

Direzione Progettazione e Realizzazione Lavori

S.S.131 "Carlo Felice"

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza S.S.131 dal km 192+500 al km 209+500. Lotto dal km 202+000 al km 209+500

PROGETTO DEFINITIVO

COD. CA357

PROGETTAZIONE: ATI VIA - SERING - VDP - BRENG

RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE:

Dott. Ing. Giovanni Piazza (Ord. Ing. Prov. Roma A27296)

PROGETTISTA:

Responsabile Tracciato stradale: Dott. Ing. Massimo Capasso

(Ord. Ing. Prov. Roma 26031)
Responsabile Strutture: Dott. Ing. Giovanni Piazza
(Ord. Ing. Prov. Roma 27296)
Responsabile Idraulica, Geotecnica e Impianti: Dott. Ing. Sergio Di Maio

(Ord. Ing. Prov. Palermo 2872) Responsabile Ambiente: Dott. Ing. Francesco Ventura (Ord. Ing. Prov. Roma 14660)

GEOLOGO:

Dott. Geol. Enrico Curcuruto (Ord. Geo. Regione Sicilia 966)

COORDINATORE SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Matteo Di Girolamo (Ord. Ing. Prov. Roma 15138)

RESPONSABILE SIA:

Dott. Ing. Francesco Ventura (Ord. Ing. Prov. Roma 14660)

VISTO: IL RESPONSABILE DEL PROCEDIMENTO:

Dott. Ing. Salvatore Frasca

GRUPPO DI PROGETTAZIONE

MANDATARIA:

MANDANTI:

OPERE D'ARTE MAGGIORI **GALLERIE**

GALLERIA ARTIFICIALE_GA03

Opere provvisionali – Relazione di calcolo

CODICE PROGETTO PROGETTO LIV. PROG. ANNO DPCA0357 D 20		nome file CA357_POOGAO3GETRE	REVISIONE	SCALA:		
		CODICE POOGAO3GETRE01			A	_
D			_	-	_	_
С			_	-	-	_
В			_	-	_	_
Α	EMISSIONE		GIU. 2021	A. SCHIRRIPA	G.PIAZZA	G.PIAZZA
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo – Galleria Artificiale GA03

INDICE

1	GE	NER	ALITA'	3		
	1.1	OG	GETTO	3		
	1.2 D		SCRIZIONE DELLE OPERE	5		
	1.3	DE:	SCRIZIONE DELLE SEZIONI DI CALCOLO	7		
2	NO	RMA	ATIVE E RIFERIMENTI	9		
3	NORME TECNICHE					
4	CA	RAT	TERISTICHE DEI MATERIALI E RESISTENZE DI PROGETTO	10		
	4.1	Са	_CESTRUZZI	10		
	4.1	.1	Caratteristiche ai fini della durabilità	10		
	4.1	.2	Copriferri nominali	11		
	4.1	.3	Resistenze di progetto	13		
	4.2	Ac	CIAIO IN BARRE PER CEMENTO ARMATO E RETI ELETTROSALDATE	13		
	4.2	.1	Qualità dell'acciaio	13		
	4.2	.2	Resistenze di progetto	14		
	4.3	Ac	CIAIO PER CARPENTERIA METALLICA	14		
	4.3	.1	Acciaio per micropali	14		
	4.3	.2	Acciaio per travi di ripartizione	15		
	4.3	.3	Acciaio per trefoli	15		
5	INC	QUA	DRAMENTO GEOTECNICO	16		
	5.1	STI	RATIGRAFIE DI CALCOLO	16		
6	CR	ITEF	RI DI VERIFICA DELLE PARATIE	17		
	6.1	Mo	DELLO DI CALCOLO	17		
	6.2	Co	EFFICIENTI DI SPINTA	18		
	6.3	STO	ORIE DI CARICO	20		
	6.4	ME	TODOLOGIA DI CALCOLO	21		

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo – Galleria Artificiale GA03

	6.4.1		Verifiche nei confronti degli stati limite ultimi (SLU)	21			
	6.4.	2	Verifiche dei tiranti	22			
	6.4.	3	Verifiche della trave porta tiranti	25			
	6.4.	4	Verifiche di stabilità globale del complesso paratia-terreno	25			
7	AN	ALIS	SI DEI CARICHI	28			
	7.1	Ana	ALISI ESEGUITE	28			
	7.2	Azı	ONE SISMICA	28			
	7.3	Саг	RICHI PERMANENTI STRUTTURALI	30			
	7.4	SPI	NTA DELLE TERRE	30			
	7.5	CAF	CHI ACCIDENTALI				
	7.6	Co	MBINAZIONI DELLE AZIONI	30			
8	RIS	ULT	ATI DELLE ANALISI E VERIFICHE	32			
	8.1	Rıs	ULTATI DEL CALCOLO	32			
	8.2	VEF	RIFICHE MICROPALI	32			
	8.2.	1	Verifiche strutturali (A1+M1)	32			
	8.2.	2	Verifiche geotecniche del grado di mobilitazione della spinta passiva 32	(A2+M2)			
	8.2.	3	Verifiche SLE	32			
	8.2.	4	Verifiche di stabilità globale	33			
	8.3	VEF	RIFICHE DEGLI ELEMENTI ANCORAGGIO E CONTRASTO	35			
	8.3.	1	Verifiche strutturali (A1+M1) e geotecniche (A2+M2) dei tiranti	35			
	8.3.	2	Verifiche strutturali travi di contrasto	35			
9	ALI	_EG	ATI	37			
	9.1	ALL	EGATO 1 - PARATIA TIPO E – 4 TIRANTI ATTIVI	37			
	9.2	ALL	EGATO 2 - PARATIA TIPO E – 3 TIRANTI ATTIVI	38			

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

GENERALITA'

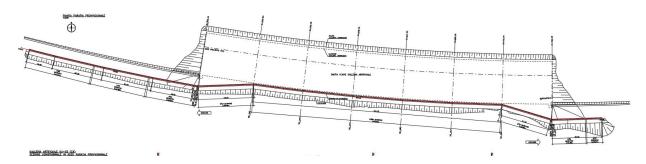
1.1 Oggetto

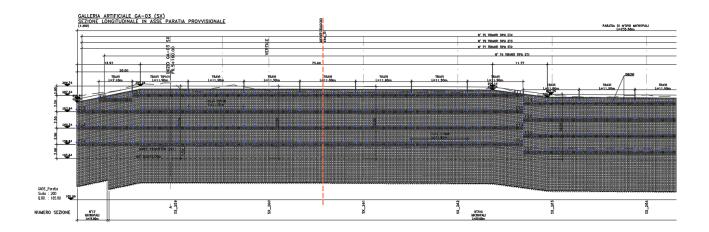
La presente relazione illustra l'analisi e le verifiche strutturali e geotecniche effettuate per la progettazione delle paratie provvisionali in corrispondenza della Galleria Artificiale GA03 asse sinistro, dalla progressiva Pk. 5+160.00 alla progressiva Pk. 5+302.00, previsto nell'ambito dei lavori di realizzazione della "S.S. 131 Carlo Felice - Completamento itinerario Sassari-Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202 al km 209+500".

I calcoli e le verifiche strutturali di resistenza relative alle sezioni più sollecitate sono stati elaborati utilizzando lo schema statico bidimensionale nel rispetto del metodo semiprobabilistico agli stati limite. Gli stati limite di tipo geotecnico vengono verificati secondo l'equilibrio limite.

Le analisi e le verifiche statiche sono condotte conformemente al livello di Progettazione Definitiva di cui trattasi e mirano al dimensionamento degli elementi principali per consentirne una piena definizione dal punto di vista prestazionale ed economico (§art. 26 e 29 D.P.R. 5/10/2010, n°207).

Le analisi e le verifiche degli aspetti di dettaglio, saranno sviluppate nella successiva fase di Progettazione Esecutiva.




Figura 1.1 Pianta Paratia – Galleria artificiale GA03

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo – Galleria Artificiale GA03

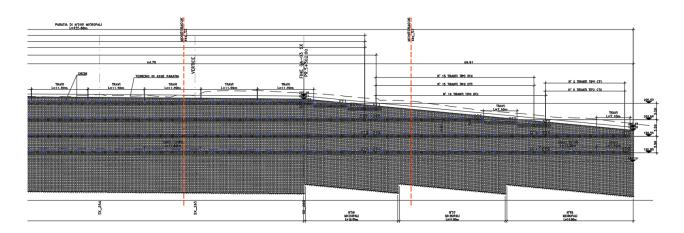


Figura 1.2 Prospetto Paratia – Galleria artificiale GA03

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

1.2 Descrizione delle opere

Le opere oggetto della presente relazione sono le paratie di micropali da realizzarsi come opere di sostegno a carattere provvisionale durante l'esecuzione dei lavori in oggetto.

Al di sopra dei vari ordini di tiranti delle paratie, si prevede l'inserimento di tubi microfessurati di diametro Φ60 mm, lunghezza 20.0 m, posti ad ingterasse i=2.40 m con inclinazione di 2° e tali da garantire il progressivo abbassamento del livello di falda (se presente) in corrispondenza della quota stessa dei dreni, durante le operazioni di scavo. In tal modo, in ciascuna fase di scavo intermedia, la quota del livello di falda rispetto al fondo scavo risulta pari all'interasse verticale dei tiranti (3.50 m) più 1.0 m (esclusa al più la prima fase, a cui è associato il livello di falda in-situ). Nello specifico:

TIPO E: paratia di micropali con <u>quattro ordini</u> di tiranti attivi.

La paratia è costituita da micropali Φ240 mm di lunghezza variabile da Lm=13.6 m a 19.60 m, armati con tubolare in acciaio Φ168.3mm spessore 10 mm e lunghezza variabile da Lt=14.0 a 20.0 m. I micropali verticali sono posti ad un interasse i = 0.40 m.

I tiranti attivi a trefoli con Φ 150mm, sono inclinati di 20° e posti ad un interasse it=2.40m. Ogni tirante presenta tre trefoli da 0.6". I tiranti del primo e del secondo ordine dall'altro, sono di lunghezza totale di 22.00 m (di cui il bulbo da 9.0 m), mentre il terzo e il quarto ordine dall'alto, sono di lunghezza totale di 18.00 m (di cui il bulbo da 9.0 m). Il primo ordine di tiranti è posto ad una distanza di 2.0 m da estradosso cordolo, il secondo ordine ad una distanza di 3.50 m dal primo ordine, il terzo ordine a 3.50 m dal secondo e il quarto ad una distanza di 3.50 m dal terzo ordine. I tiranti sono contrastiti con 2 profili HEB180.

È presente un cordolo in c.a. di larghezza 0.60 m e di altezza 0.6 m.

Nel caso in esame l'altezza di scavo massima, misurata da estradosso cordolo, è di 15.50 m.

La superficie verticale della paratia in corrispondenza dello scavo, è regolarizzata e ricorperta con uno strato di spritz beton di spessore 0.15 m, armato con r.e.s. Φ6/15x15 cm.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

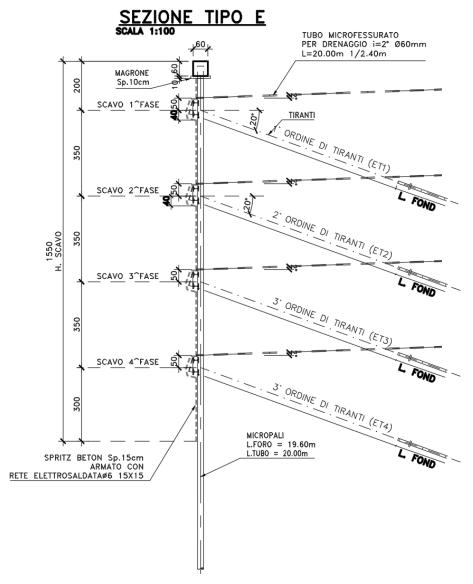
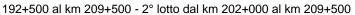



Figura 1.3 Sezione Paratia tipo E

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

1.3 Descrizione delle sezioni di calcolo

Sono state analizzate N°2 sezioni di calcolo aventi le seguenti caratteristiche:

Paratie di micropali con 3 tiranti attivi a trefoli:

Dati generali		TIPO E
ø micropalo	m	0.24
ø tubo	mm	168.3
sp tubo	mm	10
int	mm	0.4
L micropalo = L foro	m	15.6
H cordolo	m	0.6
H tubo nel cord	m	0.4
L tubo	m	16.0
H da intr cord	m	11.9
H da estr cord	m	12.5
H infissione	m	3.7
L tot	m	16.2
As	mm ²	4973.1
I	m ⁴	0.0000156
Wel	mm ³	185856.67
E	N/mm ²	210000
f_{yk}	MPa	355
Cls		C25/30

Tipologia di ancoragg	TIRANTI ATTIVI	
n° ordini	-	3
ø bulbo	m	0.15
ø trefoli	II .	0.6
n°trefoli	-	3
A tot trefoli	m ²	0.00042
int	m	2.4
α sull'oriz	0	20
L tot, 1	m	22
L libera, 1	m	13
L bulbo, 1	m	9
L tot, 2	m	18
L libera, 2	m	9
L bulbo, 2	m	9
fptk	Мра	1860
fp(1)k	Мра	1670

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo – Galleria Artificiale GA03

Paratie di micropali con 4 tiranti attivi a trefoli:

Dati generali	TIPO E	
ø micropalo	m	0.24
ø tubo	mm	168.3
sp tubo	mm	10
int	mm	0.4
L micropalo = l	m	19.6
H cordolo	m	0.6
H tubo nel cord	m	0.4
L tubo	m	20
H da intr cord	m	14.9
H da estr cord	m	15.5
H infissione	m	4.7
L tot	m	20.2
As	mm^2	4973.1
I	m^4	0.0000156
Wel	mm³	185856.67
E	N/mm ²	210000
f_{yk}	MPa	355
Cls		C25/30

Tipologia di an	TIRANTI ATTIVI	
n° ordini	-	4
ø bulbo	m	0.15
ø trefoli	п	0.6
n°trefoli	-	3
A tot trefoli	m^2	0.00042
int	m	2.4
α sull'oriz	0	20
L tot, 1	m	22
L libera, 1	m	13
L bulbo, 1	m	9
L tot, 2	m	18
L libera, 2	m	9
L bulbo, 2	m	9
fptk	Мра	1860
fp(1)k	Мра	1670

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

NORMATIVE E RIFERIMENTI

Le analisi e le verifiche delle strutture sono state effettuate nel rispetto della seguente normativa vigente:

- [D_1]. DM 17 gennaio 2018: Aggiornamento delle << Norme tecniche per le costruzioni>> (nel seguito indicate come NTC18).
- [D_2]. Circolare 21 gennaio 2019 n.7: Istruzioni per l'applicazione dell' "Aggiornamento delle Norme tecniche per le costruzioni" di cui al DM 17 gennaio 2018, supplemento ordinario n° 5 alla G. U. n° 35 del 11/02/2019 (nel seguito indicate come CNTC18).
- [D_3]. Norma Europea UNI EN 206: Calcestruzzo Specificazione, prestazione, produzione e conformità (Dicembre 2016).
- [D_4]. Norma Italiana UNI 11104: Calcestruzzo Specificazione, prestazione, produzione e conformità - Specificazioni complementari per l'applicazione della EN 206 (luglio 2016).

NORME TECNICHE

Il metodo di calcolo adottato è quello semiprobabilistico agli stati limite, con applicazione di coefficienti parziali per le azioni o per l'effetto delle azioni, variabili in ragione dello stato limite indagato.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

CARATTERISTICHE DEI MATERIALI E RESISTENZE DI PROGETTO

4.1 Calcestruzzi

4.1.1 Caratteristiche ai fini della durabilità

Al fine di valutare le caratteristiche vincolanti delle miscele di calcestruzzo nei confronti della durabilità viene fatto riferimento alle norme [D 3] e [D 4].

Di seguito, per ciascun elemento viene riportata la classe di esposizione che risulta vincolante ai fini delle caratteristiche della miscela. Inoltre, sono riportati la classe di resistenza, i range previsti per le dimensioni massime degli aggregati, la classe di consistenza, il valore massimo del rapporto acqua/cemento, il tipo di cemento da impiegare in funzione della parte d'opera e il contenuto minimo di cemento:

CARATTERISTICHE DEI CALCESTRUZZI (UNI EN 206-1 / UNI 111						
CALCESTRUZZO F	Magrone di sottofondazione	Cordoli				
Classe di resistenza (fck/Ro (Mpa)	Classe di resistenza (fck/Rck) (Mpa)					
Classe di esposizione amb	ientale		XC2			
Luna av in auti (mama)	Dupper	-	32			
φ max inerti (mm)	Dlower		20			
Classe di consistenza	-	S4				
Rapporto max acqua/ceme	ento	-	0.6			
Contenuto minimo di ceme	nto (kg/m³)	150	300			

Tabella 4.1 – Caratteristiche dei Calcestruzzi

In ogni caso, dovrà essere garantito il rispetto delle classi di esposizione e resistenza sopra indicate.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

4.1.2 Copriferri nominali

I valori minimi dello spessore dello strato di ricoprimento di calcestruzzo (copriferro), ai fini della protezione delle armature dalla corrosione, sono riportati nella Tab. C4.1.IV delle circolari applicative §[D_2], nella quale sono distinte le tre condizioni ambientali di Tab. 4.1.IV delle NTC:

Tabella C4.1.IV - Copriferri minimi in mm

		barre da c.a. elementi a piastra		barre da c.a. altri elementi		cavi da c.a.p. elementi a piastra		cavi da ca.p. altri elementi		
Cmin	Co	ambiente	C≥Co	C _{min} ≤C <c<sub>o</c<sub>	C≥C ₀	C _{min} ≤C <c<sub>o</c<sub>	C≥C₀	C _{min} ≤C <c<sub>o</c<sub>	C≥Co	C _{min} ≤C⊲C _o
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

I valori della tabella C4.1.IV si riferiscono a costruzioni con Vita Nominale di 50 anni (tipo 2 della Tab. 2.4.1 delle NTC). Per costruzioni con vita nominale di 100 anni (tipo 3 della citata Tab. 2.4.1), i valori della Tab. C4.1.IV vanno aumentati di 10 mm.

Per la definizione del calcestruzzo nominale, ai valori minimi di copriferro vanno aggiunte le tolleranze di posa, pari a 5 mm, secondo indicazioni di norme di comprovata validità.

Per le produzioni di elementi sottoposte a controllo di qualità che preveda anche la verifica dei copriferri, i valori della tabella possono essere ridotti di 5 mm.

La tabella seguente illustra, i valori del calcestruzzo nominale, richiesti in base all'applicazione dei criteri sopra esposti e specializzati al caso in esame:

DETERMINAZIONE DEI COPRIFERRI NOMINALI SECONDO NTC2018								
Dati generali relativi all'opera			Var	unità				
Tipo di costruzione (1=temp. o prowisoria; 2 = p	TC		2					
Vita nominale dell'opera	V_N	anni	50					
Tabella C4.1.IV Copriferri minimi in mm								
	barre	da c.a.	cavi da c.a.p.					
elementi a niastra altri elementi elementi a niastra altri elem								

				barre da c.a.				cavi da c.a.p.				
			elementi a piastra		altri elementi		elementi a piastra		altri elementi			
ambiente	R _{ckmin}	R _{ck0}	R _{ck} ≥R _{ck0}	$R_{ckmin} \le R_{ck} \le R_{ck0}$	R _{ck} ≥R _{ck0}	$R_{ckmin} \le R_{ck} \le R_{ck0}$	R _{ck} ≥R _{ck0}	$R_{ckmin} \le R_{ck} \le R_{ck0}$	R _{ck} ≥R _{ck0}	$R_{ckmin} \le R_{ck} \le R_{ck0}$		
ordinario	30	45	15	20	20	25	25	30	30	35		
aggressivo	37	50	25	30	30	35	35	40	40	45		
molto ag.	45	55	35	40	40	45	5	50	50	50		

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

Elemento		Cordo
Tipo di armatura (1=barre da c.a.; 2=cavi da c.a.p.)		1
Elemento a piastra		SI
Classe di esposizione		XC2
Ambiente		ordinario
Rck	Мра	30
Check Rck min		OK
copriferro minimo (Tab. C4.1.IV NTC)	mm	20
incremento Per Vn=100 (tipo di costruzione 3)	mm	0
elem. prefabbricato con ver. Copriferri*		NO
riduzione per produzioni con ver. Copriferri		0
Tolleranza di posa		10
copriferro nominale	mm	30
* Elemento prefabbricato prodotto con sistema sottoposto a control	llo di qualità che	comprenda la ve
copriferro nominale di progetto	mm	40

Tabella 4.2 – Valori dei copriferri nominali in base alle NTC2018

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

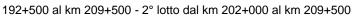
Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

4.1.3 Resistenze di progetto

Calcestruzzo C25/30:

Caratteristiche Calcestruzzo	Var	unità	C25/30
Resistenza a compressione caratteristica cubica	R_{ck}	Мра	30
Resistenza a compressione caratteristica cilindrica	$f_{ck} = 0.83 R_{ck}$	Мра	25
Resistenza media a compressione cilindrica	$f_{cm} = f_{ck} + 8$	Мра	33.00
Resistenza media a trazione semplice	f _{ctm}	Мра	2.56
Resistenza caratteristica a trazione semplice	$f_{ctk5\%}=0.7 f_{ctm}$	Мра	1.80
Resistenza caratteristica a trazione semplice	$f_{ctk95\%}=1.3 f_{ctm}$	Мра	3.33
Resistenza media a trazione per flessione	$f_{cfm} = 1.2 f_{ctm}$	Мра	3.08
Modulo elastico	$E_{cm}=22000x(f_{cm}/10)^{0.3}$	Мра	31476
STATI LIMITE ULTIMI	Var	unità	

STATI LIMITE ULTIMI	Var	unità	
coefficiente γ_{c}	γс		1.50
coefficiente $lpha_{ t cc}$	$lpha_{ t cc}$		0.85
Resistenza a compressione di calcolo	$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c$	Мра	14.17
Resistenza a trazione di calcolo	$f_{ctd} = f_{ctk}/\gamma_c$	Мра	1.20
STATI LIMITE DI ESERCIZIO	Var	unità	
$\sigma_{\!\scriptscriptstyle C,\; max}$ - combinazione di carico caratteristica	$\sigma_{c,max}$ =0.60 f_{ck}	Мра	15.00
$\sigma_{\!c,\;max}$ - combinazione di carico quasi permanente	$\sigma_{c,max}$ =0.45 f_{ck}	Мра	11.25
$\sigma_{\!t}$ - stato limite di formazione delle fessure	$\sigma_t = f_{ctm}/1.2$	Мра	2.14
ANCORAGGIO DELLE BARRE	Var	unità	
Tensione tan. ultima di ad.	f_{bd} =2.25 x 1.0 x 1.0 x f_{ctk}/g_c	Мра	2.69
Tensione tan. ultima di ad. $\phi \le 32$ mm - non buona ad.	f_{bd} =2.25 x 0.7 x 1.0 x f_{ctk}/g_c	MPa	1.89


4.2 Acciaio in barre per cemento armato e Reti Elettrosaldate

4.2.1 Qualità dell'acciaio

Acciaio in barre B450C in accordo a DM 17/01/2018 (Capitolo 11).

Le Reti Elettrosaldate (RES), potranno essere realizzate impiegando acciaio B450A con le limitazioni all'impiego previste nel capitolo 11 delle NTC2018.

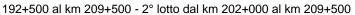
Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

CA-357

Opere Provvisionali - Relazione di Calcolo – Galleria Artificiale GA03

4.2.2 Resistenze di progetto

Caratteristiche Acciaio per Calcestruzzo armato	Var	unità		
Qualità dell'acciaio			B450C	B450A
Tensione caratteristica di snervamento nominale	f_{yk}	Мра	450	450
Tensione caratteristica a carico ultimo nominale	f_{tk}	Мра	540	450
Modulo elastico	Es	Мра	210000	210000
diametro minimo della barra impiegabile	ϕ_{min}	mm	6	5
diametro massimo della barra impiegabile	ф _{тах}	mm	40	10
STATI LIMITE ULTIMI	Var	unità		
coefficiente γ_s	γs		1.15	1.15
Resistenza di calcolo	$f_{yd} = f_{yk}/\gamma_s$	Мра	391.3	391.3
STATI LIMITE DI ESERCIZIO	Var	unità		
σ _{s,max} - combinazione di carico caratteristica	$\sigma_{s,max}$ =0.8 f_{yk}	Мра	360.0	360.0


4.3 Acciaio per carpenteria metallica

4.3.1 Acciaio per micropali

Acciaio tipo S355

Caratteristiche Acciaio da carpenteria metallica		Var	unità	UNI EN 10025
Qualità dell'acciaio				S355 W
Tensione caratteristica di snervamento	amento t ≤ 40 mm		Мра	355
Tensione caratteristica di rottura	t = 40 mm	f_{tk}	Мра	510
Tensione caratteristica di snervamento	40 mm < t ≤ 80 mm	f_{yk}	Мра	335
Tensione caratteristica di rottura	40 111111 < 1 3 00 111111	f_{tk}	Мра	490
Modulo elastico		Es	Мра	210000
STATI LIMITE ULTIMI		Var	unità	
coeff. di sicurezza per resistenza delle sezioni γ_{m0}		γm0		1.05
coeff. di sicurezza per resistenza all'instabilità dellle membrature γ_{m1}		γm1		1.05
coeff. di sicurezza per resistenza all'instabilità dellle membrature dei p	ponti γ _{m1}	γm1		1.10
coeff. di sicurezza per resistenza alla frattura, delle sez. Tese indebol	lite dai fori γ _{m2}	γm2		1.25
Resistenza plastica di calcolo		$f_{yd}=f_{yk}/\gamma_{m0}$	Мра	338.1
Resistenza all'instabilità delle membrature	t ≤ 40 mm	$f_{yd}=f_{yk}/\gamma_{m1}$	Мра	338.1
Resistenza all'instabilità delle membrature dei ponti	t = 40 mm	$f_{yd}=f_{yk}/\gamma_{m1}$	Мра	322.7
Resistenza alla frattura delle sez. Tese (indebolite dai fori)		f_{yd} =0.9 f_{tk}/γ_{m2}	Мра	367.2
Resistenza plastica di calcolo		$f_{yd}=f_{yk}/\gamma_{m0}$	Мра	319.0
Resistenza all'instabilità delle membrature	40 mm < t ≤ 80 mm		Мра	319.0
Resistenza all'instabilità delle membrature dei ponti	40 IIIII ~ L ≥ 00 IIIII	$f_{yd}=f_{yk}/\gamma_{m1}$	Мра	304.5
Resistenza alla frattura delle sez. Tese (indebolite dai fori)		f_{yd} =0.9 f_{tk}/γ_{m2}	Мра	392.0

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

CA-357

Opere Provvisionali - Relazione di Calcolo – Galleria Artificiale GA03

4.3.2 Acciaio per travi di ripartizione

Acciaio tipo \$275

ACCIAIO PER CARPENTERIA METALLICA

Caratteristiche Acciaio da carpenteria metallica		Var	unità	UNI EN 10025
Qualità dell'acciaio				S275
Tensione caratteristica di snervamento	t ≤ 40 mm	f _{yk}	Мра	275
Tensione caratteristica di rottura	t = 40 mm	f_{tk}	Мра	430
Tensione caratteristica di snervamento	40 mm < t ≤ 80 mm	f _{yk}	Мра	255
Tensione caratteristica di rottura	40 111111 < 1 ≥ 00 111111	f_{tk}	Мра	430
Modulo elastico		Es	Мра	210000
STATI LIMITE ULTIMI		Var	unità	
coeff. di sicurezza per resistenza delle sezioni γ_{m0}		γm0		1.05
coeff. di sicurezza per resistenza all'instabilità dellle membrature γ_{m1}		γm1		1.05
coeff. di sicurezza per resistenza all'instabilità dellle membrature dei	ponti γ _{m1}	γm1		1.10
coeff. di sicurezza per resistenza alla frattura, delle sez. Tese indebo	lite dai fori γ _{m2}	γ _{m2}		1.25
Resistenza plastica di calcolo		$f_{yd}=f_{yk}/\gamma_{m0}$	Мра	261.9
Resistenza all'instabilità delle membrature	t ≤ 40 mm	$f_{yd}=f_{yk}/\gamma_{m1}$	Мра	261.9
Resistenza all'instabilità delle membrature dei ponti	t ≤ 40 mm	$f_{yd}=f_{yk}/\gamma_{m1}$	Мра	250.0
Resistenza alla frattura delle sez. Tese (indebolite dai fori)		f_{yd} =0.9 f_{tk}/γ_{m2}	Мра	309.6
Resistenza plastica di calcolo		$f_{yd}=f_{yk}/\gamma_{m0}$	Мра	242.9
Resistenza all'instabilità delle membrature	40 mm < t ≤ 80 mm	$f_{yd}=f_{yk}/\gamma_{m1}$	Мра	242.9
Resistenza all'instabilità delle membrature dei ponti	40 IIIII > l ≥ 00 IIIII	$f_{yd} = f_{yk}/\gamma_{m1}$	Мра	231.8
Resistenza alla frattura delle sez. Tese (indebolite dai fori)		f_{yd} =0.9 f_{tk}/γ_{m2}	Мра	344.0

4.3.3 Acciaio per trefoli

Caratteristiche Acciaio da precompressione	Var	unità	
Tipologia di armatura			Trefoli
Tensione caratteristica a carico ultimo	f_{ptk}	Мра	1860
Tensione caratteristica di snervamento	$f_{pyk} f_{p(0.1)k} f_{p(1)k} *$	Мра	1670
Modulo elastico	Es	Мра	195000

^{*} f_{pyk} per acciaio in barre $f_{p(0.1)k}$ per acciaio in fili $f_{p(1)k}$ per acciaio in trefoli e trecce

STATI LIMITE ULTIMI	Var	unità	
coefficiente γ_s	γs		1.15
Resistenza di calcolo	fyd=fyk/gs	Mpa	1452

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

INQUADRAMENTO GEOTECNICO

5.1 Stratigrafie di calcolo

Per le paratie sono stati adottati i seguenti parametri geotecnici:

Strato 1	СВ
Profondità - z (m)	1
Peso di volume – γ (kN/mc)	20.1
Angolo di attrito – φ'(°)	26.7
Coesione drenata – c' (kPa)	125

Ai fini del dimensionamento delle opere, è stata considerata un'unica stratigrafia per la quale si sono assunti i parametri geotecnici sopra indicati, costituita da un unico strato, rappresentato dai calcari bioclastici "CB".

Cautelativamente e a favore di sicurezza, tenuto conto del peso della coesione nei problemi geotecnici di scarico tensionale e per tener conto di una possibile riduzione di questo parametro a lungo termine, per i terreni di natura rocciosa, sono stati adottati valori di c' dimezzati rispetto a quelli indicati nella Relazione Geotecnica.

Si è inoltre tenuto conto direttamente della presenza di prescavi a tergo delle opere.

Nel caso in esame la falda non è stata considerata in quanto non risulta presente.

Relativamente ai moduli elastici del terreno sono stati adottati valori "operativi", che tengono conto del livello di deformazione tipico del problema esaminato, pari a E₀ = 530 MPa (per i calcari bioclastici "CB").

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

CRITERI DI VERIFICA DELLE PARATIE

6.1 Modello di calcolo

Le analisi di stabilità locale delle opere di sostegno e quelle per la valutazione delle sollecitazioni negli elementi resistenti (micropali e tiranti) sono state condotte mediante l'ausilio del codice di calcolo Paratie Plus prodotto da CeAS.

In tale codice la schematizzazione dell'interazione tra paratia e terreno avviene considerando:

- la paratia come una serie di elementi il cui comportamento è caratterizzato dalla rigidezza flessionale EJ;
- il terreno come una serie di molle di tipo elasto-plastico connesse ai nodi della paratia.

Il problema è risolto con una schematizzazione a modello piano in cui viene analizzata una "fetta" di parete di larghezza unitaria.

La modellazione numerica dell'interazione terreno-struttura è del tipo "trave su suolo elastico": le pareti di sostegno vengono rappresentate con elementi finiti trave il cui comportamento è definito dalla rigidezza flessionale EJ, mentre il terreno viene simulato attraverso elementi elastoplastici monodimensionali (molle) connessi ai nodi delle paratie: ad ogni nodo convergono uno o al massimo due elementi terreno.

Il limite di questo schema sta nell'ammettere che ogni porzione di terreno, schematizzata da una "molla", abbia comportamento del tutto indipendente dalle porzioni adiacenti; l'interazione fra le varie regioni di terreno è affidata alla rigidezza flessionale della parete.

La realizzazione dello scavo sostenuto da una o due paratie puntonate/tirantate viene seguita in tutte le varie fasi attraverso un'analisi statica incrementale: ogni passo di carico coincide con una ben precisa configurazione caratterizzata da una certa quota di scavo, da un insieme di puntoni/tiranti applicati, da una precisa disposizione di carichi.

Poiché il comportamento degli elementi finiti è di tipo elasto-plastico, ogni configurazione dipende in generale dalle configurazioni precedenti e lo sviluppo di deformazioni plastiche ad un certo passo condiziona la risposta della struttura nei passi successivi. La soluzione ad ogni nuova configurazione (step) viene raggiunta attraverso un calcolo iterativo alla Newton-Raphson.

L'analisi ha lo scopo di indagare la risposta strutturale in termini di deformazioni laterali subite dalla parete durante le varie fasi di scavo e di conseguenza la variazione delle

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo – Galleria Artificiale GA03

pressioni orizzontali nel terreno. Per far questo, in corrispondenza di ogni nodo è necessario definire due soli gradi di libertà, cioè lo spostamento orizzontale e la rotazione attorno all'asse X ortogonale al piano della struttura (positiva se antioraria).

In questa impostazione particolare, inoltre, gli sforzi verticali nel terreno non sono per ipotesi influenzati dal comportamento deformativo orizzontale, ma sono una variabile del tutto indipendente, legata ad un calcolo basato sulle classiche ipotesi di distribuzione geostatica.

Nei modelli di calcolo implementati, l'esecuzione dello scavo è schematizzata mediante una successione di step. Il calcolo della pressione dell'acqua nei pori è, per ipotesi, del tutto indipendente da qualsiasi deformazione e conseguente stato di sforzo nello scheletro solido del terreno.

La legge costitutiva, rappresentativa del comportamento elasto-plastico del terreno, è identificata dai parametri di spinta e di deformabilità del terreno.

6.2 Coefficienti di spinta

Nel modello di calcolo impiegato dal software di calcolo Paratie Plus, la spinta del terreno viene determinata investigando l'interazione statica tra terreno e la struttura deformabile a partire da uno stato di spinta del terreno sulla paratia.

I parametri che identificano il tipo di legge costitutiva possono essere distinti in due sottoclassi: parametri di spinta e parametri di deformabilità del terreno.

I parametri di spinta sono il coefficiente di spinta a riposo K_0 , il coefficiente di spinta attiva K_a ed il coefficiente di spinta passiva K_p .

Il coefficiente di spinta a riposo fornisce lo stato tensionale presente in sito prima delle operazioni di scavo. Esso lega la tensione orizzontale efficace σ'_h a quella verticale σ'_v attraverso la relazione:

$$\sigma'_h = K_0 \cdot \sigma'_v$$

 K_0 dipende dalla resistenza del terreno, attraverso il suo angolo di attrito efficace ϕ' e dalla sua storia geologica. Si può assumere che:

$$K_0 = K_0^{NC} \cdot (OCR)^m$$

Dove

$$K_0^{NC} = 1 - \operatorname{sen} \phi'$$

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

è il coefficiente di spinta a riposo per un terreno normalconsolidato (OCR=1). OCR è il grado di sovraconsolidazione e m è un parametro empirico, di solito compreso tra 0.4 e 0.7.

Per tener conto dell'angolo di attrito δ tra paratia e terreno il software PARATIE impiega per Ka e Kp la formulazione rispettivamente di Coulomb e Caquot – Kerisel.

Secondo la formulazione di Coulomb il coefficiente di spinta attiva Ka vale:

$$k_{a} = \frac{\cos^{2}(\varphi' - \beta)}{\cos^{2}\beta \cdot \cos(\beta + \delta) \cdot \left[1 + \sqrt{\frac{sen(\delta + \varphi') \cdot sen(\varphi' - i)}{\cos(\beta + \delta) \cdot \cos(\beta - i)}}\right]^{2}}$$

dove:

- è l'angolo di attrito del terreno φ'
- β è l'angolo d'inclinazione del diaframma rispetto alla verticale
- δ è l'angolo di attrito paratia-terreno posto pari a 2/3 φ'.
- è l'angolo d'inclinazione del terreno a monte della paratia rispetto all'orizzontale

Secondo la formulazione di Caquot - Kerisel il coefficiente di spinta passiva Kp viene calcolato secondo la seguente figura:

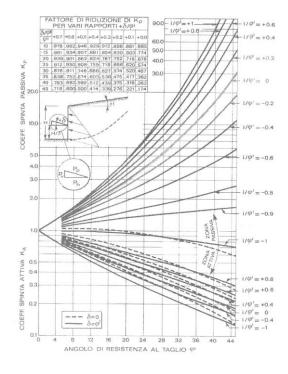


Figura 6.1: Formulazione di Caquot – Kerisel per Kp che considera superfici di rottura curvilinee

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

Il valore limite della tensione orizzontale sarà dato da:

$$\sigma'_h = K_a \cdot \sigma'_v - 2 \cdot c' \cdot \sqrt{K_a}$$

$$\sigma'_h = K_p \cdot \sigma'_v + 2 \cdot c' \cdot \sqrt{K_p}$$

a seconda che il collasso avvenga in spinta attiva o passiva rispettivamente.

I parametri di deformabilità del terreno compaiono nella definizione della rigidezza delle molle. Per un letto di molle distribuite la rigidezza di ciascuna di esse, k, è data da:

$$K = E / L$$

ove E è un modulo di rigidezza del terreno mentre L è una grandezza geometrica caratteristica.

Poiché nel programma PARATIE le molle sono posizionate a distanze finite Δ, la rigidezza di ogni molla è:

$$K = (E \cdot \Delta) / L$$

Il valore di Δ è fornito dalla schematizzazione ad elementi finiti. Il valore di L è fissato automaticamente dal programma. Esso rappresenta una grandezza caratteristica che è diversa a valle e a monte della paratia perché diversa è la zona di terreno coinvolta dal movimento in zona attiva e passiva.

 $L_A = 2/3 \cdot I_a \cdot \tan(45^\circ - \phi'/2)$ in zona attiva (uphill)

 $L_P = 2/3 \cdot I_p \cdot \tan(45^\circ + \phi'/2)$ in zona Passiva (downhill)

con la e lp rispettivamente:

 $I_a = min(I, 2H)$

 $I_p = min (I - H, H)$

dove I = altezza totale della paratia e H = altezza corrente dello scavo

Per i coefficienti di spinta attiva e passiva, tenuto conto che le corrispondenti forze risultano inclinate sul piano orizzontale, si considerano le componenti in direzione orizzontale.

Storie di carico 6.3

Tenendo conto delle verifiche da effettuare agli SLE ed agli SLU sono state considerate le seguenti storie di carico:

 Configurazione A1+M1 (STATICA): Una prima storia di carico in cui i parametri del terreno sono considerati con riferimento ai loro valori caratteristici ed le azioni sono considerate con fattore parziale unitario. Questa storia fornisce le

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo – Galleria Artificiale GA03

sollecitazioni sugli elementi strutturali e gli spostamenti orizzontali delle paratie per le successive verifiche agli SLE. Inoltre, le sollecitazioni per la verifica SLU combinazione A1 + M1, sono ottenute da questa storia di carico applicando il fattore moltiplicativo γ_F ;

- Configurazione A1+M1 (SISMICA): Una seconda storia di carico anch'essa con parametri del terreno caratteristici ed le azioni sono considerate con fattore parziale unitario in cui è presente l'azione sismica. Questa storia fornisce le sollecitazioni sugli elementi strutturali per le successive verifiche agli SLU-SLV. In questo caso, le sollecitazioni per la verifica SLU combinazione A1 + M1, sono ottenute da questa storia di carico applicando il fattore moltiplicativo γ_F pari ad 1.0;
- Configurazione A2+M2 (STATICA): Una terza storia di carico in cui i parametri
 del terreno sono considerati con riferimento ai coefficienti parziali M2, e le azioni
 sono considerate con i fattori parziali A2. Questa storia permette di valutare le
 condizioni di stabilità geotecnica della paratia;
- Configurazione A2+M2 (SISMICA): Una quarta storia di carico anch'essa con i
 parametri del terreno considerati con riferimento ai coefficienti parziali M2, e le
 azioni sono considerate con i fattori parziali A2. In questo caso è presente l'azione
 sismica. Questa storia permette di valutare le condizioni di stabilità geotecnica
 della paratia.

6.4 Metodologia di calcolo

6.4.1 Verifiche nei confronti degli stati limite ultimi (SLU)

Deve essere rispettata la condizione:

 $E_d \le R_d$

Dove E_d è il valore di progetto dell'azione o degli effetti delle azioni e R_d è il valore di progetto della resistenza del terreno.

La resistenza R_d è stata determinata nei casi in oggetto con riferimento al valore caratteristico dei parametri geotecnici di resistenza, divisi per il coefficiente parziale γ_m specificato nella tabella 6.2.II delle suddette norme:

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {m \phi}'_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	Ye	1,0	1,25
Resistenza non drenata	c_{uk}	$\gamma_{ m cu}$	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Le Azioni e i relativi coefficienti parziali γ_f sono indicate nella tabella 6.2.I delle norme.

Le verifiche agli <u>SLU strutturali</u> sono state condotte per le combinazioni A1 + M1, mentre le verifiche agli <u>SLU geotecniche</u> con le combinazioni A2 + M2.

6.4.2 Verifiche dei tiranti

L'armatura e la lunghezza delle fondazioni dei tiranti sono state dimensionate in base ai criteri nel seguito esposti tenendo conto del loro massimo carico di esercizio, della loro inclinazione rispetto all'orizzontale e del loro interasse.

Devono essere soddisfate le seguenti verifiche:

- Raggiungimento della resistenza degli elementi strutturali;
- Verifica allo sfilamento della fondazione dell'ancoraggio.

Raggiungimento della resistenza degli elementi strutturali

Le sollecitazioni di output del codice di calcolo per i tiranti sono fornite per metro lineare per cui, nelle verifiche di resistenza, è necessario moltiplicare tali sollecitazioni per l'interasse dei tiranti. La verifica a rottura dei tiranti di ancoraggio risulta soddisfatta quando:

$$T_{Ed} \leq T_{Rd}$$

Con:

$$T_{Ed} = T_{Ed,ml} \cdot i_{tiranti} \cdot \cos(\theta)$$

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo – Galleria Artificiale GA03

Dove:

 $T_{\it Ed.ml}$ è il tiro massimo al metro lineare ottenuto dall'analisi SLU;

 $i_{tiranti}$ è l'interasse tra i tiranti;

 θ è l'angolo di inclinazione dei tiranti nel piano orizzontale;

 $T_{{\scriptscriptstyle Ed}}$ è il tiro massimo sul singolo tirante ottenuto dall'analisi SLU;

 $T_{{\scriptscriptstyle Rd}}$ è il tiro resistente del singolo tirante allo stato limite ultimo.

Il tiro resistente allo SLU dei tiranti a trefoli è calcolato come segue:

$$T_{Rd} = 0.9 \cdot \frac{f_{pt(1)k} \cdot n_t \cdot A_t}{\gamma_S}$$

Dove:

 $f_{\mathit{pt(1)k}}$ è la tensione caratteristica all'1% della deformazione totale;

 γ_{\S} è il coefficiente di sicurezza dell'acciaio e vale 1,15;

 n_t è il numero di trefoli che compongono il tirante;

 A_t è l'area di ciascun trefolo.

Da cui: $N_{vs} = f_{p(1)k} / 1.15 = 1670 / 1.15 = 1452 \text{ Mpa}$

Per i micropali a cavalletto si considera la seguente relazione:

$$N_{ys} = f_{yk} / 1.05 = 355 / 1.05 = 338.1 \text{ Mpa}$$

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

Verifica allo sfilamento della fondazione

La verifica allo sfilamento della fondazione dell'ancoraggio si esegue confrontando la massima azione Tmax,d considerando tutti i possibili SLU con la resistenza di progetto Rad determinata applicando alla resistenza caratteristica i seguenti fattori parziali:

$$R_{ad} = R_{ak}/\gamma_R$$

	Simbolo	Coefficiente parziale
Temporanei	Y Ra,t	1,1
Permanenti	Y _{Ra,p}	1,2

Poiché nel caso in esame si hanno esclusivamente opere provvisionali, si è adottato un coefficiente parziale $\gamma_{Ra,t} = 1.1$.

Il valore caratteristico Rak è stato determinato analiticamente in funzione dei parametri geotecnici:

dove ξ è un fattore di correlazione che dipende dal numero di profili di indagine. Avendo a disposizione 1 verticale d'indagine per ogni opera in oggetto, si assume $\xi = 1.8$. Il valore di Ra,c è stato stimato con l'approccio di Bustamante e Doix:

$$R_{a,c} = \pi \cdot D_a \cdot \tau_{lim} \cdot L_{anc}$$

ove:

- = diametro efficace della fondazione dopo l'iniezione; D_{e}
- = adesione unitaria limite fondazione terreno.

Il valore di De non dipende oltre che dal diametro di perforazione dal tipo di terreno e dalla modalità di iniezione ed è calcolato come:

De =
$$\alpha \cdot D$$
, con D = diametro di perforazione.

Con riferimento alle indicazioni di Bustamante e Doix (1985) e tenendo conto del tipo d'iniezione del bulbo d'ancoraggio (IRS) sono stati assunti i seguenti valori:

•
$$a = 1.10$$

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

 $\tau_{lim} = 250 \text{ KPa}$

6.4.3 Verifiche della trave porta tiranti

La verifica di questo elemento strutturale è eseguita come una trave continua su più appoggi, con luce pari all'interasse tra i tiranti, sottoposta ad un carico ripartito (p). La sezione risulta verificata se vale:

$$M_{Fd} \leq M_{Rd}$$

Con:

$$M_{Ed} = T_{Ed,ml} \cdot \frac{i_{tiranti}^2}{10}$$

Avendo posto:

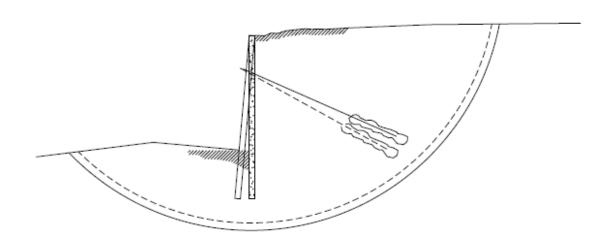
 $T_{Fd\ ml}$ è il tiro massimo al metro lineare ottenuto dall'analisi SLU;

 $\dot{l}_{tiranti}$ è l'interasse orizzontale tra i tiranti

 M_{Rd} è il momento resistente ultimo della sezione delle travi porta-tiranti.

6.4.4 Verifiche di stabilità globale del complesso paratia-terreno

Al fine di pervenire alla definizione della sicurezza dell'opera di sostegno, è necessario, tra le altre cose, garantire la stabilità globale del complesso paratia-terreno.


Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo dell'opera. Si determina il minimo coefficiente di sicurezza su una maglia di centri posta in prossimità della sommità del muro.

Si adotta per la verifica di stabilità globale il metodo di Bishop. Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

$$\eta = \frac{\sum_{i} \left(\frac{c_{i}b_{i} + (W_{i} - u_{i}b_{i})\tan\varphi_{i})}{m} \right)}{\sum_{i} W_{i} sen\alpha_{i}}$$

dove il termine m è espresso da

$$m = \left(1 + \frac{tg\varphi_i \cdot tg\alpha_i}{\eta}\right) \cos\alpha_i$$

In questa espressione η è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i-esima rispetto all'orizzontale, W_i è il peso della striscia i-esima, c_i e φ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed u_i è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η. Quindi essa viene risolta per successive approssimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed iterare fino a quando il valore calcolato coincide con il valore assunto.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

La verifica viene effettuata secondo la combinazione 2 (A2+M2+R2) dell'approccio 1 come previsto dalle NTC2018.

Mentre i coefficienti A2 e M2 sono integrati nel software di calcolo PARATIE-PLUS, il coefficiente riduttivo della resistenza viene utilizzato come termine di confronto con il coefficiente di sicurezza restituito dall'analisi che, quindi, dovrà essere FS ≥ 1.10.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

ANALISI DEI CARICHI

Si descrivono nel seguito le verifiche eseguite per le tipologie di opere in oggetto ed i carichi considerati. Data la natura provvisionale delle opere si trascura la presenza del sisma.

7.1 Analisi eseguite

Sono stati analizzati tutti i casi di verifica, secondo i criteri esposti al Cap. 6, come segue:

SLE	STR
SLU (A1+M1)	STR
SLU (A2+M2)	GEO
SLV	STR
SLV	GEO

7.2 Azione sismica

Per tener conto della possibilità che la condizione di scavo permanga per più di 2 anni, e comunque in via cautelativa, data l'importanza delle strutture in oggetto, si tiene conto della seguente azione sismica, relativa a "costruzioni temporanee o provvisorie" (tab. 2.4.l [D_3]) e quindi ad periodo di riferimento $V_R = 35$ anni (tab. 2.4.I [D_3]).

Tab. 2.4.I – Valori minimi della Vita nominale V_N di progetto per i diversi tipi di costruzioni

TIPI DI COSTRUZIONI		$egin{aligned} \mathbf{V_{alori}} & \mathbf{minimi} \\ \mathbf{di} & \mathbf{V_{N}} & (\mathbf{anni}) \end{aligned}$	
1	Costruzioni temporanee e provvisorie	10	
2	Costruzioni con livelli di prestazioni ordinari	50	
3	Costruzioni con livelli di prestazioni elevati	100	

Tabella 7.1: Valori minimi della vita nominale V_N

Tabella C2.4.I. - Intervalli di valori attribuiti a V_R al variare di V_N e C_{IJ}

***************************************		VALOI	RI DI V _R		
VITA NOMINALE V _N	CLASSE D'USO				
N	I	II	III	IV	
≤10	35	35 35		35	
≥50	≥35	≥50	≥75	≥100	
≥100	≥70	≥100	≥150	≥200	

Tabella 7.2: Valori dei parametri V_R , al variare di C_U e V_N

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

Il sito è caratterizzato dai seguenti parametri:

- Categoria di sottosuolo B;
- Categoria topografica T1.

Stato Limite	V_{R}	a _g	F ₀	T*c
Stato Limite	[anni]	[g]	[-]	[s]
SLV	35	0.0452	2.8549	0.3324

Tabella 7.3: Valori dei parametri a_g , F_0 e T_c^* per suolo rigido

L'accelerazione massima attesa al sito a_{max} è definita attraverso la seguente relazione:

$$a_{max} = S_S \cdot S_T \cdot a_g$$

in cui:

 $a_g = 0.0452 g$ accelerazione massima su sito rigido;

 $S_S = 1.20$ coefficiente d'amplificazione stratigrafica;

 $S_T = 1.0$ coefficiente d'amplificazione topografica.

L'analisi della spinta del terreno in condizioni sismiche è eseguita in maniera differenziata in funzione delle rigidezze delle strutture di contrasto e delle relative capacità di spostamento.

In particolare:

Per le paratie di imbocco multitirantate si è utilizzata, in via cautelativa, la teoria di Wood per elementi rigidi.

Le componenti dell'accelerazione equivalente a_h (orizzontale) e a_v (verticale), sono valutate come:

$$a_h = \alpha \cdot \beta \cdot a_{max}$$

$$a_v = 0$$

essendo

 $\alpha = 1.0$ coefficiente di deformabilità;

 β = 1.0 coefficiente di spostamento.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

7.3 Carichi permanenti strutturali

Per quanto riguarda la struttura il peso proprio degli elementi strutturali é automaticamente valutato dal programma di calcolo utilizzato per l'analisi.

7.4 Spinta delle terre

Il peso del terreno a tergo della paratia determina una spinta laterale sulla stessa avente distribuzione triangolare. L'effetto di incremento della spinta per la presenza di prescavi e inclinazioni a monte, è preso in conto mediante pendenza equivalente della superficie inclinata.

7.5 Carichi accidentali

Data la conformazione del problema in oggetto, a tergo delle paratie non risultano presenti carichi accidentali.

7.6 Combinazioni delle azioni

In accordo al par. 2.5.3 delle NTC2018 ai fini delle verifiche degli stati limite sono state considerate le seguenti combinazioni delle azioni:

• Combinazione fondamentale, impiegata per le verifiche agli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

• Combinazione rara, impiegata per le verifiche agli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

• Combinazione sismica, impiegata per gli stati limte ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

Di seguito si riportano le tabelle che esplicitano i coefficienti parziali sopra illustrati:

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

Tabella 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2}, \gamma_{\epsilon 3}, \gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

 $\textbf{Tabella 5.1.VI} - \textit{Coefficienti} \ \psi \ \textit{per le} \ \textit{azioni variabili per ponti stradali e pedonali}$

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente \psi_0 di combinazione	Coefficiente ψ 1 (valori frequenti)	Coefficiente ψ ₂ (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	Vento a ponte scarico			
77	SLU e SLE	0,6	0,2	0,0
Vento q ₅	Esecuzione	0,8		0,0
	Vento a ponte carico	0,6		
Mana a	SLU e SLE	0,0	0,0	0,0
Neve q ₅	esecuzione	0,8	0,6	0,5
Temperatura	T _k	0,6	0,6	0,5

valori di GEO.

(2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

(3) 1,30 per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

RISULTATI DELLE ANALISI E VERIFICHE

8.1 Risultati del calcolo

Si rimanda agli output di calcolo per la visione completa dei risultati.

8.2 Verifiche micropali

8.2.1 Verifiche strutturali (A1+M1)

La verifiche, tutte ampliamente soddisfatte, sono riporatte in allegato.

8.2.2 Verifiche geotecniche del grado di mobilitazione della spinta passiva (A2+M2)

La sicurezza nei confronti dello stato limite d'equilibrio geotecnico è calcolata confrontando la spinta passiva mobilitata con la spinta passiva disponibile:

Tipo E con 3 tiranti attivi a trefoli:

Verifiche geotecniche (comb A2+M2+R1)

Spinta reale efficace (kN/m)	280.7
Max spinta ammissib (kN/m)	1289.2
c.u.	22%

Tipo E con 4 tiranti attivi a trefoli:

Verifiche geotecniche (comb A2+M2+R1)

Spinta reale efficace (kN/m)	582.4
Max spinta ammissib (kN/m)	1850.4
c.u.	31%

La sicurezza nei confronti della mobilitazione della resistenza limite del terreno è garantita per ogni tipologia di opera provvisionale prevista.

8.2.3 Verifiche SLE

Di seguito si riporta lo spostamento massimo delle paratie calcolato nella fase di raggiungimento del fondo scavo:

Tipo E con 3 tiranti attivi a trefoli:

Verifiche spostamenti (COMB SLE)

	•
H fuori terra (m)	12.50
δsle (mm)	0.9
δsle/H	0.01%

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

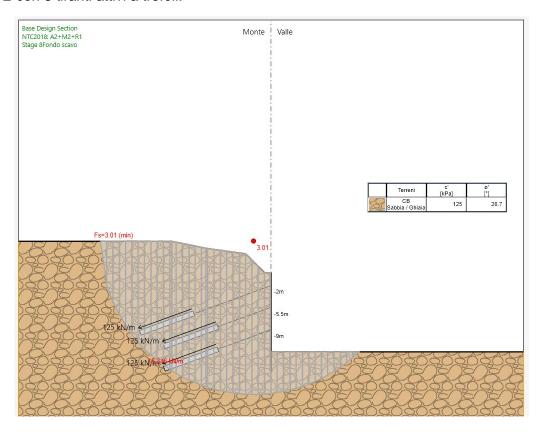
192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

Tipo E con 4 tiranti attivi a trefoli:

Verifiche spostamenti (COMB SLE)

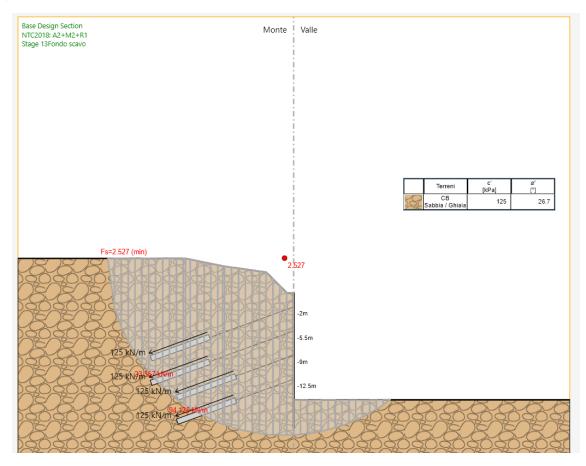

H fuori terra (m)	15.50
δsle (mm)	0.99
δsle/H	0.01%

Il rapporto fra spostamento massimo e altezza totale fuori terra è inferiore all' 2%. Pertanto, tenuto conto dell'assenza di strutture a tergo delle opere e della natura provvisionale delle paratie stesse, si ritiene che i requisiti prestazionali in termini di deformabilità risultino soddisfatti.

8.2.4 Verifiche di stabilità globale

Di seguito si riporta la verifica di stabilità globale del complesso paratia-terreno, calcolato nella fase di raggiungimento del fondo scavo:

Tipo E con 3 tiranti attivi a trefoli:


Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km 192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo – Galleria Artificiale GA03

Tipo E con 4 tiranti attivi a trefoli:

Il fattore di sicurezza associato alla stabilità globale risulta in ogni sezione superiore a **1.10**. Risuta pertanto verificata la stabilità del complesso paratia-terreno.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

8.3 Verifiche degli elementi ancoraggio e contrasto

8.3.1 Verifiche strutturali (A1+M1) e geotecniche (A2+M2) dei tiranti

Tipo E con 3 tiranti attivi a trefoli:

Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (kN)	Sfruttamento GEO	Sfruttamento STR	Resistenza	Design Assumption
T1	Stage 3_Attiv. T1	390	589.05	550.44	0.662	0.709	~	NTC2018: A1+M1+R1
T2	Stage 5_Attiv. T2	390	589.05	550.44	0.662	0.709	~	NTC2018: A1+M1+R1
T3	Stage 7_Attiv. T3	390	589.05	550.44	0.662	0.709	~	NTC2018: A1+M1+R1

Tipo E con 4 tiranti attivi a trefoli:

Т	irante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (kN)	Sfruttamento GEO	Sfruttamento STR	Resistenza	Design Assumption
	T1	Stage 3_Attiv. T1	390	589.05	550.44	0.662	0.709	~	NTC2018: A1+M1+R1
	T2	Stage 5_Attiv. T2	390	589.05	550.44	0.662	0.709	~	NTC2018: A1+M1+R1
	T3	Stage 8_Attiv. T3	390	589.05	550.44	0.662	0.709	~	NTC2018: A1+M1+R1
	T4	Stage 13_Fondo scavo	390.83	589.05	550.44	0.663	0.71	~	NTC2018: A1+M1+R1

Come è possibile evincere dalle precedenti tabelle, tutte le verifiche risultano ampliamente soddisfatte.

8.3.2 Verifiche strutturali travi di contrasto

Ogni ordine di tiranti sarà contrastato tramite due travi HEB180. Di seguito si riportano le verifiche strutturali a flessione e taglio delle suddette travi.

Tipo E con 3 tiranti attivi a trefoli:

Verifiche travi di contrasto

Ntirante (kN/m)	162.50
Med (kNm)	93.60
Ved (kNm)	195.00
Wrd (cm ³)	425.7
Mrd (kNm)	222.99
c.u.	42%
Vrd (kNm)	437.60
c.u.	45%

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

Tipo E con 4 tiranti attivi a trefoli:

Verifiche travi di contrasto

Ntirante (kN/m)	162.92
Med (kNm)	93.84
Ved (kNm)	195.50
Wrd (cm ³)	425.7
Mrd (kNm)	222.99
c.u.	42%
Vrd (kNm)	437.60
c.u.	45%

Come è possibile evincere dalle precedenti tabelle, tutte le verifiche risultano ampliamente soddisfatte.

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

9 ALLEGATI

9.1 Allegato 1 - Paratia tipo E - 4 tiranti attivi

Descrizione della Stratigrafia e degli Strati di Terreno

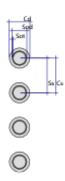
Tipo: HORIZONTAL Quota: 50 m OCR: 1

Strato di Terren	o Terreno							ı Evc	Eur	Ah Av exp Pa Rur/Rvo			
		kN/m ³	kN/m	3 •	۰ ۰ ۱	Pa kPa	1	kPa	kPa	kPa	kPa kN/n	ı³ kN/m³	kN/m ³
1	CB	20.1	20.1	26.7		125	Constant	540000	864000)			

Descrizione Pareti

X:0 m

Quota in alto : 0 m Quota di fondo : -19.6 m Muro di sinistra


Sezione: Micropali fi240 - fi168.3 sp10

Area equivalente : 0.019045141329815 m Inerzia equivalente : 0.0001 m⁴/m Materiale calcestruzzo : C25/30 Tipo sezione : Tangent Spaziatura : 0.4 m

Spaziatura : 0.4 m Diametro : 0.24 m Efficacia : 0.5

Materiale acciaio: S355

Sezione : CHS168.3*10 Tipo sezione : O Spaziatura : 0.4 m Spessore : 0.01 m Diametro : 0.1683 m

Fasi di Calcolo

Stage 1


```
Stage 1
Scavo
```

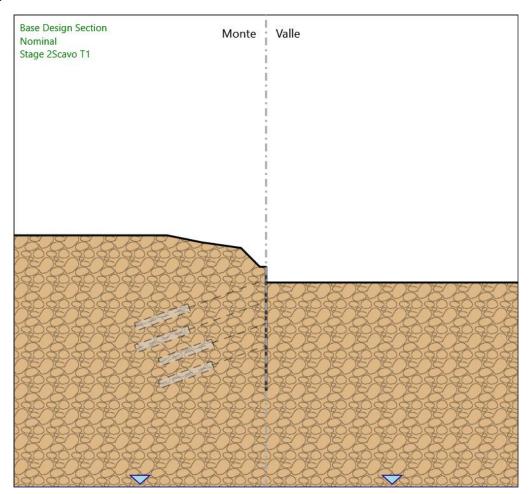
```
Muro di sinistra
Lato monte : 0 m
Lato valle : 0 m

Linea di scavo di sinistra (Irregolare)
(-40;5)
(-15.7;5)
(-10.3;3.9)
(-4;3)
(-1;0)
(0;0)
Linea di scavo di destra (Orizzontale)
0 m
```

Falda acquifera

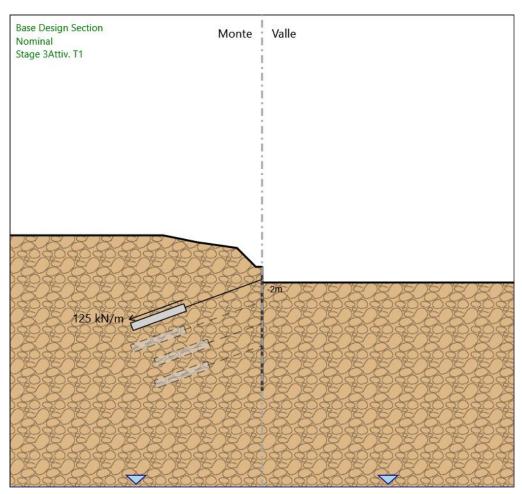
Falda di sinistra : -35 m Falda di destra : -35 m

Elementi strutturali


Paratia : Sx

X:0 m

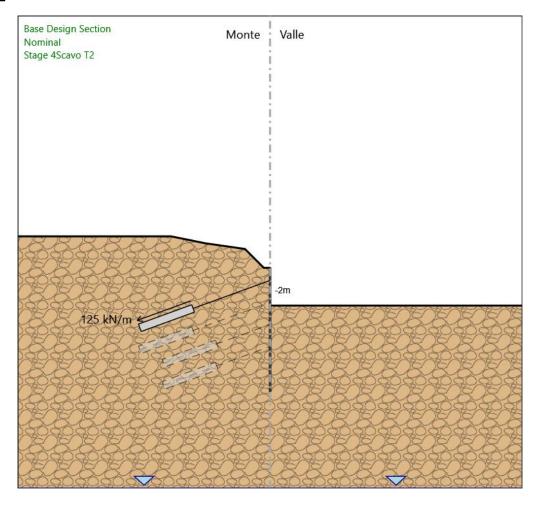
Quota in alto : 0 m Quota di fondo : -19.6 m


Sezione: Micropali fi240 - fi168.3 sp10

Stage 2_Scavo T1


```
Stage 2_Scavo T1
Scavo
           Muro di sinistra
                       Lato monte : 0 m
                      Lato valle : -2.5 m
                      Linea di scavo di sinistra (Irregolare)
                                  (-40;5)
                                  (-15.7;5)
(-10.3;3.9)
                                  (-4;3)
                                  (-1;0)
                                  (0;0)
                      Linea di scavo di destra (Orizzontale)
Falda acquifera
           Falda di sinistra : -35 m
           Falda di destra : -35 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                      Quota in alto : 0 m
                       Quota di fondo : -19.6 m
                      Sezione : Micropali fi240 - fi168.3 sp10
```

Stage 3_Attiv. T1




```
Stage 3_Attiv. T1
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -2.5 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-40;5)
                                 (-15.7;5)
                                 (-10.3;3.9)
                                 (-4;3)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
Falda acquifera
           Falda di sinistra : -35 m
           Falda di destra: -35 m
Elementi strutturali
           Paratia : Sx
                      Quota in alto : 0 m
                      Quota di fondo : -19.6 m
                      Sezione : Micropali fi240 - fi168.3 sp10
           Tirante: T1
                      X:0 m
                      Z : -2 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo: 0.15 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale: 2.4 m
```

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

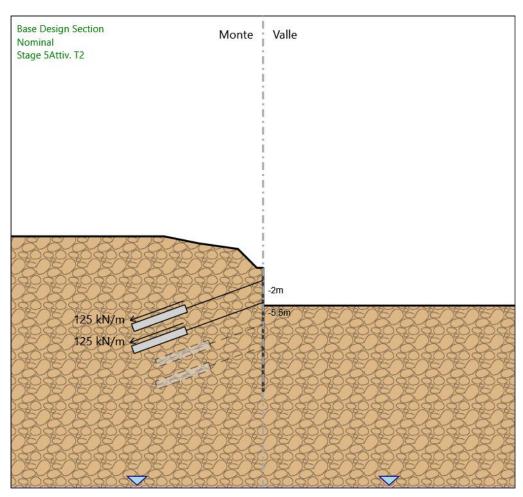
Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 4_Scavo T2


```
Stage 4_Scavo T2
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -6 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-40;5)
                                 (-15.7;5)
                                 (-10.3;3.9)
                                 (-4;3)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
Falda acquifera
           Falda di sinistra : -35 m
           Falda di destra: -35 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                      Quota in alto: 0 m
```

Quota di fondo : -19.6 m

Sezione : Micropali fi240 - fi168.3 sp10


Tirante : T1 $X:0\ m \\ Z:-2\ m$

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 5_Attiv. T2

Stage 5_Attiv. T2 Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -6 m

Linea di scavo di sinistra (Irregolare)

(-40;5) (-15.7;5) (-10.3;3.9) (-4;3) (-1;0)

```
(0;0)
```

Linea di scavo di destra (Orizzontale)

-6 m

Falda acquifera

Falda di sinistra : -35 m Falda di destra : -35 m

Elementi strutturali

Paratia : Sx

X:0 m

Quota in alto : 0 m Quota di fondo : -19.6 m

Sezione: Micropali fi240 - fi168.3 sp10

Tirante : T1

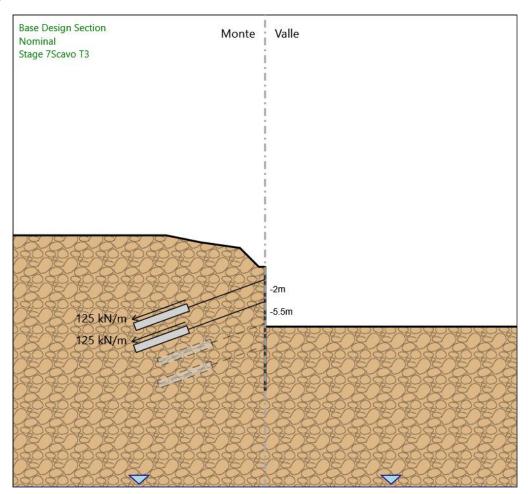
X:0 m Z:-2 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T2


X : 0 m Z : -5.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m Precarico : 300 kN

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

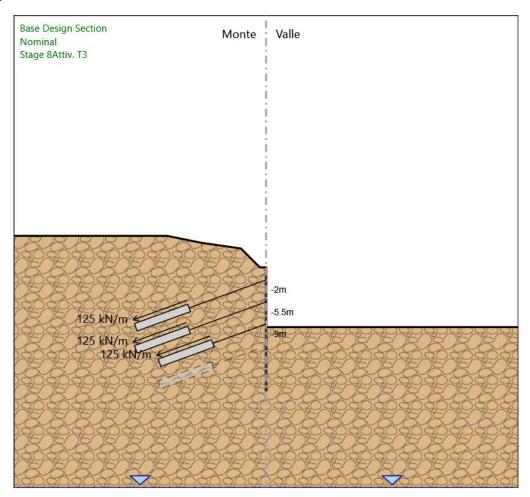
Stage 7_Scavo T3


```
Stage 7_Scavo T3
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -9.5 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-40;5)
                                 (-15.7;5)
                                 (-10.3;3.9)
                                 (-4;3)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
                                 -9.5 m
Falda acquifera
           Falda di sinistra : -35 m
           Falda di destra: -35 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -19.6 m
                      Sezione : Micropali fi240 - fi168.3 sp10
           Tirante: T1
                      X:0 m
                      Z : -2 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo: 0.15 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale: 2.4 m
```

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T2


X:0 m Z:-5.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

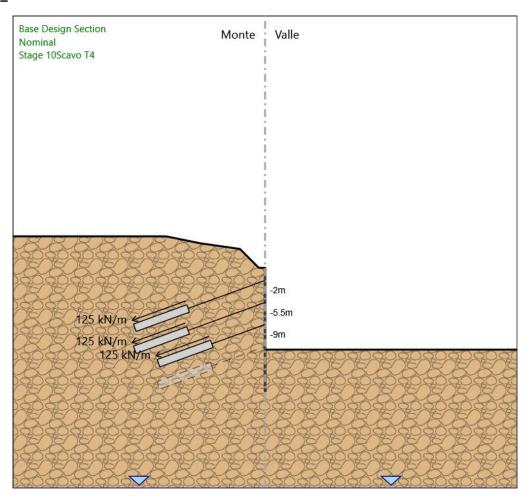
Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 8_Attiv. T3

Stage 8_Attiv. T3 Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -9.5 m


Linea di scavo di sinistra (Irregolare)

(-40;5) (-15.7;5) (-10.3;3.9)

```
(-4;3)
                                (-1;0)
                                (0;0)
                     Linea di scavo di destra (Orizzontale)
                                -9.5 m
Falda acquifera
          Falda di sinistra : -35 m
          Falda di destra : -35 m
Elementi strutturali
          Paratia : Sx
                     X:0 m
                     Quota in alto: 0 m
                     Quota di fondo : -19.6 m
                     Sezione: Micropali fi240 - fi168.3 sp10
          Tirante: T1
                     X:0 m
                     Z:-2 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo : 0.15 m
                     Lunghezza libera: 13 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico: 300 kN
                     Angolo : 20 °
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre: 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
          Tirante : T2
                     X:0 m
                     Z:-5.5 m
                     Lunghezza bulbo: 9 m
                     Diametro bulbo : 0.15 m
                     Lunghezza libera : 13 m
                     Spaziatura orizzontale : 2.4 m
                     Precarico: 300 kN
                     Angolo : 20 °
                     Sezione: 3 trefoli
                                Tipo di barre : Barre trefoli
                                Numero di barre: 3
                                Diametro: 0.01331 m
                                Area: 0.000417 m^2
          Tirante: T3
                     X:0 m
                     Z:-9 m
                     Lunghezza bulbo : 9 m
                     Diametro bulbo: 0.15 m
                     Lunghezza libera: 9 m
                     Spaziatura orizzontale: 2.4 m
                     Precarico : 300 kN
                     Angolo: 20°
                     Sezione : 3 trefoli
                                Tipo di barre : Barre trefoli
```

Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 10_Scavo T4


```
Stage 10_Scavo T4
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -13 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-40;5)
                                 (-15.7;5)
                                 (-10.3;3.9)
                                 (-4;3)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
Falda acquifera
           Falda di sinistra : -35 m
           Falda di destra: -35 m
Elementi strutturali
           Paratia : Sx
                      Quota in alto : 0 m
                      Quota di fondo : -19.6 m
                      Sezione : Micropali fi240 - fi168.3 sp10
           Tirante: T1
                      X:0 m
                      Z : -2 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo: 0.15 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale: 2.4 m
```

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T2

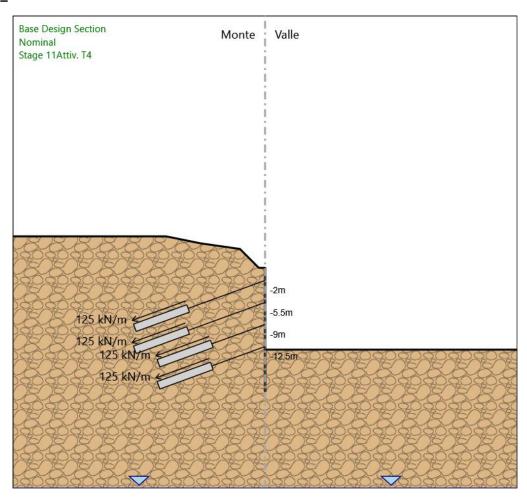
X : 0 m Z : -5.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3


X:0 m Z:-9 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 11_Attiv. T4


```
Stage 11_Attiv. T4
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -13 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-40;5)
                                 (-15.7;5)
                                 (-10.3;3.9)
                                 (-4;3)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
Falda acquifera
           Falda di sinistra : -35 m
           Falda di destra: -35 m
Elementi strutturali
           Paratia : Sx
                      Quota in alto : 0 m
                      Quota di fondo : -19.6 m
                      Sezione : Micropali fi240 - fi168.3 sp10
           Tirante: T1
                      X:0 m
                      Z : -2 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo: 0.15 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale: 2.4 m
```

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T2

X : 0 m Z : -5.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3

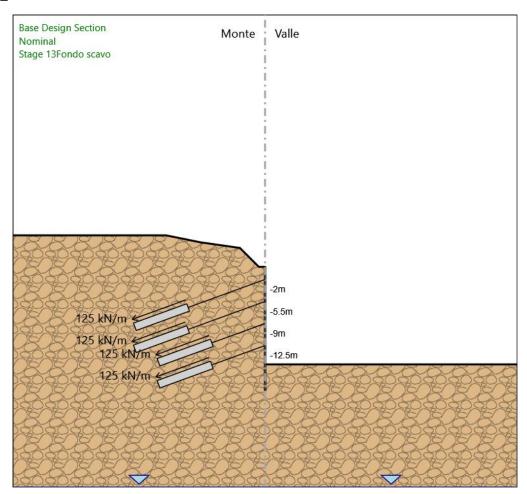
X:0 m Z:-9 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

> Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T4


X:0 m Z:-12.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 13_Fondo scavo


```
Stage 13_Fondo scavo
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -15.5 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-40;5)
                                 (-15.7;5)
                                 (-10.3;3.9)
                                 (-4;3)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
Falda acquifera
           Falda di sinistra : -35 m
           Falda di destra: -35 m
Elementi strutturali
           Paratia : Sx
                      Quota in alto : 0 m
                      Quota di fondo : -19.6 m
                      Sezione : Micropali fi240 - fi168.3 sp10
           Tirante: T1
                      X:0 m
                      Z : -2 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo: 0.15 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale: 2.4 m
```

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T2

X : 0 m Z : -5.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3

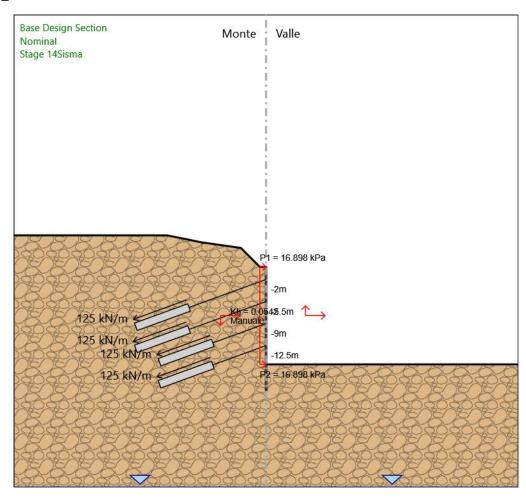
X:0 m Z:-9 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T4


X:0 m Z:-12.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 14_Sisma


```
Stage 14_Sisma
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -15.5 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-40;5)
                                 (-15.7;5)
                                 (-10.3;3.9)
                                 (-4;3)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
                                 -15.5 m
Falda acquifera
           Falda di sinistra : -35 m
           Falda di destra: -35 m
Elementi strutturali
           Paratia : Sx
                      Quota in alto : 0 m
                      Quota di fondo : -19.6 m
                      Sezione : Micropali fi240 - fi168.3 sp10
           Tirante: T1
                      X:0 m
                      Z:-2 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo: 0.15 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale: 2.4 m
```

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T2

X : 0 m Z : -5.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

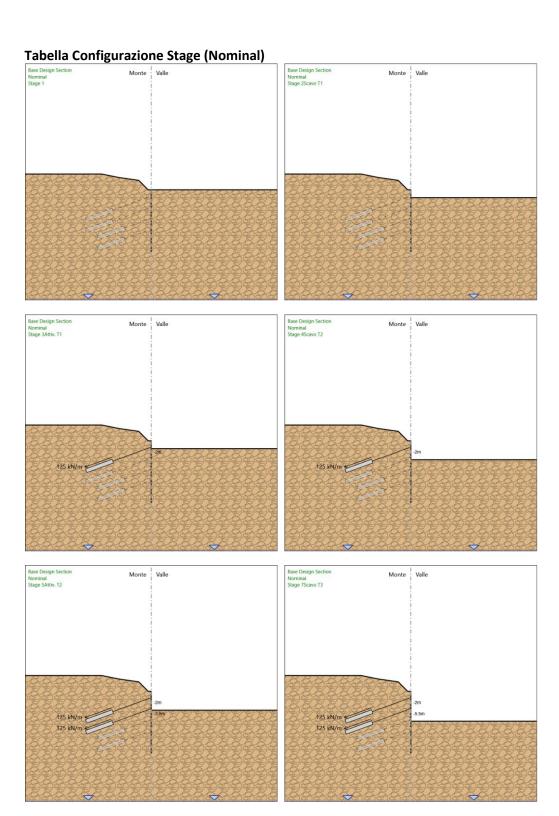
Tirante: T3

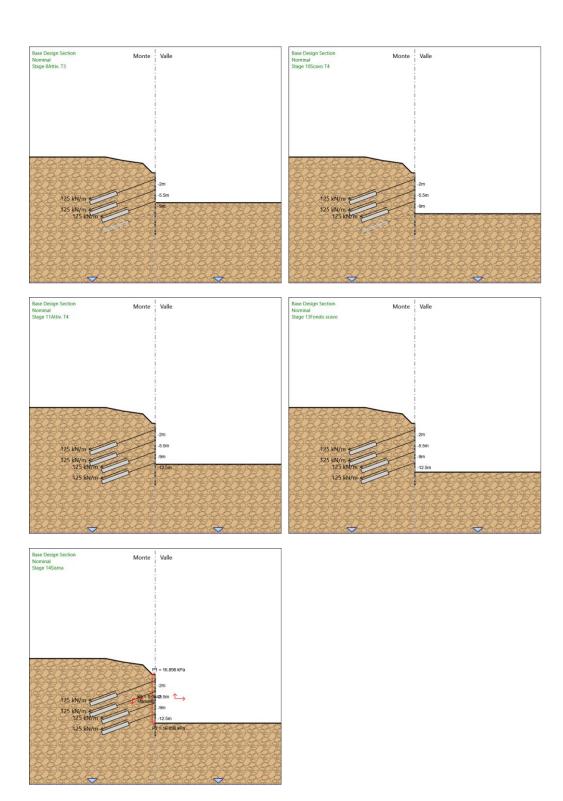
X:0 m Z:-9 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2


Tirante : T4


X:0 m Z:-12.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Descrizione Coefficienti Design Assumption

Nome			bili Sfavorevoli (F_live_load_u		Carico Si- smico (F_seism_lo d)	sioni a Acqua Lato Mont e (F_Wa	sioni Acqua Lato Valle (F_Wa	nenti Destabi- lizzanti (F_UPL_GDSta b)	manenti Sta- bilizzanti	bili Destabiliz- zanti	Carichi Perma- nenti Destabi- lizzanti (F_HYD_GDSta b)	manenti Sta- bilizzanti	
Simbolo	γG	γG	γQ	γQ	γQE	γĠ	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018:	1	1	1	1	0	1	1	1	1	1	1	1	1
SLE													
(Rara/Fre-													
quente/Qua													
si Perma-													
nente)													
NTC2018:	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
A1+M1+R1													
(R3 per ti-													
ranti)	_	_		_	_			_		_			_
NTC2018:	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
A2+M2+R1 NTC2018:	1	1	1	1	1	1	1	1	1	1	1	1	1
SISMICA	1	1	1	1	1	1	1	1	1	1	1	1	1
STR													
NTC2018:	1	1	1	1	1	1	1	1	1	1	1.3	0.9	1
SISMICA	-	-	-	-	-	-	-	-	-	-	1.5	0.5	-
GEO													
	Nome		Parziale su	ı tan(ø') (F_Fr) P	arziale su c'	(F_eff_c	ohe) Pa	arziale su Su (F_	Su) Parziale s	u qu (F_qu) Parz	ziale su peso spe	cifico (F_gamı	ma)
	Simbolo			γф	γ			γcu	γ	qu	YY		
	Nominal			1	1			1		1	1		
	E (Rara/Frequent		ente)	1	1			1		1	1		
NTC2	.018: A1+M1+R1 (1	1			1		1	1		
	NTC2018: A2+N			1.25	1.7			1.4		1	1		
	NTC2018: SISMI			1	1			1		1	1		
	NTC2018: SISMI	CA GEO		1	1	L		1		1	1		

Nome	Parziale resistenza terreno (es. Kp) (F_Soil_Res_walls)	Parziale resistenza Tiranti permanenti (F_Anch_P)	Parziale resistenza Tiranti temporanei (F_Anch_T)	Parziale elementi strutturali (F_wall)
Simbolo	γRe	үар	γat	
Nominal	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi Permanente)	1	1	1	1
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1.2	1.1	1
NTC2018: A2+M2+R1	1	1.2	1.1	1
NTC2018: SISMICA STR	1	1.2	1.1	1
NTC2018: SISMICA GEO	1	1.2	1.1	1

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage Stage	2_Scavo	Stage 3_At-	Stage 4_Scavo	Stage 5_At-	Stage 7_Scavo	Stage 8_At-	Stage 10_Scavo	Stage 11_At-	Stage 13_Fondo	Stage 14_Si-
	1	T1	tiv. T1	T2	tiv. T2	Т3	tiv. T3	T4	tiv. T4	scavo	sma
NTC2018: SLE (Rara/Frequente/Quasi Permanente) NTC2018: A1+M1+R1 (R3 per tiranti) NTC2018: A2+M2+R1 NTC2018: SISMICA STR NTC2018: SISMICA STR	V	V	V	٧	V	٧	V	V	V	V	V

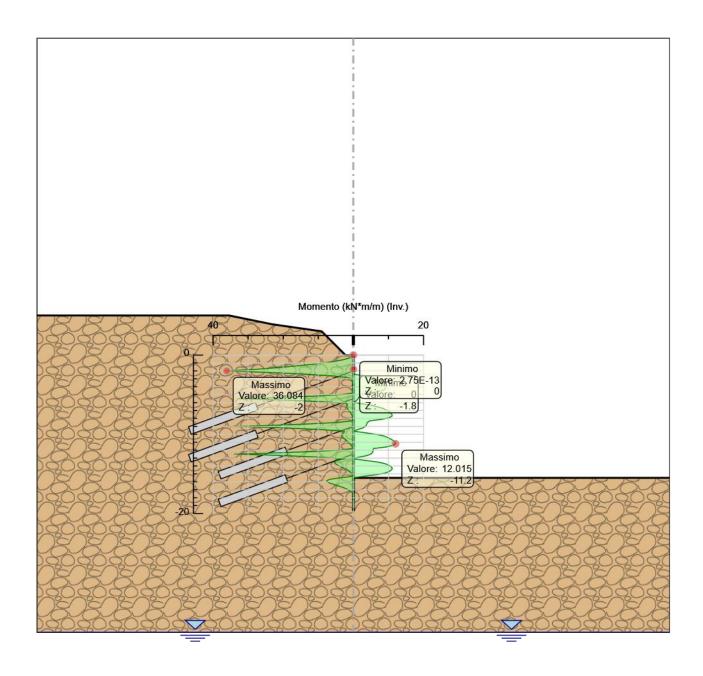

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Tabella Inviluppi Momento Sx

Tabella Inviluppi	Momento	Sx
Selected Design Assumptions		
Z (m) I	0	m) Lato destro (kN*m/m 0
-0.2	0.347	0
-0.4 -0.6	1.384 3.111	0
-0.8	5.526	0
-1	8.625	0
-1.2 -1.4	12.408 16.875	0
-1.6	22.022	0
-1.8	27.978	0
-2 -2.2	36.084 23.509	0
-2.4	13.914	0
-2.6	6.909	2.891
-2.8 -3	1.855 0.501	5.819 6.53
-3.2	0.393	6.291
-3.4	0.27	7.251
-3.6 -3.8	0.164 0.086	8.71 9.394
-4	0.035	9.32
-4.2	0.024	9.115
-4.4 -4.6	0.243 0.296	8.789 7.321
-4.8	0.263	4.108
-5 5.2	3.695	2.013
-5.2 -5.4	12.204 24.294	1.738 1.462
-5.5	31.623	1.324
-5.7	18.315	0.994
-5.9 -6.1	8.556 1.812	0.303 1.515
-6.3	1.729	4.937
-6.5	1.893	6.621
-6.7 -6.9	1.746 1.442	8.294 9.275
-7.1	1.092	10.086
-7.3	0.762	10.584
-7.5 -7.7	0.488 0.28	11.047 11.041
-7.9	0.135	10.249
-8.1 -8.3	0.116 0.266	8.274 4.647
-8.5	4.362	4.028
-8.7	13.271	3.826
-8.9 -9	25.376 32.687	3.623 3.424
-9.2	19.329	2.718
-9.4	9.468	1.274
-9.6 -9.8	2.572 2.717	0.065 3.328
-10	3.308	6.571
-10.2	3.315	8.587
-10.4 -10.6	2.971 2.457	9.817 10.662
-10.8	1.899	11.44
-11	1.377	11.97
-11.2 -11.4	0.931 0.58	12.015 11.263
-11.6	0.322	9.324
-11.8 -12	0.145 4.191	5.741 5.638
-12.2	13.207	5.562
-12.4	25.277	5.3
-12.5 -12.7	32.561 19.072	4.971 3.769
-12.9	8.829	1.4
-13.1	2.621	0.02
-13.3 -13.5	4.712 5.388	3.648 6.948
-13.7	5.158	8.972
-13.9	4.432	10.135
-14.1 -14.3	3.506 2.577	10.797 11.132
-14.5	1.757	10.835
-14.7	1.096	10.258
-14.9 -15.1	0.603 0.265	8.99 6.661
-15.3	0.167	2.787
-15.5	3.925	0.061
-15.7 -15.9	6.906 7.639	0.109 0.114
-16.1	7.024	0.095
-16.3	5.751	0.066
-16.5 -16.7	4.324 3.011	0.035 0.007
-16.9	1.907	0
-17.1	1.067	0
-17.3 -17.5	0.482 0.115	0 0
-17.7	0.045	0.15

Selected Design Assumptions	Inviluppi: Momento	Muro: Sx
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/m)
-17.9	0.043	0.22
-18.1	0.039	0.219
-18.3	0.034	0.181
-18.5	0.028	0.131
-18.7	0.022	0.083
-18.9	0.015	0.045
-19.1	0.009	0.019
-19.3	0.004	0.005
-19.5	0.001	0
-19.6	0	0

Grafico Inviluppi Momento

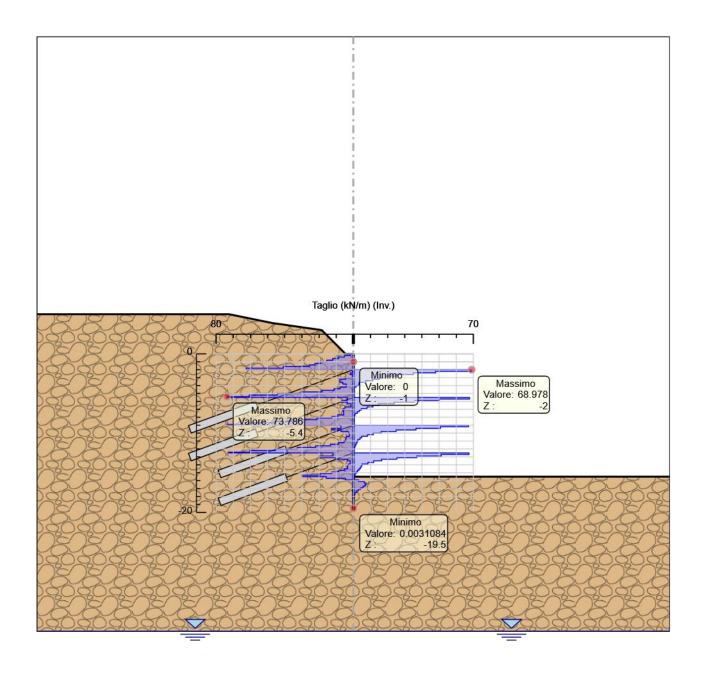

Momento

Tabella Inviluppi Taglio Sx

Tabella Invilup	pi Taglio Sx	
Selected Design Assumption Z (m)	ns Inviluppi: Taglio Lato sinistro (kN/m) La	Muro: Sx
0	1.733	0
-0.2	5.189	0
-0.4 -0.6	8.635 12.071	0 0
-0.8	15.497	0
-1 -1.2	18.918 22.333	0 0
-1.4	25.736	0
-1.6 -1.8	40.804	0
-1.6 -2	62.527 62.527	0 68.978
-2.2	0.348	68.978
-2.4 -2.6	1.77 1.77	47.973 35.023
-2.8	0.578	25.274
-3	4.499	19.094
-3.2 -3.4	7.809 7.809	15.194 11.238
-3.6	7.751	7.298
-3.8 -4	6.15 4.161	3.421 3.139
-4.2	7.684	1.657
-4.4 -4.6	11.221 18.324	0.063 0.169
-4.8	30.163	0.103
-5 5.0	44.361	0.349
-5.2 -5.4	60.709 73.786	0.349 0.284
-5.5	73.786	67.812
-5.7 -5.9	3.458 6.799	67.812 50.206
-6.1	6.799	35.717
-6.3	3.358	23.781
-6.5 -6.7	1.411 4.931	14.801 11.393
-6.9	6.104	7.985
-7.1 -7.3	6.104 5.857	4.578 3.463
-7.5	5.63	2.313
-7.7 -7.9	9.029	1.04 0.722
-8.1	12.573 21.239	0.722
-8.3	32.287	0.25
-8.5 -8.7	45.645 60.826	0.108 0.234
-8.9	73.649	0.276
-9 -9.2	73.649 7.22	67.148 67.148
-9.4	12.71	50.82
-9.6	12.71	36.555
-9.8 -10	7.241 2.958	24.975 16.244
-10.2	2.345	11.676
-10.4 -10.6	3.978 4.429	8.279 4.883
-10.8	4.429	3.887
-11 -11.2	5.306 8.702	2.651 2.225
-11.4	13.325	1.756
-11.6 -11.8	21.95 32.734	1.292 0.882
-12	45.442	0.55
-12.2 -12.4	60.348 72.846	0.3 0.126
-12.4	72.846	67.445
-12.7	11.845	67.445
-12.9 -13.1	20.105 20.105	51.217 36.999
-13.3	10.452	25.387
-13.5 -13.7	3.383 1.865	16.498 11.893
-13.9	3.084	8.488
-14.1 -14.3	3.356 3.356	5.083 4.645
-14.5	5.124	4.102
-14.7 14.0	8.524	3.306
-14.9 -15.1	12.518 19.373	2.461 1.691
-15.3	29.929	1.056
-15.5 -15.7	29.929 15.76	0.575 0.239
-15.9	4.644	3.076
-16.1 -16.3	0.147 0.155	6.364 7.298
-16.5	0.155	7.298
-16.7 -16.9	0.138	6.815 5.624
-16.9 -17.1	0.109 0.077	4.213
-17.3	0.047	2.922
-17.5 -17.7	0.023 0.004	1.835 1.003
-17.9	0.005	0.423
-18.1 -18.3	0.187 0.251	0.06 0.029
20.0	0.251	5.525

Selected Design Assumptions	Inviluppi: Taglio	Muro: Sx
Z (m)	Lato sinistro (kN/m)	Lato destro (kN/m)
-18.5	0.251	0.031
-18.7	0.241	0.032
-18.9	0.193	0.032
-19.1	0.13	0.031
-19.3	0.069	0.026
-19.5	0.022	0.017
-19.6	0.003	0.005

Grafico Inviluppi Taglio

Taglio

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva	
				%	
NTC2018: A1+M1+R1 (R3 per tiranti)	Stage 1	Left Wall	LEFT	5.81	
NTC2018: SISMICA STR	Stage 14 Sisma	Left Wall	RIGHT	17.63	

Inviluppo Spinta Reale Efficace / Spinta Attiva

Design Assumption	Stage	Muro	Lato Inviluppo Spinta Reale Efficace / Spinta Attiva	a
			%	ı
NTC2018: SISMICA STR Sta	age 14_Sisn	na Left Wall	ILEFT 2138.15	

Normative adottate per le verifiche degli Elementi Strutturali

Normative Verifich	ne	
Calcestruzzo	NTC	
Acciaio	NTC	
Tirante	NTC	
Coefficienti per Ve	rifica Tir	anti
GEO FS	5	1
ξa3		1.8
γs		1.1

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage Stage	2_Scavo T1	Stage 3_At- tiv. T1	Stage 4_Scavo T2	Stage 5_At- tiv. T2	Stage 7_Scavo T3	Stage 8_At- tiv. T3	Stage 10_Scavo T4	Stage 11_At- tiv. T4	Stage 13_Fondo scavo	Stage 14_Si- sma
NTC2018: SLE (Rara/Frequente/Quasi Permanente) NTC2018: A1+M1+R1 (R3 per tiranti)		v	V	V	V	V	V	V	V	V	
NTC2018: A2+M2+R1 NTC2018: SISMICA STR NTC2018: SISMICA GEO	·	v	·	·	·	•	·	·	•	·	V

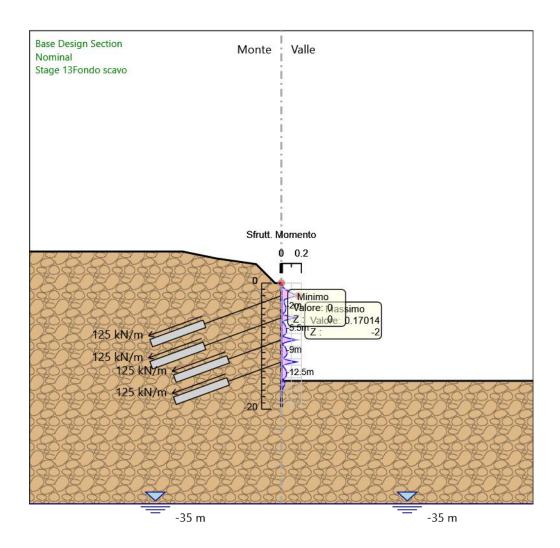

Risultati SteelWorld

Tabella Inviluppi Tasso di Sfruttamento a Momento - SteelWorld : LEFT

Inviluppi Tasso di Sfruttamento a Momento - SteelWo	orld LEFT
Z (m)	Tasso di Sfruttamento a Momento - SteelWorld
0	0
-0.2	0.002
-0.4	0.007
-0.6	0.015
-0.8	0.026
-1	0.041
-1.2	0.059
-1.4	0.08
-1.6	0.104
-1.8	0.132
-2	0.17
-2.2	0.111
-2.4	0.066
-2.6	0.033
-2.8	0.027
-3	0.031
-3.2	0.03
-3.4	0.034
-3.6	0.041
-3.8	0.044
-4	0.044
-4.2	0.043
-4.4	0.041
-4.6	0.035
-4.8	0.019
-5	0.017
-5.2	0.058
-5.4	0.115
-5.5	0.149
-5.7	0.086
-5.9	0.04
-6.1	0.009
-6.3	0.023
-6.5	0.025
-6.7	0.039
-6.9	0.044
-7.1	0.044
-7.3	0.05
-7.5 -7.5	0.052
-7.5 -7.7	0.052
-7.7 -7.9	0.032
-8.1	0.039
-8.3 8.5	0.022
-8.5	0.021
-8.7	0.063
-8.9	0.12
-9	0.154
-9.2	0.091

Inviluppi Tasso di Sfruttamento a Momento - SteelWor	
Z (m)	Tasso di Sfruttamento a Momento - SteelWorld
-9.4	0.045
-9.6	0.012
-9.8	0.016
-10	0.031
-10.2	0.04
-10.4	0.046
-10.6	0.05
-10.8	0.054
-11	0.056
-11.2	0.057
-11.4	0.053
-11.6	0.044
-11.8	0.027
-12	0.027
-12.2	0.062
-12.4	0.119
-12.5	0.154
-12.7	0.09
-12.9	0.042
-13.1	0.012
-13.3	0.022
-13.5	0.033
-13.7	0.042
-13.9	0.048
-14.1	0.051
-14.3	0.052
-14.5	0.051
-14.7	0.048
-14.9	0.042
-15.1	0.031
-15.3	0.013
-15.5	0.019
-15.7	0.033
-15.9	0.036
-16.1	0.033
-16.3	0.027
-16.5 -16.7	0.02 0.014
-16.7	
-16.9 -17.1	0.009 0.005
-17.1	0.003
-17.5	0.002
-17.3 -17.7	0.001
-17.7	0.001
-17.9 -18.1	0.001
-18.1 -18.3	0.001
-16.5 -18.5	0.001
-18.5 -18.7	0.001
-18.7 -18.9	0
-18.9 -19.1	0
-19.1 -19.3	0
-19.5 -19.5	0
-19.6	0
-15.0	Ü

Grafico Inviluppi Tasso di Sfruttamento a Momento - SteelWorld

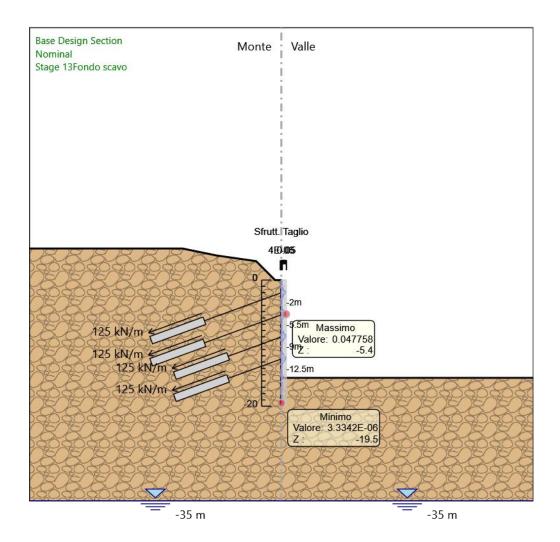

Inviluppi Tasso di Sfruttamento a Momento - SteelWorld

Tabella Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld: LEFT

rabena mirnappi rasso ai siratt	annemed a ragno	500011101
Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld	l LEFT	
Z (m)	Tasso di Sfruttamento a Ta	glio - SteelWorld
0	0.001	
-0.2	0.003	
-0.4	0.006	
-0.6	0.008	
-0.8	0.01	
-1	0.012	
-1.2	0.014	
-1.4	0.017	
-1.6	0.026	
-1.8	0.04	
-2	0.045	
-2.2	0.031	
-2.4	0.023	
-2.6	0.016	
-2.8	0.012	
-3	0.01	
-3.2	0.007	
-3.4	0.005	
-3.6	0.004	
-3.8	0.003	
-4	0.003	
-4.2	0.005	
-4.4	0.007	
-4.6	0.012	
-4.8	0.02	
-5	0.029	
-5.2	0.039	
-5.4	0.048	
-5.5	0.044	

Inviluppi Tasso di Sfruttamento a Taglio	
Z (m) -5.7	Tasso di Sfruttamento a Taglio - SteelWorld 0.032
-5.7 -5.9	0.032
-6.1	0.015
-6.3	0.01
-6.5	0.007
-6.7	0.005
-6.9	0.004
-7.1 7.2	0.004
-7.3 -7.5	0.003 0.004
-7.5 -7.7	0.006
-7.9	0.008
-8.1	0.014
-8.3	0.021
-8.5	0.03
-8.7	0.039
-8.9 -9	0.048 0.043
-9.2	0.033
-9.4	0.024
-9.6	0.016
-9.8	0.011
-10	0.008
-10.2	0.005
-10.4	0.003
-10.6 -10.8	0.003 0.003
-10.8	0.003
-11.2	0.006
-11.4	0.009
-11.6	0.014
-11.8	0.021
-12	0.029
-12.2	0.039
-12.4 13.5	0.047
-12.5 -12.7	0.044 0.033
-12.9	0.024
-13.1	0.016
-13.3	0.011
-13.5	0.008
-13.7	0.005
-13.9	0.003
-14.1	0.003
-14.3 -14.5	0.003 0.003
-14.7	0.006
-14.9	0.008
-15.1	0.013
-15.3	0.019
-15.5	0.01
-15.7	0.003
-15.9 -16.1	0.002 0.004
-16.3	0.005
-16.5	0.004
-16.7	0.004
-16.9	0.003
-17.1	0.002
-17.3	0.001
-17.5 -17.7	0.001 0
-17.7	0
-18.1	0
-18.3	0
-18.5	0
-18.7	0
-18.9	0
-19.1	0
-19.3 -19.5	0 0
-19.5 -19.6	0
	-

Grafico Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld

Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld

Verifiche Tiranti NTC2018: SLE (Rara/Frequente/Quasi Permanente)

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permanente)	Tipo Risultato: Verifiche Tiranti				NTC2018 (ITA)			I
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
	•	(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	1166.316	550.44	0.257	0.545		NO
T1	Stage 4_Scavo T2	299.973	1166.316	550.44	0.257	0.545		NO
T1	Stage 5_Attiv. T2	299.995	1166.316	550.44	0.257	0.545		NO
T1	Stage 7_Scavo T3	299.998	1166.316	550.44	0.257	0.545		NO
T1	Stage 8_Attiv. T3	299.998	1166.316	550.44	0.257	0.545		NO
T1	Stage 10_Scavo T4	299.998	1166.316	550.44	0.257	0.545		NO
T1	Stage 11_Attiv. T4	299.998	1166.316	550.44	0.257	0.545		NO
T1	Stage 13_Fondo scavo	299.998	1166.316	550.44	0.257	0.545		NO
T1	Stage 14_Sisma	299.998	1166.316	550.44	0.257	0.545		NO
T2	Stage 5_Attiv. T2	300	1166.316	550.44	0.257	0.545		NO
T2	Stage 7_Scavo T3	300.074	1166.316	550.44	0.257	0.545		NO
T2	Stage 8_Attiv. T3	300.131	1166.316	550.44	0.257	0.545		NO
T2	Stage 10_Scavo T4	300.134	1166.316	550.44	0.257	0.545		NO
T2	Stage 11_Attiv. T4	300.133	1166.316	550.44	0.257	0.545		NO
T2	Stage 13_Fondo scavo	300.133	1166.316	550.44	0.257	0.545		NO
T2	Stage 14_Sisma	300.133	1166.316	550.44	0.257	0.545		NO
T3	Stage 8_Attiv. T3	300	1166.316	550.44	0.257	0.545		NO
T3	Stage 10_Scavo T4	300.328	1166.316	550.44	0.258	0.546		NO
T3	Stage 11_Attiv. T4	300.405	1166.316	550.44	0.258	0.546		NO
T3	Stage 13_Fondo scavo	300.408	1166.316	550.44	0.258	0.546		NO
T3	Stage 14_Sisma	300.408	1166.316	550.44	0.258	0.546		NO
T4	Stage 11_Attiv. T4	300	1166.316	550.44	0.257	0.545		NO
T4	Stage 13_Fondo scavo	300.638	1166.316	550.44	0.258	0.546		NO
T4	Stage 14_Sisma	300.638	1166.316	550.44	0.258	0.546		NO

Verifiche Tiranti NTC2018: A1+M1+R1 (R3 per tiranti)

esign Assumption: NTC2018: A1+M1+R1 (R3 per	•				NTC2018			
tiranti)	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	390	589.049	550.44	0.662	0.709		NO
T1	Stage 4_Scavo T2	389.964	589.049	550.44	0.662	0.708		NO
T1	Stage 5_Attiv. T2	389.993	589.049	550.44	0.662	0.709		NO
T1	Stage 7_Scavo T3	389.997	589.049	550.44	0.662	0.709		NO
T1	Stage 8_Attiv. T3	389.997	589.049	550.44	0.662	0.709		NO
T1	Stage 10_Scavo T4	389.997	589.049	550.44	0.662	0.709		NO
T1	Stage 11_Attiv. T4	389.997	589.049	550.44	0.662	0.709		NO
T1	Stage 13_Fondo scavo	389.997	589.049	550.44	0.662	0.709		NO
T1	Stage 14_Sisma	389.997	589.049	550.44	0.662	0.709		NO
T2	Stage 5_Attiv. T2	390	589.049	550.44	0.662	0.709		NO
T2	Stage 7_Scavo T3	390.096	589.049	550.44	0.662	0.709		NO
T2	Stage 8_Attiv. T3	390.17	589.049	550.44	0.662	0.709		NO
T2	Stage 10_Scavo T4	390.174	589.049	550.44	0.662	0.709		NO
T2	Stage 11_Attiv. T4	390.173	589.049	550.44	0.662	0.709		NO
T2	Stage 13_Fondo scavo	390.173	589.049	550.44	0.662	0.709		NO
T2	Stage 14_Sisma	390.173	589.049	550.44	0.662	0.709		NO
T3	Stage 8_Attiv. T3	390	589.049	550.44	0.662	0.709		NO
T3	Stage 10_Scavo T4	390.426	589.049	550.44	0.663	0.709		NO
T3	Stage 11_Attiv. T4	390.527	589.049	550.44	0.663	0.709		NO
T3	Stage 13_Fondo scavo	390.531	589.049	550.44	0.663	0.709		NO
T3	Stage 14_Sisma	390.531	589.049	550.44	0.663	0.709		NO
T4	Stage 11_Attiv. T4	390	589.049	550.44	0.662	0.709		NO
T4	Stage 13_Fondo scavo	390.83	589.049	550.44	0.663	0.71		NO
T4	Stage 14 Sisma	390.83	589.049	550.44	0.663	0.71		NO

Verifiche Tiranti NTC2018: A2+M2+R1

Design Assumption: NTC2018:	Tipo Risultato: Verifiche Ti-				NTC2018			
A2+M2+R1	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Scavo T2	299.971	589.049	550.44	0.509	0.545		NO
T1	Stage 5_Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T1	Stage 7_Scavo T3	300.003	589.049	550.44	0.509	0.545		NO
T1	Stage 8_Attiv. T3	300.003	589.049	550.44	0.509	0.545		NO
T1	Stage 10_Scavo T4	300.002	589.049	550.44	0.509	0.545		NO
T1	Stage 11_Attiv. T4	300.002	589.049	550.44	0.509	0.545		NO
T1	Stage 13_Fondo scavo	300.002	589.049	550.44	0.509	0.545		NO
T1	Stage 14_Sisma	300.002	589.049	550.44	0.509	0.545		NO
T2	Stage 5_Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T2	Stage 7_Scavo T3	300.092	589.049	550.44	0.509	0.545		NO
T2	Stage 8_Attiv. T3	300.16	589.049	550.44	0.51	0.545		NO
T2	Stage 10_Scavo T4	300.167	589.049	550.44	0.51	0.545		NO
T2	Stage 11_Attiv. T4	300.166	589.049	550.44	0.51	0.545		NO
T2	Stage 13_Fondo scavo	300.165	589.049	550.44	0.51	0.545		NO
T2	Stage 14 Sisma	300.165	589.049	550.44	0.51	0.545		NO
T3	Stage 8_Attiv. T3	300	589.049	550.44	0.509	0.545		NO
T3	Stage 10 Scavo T4	300.342	589.049	550.44	0.51	0.546		NO
T3	Stage 11_Attiv. T4	300.438	589.049	550.44	0.51	0.546		NO
T3	Stage 13_Fondo scavo	300.375	589.049	550.44	0.51	0.546		NO
T3	Stage 14_Sisma	300.375	589.049	550.44	0.51	0.546		NO
T4	Stage 11_Attiv. T4	300	589.049	550.44	0.509	0.545		NO
T4	Stage 13_Fondo scavo	308.694	589.049	550.44	0.524	0.561		NO
T4	Stage 14 Sisma	308.694	589.049	550.44	0.524	0.561		NO

Verifiche Tiranti NTC2018: SISMICA STR

Design Assumption: NTC2018: SISMICA	Tipo Risultato: Verifiche Ti-				NTC2018			
STR	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Scavo T2	299.973	589.049	550.44	0.509	0.545		NO
T1	Stage 5_Attiv. T2	299.995	589.049	550.44	0.509	0.545		NO
T1	Stage 7_Scavo T3	299.998	589.049	550.44	0.509	0.545		NO
T1	Stage 8_Attiv. T3	299.998	589.049	550.44	0.509	0.545		NO
T1	Stage 10_Scavo T4	299.998	589.049	550.44	0.509	0.545		NO
T1	Stage 11_Attiv. T4	299.998	589.049	550.44	0.509	0.545		NO
T1	Stage 13_Fondo scavo	299.998	589.049	550.44	0.509	0.545		NO
T1	Stage 14_Sisma	301.37	589.049	550.44	0.512	0.548		NO
T2	Stage 5_Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T2	Stage 7_Scavo T3	300.074	589.049	550.44	0.509	0.545		NO
T2	Stage 8_Attiv. T3	300.131	589.049	550.44	0.51	0.545		NO
T2	Stage 10_Scavo T4	300.134	589.049	550.44	0.51	0.545		NO
T2	Stage 11_Attiv. T4	300.133	589.049	550.44	0.51	0.545		NO
T2	Stage 13_Fondo scavo	300.133	589.049	550.44	0.51	0.545		NO
T2	Stage 14_Sisma	300.939	589.049	550.44	0.511	0.547		NO
T3	Stage 8_Attiv. T3	300	589.049	550.44	0.509	0.545		NO
T3	Stage 10_Scavo T4	300.328	589.049	550.44	0.51	0.546		NO
T3	Stage 11 Attiv. T4	300.405	589.049	550.44	0.51	0.546		NO
T3	Stage 13_Fondo scavo	300.408	589.049	550.44	0.51	0.546		NO
T3	Stage 14_Sisma	301.397	589.049	550.44	0.512	0.548		NO
T4	Stage 11_Attiv. T4	300	589.049	550.44	0.509	0.545		NO
T4	Stage 13_Fondo scavo	300.638	589.049	550.44	0.51	0.546		NO
T4	Stage 14 Sisma	301.63	589.049	550.44	0.512	0.548		NO

Verifiche Tiranti NTC2018: SISMICA GEO

Pesign Assumption: NTC2018: SISMICA	Tipo Risultato: Verifiche Ti-				NTC2018			
GEO	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Scavo T2	299.973	589.049	550.44	0.509	0.545		NO
T1	Stage 5_Attiv. T2	299.995	589.049	550.44	0.509	0.545		NO
T1	Stage 7_Scavo T3	299.998	589.049	550.44	0.509	0.545		NO
T1	Stage 8_Attiv. T3	299.998	589.049	550.44	0.509	0.545		NO
T1	Stage 10_Scavo T4	299.998	589.049	550.44	0.509	0.545		NO
T1	Stage 11_Attiv. T4	299.998	589.049	550.44	0.509	0.545		NO
T1	Stage 13_Fondo scavo	299.998	589.049	550.44 0.509		0.545		NO
T1	Stage 14_Sisma	301.37	589.049	550.44	0.512	0.548		NO
T2	Stage 5_Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T2	Stage 7_Scavo T3	300.074	589.049	550.44	0.509	0.545		NO
T2	Stage 8_Attiv. T3	300.131	589.049	550.44	0.51	0.545		NO
T2	Stage 10 Scavo T4	300.134	589.049	550.44	0.51	0.545		NO
T2	Stage 11_Attiv. T4	300.133	589.049	550.44	0.51	0.545		NO
T2	Stage 13 Fondo scavo	300.133	589.049	550.44	0.51	0.545		NO
T2	Stage 14_Sisma	300.939	589.049	550.44	0.511	0.547		NO
T3	Stage 8 Attiv. T3	300	589.049	550.44	0.509	0.545		NO
T3	Stage 10 Scavo T4	300.328	589.049	550.44	0.51	0.546		NO
T3	Stage 11 Attiv. T4	300.405	589.049	550.44	0.51	0.546		NO
Т3	Stage 13_Fondo scavo	300.408	589.049	550.44	0.51	0.546		NO
T3	Stage 14_Sisma	301.397	589.049	550.44	0.512	0.548		NO
T4	Stage 11 Attiv. T4	300	589.049	550.44	0.509	0.545		NO
T4	Stage 13_Fondo scavo	300.638	589.049	550.44	0.51	0.546		NO
T4	Stage 14 Sisma	301.63	589.049	550.44	0.512	0.548		NO

Inviluppo Verifiche Tiranti (su tutte le D.A. attive)

Tij	po Risultato: Verifiche Tirar	nti						
Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (kl	N) Ratio GEO	Ratio STR Resi	stenza Gerarchia delle Resistenze	Design Assumption
T1	Stage 3_Attiv. T1	390	589.049	550.44	0.662	0.709	NO	NTC2018: A1+M1+R1 (R3 per tiranti)
T2	Stage 5_Attiv. T2	390	589.049	550.44	0.662	0.709	NO	NTC2018: A1+M1+R1 (R3 per tiranti)
T3	Stage 8_Attiv. T3	390	589.049	550.44	0.662	0.709	NO	NTC2018: A1+M1+R1 (R3 per tiranti)
T4	Stage 13_Fondo scavo	390.83	589.049	550.44	0.663	0.71	NO	NTC2018: A1+M1+R1 (R3 per tiranti)

Completamento itinerario Sassari - Olbia. Potenziamento e messa in sicurezza SS131 dal km

192+500 al km 209+500 - 2° lotto dal km 202+000 al km 209+500

CA-357

Opere Provvisionali - Relazione di Calcolo -Galleria Artificiale GA03

9.2 Allegato 2 - Paratia tipo E - 3 tiranti attivi

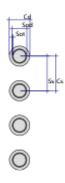
Descrizione della Stratigrafia e degli Strati di Terreno Tipo : HORIZONTAL

Tipo : HORIZONTA Quota : 50 m OCR : 1

Strato di Terreno 1	Terren	γdry	γ sat	ø'	øcvøp c' S	u Modulo Elastic	o Eu Evc	Eur	Ah Av exp Pa Rur/Rv	c Rvc	Ku	Kvc	Kur
		kN/m ³	kN/m ³	3 0	°° kPa kF	Pa Pa	kPa	kPa	kPa	kPa k	N/m³	kN/m ³	kN/m ³
1	CB	20.1	20.1	26.7	125	Constant	540000	864000)				

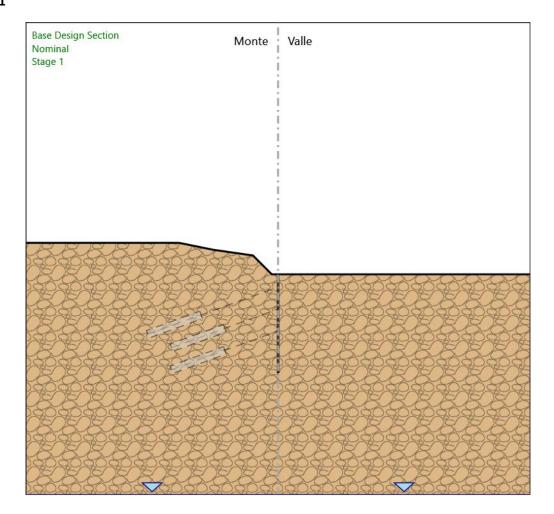
Descrizione Pareti

X:0 m


Quota in alto : 0 m Quota di fondo : -15.6 m Muro di sinistra

Sezione: Micropali fi240 - fi168.3 sp10

Area equivalente : 0.019045141329815 m Inerzia equivalente : 0.0001 m⁴/m Materiale calcestruzzo : C25/30 Tipo sezione : Tangent Spaziatura : 0.4 m


Spaziatura : 0.4 m Diametro : 0.24 m Efficacia : 0.5 Materiale acciaio : S355

Sezione : CHS168.3*10 Tipo sezione : O Spaziatura : 0.4 m Spessore : 0.01 m Diametro : 0.1683 m

Fasi di Calcolo

Stage 1

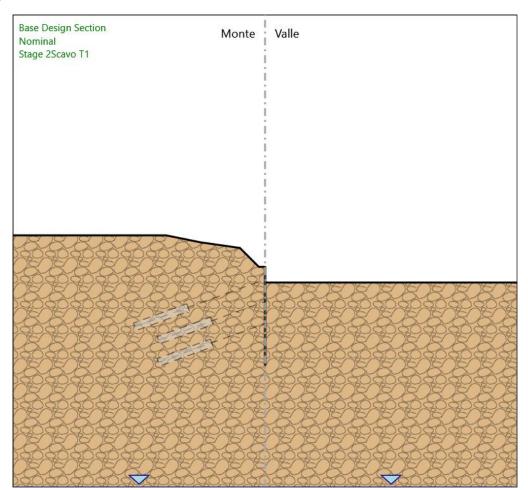

```
Stage 1
Scavo
```

```
Muro di sinistra
Lato monte : 0 m
Lato valle : 0 m

Linea di scavo di sinistra (Irregolare)
(-40;5)
(-15.7;5)
(-10.3;3.9)
(-4;3)
(-1;0)
(0;0)
Linea di scavo di destra (Orizzontale)
0 m

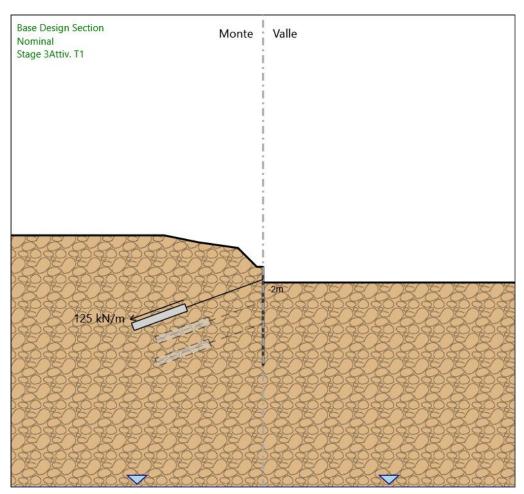
Falda acquifera
Falda di sinistra : -35 m
Falda di destra : -35 m
```

Elementi strutturali


Paratia : Sx

X : 0 m

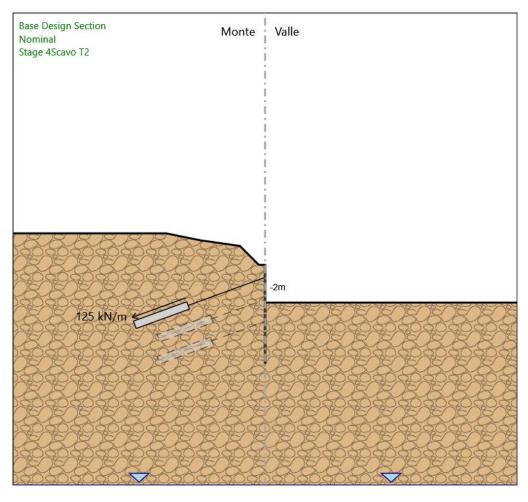
Quota in alto : 0 m Quota di fondo : -15.6 m


Sezione : Micropali fi240 - fi168.3 sp10

Stage 2_Scavo T1


```
Stage 2_Scavo T1
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle: -2.5 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-40;5)
                                 (-15.7;5)
                                 (-10.3;3.9)
                                 (-4;3)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
Falda acquifera
           Falda di sinistra : -35 m
           Falda di destra : -35 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -15.6 m
                      Sezione : Micropali fi240 - fi168.3 sp10
```

Stage 3_Attiv. T1




```
Stage 3_Attiv. T1
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -2.5 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-40;5)
                                 (-15.7;5)
                                 (-10.3;3.9)
                                 (-4;3)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
Falda acquifera
           Falda di sinistra : -35 m
           Falda di destra: -35 m
Elementi strutturali
           Paratia : Sx
                      Quota in alto : 0 m
                      Quota di fondo : -15.6 m
                      Sezione : Micropali fi240 - fi168.3 sp10
           Tirante: T1
                      X:0 m
                      Z : -2 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo: 0.15 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale: 2.4 m
```

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

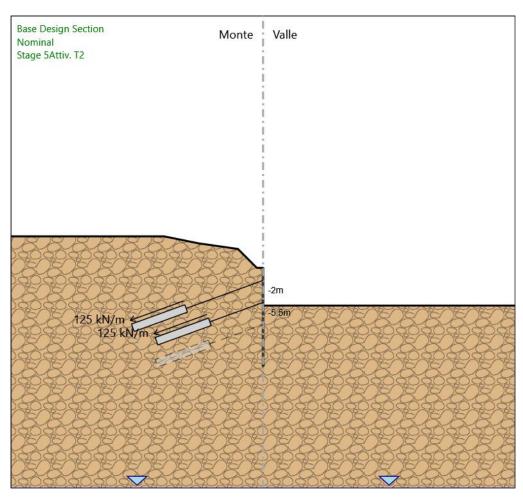
Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 4_Scavo T2


```
Stage 4_Scavo T2
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -6 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-40;5)
                                 (-15.7;5)
                                 (-10.3;3.9)
                                 (-4;3)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
Falda acquifera
           Falda di sinistra : -35 m
           Falda di destra: -35 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                      Quota in alto: 0 m
```

Quota di fondo : -15.6 m

Sezione : Micropali fi240 - fi168.3 sp10


Tirante : T1 $X:0\ m \\ Z:-2\ m$

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 5_Attiv. T2

Stage 5_Attiv. T2 Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -6 m

Linea di scavo di sinistra (Irregolare)

(-40;5) (-15.7;5) (-10.3;3.9) (-4;3) (-1;0)

```
(0;0)
```

Linea di scavo di destra (Orizzontale)

-6 m

Falda acquifera

Falda di sinistra : -35 m Falda di destra : -35 m

Elementi strutturali

Paratia : Sx

X:0 m

Quota in alto : 0 m Quota di fondo : -15.6 m

Sezione: Micropali fi240 - fi168.3 sp10

Tirante : T1

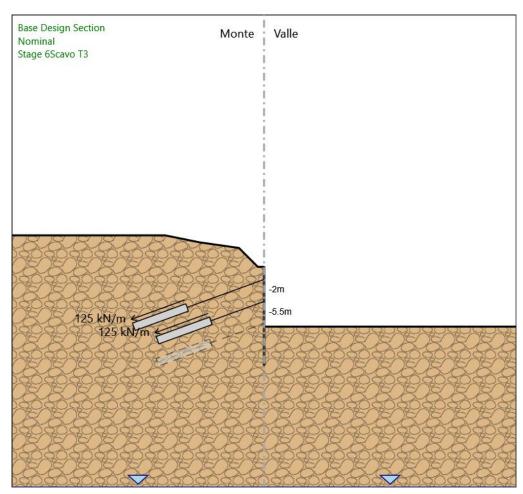
X:0 m Z:-2 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T2


X : 0 m Z : -5.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2.4 m Precarico : 300 kN

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

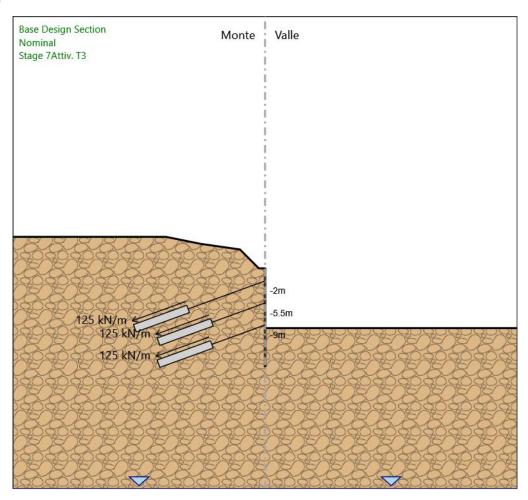
Stage 6_Scavo T3


```
Stage 6_Scavo T3
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -9.5 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-40;5)
                                 (-15.7;5)
                                 (-10.3;3.9)
                                 (-4;3)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
                                 -9.5 m
Falda acquifera
           Falda di sinistra : -35 m
           Falda di destra: -35 m
Elementi strutturali
           Paratia: Sx
                      X:0 m
                      Quota in alto : 0 m
                      Quota di fondo : -15.6 m
                      Sezione : Micropali fi240 - fi168.3 sp10
           Tirante: T1
                      X:0 m
                      Z : -2 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo: 0.15 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale: 2.4 m
```

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T2


X : 0 m Z : -5.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 7_Attiv. T3

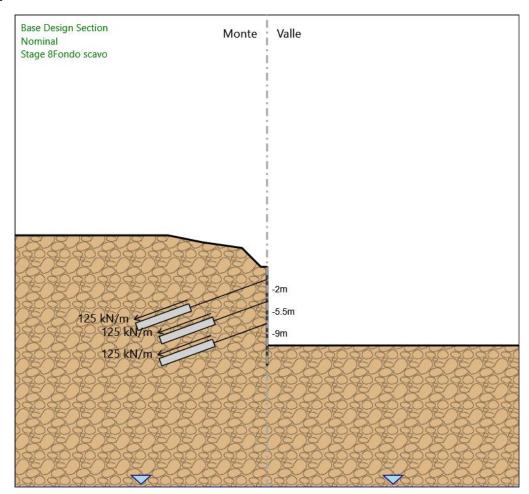
Stage 7_Attiv. T3 Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -9.5 m

Linea di scavo di sinistra (Irregolare)

(-40;5) (-15.7;5) (-10.3;3.9)


(-4;3)(-1;0) (0;0) Linea di scavo di destra (Orizzontale) -9.5 m Falda acquifera Falda di sinistra : -35 m Falda di destra : -35 m Elementi strutturali Paratia : Sx X:0 m Quota in alto: 0 m Quota di fondo : -15.6 m Sezione: Micropali fi240 - fi168.3 sp10 Tirante: T1 X:0 m Z:-2 m Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera: 13 m Spaziatura orizzontale : 2.4 m Precarico: 300 kN Angolo : 20 ° Sezione: 3 trefoli Tipo di barre : Barre trefoli Numero di barre: 3 Diametro: 0.01331 m Area: 0.000417 m^2 Tirante : T2 X:0 m Z:-5.5 m Lunghezza bulbo: 9 m Diametro bulbo : 0.15 m Lunghezza libera: 9 m Spaziatura orizzontale : 2.4 m Precarico: 300 kN Angolo : 20 ° Sezione: 3 trefoli Tipo di barre : Barre trefoli Numero di barre: 3 Diametro: 0.01331 m Area: 0.000417 m^2 Tirante: T3 X:0 m Z:-9 m Lunghezza bulbo : 9 m Diametro bulbo: 0.15 m Lunghezza libera: 9 m Spaziatura orizzontale: 2.4 m Precarico : 300 kN

> Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

10/26

Stage 8_Fondo scavo


```
Stage 8_Fondo scavo
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                     Lato valle: -12.5 m
                      Linea di scavo di sinistra (Irregolare)
                                (-40;5)
                                (-15.7;5)
                                (-10.3;3.9)
                                (-4;3)
                                (-1;0)
                                (0;0)
                      Linea di scavo di destra (Orizzontale)
                                -12.5 m
Falda acquifera
           Falda di sinistra : -35 m
           Falda di destra: -35 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                     Quota in alto : 0 m
                      Quota di fondo : -15.6 m
                     Sezione : Micropali fi240 - fi168.3 sp10
           Tirante: T1
                     X:0 m
                      Z:-2 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo: 0.15 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale: 2.4 m
```

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante : T2

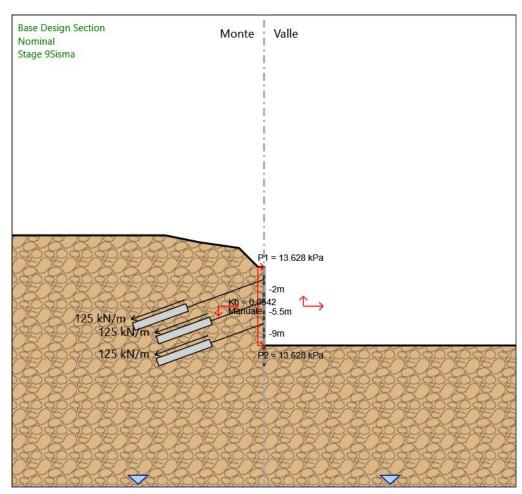
X : 0 m Z : -5.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Tirante: T3


X:0 m Z:-9 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Stage 9_Sisma


```
Stage 9_Sisma
Scavo
           Muro di sinistra
                      Lato monte : 0 m
                      Lato valle : -12.5 m
                      Linea di scavo di sinistra (Irregolare)
                                 (-40;5)
                                 (-15.7;5)
                                 (-10.3;3.9)
                                 (-4;3)
                                 (-1;0)
                                 (0;0)
                      Linea di scavo di destra (Orizzontale)
                                 -12.5 m
Falda acquifera
           Falda di sinistra : -35 m
           Falda di destra: -35 m
Elementi strutturali
           Paratia : Sx
                      X:0 m
                     Quota in alto : 0 m
                      Quota di fondo : -15.6 m
                     Sezione : Micropali fi240 - fi168.3 sp10
           Tirante: T1
                     X:0 m
                      Z:-2 m
                      Lunghezza bulbo : 9 m
                      Diametro bulbo: 0.15 m
                      Lunghezza libera : 13 m
                      Spaziatura orizzontale: 2.4 m
```

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

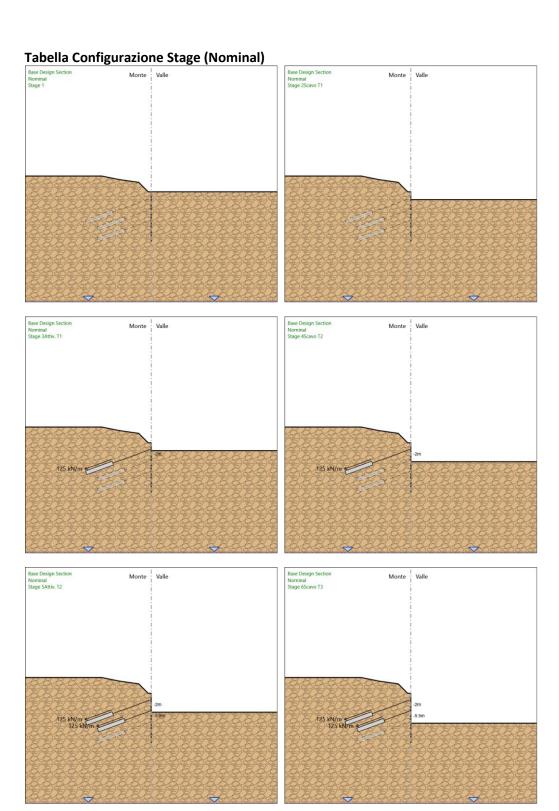
Tirante : T2

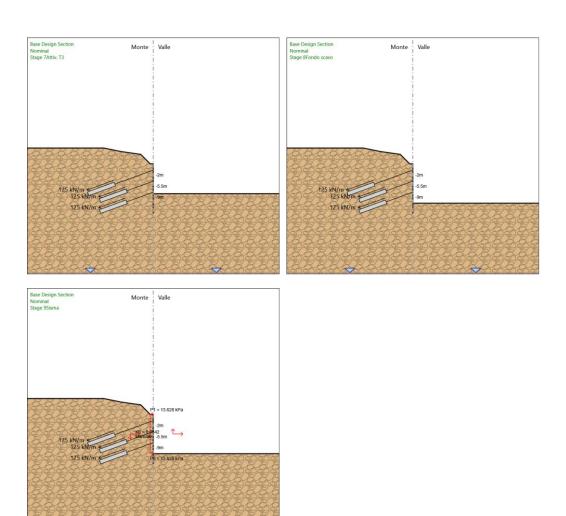
X : 0 m Z : -5.5 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2


Tirante: T3


X:0 m Z:-9 m

Lunghezza bulbo : 9 m Diametro bulbo : 0.15 m Lunghezza libera : 9 m Spaziatura orizzontale : 2.4 m

Precarico : 300 kN Angolo : 20 ° Sezione : 3 trefoli

Tipo di barre : Barre trefoli Numero di barre : 3 Diametro : 0.01331 m Area : 0.000417 m^2

Descrizione Coefficienti Design Assumption

Nominal 1 1 1 1 1 1 1 1 1 1 1 1 1 1 NTC2018: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	γGstb γQdst 1 1 1 1
NTC2018: 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
SLE (Rara/Fre- quente/Qua si Perma- nente) NTC2018: 1.3 1 1.5 1 0 1.3 1 1 1 1 1 1.3 A1+M1+R1	1 1
.si Perma- nente) NTC2018: 1.3 1 1.5 1 0 1.3 1 1 1 1 1.3 A1+M1+R1	
A1+M1+R1	
ranti)	0.9 1
	0.9 1
NTC2018: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 SISMICA STR	1 1
	0.9 1
Nome Parziale su tan(ø') (F_Fr) Parziale su c' (F_Eff_cohe) Parziale su Su (F_Su) Parziale su qu (F_qu) Parziale su peso specifico	(F_gamma)
Simbolo γφ γς γcu γqu γγ	
Nominal 1 1 1 1 1 1	
NTC2018: SLE (Rara/Frequente/Quasi Permanente) 1 1 1 1 1 1 1 1 1	
NTC2018: A1+M1+R1 (R3 per tiranti) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
NICZOL8: AZ+NZ+NZ+NZ 1.25 1.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
NTC2016. SISMICA SIGN	

Nome	Parziale resistenza terreno (es. Kp) (F_Soil_Res_walls)	Parziale resistenza Tiranti permanenti (F_Anch_P)	Parziale resistenza Tiranti temporanei (F_Anch_T)	Parziale elementi strutturali (F_wall)
Simbolo	γRe	уар	γat	
Nominal	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi Permanente)	1	1	1	1
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1.2	1.1	1
NTC2018: A2+M2+R1	1	1.2	1.1	1
NTC2018: SISMICA STR	1	1.2	1.1	1
NTC2018: SISMICA GEO	1	1.2	1.1	1

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 1	Stage 2_Scavo T1	Stage 3_Attiv. T1	Stage 4_Scavo T2	Stage 5_Attiv. T2	Stage 6_Scavo T3	Stage 7_Attiv. T3	Stage 8_Fondo scavo	Stage 9_Si- sma
NTC2018: SLE (Rara/Frequente/Quasi Perma- nente) NTC2018: A1+M1+R1 (R3 per tiranti)	V	V	V	V	V	V	V	V	
NTC2018: A2+M2+R1 NTC2018: SISMICA STR NTC2018: SISMICA GEO									٧

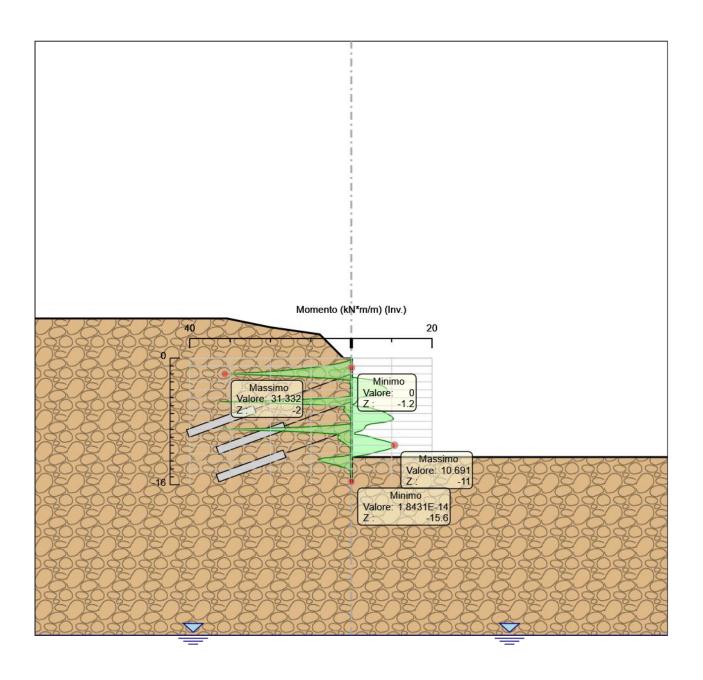
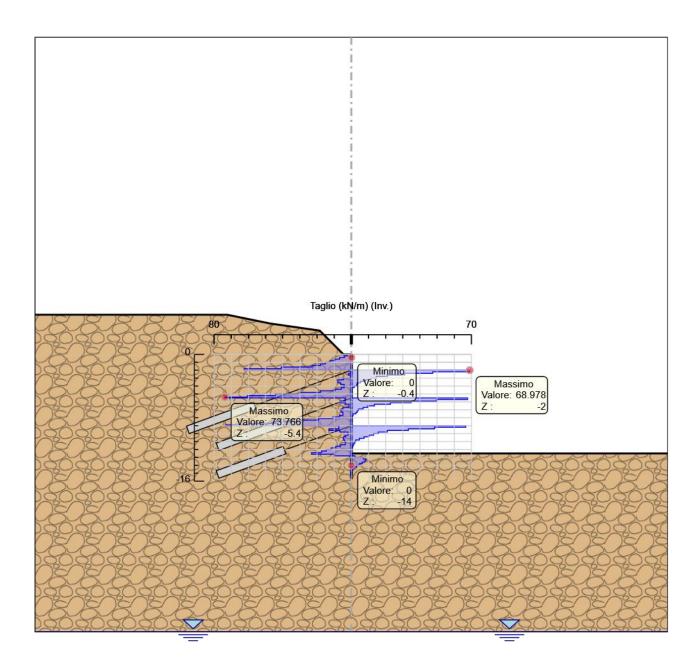

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Tabella Inviluppi Momento Sx

Tabella Inviluppi Momento Sx						
Selected Design Assumptions		Muro: Sx				
Z (m)	Lato sinistro (kN*m/m)					
0 -0.2	0 0.275	0 0				
-0.4	1.101	0				
-0.6	2.477	0				
-0.8	4.404	0				
-1	6.882	0				
-1.2	9.91	0				
-1.4	13.489	0				
-1.6	17.618	0				
-1.8 -2	23.171 31.332	0 0				
-2.2	19.184	0				
-2.4	10.231	0				
-2.6	4.005	2.891				
-2.8	0.539	5.819				
-3	0.501	6.53				
-3.2	0.393	6.275				
-3.4	0.27	7.052				
-3.6	0.164	8.128				
-3.8 -4	0.086 0.035	8.62 8.837				
-4.2	0.024	9.115				
-4.4	0.243	8.789				
-4.6	0.296	7.321				
-4.8	0.263	4.108				
-5	3.122	2.013				
-5.2	11.856	1.738				
-5.4	23.963	1.462				
-5.5 -5.7	31.317 18.091	1.324 0.994				
-5.7 -5.9	8.256	0.303				
-6.1	1.592	1.515				
-6.3	1.729	4.937				
-6.5	1.893	6.105				
-6.7	1.746	7.604				
-6.9	1.442	8.473				
-7.1	1.092	9.135				
-7.3	0.762	9.743 10.281				
-7.5 -7.7	0.488 0.28	10.281				
-7.9	0.135	9.881				
-8.1	0.116	8.207				
-8.3	0.266	4.917				
-8.5	3.837	3.67				
-8.7	11.686	3.444				
-8.9	23.68	3.219				
-9 -9.2	31.007 17.824	3.021				
-9.2 -9.4	9.11	2.328 0.872				
-9.6	3.793	0.811				
-9.8	3.076	3.601				
-10	3.468	5.084				
-10.2	3.268	6.181				
-10.4	2.758	7.868				
-10.6	2.137	9.36				
-10.8	1.532	10.301				
-11 -11.2	1.013 0.606	10.691 10.531				
-11.2	0.314	9.82				
-11.4	0.121	8.558				
-11.8	0.22	6.746				
-12	0.28	5.231				
-12.2	0.282	3.793				
-12.4	2.013	1.053				
-12.6	6.651	0.046				

Selected Design Assumptions	Inviluppi: Momento	Muro: Sx
•		Lato destro (kN*m/m)
-12.8	8.181	0.027
-13	7.751	0.008
-13.2	6.356	0
-13.4	4.668	0
-13.6	3.087	0
-13.8	1.804	0
-14	0.944	0
-14.2	0.42	0
-14.4	0.102	0.06
-14.6	0.02	0.202
-14.8	0.015	0.22
-15	0.01	0.17
-15.2	0.005	0.095
-15.4	0.002	0.03
-15.6	0	0

Grafico Inviluppi Momento



Momento

Tabella Inviluppi Taglio Sx

rabella inviluppi		
Selected Design Assumptions		Muro: Sx
Z (m) 0	Lato sinistro (kN/m)	Lato destro (kN/
-0.2	1.376 4.129	0
-0.4	6.882	0
-0.6	9.635	0
-0.8	12.387	0
-1	15.14	0
-1.2	17.893	0
-1.4	22.893	0
-1.6 -1.8	40.804 62.527	0 0
-2	62.527	68.978
-2.2	0.348	68.978
-2.4	1.77	47.444
-2.6	1.77	31.131
-2.8	0.578	20.961
-3	4.499	14.503
-3.2 -3.4	7.809 7.809	11.437 8.383
-3.6	7.751	5.382
-3.8	6.15	3.377
-4	4.161	3.139
-4.2	5.895	1.657
-4.4	9.471	0.063
-4.6	18.111	0.169
-4.8	30.017	0.338
-5 -5.2	44.273	0.349
-5.2 -5.4	60.592 73.766	0.349 0.284
-5.5	73.766	67.812
-5.7	3.458	67.812
-5.9	6.799	49.751
-6.1	6.799	34.859
-6.3	3.358	22.794
-6.5	1.411	13.486
-6.7	4.931	9.607
-6.9 -7.1	6.104 6.104	6.85 4.094
-7.3	5.857	3.526
-7.5	4.888	2.726
-7.7	6.923	1.04
-7.9	10.795	0.722
-8.1	19.115	0.454
-8.3	30.339	0.25
-8.5 -8.7	44.145 59.971	0.108 0.234
-8.9	73.269	0.276
-9	73.269	66.656
-9.2	7.275	66.656
-9.4	13.09	48.48
-9.6	13.09	33.272
-9.8 -10	6.655 1.955	20.992 15.715
-10.2	3.415	12.962
-10.4	4.521	10.21
-10.6	4.521	7.457
-10.8	4.507	4.704
-11	3.885	2.597
-11.2	3.554	2.033
-11.4 -11.6	6.307 9.06	1.463 0.965
-11.8	11.813	0.569
-12	14.565	0.281
-12.2	17.421	0.151
-12.4	23.186	0.224
-12.6	23.186	0.236
-12.8	9.756	2.148
-13 -13.2	1.127 0.076	6.978 8.438
-13.4	0.055	8.438
-13.4	0.034	7.907
-13.8	0.016	6.413
-14	0.002	4.645
-14.2	0	3.002
-14.4	0	1.674
-14.6 -14.8	0	0.803 0.265
-14.8 -15	0.251 0.374	0.265
-15.2	0.374	0.023
-15.4	0.328	0.018
-15.6	0.148	0.008

Grafico Inviluppi Taglio

Taglio

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	Stage	Muro I	.ato	Inviluppo Spinta Reale Efficace / Spinta Passiva
				%
NTC2018: A1+M1+R1 (R3 per tiranti)	Stage 2	1 Left Wall I	EFT	5.19
NTC2018: SISMICA STR	Stage 9 Si	isma Left Wall R	IGHT	15.33

Inviluppo Spinta Reale Efficace / Spinta Attiva

Normative adottate per le verifiche degli Elementi Strutturali

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 1	Stage 2_Scavo T1	Stage 3_Attiv. T1	Stage 4_Scavo T2	Stage 5_Attiv. T2	Stage 6_Scavo T3	Stage 7_Attiv. T3	Stage 8_Fondo scavo	Stage 9_Si- sma
NTC2018: SLE (Rara/Frequente/Quasi Permanente)									
NTC2018: A1+M1+R1 (R3 per tiranti) NTC2018: A2+M2+R1	V	V	V	V	V	V	V	V	
NTC2018: SISMICA STR									V

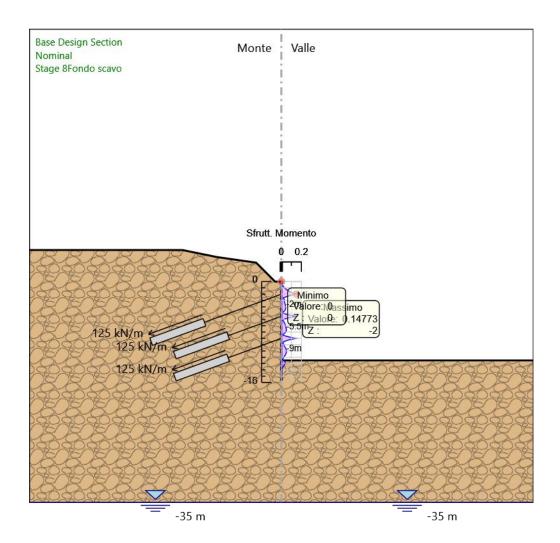
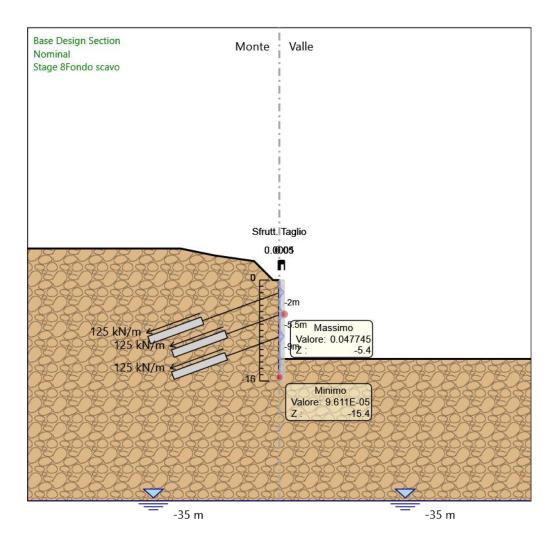

Risultati SteelWorld

Tabella Inviluppi Tasso di Sfruttamento a Momento - SteelWorld: LEFT

riluppi Tasso di Sfruttamento a Momento - St	eelWorld LEFT
Z (m)	Tasso di Sfruttamento a Momento - SteelWorld
0	0
-0.2	0.001
-0.4	0.005
-0.6	0.012
-0.8	0.021
-1	0.032
-1.2	0.047
-1.4	0.064
-1.6	0.083
-1.8	0.109
-2	0.148
-2.2	0.09
-2.4	0.048
-2.6	0.019
-2.8	0.027
-3	0.031
-3.2	0.03
-3.4	0.033
-3.6	0.038
-3.8	0.041
-4	0.042
-4.2	0.043
-4.4	0.041
-4.6	0.035
-4.8	0.019
-5	0.015
-5.2	0.056
-5.4	0.113
-5.5	0.148
-5.7	0.085
-5.9	0.039
-6.1	0.008
-6.3	0.023
-6.5	0.029
-6.7	0.036
-6.9	0.04
-7.1	0.043
-7.3	0.046
-7.5	0.048
-7.7	0.049
-7.9 -8.1	0.047
-8.3	0.039 0.023
-8.5 -8.7	0.018 0.055
-8.9 -9	0.112
-9 -9.2	0.146
	0.084
-9.4	0.043
-9.6	0.018
-9.8	0.017

Inviluppi Tasso di Sfruttamento a Momento - SteelWorld	
Z (m)	Tasso di Sfruttamento a Momento - SteelWorld
-10	0.024
-10.2	0.029
-10.4	0.037
-10.6	0.044
-10.8	0.049
-11	0.05
-11.2	0.05
-11.4	0.046
-11.6	0.04
-11.8	0.032
-12	0.025
-12.2	0.018
-12.4	0.009
-12.6	0.031
-12.8	0.039
-13	0.037
-13.2	0.03
-13.4	0.022
-13.6	0.015
-13.8	0.009
-14	0.004
-14.2	0.002
-14.4	0
-14.6	0.001
-14.8	0.001
-15	0.001
-15.2	0
-15.4	0
-15.6	0

Grafico Inviluppi Tasso di Sfruttamento a Momento - SteelWorld



Inviluppi Tasso di Sfruttamento a Momento - SteelWorld

Tabella Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld: LEFT

	Sfruttamento a Taglio - SteelWo
Inviluppi Tasso di Sfruttamento a Taglio - S Z (m)	teelWorld LEFT Tasso di Sfruttamento a Taglio - SteelWorle
0	0.001
-0.2	0.003
-0.4	0.004
-0.6	0.006
-0.8	0.008
-1	0.01
-1.2	0.012
-1.4	0.015
-1.6	0.026
-1.8	0.04
-2	0.045
-2.2	0.031
-2.4 -2.6	0.02 0.014
-2.8	0.009
-3	0.007
-3.2	0.005
-3.4	0.005
-3.6	0.004
-3.8	0.003
-4	0.002
-4.2	0.004
-4.4	0.006
-4.6	0.012
-4.8	0.019
-5	0.029
-5.2	0.039
-5.4	0.048
-5.5	0.044
-5.7	0.032
-5.9	0.023
-6.1	0.015
-6.3	0.009
-6.5 -6.7	0.006 0.004
-6.9	0.004
-7.1	0.004
-7.3	0.003
-7.5	0.003
-7.7	0.004
-7.9	0.007
-8.1	0.012
-8.3	0.02
-8.5	0.029
-8.7	0.039
-8.9	0.047
-9	0.043
-9.2	0.031
-9.4 0.6	0.022
-9.6 -9.8	0.014 0.01
-10	0.008
-10.2	0.007
-10.4	0.005
-10.6	0.003
-10.8	0.003
-11	0.002
-11.2	0.002
-11.4	0.004
-11.6	0.006
-11.8	0.008
-12	0.009
-12.2	0.011
-12.4	0.015
-12.6 -12.8	0.006 0.001
-13	0.005
-13.2	0.005
-13.2	0.005
-13.6	0.004
-13.8	0.003
-14	0.002
-14.2	0.001
-14.4	0.001
-14.6	0
-14.8	0
-15	0
-15.2	0
-15.4	0
-15.6	0

Grafico Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld

Inviluppi Tasso di Sfruttamento a Taglio - SteelWorld

Verifiche Tiranti NTC2018: SLE (Rara/Frequente/Quasi Permanente)

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi	Tipo Risultato: Verifiche				NTC2018			
Permanente)	Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	1166.316	550.44	0.257	0.545		NO
T1	Stage 4_Scavo T2	299.973	1166.316	550.44	0.257	0.545		NO
T1	Stage 5_Attiv. T2	299.995	1166.316	550.44	0.257	0.545		NO
T1	Stage 6_Scavo T3	299.997	1166.316	550.44	0.257	0.545		NO
T1	Stage 7_Attiv. T3	299.997	1166.316	550.44	0.257	0.545		NO
T1	Stage 8_Fondo scavo	299.997	1166.316	550.44	0.257	0.545		NO
T1	Stage 9_Sisma	299.997	1166.316	550.44	0.257	0.545		NO
T2	Stage 5_Attiv. T2	300	1166.316	550.44	0.257	0.545		NO
T2	Stage 6_Scavo T3	300.055	1166.316	550.44	0.257	0.545		NO
T2	Stage 7_Attiv. T3	300.103	1166.316	550.44	0.257	0.545		NO
T2	Stage 8_Fondo scavo	300.107	1166.316	550.44	0.257	0.545		NO
T2	Stage 9_Sisma	300.107	1166.316	550.44	0.257	0.545		NO
T3	Stage 7_Attiv. T3	300	1166.316	550.44	0.257	0.545		NO
T3	Stage 8_Fondo scavo	300.246	1166.316	550.44	0.257	0.545		NO
T3	Stage 9_Sisma	300.246	1166.316	550.44	0.257	0.545		NO

Verifiche Tiranti NTC2018: A1+M1+R1 (R3 per tiranti)

Design Assumption: NTC2018: A1+M1+R1 (R3 per	Tipo Risultato: Verifiche Ti-	•			NTC2018			
tiranti)	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	390	589.049	550.44	0.662	0.709		NO
T1	Stage 4_Scavo T2	389.964	589.049	550.44	0.662	0.708		NO
T1	Stage 5_Attiv. T2	389.993	589.049	550.44	0.662	0.709		NO
T1	Stage 6_Scavo T3	389.997	589.049	550.44	0.662	0.709		NO
T1	Stage 7_Attiv. T3	389.997	589.049	550.44	0.662	0.709		NO
T1	Stage 8_Fondo scavo	389.997	589.049	550.44	0.662	0.709		NO
T1	Stage 9_Sisma	389.997	589.049	550.44	0.662	0.709		NO
T2	Stage 5_Attiv. T2	390	589.049	550.44	0.662	0.709		NO
T2	Stage 6_Scavo T3	390.072	589.049	550.44	0.662	0.709		NO
T2	Stage 7_Attiv. T3	390.134	589.049	550.44	0.662	0.709		NO
T2	Stage 8_Fondo scavo	390.139	589.049	550.44	0.662	0.709		NO
T2	Stage 9_Sisma	390.139	589.049	550.44	0.662	0.709		NO
T3	Stage 7_Attiv. T3	390	589.049	550.44	0.662	0.709		NO
T3	Stage 8_Fondo scavo	390.319	589.049	550.44	0.663	0.709		NO
T3	Stage 9_Sisma	390.319	589.049	550.44	0.663	0.709		NO

Verifiche Tiranti NTC2018: A2+M2+R1

Design Assumption: NTC2018:	Tipo Risultato: Verifiche Ti-				NTC2018			
A2+M2+R1	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Scavo T2	299.971	589.049	550.44	0.509	0.545		NO
T1	Stage 5_Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T1	Stage 6_Scavo T3	300.002	589.049	550.44	0.509	0.545		NO
T1	Stage 7_Attiv. T3	300.002	589.049	550.44	0.509	0.545		NO
T1	Stage 8_Fondo scavo	300.002	589.049	550.44	0.509	0.545		NO
T1	Stage 9_Sisma	300.002	589.049	550.44	0.509	0.545		NO
T2	Stage 5_Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T2	Stage 6_Scavo T3	300.071	589.049	550.44	0.509	0.545		NO
T2	Stage 7_Attiv. T3	300.129	589.049	550.44	0.51	0.545		NO
T2	Stage 8_Fondo scavo	300.134	589.049	550.44	0.51	0.545		NO
T2	Stage 9_Sisma	300.134	589.049	550.44	0.51	0.545		NO
T3	Stage 7_Attiv. T3	300	589.049	550.44	0.509	0.545		NO
T3	Stage 8_Fondo scavo	300.281	589.049	550.44	0.51	0.546		NO
T3	Stage 9_Sisma	300.281	589.049	550.44	0.51	0.546		NO

Verifiche Tiranti NTC2018: SISMICA STR

Design Assumption: NTC2018: SISMICA	Tipo Risultato: Verifiche Ti-				NTC2018			
STR	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Scavo T2	299.973	589.049	550.44	0.509	0.545		NO
T1	Stage 5_Attiv. T2	299.995	589.049	550.44	0.509	0.545		NO
T1	Stage 6_Scavo T3	299.997	589.049	550.44	0.509	0.545		NO
T1	Stage 7_Attiv. T3	299.997	589.049	550.44	0.509	0.545		NO
T1	Stage 8_Fondo scavo	299.997	589.049	550.44	0.509	0.545		NO
T1	Stage 9_Sisma	300.715	589.049	550.44	0.511	0.546		NO
T2	Stage 5_Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T2	Stage 6_Scavo T3	300.055	589.049	550.44	0.509	0.545		NO
T2	Stage 7_Attiv. T3	300.103	589.049	550.44	0.509	0.545		NO
T2	Stage 8_Fondo scavo	300.107	589.049	550.44	0.509	0.545		NO
T2	Stage 9_Sisma	300.752	589.049	550.44	0.511	0.546		NO
T3	Stage 7_Attiv. T3	300	589.049	550.44	0.509	0.545		NO
T3	Stage 8_Fondo scavo	300.246	589.049	550.44	0.51	0.545		NO
T3	Stage 9 Sisma	300.909	589.049	550.44	0.511	0.547		NO

Verifiche Tiranti NTC2018: SISMICA GEO

Design Assumption: NTC2018: SISMICA	Tipo Risultato: Verifiche Ti-				NTC2018			
GEO	ranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio	Resi-	Gerarchia delle Resi-
		(kN)	(kN)	(kN)		STR	stenza	stenze
T1	Stage 3_Attiv. T1	300	589.049	550.44	0.509	0.545		NO
T1	Stage 4_Scavo T2	299.973	589.049	550.44	0.509	0.545		NO
T1	Stage 5_Attiv. T2	299.995	589.049	550.44	0.509	0.545		NO
T1	Stage 6_Scavo T3	299.997	589.049	550.44	0.509	0.545		NO
T1	Stage 7_Attiv. T3	299.997	589.049	550.44	0.509	0.545		NO
T1	Stage 8_Fondo scavo	299.997	589.049	550.44	0.509	0.545		NO
T1	Stage 9_Sisma	300.715	589.049	550.44	0.511	0.546		NO
T2	Stage 5_Attiv. T2	300	589.049	550.44	0.509	0.545		NO
T2	Stage 6_Scavo T3	300.055	589.049	550.44	0.509	0.545		NO
T2	Stage 7_Attiv. T3	300.103	589.049	550.44	0.509	0.545		NO
T2	Stage 8_Fondo scavo	300.107	589.049	550.44	0.509	0.545		NO
T2	Stage 9_Sisma	300.752	589.049	550.44	0.511	0.546		NO
T3	Stage 7_Attiv. T3	300	589.049	550.44	0.509	0.545		NO
T3	Stage 8_Fondo scavo	300.246	589.049	550.44	0.51	0.545		NO
T3	Stage 9_Sisma	300.909	589.049	550.44	0.511	0.547		NO

Inviluppo Verifiche Tiranti (su tutte le D.A. attive)

Т	ipo Risultato: Verifiche Tira	nti						
Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (k	N) Ratio GEO	Ratio STR Resist	enza Gerarchia delle Resistenze	e Design Assumption
T1	Stage 3_Attiv. T1	390	589.049	550.44	0.662	0.709	NO	NTC2018: A1+M1+R1 (R3 per tiranti)
T2	Stage 5_Attiv. T2	390	589.049	550.44	0.662	0.709	NO	NTC2018: A1+M1+R1 (R3 per tiranti)
T3	Stage 7_Attiv. T3	390	589.049	550.44	0.662	0.709	NO	NTC2018: A1+M1+R1 (R3 per tiranti)