

Direzione Progettazione e Realizzazione Lavori

S.S.131 "Carlo Felice"

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza S.S.131 dal km 192+500 al km 209+500. 2° Lotto dal km 202+000 al km 209+500

PROGETTO DEFINITIVO

COD. CA357

PROGETTAZIONE: ATI VIA - SERING - VDP - BRENG

RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE:

Dott. Ing. Giovanni Piazza (Ord. Ing. Prov. Roma A27296)

PROGETTISTA:

Responsabile Tracciato stradale: Dott. Ing. Massimo Capasso

(Ord. Ing. Prov. Roma 26031)
Responsabile Strutture: Dott. Ing. Giovanni Piazza

Responsabile Idraulica, Geotecnica e Impianti: *Dott. Ing. Sergio Di Maio*Responsabile Idraulica, Geotecnica e Impianti: *Dott. Ing. Sergio Di Maio*

(Ord. Ing. Prov. Palermo 2872) Responsabile Ambiente: Dott. Ing. Francesco Ventura (Ord. Ing. Prov. Roma 14660)

GEOLOGO:

Dott. Geol. Enrico Curcuruto (Ord. Geo. Regione Sicilia 966)

COORDINATORE SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Matteo Di Girolamo (Ord. Ing. Prov. Roma 15138)

RESPONSABILE SIA:

Dott. Ing. Francesco Ventura (Ord. Ing. Prov. Roma 14660)

VISTO: IL RESPONSABILE DEL PROCEDIMENTO:

Dott. Ing. Edoardo Quattrone

GRUPPO DI PROGETTAZIONE

MANDATARIA:

MANDANTI:

OPERE D'ARTE MAGGIORI **GALLERIE**

GALLERIA NATURALE CHIGHIZZU_GNO2

Opere provvisionali – Relazione di calcolo

CODICE PF	ROGETTO LIV. PROG. ANNO	nome file CA357_POOGNO2GETRI	E02_A		REVISIONE	SCALA:
DPCA0357 D 20		CODICE POOGNO2GETRE02			A	_
D			_	_	_	-
С			_	_	-	-
В			_	_	_	-
Α	EMISSIONE		GIU. 2021	A. SCHIRRIPA	G.PIAZZA	G.PIAZZA
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo – Galleria Naturale Chighizzu GN02

INDICE

1	GE	NER	ALITA'	4
	1.1	OG	GETTO	4
	1.2	DE	SCRIZIONE DELLE OPERE	8
	1.3	DE	SCRIZIONE DELLE SEZIONI DI CALCOLO	12
2	NO	RMA	ATIVE E RIFERIMENTI	18
3	NO	RME	TECNICHE	18
4	CA	RAT	TERISTICHE DEI MATERIALI E RESISTENZE DI PROGETTO	19
	4.1	CAI	LCESTRUZZI	19
	4.1	.1	Caratteristiche ai fini della durabilità	19
	4.1	.2	Copriferri nominali	20
	4.1	.3	Resistenze di progetto	22
	4.2	Ac	CIAIO IN BARRE PER CEMENTO ARMATO E RETI ELETTROSALDATE	22
	4.2	.1	Qualità dell'acciaio	22
	4.2	.2	Resistenze di progetto	23
	4.3	Ac	CIAIO PER CARPENTERIA METALLICA	23
	4.3	2.1	Acciaio per micropali	23
	4.3	2.2	Acciaio per travi di ripartizione	24
	4.3	2.3	Acciaio per trefoli	24
5	INC	QUA	DRAMENTO GEOTECNICO	25
	5.1	STE	RATIGRAFIE DI CALCOLO	25
6	CR	ITEF	RI DI VERIFICA DELLE PARATIE	27
	6.1	Мо	DELLO DI CALCOLO	27
	6.2	Co	EFFICIENTI DI SPINTA	28
	6.3	STO	ORIE DI CARICO	30
	64	MΕ	TODOLOGIA DI CALCOLO	31

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

	6.4.	1	Verifiche nei confronti degli stati limite ultimi (SLU)	31
	6.4.	2	Verifiche dei tiranti	32
	6.4.	3	Verifiche della trave porta tiranti	35
	6.4.	4	Verifiche di stabilità globale del complesso paratia-terreno	35
7	ANA	ALIS	SI DEI CARICHI	38
	7.1	ANA	ALISI ESEGUITE	38
	7.2	Azı	ONE SISMICA	38
	7.3	Сая	RICHI PERMANENTI STRUTTURALI	40
	7.4	SPI	NTA DELLE TERRE	40
	7.5	Сағ	RICHI ACCIDENTALI	40
	7.6	Cor	MBINAZIONI DELLE AZIONI	40
8	RIS	ULT	ATI DELLE ANALISI E VERIFICHE	42
	8.1	Rıs	ULTATI DEL CALCOLO	42
	8.2	VEF	RIFICHE MICROPALI	42
	8.2.	1	Verifiche strutturali (A1+M1)	42
	8.2.	2	Verifiche geotecniche del grado di mobilitazione della spinta passiva (/ 42	42+M2)
	8.2.	3	Verifiche SLE	43
	8.2.	4	Verifiche di stabilità globale	43
	8.3	VEF	RIFICHE DEGLI ELEMENTI ANCORAGGIO E CONTRASTO	46
	8.3.	1	Verifiche strutturali (A1+M1) e geotecniche (A2+M2) dei tiranti	46
	8.3.	2	Verifiche strutturali travi di contrasto	47
	8.3.	3	Verifiche del cordolo in c.a	48
9	ALI	_EG	ATI	56
	9.1	ALL	EGATO 1 - SEZONE 1: PARATIA TIPO T – 5 TIRANTI ATTIVI	56
	9.2	ALL	EGATO 2 - SEZIONE 2: PARATIA TIPO T – 5 TIRANTI ATTIVI	57
	9.3	ALL	EGATO 3 - SEZIONE 3: PARATIA TIPO T – 4 TIRANTI ATTIVI	58
	9.4	ALL	EGATO 4 - SEZIONE 4: PARATIA TIPO T – 3 TIRANTI ATTIVI	59

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

- 9.5 ALLEGATO 5 SEZIONE 5: PARATIA TIPO M 2 TIRANTI ATTIVI E TIRANTE PASSIVO60
- 9.6 ALLEGATO 6 SEZIONE 6: PARATIA TIPO M 1 TIRANTE ATTIVO E TIRANTE PASSIVO.....61

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

3

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo – Galleria Naturale Chighizzu GN02

1 GENERALITA'

1.1 Oggetto

La presente relazione illustra l'analisi e le verifiche strutturali e geotecniche effettuate per la progettazione delle paratie provvisionali di imbocco in corrispondenza della Galleria Naturale Chighizzu - GN02, dalla progressiva Pk. 4+040.00 alla Pk.4+095.00 (asse dx) per l'imbocco lato Cagliari e alla progressiva Pk. 4+980.00 (asse dx) e dalla Pk. 4+931.80 alla Pk. 4+966.8 (asse sx), per l'imbocco lato Sassari, previsto nell'ambito dei lavori di realizzazione della "S.S. 131 Carlo Felice – Completamento itinerario Sassari-Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 – 2° lotto dal km 202 al km 209+500".

I calcoli e le verifiche strutturali di resistenza relative alle sezioni più sollecitate sono stati elaborati utilizzando lo schema statico bidimensionale nel rispetto del metodo semiprobabilistico agli stati limite. Gli stati limite di tipo geotecnico vengono verificati secondo l'equilibrio limite.

Le analisi e le verifiche statiche sono condotte conformemente al livello di Progettazione Definitiva di cui trattasi e mirano al dimensionamento degli elementi principali per consentirne una piena definizione dal punto di vista prestazionale ed economico (§art. 26 e 29 D.P.R. 5/10/2010, n°207).

Le analisi e le verifiche degli aspetti di dettaglio, saranno sviluppate nella successiva fase di Progettazione Esecutiva.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

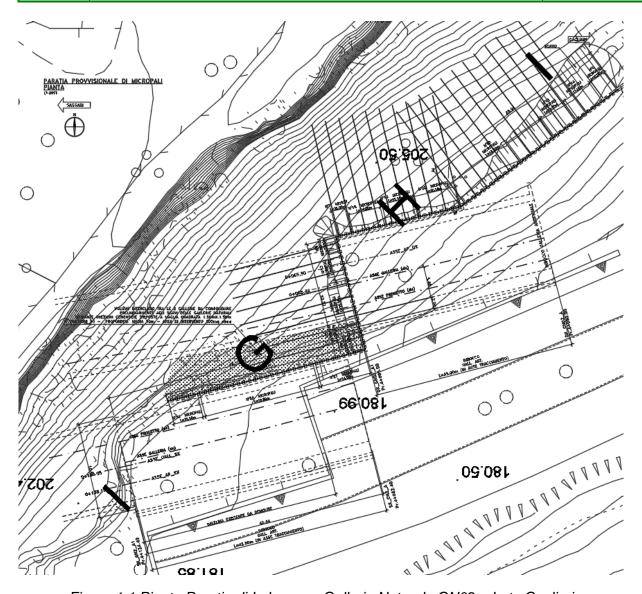


Figura 1.1 Pianta Paratia di Imbocco – Galleria Naturale GN02 – Lato Cagliari

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

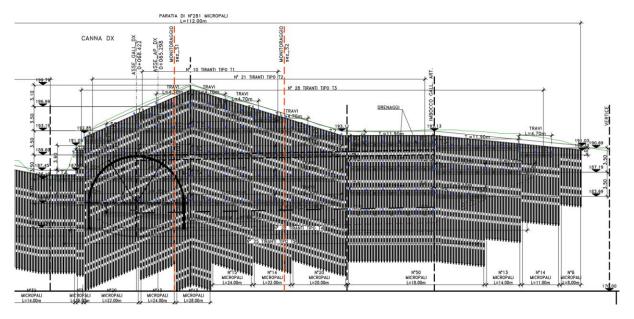


Figura 1.2 Prospetto Paratia di imbocco – Galleria Naturale GN02 – Lato Cagliari

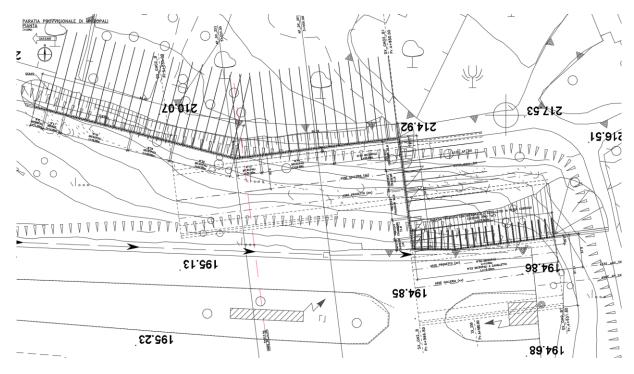


Figura 1.3 Pianta Paratia di Imbocco – Galleria Naturale GN02 – Lato Sassari

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Figura 1.4 Prospetto Paratia di imbocco – Galleria Naturale GN02 – Lato Sassari

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

1.2 Descrizione delle opere

Le opere oggetto della presente relazione sono le paratie di micropali da realizzarsi come opere di sostegno a carattere provvisionale durante l'esecuzione dei lavori in oggetto.

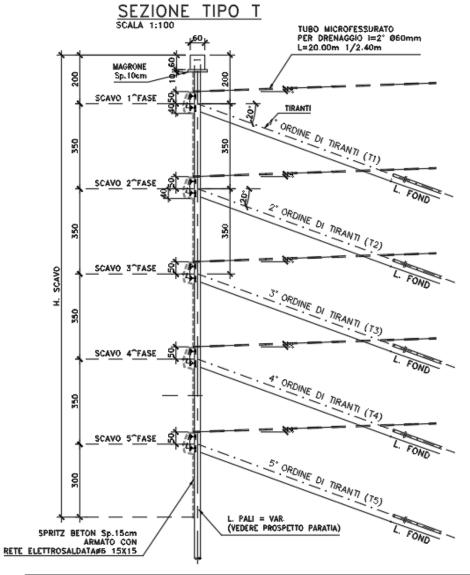
Al di sopra dei vari ordini di tiranti delle paratie, si prevede l'inserimento di tubi microfessurati di diametro Φ60 mm, lunghezza 20.0 m, posti ad ingterasse i=2.40 m con inclinazione di 2° e tali da garantire il progressivo abbassamento del livello di falda (se presente) in corrispondenza della quota stessa dei dreni, durante le operazioni di scavo. In tal modo, in ciascuna fase di scavo intermedia, la quota del livello di falda rispetto al fondo scavo risulta pari all'interasse verticale dei tiranti (3.50 m) più 1.0 m (esclusa al più la prima fase, a cui è associato il livello di falda in-situ). Nello specifico:

TIPO T: paratia di micropali con <u>cinque ordini</u> di tiranti attivi.

La paratia è costituita da micropali Ф240 mm di lunghezza massima Lm=7.60 m a 23.60 m, armati con tubolare in acciaio Φ168.3mm spessore 10 mm e lunghezza variabile da Lt=8.00 a 24.00 m. I micropali verticali sono posti ad un interasse i = 0.40 m.

I tiranti attivi a trefoli con Φ 150mm, sono inclinati di 20° e posti ad un interasse it=2.40m. Ogni tirante presenta tre trefoli da 0.6". I tiranti del primo ordine dall'altro, sono di lunghezza totale di 24.00 m (di cui il bulbo da 9.0 m), il secondo e il terzo ordine dall'alto, sono di lunghezza totale di 22.00 m (di cui il bulbo da 9.0 m), mentre il terzo e il quarto ordine dall'altro, sono di lunghezza totale di 19.00 m (di cui il bulbo da 9.0 m). Il primo ordine di tiranti è posto ad una distanza di 2.0 m da estradosso cordolo, il secondo ordine ad una distanza di 3.50 m dal primo ordine, il terzo ordine a 3.50 m dal secondo, il quarto ad una distanza di 3.50 m dal terzo ordine e il quinto ad una distanza di 3.50 m dal quarto ordine. I tiranti sono contrastati con 2 profili HEB180.

È presente un cordolo in c.a. di larghezza 0.60 m e di altezza 0.6 m.


Le altezze di scavo, risultano variabili in funzione della posiziona rispetto al prospetto della paratia. Si faccia riferimento a quanto riportato in seguito, in merito alle sezioni di calcolo.

La superficie verticale della paratia in corrispondenza dello scavo, è regolarizzata e ricorperta con uno strato di spritz beton di spessore 0.15 m, armato con r.e.s. Φ6/15x15 cm.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

	TABELLA TIRANTI											
DEN	DEN TIPO	N.trefoli	N0	Llib	Lfond	Ltot	<pre>merf</pre>	Interasse	incl. Vert (β)	incl. Orizz. (a)	Trave Portatiranti	
DEN		N.treion	kN	m	m	m	m	m	deg	deg	Tipo	
T1	Provisorio	3	300	15.0	9.0	24.0	0.150	2.40	20.0	0.0	2 HEB180	
T2	Provisorio	3	300	13.0	9.0	22.0	0.150	2.40	20.0	0.0	2 HEB180	
T3	Provisorio	3	300	13.0	9.0	22.0	0.150	2.40	20.0	0.0	2 HEB180	
T4	Provisorio	3	300	10.0	9.0	19.0	0.150	2.40	20.0	0.0	2 HEB180	
T5	Provisorio	3	300	10.0	9.0	19.0	0.150	2.40	20.0	0.0	2 HEB180	

Figura 1.5 Sezione Paratia tipo T

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

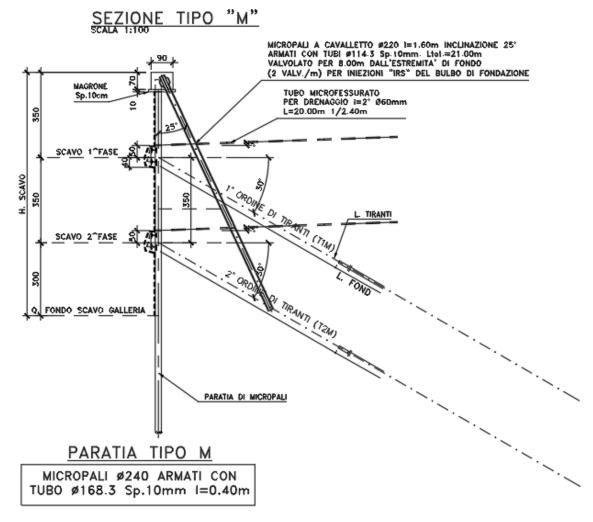
TIPO M: paratia di micropali con <u>un ordine</u> di tiranti attivi e micropali a cavaletto.

La paratia è costituita da micropali ⊕240 mm di lunghezza di Lm=13.60 m, armati con tubolare in acciaio ⊕168.3mm spessore 10.0 mm e lunghezza di Lt=14.0 m. I micropali verticali sono posti ad un interasse i = 0.40 m.

I micropali inclinati di 25° hanno diametro Φ220 mm e lunghezza totale di Lt=21.0 m (di cui il bulbo da 8.00 m), sono armati con tubolare in acciaio Φ114.3mm di spessore 10.0 mm e sono posti ad un interasse i = 1.60 m.

I tiranti attivi a trefoli con Φ150mm, sono inclinati di 30° e posti ad un interasse it=2.40m. Ogni tirante con tre trefoli, da 0.6", di lunghezza totale 19.00 m (di cui il bulbo da 9.0 m) è posto ad una distanza di 4.0 m da estradosso cordolo. I tiranti sono contrastati con 2 profili HEB180.

È presente un cordolo in c.a. di larghezza 0.90 m e di altezza 0.70 m.


Le altezze di scavo, risultano variabili in funzione della posiziona rispetto al prospetto della paratia. Si faccia riferimento a quanto riportato in seguito, in merito alle sezioni di calcolo.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

	TA BELLA TIRA NTI												
DEN	TIPO	N.tre foli	N0	Llib	Lfond	Ltot	¢ perf	Interasse	ind. Vert (β)	incl. Orizz. (a)	Trave Portatiranti		
DEN	HEO	1110	N. GEIOII	N.UEIOII	kN	m	m	m	m	m	deg	deg	Tipo
T1M	Prowisorio	3	300	10.0	9.0	19.0	0.150	2.40	20.0	0.0	2 HEB180		
T2M	Provisorio	3	300	10.0	9.0	19.0	0.150	2.40	20.0	0.0	2 HEB180		

Figura 1.6 Sezione Paratia tipo M

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

Opere Provvisionali Imbocchi - Relazione di Calcolo –

Galleria Naturale Chighizzu GN02

CA-357

1.3 Descrizione delle sezioni di calcolo

L'immagine riportata in seguito, rappresenta le sezioni di calcolo adottate in fase di dimensionamento delle opere.

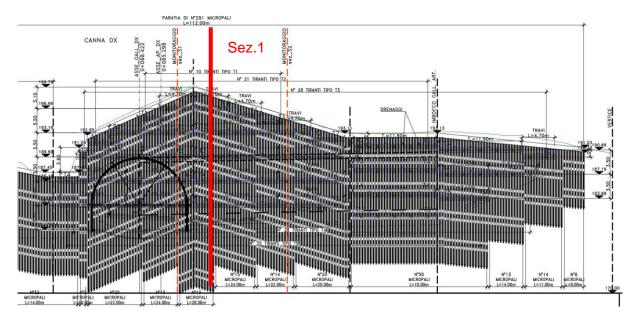


Figura 1.7 Prospetto Paratia di imbocco – Galleria Naturale GN02 – Lato Cagliari

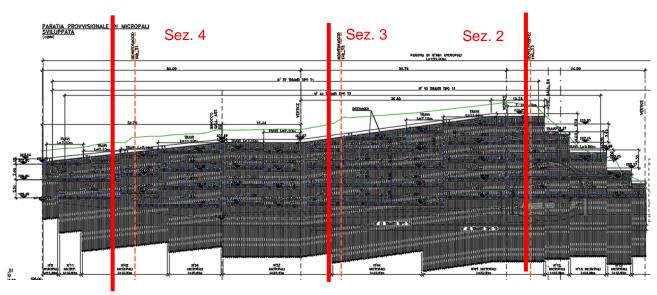


Figura 1.8 Prospetto Paratia di imbocco - Galleria Naturale GN02 - Lato Sassari - 1

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo – Galleria Naturale Chighizzu GN02

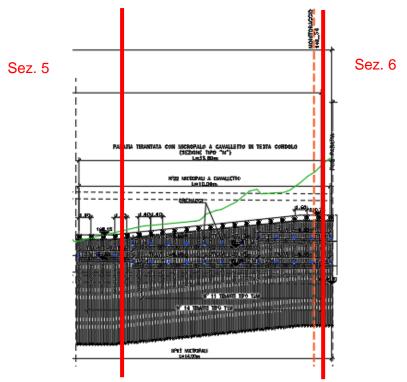
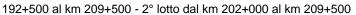


Figura 1.9 Prospetto Paratia di imbocco – Galleria Naturale GN02 – Lato Sassari - 2

In prima istanza, si è fatto riferimento alle massime altezze di scavo riscontrabili nel prospetto di ciascun imbocco e si sono analizzate le condizioni di spinta dovute alla morfologia del versante interagente con l'opera e alle stratigrafie interessate.


In secondo luogo, si sono confrontate le spinte e le sollecitazioni ottenute nei due casi.

Poiché è emerso che le condizioni più gravose si hanno in corrispondenza dell'imbocco lato Sassari, le successive sezioni di calcolo, sono state considerate esclusivamente in tale imbocco.

Da questo processo di confronto, scaturiscono le sezioni di calcolo oggetto della presente relazione.

Nello specifico, sono state analizzate N°6 sezioni di calcolo aventi le seguenti caratteristiche:

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

Imbocco lato Cagliari:

Paratie di micropali con 5 tiranti attivi a trefoli:

		SEZIONE 1
Dati generali		TIPO T
ø micropalo	m	0.24
ø tubo	mm	168.3
sp tubo	mm	10
int	mm	0.4
L micropalo = L foro	m	23.6
H cordolo	m	0.6
H tubo nel cord	m	0.4
L tubo	m	24
H da intr cord	m	19.5
H da estr cord	m	20.1
H infissione	m	4.1
L tot	m	24.2
As	mm ²	4973.1
I	m ⁴	0.0000156
Wel	mm ³	185856.67
Е	N/mm ²	210000
f _{yk}	MPa	355
Cls		C25/30

Tipologia di ancoragg	gio	TIRANTI ATTIVI
n° ordini	-	5
ø bulbo	m	0.15
ø trefoli	11	0.6
n°trefoli	-	3
A tot trefoli	m ²	0.00042
int	m	2.4
α sull'oriz	0	20
L tot, 1	m	19
L libera, 1	m	10
L bulbo, 1	m	9
L tot, 2	m	22
L libera, 2	m	13
L bulbo, 2	m	9
L tot, 3	m	24
L libera, 3	m	15
L bulbo, 3	m	9
fptk	Мра	1860
fp(1)k	Мра	1670

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo – Galleria Naturale Chighizzu GN02

Imbocco lato Sassari:

Paratie di micropali con tiranti attivi a trefoli:

		SEZIONE 2	SEZIONE 3	SEZIONE 4
Dati generali		TIPO T	TIPO T	TIPO T
ø micropalo	m	0.24	0.24	0.24
ø tubo	mm	168.3	168.3	168.3
sp tubo	mm	10	10	10
int	mm	0.4	0.4	0.4
L micropalo = L foro	m	23.6	21.1	17.6
H cordolo	m	0.6	0.6	0.6
H tubo nel cord	m	0.4	0.4	0.4
L tubo	m	24	21.5	18
H da intr cord	m	19.5	15.9	12.4
H da estr cord	m	20.1	16.5	13
H infissione	m	4.1	5.2	5.2
L tot	m	24.2	21.7	18.2
As	mm ²	4973.1	4973.1	4973.1
I	m^4	0.0000156	0.0000156	0.0000156
Wel	mm ³	185856.67	185856.67	185856.67
Е	N/mm ²	210000	210000	210000
f _{yk}	MPa	355	355	355
Cls		C25/30	C25/30	C25/30

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo – Galleria Naturale Chighizzu GN02

Tipologia di ancoragg	io	TIRANTI ATTIVI	TIRANTI ATTIVI	TIRANTI ATTIVI
n° ordini	1	5	4	3
ø bulbo	m	0.15	0.15	0.15
ø trefoli	=	0.6	0.6	0.6
n°trefoli	1	3	3	3
A tot trefoli	m^2	0.00042	0.00042	0.00042
int	m	2.4	2.4	2.4
α sull'oriz	0	20	20	20
L tot, 1	m	19	19	19
L libera, 1	m	10	10	10
L bulbo, 1	m	9	9	9
L tot, 2	m	22	22	22
L libera, 2	m	13	13	13
L bulbo, 2	m	9	9	9
L tot, 3	m	24	/	/
L libera, 3	m	15	/	/
L bulbo, 3	m	9	/	/
fptk	Мра	1860	1860	1860
fp(1)k	Мра	1670	1670	1670

Paratie di micropali con tiranti attivi a trefoli e tirante passivo:

		SEZIONE 5	SEZIONE 6
Dati generali		TIPO M	TIPO M
ø micropalo	m	0.24	0.24
ø tubo	mm	168.3	168.3
sp tubo	mm	10	10
int	mm	0.4	0.4
L micropalo = l	m	13.6	13.6
H cordolo	m	0.7	0.7
H tubo nel cord	m	0.4	0.4
L tubo	m	14	14
H da intr cord	m	9.3	5.8
H da estr cord	m	10	6.5
H infissione	m	4.3	7.8
L tot	m	14.3	14.3
As	mm ²	4973.1	4973.1
I	m^4	0.0000156	0.0000156
Wel	mm ³	185856.67	185856.67
Е	N/mm ²	210000	210000
f_{yk}	MPa	355	355
Cls		C25/30	C25/30

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

- · 1 · 1·		TID 4 4 IT 4 TT 0	TID 4 4 IT! 4 TT!! (!
Tipologia di ancoraggio		HRAN II ATTIVI	TIRANTI ATTIVI
n° ordini	-	2	1
ø bulbo	m	0.15	0.15
ø trefoli	=	0.6	0.6
n°trefoli	-	3	3
A tot trefoli	m ²	0.00042	0.00042
int	m	2.4	2.4
α sull'oriz	0	30	30
L tot	m	19	19
L libera	m	10	10
L bulbo	m	9	9
fptk	Мра	1860	1860
fp(1)k	Мра	1670	1670

Tipologia di ancoraggio		TIRANTI PASSIVI	TIRANTI PASSIVI
ø foro	m	0.22	0.22
ø armatura	m	114.3	114.3
spessore arma	mm	10	10
A tot armatura	m ²	0.00328	0.00328
int	m	1.6	1.6
α sull'oriz	0	25	25
L tot, 1	m	21	21
L libera, 1	m	13	13
L bulbo, 1	m	8	8
fyk	Мра	355	355

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

Sanas

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo – Galleria Naturale Chighizzu GN02

2 NORMATIVE E RIFERIMENTI

Le analisi e le verifiche delle strutture sono state effettuate nel rispetto della seguente normativa vigente:

- [D_1]. DM 17 gennaio 2018: Aggiornamento delle <<Norme tecniche per le costruzioni>> (nel seguito indicate come NTC18).
- [D_2]. Circolare 21 gennaio 2019 n.7: Istruzioni per l'applicazione dell' "Aggiornamento delle Norme tecniche per le costruzioni" di cui al DM 17 gennaio 2018, supplemento ordinario n° 5 alla G. U. n° 35 del 11/02/2019 (nel seguito indicate come CNTC18).
- [D_3]. Norma Europea UNI EN 206: Calcestruzzo Specificazione, prestazione, produzione e conformità (Dicembre 2016).
- [D_4]. Norma Italiana UNI 11104: Calcestruzzo Specificazione, prestazione, produzione e conformità – Specificazioni complementari per l'applicazione della EN 206 (luglio 2016).

3 NORME TECNICHE

Il metodo di calcolo adottato è quello semiprobabilistico agli stati limite, con applicazione di coefficienti parziali per le azioni o per l'effetto delle azioni, variabili in ragione dello stato limite indagato.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

CARATTERISTICHE DEI MATERIALI E RESISTENZE DI PROGETTO

4.1 Calcestruzzi

4.1.1 Caratteristiche ai fini della durabilità

Al fine di valutare le caratteristiche vincolanti delle miscele di calcestruzzo nei confronti della durabilità viene fatto riferimento alle norme [D 3] e [D 4].

Di seguito, per ciascun elemento viene riportata la classe di esposizione che risulta vincolante ai fini delle caratteristiche della miscela. Inoltre, sono riportati la classe di resistenza, i range previsti per le dimensioni massime degli aggregati, la classe di consistenza, il valore massimo del rapporto acqua/cemento, il tipo di cemento da impiegare in funzione della parte d'opera e il contenuto minimo di cemento:

CARATTERISTICHE DEI CALCESTRUZZI (UNI EN 206-1 / UNI 11104)							
CALCESTRUZZO PER		Magrone di sottofondazione	Cordoli				
Classe di resistenza (fck/Ro (Mpa)	C12/15	C25/30					
Classe di esposizione amb	ientale		XC2				
L manage in a mti (mana)	Dupper	-	32				
φ max inerti (mm)	Dlower		20				
Classe di consistenza		-	S4				
Rapporto max acqua/ceme	-	0.6					
Contenuto minimo di ceme	nto (kg/m³)	150	300				

Tabella 4.1 – Caratteristiche dei Calcestruzzi

In ogni caso, dovrà essere garantito il rispetto delle classi di esposizione e resistenza sopra indicate.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

4.1.2 Copriferri nominali

I valori minimi dello spessore dello strato di ricoprimento di calcestruzzo (copriferro), ai fini della protezione delle armature dalla corrosione, sono riportati nella Tab. C4.1.IV delle circolari applicative §[D_2], nella quale sono distinte le tre condizioni ambientali di Tab. 4.1.IV delle NTC:

Tabella C4.1.IV - Copriferri minimi in mm

			barre da c.a. elementi a piastra							vi da ca.p. ri elementi
Cmin	C ₀	ambiente	C≥Co	C _{min} ≤C <c<sub>o</c<sub>	C≥C₀	C _{min} ≤C <c<sub>o</c<sub>	C≥C₀	C _{min} ≤C <c<sub>o</c<sub>	C≥C _o	C _{min} ≤C∢C _o
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

I valori della tabella C4.1.IV si riferiscono a costruzioni con Vita Nominale di 50 anni (tipo 2 della Tab. 2.4.1 delle NTC). Per costruzioni con vita nominale di 100 anni (tipo 3 della citata Tab. 2.4.1), i valori della Tab. C4.1.IV vanno aumentati di 10 mm.

Per la definizione del calcestruzzo nominale, ai valori minimi di copriferro vanno aggiunte le tolleranze di posa, pari a 5 mm, secondo indicazioni di norme di comprovata validità.

Per le produzioni di elementi sottoposte a controllo di qualità che preveda anche la verifica dei copriferri, i valori della tabella possono essere ridotti di 5 mm.

La tabella seguente illustra, i valori del calcestruzzo nominale, richiesti in base all'applicazione dei criteri sopra esposti e specializzati al caso in esame:

DETERMINAZIONE DEI COPRIFERRI NOMINALI SECONDO NTC2018								
Dati generali relativi all'opera			Var	unità				
Tipo di costruzione (1=temp. o prowisoria; 2 = p	restazioni ordinarie; 3=prestazi	ioni elevate)	TC		2			
Vita nominale dell'opera			V_N	anni	50			
Tabella C4.1.IV Copriferri minimi in mm								
	barre	da c.a.	cavi d	а с.а.р.				
	elementi a niastra	altri elementi	elementi a niastra	altri al	omonti			

			barre da c.a.				cavi da c.a.p.			
			elementi	i a piastra	altri el	ementi	elementi	a piastra	altri el	ementi
ambiente	R _{ckmin}	R _{ck0}	R _{ck} ≥R _{ck0}	$R_{ckmin} \le R_{ck} \le R_{ck0}$	R _{ck} ≥R _{ck0}	$R_{ckmin} \le R_{ck} \le R_{ck0}$	R _{ck} ≥R _{ck0}	$R_{ckmin} \le R_{ck} \le R_{ck0}$	R _{ck} ≥R _{ck0}	$R_{ckmin} \le R_{ck} \le R_{ck0}$
ordinario	30	45	15	20	20	25	25	30	30	35
aggressivo	37	50	25	30	30	35	35	40	40	45
molto ag.	45	55	35	40	40	45	5	50	50	50

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Elemento		Cordoli
Tipo di armatura (1=barre da c.a.; 2=cavi da c.a.p.)		1
Elemento a piastra		SI
Classe di esposizione		XC2
Ambiente		ordinario
Rck	Mpa	30
Check Rck min		OK
copriferro minimo (Tab. C4.1.IV NTC)	mm	20
incremento Per Vn=100 (tipo di costruzione 3)	mm	0
elem. prefabbricato con ver. Copriferri*		NO
riduzione per produzioni con ver. Copriferri		0
Tolleranza di posa		10
copriferro nominale	mm	30
* Elemento prefabbricato prodotto con sistema sottoposto a con	ntrollo di qualità che d	comprenda la ve
copriferro nominale di progetto	mm	40

Tabella 4.2 – Valori dei copriferri nominali in base alle NTC2018

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

4.1.3 Resistenze di progetto

Calcestruzzo C25/30:

Caratteristiche Calcestruzzo	Var	unità	C25/30
Resistenza a compressione caratteristica cubica	R_{ck}	Мра	30
Resistenza a compressione caratteristica cilindrica	$f_{ck} = 0.83 R_{ck}$	Мра	25
Resistenza media a compressione cilindrica	$f_{cm} = f_{ck} + 8$	Мра	33.00
Resistenza media a trazione semplice	$f_{\sf ctm}$	Мра	2.56
Resistenza caratteristica a trazione semplice	$f_{ctk5\%}=0.7 f_{ctm}$	Мра	1.80
Resistenza caratteristica a trazione semplice	$f_{ctk95\%}=1.3 f_{ctm}$	Мра	3.33
Resistenza media a trazione per flessione	$f_{cfm} = 1.2 f_{ctm}$	Мра	3.08
Modulo elastico	$E_{cm}=22000x(f_{cm}/10)^{0.3}$	Мра	31476
STATI I IMITE I II TIMI	Var	unità	

STATI LIMITE ULTIMI	Var	unità	
coefficiente γ_{c}	γс		1.50
coefficiente α_{cc}	$lpha_{ t cc}$		0.85
Resistenza a compressione di calcolo	$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c$	Мра	14.17
Resistenza a trazione di calcolo	$f_{ctd} = f_{ctk} / \gamma_c$	Мра	1.20
STATI LIMITE DI ESERCIZIO	Var	unità	
σ _{c, max} - combinazione di carico caratteristica	$\sigma_{c,max}$ =0.60 f_{ck}	Мра	15.00
$\sigma_{\!c,\;max}$ - combinazione di carico quasi permanente	$\sigma_{c,max}$ =0.45 f_{ck}	Мра	11.25
$\sigma_{\!t}$ - stato limite di formazione delle fessure	$\sigma_t = f_{ctm}/1.2$	Мра	2.14
ANCORAGGIO DELLE BARRE	Var	unità	
Tensione tan. ultima di ad.	f_{bd} =2.25 x 1.0 x 1.0 x f_{ctk}/g_c	Мра	2.69
Tensione tan. ultima di ad. $\phi \le 32$ mm - non buona ad.	f_{bd} =2.25 x 0.7 x 1.0 x f_{ctk}/g_c	MPa	1.89

4.2 Acciaio in barre per cemento armato e Reti Elettrosaldate

4.2.1 Qualità dell'acciaio

Acciaio in barre B450C in accordo a DM 17/01/2018 (Capitolo 11).

Le Reti Elettrosaldate (RES), potranno essere realizzate impiegando acciaio B450A con le limitazioni all'impiego previste nel capitolo 11 delle NTC2018.

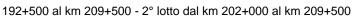
Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

4.2.2 Resistenze di progetto

Caratteristiche Acciaio per Calcestruzzo armato	Var	unità		
Qualità dell'acciaio			B450C	B450A
Tensione caratteristica di snervamento nominale	f_{yk}	Мра	450	450
Tensione caratteristica a carico ultimo nominale	f_{tk}	Мра	540	450
Modulo elastico	Es	Мра	210000	210000
diametro minimo della barra impiegabile	ф _{тіп}	mm	6	5
diametro massimo della barra impiegabile	∳ _{max}	mm	40	10
STATI LIMITE ULTIMI	Var	unità		
coefficiente γ_s	γs		1.15	1.15
Resistenza di calcolo	$f_{yd} = f_{yk}/\gamma_s$	Мра	391.3	391.3
STATI LIMITE DI ESERCIZIO	Var	unità		
σ _{s,max} - combinazione di carico caratteristica	$\sigma_{s,max}=0.8 f_{yk}$	Мра	360.0	360.0


4.3 Acciaio per carpenteria metallica

4.3.1 Acciaio per micropali

Acciaio tipo \$355

Caratteristiche Acciaio da carpenteria metallica		Var	unità	UNI EN 10025
Qualità dell'acciaio				S355 W
Tensione caratteristica di snervamento	t ≤ 40 mm	f _{yk}	Мра	355
Tensione caratteristica di rottura	t = 40 mm	f_{tk}	Мра	510
Tensione caratteristica di snervamento	40 mm < t ≤ 80 mm	f_{yk}	Мра	335
Tensione caratteristica di rottura	40 111111 < 1 3 00 111111	f_{tk}	Мра	490
Modulo elastico		Es	Мра	210000
STATI LIMITE ULTIMI		Var	unità	
coeff. di sicurezza per resistenza delle sezioni γ_{m0}		γm0		1.05
coeff. di sicurezza per resistenza all'instabilità dellle membrature γ_{m1}		γm1		1.05
coeff. di sicurezza per resistenza all'instabilità dellle membrature dei ponti γ_{m1}				1.10
coeff. di sicurezza per resistenza alla frattura, delle sez. Tese indebol	lite dai fori γ _{m2}	γm2		1.25
Resistenza plastica di calcolo		$f_{yd}=f_{yk}/\gamma_{m0}$	Мра	338.1
Resistenza all'instabilità delle membrature	t ≤ 40 mm	$f_{yd}=f_{yk}/\gamma_{m1}$	Мра	338.1
Resistenza all'instabilità delle membrature dei ponti	t = 40 mm	$f_{yd}=f_{yk}/\gamma_{m1}$	Мра	322.7
Resistenza alla frattura delle sez. Tese (indebolite dai fori)		f_{yd} =0.9 f_{tk}/γ_{m2}	Мра	367.2
Resistenza plastica di calcolo		$f_{yd}=f_{yk}/\gamma_{m0}$	Мра	319.0
Resistenza all'instabilità delle membrature	40 mm < t ≤ 80 mm	$f_{yd}=f_{yk}/\gamma_{m1}$	Мра	319.0
Resistenza all'instabilità delle membrature dei ponti	40 IIIII ~ L ≥ 00 IIIII	$f_{yd}=f_{yk}/\gamma_{m1}$	Мра	304.5
Resistenza alla frattura delle sez. Tese (indebolite dai fori)		f_{yd} =0.9 f_{tk}/γ_{m2}	Мра	392.0

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

4.3.2 Acciaio per travi di ripartizione

Acciaio tipo \$275

ACCIAIO PER CARPENTERIA METALLICA

AGGIAGO FER GARI ERFERIA METALLIGA				
Caratteristiche Acciaio da carpenteria metallica		Var	unità	UNI EN 10025
Qualità dell'acciaio				S275
Tensione caratteristica di snervamento	t ≤ 40 mm	f _{yk}	Мра	275
Tensione caratteristica di rottura	t = 40 mm	f_{tk}	Мра	430
Tensione caratteristica di snervamento	40 mm < t ≤ 80 mm	f _{yk}	Мра	255
Tensione caratteristica di rottura	40 111111 < 1 ≤ 60 111111	f_{tk}	Мра	430
Modulo elastico		Es	Мра	210000
STATI LIMITE ULTIMI		Var	unità	
coeff. di sicurezza per resistenza delle sezioni γ _{m0}		γm0		1.05
coeff. di sicurezza per resistenza all'instabilità dellle membrature γ_{m1}		γm1		1.05
coeff. di sicurezza per resistenza all'instabilità dellle membrature dei p	oonti γ _{m1}	γm1		1.10
coeff. di sicurezza per resistenza alla frattura, delle sez. Tese indebol	ite dai fori γ _{m2}	γ _{m2}		1.25
Resistenza plastica di calcolo		$f_{yd}=f_{yk}/\gamma_{m0}$	Мра	261.9
Resistenza all'instabilità delle membrature	t ≤ 40 mm	$f_{yd}=f_{yk}/\gamma_{m1}$	Мра	261.9
Resistenza all'instabilità delle membrature dei ponti	t ≤ 40 mm	$f_{yd}=f_{yk}/\gamma_{m1}$	Мра	250.0
Resistenza alla frattura delle sez. Tese (indebolite dai fori)		f_{yd} =0.9 f_{tk}/γ_{m2}	Мра	309.6
Resistenza plastica di calcolo		$f_{yd}=f_{yk}/\gamma_{m0}$	Мра	242.9
Resistenza all'instabilità delle membrature	40 mm < t ≤ 80 mm	$f_{yd}=f_{yk}/\gamma_{m1}$	Мра	242.9
Resistenza all'instabilità delle membrature dei ponti	40 IIIIII < l ≥ 60 IIIIII	$f_{yd}=f_{yk}/\gamma_{m1}$	Мра	231.8
Resistenza alla frattura delle sez. Tese (indebolite dai fori)		f_{yd} =0.9 f_{tk}/γ_{m2}	Мра	344.0

4.3.3 Acciaio per trefoli

Caratteristiche Acciaio da precompressione	Var	unità	
Tipologia di armatura			Trefoli
Tensione caratteristica a carico ultimo	f_{ptk}	Мра	1860
Tensione caratteristica di snervamento	$f_{pyk} f_{p(0.1)k} f_{p(1)k} *$	Мра	1670
Modulo elastico	Es	Мра	195000

^{*} f_{pyk} per acciaio in barre $f_{p(0.1)k}$ per acciaio in fili $f_{p(1)k}$ per acciaio in trefoli e trecce

STATI LIMITE ULTIMI	Var	unità	
coefficiente γ_s	γs		1.15
Resistenza di calcolo	fyd=fyk/gs	Mpa	1452

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

INQUADRAMENTO GEOTECNICO

L'assetto litologico di interesse per le paratie di imbocco in oggetto si configura differente per i due imbocchi, ma in ogni caso risulta caratterizzato dalla presenza di materiali di natura prevalentemente rocciosa. Dalle risultanze delle indagini geognostiche effettuate, è stato individuato un livello di falda elevato nel solo imbocco lato Sassari, di cui si è tenuto conto nelle analisi.

In particolare, per l'imbocco lato Cagliari, si individua un unico strato di marne "M" con tracce di componente argillosa "AM". Il livello di falda risulta assente.

Per l'imbocco lato Sassari, invece, si individua un primo strato di calcari bioclastici "CB" di spessore significativo pari a 15.00 m da testa paratia, seguito da uno strato di marne "M". Il livello di falda si attesta attorno a 204.00 m s.l.m.

5.1 Stratigrafie di calcolo

Per il calcolo delle paratie oggetto della presente relazione, si sono assunti due differenti assetti litologici per i due imbocchi, che sono stati entrambi analizzati con riferimento alle sezioni di altezza massima.

A sequire, i parametri geotecnici medi adottati in fase di dimensionamento delle opere.

Imbocco lato Cagliari:

Strato 2	М
Profondità - z (m)	-
Peso di volume – γ (kN/mc)	19.9
Angolo di attrito – φ'(°)	30.1
Coesione drenata – c' (kPa)	165

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo – Galleria Naturale Chighizzu GN02

Imbocco lato Sassari:

Strato 1	СВ
Profondità - z (m)	Da 0 a 15 m
Peso di volume – γ (kN/mc)	20.1
Angolo di attrito – φ'(°)	26.7
Coesione drenata – c' (kPa)	125

Strato 2	M
Profondità - z (m)	Da 15 m in giù
Peso di volume – γ (kN/mc)	19.9
Angolo di attrito – φ'(°)	30.1
Coesione drenata – c' (kPa)	165

Cautelativamente e a favore di sicurezza, tenuto conto del peso della coesione nei problemi geotecnici di scarico tensionale e per tener conto di una possibile riduzione di questo parametro a lungo termine, per i terreni di natura rocciosa, sono stati adottati valori di c' dimezzati rispetto a quelli indicati nella Relazione Geotecnica.

Si è inoltre tenuto conto direttamente delle pendenze dei versanti a tergo delle opere.

Nel caso in esame la falda è stata portata in conto, con riferimento ad un livello iniziale di 204.00 m s.l.m., per il solo imbocco lato Sassari.

Relativamente ai moduli elastici del terreno sono stati adottati valori "operativi", che tengono conto del livello di deformazione tipico del problema esaminato, pari a $E_0 = 525$ MPa (per le marne "M"), pari a $E_0 = 540$ MPa (per i calcari bioclastici "CB").

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

CRITERI DI VERIFICA DELLE PARATIE

6.1 Modello di calcolo

Le analisi di stabilità locale delle opere di sostegno e quelle per la valutazione delle sollecitazioni negli elementi resistenti (micropali e tiranti) sono state condotte mediante l'ausilio del codice di calcolo Paratie Plus prodotto da CeAS.

In tale codice la schematizzazione dell'interazione tra paratia e terreno avviene considerando:

- la paratia come una serie di elementi il cui comportamento è caratterizzato dalla rigidezza flessionale EJ;
- il terreno come una serie di molle di tipo elasto-plastico connesse ai nodi della paratia.

Il problema è risolto con una schematizzazione a modello piano in cui viene analizzata una "fetta" di parete di larghezza unitaria.

La modellazione numerica dell'interazione terreno-struttura è del tipo "trave su suolo elastico": le pareti di sostegno vengono rappresentate con elementi finiti trave il cui comportamento è definito dalla rigidezza flessionale EJ, mentre il terreno viene simulato attraverso elementi elastoplastici monodimensionali (molle) connessi ai nodi delle paratie: ad ogni nodo convergono uno o al massimo due elementi terreno.

Il limite di questo schema sta nell'ammettere che ogni porzione di terreno, schematizzata da una "molla", abbia comportamento del tutto indipendente dalle porzioni adiacenti; l'interazione fra le varie regioni di terreno è affidata alla rigidezza flessionale della parete.

La realizzazione dello scavo sostenuto da una o due paratie puntonate/tirantate viene seguita in tutte le varie fasi attraverso un'analisi statica incrementale: ogni passo di carico coincide con una ben precisa configurazione caratterizzata da una certa quota di scavo, da un insieme di puntoni/tiranti applicati, da una precisa disposizione di carichi.

Poiché il comportamento degli elementi finiti è di tipo elasto-plastico, ogni configurazione dipende in generale dalle configurazioni precedenti e lo sviluppo di deformazioni plastiche ad un certo passo condiziona la risposta della struttura nei passi successivi. La soluzione ad ogni nuova configurazione (step) viene raggiunta attraverso un calcolo iterativo alla Newton-Raphson.

L'analisi ha lo scopo di indagare la risposta strutturale in termini di deformazioni laterali subite dalla parete durante le varie fasi di scavo e di conseguenza la variazione delle

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

5 anas

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo – Galleria Naturale Chighizzu GN02

pressioni orizzontali nel terreno. Per far questo, in corrispondenza di ogni nodo è necessario definire due soli gradi di libertà, cioè lo spostamento orizzontale e la rotazione attorno all'asse X ortogonale al piano della struttura (positiva se antioraria).

In questa impostazione particolare, inoltre, gli sforzi verticali nel terreno non sono per ipotesi influenzati dal comportamento deformativo orizzontale, ma sono una variabile del tutto indipendente, legata ad un calcolo basato sulle classiche ipotesi di distribuzione geostatica.

Nei modelli di calcolo implementati, l'esecuzione dello scavo è schematizzata mediante una successione di step. Il calcolo della pressione dell'acqua nei pori è, per ipotesi, del tutto indipendente da qualsiasi deformazione e conseguente stato di sforzo nello scheletro solido del terreno.

La legge costitutiva, rappresentativa del comportamento elasto-plastico del terreno, è identificata dai parametri di spinta e di deformabilità del terreno.

6.2 Coefficienti di spinta

Nel modello di calcolo impiegato dal software di calcolo Paratie Plus, la spinta del terreno viene determinata investigando l'interazione statica tra terreno e la struttura deformabile a partire da uno stato di spinta del terreno sulla paratia.

I parametri che identificano il tipo di legge costitutiva possono essere distinti in due sottoclassi: parametri di spinta e parametri di deformabilità del terreno.

I parametri di spinta sono il coefficiente di spinta a riposo K_0 , il coefficiente di spinta attiva K_a ed il coefficiente di spinta passiva K_p .

Il coefficiente di spinta a riposo fornisce lo stato tensionale presente in sito prima delle operazioni di scavo. Esso lega la tensione orizzontale efficace σ'_h a quella verticale σ'_v attraverso la relazione:

$$\sigma'_h = K_0 \cdot \sigma'_v$$

 K_0 dipende dalla resistenza del terreno, attraverso il suo angolo di attrito efficace ϕ' e dalla sua storia geologica. Si può assumere che:

$$K_0 = K_0^{NC} \cdot (OCR)^m$$

Dove

$$K_0^{NC} = 1 - \operatorname{sen} \phi'$$

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

è il coefficiente di spinta a riposo per un terreno normalconsolidato (OCR=1). OCR è il grado di sovraconsolidazione e m è un parametro empirico, di solito compreso tra 0.4 e 0.7.

Per tener conto dell'angolo di attrito δ tra paratia e terreno il software PARATIE impiega per Ka e Kp la formulazione rispettivamente di Coulomb e Caquot – Kerisel.

Secondo la formulazione di Coulomb il coefficiente di spinta attiva Ka vale:

$$k_{a} = \frac{\cos^{2}(\varphi' - \beta)}{\cos^{2}\beta \cdot \cos(\beta + \delta) \cdot \left[1 + \sqrt{\frac{sen(\delta + \varphi') \cdot sen(\varphi' - i)}{\cos(\beta + \delta) \cdot \cos(\beta - i)}}\right]^{2}}$$

dove:

- è l'angolo di attrito del terreno φ'
- è l'angolo d'inclinazione del diaframma rispetto alla verticale β
- δ è l'angolo di attrito paratia-terreno posto pari a 2/3 φ'.
- è l'angolo d'inclinazione del terreno a monte della paratia rispetto all'orizzontale

Secondo la formulazione di Caquot - Kerisel il coefficiente di spinta passiva Kp viene calcolato secondo la seguente figura:

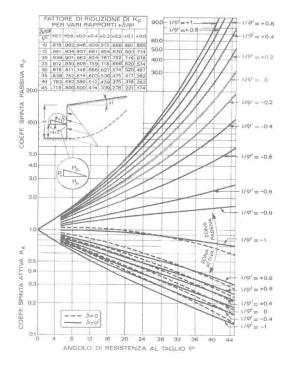


Figura 6.1: Formulazione di Caquot – Kerisel per Kp che considera superfici di rottura curvilinee

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

Il valore limite della tensione orizzontale sarà dato da:

$$\sigma'_h = K_a \cdot \sigma'_v - 2 \cdot c' \cdot \sqrt{K_a}$$

$$\sigma'_h = K_p \cdot \sigma'_v + 2 \cdot c' \cdot \sqrt{K_p}$$

a seconda che il collasso avvenga in spinta attiva o passiva rispettivamente.

I parametri di deformabilità del terreno compaiono nella definizione della rigidezza delle molle. Per un letto di molle distribuite la rigidezza di ciascuna di esse, k, è data da:

$$K = E / L$$

ove E è un modulo di rigidezza del terreno mentre L è una grandezza geometrica caratteristica.

Poiché nel programma PARATIE le molle sono posizionate a distanze finite Δ, la rigidezza di ogni molla è:

$$K = (E \cdot \Delta) / L$$

Il valore di Δ è fornito dalla schematizzazione ad elementi finiti. Il valore di L è fissato automaticamente dal programma. Esso rappresenta una grandezza caratteristica che è diversa a valle e a monte della paratia perché diversa è la zona di terreno coinvolta dal movimento in zona attiva e passiva.

 $L_A = 2/3 \cdot I_a \cdot \tan(45^\circ - \phi'/2)$ in zona attiva (uphill)

 $L_P = 2/3 \cdot I_p \cdot \tan(45^\circ + \phi'/2)$ in zona Passiva (downhill)

con la e lp rispettivamente:

 $I_a = min(I, 2H)$

 $I_p = min (I - H, H)$

dove I = altezza totale della paratia e H = altezza corrente dello scavo

Per i coefficienti di spinta attiva e passiva, tenuto conto che le corrispondenti forze risultano inclinate sul piano orizzontale, si considerano le componenti in direzione orizzontale.

Storie di carico 6.3

Tenendo conto delle verifiche da effettuare agli SLE ed agli SLU sono state considerate le seguenti storie di carico:

 Configurazione A1+M1 (STATICA): Una prima storia di carico in cui i parametri del terreno sono considerati con riferimento ai loro valori caratteristici ed le azioni sono considerate con fattore parziale unitario. Questa storia fornisce le

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

sollecitazioni sugli elementi strutturali e gli spostamenti orizzontali delle paratie per le successive verifiche agli SLE. Inoltre, le sollecitazioni per la verifica SLU combinazione A1 + M1, sono ottenute da questa storia di carico applicando il fattore moltiplicativo γ_F ;

- Configurazione A1+M1 (SISMICA): Una seconda storia di carico anch'essa con parametri del terreno caratteristici ed le azioni sono considerate con fattore parziale unitario in cui è presente l'azione sismica. Questa storia fornisce le sollecitazioni sugli elementi strutturali per le successive verifiche agli SLU-SLV. In questo caso, le sollecitazioni per la verifica SLU combinazione A1 + M1, sono ottenute da questa storia di carico applicando il fattore moltiplicativo γ_F pari ad 1.0;
- Configurazione A2+M2 (STATICA): Una terza storia di carico in cui i parametri del terreno sono considerati con riferimento ai coefficienti parziali M2, e le azioni sono considerate con i fattori parziali A2. Questa storia permette di valutare le condizioni di stabilità geotecnica della paratia;
- Configurazione A2+M2 (SISMICA): Una quarta storia di carico anch'essa con i parametri del terreno considerati con riferimento ai coefficienti parziali M2, e le azioni sono considerate con i fattori parziali A2. In questo caso è presente l'azione sismica. Questa storia permette di valutare le condizioni di stabilità geotecnica della paratia.

6.4 Metodologia di calcolo

6.4.1 Verifiche nei confronti degli stati limite ultimi (SLU)

Deve essere rispettata la condizione:

 $E_d \leq R_d$

Dove E_d è il valore di progetto dell'azione o degli effetti delle azioni e R_d è il valore di progetto della resistenza del terreno.

La resistenza R_d è stata determinata nei casi in oggetto con riferimento al valore caratteristico dei parametri geotecnici di resistenza, divisi per il coefficiente parziale γ_m specificato nella tabella 6.2.II delle suddette norme:

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo – Galleria Naturale Chighizzu GN02

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {m \phi}'_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	Ye	1,0	1,25
Resistenza non drenata	$c_{ m uk}$	γ_{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Le Azioni e i relativi coefficienti parziali γ_f sono indicate nella tabella 6.2.I delle norme.

Le verifiche agli <u>SLU strutturali</u> sono state condotte per le combinazioni A1 + M1, mentre le verifiche agli <u>SLU geotecniche</u> con le combinazioni A2 + M2.

6.4.2 Verifiche dei tiranti

L'armatura e la lunghezza delle fondazioni dei tiranti sono state dimensionate in base ai criteri nel seguito esposti tenendo conto del loro massimo carico di esercizio, della loro inclinazione rispetto all'orizzontale e del loro interasse.

Devono essere soddisfate le seguenti verifiche:

- Raggiungimento della resistenza degli elementi strutturali;
- Verifica allo sfilamento della fondazione dell'ancoraggio.

Raggiungimento della resistenza degli elementi strutturali

Le sollecitazioni di output del codice di calcolo per i tiranti sono fornite per metro lineare per cui, nelle verifiche di resistenza, è necessario moltiplicare tali sollecitazioni per l'interasse dei tiranti. La verifica a rottura dei tiranti di ancoraggio risulta soddisfatta quando:

$$T_{Ed} \leq T_{Rd}$$

Con:

$$T_{Ed} = T_{Ed,ml} \cdot i_{tiranti} \cdot \cos(\theta)$$

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

Dove:

 $T_{Ed.ml}$ è il tiro massimo al metro lineare ottenuto dall'analisi SLU;

 $l_{tiranti}$ è l'interasse tra i tiranti;

 θ è l'angolo di inclinazione dei tiranti nel piano orizzontale;

 T_{Ed} è il tiro massimo sul singolo tirante ottenuto dall'analisi SLU;

 T_{Rd} è il tiro resistente del singolo tirante allo stato limite ultimo.

Il tiro resistente allo SLU dei tiranti a trefoli è calcolato come segue:

$$T_{Rd} = 0.9 \cdot \frac{f_{pt(1)k} \cdot n_t \cdot A_t}{\gamma_s}$$

Dove:

 $f_{pt(1)k}$ è la tensione caratteristica all'1% della deformazione totale;

 $\gamma_{\rm S}$ è il coefficiente di sicurezza dell'acciaio e vale 1,15;

 n_t è il numero di trefoli che compongono il tirante;

 A_{t} è l'area di ciascun trefolo.

 $N_{vs} = f_{p(1)k} / 1.15 = 1670 / 1.15 = 1452 \text{ Mpa}$ Da cui:

Per i micropali a cavalletto si considera la seguente relazione:

$$N_{vs} = f_{vk} / 1.05 = 355 / 1.05 = 338.1 \text{ Mpa}$$

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

Verifica allo sfilamento della fondazione

La verifica allo sfilamento della fondazione dell'ancoraggio si esegue confrontando la massima azione Tmax,d considerando tutti i possibili SLU con la resistenza di progetto Rad determinata applicando alla resistenza caratteristica i seguenti fattori parziali:

$$R_{ad} = R_{ak}/\gamma_R$$

	Simbolo	Coefficiente parziale
Temporanei	Y Ra,t	1,1
Permanenti	Y _{Ra,p}	1,2

Poiché nel caso in esame si hanno esclusivamente opere provvisionali, si è adottato un coefficiente parziale $\gamma_{Ra,t} = 1.1$.

Il valore caratteristico Rak è stato determinato analiticamente in funzione dei parametri geotecnici:

dove ξ è un fattore di correlazione che dipende dal numero di profili di indagine. Avendo a disposizione 1 verticale d'indagine per ogni opera in oggetto, si assume $\xi = 1.8$. Il valore di Ra,c è stato stimato con l'approccio di Bustamante e Doix:

$$R_{a,c} = \pi \cdot D_a \cdot \tau_{lim} \cdot L_{anc}$$

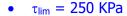
ove:

- = diametro efficace della fondazione dopo l'iniezione; D_{e}
- = adesione unitaria limite fondazione terreno.

Il valore di De non dipende oltre che dal diametro di perforazione dal tipo di terreno e dalla modalità di iniezione ed è calcolato come:

De =
$$\alpha \cdot D$$
, con D = diametro di perforazione.

Con riferimento alle indicazioni di Bustamante e Doix (1985) e tenendo conto del tipo d'iniezione del bulbo d'ancoraggio (IRS) sono stati assunti i seguenti valori:


a = 1.10

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

6.4.3 Verifiche della trave porta tiranti

La verifica di questo elemento strutturale è eseguita come una trave continua su più appoggi, con luce pari all'interasse tra i tiranti, sottoposta ad un carico ripartito (p). La sezione risulta verificata se vale:

$$M_{Fd} \leq M_{Rd}$$

Con:

$$M_{Ed} = T_{Ed,ml} \cdot \frac{i_{tiranti}^2}{10}$$

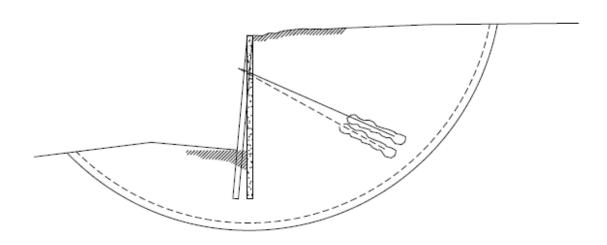
Avendo posto:

 $T_{Fd\ ml}$ è il tiro massimo al metro lineare ottenuto dall'analisi SLU;

 $\dot{l}_{tiranti}$ è l'interasse orizzontale tra i tiranti

 M_{Rd} è il momento resistente ultimo della sezione delle travi porta-tiranti.

6.4.4 Verifiche di stabilità globale del complesso paratia-terreno


Al fine di pervenire alla definizione della sicurezza dell'opera di sostegno, è necessario, tra le altre cose, garantire la stabilità globale del complesso paratia-terreno.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo dell'opera. Si determina il minimo coefficiente di sicurezza su una maglia di centri posta in prossimità della sommità del muro.

Si adotta per la verifica di stabilità globale il metodo di Bishop. Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

$$\eta = \frac{\sum_{i} \left(\frac{c_{i}b_{i} + (W_{i} - u_{i}b_{i})\tan\varphi_{i})}{m} \right)}{\sum_{i} W_{i} sen\alpha_{i}}$$

dove il termine m è espresso da

$$m = \left(1 + \frac{tg\varphi_i \cdot tg\alpha_i}{\eta}\right) \cos\alpha_i$$

In questa espressione η è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i-esima rispetto all'orizzontale, W_i è il peso della striscia i-esima, c_i e φ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed u_i è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η. Quindi essa viene risolta per successive approssimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed iterare fino a quando il valore calcolato coincide con il valore assunto.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

La verifica viene effettuata secondo la combinazione 2 (A2+M2+R2) dell'approccio 1 come previsto dalle NTC2018.

Mentre i coefficienti A2 e M2 sono integrati nel software di calcolo PARATIE-PLUS, il coefficiente riduttivo della resistenza viene utilizzato come termine di confronto con il coefficiente di sicurezza restituito dall'analisi che, quindi, dovrà essere FS ≥ 1.10.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

ANALISI DEI CARICHI

Si descrivono nel seguito le verifiche eseguite per le tipologie di opere in oggetto ed i carichi considerati. Data la natura provvisionale delle opere si trascura la presenza del sisma.

7.1 Analisi eseguite

Sono stati analizzati tutti i casi di verifica, secondo i criteri esposti al Cap. 6, come segue:

SLE	STR
SLU (A1+M1)	STR
SLU (A2+M2)	GEO
SLV	STR
SLV	GEO

7.2 Azione sismica

Per tener conto della possibilità che la condizione di scavo permanga per più di 2 anni, e comunque in via cautelativa, data l'importanza delle strutture in oggetto, si tiene conto della seguente azione sismica, relativa a "costruzioni temporanee o provvisorie" (tab. 2.4.l [D_3]) e quindi ad periodo di riferimento $V_R = 35$ anni (tab. 2.4.I [D_3]).

Tab. 2.4.I – Valori minimi della Vita nominale V_N di progetto per i diversi tipi di costruzioni

	TIPI DI COSTRUZIONI	$egin{aligned} & V_{ m alori} & { m minimi} \ & { m di} & V_{ m N} & ({ m anni}) \end{aligned}$
1	Costruzioni temporanee e provvisorie	10
2	Costruzioni con livelli di prestazioni ordinari	50
3	Costruzioni con livelli di prestazioni elevati	100

Tabella 7.1: Valori minimi della vita nominale V_N

Tabella C2.4.I. - Intervalli di valori attribuiti a V_R al variare di V_N e C_{IJ}

***************************************		VALOI	RI DI V _R		
VITA NOMINALE V _N		CLASSI	E D'USO	IV 35 ≥100	
N	I	II	III	IV	
≤10	35	35	35	35	
≥50	≥35	≥50	≥75	≥100	
≥100	≥70	≥100	≥150	≥200	

Tabella 7.2: Valori dei parametri V_R , al variare di C_U e V_N

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

Il sito è caratterizzato dai seguenti parametri:

- Categoria di sottosuolo B;
- Categoria topografica T1.

Stato Limite	V _R	a _g	F ₀	T*c
Stato Ellinte	[anni]	[g]	[-]	[s]
SLV	35	0.0452	2.8549	0.3324

Tabella 7.3: Valori dei parametri a_g , F_0 e T_c^* per suolo rigido

L'accelerazione massima attesa al sito a_{max} è definita attraverso la seguente relazione:

$$a_{max} = S_S \cdot S_T \cdot a_g$$

in cui:

 $a_g = 0.0452 g$ accelerazione massima su sito rigido;

 $S_S = 1.20$ coefficiente d'amplificazione stratigrafica;

 $S_T = 1.0$ coefficiente d'amplificazione topografica.

L'analisi della spinta del terreno in condizioni sismiche è eseguita in maniera differenziata in funzione delle rigidezze delle strutture di contrasto e delle relative capacità di spostamento.

In particolare:

Per le paratie di imbocco multitirantate si è utilizzata, in via cautelativa, la teoria di Wood per elementi rigidi.

Le componenti dell'accelerazione equivalente a_h (orizzontale) e a_v (verticale), sono valutate come:

$$a_h = \alpha \cdot \beta \cdot a_{max}$$

$$a_v = 0$$

essendo

 $\alpha = 1.0$ coefficiente di deformabilità;

 β = 1.0 coefficiente di spostamento.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo – Galleria Naturale Chighizzu GN02

7.3 Carichi permanenti strutturali

Per quanto riguarda la struttura il peso proprio degli elementi strutturali é automaticamente valutato dal programma di calcolo utilizzato per l'analisi.

7.4 Spinta delle terre

Il peso del terreno a tergo della paratia determina una spinta laterale sulla stessa avente distribuzione triangolare. L'effetto di incremento della spinta per la presenza di prescavi e inclinazioni a monte, è preso in conto mediante pendenza equivalente della superficie inclinata.

7.5 Carichi accidentali

Data la conformazione del problema in oggetto, a tergo delle paratie non risultano presenti carichi accidentali.

7.6 Combinazioni delle azioni

In accordo al par. 2.5.3 delle NTC2018 ai fini delle verifiche degli stati limite sono state considerate le seguenti combinazioni delle azioni:

• Combinazione fondamentale, impiegata per le verifiche agli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

• Combinazione rara, impiegata per le verifiche agli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

• Combinazione sismica, impiegata per gli stati limte ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

Di seguito si riportano le tabelle che esplicitano i coefficienti parziali sopra illustrati:

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

Tabella 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2}, \gamma_{\epsilon 3}, \gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

 $\textbf{Tabella 5.1.VI} - \textit{Coefficienti} \hspace{0.1cm} \psi \hspace{0.1cm} \textit{per le} \hspace{0.1cm} \textit{azioni variabili per ponti stradali e pedonali}$

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente \psi_0 di combinazione	Coefficiente ψ 1 (valori frequenti)	Coefficiente ψ2 (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	Vento a ponte scarico			
	SLU e SLE	0,6	0,2	0,0
Vento q₅	Esecuzione	0,8		0,0
	Vento a ponte carico	0,6		
Mana a	SLU e SLE	0,0	0,0	0,0
Neve q₅	esecuzione	0,8	0,6	0,5
Temperatura	T_k	0,6	0,6	0,5

valori di GEO.

(2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

(3) 1,30 per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

RISULTATI DELLE ANALISI E VERIFICHE

8.1 Risultati del calcolo

Si rimanda agli output di calcolo per la visione completa dei risultati.

8.2 Verifiche micropali

8.2.1 Verifiche strutturali (A1+M1)

La verifiche, tutte ampliamente soddisfatte, sono riporatte in allegato.

8.2.2 Verifiche geotecniche del grado di mobilitazione della spinta passiva (A2+M2)

La sicurezza nei confronti dello stato limite d'equilibrio geotecnico è calcolata confrontando la spinta passiva mobilitata con la spinta passiva disponibile:

Sezione 1 Tipo T con 5 tiranti attivi a trefoli:

Verifiche geotecniche (comb A2+M2+R1)

Spinta reale efficace (kN/m)	529.7
Max spinta ammissib (kN/m)	2373.3
c.u.	22%

Sezioni 2,3,4 Tipo T con tiranti attivi a trefoli:

Verifiche geotecniche (comb A2+M2+R1)

Spinta reale efficace (kN/m)	472.6	486.9	388.0
Max spinta ammissib (kN/m)	2046.1	2643.1	2643.1
c.u.	23%	18%	15%

Sezioni 5,6 Tipo T con tiranti attivi a trefoli e tirante passivo:

Verifiche geotecniche (comb A2+M2+R1)

Spinta reale efficace (kN/m)	237.2	370.0
Max spinta ammissib (kN/m)	2017.3	3932.1
c.u.	12%	9%

La sicurezza nei confronti della mobilitazione della resistenza limite del terreno è garantita per ogni tipologia di opera provvisionale prevista.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

8.2.3 Verifiche SLE

Di seguito si riporta lo spostamento massimo delle paratie calcolato nella fase di raggiungimento del fondo scavo:

Sezione 1 Tipo T con 5 tiranti attivi a trefoli:

Verifiche spostamenti (COMB SLE)

H fuori terra (m)	14.00
δsle (mm)	1.6
δsle/H	0.01%

Sezioni 2,3,4 Tipo T con tiranti attivi a trefoli:

Verifiche spostamenti (COMB SLE)

H fuori terra (m)	20.10	9.00	13.00
δsle (mm)	3.41	3.71	3.7
δsle/H	0.02%	0.04%	0.03%

Sezioni 5,6 Tipo T con tiranti attivi a trefoli e tirante passivo:

Verifiche spostamenti (COMB SLE)

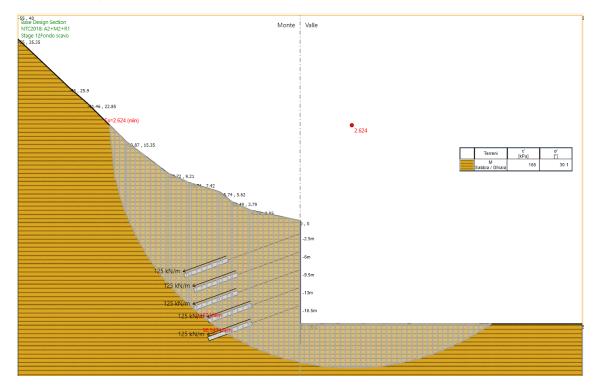
H fuori terra (m)	10.00	6.50
δsle (mm)	5.62	5.67
δsle/H	0.06%	0.09%

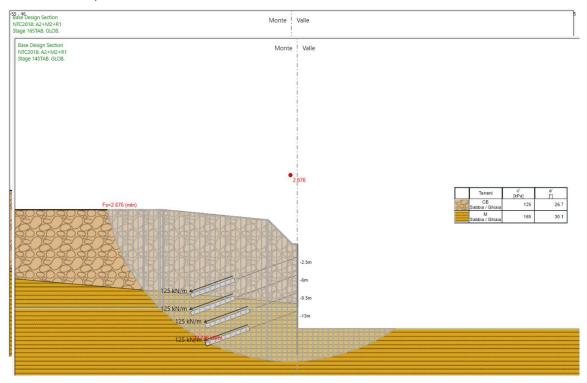
Il rapporto fra spostamento massimo e altezza totale fuori terra è inferiore all' 2%. Pertanto, tenuto conto dell'assenza di strutture a tergo delle opere e della natura provvisionale delle paratie stesse, si ritiene che i requisiti prestazionali in termini di deformabilità risultino soddisfatti.

8.2.4 Verifiche di stabilità globale

Di seguito si riporta la verifica di stabilità globale del complesso paratia-terreno, calcolato nella fase di raggiungimento del fondo scavo:

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km


192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500


CA-357

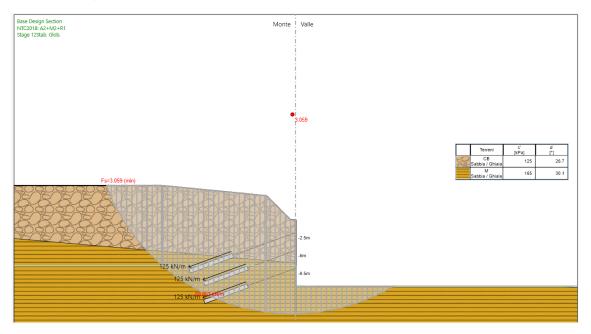
Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

Sezione 1 Tipo T con 5 tiranti attivi a trefoli:

Sezione 2 Tipo T con 5 tiranti attivi a trefoli:

Sezione 3 Tipo T con 4 tiranti attivi a trefoli:

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km


192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

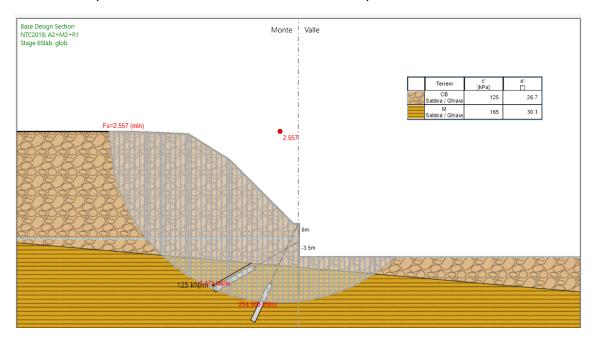
CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

Sezione 4 Tipo T con 3 tiranti attivi a trefoli:

Sezione 5 Tipo M con 2 tiranti attivi a trefoli e tirante passivo:

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km


192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

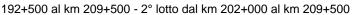
Sezione 6 Tipo M con 1 tirante attivo a trefoli e tirante passivo:

Il fattore di sicurezza associato alla stabilità globale risulta in ogni sezione superiore a 1.10. Risuta pertanto verificata la stabilità del complesso paratia-terreno.

8.3 Verifiche degli elementi ancoraggio e contrasto

Verifiche strutturali (A1+M1) e geotecniche (A2+M2) dei tiranti

Sezione 1 Tipo T con 5 tiranti attivi a trefoli:


Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (kN)	Sfruttamento GEO	Sfruttamento STR	Resistenza	Design Assumption
T1	Stage 3_Attiv. T1	390	589.05	550.44	0.662	0.709	~	NTC2018: A1+M1+R1
T2	Stage 5_Attiv. T2	390	589.05	550.44	0.662	0.709	~	NTC2018: A1+M1+R1
T3	Stage 10_Scavo T5	390.54	589.05	550.44	0.663	0.71	~	NTC2018: A1+M1+R1
T4	Stage 10_Scavo T5	390.81	589.05	550.44	0.663	0.71	~	NTC2018: A1+M1+R1
T5	Stage 12_Fondo scavo	391.22	589.05	550.44	0.664	0.711	~	NTC2018: A1+M1+R1

Sezione 2 Tipo T con 5 tiranti attivi a trefoli:

Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (kN)	Sfruttamento GEO	Sfruttamento STR	Resistenza	Design Assumption
T1	Stage 3_Att. T1	390	589.05	550.44	0.662	0.709	>	NTC2018: A1+M1+R1
T2	Stage 5_Attiv. T2	390	589.05	550.44	0.662	0.709	>	NTC2018: A1+M1+R1
T3	Stage 9_Scavo T4	391.24	589.05	550.44	0.664	0.711	~	NTC2018: A1+M1+R1
T4	Stage 12_Scavo T5	392.91	589.05	550.44	0.667	0.714	>	NTC2018: A1+M1+R1
T5	Stage 15_Fondo scavo	391.41	589.05	550.44	0.664	0.711	>	NTC2018: A1+M1+R1

Sezione 3 Tipo T con 4 tiranti attivi a trefoli:

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (kN)	Sfruttamento GEO	Sfruttamento STR	Resistenza	Design Assumption
T1	Stage 3_Attiv. T1	390	589.05	550.44	0.662	0.709	~	NTC2018: A1+M1+R1
T2	Stage 7_Scavo T3	391.27	589.05	550.44	0.664	0.711	~	NTC2018: A1+M1+R1
T3	Stage 10_Scavo T4	392.86	589.05	550.44	0.667	0.714	~	NTC2018: A1+M1+R1
T4	Stage 13_Fondo scavo	391.41	589.05	550.44	0.664	0.711	~	NTC2018: A1+M1+R1

Sezione 4 Tipo T con 3 tiranti attivi a trefoli:

Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (kN)	Sfruttamento GEO	Sfruttamento STR	Resistenza	Design Assumption
T1	Stage 5_Scavo T2	390.93	589.05	550.44	0.664	0.71	~	NTC2018: A1+M1+R1
T2	Stage 8_Scavo T3	392.88	589.05	550.44	0.667	0.714	~	NTC2018: A1+M1+R1
T3	Stage 11_Fondo scavo	391.05	589.05	550.44	0.664	0.71	~	NTC2018: A1+M1+R1

Sezione 5 Tipo M con 2 tiranti attivi a trefoli e tirante passivo:

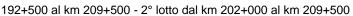
Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (kN)	Sfruttamento GEO	Sfruttamento STR	Resistenza	Design Assumption
T1	Stage 5_Scavo T2	393.49	589.05	550.44	0.668	0.715	~	NTC2018: A1+M1+R1
T2	Stage 6_Attiv. T2	390	589.05	550.44	0.662	0.709	*	NTC2018: A1+M1+R1
Cavalletto	Stage 5_Scavo T2	93.662	767.94	1058.5	0.122	0.088	~	NTC2018: A1+M1+R1

Sezione 6 Tipo M con 1 tirante attivo a trefoli e tirante passivo:

Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (kN)	Sfruttamento GEO	Sfruttamento STR	Resistenza	Design Assumption
T1	Stage 5_Fondo scavo	391.92	589.05	550.44	0.665	0.712	~	NTC2018: A1+M1+R1
Cavalletto	Stage 3_Attiv. T1	92.715	767.94	1058.5	0.121	0.088	~	NTC2018: A1+M1+R1

Come è possibile evincere dalle precedenti tabelle, tutte le verifiche risultano ampliamente soddisfatte.

8.3.2 Verifiche strutturali travi di contrasto


Ogni ordine di tiranti sarà contrastato tramite due travi HEB180. Di seguito si riportano le verifiche strutturali a flessione e taglio delle suddette travi.

Sezione 1 Tipo T con 5 tiranti attivi a trefoli:

Verifiche travi di contrasto

Ntirante (kN/m)	162.92
Med (kNm)	93.84
Ved (kNm)	195.50
Wrd (cm³)	425.7
Mrd (kNm)	222.99
c.u.	42%
Vrd (kNm)	437.60
c.u.	45%

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

Sezioni 2,3,4 Tipo T con tiranti attivi a trefoli:

Verifiche travi di contrasto

Ntirante (kN/m)	163.75	162.50	163.75
Med (kNm)	94.32	93.60	94.32
Ved (kNm)	196.50	195.00	196.50
Wrd (cm ³)	425.7	425.7	425.7
Mrd (kNm)	222.99	222.99	222.99
c.u.	42%	42%	42%
Vrd (kNm)	437.60	437.60	437.60
c.u.	45%	45%	45%

Sezioni 5,6 Tipo T con tiranti attivi a trefoli e tirante passivo:

Verifiche travi di contrasto

Ntirante (kN/m)	163.96	163.33
Med (kNm)	94.44	94.08
Ved (kNm)	196.75	196.00
Wrd (cm ³)	425.7	425.7
Mrd (kNm)	222.99	222.99
c.u.	42%	42%
Vrd (kNm)	437.60	437.60
c.u.	45%	45%

Come è possibile evincere dalle precedenti tabelle, tutte le verifiche risultano ampliamente soddisfatte.

8.3.3 Verifiche del cordolo in c.a.

Il cordolo in c.a. 0.90 x 0.70 m, risulta sollecitato dal carico di trazione indotto dal micropalo a cavalletto (tirante passivo), proiettato nel piano orizzontale, secondo uno schema di trave continua orizzontale. In via cautelativa, si considera un momento flettente in mezzeria, pari a 1/8 qL^2, dove per L si intende l'interasse dei cavalletti, pari a 1.60 m.

Le tabelle seguenti riepilogano le caratteristiche della sollecitazione per verifiche SLU ed SLE:

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

Ted,SLU	58.54	kN/m
а	25	0
Hed	24.7	kN/m
L	1.6	m
Med,SLU	7.9	kNm
Ved,SLU	19.8	kN

Tiro massimo

Azione orizzontale sul cordolo

Ted,SLER	45.038	kN/m
а	25	0
Hed	19.0	kN/m
L	1.6	m
Med,SLER	6.1	kNm

Tiro massimo

Azione orizzontale sul cordolo

8.3.3.1 Verifiche a flessione e fessurazione

Le verifiche a flessione semplice delle sezioni in c.a. sono state effettuate con il software RCSEC® prodotto da Geostru.

Si considera una sezione di larghezza pari a 0.70 cm.

L'altezza della sezione è pari a 0.90 cm.

L'armatura in zona tesa e compressa è costituita da 5\psi14.

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C25/30	
N°vertice:	X [cm]	Y [cm]
1	-35.0	0.0
2	-35.0	90.0
3	35.0	90.0
4	35.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-29.3	5.7	14
2	29.3	5.7	14
3	-29.3	84.3	14
4	29.3	84.3	14

DATI GENERAZIONI LINEARI DI BARRE

Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione N°Gen. N°Barra Ini. N°Barra Fin. Numero della barra finale cui si riferisce la generazione

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo – Galleria Naturale Chighizzu GN02

N°Barre	Numero di barre generate equidistanti cui si riferisce la generazio								
Ø	Diametro in mm delle barre della generazione								
N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø					
1 2	1	2	3	14					
	3	4	3	14					

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Momento flettent con verso positiv	e [kNm] intorno all'a o se tale da compri	aric. (+ se di compre asse x princ. d'inerzi mere il lembo sup. d	a Iella sez.
Му				asse y princ. d'inerzi mere il lembo destro	
Vy		Componente del	Taglio [kN] parallela	a all'asse princ.d'ine	rzia y
Vx		Componente del	Taglio [kN] parallel	a all'asse princ.d'ine	rzia x
N°Comb.	N	Mx	Му	Vy	Vx
1	0.00	7.90	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [l	N] applicato nel Baricentro (se di compressione)	
Mx	Momento flettent	e [kNm] intorno all'asse x prir	c. d'inerzia (tra parentesi Mo	m.Fessurazione)
		o se tale da comprimere il ler	•	
My			c. d'inerzia (tra parentesi Mor	m.Fessurazione)
	con verso positive	o se tale da comprimere il ler	nbo destro della sezione	
NºComb	N	Mv	M	
N°Comb.	IN	Mx	Му	
4	0.00	C 10	0.00	
	0.00	6.10	0.00	

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo norm	nale [kN] applicato nel Baricent	ro (+ se di compressione)	
Mx		ettente [kNm] intorno all'asse x ositivo se tale da comprimere i		,
Му	Momento fle	ositivo se tale da comprimere i ettente [kNm] intorno all'asse y ositivo se tale da comprimere i	princ. d'inerzia (tra parentesi M	
N°Comb.	N	Mx	Му	
1	0.00	6.10 (262.21)	0.00 (0.00)	

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My	Momento fle con verso po Momento fle	ale [kN] applicato nel Baricentr ettente [kNm] intorno all'asse x ositivo se tale da comprimere il ettente [kNm] intorno all'asse y ositivo se tale da comprimere il	princ. d'inerzia (tra parentesi lembo superiore della sezior princ. d'inerzia (tra parentesi	ne
N°Comb.	N	Mx	My	
1	0.00	6.10 (262.21)	0.00 (0.00)	

RISULTATI DEL CALCOLO

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo – Galleria Naturale Chighizzu GN02

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.0 cm Interferro netto minimo barre longitudinali: 13.3 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex § 7.2.6 NTC

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	7.90	0.00	0.00	250.98	0.00	31.77	15.4(12.6)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.058	-35.0	90.0	-0.00059	-29.3	84.3	-0.05698	-29.3	5.7

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.
1 0.00000000 0.000717493 -0.061074332 0.058 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

Sanas GRUPPO ES ITALIANE

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo – Galleria Naturale Chighizzu GN02

1 S 0.14 35.0 90.0 -10.0 14.7 5.7 967 7.7

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 0.14 35.0 90.0 -10.0 14.7 967 1 5.7 7.7

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Esito della verifica Ver. Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1 = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] k2 k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali = 0.425 Coeff. in eq.(7.11) come da annessi nazionali k4 Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] Massima distanza tra le fessure [mm] sr max Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Componente momento di prima fessurazione intorno all'asse X [kNm] Mx fess. Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess. Comb. Ver k2 e sm - e cm sr max wk Mx fess My fess -0.00005 1 S 0 0.500 14.0 50 0.00003 (0.00003) 262.21 0.00 469 0.014 (0.30)

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. 1 S 0.14 35.0 90.0 -10.0 14.7 5.7 967 7.7

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e1 e2 k2 Ø Cf Mx fess My fess e sm - e cm sr max wk 1 S -0.00005 0 0.500 14.0 50 0.00003 (0.00003) 469 0.014 (0.20) 262.21 0.00

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo – Galleria Naturale Chighizzu GN02

8.3.3.2 Verifiche a taglio del cordolo

Le verifiche effettuate non mostrano la necessità di inserire una specifica armatura a taglio. In ogni caso si utilizzano delle staffe $\phi 10/20$ cm.

Di seguito si riportano le verifiche a taglio effettuate sul cordolo:

Dati	Var	unità	CORDOLO 90X70cm
Resistenza a compressione cubica caratteristica	Rck	Мра	40
Resistenza a compressione cilindrica caratteristica	fck	Mpa	33.2
Coefficiente parziale γ c	γС		1.50
Coefficiente parziale αcc	α CC		0.85
Resistenza a compressione di calcolo	fcd	Мра	18.8
Tensione caratteristica di snervamento acciao di armatura	fyk	Мра	450
tensione di calcolo acciaio	fywd	Мра	391.3
Caratteristiche geometriche sezione			
Altezza	Н	m	0.90
Larghezza	В	m	0.70
Area calcestruzzo	Ac	m^2	0.630
Larghezza anima	bw	m	0.70
copriferro	С	m	0.067
altezza utile della sezione	d	m	0.83
Compressione agente nella sezione			
Sforzo normale di calcolo	N_{Ed}	kN	0.0
Elementi senza armature trasversali resistenti al taglio			
Area dell'armatura longitudinale di trazione ancorata al di là dell'intersezione			
dell'asse dell'armatura con una eventuale fessura a 45° che si inneschi nella			
sezione considerata	Asl	mmq	770.0
Coefficiente k	k	m	1.49
vmin	vmin		0.4
rapporto geometrico di armatura longitudinale	ρ1		0.00132
tensione media di compressione nella sezione	σср	Mpa	0.00
Taglio agente	V	kN	19.8
Resistenza a taglio	V_{Rd}	kN	170.6
			No armatura a taglio

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

8.3.3.3 Verifiche di resistenza dei maniglioni

Il singolo micropalo a cavalletto (tirante passivo) presenta n°6 maniglioni ¢24 in acciaio B450C, che svolgono la funzione di resistere alle azioni di trazione ed evitano lo sfilamento del micropalo dal cordolo.

Tali elementi sono verificati nei confronti del taglio indotto dallo sforzo massimo di trazione. Si eseguono verifiche di resistenza delle sezioni dei manigioni e delle saldature degli stessi al micropalo.

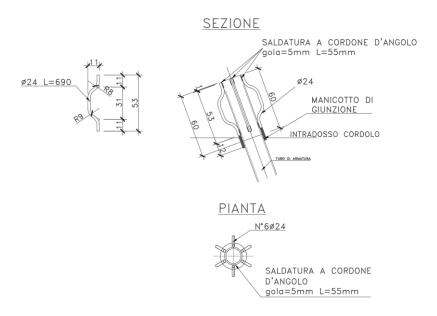


Figura 8.1:Dettaglio maniglione di ancoraggio

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo – Galleria Naturale Chighizzu GN02

Dati acciaio	var	unità	Cavalletto
Tensione caratteristica di snervamento acciaio	fyk	Мра	355
modulo elastico acciaio	E	MPa	210000
fattore epsilon	ε		0.814
Coefficiente di sicurezza per resistenza all'instabilità	γ_{M0}		1.05
Caratteristiche geometriche della sezione	var	unità	
Diametro esterno del tubo			114.2
	De	mm	114.3
spessore del tubo	sf	mm	10.0
riduzione di spessore di progetto	srid	mm	0.9
Diametro del tubo "efficace"	De	mm	112.5
spessore del tubo "efficace"	sf	mm	9.1
Classe della sezione compressa	CI		1
Area lorda della sezione	Α	mm2	2956
Area resistente a taglio	Av	mm2	1882
Momento d'inerzia	1	mm4	3981197
Modulo di resistenza elastico	We	mm3	70777
Modulo di resistenza plastico	Wp	mm3	97544
Modulo di resistenza torsionale	WT	mm3	152828
Caratteristiche della sollecitazione	var	unità	
Sforzo di taglio di calcolo	VEd	kN	
Sollecitazione torcente di progetto	TEd	kNm	0.0
Forza di compressione di calcolo (pos. Se di compressione)	NEd	kN	58.5
Momento flettente di calcolo	MEd	kNm	33.3
nomento nettente di cuicolo	IVIEU	KINIII	
VERIFICHE IN CAMPO PLASTICO (SOLO SEZIONI CL. 1-2)			SI
Verifica a torsione	var	unità	20.5
Resistenza torsionale di progetto	TRd	kNm	29.8
Rapporto TEd / TRd (punto 4.2.29)	TEd/TRd		0.00
Status check	Ch		OK
Tensione tangenziale massima	$\tau_{t,Ed}$	Мра	0.0
Verifica a taglio in presenza di torsione	var	unità	
Resistenza di calcolo a taglio	Vc,Rd	kN	367.3
Resistenza di calcolo a taglio ridotta in presenza di torsione	Vc,Rd,red	kN	367.3
Rapporto VEd / Vc,Rd,red (punto 4.2.17)	VEd/Vc,Rd,red		0.00
Status check	Ch	<u>-</u>	OK
Si può trascurare l'influenza del taglio sulla flessione ?	CII		SI
or pub trascurare i influenza dei taglio salla fiessione :			31
Verifica a presso-tenso flessione retta	var	unità	
Resistenza di calcolo a compressione/trazione	Npl,Rd	kN	999.4
· · · · · · · · · · · · · · · · · · ·			
Resistenza di calcolo a flessione		kNm	33.0
	Mpl,Rd	1.41	
	MN,Rd	kNm	31.0
Rapporto NEd / Nc,Rd (punto 4.2.10)	MN,Rd NEd/Nc,Rd	kNm	0.06
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check	MN,Rd NEd/Nc,Rd Ch	kNm	0.06 OK
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check	MN,Rd NEd/Nc,Rd	kNm	0.06
Resistenza di calcolo a flessione ridotta in presenza sforzo normale Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check	MN,Rd NEd/Nc,Rd Ch	kNm	0.06 OK
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd	kNm	0.06 OK 0.00
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch	kNm	0.06 OK 0.00 OK
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch		0.06 OK 0.00 OK Cavalletto
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch		0.06 OK 0.00 OK
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch		0.06 OK 0.00 OK Cavalletto
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento diametro delle barre di ancoraggio	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch var nm nb	unità	0.06 OK 0.00 OK Cavalletto 6 12
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento diametro delle barre di ancoraggio Area resistente a tranciamento	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch var nm nb fb	unità mm	0.06 OK 0.00 OK Cavalletto 6 12 24
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento diametro delle barre di ancoraggio Area resistente a tranciamento tensione di snervamento dell'acciaio delle barre	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch var nm nb fb Ab fyk	unità mm mm2	0.06 OK 0.00 OK Cavalletto 6 12 24 5429
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento diametro delle barre di ancoraggio Area resistente a tranciamento tensione di snervamento dell'acciaio delle barre Coefficiente di sicurezza per resistenza	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch var nm nb fb Ab fyk	mm mm2 MPa	0.06 OK 0.00 OK Cavalletto 6 12 24 5429 450 1.15
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento diametro delle barre di ancoraggio Area resistente a tranciamento tensione di snervamento dell'acciaio delle barre Coefficiente di sicurezza per resistenza Resistenza tangenziale di progetto	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch var nm nb fb Ab fyk Ys \tau_{r,Rd}	unità mm mm2 MPa	0.06 OK 0.00 OK Cavalletto 6 12 24 5429 450 1.15 225.9
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento diametro delle barre di ancoraggio Area resistente a tranciamento tensione di snervamento dell'acciaio delle barre Coefficiente di sicurezza per resistenza Resistenza tangenziale di progetto Forza di assiale di progetto	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch var nm nb fb Ab fyk γs τ _{t,Rd} NEd	unità mm mm2 MPa	0.06 OK 0.00 OK Cavalletto 6 12 24 5429 450 1.15 225.9 58.5
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento diametro delle barre di ancoraggio Area resistente a tranciamento tensione di snervamento dell'acciaio delle barre Coefficiente di sicurezza per resistenza Resistenza tangenziale di progetto Forza di assiale di progetto Resistenza a tranciamento	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch var nm nb fb Ab fyk γs τ,Rd NEd NRd	unità mm mm2 MPa	0.06 OK 0.00 OK Cavalletto 6 12 24 5429 450 1.15 225.9 58.5 1226.4
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12)	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch var nm nb fb Ab fyk γs τ _{t,Rd} NEd	unità mm mm2 MPa	0.06 OK 0.00 OK Cavalletto 6 12 24 5429 450 1.15 225.9 58.5
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento diametro delle barre di ancoraggio Area resistente a tranciamento tensione di snervamento dell'acciaio delle barre Coefficiente di sicurezza per resistenza Resistenza tangenziale di progetto Forza di assiale di progetto Resistenza a tranciamento Rapporto NEd / Nt,Rd Status check	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch var nm nb fb Ab fyk Ys t,Rd NEd NRd NEd/Nt,Rd Ch	mm mm2 MPa MPa kN kN	0.06 OK 0.00 OK Cavalletto 6 12 24 5429 450 1.15 225.9 58.5 1226.4
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento diametro delle barre di ancoraggio Area resistente a tranciamento tensione di snervamento dell'acciaio delle barre Coefficiente di sicurezza per resistenza Resistenza atangenziale di progetto Forza di assiale di progetto Resistenza a tranciamento Rapporto NEd / Nt,Rd Status check Verifica delle saldature delle barre ai tubi	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch var nm nb fb Ab fyk ys \(\frac{\tau_{\text{R,Rd}}}{\text{T_{\text{R,Rd}}}}\) NEd NRd NEd/Nt,Rd Ch var	mm mm2 MPa MPa kN kN	0.06 OK 0.00 OK Cavalletto 6 12 24 5429 450 1.15 225.9 58.5 1226.4 0.05 OK
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento diametro delle barre di ancoraggio Area resistente a tranciamento tensione di snervamento dell'acciaio delle barre Coefficiente di sicurezza per resistenza Resistenza tangenziale di progetto Forza di assiale di progetto Resistenza a tranciamento Rapporto NEd / Nt,Rd Status check Verifica delle saldature delle barre ai tubi lunghezza minima cordone d'angolo	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch var nm nb fb Ab fyk Ys t,Rd NEd NRd NEd/Nt,Rd Ch	mm mm2 MPa MPa kN kN	0.06 OK 0.00 OK Cavalletto 6 12 24 5429 450 1.15 225.9 58.5 1226.4 0.05 OK
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento diametro delle barre di ancoraggio Area resistente a tranciamento tensione di snervamento dell'acciaio delle barre Coefficiente di sicurezza per resistenza Resistenza tangenziale di progetto Forza di assiale di progetto Resistenza a tranciamento Rapporto NEd / Nt,Rd Status check Verifica delle saldature delle barre ai tubi lunghezza minima cordone d'angolo	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch var nm nb fb Ab fyk ys \(\frac{\tau_{\text{R,Rd}}}{\text{T_{\text{R,Rd}}}}\) NEd NRd NEd/Nt,Rd Ch var	mm mm2 MPa MPa kN kN	0.06 OK 0.00 OK Cavalletto 6 12 24 5429 450 1.15 225.9 58.5 1226.4 0.05 OK
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento diametro delle barre di ancoraggio Area resistente a tranciamento tensione di snervamento dell'acciaio delle barre Coefficiente di sicurezza per resistenza Resistenza tangenziale di progetto Forza di assiale di progetto Resistenza a tranciamento Rapporto NEd / Nt,Rd Status check Verifica delle saldature delle barre ai tubi lunghezza minima cordone d'angolo altezza della gola	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch var nm nb fb Ab fyk ys Tt,Rd NEd NRd NEd/Nt,Rd Ch var Ic	mm mm2 MPa kN kN	0.06 OK 0.00 OK Cavalletto 6 12 24 5429 450 1.15 225.9 58.5 1226.4 0.05 OK
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento diametro delle barre di ancoraggio Area resistente a tranciamento tensione di snervamento dell'acciaio delle barre Coefficiente di sicurezza per resistenza Resistenza tangenziale di progetto Forza di assiale di progetto Resistenza a tranciamento Resistenza a tranciamento Rapporto NEd / Nt,Rd Status check Verifica delle saldature delle barre ai tubi lunghezza minima cordone d'angolo altezza della gola Area resistente saldatura	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch var nm nb fb Ab fyk ys \tau_{R,Rd} NEd NRd NEd/Nt,Rd Ch var lc a	mm mm2 MPa kN kN unità mm mm	0.06 OK 0.00 OK Cavalletto 6 12 24 5429 450 1.15 225.9 58.5 1226.4 0.05 OK
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento diametro delle barre di ancoraggio Area resistente a tranciamento tensione di snervamento dell'acciaio delle barre Coefficiente di sicurezza per resistenza Resistenza tangenziale di progetto Forza di assiale di progetto Resistenza a tranciamento Rapporto NEd / Nt,Rd Status check Verifica delle saldature delle barre ai tubi lunghezza minima cordone d'angolo alatezza della gola Area resistente saldatura tensione di rottura materiale di apporto	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch var nm nb fb Ab fyk Ys t,Rd NEd NRd NEd/Nt,Rd Ch var Ic a Asal ftk	mm mm2 MPa kN kN unità mm mm2 mm2	0.06 OK 0.00 OK Cavalletto 6 12 24 5429 450 1.15 225.9 58.5 1226.4 0.05 OK
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento diametro delle barre di ancoraggio Area resistente a tranciamento tensione di snervamento dell'acciaio delle barre Coefficiente di sicurezza per resistenza Resistenza atangenziale di progetto Forza di assiale di progetto Resistenza a tranciamento Rapporto NEd / Nt,Rd Status check Verifica delle saldature delle barre ai tubi lunghezza minima cordone d'angolo altezza della gola Area resistente saldatura tensione di rottura materiale di apporto Coefficiente di sicurezza per resistenza	MN,Rd NEd/Nc,Rd Ch MEd/MN,Rd Ch var nm nb fb Ab fyk ys \(\tau_{R,Rd}\) NEd NRd NEd/Nt,Rd Ch var lc a Asal ftk \(\tau_{M2}\)	mm mm2 MPa kN kN unità mm mm2 mm2	0.06 OK 0.00 OK Cavalletto 6 12 24 5429 450 1.15 225.9 58.5 1226.4 0.05 OK
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento diametro delle barre di ancoraggio Area resistente a tranciamento tensione di snervamento dell'acciaio delle barre Coefficiente di sicurezza per resistenza Resistenza tangenziale di progetto Forza di assiale di progetto Resistenza a tranciamento Rapporto NEd / Nt,Rd Status check Verifica delle saldature delle barre ai tubi lunghezza minima cordone d'angolo altezza della gola Area resistente saldatura tensione di rottura materiale di apporto Coefficiente di sicurezza per resistenza Coefficiente dele	MN,Rd NEd/Nc,Rd Ch Var nm nb fb Ab fyk γs τ,Rd NEd/Nt,Rd NEd NRd NEd/Nt,Rd Ch Var Ic a Asal ftk γм2 β	mm mm2 MPa kN kN unità mm mm mm2 MPa	0.06 OK 0.00 OK Cavalletto 6 12 24 5429 450 1.15 225.9 58.5 1226.4 0.05 OK
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento diametro delle barre di ancoraggio Area resistente a tranciamento tensione di snervamento dell'acciaio delle barre Coefficiente di sicurezza per resistenza Resistenza tangenziale di progetto Forza di assiale di progetto Resistenza a tranciamento Rapporto NEd / Nt,Rd Status check Verifica delle saldature delle barre ai tubi lunghezza minima cordone d'angolo altezza della gola Area resistente saldatura tensione di rottura materiale di apporto Coefficiente di sicurezza per resistenza Coefficiente delle bat Forza di progetto che sollecita il cordone d'angolo: NEd / (2 x nb)	MN,Rd NEd/Nc,Rd Ch Var nm nb fb Ab fyk γs τ,Rd NEd/Nt,Rd NEd NRd NEd/Nt,Rd Ch Var Ic a Asal ftk γM2 β Fw,Ed	mm mm2 MPa kN kN unità mm mm2 MPa kN kN kN	0.06 OK 0.00 OK Cavalletto 6 12 24 5429 450 1.15 225.9 58.5 1226.4 0.05 OK 55 5 275 510 1.25 0.90 2.4
Rapporto NEd / Nc,Rd (punto 4.2.10) Status check Rapporto MEd / MN,Rd (punto 4.2.12) Status check VERIFICHE DEGLI ANCORAGGI IN TESTA AI MICROPALI Verifica a tranciamento delle barre di ancoraggio Numero di maniglioni numero complessivi di bracci resistenti a tranciamento diametro delle barre di ancoraggio Area resistente a tranciamento tensione di snervamento dell'acciaio delle barre Coefficiente di sicurezza per resistenza Resistenza tangenziale di progetto Forza di assiale di progetto Resistenza a tranciamento Rapporto NEd / Nt,Rd	MN,Rd NEd/Nc,Rd Ch Var nm nb fb Ab fyk γs τ,Rd NEd/Nt,Rd NEd NRd NEd/Nt,Rd Ch Var Ic a Asal ftk γм2 β	unità mm mm2 MPa kN kN unità mm mm2 MPa kN kN	0.06 OK 0.00 OK Cavalletto 6 12 24 5429 450 1.15 225.9 58.5 1226.4 0.05 OK

Le verifiche risultano soddisfatte.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

Opere Provvisionali Imbocchi - Relazione di Calcolo -CA-357 Galleria Naturale Chighizzu GN02

9 ALLEGATI

9.1 Allegato 1 - Sezone 1: Paratia tipo T - 5 tiranti attivi

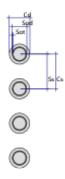
Descrizione della Stratigrafia e degli Strati di Terreno Tipo : HORIZONTAL

Tipo: HORIZONTA Quota: 50 m OCR: 1

Strato di Terreno	Terren				p c' Su ˈkPakPa		ı Evc kPa		Ah Av exp Pa Rur/Rv kPa	u Kvc ′m³ kN/m³	
1	М	19.9	19.9	30.1	165	Constant	525000	840000			

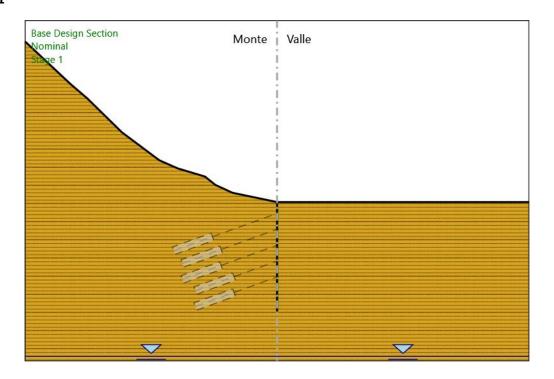
Descrizione Pareti

X:0 m


Quota in alto : 0 m Quota di fondo : -24 m Muro di sinistra

Sezione : Micropali fi240 - fi168.3 sp10

Area equivalente : 0.019045141329815 m Inerzia equivalente : 0.0001 m⁴/m Materiale calcestruzzo : C25/30 Tipo sezione : Tangent Spaziatura : 0.4 m


Spaziatura : 0.4 m Diametro : 0.24 m Efficacia : 0.5 Materiale acciaio : S355

Sezione : CHS168.3*10 Tipo sezione : O Spaziatura : 0.4 m Spessore : 0.01 m Diametro : 0.1683 m

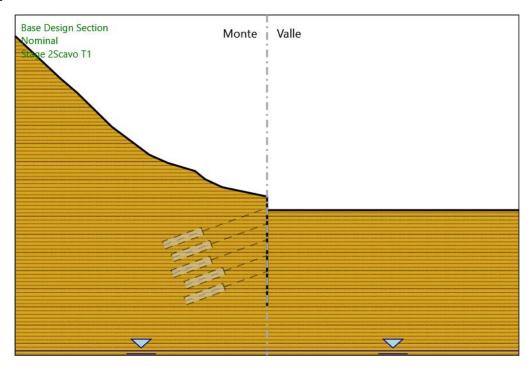
Fasi di Calcolo

Stage 1


```
Stage 1
Scavo
```

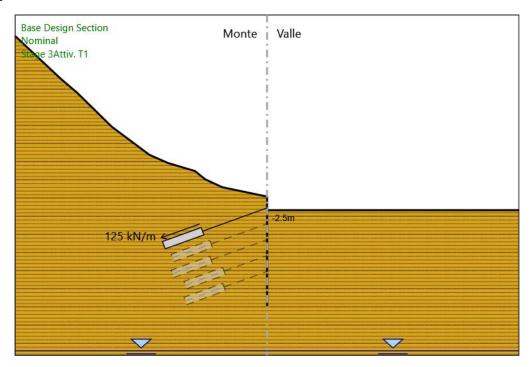
```
Muro di sinistra
                        Lato monte : 0 m
                        Lato valle : 0 m
                        Linea di scavo di sinistra (Irregolare)
                                    (-55;35.35)
                                    (-45;25.9)
(-41.46;22.85)
                                    (-33.87;15.35)
(-25.72;9.21)
                                    (-21.71;7.42)
                                    (-15.74;5.62)
                                    (-13.49;3.79)
                                    (-9.75;2.05)
                                    (0;0)
                        Linea di scavo di destra (Orizzontale)
Falda acquifera
            Falda di sinistra : -34 m
            Falda di destra : -34 m
```

Elementi strutturali


Quota in alto : 0 m Quota di fondo : -24 m

Sezione : Micropali fi240 - fi168.3 sp10

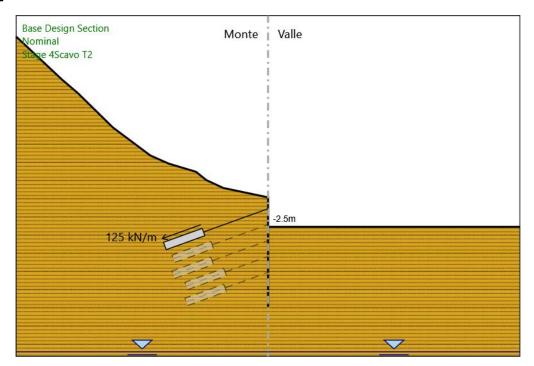
Stage 2_Scavo T1


Stage 2_Scavo T1

Scavo


```
Muro di sinistra
                       Lato monte : 0 m
                       Lato valle : -3 m
                       Linea di scavo di sinistra (Irregolare)
                                  (-55;35.35)
(-45;25.9)
                                  (-41.46;22.85)
                                  (-33.87;15.35)
                                  (-25.72;9.21)
                                  (-21.71;7.42)
                                  (-15.74;5.62)
                                  (-13.49;3.79)
                                  (-9.75;2.05)
                                  (0;0)
                      Linea di scavo di destra (Orizzontale)
                                  -3 m
Falda acquifera
           Falda di sinistra : -34 m
           Falda di destra : -34 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                       Quota in alto : 0 m
                       Quota di fondo : -24 m
                       Sezione: Micropali fi240 - fi168.3 sp10
```

Stage 3_Attiv. T1

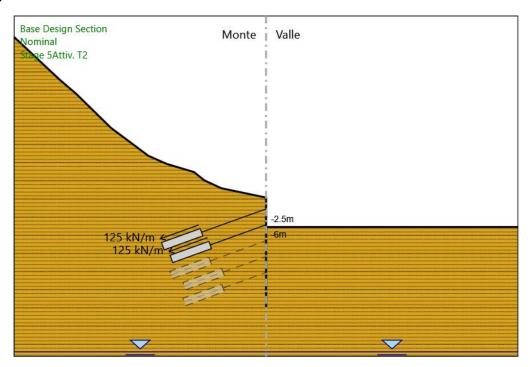

```
Stage 3_Attiv. T1
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -3 m
                      Linea di scavo di sinistra (Irregolare)
                                (-55;35.35)
                                (-45;25.9)
                                (-41.46;22.85)
                                (-33.87;15.35)
                                (-25.72;9.21)
                                (-21.71; 7.42)
                                (-15.74;5.62)
                                (-13.49;3.79)
                                (-9.75;2.05)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
                                -3 m
Falda acquifera
           Falda di sinistra : -34 m
           Falda di destra : -34 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -24 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante: T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera: 15 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico: 300 kN
                     Angolo : 20 °
                      Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre: 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
```

Stage 4_Scavo T2

Stage 4_Scavo T2

Muro di sinistra

Scavo




```
Lato monte : 0 m
                      Lato valle : -6.5 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;35.35)
                                 (-45;25.9)
                                 (-41.46;22.85)
                                 (-33.87;15.35)
                                 (-25.72;9.21)
                                 (-21.71; 7.42)
                                 (-15.74;5.62)
                                 (-13.49;3.79)
                                 (-9.75;2.05)
                                 (0;0)
                     Linea di scavo di destra (Orizzontale)
                                 -6.5 m
Falda acquifera
           Falda di sinistra : -34 m
           Falda di destra : -34 m
Elementi strutturali
           Paratia: Sx
                     X:0 m
                     Quota in alto: 0 m
                      Quota di fondo : -24 m
                     Sezione: Micropali fi240 - fi168.3 sp10
           Tirante : T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo: 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera: 15 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico: 300 kN
                      Angolo : 20 °
                      Sezione: 3 trefoli
                                 Tipo di barre : Barre trefoli
                                 Numero di barre: 3
```

Diametro : 0.01331 m Area : 0.000417 m^2

Stage 5_Attiv. T2

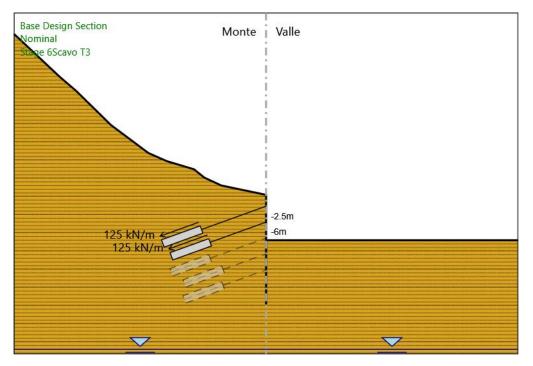
Stage 5_Attiv. T2


```
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -6.5 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;35.35)
                                 (-45;25.9)
                                 (-41.46;22.85)
                                 (-33.87;15.35)
                                 (-25.72;9.21)
                                 (-21.71;7.42)
                                 (-15.74;5.62)
                                 (-13.49;3.79)
                                 (-9.75;2.05)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
                                 -6.5 m
Falda acquifera
           Falda di sinistra : -34 m
           Falda di destra : -34 m
Elementi strutturali
           Paratia: Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -24 m
                      Sezione : Micropali fi240 - fi168.3 sp10
           Tirante: T1
                      X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo: 0.15 m
                      Lunghezza libera : 15 m
                      Spaziatura orizzontale: 2.4 m
                      Precarico : 300 kN
                      Angolo : 20 °
```

Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T2


X:0 m Z:-6 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 6_Scavo T3


```
Stage 6_Scavo T3
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -10 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;35.35)
                                 (-45;25.9)
                                 (-41.46;22.85)
                                 (-33.87;15.35)
                                 (-25.72;9.21)
                                 (-21.71;7.42)
                                 (-15.74;5.62)
                                 (-13.49;3.79)
                                 (-9.75;2.05)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
                                 -10 m
Falda acquifera
           Falda di sinistra: -34 m
           Falda di destra : -34 m
```

Elementi strutturali

Paratia : Sx

X:0 m

Quota in alto : 0 m Quota di fondo : -24 m

Sezione : Micropali fi240 - fi168.3 sp10

Tirante : T1

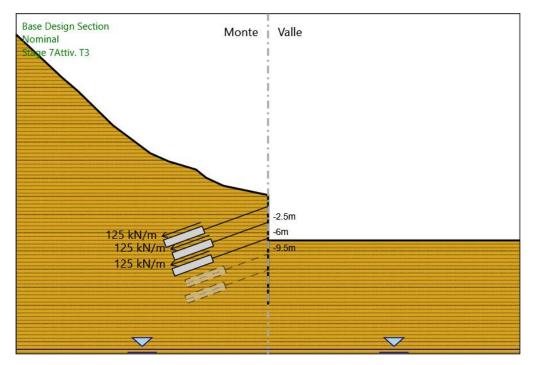
X:0 m Z:-2.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 15 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T2


X:0 m Z:-6 m

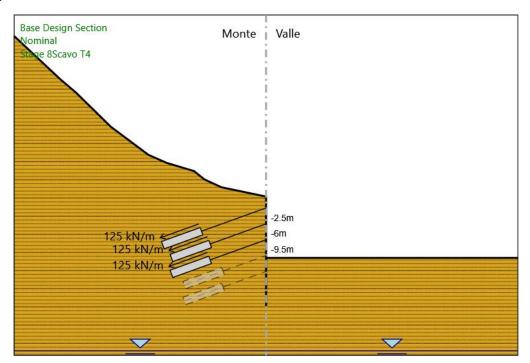
Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 7_Attiv. T3

Stage 7_Attiv. T3 Scavo


Muro di sinistra

Lato monte : 0 m Lato valle : -10 m

```
Linea di scavo di sinistra (Irregolare)
                                (-55;35.35)
                                (-45;25.9)
                                (-41.46;22.85)
                                (-33.87;15.35)
                                (-25.72;9.21)
                                (-21.71; 7.42)
                                (-15.74;5.62)
                                (-13.49;3.79)
                                (-9.75;2.05)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
                                -10 m
Falda acquifera
          Falda di sinistra : -34 m
          Falda di destra : -34 m
Elementi strutturali
          Paratia : Sx
                     X:0 m
                     Quota in alto: 0 m
                     Quota di fondo : -24 m
                     Sezione: Micropali fi240 - fi168.3 sp10
          Tirante: T1
                     X:0 m
                     Z:-2.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo : 0.15 m
                     Lunghezza libera : 15 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico: 300 kN
                     Angolo : 20 °
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
          Tirante : T2
                     X:0 m
                     Z:-6 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera: 13 m
                     Spaziatura orizzontale: 2.4 m
                     Precarico : 300 kN
                     Angolo: 20°
                     Sezione : 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
          Tirante: T3
                     X : 0 m
                     Z:-9.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera : 13 m
                     Spaziatura orizzontale: 2.4 m
                     Precarico: 300 kN
                     Angolo: 20°
                     Sezione : 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
```

Stage 8_Scavo T4

Stage 8_Scavo T4


```
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle: -13.5 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;35.35)
                                 (-45;25.9)
                                 (-41.46;22.85)
                                 (-33.87;15.35)
                                 (-25.72;9.21)
                                 (-21.71; 7.42)
                                 (-15.74;5.62)
                                 (-13.49;3.79)
                                 (-9.75;2.05)
                                 (0;0)
                     Linea di scavo di destra (Orizzontale)
                                 -13.5 m
Falda acquifera
           Falda di sinistra : -34 m
           Falda di destra : -34 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -24 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante: T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo: 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera: 15 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico: 300 kN
                      Angolo : 20 °
                      Sezione: 3 trefoli
                                 Tipo di barre : Barre trefoli
                                 Numero di barre: 3
                                 Diametro : 0.01331 m
```

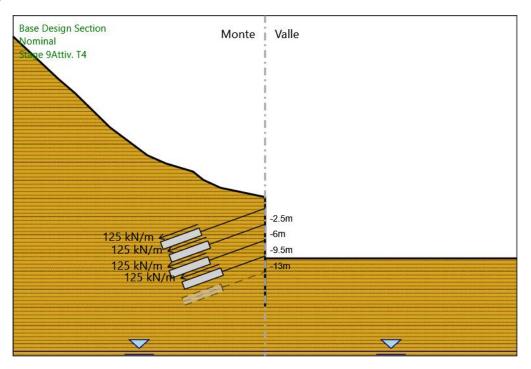
Area: 0.000417 m^2

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T3


X : 0 m Z : -9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

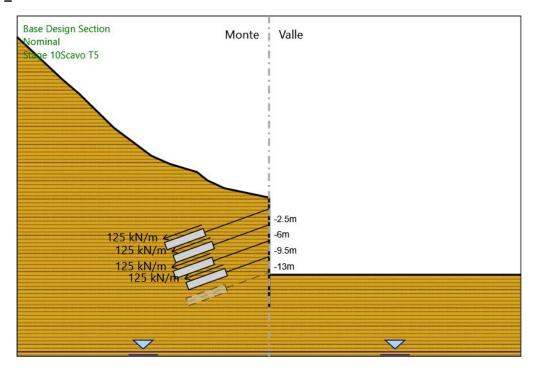
Stage 9_Attiv. T4

Stage 9_Attiv. T4 Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -13.5 m

Linea di scavo di sinistra (Irregolare)


(-55;35.35) (-45;25.9) (-41.46;22.85) (-33.87;15.35) (-25.72;9.21)

(-21.71;7.42) (-15.74;5.62) (-13.49;3.79) (-9.75;2.05) (0;0)Linea di scavo di destra (Orizzontale) -13.5 m Falda acquifera Falda di sinistra : -34 m Falda di destra : -34 m Elementi strutturali Paratia: Sx X:0 m Quota in alto: 0 m Quota di fondo : -24 m Sezione: Micropali fi240 - fi168.3 sp10 Tirante: T1 X:0 m Z:-2.5 m Lunghezza bulbo : 9 m Diametro bulbo: 0.15 m Lunghezza libera: 15 m Spaziatura orizzontale: 2.4 m Precarico: 300 kN Angolo: 20° Sezione : 3 trefoli Tipo di barre : Barre trefoli Numero di barre : 3 Diametro: 0.01331 m Area: 0.000417 m^2 Tirante: T2 X:0 m Z:-6 m Lunghezza bulbo : 9 m Diametro bulbo: 0.15 m Lunghezza libera: 13 m Spaziatura orizzontale: 2.4 m Precarico : 300 kN Angolo: 20° Sezione: 3 trefoli Tipo di barre : Barre trefoli Numero di barre : 3 Diametro: 0.01331 m Area: 0.000417 m^2 Tirante: T3 X:0 m Z:-9.5 m Lunghezza bulbo: 9 m Diametro bulbo : 0.15 m Lunghezza libera: 13 m Spaziatura orizzontale: 2.4 m Precarico: 300 kN Angolo : 20 ° Sezione : 3 trefoli Tipo di barre : Barre trefoli Numero di barre: 3 Diametro: 0.01331 m Area: 0.000417 m^2 Tirante: T4 X:0 m Z:-13 m Lunghezza bulbo: 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m Precarico: 300 kN Angolo : 20 ° Sezione : 3 trefoli Tipo di barre : Barre trefoli Numero di barre : 3 Diametro: 0.01331 m

Area: 0.000417 m^2

Stage 10_Scavo T5

Stage 10_Scavo T5


```
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -17 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;35.35)
                                 (-45;25.9)
                                 (-41.46;22.85)
                                 (-33.87;15.35)
                                 (-25.72;9.21)
                                 (-21.71; 7.42)
                                 (-15.74;5.62)
                                 (-13.49;3.79)
                                 (-9.75;2.05)
                                 (0;0)
                     Linea di scavo di destra (Orizzontale)
                                 -17 m
Falda acquifera
           Falda di sinistra : -34 m
           Falda di destra : -34 m
Elementi strutturali
           Paratia: Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -24 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante: T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo: 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera: 15 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico: 300 kN
                      Angolo : 20 °
                      Sezione: 3 trefoli
                                 Tipo di barre : Barre trefoli
                                 Numero di barre: 3
                                 Diametro : 0.01331 m
```

Area: 0.000417 m^2

Tirante : T2

X : 0 m Z : -6 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3

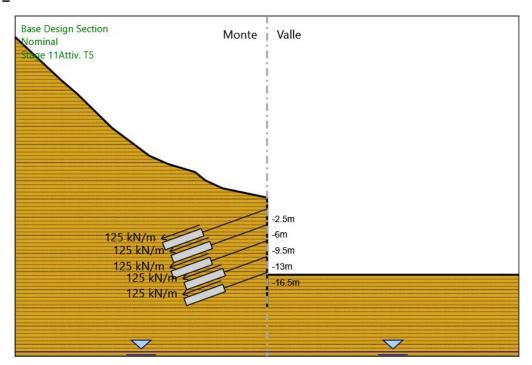
X:0 m Z:-9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T4


X : 0 m Z : -13 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 11_Attiv. T5


```
Stage 11_Attiv. T5
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -17 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;35.35)
                                 (-45;25.9)
                                 (-41.46;22.85)
                                 (-33.87;15.35)
                                 (-25.72;9.21)
                                 (-21.71; 7.42)
                                 (-15.74;5.62)
                                 (-13.49;3.79)
                                 (-9.75;2.05)
                                 (0;0)
                     Linea di scavo di destra (Orizzontale)
                                 -17 m
Falda acquifera
           Falda di sinistra : -34 m
           Falda di destra : -34 m
Elementi strutturali
           Paratia: Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -24 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante: T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera: 15 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico: 300 kN
                      Angolo : 20 °
                      Sezione: 3 trefoli
                                 Tipo di barre : Barre trefoli
                                 Numero di barre: 3
                                 Diametro : 0.01331 m
```

Area: 0.000417 m^2

> Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3

X:0 m Z:-9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T4

X : 0 m Z : -13 m

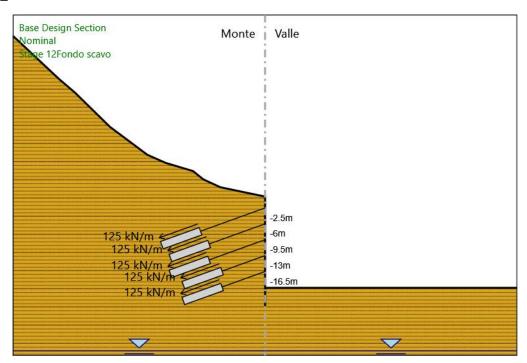
Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T5

X:0 m Z:-16.5 m


Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 12_Fondo scavo

Stage 12_Fondo scavo


```
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle: -20.1 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;35.35)
                                 (-45;25.9)
                                 (-41.46;22.85)
                                 (-33.87;15.35)
                                 (-25.72;9.21)
                                 (-21.71; 7.42)
                                 (-15.74;5.62)
                                 (-13.49;3.79)
                                 (-9.75;2.05)
                                 (0;0)
                     Linea di scavo di destra (Orizzontale)
                                 -20.1 m
Falda acquifera
           Falda di sinistra : -34 m
           Falda di destra : -34 m
Elementi strutturali
           Paratia: Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -24 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante: T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo: 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera: 15 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico: 300 kN
                      Angolo : 20 °
                      Sezione: 3 trefoli
                                 Tipo di barre : Barre trefoli
                                 Numero di barre: 3
                                 Diametro : 0.01331 m
```

Area: 0.000417 m^2

Tirante : T2

X : 0 m Z : -6 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3

X : 0 m Z : -9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T4

X : 0 m Z : -13 m

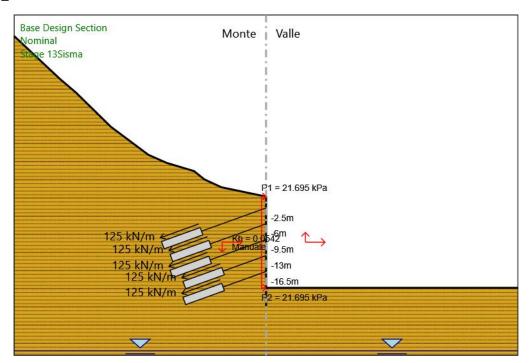
Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T5

X:0 m Z:-16.5 m


Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 13_Sisma

Stage 13_Sisma


```
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle: -20.1 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;35.35)
                                 (-45;25.9)
                                 (-41.46;22.85)
                                 (-33.87;15.35)
                                 (-25.72;9.21)
                                 (-21.71; 7.42)
                                 (-15.74;5.62)
                                 (-13.49;3.79)
                                 (-9.75;2.05)
                                 (0;0)
                     Linea di scavo di destra (Orizzontale)
                                 -20.1 m
Falda acquifera
           Falda di sinistra : -34 m
           Falda di destra : -34 m
Elementi strutturali
           Paratia: Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -24 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante: T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo: 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera: 15 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico: 300 kN
                      Angolo : 20 °
                      Sezione: 3 trefoli
                                 Tipo di barre : Barre trefoli
                                 Numero di barre: 3
                                 Diametro : 0.01331 m
```

 $Area: 0.000417 \ m^2$ $Tirante: T2 \\ X: 0 \ m \\ Z: -6 \ m$

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3

X:0 m Z:-9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T4

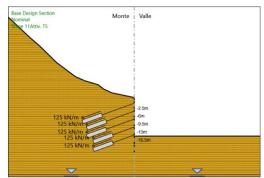
X : 0 m Z : -13 m

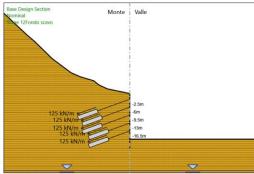
Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

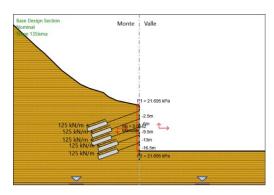
Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T5


X:0 m Z:-16.5 m


Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m


Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Descrizione Coefficienti Design Assumption

Nome	Carichi Perma- nenti Sfavore- voli (F_dead_load_u nfavour)		oili Sfavorevoli		d)	sioni Acqua Lato Mont	sioni Acqua Lato Valle (F_Wa ter-	nenti Destabi- lizzanti (F_UPL_GDSta b)	manenti Sta- bilizzanti	bili Destabiliz- zanti	Carichi Perma- nenti Destabi- lizzanti (F_HYD_GDSta b)	manenti Sta- bilizzanti	zanti
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018:	1	1	1	1	0	1	1	1	1	1	1	1	1
SLE													
(Rara/Fre-													
quente/Qua													
si Perma-													
nente)		_								_	4.0		
NTC2018:	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
A1+M1+R1													
(R3 per ti- ranti)													
NTC2018:	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
A2+M2+R1	1	1	1.5	1	U	1	1	1	1	1	1.5	0.5	1
NTC2018:	1	1	1	1	1	1	1	1	1	1	1	1	1
SISMICA	1	-	-	1	1	1	1	_	-	-	-	_	1
STR													
NTC2018:	1	1	1	1	1	1	1	1	1	1	1.3	0.9	1
SISMICA													
GEO													
	Nome		Parziale su	u tan(ø') (F_Fr) Pa	rziale su c' (F_eff_c	ohe) Pa	arziale su Su (F_	Su) Parziale sı	ı qu (F_qu) Parz	iale su peso spe	cifico (F_gamn	na)
	Simbolo			γф	γс			γcu		qu	YY		
	Nominal			1	1			1		1	1		
		e/Quasi Permane	nte)	1	1			1		1	1		
NTC2	018: A1+M1+R1 (1	1	_		1		1	1		
	NTC2018: A2+N			1.25	1.2	5		1.4		1	1		
	NTC2018: SISMI			1	1			1		1	1		
	NTC2018: SISMI	CA GEO		1	1			1		1	1		

Nome	Parziale resistenza terreno (es. Kp)	Parziale resistenza Tiranti permanenti	Parziale resistenza Tiranti temporanei	Parziale elementi strutturali
	(F_Soil_Res_walls)	(F_Anch_P)	(F_Anch_T)	(F_wall)
Simbolo	γRe	γар	γat	
Nominal	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi	1	1	1	1
Permanente)				
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1.2	1.1	1
NTC2018: A2+M2+R1	1	1.2	1.1	1
NTC2018: SISMICA STR	1	1.2	1.1	1
NTC2018: SISMICA GEO	1	1.2	1.1	1

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 1	Stage 2_Scavo T1	Stage 3_Attiv. T1	Stage 4_Scavo T2	Stage 5_Attiv. T2	Stage 6_Scavo T3	Stage 7_Attiv. T3	Stage 8_Scavo T4	Stage 9_Attiv. T4	Stage 10_Scavo T5	Stage 11_Attiv. TS	Stage 12_Fondo scavo	Stage 13_Sisma
NTC2018: SLE (Rara/Fre- quente/Quasi Permanente) NTC2018: A1+M1+R1 (R3 per ti- ranti)	V	V	V	V	V	٧	V	٧	V	V	V	V	
NTC2018: A2+M2+R1 NTC2018: SISMICA STR NTC2018: SISMICA GEO													V

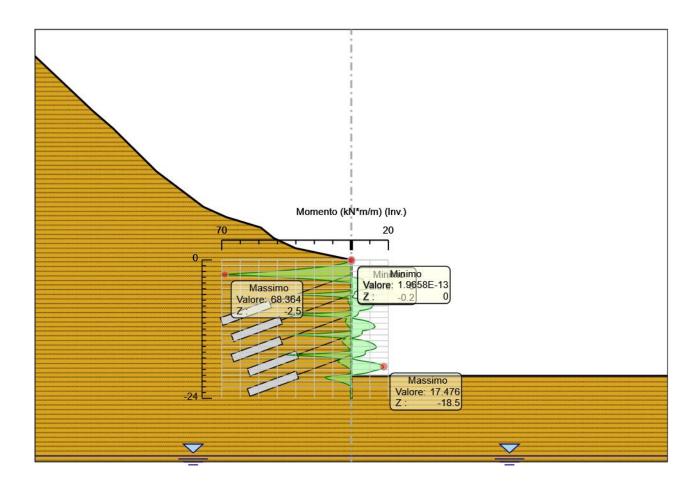

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Tabella Inviluppi Momento Sx

Tabella Invilupp	oi Momento Sx	
Selected Design Assumption	s Inviluppi: Momento	Muro: Sx
Z (m)	Lato sinistro (kN*m/m) La	
0 -0.2	0 0.438	0 0
-0.4	1.75	0.001
-0.6	3.938	0.004
-0.8	7	0.007
-1	10.938	0.006
-1.2	15.751	0
-1.4 -1.6	21.439 28.002	0
-1.8	35.439	0
-2	43.752	0
-2.2	52.94	0
-2.4	63.003	0
-2.5 2.7	68.364	0 0
-2.7 -2.9	55.731 43.973	0
-3.1	33.091	2.639
-3.3	23.39	5.788
-3.5	14.866	6.617
-3.7	7.466	6.588
-3.9 -4.1	1.344 0.234	7.242 7.871
-4.3	0.234	8.463
-4.5	0.065	9
-4.7	0.023	9.3
-4.9	0.186	8.947
-5.1	0.295	7.471
-5.3 -5.5	0.294 3.269	4.285 2.149
-5.7	12.166	1.861
-5.9	24.29	1.572
-6	31.631	1.428
-6.2	18.334	1.085
-6.4 -6.6	8.573 1.908	0.381 1.358
-6.8	1.699	4.686
-7	1.908	6.628
-7.2	1.797	9.106
-7.4	1.517	11.01
-7.6 -7.8	1.177 0.847	12.03 12.169
-8	0.563	11.427
-8.2	0.341	11.09
-8.4	0.182	10.293
-8.6	0.077	8.309
-8.8 -9	0.303 5.859	4.667 4.02
-9.2	13.707	3.819
-9.4	25.779	3.618
-9.5	33.055	3.426
-9.7	19.746	2.748
-9.9 -10.1	9.799 2.788	1.36 0
-10.3	2.533	3.67
-10.5	3.16	7.122
-10.7	3.22	9.316
-10.9	2.931	10.735
-11.1 -11.3	2.464 1.938	11.885 12.327
-11.5	1.435	12.757
-11.7	0.997	12.643
-11.9	0.644	11.674
-12.1	0.378	9.469
-12.3 -12.5	0.192 5.405	6.01 5.928
-12.7	14.39	5.846
-12.9	26.645	5.582
-13	33.974	5.268
-13.2	20.667	4.145
-13.4	10.601	1.974
-13.6 -13.8	3.392 3.825	0.02 3.366
-14	4.781	7.033
-14.2	4.903	9.407
-14.4	4.501	10.887
-14.6	3.823	12.035

Selected Design Assumptions		Muro: Sx
Z (m)	Lato sinistro (kN*m/m) I	.ato destro (kN*m/m)
-14.8	3.046	12.902
-15	2.288	13.461
-15.2	1.618	13.472
-15.4	1.069	12.63
-15.6	0.646	10.559
-15.8	1.109	7.542
-16	7.174	7.629
-16.2	15.024	7.646
-16.4	26.593	7.282
-16.5	33.97	6.81
-16.7	20.568	5.115
-16.9	12.177	1.913
-17.1	5.38	0.048
-17.3	6.183	2.211
-17.5	7.198	5.532
-17.7	7.02	9.668
-17.9	6.157	12.934
-18.1	4.99	15.323
-18.3	3.774	16.837
-18.5	2.665	17.476
-18.7	1.742	17.239
-18.9	1.03	16.127
-19.1	0.519	14.14
-19.3	0.18	11.277
-19.5	0.202	9.507
-19.7 -19.9	0.235 2.879	6.755 1.923
		0.146
-20.1 -20.3	10.783 13.976	0.146
-20.5	13.943	0.113
-20.7	12.112	0.035
-20.9	9.527	0.001
-21.1	6.866	0.001
-21.3	4.515	0
-21.5	2.645	0
-21.7	1.475	0
-21.9	0.66	0
-22.1	0.145	0.14
-22.3	0.055	0.396
-22.5	0.049	0.47
-22.7	0.042	0.436
-22.9	0.035	0.348
-23.1	0.027	0.245
-23.3	0.019	0.15
-23.5	0.011	0.075
-23.7	0.005	0.026
-23.9	0.001	0.003
-24	0	0

Grafico Inviluppi Momento

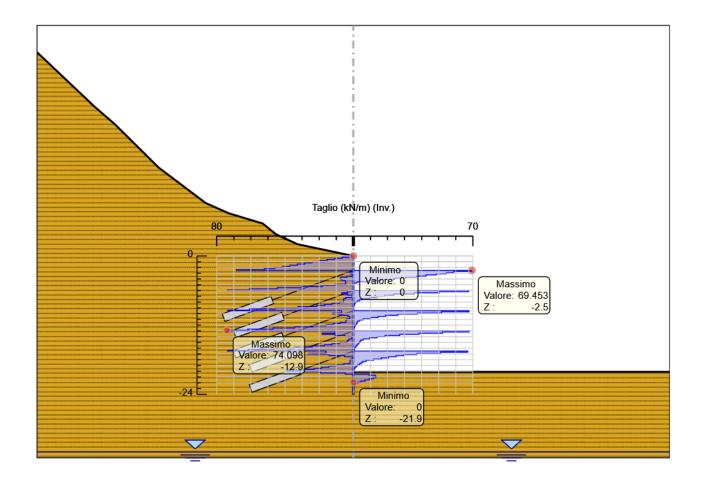

Momento

Tabella Inviluppi Taglio Sx

Tabella Invilup		
Selected Design Assumptio Z (m)	ns Inviluppi: Taglio Lato sinistro (kN/m) L	Muro: Sx
0	2.188	0
-0.2	6.563 10.938	0.01 0.016
-0.4 -0.6	15.313	0.016
-0.8	19.689	0.011
-1	24.064	0
-1.2	28.439	0
-1.4 -1.6	32.814 37.19	0 0
-1.8	41.565	0
-2	45.94	0
-2.2	52.055	0
-2.4 -2.5	68.529 68.529	0 69.453
-2.7	0.446	69.453
-2.9	2.028	58.788
-3.1	2.028	54.413
-3.3 -3.5	0.737 3.809	48.506 42.617
-3.7	7.335	37.002
-3.9	7.648	30.608
-4.1	7.648	23.575
-4.3 -4.5	6.363 4.554	16.26 9.02
-4.7	4.45	2.078
-4.9	10.528	0.109
-5.1	18.24	0.043
-5.3 -5.5	30.247 44.535	0.269 0.347
-5.7	60.892	0.347
-5.9	73.911	0.321
-6 6 3	73.911	67.556
-6.2 -6.4	3.518 6.854	67.556 50.246
-6.6	6.854	35.746
-6.8	3.55	23.711
-7 -7.2	1.042 4.465	18.36 13.941
-7.4	5.723	9.52
-7.6	5.723	5.102
-7.8	5.617	3.493
-8 -8.2	8.097 12.477	2.329 1.109
-8.4	16.852	0.797
-8.6	21.484	0.525
-8.8 -9	32.472 45.817	0.31 0.154
-9.2	60.888	0.19
-9.4	73.563	0.249
-9.5 -9.7	73.563 6.941	67.714 67.714
-9.9	12.266	51.624
-10.1	12.266	37.536
-10.3	7.197	26.044
-10.5 -10.7	3.136 2.094	18.891 14.51
-10.9	3.806	10.13
-11.1	4.343	5.749
-11.3 -11.5	4.343 7.389	3.665 2.519
-11.7	11.766	2.189
-11.9	16.143	1.764
-12.1	23.625	1.328
-12.3 -12.5	34.374 47.027	0.934 0.606
-12.7	61.804	0.352
-12.9	74.098	0.17
-13 -13.2	74.098 10.855	67.809 67.809
-13.4	18.255	52.242
-13.6	18.255	38.504
-13.8	10.739	27.157
-14 -14.2	4.784 0.879	18.519 13.891
-14.4	2.54	9.516
-14.6	3.215	5.793
-14.8 -15	3.675 8.104	4.332 3.789
-15.2	12.533	3.349
-15.4	16.944	2.748
-15.6	23.996	2.113
-15.8 -16	34.503 46.86	1.523 1.02
-16.2	61.573	0.621
-16.4	73.77	0.325
-16.5 -16.7	73.77 16.01	67.009 67.009
-16.9	26.342	51.164
-17.1	26.342	37.157
-17.3 -17.5	14.139 5.075	29.459 25.082
-17.5 -17.7	0.302	20.704
-17.9	1.499	16.326
-18.1	1.975	11.948

Selected Design Assumptions		Muro: Sx
Z (m)	Lato sinistro (kN/m)	Lato destro (kN/m)
-18.3	1.992	7.57
-18.5	1.992	5.543
-18.7	5.56	4.614
-18.9	9.937	3.562
-19.1	14.312	2.557
-19.3	18.688	1.693
-19.5	23.063	1.009
-19.7	29.031	0.506
-19.9	39.518	0.164
-20.1	39.518	0.127
-20.3	19.074	0.168
-20.5	4.697	9.154
-20.7	0.198	12.927
-20.9	0.17	13.304
-21.1	0.132	13.304
-21.3	0.093	11.754
-21.5	0.057	9.349
-21.7	0.027	6.792
-21.9	0.005	4.493
-22.1	0	2.641
-22.3	0	1.417
-22.5	0.171	0.603
-22.7	0.437	0.087
-22.9	0.514	0.039
-23.1	0.514	0.04
-23.3	0.476	0.04
-23.5	0.374	0.038
-23.7	0.247	0.032
-23.9	0.117	0.021
-24	0.027	0.006

Grafico Inviluppi Taglio

Taglio

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva
				%
NTC2018: A1+M1+R1 (R3 per tiranti)	Stage 1	Left Wall	LEFT	4.04
NTC2018: SISMICA STR	Stage 13 Sisma	Left Wall	RIGHT	15.29

Inviluppo Spinta Reale Efficace / Spinta Attiva

Normative adottate per le verifiche degli Elementi Strutturali

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 1	Stage 2_Scavo T1	Stage 3_Attiv. T1	Stage 4_Scavo T2	Stage 5_Attiv. T2	Stage 6_Scavo T3	Stage 7_Attiv. T3	Stage 8_Scavo T4	Stage 9_Attiv. T4	Stage 10_Scavo T5	Stage 11_Attiv. TS	Stage 12_Fondo scavo	Stage 13_Sisma
NTC2018: SLE (Rara/Frequente/Quasi Permanente) NTC2018: A1+M1+R1 (R3 per tiranti)	V	V	v	v	v	v	v	v	v	V	v	V	
NTC2018: A2+M2+R1 NTC2018: SISMICA STR NTC2018: SISMICA GEO													V

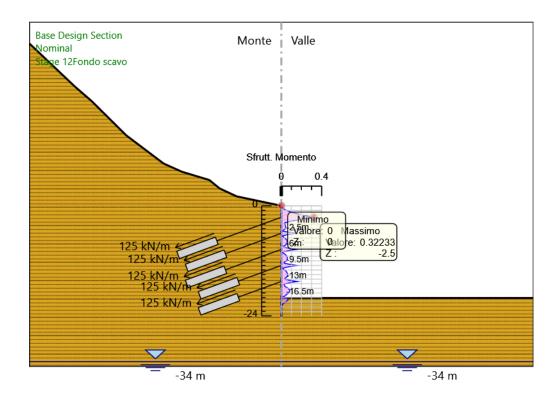
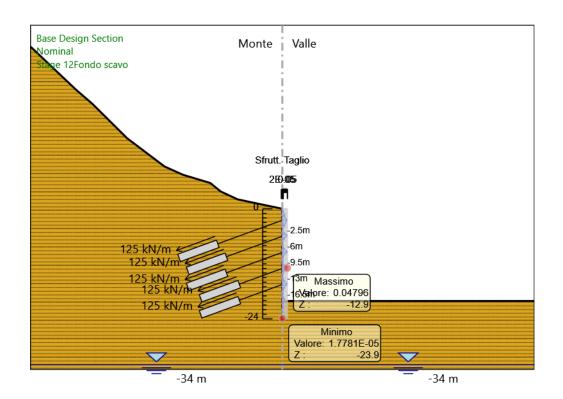

Risultati SteelWorld

Tabella Inviluppi Tasso di Sfruttamento a Momento - SteelWorld : LEFT

Inviluppi Tasso di Sfruttamento a Momento - S	SteelWorld LEFT
Z (m)	Tasso di Sfruttamento a Momento - SteelWorld
0	0
-0.2	0.002
-0.4	0.008
-0.6	0.019
-0.8	0.033
-1	0.052
-1.2	0.074
-1.4	0.101
-1.6	0.132
-1.8	0.167
-2	0.206
-2.2	0.25
-2.4	0.297
-2.5	0.322
-2.7	0.263
-2.9	0.207
-3.1	0.156
-3.3	0.11
-3.5	0.07
-3.7	0.035
-3.9	0.034
-4.1	0.037
-4.3	0.04
-4.5	0.042
-4.7	0.044
-4.9	0.042
-5.1	0.035
-5.3	0.02
-5.5	0.015
-5.7	0.057
-5.9	0.115
-6	0.149
-6.2	0.086
-6.4	0.04
-6.6	0.009
-6.8	0.022
-7	0.031
-7.2	0.043
-7.4	0.052
-7.6	0.057
-7.8	0.057
-8	0.054
-8.2	0.052
-8.4	0.049
-8.6	0.039
-8.8	0.039
-8.8 -9	0.022
-9 -9.2	
	0.065
-9.4	0.122
-9.5	0.156

Inviluppi Tasso di Sfruttamento a Momento	
Z (m) -9.7	Tasso di Sfruttamento a Momento - SteelWorld
-9.9	0.093 0.046
-10.1	0.013
-10.3	0.017
-10.5	0.034
-10.7	0.044
-10.9	0.051
-11.1 -11.3	0.056 0.058
-11.5	0.06
-11.7	0.06
-11.9	0.055
-12.1	0.045
-12.3	0.028
-12.5 -12.7	0.028 0.068
-12.9	0.126
-13	0.16
-13.2	0.097
-13.4	0.05
-13.6	0.016
-13.8	0.018
-14 -14.2	0.033 0.044
-14.2	0.051
-14.6	0.057
-14.8	0.061
-15	0.063
-15.2	0.064
-15.4	0.06
-15.6 -15.8	0.05 0.036
-16	0.036
-16.2	0.071
-16.4	0.125
-16.5	0.16
-16.7	0.097
-16.9	0.057
-17.1 -17.3	0.025 0.029
-17.5 -17.5	0.029
-17.7	0.046
-17.9	0.061
-18.1	0.072
-18.3	0.079
-18.5	0.082
-18.7 -18.9	0.081 0.076
-19.1	0.067
-19.3	0.053
-19.5	0.045
-19.7	0.032
-19.9 30.1	0.014
-20.1	0.051
-20.3 -20.5	0.066 0.066
-20.7	0.057
-20.9	0.045
-21.1	0.032
-21.3	0.021
-21.5	0.012
-21.7 -21.9	0.007 0.003
-21.5	0.003
-22.3	0.002
-22.5	0.002
-22.7	0.002
-22.9	0.002
-23.1	0.001
-23.3 -23.5	0.001 0
-23.5 -23.7	0
-23.9	0
-24	0

Grafico Inviluppi Tasso di Sfruttamento a Momento - SteelWorld



Inviluppi Tasso di Sfruttamento a Momento - SteelWorld

7 ()	World LEFT
Z (m) 0	Tasso di Sfruttamento a Taglio - SteelWorld 0.001
-0.2	0.004
-0.4 -0.6	0.007 0.01
-0.8	0.01
-1	0.016
-1.2	0.018
-1.4 -1.6	0.021 0.024
-1.8	0.027
-2	0.03
-2.2 -2.4	0.034 0.044
-2.5	0.045
-2.7	0.038
-2.9 -3.1	0.035 0.031
-3.3	0.031
-3.5	0.024
-3.7	0.02
-3.9 -4.1	0.015 0.011
-4.3	0.006
-4.5	0.002
-4.7	0.003
-4.9 -5.1	0.007 0.012
-5.3	0.02
-5.5	0.029
-5.7 E.O.	0.039
-5.9 -6	0.048 0.044
-6.2	0.033
-6.4	0.023
-6.6 -6.8	0.015 0.012
-0.8 -7	0.009
-7.2	0.006
-7.4	0.004
-7.6 -7.8	0.004 0.003
-7.8 -8	0.005
-8.2	0.008
-8.4	0.011
-8.6 -8.8	0.014 0.021
-9	0.03
-9.2	0.039
-9.4	0.048
-9.5 -9.7	0.044 0.033
-9.9	0.024
-10.1	0.017
-10.3	0.012
-10.5 -10.7	0.009 0.007
-10.9	0.004
-11.1	0.003
-11.3 -11.5	0.003
-11.5 -11.7	0.005 0.008
-11.9	0.01
-12.1	0.015
-12.3 -12.5	0.022 0.03
-12.5 -12.7	0.03
-12.9	0.048
-13	0.044
-13.2 -13.4	0.034
-13.4 -13.6	0.025 0.018
-13.8	0.012
-14	0.009
-14.2	0.006
-14.4 -14.6	0.004 0.003
-14.8	0.003
-15	0.005
-15.2	0.008
-15.4 -15.6	0.011 0.016
-15.6 -15.8	0.016
-16	0.03
-16.2	0.04
-16.4	0.048
-16.5 -16.7	0.043 0.033
-16.7 -16.9	0.033
-17.1	0.019
-17.3	0.016
-17.5 17.7	0.013
-17.7 -17.9	0.011 0.008
11.0	0.008

Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld	LEFT LEFT
Z (m)	Tasso di Sfruttamento a Taglio - SteelWorld
-18.5	0.003
-18.7	0.004
-18.9	0.006
-19.1	0.009
-19.3	0.012
-19.5	0.015
-19.7	0.019
-19.9	0.026
-20.1	0.012
-20.3	0.003
-20.5	0.006
-20.7	0.008
-20.9	0.009
-21.1	0.008
-21.3	0.006
-21.5	0.004
-21.7	0.003
-21.9	0.002
-22.1	0.001
-22.3	0
-22.5	0
-22.7	0
-22.9	0
-23.1	0
-23.3	0
-23.5	0
-23.7	0
-23.9	0
-24	0

Grafico Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld

Verifiche Tiranti NTC2018: SLE (Rara/Frequente/Quasi Permanente)

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi					NTC2018			l
Permanente) Tirante	Tiranti	Sollecitazione	Desistance CEO	Resistenza STR	(ITA) Ratio GEO	Ratio	Resi-	Communicatella Basi
Tirante	Stage	(kN)	Resistenza GEO (kN)	(kN)	Katio GEO	STR	stenza	Gerarchia delle Resi- stenze
T1	Stage 3 Attiv. T1	300	1166.316	550.44	0.257	0.545	Stellza	NO
T1				550.44		0.545		
T1	Stage 4_Scavo T2	299.981 300.002	1166.316	550.44 550.44	0.257 0.257	0.545		NO NO
	Stage 5_Attiv. T2	300.002	1166.316 1166.316	550.44	0.257	0.545		
T1 T1	Stage 6_Scavo T3							NO
	Stage 7_Attiv. T3	300.005	1166.316	550.44	0.257	0.545		NO
T1	Stage 8_Scavo T4	300.005	1166.316	550.44	0.257	0.545		NO
T1	Stage 9_Attiv. T4	300.005	1166.316	550.44	0.257	0.545		NO
T1	Stage 10_Scavo T5	300.005	1166.316	550.44	0.257	0.545		NO
T1	Stage 11_Attiv. T5	300.005	1166.316	550.44	0.257	0.545		NO
T1	Stage 12_Fondo scavo	300.005	1166.316	550.44	0.257	0.545		NO
T1	Stage 13_Sisma	300.005	1166.316	550.44	0.257	0.545		NO
T2	Stage 5_Attiv. T2	300	1166.316	550.44	0.257	0.545		NO
T2	Stage 6_Scavo T3	300.093	1166.316	550.44	0.257	0.545		NO
T2	Stage 7_Attiv. T3	300.151	1166.316	550.44	0.257	0.545		NO
T2	Stage 8_Scavo T4	300.153	1166.316	550.44	0.257	0.545		NO
T2	Stage 9_Attiv. T4	300.152	1166.316	550.44	0.257	0.545		NO
T2	Stage 10_Scavo T5	300.152	1166.316	550.44	0.257	0.545		NO
T2	Stage 11_Attiv. T5	300.152	1166.316	550.44	0.257	0.545		NO
T2	Stage 12_Fondo scavo	300.152	1166.316	550.44	0.257	0.545		NO
T2	Stage 13_Sisma	300.152	1166.316	550.44	0.257	0.545		NO
T3	Stage 7_Attiv. T3	300	1166.316	550.44	0.257	0.545		NO
T3	Stage 8_Scavo T4	300.331	1166.316	550.44	0.258	0.546		NO
T3	Stage 9_Attiv. T4	300.413	1166.316	550.44	0.258	0.546		NO
T3	Stage 10_Scavo T5	300.415	1166.316	550.44	0.258	0.546		NO
T3	Stage 11_Attiv. T5	300.414	1166.316	550.44	0.258	0.546		NO
T3	Stage 12 Fondo scavo	300.414	1166.316	550.44	0.258	0.546		NO
T3	Stage 13 Sisma	300.414	1166.316	550.44	0.258	0.546		NO
T4	Stage 9 Attiv. T4	300	1166.316	550.44	0.257	0.545		NO
T4	Stage 10 Scavo T5	300.62	1166.316	550.44	0.258	0.546		NO
T4	Stage 11 Attiv. T5	300.718	1166.316	550.44	0.258	0.546		NO
T4	Stage 12 Fondo scavo	300.718	1166.316	550.44	0.258	0.546		NO
T4	Stage 13 Sisma	300.718	1166.316	550.44	0.258	0.546		NO
T5	Stage 11 Attiv. T5	300	1166.316	550.44	0.257	0.545		NO
T5	Stage 12 Fondo scavo	300.942	1166.316	550.44	0.258	0.547		NO
.5 T5	Stage 13 Sisma	300.942	1166.316	550.44	0.258	0.547		NO

Verifiche Tiranti NTC2018: A1+M1+R1 (R3 per tiranti)

sign Assumption: NTC2018: A1+M1+R1 (R3 per	Tipo Risultato: Verifiche Ti-				NTC2018			
tiranti)	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	390	589.049	550.44	0.662	0.709		NO
T1	Stage 4_Scavo T2	389.975	589.049	550.44	0.662	0.708		NO
T1	Stage 5_Attiv. T2	390.003	589.049	550.44	0.662	0.709		NO
T1	Stage 6_Scavo T3	390.007	589.049	550.44	0.662	0.709		NO
T1	Stage 7_Attiv. T3	390.006	589.049	550.44	0.662	0.709		NO
T1	Stage 8_Scavo T4	390.006	589.049	550.44	0.662	0.709		NO
T1	Stage 9_Attiv. T4	390.006	589.049	550.44	0.662	0.709		NO
T1	Stage 10_Scavo T5	390.006	589.049	550.44	0.662	0.709		NO
T1	Stage 11_Attiv. T5	390.006	589.049	550.44	0.662	0.709		NO
T1	Stage 12_Fondo scavo	390.006	589.049	550.44	0.662	0.709		NO
T1	Stage 13 Sisma	390.006	589.049	550.44	0.662	0.709		NO
T2	Stage 5_Attiv. T2	390	589.049	550.44	0.662	0.709		NO
T2	Stage 6 Scavo T3	390.121	589.049	550.44	0.662	0.709		NO
T2	Stage 7_Attiv. T3	390.197	589.049	550.44	0.662	0.709		NO
T2	Stage 8 Scavo T4	390.199	589.049	550.44	0.662	0.709		NO
T2	Stage 9_Attiv. T4	390.198	589.049	550.44	0.662	0.709		NO
T2	Stage 10 Scavo T5	390.198	589.049	550.44	0.662	0.709		NO
T2	Stage 11_Attiv. T5	390.198	589.049	550.44	0.662	0.709		NO
T2	Stage 12_Fondo scavo	390.198	589.049	550.44	0.662	0.709		NO
T2	Stage 13_Sisma	390.198	589.049	550.44	0.662	0.709		NO
T3	Stage 7_Attiv. T3	390	589.049	550.44	0.662	0.709		NO
T3	Stage 8 Scavo T4	390.431	589.049	550.44	0.663	0.709		NO
T3	Stage 9_Attiv. T4	390.537	589.049	550.44	0.663	0.709		NO
T3	Stage 10_Scavo T5	390.539	589.049	550.44	0.663	0.71		NO
T3	Stage 11_Attiv. T5	390.538	589.049	550.44	0.663	0.71		NO
T3	Stage 12_Fondo scavo	390.538	589.049	550.44	0.663	0.71		NO
T3	Stage 13_Sisma	390.538	589.049	550.44	0.663	0.71		NO
T4	Stage 9_Attiv. T4	390	589.049	550.44	0.662	0.709		NO
T4	Stage 10 Scavo T5	390.806	589.049	550.44	0.663	0.71		NO
T4	Stage 11_Attiv. T5	390.933	589.049	550.44	0.664	0.71		NO
T4	Stage 12 Fondo scavo	390.934	589.049	550.44	0.664	0.71		NO
T4	Stage 13_Sisma	390.934	589.049	550.44	0.664	0.71		NO
T5	Stage 11 Attiv. T5	390	589.049	550.44	0.662	0.709		NO
T5	Stage 12_Fondo scavo	391.225	589.049	550.44	0.664	0.711		NO
T5	Stage 13 Sisma	391.225	589.049	550.44	0.664	0.711		NO

Verifiche Tiranti NTC2018: A2+M2+R1

Design Assumption: NTC2018:	Tipo Risultato: Verifiche Ti-				NTC2018			
A2+M2+R1					(ITA)			
Tirante Stage S		Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1 Stage 3_Attiv. T1		300	589.049	550.44	0.509	0.545		NO
T1	Stage 4 Scavo T2	299.977	589.049	550.44	0.509	0.545		NO
T1	Stage 5_Attiv. T2	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 6_Scavo T3	300.008	589.049	550.44	0.509	0.545		NO
T1	Stage 7_Attiv. T3	300.007	589.049	550.44	0.509	0.545		NO
T1	Stage 8 Scavo T4	300.007	589.049	550.44	0.509	0.545		NO
T1	Stage 9_Attiv. T4	300.007	589.049	550.44	0.509	0.545		NO
T1	Stage 10 Scavo T5	300.007	589.049	550.44	0.509	0.545		NO
T1	Stage 11 Attiv. T5	300.007	589.049	550.44	0.509	0.545		NO
T1	Stage 12 Fondo scavo	300.007	589.049	550.44	0.509	0.545		NO
T1	Stage 13 Sisma	300.007	589.049	550.44	0.509	0.545		NO
T2	Stage 5 Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T2	Stage 6 Scavo T3	300.114	589.049	550.44	0.509	0.545		NO
T2	Stage 7 Attiv. T3	300.185	589.049	550.44	0.51	0.545		NO
T2	Stage 8 Scavo T4	300.186	589.049	550.44	0.51	0.545		NO
T2	Stage 9 Attiv. T4	300.185	589.049	550.44	0.51	0.545		NO
T2	Stage 10 Scavo T5	300.185	589.049	550.44	0.51	0.545		NO
T2	Stage 11 Attiv. T5	300.185	589.049	550.44	0.51	0.545		NO
T2	Stage 12 Fondo scavo	300.185	589.049	550.44	0.51	0.545		NO
T2	Stage 13 Sisma	300.185	589.049	550.44	0.51	0.545		NO
T3	Stage 7 Attiv. T3	300	589.049	550.44	0.509	0.545		NO
T3	Stage 8 Scavo T4	300.417	589.049	550.44	0.51	0.546		NO
T3	Stage 9 Attiv. T4	300.514	589.049	550.44	0.51	0.546		NO
T3	Stage 10 Scavo T5	300.513	589.049	550.44	0.51	0.546		NO
T3	Stage 11 Attiv. T5	300.512	589.049	550.44	0.51	0.546		NO
T3	Stage 12 Fondo scavo	300.512	589.049	550.44	0.51	0.546		NO
T3	Stage 13 Sisma	300.512	589.049	550.44	0.51	0.546		NO
T4	Stage 9 Attiv. T4	300	589.049	550.44	0.509	0.545		NO
T4	Stage 10 Scavo T5	300.789	589.049	550.44	0.511	0.546		NO
T4	Stage 11 Attiv. T5	300.904	589.049	550.44	0.511	0.547		NO
T4	Stage 12 Fondo scavo	300.9	589.049	550.44	0.511	0.547		NO
T4	Stage 13 Sisma	300.9	589.049	550.44	0.511	0.547		NO
T5	Stage 11 Attiv. T5	300	589.049	550.44	0.509	0.545		NO
T5	Stage 12 Fondo scavo	301.206	589.049	550.44	0.511	0.547		NO
T5	Stage 13 Sisma	301.206	589.049	550.44	0.511	0.547		NO

Verifiche Tiranti NTC2018: SISMICA STR

esign Assumption: NTC2018: SISMICA	Tipo Risultato: Verifiche Ti-				NTC2018			
STR	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Scavo T2	299.981	589.049	550.44	0.509	0.545		NO
T1	Stage 5_Attiv. T2	300.002	589.049	550.44	0.509	0.545		NO
T1	Stage 6_Scavo T3	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 7_Attiv. T3	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 8_Scavo T4	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 9 Attiv. T4	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 10_Scavo T5	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 11 Attiv. T5	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 12 Fondo scavo	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 13 Sisma	306.616	589.049	550.44	0.521	0.557		NO
T2	Stage 5 Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T2	Stage 6 Scavo T3	300.093	589.049	550.44	0.509	0.545		NO
T2	Stage 7_Attiv. T3	300.151	589.049	550.44	0.51	0.545		NO
T2	Stage 8 Scavo T4	300.153	589.049	550.44	0.51	0.545		NO
T2	Stage 9_Attiv. T4	300.152	589.049	550.44	0.51	0.545		NO
T2	Stage 10 Scavo T5	300.152	589.049	550.44	0.51	0.545		NO
T2	Stage 11 Attiv. T5	300.152	589.049	550.44	0.51	0.545		NO
T2	Stage 12 Fondo scavo	300.152	589.049	550.44	0.51	0.545		NO
T2	Stage 13 Sisma	301.448	589.049	550.44	0.512	0.548		NO
T3	Stage 7 Attiv. T3	300	589.049	550.44	0.509	0.545		NO
T3	Stage 8 Scavo T4	300.331	589.049	550.44	0.51	0.546		NO
T3	Stage 9 Attiv. T4	300.413	589.049	550.44	0.51	0.546		NO
T3	Stage 10 Scavo T5	300.415	589.049	550.44	0.51	0.546		NO
T3	Stage 11 Attiv. T5	300.414	589.049	550.44	0.51	0.546		NO
T3	Stage 12 Fondo scavo	300.414	589.049	550.44	0.51	0.546		NO
T3	Stage 13 Sisma	301.678	589.049	550.44	0.512	0.548		NO
T4	Stage 9 Attiv. T4	300	589.049	550.44	0.509	0.545		NO
T4	Stage 10 Scavo T5	300.62	589.049	550.44	0.51	0.546		NO
T4	Stage 11 Attiv. T5	300.718	589.049	550.44	0.511	0.546		NO
T4	Stage 12 Fondo scavo	300.718	589.049	550.44	0.511	0.546		NO
T4	Stage 13 Sisma	302.171	589.049	550.44	0.513	0.549		NO
T5	Stage 11 Attiv. T5	300	589.049	550.44	0.509	0.545		NO
T5	Stage 12 Fondo scavo	300.942	589.049	550.44	0.511	0.547		NO
T5	Stage 13 Sisma	302.657	589.049	550.44	0.514	0.55		NO

Verifiche Tiranti NTC2018: SISMICA GEO

Design Assumption: NTC2018: SISMICA Tipo Risultato: Verifich GEO ranti					NTC2018 (ITA)			
Tirante	Stage			Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Scavo T2	299.981	589.049	550.44	0.509	0.545		NO
T1	Stage 5_Attiv. T2	300.002	589.049	550.44	0.509	0.545		NO
T1	Stage 6_Scavo T3	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 7_Attiv. T3	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 8_Scavo T4	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 9_Attiv. T4	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 10_Scavo T5	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 11_Attiv. T5	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 12_Fondo scavo	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 13_Sisma	306.616	589.049	550.44	0.521	0.557		NO
T2	Stage 5 Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T2	Stage 6_Scavo T3	300.093	589.049	550.44	0.509	0.545		NO
T2	Stage 7 Attiv. T3	300.151	589.049	550.44	0.51	0.545		NO
T2	Stage 8 Scavo T4	300.153	589.049	550.44	0.51	0.545		NO
T2	Stage 9 Attiv. T4	300.152	589.049	550.44	0.51	0.545		NO
T2	Stage 10_Scavo T5	300.152	589.049	550.44	0.51	0.545		NO
T2	Stage 11 Attiv. T5	300.152	589.049	550.44	0.51	0.545		NO
T2	Stage 12 Fondo scavo	300.152	589.049	550.44	0.51	0.545		NO
T2	Stage 13 Sisma	301.448	589.049	550.44	0.512	0.548		NO
Т3	Stage 7 Attiv. T3	300	589.049	550.44	0.509	0.545		NO
T3	Stage 8 Scavo T4	300.331	589.049	550.44	0.51	0.546		NO
Т3	Stage 9 Attiv. T4	300.413	589.049	550.44	0.51	0.546		NO
Т3	Stage 10 Scavo T5	300.415	589.049	550.44	0.51	0.546		NO
Т3	Stage 11 Attiv. T5	300.414	589.049	550.44	0.51	0.546		NO
T3	Stage 12 Fondo scavo	300.414	589.049	550.44	0.51	0.546		NO
Т3	Stage 13 Sisma	301.678	589.049	550.44	0.512	0.548		NO
T4	Stage 9 Attiv. T4	300	589.049	550.44	0.509	0.545		NO
T4	Stage 10 Scavo T5	300.62	589.049	550.44	0.51	0.546		NO
T4	Stage 11 Attiv. T5	300.718	589.049	550.44	0.511	0.546		NO
T4	Stage 12 Fondo scavo	300.718	589.049	550.44	0.511	0.546		NO
T4	Stage 13 Sisma	302.171	589.049	550.44	0.513	0.549		NO
T5	Stage 11 Attiv. T5	300	589.049	550.44	0.509	0.545		NO
T5	Stage 12 Fondo scavo	300.942	589.049	550.44	0.511	0.547		NO
T5	Stage 13 Sisma	302.657	589.049	550.44	0.514	0.55		NO

Inviluppo Verifiche Tiranti (su tutte le D.A. attive)

	Γipo Risultato: Verifiche Tira	nti		•				
Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)) Resistenza STR (k	N) Ratio GEO	Ratio STR Res	sistenza Gerarchia delle Resistenze	Design Assumption
T1	Stage 3_Attiv. T1	390	589.049	550.44	0.662	0.709	NO	NTC2018: A1+M1+R1 (R3 per tiranti)
T2	Stage 5_Attiv. T2	390	589.049	550.44	0.662	0.709	NO	NTC2018: A1+M1+R1 (R3 per tiranti)
T3	Stage 10_Scavo T5	390.539	589.049	550.44	0.663	0.71	NO	NTC2018: A1+M1+R1 (R3 per tiranti)
T4	Stage 10_Scavo T5	390.806	589.049	550.44	0.663	0.71	NO	NTC2018: A1+M1+R1 (R3 per tiranti)
T5	Stage 12_Fondo scavo	391.225	589.049	550.44	0.664	0.711	NO	NTC2018: A1+M1+R1 (R3 per tiranti)

SS 131 "Carlo Felice"

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

9.2 Allegato 2 - Sezione 2: Paratia tipo T - 5 tiranti attivi

Descrizione della Stratigrafia e degli Strati di Terreno

Tipo : POLYLINE Punti

(-55;50) (55;50) (55;-35) (-55;-35)

OCR:1

Tipo: POLYLINE

Punti

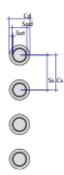
(-55;-10.2) (55;-19.8) (55;-35) (-55;-35)

OCR:1

Strato di Terreno T	erren	oγdry kN/m³					u Modulo Elastico Eu a	Evc kPa	Eur kPa	Ah Av exp Pa Rı kPa	ur/Rvc Rvc kPa ki		
1	СВ	20.1	20.1	26.	7	125	Constant	540000	864000)		 	
2	М	19 9	199	30 '		165	Constant	525000	840000)			

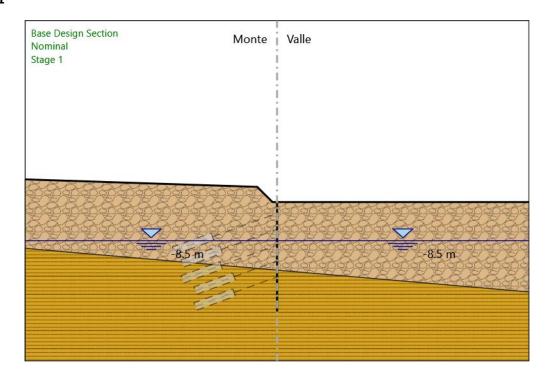
Descrizione Pareti

X:0 m


Quota in alto: 0 m Quota di fondo : -24 m Muro di sinistra

Sezione: Micropali fi240 - fi168.3 sp10

Area equivalente : 0.019045141329815 m Inerzia equivalente: 0.0001 m⁴/m Materiale calcestruzzo : C25/30 Tipo sezione : Tangent Spaziatura : 0.4 m Diametro: 0.24 m Efficacia: 0.5


Materiale acciaio: S355

Sezione: CHS168.3*10 Tipo sezione : O Spaziatura : 0.4 m Spessore : 0.01 m Diametro: 0.1683 m

Fasi di Calcolo

Stage 1

Stage 1 Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : 0 m

Linea di scavo di sinistra (Irregolare)

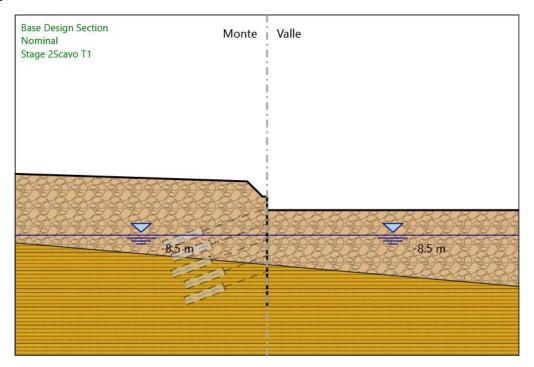
(-55;5) (-4.35;3.35) (-1;0)(0;0) Linea di scavo di destra (Orizzontale)

Falda acquifera

Falda di sinistra : -8.5 m Falda di destra : -8.5 m

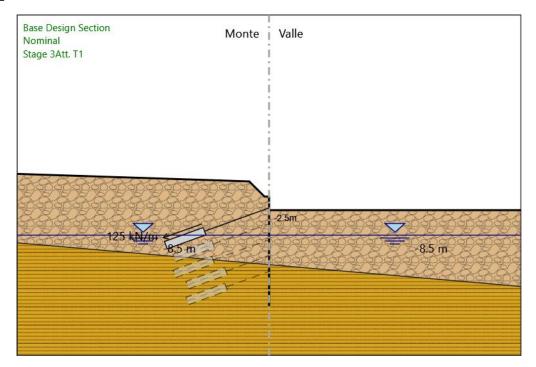
Elementi strutturali

Paratia : Sx

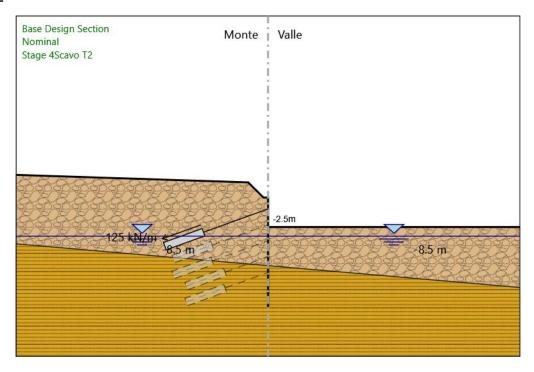

X:0 m

Quota in alto : 0 m Quota di fondo : -24 m

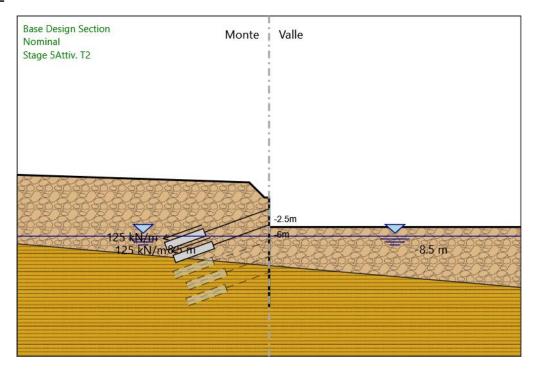
0 m


Sezione : Micropali fi240 - fi168.3 sp10

Stage 2_Scavo T1


```
Stage 2_Scavo T1
Scavo
           Muro di sinistra
                       Lato monte : 0 m
                       Lato valle : -3 m
                       Linea di scavo di sinistra (Irregolare)
                                  (-55;5)
(-4.35;3.35)
(-1;0)
                                  (0;0)
                       Linea di scavo di destra (Orizzontale)
Falda acquifera
           Falda di sinistra : -8.5 m
           Falda di destra : -8.5 m
Elementi strutturali
           Paratia : Sx
                       X:0 m
                       Quota in alto: 0 m
                       Quota di fondo : -24 m
                       Sezione : Micropali fi240 - fi168.3 sp10
```

Stage 3_Att. T1

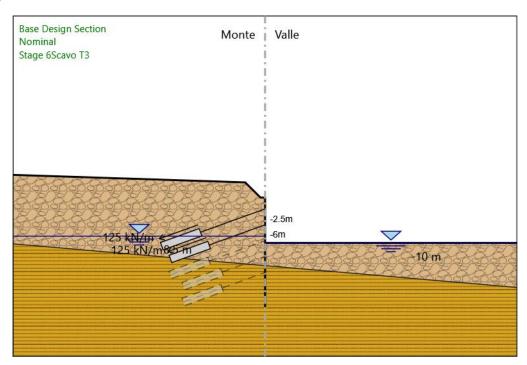

```
Stage 3_Att. T1
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -3 m
                      Linea di scavo di sinistra (Irregolare)
                                (-55;5)
                                (-4.35;3.35)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
Falda acquifera
           Falda di sinistra : -8.5 m
           Falda di destra : -8.5 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -24 m
                      Sezione : Micropali fi240 - fi168.3 sp10
           Tirante: T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera: 15 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico: 300 kN
                      Angolo : 20 °
                      Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre: 3
                                Diametro : 0.01331 m
                                Area: 0.000417 m^2
```

Stage 4_Scavo T2


```
Stage 4_Scavo T2
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -6.5 m
                      Linea di scavo di sinistra (Irregolare)
                                (-55;5)
                                (-4.35;3.35)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
Falda acquifera
           Falda di sinistra : -8.5 m
           Falda di destra : -8.5 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -24 m
                      Sezione : Micropali fi240 - fi168.3 sp10
           Tirante: T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera: 15 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico : 300 kN
                      Angolo : 20 °
                      Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre: 3
                                Diametro : 0.01331 m
                                Area: 0.000417 m^2
```

Stage 5_Attiv. T2


```
Stage 5_Attiv. T2
Scavo
          Muro di sinistra
                     Lato monte : 0 m
                     Lato valle : -6.5 m
                     Linea di scavo di sinistra (Irregolare)
                                (-55;5)
                                (-4.35; 3.35)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
Falda acquifera
          Falda di sinistra : -8.5 m
          Falda di destra: -8.5 m
Elementi strutturali
          Paratia : Sx
                     X:0 m
                     Quota in alto : 0 m
                     Quota di fondo : -24 m
                     Sezione : Micropali fi240 - fi168.3 sp10
          Tirante: T1
                     X:0 m
                     Z:-2.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo : 0.15 m
                     Lunghezza libera: 15 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico: 300 kN
                     Angolo : 20 °
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre: 3
                                Diametro : 0.01331 m
                                Area: 0.000417 m^2
          Tirante : T2
                     X:0 m
                     Z:-6 m
                     Lunghezza bulbo: 9 m
                     Diametro bulbo : 0.15 m
```


Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 6_Scavo T3

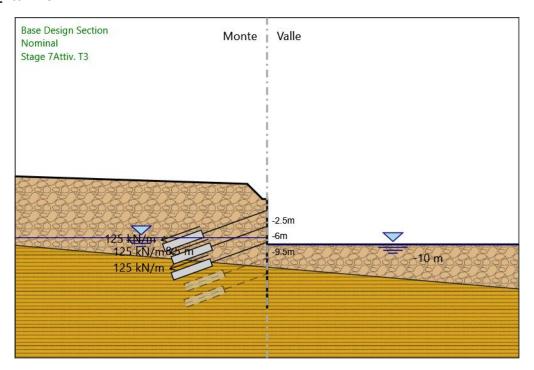
Stage 6_Scavo T3


```
Scavo
           Muro di sinistra
                     Lato monte : 0 m
                      Lato valle: -10 m
                      Linea di scavo di sinistra (Irregolare)
                                (-55;5)
                                (-4.35;3.35)
                                (-1;0)
                                (0;0)
                      Linea di scavo di destra (Orizzontale)
                                -10 m
Falda acquifera
           Falda di sinistra : -8.5 m
           Falda di destra : -10 m
Elementi strutturali
           Paratia: Sx
                      X:0 m
                      Quota in alto: 0 m
                      Quota di fondo : -24 m
                     Sezione : Micropali fi240 - fi168.3 sp10
           Tirante: T1
                      X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo : 9 m
                     Diametro bulbo : 0.15 m
                      Lunghezza libera: 15 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico: 300 kN
```

Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T2


X:0 m Z:-6 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 7_Attiv. T3


```
Stage 7_Attiv. T3
Scavo

Muro di sinistra

Lato monte : 0 m

Lato valle : -10 m

Linea di scavo di sinistra (Irregolare)

(-55;5)

(-4.35;3.35)

(-1;0)

(0;0)

Linea di scavo di destra (Orizzontale)
```

-10 m

Falda acquifera

Falda di sinistra : -8.5 m Falda di destra : -10 m

Elementi strutturali Paratia : Sx

X : 0 m

Quota in alto : 0 m Quota di fondo : -24 m

Sezione: Micropali fi240 - fi168.3 sp10

Tirante: T1

X : 0 m Z : -2.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 15 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T2

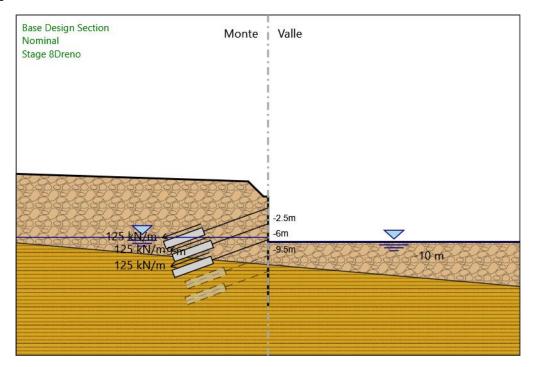
X:0 m Z:-6 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m Precarico : 300 kN

Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3


X : 0 m Z : -9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 8_Dreno

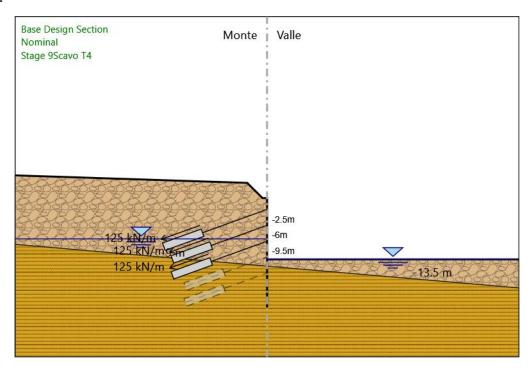

```
Stage 8_Dreno
Scavo
          Muro di sinistra
                     Lato monte : 0 m
                     Lato valle : -10 m
                     Linea di scavo di sinistra (Irregolare)
                                (-55;5)
                                (-4.35; 3.35)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
Falda acquifera
          Falda di sinistra : -9 m
          Falda di destra: -10 m
Elementi strutturali
          Paratia : Sx
                     X:0 m
                     Quota in alto : 0 m
                     Quota di fondo : -24 m
                     Sezione : Micropali fi240 - fi168.3 sp10
          Tirante: T1
                     X:0 m
                     Z:-2.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera: 15 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico: 300 kN
                     Angolo : 20 °
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre: 3
                                Diametro : 0.01331 m
                                Area: 0.000417 m^2
          Tirante : T2
                     X:0 m
                     Z:-6 m
                     Lunghezza bulbo: 9 m
                     Diametro bulbo : 0.15 m
```

Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T3


X : 0 m Z : -9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 9_Scavo T4

Stage 9_Scavo T4 Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -13.5 m

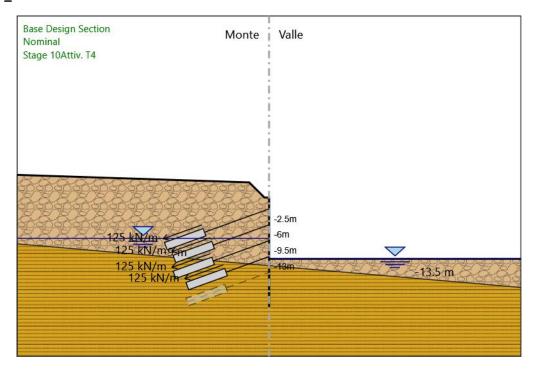
Linea di scavo di sinistra (Irregolare)

(-55;5) (-4.35;3.35) (-1;0) (0;0)

Linea di scavo di destra (Orizzontale)

-13.5 m

Falda acquifera


Falda di sinistra : -9 m Falda di destra : -13.5 m

Elementi strutturali Paratia : Sx X:0 m Quota in alto : 0 m Quota di fondo : -24 m Sezione: Micropali fi240 - fi168.3 sp10 Tirante: T1 X:0 mZ:-2.5 m Lunghezza bulbo : 9 m Diametro bulbo: 0.15 m Lunghezza libera : 15 m Spaziatura orizzontale : 2.4 m Precarico: 300 kN Angolo : 20 ° Sezione: 3 trefoli Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area: 0.000417 m^2 Tirante : T2 X:0 m Z:-6 m Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera: 13 m Spaziatura orizzontale : 2.4 m Precarico: 300 kN Angolo : 20 ° Sezione : 3 trefoli Tipo di barre : Barre trefoli Numero di barre : 3 Diametro: 0.01331 m Area: 0.000417 m^2 Tirante: T3 X : 0 m Z:-9.5 m Lunghezza bulbo: 9 m Diametro bulbo : 0.15 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Stage 10_Attiv. T4


```
Stage 10_Attiv. T4
Scavo
          Muro di sinistra
                     Lato monte : 0 m
                     Lato valle: -13.5 m
                     Linea di scavo di sinistra (Irregolare)
                                (-55;5)
                                (-4.35; 3.35)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
Falda acquifera
          Falda di sinistra : -9 m
          Falda di destra: -13.5 m
Elementi strutturali
          Paratia : Sx
                     X:0 m
                     Quota in alto : 0 m
                     Quota di fondo : -24 m
                     Sezione : Micropali fi240 - fi168.3 sp10
          Tirante: T1
                     X:0 m
                     Z:-2.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo : 0.15 m
                     Lunghezza libera: 15 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico: 300 kN
                     Angolo : 20 °
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre: 3
                                Diametro : 0.01331 m
                                Area: 0.000417 m^2
          Tirante : T2
                     X:0 m
                     Z:-6 m
                     Lunghezza bulbo: 9 m
                     Diametro bulbo : 0.15 m
```

Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3

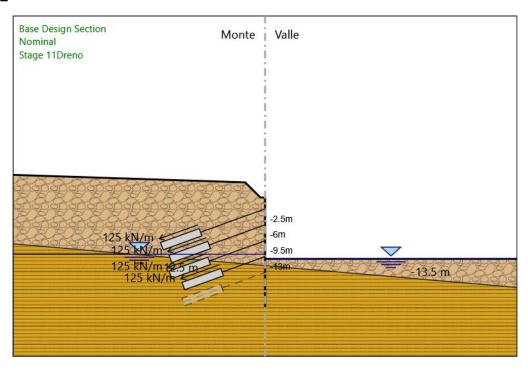
X:0 m Z:-9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T4

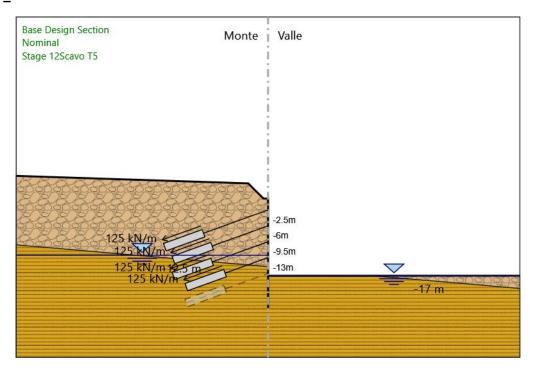

X : 0 m Z : -13 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 11_Dreno

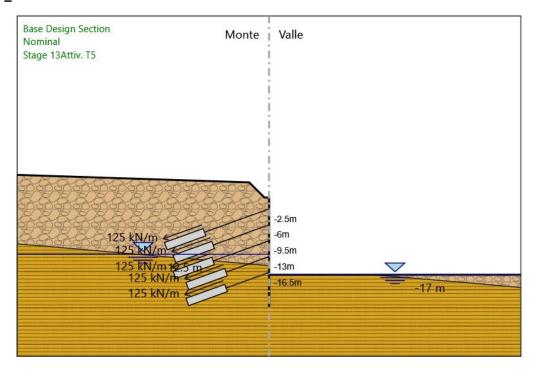


Stage 11_Dreno Scavo

```
Muro di sinistra
                     Lato monte : 0 m
                     Lato valle: -13.5 m
                     Linea di scavo di sinistra (Irregolare)
                                (-55;5)
                                (-4.35; 3.35)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
                                -13.5 m
Falda acquifera
          Falda di sinistra : -12.5 m
          Falda di destra: -13.5 m
Elementi strutturali
          Paratia: Sx
                     X:0 m
                     Quota in alto : 0 m
                     Quota di fondo : -24 m
                     Sezione: Micropali fi240 - fi168.3 sp10
          Tirante: T1
                     X:0 m
                     Z:-2.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo : 0.15 m
                     Lunghezza libera: 15 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico: 300 kN
                     Angolo : 20 °
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
          Tirante: T2
                     X:0 m
                     Z : -6 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera : 13 m
                     Spaziatura orizzontale: 2.4 m
                     Precarico : 300 kN
                     Angolo: 20°
                     Sezione : 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
          Tirante: T3
                     X:0 m
                     Z:-9.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera : 13 m
                     Spaziatura orizzontale: 2.4 m
                     Precarico : 300 kN
                     Angolo : 20 °
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
          Tirante: T4
                     X:0 m
                     Z:-13 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo : 0.15 m
                     Lunghezza libera: 10 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico: 300 kN
```

Angolo : 20 ° Sezione : 3 trefoli Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 12_Scavo T5


```
Stage 12_Scavo T5
Scavo
           Muro di sinistra
                      Lato monte: 0 m
                      Lato valle : -17 m
                      Linea di scavo di sinistra (Irregolare)
                                (-55;5)
                                (-4.35;3.35)
                                (-1;0)
                                (0;0)
                      Linea di scavo di destra (Orizzontale)
                                -17 m
Falda acquifera
           Falda di sinistra : -12.5 m
           Falda di destra : -17 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                      Quota in alto: 0 m
                      Quota di fondo : -24 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante: T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo: 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera: 15 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico: 300 kN
                      Angolo : 20 °
                      Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre: 3
                                Diametro: 0.01331 m
```

Area: 0.000417 m^2

Tirante: T2 X:0 m Z : -6 m Lunghezza bulbo : 9 m Diametro bulbo: 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale: 2.4 m Precarico : 300 kN Angolo: 20° Sezione : 3 trefoli Tipo di barre : Barre trefoli Numero di barre : 3 Diametro: 0.01331 m Area: 0.000417 m^2 Tirante: T3 X:0 m Z:-9.5 m Lunghezza bulbo: 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m Precarico: 300 kN Angolo : 20 ° Sezione: 3 trefoli Tipo di barre : Barre trefoli Numero di barre: 3 Diametro : 0.01331 m Area: 0.000417 m^2 Tirante : T4 X:0 m Z:-13 m Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera: 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Stage 13_Attiv. T5


```
Stage 13_Attiv. T5
Scavo
          Muro di sinistra
                     Lato monte : 0 m
                     Lato valle : -17 m
                     Linea di scavo di sinistra (Irregolare)
                                (-55;5)
                                (-4.35; 3.35)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
Falda acquifera
          Falda di sinistra : -12.5 m
          Falda di destra: -17 m
Elementi strutturali
          Paratia: Sx
                     X:0 m
                     Quota in alto : 0 m
                     Quota di fondo : -24 m
                     Sezione : Micropali fi240 - fi168.3 sp10
          Tirante: T1
                     X:0 m
                     Z:-2.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera: 15 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico: 300 kN
                     Angolo : 20 °
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre: 3
                                Diametro : 0.01331 m
                                Area: 0.000417 m^2
          Tirante : T2
                     X:0 m
                     Z:-6 m
                     Lunghezza bulbo: 9 m
                     Diametro bulbo : 0.15 m
```

Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3

X : 0 m Z : -9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

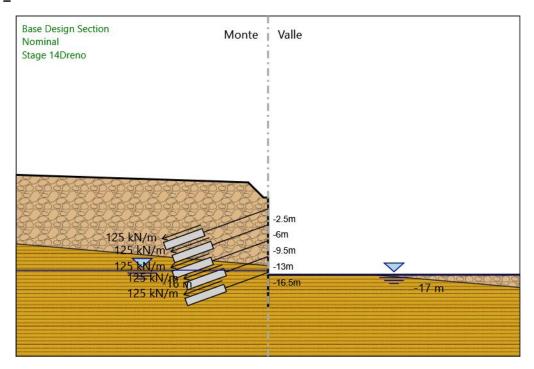
Tirante: T4

X : 0 m Z : -13 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2


Tirante : T5

X : 0 m Z : -16.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Stage 14_Dreno


```
Stage 14_Dreno
Scavo
          Muro di sinistra
                     Lato monte : 0 m
                     Lato valle : -17 m
                     Linea di scavo di sinistra (Irregolare)
                                (-55;5)
                                (-4.35; 3.35)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
Falda acquifera
          Falda di sinistra : -16 m
          Falda di destra: -17 m
Elementi strutturali
          Paratia: Sx
                     X:0 m
                     Quota in alto : 0 m
                     Quota di fondo : -24 m
                     Sezione : Micropali fi240 - fi168.3 sp10
          Tirante: T1
                     X:0 m
                     Z:-2.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera: 15 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico: 300 kN
                     Angolo : 20 °
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre: 3
                                Diametro : 0.01331 m
                                Area: 0.000417 m^2
          Tirante : T2
                     X:0 m
                     Z:-6 m
                     Lunghezza bulbo: 9 m
                     Diametro bulbo : 0.15 m
```

Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3

X : 0 m Z : -9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

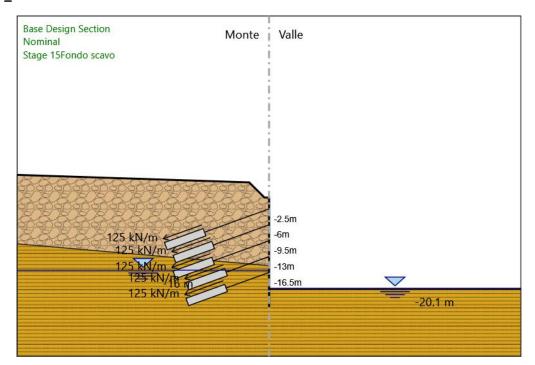
Tirante: T4

X : 0 m Z : -13 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2


Tirante : T5

X : 0 m Z : -16.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Stage 15_Fondo scavo


```
Stage 15_Fondo scavo
Scavo
           Muro di sinistra
                     Lato monte : 0 m
                     Lato valle: -20.1 m
                     Linea di scavo di sinistra (Irregolare)
                                (-55;5)
                                (-4.35; 3.35)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
Falda acquifera
          Falda di sinistra : -16 m
          Falda di destra: -20.1 m
Elementi strutturali
          Paratia: Sx
                     X:0 m
                     Quota in alto : 0 m
                     Quota di fondo : -24 m
                     Sezione : Micropali fi240 - fi168.3 sp10
          Tirante: T1
                     X:0 m
                     Z:-2.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera: 15 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico: 300 kN
                     Angolo : 20 °
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre: 3
                                Diametro : 0.01331 m
                                Area: 0.000417 m^2
          Tirante : T2
                     X:0 m
                     Z : -6 m
                     Lunghezza bulbo: 9 m
                     Diametro bulbo : 0.15 m
```

Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3

X : 0 m Z : -9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

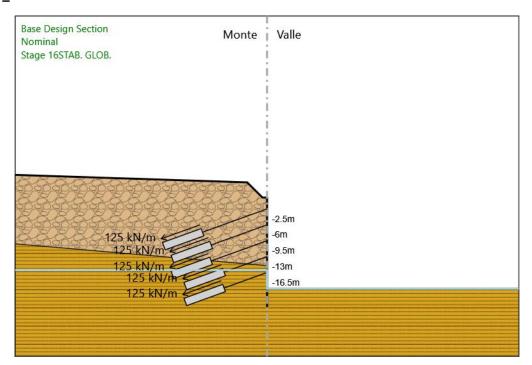
Tirante: T4

X : 0 m Z : -13 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2


Tirante : T5

X : 0 m Z : -16.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Stage 16_STAB. GLOB.


```
Stage 16_STAB. GLOB.
Scavo
           Muro di sinistra
                     Lato monte : 0 m
                     Lato valle: -20.1 m
                     Linea di scavo di sinistra (Irregolare)
                                (-55;5)
                                (-4.35; 3.35)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
Elementi strutturali
          Paratia: Sx
                     X:0 m
                     Quota in alto: 0 m
                     Quota di fondo: -24 m
                     Sezione: Micropali fi240 - fi168.3 sp10
          Tirante: T1
                     X:0 m
                     Z:-2.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera: 15 m
                     Spaziatura orizzontale: 2.4 m
                     Precarico : 300 kN
                     Angolo : 20 °
                     Sezione : 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro : 0.01331 m
                                Area: 0.000417 m^2
          Tirante : T2
                     X:0 m
                     Z : -6 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo : 0.15 m
                     Lunghezza libera: 13 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico: 300 kN
                     Angolo : 20 °
```

Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3

X : 0 m Z : -9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

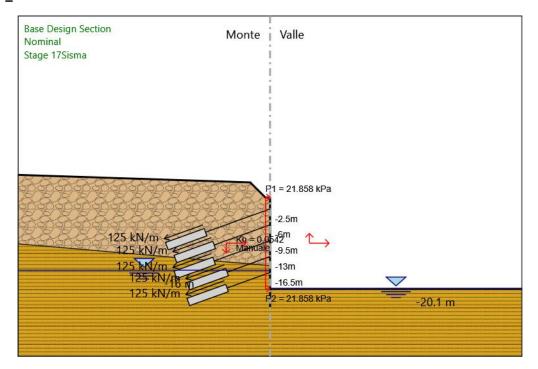
Tirante: T4

X:0 m Z:-13 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2


Tirante: T5

X:0 m Z:-16.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Stage 17_Sisma


```
Stage 17_Sisma
Scavo
           Muro di sinistra
                     Lato monte : 0 m
                     Lato valle : -20.1 m
                     Linea di scavo di sinistra (Irregolare)
                                (-55;5)
                                (-4.35; 3.35)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
Falda acquifera
          Falda di sinistra : -16 m
          Falda di destra: -20.1 m
Elementi strutturali
          Paratia : Sx
                     X:0 m
                     Quota in alto : 0 m
                     Quota di fondo : -24 m
                     Sezione : Micropali fi240 - fi168.3 sp10
          Tirante: T1
                     X:0 m
                     Z:-2.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera: 15 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico: 300 kN
                     Angolo : 20 °
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre: 3
                                Diametro : 0.01331 m
                                Area: 0.000417 m^2
          Tirante : T2
                     X:0 m
                     Z:-6 m
                     Lunghezza bulbo: 9 m
                     Diametro bulbo : 0.15 m
```

Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3

X : 0 m Z : -9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

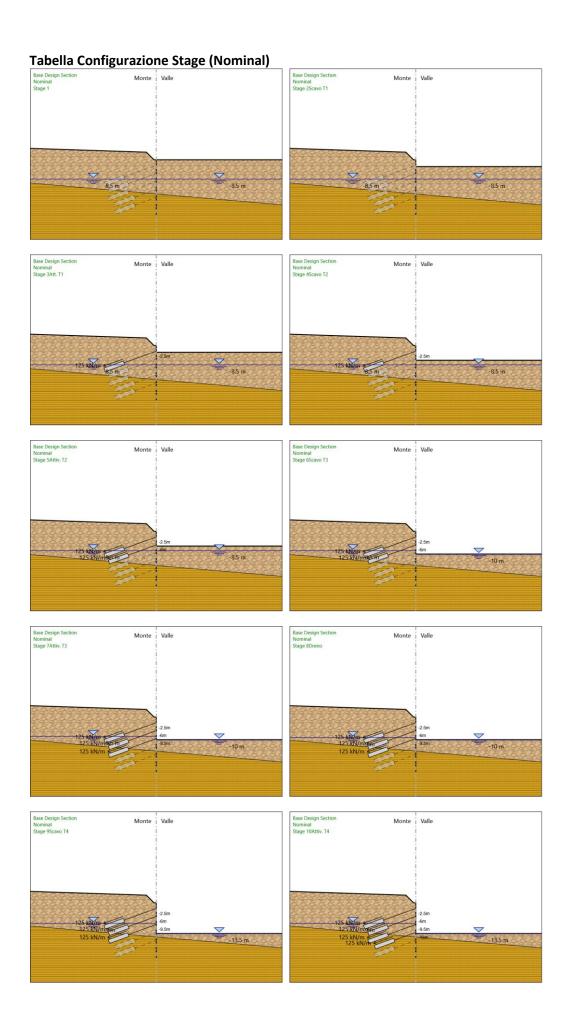
Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

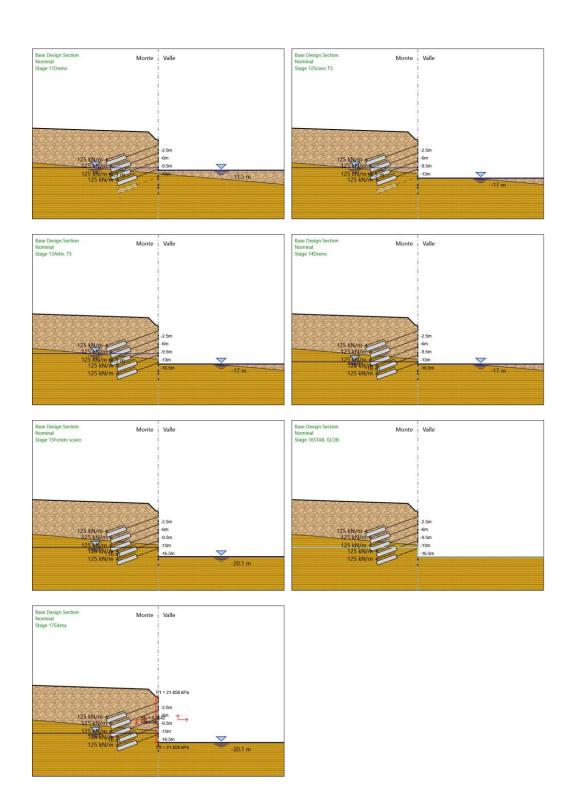
Tirante: T4

X : 0 m Z : -13 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli


Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2


Tirante : T5

X : 0 m Z : -16.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Descrizione Coefficienti Design Assumption

Nome	Carichi Perma- nenti Sfavore- voli (F_dead_load_u nfavour)	voli	bili Sfavorevoli (F_live_load_u		Carico Si- smico F_seism_loa d)	sioni Acqua Lato Mont	sioni Acqua Lato Valle (F_Wa ter-	nenti Destabi- lizzanti (F_UPL_GDSta b)	manenti Sta- bilizzanti	bili Destabiliz- zanti	Carichi Perma- nenti Destabi- lizzanti (F_HYD_GDSta b)	manenti Sta- bilizzanti	bili Destabiliz- zanti
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018:	1	1	1	1	0	1	1	1	1	1	1	1	1
SLE (Rara/Fre- quente/Qua si Perma- nente)													
NTC2018: A1+M1+R1 (R3 per ti- ranti)	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
NTC2018: A2+M2+R1	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
NTC2018: SISMICA STR	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018: SISMICA GEO	1	1	1	1	1	1	1	1	1	1	1.3	0.9	1
	Nome		Parziale su	tan(ø') (F_Fr) Pa	rziale su c' (F_eff_c	ohe) Pa	arziale su Su (F_	Su) Parziale sı	ı qu (F_qu) Parz	iale su peso spe	cifico (F_gamr	na)
	Simbolo			үф	γο			γcu		qu	YY		
	Nominal			1	1			1		1	1		
NTC2018: SL	.E (Rara/Frequent	e/Quasi Permane	ente)	1	1			1		1	1		
NTC2	2018: A1+M1+R1 (R3 per tiranti)		1	1			1		1	1		
	NTC2018: A2+f	M2+R1	1	1.25	1.2	5		1.4		1	1		
	NTC2018: SISM	ICA STR		1	1			1		1	1		
	NTC2018: SISMI	CA GEO		1	1			1		1	1		

Nome	Parziale resistenza terreno (es. Kp) (F_Soil_Res_walls)	Parziale resistenza Tiranti permanenti (F_Anch_P)	Parziale resistenza Tiranti temporanei (F_Anch_T)	Parziale elementi strutturali (F_wall)
Simbolo	γRe	үар	γat	
Nominal	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi Permanente)	1	1	1	1
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1.2	1.1	1
NTC2018: A2+M2+R1	1	1.2	1.1	1
NTC2018: SISMICA STR	1	1.2	1.1	1
NTC2018: SISMICA GEO	1	1.2	1.1	1

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 1	Stage 2_Scavo T1	Stage 3_Att. T1	Stage 4_Scavo T2	Stage 5_Attiv. T2	Stage 6_Scavo T3	Stage 7_Attiv. T3	Stage 8_Dreno	Stage 9_Scavo T4	Stage 10_At- tiv. T4	Stage 11_Dreno	Stage 12_Scavo T5	Stage 13_At- tiv. T5	Stage 14_Dreno	Stage 15_Fondo scavo	Stage 16_STAB. GLOB.	Stage 17_Si- sma
NTC2018: SLE (Rara/Fre- quente/Quasi Perma- nente) NTC2018: A1+M1+R1 (R3 per tiranti) NTC2018: A2+M2+R1 NTC2018: SISMICA STR NTC2018: SISMICA GEO	. V	V	V	V	V	V	V	v	v	V	V	V	V	V	V		V

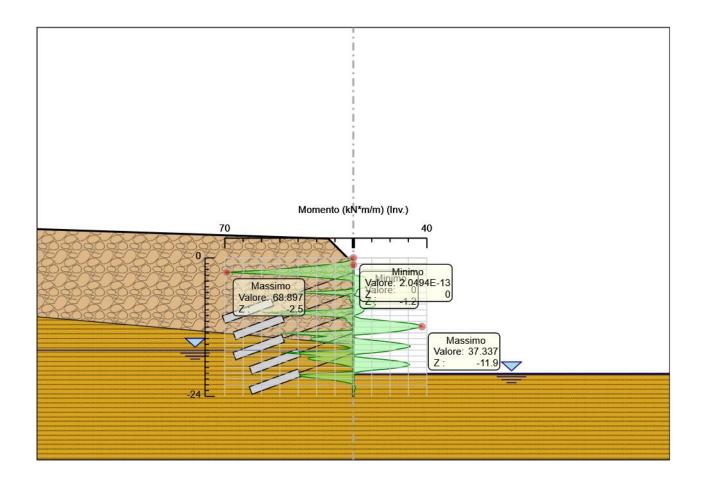

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Tabella Inviluppi Momento Sx

Tabella Inviluppi	Momento	Sx
Selected Design Assumptions		
Z (m) 0	0	m) Lato destro (kN*m/m 0
-0.2	0.441	0
-0.4 -0.6	1.764 3.968	0.001 0.002
-0.8	7.055	0.002
-1	11.024	0.002
-1.2	15.874	0
-1.4 -1.6	21.606 28.22	0 0
-1.8	35.716	0
-2	44.094	0
-2.2 -2.4	53.354 63.495	0 0
-2.5	68.897	0
-2.7	56.326	0
-2.9	44.637	0
-3.1 -3.3	33.83 24.13	2.584 5.829
-3.5	15.567	6.741
-3.7	8.098	6.788
-3.9 -4.1	1.899 0.247	7.45 8.083
-4.3	0.138	8.675
-4.5	0.064	9.168
-4.7	0.02	9.436
-4.9 -5.1	0.19 0.3	9.035 7.501
-5.3	0.299	4.262
-5.5	3.587	2.292
-5.7 -5.9	12.6 24.814	2.01 1.729
-6	32.188	1.592
-6.2	18.994	1.223
-6.4	9.303	0.436
-6.6 -6.8	2.611 1.859	1.396 4.729
-7	2.081	6.692
-7.2	1.953	8.708
-7.4 -7.6	1.645 1.275	10.294 10.99
-7.8	0.919	11.026
-8	0.617	11.793
-8.2 -8.4	0.384 0.215	12.048 11.467
-8.6	0.107	9.642
-8.8	3.876	6.191
-9 -9.2	12.356 23.933	5.922 5.612
-9.2 -9.4	38.551	4.956
-9.5	46.934	4.462
-9.7	35.276	3.103
-9.9 -10.1	25.535 16.621	1.139 0.013
-10.3	8.178	2.306
-10.5	4.138	3.94
-10.7 -10.9	4.056 3.577	11.195 17.978
-11.1	2.917	24.419
-11.3	2.221	29.885
-11.5 -11.7	1.58 1.042	34.097 36.716
-11.9	0.622	37.337
-12.1	0.318	35.492
-12.3	0.113 0.152	31.506
-12.5 -12.7	12.959	29.115 25.226
-12.9	31.037	19.751
-13	41.001	16.388
-13.2 -13.4	32.006 23.787	8.377 0.053
-13.6	15.923	0.021
-13.8	20.305	0
-14 -14.2	23.531 23.302	3.11 8.607
-14.4	20.702	14.779
-14.6	16.965	20.352
-14.8 -15	12.936 9.133	25.058 28.629
-15 -15.2	5.93	30.719
-15.4	3.42	30.926
-15.6	1.584	28.787
-15.8 -16	2.775 11.052	24.705 22.18
-16.2	20.556	18.279
-16.4	30.996	12.922
-16.5 -16.7	36.672 27.826	9.667 1.978
-16.9	21.019	0.743
-17.1	18.436	0.573
-17.3 -17.5	23.926 24.628	5.378 12.943
-17.3	24.020	12.343

Selected Design Assumptions		Muro: Sx
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/m)
-17.7	22.26	19.233
-17.9	18.35	24.196
-18.1	13.999	27.778
-18.3	9.893	29.928
-18.5	6.401	30.593
-18.7	3.665	29.721
-18.9	1.677	27.259
-19.1	0.35	23.155
-19.3	0.057	17.356
-19.5	0.048	9.81
-19.7	0.039	4.173
-19.9	10.733	0.92
-20.1	23.833	0.78
-20.3	29.081	0.604
-20.5	28.65	0.428
-20.7	24.922	0.272
-20.9	19.6	0.147
-21.1	14.069	0.053
-21.3	9.165	0
-21.5	5.261	0
-21.7	2.429	0
-21.9	0.564	0
-22.1	0.073	0.522
-22.3	0.065	1.035
-22.5	0.055	1.165
-22.7	0.044	1.067
-22.9	0.034	0.856
-23.1	0.024	0.612
-23.3	0.016	0.384
-23.5	0.009	0.2
-23.7	0.004	0.073
-23.9	0	0.008
-24	0	0

Grafico Inviluppi Momento

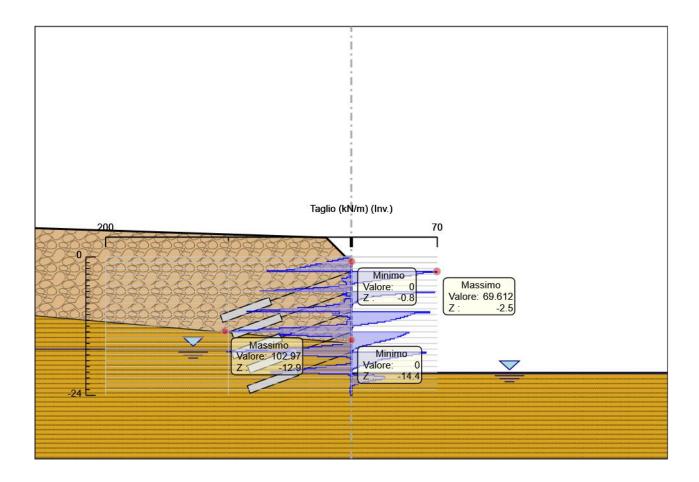

Momento

Tabella Inviluppi Taglio Sx

Tabella Invilup	pi Taglio Sx	
Selected Design Assumptio Z (m)	ns Inviluppi: Taglio Lato sinistro (kN/m) La	Muro: Sx
0	2.205	0
-0.2 -0.4	6.614 11.024	0.005 0.007
-0.4	15.433	0.007
-0.8	19.842	0.005
-1 -1.2	24.252 28.661	0
-1.4	33.071	0
-1.6	37.48	0
-1.8 -2	41.889 46.299	0
-2.2	52.285	0
-2.4 -2.5	68.588 68.588	0 69.612
-2.7	0.537	69.612
-2.9	2.248	58.447
-3.1 -3.3	2.248 0.779	54.037 48.496
-3.5	3.765	42.818
-3.7 -3.9	7.471 7.829	37.344 30.992
-4.1	7.829	24.092
-4.3	6.522	16.846 9.623
-4.5 -4.7	4.666 3.932	9.623 2.654
-4.9	10.088	0.112
-5.1 -5.3	18.836 30.87	0.041 0.277
-5.5	45.158	0.355
-5.7	61.413	0.355
-5.9 -6	74.321 74.321	0.326 67.756
-6.2	3.934	67.756
-6.4 -6.6	7.596 7.596	50.53 36.107
-6.8	3.881	24.12
-7 7.2	1.108	16.847
-7.2 -7.4	4.567 5.808	12.391 7.933
-7.6	5.808	5.564
-7.8 -8	5.678 9.847	5.143 3.832
-8.2	14.272	1.362
-8.4	20.313	0.842
-8.6 -8.8	30.836 43.582	0.67 0.424
-9	58.247	0.212
-9.2 -9.4	73.897 85.096	0.236 0.28
-9.5	85.096	63.784
-9.7 -9.9	9.821 15.168	63.784 51.581
-10.1	15.168	48.263
-10.3	8.196	45.908
-10.5 -10.7	3.018 1.377	43.125 39.913
-10.9	3.119	36.273
-11.1 -11.3	3.768 3.768	32.205 27.33
-11.5	3.702	21.063
-11.7	11.585 25.757	13.74
-11.9 -12.1	41.471	7.958 1.749
-12.3	58.255	1.023
-12.5 -12.7	75.352 91.421	0.62 0.317
-12.9	102.969	0.105
-13 -13.2	102.969 49.05	46.977 46.977
-13.4	58.472	44.392
-13.6	58.472	42.622
-13.8 -14	35.885 16.129	40.457 37.899
-14.2	0.112	34.948
-14.4 -14.6	0.065 0	31.603 27.865
-14.8	0	23.53
-15	7.123	19.013
-15.2 -15.4	15.35 24.26	16.016 12.552
-15.6	34.629	9.179
-15.8 -16	50.91 68.229	6.217 3.812
-16.2	85.769	1.99
-16.4 -16.5	101.229	0.705
-16.5 -16.7	101.229 46.709	60.708 60.708
-16.9	55.366	55.381
-17.1 -17.3	55.366 27.45	49.791 43.94
-17.5	3.507	37.826
-17.7 -17.9	0.585 0.439	31.45 24.812
-18.1	0.305	21.756

Selected Design Assumptions		Muro: Sx
Z (m)	Lato sinistro (kN/m)	Lato destro (kN/m)
-18.3	0.193	20.527
-18.5	4.362	17.459
-18.7	12.31	13.684
-18.9	20.522	9.937
-19.1	28.995	6.637
-19.3	37.73	3.976
-19.5	46.728	1.99
-19.7	55.988	0.62
-19.9	65.499	0.037
-20.1	65.499	0.031
-20.3	26.24	2.155
-20.5	2.503	18.64
-20.7	0.779	26.608
-20.9	0.627	27.657
-21.1	0.466	27.657
-21.3	0.318	24.523
-21.5	0.194	19.518
-21.7	0.1	14.16
-21.9	0.032	9.327
-22.1	0	5.429
-22.3	0	2.565
-22.5	0.492	0.649
-22.7	1.054	0.054
-22.9	1.22	0.053
-23.1	1.22	0.048
-23.3	1.14	0.042
-23.5	0.921	0.035
-23.7	0.636	0.027
-23.9	0.322	0.016
-24	0.081	0.004

Grafico Inviluppi Taglio

Taglio

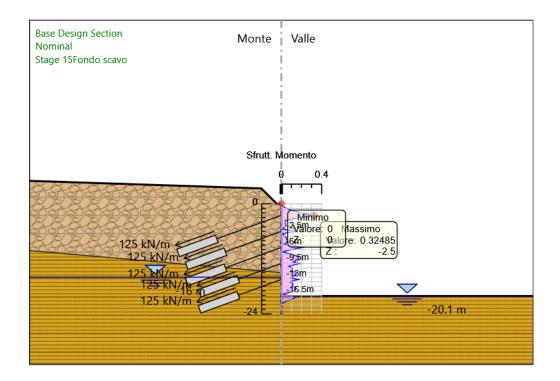
Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva
				%
NTC2018: A1+M1+R1 (R3 per tiranti)	Stage 1	Left Wall	LEFT	5.11
NTC2018: SISMICA STR	Stage 17 Sism	na Left Wall	RIGHT	16.32

Inviluppo Spinta Reale Efficace / Spinta Attiva

Normative adottate per le verifiche degli Elementi Strutturali

Riepilogo Stage / Design Assumption per Inviluppo

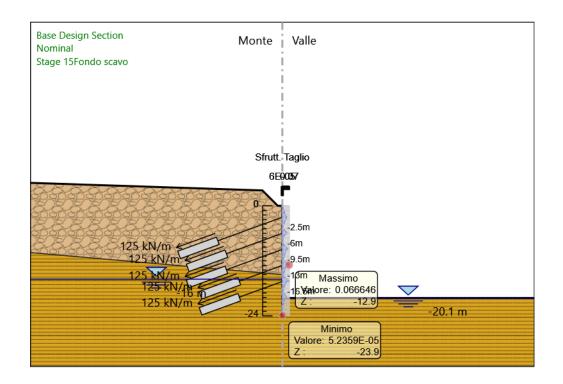

Design Assumption	Stage 1	Stage 2_Scavo T1	Stage 3_Att. T1	Stage 4_Scavo T2	Stage 5_Attiv. T2	Stage 6_Scavo T3	Stage 7_Attiv. T3	Stage 8_Dreno	Stage 9_Scavo T4	Stage 10_At- tiv. T4	Stage 11_Dreno	Stage 12_Scavo T5	Stage 13_At- tiv. T5	Stage 14_Dreno	Stage 15_Fondo scavo	Stage 16_STAB. GLOB.	Stage 17_Si- sma
NTC2018: SLE (Rara/Fre- quente/Quasi Perma- nente) NTC2018: A1+M1+R1		V	V	V	V	V	V	V	V	٧	V	V	V	V	v		
(R3 per tiranti) NTC2018: A2+M2+R1 NTC2018: SISMICA STR NTC2018: SISMICA GEO																	V

Risultati SteelWorld

Tabella Inviluppi Tasso di Sfruttamento a Momento - SteelWorld : LEFT

nviluppi Tasso di Sfruttamento a Momento - Ste	eelWorld LEFT
Z (m)	Tasso di Sfruttamento a Momento - SteelWorld
0	0
-0.2	0.002
-0.4	0.008
-0.6	0.019
-0.8	0.033
-1	0.052
-1.2	0.075
-1.4	0.102
-1.6	0.133
-1.8	0.168
-2	0.208
-2.2	0.252
-2.4	0.299
-2.5	0.325
-2.7	0.266
-2.9	0.21
-3.1	0.16
-3.3	0.114
-3.5	0.073
-3.7	0.038
-3.9	0.035
-4.1	0.038
-4.3	0.041
-4.5	0.043
-4.7	0.044
-4.9	0.043
-5.1	0.035
-5.3	0.02
-5.5	0.017
-5.7	0.059
-5.9	0.117
-6	0.152
-6.2	0.09
-6.4	0.044
-6.6	0.012
-6.8	0.022
-7	0.032
-7.2	0.041
-7.4	0.049
-7.6	0.052
-7.8	0.052
-8	0.056
-8.2	0.057
-8.4	0.054
-8.6	0.045

Inviluppi Tasso di Sfruttamento a Momento -	
Z (m) -8.8	Tasso di Sfruttamento a Momento - SteelWorld 0.029
-9	0.058
-9.2	0.113
-9.4 -9.5	0.182 0.221
-9.7	0.166
-9.9	0.12
-10.1	0.078
-10.3 -10.5	0.039 0.02
-10.3	0.02
-10.9	0.085
-11.1	0.115
-11.3 -11.5	0.141 0.161
-11.7	0.173
-11.9	0.176
-12.1 13.3	0.167
-12.3 -12.5	0.149 0.137
-12.7	0.119
-12.9	0.146
-13 13 2	0.193
-13.2 -13.4	0.151 0.112
-13.6	0.075
-13.8	0.096
-14 -14.2	0.111 0.11
-14.2 -14.4	0.11
-14.6	0.096
-14.8	0.118
-15 -15.2	0.135 0.145
-15.2	0.145
-15.6	0.136
-15.8	0.116
-16 -16.2	0.105 0.097
-16.4	0.146
-16.5	0.173
-16.7	0.131
-16.9 -17.1	0.099 0.087
-17.3	0.113
-17.5	0.116
-17.7	0.105
-17.9 -18.1	0.114 0.131
-18.3	0.141
-18.5	0.144
-18.7 -18.9	0.14 0.129
-18.5	0.125
-19.3	0.082
-19.5	0.046
-19.7 -19.9	0.02 0.051
-20.1	0.112
-20.3	0.137
-20.5 -20.7	0.135
-20.7	0.118 0.092
-21.1	0.066
-21.3	0.043
-21.5 -21.7	0.025 0.011
-21.7	0.003
-22.1	0.002
-22.3	0.005
-22.5 -22.7	0.005 0.005
-22.7 -22.9	0.005
-23.1	0.003
-23.3	0.002
-23.5 -23.7	0.001 0
-23.9	0
-24	0



Inviluppi Tasso di Sfruttamento a Momento - SteelWorld

o di Sfruttamento a Taglio - Stee Z (m)	ruttamento a Taglio - SteelWo EWorld LEFT Tasso di Sfruttamento a Taglio - SteelWorld
0	0.001
-0.2	0.004
-0.4 -0.6	0.007 0.01
-0.8	0.013
-1	0.016
-1.2 -1.4	0.019 0.021
-1.6	0.024
-1.8	0.027
-2 -2.2	0.03 0.034
-2.4	0.044
-2.5	0.045
-2.7 -2.9	0.038
-3.1	0.035 0.031
-3.3	0.028
-3.5	0.024
-3.7 -3.9	0.02 0.016
-4.1	0.011
-4.3	0.006
-4.5 -4.7	0.002
-4. <i>7</i> -4.9	0.003 0.007
-5.1	0.012
-5.3	0.02
-5.5 -5.7	0.029 0.04
-5.7 -5.9	0.04
-6	0.044
-6.2	0.033
-6.4 -6.6	0.023 0.016
-6.8	0.011
-7	0.008
-7.2	0.005
-7.4 -7.6	0.004 0.004
-7.8	0.004
-8	0.006
-8.2	0.009
-8.4 -8.6	0.013 0.02
-8.8	0.028
-9	0.038
-9.2 -9.4	0.048
-9.4 -9.5	0.055 0.041
-9.7	0.033
-9.9	0.031
-10.1 -10.3	0.03 0.028
-10.5	0.026
-10.7	0.023
-10.9	0.021
-11.1 -11.3	0.018 0.014
-11.5	0.009
-11.7	0.007
-11.9 -12.1	0.017 0.027
-12.1 -12.3	0.027
-12.5	0.049
-12.7	0.059
-12.9 -13	0.067 0.03
-13 -13.2	0.03
-13.4	0.038
-13.6	0.026
-13.8 -14	0.025 0.023
-14 -14.2	0.023
-14.4	0.018
-14.6	0.015
-14.8 -15	0.012 0.01
-15 -15.2	0.01
-15.4	0.016
-15.6	0.022
-15.8 -16	0.033
-16 -16.2	0.044 0.056
-16.4	0.066
-16.5	0.039
-16.7	0.036
-16.9 -17.1	0.036 0.028
-17.1 -17.3	0.028 0.024
-17.5	0.02
-17.7	0.016
-17.9	0.014 0.013
-18.1	

Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld	
Z (m)	Tasso di Sfruttamento a Taglio - SteelWorld
-18.5	0.009
-18.7	0.008
-18.9	0.013
-19.1	0.019
-19.3	0.024
-19.5	0.03
-19.7	0.036
-19.9	0.042
-20.1	0.017
-20.3	0.002
-20.5	0.012
-20.7	0.017
-20.9	0.018
-21.1	0.016
-21.3	0.013
-21.5	0.009
-21.7	0.006
-21.9	0.004
-22.1	0.002
-22.3	0
-22.5	0
-22.7	0.001
-22.9	0.001
-23.1	0.001
-23.3	0.001
-23.5	0
-23.7	0
-23.9	0
-24	0

Grafico Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld

Verifiche Tiranti NTC2018: SLE (Rara/Frequente/Quasi Permanente)

Assumption: NTC2018: SLE (Rara/Frequente/Quasi					NTC2018			
Permanente)	Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Res
	C: 0 411 T4	(kN)	(kN)	(kN)	0.057	STR	stenza	stenze
T1	Stage 3_Att. T1	300	1166.316	550.44	0.257	0.545		NO
T1	Stage 4_Scavo T2	299.979	1166.316	550.44	0.257	0.545		NO
T1	Stage 5_Attiv. T2	300.003	1166.316	550.44	0.257	0.545		NO
T1	Stage 6_Scavo T3	300.006	1166.316	550.44	0.257	0.545		NO
T1	Stage 7_Attiv. T3	300.006	1166.316	550.44	0.257	0.545		NO
T1 T1	Stage 8_Dreno	300.006 300.005	1166.316 1166.316	550.44 550.44	0.257 0.257	0.545 0.545		NO NO
T1	Stage 9_Scavo T4 Stage 10 Attiv. T4	300.005	1166.316	550.44	0.257	0.545		NO
T1	Stage 10_Attiv. 14 Stage 11 Dreno	300.005	1166.316	550.44	0.257	0.545		NO
T1	Stage 12 Scavo T5	300.005	1166.316	550.44	0.257	0.545		NO
T1	Stage 12_Stavo 15 Stage 13 Attiv. T5	300.005	1166.316	550.44	0.257	0.545		NO
T1	Stage 14 Dreno	300.005	1166.316	550.44	0.257	0.545		NO
T1	Stage 15 Fondo scavo	300.005	1166.316	550.44	0.257	0.545		NO
T1	Stage 16 STAB. GLOB.	300.005	1166.316	550.44	0.257	0.545		NO
T1	Stage 17_Sisma	300.005	1166.316	550.44	0.257	0.545		NO
T2	Stage 5 Attiv. T2	300	1166.316	550.44	0.257	0.545		NO
T2	Stage 6_Scavo T3	300.089	1166.316	550.44	0.257	0.545		NO
T2	Stage 7 Attiv. T3	300.083	1166.316	550.44	0.257	0.545		NO
T2	Stage 8 Dreno	300.154	1166.316	550.44	0.257	0.545		NO
T2	Stage 9 Scavo T4	300.154	1166.316	550.44	0.257	0.545		NO
T2	Stage 10 Attiv. T4	300.165	1166.316	550.44	0.257	0.545		NO
T2	Stage 10_Attiv. 14 Stage 11 Dreno	300.166	1166.316	550.44	0.257	0.545		NO
T2	Stage 12 Scavo T5	300.165	1166.316	550.44	0.257	0.545		NO
T2	Stage 12_Stave 15 Stage 13 Attiv. T5	300.165	1166.316	550.44	0.257	0.545		NO
T2	Stage 14 Dreno	300.165	1166.316	550.44	0.257	0.545		NO
T2	Stage 15 Fondo scavo	300.165	1166.316	550.44	0.257	0.545		NO
T2	Stage 16_STAB. GLOB.	300.165	1166.316	550.44	0.257	0.545		NO
T2	Stage 17 Sisma	300.165	1166.316	550.44	0.257	0.545		NO
T3	Stage 7 Attiv. T3	300	1166.316	550.44	0.257	0.545		NO
T3	Stage 8 Dreno	299.915	1166.316	550.44	0.257	0.545		NO
T3	Stage 9 Scavo T4	300.952	1166.316	550.44	0.258	0.547		NO
T3	Stage 10 Attiv. T4	301.087	1166.316	550.44	0.258	0.547		NO
T3	Stage 11 Dreno	300.956	1166.316	550.44	0.258	0.547		NO
T3	Stage 12 Scavo T5	300.954	1166.316	550.44	0.258	0.547		NO
T3	Stage 13 Attiv. T5	300.952	1166.316	550.44	0.258	0.547		NO
T3	Stage 14 Dreno	300.953	1166.316	550.44	0.258	0.547		NO
T3	Stage 15 Fondo scavo	300.953	1166.316	550.44	0.258	0.547		NO
T3	Stage 16 STAB. GLOB.	300.953	1166.316	550.44	0.258	0.547		NO
T3	Stage 17_Sisma	300.953	1166.316	550.44	0.258	0.547		NO
T4	Stage 10 Attiv. T4	300	1166.316	550.44	0.257	0.545		NO
T4	Stage 11 Dreno	299.154	1166.316	550.44	0.256	0.543		NO
T4	Stage 12 Scavo T5	302.241	1166.316	550.44	0.259	0.549		NO
T4	Stage 13 Attiv. T5	302.436	1166.316	550.44	0.259	0.549		NO
T4	Stage 14 Dreno	302.29	1166.316	550.44	0.259	0.549		NO
T4	Stage 15 Fondo scavo	302.286	1166.316	550.44	0.259	0.549		NO
T4	Stage 16_STAB. GLOB.	302.286	1166.316	550.44	0.259	0.549		NO
T4	Stage 17_Sisma	302.286	1166.316	550.44	0.259	0.549		NO
T5	Stage 13 Attiv. T5	300	1166.316	550.44	0.257	0.545		NO
T5	Stage 14 Dreno	299.277	1166.316	550.44	0.257	0.544		NO
T5	Stage 15 Fondo scavo	301.082	1166.316	550.44	0.258	0.547		NO
T5	Stage 16 STAB. GLOB.	301.082	1166.316	550.44	0.258	0.547		NO
T5	Stage 17_Sisma	301.082	1166.316	550.44	0.258	0.547		NO

Verifiche Tiranti NTC2018: A1+M1+R1 (R3 per tiranti)

gn Assumption: NTC2018: A1+M1+R1 (R3 per	Tipo Risultato: Verifiche Ti-				NTC2018			
tiranti)	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Res
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Att. T1	390	589.049	550.44	0.662	0.709		NO
T1	Stage 4_Scavo T2	389.973	589.049	550.44	0.662	0.708		NO
T1	Stage 5_Attiv. T2	390.003	589.049	550.44	0.662	0.709		NO
T1	Stage 6_Scavo T3	390.008	589.049	550.44	0.662	0.709		NO
T1	Stage 7_Attiv. T3	390.007	589.049	550.44	0.662	0.709		NO
T1	Stage 8_Dreno	390.007	589.049	550.44	0.662	0.709		NO
T1	Stage 9_Scavo T4	390.007	589.049	550.44	0.662	0.709		NO
T1	Stage 10_Attiv. T4	390.007	589.049	550.44	0.662	0.709		NO
T1	Stage 11_Dreno	390.007	589.049	550.44	0.662	0.709		NO
T1	Stage 12_Scavo T5	390.007	589.049	550.44	0.662	0.709		NO
T1	Stage 13_Attiv. T5	390.007	589.049	550.44	0.662	0.709		NO
T1	Stage 14_Dreno	390.007	589.049	550.44	0.662	0.709		NO
T1	Stage 15_Fondo scavo	390.007	589.049	550.44	0.662	0.709		NO
T1	Stage 16_STAB. GLOB.	390.007	589.049	550.44	0.662	0.709		NO
T1	Stage 17_Sisma	390.007	589.049	550.44	0.662	0.709		NO
T2	Stage 5_Attiv. T2	390	589.049	550.44	0.662	0.709		NO
T2	Stage 6_Scavo T3	390.115	589.049	550.44	0.662	0.709		NO
T2	Stage 7_Attiv. T3	390.197	589.049	550.44	0.662	0.709		NO
T2	Stage 8_Dreno	390.2	589.049	550.44	0.662	0.709		NO
T2	Stage 9_Scavo T4	390.216	589.049	550.44	0.662	0.709		NO
T2	Stage 10_Attiv. T4	390.214	589.049	550.44	0.662	0.709		NO
T2	Stage 11_Dreno	390.216	589.049	550.44	0.662	0.709		NO
T2	Stage 12_Scavo T5	390.215	589.049	550.44	0.662	0.709		NO
T2	Stage 13_Attiv. T5	390.215	589.049	550.44	0.662	0.709		NO
T2	Stage 14_Dreno	390.215	589.049	550.44	0.662	0.709		NO
T2	Stage 15_Fondo scavo	390.215	589.049	550.44	0.662	0.709		NO
T2	Stage 16_STAB. GLOB.	390.215	589.049	550.44	0.662	0.709		NO
T2	Stage 17_Sisma	390.215	589.049	550.44	0.662	0.709		NO
T3	Stage 7_Attiv. T3	390	589.049	550.44	0.662	0.709		NO
T3	Stage 8_Dreno	389.89	589.049	550.44	0.662	0.708		NO
Т3	Stage 9 Scavo T4	391.238	589.049	550.44	0.664	0.711		NO
T3	Stage 10 Attiv. T4	391.413	589.049	550.44	0.664	0.711		NO
T3	Stage 11 Dreno	391.243	589.049	550.44	0.664	0.711		NO

Design Assumption: NTC2018: A1+M1+R1 (R3 per	Tipo Risultato: Verifiche Ti-				NTC2018			
tiranti)	ranti				(ITA)			
Tirante	Stage	Sollecitazione Resistenza GEO		Resistenza STR	Ratio GEO	Ratio Resi-		Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T3	Stage 12_Scavo T5	391.241	589.049	550.44	0.664	0.711		NO
T3	Stage 13_Attiv. T5	391.238	589.049	550.44	0.664	0.711		NO
T3	Stage 14_Dreno	391.239	589.049	550.44	0.664	0.711		NO
T3	Stage 15_Fondo scavo	391.239	589.049	550.44	0.664	0.711		NO
T3	Stage 16_STAB. GLOB.	391.239	589.049	550.44	0.664	0.711		NO
T3	Stage 17_Sisma	391.239	589.049	550.44	0.664	0.711		NO
T4	Stage 10_Attiv. T4	390	589.049	550.44	0.662	0.709		NO
T4	Stage 11_Dreno	388.9	589.049	550.44	0.66	0.707		NO
T4	Stage 12_Scavo T5	392.913	589.049	550.44	0.667	0.714		NO
T4	Stage 13_Attiv. T5	393.166	589.049	550.44	0.667	0.714		NO
T4	Stage 14_Dreno	392.977	589.049	550.44	0.667	0.714		NO
T4	Stage 15_Fondo scavo	392.972	589.049	550.44	0.667	0.714		NO
T4	Stage 16_STAB. GLOB.	392.972	589.049	550.44	0.667	0.714		NO
T4	Stage 17_Sisma	392.972	589.049	550.44	0.667	0.714		NO
T5	Stage 13_Attiv. T5	390	589.049	550.44	0.662	0.709		NO
T5	Stage 14_Dreno	389.06	589.049	550.44	0.66	0.707		NO
T5	Stage 15_Fondo scavo	391.407	589.049	550.44	0.664	0.711		NO
T5	Stage 16_STAB. GLOB.	391.407	589.049	550.44	0.664	0.711		NO
T5	Stage 17_Sisma	391.407	589.049	550.44	0.664	0.711		NO

Verifiche Tiranti NTC2018: A2+M2+R1

esign Assumption: NTC2018:	Tipo Risultato: Verifiche Ti-				NTC2018			
A2+M2+R1	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Res
	a. a =.	(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Att. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Scavo T2	299.976	589.049	550.44	0.509	0.545		NO
T1	Stage 5_Attiv. T2	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 6_Scavo T3	300.009	589.049	550.44	0.509	0.545		NO
T1	Stage 7_Attiv. T3	300.008	589.049	550.44	0.509	0.545		NO
T1	Stage 8_Dreno	300.008	589.049	550.44	0.509	0.545		NO
T1	Stage 9_Scavo T4	300.007	589.049	550.44	0.509	0.545		NO
T1	Stage 10_Attiv. T4	300.007	589.049	550.44	0.509	0.545		NO
T1	Stage 11_Dreno	300.007	589.049	550.44	0.509	0.545		NO NO
T1	Stage 12_Scavo T5	300.007	589.049	550.44	0.509	0.545		NO
T1	Stage 13_Attiv. T5	300.007	589.049	550.44	0.509	0.545		NO NO
T1	Stage 14_Dreno	300.007	589.049	550.44	0.509	0.545		NO
T1 T1	Stage 15_Fondo scavo	300.007	589.049	550.44	0.509	0.545		NO NO
	Stage 16_STAB. GLOB.	300.007	589.049	550.44	0.509	0.545		NO
T1	Stage 17_Sisma	300.007	589.049	550.44	0.509	0.545		NO NO
T2	Stage 5_Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T2	Stage 6_Scavo T3	300.113	589.049	550.44	0.509	0.545		NO NO
T2	Stage 7_Attiv. T3	300.187	589.049	550.44	0.51	0.545		NO NO
T2	Stage 8_Dreno	300.19	589.049	550.44	0.51	0.545		NO
T2 T2	Stage 9_Scavo T4	300.2	589.049	550.44	0.51	0.545		NO NO
	Stage 10_Attiv. T4	300.198	589.049	550.44	0.51	0.545		NO
T2 T2	Stage 11_Dreno	300.199 300.207	589.049 589.049	550.44 550.44	0.51 0.51	0.545 0.545		NO NO
T2	Stage 12_Scavo T5		589.049	550.44	0.51			NO NO
	Stage 13_Attiv. T5	300.208				0.545		
T2 T2	Stage 14_Dreno	300.208 300.208	589.049 589.049	550.44 550.44	0.51 0.51	0.545 0.545		NO NO
T2	Stage 15_Fondo scavo	300.208	589.049	550.44	0.51	0.545		NO NO
T2	Stage 16_STAB. GLOB.	300.208	589.049	550.44	0.51	0.545		NO NO
T3	Stage 17_Sisma	300.208	589.049	550.44	0.51	0.545		NO NO
T3	Stage 7_Attiv. T3 Stage 8 Dreno	299.91	589.049	550.44	0.509	0.545		NO NO
T3	Stage 9 Scavo T4	301.273	589.049	550.44	0.503	0.543		NO
T3	Stage 10 Attiv. T4	301.43	589.049	550.44	0.511	0.548		NO NO
T3	Stage 10_Attiv. 14 Stage 11 Dreno	301.285	589.049	550.44	0.512	0.547		NO NO
T3	Stage 12 Scavo T5	300.773	589.049	550.44	0.511	0.546		NO
T3	Stage 13 Attiv. T5	300.773	589.049	550.44	0.511	0.546		NO
T3	Stage 14 Dreno	300.751	589.049	550.44	0.511	0.546		NO
T3	Stage 15 Fondo scavo	300.75	589.049	550.44	0.511	0.546		NO
T3	Stage 16 STAB. GLOB.	300.75	589.049	550.44	0.511	0.546		NO NO
T3	Stage 17 Sisma	300.75	589.049	550.44	0.511	0.546		NO
T4	Stage 10 Attiv. T4	300.73	589.049	550.44	0.511	0.545		NO
T4	Stage 11 Dreno	299.09	589.049	550.44	0.508	0.543		NO
T4	Stage 12 Scavo T5	329.709	589.049	550.44	0.56	0.599		NO
T4	Stage 13 Attiv. T5	330.66	589.049	550.44	0.561	0.601		NO
T4	Stage 14 Dreno	330.648	589.049	550.44	0.561	0.601		NO
T4	Stage 15 Fondo scavo	330.615	589.049	550.44	0.561	0.601		NO
T4	Stage 16 STAB. GLOB.	330.615	589.049	550.44	0.561	0.601		NO
T4	Stage 17 Sisma	330.615	589.049	550.44	0.561	0.601		NO NO
T5	Stage 17_Sistila Stage 13 Attiv. T5	300	589.049	550.44	0.509	0.545		NO NO
T5	Stage 15_Attiv. 15	299.225	589.049	550.44	0.508	0.544		NO NO
T5	Stage 15 Fondo scavo	304.326	589.049	550.44	0.508	0.553		NO
T5	Stage 15_Fondo scavo Stage 16 STAB. GLOB.	304.326	589.049	550.44	0.517	0.553		NO
T5	Stage 10_31AB. GLOB. Stage 17 Sisma	304.326	589.049	550.44	0.517	0.553		NO

Verifiche Tiranti NTC2018: SISMICA STR

gn Assumption: NTC2018: SISMICA	Tipo Risultato: Verifiche Ti-								
STR	ranti				(ITA)				
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi	
		(kN)	(kN)	(kN)		STR	stenza	stenze	
T1	Stage 3_Att. T1	300	589.049	550.44	0.509	0.545		NO	
T1	Stage 4_Scavo T2	299.979	589.049	550.44	0.509	0.545		NO	
T1	Stage 5_Attiv. T2	300.003	589.049	550.44	0.509	0.545		NO	
T1	Stage 6_Scavo T3	300.006	589.049	550.44	0.509	0.545		NO	
T1	Stage 7_Attiv. T3	300.006	589.049	550.44	0.509	0.545		NO	
T1	Stage 8_Dreno	300.006	589.049	550.44	0.509	0.545		NO	
T1	Stage 9_Scavo T4	300.005	589.049	550.44	0.509	0.545		NO	
T1	Stage 10_Attiv. T4	300.005	589.049	550.44	0.509	0.545		NO	
T1	Stage 11_Dreno	300.005	589.049	550.44	0.509	0.545		NO	
T1	Stage 12_Scavo T5	300.005	589.049	550.44	0.509	0.545		NO	
T1	Stage 13_Attiv. T5	300.005	589.049	550.44	0.509	0.545		NO	
T1	Stage 14_Dreno	300.005	589.049	550.44	0.509	0.545		NO	
T1	Stage 15_Fondo scavo	300.005	589.049	550.44	0.509	0.545		NO	
T1	Stage 16_STAB. GLOB.	300.005	589.049	550.44	0.509	0.545		NO	
T1	Stage 17_Sisma	306.966	589.049	550.44	0.521	0.558		NO	
T2	Stage 5_Attiv. T2	300	589.049	550.44	0.509	0.545		NO	
T2	Stage 6_Scavo T3	300.089	589.049	550.44	0.509	0.545		NO	
T2	Stage 7_Attiv. T3	300.152	589.049	550.44	0.51	0.545		NO	
T2	Stage 8_Dreno	300.154	589.049	550.44	0.51	0.545		NO	
T2	Stage 9_Scavo T4	300.166	589.049	550.44	0.51	0.545		NO	
T2	Stage 10_Attiv. T4	300.165	589.049	550.44	0.51	0.545		NO	
T2	Stage 11_Dreno	300.166	589.049	550.44	0.51	0.545		NO	
T2	Stage 12_Scavo T5	300.165	589.049	550.44	0.51	0.545		NO	
T2 T2	Stage 13_Attiv. T5	300.165	589.049	550.44	0.51	0.545		NO	
T2	Stage 14_Dreno	300.165	589.049	550.44	0.51	0.545		NO	
T2	Stage 15_Fondo scavo	300.165	589.049 589.049	550.44	0.51 0.51	0.545 0.545		NO NO	
T2	Stage 16_STAB. GLOB. Stage 17 Sisma	300.165 301.474	589.049	550.44 550.44	0.51	0.548		NO NO	
T3		300	589.049	550.44	0.512	0.546		NO NO	
T3	Stage 7_Attiv. T3 Stage 8 Dreno	299.915	589.049	550.44	0.509	0.545		NO	
T3	Stage 8_Dreno Stage 9 Scavo T4	300.952	589.049	550.44	0.509	0.545		NO NO	
T3	Stage 10 Attiv. T4	301.087	589.049	550.44	0.511	0.547		NO	
T3	Stage 10_Attiv. 14 Stage 11 Dreno	300.956	589.049	550.44	0.511	0.547		NO	
T3	Stage 12 Scavo T5	300.954	589.049	550.44	0.511	0.547		NO NO	
T3	Stage 12_3cavo 13 Stage 13 Attiv. T5	300.952	589.049	550.44	0.511	0.547		NO	
T3	Stage 14 Dreno	300.953	589.049	550.44	0.511	0.547		NO	
T3	Stage 15 Fondo scavo	300.953	589.049	550.44	0.511	0.547		NO	
T3	Stage 16 STAB. GLOB.	300.953	589.049	550.44	0.511	0.547		NO NO	
T3	Stage 17_Sisma	302.354	589.049	550.44	0.511	0.549		NO	
T4	Stage 10 Attiv. T4	300	589.049	550.44	0.509	0.545		NO	
T4	Stage 11 Dreno	299.154	589.049	550.44	0.508	0.543		NO	
T4	Stage 12_Scavo T5	302.241	589.049	550.44	0.513	0.549		NO	
T4	Stage 13 Attiv. T5	302.436	589.049	550.44	0.513	0.549		NO NO	
T4	Stage 14 Dreno	302.29	589.049	550.44	0.513	0.549		NO	
T4	Stage 15 Fondo scavo	302.286	589.049	550.44	0.513	0.549		NO	
T4	Stage 15_FORGUSCAVO	302.286	589.049	550.44	0.513	0.549		NO	
T4	Stage 17 Sisma	304.084	589.049	550.44	0.516	0.552		NO	
T5	Stage 13_Attiv. T5	300	589.049	550.44	0.510	0.545		NO	
T5	Stage 14 Dreno	299.277	589.049	550.44	0.508	0.544		NO	
T5	Stage 15 Fondo scavo	301.082	589.049	550.44	0.508	0.544		NO	
T5	Stage 15_FORGUSCAVO	301.082	589.049	550.44	0.511	0.547		NO	
T5	Stage 17 Sisma	307.54	589.049	550.44	0.511	0.559		NO NO	

Verifiche Tiranti NTC2018: SISMICA GEO

ign Assumption: NTC2018: SISMICA	Tipo Risultato: Verifiche Ti-				NTC2018			
GEO	ranti				(ITA)			
Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (kN)	Ratio GEO	Ratio STR	Resi- stenza	Gerarchia delle Res stenze
T1	Stage 3 Att. T1	300	589.049	550.44	0.509	0.545	Steriza	NO
T1	Stage 4 Scavo T2	299.979	589.049	550.44	0.509	0.545		NO
T1	Stage 5 Attiv. T2	300.003	589.049	550.44	0.509	0.545		NO
T1	Stage 6 Scavo T3	300.006	589.049	550.44	0.509	0.545		NO
T1	Stage 7 Attiv. T3	300.006	589.049	550.44	0.509	0.545		NO
T1	Stage 8 Dreno	300.006	589.049	550.44	0.509	0.545		NO
T1	Stage 9_Scavo T4	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 10 Attiv. T4	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 11 Dreno	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 12 Scavo T5	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 13_Attiv. T5	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 14 Dreno	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 15 Fondo scavo	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 16 STAB. GLOB.	300.005	589.049	550.44	0.509	0.545		NO
T1	Stage 17_Sisma	306.966	589.049	550.44	0.521	0.558		NO
T2	Stage 5_Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T2	Stage 6_Scavo T3	300.089	589.049	550.44	0.509	0.545		NO
T2	Stage 7_Attiv. T3	300.152	589.049	550.44	0.51	0.545		NO
T2	Stage 8_Dreno	300.154	589.049	550.44	0.51	0.545		NO
T2	Stage 9_Scavo T4	300.166	589.049	550.44	0.51	0.545		NO
T2	Stage 10_Attiv. T4	300.165	589.049	550.44	0.51	0.545		NO
T2	Stage 11_Dreno	300.166	589.049	550.44	0.51	0.545		NO
T2	Stage 12_Scavo T5	300.165	589.049	550.44	0.51	0.545		NO
T2	Stage 13_Attiv. T5	300.165	589.049	550.44	0.51	0.545		NO
T2	Stage 14_Dreno	300.165	589.049	550.44	0.51	0.545		NO
T2	Stage 15_Fondo scavo	300.165	589.049	550.44	0.51	0.545		NO
T2	Stage 16_STAB. GLOB.	300.165	589.049	550.44	0.51	0.545		NO
T2	Stage 17_Sisma	301.474	589.049	550.44	0.512	0.548		NO
T3	Stage 7_Attiv. T3	300	589.049	550.44	0.509	0.545		NO
T3	Stage 8_Dreno	299.915	589.049	550.44	0.509	0.545		NO
T3	Stage 9_Scavo T4	300.952	589.049	550.44	0.511	0.547		NO
T3	Stage 10_Attiv. T4	301.087	589.049	550.44	0.511	0.547		NO
T3	Stage 11_Dreno	300.956	589.049	550.44	0.511	0.547		NO
T3	Stage 12_Scavo T5	300.954	589.049	550.44	0.511	0.547		NO
T3	Stage 13_Attiv. T5	300.952	589.049	550.44	0.511	0.547		NO
T3	Stage 14_Dreno	300.953	589.049	550.44	0.511	0.547		NO
T3	Stage 15_Fondo scavo	300.953	589.049	550.44	0.511	0.547		NO
T3	Stage 16_STAB. GLOB.	300.953	589.049	550.44	0.511	0.547		NO
Т3	Stage 17_Sisma	302.354	589.049	550.44	0.513	0.549		NO
T4	Stage 10_Attiv. T4	300	589.049	550.44	0.509	0.545		NO
Т4	Stage 11_Dreno	299.154	589.049	550.44	0.508	0.543		NO
T4	Stage 12_Scavo T5	302.241	589.049	550.44	0.513	0.549		NO
Т4	Stage 13_Attiv. T5	302.436	589.049	550.44	0.513	0.549		NO
T4	Stage 14_Dreno	302.29	589.049	550.44	0.513	0.549		NO
T4	Stage 15_Fondo scavo	302.286	589.049	550.44	0.513	0.549		NO
T4	Stage 16_STAB. GLOB.	302.286	589.049	550.44	0.513	0.549		NO
T4	Stage 17_Sisma	304.084	589.049	550.44	0.516	0.552		NO
T5	Stage 13_Attiv. T5	300	589.049	550.44	0.509	0.545		NO
T5	Stage 14_Dreno	299.277	589.049	550.44	0.508	0.544		NO
T5	Stage 15_Fondo scavo	301.082	589.049	550.44	0.511	0.547		NO
T5	Stage 16_STAB. GLOB.	301.082	589.049	550.44	0.511	0.547		NO
T5	Stage 17_Sisma	307.54	589.049	550.44	0.522	0.559		NO

Inviluppo Verifiche Tiranti (su tutte le D.A. attive)

T	ipo Risultato: Verifiche Tira							
Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (k	N) Ratio GEO	Ratio STR Resiste	enza Gerarchia delle Resistenzo	Design Assumption
T1	Stage 3_Att. T1	390	589.049	550.44	0.662	0.709	NO	NTC2018: A1+M1+R1 (R3 per tiranti)
T2	Stage 5_Attiv. T2	390	589.049	550.44	0.662	0.709	NO	NTC2018: A1+M1+R1 (R3 per tiranti)
T3	Stage 9_Scavo T4	391.238	589.049	550.44	0.664	0.711	NO	NTC2018: A1+M1+R1 (R3 per tiranti)
T4	Stage 12_Scavo T5	392.913	589.049	550.44	0.667	0.714	NO	NTC2018: A1+M1+R1 (R3 per tiranti)
T5	Stage 15 Fondo scavo	391.407	589.049	550.44	0.664	0.711	NO	NTC2018: A1+M1+R1 (R3 per tiranti)

SS 131 "Carlo Felice"

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

9.3 Allegato 3 - Sezione 3: Paratia tipo T - 4 tiranti attivi

Descrizione della Stratigrafia e degli Strati di Terreno

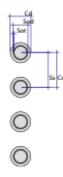
(-55;-6.8) (55;-16.4) (55;-35) (-55;-35)

OCR:1

Strato di Terreno T	erren	oγdry kN/m³					u Modulo Elastico Eu a	Evc kPa	Eur kPa	Ah Av exp Pa Rı kPa	ur/Rvc Rvc kPa ki		
1	СВ	20.1	20.1	26.	7	125	Constant	540000	864000)		 	
2	М	19 9	199	30 '		165	Constant	525000	840000)			

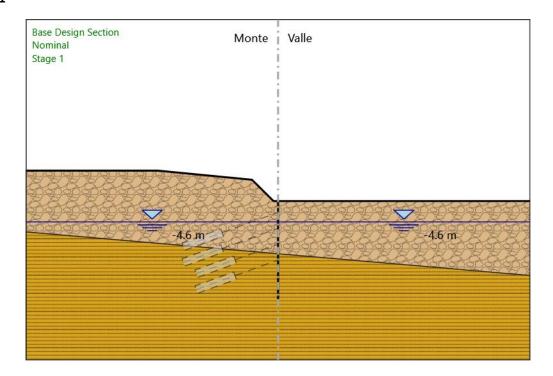
Descrizione Pareti

X:0 m


Quota in alto : 0 m Quota di fondo : -21.5 m Muro di sinistra

Sezione: Micropali fi240 - fi168.3 sp10

Area equivalente : 0.019045141329815 m Inerzia equivalente : 0.0001 m⁴/m Materiale calcestruzzo : C25/30 Tipo sezione : Tangent Spaziatura : 0.4 m Diametro : 0.24 m Efficacia : 0.5


Materiale acciaio : S355

Sezione : CHS168.3*10 Tipo sezione : O Spaziatura : 0.4 m Spessore : 0.01 m Diametro : 0.1683 m

Fasi di Calcolo

Stage 1


```
Stage 1
Scavo
```

```
Muro di sinistra
```

Lato monte : 0 m Lato valle : 0 m

Linea di scavo di sinistra (Irregolare)

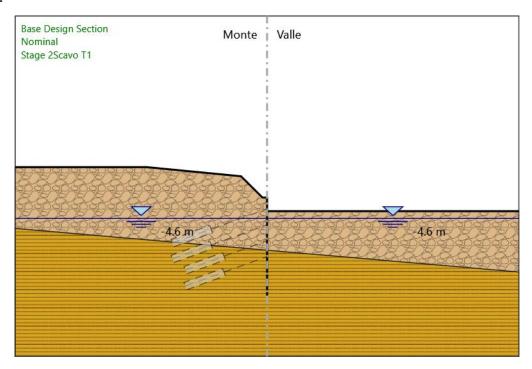
(-55;6.7) (-26.2;6.7) (-5.7;4.7) (-1;0) (0;0) Linea di scavo di destra (Orizzontale)

Falda acquifera

Falda di sinistra : -4.6 m Falda di destra : -4.6 m

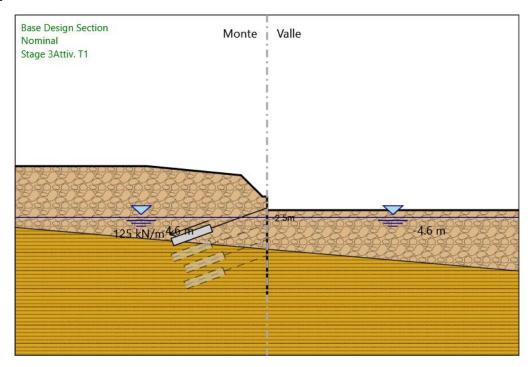
Elementi strutturali

Paratia : Sx

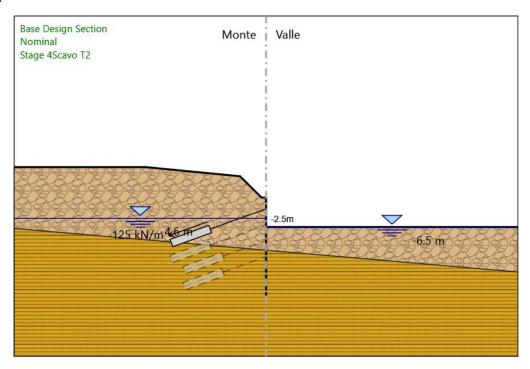

X : 0 m

Quota in alto: 0 m Quota di fondo : -21.5 m

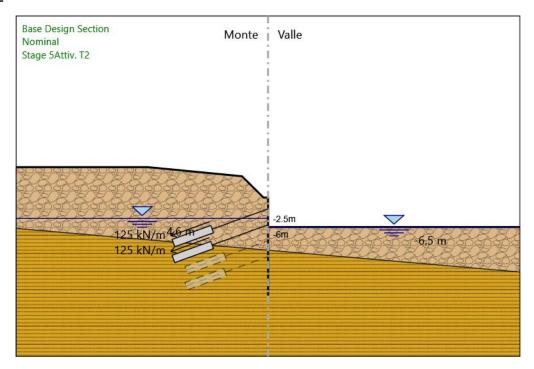
0 m


Sezione: Micropali fi240 - fi168.3 sp10

Stage 2_Scavo T1


```
Stage 2_Scavo T1
Scavo
            Muro di sinistra
                        Lato monte : 0 m
                        Lato valle : -3 m
                       Linea di scavo di sinistra (Irregolare)
(-55;6.7)
(-26.2;6.7)
(-5.7;4.7)
                                    (-1;0)
                                    (0;0)
                        Linea di scavo di destra (Orizzontale)
                                    -3 m
Falda acquifera
            Falda di sinistra : -4.6 m
            Falda di destra : -4.6 m
Elementi strutturali
            Paratia: Sx
                        X:0 m
                        Quota in alto: 0 m
                        Quota di fondo : -21.5 m
                        Sezione : Micropali fi240 - fi168.3 sp10
```

Stage 3_Attiv. T1

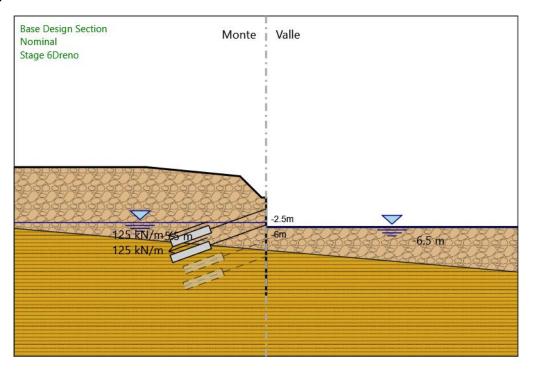

```
Stage 3_Attiv. T1
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -3 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;6.7)
                                 (-26.2;6.7)
                                 (-5.7;4.7)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
                                 -3 m
Falda acquifera
           Falda di sinistra : -4.6 m
           Falda di destra : -4.6 m
Elementi strutturali
           Paratia: Sx
                      X:0 m
                      Quota in alto: 0 m
                      Quota di fondo : -21.5 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante : T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico : 300 kN
                      Angolo: 20°
                      Sezione : 3 trefoli
                                 Tipo di barre : Barre trefoli
                                 Numero di barre : 3
                                 Diametro: 0.01331 m
                                 Area: 0.000417 m^2
```

Stage 4_Scavo T2


```
Stage 4_Scavo T2
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -6.5 m
                      Linea di scavo di sinistra (Irregolare)
                                (-55;6.7)
                                (-26.2;6.7)
                                (-5.7;4.7)
                                (-1;0)
                                (0;0)
                      Linea di scavo di destra (Orizzontale)
                                -6.5 m
Falda acquifera
           Falda di sinistra : -4.6 m
           Falda di destra : -6.5 m
Elementi strutturali
           Paratia: Sx
                      X:0 m
                      Quota in alto: 0 m
                      Quota di fondo : -21.5 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante : T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico : 300 kN
                      Angolo: 20°
                      Sezione : 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
```

Stage 5_Attiv. T2


```
Stage 5_Attiv. T2
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -6.5 m
                      Linea di scavo di sinistra (Irregolare)
                                (-55;6.7)
                                (-26.2;6.7)
                                (-5.7;4.7)
                                (-1;0)
                                (0;0)
                      Linea di scavo di destra (Orizzontale)
                                -6.5 m
Falda acquifera
           Falda di sinistra : -4.6 m
           Falda di destra : -6.5 m
Elementi strutturali
           Paratia: Sx
                      X:0 m
                      Quota in alto: 0 m
                      Quota di fondo : -21.5 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante : T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico : 300 kN
                      Angolo: 20°
                      Sezione : 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
           Tirante: T2
                     X:0 m
                      Z : -6 m
                     Lunghezza bulbo : 9 m
```


Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 6_Dreno

Stage 6_Dreno

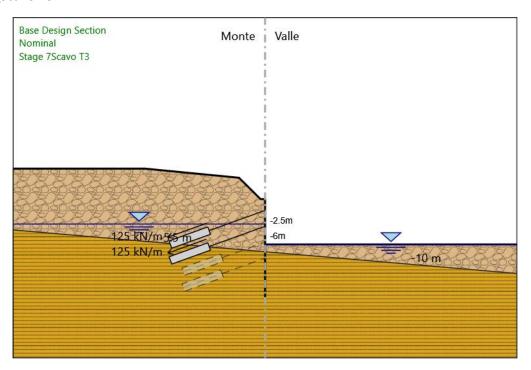

```
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -6.5 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;6.7)
                                 (-26.2;6.7)
(-5.7;4.7)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
                                 -6.5 m
Falda acquifera
           Falda di sinistra : -5.5 m
           Falda di destra : -6.5 m
Elementi strutturali
           Paratia: Sx
                      X:0 m
                      Quota in alto: 0 m
                      Quota di fondo : -21.5 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante: T1
                      X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera: 13 m
```

Spaziatura orizzontale: 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T2


X : 0 m Z : -6 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 7_Scavo T3


```
Stage 7_Scavo T3
Scavo
```

Muro di sinistra

Lato monte : 0 m Lato valle : -10 m

Linea di scavo di sinistra (Irregolare)

(-55;6.7) (-26.2;6.7) (-5.7;4.7) (-1;0) (0;0) Linea di scavo di destra (Orizzontale)

-10 m

Falda acquifera

Falda di sinistra : -5.5 m Falda di destra : -10 m

Elementi strutturali

Paratia : Sx

X:0 m

Quota in alto : 0 m Quota di fondo : -21.5 m

Sezione : Micropali fi240 - fi168.3 sp10

Tirante : T1

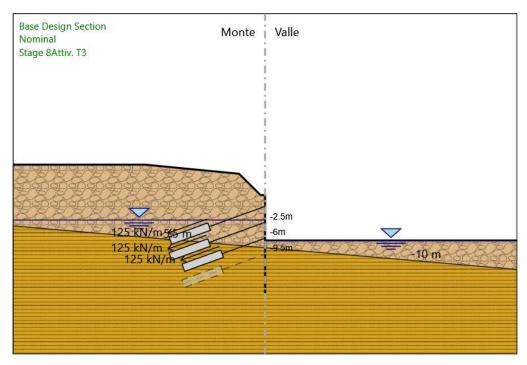
X:0 m Z:-2.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T2


X:0 m Z:-6 m

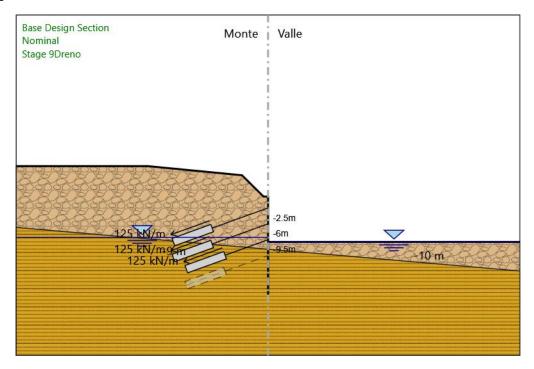
Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 8_Attiv. T3

Stage 8_Attiv. T3 Scavo


Muro di sinistra

Lato monte : 0 m Lato valle : -10 m

```
Linea di scavo di sinistra (Irregolare)
                                (-55;6.7)
                                (-26.2;6.7)
                                (-5.7;4.7)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
                                -10 m
Falda acquifera
          Falda di sinistra : -5.5 m
          Falda di destra : -10 m
Elementi strutturali
          Paratia: Sx
                     X:0 m
                     Quota in alto: 0 m
                     Quota di fondo : -21.5 m
                     Sezione: Micropali fi240 - fi168.3 sp10
          Tirante: T1
                     X:0 m
                     Z:-2.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera: 13 m
                     Spaziatura orizzontale: 2.4 m
                     Precarico : 300 kN
                     Angolo : 20 °
                     Sezione : 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro : 0.01331 m
                                Area: 0.000417 m^2
          Tirante: T2
                     X:0 m
                     Z:-6 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera : 13 m
                     Spaziatura orizzontale: 2.4 m
                     Precarico: 300 kN
                     Angolo: 20°
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre: 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
          Tirante: T3
                     X:0 m
                     Z:-9.5 m
                     Lunghezza bulbo: 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera: 10 m
                     Spaziatura orizzontale: 2.4 m
                     Precarico: 300 kN
                     Angolo : 20 °
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
```

Area: 0.000417 m^2

Stage 9_Dreno

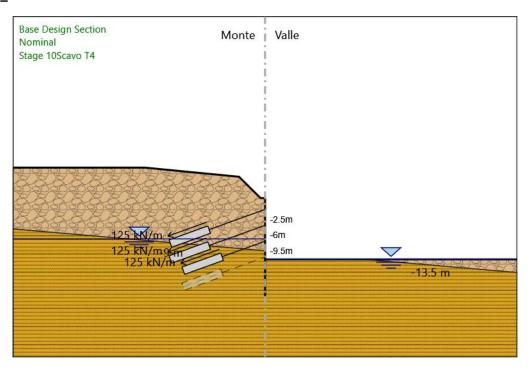

```
Stage 9_Dreno
Scavo
          Muro di sinistra
                     Lato monte : 0 m
                     Lato valle : -10 m
                     Linea di scavo di sinistra (Irregolare)
                                (-55;6.7)
                                (-26.2;6.7)
                                (-5.7;4.7)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
                                -10 m
Falda acquifera
          Falda di sinistra : -9 m
          Falda di destra : -10 m
Elementi strutturali
          Paratia : Sx
                     X:0 m
                     Quota in alto: 0 m
                     Quota di fondo : -21.5 m
                     Sezione: Micropali fi240 - fi168.3 sp10
          Tirante : T1
                     X:0 m
                     Z:-2.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo : 0.15 m
                     Lunghezza libera : 13 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico : 300 kN
                     Angolo: 20°
                     Sezione : 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
          Tirante: T2
                     X:0 m
                     Z : -6 m
                     Lunghezza bulbo : 9 m
```

Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m Precarico : 300 kN

Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3


X : 0 m Z : -9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 10_Scavo T4


```
Stage 10_Scavo T4
Scavo
```

Muro di sinistra

Lato monte : 0 m Lato valle : -13.5 m

Linea di scavo di sinistra (Irregolare)

(-55;6.7) (-26.2;6.7) (-5.7;4.7)

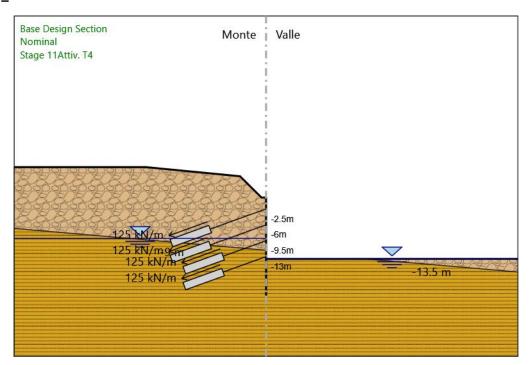
(-1;0) (0;0)

Linea di scavo di destra (Orizzontale)

-13.5 m

Falda acquifera

Falda di sinistra : -9 m Falda di destra : -13.5 m


Elementi strutturali Paratia : Sx X:0 m Quota in alto : 0 m Quota di fondo : -21.5 m Sezione : Micropali fi240 - fi168.3 sp10 Tirante: T1 X:0 mZ:-2.5 m Lunghezza bulbo : 9 m Diametro bulbo: 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m Precarico: 300 kN Angolo : 20 ° Sezione: 3 trefoli Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area: 0.000417 m^2 Tirante : T2 X:0 m Z:-6 m Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera: 13 m Spaziatura orizzontale : 2.4 m Precarico: 300 kN Angolo : 20 ° Sezione : 3 trefoli Tipo di barre : Barre trefoli Numero di barre : 3 Diametro: 0.01331 m Area: 0.000417 m^2 Tirante: T3 X : 0 m Z:-9.5 m Lunghezza bulbo: 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m

Spaziatura orizzontale: 2.4 m

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Stage 11_Attiv. T4


```
Stage 11_Attiv. T4
Scavo
           Muro di sinistra
                     Lato monte : 0 m
                      Lato valle: -13.5 m
                      Linea di scavo di sinistra (Irregolare)
                                (-55;6.7)
                                (-26.2;6.7)
                                (-5.7;4.7)
                                (-1;0)
                                (0;0)
                      Linea di scavo di destra (Orizzontale)
                                -13.5 m
Falda acquifera
           Falda di sinistra : -9 m
           Falda di destra : -13.5 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                      Quota in alto: 0 m
                      Quota di fondo : -21.5 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante : T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico : 300 kN
                      Angolo: 20°
                      Sezione : 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
           Tirante: T2
                     X:0 m
                      Z : -6 m
                     Lunghezza bulbo : 9 m
```

Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3

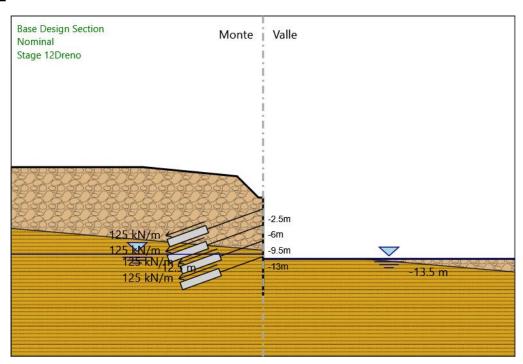
X : 0 m Z : -9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T4

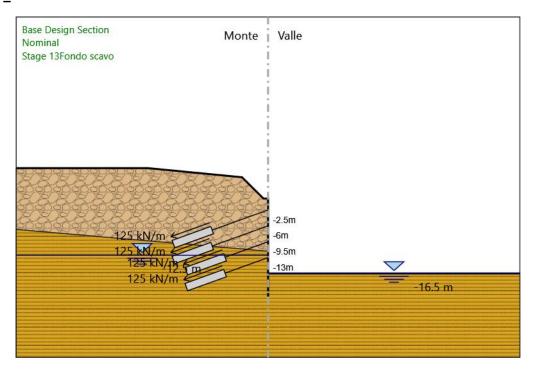

X : 0 m Z : -13 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 12_Dreno


Stage 12_Dreno Scavo

Muro di sinistra Lato monte : 0 m Lato valle: -13.5 m Linea di scavo di sinistra (Irregolare) (-55;6.7)(-26.2;6.7) (-5.7;4.7)(-1;0)(0;0) Linea di scavo di destra (Orizzontale) -13.5 m Falda acquifera Falda di sinistra : -12.5 m Falda di destra : -13.5 m Elementi strutturali Paratia: Sx X:0 m Quota in alto : 0 m Quota di fondo : -21.5 m Sezione: Micropali fi240 - fi168.3 sp10 Tirante: T1 X:0 m Z:-2.5 m Lunghezza bulbo : 9 m Diametro bulbo: 0.15 m Lunghezza libera: 13 m Spaziatura orizzontale: 2.4 m Precarico: 300 kN Angolo: 20° Sezione: 3 trefoli Tipo di barre : Barre trefoli Numero di barre : 3 Diametro: 0.01331 m Area: 0.000417 m^2 Tirante: T2 X:0 m Z:-6 m Lunghezza bulbo : 9 m Diametro bulbo: 0.15 m Lunghezza libera: 13 m Spaziatura orizzontale: 2.4 m Precarico: 300 kN Angolo : 20 ° Sezione: 3 trefoli Tipo di barre : Barre trefoli Numero di barre : 3 Diametro: 0.01331 m Area: 0.000417 m^2 Tirante: T3 X:0 m Z:-9.5 m Lunghezza bulbo: 9 m Diametro bulbo : 0.15 m Lunghezza libera: 10 m Spaziatura orizzontale : 2.4 m Precarico: 300 kN Angolo: 20° Sezione: 3 trefoli Tipo di barre : Barre trefoli Numero di barre: 3 Diametro: 0.01331 m Area: 0.000417 m^2 Tirante: T4 X:0 m Z:-13 m Lunghezza bulbo: 9 m Diametro bulbo: 0.15 m Lunghezza libera: 10 m Spaziatura orizzontale: 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 13_Fondo scavo


```
Stage 13_Fondo scavo
Scavo

Muro di sinistra

Lato monte : 0 m

Lato valle : -16.5 m

Linea di scavo di sinistra (Irregolare)

(-55;6.7)

(-26.2;6.7)

(-5.7;4.7)

(-1;0)
```

(0;0) Linea di scavo di destra (Orizzontale) -16.5 m

Falda acquifera

Falda di sinistra : -12.5 m Falda di destra : -16.5 m

Elementi strutturali

Paratia : Sx X : 0 m

Quota in alto : 0 m Quota di fondo : -21.5 m

Sezione: Micropali fi240 - fi168.3 sp10

Tirante : T1

X : 0 m Z : -2.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli

Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T2

X:0 m Z:-6 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3

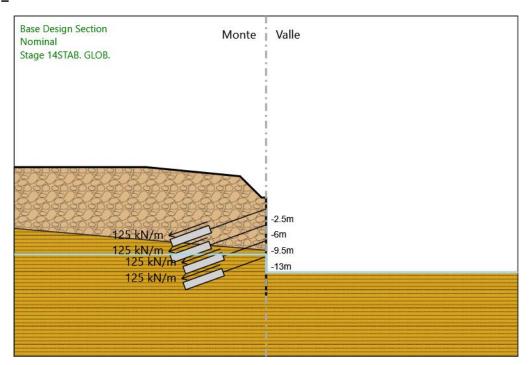
X:0 m Z:-9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T4


X : 0 m Z : -13 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 14_STAB. GLOB.


```
Stage 14_STAB. GLOB.
Scavo
           Muro di sinistra
                     Lato monte : 0 m
                     Lato valle : -16.5 m
                     Linea di scavo di sinistra (Irregolare)
                                (-55;6.7)
                                (-26.2;6.7)
                                (-5.7;4.7)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
                                -16.5 m
Elementi strutturali
          Paratia: Sx
                     X:0 m
                     Quota in alto: 0 m
                     Quota di fondo : -21.5 m
                     Sezione: Micropali fi240 - fi168.3 sp10
          Tirante: T1
                     X:0 m
                     Z:-2.5 m
                     Lunghezza bulbo: 9 m
                     Diametro bulbo : 0.15 m
                     Lunghezza libera: 13 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico: 300 kN
                     Angolo : 20 °
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
          Tirante: T2
                     X:0 m
                     Z:-6 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera: 13 m
                     Spaziatura orizzontale: 2.4 m
                     Precarico : 300 kN
```

Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3

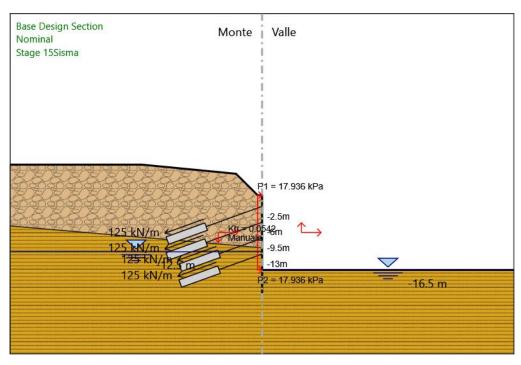
X : 0 m Z : -9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T4

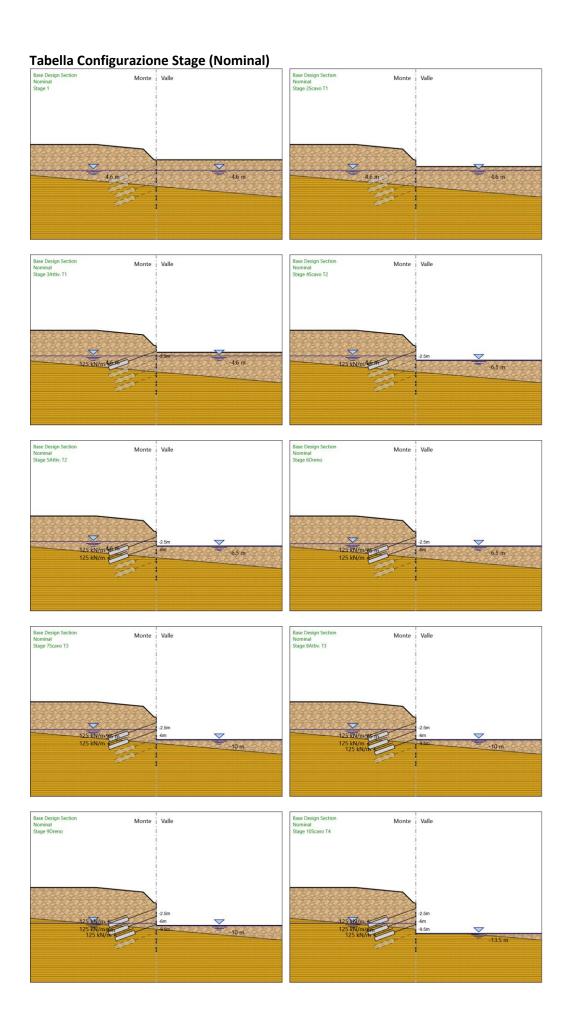

X : 0 m Z : -13 m

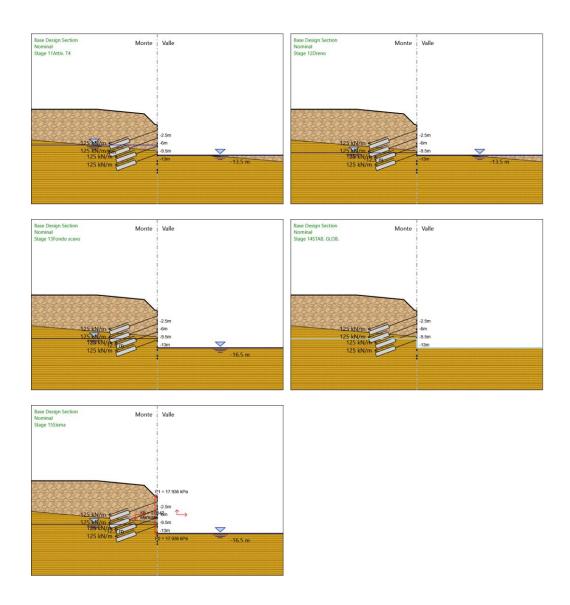
Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 15_Sisma


Stage 15_Sisma Scavo


Muro di sinistra

Lato monte : 0 m Lato valle : -16.5 m

```
Linea di scavo di sinistra (Irregolare)
                               (-55;6.7)
                               (-26.2;6.7)
                               (-5.7;4.7)
                               (-1;0)
                               (0;0)
                     Linea di scavo di destra (Orizzontale)
                               -16.5 m
Falda acquifera
          Falda di sinistra : -12.5 m
          Falda di destra: -16.5 m
Elementi strutturali
          Paratia: Sx
                     X:0 m
                     Quota in alto: 0 m
                     Quota di fondo : -21.5 m
                     Sezione: Micropali fi240 - fi168.3 sp10
          Tirante: T1
                     X:0 m
                     Z:-2.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera: 13 m
                     Spaziatura orizzontale: 2.4 m
                     Precarico: 300 kN
                     Angolo: 20°
                     Sezione : 3 trefoli
                               Tipo di barre : Barre trefoli
                               Numero di barre : 3
                               Diametro: 0.01331 m
                               Area: 0.000417 m^2
          Tirante: T2
                     X:0 m
                     Z:-6 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera: 13 m
                     Spaziatura orizzontale: 2.4 m
                     Precarico : 300 kN
                     Angolo: 20°
                     Sezione: 3 trefoli
                               Tipo di barre : Barre trefoli
                                Numero di barre: 3
                               Diametro: 0.01331 m
                               Area: 0.000417 m^2
          Tirante: T3
                     X:0 m
                     Z:-9.5 m
                     Lunghezza bulbo: 9 m
                     Diametro bulbo : 0.15 m
                     Lunghezza libera: 10 m
                     Spaziatura orizzontale: 2.4 m
                     Precarico: 300 kN
                     Angolo : 20 °
                     Sezione : 3 trefoli
                               Tipo di barre : Barre trefoli
                               Numero di barre: 3
                               Diametro: 0.01331 m
                               Area: 0.000417 m^2
          Tirante: T4
                     X:0 m
                     Z:-13 m
                     Lunghezza bulbo: 9 m
                     Diametro bulbo : 0.15 m
                     Lunghezza libera: 10 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico: 300 kN
                     Angolo : 20 °
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                               Numero di barre : 3
                               Diametro: 0.01331 m
```

Area: 0.000417 m^2

Descrizione Coefficienti Design Assumption

Nome	Carichi Perma- nenti Sfavore- voli (F_dead_load_u nfavour)	voli	bili Sfavorevoli (F_live_load_u		Carico Si- smico F_seism_loa d)	sioni Acqua Lato Mont	sioni Acqua Lato Valle (F_Wa	nenti Destabi- lizzanti (F_UPL_GDSta b)	manenti Sta- bilizzanti	bili Destabiliz- zanti	lizzanti	manenti Sta- bilizzanti	Carichi Varia- bili Destabiliz- zanti (F_HYD_QDSta b)
						terDR)	Res)						
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018: SLE (Rara/Fre- quente/Qua si Perma- nente)	1	1	1	1	0	1	1	1	1	1	1	1	1
NTC2018: A1+M1+R1 (R3 per ti- ranti)	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
NTC2018: A2+M2+R1	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
NTC2018: SISMICA STR	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018: SISMICA GEO	1	1	1	1	1	1	1	1	1	1	1.3	0.9	1
	Nome		Parziale su	u tan(ø') (F_Fr) Pa	arziale su c' (F_eff_c	ohe) Pa	arziale su Su (F_	_Su) Parziale sı	ı qu (F_qu) Parz	iale su peso spe	cifico (F_gamr	na)
	Simbolo			үф	γο			γcu		qu			
	Nomina			1	1			1		1	1		
	E (Rara/Frequent	ente)	1	1			1		1	1			
NTC2	018: A1+M1+R1		1	1			1		1	1			

Nome	Parziale su tan(ø') (F_Fr)	Parziale su c' (F_eff_cohe	e) Parziale su Su (F_Su)	Parziale su qu (F_qu) Pa	rziale su peso specifico (F_gamma)
Simbolo	γф	γс	γcu	γqu	γγ
NTC2018: A2+M2+R1	1.25	1.25	1.4	1	1
NTC2018: SISMICA STR	1	1	1	1	1
NTC2018: SISMICA GEO	1	1	1	1	1

Nome Simbolo	Parziale resistenza terreno (es. Kp) (F_Soil_Res_walls) γRe	Parziale resistenza Tiranti permanenti (F_Anch_P) γap	Parziale resistenza Tiranti temporanei (F_Anch_T) γat	Parziale elementi strutturali (F_wall)
Nominal	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi	1	1	1	1
Permanente)				
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1.2	1.1	1
NTC2018: A2+M2+R1	1	1.2	1.1	1
NTC2018: SISMICA STR	1	1.2	1.1	1
NTC2018: SISMICA GEO	1	1.2	1.1	1

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 1	Stage 2_Scavo T1	Stage 3_Attiv. T1	Stage 4_Scavo T2	Stage 5_Attiv. T2	Stage 6_Dreno	Stage 7_Scavo T3	Stage 8_Attiv. T3	Stage 9_Dreno	Stage 10_Scavo T4	Stage 11_Attiv. T4	Stage 12_Dreno	Stage 13_Fondo scavo	Stage 14_STAB. GLOB.	Stage 15_Si- sma
NTC2018: SLE (Rara/Fre- quente/Quasi Perma- nente) NTC2018: A1+M1+R1 (R3	V	V	٧	V	V	V	V	V	V	V	V	V	v		
per tiranti) NTC2018: A2+M2+R1 NTC2018: SISMICA STR NTC2018: SISMICA GEO															V

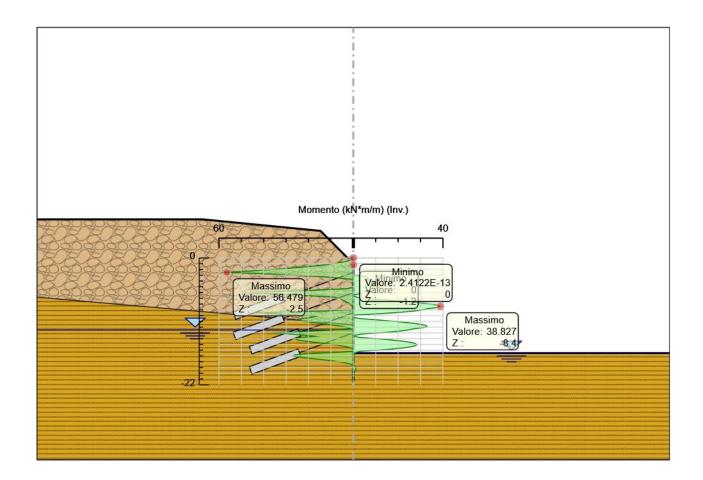

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Tabella Inviluppi Momento Sx

rabella iliviluppi		^
Selected Design Assumptions	Inviluppi: Momento	Muro: Sx
	Lato sinistro (kN*m/m)	Lato destro (kN*m/m
0	0	0
-0.2	0.361	0
-0.4	1.446	0.001
-0.6	3.253	0.002
-0.8	5.783	0.003
-1	9.037	0.002
-1.2	13.013	0.002
		0
-1.4	17.712	0
-1.6	23.134	
-1.8	29.278	0
-2	36.146	0
-2.2	43.737	0
-2.4	52.051	0
-2.5	56.479	0
-2.7	42.403	0
-2.9	30.284	0
-3.1	20.347	2.583
-3.3	12.37	5.828
-3.5	5.888	6.739
-3.7	0.648	5.985
-3.9	0.392	7.339
-4.1	0.254	8.601
-4.3	0.147	9.698
-4.5	0.074	11.225
-4.7	0.027	12.371
-4.9	0.193	12.721
-5.1	0.3	11.831
-5.3		9.063
	2.654	
-5.5	11.635	7.545
-5.7	23.669	7.044
-5.9	38.837	6.006
-6	47.487	5.249
-6.2	36.16	3.22
-6.4	26.563	0.409
-6.6	17.356	0.005
-6.8	8.629	1.598
-7	5.761	3.731
-7.2	5.258	11.615
-7.4	4.284	18.47
-7.6	3.184	24.734
-7.8	2.161	30.337
-8	1.318	34.722
-8.2	0.686	37.738
-8.4	0.254	38.827
-8.6	0.01	37.481
-8.8	0.103	33.202
-9	0.146	30.927
-9.2	13.662	27.129
-9.4	32.151	21.723
-9.5	42.216	18.383
-9.7	33.292	10.4
-9.7 -9.9	24.693	0.59
-9.9 -10.1	16.459	0.024
-10.3	18.673	0
-10.5	22.743	2.508

Selected Design Assumptions		Muro: Sx
Z (m)	Lato sinistro (kN*m/m)	
-10.7	23.99	9.241
-10.9	22.936	15.416
-11.1	19.973	21.124
-11.3	16.007	26.059
-11.5	11.892	29.91
-11.7	8.134	32.337
-11.9 -12.1	5.047 2.695	32.904 31.122
-12.1 -12.3	1.033	26.789
-12.5 -12.5	8.793	24.308
-12.7	19.341	20.407
-12.9	30.696	15.004
-13	36.926	11.709
-13.2	28.395	3.901
-13.4	21.645	0.836
-13.6	16.909	0.666
-13.8	23.446	2.927
-14	25.997	10.236
-14.2	25.216	16.393
-14.4	21.995	21.341
-14.6	17.624	25.023
-14.8	13.09	27.382
-15	8.982	28.36
-15.2	5.59	27.902
-15.4	3	25.949
-15.6	1.169	22.445
-15.8	0.048	17.332
-16	0.039	10.553
-16.2	0.031	2.655
-16.4	8.23	1.047
-16.6	20.167	0.954
-16.8	25.946	0.787
-17	26.799	0.596
-17.2	24.195	0.414
-17.4	19.824	0.258
-17.6	14.866	0.136
-17.8	10.214	0.047
-18	6.327	0
-18.2	3.362	0
-18.4	1.289	0
-18.6	0.069	0.053
-18.8	0.065	0.743
-19	0.058	1.043
-19.2	0.048	1.072
-19.4 -19.6	0.039 0.03	0.946 0.752
-19.8	0.03	0.545
-20	0.023	0.343
-20.2	0.018	0.211
-20.4	0.01	0.105
-20.4	0.008	0.037
-20.8	0.011	0.002
-21	0.012	0
-21.2	0.008	0
-21.4	0.001	0
-21.5	0	0

Grafico Inviluppi Momento

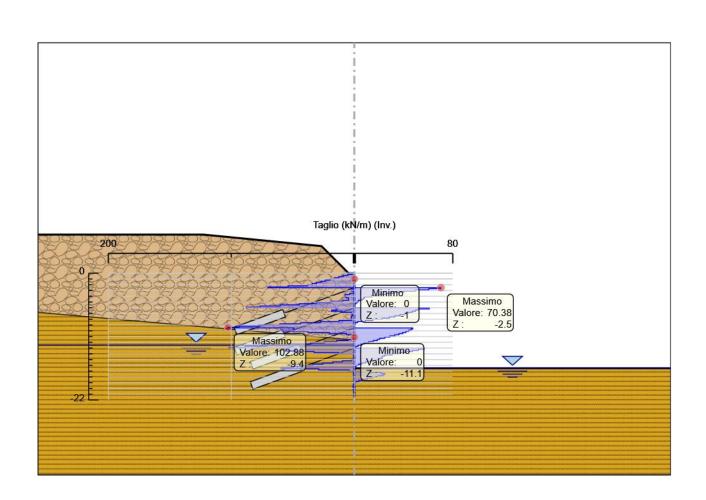

Momento

Tabella Inviluppi Taglio Sx

Tabella Invilupp	i Taglio Sx	
Selected Design Assumptions		Muro: Sx
Z (m) 0	Lato sinistro (kN/m) L 1.807	ato destro (KN/m 0
-0.2 -0.4	5.422 9.037	0.005
-0.4	12.651	0.007 0.007
-0.8	16.266	0.005
-1 -1.2	19.88 23.495	0 0
-1.4	27.11	0
-1.6	30.724	0
-1.8 -2	34.339 37.954	0 0
-2.2	53.908	0
-2.4 -2.5	70.419 70.419	0 70.38
-2.7	0.537	70.38
-2.9	2.248	60.592
-3.1 -3.3	2.248 0.78	49.686 39.883
-3.5	3.77	32.413
-3.7 -3.9	7.479 7.84	26.199 19.954
-4.1	7.84	13.988
-4.3	6.532	8.443
-4.5 -4.7	4.67 9.343	7.692 6.131
-4.9	18.976	3.367
-5.1 -5.3	30.904 44.905	2.633 1.411
-5.5	60.436	0.357
-5.7	76.651	0.357
-5.9 -6	87.897 87.897	0.325 60.901
-6.2	14.055	60.901
-6.4 -6.6	18.456 18.456	51.901 49.82
-6.8	10.031	47.103
-7	2.364	44.074
-7.2 -7.4	1.53 2.457	40.813 37.116
-7.6	2.614	32.984
-7.8 -8	2.614 2.334	28.418 22.647
-8.2	12.458	15.11
-8.4	27.507	8.847
-8.6 -8.8	43.706 60.563	2.541 0.693
-9	77.837	0.257
-9.2 -9.4	93.781 102.882	0.069 0.105
-9.5	102.882	47.536
-9.7	49.051	47.536
-9.9 -10.1	58.619 58.619	46.087 44.17
-10.3	37.693	41.921
-10.5 -10.7	20.354 6.232	39.283 36.239
-10.9	0.048	32.79
-11.1	0.018	28.934
-11.3 -11.5	0 5.11	24.673 20.575
-11.7	14.309	18.787
-11.9 -12.1	24.442 35.765	15.435 11.76
-12.3	53.134	8.309
-12.5 -12.7	71.166 88.645	5.375 3.07
-12.7	102.134	1.389
-13	102.134	56.734
-13.2 -13.4	47.561 56.49	56.734 52.115
-13.6	56.49	47.209
-13.8 -14	32.686 12.752	42.019 36.544
-14.2	0.661	30.785
-14.4	0.505	24.74
-14.6 -14.8	0.357 0.231	22.67 22.67
-15	2.292	20.542
-15.2 -15.4	9.764 17.521	16.96 12.949
-15.6	25.564	9.152
-15.8	33.893	5.914
-16 -16.2	42.507 51.408	3.37 1.519
-16.4	59.687	0.28
-16.6 -16.8	59.687 28.894	0.029
-16.8 -17	4.263	0.022 13.017
-17.2	0.911	21.853
-17.4 -17.6	0.779 0.612	24.792 24.792
-17.8	0.444	23.261
-18 -18.2	0.296 0.175	19.437 14.824
10.2	0.1/3	17.024

Selected Design Assumptions	Inviluppi: Taglio	Muro: Sx
Z (m)	Lato sinistro (kN/m)	Lato destro (kN/m)
-18.4	0.084	10.363
-18.6	0.022	6.557
-18.8	0	3.603
-19	0	1.501
-19.2	0.628	0.142
-19.4	0.972	0.047
-19.6	1.033	0.042
-19.8	1.033	0.036
-20	0.928	0.029
-20.2	0.741	0.022
-20.4	0.533	0.017
-20.6	0.338	0.014
-20.8	0.177	0.012
-21	0.06	0.026
-21.2	0	0.034
-21.4	0	0.034
-21.5	0	0.013

Grafico Inviluppi Taglio

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva
				%
NTC2018: A1+M1+R1 (R3 per tiranti)	Stage 1	Left Wall	LEFT	4.23
NTC2018: SISMICA STR	Stage 15 Sisma	Left Wall	RIGHT	T 12.99

Inviluppo Spinta Reale Efficace / Spinta Attiva

Normative adottate per le verifiche degli Elementi Strutturali

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 1 2	Stage 2_Scavo T1	Stage 3_Attiv. T1	Stage 4_Scavo T2	Stage 5_Attiv. T2	Stage 6_Dreno	Stage 7_Scavo T3	Stage 8_Attiv. T3	Stage 9_Dreno	Stage 10_Scavo T4	Stage 11_Attiv. T4	Stage 12_Dreno	Stage 13_Fondo scavo	Stage 14_STAB. GLOB.	Stage 15_Si- sma
NTC2018: SLE (Rara/Frequente/Quasi Permanente) NTC2018: A1+M1+R1 (R3 per tiranti)	v	v	v	V	V	V	V	V	v	V	V	V	V		
NTC2018: A2+M2+R1 NTC2018: SISMICA STR NTC2018: SISMICA GEO															V

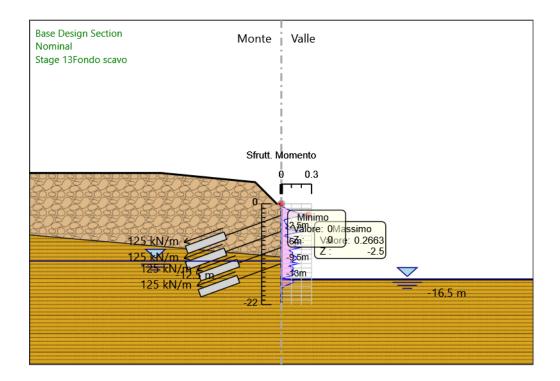

Risultati SteelWorld

Tabella Inviluppi Tasso di Sfruttamento a Momento - SteelWorld : LEFT

Inviluppi Tasso di Sfruttamento a Momento - SteelWorld	
Z (m)	Tasso di Sfruttamento a Momento - SteelWorld
0	0
-0.2	0.002
-0.4	0.007
-0.6	0.015
-0.8	0.027
-1	0.043
-1.2	0.061
-1.4	0.084
-1.6	0.109
-1.8	0.138
-2	0.17
-2.2	0.206
-2.4	0.245
-2.5	0.266
-2.7	0.2
-2.9	0.143
-3.1	0.096
-3.3	0.058
-3.5	0.032
-3.7	0.028
-3.9	0.035
-4.1	0.041
-4.3	0.046
-4.5	0.053
-4.7	0.058
-4.9	0.06
-5.1	0.056
-5.3	0.043
-5.5	0.055
-5.7	0.112
-5.9	0.183
-6	0.224
-6.2	0.17
-6.4	0.125
-6.6	0.082
-6.8	0.041
-7	0.027
-7.2	0.055
-7.4	0.087
-7.6	0.117
-7.8	0.143
-8	0.164
-8.2	0.178
-8.4	0.183
-8.6	0.177
-8.8	0.157
-9	0.146
-9.2	0.128
	

Inviluppi Tasso di Sfruttamento a Momento - SteelW	orld LEFT
Z (m)	Tasso di Sfruttamento a Momento - SteelWorld
-9.4	0.152
-9.5	0.199
-9.7	0.157
-9.9 10.1	0.116
-10.1 -10.3	0.078 0.088
-10.5	0.107
-10.7	0.113
-10.9	0.108
-11.1	0.1
-11.3	0.123
-11.5	0.141
-11.7	0.152
-11.9	0.155
-12.1 -12.3	0.147 0.126
-12.5 -12.5	0.126
-12.7	0.096
-12.9	0.145
-13	0.174
-13.2	0.134
-13.4	0.102
-13.6	0.08
-13.8	0.111
-14	0.123
-14.2 -14.4	0.119 0.104
-14.4 -14.6	0.104
-14.8	0.113
-15	0.134
-15.2	0.132
-15.4	0.122
-15.6	0.106
-15.8	0.082
-16 -16.2	0.05 0.013
-16.2	0.013
-16.6	0.095
-16.8	0.122
-17	0.126
-17.2	0.114
-17.4	0.093
-17.6	0.07
-17.8	0.048
-18 -18.2	0.03 0.016
-18.4	0.006
-18.6	0
-18.8	0.004
-19	0.005
-19.2	0.005
-19.4	0.004
-19.6	0.004
-19.8 -20	0.003 0.002
-20 -20.2	0.002
-20.2 -20.4	0.001
-20.6	0
-20.8	0
-21	0
-21.2	0
-21.4	0
-21.5	0

Grafico Inviluppi Tasso di Sfruttamento a Momento - SteelWorld

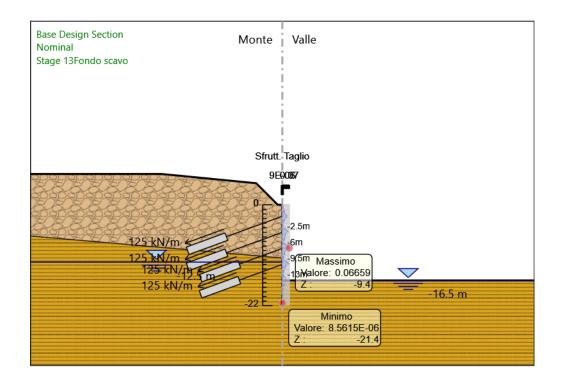

Inviluppi Tasso di Sfruttamento a Momento - SteelWorld

Tabella Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld : LEFT

Tabella Inviluppi Tasso di Si	
Inviluppi Tasso di Sfruttamento a Taglio - Ste Z (m)	elWorld LEFT Tasso di Sfruttamento a Taglio - Stee
0	0.001
-0.2	0.004
-0.4 -0.6	0.006 0.008
-0.8	0.011
-1 -1.2	0.013 0.015
-1.2 -1.4	0.013
-1.6	0.02
-1.8 -2	0.022 0.025
-2.2	0.035
-2.4 -2.5	0.046
-2.5 -2.7	0.046 0.039
-2.9	0.032
-3.1 -3.3	0.026 0.021
-3.5	0.017
-3.7 -3.9	0.013
-5.9 -4.1	0.009 0.005
-4.3	0.005
-4.5 -4.7	0.004 0.006
-4.9	0.012
-5.1	0.02
-5.3 -5.5	0.029 0.039
-5.7	0.05
-5.9 -6	0.057 0.039
-6.2	0.039
-6.4	0.032
-6.6 -6.8	0.03 0.029
-7	0.026
-7.2 -7.4	0.024 0.021
-7.6	0.018
-7.8	0.015
-8 -8.2	0.01 0.008
-8.4	0.018
-8.6	0.028
-8.8 -9	0.039 0.05
-9.2	0.061
-9.4 -9.5	0.067 0.031
-9.7	0.032
-9.9	0.038
-10.1 -10.3	0.027 0.025
-10.5	0.023
-10.7 -10.9	0.021 0.019
-11.1	0.019
-11.3	0.013
-11.5 -11.7	0.012 0.01
-11.9	0.016
-12.1 -12.3	0.023 0.034
-12.5	0.034
-12.7	0.057
-12.9 -13	0.066 0.037
-13.2	0.034
-13.4	0.037
-13.6 -13.8	0.027 0.024
-14	0.02
-14.2 -14.4	0.016 0.014
-14.6	0.015
-14.8	0.013
-15 -15.2	0.011 0.008
-15.4	0.011
-15.6 -15.8	0.017 0.022
-16	0.022
-16.2	0.033
-16.4 -16.6	0.039 0.019
-16.8	0.003
-17	0.008
-17.2 -17.4	0.014 0.016
-17.6	0.015
-17.8 -18	0.013 0.01
-18.2	0.007
-18.4	0.004

Inviluppi Tasso di Sfruttamento a Taglio - Steel\	Norld LEFT
Z (m)	Tasso di Sfruttamento a Taglio - SteelWorld
-18.6	0.002
-18.8	0.001
-19	0
-19.2	0
-19.4	0.001
-19.6	0.001
-19.8	0.001
-20	0
-20.2	0
-20.4	0
-20.6	0
-20.8	0
-21	0
-21.2	0
-21.4	0
-21.5	0

Grafico Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld

Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld

Verifiche Tiranti NTC2018: SLE (Rara/Frequente/Quasi Permanente)

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi					NTC2018			
Permanente)	Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	1166.316	550.44	0.257	0.545		NO
T1	Stage 4_Scavo T2	299.928	1166.316	550.44	0.257	0.545		NO
T1	Stage 5_Attiv. T2	299.958	1166.316	550.44	0.257	0.545		NO
T1	Stage 6_Dreno	299.961	1166.316	550.44	0.257	0.545		NO
T1	Stage 7_Scavo T3	299.98	1166.316	550.44	0.257	0.545		NO
T1	Stage 8_Attiv. T3	299.979	1166.316	550.44	0.257	0.545		NO
T1	Stage 9_Dreno	299.98	1166.316	550.44	0.257	0.545		NO
T1	Stage 10_Scavo T4	299.979	1166.316	550.44	0.257	0.545		NO
T1	Stage 11_Attiv. T4	299.979	1166.316	550.44	0.257	0.545		NO
T1	Stage 12_Dreno	299.979	1166.316	550.44	0.257	0.545		NO
T1	Stage 13_Fondo scavo	299.979	1166.316	550.44	0.257	0.545		NO
T1	Stage 14_STAB. GLOB.	299.979	1166.316	550.44	0.257	0.545		NO
T1	Stage 15_Sisma	299.979	1166.316	550.44	0.257	0.545		NO
T2	Stage 5_Attiv. T2	300	1166.316	550.44	0.257	0.545		NO
T2	Stage 6_Dreno	299.853	1166.316	550.44	0.257	0.545		NO
T2	Stage 7_Scavo T3	300.978	1166.316	550.44	0.258	0.547		NO
T2	Stage 8_Attiv. T3	301.123	1166.316	550.44	0.258	0.547		NO
T2	Stage 9_Dreno	301.021	1166.316	550.44	0.258	0.547		NO
T2	Stage 10_Scavo T4	301.029	1166.316	550.44	0.258	0.547		NO
T2	Stage 11_Attiv. T4	301.027	1166.316	550.44	0.258	0.547		NO
T2	Stage 12_Dreno	301.028	1166.316	550.44	0.258	0.547		NO
T2	Stage 13_Fondo scavo	301.027	1166.316	550.44	0.258	0.547		NO
T2	Stage 14 STAB. GLOB.	301.027	1166.316	550.44	0.258	0.547		NO
T2	Stage 15 Sisma	301.027	1166.316	550.44	0.258	0.547		NO
T3	Stage 8 Attiv. T3	300	1166.316	550.44	0.257	0.545		NO
T3	Stage 9 Dreno	299.052	1166.316	550.44	0.256	0.543		NO
T3	Stage 10_Scavo T4	302.198	1166.316	550.44	0.259	0.549		NO
T3	Stage 11 Attiv. T4	302.429	1166.316	550.44	0.259	0.549		NO
T3	Stage 12_Dreno	302.298	1166.316	550.44	0.259	0.549		NO
T3	Stage 13 Fondo scavo	302.302	1166.316	550.44	0.259	0.549		NO
T3	Stage 14 STAB. GLOB.	302.302	1166.316	550.44	0.259	0.549		NO
T3	Stage 15_Sisma	302.302	1166.316	550.44	0.259	0.549		NO
T4	Stage 11_Attiv. T4	300	1166.316	550.44	0.257	0.545		NO
T4	Stage 12 Dreno	299.218	1166.316	550.44	0.257	0.544		NO
T4	Stage 13_Fondo scavo	301.087	1166.316	550.44	0.258	0.547		NO
T4	Stage 14_STAB. GLOB.	301.087	1166.316	550.44	0.258	0.547		NO
T4	Stage 15_Sisma	301.087	1166.316	550.44	0.258	0.547		NO

Verifiche Tiranti NTC2018: A1+M1+R1 (R3 per tiranti)

esign Assumption: NTC2018: A1+M1+R1 (R3 per					NTC2018			
tiranti)	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	390	589.049	550.44	0.662	0.709		NO
T1	Stage 4_Scavo T2	389.906	589.049	550.44	0.662	0.708		NO
T1	Stage 5_Attiv. T2	389.946	589.049	550.44	0.662	0.708		NO
T1	Stage 6_Dreno	389.95	589.049	550.44	0.662	0.708		NO
T1	Stage 7_Scavo T3	389.974	589.049	550.44	0.662	0.708		NO
T1	Stage 8_Attiv. T3	389.973	589.049	550.44	0.662	0.708		NO
T1	Stage 9_Dreno	389.973	589.049	550.44	0.662	0.708		NO
T1	Stage 10_Scavo T4	389.972	589.049	550.44	0.662	0.708		NO
T1	Stage 11_Attiv. T4	389.972	589.049	550.44	0.662	0.708		NO
T1	Stage 12_Dreno	389.972	589.049	550.44	0.662	0.708		NO
T1	Stage 13_Fondo scavo	389.973	589.049	550.44	0.662	0.708		NO
T1	Stage 14_STAB. GLOB.	389.973	589.049	550.44	0.662	0.708		NO
T1	Stage 15_Sisma	389.973	589.049	550.44	0.662	0.708		NO
T2	Stage 5_Attiv. T2	390	589.049	550.44	0.662	0.709		NO
T2	Stage 6_Dreno	389.809	589.049	550.44	0.662	0.708		NO
T2	Stage 7_Scavo T3	391.271	589.049	550.44	0.664	0.711		NO
T2	Stage 8_Attiv. T3	391.46	589.049	550.44	0.665	0.711		NO
T2	Stage 9_Dreno	391.327	589.049	550.44	0.664	0.711		NO
T2	Stage 10_Scavo T4	391.338	589.049	550.44	0.664	0.711		NO
T2	Stage 11_Attiv. T4	391.335	589.049	550.44	0.664	0.711		NO
T2	Stage 12_Dreno	391.336	589.049	550.44	0.664	0.711		NO
T2	Stage 13_Fondo scavo	391.336	589.049	550.44	0.664	0.711		NO
T2	Stage 14_STAB. GLOB.	391.336	589.049	550.44	0.664	0.711		NO
T2	Stage 15_Sisma	391.336	589.049	550.44	0.664	0.711		NO
T3	Stage 8_Attiv. T3	390	589.049	550.44	0.662	0.709		NO
T3	Stage 9 Dreno	388.767	589.049	550.44	0.66	0.706		NO
T3	Stage 10 Scavo T4	392.857	589.049	550.44	0.667	0.714		NO
Т3	Stage 11 Attiv. T4	393.157	589.049	550.44	0.667	0.714		NO
Т3	Stage 12 Dreno	392.988	589.049	550.44	0.667	0.714		NO
Т3	Stage 13 Fondo scavo	392.993	589.049	550.44	0.667	0.714		NO
Т3	Stage 14_STAB. GLOB.	392.993	589.049	550.44	0.667	0.714		NO
T3	Stage 15 Sisma	392.993	589.049	550.44	0.667	0.714		NO
T4	Stage 11 Attiv. T4	390	589.049	550.44	0.662	0.709		NO
T4	Stage 12 Dreno	388.983	589.049	550.44	0.66	0.707		NO
T4	Stage 13 Fondo scavo	391.414	589.049	550.44	0.664	0.711		NO
T4	Stage 14 STAB. GLOB.	391.414	589.049	550.44	0.664	0.711		NO
T4	Stage 15 Sisma	391.414	589.049	550.44	0.664	0.711		NO

Verifiche Tiranti NTC2018: A2+M2+R1

Design Assumption: NTC2018: A2+M2+R1	Tipo Risultato: Verifiche Ti- ranti				NTC2018 (ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Scavo T2	299.925	589.049	550.44	0.509	0.545		NO
T1	Stage 5_Attiv. T2	299.963	589.049	550.44	0.509	0.545		NO
T1	Stage 6_Dreno	299.966	589.049	550.44	0.509	0.545		NO
T1	Stage 7_Scavo T3	299.983	589.049	550.44	0.509	0.545		NO
T1	Stage 8_Attiv. T3	299.982	589.049	550.44	0.509	0.545		NO
T1	Stage 9_Dreno	299.983	589.049	550.44	0.509	0.545		NO
T1	Stage 10_Scavo T4	299.982	589.049	550.44	0.509	0.545		NO
T1	Stage 11_Attiv. T4	299.982	589.049	550.44	0.509	0.545		NO
T1	Stage 12_Dreno	299.982	589.049	550.44	0.509	0.545		NO
T1	Stage 13_Fondo scavo	299.982	589.049	550.44	0.509	0.545		NO
T1	Stage 14_STAB. GLOB.	299.982	589.049	550.44	0.509	0.545		NO
T1	Stage 15_Sisma	299.982	589.049	550.44	0.509	0.545		NO
T2	Stage 5_Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T2	Stage 6_Dreno	299.847	589.049	550.44	0.509	0.545		NO
T2	Stage 7_Scavo T3	300.944	589.049	550.44	0.511	0.547		NO
T2	Stage 8_Attiv. T3	301.098	589.049	550.44	0.511	0.547		NO
T2	Stage 9_Dreno	300.984	589.049	550.44	0.511	0.547		NO
T2	Stage 10_Scavo T4	300.986	589.049	550.44	0.511	0.547		NO
T2	Stage 11_Attiv. T4	300.984	589.049	550.44	0.511	0.547		NO
T2	Stage 12_Dreno	300.985	589.049	550.44	0.511	0.547		NO
T2	Stage 13_Fondo scavo	300.985	589.049	550.44	0.511	0.547		NO
T2	Stage 14_STAB. GLOB.	300.985	589.049	550.44	0.511	0.547		NO
T2	Stage 15 Sisma	300.985	589.049	550.44	0.511	0.547		NO
T3	Stage 8_Attiv. T3	300	589.049	550.44	0.509	0.545		NO
T3	Stage 9 Dreno	299.001	589.049	550.44	0.508	0.543		NO
T3	Stage 10_Scavo T4	302.177	589.049	550.44	0.513	0.549		NO
T3	Stage 11 Attiv. T4	302.385	589.049	550.44	0.513	0.549		NO
T3	Stage 12 Dreno	302.24	589.049	550.44	0.513	0.549		NO
T3	Stage 13 Fondo scavo	302.238	589.049	550.44	0.513	0.549		NO
T3	Stage 14 STAB. GLOB.	302.238	589.049	550.44	0.513	0.549		NO
T3	Stage 15 Sisma	302.238	589.049	550.44	0.513	0.549		NO
T4	Stage 11 Attiv. T4	300	589.049	550.44	0.509	0.545		NO
T4	Stage 12 Dreno	299.188	589.049	550.44	0.508	0.544		NO
T4	Stage 13 Fondo scavo	301.178	589.049	550.44	0.511	0.547		NO
T4	Stage 14 STAB. GLOB.	301.178	589.049	550.44	0.511	0.547		NO
T4	Stage 15 Sisma	301.178	589.049	550.44	0.511	0.547		NO

Verifiche Tiranti NTC2018: SISMICA STR

	Tipo Risultato: Verifiche Ti-				NTC2018			
STR	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Scavo T2	299.928	589.049	550.44	0.509	0.545		NO
T1	Stage 5_Attiv. T2	299.958	589.049	550.44	0.509	0.545		NO
T1	Stage 6_Dreno	299.961	589.049	550.44	0.509	0.545		NO
T1	Stage 7_Scavo T3	299.98	589.049	550.44	0.509	0.545		NO
T1	Stage 8_Attiv. T3	299.979	589.049	550.44	0.509	0.545		NO
T1	Stage 9_Dreno	299.98	589.049	550.44	0.509	0.545		NO
T1	Stage 10_Scavo T4	299.979	589.049	550.44	0.509	0.545		NO
T1	Stage 11_Attiv. T4	299.979	589.049	550.44	0.509	0.545		NO
T1	Stage 12_Dreno	299.979	589.049	550.44	0.509	0.545		NO
T1	Stage 13_Fondo scavo	299.979	589.049	550.44	0.509	0.545		NO
T1	Stage 14_STAB. GLOB.	299.979	589.049	550.44	0.509	0.545		NO
T1	Stage 15_Sisma	303.423	589.049	550.44	0.515	0.551		NO
T2	Stage 5_Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T2	Stage 6_Dreno	299.853	589.049	550.44	0.509	0.545		NO
T2	Stage 7_Scavo T3	300.978	589.049	550.44	0.511	0.547		NO
T2	Stage 8_Attiv. T3	301.123	589.049	550.44	0.511	0.547		NO
T2	Stage 9_Dreno	301.021	589.049	550.44	0.511	0.547		NO
T2	Stage 10_Scavo T4	301.029	589.049	550.44	0.511	0.547		NO
T2	Stage 11_Attiv. T4	301.027	589.049	550.44	0.511	0.547		NO
T2	Stage 12_Dreno	301.028	589.049	550.44	0.511	0.547		NO
T2	Stage 13_Fondo scavo	301.027	589.049	550.44	0.511	0.547		NO
T2	Stage 14_STAB. GLOB.	301.027	589.049	550.44	0.511	0.547		NO
T2	Stage 15_Sisma	302.032	589.049	550.44	0.513	0.549		NO
T3	Stage 8_Attiv. T3	300	589.049	550.44	0.509	0.545		NO
T3	Stage 9_Dreno	299.052	589.049	550.44	0.508	0.543		NO
T3	Stage 10_Scavo T4	302.198	589.049	550.44	0.513	0.549		NO
T3	Stage 11_Attiv. T4	302.429	589.049	550.44	0.513	0.549		NO
T3	Stage 12_Dreno	302.298	589.049	550.44	0.513	0.549		NO
T3	Stage 13_Fondo scavo	302.302	589.049	550.44	0.513	0.549		NO
T3	Stage 14_STAB. GLOB.	302.302	589.049	550.44	0.513	0.549		NO
T3	Stage 15_Sisma	303.555	589.049	550.44	0.515	0.551		NO
T4	Stage 11_Attiv. T4	300	589.049	550.44	0.509	0.545		NO
T4	Stage 12_Dreno	299.218	589.049	550.44	0.508	0.544		NO
T4	Stage 13_Fondo scavo	301.087	589.049	550.44	0.511	0.547		NO
T4	Stage 14_STAB. GLOB.	301.087	589.049	550.44	0.511	0.547		NO
T4	Stage 15 Sisma	306.253	589.049	550.44	0.52	0.556		NO

Verifiche Tiranti NTC2018: SISMICA GEO

Design Assumption: NTC2018: SISMICA	Tipo Risultato: Verifiche Ti-				NTC2018			
GEO	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Scavo T2	299.928	589.049	550.44	0.509	0.545		NO
T1	Stage 5_Attiv. T2	299.958	589.049	550.44	0.509	0.545		NO
T1	Stage 6_Dreno	299.961	589.049	550.44	0.509	0.545		NO
T1	Stage 7_Scavo T3	299.98	589.049	550.44	0.509	0.545		NO
T1	Stage 8 Attiv. T3	299.979	589.049	550.44	0.509	0.545		NO

Design Assumption: NTC2018: SISMICA	Tipo Risultato: Verifiche Ti-				NTC2018			
GEO	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 9 Dreno	299.98	589.049	550.44	0.509	0.545		NO
T1	Stage 10_Scavo T4	299.979	589.049	550.44	0.509	0.545		NO
T1	Stage 11_Attiv. T4	299.979	589.049	550.44	0.509	0.545		NO
T1	Stage 12_Dreno	299.979	589.049	550.44	0.509	0.545		NO
T1	Stage 13_Fondo scavo	299.979	589.049	550.44	0.509	0.545		NO
T1	Stage 14_STAB. GLOB.	299.979	589.049	550.44	0.509	0.545		NO
T1	Stage 15_Sisma	303.423	589.049	550.44	0.515	0.551		NO
T2	Stage 5_Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T2	Stage 6_Dreno	299.853	589.049	550.44	0.509	0.545		NO
T2	Stage 7_Scavo T3	300.978	589.049	550.44	0.511	0.547		NO
T2	Stage 8_Attiv. T3	301.123	589.049	550.44	0.511	0.547		NO
T2	Stage 9_Dreno	301.021	589.049	550.44	0.511	0.547		NO
T2	Stage 10_Scavo T4	301.029	589.049	550.44	0.511	0.547		NO
T2	Stage 11_Attiv. T4	301.027	589.049	550.44	0.511	0.547		NO
T2	Stage 12_Dreno	301.028	589.049	550.44	0.511	0.547		NO
T2	Stage 13 Fondo scavo	301.027	589.049	550.44	0.511	0.547		NO
T2	Stage 14_STAB. GLOB.	301.027	589.049	550.44	0.511	0.547		NO
T2	Stage 15_Sisma	302.032	589.049	550.44	0.513	0.549		NO
T3	Stage 8_Attiv. T3	300	589.049	550.44	0.509	0.545		NO
T3	Stage 9_Dreno	299.052	589.049	550.44	0.508	0.543		NO
T3	Stage 10 Scavo T4	302.198	589.049	550.44	0.513	0.549		NO
T3	Stage 11 Attiv. T4	302.429	589.049	550.44	0.513	0.549		NO
T3	Stage 12 Dreno	302.298	589.049	550.44	0.513	0.549		NO
T3	Stage 13_Fondo scavo	302.302	589.049	550.44	0.513	0.549		NO
T3	Stage 14_STAB. GLOB.	302.302	589.049	550.44	0.513	0.549		NO
Т3	Stage 15_Sisma	303.555	589.049	550.44	0.515	0.551		NO
T4	Stage 11_Attiv. T4	300	589.049	550.44	0.509	0.545		NO
T4	Stage 12 Dreno	299.218	589.049	550.44	0.508	0.544		NO
T4	Stage 13 Fondo scavo	301.087	589.049	550.44	0.511	0.547		NO
T4	Stage 14 STAB. GLOB.	301.087	589.049	550.44	0.511	0.547		NO
4	Stage 15 Sisma	306.253	589.049	550.44	0.52	0.556		NO

Inviluppo Verifiche Tiranti (su tutte le D.A. attive)

	Tipo Risultato: Verifiche Tirar	nti						
Tirante	e Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (ki	N) Ratio GEO	Ratio STR Res	sistenza Gerarchia delle Resistenze	Design Assumption
T1	Stage 3_Attiv. T1	390	589.049	550.44	0.662	0.709	NO	NTC2018: A1+M1+R1 (R3 per tiranti)
T2	Stage 7_Scavo T3	391.271	589.049	550.44	0.664	0.711	NO	NTC2018: A1+M1+R1 (R3 per tiranti)
T3	Stage 10_Scavo T4	392.857	589.049	550.44	0.667	0.714	NO	NTC2018: A1+M1+R1 (R3 per tiranti)
T4	Stage 13 Fondo scavo	391 414	589 049	550 44	0.664	0.711	NO	NTC2018: A1+M1+R1 (R3 per tiranti)

SS 131 "Carlo Felice"

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

9.4 Allegato 4 - Sezione 4: Paratia tipo T — 3 tiranti attivi

Descrizione della Stratigrafia e degli Strati di Terreno

Tipo: POLYLINE
Punti
(-55;50)
(55;-35)
(-55;-35)
OCR: 1

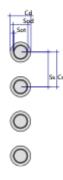
Tipo: POLYLINE
Punti
(-55;-3.7)
(55;-13.3)
(55;-35)
(-55;-35)

Strato di Terreno Terre				øcv øp c' ° ° kP		stico Eu Evc kPa		Ah Av exp Pa	Ku Kvc kN/m³ kN/m	
1 CB	20.1	20.1	26.7	12	.5 Constar	nt 54000	0 864000)		
2 M	199	199	30.1	16	5 Constan	t 52500	0.84000	1		

Descrizione Pareti

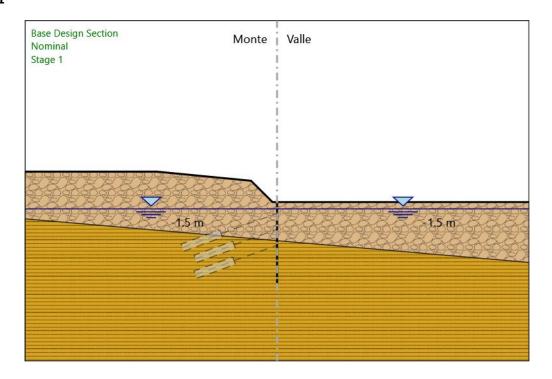
OCR:1

X:0 m


Quota in alto : 0 m Quota di fondo : -18 m Muro di sinistra

Sezione: Micropali fi240 - fi168.3 sp10

Area equivalente : 0.019045141329815 m Inerzia equivalente : 0.0001 m⁴/m Materiale calcestruzzo : C25/30 Tipo sezione : Tangent Spaziatura : 0.4 m Diametro : 0.24 m Efficacia : 0.5


Materiale acciaio: \$355

Sezione : CHS168.3*10 Tipo sezione : O Spaziatura : 0.4 m Spessore : 0.01 m Diametro : 0.1683 m

Fasi di Calcolo

Stage 1


```
Stage 1
Scavo
```

Muro di sinistra

Lato monte : 0 m Lato valle : 0 m

Linea di scavo di sinistra (Irregolare)

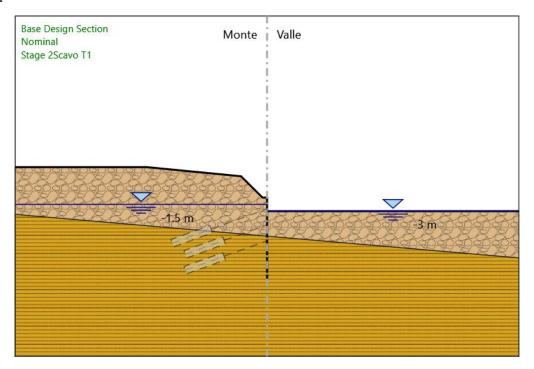
(-55;6.7) (-26.2;6.7) (-5.7;4.7) (-1;0) (0;0) Linea di scavo di destra (Orizzontale)

0 m

Falda acquifera

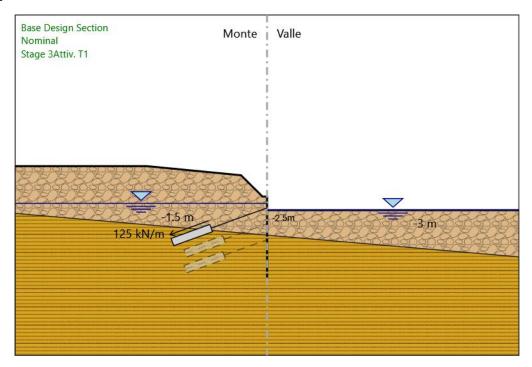
Falda di sinistra : -1.5 m Falda di destra : -1.5 m

Elementi strutturali

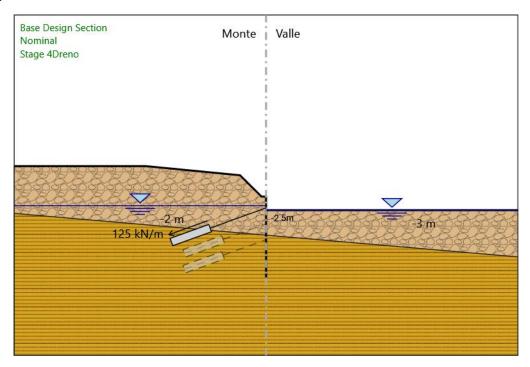

Paratia : Sx

X : 0 m

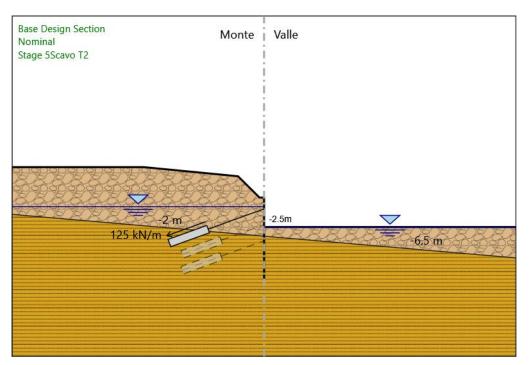
Quota in alto : 0 m Quota di fondo : -18 m


Sezione : Micropali fi240 - fi168.3 sp10

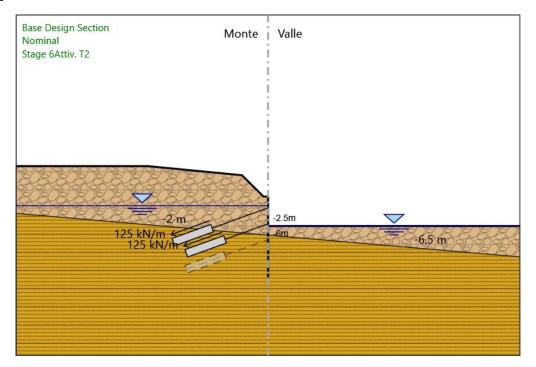
Stage 2_Scavo T1


```
Stage 2_Scavo T1
Scavo
            Muro di sinistra
                        Lato monte : 0 m
                        Lato valle : -3 m
                       Linea di scavo di sinistra (Irregolare)
(-55;6.7)
(-26.2;6.7)
(-5.7;4.7)
                                    (-1;0)
                                    (0;0)
                        Linea di scavo di destra (Orizzontale)
                                    -3 m
Falda acquifera
            Falda di sinistra : -1.5 m
            Falda di destra : -3 m
Elementi strutturali
            Paratia: Sx
                        X:0 m
                        Quota in alto: 0 m
                        Quota di fondo : -18 m
                        Sezione : Micropali fi240 - fi168.3 sp10
```

Stage 3_Attiv. T1


```
Stage 3_Attiv. T1
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -3 m
                      Linea di scavo di sinistra (Irregolare)
                                (-55;6.7)
                                (-26.2;6.7)
                                (-5.7;4.7)
                                (-1;0)
                                (0;0)
                      Linea di scavo di destra (Orizzontale)
                                -3 m
Falda acquifera
           Falda di sinistra : -1.5 m
           Falda di destra : -3 m
Elementi strutturali
           Paratia: Sx
                      X:0 m
                      Quota in alto: 0 m
                      Quota di fondo : -18 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante : T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico : 300 kN
                      Angolo: 20°
                      Sezione : 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
```

Stage 4_Dreno

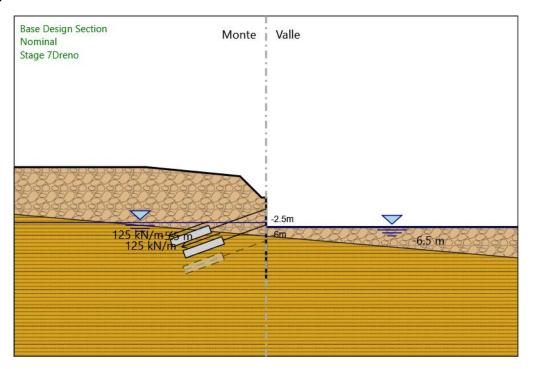

```
Stage 4_Dreno
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -3 m
                      Linea di scavo di sinistra (Irregolare)
                                (-55;6.7)
                                (-26.2;6.7)
                                (-5.7;4.7)
                                (-1;0)
                                (0;0)
                      Linea di scavo di destra (Orizzontale)
                                -3 m
Falda acquifera
           Falda di sinistra : -2 m
           Falda di destra : -3 m
Elementi strutturali
           Paratia: Sx
                      X:0 m
                      Quota in alto: 0 m
                      Quota di fondo : -18 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante : T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico : 300 kN
                      Angolo: 20°
                      Sezione : 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
```

Stage 5_Scavo T2


```
Stage 5_Scavo T2
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -6.5 m
                      Linea di scavo di sinistra (Irregolare)
                                (-55;6.7)
                                (-26.2;6.7)
                                (-5.7;4.7)
                                (-1;0)
                                (0;0)
                      Linea di scavo di destra (Orizzontale)
                                -6.5 m
Falda acquifera
           Falda di sinistra : -2 m
           Falda di destra : -6.5 m
Elementi strutturali
           Paratia: Sx
                      X:0 m
                      Quota in alto: 0 m
                      Quota di fondo : -18 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante : T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico : 300 kN
                      Angolo: 20°
                      Sezione : 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
```

Stage 6_Attiv. T2


```
Stage 6_Attiv. T2
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -6.5 m
                      Linea di scavo di sinistra (Irregolare)
                                (-55;6.7)
                                (-26.2;6.7)
                                (-5.7;4.7)
                                (-1;0)
                                (0;0)
                      Linea di scavo di destra (Orizzontale)
                                -6.5 m
Falda acquifera
           Falda di sinistra : -2 m
           Falda di destra : -6.5 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                      Quota in alto: 0 m
                      Quota di fondo : -18 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante : T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico : 300 kN
                      Angolo: 20°
                      Sezione : 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
           Tirante: T2
                     X:0 m
                      Z : -6 m
                     Lunghezza bulbo : 9 m
```


Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 7_Dreno

Stage 7_Dreno

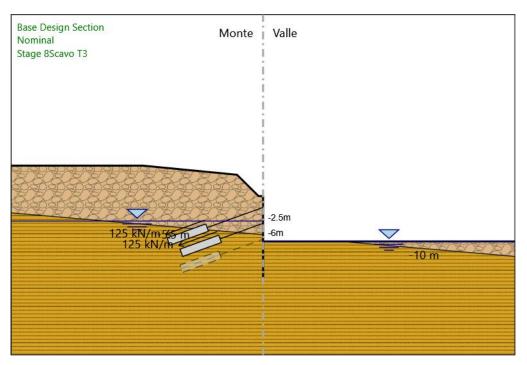

```
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -6.5 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;6.7)
                                 (-26.2;6.7)
                                 (-5.7;4.7)
                                 (-1;0)
                                 (0;0)
                     Linea di scavo di destra (Orizzontale)
                                 -6.5 m
Falda acquifera
           Falda di sinistra : -5.5 m
           Falda di destra : -6.5 m
Elementi strutturali
           Paratia: Sx
                     X:0 m
                      Quota in alto: 0 m
                      Quota di fondo : -18 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante: T1
                     X:0 m
                      Z:-2.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera: 13 m
```

Spaziatura orizzontale: 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T2


X : 0 m Z : -6 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 8_Scavo T3


```
Stage 8_Scavo T3
Scavo
```

Muro di sinistra

Lato monte : 0 m Lato valle : -10 m

Linea di scavo di sinistra (Irregolare)

-10 m

(-55;6.7) (-26.2;6.7) (-5.7;4.7) (-1;0) (0;0) Linea di scavo di destra (Orizzontale)

Falda acquifera

Falda di sinistra : -5.5 m Falda di destra : -10 m

Elementi strutturali

Paratia : Sx

X:0 m

Quota in alto : 0 m Quota di fondo : -18 m

Sezione : Micropali fi240 - fi168.3 sp10

Tirante : T1

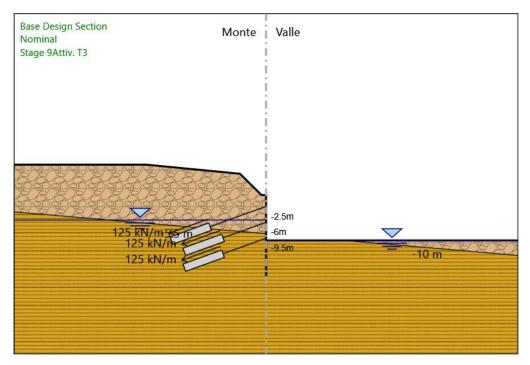
X:0 m Z:-2.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T2


X:0 m Z:-6 m

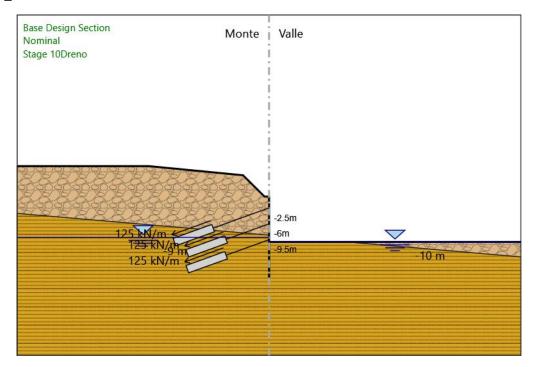
Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 9_Attiv. T3

Stage 9_Attiv. T3 Scavo


Muro di sinistra

Lato monte : 0 m Lato valle : -10 m

```
Linea di scavo di sinistra (Irregolare)
                                (-55;6.7)
                                (-26.2;6.7)
                                (-5.7;4.7)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
                                -10 m
Falda acquifera
          Falda di sinistra : -5.5 m
          Falda di destra : -10 m
Elementi strutturali
          Paratia: Sx
                     X:0 m
                     Quota in alto: 0 m
                     Quota di fondo : -18 m
                     Sezione: Micropali fi240 - fi168.3 sp10
          Tirante: T1
                     X:0 m
                     Z:-2.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera: 13 m
                     Spaziatura orizzontale: 2.4 m
                     Precarico : 300 kN
                     Angolo : 20 °
                     Sezione : 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro : 0.01331 m
                                Area: 0.000417 m^2
          Tirante: T2
                     X:0 m
                     Z:-6 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera : 10 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico: 300 kN
                     Angolo: 20°
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre: 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
          Tirante: T3
                     X:0 m
                     Z:-9.5 m
                     Lunghezza bulbo: 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera: 10 m
                     Spaziatura orizzontale: 2.4 m
                     Precarico: 300 kN
                     Angolo : 20 °
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
```

Area: 0.000417 m^2

Stage 10_Dreno

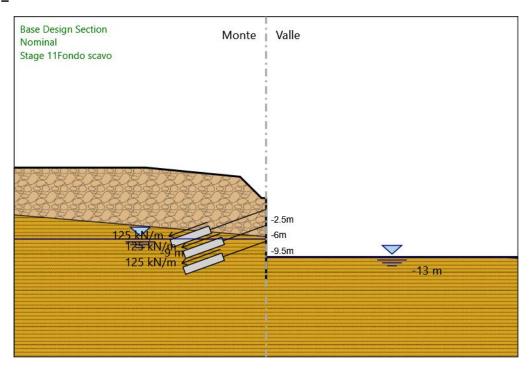

```
Stage 10_Dreno
Scavo
          Muro di sinistra
                     Lato monte : 0 m
                     Lato valle : -10 m
                     Linea di scavo di sinistra (Irregolare)
                                (-55;6.7)
                                (-26.2;6.7)
                                (-5.7;4.7)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
                                -10 m
Falda acquifera
          Falda di sinistra : -9 m
          Falda di destra : -10 m
Elementi strutturali
          Paratia: Sx
                     X:0 m
                     Quota in alto: 0 m
                     Quota di fondo : -18 m
                     Sezione: Micropali fi240 - fi168.3 sp10
          Tirante : T1
                     X:0 m
                     Z:-2.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo : 0.15 m
                     Lunghezza libera : 13 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico : 300 kN
                     Angolo: 20°
                     Sezione : 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
          Tirante: T2
                     X:0 m
                     Z : -6 m
                     Lunghezza bulbo : 9 m
```

Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3


X : 0 m Z : -9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 11_Fondo scavo


```
Stage 11_Fondo scavo
```

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -13 m

Linea di scavo di sinistra (Irregolare)

(-55;6.7) (-26.2;6.7) (-5.7;4.7)

(-1;0) (0;0)

Linea di scavo di destra (Orizzontale)

-13 m

Falda acquifera

Falda di sinistra : -9 m

Falda di destra : -13 m

Elementi strutturali

Paratia: Sx

X:0 m

Quota in alto : 0 m Quota di fondo : -18 m

Sezione: Micropali fi240 - fi168.3 sp10

Tirante: T1

X : 0 m Z : -2.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T2

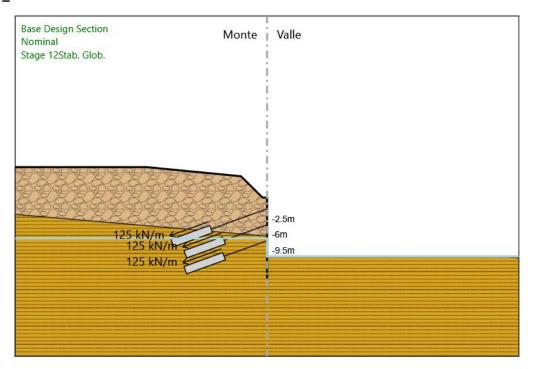
X : 0 m Z : -6 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3


X : 0 m Z : -9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

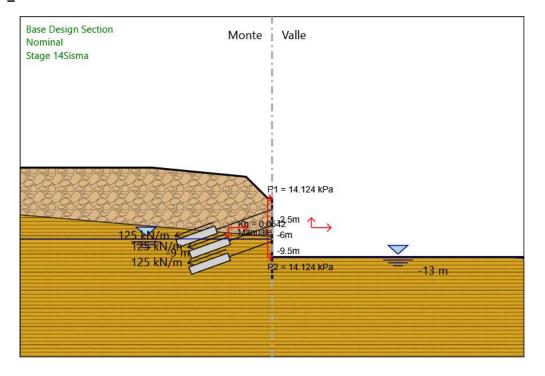
Stage 12_Stab. Glob.


```
Stage 12_Stab. Glob.
Scavo
          Muro di sinistra
                     Lato monte : 0 m
                     Lato valle : -13 m
                     Linea di scavo di sinistra (Irregolare)
                                (-55;6.7)
                                (-26.2;6.7)
                                (-5.7;4.7)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
                                -13 m
Elementi strutturali
          Paratia: Sx
                     X:0 m
                     Quota in alto: 0 m
                     Quota di fondo : -18 m
                     Sezione: Micropali fi240 - fi168.3 sp10
          Tirante: T1
                     X:0 m
                     Z:-2.5 m
                     Lunghezza bulbo: 9 m
                     Diametro bulbo : 0.15 m
                     Lunghezza libera: 13 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico: 300 kN
                     Angolo : 20 °
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
          Tirante: T2
                     X:0 m
                     Z:-6 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera: 10 m
                     Spaziatura orizzontale: 2.4 m
                     Precarico : 300 kN
```

Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T3


X : 0 m Z : -9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 14_Sisma


```
Stage 14_Sisma
Scavo
```

Muro di sinistra

Lato monte : 0 m Lato valle : -13 m

Linea di scavo di sinistra (Irregolare)

(-55;6.7) (-26.2;6.7) (-5.7;4.7) (-1;0)

(0;0) Linea di scavo di destra (Orizzontale)

-13 m

Falda acquifera

Falda di sinistra : -9 m Falda di destra : -13 m

Elementi strutturali Paratia : Sx X:0 m

Quota in alto : 0 m Quota di fondo : -18 m

Sezione : Micropali fi240 - fi168.3 sp10

Tirante : T1

X : 0 m Z : -2.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

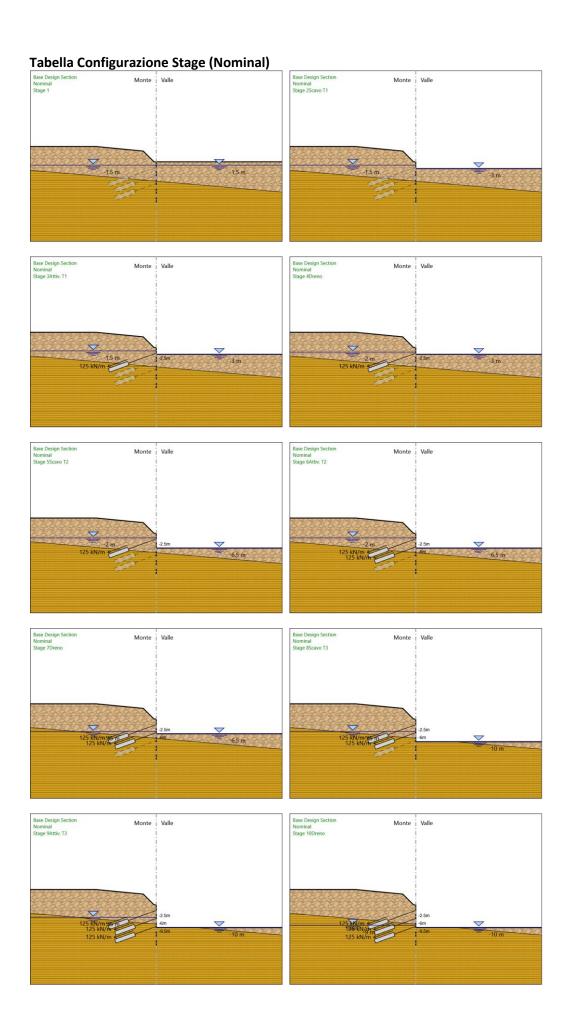
Tirante : T2

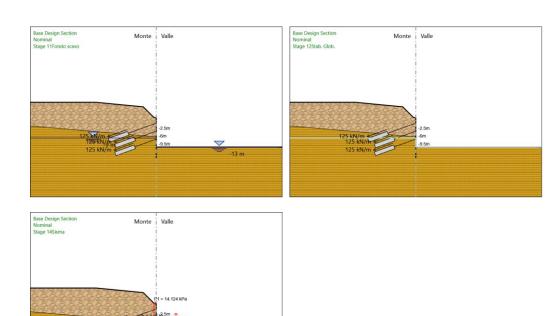
X : 0 m Z : -6 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2


Tirante : T3


X : 0 m Z : -9.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Descrizione Coefficienti Design Assumption

Nome	Carichi Perma- nenti Sfavore- voli (F_dead_load_u nfavour)		bili Sfavorevol		Carico Si- smico (F_seism_loa d)	Acqua Lato Mont	sioni Acqua Lato Valle (F_Wa ter-	nenti Destabi- lizzanti (F_UPL_GDSta b)	manenti Sta- bilizzanti	bili Destabiliz- zanti	Carichi Perma- nenti Destabi- lizzanti (F_HYD_GDSta b)	manenti Sta- bilizzanti	zanti
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018:	1	1	1	1	0	1	1	1	1	1	1	1	1
SLE													
(Rara/Fre-													
quente/Qua	ı												
si Perma-													
nente) NTC2018:	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
A1+M1+R1	1.3	1	1.5	1	U	1.3	1	1	1	1	1.3	0.9	1
(R3 per ti-													
ranti)													
NTC2018:	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
A2+M2+R1	-		1.5	-	Ü	-	-	-	-	-	1.5	0.5	•
NTC2018:	1	1	1	1	1	1	1	1	1	1	1	1	1
SISMICA													
STR													
NTC2018:	1	1	1	1	1	1	1	1	1	1	1.3	0.9	1
SISMICA													
GEO													
													_
	Nome		Parziale s				ohe) Pa			–	ziale su peso spe	cifico (F_gamr	na)
	Simbolo			γф	γс			γcu		qu	YY		
	Nominal			1	1			1		1	1		
	E (Rara/Frequent		nte)	1	1			1		1	1		
NTC2	2018: A1+M1+R1 (1	1	_		1		1	1		
	NTC2018: A2+N NTC2018: SISMI			1.25	1.2)		1.4		1	1		
	NTC2018: SISMI			1	1			1		1 1	1		
	INTCZU10: 3131VII	CA GEU		1	1			1		1	1		

Nome Simbolo	Parziale resistenza terreno (es. Kp) (F_Soil_Res_walls) vRe	Parziale resistenza Tiranti permanenti (F_Anch_P) yap	Parziale resistenza Tiranti temporanei (F_Anch_T) yat	Parziale elementi strutturali (F_wall)
Nominal	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi Permanente)	1	1	1	1
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1.2	1.1	1
NTC2018: A2+M2+R1	1	1.2	1.1	1
NTC2018: SISMICA STR	1	1.2	1.1	1
NTC2018: SISMICA GEO	1	1.2	1.1	1

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 1	•	Stage 3_Attiv. T1	Stage 4_Dreno	Stage 5_Scavo T2	Stage 6_Attiv. T2	Stage 7_Dreno	Stage 8_Scavo T3	Stage 9_Attiv. T3	Stage 10_Dreno	Stage 11_Fondo scavo	Stage 12_Stab. Glob.	Stage 14_Sisma
NTC2018: SLE (Rara/Frequente/Quasi Permanente) NTC2018: A1+M1+R1 (R3 per tiranti)	· v	V	V		V	V	V	v	V	V	V		
NTC2018: A2+M2+R1 NTC2018: SISMICA STR NTC2018: SISMICA GEO													V

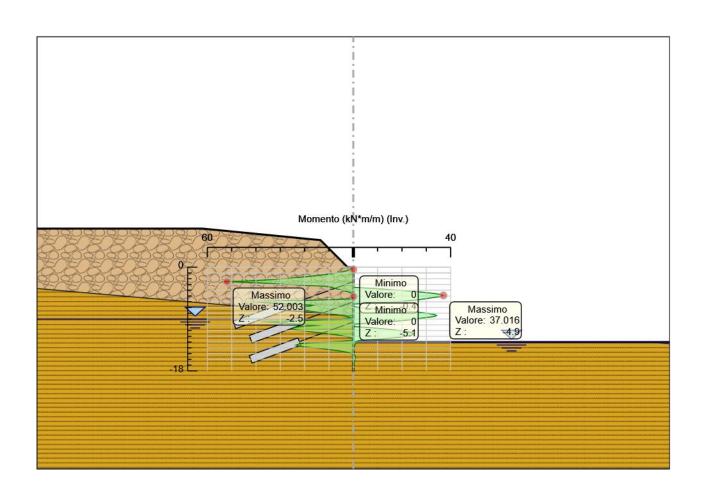

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Tabella Inviluppi Momento Sx

Tabella Inviluppi	i Momento Sx	
Selected Design Assumptions		Muro: Sx
Z (m) 0	Lato sinistro (kN*m/m) L 0	ato destro (kN*m/m 0
-0.2	0.285	0
-0.4	1.14	0 0
-0.6 -0.8	2.566 4.561	0
-1	7.127	0
-1.2	10.262	0
-1.4 -1.6	13.968 18.244	0 0
-1.8	23.09	0
-2	28.507	0
-2.2	35.158	0
-2.4 -2.5	43.9 52.003	0 0
-2.7	40.405	0
-2.9	30.392	0
-3.1 -3.3	21.012	0 0
-3.5	12.109 8.779	0.437
-3.7	7.412	8.543
-3.9	5.454	15.533
-4.1 -4.3	3.497 1.907	21.633 27.331
-4.5	0.791	31.905
-4.7	0.147	35.396
-4.9	0.044	37.016
-5.1 -5.3	0 0	36.139 32.171
-5.5	0	29.367
-5.7	14.518	25.744
-5.9 -6	33.056 43.123	20.512 17.26
-6.2	33.877	9.451
-6.4	25.126	0.002
-6.6	16.741	0
-6.8 -7	18.519 21.667	0 2.443
-7.2	22.167	9.767
-7.4	20.821	16.231
-7.6 -7.8	18.238	21.675
-7.6 -8	14.838 11.028	26.667 30.582
-8.2	7.458	33.285
-8.4	4.501	34.209
-8.6 -8.8	2.3 1.059	32.814 28.442
-9	5.238	25.848
-9.2	16.512	22.099
-9.4 -9.5	29.115 36.141	16.848 13.629
-9.7	27.964	5.973
-9.9	21.343	0.606
-10.1	15.056	0.443
-10.3 -10.5	21.297 24.539	0.292 6.951
-10.7	25.012	12.708
-10.9	23.319	17.41
-11.1 -11.3	19.904 15.648	20.999 23.417
-11.5	11.357	24.608
-11.7	7.559	24.515
-11.9	4.497	23.081
-12.1 -12.3	2.221 0.715	20.247 15.958
-12.5	0.014	10.156
-12.7	0.009	2.783
-12.9 -13.1	6.217 16.758	0.993 0.978
-13.3	22.163	0.85
-13.5	23.558	0.672
-13.7	21.855	0.488
-13.9 -14.1	18.249 13.954	0.323 0.189
-14.3	9.752	0.088
-14.5	6.156	0.018
-14.7	3.37	0

Selected Design Assumptions	Inviluppi: Momento	Muro: Sx
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/m)
-14.9	1.396	0
-15.1	0.131	0.062
-15.3	0.055	0.578
-15.5	0.049	0.887
-15.7	0.041	0.936
-15.9	0.032	0.836
-16.1	0.024	0.668
-16.3	0.018	0.486
-16.5	0.012	0.321
-16.7	0.009	0.188
-16.9	0.006	0.093
-17.1	0.005	0.033
-17.3	0.01	0.002
-17.5	0.012	0
-17.7	0.007	0
-17.9	0.001	0
-18	0	0

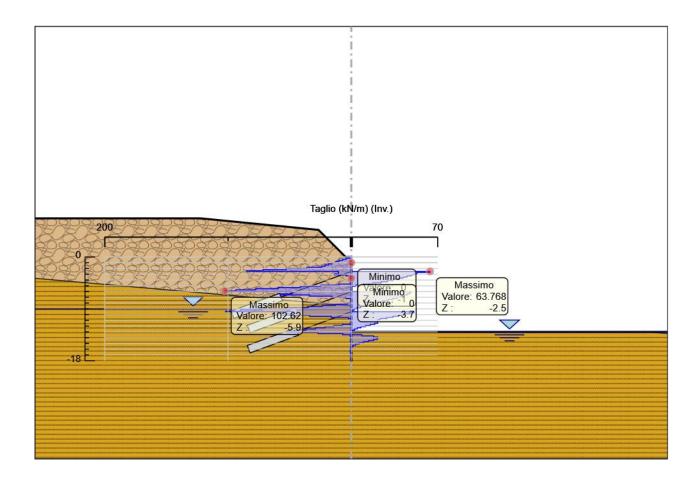

Grafico Inviluppi Momento

Tabella Inviluppi Taglio Sx

Tabella Invilupp	oi Taglio Sx	
Selected Design Assumption Z (m)	s Inviluppi: Taglio Lato sinistro (kN/m) La	Muro: Sx
0	1.425	0
-0.2 -0.4	4.276 7.127	0
-0.6	9.977	0
-0.8 -1	12.828 15.679	0
-1.2	18.529	0
-1.4 -1.6	21.38 24.231	0
-1.8	36.069	0
-2 -2.2	52.927 71.607	0
-2.4	84.998	0
-2.5 -2.7	84.998 10.462	63.768 63.768
-2.9	13.929	53.253
-3.1 -3.3	13.929 4.211	51.244 48.545
-3.5	0.179	45.137
-3.7 -3.9	0.179 0	41.846 38.003
-4.1	0	33.794
-4.3 -4.5	0 0	29.227 24.226
-4.7	10.082	17.454
-4.9 -5.1	24.679 41.423	9.72 3.413
-5.3	59.289	0.116
-5.5 -5.7	77.418 93.859	0.017 0
-5.9	102.617	0
-6 -6.2	102.617 48.178	48.529 48.529
-6.4	57.746	47.193
-6.6 -6.8	57.746 33.925	45.398 43.082
-7	15.743	40.18
-7.2 -7.4	4.365 0.075	37.026 33.525
-7.6	0.011	29.67
-7.8 -8	0.011 2.969	25.408 20.42
-8.2	12.866	17.85
-8.4 -8.6	23.583 35.596	14.784 11.122
-8.8	53.392	7.59
-9 -9.2	72.064 90.148	4.637 2.4
-9.4	101.947	1.123
-9.5 -9.7	101.947 46.802	50.898 50.898
-9.9	55.731	47.047
-10.1 -10.3	55.731 33.815	42.911 38.489
-10.5	16.21	33.781
-10.7 -10.9	2.366 0.306	28.787 23.508
-11.1	0.183	21.277
-11.3 -11.5	0.092 0.466	21.457 21.457
-11.7	7.174	18.989
-11.9 -12.1	14.167 21.446	15.309 11.382
-12.3 -12.5	29.011 36.862	7.784 4.806
-12.7	44.998	2.537
-12.9 -13.1	52.705 52.705	0.944 0.138
-13.3	27.027	0.007
-13.5 -13.7	6.972 0.919	8.514 18.031
-13.9	0.826	21.474
-14.1 -14.3	0.673 0.504	21.474 21.01
-14.5	0.347	17.978
-14.7 -14.9	0.215 0.114	13.934 9.867
-15.1	0.042	6.327
-15.3 -15.5	0.004 0.013	3.544 1.546
-15.7	0.5	0.245
-15.9 -16.1	0.841 0.912	0.044 0.04
-16.3	0.912	0.033
-16.5 -16.7	0.825 0.661	0.026 0.019
-16.9	0.475	0.014
-17.1 -17.3	0.301 0.158	0.01 0.008
-17.5	0.053	0.024
-17.7 -17.9	0 0	0.029 0.029
-18	0	0.011

Grafico Inviluppi Taglio

Taglio

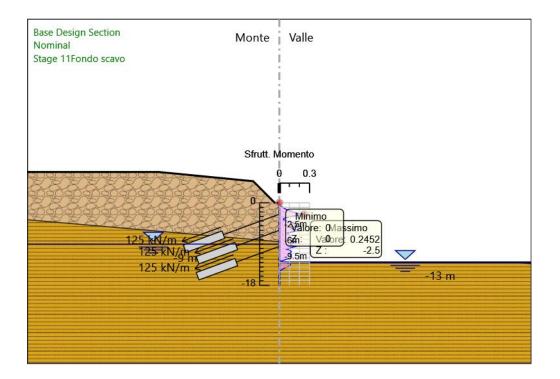
Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	Stage	Muro I	ato	Inviluppo Spinta Reale Efficace / Spinta Passiva
				%
NTC2018: A1+M1+R1 (R3 per tiranti)	Stage 1	Left Wall 1	EFT	3.43
NTC2018: SISMICA STR	Stage 14 Sism	a Left Wall R	IGHT	10.51

Inviluppo Spinta Reale Efficace / Spinta Attiva

Normative adottate per le verifiche degli Elementi Strutturali

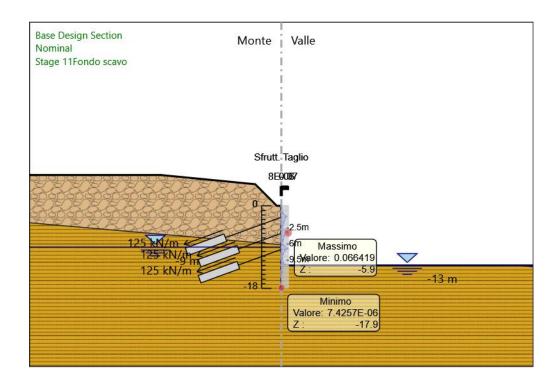
Riepilogo Stage / Design Assumption per Inviluppo


Design Assumption	Stage	Stage	Stage	Stage	Stage	Stage	Stage	Stage	Stage	Stage	Stage 11_Fondo	Stage	Stage
	1	2_Scavo T1	3_Attiv. T1	4_Dreno	5_Scavo T2	6_Attiv. T2	7_Dreno	8_Scavo T3	9_Attiv. T3	10_Dreno	scavo	12_Stab. Glob.	14_Sisma
NTC2018: SLE (Rara/Frequente/Quasi Permanente) NTC2018: A1+M1+R1 (R3 per ti-	· v	V	v		V	V	V	v	V	V	V		
ranti) NTC2018: A2+M2+R1 NTC2018: SISMICA STR NTC2018: SISMICA GEO													V

Risultati SteelWorld

orld : LEFT

Tabella Inviluppi Tasso di S	fruttamento a Momento - SteelWo
Inviluppi Tasso di Sfruttamento a Momento	- SteelWorld LEFT
Z (m) 0	Tasso di Sfruttamento a Momento - SteelWo 0
-0.2	0.001
-0.4 -0.6	0.005 0.012
-0.8	0.022
-1	0.034
-1.2 -1.4	0.048 0.066
-1.6	0.086
-1.8	0.109
-2 -2.2	0.134 0.166
-2.4	0.207
-2.5	0.245
-2.7 -2.9	0.191 0.143
-3.1	0.099
-3.3 -3.5	0.057 0.041
-3.7	0.04
-3.9	0.073
-4.1 -4.3	0.102 0.129
-4.5	0.125
-4.7	0.167
-4.9 -5.1	0.175 0.17
-5.3	0.152
-5.5	0.138
-5.7 -5.9	0.121 0.156
-6	0.203
-6.2	0.16
-6.4 -6.6	0.118 0.079
-6.8	0.087
-7	0.102
-7.2 -7.4	0.105 0.098
-7.6	0.102
-7.8	0.126
-8 -8.2	0.144 0.157
-8.4	0.161
-8.6	0.155
-8.8 -9	0.134 0.122
-9.2	0.104
-9.4	0.137
-9.5 -9.7	0.17 0.132
-9.9	0.101
-10.1 -10.3	0.071 0.1
-10.5	0.116
-10.7	0.118
-10.9 -11.1	0.11 0.099
-11.1	0.11
-11.5	0.116
-11.7 -11.9	0.116 0.109
-12.1	0.095
-12.3	0.075
-12.5 -12.7	0.048 0.013
-12.9	0.029
-13.1	0.079
-13.3 -13.5	0.104 0.111
-13.7	0.103
-13.9	0.086
-14.1 -14.3	0.066 0.046
-14.5	0.029
-14.7	0.016
-14.9 -15.1	0.007 0.001
-15.3	0.003
-15.5 -15.7	0.004
-15.7 -15.9	0.004 0.004
-16.1	0.003
-16.3	0.002
-16.5 -16.7	0.002 0.001
-16.9	0
-17.1	0
-17.3 -17.5	0 0
-17.7	0
-17.9 -18	0 0
-10	U


Grafico Inviluppi Tasso di Sfruttamento a Momento - SteelWorld

Inviluppi Tasso di Sfruttamento a Momento - SteelWorld

Tabella Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld : LEFT

	ruttamento a Taglio - SteelW
Inviluppi Tasso di Sfruttamento a Taglio - Stee Z (m)	lWorld LEFT Tasso di Sfruttamento a Taglio - SteelWo
0	0.001
-0.2 -0.4	0.003 0.005
-0.6	0.006
-0.8	0.008
-1 -1.2	0.01 0.012
-1.4	0.014
-1.6 -1.8	0.016
-2	0.023 0.034
-2.2	0.046
-2.4 -2.5	0.055 0.041
-2.7	0.034
-2.9 3.1	0.033
-3.1 -3.3	0.031 0.029
-3.5	0.027
-3.7 -3.9	0.025 0.022
-4.1	0.019
-4.3	0.016
-4.5 -4.7	0.011 0.007
-4.9	0.016
-5.1 -5.3	0.027 0.038
-5.5 -5.5	0.05
-5.7	0.061
-5.9 -6	0.066 0.031
-6.2	0.031
-6.4	0.037
-6.6 -6.8	0.028 0.026
-7	0.024
-7.2 -7.4	0.022 0.019
-7.6	0.016
-7.8	0.013
-8 -8.2	0.012 0.01
-8.4	0.015
-8.6 -8.8	0.023 0.035
-9	0.047
-9.2	0.058
-9.4 -9.5	0.066 0.033
-9.7	0.03
-9.9 -10.1	0.036
-10.1	0.025 0.022
-10.5	0.019
-10.7 -10.9	0.015 0.012
-11.1	0.014
-11.3	0.014
-11.5 -11.7	0.012 0.01
-11.9	0.009
-12.1 -12.3	0.014 0.019
-12.5	0.024
-12.7	0.029
-12.9 -13.1	0.034 0.017
-13.3	0.005
-13.5 -13.7	0.006 0.012
-13.7	0.012
-14.1	0.014
-14.3 -14.5	0.012 0.009
-14.7	0.006
-14.9 -15.1	0.004 0.002
-15.1	0.002
-15.5	0
-15.7 -15.9	0 0.001
-15.5	0.001
-16.3	0.001
-16.5 -16.7	0
-16.9	0
-17.1 -17.3	0
-17.3 -17.5	0
-17.7	0
-17.9 -18	0
20	ŭ

Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld

Verifiche Tiranti NTC2018: SLE (Rara/Frequente/Quasi Permanente)

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permanente)	Tipo Risultato: Verifiche Tiranti				NTC2018 (ITA)			I
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	1166.316	550.44	0.257	0.545		NO
T1	Stage 4_Dreno	299.956	1166.316	550.44	0.257	0.545		NO
T1	Stage 5_Scavo T2	300.716	1166.316	550.44	0.258	0.546		NO
T1	Stage 6_Attiv. T2	300.825	1166.316	550.44	0.258	0.547		NO
T1	Stage 7_Dreno	300.763	1166.316	550.44	0.258	0.546		NO
T1	Stage 8_Scavo T3	300.781	1166.316	550.44	0.258	0.546		NO
T1	Stage 9_Attiv. T3	300.78	1166.316	550.44	0.258	0.546		NO
T1	Stage 10_Dreno	300.78	1166.316	550.44	0.258	0.546		NO
T1	Stage 11_Fondo scavo	300.78	1166.316	550.44	0.258	0.546		NO
T1	Stage 12_Stab. Glob.	300.78	1166.316	550.44	0.258	0.546		NO
T1	Stage 14_Sisma	300.78	1166.316	550.44	0.258	0.546		NO
T2	Stage 6_Attiv. T2	300	1166.316	550.44	0.257	0.545		NO
T2	Stage 7_Dreno	299.287	1166.316	550.44	0.257	0.544		NO
T2	Stage 8_Scavo T3	302.212	1166.316	550.44	0.259	0.549		NO
T2	Stage 9_Attiv. T3	302.426	1166.316	550.44	0.259	0.549		NO
T2	Stage 10_Dreno	302.324	1166.316	550.44	0.259	0.549		NO
T2	Stage 11_Fondo scavo	302.337	1166.316	550.44	0.259	0.549		NO
T2	Stage 12_Stab. Glob.	302.337	1166.316	550.44	0.259	0.549		NO
T2	Stage 14_Sisma	302.337	1166.316	550.44	0.259	0.549		NO
T3	Stage 9_Attiv. T3	300	1166.316	550.44	0.257	0.545		NO
T3	Stage 10_Dreno	299.181	1166.316	550.44	0.257	0.544		NO
T3	Stage 11_Fondo scavo	300.807	1166.316	550.44	0.258	0.546		NO
T3	Stage 12_Stab. Glob.	300.807	1166.316	550.44	0.258	0.546		NO
T3	Stage 14_Sisma	300.807	1166.316	550.44	0.258	0.546		NO

Verifiche Tiranti NTC2018: A1+M1+R1 (R3 per tiranti)

esign Assumption: NTC2018: A1+M1+R1 (R3 per	Tipo Risultato: Verifiche Ti-				NTC2018			
tiranti)	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	390	589.049	550.44	0.662	0.709		NO
T1	Stage 4_Dreno	389.943	589.049	550.44	0.662	0.708		NO
T1	Stage 5_Scavo T2	390.93	589.049	550.44	0.664	0.71		NO
T1	Stage 6_Attiv. T2	391.072	589.049	550.44	0.664	0.71		NO
T1	Stage 7_Dreno	390.992	589.049	550.44	0.664	0.71		NO
T1	Stage 8_Scavo T3	391.015	589.049	550.44	0.664	0.71		NO
T1	Stage 9_Attiv. T3	391.014	589.049	550.44	0.664	0.71		NO
T1	Stage 10_Dreno	391.014	589.049	550.44	0.664	0.71		NO
T1	Stage 11_Fondo scavo	391.014	589.049	550.44	0.664	0.71		NO
T1	Stage 12_Stab. Glob.	391.014	589.049	550.44	0.664	0.71		NO
T1	Stage 14_Sisma	391.014	589.049	550.44	0.664	0.71		NO
T2	Stage 6_Attiv. T2	390	589.049	550.44	0.662	0.709		NO
T2	Stage 7_Dreno	389.073	589.049	550.44	0.661	0.707		NO
T2	Stage 8_Scavo T3	392.875	589.049	550.44	0.667	0.714		NO
T2	Stage 9_Attiv. T3	393.153	589.049	550.44	0.667	0.714		NO
T2	Stage 10_Dreno	393.021	589.049	550.44	0.667	0.714		NO
T2	Stage 11_Fondo scavo	393.038	589.049	550.44	0.667	0.714		NO
T2	Stage 12 Stab. Glob.	393.038	589.049	550.44	0.667	0.714		NO
T2	Stage 14_Sisma	393.038	589.049	550.44	0.667	0.714		NO
T3	Stage 9 Attiv. T3	390	589.049	550.44	0.662	0.709		NO
T3	Stage 10_Dreno	388.935	589.049	550.44	0.66	0.707		NO
T3	Stage 11 Fondo scavo	391.049	589.049	550.44	0.664	0.71		NO
T3	Stage 12_Stab. Glob.	391.049	589.049	550.44	0.664	0.71		NO
T3	Stage 14 Sisma	391.049	589.049	550.44	0.664	0.71		NO

Verifiche Tiranti NTC2018: A2+M2+R1

Design Assumption: NTC2018:	Tipo Risultato: Verifiche Ti-				NTC2018			
A2+M2+R1	ranti				(ITA)			
Tirante	Stage			Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Dreno	299.953	589.049	550.44	0.509	0.545		NO
T1	Stage 5_Scavo T2	300.678	589.049	550.44	0.51	0.546		NO
T1	Stage 6_Attiv. T2	300.795	589.049	550.44	0.511	0.546		NO
T1	Stage 7_Dreno	300.727	589.049	550.44	0.511	0.546		NO
T1	Stage 8_Scavo T3	300.74	589.049	550.44	0.511	0.546		NO
T1	Stage 9_Attiv. T3	300.738	589.049	550.44	0.511	0.546		NO
T1	Stage 10_Dreno	300.739	589.049	550.44	0.511	0.546		NO
T1	Stage 11_Fondo scavo	300.738	589.049	550.44	0.511	0.546		NO
T1	Stage 12_Stab. Glob.	300.738	589.049	550.44	0.511	0.546		NO
T1	Stage 14_Sisma	300.738	589.049	550.44	0.511	0.546		NO
T2	Stage 6_Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T2	Stage 7_Dreno	299.242	589.049	550.44	0.508	0.544		NO
T2	Stage 8_Scavo T3	302.14	589.049	550.44	0.513	0.549		NO
T2	Stage 9_Attiv. T3	302.365	589.049	550.44	0.513	0.549		NO
T2	Stage 10_Dreno	302.253	589.049	550.44	0.513	0.549		NO
T2	Stage 11_Fondo scavo	302.263	589.049	550.44	0.513	0.549		NO
T2	Stage 12 Stab. Glob.	302.263	589.049	550.44	0.513	0.549		NO
T2	Stage 14_Sisma	302.263	589.049	550.44	0.513	0.549		NO
T3	Stage 9_Attiv. T3	300	589.049	550.44	0.509	0.545		NO
T3	Stage 10_Dreno	299.126	589.049	550.44	0.508	0.543		NO
T3	Stage 11_Fondo scavo	300.769	589.049	550.44	0.511	0.546		NO
T3	Stage 12_Stab. Glob.	300.769	589.049	550.44	0.511	0.546		NO
T3	Stage 14 Sisma	300.769	589.049	550.44	0.511	0.546		NO

Design Assumption: NTC2018:	Tipo Risultato: Verifiche Ti-				NTC2018			
A2+M2+R1	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze

Verifiche Tiranti NTC2018: SISMICA STR

esign Assumption: NTC2018: SISMICA	Tipo Risultato: Verifiche Ti-				NTC2018					
STR	ranti				(ITA)					
Tirante	Stage	Sollecitazione Resistenza GEO		Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-		
		(kN)	(kN)	(kN)		STR	stenza	stenze		
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO		
T1	Stage 4_Dreno	299.956	589.049	550.44	0.509	0.545		NO		
T1	Stage 5_Scavo T2	300.716	589.049	550.44	0.511	0.546		NO		
T1	Stage 6_Attiv. T2	300.825	589.049	550.44	0.511	0.547		NO		
T1	Stage 7_Dreno	300.763	589.049	550.44	0.511	0.546		NO		
T1	Stage 8_Scavo T3	300.781	589.049	550.44	0.511	0.546		NO		
T1	Stage 9_Attiv. T3	300.78	589.049	550.44	0.511	0.546		NO		
T1	Stage 10_Dreno	300.78	589.049	550.44	0.511	0.546		NO		
T1	Stage 11_Fondo scavo	300.78	589.049	550.44	0.511	0.546		NO		
T1	Stage 12_Stab. Glob.	300.78	589.049	550.44	0.511	0.546		NO		
T1	Stage 14_Sisma	301.425	589.049	550.44	0.512	0.548		NO		
T2	Stage 6_Attiv. T2	300	589.049	550.44	0.509	0.545		NO		
T2	Stage 7_Dreno	299.287	589.049	550.44	0.508	0.544		NO		
T2	Stage 8_Scavo T3	302.212	589.049	550.44	0.513	0.549		NO		
T2	Stage 9_Attiv. T3	302.426	589.049	550.44	0.513	0.549		NO		
T2	Stage 10_Dreno	302.324	589.049	550.44	0.513	0.549		NO		
T2	Stage 11_Fondo scavo	302.337	589.049	550.44	0.513	0.549		NO		
T2	Stage 12_Stab. Glob.	302.337	589.049	550.44	0.513	0.549		NO		
T2	Stage 14_Sisma	303.164	589.049	550.44	0.515	0.551		NO		
T3	Stage 9_Attiv. T3	300	589.049	550.44	0.509	0.545		NO		
T3	Stage 10_Dreno	299.181	589.049	550.44	0.508	0.544		NO		
Т3	Stage 11_Fondo scavo	300.807	589.049	550.44	0.511	0.546		NO		
T3	Stage 12_Stab. Glob.	300.807	589.049	550.44	0.511	0.546		NO		
T3	Stage 14_Sisma	304.338	589.049	550.44	0.517	0.553		NO		

Verifiche Tiranti NTC2018: SISMICA GEO

Design Assumption: NTC2018: SISMICA GEO	Tipo Risultato: Verifiche Ti- ranti				NTC2018 (ITA)			
Tirante	Stage	Sollecitazione Resistenza GEO Resisten		Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Dreno	299.956	589.049	550.44	0.509	0.545		NO
T1	Stage 5_Scavo T2	300.716	589.049	550.44	0.511	0.546		NO
T1	Stage 6_Attiv. T2	300.825	589.049	550.44	0.511	0.547		NO
T1	Stage 7_Dreno	300.763	589.049	550.44	0.511	0.546		NO
T1	Stage 8_Scavo T3	300.781	589.049	550.44	0.511	0.546		NO
T1	Stage 9_Attiv. T3	300.78	589.049	550.44	0.511	0.546		NO
T1	Stage 10_Dreno	300.78	589.049	550.44	0.511	0.546		NO
T1	Stage 11_Fondo scavo	300.78	589.049	550.44	0.511	0.546		NO
T1	Stage 12_Stab. Glob.	300.78	589.049	550.44	0.511	0.546		NO
T1	Stage 14_Sisma	301.425	589.049	550.44	0.512	0.548		NO
T2	Stage 6_Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T2	Stage 7_Dreno	299.287	589.049	550.44	0.508	0.544		NO
T2	Stage 8_Scavo T3	302.212	589.049	550.44	0.513	0.549		NO
T2	Stage 9_Attiv. T3	302.426	589.049	550.44	0.513	0.549		NO
T2	Stage 10_Dreno	302.324	589.049	550.44	0.513	0.549		NO
T2	Stage 11_Fondo scavo	302.337	589.049	550.44	0.513	0.549		NO
T2	Stage 12_Stab. Glob.	302.337	589.049	550.44	0.513	0.549		NO
T2	Stage 14_Sisma	303.164	589.049	550.44	0.515	0.551		NO
T3	Stage 9_Attiv. T3	300	589.049	550.44	0.509	0.545		NO
T3	Stage 10_Dreno	299.181	589.049	550.44	0.508	0.544		NO
T3	Stage 11_Fondo scavo	300.807	589.049	550.44	0.511	0.546		NO
T3	Stage 12_Stab. Glob.	300.807	589.049	550.44	0.511	0.546		NO
T3	Stage 14_Sisma	304.338	589.049	550.44	0.517	0.553		NO

Inviluppo Verifiche Tiranti (su tutte le D.A. attive)

		•		,				
1	ipo Risultato: Verifiche Tirar	nti						
Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (k	N) Ratio GEO	Ratio STR Resi	istenza Gerarchia delle Resistenze	Design Assumption
T1	Stage 5_Scavo T2	390.93	589.049	550.44	0.664	0.71	NO	NTC2018: A1+M1+R1 (R3 per tiranti)
T2	Stage 8_Scavo T3	392.875	589.049	550.44	0.667	0.714	NO	NTC2018: A1+M1+R1 (R3 per tiranti)
T3	Stage 11 Fondo scavo	391 049	589 049	550.44	0.664	0.71	NO	NTC2018: A1+M1+R1 (R3 per tiranti)

SS 131 "Carlo Felice"

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

9.5 Allegato 5 - Sezione 5: Paratia tipo M - 2 tiranti attivi e tirante passivo

Descrizione della Stratigrafia e degli Strati di Terreno

Tipo : POLYLINE Punti

(-55;50) (55;50) (55;-35) (-55;-35)

OCR:1

Tipo: POLYLINE

Punti

(-55;-3.7) (55;-13.3) (55;-35) (-55;-35)

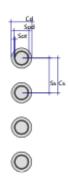
OCR:1

Strato di Terreno T	erren							ı Evc	Eur	Ah Av exp Pa Rur/F				
		kN/m ³	kN/m	3 •	۰	° kPa kPa	3	kPa	kPa	kPa	kPa kN	I/m³ kN,	m³ k	kN/m³
1	CB	20.1	20.1	26.7	•	125	Constant	540000	864000)				
2	M	19.9	19.9	30.1		165	Constant	525000	840000)				

Descrizione Pareti

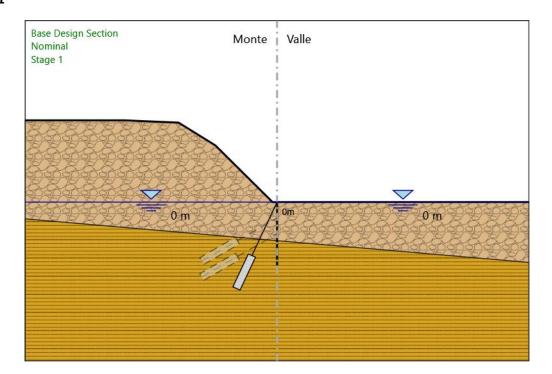
X:0 m

Quota in alto: 0 m Quota di fondo : -14 m Muro di sinistra


Sezione: Micropali fi240 - fi168.3 sp10

Area equivalente : 0.019045141329815 m

Inerzia equivalente: 0.0001 m⁴/m Materiale calcestruzzo : C25/30 Tipo sezione : Tangent


Spaziatura : 0.4 m Diametro: 0.24 m Efficacia: 0.5 Materiale acciaio: S355

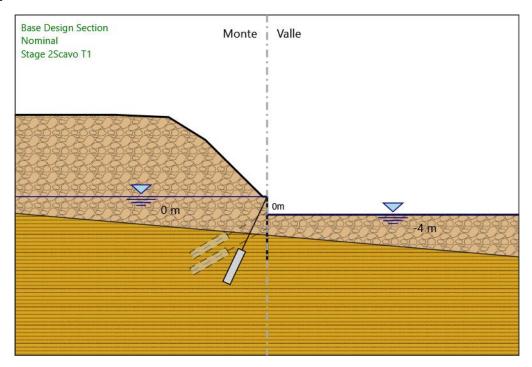
Sezione : CHS168.3*10 Tipo sezione : O Spaziatura : 0.4 m Spessore: 0.01 m . Diametro : 0.1683 m

Fasi di Calcolo

Stage 1

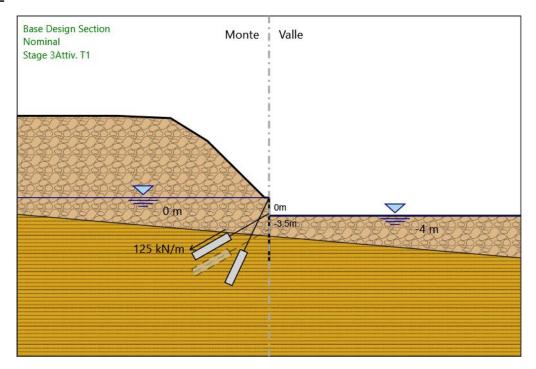

```
Stage 1
Scavo
```

Muro di sinistra


```
Lato monte : 0 m
                      Lato valle : 0 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;18)
                                 (-33;18)
                                 (-21.5;17.5)
                                 (-13.5;12.5)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
Falda acquifera
           Falda di sinistra : 0 m
           Falda di destra : 0 m
Elementi strutturali
           Paratia: Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -14 m
                      Sezione : Micropali fi240 - fi168.3 sp10
           Tirante : Cavalletto
                      X:0 m
                      Z:0 m
                      Lunghezza bulbo : 8 m
                      Diametro bulbo: 0.22 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale: 1.6 m
                      Precarico : 0 kN
                      Angolo: 65°
```

Sezione : Cavall. 114.3x10

Area: 0.00328 m^2

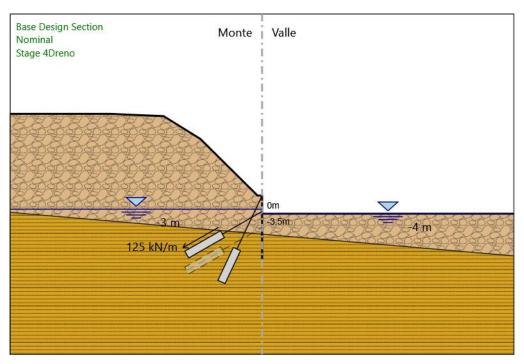

Stage 2_Scavo T1

Stage 2_Scavo T1


```
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -4 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;18)
(-33;18)
                                 (-21.5;17.5)
                                 (-13.5;12.5)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
                                 -4 m
Falda acquifera
           Falda di sinistra : 0 m
           Falda di destra : -4 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -14 m
                      Sezione : Micropali fi240 - fi168.3 sp10
           Tirante : Cavalletto
                      X:0 m
                      Z:0 m
                      Lunghezza bulbo : 8 m
                      Diametro bulbo : 0.22 m
                      Lunghezza libera: 13 m
                      Spaziatura orizzontale : 1.6 m
                      Precarico: 0 kN
                      Angolo : 65 °
                      Sezione : Cavall. 114.3x10
                                 Area: 0.00328 m^2
```

Stage 3_Attiv. T1


```
Stage 3_Attiv. T1
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -4 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;18)
                                 (-33;18)
                                 (-21.5;17.5)
                                 (-13.5;12.5)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
                                 -4 m
Falda acquifera
           Falda di sinistra : 0 m
           Falda di destra : -4 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -14 m
                      Sezione : Micropali fi240 - fi168.3 sp10
           Tirante: T1
                     X : 0 m
Z : -3.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera: 10 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico: 300 kN
                      Angolo: 30 °
                      Sezione: 3 trefoli
                                 Tipo di barre : Barre trefoli
                                 Numero di barre: 3
                                 Diametro : 0.01331 m
                                 Area: 0.000417 m^2
           Tirante : Cavalletto
                      X:0 m
                      Z:0 m
```


Lunghezza bulbo : 8 m Diametro bulbo : 0.22 m Lunghezza libera : 13 m Spaziatura orizzontale : 1.6 m

Precarico : 0 kN Angolo : 65 °

Sezione : Cavall. 114.3x10 Area : 0.00328 m^2

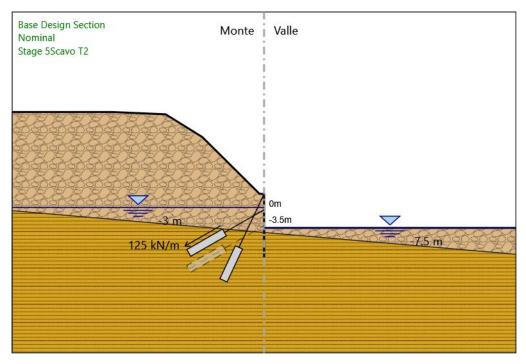
Stage 4_Dreno

Stage 4_Dreno


```
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -4 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;18)
                                 (-33;18)
                                 (-21.5;17.5)
                                 (-13.5;12.5)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
Falda acquifera
           Falda di sinistra : -3 m
           Falda di destra : -4 m
Elementi strutturali
           Paratia: Sx
                      Quota in alto : 0 m
                      Quota di fondo : -14 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante: T1
                      X:0 m
                      Z:-3.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera : 10 m
                      Spaziatura orizzontale : 2.4 m
```

Precarico : 300 kN Angolo : 30 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2


 $\label{eq:cavalletto} \begin{array}{c} \text{Tirante}: \text{Cavalletto} \\ \text{$X:0$ m} \\ \text{$Z:0$ m} \end{array}$

Lunghezza bulbo : 8 m Diametro bulbo : 0.22 m Lunghezza libera : 13 m Spaziatura orizzontale : 1.6 m

Precarico : 0 kN Angolo : 65 °

Sezione : Cavall. 114.3x10 Area : 0.00328 m^2

Stage 5_Scavo T2


```
Stage 5_Scavo T2
Scavo

Muro di sinistra
Lato monte : 0 m
Lato valle : -7.5 m

Linea di scavo di sinistra (Irregolare)
(-55;18)
(-33;18)
(-21.5;17.5)
(-13.5;12.5)
(-13.5;12.5)
(-1;0)
(0;0)
Linea di scavo di destra (Orizzontale)
-7.5 m
```

Falda acquifera

Falda di sinistra : -3 m Falda di destra : -7.5 m

Elementi strutturali Paratia : Sx X : 0 m Quota in alto : 0 m Quota di fondo : -14 m

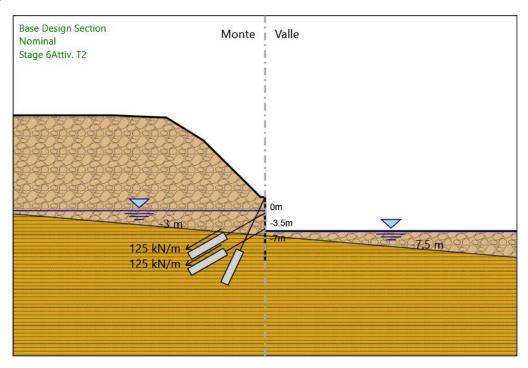
Sezione: Micropali fi240 - fi168.3 sp10

> Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 30 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

 $\label{eq:cavalletto} \begin{aligned} \text{Tirante}: \text{Cavalletto} \\ \text{X}: 0 \text{ m} \\ \text{Z}: 0 \text{ m} \end{aligned}$


Lunghezza bulbo : 8 m Diametro bulbo : 0.22 m Lunghezza libera : 13 m Spaziatura orizzontale : 1.6 m

Precarico : 0 kN Angolo : 65 °

Sezione : Cavall. 114.3x10 Area : 0.00328 m^2

Stage 6_Attiv. T2

Stage 6_Attiv. T2

Scavo

Muro di sinistra

Lato monte : 0 m

Lato valle : -7.5 m

Linea di scavo di sinistra (Irregolare)

(-55;18)

(-33:18)

(-55;18) (-33;18) (-21.5;17.5) (-13.5;12.5) (-1;0) (0;0)

Linea di scavo di destra (Orizzontale)

-7.5 m

Falda acquifera

Falda di sinistra : -3 m Falda di destra : -7.5 m

Elementi strutturali

Paratia : Sx

X:0 m

Quota in alto : 0 m Quota di fondo : -14 m

Sezione : Micropali fi240 - fi168.3 sp10

Tirante: T1

X:0 m

Z:-3.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 30 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T2

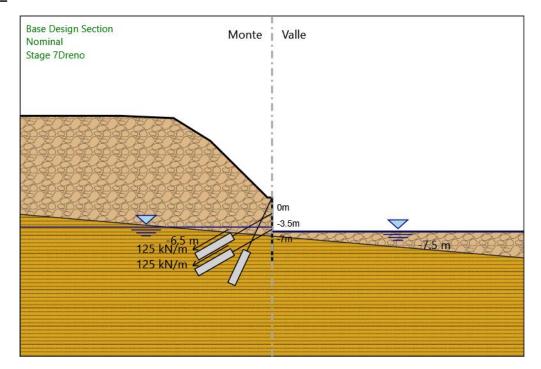
X : 0 m Z : -7 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 30 ° Sezione : 3 trefoli

> Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : Cavalletto X : 0 m


X:0 m Z:0 m

Lunghezza bulbo : 8 m Diametro bulbo : 0.22 m Lunghezza libera : 13 m Spaziatura orizzontale : 1.6 m

Precarico : 0 kN Angolo : 65 °

Sezione : Cavall. 114.3x10 Area : 0.00328 m^2

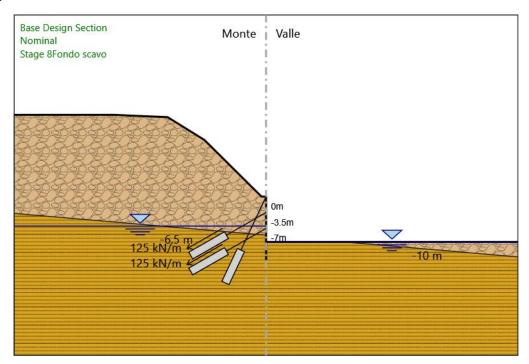
Stage 7_Dreno


```
Stage 7_Dreno
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -7.5 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;18)
                                 (-33;18)
                                 (-21.5;17.5)
                                 (-13.5;12.5)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
                                 -7.5 m
Falda acquifera
           Falda di sinistra : -6.5 m
           Falda di destra : -7.5 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -14 m
                      Sezione : Micropali fi240 - fi168.3 sp10
           Tirante: T1
                     X : 0 m
Z : -3.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera: 10 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico: 300 kN
                      Angolo: 30 °
                      Sezione: 3 trefoli
                                 Tipo di barre : Barre trefoli
                                 Numero di barre: 3
                                 Diametro : 0.01331 m
                                 Area: 0.000417 m^2
           Tirante: T2
                     X:0 m
                     Z : -7 m
```

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 30 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2


Tirante : Cavalletto X : 0 m Z : 0 m

> Lunghezza bulbo : 8 m Diametro bulbo : 0.22 m Lunghezza libera : 13 m Spaziatura orizzontale : 1.6 m

Precarico : 0 kN Angolo : 65 °

Sezione : Cavall. 114.3x10 Area : 0.00328 m^2

Stage 8_Fondo scavo


```
Scavo

Muro di sinistra

Lato monte : 0 m

Lato valle : -10 m

Linea di scavo di sinistra (Irregolare)

(-55;18)

(-33;18)

(-21.5;17.5)

(-13.5;12.5)
```

Stage 8_Fondo scavo

(0;0) Linea di scavo di destra (Orizzontale) -10 m

(-1;0)

```
Falda acquifera
```

Falda di sinistra : -6.5 m Falda di destra : -10 m

Elementi strutturali

Paratia : Sx

X:0 m

Quota in alto : 0 m Quota di fondo : -14 m

Sezione: Micropali fi240 - fi168.3 sp10

Tirante: T1

X : 0 m Z : -3.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 30 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T2

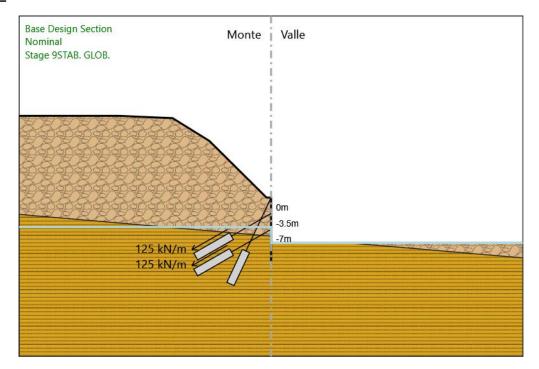
X : 0 m Z : -7 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 30 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : Cavalletto X : 0 m


Z:0 m

Lunghezza bulbo : 8 m Diametro bulbo : 0.22 m Lunghezza libera : 13 m Spaziatura orizzontale : 1.6 m

Precarico : 0 kN Angolo : 65 °

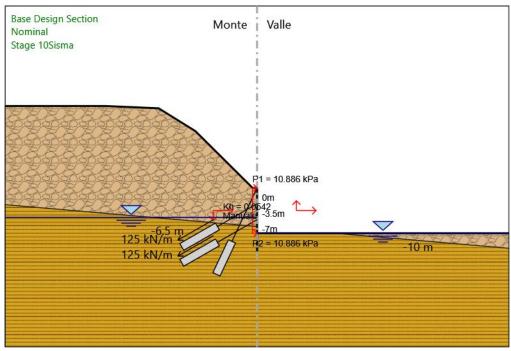
Sezione : Cavall. 114.3x10 Area : 0.00328 m^2

Stage 9_STAB. GLOB.


```
Stage 9_STAB. GLOB.
Scavo
          Muro di sinistra
                     Lato monte : 0 m
                     Lato valle : -10 m
                     Linea di scavo di sinistra (Irregolare)
                                (-55;18)
                                (-33;18)
                                (-21.5;17.5)
                                (-13.5;12.5)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
                                -10 m
Elementi strutturali
          Paratia: Sx
                     X:0 m
                     Quota in alto : 0 m
                     Quota di fondo : -14 m
                     Sezione: Micropali fi240 - fi168.3 sp10
          Tirante: T1
                     X : 0 m
                     Z:-3.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera: 10 m
                     Spaziatura orizzontale: 2.4 m
                     Precarico: 300 kN
                     Angolo: 30°
                     Sezione : 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre: 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
          Tirante: T2
                     X:0 m
                     Z : -7 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo : 0.15 m
                     Lunghezza libera: 10 m
                     Spaziatura orizzontale : 2.4 m
```

Precarico : 300 kN Angolo : 30 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2


Tirante : Cavalletto X : 0 m Z : 0 m

Lunghezza bulbo : 8 m Diametro bulbo : 0.22 m Lunghezza libera : 13 m Spaziatura orizzontale : 1.6 m

Precarico : 0 kN Angolo : 65 °

Sezione : Cavall. 114.3x10 Area : 0.00328 m^2

Stage 10_Sisma


```
Stage 10_Sisma
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -10 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;18)
                                 (-33;18)
                                 (-21.5;17.5)
                                 (-13.5;12.5)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
                                 -10 m
Falda acquifera
           Falda di sinistra : -6.5 m
           Falda di destra: -10 m
```

Elementi strutturali

Paratia : Sx

X:0 m

Quota in alto : 0 m Quota di fondo : -14 m

Sezione: Micropali fi240 - fi168.3 sp10

Tirante: T1

X : 0 m Z : -3.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 30 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T2

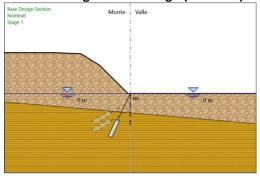
X:0 m Z:-7 m

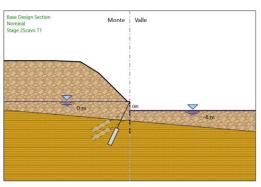
Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

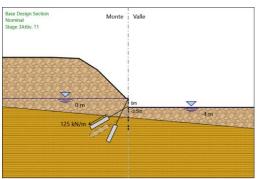
Precarico : 300 kN Angolo : 30 ° Sezione : 3 trefoli

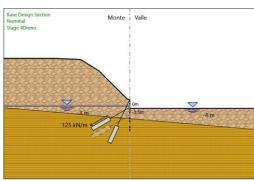
Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

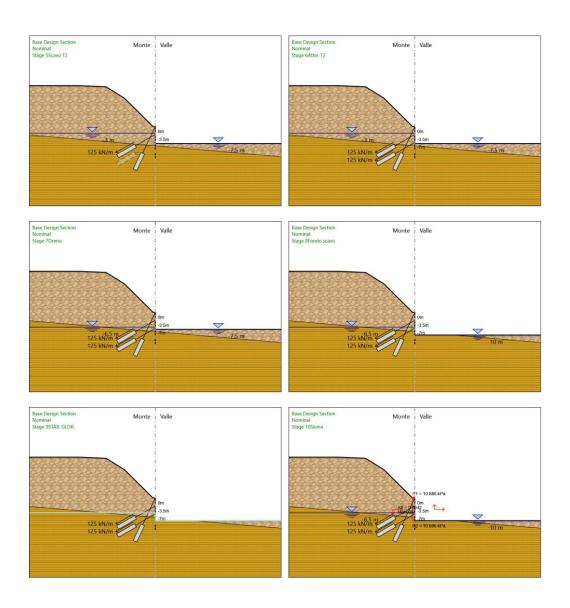
Tirante : Cavalletto


X:0 m Z:0 m


Lunghezza bulbo : 8 m Diametro bulbo : 0.22 m Lunghezza libera : 13 m Spaziatura orizzontale : 1.6 m


Precarico : 0 kN Angolo : 65 °


Sezione : Cavall. 114.3x10 Area : 0.00328 m^2


Tabella Configurazione Stage (Nominal)

Descrizione Coefficienti Design Assumption

Nome	Carichi Perma- nenti Sfavore- voli (F_dead_load_u nfavour)	nenti Favore- voli	Carichi Varia- bili Sfavorevoli (F_live_load_u nfavour)	bili Favorevoli	Carico Sismico [F_seism_loa d)	sioni Acqua Lato Mont	sioni Acqua Lato Valle (F_Wa ter-	nenti Destabi- lizzanti (F_UPL_GDSta b)	manenti Sta- bilizzanti	bili Destabiliz- zanti	Carichi Perma- nenti Destabi- lizzanti (F_HYD_GDSta b)	manenti Sta- bilizzanti	zanti
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018: SLE (Rara/Fre- quente/Qua si Perma- nente)	1	1	1	1	0	1	1	1	1	1	1	1	1
NTC2018: A1+M1+R1 (R3 per ti- ranti)	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
NTC2018: A2+M2+R1	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
NTC2018: SISMICA STR	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018: SISMICA GEO	1	1	1	1	1	1	1	1	1	1	1.3	0.9	1
	Nome		Parziale su	tan(ø') (F_Fr) Pa	arziale su c' (F_eff_c	ohe) Pa	arziale su Su (F_	_Su) Parziale sı	ı qu (F_qu) Parz	iale su peso spe	cifico (F_gamr	na)
	Simbolo			уф	γο			γcu		qu			
	Nominal			1	1			1		i	1		
NTC2018: SLE (Rara/Frequente/Quasi Permanente)			ente)	1	1			1		1	1		
NTC2018: A1+M1+R1 (R3 per tiranti)				1	1			1		1	1		

Nome	Parziale su tan(ø') (F_Fr) F	arziale su c' (F_eff_cohe	e) Parziale su Su (F_Su)	Parziale su qu (F_qu) P	arziale su peso specifico (F_gamma)
Simbolo	γф	γс	γcu	γqu	γγ
NTC2018: A2+M2+R1	1.25	1.25	1.4	1	1
NTC2018: SISMICA STR	1	1	1	1	1
NTC2018: SISMICA GEO	1	1	1	1	1

Nome	Parziale resistenza terreno (es. Kp) (F_Soil_Res_walls)	Parziale resistenza Tiranti permanenti (F_Anch_P)	Parziale resistenza Tiranti temporanei (F_Anch_T)	Parziale elementi strutturali (F_wall)
Simbolo	γRe	үар	γat	
Nominal	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi	1	1	1	1
Permanente)				
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1.2	1.1	1
NTC2018: A2+M2+R1	1	1.2	1.1	1
NTC2018: SISMICA STR	1	1.2	1.1	1
NTC2018: SISMICA GEO	1	1.2	1.1	1

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 1	Stage 2_Scavo T1	Stage 3_Attiv. T1	Stage 4_Dreno	Stage 5_Scavo T2	Stage 6_Attiv. T2	Stage 7_Dreno	Stage 8_Fondo scavo	Stage 9_STAB. GLOB.	Stage 10_Si- sma
NTC2018: SLE (Rara/Frequente/Quasi Per- manente)										
NTC2018: A1+M1+R1 (R3 per tiranti)	V	V	V	V	V	V	V	V		
NTC2018: A2+M2+R1										
NTC2018: SISMICA STR										V
NTC2018: SISMICA GEO										

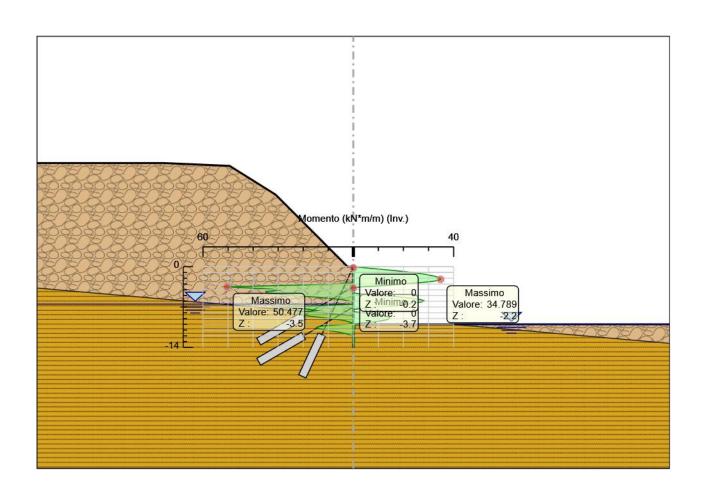
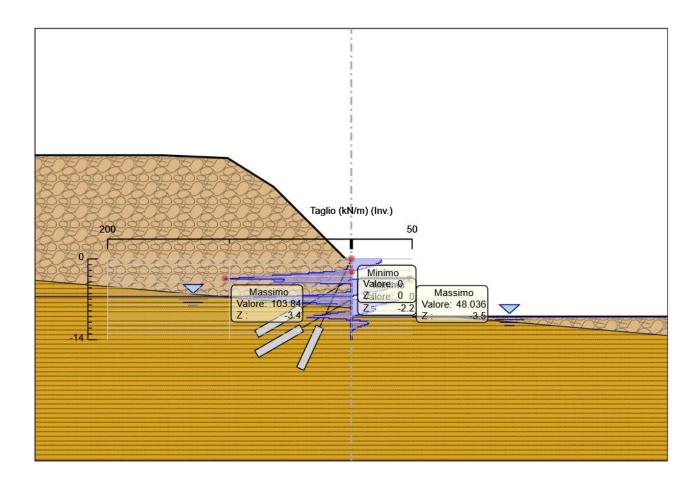

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Tabella Inviluppi Momento Sx

Tabella Invilupp	i Momento S	X
Selected Design Assumptions	Inviluppi: Momento	Muro: Sx
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/m)
0	0	0
-0.2	0	4.949
-0.4	0	9.898
-0.6	0	14.754
-0.8	0	19.317
-1	0	23.415
-1.2	0	26.864
-1.4	0	29.517
-1.6	0	31.958
-1.8	0	33.687
-2	0	34.675
-2.2	0	34.789
-2.4	0	33.749
-2.6	0	30.875
-2.8	0	25.494
-3	7.152	20.449
-3.2	23.009	14.648
-3.4	41.115	7.461
-3.5	50.477	3.315
-3.7	41.289	0
-3.9	32.525	0
-4.1	29.872	0
-4.3	34.927	0
-4.5	34.779	0
-4.7	31.402	2.151
-4.9	26.268	8.824
-5.1	20.408	14.564
-5.3	14.526	19.484
-5.5	9.144	23.607
-5.7	4.911	26.685
-5.9	2.089	28.17
-6.1	0.455	27.441
-6.3	0	23.876
-6.5 -6.7	9.745	21.656 18.523
-6.9	21.89	13.961
-7 7.2	30.47	11.115
-7.2 -7.4	22.937	4.264 0.349
-7.4 -7.6	17.306 14.383	0.184
-7.8 -7.8	20.115	0.184
-7.8 -8	22.45	3.707
-8.2	22.271	7.804
-8.4	20.272	10.99
-8.6	16.95	13.207
-8.8	12.947	14.402
-9	9.034	14.518
-9.2	5.689	13.499
-9.4	3.1	11.29
-9.6	1.273	7.836
-9.8	0.355	3.08
-10	3.033	0.54
-10.2	10.339	0.815
-10.4	13.986	0.85
-10.6	14.782	0.752
-10.8	13.368	0.597
-11	10.8	0.431
-11.2	7.913	0.281
=:=	·	-

Selected Design Assumptions	Inviluppi: Momento	Muro: Sx
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/m)
-11.4	5.231	0.16
-11.6	3.047	0.072
-11.8	1.448	0.018
-12	0.392	0.001
-12.2	0.034	0.222
-12.4	0.035	0.509
-12.6	0.03	0.582
-12.8	0.024	0.53
-13	0.017	0.417
-13.2	0.011	0.287
-13.4	0.006	0.17
-13.6	0.002	0.079
-13.8	0	0.021
-14	0	0

Grafico Inviluppi Momento



Momento

Tabella Inviluppi Taglio Sx

rabella inviluppi	ragiio Sx	
Selected Design Assumptions		Muro: Sx
	.ato sinistro (kN/m)	
0	0	24.746
-0.2	0	24.746
-0.4	0	24.746
-0.6	0 0	24.283 22.824
-0.8 -1	0	20.49
-1.2	0	18.048
-1.4	0	15.397
-1.6	0	12.353
-1.8	5.851	8.867
-2	13.815	4.94
-2.2	22.941	0.568
-2.4	35.063	0
-2.6	49.349	0
-2.8	64.585	0
-3	79.79	0
-3.2	91.983	0
-3.4	103.835	0
-3.5	103.835	48.036
-3.7	55.167	48.036
-3.9	63.617	46.82
-4.1	63.617	45.193
-4.3	25.274	43.103
-4.5	0	40.485
-4.7	0	37.295
-4.9	0	33.922
-5.1	0	30.157
-5.3	0	29.411
-5.5	0	26.911
-5.7 -5.9	4.654 14.363	21.165 14.739
-5.5 -6.1	27.632	9.041
-6.3	44.191	4.663
-6.5	62.046	1.873
-6.7	79.976	0.266
-6.9	92.214	0
-7	92.214	39.108
-7.2	42.367	39.108
-7.4	50.865	35.94
-7.6	50.865	32.494
-7.8	28.664	28.77
-8	11.671	24.767
-8.2	0.685	20.486
-8.4	0.08	16.611
-8.6	0.022	20.016
-8.8	0	20.016
-9	5.093	19.568
-9.2	11.044	16.725
-9.4	17.273	12.941
-9.6	23.779	9.139
-9.8 10	30.565 36.531	5.831
-10 -10.2	36.531	3.233 1.374
-10.2	18.233	0.389
-10.4	3.982	7.073
-10.8	0.829	12.838
-11	0.829	14.434
-11.2	0.749	14.434
-11.4	0.605	13.413
-11.6	0.444	10.917
-11.8	0.293	7.997
-12	0.167	5.279
-12.2	0.07	3.065
-12.4	0.017	1.442
-12.6	0.262	0.367
-12.8	0.567	0.049
-13	0.646	0.038
-13.2	0.646	0.029
-13.4	0.588	0.027
-13.6	0.455	0.022
-13.8	0.29	0.01
-14	0.104	0.001

Grafico Inviluppi Taglio

Taglio

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva
				%
NTC2018: A1+M1+R1 (R3 per tiranti	Stage 4_Dreno	Left Wall	LEFT	4.05
NTC2018: SISMICA STR	Stage 10 Sisma	Left Wall	RIGHT	8.37

Inviluppo Spinta Reale Efficace / Spinta Attiva

Normative adottate per le verifiche degli Elementi Strutturali

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage	Stage 2_Scavo T1	Stage 3_Attiv. T1	Stage 4 Dreno	Stage 5_Scavo T2	Stage 6_Attiv. T2	Stage 7 Dreno	Stage 8_Fondo scavo	Stage 9_STAB. GLOB.	Stage 10_Si-
	-	11	11	4_Dieilo	12	12	/_Dreilo	SCAVO	GLOB.	sma
NTC2018: SLE (Rara/Frequente/Quasi Permanente)										
NTC2018: A1+M1+R1 (R3 per tiranti)	V	V	V	V	V	V	V	V		
NTC2018: A2+M2+R1										
NTC2018: SISMICA STR										V
NTC2018: SISMICA GEO										

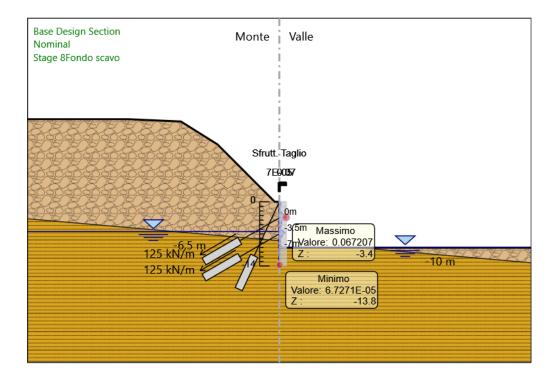
Risultati SteelWorld

Tabella Inviluppi Tasso di Sfruttamento a Momento - SteelWorld : LEFT

Inviluppi Tasso di Sfruttamento a Momento - SteelWorld Z (m) 0 -0.2 -0.4 -0.6 -0.8 -1 -1.2	LEFT uttamento a Momento - SteelWorld 0 0.023 0.047 0.07
0 -0.2 -0.4 -0.6 -0.8 -1	0 0.023 0.047
-0.2 -0.4 -0.6 -0.8 -1	0.023 0.047
-0.4 -0.6 -0.8 -1	0.047
-0.6 -0.8 -1	
-0.8 -1	
-1	
	0.091
	0.11
-1.4	0.127 0.139
-1.6 -1.8	0.151 0.159
-1.0	
-2 -2.2	0.163
	0.164
-2.4 -2.6	0.159
	0.146
-2.8	0.12
-3 -3.2	0.096
	0.108
-3.4	0.194
-3.5	0.238
-3.7 -3.9	0.195
	0.153
-4.1	0.141
-4.3 -4.5	0.165
-4.5 -4.7	0.164 0.148
-4.7 -4.9	
-5.1	0.124 0.096
-5.1 -5.3	
-5.5 -5.5	0.092 0.111
-5.7	0.111
-5.7 -5.9	0.120
-6.1	0.133
-6.3	0.129
-6.5	0.113
-6.7	0.087
-6.9	0.103
-0.5	0.144
-7.2	0.108
-7.4	0.082
-7.6	0.068
-7.8	0.095
-8	0.106
-8.2	0.105
-8.4	0.096
-8.6	0.08
-8.8	0.068
-9	0.068
-9.2	0.064
-9.4	0.053
-9.6	0.033
	0.007

Inviluppi Tasso di Sfruttamento a Momento - SteelWo	orld LEFT
Z (m)	Tasso di Sfruttamento a Momento - SteelWorld
-10	0.014
-10.2	0.049
-10.4	0.066
-10.6	0.07
-10.8	0.063
-11	0.051
-11.2	0.037
-11.4	0.025
-11.6	0.014
-11.8	0.007
-12	0.002
-12.2	0.001
-12.4	0.002
-12.6	0.003
-12.8	0.002
-13	0.002
-13.2	0.001
-13.4	0.001
-13.6	0
-13.8	0
-14	0

Grafico Inviluppi Tasso di Sfruttamento a Momento - SteelWorld



Inviluppi Tasso di Sfruttamento a Momento - SteelWorld

Tabella Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld : LEFT

	Struttamento a Taglio - Steelwo
Inviluppi Tasso di Sfruttamento a Taglio - Z (m)	SteelWorld LEFT Tasso di Sfruttamento a Taglio - SteelWorld
0	0.016
-0.2	0.016
-0.4	0.016
-0.6	0.015
-0.8	0.013
-1	0.012
-1.2	0.01
-1.4	0.008
-1.6	0.006
-1.8	0.004
-2 -2.2	0.009 0.015
-2.2 -2.4	0.013
-2.6	0.032
-2.8	0.042
-3	0.052
-3.2	0.06
-3.4	0.067
-3.5	0.031
-3.7	0.036
-3.9	0.041
-4.1	0.028
-4.3	0.026
-4.5 -4.7	0.024 0.022
-4.7	0.022
-5.1	0.019
-5.3	0.017
-5.5	0.014
-5.7	0.01
-5.9	0.009
-6.1	0.018
-6.3	0.029
-6.5	0.04
-6.7	0.052
-6.9 -7	0.06
-7 -7.2	0.025 0.027
-7.2 -7.4	0.027
-7.6	0.019
-7.8	0.016
-8	0.013
-8.2	0.01
-8.4	0.011
-8.6	0.013
-8.8	0.013
-9 0.2	0.011
-9.2 -9.4	0.008 0.011
-9.6	0.011
-9.8	0.02
-10	0.024
-10.2	0.012
-10.4	0.003
-10.6	0.005
-10.8	0.008
-11	0.009
-11.2	0.009
-11.4	0.007 0.005
-11.6 -11.8	0.003
-12	0.002
-12.2	0.001
-12.4	0
-12.6	0
-12.8	0
-13	0
-13.2	0
-13.4	0
-13.6	0
-13.8 -14	0 0
-14	U

Grafico Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld

Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld

Verifiche Tiranti NTC2018: SLE (Rara/Frequente/Quasi Permanente)

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi	Tipo Risultato: Verifiche Tiranti				NTC2018 (ITA)			
Permanente) Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
Thurst .	otuge	(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	1166.316	550.44	0.257	0.545		NO
T1	Stage 4_Dreno	299.639	1166.316	550.44	0.257	0.544		NO
T1	Stage 5_Scavo T2	302.685	1166.316	550.44	0.26	0.55		NO
T1	Stage 6_Attiv. T2	302.884	1166.316	550.44	0.26	0.55		NO
T1	Stage 7_Dreno	302.818	1166.316	550.44	0.26	0.55		NO
T1	Stage 8_Fondo scavo	302.828	1166.316	550.44	0.26	0.55		NO
T1	Stage 9_STAB. GLOB.	302.828	1166.316	550.44	0.26	0.55		NO
T1	Stage 10_Sisma	302.828	1166.316	550.44	0.26	0.55		NO
T2	Stage 6_Attiv. T2	300	1166.316	550.44	0.257	0.545		NO
T2	Stage 7_Dreno	299.397	1166.316	550.44	0.257	0.544		NO
T2	Stage 8_Fondo scavo	300.33	1166.316	550.44	0.258	0.546		NO
T2	Stage 9_STAB. GLOB.	300.33	1166.316	550.44	0.258	0.546		NO
T2	Stage 10_Sisma	300.33	1166.316	550.44	0.258	0.546		NO
Cavalletto	Stage 1	0	1520.531	1058.545	0	0		NO
Cavalletto	Stage 2_Scavo T1	66.972	1520.531	1058.545	0.044	0.063		NO
Cavalletto	Stage 3_Attiv. T1	71.319	1520.531	1058.545	0.047	0.067		NO
Cavalletto	Stage 4_Dreno	71.349	1520.531	1058.545	0.047	0.067		NO
Cavalletto	Stage 5_Scavo T2	72.048	1520.531	1058.545	0.047	0.068		NO
Cavalletto	Stage 6_Attiv. T2	72.066	1520.531	1058.545	0.047	0.068		NO
Cavalletto	Stage 7_Dreno	72.061	1520.531	1058.545	0.047	0.068		NO
Cavalletto	Stage 8_Fondo scavo	72.061	1520.531	1058.545	0.047	0.068		NO
Cavalletto	Stage 9_STAB. GLOB.	72.061	1520.531	1058.545	0.047	0.068		NO
Cavalletto	Stage 10_Sisma	72.061	1520.531	1058.545	0.047	0.068		NO

Verifiche Tiranti NTC2018: A1+M1+R1 (R3 per tiranti)

Design Assumption: NTC2018: A1+M1+R1 (R3 per					NTC2018			
tiranti)	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	390	589.049	550.44	0.662	0.709		NO
T1	Stage 4_Dreno	389.53	589.049	550.44	0.661	0.708		NO
T1	Stage 5_Scavo T2	393.491	589.049	550.44	0.668	0.715		NO
T1	Stage 6_Attiv. T2	393.749	589.049	550.44	0.668	0.715		NO
T1	Stage 7_Dreno	393.663	589.049	550.44	0.668	0.715		NO
T1	Stage 8_Fondo scavo	393.676	589.049	550.44	0.668	0.715		NO
T1	Stage 9_STAB. GLOB.	393.676	589.049	550.44	0.668	0.715		NO
T1	Stage 10_Sisma	393.676	589.049	550.44	0.668	0.715		NO
T2	Stage 6_Attiv. T2	390	589.049	550.44	0.662	0.709		NO
T2	Stage 7_Dreno	389.216	589.049	550.44	0.661	0.707		NO
T2	Stage 8_Fondo scavo	390.429	589.049	550.44	0.663	0.709		NO
T2	Stage 9_STAB. GLOB.	390.429	589.049	550.44	0.663	0.709		NO
T2	Stage 10_Sisma	390.429	589.049	550.44	0.663	0.709		NO
Cavalletto	Stage 1	0	767.945	1058.545	0	0		
Cavalletto	Stage 2_Scavo T1	87.063	767.945	1058.545	0.113	0.082		
Cavalletto	Stage 3_Attiv. T1	92.715	767.945	1058.545	0.121	0.088		
Cavalletto	Stage 4_Dreno	92.754	767.945	1058.545	0.121	0.088		
Cavalletto	Stage 5_Scavo T2	93.662	767.945	1058.545	0.122	0.088		
Cavalletto	Stage 6 Attiv. T2	93.686	767.945	1058.545	0.122	0.089		
Cavalletto	Stage 7_Dreno	93.68	767.945	1058.545	0.122	0.088		
Cavalletto	Stage 8_Fondo scavo	93.679	767.945	1058.545	0.122	0.088		
Cavalletto	Stage 9_STAB. GLOB.	93.679	767.945	1058.545	0.122	0.088		
Cavalletto	Stage 10 Sisma	93.679	767.945	1058.545	0.122	0.088		

Verifiche Tiranti NTC2018: A2+M2+R1

Design Assumption: NTC2018:	Tipo Risultato: Verifiche Ti-				NTC2018			
A2+M2+R1	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Dreno	299.615	589.049	550.44	0.509	0.544		NO
T1	Stage 5_Scavo T2	302.676	589.049	550.44	0.514	0.55		NO
T1	Stage 6_Attiv. T2	302.858	589.049	550.44	0.514	0.55		NO
T1	Stage 7_Dreno	302.785	589.049	550.44	0.514	0.55		NO
T1	Stage 8_Fondo scavo	302.794	589.049	550.44	0.514	0.55		NO
T1	Stage 9_STAB. GLOB.	302.794	589.049	550.44	0.514	0.55		NO
T1	Stage 10_Sisma	302.794	589.049	550.44	0.514	0.55		NO
T2	Stage 6_Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T2	Stage 7_Dreno	299.359	589.049	550.44	0.508	0.544		NO
T2	Stage 8_Fondo scavo	300.324	589.049	550.44	0.51	0.546		NO
T2	Stage 9_STAB. GLOB.	300.324	589.049	550.44	0.51	0.546		NO
T2	Stage 10_Sisma	300.324	589.049	550.44	0.51	0.546		NO
Cavalletto	Stage 1	0	767.945	1058.545	0	0		
Cavalletto	Stage 2_Scavo T1	66.4	767.945	1058.545	0.086	0.063		
Cavalletto	Stage 3_Attiv. T1	70.899	767.945	1058.545	0.092	0.067		
Cavalletto	Stage 4_Dreno	70.933	767.945	1058.545	0.092	0.067		
Cavalletto	Stage 5_Scavo T2	71.603	767.945	1058.545	0.093	0.068		
Cavalletto	Stage 6_Attiv. T2	71.617	767.945	1058.545	0.093	0.068		
Cavalletto	Stage 7_Dreno	71.611	767.945	1058.545	0.093	0.068		
Cavalletto	Stage 8_Fondo scavo	71.61	767.945	1058.545	0.093	0.068		
Cavalletto	Stage 9_STAB. GLOB.	71.61	767.945	1058.545	0.093	0.068		
Cavalletto	Stage 10_Sisma	71.61	767.945	1058.545	0.093	0.068		

Verifiche Tiranti NTC2018: SISMICA STR

Design Assumption: NTC2018: SISMICA	Tipo Risultato: Verifiche Ti-				NTC2018			
STR Tirante	ranti Stage	Sollecitazione	Resistenza GEO	Resistenza STR	(ITA) Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
Tirante	Stage	(kN)	(kN)	(kN)	Ratio GEO	STR	stenza	stenze
T1	Stage 3 Attiv. T1	300	589.049	550.44	0.509	0.545	Jecuzu	NO
T1	Stage 4 Dreno	299.639	589.049	550.44	0.509	0.544		NO
T1	Stage 5 Scavo T2	302.685	589.049	550.44	0.514	0.55		NO NO
T1	Stage 5_3cavo 12 Stage 6 Attiv. T2	302.884	589.049	550.44	0.514	0.55		NO NO
T1	Stage 7 Dreno	302.818	589.049	550.44	0.514	0.55		NO NO
T1	Stage 8 Fondo scavo	302.828	589.049	550.44	0.514	0.55		NO NO
T1	Stage 9 STAB. GLOB.	302.828	589.049	550.44	0.514	0.55		NO NO
T1	Stage 9_31AB. GLOB.	303.288	589.049	550.44	0.514	0.551		NO
T2	· -	303.288	589.049	550.44	0.515	0.545		NO NO
	Stage 6_Attiv. T2							
T2	Stage 7_Dreno	299.397	589.049	550.44	0.508	0.544		NO
T2	Stage 8_Fondo scavo	300.33	589.049	550.44	0.51	0.546		NO
T2	Stage 9_STAB. GLOB.	300.33	589.049	550.44	0.51	0.546		NO
T2	Stage 10_Sisma	301.771	589.049	550.44	0.512	0.548		NO
Cavalletto	Stage 1	0	767.945	1058.545	0	0		
Cavalletto	Stage 2_Scavo T1	66.972	767.945	1058.545	0.087	0.063		
Cavalletto	Stage 3_Attiv. T1	71.319	767.945	1058.545	0.093	0.067		
Cavalletto	Stage 4_Dreno	71.349	767.945	1058.545	0.093	0.067		
Cavalletto	Stage 5_Scavo T2	72.048	767.945	1058.545	0.094	0.068		
Cavalletto	Stage 6_Attiv. T2	72.066	767.945	1058.545	0.094	0.068		
Cavalletto	Stage 7_Dreno	72.061	767.945	1058.545	0.094	0.068		
Cavalletto	Stage 8_Fondo scavo	72.061	767.945	1058.545	0.094	0.068		
Cavalletto	Stage 9_STAB. GLOB.	72.061	767.945	1058.545	0.094	0.068		
Cavalletto	Stage 10_Sisma	81.971	767.945	1058.545	0.107	0.077		

Verifiche Tiranti NTC2018: SISMICA GEO

Design Assumption: NTC2018: SISMICA	Tipo Risultato: Verifiche Ti-				NTC2018			
GEO	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Dreno	299.639	589.049	550.44	0.509	0.544		NO
T1	Stage 5_Scavo T2	302.685	589.049	550.44	0.514	0.55		NO
T1	Stage 6_Attiv. T2	302.884	589.049	550.44	0.514	0.55		NO
T1	Stage 7_Dreno	302.818	589.049	550.44	0.514	0.55		NO
T1	Stage 8_Fondo scavo	302.828	589.049	550.44	0.514	0.55		NO
T1	Stage 9_STAB. GLOB.	302.828	589.049	550.44	0.514	0.55		NO
T1	Stage 10_Sisma	303.288	589.049	550.44	0.515	0.551		NO
T2	Stage 6_Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T2	Stage 7_Dreno	299.397	589.049	550.44	0.508	0.544		NO
T2	Stage 8_Fondo scavo	300.33	589.049	550.44	0.51	0.546		NO
T2	Stage 9_STAB. GLOB.	300.33	589.049	550.44	0.51	0.546		NO
T2	Stage 10_Sisma	301.771	589.049	550.44	0.512	0.548		NO
Cavalletto	Stage 1	0	767.945	1058.545	0	0		
Cavalletto	Stage 2_Scavo T1	66.972	767.945	1058.545	0.087	0.063		
Cavalletto	Stage 3_Attiv. T1	71.319	767.945	1058.545	0.093	0.067		
Cavalletto	Stage 4_Dreno	71.349	767.945	1058.545	0.093	0.067		
Cavalletto	Stage 5_Scavo T2	72.048	767.945	1058.545	0.094	0.068		
Cavalletto	Stage 6_Attiv. T2	72.066	767.945	1058.545	0.094	0.068		
Cavalletto	Stage 7_Dreno	72.061	767.945	1058.545	0.094	0.068		
Cavalletto	Stage 8_Fondo scavo	72.061	767.945	1058.545	0.094	0.068		
Cavalletto	Stage 9_STAB. GLOB.	72.061	767.945	1058.545	0.094	0.068		
Cavalletto	Stage 10 Sisma	81.971	767.945	1058.545	0.107	0.077		

Inviluppo Verifiche Tiranti (su tutte le D.A. attive)

	Tipo Risultato: Verifiche Ti-								
	ranti								
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio	Ratio	Resi-	Gerarchia delle Resi-	Design Assumption
		(kN)	(kN)	(kN)	GEO	STR	stenza	stenze	
T1	Stage 5_Scavo T2	393.491	589.049	550.44	0.668	0.715		NO	NTC2018: A1+M1+R1 (R3 per ti- ranti)
T2	Stage 6_Attiv. T2	390	589.049	550.44	0.662	0.709		NO	NTC2018: A1+M1+R1 (R3 per ti- ranti)
Caval- letto	Stage 5_Scavo T2	93.662	767.945	1058.545	0.122	0.088			NTC2018: A1+M1+R1 (R3 per ti- ranti)

SS 131 "Carlo Felice"

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali Imbocchi - Relazione di Calcolo -Galleria Naturale Chighizzu GN02

9.6 Allegato 6 - Sezione 6: Paratia tipo M - 1 tirante attivo e tirante passivo

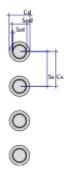
Descrizione della Stratigrafia e degli Strati di Terreno

(-55;-35)

Strato di Terreno Te		ργdry kN/m³				ı Modulo Elastico Eu a	Evc kPa	Eur kPa	- •	Pa kPa	Rur/Rvc Rvc kPa		Kur kN/m³
1	CB	20.1	20.1	26.7	125	Constant	540000	864000)				
2	М	199	199	30.1	165	Constant	525000	840000)				

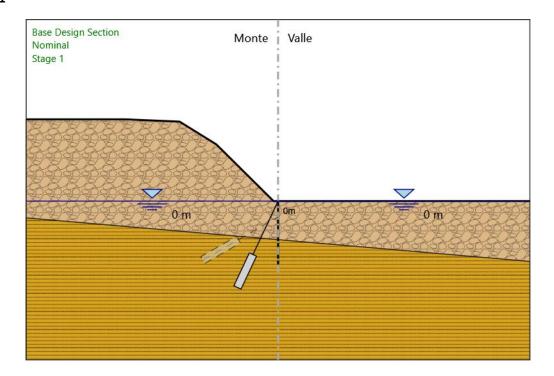
Descrizione Pareti

OCR:1


X:0 m

Quota in alto : 0 m Quota di fondo : -14 m Muro di sinistra

Sezione: Micropali fi240 - fi168.3 sp10


Area equivalente : 0.019045141329815 m Inerzia equivalente : 0.0001 m⁴/m Materiale calcestruzzo : C25/30 Tipo sezione : Tangent Spaziatura : 0.4 m Diametro : 0.24 m Efficacia : 0.5 Materiale acciaio : S355

Sezione : CHS168.3*10 Tipo sezione : O Spaziatura : 0.4 m Spessore : 0.01 m Diametro : 0.1683 m

Fasi di Calcolo

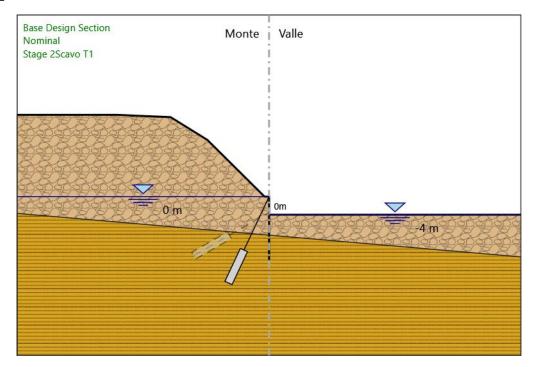
Stage 1


```
Stage 1
Scavo
```

Muro di sinistra

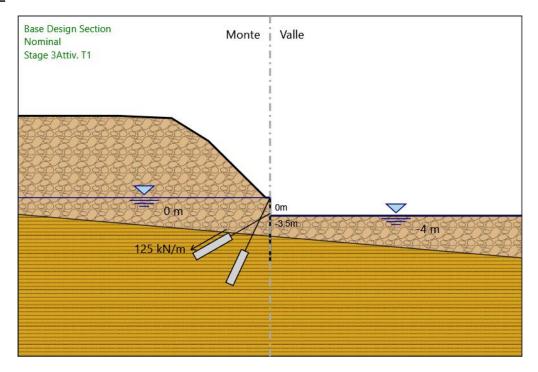
```
Lato monte : 0 m
                      Lato valle : 0 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;18)
                                 (-33;18)
                                 (-21.5;17.5)
                                 (-13.5;12.5)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
Falda acquifera
           Falda di sinistra : 0 m
           Falda di destra : 0 m
Elementi strutturali
           Paratia: Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -14 m
                      Sezione : Micropali fi240 - fi168.3 sp10
           Tirante : Cavalletto
                      X:0 m
```

Z:0 m


Lunghezza bulbo : 8 m Diametro bulbo : 0.22 m Lunghezza libera : 13 m Spaziatura orizzontale : 1.6 m

Sezione : Cavall. 114.3x10

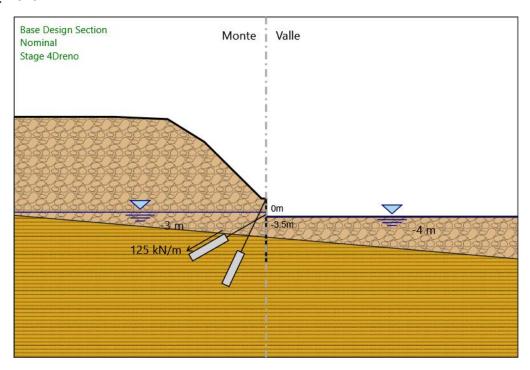
Area: 0.00328 m^2


Precarico : 0 kN Angolo : 65 °

Stage 2_Scavo T1


```
Stage 2_Scavo T1
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -4 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;18)
(-33;18)
                                 (-21.5;17.5)
                                 (-13.5;12.5)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
                                 -4 m
Falda acquifera
           Falda di sinistra : 0 m
           Falda di destra : -4 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -14 m
                      Sezione : Micropali fi240 - fi168.3 sp10
           Tirante : Cavalletto
                      X:0 m
                      Z:0 m
                      Lunghezza bulbo : 8 m
                      Diametro bulbo : 0.22 m
                      Lunghezza libera: 13 m
                      Spaziatura orizzontale : 1.6 m
                      Precarico: 0 kN
                      Angolo : 65 °
                      Sezione: Cavall. 114.3x10
                                 Area: 0.00328 m^2
```

Stage 3_Attiv. T1


```
Stage 3_Attiv. T1
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -4 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;18)
                                 (-33;18)
                                 (-21.5;17.5)
                                 (-13.5;12.5)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
                                 -4 m
Falda acquifera
           Falda di sinistra : 0 m
           Falda di destra : -4 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -14 m
                      Sezione : Micropali fi240 - fi168.3 sp10
           Tirante: T1
                     X : 0 m
Z : -3.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera: 10 m
                      Spaziatura orizzontale : 2.4 m
                      Precarico: 300 kN
                      Angolo: 30 °
                      Sezione: 3 trefoli
                                 Tipo di barre : Barre trefoli
                                 Numero di barre: 3
                                 Diametro : 0.01331 m
                                 Area: 0.000417 m^2
           Tirante : Cavalletto
                      X:0 m
                      Z:0 m
```

Lunghezza bulbo : 8 m Diametro bulbo : 0.22 m Lunghezza libera : 13 m Spaziatura orizzontale : 1.6 m

Precarico : 0 kN Angolo : 65 °

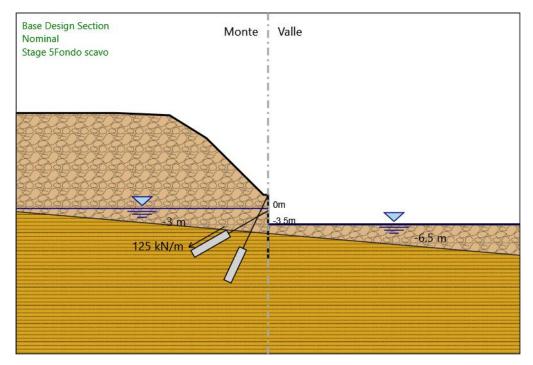
Sezione : Cavall. 114.3x10 Area : 0.00328 m^2

Stage 4_Dreno


```
Stage 4_Dreno
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -4 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-55;18)
                                 (-33;18)
                                 (-21.5;17.5)
                                 (-13.5;12.5)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
Falda acquifera
           Falda di sinistra : -3 m
           Falda di destra : -4 m
Elementi strutturali
           Paratia: Sx
                      Quota in alto : 0 m
                      Quota di fondo : -14 m
                      Sezione: Micropali fi240 - fi168.3 sp10
           Tirante: T1
                      X:0 m
                      Z:-3.5 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo : 0.15 m
                      Lunghezza libera : 10 m
                      Spaziatura orizzontale : 2.4 m
```

Precarico : 300 kN Angolo : 30 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2


Tirante : Cavalletto X : 0 m Z : 0 m

Lunghezza bulbo : 8 m Diametro bulbo : 0.22 m Lunghezza libera : 13 m Spaziatura orizzontale : 1.6 m

Precarico : 0 kN Angolo : 65 °

Sezione : Cavall. 114.3x10 Area : 0.00328 m^2

Stage 5_Fondo scavo


```
Stage 5_Fondo scavo
Scavo

Muro di sinistra
Lato monte : 0 m
Lato valle : -6.5 m

Linea di scavo di sinistra (Irregolare)
(-55;18)
(-33;18)
(-21.5;17.5)
(-13.5;12.5)
(-13.5;12.5)
(-1;0)
(0;0)
Linea di scavo di destra (Orizzontale)
-6.5 m
```

Falda di sinistra : -3 m Falda di destra : -6.5 m

X:0 m

Elementi strutturali

Paratia : Sx

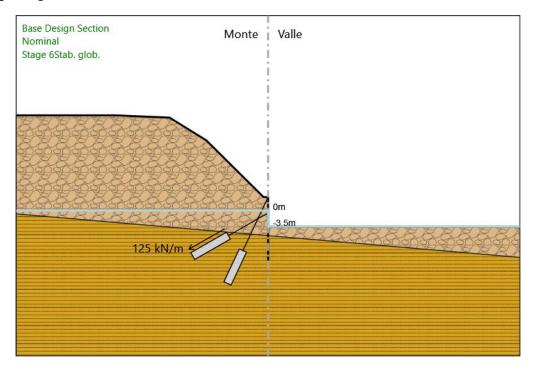
Quota in alto : 0 m Quota di fondo : -14 m

Sezione: Micropali fi240 - fi168.3 sp10

> Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 30 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2


 $\label{eq:cavalletto} \begin{array}{c} \text{Tirante}: \text{Cavalletto} \\ \text{$X:0$ m} \\ \text{$Z:0$ m} \end{array}$

Lunghezza bulbo : 8 m Diametro bulbo : 0.22 m Lunghezza libera : 13 m Spaziatura orizzontale : 1.6 m

Precarico : 0 kN Angolo : 65 °

Sezione : Cavall. 114.3x10 Area : 0.00328 m^2

Stage 6_Stab. glob.

Linea di scavo di destra (Orizzontale) -6.5 m

Elementi strutturali

Paratia : Sx

X:0 m

Quota in alto : 0 m Quota di fondo : -14 m

Sezione: Micropali fi240 - fi168.3 sp10

Tirante : T1

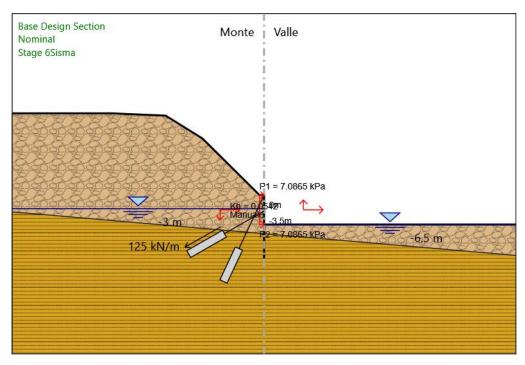
X : 0 m Z : -3.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 10 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 30 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : Cavalletto

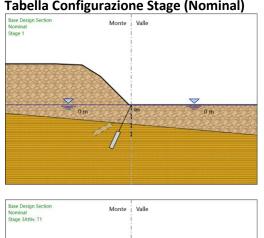

X:0 m Z:0 m

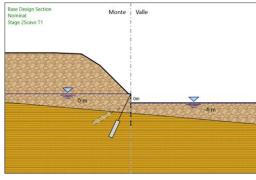
Lunghezza bulbo : 8 m Diametro bulbo : 0.22 m Lunghezza libera : 13 m Spaziatura orizzontale : 1.6 m

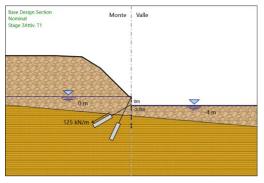
Precarico : 0 kN Angolo : 65 °

Sezione : Cavall. 114.3x10 Area : 0.00328 m^2

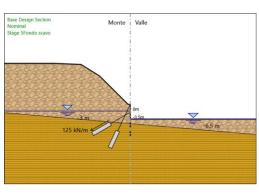
Stage 6_Sisma

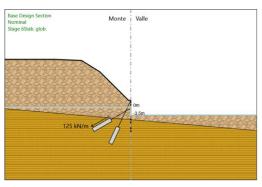

Stage 6_Sisma Scavo

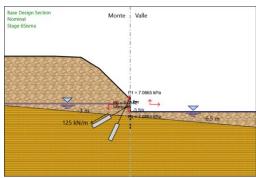

Muro di sinistra


Lato monte : 0 m Lato valle : -6.5 m

```
Linea di scavo di sinistra (Irregolare)
                                (-55;18)
                                (-33;18)
                                (-21.5;17.5)
                                (-13.5;12.5)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
                                -6.5 m
Falda acquifera
          Falda di sinistra : -3 m
          Falda di destra : -6.5 m
Elementi strutturali
          Paratia: Sx
                     X:0 m
                     Quota in alto: 0 m
                     Quota di fondo : -14 m
                     Sezione: Micropali fi240 - fi168.3 sp10
          Tirante: T1
                     X:0 m
                     Z:-3.5 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo : 0.15 m
                     Lunghezza libera: 10 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico: 300 kN
                     Angolo : 30 °
                     Sezione : 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre : 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
          Tirante : Cavalletto
                     X:0 m
                     Z:0 m
                     Lunghezza bulbo: 8 m
                     Diametro bulbo : 0.22 m
                     Lunghezza libera : 13 m
                     Spaziatura orizzontale: 1.6 m
                     Precarico : 0 kN
                     Angolo: 65°
                     Sezione : Cavall. 114.3x10
                                Area: 0.00328 m^2
```


Tabella Configurazione Stage (Nominal)



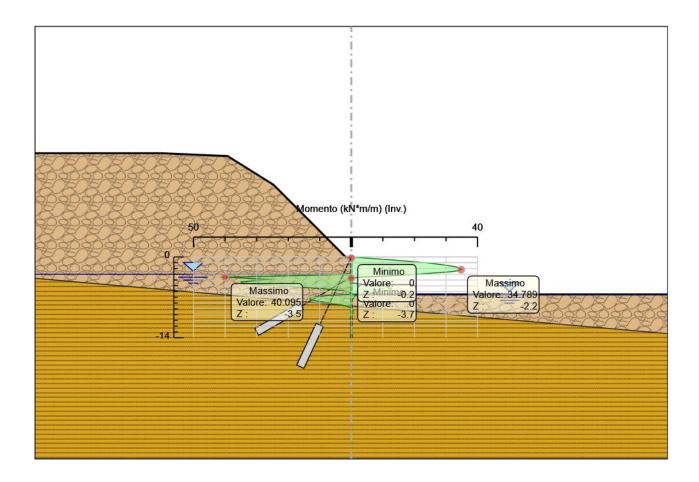


Descrizione Coefficienti Design Assumption

Nome	nenti Sfavore- voli	Carichi Perma- nenti Favore- voli ((F_dead_load_f avour)		ili Favorevoli	Carico Si- smico (F_seism_loa d)	sioni Acqua Lato Mont	sioni Acqua Lato Valle (F_Wa ter-	nenti Destabi- lizzanti (F_UPL_GDSta b)	manenti Sta- bilizzanti	bili Destabiliz- zanti	Carichi Perma- nenti Destabi- lizzanti (F_HYD_GDSta b)	manenti Sta- bilizzanti	bili Destabiliz- zanti
Simbolo	γG	γG	γQ	γQ	γQE	γĠ	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018:	1	1	1	1	0	1	1	1	1	1	1	1	1
SLE													
(Rara/Fre-													
quente/Qua													
si Perma-													
nente)													
NTC2018:	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
A1+M1+R1													
(R3 per ti-													
ranti)													
NTC2018:	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
A2+M2+R1													
NTC2018:	1	1	1	1	1	1	1	1	1	1	1	1	1
SISMICA													
STR													
NTC2018:	1	1	1	1	1	1	1	1	1	1	1.3	0.9	1
SISMICA													
GEO													
	Nome						ohe) Pa			–	iale su peso spe	cifico (F_gamr	na)
	Simbolo			φ.	γс			γcu		qu	YY		
	Nominal			1	1			1		1	1		
	E (Rara/Frequent		,	1	1			1		1	1		
NTC2	NTC2018: A1+M1+R1 (R3 per tiranti)			1	1	-		1		1	1		
	NTC2018: A2+M2+R1		1.		1.2	5		1.4		1	1		
	NTC2018: SISMICA STR			1	1			1		1	1		
	NTC2018: SISMICA GEO			1	1			1		1	1		

Nome	Parziale resistenza terreno (es. Kp) (F_Soil_Res_walls)	Parziale resistenza Tiranti permanenti (F_Anch_P)	Parziale resistenza Tiranti temporanei (F_Anch_T)	Parziale elementi strutturali (F_wall)
Simbolo	γRe	үар	γat	
Nominal	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi Permanente)	1	1	1	1
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1.2	1.1	1
NTC2018: A2+M2+R1	1	1.2	1.1	1
NTC2018: SISMICA STR	1	1.2	1.1	1
NTC2018: SISMICA GEO	1	1.2	1.1	1

Riepilogo Stage / Design Assumption per Inviluppo

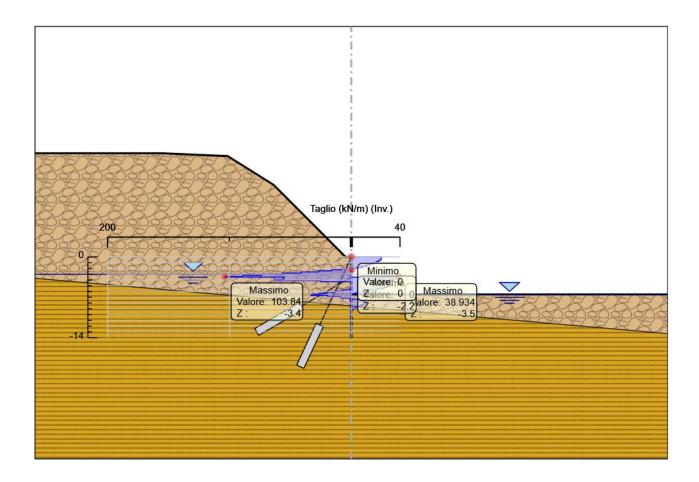

Design Assumption	Stage 1 Stage	2_Scavo T1 Stage	3_Attiv. T1 Stage	e 4_Dreno Stage 5_	_Fondo scavo Stage 6_Stab. glob. Stag	e 6_Sisma
NTC2018: SLE (Rara/Frequente/Quasi Permanente)						
NTC2018: A1+M1+R1 (R3 per tiranti)	V	V	V	V	V	
NTC2018: A2+M2+R1						
NTC2018: SISMICA STR						V
NTC2018: SISMICA GEO						

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Tabella Inviluppi Momento Sx

rabella invilupp		X
Selected Design Assumption		Muro: Sx
Z (m) 0	Lato sinistro (kN*m/m) 0	O (KN*m/m)
-0.2	0	4.925
-0.4	0	9.849
-0.6	0	14.646
-0.8	0	19.162
-1 -1.2	0 0	23.257 26.785
-1.2 -1.4	0	29.594
-1.6	0	31.958
-1.8	0	33.687
-2	0	34.675
-2.2	0	34.789
-2.4 -2.6	0 0	33.749 30.875
-2.8	0	25.494
-3	2.672	20.449
-3.2	14.105	14.648
-3.4	30.253	7.461
-3.5 -3.7	40.095 32.832	3.315 0
-3.9	25.865	0
-4.1	29.872	0
-4.3	34.927	0
-4.5	34.779	0
-4.7	31.403	3.573
-4.9 -5.1	26.268 20.408	7.3 10.124
-5.3	14.526	11.98
-5.5	9.144	12.804
-5.7	4.911	12.531
-5.9	2.089	11.096
-6.1 -6.3	0.455 0	8.433 4.479
-6.5	0.833	1.116
-6.7	7.423	1.101
-6.9	11.3	0.917
-7.1	13.062	0.679
-7.3 -7.5	13.229 12.208	0.449 0.26
-7.7	10.291	0.124
-7.9	7.892	0.043
-8.1	5.515	0
-8.3	3.471	0 0
-8.5 -8.7	1.885 0.76	0
-8.9	0.044	0.069
-9.1	0.026	0.381
-9.3	0.02	0.518
-9.5 -9.7	0.016	0.535
-9.7 -9.9	0.017 0.02	0.469 0.364
-10.1	0.026	0.251
-10.3	0.033	0.149
-10.5	0.038	0.069
-10.7	0.036 0.032	0.015 0
-10.9 -11.1	0.032	0
-11.3	0.043	0
-11.5	0.038	0
-11.7	0.03	0
-11.9	0.022	0 0.003
-12.1 -12.3	0.014 0.006	0.008
-12.5	0.000	0.012
-12.7	0	0.016
-12.9	0	0.017
-13.1	0	0.014
-13.3 -13.5	0	0.01 0.006
-13.7	0	0.002
-13.9	0	0
-14	0	0

Grafico Inviluppi Momento



Momento

Tabella Inviluppi Taglio Sx

Tabella Inviluppi	Taglio Sx	
Selected Design Assumptions		Muro: Sx
		Lato destro (kN/m)
0	0	24.623
-0.2	0	24.623
-0.4	0	24.623
-0.6	0 0	23.983
-0.8 -1	0	22.581 20.476
-1.2	0	18.048
-1.4	0	15.397
-1.6	0	12.353
-1.8	2.045	8.867
-2	8.174	4.94
-2.2	16.026	0.568
-2.4	27.067	0
-2.6	40.856	0
-2.8	56.773	0
-3	73.582	0
-3.2	89.357	0
-3.4	103.835	0
-3.5	103.835	38.934
-3.7	55.167	38.934
-3.9 -4.1	63.617 63.617	36.356 33.456
-4.1 -4.3	25.274	30.623
-4.5	0	27.882
-4.7	0	25.673
-4.9	0	29.299
-5.1	0	29.411
-5.3	0	29.411
-5.5	1.366	26.911
-5.7	7.177	21.165
-5.9	13.313	14.739
-6.1	19.773	9.042
-6.3	26.557	4.665
-6.5	32.949	1.876
-6.7	32.949	0.27
-6.9	19.385	0
-7.1 7.2	8.812	0
-7.3 -7.5	1.149 0.949	5.105 9.693
-7.3 -7.7	0.698	11.996
-7.9	0.459	11.996
-8.1	0.262	11.886
-8.3	0.124	10.218
-8.5	0.044	7.931
-8.7	0.001	5.625
-8.9	0	3.58
-9.1	0	1.977
-9.3	0.039	0.831
-9.5	0.379	0.089
-9.7	0.526	0.01
-9.9 10.1	0.563	0 0
-10.1 -10.3	0.563 0.508	0
-10.5	0.402	0.012
-10.7	0.269	0.031
-10.9	0.16	0.035
-11.1	0.079	0.035
-11.3	0.024	0.033
-11.5	0	0.038
-11.7	0	0.044
-11.9	0	0.045
-12.1	0	0.045
-12.3	0	0.044
-12.5	0	0.041
-12.7	0	0.032
-12.9 13.1	0.014	0.015
-13.1 -13.3	0.021 0.022	0 0
-13.5 -13.5	0.022	0
-13.7	0.022	0
-13.9	0.01	0
-14	0.003	0

Grafico Inviluppi Taglio

Taglio

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	Stage	Muro L	.ato	Inviluppo Spinta Reale Efficace / Spinta Passiva
				%
NTC2018: A1+M1+R1 (R3 per tiranti) Stage 4_Dren	o Left Wall L	EFT	4.1
NTC2018: SISMICA STR	Stage 6 Sism	a Left Wall R	GHT	6.83

Inviluppo Spinta Reale Efficace / Spinta Attiva

Normative adottate per le verifiche degli Elementi Strutturali

Riepilogo Stage / Design Assumption per Inviluppo

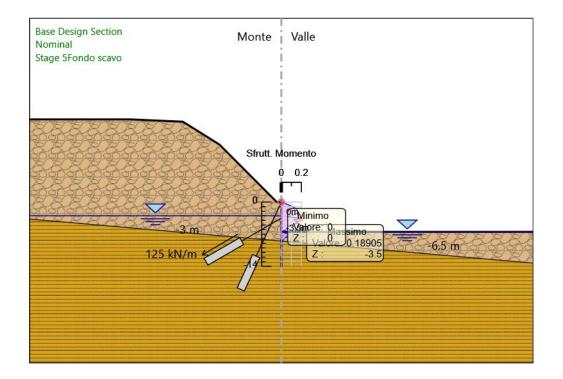
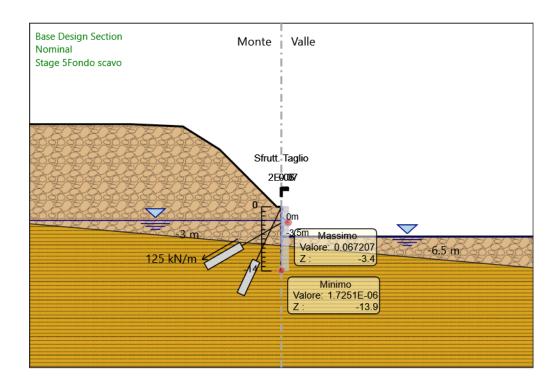

Risultati SteelWorld

Tabella Inviluppi Tasso di Sfruttamento a Momento - SteelWorld : LEFT

nviluppi Tasso di Sfruttamento a Momento -	
Z (m)	Tasso di Sfruttamento a Momento - SteelWorld
0	0
-0.2	0.023
-0.4	0.046
-0.6	0.069
-0.8	0.09
-1	0.11
-1.2	0.126
-1.4	0.14
-1.6	0.151
-1.8	0.159
-2	0.163
-2.2 -2.4	0.164
-2.4 -2.6	0.159
-2.8	0.146 0.12
-2.8 -3	0.12
-3 -3.2	0.096
	0.069
-3.4 -3.5	
-5.5 -3.7	0.189
-3. <i>7</i> -3.9	0.155 0.122
-5.9 -4.1	
-4.1 -4.3	0.141 0.165
-4.5 -4.5	
-4.5 -4.7	0.164 0.148
-4.7 -4.9	0.148
-5.1	0.096
-5.3	0.068
-5.5	0.06
-5.7	0.059
-5.9	0.052
-6.1	0.04
-6.3	0.021
-6.5	0.005
-6.7	0.035
-6.9	0.053
-7.1	0.062
-7.1	0.062
-7.5	0.058
-7.3 -7.7	0.049
-7.9	0.037
-7.5	0.026
-8.3	0.026
-8.5	0.009
-8.7	0.004
-8.9	0.004
-8.9 -9.1	0.002
-9.3	0.002
-9.5 -9.5	0.002
-9.5 -9.7	0.003
-9.7 -9.9	0.002
-9.9 -10.1	0.002
-10.1	0.001
-10.5	0.001

Inviluppi Tasso di Sfruttamento a Momento - SteelWor	ld LEFT
Z (m)	Tasso di Sfruttamento a Momento - SteelWorld
-10.5	0
-10.7	0
-10.9	0
-11.1	0
-11.3	0
-11.5	0
-11.7	0
-11.9	0
-12.1	0
-12.3	0
-12.5	0
-12.7	0
-12.9	0
-13.1	0
-13.3	0
-13.5	0
-13.7	0
-13.9	0
-14	0


Grafico Inviluppi Tasso di Sfruttamento a Momento - SteelWorld

Inviluppi Tasso di Sfruttamento a Momento - SteelWorld

Tabella Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld: LEFT

	uttamento a Taglio - SteelWo
Inviluppi Tasso di Sfruttamento a Taglio - Steel Z (m)	World LEFT Tasso di Sfruttamento a Taglio - SteelWorld
0	0.016
-0.2	0.016
-0.4	0.016
-0.6	0.015
-0.8	0.013
-1	0.012
-1.2	0.01
-1.4	0.008
-1.6	0.006
-1.8	0.003
-2	0.005
-2.2	0.01
-2.4	0.018
-2.6	0.026
-2.8	0.037
-3 -3.2	0.048
-3.4	0.058 0.067
-3. 4 -3.5	0.031
-3.7	0.036
-3.9	0.041
-4.1	0.02
-4.3	0.018
-4.5	0.016
-4.7	0.017
-4.9	0.019
-5.1	0.019
-5.3	0.017
-5.5	0.014
-5.7	0.01
-5.9	0.009
-6.1	0.013
-6.3	0.017
-6.5	0.021
-6.7	0.013
-6.9	0.006
-7.1	0.001
-7.3	0.003
-7.5	0.006
-7.7	0.008
-7.9	0.008
-8.1	0.007
-8.3	0.005
-8.5	0.004
-8.7	0.002
-8.9 -9.1	0.001 0.001
-9.3	0
-9.5	0
-9.7	0
-9.9	0
-10.1	0
-10.3	0
-10.5	0
-10.7	0
-10.9	0
-11.1	0
-11.3	0
-11.5	0
-11.7	0
-11.9	0
-12.1	0
-12.3	0
-12.5	0
-12.7	0
-12.9	0
-13.1	0
-13.3	0
-13.5 13.7	0
-13.7	0
-13.9 -14	0 0
-14	U

Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld

Verifiche Tiranti NTC2018: SLE (Rara/Frequente/Quasi Permanente)

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi	Tipo Risultato: Verifiche				NTC2018			
Permanente)	Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	1166.316	550.44	0.257	0.545		NO
T1	Stage 4_Dreno	299.639	1166.316	550.44	0.257	0.544		NO
T1	Stage 5_Fondo scavo	301.475	1166.316	550.44	0.258	0.548		NO
T1	Stage 6_Stab. glob.	301.475	1166.316	550.44	0.258	0.548		NO
T1	Stage 6_Sisma	301.475	1166.316	550.44	0.258	0.548		NO
Cavalletto	Stage 1	0	1520.531	1058.545	0	0		NO
Cavalletto	Stage 2_Scavo T1	66.972	1520.531	1058.545	0.044	0.063		NO
Cavalletto	Stage 3_Attiv. T1	71.319	1520.531	1058.545	0.047	0.067		NO
Cavalletto	Stage 4_Dreno	71.349	1520.531	1058.545	0.047	0.067		NO
Cavalletto	Stage 5_Fondo scavo	71.709	1520.531	1058.545	0.047	0.068		NO
Cavalletto	Stage 6_Stab. glob.	71.709	1520.531	1058.545	0.047	0.068		NO
Cavalletto	Stage 6_Sisma	71.709	1520.531	1058.545	0.047	0.068		NO

Verifiche Tiranti NTC2018: A1+M1+R1 (R3 per tiranti)

Design Assumption: NTC2018: A1+M1+R1 (R3 per	Tino Bisultato: Varifisho Ti				NTC2018			
• • • • • • • • • • • • • • • • • • • •	•							
tiranti)	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	390	589.049	550.44	0.662	0.709		NO
T1	Stage 4_Dreno	389.53	589.049	550.44	0.661	0.708		NO
T1	Stage 5_Fondo scavo	391.918	589.049	550.44	0.665	0.712		NO
T1	Stage 6_Stab. glob.	391.918	589.049	550.44	0.665	0.712		NO
T1	Stage 6_Sisma	391.918	589.049	550.44	0.665	0.712		NO
Cavalletto	Stage 1	0	767.945	1058.545	0	0		
Cavalletto	Stage 2_Scavo T1	87.063	767.945	1058.545	0.113	0.082		
Cavalletto	Stage 3_Attiv. T1	92.715	767.945	1058.545	0.121	0.088		
Cavalletto	Stage 4_Dreno	92.754	767.945	1058.545	0.121	0.088		
Cavalletto	Stage 5_Fondo scavo	93.222	767.945	1058.545	0.121	0.088		
Cavalletto	Stage 6_Stab. glob.	93.222	767.945	1058.545	0.121	0.088		
Cavalletto	Stage 6_Sisma	93.222	767.945	1058.545	0.121	0.088		

Verifiche Tiranti NTC2018: A2+M2+R1

Design Assumption: NTC2018: A2+M2+R1	Tipo Risultato: Verifiche Ti- ranti				NTC2018 (ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Dreno	299.615	589.049	550.44	0.509	0.544		NO
T1	Stage 5_Fondo scavo	301.449	589.049	550.44	0.512	0.548		NO
T1	Stage 6_Stab. glob.	301.449	589.049	550.44	0.512	0.548		NO
T1	Stage 6_Sisma	301.449	589.049	550.44	0.512	0.548		NO
Cavalletto	Stage 1	0	767.945	1058.545	0	0		
Cavalletto	Stage 2_Scavo T1	66.4	767.945	1058.545	0.086	0.063		
Cavalletto	Stage 3_Attiv. T1	70.899	767.945	1058.545	0.092	0.067		
Cavalletto	Stage 4_Dreno	70.933	767.945	1058.545	0.092	0.067		
Cavalletto	Stage 5_Fondo scavo	71.269	767.945	1058.545	0.093	0.067		
Cavalletto	Stage 6_Stab. glob.	71.269	767.945	1058.545	0.093	0.067		
Cavalletto	Stage 6_Sisma	71.269	767.945	1058.545	0.093	0.067		

Verifiche Tiranti NTC2018: SISMICA STR

verniche manti iviczoro	. SISIVIICA STIN							
Design Assumption: NTC2018: SISMICA	Tipo Risultato: Verifiche Ti-				NTC2018			
STR	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Dreno	299.639	589.049	550.44	0.509	0.544		NO
T1	Stage 5_Fondo scavo	301.475	589.049	550.44	0.512	0.548		NO
T1	Stage 6_Stab. glob.	301.475	589.049	550.44	0.512	0.548		NO
T1	Stage 6_Sisma	302.73	589.049	550.44	0.514	0.55		NO
Cavalletto	Stage 1	0	767.945	1058.545	0	0		
Cavalletto	Stage 2_Scavo T1	66.972	767.945	1058.545	0.087	0.063		
Cavalletto	Stage 3_Attiv. T1	71.319	767.945	1058.545	0.093	0.067		
Cavalletto	Stage 4_Dreno	71.349	767.945	1058.545	0.093	0.067		
Cavalletto	Stage 5_Fondo scavo	71.709	767.945	1058.545	0.093	0.068		
Cavalletto	Stage 6_Stab. glob.	71.709	767.945	1058.545	0.093	0.068		
Cavalletto	Stage 6 Sisma	76 246	767 945	1058 545	0.099	0.072		

Verifiche Tiranti NTC2018: SISMICA GEO

Design Assumption: NTC2018: SISMICA	Tipo Risultato: Verifiche Ti-				NTC2018			
GEO	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Dreno	299.639	589.049	550.44	0.509	0.544		NO
T1	Stage 5_Fondo scavo	301.475	589.049	550.44	0.512	0.548		NO
T1	Stage 6_Stab. glob.	301.475	589.049	550.44	0.512	0.548		NO
T1	Stage 6_Sisma	302.73	589.049	550.44	0.514	0.55		NO
Cavalletto	Stage 1	0	767.945	1058.545	0	0		
Cavalletto	Stage 2_Scavo T1	66.972	767.945	1058.545	0.087	0.063		
Cavalletto	Stage 3_Attiv. T1	71.319	767.945	1058.545	0.093	0.067		
Cavalletto	Stage 4_Dreno	71.349	767.945	1058.545	0.093	0.067		
Cavalletto	Stage 5_Fondo scavo	71.709	767.945	1058.545	0.093	0.068		
Cavalletto	Stage 6_Stab. glob.	71.709	767.945	1058.545	0.093	0.068		
Cavalletto	Stage 6 Sisma	76.246	767.945	1058.545	0.099	0.072		

Inviluppo Verifiche Tiranti (su tutte le D.A. attive)

	Tipo Risultato: Verifiche Ti-								
	ranti								
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio	Ratio	Resi-	Gerarchia delle Resi-	Design Assumption
		(kN)	(kN)	(kN)	GEO	STR	stenza	stenze	
T1	Stage 5_Fondo scavo	391.918	589.049	550.44	0.665	0.712		NO	NTC2018: A1+M1+R1 (R3 per ti-
									ranti)
Caval-	Stage 3_Attiv. T1	92.715	767.945	1058.545	0.121	0.088			NTC2018: A1+M1+R1 (R3 per ti-
letto									ranti)