto dal km 202+000 al km 209+500	Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

argille marnose AM e siltiti Si. Il deposito maggiore si individua in corrispondenza del viadotto VI02. Alla progressiva 1+800.

La composizione granulometrica è abbastanza uniforme, con percentuali del passante in peso di sabbia pari, approssimativamente, al 60% e percentuali variabili tra il 5 e il 20% di ghiaia, limo e argilla.

Passante in peso [%] 0 20 40 60 80 100 15 ■%A Profondità [m] 57 **%**L ∎%S <mark>-</mark>%G 30

Si osserva, di seguito, la distribuzione delle percentuali del passante in peso con la profondità:

Figura 5.17: Terreni SL – Andamento del passante in peso con la profondità

In corrispondenza del campione S07D-DH_Cl02 sono stati valutati i limiti di Atterberg, ottenendo i seguenti valori di limite di liquidità W_L e di plasticità W_P:

Il contenuto naturale d'acqua W_N varia tra 12% e 22% ed è talora prossimo al limite di plasticità W_P.

L'indice di plasticità l_P risulta pari al 13%.

Il peso dell'unità di volume naturale γ risulta compreso tra 19 e 21 kN/m³.

Sono disponibili i risultati delle prove SPT, riportati di seguito:

Figura 5.18: Terreni SL – Valori di N30 da prove SPT

Dal'elaborazione delle prove SPT si ricavano i seguenti valori medi di angolo d'attrito q' e del modulo elastico operativo E'op SPT in termini di pressioni effettive:

$$\phi' = 27 \div 36 \circ;$$
 E'_{op SPT} = 12 ÷ 42 Mpa.

Dalle prove di laboratorio effettuate si ottiene un valore di angolo di resistenza al taglio pari a 33°, confermando l'intervallo ottenuto con le prove penetrometriche dinamiche. Risulta inoltre un valore di coesione compreso c' compreso tra 10 e 20 kPa. A causa della natura grossolana del terreno si considera, nei successivi calcoli, coesione nulla.

Dalle prove Down-Hole si ottengono i seguenti valori della velocità delle onde di taglio Vs e del modulo di taglio G₀.

$$V_s = 400 \div 550 \text{ m/s}, \qquad \qquad G_0 = 320 \div 605 \text{ Mpa}$$

5.1.6 Argilla marnosa - AM

Argille marnose AM sono state rinvenute con spessori da meno di un metro fino alla ventina di metri, spesso fittamente alternate a strati di marne o marne argillose M. È possibile osservarle principalmente tra i km 0+000 e km 1+400 e tra il km 3+600 e km 5+000.

La composizione granulometrica risulta essere da sabbia con limo a limo con sabbia, spesso ghiaiosa o argillosa. Tale risultato è molto comune per l'unità geotecnica in esame ed è dovuto al mancato discioglimento delle componenti argillose, lamellari ed estremamente fini, durante l'esecuzione delle prove. Si osserva, di seguito, la distribuzione delle percentuali del passante in peso con la profondità:

Figura 5.19: Terreni AM – Andamento del passante in peso con la profondità

Nel grafico successivo è illustrato l'andamento del contenuto naturale d'acqua w_n e dei limiti di Atterberg W_l e W_p in funzione della profondità.

Figura 5.20: Terreni AM – Andamento del contenuto naturale d'acqua e dei limiti di Atterberg con la profondità

Il contenuto naturale d'acqua W_N varia tra 20% e 30% con rari picchi maggiori o minori. I limiti plasticità W_P e liquidità W_L rientrano nei seguenti campi di valori:

$$W_{P} = 18 \div 40\%; \qquad \qquad W_{L} = 25 \div 60\%$$

Risulta sempre W_P < W_L.

Nei grafici che seguono si riportano la "Carta di plasticità" e la "Carta di attività".

Si tratta di argille organiche con compressibilità da media ad alta, normalmente attive. L'indice di plasticità I_P è compreso tra il 10% ed il 25%.

Figura 5.21: Terreni AM – Carta di attività

- limi inorganici di bassa compressibilità;
- 2 limi inorganici di media compressibilità e limi organici;
- 3 limi inorganici di alta compressibilità e argille organiche;
- argille inorganiche di bassa plasticità;
- argille inorganiche di media plasticità;
- 6 argille inorganiche di alta plasticità.

Figura 5.22: Terreni AM – Carta di plasticità

SS 131 "Carlo Felice" Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500		Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

Il peso dell'unità di volume naturale γ varia nell'intervallo 16 e 21 kN/m³.

Dall'analisi delle prove di laboratorio (taglio diretto, triassiale CID, triassiale CIU) effettuate su campioni indisturbati si ottengono i seguenti risultati:

Figura 5.23: Terreni AM – Valori dell'angolo di resistenza al taglio e della coesione da prove di laboratorio

Risulta in particolare:

$$\varphi = 29 \div 34$$
 °; c' = 20 ÷ 25 kPa.

Tramite alcune prove ad espansione laterale libera ELL si è calcolato il valore della coesione non drenata, che risulta essere compresa tra 80 e 400 kPa.

Figura 5.24: Terreni AM – Valori della coesione non drenata da prove di laboratorio

Una prova di compressione edometrica effettuata sul campione S04D-PZ_CI01 fornisce i seguenti risultati:

$$\begin{array}{ll} m_v = 0.255 \; MPa^{-1}; & E_{ed} = 4,4 \; MPa; & k = 6,3E\text{-}07; & c_v = 2,8E\text{-}02; \\ e_0 = 0,693; & c_c = 0,199; & c_s = 0,0216. \end{array}$$

Dalle prove Down-Hole si ottengono i seguenti valori della velocità delle onde di taglio Vs e del modulo di taglio G₀.

> $V_s = 500 \div 700 \text{ m/s},$ $G_0 = 460 \div 900 \text{ MPa}$

Relazione Geotecnica

5.2 Rocce lapidee

5.2.1 Marne e marne argillose - M

Le marne e le marne argillose M sono state rinvenute con spessori da meno di un metro fino alla ventina di metri, spesso fittamente alternate a strati di argille marnose AM. È possibile individuare il deposito maggiore in corrispondenza della galleria GN01 e tra la progressiva 4+900 e la progressiva di fine tracciato, come roccia del substrato. Sono inoltre presenti due depositi di marne argillose in fitta alternanza ad argille marnose AM, individuabili tra la progressiva di inizio tracciato e il km 1+000 e tra la progressiva 3+600 e 4+900.

I termini M presentano una struttura compatta lamellare, di colore dal beige al marrone al grigio e sono a tratti fratturate.

La densità γ è generalmente compresa tra 18 e 22,6 kN/m³.

La caratterizzazione meccanica dell'ammasso roccioso si è basata su prove di compressione monoassiale non confinata e dell'osservazione delle cassette catalogatrici provenienti dai carotaggi.

SS 131 "Carlo Felice" Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500		Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

Figura 5.25: Roccia M – distribuzione σ_{ci} da prove di compressione monoassiale

La resistenza a compressione monoassiale è sempre compresa tra 1,8 e 15,6 MPa, in particolare nel sondaggio orizzontale S31hD risulta mediamente più bassa vicino la superficie.

Le caratteristiche di resistenza e deformabilità (coesione c, angolo di resistenza al taglio ϕ , modulo di Young dell'ammasso roccioso E_{rm}) sono state determinate sulla base della teoria di Hoek-Brown per ogni provino testato, interpretando le prove eseguite su roccia intatta sulla base del valore di RQD medio nello strato (vedi figura 5.26), del valore di RMR (e conseguentemente del valore di GSI) e di un valore costante di m_i pari a 7, dipendente dalla natura geologica della formazione.

Figura 5.26: Roccia M – valore medio di RQD nello strato

CA357

Figura 5.27: Roccia M – RMR

Ottenendo le seguenti distribuzioni delle caratteristiche di resistenza:

Relazione Geotecnica

Figura 5.28: Roccia M – caratteristiche di resistenza e deformabilità

E i seguenti valori medi:

c = 0,33 MPa; ϕ = 30°; E_{rm} = 4,270 GPa.

Durante le prove di compressione monoassiale sono stati calcolati i valori di modulo di Young secante E_{s50} , modulo di Young tangente E_{t50} e coefficiente di Poisson v_{50} , calcolati al 50% della tensione a rottura:

Figura 5.30: Roccia M – modulo elastico tangente Et50

Figura 5.31: Roccia M – coefficiente di Poisson v50

Relazione Geotecnica

Dalle prove Down-Hole si ottengono i seguenti valori della velocità delle onde di taglio V_s e del modulo di taglio G₀.

 $V_s = 500 \div 1050 \text{ m/s}, \qquad G_0 = 500 \div 2240 \text{ MPa}$

5.2.2 Marne calcarenitiche - MC

CA357

Le marne calcarenitiche MC sono state rinvenute in due sezioni del tracciato, in corrispondenza delle progressive 2+600 e 6+000. I depositi si presentano come lenti di dimensioni variabili interne a strati di marne M o argille marnose AM. Sono state rinvenute principalmente nei sondaggi S12D-PZ, S26D-DH , S27D-PZ e S31hD.

I termini MC presentano una struttura poco fratturata con discontinuità sub-orizzontali, a grana estremamente fine e con un colore grigio brunastro, tendente a tratti al biancastro.

La densità γ è generalmente compresa tra 19 e 26 kN/m³.

La caratterizzazione meccanica dell'ammasso roccioso si è basata su prove di compressione monoassiale non confinata e dell'osservazione delle cassette catalogatrici provenienti dai carotaggi.

SS 131 "Carlo Felice" Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500		Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

Figura 5.32: Roccia MC – distribuzione σ_{ci} da prove di compressione monoassiale

La resistenza a compressione monoassiale risulta omogenea con la profondità ad esclusione del campione estratto in corrispondenza del sondaggio S27D-PZ, dove, osservando la cassetta catalogatrice, la qualità dell'ammasso roccioso giustifica tale valore.

Le caratteristiche di resistenza e deformabilità (coesione c, angolo di resistenza al taglio φ , modulo di Young dell'ammasso roccioso E_{rm}) sono state determinate sulla base della teoria di Hoek-Brown per ogni provino testato, interpretando le prove eseguite su roccia intatta sulla base del valore di RQD medio nello strato (vedi figura 5.35), del valore di RMR (e conseguentemente del valore di GSI) e di un valore costante di m_i pari a 8, dipendente dalla natura geologica della formazione.

Figura 5.33: Roccia MC – valore medio di RQD nello strato

Ottenendo le seguenti distribuzioni delle caratteristiche di resistenza:

Figura 5.35: Roccia MC - caratteristiche di resistenza e deformabilità

E i seguenti valori medi:

c = 0,25 MPa; ϕ = 31°; E_{m} = 3,075 GPa.

Durante le prove di compressione monoassiale sono stati calcolati i valori di modulo di Young secante E_{s50} , modulo di Young tangente E_{t50} e coefficiente di Poisson v_{50} , calcolati al 50% della tensione a rottura:

Relazione Geotecnica

Figura 5.37: Roccia MC – modulo elastico tangente Et50

Figura 5.38: Roccia MC – coefficiente di Poisson v50

Relazione Geotecnica

Dalle prove Down-Hole si ottengono i seguenti valori della velocità delle onde di taglio V_s e del modulo di taglio G_0 .

 $V_s = 600 \div 900 \text{ m/s}, \qquad G_0 = 810 \div 1820 \text{ MPa}$

5.2.3 Calcari bioclastici - CB

CA357

I calcari bioclastiche CB sono stati rinvenuti in maniera diffusa lungo tutta la seconda metà del tracciato, dalla progressiva 3+000 fino a progressiva di fine tracciato, spesso a ricoprimento di marne o argille marnose.

I termini CB presentano una struttura grossolana poco cementata, di colore dal giallastro al biancastro al beige e sono stati spesso prelevati come sabbie o ghiaie.

La densità γ è generalmente compresa tra 18 e 23 kN/m³.

La caratterizzazione meccanica dell'ammasso roccioso si è basata su prove di compressione monoassiale non confinata effettuate su campioni prelevati integri e dell'osservazione delle cassette catalogatrici provenienti dai carotaggi.

Figura 5.39: Roccia CB – distribuzione σ_{ci} *da prove di compressione monoassiale*

CA357	Relazione Geotecnica	GRUPPO FS ITALIANE
	2° lotto dal km 202+000 al km 209+500	anas
	192+500 al km 209+500	
Completan	C	
	SS 131 "Carlo Felice"	

Le caratteristiche di resistenza e deformabilità (coesione c, angolo di resistenza al taglio ϕ , modulo di Young dell'ammasso roccioso E_{rm}) sono state determinate sulla base della teoria di Hoek-Brown per ogni provino testato, interpretando le prove eseguite su roccia intatta sulla base del valore di RQD medio nello strato (vedi figura 5.42), del valore di RMR (e conseguentemente del valore di GSI) e di un valore costante di m_i pari a 8, dipendente dalla natura geologica della formazione.

Figura 5.40: Roccia CB – valore medio di RQD nello strato

Figura 5.41: Roccia CB – RMR

Ottenendo le seguenti distribuzioni delle caratteristiche di resistenza:

Figura 5.42: Roccia CB - caratteristiche di resistenza e deformabilità

E i seguenti valori medi:

c = 0,25 MPa; ϕ = 26,7°; E_m = 1,564 GPa.

Durante le prove di compressione monoassiale sono stati calcolati i valori di modulo di Young secante E_{s50} , modulo di Young tangente E_{t50} e coefficiente di Poisson v_{50} , calcolati al 50% della tensione a rottura:

Figura 5.45: Roccia CB – coefficiente di Poisson v50

Si osserva come siano state effettuate numerose prove SPT nell'ammasso roccioso durante lo svolgimento dei sondaggi geognostici. Tali risultati sono stati analizzati ma non considerati durante la determinazione delle caratteristiche meccaniche in quanto non affidabili per la caratterizzazione dell'ammasso.

Dalle prove Down-Hole si ottengono i seguenti valori della velocità delle onde di taglio V_s e del modulo di taglio G_0 .

 $V_s = 200 \div 700 \text{ m/s}, \qquad \quad G_0 = 82 \div 1000 \text{ MPa}$

5.2.4 Calcareniti - CL

CA357

Le calcareniti CL sono state rinvenute in corrispondenza della galleria GN01, tra le progressive 1+800 e 2+900. Si riconosce uno strato mediamente uniforme che raggiunge le profondità della settantina di metri, interessando il tratto della galleria in particolare nella porzione finale della stessa.

I termini CL presentano una struttura porosa, a tratti vacuolare, con numerose discontinuità da sub-orizzontali a sub-verticali, presenta numerosi livelli sabbiosi di spessore limitato ed è a tratti meno cementata, venendo prelevata come ghiaia. Il colore varia dal biancastro al grigiastro rosato. La densità γ è generalmente compresa tra 17 e 23 kN/m³.

La caratterizzazione meccanica dell'ammasso roccioso si è basata su prove di compressione monoassiale non confinata e dell'osservazione delle cassette catalogatrici provenienti dai carotaggi.

Figura 5.46: Roccia CL – distribuzione σ_{ci} da prove di compressione monoassiale

La resistenza a compressione monoassiale tende ad uniformarsi con la profondità, mantenendosi compresa tra 8,9 e 21 MPa.

Le caratteristiche di resistenza e deformabilità (coesione c, angolo di resistenza al taglio φ , modulo di Young dell'ammasso roccioso E_{rm}) sono state determinate sulla base della teoria di Hoek-Brown per ogni provino testato, interpretando le prove eseguite su roccia intatta sulla base del valore di RQD medio nello strato (vedi figura 5.50), del valore di RMR (e conseguentemente del valore di GSI) e di un valore costante di m_i pari a 10, dipendente dalla natura geologica della formazione.

Ottenendo le seguenti distribuzioni delle caratteristiche di resistenza:

Figura 5.49: Roccia CL – caratteristiche di resistenza e deformabilità

E i seguenti valori medi:

c = 0,54 MPa; $\phi = 30,9^{\circ};$ Erm = 5,434 GPa.

Durante le prove di compressione monoassiale sono stati calcolati i valori di modulo di Young secante Es50, modulo di Young tangente Et50 e coefficiente di Poisson v50, calcolati al 50% della tensione a rottura:

CA357 Relazione Geotecnica

Figura 5.52: Roccia CL – coefficiente di Poisson v50

Dalle prove Down-Hole si ottengono i seguenti valori della velocità delle onde di taglio V_s e del modulo di taglio G₀.

 $V_s = 400 \div 550 \text{ m/s}, \qquad G_0 = 350 \div 650 \text{ MPa}$

5.2.5 Siltiti - Si

Le siltiti Si sono state rinvenute nella porzione iniziale del tracciato, spesso alternate a strati di sabbia limosa SL o limo sabbioso argilloso LSA. Il deposito maggiore si individua tra la progressiva 0+700 e la progressiva 1+800.

I termini CL presentano una struttura a grana fine e compatta con poche discontinuità e un colore dal grigio chiaro al grigio verdastro.

La densità γ è generalmente compresa tra 18,5 e 20,2 kN/m³.

La caratterizzazione meccanica dell'ammasso roccioso si è basata su prove di compressione monoassiale non confinata e dell'osservazione delle cassette catalogatrici provenienti dai carotaggi.

Figura 5.53: Roccia Si – distribuzione σ_{ci} da prove di compressione monoassiale

CA357	Relazione Geotecnica	GRUPPO FS ITALIANE
	2° lotto dal km 202+000 al km 209+500	anac
	192+500 al km 209+500	
Completan	nento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km	C
	SS 131 "Carlo Felice"	

Le caratteristiche di resistenza e deformabilità (coesione c, angolo di resistenza al taglio ϕ , modulo di Young dell'ammasso roccioso E_{rm}) sono state determinate sulla base della teoria di Hoek-Brown per ogni provino testato, interpretando le prove eseguite su roccia intatta sulla base del valore di RQD medio nello strato (vedi figura 5.58), del valore di RMR (e conseguentemente del valore di GSI) e di un valore costante di m_i pari a 7, dipendente dalla natura geologica della formazione.

Figura 5.54: Roccia Si – valore medio di RQD nello strato

Relazione Geotecnica

Ottenendo le seguenti distribuzioni delle caratteristiche di resistenza:

Figura 5.56: Roccia Si – caratteristiche di resistenza e deformabilità

E i seguenti valori medi:

c = 0,28 MPa; ϕ = 29,1°; E_{rm} = 3,340 GPa.

Durante le prove di compressione monoassiale sono stati calcolati i valori di modulo di Young secante E_{s50} , modulo di Young tangente E_{t50} e coefficiente di Poisson v_{50} , calcolati al 50% della tensione a rottura:

Figura 5.58: Roccia Si – modulo elastico tangente Et50

Completan	SS 131 "Carlo Felice" nento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500	Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

Figura 5.59: Roccia Si – coefficiente di Poisson v50

Dalle prove Down-Hole si ottengono i seguenti valori della velocità delle onde di taglio V_s e del modulo di taglio G_0 .

 $V_s = 400 \div 550 \text{ m/s}, \qquad G_0 = 310 \div 590 \text{ MPa}$

Relazione Geotecnica

Relazione Geotecnica

5.3 Falda

L'andamento del pelo libero della falda è stato ricavato dai risultati degli studi geognostici tramite l'installazione di più piezometri a tubo aperto (sondaggi SxxD-PZ), da cui si evince:

□ dal km 0+600 al km 1+600

livello di falda a profondità di 3 ÷ 4 m dal piano di campagna all'interno dello strato di alluvioni a grana fine ALF;

□ dal km 1+800 al km 2+900

livello di falda a profondità fortemente variabile all'interno dello strato di calcareniti CL. Il livello di falda è stato dedotto sulla base dell'osservazione di campagne di indagini pregresse e poco affidabili a causa della distanza temporale e spaziale dell'osservazione. Risulta comunque sotto il piano di falda la galleria GN01 che si sviluppa tra queste progressive;

□ km 2+900

livello di falda a profondità di 3 m dal piano campagna in corrispondenza dello strato di alluvioni a grana fine ALF;

□ dal km 5+000 al km 6+000

livello di falda a profondità di 13 m dal piano campagna all'interno dello strato di marne M;

□ km 6+000

livello di falda a profondità di 3 m dal piano campagna all'interno dello strato di alluvioni a grana fine ALF.

Nelle rimanenti parti del tracciato non è desumibile la presenza di falda sulla base delle attuali conoscenze.

5.4 Caratterizzazione fisico – meccanica dei terreni

Di seguito sono riportati in sintesi i parametri geotecnici che è possibile attribuire ai terreni che costituiscono il volume significativo ai fini della progettazione delle opere.

Tali valori sono stati ricavati sia sulla base delle specifiche prove di laboratorio condotte sui campioni prelevati nel corso dell'ultima campagna di indagini, sia sulla base dei risultati ottenuti dalle prove svolte in sito, sia dai dati acquisiti in occasione di altri lavori su terreni simili a quelli in esame. Si è inoltre fatto riferimento a dati reperibili nella letteratura geotecnica regionale.

I parametri geotecnici valgono per i terreni di fondazione di tutto il tracciato e quindi per tutte le opere, in considerazione dell'omogeneità di comportamento dei vari termini desunta dai risultati delle indagini in sito e di laboratorio. Si osserva, infatti, che dall'esame del profilo geotecnico e dei dati di indagine, non si sono riscontrate situazioni particolari, tali da dovere considerare parametri specifici per la caratterizzazione geotecnica dei terreni di fondazione di singoli tratti in rilevato e/o viadotto e/o trincea.

Relazione Geotecnica

Nella tabella che segue si riportano i valori minimi e medi dei parametri fisico-meccanici dei terreni individuati, da utilizzare per il dimensionamento geotecnico e strutturale delle fondazioni delle opere d'arte.

In particolare, si riportano i valori delle seguenti grandezze:

- > peso dell'unità di volume naturale γ_n ;
- coesione non drenata cu;
- coesione effettiva c';
- > angolo d'attrito effettivo ϕ' ;
- > resistenza a rottura della roccia intatta σ_{ci} ;
- rock mass rating RMR;
- modulo di Young operativo E'op;
- modulo edometrico E_{ed};
- > modulo di Young dell'ammasso roccioso Erm;
- velocità delle onde di taglio Vs;
- modulo di taglio G₀;
- numero di colpi N_{SPT};

	γ _n [kN/m³]		φ	[°]	c _u [kPa] (d < 6 m)	c _u [kPa]	(d > 6 m)	c [kł	Pa]
	min	med	min	med	min	med	min	med	min	med
LSA	15,4	17,9	27,9°	31°	45°	50°	120°	140°	15,8°	22,3°
ALF	16,7	17,6	26°	28,5°	10*	35*	10*	35*	15	18
ALG	18,0	19,0	34*	39*	-	-	-	-	-	-
SL	19,0	19,8	27*	34*	-	-	-	-	-	-
AM	16,1	18,9	29,3°	31,1°	80°	256°	80°	256°	13,8°	20,0°
	NSF	νт [-]	Vs [r	m/s]	G0 [N	/IPa]	E _{ed} [[MPa]	E'op [N	/IPa]
	NsF min	чт [-] med	V₅ [r min	m/s] med	G₀ [N min	/IPa] med	E _{ed} min	[MPa] med	E' _{op} [N min	/IPa] med
LSA	Ns⊧ min 20	т [-] med 40	V₅ [r min 200	m/s] med 400	G₀ [N min 70	MPa] med 280	E _{ed} min 4°	MPa] med 5,2°	E'op [N min -	/IPa] med -
LSA ALF	N _{SF} min 20 5	т [-] med 40 18	V _s [r min 200 200	m/s] med 400 300	G₀ [N min 70 70	MPa] med 280 160	E _{ed} min 4° 5°	[MPa] med 5,2° 6°	E'op [N min - 3*	MPa] med - 14*
LSA ALF ALG	Nsr min 20 5 36	т [-] med 40 18 45	V _s [r min 200 200 -	m/s] med 400 300 -	G₀ [M min 70 70 -	MPa] med 280 160 -	E _{ed} min 4° 5°	[MPa] med 5,2° 6° -	E'op [N min - 3* 24*	MPa] med - 14* 49*
LSA ALF ALG SL	Nsr min 20 5 36 44	т [-] med 40 18 45 45	V _s [r min 200 200 - 400	m/s] med 400 300 - 500	G₀ [M min 70 70 - 320	MPa] med 280 160 - 500	Eed min 4° 5° - -	[MPa] med 5,2° 6° - -	E'op [N min - 3* 24* 12*	MPa] med - 14* 49* 35*

Tabella 5.6: Caratteristiche di progetto dei terreni sciolti

	γ _n [kl	N/m³]	σ _{ci} [MPa]	RM	R [-]	Erm	[GPa]	V _s	[m/s]	G ₀ [MPa]
	min	med	min	med	min	med	min	med	min	med	min	med
М	18,0	19,9	1,8°	6,6°	42'	64'	1,29'	4,27'	500	750	500	1140
MC	19,0	21,4	3,5°	9,5°	50'	63'	1,48'	3,08'	600	750	810	1260
СВ	18,0	20,1	4,0°	5,4°	43'	63'	1,26'	1,56'	200	450	80	410
CL	17,5	21,3	8,9°	12,2°	37'	42'	1,06'	5,43'	400	475	350	480
Si	18,5	19,1	2,6°	5,5°	57'	60'	1,79'	3,34'	400	475	310	440

Completan	SS 131 "Carlo Felice" nento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500	Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

Tabella 5.7: Caratteristiche di progetto delle rocce lapidee

- * Valori dedotti dai risultati delle prove SPT.
- o Valori dedotti da prove di laboratorio.
- Valori dedotti da prove di laboratorio e osservazione delle cassette.

5.5 Caratterizzazione sismica dei terreni

La caratterizzazione sismica dei terreni è stata sviluppata nella Relazione Sismica T00GE00GE0RE03A, alla quale si rimanda per i dettagli.

Nella tabella che segue si riportano per ciascun tratto omogeneo individuato, la categoria di suolo e il valore della velocità equivalente delle onde di taglio $V_{\mbox{\scriptsize seq}}.$

Indagine di riferimento	Categoria di sottosuolo	V _{s,eq} [m/s]
	C (0-7m)	270
Tomografia BS01D	B (>7m)	570
	C (0-4m)	270
Tomograna BS02D	B (>4m)	570
Tomografia BS0ED	C (0-6m)	275
Tomograna 65050	B (>6m)	510
Tomografia DS06D	B (0-7m)	600
Tomograna 65060	A (>7m)	1020
Tomografia DS07D	B (0-15m)	610
Tomograna 6507D	A (>15m)	950
	C (0-5m)	320
Tomografia BS07D-bis	B (5-27m)	580
	A (>27m)	890
Tomografia DC07D tria	B (0-19m)	610
Tomografia BS07D-tris	A (>19m)	980
Tomografia BS00D	C (0-2m)	290
Tomograna BS06D	B (>2m)	540
Tomografia BS00D	B (0-6m)	530
Tomograna 6509D	A (>6m)	800
	B (0-6m)	580
Tomografia BSTUD	A(>6m)	800
Tomografia BS11D	B (0-7m)	670
TUTIOgrafia DO LID	A (>7m)	910
Tomografic DC10D	B (0-7m)	640
Tomografia BS12D	A (>7m)	930
Tomografia BS13D	C (0-2m)	320

Relazione Geotecnica

Indagine di riferimento	Categoria di sottosuolo	V _{s,eq} [m/s]
	B (>2m)	500
Tomografia PS14D	C (0-1m)	320
	B (>1m)	500
Tomografia BS15D	B (>0m)	500
Tomografia DS16D	B (0-12m)	600
Tomograna BS TOD	A (>12m)	860
Tomografia BS17D	B (0-16m)	600
	A (>16m)	880
Tomografia BS18D	C (0-4m)	270
	B (>4m)	540
S01D-DH	В	474
S03D-DH	В	412
S07D-DH	В	415
S14D-DH	В	597
S16D-DH	В	403
S24D-DH	В	694
S25D-DH	А	828
S26D-DH	В	559

Tabella 5.8: Categorie di sottosuolo e velocità di taglio equivalenti

6 RAPPORTI OPERE TERRENI

Le conoscenze sui terreni di fondazione acquisite con i rilievi e le indagini hanno consentito di ricostruire con sufficiente dettaglio i rapporti tra le opere in progetto e i terreni di fondazione.

Con riferimento alla classificazione geotecnica riportata nel capitolo precedente, nelle tavole T00GE00GETFG_01A ÷ 08A si illustrano i terreni di fondazione presenti lungo il profilo longitudinale in asse del tracciato.

Nelle stesse tavole sono riportate la posizione e la colonnina schematica dei sondaggi e dei pozzetti. Nelle singole colonnine sono indicati il simbolo dell'unità geotecnica, la quota del boccaforo se nota, la profondità della falda se presente, il valore N₃₀ ricavato dalle prove SPT, la posizione dei campioni.

Nel seguito si illustrano i rapporti tra le opere ed i terreni con riferimento alle opere previste in progetto.

6.1 Viadotti — Gallerie

I rapporti che intercorrono tra i viadotti e le gallerie in progetto ed i terreni di fondazione, illustrati nel seguito distinti per opera, sono stati ricostruiti sulla base dei sondaggi e dei rilievi di superficie effettuati nel corso dei sopralluoghi.

Gli schemi riportati sono da ritenersi puramente indicativi in termini di dimensioni geometriche delle opere e lunghezza dei pali di fondazione al di sotto delle pile, posizione della falda in caso di falda a quota variabile. Per la lunghezza dei pali di fondazione si rimanda agli elaborati specifici di ciascun'opera.

6.1.1 VI01

Il viadotto 01 si estende tra le progressive 0+459 e 0+729 in asse sinistro e tra le progressive 0+429 e 0+699 in asse destro. Tramite i sondaggi S01D-DH, S02D-PZ, S03D-DH e S04D-PZ, svolti lungo l'asse del tracciato, è stato possibile caratterizzare i terreni di fondazione del viadotto, distinguendo le unità geologiche e geotecniche.

I terreni di fondazione del viadotto sono leggermente eterogenei. Si distingue uno strato di alluvioni a grana fine ALF con lenti di alluvioni a grana grossa ALG nei primi metri, fino ad una profondità massima di 6 m. Al di sotto delle alluvioni si riconosce uno strato di limi sabbiosi argillosi LSA con lenti di marne M. Tale strato è affiorante nella prima sezione del profilo e si spinge fino ad una profondità massima di 16 m. Al di sotto di tale unità è stato individuato il substrato roccioso-

Relazione Geotecnica

argilloso, formato da una fitta alternanza di marne M e argille marnose AM. Lo strato tende ad assottigliarsi e a ridurre la componente rocciosa con la progressiva, permettendo l'individuazione dello strato sottostante formato da sabbie limose SL e siltiti Si. Sia nelle siltiti Si che nell'alternanza AM+M si riconoscono lenti più o meno estese di sabbie SL, con spessori massimi di 4 m. La falda è stata individuata tramite i sondaggi S02D-PZ e S04D-PZ. Si riscontra in particolare come questa vada a collocarsi approssimativamente in corrispondenza dello strato di alluvioni a grana fine ALF.

I rapporti che intercorrono tra il viadotto e i terreni di fondazione sono illustrati, a titolo di esempio, nello stralcio del profilo geotecnico in asse destro, riportato nella figura che segue.

Figura 6.1: VI01 asse DX – schema fisico di riferimento

Relazione Geotecnica

Sono stati scelti dei pali Φ1200 con lunghezze comprese tra i 20 e i 34 m. I pali sono stati progettati imponendo la falda a quota variabile. Questa è stata considerata alla quota di 3 m dal piano campagna in corrispondenza della spalla B e non è stata considerata nelle altre pile. Sono stati considerati schemi di calcolo distinti per ogni pila sia in asse sinistro che in asse destro. La progettazione è stata eseguita considerando l'alternanza di marne e argille marnose come un bistrato composto da marne M nei primi 8 m e argille marnose AM inferiormente. Nei calcoli sono state considerate, dal piano campagna, le seguenti unità geotecniche: alluvioni a grana fine ALF o grossa ALG, limi sabbiosi argillosi LSA, marne M, argille marnose AM.

Si rimanda agli elaborati specialistici dell'opera per ulteriori informazioni. In particolare la relazione P00VI01STRRE01A e la tavola P00VI01STRFG01A.

6.1.2 CV01

Il cavalcavia 01 intercetta il tracciato in corrispondenza della progressiva 0+860. Tramite il sondaggio S04D-PZ, è stato possibile caratterizzare i terreni di fondazione del cavalcavia, distinguendo le unità geologiche e geotecniche.

I terreni di fondazione sono omogenei. Si distingue uno strato di alluvioni a grana fine ALF nei primi metri, fino ad una profondità massima di 6 m. Al di sotto delle alluvioni si riconosce uno strato di argille marnose AM fino ad una profondità massima di 14 m. Al di sotto di tale unità è stato individuato il substrato roccioso siltitico Si con lenti di limo sabbioso LSA e sabbie limose SL. La falda è stata individuata nel sondaggio S04D-PZ alla profondità di 3 m dal piano campagna. I rapporti che intercorrono tra il cavalcavia e i terreni di fondazione sono illustrati nello stralcio del profilo geotecnico riportato nella figura che segue.

Relazione Geotecnica

Figura 6.2: CV01 – schema fisico di riferimento

Sono stati scelti dei pali Φ1200 con lunghezze comprese tra i 14 e i 22 m. I pali sono stati progettati imponendo la falda a 3 m dal piano campagna. Nei calcoli sono state considerate, dal piano campagna, le seguenti unità geotecniche: alluvioni a grana fine ALF, argille marnose AM, siltiti Si.

Si rimanda agli elaborati specialistici dell'opera per ulteriori informazioni. In particolare la relazione P00CV01STRRE01A e la tavola P00CV01STRFG01A.

6.1.3 PO01

Il ponte 01 si estende tra le progressive 1+623 e 1+668 in asse sinistro e tra le progressive 1+631 e 1+676 in asse destro. Tramite il sondaggio S05D-PZ, svolto lungo l'asse del tracciato, e il sondaggio S2, proiettato, è stato possibile caratterizzare i terreni di fondazione del viadotto, distinguendo le unità geologiche e geotecniche.

I terreni di fondazione del viadotto sono omogenei. le fondazioni del ponte poggiano su uno strato di limi sabbiosi LSA fino alla profondità massima di 16 m a ricoprimento di un'alternanza di siltiti Si e limi sabbiosi argillosi LSA. Con la progressiva queste ultime tendono a diventare sabbie limose SL. Si riconoscono in superficie alluvioni a grana fine ALF in corrispondenza della spalla A e siltiti Si in corrispondenza della spalla B.

La falda è stata individuata tramite il sondaggio S05D-PZ e viene a collocarsi in corrispondenza dello strato superiore di alluvioni a grana fine.

I rapporti che intercorrono tra il ponte e i terreni di fondazione sono illustrati, a titolo di esempio, nello stralcio del profilo geotecnico in asse destro, riportato nella figura che segue.

Figura 6.3: PO01 asse DX – schema fisico di riferimento

Sono stati scelti dei pali Φ1200 con lunghezze di 32 m. I pali sono stati progettati imponendo la falda a quota variabile. Questa è stata considerata alla quota di 3 m dal piano campagna in corrispondenza della spalla A e non è stata considerata nella spalla B. Sono stati considerati schemi di calcolo distinti per ogni spalla. La progettazione è stata eseguita considerando l'alternanza di siltiti Si e limi sabbiosi argillosi LSA come un unico strato con caratteristiche medie. Nei calcoli sono state considerate, dal piano campagna, le seguenti unità geotecniche: limi sabbiosi argillosi LSA, alternanza di limi sabbiosi argillosi e siltiti LSA+Si.

Si rimanda agli elaborati specialistici dell'opera per ulteriori informazioni. In particolare la relazione P00P001STRRE01A e la tavola P00P001STRFG01A.

6.1.4 VI02

Il viadotto 02 si estende tra le progressive 1+754 e 1+842 in asse sinistro e tra le progressive 1+746 e 1+842 in asse destro. Tramite i sondaggi S07D-DH e S08hD, svolti lungo l'asse del tracciato, e il sondaggio S4, proiettato, è stato possibile caratterizzare i terreni di fondazione del viadotto, distinguendo le unità geologiche e geotecniche.

I terreni di fondazione del viadotto sono mediamente omogenei. Si distingue uno strato superficiale di alluvioni a grana fine ALF fino alla profondità massima di 9 m. al di sotto delle alluvioni si riconoscono, in rapida successione, siltiti Si, argille marnose AM e calcareniti CL fino alla profondità massima di 12 m, dove uno strato omogeneo di sabie limose SL si estende fino alla profondità di 34 m. Nell'ultimo metro del sondaggio S07D-DH si riconosce il substrato di marne M.

La falda è stata individuata in corrispondenza dello strato di alluvioni a grana fine ALF.

I rapporti che intercorrono tra il viadotto e i terreni di fondazione sono illustrati, a titolo di esempio, nello stralcio del profilo geotecnico in asse destro, riportato nella figura che segue.

Relazione Geotecnica

Sono stati scelti dei pali Φ1200 con lunghezze comprese tra i 14 e i 28 m. I pali sono stati progettati imponendo la falda a quota variabile. Questa è stata considerata alla quota di 3 m dal piano campagna in corrispondenza della spalla B e non è stata considerata nelle altre pile. Sono stati considerati schemi di calcolo distinti per ogni pila. Nei calcoli sono state considerate, dal piano campagna, le seguenti unità geotecniche: alluvioni a grana fine ALF, siltiti Si, sabbie limose SL, marne M.

Si rimanda agli elaborati specialistici dell'opera per ulteriori informazioni. In particolare la relazione P00VI02STRRE01A e la tavola P00VI02STRFG01A.

6.1.5 GN01

La galleria 01 si estende tra i viadotti 02 e 03 e procede:

- In asse sinistro con scavo a cielo aperto tra le progressive 1+871 e 1+888 (imbocco) e tra le progressive 2+893 e 2+906 (sbocco) fino al raggiungimento del ricoprimento minimo di 15 m.
- In asse destro con scavo a cielo aperto tra le progressive 1+862 e 1+882 (imbocco) e tra le progressive 2+902 e 2+917 (sbocco) fino al raggiungimento del ricoprimento minimo di 15 m.

Lo scavo procede con un'inclinazione costante pari all'1,27%. I terreni sono stati caratterizzati tramite numerosi sondaggi proiettati lungo l'asse della galleria, in particolare si riportano i sondaggi S12D-PZ e i sondaggi S7, S8, S9, S10, S11, S14, S15 ed S17.

La stratigrafia individuata è omogenea. Si sono riconosciute arenarie Ar e marne M in superficie fino ad una profondità massima di 30 m. Tali unità non sono state considerate durante la progettazione in quanto non risultano influenti nel calcolo. Al di sotto delle marne si presenta uno strato omogeneo di calcareniti CL per spessori fino a 60 m e in profondità marne M con numerose lenti di calcareniti, argille marnose e marne calcaree. La galleria attraverserà per la quasi completezza lo strato di marne, innestandosi nelle calcareniti unicamente negli ultimi 200 m.

La falda è stata individuata in numerosi sondaggi ma alla luce della condizione di proiezione e della data di esecuzione dei sondaggi tale misura non è ritenuta completamente affidabile. Si riconosce, tuttavia, come questa si ponga mediamente al contatto tra lo strato di marne e le calcareniti e durante il calcolo la si pone ad almeno 5 metri al di sopra del tetto della galleria.

I rapporti che intercorrono tra la galleria e i terreni di fondazione sono illustrati, a titolo di esempio, nello stralcio del profilo geotecnico in asse destro, riportato nella figura che segue.

Figura 6.5: GN01 asse DX – schema fisico di riferimento

6.1.6 VI03

Il viadotto 03 si estende tra le progressive 2+912 e 3+062 in asse sinistro e tra le progressive 2+927 e 3+077 in asse destro. Tramite i sondaggi S13D-PZ, S31hD e S14D-DH, svolti lungo l'asse del tracciato, è stato possibile caratterizzare i terreni di fondazione del viadotto, distinguendo le unità geologiche e geotecniche.

I terreni di fondazione del viadotto sono omogenei. Ad esclusione dei primi metri, dove si susseguono alluvioni a grana fine ALF, limi sabbiosi argillosi LSA e calcareniti CL con spessori compresi tra 1 e 5 m, si individuano marne M e argille marnose AM, a porzioni in rapida alternanza, fino alla quota di fine sondaggio.

La falda è stata individuata in corrispondenza dello strato di alluvioni a grana fine ALF.

Completan	SS 131 "Carlo Felice" nento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500	Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

I rapporti che intercorrono tra il viadotto e i terreni di fondazione sono illustrati, a titolo di esempio, nello stralcio del profilo geotecnico in asse destro, riportato nella figura che segue.

Figura 6.6: VI03 asse DX – schema fisico di riferimento

Relazione Geotecnica

Sono stati scelti dei pali Φ1200 con lunghezze comprese tra i 8 e i 30 m per la pila 01 e la spalla B. A causa di problematiche legate all'accesso ai luoghi, in quanto il sito non consente l'arrivo in sede del macchinario per l'esecuzione dei pali, si è scelto di realizzare la fondazione della spalla A su micropali verticali Φ300 con lunghezza di 8 m. I pali sono stati progettati imponendo l'assenza della falda e sono stati considerati schemi di calcolo distinti per ogni pila. Nei calcoli sono state considerate, dal piano campagna, le seguenti unità geotecniche: alluvioni a grana fine ALF, limi sabbiosi argillosi LSA, calcari bioclastici CB, calcareniti CL, argille marnose AM, marne M. Si rimanda agli elaborati specialistici dell'opera per ulteriori informazioni. In particolare la relazione P00VI03STRRE01A e la tavola P00VI03STRFG01A.

6.1.7 VI04

Il viadotto 04 si estende tra le progressive 3+217 e 3+357 in asse sinistro e tra le progressive 3+272 e 3+375 in asse destro. Tramite i sondaggi S15D-PZ e Ss2, svolti lungo l'asse del tracciato, è stato possibile caratterizzare i terreni di fondazione del viadotto, distinguendo le unità geologiche e geotecniche.

I terreni di fondazione del viadotto sono omogenei. Si individuano alluvioni a grana fine ALF con lenti a grana grossa ALG con profondità fino a 4 m. Al di sotto delle alluvioni si riconosce unno strato di calcari bioclastici CB poco cementati fino alla profondità di fine sondaggio.

La falda non è stata individuata. La si pone, in analogia a quanto rilevato nella restante parte del tracciato, in corrispondenza dello strato di alluvioni a grana fine ALF.

I rapporti che intercorrono tra il viadotto e i terreni di fondazione sono illustrati, a titolo di esempio, nello stralcio del profilo geotecnico in asse destro, riportato nella figura che segue.

Sono stati scelti dei pali Φ1200 con lunghezze di 8 m. I pali sono stati progettati imponendo l'assenza di falda. Sono stati considerati schemi di calcolo identici per ogni pila. Nei calcoli sono stati considerati calcari bioclastici CB fino alla quota di interesse.

Si rimanda agli elaborati specialistici dell'opera per ulteriori informazioni. In particolare la relazione P00VI04STRRE01A e la tavola P00VI04STRFG01A.

6.1.8 VI05

Il viadotto 05 si estende lungo in sinistro del tracciato tra la progressiva 3+500 e la progressiva 3+640. Tramite il sondaggio S16D-DH svolto lungo l'asse del tracciato, è stato possibile caratterizzare i terreni di fondazione del viadotto, distinguendo le unità geologiche e geotecniche. I terreni di fondazione del viadotto sono omogenei. Si individuano alluvioni a grana fine ALF con lenti a grana grossa ALG con profondità fino a 6 m. Al di sotto delle alluvioni si riconosce unno strato di calcari bioclastici CB poco cementati fino alla profondità di fine sondaggio.

La falda non è stata individuata. La si pone, in analogia a quanto rilevato nella restante parte del tracciato, in corrispondenza dello strato di alluvioni a grana fine ALF.

I rapporti che intercorrono tra il viadotto e i terreni di fondazione sono illustrati, a titolo di esempio, nello stralcio del profilo geotecnico, riportato nella figura che segue.

Relazione Geotecnica

Sono stati scelti dei pali Φ1200 con lunghezze di 8 m. I pali sono stati progettati senza piano di falda. Sono stati considerati schemi di calcolo identici per ogni pila. Nei calcoli sono stati considerati calcari bioclastici CB fino alla quota di interesse.

Si rimanda agli elaborati specialistici dell'opera per ulteriori informazioni. In particolare la relazione P00VI05STRRE01A e la tavola P00VI05STRFG01A.

6.1.9 GN02

La galleria 02 si estende per una lunghezza massima di 925 m e procede:

- In asse sinistro con scavo a cielo aperto tra le progressive 4+082 e 4+124 (imbocco) e tra le progressive 4+931 e 4+966 (sbocco) fino al raggiungimento del ricoprimento minimo di 15 m.
- In asse destro con scavo a cielo aperto tra le progressive 4+060 e 4+095 (imbocco) e tra le progressive 4+980 e 5+035 (sbocco) fino al raggiungimento del ricoprimento minimo di 15 m.

Lo scavo procede con un'inclinazione variabile dall'1,95% allo 0,74%. I terreni sono stati caratterizzati tramite numerosi sondaggi svolti lungo l'asse della galleria, in particolare si riportano i sondaggi S17D, S18D, S19D-PZ, S20D e S21D-PZ e con il sondaggio Ss32.

La stratigrafia individuata è omogenea. Si sono riconosciuti calcari bioclastici CB fino alla profondità massima di 28 m a ricoprimento di marne e argille marnose in rapida alternanza AM+M. Con la progressiva prevale la componente marnosa, diminuendo quella argillosa.

La falda è stata individuata internamente allo strato di calcari bioclastici.

I rapporti che intercorrono tra la galleria e i terreni di fondazione sono illustrati, a titolo di esempio, nello stralcio del profilo geotecnico in asse destro, riportato nella figura che segue.

6.1.10 VI06

Il viadotto 06 si estende tra le progressive 5+899 e 6+184 in asse sinistro e tra le progressive 5+905 e 6+190 in asse destro. Tramite i sondaggi S26D-DH e S27D-PZ e i sondaggi Ss31, Ss30, Ss29, Ss28, Ss27 svolti lungo l'asse del tracciato, è stato possibile caratterizzare i terreni di fondazione del viadotto, distinguendo le unità geologiche e geotecniche.

I terreni di fondazione del viadotto sono mediamente omogenei. Si individuano alluvioni a grana fine ALF con lenti a grana grossa fino alla profondità massima di 8 m. Al di sotto delle alluvioni si individua uno strato di limi sabbiosi argillosi ALF con spessori massimi di 15 m. In profondità si riconosce il substrato roccioso formato da marne M nelle sponde e marne calcarenitiche MC nella sezione centrale.

Completan	SS 131 "Carlo Felice" nento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2º lotto dal km 202+000 al km 209+500	Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

La falda è stata individuata all'interno delle alluvioni a grana fine.

I rapporti che intercorrono tra il viadotto e i terreni di fondazione sono illustrati, a titolo di esempio,

nello stralcio del profilo geotecnico in asse destro, riportato nella figura che segue.

Figura 6.10: VI06 asse DX – schema fisico di riferimento

Relazione Geotecnica

Sono stati scelti dei pali Φ1200 con lunghezze comprese tra i 8 e i 18 m. I pali sono stati progettati imponendo la falda a quota variabile. Questa è stata considerata al piano campagna in corrispondenza della pila 3 e non è stata considerata nelle altre pile. Sono stati considerati schemi di calcolo distinti per ogni pila. Nei calcoli sono state considerate, dal piano campagna, le seguenti unità geotecniche: alluvioni a grana fine ALF, calcari bioclastici CB, limi sabbiosi argillosi LSA, marne M, marne calcaree MC.

Si rimanda agli elaborati specialistici dell'opera per ulteriori informazioni. In particolare la relazione P00VI06STRRE01A e la tavola P00VI06STRFG01A.

6.2 Rilevati

Nel presente paragrafo si illustrano i rapporti che intercorrono tra i tratti stradali in rilevato e i terreni di fondazione.

La ricostruzione si è basata sui risultati delle campagne di indagini in sito ed è riportata in dettaglio nelle tavole T00GE00GETFG_01A ÷ 08A del Profilo Geotecnico allegate al Progetto.

Sono state individuate alcune situazioni tipiche che sono state poste alla base delle successive valutazioni di carattere geotecnico in merito a eventuali interventi da porre in atto.

Gli schemi che illustrano i rapporti opere-terreni riportati più avanti sono da ritenersi puramente indicativi dal punto di vista geometrico in termini di dimensione delle opere, spessore dei terreni di fondazione, posizione della falda.

Dal momento che è prevista l'asportazione del terreno agrario e/o dei materiali di riporto presenti a partire dal piano limite, in tutti gli schemi si è omessa la presenza di questi termini.

In accordo con il profilo geotecnico riportato nelle tavole T00GE00GETFG_01A ÷ 08A si sono analizzate tre differenti progressive, selezionate tra le condizioni più gravose per spessore degli strati del sottosuolo e altezza del rilevato:

Progressiva km 0+340 – Schema di calcolo A

Il rilevato è alto 2,5 m e poggia su uno strato uniforme di limo sabbioso argilloso LSA (spessore 21 m) a ricoprimento di uno strato indefinitamente esteso di marne e argille marnose AM+M (v. figura 6.10). La falda, non individuata alla progressiva di interesse, si valuta alla quota del piano campagna.

Figura 6.11: progressiva 0+340, schema di calcolo dei cedimenti

Progressiva km 0+740 – Schema di calcolo B

Il rilevato è alto 7,5 m e poggia su uno strato di Alluvioni a grana fine ALF (spessore 5 m) a ricoprimento di uno strato di limi sabbiosi argillosi LSA con spessore di 8 m. Nel substrato si individua uno strato indefinitamente esteso di argille marnose e marne fittamente alternate AM+M (v. figura 6.11). La falda viene individuata in corrispondenza del livello di limo sabbioso argilloso.

Figura 6.12: progressiva 0+740, schema di calcolo dei cedimenti

Relazione Geotecnica

Progressiva km 1+720 – Schema di calcolo C

Il rilevato è alto 2,5 m e poggia su uno strato di siltiti Si con spessore di 6 m. inferiormente si riconosce uno strato indefinitamente esteso di sabbie limose SL. La falda viene individuata in corrispondenza del livello di sabbie limose.

Figura 6.13: progressiva 1+720, schema di calcolo dei cedimenti

A vantaggio di sicurezza nel calcolo si considererà il terreno come omogeneamente costituito da sabbie limose.

Relazione Geotecnica

7 QUESTIONI GEOTECNICHE

Le principali questioni di carattere geotecnico connesse con la progettazione delle opere riguardano la scelta del tipo di fondazione delle pile e delle spalle dei viadotti, ponti e cavalcavia e la scelta del piano di posa dei tratti in rilevato.

In relazione alle caratteristiche geotecniche dei terreni di fondazione, ai rapporti tra questi ultimi e le opere ed ai cariche trasmessi dalle strutture, la scelta delle fondazioni delle pile e delle spalle dei viadotti ricade su fondazioni profonde, costituite da pali di c.a. di grande diametro (\u03c6 1200 mm) ad esclusione della spalla A del viadotto 3, dove vengono scelti dei micropali a causa di limitazioni tecnologiche. Per il dimensionamento delle strutture di fondazione si è fatto riferimento ai rapporti tra le opere e i terreni descritti in precedenza.

I risultati dei calcoli strutturali e geotecnici, corredati da particolari costruttivi, sono riportati per ciascuna opera in specifici elaborati.

L'apertura degli scavi per raggiungere i piani di posa dei plinti di fondazione procederà con pendenza 1/1. Qualora gli scavi dovessero raggiungere profondità maggiori di 5 m si interporranno banchine larghe 2 m superati i 5 m di altezza di scavo.

Per quanto riguarda i tratti in rilevato, si prevede lo scotico dei primi 20 cm di terreno a partire dal piano di campagna e l'asportazione di ulteriore strato di spessore variabile da 50 cm a 150 cm, quale bonifica (v. tabella che segue), al fine di garantire l'appoggio dei rilevati su terreni di idonee caratteristiche.

Progressiva [km]	Scotico [cm]	Bonifica [cm]
0+000-0+480	20	50
0+480-1+640	20	150
1+640-1+840	20	50
1+840-2+900	0	0
2+900-4+080	20	70
4+080-4+940	0	0
4+940-6+707	20	50

Tabella 7.1: Spessori di scotico e bonifica

Relazione Geotecnica

8 CALCOLO DEI CEDIMENTI DEI RILEVATI

Nel presente paragrafo si riportano i risultati delle verifiche dei cedimenti dei rilevati in condizioni di esercizio (SLE), dovuti alla deformazione dei terreni di fondazione e delle opere.

Le verifiche dei cedimenti sono finalizzate a valutare l'entità del cedimento totale del nuovo rilevato a fine costruzione e a lungo termine.

I calcoli esposti più avanti mostrano come, anche in assenza di provvedimenti specifici, a causa della natura dei terreni, l'evoluzione dei cedimenti nel tempo sarebbe tale da garantire la funzionalità delle opere.

8.1 Caratteristiche geotecniche dei terreni di fondazione

Come mostra il Profilo Geotecnico, i rilevati poggiano su terreni ALF e SLA, che a loro volta ricoprono terreni di natura lapidea.

Dall'esame delle proprietà geotecniche desunte dalle prove in sito e di laboratorio si sono evidenziati i seguenti parametri utili per il calcolo dei cedimenti.

Terreno	Geometria rilevato	e ₀	Cc	Cv	N ₃₀
LSA	Cap. 6.2	0,85	0,2	0,02	20
SL	Cap. 6.2	-	-	-	44
ALF	Cap. 6.2	0,8	0,2	0,015	5

Tabella 8.1: Caratteristiche dei terreni di fondazione

Per terreni a grana fine si è sfruttata la teoria di Giroud, la formula di Terzaghi e la teoria di Sivaram & Swamee (schema di calcolo A).

Per i terreni a grana grossa il calcolo dei cedimenti è stato effettuato secondo la formula sperimentale di Burland & Burbridge (schema di calcolo C).

Per sistemi più complessi multistrato (schema di calcolo B) si è utilizzato un modello bidimensionale agli elementi finiti.

I tratti di rilevato presi in esame risultano essere i tratti più critici, ovvero caratterizzati dalle condizioni di maggiore altezza del rilevato e spessori di strati comprimibili maggiori.

8.2 Calcolo dei cedimenti in terreni a grana grossa

Dal punto di vista teorico si può schematizzare il cedimento di un deposito non coesivo uniforme sottoposto all'azione di un carico di dimensioni finite secondo la formula di Burland & Barbridge, 1985. Tale formula permette di calcolare il cedimento medio immediato Si come segue:

Relazione Geotecnica

$$S_i = f_s f_l q B^{0,7} I_c$$

Con fs fattore di forma pari a 1,25 per fondazioni nastriformi, q è l'incremento di carico dovuto alla costruzione del rilevato in kPa, B è la larghezza della fondazione, Ic è un indice di compressibilità e fl fattore di spessore, espressi come seguono:

$$I_c = \frac{1,71}{\overline{N}^{1,4}}$$
$$f_l = \frac{H_s}{Z_l} \left(2 - \frac{H_s}{Z_l}\right)$$

con H_s altezza di drenaggio, $Z_I = B^{0,763}$ e N è pari a 1,25 N_{30,medio}.

8.3 Calcolo dei cedimenti in terreni a grana fine

Il calcolo dei cedimenti in terreni a grana fine può essere schematizzato come somma di più cedimenti differenti, rispettivamente il cedimento immediato S_i , il cedimento di consolidazione S_c e il cedimento secondario S_s . Tali cedimenti sono calcolabili attraverso le seguenti relazioni:

- Si:

$$S_{i} = \frac{\gamma \cdot h}{E_{u}} \cdot \frac{a^{2}}{a \cdot a'} \cdot \left\{ r_{H} \cdot \left(\frac{a'}{a}\right)^{2} \cdot r'_{H} \right\}$$

 $con \gamma$ la densità del terreno, E_u il modulo di Young del terreno di appoggio in condizioni non drenate, ricavabile dalla seguente tabella:

000		E_u/c_u		
630	PI < 30	30 < PI < 50	PI > 50	-
< 3	600	300	125	Duncan e Buchignani
3 - 5	400	200	75	(terreni omogenei)
> 5	150	75	50	-

e rh, rh', a e a' ricavabili dal seguente diagramma:

con Uxxgg ricavabile dalla seguente formula di Sivaram & Swamee:

$$U_{m} = \frac{\left(4 \cdot \frac{T_{v}}{\pi}\right)^{\frac{1}{2}}}{\left[1 + \left(4 \cdot \frac{T_{v}}{\pi}\right)^{2,8}\right]^{0,179}}$$

e T_v è il time factor, espresso secondo la seguente relazione:

$$T_v = \frac{c_v \cdot t}{H_{dr}^2}$$

con H_{dr} altezza di drenaggio.

8.4 Risultati dei calcoli

Sulla base delle formule esposte precedentemente si verifica separatamente il cedimento nelle tre configurazioni di calcolo.

SS 131 "Carlo Felice"	
Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km	-
192+500 al km 209+500	
2° lotto dal km 202+000 al km 209+500	

Relazione Geotecnica

Schema di calcolo A

La valutazione dei cedimenti viene svolta ni corrispondenza della sezione al km 0+340, calcolata nel rispetto dei parametri riportati nella tabella riassuntiva al paragrafo 5.4 per i limi sabbiosi argillosi LSA e in accordo con i risultati delle prove edometriche, considerando $c_v = 3,0E-02 \text{ cm}^2/\text{s}, c_c = 0,1$ ed $e_0 = 0,85$.

Si procede dapprima al calcolo del cedimento immediato Si:

Progr. [km]	h [m]	H [m]	H/a	H/a'	r h	r' _h	S _i [cm]
0+340	2,5	21	1,12	1,4	0,05	0,47	2,2
Taballa 0.2: andimenta immediata pabama di salasla A							

Tabella 8.2: cedimento immediato – schema di calcolo A

E di seguito si riporta il decorso dei cedimenti nel tempo:

Figura 8.1: Cedimento previsto in corrispondenza del km 0+340

Ottenendo un cedimento totale S di 10 cm.

Al fine di rispettare le norme esposte nel capitolato CIRS – art. 1.4.2.1 è stato calcolato il cedimento residuo S_{res} a fine costruzione (5 anni), che risulta essere pari a 1 cm. Tale cedimento è inferiore al 10% del cedimento totale e comunque minore di 5 cm, risultando quindi accettabile.

Schema di calcolo B

Per il calcolo dei cedimenti nella condizione di calcolo B si utilizza il software di calcolo Plaxis 2d, utilizzando lo schema riportato a pagina 87.

Figura 8.2: Schema di calcolo B

Sulla base della schematizzazione precedente e adottando i parametri geotecnici riportati al paragrafo 5.4 si determina un cedimento, a fine costruzione, pari a 7,5 cm. Nei successivi 200 anni si determina un incremento del cedimento di 0,6 cm, ottenendo la seguente condizione deformata:

Figura 8.3: Schema di calcolo B – deformata scalata 50x a 200 anni

Figura 8.4: Schema di calcolo B – mappa dei cedimenti a 200 anni

Schema di calcolo C

Completan	SS 131 "Carlo Felice" nento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2º lotto dal km 202+000 al km 209+500	<mark>5</mark> a
CA357	Relazione Geotecnica	GRUPPO F

GRUPPO FS ITALIANE

Il calcolo infine risulta speditivo in corrispondenza dello schema di calcolo C. Il cedimento totale S corrisponde al cedimento immediato S_i , pari a 2,4 cm.

Nei tre differenti schemi di calcolo si sono riconosciuti cedimenti di modesta entità. Questi si sviluppano velocemente e possono considerarsi approssimativamente conclusi entro la durata dei lavori.

Relazione Geotecnica

9 VERIFICHE DI STABILITÀ GLOBALE

Le verifiche di stabilità globale hanno riguardato i tratti in rilevato e in trincea e gli scavi provvisionali per raggiungere il piano di posa dei plinti dei viadotti.

9.1 Procedura di calcolo

Le verifiche di stabilità globale dei tratti in rilevato e trincea sono state eseguite secondo l'Approccio

1 - Combinazione 2: (A2+M2+R2), tenendo conto dei coefficienti parziali riportati nelle tabelle 6.2.I,

6.2.II e 6.8.I del D.M. 17.01.2018.

Per gli scavi provvisionali si è tenuto conto della combinazione A1+M1+R3.

CARICHI	EFFETTO	Coefficiente Parziale $\gamma_{\rm F}$ (o $\gamma_{\rm E}$)	EQU	(A1) STR	(A2) GEO
Dormononti	Favorevole		0,9	1,0	1,0
Permanenti	Sfavorevole	∛G1	1,1	1,3	1,0
Dermanenti non strutturali ⁽¹⁾	Favorevole		0,0	0,0	0,0
Permanenti non strutturan	Sfavorevole	¥G2	1,5	1,5	1,3
Variabili	Favorevole		0,0	0,0	0,0
v arfaðill	Sfavorevole	ĬQi	1,5	1,5	1,3

(1) Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Tabella 9.1: Coefficienti parziali per le azioni (Tabella 6.2.1 - D.M. 17/01/2018)

PARAMETRO	PARAMETRO GRANDEZZA ALLA QUALE		(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	$\gamma_{\rm M}$		
Tangente dell'angolo di	$\tan \phi'_k$	$\gamma_{\phi'}$	1,0	1,25
resistenza al taglio				
Coesione efficace	c' _k	γc	1,0	1,25
Resistenza non drenata	c _{uk}	$\gamma_{\rm cu}$	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Tabella 9.2: Coefficienti parziali per i parametri geotecnici del terreno (Tabella 6.2.II - D.M. 17/01/2018)

Coefficiente	R2
$\gamma_{\rm R}$	1.1

Tabella 9.3: Coefficiente parziale di resistenza γR2 (Tabella 6.8.I - D.M. 17/01/2018)

Relazione Geotecnica

Sulla base della localizzazione dell'opera, ricadendo nella zona sismica 4, le verifiche degli scavi dei viadotti e dei tratti in rilevato sono state eseguite in condizioni statiche.

9.2 Codice di calcolo

Le verifiche di stabilità sono state sviluppate utilizzando il codice di calcolo *SLOPE/W* della *Geo-Slope International Ltd* e facendo ricorso al metodo di Morgenstern-Price.

Il programma svolge l'analisi all'equilibrio limite esaminando, per varie superfici di scorrimento, il relativo coefficiente di sicurezza e individuando quella critica, cioè quella con il fattore di sicurezza minore.

All'interno del programma sono implementati diversi metodi per definire le superfici di scivolamento. Nel caso in esame, le analisi sono state eseguite attraverso la modalità chiamata "Grid and radious", in cui vengono fissati dall'operatore il raggio della superficie critica e l'area dove si può trovare il centro della stessa.

9.3 Caratteristiche geotecniche dei terreni

Per l'esecuzione delle verifiche sono stati utilizzati i parametri geotecnici derivanti dai risultati delle indagini (v. paragrafo 5.4), che si riassumono nel seguito:

Limo sabbioso argilloso LSA

 $\gamma = 18 \text{ kN/m}^3$; c_u = 45 kPa; c' = 16 kPa; $\phi' = 28^\circ$.

Alluvioni a grana fine ALF

 $\gamma = 17,6 \text{ kN/m}^3$; c' = 15 kPa; $\phi' = 26^\circ$.

Siltiti Si

 $\gamma = 19,1 \text{ kN/m}^3$; c' = 280 kPa; $\varphi' = 29,1^\circ$.

Calcari bioclastici CB

 $\gamma = 20 \text{ kN/m}^3$; c' = 0,18 MPa; ϕ ' = 25°.

I materiali che costituiscono il rilevato sono stati caratterizzati con i seguenti valori, desunti da sperimentazioni effettuate per altri lavori stradali su campioni di cava (classificazione HRB A1a, A1b, A2-4, A2-5) costipati con tecnica AASHO Standard:

$$\gamma = 19 \text{ kN/m}^3$$
; c' = 0 kPa; $\phi' = 35^\circ$.

Applicando i coefficienti parziali ai parametri geotecnici dei terreni dei materiali, si ottengono i seguenti valori di coesione e angolo d'attrito

LSA $c_u = 32 \text{ kPa}; \phi' = 22^{\circ}.$

Completan	Sanas	
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE
ALF	c' = 11 kPa; φ' = 21°.	
Si	c' = 224 kPa; φ' = 23°.	
СВ	c' = 144 kPa; φ' = 20°.	
Rileva	to stradale $c' = 0 \text{ kPa}; \phi' = 29^{\circ}.$	

9.4 Risultati delle verifiche

9.4.1 Rilevati

Al fine di verificare la stabilità dei rilevati è stata analizzata la condizione più gravosa di rilevato di altezza massima (pari a 7,5 m) su terreno LSA. Viene ipotizzata una pendenza 2:3 con berme di 100 cm al raggiungimento dei 5 m di altezza del rilevato.

Nella tabella seguente si riportano i valori del coefficiente di sicurezza minimo Fmin

Sezione di Calcolo	F _{min}
Rilevato di altezza massima	1,41

Tabella 9.4: Fattore di sicurezza minimo del rilevato di massima altezza

Si osserva che F_{min} risulta sempre maggiore del valore minimo stabilito dalla Normativa, pari a 1,1. Nelle figure che seguono si riporta la traccia della superficie di scorrimento per la quale si è ottenuto il coefficiente di sicurezza minimo.

Figura 9.1: Rilevato di altezza massima - Verifica di stabilità in condizioni statiche - Superficie di scorrimento

critica
CA357

Relazione Geotecnica

9.4.2 Trincee

Lungo il tracciato risultano essere presenti due principali trincee in corrispondenza delle progressive 1+020 e 1+720. La massima profondità di scavo è pari a 15 m e sono aperti con pendenza 1:1. Si distinguono di seguito i due schemi di calcolo.

Schema di calcolo A, progressiva 1+020:

In corrispondenza dell'asse destro del tracciato la carreggiata attraversa un tratto a mezzacosta nel quale l'acclività del terreno impone lo scavo di una trincea. Non è possibile conoscere, a causa della presenza della coltre vegetale e della carenza di sondaggi in prossimità della sezione, quali unità geotecniche compongono l'avvallamento in esame. Al fine di assicurare la condizione di stabilità del terreno sono state attribuite le caratteristiche geotecniche peggiori delle unità riconosciute nell'area (argille marnose, limi sabbiosi, alluvioni a grana fine). Si ottiene il seguente schema di calcolo:

Figura 9.2: Schema di calcolo A

Schema di calcolo B, progressiva 1+720

In corrispondenza dell'asse destro del tracciato la carreggiata attraversa un tratto a mezzacosta caratterizzato dalla presenza di siltiti affioranti. Si riporta di seguito lo schema di calcolo adottato nelle verifiche:

Figura 9.3: Schema di calcolo B

Completan	SS 131 "Carlo Felice" nento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500	Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

I coefficienti di sicurezza minimi risultano maggiori dei valori minimi imposti da NTC2018, come mostra la tabella che segue.

Sezione di Calcolo	F _{min}
Schema A	1,18
Schema B	6,01

Tabella 9.5: Fattore di sicurezza minimo delle trincee

Le tracce delle superfici di scorrimento per le quali si è ottenuto il coefficiente di sicurezza minimo sono mostrate nelle successive figure.

Figura 9.4: Schema di calcolo A – Fattore di sicurezza minimo – Superficie di scorrimento critica

Figura 9.5: Schema di calcolo B – Fattore di sicurezza minimo – Superficie di scorrimento critica

CA357

9.4.3 Scavi provvisionali

La condizione più critica nello scavo provvisionale si presenta in corrispondenza della spalla B del viadotto VI3 alla progressiva 3+077, ove si raggiunge una profondità massima di scavo di 23 m. Gli scavi sono aperti con pendenza 1:1 e berme larghe 2 m ogni 5 m.

Lo scavo interesserà calcari bioclastici CB e limi sabbiosi LSA.

Viene analizzata unicamente la condizione statica non drenata a causa della provvisionalità dello scavo stesso.

Nella tabella e nella figura successiva si riportano il valore del coefficiente di sicurezza F_{min} e la superficie critica.

Cariana di Calcala	F_{min}
Sezione di Calcolo	Condizione statica
Spalla B viadotto VI03	1,4
	e

Tabella 9.6: Scavo provvisionale – fattore di sicurezza

Figura 9.6: Verifica di stabilità a breve termine viadotto VI03 spalla B – Superficie di scorrimento critica

Completan	SS 131 "Carlo Felice" nento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500	Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

Allegato A Colonne stratigrafiche dei sondaggi

SS 131 "Carlo Felice" Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500		Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

	SS 131 "Carlo Felice"	
Completan	nento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km	\mathbf{c}
	192+500 al km 209+500	
	2° lotto dal km 202+000 al km 209+500	anas
CA257	Polaziono Contecnico	OROTTO TO TALIANE

Relazione Geotecnica

Relazione Geotecnica

SS 131 "Carlo Felice" Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500		Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

SS 131 "Carlo Felice" Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500		Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

SS 131 "Carlo Felice" Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500		Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

Relazione Geotecnica

SS 131 "Carlo Felice" Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500		Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

SS 131 "Carlo Felice" Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 2° lotto dal km 202+000 al km 209+500		Sanas
CA357	Relazione Geotecnica	GRUPPO FS ITALIANE

