

Direzione Progettazione e Realizzazione Lavori

S.S.291 "Della Nurra"

Lavori di costruzione del Lotto 1 da Alghero ad Olmedo, in località bivio cantoniera di Rudas (completamento collegamento Alghero-Sassari) e del Lotto 4 tra bivio Olmedo e l'aeroporto di Alghero -Fertilia (bretella per l'aeroporto)

PROGETTO ESECUTIVO

COD. CA29

PROGETTAZIONE: ATT: WA - SERING - WDP - BRENG

PROGETTISTA E RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE:

Dott. Ing. Giovanni Piazza (Ord. Ing. Prov. Roma A27296)

RESPONSABILE D'AREA

Responsabile Tracciato stradale: Dott. Ing. Massimo Capasso

(Ord. Ing. Prov. Roma 26031) Responsabile Strutture: Dott. Ing. Giovanni Piazza

(Ord. Ing. Prov. Roma 27296) Responsabile Idraulica, Geotecnica e Impianti: Dott. Ing. Sergio Di Maio

(Ord. Ing. Prov. Palermo 2872) Responsabile Ambiente: Dott. Ing. Francesco Ventura (Ord. Ing. Prov. Roma 14660)

GEOLOGO:

Dott. Geol. Enrico Curcuruto (Ord. Geo. Regione Sicilia 966)

COORDINATORE SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Sergio Di Maio (Ord. Ing. Prov. Palermo 2872)

COORDINATORE ATTIVITA' DI PROGETTAZIONE:

Dott. Ing. MariaAntonietta Merendino (Ord. Ing. Prov. Roma A28481)

VISTO: IL RESPONSABILE DEL PROCEDIMENTO:

Dott. Ing. Salvatore Campione

MANDATARIA:

MANDANTE:

MANDANTE:

MANDANTE:

SOTTOVIA

ASSE TIPO D

RAMPA PEDONALE AL KM 1+400

Relazione tecnica e di calcolo

PROGETTO PROGETTO LIV. PROG. ANNO DPCA0029 E 21		NOME FILE TO2_STO2_STR_REO1_A		REVISIONE	SCALA:	
		CODICE TO2STO2STRRE01		A	_	
D			_	_	-	-
С			-	_	-	-
В			_	_	-	-
Α	EMISSIONE		Giugno 2021	E. RICCI	G. CAPOGNA	G.PIAZZA
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Rampa pedonale al km1+400 - Relazione tecnica e di calcolo

INDICE

1	PREMESSA	4
2	NORME E SPECIFICHE	4
3	MATERIALI	5
	3.1 Calcestruzzo per impalcato, pile e strutture interrate	5
	3.2 Miscela cementizia per micropali	5
	3.3 Acciaio per barre di armatura lenta	6
	3.4 Acciaio per tubo di armatura dei micropali	6
	3.5 Classe di esposizione e copriferro	6
4	DESCRIZIONE DELL'OPERA	7
5	CARATTERIZZAZIONE SISMICA	9
6	ANALISI DEI CARICHI	12
	6.1 Peso proprio delle strutture in cemento armato	12
	6.2 Peso proprio della pavimentazione	12
	6.3 Peso proprio della barriera anticaduta	12
	6.4 Carichi accidentali da folla	12
	6.5 Ritiro della soletta	13
	6.6 Azione termica longitudinale	13
	6.7 Azione termica differenziale	13
	6.8 Azione sismica	14
	6.9 Azione del vento	15
	6.9.1 Impalcato	16
	6.9.2 Pile	16
7	COMBINAZIONI DI CARICO	17
	7.1 Combinazioni di carico statiche allo SLU	17
	7.2 Combinazioni di carico statiche allo SLE	18
	7.3 Combinazioni di carico sismiche	18
	7.1 Riepilogo delle combinazioni di carico	19
	7.1.1 Combinazioni allo Stato Limite Ultimo	19
	7.1.2 Combinazioni allo Stato Limite di Esercizio - Rare	20
	7.1.3 Combinazioni allo Stato Limite di Esercizio - Frequenti	21
	7.1.4 Combinazioni allo Stato Limite di Esercizio - Quasi Permanenti	21
8	MODELLO DI CALCOLO	22
	8.1 Definizione del modello di calcolo	22

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Rampa pedonale al km1+400 - Relazione tecnica e di calcolo

	8.1.1 Cario	chi permanenti dovuti al peso della pavimentazione stradale	23
	8.1.2 Cario	chi permanenti dovuti al peso della barriera	23
	8.1.3 Cario	chi accidentali da folla	23
	8.1.4 Azior	ne del ritiro sull'impalcato	23
9	VALUTAZIONE	DELLE AZIONI SOLLECITANTI	24
	9.1 Diagramma	dell'azione assiale	24
	9.2 Diagramma	del momento flettente	24
	9.3 Diagramma	dell'azione tagliante	24
10	IMPALCATO - V	ERIFICA STRUTTURALE	25
	10.1 Sezioni di ve	erifica ed armatura di calcolo	25
	10.2 Verifica allo	Stato Limite Ultimo per tenso-flessione	27
	10.2.1 Verifi	ca in appoggio (Momento negativo) – Sezione S1	27
		ca in mezzeria (Momento positivo) – Sezione S2	
		Stato Limite Ultimo per taglio	
	10.4 Verifica allo	Stato Limite di fessurazione	30
	10.4.1 Solle	citazioni di calcolo	31
	10.4.2 Verifi	ca in appoggio (Momento negativo) – Sezione S1	32
		ca in mezzeria (Momento positivo) – Sezione S2	
11		STRUTTURALE	
	11.1 Sezioni di ve	erifica ed armatura di calcolo delle pile quadrate	36
	11.1.1 Verifi	che allo Stato Limite Ultimo per presso-flessione	37
	11.1.1.1	Verifica Sezione di Testa (P1)	38
	11.1.1.2	Verifica Sezione di Base (P2)	40
	11.1.1.3	Riepilogo degli esiti delle verifiche	42
	11.1.2 Verifi	che allo Stato Limite Ultimo per taglio	43
	11.1.2.1	Verifica Sezione di Testa (P1)	43
		Verifica Sezione di Base (P3)	
	11.1.3 Verifi	che allo Stato Limite di fessurazione	
	11.1.3.1	Sollecitazioni di calcolo	
	11.1.3.2	,	
	11.1.3.3	,	
	11.1.3.4	,	
	11.1.3.5		
		erifica ed armatura di calcolo delle pile rettangolari	
	11.2.1 Verifi	che allo Stato Limite Ultimo per presso-flessione	55

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Rampa pedonale al km1+400 - Relazione tecnica e di calcolo

	11.2.1.1	Verifica Sezione di Testa (P1)	56
	11.2.1.2	Verifica Sezione di Base (P2)	58
	11.2.1.3	Riepilogo degli esiti delle verifiche	60
	11.2.2 Verific	che allo Stato Limite Ultimo per taglio	61
	11.2.2.1	Verifica Sezione di Testa (P1)	61
	11.2.2.2	Verifica Sezione di Base (P3)	62
	11.2.3 Verific	che allo Stato Limite di fessurazione	
	11.2.3.1	Sollecitazioni di calcolo	64
	11.2.3.2	Verifica sezione di testa (P1) – M _{MAX}	
	11.2.3.3	Verifica sezione di testa (P1) - N _{MIN}	
	11.2.3.4	Verifica sezione di base (P2) - M _{MAX}	
	11.2.3.5	, , , , , , , , , , , , , , , , , , , ,	
12		AZIONE – VERIFICHE STRUTTURALI	
		ato 1.80 m x 1.80 m	
	12.1.1 Verific	ca "tirante-puntone"	75
		ca a taglio	
	12.2 Plinto rettar	ngolare 2.40 m x 1.80 m	78
	12.2.1 Verific	ca "tirante-puntone"	79
	12.2.2 Verific	ca a taglio	81
	12.3 Plinto rettar	ngolare 1.50 m x 1.80 m	82
	12.3.1 Verific	ca "tirante-puntone"	83
	12.3.2 Verific	ca a taglio	85
13	VERIFICA DEI M	ICROPALI DI FONDAZIONE	86
	13.1 Individuazio	ne della stratigrafia di riferimento	86
	13.2 Verifiche ge	otecniche e strutturali	87
	13.2.1 Verific	ca a carico limite	87
		cità portante per instabilità dell'equilibrio elastico	
	· ·	che alle forze orizzontali e verifica strutturale del micropalo	
		ca geotecnica per forze orizzontali	

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

1 PREMESSA

La presente relazione riporta il dimensionamento e le verifiche delle strutture in cemento armato della rampa pedonale al km 1+400 nell'ambito del progetto esecutivo "S.S. 291 "Della Nurra" - Lavori di costruzione del Lotto 1 da Alghero a Olmedo, in località bivio cantoniera di Rudas (completamento collegamento Alghero-Sassari) e del Lotto 4 tra bivio Olmedo e l'aeroporto di Alghero-Fertilia (bretella per l'aeroporto)".

2 NORME E SPECIFICHE

La redazione dei calcoli avverrà secondo le prescrizioni della seguente normativa ed in particolare:

- Nuove Norme Tecniche per le Costruzioni approvate con D.M del 14.1.2008;
- Istruzioni per l'applicazione delle "Norme Tecniche per le Costruzioni" approvate con D.M del 14.1.2008" Circolare 02.2.2009;
- UNI EN 1992-1-1:2005, Eurocodice 2: "Progettazione delle strutture di calcestruzzo. Parte 1.1: Regole generali e regole per gli edifici";
- Norma UNI EN 206-1:2006 "Calcestruzzo Parte 1: Specificazione, prestazione, produzione e conformità"
- UNI EN 1998-2:2006, "Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 2: Ponti";
- UNI EN 1997-1, "Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali"
- Legge 5.11.71 n.1086 "Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso e per le strutture metalliche.

Nuova S.S.291	Collegamento Sa	assari - Alghero -	Aeroporto

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

3 MATERIALI

3.1 Calcestruzzo per impalcato, pile e strutture interrate

Per le strutture interrate è stato considerato un calcestruzzo con classe di resistenza **C32/40** con le seguenti caratteristiche meccaniche:

Classe di resistenza del calcestruzzo	C32/40	
Resistenza caratteristica cubica a compressione	R_ck	40 N/mm ²
Resistenza caratteristica cilindrica a compressione	f _{ck}	32 N/mm ²
Resistenza cilindrica media a compressione a 28 gg	f_{cm}	40.0 N/mm ²
Resistenza di calcolo a compressione	f_{cd}	18.13 N/mm ²
Resistenza media a trazione	f_{ctm}	3.02 N/mm ²
Resistenza caratteristica a trazione	f_{ctk}	2.12 N/mm ²
Resistenza di calcolo a trazione	f_{ctd}	1.41 N/mm ²
Modulo elastico medio	E _{cm}	33345.8 N/mm ²
Coefficiente di Poisson	V	0.2 -
Coefficiente di dilatazione termica	α	1.00E-05 °C ⁻¹

3.2 Miscela cementizia per micropali

Per la miscela cementizia dei micropali è stato considerata una classe di resistenza **C25/30** con le seguenti caratteristiche meccaniche:

Classe di resistenza del calcestruzzo	C25/30		
Resistenza caratteristica cubica a compressione	Rck	30 N/mm ²	
Resistenza caratteristica cilindrica a compressione	f _{ck}	25 N/mm ²	
Resistenza cilindrica media a compressione a 28 gg	f_{cm}	33.0 N/mm ²	
Resistenza di calcolo a compressione	f_{cd}	14.17 N/mm ²	
Resistenza media a trazione	f_{ctm}	2.56 N/mm ²	
Resistenza caratteristica a trazione	f_{ctk}	1.80 N/mm ²	
Resistenza di calcolo a trazione	f_{ctd}	1.20 N/mm ²	
Modulo elastico medio	E _{cm}	31475.8 N/mm ²	
Coefficiente di Poisson	V	0.2 -	
Coefficiente di dilatazione termica	α	1.00E-05 °C ⁻¹	

Lavori di	Nuova S.S.291 Collegamento Sassari - Alghero - Aeroporto Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia		
CA-029	Relazione tecnica e di calcolo		

3.3 Acciaio per barre di armatura lenta

Per le armature lente delle strutture in cemento armato è stato considerato un acciaio tipo **B450C** con le seguenti caratteristiche meccaniche:

Tipologia di acciaio	B450C		
Resistenza caratteristica a rottura	f_{tk}	540	N/mm²
Tensione caratteristica di snervamento	f_{yk}	450	N/mm²
Tensione di svervamento di calcolo (γ _c = 1.15)	\mathbf{f}_{yd}	391.3	N/mm²
Modulo elastico istantaneo	Es	210000.00	N/mm ²

3.4 Acciaio per tubo di armatura dei micropali

Acciaio in profili a sezione cava	EN 10210-1 S355 JO	DH+N	
Resistenza caratteristica a rottura	f_{tk}	510	N/mm ²
Tensione caratteristica di snervamento	f_{yk}	355	N/mm²
Modulo elastico istantaneo	Es	210000.00	N/mm ²

3.5 Classe di esposizione e copriferro

Per le parti d'opera contro terra (bordo esterno della struttura) si assume una classe di esposizione XA1, corrispondente a condizioni ambientali "aggressive".

Per le parti d'opera fuori terra (bordo interno della struttura), si assume una classe di esposizione XC3, corrispondente a condizioni ambientali "ordinarie". Si adotta un valore del copriferro pari a 45 mm.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

4 DESCRIZIONE DELL'OPERA

La rampa oggetto della presente relazione è la prosecuzione del camminamento pedonale lungo l'asse D (sopra la galleria ferroviaria B) e della soletta a sbalzo lungo il sottovia al km 0+124.

La struttura è composta da una trave continua in cemento armato gettato in opera appoggiata su delle pile, anche esse in cemento armato gettato in opera. La lunghezza totale dell'opera è di circa 62 m e presenta 5 campate da circa 11.50 m più i tratti iniziali e finali di 1.25m e, rispettivamente, 3.30m. La sezione della trave è costante lungo la rampa, mentre le pile presentano due tipologie di sezione (0.50x0.50 m e 0.50x0.30 m).. Le pile sono fondate su plinti su micropali di lunghezza 14 m.

Si riportano di seguito alcune immagini per illustrare la geometria dell'opera.

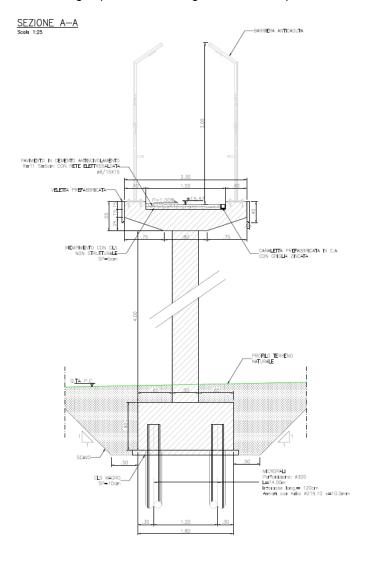


Figura 4-1: Sezione trasversale tipo

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

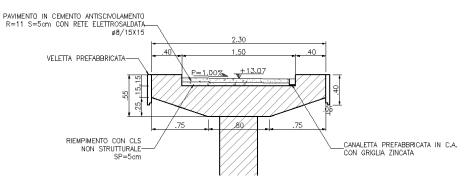


Figura 4-2: Sezione trasversale trave

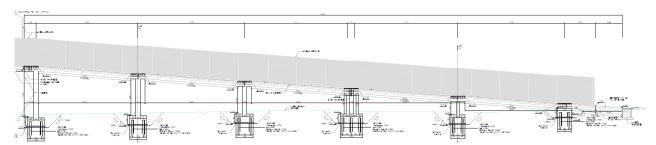
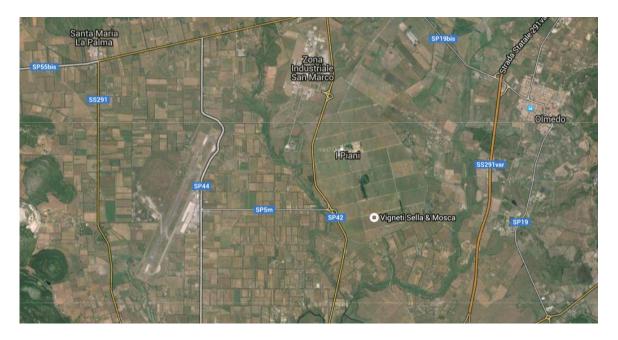


Figura 4-3: Sezione longitudinale

Figura 4-4: Planimetria rampa

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia



CA-029

Relazione tecnica e di calcolo

5 CARATTERIZZAZIONE SISMICA

L'area oggetto del presente intervento ricade all'interno del territorio del Comune di Alghero.

Secondo quanto riportato nel D.M. 14.01.2008 "Nuove norme Tecniche per le Costruzioni", par. 2.4, sono stati definiti i seguenti parametri sismici della struttura:

- Vita nominale della struttura: V_N = 50 anni
- Classe d'uso della struttura: IV
- Coefficiente d'uso della struttura: C_U = 2,00
- Periodo di ritorno per l'azione sismica: $V_R = V_N \times C_U = 50 \times 2,00 = 100 \text{ anni}$

Nuova S.S.291 Collegamento Sassari - Alghero - Aeroporto Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia CA-029 Relazione tecnica e di calcolo

Di seguito sono riportati i valori dei principali parametri sismici caratteristici del sito in oggetto e del periodo di ritorno dell'evento sismico:

PARAMETRI DI PERICOLOSITA' SISMICA					
Stato limite	Tr	a _g /g	F。	T [*] c	
Stato minte	[anni]	[-]	[-]	[s]	
Operatività	60	0.025	2.67	0.299	
Danno	101	0.031	2.73	0.307	
Salvaguardia Vita	949	0.060	2.98	0.371	
Prevenzione Collasso	1950	0.071	3.06	0.393	

Sulla base della relazione geologica il terreno di fondazione è stato classificato come di **classe B**, cui corrisponde un coefficiente stratigrafico $S_s = 1.20$.

Categoria sottosuolo	S _S
A	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$

Dal punto di vista topografico il sito rientra nella categoria topografica T1, cui corrisponde un coefficiente topografico $S_T = 1,00$.

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con	1,2
	pendenza media minore o uguale a 30°	
T4	In corrispondenza della cresta di un rilievo con	1,4
	pendenza media maggiore di 30°	

Si ipotizza un comportamento elastico della struttura, cioè un comportamento non dissipativo, che non richiede i particolari costruttivi di cui al capitolo 7 delle NTC 2008; per le verifiche strutturali vengono, di conseguenza, utilizzate le regole espresse nel capitolo 4 delle NTC 2008.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

6 ANALISI DEI CARICHI

6.1 Peso proprio delle strutture in cemento armato

Il peso per unità di volume delle strutture in cemento armato è assunto pari a γ_{ca} = 25.0 kN/m³. Il peso proprio degli elementi strutturali è assegnato automaticamente dal programma di calcolo agli elementi finiti sulla base delle reali caratteristiche geometriche.

6.2 Peso proprio della pavimentazione

Il peso per unità di superficie della pavimentazione è stato preso pari a 2 kN/m^2

6.3 Peso proprio della barriera anticaduta

Nel cordolo sono installate le barriere anticaduta alte 3. 00 m e il loro peso per unità di superficie è stato preso pari a 4 kN/m^2.

6.4 Carichi accidentali da folla

Sulla soletta è stato previsto un carico accidentale dovuto alla folla compatta assunto come da D.M. 14.01.2008 "Nuove Norme Tecniche per le Costruzioni" pari a **5.0 kN/m^2**. Il valore di combinazione è invece **2.5 kN/m^2**.

	Nuova S.S.291	Collegamento S	assari - Alghero -	- Aeroporto
Lavori di cost	ruzione del 1° lot	to Mamuntanas –	- Alghero e del 4°	lotto di collegame

Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

0.00006

0.00027

CA-029

Relazione tecnica e di calcolo

6.5 Ritiro della soletta

Si riporta il calcolo della deformazione da ritiro della soletta di copertura.

Valutazione del ritiro differenziale trave-soletta **Ambiente** RH = 75 umidità relativa % Materiale resistenza caratteristica cilindrica soletta $f_{ck} =$ MPa 32 E = modulo elastico calcestruzzo MPa 33346 tipo di cemento Ν Geometria larghezza dell'impalcato 2.3 m S= spessore medio della soletta m 0.55 $A_c =$ area della sezione trasversale del getto di cls m^2 1.27 u = perimetro della soletta a contatto con l'atmosfera 5.58 m dimensione fittizia dell'elemento $h_0 =$ mm 453 coefficiente di influenza di ho 0.69 $k_h =$ Ritiro deformazione da ritiro per essiccamento 0.000311 $\epsilon_{cd,0} =$ 0.90 coefficiente di influenza dell'umidità relativa $\beta_{RH} =$ coefficiente 1 di influenza del tipo di cemento 4 $\alpha_{ds1} =$ coefficiente 2 di influenza del tipo di cemento 0.12 α_{ds2} = deformazione da ritiro per essiccamento della soletta 0.00022 $\epsilon_{cd} =$

6.6 Azione termica longitudinale

deformazione da ritiro

deformazione da ritiro autogeno

Viene considerata un'azione termica uniforme agente sulla soletta di copertura del sottovia pari a +/- 15°C.

6.7 Azione termica differenziale

Si considera un'azione termica differenziale agente sulla soletta di copertura del sottovia pari a +/-5°C.

 $\varepsilon_{ca} =$

 $\varepsilon_{cs} =$

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

6.8 Azione sismica

Le sollecitazioni agenti sulla struttura in fase sismica vengono determinate attraverso un'analisi dinamica lineare, secondo quanto riportato nel DM 14.01.2008 "Nuove norme tecniche per le costruzioni". La modalità di combinazione delle forme modali usata per la definizione della risposta è quella della regola della CQC (Complete Quadratic Combination).

Le sollecitazioni di verifica sono state dedotte applicando la regola della direzione prevalente del moto sismico, sommando cioè le sollecitazioni dalle altre due componenti scalate al 30% del loro valore nominale, nel modo seguente:

$$E_1 = E_T \pm 0.3 E_L \pm 0.30 E_V$$

$$E_2 = E_L \pm 0.3 E_T \pm 0.30 E_V$$

$$E_3 = E_V \pm 0.3 E_L \pm 0.30 E_T$$

Lo spettro di risposta viene definito dalla funzione delle accelerazioni (normalizzate rispetto l'accelerazione di gravità g) in funzione del periodo T(s), ottenuta in base alla posizione geografica del sito in esame, alla topografia e alla tipologia di suolo. Nel caso di analisi allo Stato Limite Salvaguardia della Vita è necessario definire anche il fattore di struttura q.

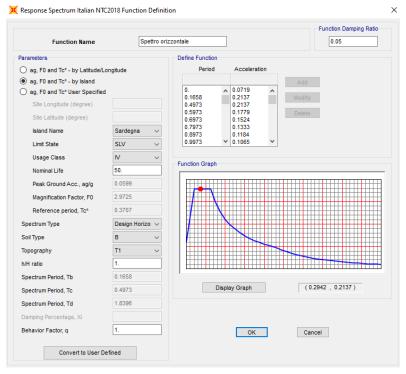


Figura 6-1: Spettro di risposta SAP2000

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

6.9 Azione del vento

Azione Vento (§3.3 NTC18)			
Tab. 3.3.I.			
Zona		6	
	V _{b,0}	28	[m/s]
	a_0	500	[m]
	\mathbf{k}_{s}	0	[]
Altitudine sul livello del mare	as	15	[m]
Coefficiente di altitudine	Ca	1.00	[]
Tempo di ritorno	T _r	50	[anni]
Coefficiente di ritorno	Cr	1	[]
Densità dell'aria	ρ	1.25	[kg/m³]
Velocità di riferimento	Vb	28.00	[m/s]
Velocità di riferimento	V r	28.00	[m/s]
Pressione cinetica di rifermento	qr	490.00	[N/m ²]
Tab. 3.3.III.			
Classe di rugosità		С	
Esposizione del sito		10 km	
Cat. di esposizione		*	
Tab. 3.3.II.			
Cat. di esposizione	Cat	П	
	Kr	0.19	
	Zo	0.05	[m]
	Zmin	0	[m]
	4 111111	0	[]

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

6.9.1 Impalcato

Azione Vento (§3.3 NTC18	1		VENTO SULLA BARRIERA						
Azione vento (95.5 NTC16	Azione vento (35.5 ivieto)					4	5	6	
Pressione cinetica di riferimento	qr	[N/m ²]	490.00	490.00	490.00	490.00	490.00	490.00	
Coefficiente di esposizione	Ce(Zmax)	[-]	1.99	1.87	1.73	1.592	1.436	1.26	
Coefficiente dinamico	Cd	[-]	1	1	1	1	1	1	
b		[m]	2.3	2.3	2.3	2.3	2.3	2.3	
d tot		[m]	0.55	0.55	0.55	0.55	0.55	0.55	
b/d tot		[-]	4.18	4.18	4.18	4.18	4.18	4.18	
Coefficiente di pressione	Cp	[-]	1.20	1.20	1.20	1.20	1.20	1.20	
Pressione	Р	[kN/m ²]	1.46	1.38	1.27	1.17	1.06	0.93	
Inclinazione longitudinale	θ	[°]	68.56	68.56	68.56	68.56	68.56	68.56	
Coefficiente di pressione amplificato del 25%	Cp	[-]	1.50	1.50	1.50	1.50	1.50	1.50	

6.9.2 Pile

Azione Vento (§3.3 NTC18)			VENTO LONGITUDINALE						
Azione vento (35.5 NTC18)		1	2	3	4	5	6		
Pressione cinetica di riferimento q _r	qr	$[N/m^2]$	490.00	490.00	490.00	490.00	490.00	490.00	
Coefficiente di esposizione	Ce(Zmax)	[-]	1.93	1.80	1.64	1	1.277	1.032	
Coefficiente dinamico	Cd	[-]	1	1	1	1	1	1	
Coefficiente di forza	C _{f,0}	[-]	2.1	2.1	2.1	2.35	2.35	2.34	
Fattore di riduzione per spigoli arrotondati	Ψ_{r}	[-]	1	1	1	1	1	1	
Fattore di riduzione per snellezza	ψ_{λ}	[-]	0.92	0.92	0.92	0.92	0.92	0.92	
Coefficiente di pressione Cf	Cf	[-]	1.93	1.93	1.93	2.16	2.16	2.15	
Pressione	Р	[kN/m ²]	1.83	1.70	1.55	1.56	1.35	1.09	

Aziono Vonto (82 2 NTC19)	Azione Vento (§3.3 NTC18)					VENTO TRASVERSALE						
Azione vento (95.5 NTC18)						4	5	6				
Pressione cinetica di riferimento	q r	$[N/m^2]$	490.00	490.00	490.00	490.00	490.00	490.00				
Coefficiente di esposizione	Ce(Zmax)	[-]	1.93	1.80	1.64	1.473	1.277	1.032				
Coefficiente dinamico	C _d	[-]	1	1	1	1	1	1				
Coefficiente di forza	C _{f,0}	[-]	2.1	2.1	2.1	1.72	1.72	2				
Fattore di riduzione per spigoli arrotondati	Ψr	[-]	1	1	1	1	1	1				
Fattore di riduzione per snellezza	ψ_{λ}	[-]	0.92	0.92	0.92	0.92	0.92	0.92				
Coefficiente di pressione	C _f	[-]	1.93	1.93	1.93	1.58	1.58	1.84				
Pressione	Р	[kN/m ²]	1.83	1.70	1.55	1.14	0.99	0.93				

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

7 COMBINAZIONI DI CARICO

7.1 Combinazioni di carico statiche allo SLU

Per le combinazioni di carico statiche relative alla struttura in oggetto si è fatto riferimento a quanto riportato nel capitolo 6 nel D.M. 14.01.2008 "Nuove norme tecniche per le costruzioni". Sulla base di ciò sono state individuate due combinazioni di carico statiche allo Stato Limite Ultimo, ottenute tramite la relazione generale:

$$F_d = \sum_{i=1}^m \left(\gamma_{Gj} \cdot G_{kj} \right) + \gamma_{Q1} \cdot Q_{k1} + \sum_{i=2}^n \left(\psi_{0i} \cdot \gamma_{Qi} \cdot Q_{ki} \right)$$

dove:

- y_G e y_Q rappresentano i coefficienti parziali di amplificazione dei carichi;
- G_{kj} rappresenta il valore caratteristico della j-esima azione permanente;
- Qk1 rappresenta il valore caratteristico dell'azione variabile di base in ogni combinazione;
- Q_{ki} rappresenta il valore caratteristico della i-esima azione variabile;
- Ψ_{0i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori caratteristici.

I coefficienti di amplificazione dei carichi e di riduzione dei parametri geotecnici per le combinazioni di carico A1-M1 (usate per le verifiche strutturali), secondo il D.M. 14.01.2008 "Nuove norme tecniche per le costruzioni", capitolo 5 e 6, punti 5.1.3.12 e 6.2.II, sono riepilogati nelle seguenti tabelle:

		Coefficiente	EQU ^(t)	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	Y _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	YQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Υ _{ε1}	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	YE2, YE3, YE4	0,00 1,20	0,00 1,20	0,00 1,00

⁽i) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

[@] Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente Ψ ₀ di combi- nazione	Coefficiente Ψ ₁ (valori frequenti)	Coefficiente ψ_2 (valori quasi permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ _M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$tan {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c' _k	Ye	1,0	1,25
Resistenza non drenata	c _{uk}	You	1,0	1,4
Peso dell'unità di volume	γγ	γ,	1,0	1,0

7.2 Combinazioni di carico statiche allo SLE

Per le combinazioni di carico statiche relative allo stato limite di esercizio si è fatto riferimento a quanto riportato dal D.M. 14.01.2008 "Nuove Norme tecniche per le Costruzioni" al paragrafo 2.5.3.

7.3 Combinazioni di carico sismiche

In fase sismica è state ipotizzate un'unica combinazione di carico allo Stato Limite di Salvaguardia della Vita, ottenuta tramite la relazione generale:

$$F_d = \gamma_E \cdot E + \sum_{j=1}^m \left(\gamma_{Gj} \cdot G_{kj} \right) + \gamma_{Q1} \cdot Q_{k1} + \sum_{i=2}^n \left(\psi_{0i} \cdot \gamma_{Qi} \cdot Q_{ki} \right)$$

dove:

- y_E rappresenta il coefficiente parziale di amplificazione del carico sismico (posto pari a 1);
- E rappresenta il carico sismico;
- y_G e y_Q rappresentano i coefficienti parziali di amplificazione dei carichi;
- G_{kj} rappresenta il valore caratteristico della j-esima azione permanente;

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

- Qk1 rappresenta il valore caratteristico dell'azione variabile di base;
- Qki rappresenta il valore caratteristico della i-esima azione variabile;
- Ψ_{0i} rappresentano i coefficienti di combinazione per tener conto della ridotta probabilità di concomitanza delle azioni variabili con i loro valori caratteristici.

In condizioni sismiche, i coefficienti parziali sui parametri geotecnici del terreno sono unitari.

7.1 Riepilogo delle combinazioni di carico

7.1.1 Combinazioni allo Stato Limite Ultimo

COMBINAZIONI	G1 - PESO PROPRIO	G2 - PERMANENTI	E2 - RITIRO	Q7 - TERMICA	Q1 - FOLLA	Q2 - VENTO X	Q2- VENTO -X	Q2 - VENTO Y	Q2 - VENTO -Y
SLU 1	1.35	1.50	1.20	0.90	1.35	0.90			
SLU 2	1.35	1.50	1.20	0.90	1.35			0.90	
SLU 3	1.35	1.50	1.20	0.90	-	1.50			
SLU 4	1.35	1.50	1.20	0.90	-			1.50	
SLU 5	1.35	1.5	1.20	1.50	-	0.90			
SLU 6	1.35	1.5	120	1.50	-			1.50	
SLU 7	1.35	1.5	1.20	0.90	1.35		0.90		
SLU 8	1.35	1.5	1.20	0.90	1.35				0.90
SLU 9	1.35	1.5	1.20	0.90	-		1.50		
SLU 10	1.35	1.5	1.20	0.90	-				1.50
SLU 11	1.35	1.5	1.20	1.50	-		0.90		
SLU 12	1.35	1.5	1.20	1.50	-				0.90

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

7.1.2 Combinazioni allo Stato Limite di Esercizio - Rare

COMBINAZIONI	G1 - PESO PROPRIO	G2 - PERMANENTI	E2 - RITIRO	Q7 - TERMICA	Q1 - FOLLA	Q2 - VENTO X	Q2- VENTO -X	Q2 - VENTO Y	Q2 - VENTO -Y
SLE RARA 1	1.00	1.00	1.00	0.60	1.00	0.60			
SLE RARA 2	1.00	1.00	1.00	0.60	1.00			0.60	
SLE RARA 3	1.00	1.00	1.00	0.60	-	1.00			
SLE RARA 4	1.00	1.00	1.00	0.60	-			1.00	
SLE RARA 5	1.00	1.00	1.00	1.00	-	0.60			
SLE RARA 6	1.00	1.00	1.00	1.00	-			0.60	
SLE RARA 7	1.00	1.00	1.00	0.60	1.00		0.60		
SLE RARA 8	1.00	1.00	1.00	0.60	1.00				0.60
SLE RARA 9	1.00	1.00	1.00	0.60	-		1.00		
SLE RARA 10	1.00	1.00	1.00	0.60	-				1.00
SLE RARA 11	1.00	1.00	1.00	1.00	-		0.60		
SLE RARA 12	1.00	1.00	1.00	1.00					0.60

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

7.1.3 Combinazioni allo Stato Limite di Esercizio - Frequenti

COMBINAZIONI	G1 - PESO PROPRIO	G2 - PERMANENTI	E2 - RITIRO	Q7- TERMICA	Q1 - FOLLA	Q2 - VENTO X	Q2- VENTO -X	Q2 - VENTO Y	Q2 - VENTO -Y
SLE FQ 1	1.00	1.00	1.00	0.50	0.75				
SLE FQ 2	1.00	1.00	1.00	0.60					

7.1.4 Combinazioni allo Stato Limite di Esercizio - Quasi Permanenti

COMBINAZIONI	G1 - PESO PROPRIO	G2 - PERMANENTI	E2 - RITIRO	Q7 - TERMICA	Q1 - FOLLA	Q2 - VENTO X	Q2- VENTO -X	Q2 - VENTO Y	Q2 - VENTO -Y
SLE QP 1	1.00	1.00	1.00	0.50					

Nuova S.S.291 Collegamento Sassari - Alghero - Aeroporto
Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con
l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

8 MODELLO DI CALCOLO

8.1 Definizione del modello di calcolo

Per la valutazione delle sollecitazioni agenti sui vari elementi, viene realizzato un apposito modello di calcolo agli elementi finiti completo di tutte le campate dell'opera e delle sottostrutture, in cui:

- Impalcato: elemento monodimensionale tipo "beam"
- Pile: elemento monodimensionale tipo "beam"

La modellazione è stata realizzata mediante il software SAP2000 v.21.2.0 (Computers & Structures, Inc.).

Il sistema di riferimento adottato è di tipo cartesiano ortogonale destro, con l'asse X in direzione longitudinale del manufatto, l'asse Y in direzione trasversale e l'asse verticale Z orientato positivo verso l'alto.

Si riportano di seguito alcune viste del modello.

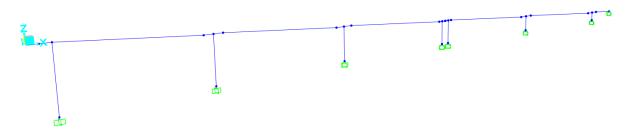


Figura 8-1: Modello di calcolo agli elementi finiti - Vista 3D

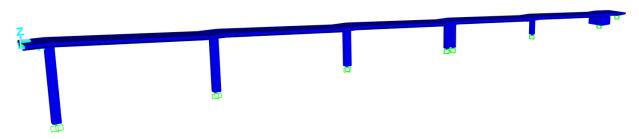
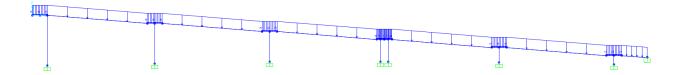
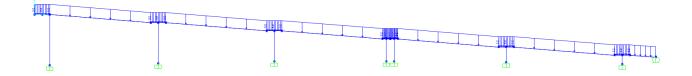


Figura 8-2: Modello di calcolo agli elementi finiti – Vista estrusa 3D

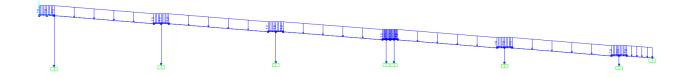
Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia



CA-029


Relazione tecnica e di calcolo

Applicazione dei carichi


8.1.1 Carichi permanenti dovuti al peso della pavimentazione stradale

8.1.2 Carichi permanenti dovuti al peso della barriera

8.1.3 Carichi accidentali da folla

8.1.4 Azione del ritiro sull'impalcato

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

9 VALUTAZIONE DELLE AZIONI SOLLECITANTI

Di seguito sono riportati i diagrammi delle sollecitazioni riferite alla combinazione inviluppo delle combinazioni allo stato limite ultimo statiche (SLU) e sismiche (SLV).

9.1 Diagramma dell'azione assiale

9.2 Diagramma del momento flettente

9.3 Diagramma dell'azione tagliante

Nuova S.S.291 Col	egamento Sassari -	· Alahero -	Aeroporto
-------------------	--------------------	-------------	-----------

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

10 IMPALCATO - VERIFICA STRUTTURALE

La soletta di copertura è realizzata con travi prefabbricate a "T" e completata con un getto di cemento armato in opera per realizzare la sezione finale. Si è considerata una sezione totalmente in c32/40, trascurando a favore di sicurezza la superiore resistenza del calcestruzzo prefabbricato delle travi.

10.1 Sezioni di verifica ed armatura di calcolo

La sezione di verifica è rettangolare con base pari a 100 cm ed altezza pari a 110 cm. Le sezioni di verifica sono riportate nella figura seguente.

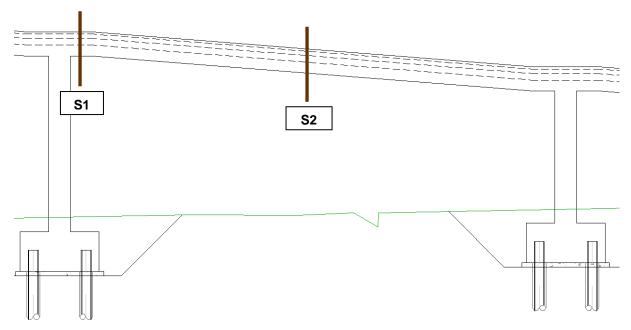


Figura 10-1: Sezioni di verifica

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

Nella tabella seguente si riportano le armature di calcolo assunte per ogni sezione e i momenti sollecitanti. Per la verifica nella sezione S1 a momento positivo, si considera come armatura tesa inferiore i soli ferri posizionati nel getto di completamento della soletta al di sopra delle ali inferiori della trave prefabbricata a T.

Sezione	Posizione	M max (INV_SLU+SLV) [kNm]	Armatura superiore	Armatura inferiore
S1	APPOGGIO (M-)	-636.2	12ф22	12¢ 26*
S2	MEZZERIA (M+)	395.2	12ф22	12φ 26*

Tabella 10-1: Sezioni di verifica - Momenti sollecitanti ed armatura di calcolo

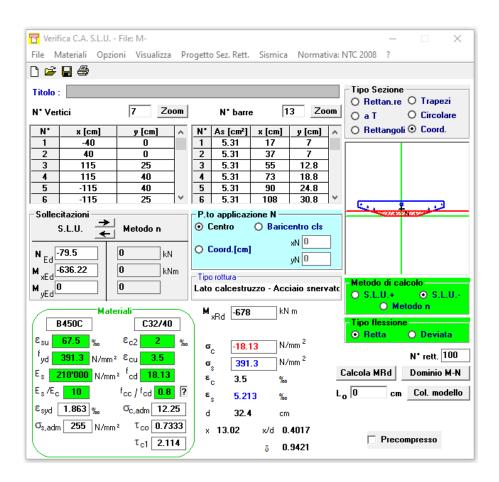
Nuova S.S.291 Collegamento Sassari - Alghero - Aeroporto

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con

l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo


10.2 Verifica allo Stato Limite Ultimo per tenso-flessione

Le verifiche vengono svolte considerando il contributo negativo dello sforzo normale di trazione. Gli sforzi normali di trazione hanno segno positivo.

Per lo svolgimento delle verifiche è stato utilizzato il software VCASLU.

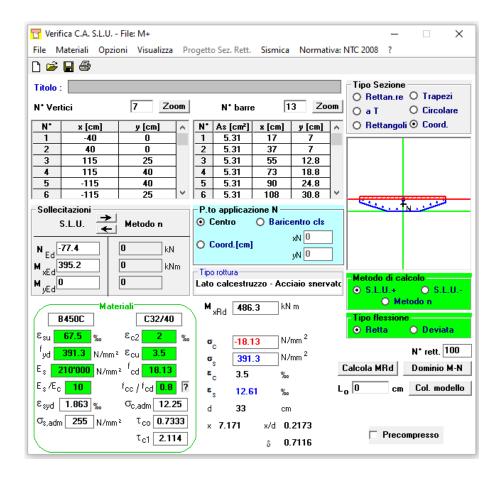
10.2.1 Verifica in appoggio (Momento negativo) - Sezione S1

Lo sforzo normale di trazione di calcolo è assunto paria N_{sd} = 79.5 kN. Il momento flettente di calcolo è assunto pari a M_{sd} = -636.2 kN*m.

Il momento resistente della sezione vale M_{rd} = -678 kNm

Essendo $M_{rd}/M_{sd} = 1.1 > 1$, la verifica risulta soddisfatta.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia


CA-029

Relazione tecnica e di calcolo

10.2.2 Verifica in mezzeria (Momento positivo) - Sezione S2

Lo sforzo normale di trazione di calcolo è assunto paria $N_{sd} = 77.4 \text{ kN}$.

Il momento flettente di calcolo è assunto pari a M_{sd} = 395.23 kNm.

II momento resistente della sezione vale M_{rd} = 486.3 kNm/m.

Essendo $M_{rd}/M_{sd} = 1.23 > 1$, la verifica risulta soddisfatta.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

10.3 Verifica allo Stato Limite Ultimo per taglio

La verifica a taglio verrà eseguita, a favore di sicurezza, senza tener conto dell'effetto positivo dell'azione normale di compressione.

La sezione resistente è rettangolare con base pari a 800 mm (larghezza minima della sezione) e altezza pari a 400 mm.

L'azione tagliante di calcolo è assunta pari a V_{s,d} = 326.7 kN/m e si ha in corrispondenza dell'appoggio(S1).

Elementi con armature trasversali resistenti a taglio			
larghezza sezione	b_{w}	[mm]	800
altezza sezione	h	[mm]	400
altezza utile sezione	d	[mm]	330
numero armature trasversali	n° Ø		4.00
diametro armature trasversali	Ø	[mm]	12
interasse armature trasversali	s	[mm]	200
area dell'armatura trasversale a taglio	A_{sw}	[mm ²]	452
resistenza di progetto	\mathbf{f}_{yd}	[MPa]	391
resistenza a compressione del cls	$f_{\sf cd}$	[MPa]	18.1
angolo di inclinazione armatura trasversale rispetto asse trave	α	[DEG]	90
	ctg θ		2.5
	θ	[DEG]	22
tensione di compressione calcestruzzo	$\sigma_{\sf cp}$	[MPa]	0.00
coefficiente maggiorativo in elementi compressi	α_{c}		1.00
resistenza a taglio trazione	V_{Rsd}	[kN]	657
resistenza a compressione del cls ridotta	f_{cd}'	[MPa]	9.1
resistenza a taglio compressione	V_{Rcd}	[kN]	743
resistenza a taglio	V_{Rd}	[kN]	657
sforzo di taglio massimo	V_{Ed}	[kN]	326.7
			vorificato

verificato

L'armatura a taglio che si sceglie di adottare è costituita da 2 staffe Ø12/20 a 2 bracci.

La verifica risulta soddisfatta, con rapporto $V_{Rd}/V_{Ed} = 2.01 > 1$.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

10.4 Verifica allo Stato Limite di fessurazione

Per la verifica di fessurazione sono state considerate condizioni ambientali ordinarie armatura poco sensibile (armatura lenta).

La scelta dello stato limite di fessurazione è stata effettuata sulla base di quanto indicato nella Tab. 2.1.IV delle NTC08, di seguito riportata.

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

्ह् 👸 Condizioni Combinazione di		Armatura				
Gruppi di Esigenze	ambientali	azioni	Sensibile		Poco sensibile	
Gr			Stato limite	$\mathbf{w}_{\mathbf{k}}$	Stato limite	$\mathbf{w}_{\mathbf{k}}$
Α.	Ordinarie	frequente	apertura fessure	≤ w ₂	apertura fessure	$\leq w_3$
A Ordinarie	quasi permanente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂	
В	Δ	frequente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂
B Aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁	
	Molto	frequente	formazione fessure	-	apertura fessure	≤w ₁
С	aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁

I valori limite di apertura delle fessure sono i seguenti:

- $w_1 = 0.2 \text{ mm};$
- $w_2 = 0.3 \text{ mm}$;
- $w_3 = 0.4 \text{ mm}.$

Per la verifica a fessurazione è stato utilizzato il foglio di calcolo Excel ed è stata eseguita su una sezione di area equivalente a quella effettiva.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

10.4.1 Sollecitazioni di calcolo

Si riportano nella tabella seguente le sollecitazioni allo SLE in combinazione frequente e quasi permanente usate nelle verifiche a fessurazione.

	SLE QP		
	M _{max} N		
SEZIONE	[kNm]	[KN]	
S1	236.8	10.2	
S2	-376.7	11	

	SLE FQ		
	M _{max} N		
SEZIONE	[kNm]	[KN]	
S1	275.7	24	
S2	-441.2	26.0	

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

10.4.2 Verifica in appoggio (Momento negativo) – Sezione S1

Stato limite di apertura delle fessure – SLE QP			
Sollecitazioni di verifica			
N _{Ed} = sforzo normale	-11.0	[kN]	
M _{Ed} = momento flettente	376.7	[kNm]	
Calcolo della distanza massima tra le fessure			
Δ_{smax} = k ₃ c + k ₁ k ₂ k ₄ ϕ / ρ_{eff} = distanza massima tra le fessure	271	[mm]	
c = copriferro	45		
s = interasse barre tese		[mm]	
φ = diametro della barra		[mm]	
k ₁ = coefficiente di aderenza del cls alla barra	0.8		
k ₂ = coefficiente di forma del diagramma delle tensioni	0.5		
$k_3 =$	3.4		
$k_4 =$	0.425		
$\rho_{\text{eff}} = A_s/A_{c \text{ eff}}$	0.0374		
A _s = area della sezione di acciaio nell'area A _{c eff}	6371	[mm ²]	
$A_{c,eff} = b h_{c,eff}$	170416	[mm ²]	
b =	1830	[mm]	
$h_{c,eff} =$	93	[mm]	
Calcolo della deformazione unitaria media dell'armatura			
$\epsilon_{sm} = [\sigma_s - k_t f_{ctm} (1 + \alpha_e \rho_{eff})/\rho_{eff}]/E_s$ (>= 0.6 σ_s/E_s)	0.00095		
$0.6 \sigma_s / E_s =$	0.00069		
σ_s = tensione nell'acciaio nella sezione fessurata	236.2	[MPa]	
f _{ctm} = resistenza media a trazione	3.10	[MPa]	
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]	
E _{cm} = modulo di elasticità normale del calcestruzzo	33643	[MPa]	
α_e = rapporto E _s /E _{cm}	6.1		
k _t = coefficiente di sollecitazione	0.4		
Verifica dell'apertura delle fessure			
$w_{\text{d}}\!=\epsilon_{\text{sm}}\;\Delta_{\text{smax}}\!=$ valore di calcolo dell'apertura delle fessure	0.26	[mm]	
w = valore limite di apertura delle fessure	0.30	[mm]	

verificato

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

Stato limite di apertura delle fessure S	SLE FQ	
Sollecitazioni di verifica		
N _{Ed} = sforzo normale	-26.0	[kN]
M _{Ed} = momento flettente	441.2	[kNm]
Calcolo della distanza massima tra le fessure		
Δ_{smax} = k_3 c + k_1 k_2 k_4 ϕ / ρ_{eff} = distanza massima tra le fessure	271	[mm]
c = copriferro	45	[mm]
s = interasse barre tese	153	[mm]
φ = diametro della barra	26	[mm]
k ₁ = coefficiente di aderenza del cls alla barra	0.8	
k ₂ = coefficiente di forma del diagramma delle tensioni	0.5	
$k_3 =$	3.4	
$k_4 =$	0.425	
$\rho_{\text{eff}} = A_s/A_{c \text{ eff}}$	0.0374	
A_s = area della sezione di acciaio nell'area A_{ceff}	6371	[mm ²]
$A_{c,eff} = b h_{c,eff}$	170416	[mm ²]
b =	1830	[mm]
h _{c,eff} =	93	[mm]
Calcolo della deformazione unitaria media dell'armatura		
$\epsilon_{\rm sm} = [\sigma_{\rm s} - k_{\rm t} f_{\rm ctm} (1 + \alpha_{\rm e} \rho_{\rm eff})/\rho_{\rm eff}]/E_{\rm s}$ (>= 0.6 $\sigma_{\rm s}/E_{\rm s}$)	0.00115	
$0.6 \sigma_s / E_s =$	0.00081	
σ_s = tensione nell'acciaio nella sezione fessurata	277.8	[MPa]
f _{ctm} = resistenza media a trazione	3.10	[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]
E _{cm} = modulo di elasticità normale del calcestruzzo	33643	[MPa]
α_e = rapporto E _s /E _{cm}	6.1	
k _t = coefficiente di sollecitazione	0.4	
Verifica dell'apertura delle fessure		
$W_d = \varepsilon_{sm} \ \Delta_{smax} = valore \ di \ calcolo \ dell'apertura \ delle \ fessure$	0.31	[mm]
w = valore limite di apertura delle fessure	0.40	[mm]

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

10.4.3 Verifica in mezzeria (Momento positivo) – Sezione S2

Stato limite di apertura delle fessure – SLE QP			
Sollecitazioni di verifica			
N _{Ed} = sforzo normale	-10.2	[kN]	
M _{Ed} = momento flettente	236.8	[kNm]	
Calcolo della distanza massima tra le fessure			
Δ_{smax} = k_3 c + k_1 k_2 k_4 ϕ $/\rho_{\text{eff}}$ = distanza massima tra le fessure	271	[mm]	
c = copriferro	45		
s = interasse barre tese		[mm]	
φ = diametro della barra		[mm]	
k₁ = coefficiente di aderenza del cls alla barra	0.8		
k ₂ = coefficiente di forma del diagramma delle tensioni	0.5		
$k_3 =$	3.4		
$k_4 =$	0.425		
$\rho_{\rm eff} = A_{\rm s}/A_{\rm ceff}$	0.0374		
A_s = area della sezione di acciaio nell'area A_{ceff}	6371	[mm ²]	
$A_{c,eff} = b h_{c,eff}$	170416	[mm ²]	
b =	1830	[mm]	
h _{c,eff} =	93	[mm]	
Calcolo della deformazione unitaria media dell'armatura			
$\epsilon_{sm} = [\sigma_s - k_t f_{ctm} (1 + \alpha_e \rho_{eff})/\rho_{eff}]/E_s$ (>= 0.6 σ_s/E_s)	0.00052		
$0.6 \sigma_s / E_s =$	0.00043		
σ_s = tensione nell'acciaio nella sezione fessurata	148.8	[MPa]	
f _{ctm} = resistenza media a trazione	3.10	[MPa]	
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]	
E _{cm} = modulo di elasticità normale del calcestruzzo	33643	[MPa]	
α_e = rapporto E _s /E _{cm}	6.1		
k _t = coefficiente di sollecitazione	0.4		
Verifica dell'apertura delle fessure			
$w_d = \epsilon_{sm} \; \Delta_{smax} = valore \; di \; calcolo \; dell'apertura \; delle \; fessure$	0.14	[mm]	

verificato

0.30 [mm]

w = valore limite di apertura delle fessure

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

Stato limite di apertura delle fessure S	LE FQ	
Sollecitazioni di verifica		
N _{Ed} = sforzo normale	-24.0	[kN]
M _{Ed} = momento flettente	275.7	[kNm]
Calcolo della distanza massima tra le fessure		
Δ_{smax} = k_3 c + k_1 k_2 k_4 ϕ $/\rho_{\text{eff}}$ = distanza massima tra le fessure	271	[mm]
c = copriferro		[mm]
s = interasse barre tese		[mm]
φ = diametro della barra		[mm]
k ₁ = coefficiente di aderenza del cls alla barra	0.8	
k ₂ = coefficiente di forma del diagramma delle tensioni	0.5	
$k_3 =$	3.4	
$k_4 =$	0.425	
$\rho_{\text{eff}} = A_s/A_{c \text{ eff}}$	0.0374	
A_s = area della sezione di acciaio nell'area A_{ceff}	6371	[mm ²]
$A_{c,eff} = b h_{c,eff}$	170416	[mm ²]
b =	1830	[mm]
$h_{c,eff} =$	93	[mm]
Calcolo della deformazione unitaria media dell'armatura		
$\epsilon_{sm} = [\sigma_s - k_t f_{ctm} (1 + \alpha_e \rho_{eff})/\rho_{eff}]/E_s$ (>= 0.6 σ_s/E_s)	0.00065	
$0.6 \sigma_{\rm s} / {\rm E_{\rm s}} =$	0.00051	
σ_s = tensione nell'acciaio nella sezione fessurata	174.3	[MPa]
f _{ctm} = resistenza media a trazione		[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]
E _{cm} = modulo di elasticità normale del calcestruzzo	33643	[MPa]
α_{e} = rapporto E _s /E _{cm}	6.1	
k _t = coefficiente di sollecitazione	0.4	
Verifica dell'apertura delle fessure		
$W_d = \varepsilon_{sm} \Delta_{smax}$ = valore di calcolo dell'apertura delle fessure	0.18	[mm]
w = valore limite di apertura delle fessure	0.40	[mm]

verificato

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11 PILE - VERIFICA STRUTTURALE

11.1 Sezioni di verifica ed armatura di calcolo delle pile quadrate

La sezione di verifica è rettangolare con base pari a 50 cm ed altezza pari a 50 cm. Le sezioni di verifica sono riportate nella figura seguente.

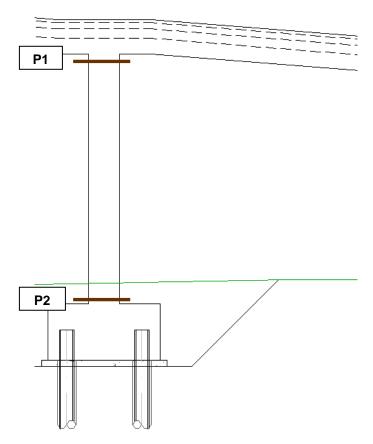


Figura 11-1: Sezioni di verifica

Nella tabella seguente si riportano le armature di calcolo assunte per ogni sezione.

Sezione	Posizione	Armatura superiore	Armatura inferiore
P1	A filo intradosso impalcato	4φ20	4φ20
P2	A filo estradosso plinto	4ф20	4ф20

Tabella 11-1: Sezioni di verifica - Armature di calcolo

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.1.1 Verifiche allo Stato Limite Ultimo per presso-flessione

Le verifiche vengono eseguite in ognuna delle sezioni precedentemente individuate prendendo in esame le seguenti combinazioni delle azioni sollecitanti:

- $M_{max_x} + M_y + N$;
- $M_x+M_y+N_{min}$;

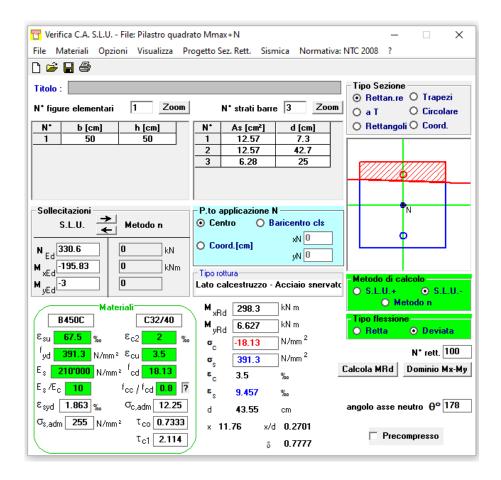
I momenti che tendono le fibre superiori sono assunti negativi, mentre quelli che tendono le fibre inferiori sono assunti positivi.

Gli sforzi normali di compressione hanno segno negativo.

Le verifiche vengono svolte mediante il software VCASLU.

Si riportano in modo esplicito le verifiche svolte per la combinazione peggiore tra le precedenti elencate (minore coefficiente di sicurezza), sebbene la verifica sia stata comunque eseguita per tutte le combinazioni.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia


CA-029

Relazione tecnica e di calcolo

11.1.1.1 Verifica Sezione di Testa (P1)

L'azione normale di calcolo è assunta pari a N_{sd} = -330.6 kN.

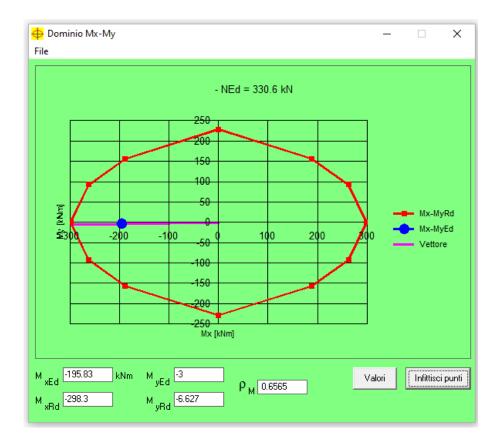
I momenti flettenti di calcolo sono assunto pari a M_{sd_X} =-195.83 kNm e a M_{sd_Y} = -3 kNm.

Il momento resistente della sezione vale $M_{rd_X} = 298.3 \text{ kNm/m}$.

Il rapporto $M_{rd} x/M_{sd} x = 1.52$.

Il momento resistente della sezione vale $M_{rd_Y} = 69.03 \text{ kNm/m}$.

II rapporto $M_{rd_Y}/M_{sd_Y} = 2.2$.


Nell'immagine successiva è riportato il dominio di resistenza della sezione:

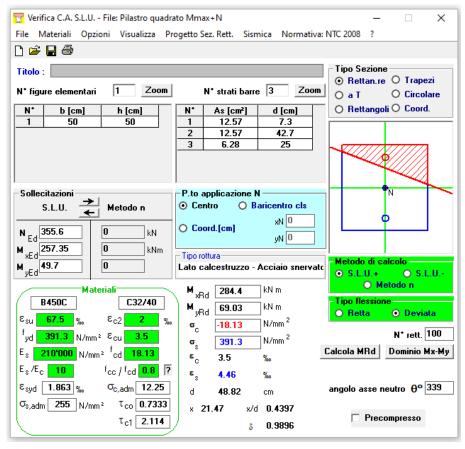
Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

La verifica risulta pertanto soddisfatta.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia


CA-029

Relazione tecnica e di calcolo

11.1.1.2 Verifica Sezione di Base (P2)

L'azione normale di calcolo è assunta pari a N_{sd} = -355.6 kN.

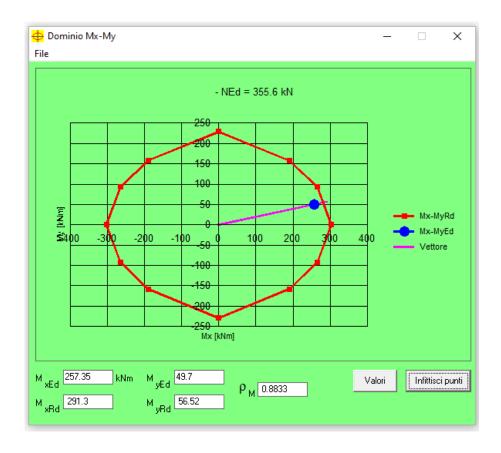
I momenti flettenti di calcolo sono assunto pari a $M_{sd_X} = 257.35$ kNm e a $M_{sd_Y} = 49.7$ kNm.

Il momento resistente della sezione vale M_{rd_X} = 284.4 kNm/m.

Il rapporto $M_{rd_x}/M_{sd_x} = 1.10$.

Il momento resistente della sezione vale $M_{rd_{-}Y} = 69.03 \text{ kNm/m}$.

Il rapporto $M_{rd_Y}/M_{sd_Y} = 1.38$.


Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

La verifica risulta pertanto soddisfatta.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.1.1.3 Riepilogo degli esiti delle verifiche

Si riporta nella tabella seguente l'esito delle verifiche eseguite per tutte le combinazioni elencate all'inizio del paragrafo 13.2.

Sezione	Posizione	M _{MAX} [kN*m]	N [kN]	FS
P1	A filo intradosso impalcato	-195.8	330.6	1.52
P2	A filo estradosso plinto	257.4	355.6	1.10

Sezione	Posizione	M [kN*m]	N _{MIN} [kN]	FS
P1	A filo intradosso impalcato	173.7	157.2	1.54
P2	A filo estradosso plinto	212.3	188.5	1.22

Tutte le verifiche risultano soddisfatte.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.1.2 Verifiche allo Stato Limite Ultimo per taglio

Le verifiche vengono svolte senza considerando il contributo positivo dello sforzo normale di compressione a vantaggio di sicurezza.

L'armatura a taglio che si sceglie di adottare è costituita da 1 staffe Ø10/20 a 2 bracci.

11.1.2.1 Verifica Sezione di Testa (P1)

L'azione tagliante di calcolo è assunta pari a V_{Sd} = 114.8 kN.

Elementi con armature trasversali resistenti a taglio			
larghezza sezione	b_{w}	[mm]	500
altezza sezione	h	[mm]	500
altezza utile sezione	d	[mm]	427
numero armature trasversali	n° Ø		2.00
diametro armature trasversali	Ø	[mm]	10
interasse armature trasversali	S	[mm]	200
area dell'armatura trasversale a taglio	A_{sw}	[mm ²]	157
resistenza di progetto	\mathbf{f}_{yd}	[MPa]	391
resistenza a compressione del cls	f_cd	[MPa]	18.1
angolo di inclinazione armatura trasversale rispetto asse trave	α	[DEG]	90
	ctg θ		2.5
	θ	[DEG]	22
tensione di compressione calcestruzzo	σ_{cp}	[MPa]	0.00
coefficiente maggiorativo in elementi compressi	α_{c}		1.00
resistenza a taglio trazione	V_{Rsd}	[kN]	295
resistenza a compressione del cls ridotta	f _{cd} '	[MPa]	9.1
resistenza a taglio compressione	V_{Rcd}	[kN]	601
resistenza a taglio	V_{Rd}	[kN]	295
sforzo di taglio massimo	V_{Ed}	[kN]	114.8
			verificate

verificato

La verifica con armature traversali resistenti a taglio risulta soddisfatta ($V_{Rd}/V_{Ed} = 2.57 > 1$).

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.1.2.2 Verifica Sezione di Base (P3)

L'azione tagliante di calcolo è assunta pari a V_{Sd} = 112.5 kN.

Elementi con armature trasversali resistenti a taglio
larghezza sezione

larghezza sezione	b_{w}	[mm]	500
altezza sezione	h	[mm]	500
altezza utile sezione	d	[mm]	427
numero armature trasversali	n° Ø		2.00
diametro armature trasversali	Ø	[mm]	10
interasse armature trasversali	S	[mm]	200
area dell'armatura trasversale a taglio	A_{sw}	[mm²]	157
resistenza di progetto	f_{yd}	[MPa]	391
resistenza a compressione del cls	f_{cd}	[MPa]	18.1
angolo di inclinazione armatura trasversale rispetto asse trave	α	[DEG]	90
	ctg θ		2.5
	θ	[DEG]	22
tensione di compressione calcestruzzo	$\sigma_{\sf cp}$	[MPa]	0.00
coefficiente maggiorativo in elementi compressi	$\alpha_{ extsf{c}}$		1.00
resistenza a taglio trazione	V_{Rsd}	[kN]	295
resistenza a compressione del cls ridotta	f _{cd} '	[MPa]	9.1
resistenza a taglio compressione	V_{Rcd}	[kN]	601
resistenza a taglio	V_{Rd}	[kN]	295
sforzo di taglio massimo	V_{Ed}	[kN]	112.5

verificato

La verifica con armature traversali resistenti a taglio risulta soddisfatta ($V_{Rd}/V_{Ed} = 1.74 > 1$).

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.1.3 Verifiche allo Stato Limite di fessurazione

Per la verifica di fessurazione sono state considerate condizioni ambientali ordinarie ed armatura poco sensibile (armatura lenta).

La scelta dello stato limite di fessurazione è stata effettuata sulla base di quanto indicato nella Tab. 2.1.IV delle NTC08, di seguito riportata.

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

pi ıze	Condizioni	Combinazione di	Armatura			
Gruppi di Ssigenze	ambientali	azioni	Sensibile		Poco sensibile	
Grupp di Esigen			Stato limite	w _k	Stato limite	$\mathbf{w}_{\mathbf{k}}$
Α	Ordinarie	frequente	apertura fessure	≤ w ₂	apertura fessure	≤w ₃
Α	A Ordinarie	quasi permanente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂
В	A 	frequente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂
	Aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁
С	Molto	frequente	formazione fessure	-	apertura fessure	≤w ₁
C	aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁

I valori limite di apertura delle fessure sono i seguenti:

- $w_1 = 0.2 \text{ mm};$
- $w_2 = 0.3 \text{ mm}$;
- $w_3 = 0.4 \text{ mm}.$

Per la verifica a fessurazione è stato utilizzato il foglio di calcolo Excel.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.1.3.1 Sollecitazioni di calcolo

Si riportano nella tabella seguente le sollecitazioni allo SLE in combinazione frequente e quasi permanente usate nelle verifiche a fessurazione.

	SLE QP					
	M _{max}	M _{max} N M N _{min}				
SEZIONE	[kNm]	[KN]	[kNm]	[KN]		
P1	122.0	329.0	12.5	155.2		
P2	363.9	159.1	128.0	186		

		SLE FQ				
	M _{max}	M _{max} N M N _{min}				
SEZIONE	[kNm]	[KN]	[kNm]	[KN]		
P1	127.6	329	9	154.5		
P2	353.0	166.0	137.0	185.7		

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.1.3.2 Verifica sezione di testa (P1) – M_{MAX}

Stato limite di apertura delle fessure s	SLE QP	
Sollecitazioni di verifica	<u> </u>	
N _{Ed} = sforzo normale	329.0	[kN]
M _{Ed} = momento flettente	122.0	[kNm]
Calcolo della distanza massima tra le fessure		
Δ_{smax} = k_3 c + k_1 k_2 k_4 ϕ / ρ_{eff} = distanza massima tra le fessure		[mm]
c = copriferro s = interasse barre tese		[mm]
φ = diametro della barra		[mm]
 ψ = diametro della barra k₁ = coefficiente di aderenza del cls alla barra 	0.8	נוווווון
	0.5	
k ₂ = coefficiente di forma del diagramma delle tensioni	3.4	
$k_3 = k_4 =$	0.425	
$\rho_{\text{eff}} = A_{\text{s}}/A_{\text{c eff}}$	0.423	
		[mm²]
A_s = area della sezione di acciaio nell'area $A_{c eff}$	59817	[mm ²]
$A_{c,eff} = b h_{c,eff}$		
b =		[mm]
h _{c,eff} =	120	[mm]
Calcolo della deformazione unitaria media dell'armatura		
$\epsilon_{sm} = [\sigma_s - k_t f_{ctm} (1 + \alpha_e \rho_{eff})/\rho_{eff}]/E_s$ (>= 0.6 σ_s/E_s)	0.00040	
$0.6 \sigma_s / E_s =$	0.00040	
σ_s = tensione nell'acciaio nella sezione fessurata	137.6	[MPa]
f_{ctm} = resistenza media a trazione	3.10	[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]
E _{cm} = modulo di elasticità normale del calcestruzzo	33643	[MPa]
α_e = rapporto E _s /E _{cm}	6.1	
k _t = coefficiente di sollecitazione	0.4	
Verifica dell'apertura delle fessure		
$w_d = \varepsilon_{sm} \ \Delta_{smax} = valore \ di \ calcolo \ dell'apertura \ delle \ fessure$	0.13	[mm]
w = valore limite di apertura delle fessure	0.30	[mm]

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

Stato limite di apertura delle fessure S	LE FQ	
Sollecitazioni di verifica		
N _{Ed} = sforzo normale	329.0	[kN]
M _{Ed} = momento flettente	127.6	[kNm]
Calcolo della distanza massima tra le fessure		
Δ_{smax} = k_3 c + k_1 k_2 k_4 φ $/\rho_{\text{eff}}$ = distanza massima tra le fessure		[mm]
c = copriferro	45	[mm]
s = interasse barre tese	125	[mm]
φ = diametro della barra	20	[mm]
k ₁ = coefficiente di aderenza del cls alla barra	0.8	
k ₂ = coefficiente di forma del diagramma delle tensioni	0.5	
k ₃ =	3.4	
$k_4 =$	0.425	
$ \rho_{\text{eff}} = A_{\text{s}}/A_{\text{c eff}} $	0.0210	[21
A_s = area della sezione di acciaio nell'area $A_{c eff}$	1257	[mm ²]
$A_{c,eff} = b h_{c,eff}$	59945	[mm ²]
b =	500	[mm]
h _{c,eff} =	120	[mm]
Calcolo della deformazione unitaria media dell'armatura		
$\varepsilon_{sm} = [\sigma_s - k_t f_{ctm} (1 + \alpha_e \rho_{eff})/\rho_{eff}]/E_s$ (>= 0.6 σ_s/E_s)	0.00043	
$0.6 \sigma_{\rm s} / {\rm E_s} =$	0.00043	
σ_s = tensione nell'acciaio nella sezione fessurata	149.0	[MPa]
f _{ctm} = resistenza media a trazione	3.10	[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]
E _{cm} = modulo di elasticità normale del calcestruzzo	33643	[MPa]
α_e = rapporto E _s /E _{cm}	6.1	
k _t = coefficiente di sollecitazione	0.4	
Verifica dell'apertura delle fessure		
$W_d = \varepsilon_{sm} \ \Delta_{smax} = valore \ di \ calcolo \ dell'apertura \ delle \ fessure$	0.14	[mm]
w = valore limite di apertura delle fessure		[mm]

verificato

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.1.3.3 Verifica sezione di testa (P1) - N_{MIN}

La sezione in oggetto risulta essere completamente compressa e per questo motivo la verifica a fessurazione è automaticamente <u>verificata.</u>

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.1.3.4 Verifica sezione di base (P2) - M_{MAX}

Stato limite di apertura delle fessure	SLE QP	
Sollecitazioni di verifica	<u> </u>	
N _{Ed} = sforzo normale	363.9	[kN]
M _{Ed} = momento flettente	159.1	[kNm]
Calcolo della distanza massima tra le fessure		
$\Delta_{\text{smax}} = k_3 c + k_1 k_2 k_4 \phi / \rho_{\text{eff}} = \text{distanza massima tra le fessure}$		[mm]
c = copriferro s = interasse barre tese		[mm] [mm]
φ = diametro della barra		[mm]
k ₁ = coefficiente di aderenza del cls alla barra	0.8	
k_2 = coefficiente di forma del diagramma delle tensioni	0.5	
k ₃ =	3.4	
k ₄ =	0.425	
$\rho_{eff} = A_s/A_{c eff}$	0.0209	
A_s = area della sezione di acciaio nell'area A_{ceff}	1257	[mm ²]
$A_{c,eff} = b h_{c,eff}$	60228	[mm ²]
b =	500	[mm]
$h_{c,eff} =$	120	[mm]
Calcolo della deformazione unitaria media dell'armatura		
$\varepsilon_{sm} = [\sigma_s - k_t f_{ctm} (1 + \alpha_e \rho_{eff})/\rho_{eff}]/E_s$ (>= 0.6 σ_s/E_s)	0.00065	
$0.6 \sigma_s / E_s =$	0.00059	
σ_s = tensione nell'acciaio nella sezione fessurata		[MPa]
f _{ctm} = resistenza media a trazione		[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]
E _{cm} = modulo di elasticità normale del calcestruzzo	33643	[MPa]
α_e = rapporto E _s /E _{cm}	6.1	
k_t = coefficiente di sollecitazione	0.4	
Verifica dell'apertura delle fessure		
$w_d = \varepsilon_{sm} \Delta_{smax} = valore di calcolo dell'apertura delle fessure$	0.21	[mm]
w = valore limite di apertura delle fessure	0.30	[mm]

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

Stato limite di apertura delle fessure –	SLE FQ	
Sollecitazioni di verifica		
N _{Ed} = sforzo normale	353.0	[kN]
M _{Ed} = momento flettente	166.0	[kNm]
Calcolo della distanza massima tra le fessure		
Δ_{smax} = k_3 c + k_1 k_2 k_4 ϕ $/\rho_{\text{eff}}$ = distanza massima tra le fessure	316	
c = copriferro	45	[mm]
s = interasse barre tese		[mm]
φ = diametro della barra	20	[mm]
k ₁ = coefficiente di aderenza del cls alla barra	0.8	
k ₂ = coefficiente di forma del diagramma delle tensioni	0.5	
k ₃ =	3.4	
$k_4 =$	0.425	
$\rho_{\rm eff} = A_{\rm s}/A_{\rm ceff}$	0.0208	r 21
A_s = area della sezione di acciaio nell'area $A_{c eff}$	1257	[mm ²]
$A_{c,eff} = b h_{c,eff}$	60366	[mm ²]
b =	500	[mm]
$h_{c,eff} =$	121	[mm]
Calcolo della deformazione unitaria media dell'armatura		
$\epsilon_{\rm sm} = [\sigma_{\rm s} - k_{\rm t} f_{\rm ctm} (1 + \alpha_{\rm e} \rho_{\rm eff})/\rho_{\rm eff}]/E_{\rm s}$ (>= 0.6 $\sigma_{\rm s}/E_{\rm s}$)	0.00074	
$0.6 \sigma_{\rm s} / {\rm E_{\rm s}} =$	0.00064	
σ_s = tensione nell'acciaio nella sezione fessurata	219.2	[MPa]
f _{ctm} = resistenza media a trazione	3.10	[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]
E _{cm} = modulo di elasticità normale del calcestruzzo	33643	[MPa]
$\alpha_{\rm e}$ = rapporto E _s /E _{cm}	6.1	
k _t = coefficiente di sollecitazione	0.4	
Verifica dell'apertura delle fessure		
$W_d = \varepsilon_{sm} \Delta_{smax}$ = valore di calcolo dell'apertura delle fessure	0.23	[mm]
w = valore limite di apertura delle fessure	0.40	[mm]

verificato

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.1.3.5 Verifica sezione di base (P2) - N_{MIN}

Stato limite di apertura delle fessure SLE QP				
Sollecitazioni di verifica				
N _{Ed} = sforzo normale	186.0	[kN]		
M _{Ed} = momento flettente	128.0	[kNm]		
Calcolo della distanza massima tra le fessure				
Δ_{smax} = k_3 c + k_1 k_2 k_4 ϕ $/\rho_{\text{eff}}$ = distanza massima tra le fessure c = copriferro	318 45	[mm] [mm]		
s = interasse barre tese	125	[mm]		
φ = diametro della barra	20	[mm]		
k ₁ = coefficiente di aderenza del cls alla barra	0.8			
k ₂ = coefficiente di forma del diagramma delle tensioni	0.5			
$k_3 =$	3.4			
$k_4 =$	0.425			
$\rho_{\text{eff}} = A_s/A_{c \text{ eff}}$	0.0207			
A_s = area della sezione di acciaio nell'area A_{ceff}	1257	[mm ²]		
$A_{c,eff} = b h_{c,eff}$	60819	[mm ²]		
b =	500	[mm]		
h _{c,eff} =	122	[mm]		
Calcolo della deformazione unitaria media dell'armatura				
$\epsilon_{\rm sm} = [\sigma_{\rm s} - k_{\rm t} f_{\rm ctm} (1 + \alpha_{\rm e} \rho_{\rm eff})/\rho_{\rm eff}]/E_{\rm s}$ (>= 0.6 $\sigma_{\rm s}/E_{\rm s}$)	0.00064			
$0.6 \sigma_{\rm s} / {\rm E_{\rm s}} =$	0.00058			
σ_s = tensione nell'acciaio nella sezione fessurata	199.7	[MPa]		
f _{ctm} = resistenza media a trazione	3.10	[MPa]		
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]		
E _{cm} = modulo di elasticità normale del calcestruzzo	33643	[MPa]		
α_e = rapporto E _s /E _{cm}	6.1			
k _t = coefficiente di sollecitazione	0.4			
Verifica dell'apertura delle fessure				
$W_d = \varepsilon_{sm} \Delta_{smax}$ = valore di calcolo dell'apertura delle fessure	0.20	[mm]		
w = valore limite di apertura delle fessure		[mm]		

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

Stato limite di apertura delle fessure S	LE FQ	
Sollecitazioni di verifica		
N _{Ed} = sforzo normale	185.7	[kN]
M _{Ed} = momento flettente	137.0	[kNm]
Calcolo della distanza massima tra le fessure		
Δ_{smax} = k_3 c + k_1 k_2 k_4 ϕ $/\rho_{\text{eff}}$ = distanza massima tra le fessure	318	[mm]
c = copriferro		[mm]
s = interasse barre tese		[mm]
φ = diametro della barra		[mm]
k ₁ = coefficiente di aderenza del cls alla barra	0.8	
k ₂ = coefficiente di forma del diagramma delle tensioni	0.5	
k ₃ =	3.4	
K ₄ =	0.425	
$\rho_{\rm eff} = A_{\rm s}/A_{\rm ceff}$	0.0206	[mama 2]
A_s = area della sezione di acciaio nell'area $A_{c eff}$	1257	[mm ²]
$A_{c,eff} = b h_{c,eff}$	60868	[mm ²]
b =	500	[mm]
$h_{c,eff} =$	122	[mm]
Calcolo della deformazione unitaria media dell'armatura		
$\varepsilon_{sm} = [\sigma_s - k_t f_{ctm} (1 + \alpha_e \rho_{eff})/\rho_{eff}]/E_s$ (>= 0.6 σ_s/E_s)	0.00073	
$0.6 \sigma_{\rm s} / {\rm E_{\rm s}} =$	0.00064	
σ_s = tensione nell'acciaio nella sezione fessurata	218.7	[MPa]
f _{ctm} = resistenza media a trazione	3.10	[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]
E _{cm} = modulo di elasticità normale del calcestruzzo	33643	[MPa]
$\alpha_{\rm e}$ = rapporto E _s /E _{cm}	6.1	
k _t = coefficiente di sollecitazione	0.4	
Verifica dell'apertura delle fessure		
$W_d = \varepsilon_{sm} \Delta_{smax}$ = valore di calcolo dell'apertura delle fessure	0.23	[mm]
w = valore limite di apertura delle fessure	0.40	[mm]

verificato

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.2 Sezioni di verifica ed armatura di calcolo delle pile rettangolari

La sezione di verifica è rettangolare con base pari a 50 cm ed altezza pari a 30 cm. Le sezioni di verifica sono riportate nella figura seguente.

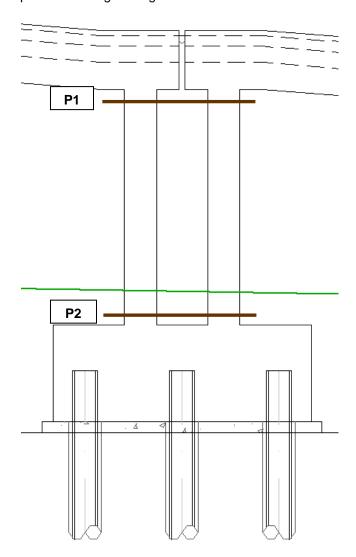


Figura 11-2: Sezioni di verifica

Nella tabella seguente si riportano le armature di calcolo assunte per ogni sezione.

Sezione	Posizione	Armatura superiore	Armatura inferiore
P1	A filo intradosso impalcato	4φ26	4φ26
P2	A filo estradosso plinto	4φ26	4φ26

Tabella 11-2: Sezioni di verifica - Armature di calcolo

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.2.1 Verifiche allo Stato Limite Ultimo per presso-flessione

Le verifiche vengono eseguite in ognuna delle sezioni precedentemente individuate prendendo in esame le seguenti combinazioni delle azioni sollecitanti:

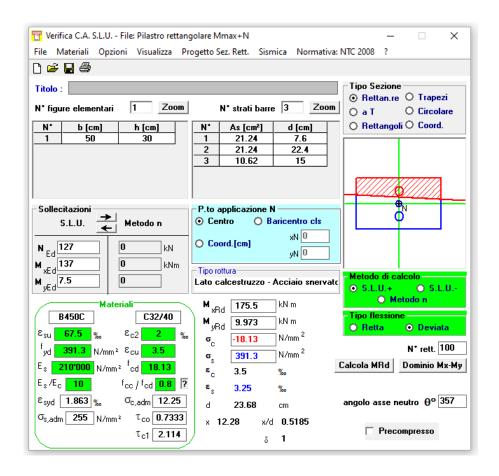
- $M_{\text{max}_x} + M_y + N$;
- $M_x+M_y+N_{min}$;

I momenti che tendono le fibre superiori sono assunti negativi, mentre quelli che tendono le fibre inferiori sono assunti positivi. Gli sforzi normali di compressione hanno segno negativo.

Le verifiche vengono svolte mediante il software VCASLU.

Si riportano in modo esplicito le verifiche svolte per la combinazione peggiore tra le precedenti elencate (minore coefficiente di sicurezza), sebbene la verifica sia stata comunque eseguita per tutte le combinazioni.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia


CA-029

Relazione tecnica e di calcolo

11.2.1.1 Verifica Sezione di Testa (P1)

L'azione normale di calcolo è assunta pari a N_{sd} = -127 kN.

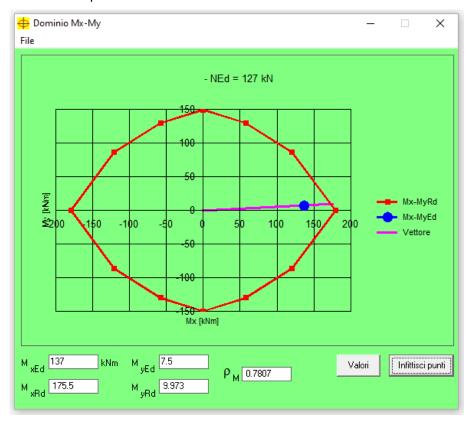
I momenti flettenti di calcolo sono assunto pari a $M_{sd_X} = 137kNm$ e a $M_{sd_X} = 7.5$ kNm.

Il momento resistente della sezione vale $M_{rd_{-}X}$ = 175.5 kNm/m.

II rapporto $M_{rd_X}/M_{sd_X} = 1.28$.

Il momento resistente della sezione vale $M_{rd_Y} = 16.55 \text{ kNm/m}$.

II rapporto $M_{rd_Y}/M_{sd_Y} = 1.32$.


Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

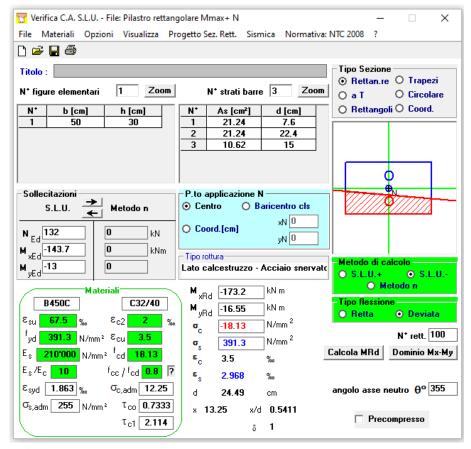
CA-029

Relazione tecnica e di calcolo

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

La verifica risulta pertanto soddisfatta.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia


CA-029

Relazione tecnica e di calcolo

11.2.1.2 Verifica Sezione di Base (P2)

L'azione normale di calcolo è assunta pari a N_{sd} = -132 kN.

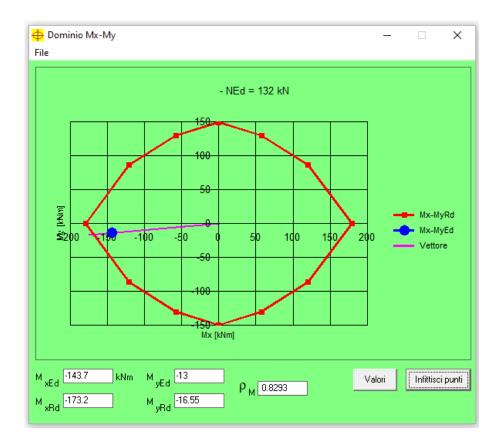
I momenti flettenti di calcolo sono assunto pari a M_{sd_X} = -143.7 kNm e a M_{sd_Y} = -13 kNm.

II momento resistente della sezione vale M_{rd_X} = -173.2 kNm/m.

II rapporto $M_{rd_X}/M_{sd_X} = 1.20$.

Il momento resistente della sezione vale $M_{rd_{-}Y} = -16.55 \text{ kNm/m}$.

Il rapporto $M_{rd_Y}/M_{sd_Y} = 1.27$.


Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

Nell'immagine successiva è riportato il dominio di resistenza della sezione:

La verifica risulta pertanto soddisfatta.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.2.1.3 Riepilogo degli esiti delle verifiche

Si riporta nella tabella seguente l'esito delle verifiche eseguite per tutte le combinazioni elencate all'inizio del paragrafo 13.2.

Sezione	Posizione	M _{MAX} [kN*m]	N [kN]	FS
P1	A filo intradosso impalcato	137	127.0	1.28
P2	A filo estradosso plinto	-143.7	132	1.21

Sezione	Posizione	M [kN*m]	N _{MIN} [kN]	FS
P1	A filo intradosso impalcato	-135	125	1.28
P2	A filo estradosso plinto	-143.7	132	1.21

Tutte le verifiche risultano soddisfatte.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.2.2 Verifiche allo Stato Limite Ultimo per taglio

Le verifiche vengono svolte senza considerando il contributo positivo dello sforzo normale di compressione a vantaggio di sicurezza.

L'armatura a taglio che si sceglie di adottare è costituita da 1 staffe Ø10/20 a 2 bracci.

11.2.2.1 Verifica Sezione di Testa (P1)

L'azione tagliante di calcolo è assunta pari a V_{Sd} = 62.0 kN.

Elementi con armature trasversali resistenti a taglio			
larghezza sezione	b_{w}	[mm]	500
altezza sezione	h	[mm]	300
altezza utile sezione	d	[mm]	224
numero armature trasversali	n° Ø		2.00
diametro armature trasversali	Ø	[mm]	10
interasse armature trasversali	s	[mm]	200
area dell'armatura trasversale a taglio	A_{sw}	[mm ²]	157
resistenza di progetto	\mathbf{f}_{yd}	[MPa]	391
resistenza a compressione del cls	f_{cd}	[MPa]	18.1
angolo di inclinazione armatura trasversale rispetto asse trave	α	[DEG]	90
	ctg θ		2.5
	θ	[DEG]	22
tensione di compressione calcestruzzo	$\sigma_{\sf cp}$	[MPa]	0.00
coefficiente maggiorativo in elementi compressi	α_{c}		1.00
resistenza a taglio trazione	V_{Rsd}	[kN]	155
resistenza a compressione del cls ridotta	f_{cd}	[MPa]	9.1
resistenza a taglio compressione	V_{Rcd}	[kN]	315
resistenza a taglio	V_{Rd}	[kN]	155
sforzo di taglio massimo	V_{Ed}	[kN]	62.0

verificato

La verifica con armature traversali resistenti a taglio risulta soddisfatta ($V_{Rd}/V_{Ed} = 2.5 > 1$).

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.2.2.2 Verifica Sezione di Base (P3)

L'azione tagliante di calcolo è assunta pari a V_{Sd} = 81.0 kN.

Elementi con	armature trasversa	ili resistenti a ta	aglio

Elomonii oon armataro traovorcan recicionii a tagne			
larghezza sezione	bw	[mm]	500
altezza sezione	h	[mm]	300
altezza utile sezione	d	[mm]	224
numero armature trasversali	n° Ø		2.00
diametro armature trasversali	Ø	[mm]	10
interasse armature trasversali	S	[mm]	200
area dell'armatura trasversale a taglio	A_{sw}	[mm ²]	157
resistenza di progetto	\mathbf{f}_{yd}	[MPa]	391
resistenza a compressione del cls	f_{cd}	[MPa]	18.1
angolo di inclinazione armatura trasversale rispetto asse trave	α	[DEG]	90
	ctg θ		2.5
	θ	[DEG]	22
tensione di compressione calcestruzzo	$\sigma_{\sf cp}$	[MPa]	0.00
coefficiente maggiorativo in elementi compressi	α_{c}		1.00
resistenza a taglio trazione	V_{Rsd}	[kN]	155
resistenza a compressione del cls ridotta	f _{cd} '	[MPa]	9.1
resistenza a taglio compressione	V_{Rcd}	[kN]	315
resistenza a taglio	V_{Rd}	[kN]	155
sforzo di taglio massimo	V_{Ed}	[kN]	81.0
			101

verificato

La verifica con armature traversali resistenti a taglio risulta soddisfatta ($V_{Rd}/V_{Ed} = 1.91 > 1$).

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.2.3 Verifiche allo Stato Limite di fessurazione

Per la verifica di fessurazione sono state considerate condizioni ambientali ordinarie ed armatura poco sensibile (armatura lenta).

La scelta dello stato limite di fessurazione è stata effettuata sulla base di quanto indicato nella Tab. 2.1.IV delle NTC08, di seguito riportata.

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

pi ıze	Condizioni	Combinazione di	Armatura			
Gruppi di Ssigenze	ambientali	azioni	Sensibile		Poco sensibile	
Gru d Esigo			Stato limite	w _k	Stato limite	$\mathbf{w}_{\mathbf{k}}$
Α	Ordinarie	frequente	apertura fessure	≤ w ₂	apertura fessure	≤ w ₃
A	Ordinarie	quasi permanente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂
В	Δ	frequente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂
ь	Aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁
	Molto	frequente	formazione fessure	-	apertura fessure	≤w ₁
С	aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁

I valori limite di apertura delle fessure sono i seguenti:

- $w_1 = 0.2 \text{ mm};$
- $w_2 = 0.3 \text{ mm}$;
- $w_3 = 0.4 \text{ mm}.$

Per la verifica a fessurazione è stato utilizzato il foglio di calcolo Excel.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.2.3.1 Sollecitazioni di calcolo

Si riportano nella tabella seguente le sollecitazioni allo SLE in combinazione frequente e quasi permanente usate nelle verifiche a fessurazione.

	SLE QP				
	M _{max} N M N _{min}				
SEZIONE	[kNm]	[KN]	[kNm]	[KN]	
P1	64.5	131	50.9	122.0	
P2	86.8	130.3	86.8	130.3	

	SLE FQ				
	M _{max} N M N _{min}				
SEZIONE	[kNm]	[KN]	[kNm]	[KN]	
P1	84.0	130.7	72.9	120.9	
P2	92.8	129.2	92.8	129.2	

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.2.3.2 Verifica sezione di testa (P1) – M_{MAX}

Stato limite di apertura delle fessure SLE QP		
Sollecitazioni di verifica		
N _{Ed} = sforzo normale	131.0	[kN]
M _{Ed} = momento flettente	64.5	[kNm]
Calcolo della distanza massima tra le fessure		
Δ_{smax} = k_3 c + k_1 k_2 k_4 ϕ $/\rho_{\text{eff}}$ = distanza massima tra le fessure	220	[mm]
c = copriferro	45	[mm]
s = interasse barre tese	125	[mm]
φ = diametro della barra	26	[mm]
k ₁ = coefficiente di aderenza del cls alla barra	0.8	
k ₂ = coefficiente di forma del diagramma delle tensioni	0.5	
$k_3 =$	3.4	
$k_4 =$	0.425	
$\rho_{\rm eff} = A_{\rm s}/A_{\rm ceff}$	0.0658	
A_s = area della sezione di acciaio nell'area A_{ceff}	2124	[mm ²]
$A_{c,eff} = b h_{c,eff}$	32289	[mm ²]
b =	500	[mm]
h _{c,eff} =	65	[mm]
Calcolo della deformazione unitaria media dell'armatura		
$\epsilon_{sm} = [\sigma_s - k_t f_{ctm} (1 + \alpha_e \rho_{eff})/\rho_{eff}]/E_s$ (>= 0.6 σ_s/E_s)	0.00054	
$0.6 \sigma_s / E_s =$	0.00040	
σ_s = tensione nell'acciaio nella sezione fessurata	138.7	[MPa]
f _{ctm} = resistenza media a trazione	3.10	[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]
E _{cm} = modulo di elasticità normale del calcestruzzo	33643	[MPa]
$\alpha_{\rm e}$ = rapporto E _s /E _{cm}	6.1	
k _t = coefficiente di sollecitazione	0.4	
Verifica dell'apertura delle fessure		
$W_d = \varepsilon_{sm} \Delta_{smax}$ = valore di calcolo dell'apertura delle fessure	0.12	[mm]
w = valore limite di apertura delle fessure		[mm]

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

Stato limite di apertura delle fessure SLE FQ		
Sollecitazioni di verifica		
N _{Ed} = sforzo normale	130.7	[kN]
M _{Ed} = momento flettente	84.0	[kNm]
Calcolo della distanza massima tra le fessure		
Δ_{smax} = k_3 c + k_1 k_2 k_4 ϕ $/\rho_{\text{eff}}$ = distanza massima tra le fessure	220	[mm]
c = copriferro		[mm]
s = interasse barre tese ϕ = diametro della barra		[mm]
 ψ = diametro della barra k₁ = coefficiente di aderenza del cls alla barra 	0.8	[iiiiii]
	0.5	
k₂ = coefficiente di forma del diagramma delle tensionik₃ =	3.4	
$k_4 =$	0.425	
$\rho_{\text{eff}} = A_{\text{s}}/A_{\text{c eff}}$	0.923	
A_s = area della sezione di acciaio nell'area $A_{c eff}$		[mm ²]
$A_{c,eff} = b h_{c,eff}$	32311	[mm ²]
b =		[mm]
$h_{c,eff} =$	65	[mm]
• ••••		<u>[</u>
Calcolo della deformazione unitaria media dell'armatura		
$\varepsilon_{sm} = [\sigma_s - k_t f_{ctm} (1 + \alpha_e \rho_{eff})/\rho_{eff}]/E_s$ (>= 0.6 σ_s/E_s)	0.00079	
$0.6 \sigma_s / E_s =$	0.00055	
σ_s = tensione nell'acciaio nella sezione fessurata	190.1	[MPa]
f _{ctm} = resistenza media a trazione	3.10	[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]
E _{cm} = modulo di elasticità normale del calcestruzzo	33643	[MPa]
$\alpha_{\rm e}$ = rapporto E _s /E _{cm}	6.1	
k _t = coefficiente di sollecitazione	0.4	
Verifica dell'apertura delle fessure		
$w_d = \varepsilon_{sm} \ \Delta_{smax} = valore \ di \ calcolo \ dell'apertura \ delle \ fessure$	0.17	[mm]
w = valore limite di apertura delle fessure	0.40	[mm]

verificato

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.2.3.3 Verifica sezione di testa (P1) - N_{MIN}

Stato limite di apertura delle fessure SLE QP		
Sollecitazioni di verifica		
N _{Ed} = sforzo normale	122.0	[kN]
M _{Ed} = momento flettente	50.9	[kNm]
Calcolo della distanza massima tra le fessure		
Δ_{smax} = k_3 c + k_1 k_2 k_4 ϕ / ρ_{eff} = distanza massima tra le fessure	220	[mm]
c = copriferro s = interasse barre tese	45	[mm]
φ = diametro della barra	125 26	[mm] [mm]
 ψ = diametro della parra k₁ = coefficiente di aderenza del cls alla barra 	0.8	נוווווון
k_1 = coefficiente di aderenza del cis alla barra k_2 = coefficiente di forma del diagramma delle tensioni	0.5	
•	3.4	
$k_3 =$ $k_4 =$	0.425	
$\rho_{\text{eff}} = A_{\text{s}}/A_{\text{c eff}}$	0.425	
		[mm²]
A _s = area della sezione di acciaio nell'area A _{c eff}	32267	. 21
$A_{c,eff} = b h_{c,eff}$		
b =		[mm]
h _{c,eff} =	65	[mm]
Calcolo della deformazione unitaria media dell'armatura		
$\varepsilon_{sm} = [\sigma_s - k_t f_{ctm} (1 + \alpha_e \rho_{eff})/\rho_{eff}]/E_s$ (>= 0.6 σ_s/E_s)	0.00038	
$0.6 \sigma_s / E_s =$	0.00031	
σ_s = tensione nell'acciaio nella sezione fessurata	105.0	[MPa]
f _{ctm} = resistenza media a trazione	3.10	[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]
E _{cm} = modulo di elasticità normale del calcestruzzo	33643	[MPa]
$\alpha_{\rm e}$ = rapporto E _s /E _{cm}	6.1	
k _t = coefficiente di sollecitazione	0.4	
Verifica dell'apertura delle fessure		
$W_d = \varepsilon_{sm} \Delta_{smax}$ = valore di calcolo dell'apertura delle fessure	0.08	[mm]
w = valore limite di apertura delle fessure		[mm]

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

Stato limite di apertura delle fessure SLE FQ		
Sollecitazioni di verifica		
N _{Ed} = sforzo normale	120.9	[kN]
M _{Ed} = momento flettente	72.9	[kNm]
Calcolo della distanza massima tra le fessure		
Δ_{smax} = k_3 c + k_1 k_2 k_4 ϕ $/\rho_{\text{eff}}$ = distanza massima tra le fessure		[mm]
c = copriferro		[mm]
s = interasse barre tese ϕ = diametro della barra		[mm]
 ψ = diametro della barra k₁ = coefficiente di aderenza del cls alla barra 	0.8	[mm]
	0.5	
k ₂ = coefficiente di forma del diagramma delle tensioni	3.4	
$k_3 =$ $k_4 =$	0.425	
$\rho_{\text{eff}} = A_{\text{s}}/A_{\text{c eff}}$	0.423	
$A_s = \text{area della sezione di acciaio nell'area } A_{c \text{ eff}}$		[mm ²]
	32304	
$A_{c,eff} = b h_{c,eff}$ b =		
	65	[mm]
n _{c,eff} =	03	[111111]
Calcolo della deformazione unitaria media dell'armatura		
$\varepsilon_{sm} = [\sigma_s - k_t f_{ctm} (1 + \alpha_e \rho_{eff})/\rho_{eff}]/E_s$ (>= 0.6 σ_s/E_s)	0.00065	
$0.6 \sigma_s / E_s =$	0.00047	
σ_s = tensione nell'acciaio nella sezione fessurata	160.2	[MPa]
f _{ctm} = resistenza media a trazione	3.10	[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]
E _{cm} = modulo di elasticità normale del calcestruzzo	33643	[MPa]
α_e = rapporto E _s /E _{cm}	6.1	
k _t = coefficiente di sollecitazione	0.4	
Verifica dell'apertura delle fessure		
$W_d = \varepsilon_{sm} \Delta_{smax}$ = valore di calcolo dell'apertura delle fessure	0.14	[mm]
w = valore limite di apertura delle fessure		[mm]

verificato

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.2.3.4 Verifica sezione di base (P2) - MMAX

Stato limite di apertura delle fessure SLE QP		
Sollecitazioni di verifica		
N _{Ed} = sforzo normale	130.3	[kN]
M _{Ed} = momento flettente	86.8	[kNm]
Calcolo della distanza massima tra le fessure		
Δ_{smax} = k_3 c + k_1 k_2 k_4 ϕ / ρ_{eff} = distanza massima tra le fessure c = copriferro	220 45	[mm] [mm]
s = interasse barre tese		[mm]
φ = diametro della barra		
k₁ = coefficiente di aderenza del cls alla barra	0.8	
k ₂ = coefficiente di forma del diagramma delle tensioni	0.5	
k ₃ =	3.4	
k ₄ =	0.425	
$\rho_{\text{eff}} = A_{\text{s}}/A_{\text{c eff}}$	0.0657	
A_s = area della sezione di acciaio nell'area A_{ceff}	2124	[mm ²]
$A_{c,eff} = b h_{c,eff}$	32311	[mm ²]
b =	500	[mm]
h _{c,eff} =	65	[mm]
Calcolo della deformazione unitaria media dell'armatura		
$\varepsilon_{\text{sm}} = [\sigma_{\text{s}} - k_{\text{t}} f_{\text{ctm}} (1 + \alpha_{\text{e}} \rho_{\text{eff}})/\rho_{\text{eff}}]/E_{\text{s}}$ (>= 0.6 $\sigma_{\text{s}}/E_{\text{s}}$)	0.00081	
$0.6 \sigma_s / E_s =$	0.00057	
σ_s = tensione nell'acciaio nella sezione fessurata	194.0	[MPa]
f _{ctm} = resistenza media a trazione	3.10	[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]
E _{cm} = modulo di elasticità normale del calcestruzzo	33643	[MPa]
α_e = rapporto E _s /E _{cm}	6.1	
k _t = coefficiente di sollecitazione	0.4	
Verifica dell'apertura delle fessure		
$W_d = \varepsilon_{sm} \ \Delta_{smax} = valore \ di \ calcolo \ dell'apertura \ delle \ fessure$	0.18	[mm]
w = valore limite di apertura delle fessure	0.30	[mm]

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

Stato limite di apertura delle fessure SLE FQ		
Sollecitazioni di verifica		
N _{Ed} = sforzo normale	129.2	[kN]
M _{Ed} = momento flettente	92.8	[kNm]
Calcolo della distanza massima tra le fessure		
Δ_{smax} = k_3 c + k_1 k_2 k_4 ϕ / ρ_{eff} = distanza massima tra le fessure	220	[mm]
c = copriferro		[mm]
s = interasse barre tese		[mm]
φ = diametro della barra		[mm]
k ₁ = coefficiente di aderenza del cls alla barra	0.8	
k ₂ = coefficiente di forma del diagramma delle tensioni	0.5	
$k_3 =$	3.4	
$k_4 =$	0.425	
$\rho_{\text{eff}} = A_s/A_{c \text{ eff}}$	0.0657	
A _s = area della sezione di acciaio nell'area A _{c eff}	2124	[mm ²]
$A_{c,eff} = b h_{c,eff}$	32315	[mm ²]
b =	500	[mm]
h _{c,eff} =	65	[mm]
Calcolo della deformazione unitaria media dell'armatura		
$\varepsilon_{sm} = [\sigma_s - k_t f_{ctm} (1 + \alpha_e \rho_{eff})/\rho_{eff}]/E_s$ (>= 0.6 σ_s/E_s)	0.00089	
$0.6 \sigma_s / E_s =$	0.00061	
σ_s = tensione nell'acciaio nella sezione fessurata	209.8	[MPa]
f _{ctm} = resistenza media a trazione	3.10	[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]
E _{cm} = modulo di elasticità normale del calcestruzzo	33643	[MPa]
α_e = rapporto E _s /E _{cm}	6.1	
k _t = coefficiente di sollecitazione	0.4	
Verifica dell'apertura delle fessure		
$W_d = \varepsilon_{sm} \ \Delta_{smax} = valore \ di \ calcolo \ dell'apertura \ delle \ fessure$	0.20	[mm]
w = valore limite di apertura delle fessure		[mm]

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

11.2.3.5 Verifica sezione di base (P2) - N_{MIN}

Stato limite di apertura delle fessure S	SLE QP	
Sollecitazioni di verifica		
N _{Ed} = sforzo normale	130.3	[kN]
M _{Ed} = momento flettente	86.8	[kNm]
Calcolo della distanza massima tra le fessure		
$\Delta_{\text{smax}} = k_3 c + k_1 k_2 k_4 \phi / \rho_{\text{eff}} = \text{distanza massima tra le fessure}$	220	[mm]
c = copriferro s = interasse barre tese	45 125	[mm] [mm]
φ = diametro della barra		[mm]
k ₁ = coefficiente di aderenza del cls alla barra	0.8	
k ₂ = coefficiente di forma del diagramma delle tensioni	0.5	
k ₃ =	3.4	
$k_4 =$	0.425	
$\rho_{\text{eff}} = A_{\text{s}}/A_{\text{c eff}}$	0.0657	
A_s = area della sezione di acciaio nell'area A_{ceff}	2124	[mm ²]
$A_{c,eff} = b h_{c,eff}$	32311	[mm ²]
b =	500	[mm]
h _{c,eff} =	65	[mm]
Calcolo della deformazione unitaria media dell'armatura		
$\varepsilon_{sm} = [\sigma_s - k_t f_{ctm} (1 + \alpha_e \rho_{eff})/\rho_{eff}]/E_s$ (>= 0.6 σ_s/E_s)	0.00081	
$0.6 \sigma_{\rm s} / {\rm E_{\rm s}} =$	0.00057	
σ_s = tensione nell'acciaio nella sezione fessurata	194.0	[MPa]
f _{ctm} = resistenza media a trazione	3.10	[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]
E _{cm} = modulo di elasticità normale del calcestruzzo	33643	[MPa]
α_e = rapporto E _s /E _{cm}	6.1	
k _t = coefficiente di sollecitazione	0.4	
Verifica dell'apertura delle fessure		
$w_d = \epsilon_{sm} \Delta_{smax} = valore di calcolo dell'apertura delle fessure$	0.18	[mm]
w = valore limite di apertura delle fessure	0.30	[mm]

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

Stato limite di apertura delle fessure S	SLE FQ	
Sollecitazioni di verifica		
N _{Ed} = sforzo normale	129.2	[kN]
M _{Ed} = momento flettente	92.8	[kNm]
Calcolo della distanza massima tra le fessure		
Δ_{smax} = k_3 c + k_1 k_2 k_4 ϕ / ρ_{eff} = distanza massima tra le fessure	220	[mm]
c = copriferro		[mm]
s = interasse barre tese		[mm]
φ = diametro della barra		[mm]
k ₁ = coefficiente di aderenza del cls alla barra	0.8	
k ₂ = coefficiente di forma del diagramma delle tensioni	0.5	
$k_3 =$	3.4	
$k_4 =$	0.425	
$\rho_{\text{eff}} = A_s/A_{c \text{ eff}}$	0.0657	
A _s = area della sezione di acciaio nell'area A _{c eff}	2124	[mm ²]
$A_{c,eff} = b h_{c,eff}$	32315	[mm ²]
b =	500	[mm]
h _{c,eff} =	65	[mm]
Calcolo della deformazione unitaria media dell'armatura		
$\varepsilon_{sm} = [\sigma_s - k_t f_{ctm} (1 + \alpha_e \rho_{eff})/\rho_{eff}]/E_s$ (>= 0.6 σ_s/E_s)	0.00089	
$0.6 \sigma_s / E_s =$	0.00061	
σ_s = tensione nell'acciaio nella sezione fessurata	209.8	[MPa]
f _{ctm} = resistenza media a trazione	3.10	[MPa]
E _s = modulo di elasticità normale dell'acciaio	206000	[MPa]
E _{cm} = modulo di elasticità normale del calcestruzzo	33643	[MPa]
α_e = rapporto E _s /E _{cm}	6.1	
k _t = coefficiente di sollecitazione	0.4	
Verifica dell'apertura delle fessure		
$W_d = \varepsilon_{sm} \ \Delta_{smax} = valore \ di \ calcolo \ dell'apertura \ delle \ fessure$	0.20	[mm]
w = valore limite di apertura delle fessure		[mm]

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

CA-029

Relazione tecnica e di calcolo

12 PLINTI DI FONDAZIONE – VERIFICHE STRUTTURALI

12.1 Plinto quadrato 1.80 m x 1.80 m

La fondazione è realizzata su un plinto con micropali di diametro φ=300mm. Le dimensioni del plinto e l'interasse dei pali è riportato nella figura seguente:

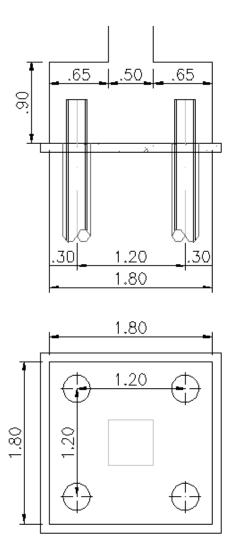


Figura 12-1: Pianta e sezione plinto quadrato

L'armatura di calcolo è assunta come segue:

- 3*1Ø20/20 inferiori e3*1Ø16/20 superiori che vanno a costituire la gabbia;
- 16 Ø18 i quali rappresentano l'infittimento in corrispondenza dei pali.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

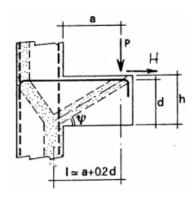
CA-029

Relazione tecnica e di calcolo

12.1.1 Verifica "tirante-puntone"

La verifica del plinto di fondazione è stata condotta con il metodo degli stati limite, calcolando la capacità ultima di resistenza dell'elemento strutturale rispetto ai principali meccanismi di collasso individuabili. È necessario osservare che, dato il valore dei rapporti altezza – aggetto dal muro, le mensole da verificare sono di tipo "tozzo". Pertanto si adotta una schematizzazione a traliccio basata sull'ipotesi di un meccanismo di trasferimento degli sforzi a "tirante di acciaio" – "puntone di cls" che meglio rappresenta il reale andamento delle tensioni all'interno dei materiali costituenti l'elemento.

Il meccanismo resistente è costituito da un tirante orizzontale, corrispondente all'armatura tesa, e da un puntone di calcestruzzo inclinato di Ψ che riporta il carico P_{ed} entro il bordo del muro.


La reazione normale massima trasmessa dal singolo micropalo di fondazione vale:

- $N_{SLU, max} = 345.9kN.$

La massima azione orizzontale in testa al singolo micropalo di fondazione vale:

- $H_{Ed} = 28.8 kN.$

Detta d = 0.786 m la distanza del baricentro del tirante inferiore dal lembo compresso superiore ed assumendo a = 0.350 m quale braccio della mensola tozza,

si procede assumendo:

- f_{yd} = 391.30 N/mm² (resistenza di calcolo dell'acciaio)
- f_{cd} = 18.13 N/mm² (resistenza di calcolo del calcestruzzo)

Con riferimento al paragrafo C4.1.2.1.5 della "Circolare 02 febbraio 2009 n°617/C.S.LL.PP." delle "Nuove Norme Tecniche per le Costruzioni, D.M. 14 gennaio 2008":

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

La resistenza massima del tirante in acciaio allo Stato Limite Ultimo vale:

$$P_{Rs} = (A_s \cdot f_{yd} - H_{Ed}) \frac{1}{\lambda} = 517.2 \text{ kN} > \text{N}_{\text{SLU,max}} = 345.9 \text{ kN}$$

con:

 $\lambda = 0.72$

I =0.507 m

 $A_s = 10.18 \text{ cm}^2 (4Ø18)$

La resistenza massima sul puntone compresso allo Stato Limite Ultimo vale:

$$P_{\mathit{Rc}} = 0.40 \cdot b \cdot d \cdot f_{\mathit{cd}} \cdot \frac{c}{1 + \lambda^2} = \text{1138.1 kN} \geq \mathsf{P}_{\mathsf{Rs}} = \text{515.4 kN}$$

con:

b = 0.30 m

c = 1.00

La verifica secondo il meccanismo "tirante-puntone" risulta soddisfatta.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

12.1.2 Verifica a taglio

L'azione di taglio massima è assunta, relativamente al singolo palo, come la massima reazione allo Stato Limite Ultimo trasmessa dal palo stesso alla zattera.

L'azione tagliante massima viene quindi assunta pari a V_{Sd} = 345.9 kN.

La sezione resistente è rettangolare con base pari a 1800 mm e altezza pari a 900 mm.

La verifica a taglio è soddisfatta senza aver bisogno di armatura trasversale che comunque sia è costituita da **4 cavalotti Ø20**, uno per lato

Elementi senza armature trasversali resistenti a taglio

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} \, / \, \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} +$$

larghezza sezione	bw	[mm]	1800
altezza sezione	h	[mm]	900
altezza utile sezione	d	[mm]	786
armatura longitudinale	A_{sl}	$[mm^2]$	5177
rapporto geometrico di armatura longitudinale (<0.02)	ρι		0.004
	k		1.504
	V_{min}	[MPa]	0.365
tensione media di compressione nella sezione (<0.2 f _{cd})	σ_{cp}	[MPa]	0.00
resistenza caratteristica cilindrica	f_ck	[MPa]	32.0
resistenza a taglio	V_{Rd}	[kN]	580.0
sforzo di taglio massimo	V_{Ed}	[kN]	345.9
<u> </u>	_		

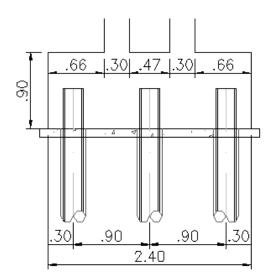
verificato

La verifica a taglio risulta soddisfatta.

Nuova S.S.291 Collegamento Sassari - Alghero - Aeroporto

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con

l'aeroporto di Fertilia



CA-029

Relazione tecnica e di calcolo

12.2 Plinto rettangolare 2.40 m x 1.80 m

La fondazione è realizzata su un plinto con micropali di diametro φ=300mm. Le dimensioni del plinto e l'interasse dei pali è riportato nella figura seguente:

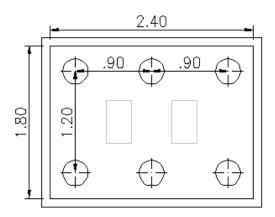


Figura 12-2: Pianta e sezione plinto rettangolare

L'armatura di calcolo è assunta come segue:

- 3*1Ø20/20 inferiori e3*1Ø16/20 superiori che vanno a costituire la gabbia;
- 16 Ø18 i quali rappresentano l'infittimento in corrispondenza dei pali.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

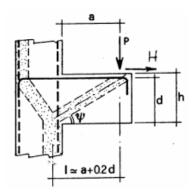
CA-029

Relazione tecnica e di calcolo

12.2.1 Verifica "tirante-puntone"

La verifica del plinto di fondazione è stata condotta con il metodo degli stati limite, calcolando la capacità ultima di resistenza dell'elemento strutturale rispetto ai principali meccanismi di collasso individuabili. È necessario osservare che, dato il valore dei rapporti altezza – aggetto dal muro, le mensole da verificare sono di tipo "tozzo". Pertanto si adotta una schematizzazione a traliccio basata sull'ipotesi di un meccanismo di trasferimento degli sforzi a "tirante di acciaio" – "puntone di cls" che meglio rappresenta il reale andamento delle tensioni all'interno dei materiali costituenti l'elemento.

Il meccanismo resistente è costituito da un tirante orizzontale, corrispondente all'armatura tesa, e da un puntone di calcestruzzo inclinato di Ψ che riporta il carico P_{ed} entro il bordo del muro.


La reazione normale massima trasmessa dal singolo micropalo di fondazione vale:

- N _{SLU, max} = 241kN.

La massima azione orizzontale in testa al singolo micropalo di fondazione vale:

- $H_{Ed} = 27.2 kN.$

Detta d = 0.786 m la distanza del baricentro del tirante inferiore dal lembo compresso superiore ed assumendo a = 0.362 m quale braccio della mensola tozza,

si procede assumendo:

- f_{yd} = 391.30 N/mm² (resistenza di calcolo dell'acciaio)
- f_{cd} = 18.13 N/mm² (resistenza di calcolo del calcestruzzo)

Con riferimento al paragrafo C4.1.2.1.5 della "Circolare 02 febbraio 2009 n°617/C.S.LL.PP." delle "Nuove Norme Tecniche per le Costruzioni, D.M. 14 gennaio 2008":

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

La resistenza massima del tirante in acciaio allo Stato Limite Ultimo vale:

$$P_{Rs} = (A_s \cdot f_{yd} - H_{Ed}) \frac{1}{\lambda} = 504.2 \text{ kN} > \text{N}_{\text{SLU,max}} = 241.02 \text{ kN}$$

con:

 $\lambda = 0.73$

I =0.520 m

 $A_s = 10.18 \text{ cm}^2 (4Ø18)$

La resistenza massima sul puntone compresso allo Stato Limite Ultimo vale:

$$P_{Rc} = 0.40 \cdot b \cdot d \cdot f_{cd} \cdot \frac{c}{1 + \lambda^2} = 1110.8 \text{ kN} \ge P_{Rs} = 504.2 \text{ kN}$$

con:

b = 0.30 m

c = 1.00

La verifica secondo il meccanismo "tirante-puntone" risulta soddisfatta.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

12.2.2 Verifica a taglio

L'azione di taglio massima è assunta, relativamente al singolo palo, come la massima reazione allo Stato Limite Ultimo trasmessa dal palo stesso alla zattera.

L'azione tagliante massima viene quindi assunta pari a V_{Sd} = 241.02 kN.

La sezione resistente è rettangolare con base pari a 1800 mm e altezza pari a 900 mm.

La verifica a taglio è soddisfatta senza aver bisogno di armatura trasversale che comunque sia è costituita da **4 cavalotti Ø20**, uno per lato

Elementi senza armature trasversali resistenti a taglio

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} \, / \, \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \, \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \, \cdot b_w d + 0.00 \cdot \left(v_{min} + \, 0.00 \cdot \, \sigma_{cp} \right) \, \cdot b_w d + 0.00 \cdot \, \sigma_{cp} + 0.00 \cdot \, \sigma_{cp$$

larghezza sezione	bw	[mm]	1800
altezza sezione	h	[mm]	900
altezza utile sezione	d	[mm]	786
armatura longitudinale	A_{sl}	[mm ²]	5177
rapporto geometrico di armatura longitudinale (<0.02)	ρι		0.004
	k		1.504
	V_{min}	[MPa]	0.365
tensione media di compressione nella sezione (<0.2 fcd)	$\sigma_{\sf cp}$	[MPa]	0.00
resistenza caratteristica cilindrica	f_{ck}	[MPa]	32.0
resistenza a taglio	V_{Rd}	[kN]	580.0
sforzo di taglio massimo	V_{Ed}	[kN]	241.0

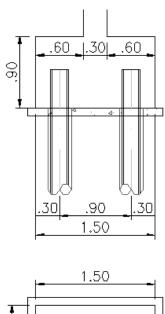
verificato

La verifica a taglio risulta soddisfatta.

Nuova S.S.291 Collegamento Sassari - Alghero - Aeroporto

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con

l'aeroporto di Fertilia


CA-029

Relazione tecnica e di calcolo

12.3 Plinto rettangolare 1.50 m x 1.80 m

La fondazione è realizzata su un plinto con micropali di diametro ϕ =300mm.

Le dimensioni del plinto e l'interasse dei pali è riportato nella figura seguente:

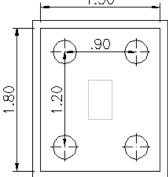


Figura 12-3: Pianta e sezione plinto rettangolare

L'armatura di calcolo è assunta come segue:

- 3*1Ø20/20 inferiori e3*1Ø16/20 superiori che vanno a costituire la gabbia;
- 16 Ø18 i quali rappresentano l'infittimento in corrispondenza dei pali.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

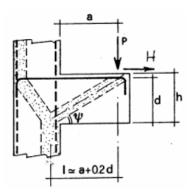
CA-029

Relazione tecnica e di calcolo

12.3.1 Verifica "tirante-puntone"

La verifica del plinto di fondazione è stata condotta con il metodo degli stati limite, calcolando la capacità ultima di resistenza dell'elemento strutturale rispetto ai principali meccanismi di collasso individuabili. È necessario osservare che, dato il valore dei rapporti altezza – aggetto dal muro, le mensole da verificare sono di tipo "tozzo". Pertanto si adotta una schematizzazione a traliccio basata sull'ipotesi di un meccanismo di trasferimento degli sforzi a "tirante di acciaio" – "puntone di cls" che meglio rappresenta il reale andamento delle tensioni all'interno dei materiali costituenti l'elemento.

Il meccanismo resistente è costituito da un tirante orizzontale, corrispondente all'armatura tesa, e da un puntone di calcestruzzo inclinato di Ψ che riporta il carico P_{ed} entro il bordo del muro.


La reazione normale massima trasmessa dal singolo micropalo di fondazione vale:

- N _{SLU, max} = 262.5kN.

La massima azione orizzontale in testa al singolo micropalo di fondazione vale:

- $H_{Ed} = 19.41 kN.$

Detta d = 0.786 m la distanza del baricentro del tirante inferiore dal lembo compresso superiore ed assumendo a = 0.301 m quale braccio della mensola tozza,

si procede assumendo:

- f_{yd} = 391.30 N/mm² (resistenza di calcolo dell'acciaio)
- f_{cd} = 18.13 N/mm² (resistenza di calcolo del calcestruzzo)

Con riferimento al paragrafo C4.1.2.1.5 della "Circolare 02 febbraio 2009 n°617/C.S.LL.PP." delle "Nuove Norme Tecniche per le Costruzioni, D.M. 14 gennaio 2008":

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

La resistenza massima del tirante in acciaio allo Stato Limite Ultimo vale:

$$P_{Rs} = (A_s \cdot f_{yd} - H_{Ed}) \frac{1}{\lambda} = 569.8 \text{ kN} > \text{N}_{\text{SLU,max}} = 262.5 \text{ kN}$$

con:

 $\lambda = 0.65$

I =0.458 m

 $A_s = 10.18 \text{ cm}^2 (4Ø18)$

La resistenza massima sul puntone compresso allo Stato Limite Ultimo vale:

$$P_{Rc} = 0.40 \cdot b \cdot d \cdot f_{cd} \cdot \frac{c}{1 + \lambda^2} =$$
1204.8 kN \geq PRs = 569.8 kN

con:

b = 0.30 m

c = 1.00

La verifica secondo il meccanismo "tirante-puntone" risulta soddisfatta.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

12.3.2 Verifica a taglio

L'azione di taglio massima è assunta, relativamente al singolo palo, come la massima reazione allo Stato Limite Ultimo trasmessa dal palo stesso alla zattera.

L'azione tagliante massima viene quindi assunta pari a V_{Sd} = 262.5 kN.

La sezione resistente è rettangolare con base pari a 1500 mm e altezza pari a 900 mm.

La verifica a taglio è soddisfatta senza aver bisogno di armatura trasversale che comunque sia è costituita da **4 cavalotti Ø20**, uno per lato

Elementi senza armature trasversali resistenti a taglio

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} \, / \, \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} +$$

larghezza sezione	bw	[mm]	1500
altezza sezione	h	[mm]	900
altezza utile sezione	d	[mm]	786
armatura longitudinale	A_{sl}	$[mm^2]$	5177
rapporto geometrico di armatura longitudinale (<0.02)	ρι		0.004
	k		1.504
	V_{min}	[MPa]	0.365
tensione media di compressione nella sezione (<0.2 f _{cd})	σ_{cp}	[MPa]	0.00
resistenza caratteristica cilindrica	f_ck	[MPa]	32.0
resistenza a taglio	V_{Rd}	[kN]	513.6
sforzo di taglio massimo	V_{Ed}	[kN]	262.5
<u> </u>			

verificato

La verifica a taglio risulta soddisfatta.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

13 VERIFICA DEI MICROPALI DI FONDAZIONE

Tutte le fondazioni sono realizzate su micropali (*IRS*), Ø300 di lunghezza 14 m con armatura tubolare Ø219.1 mm di spessore 10 mm. La verifica verrà effettuata considerando la reazione normale massima trasmessa dal singolo micropalo.

13.1 Individuazione della stratigrafia di riferimento

Per la struttura di fondazione delle opere in oggetto è stata individuata la seguente stratigrafia di progetto con i relativi parametri meccanici e fisici.

Stratigrafia da testa palo	Litatina	γ	φ	c'	E'	τ _{lim_minimo}	T _{lim_medio}	α
Stratigrana da testa paro	Litotipo	[kN/m^3]	[°]	[kPa]	[MPa]	[MPa]	[MPa]	[-]
Da 0 a -5.0 m	Ug1	18-19	32	0	20	0	0	0
Da -5.0 m	Ug1	18-19	32	0	20	0.080	0.080	1.10

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

13.2 Verifiche geotecniche e strutturali

13.2.1 Verifica a carico limite

Il valore caratteristico di calcolo ($R_{k,cal}$) della capacità portante dei micropali nei confronti dei carichi assiali è stato determinato considerando cautelativamente la sola resistenza mobilitata lateralmente lungo il fusto del palo (Q_L) ed utilizzando il metodo di Bustamante e Doix (1985).

$$Q_L = R_{c,k} = \Sigma_i (\alpha \times D_{si} \times q_{lat,i} \times L_i)$$

dove, con riferimento ad ogni tratto i-esimo del micropalo:

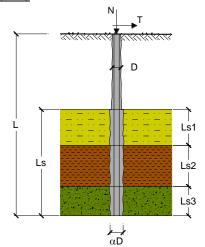
- $D_{si} = \alpha_i \times D_p = il$ diametro del bulbo di fondazione in corrispondenza dello strato i-esimo;
- D_p = diametro del micropalo (*diametro del foro*);
- α_i = il coefficiente di espansione del bulbo, funzione del tipo di terreno e della modalità realizzativa dei micropali;
- L_i = lunghezza del tratto i-esimo di micropalo;
- q_{lat,i} = resistenza laterale unitaria tra micropalo e terreno in corrispondenza dello strato i-esimo, funzione della natura del terreno e delle modalità realizzative dei micropali.

Ai fini della verifica di sicurezza nei riguardi delle azioni assiali, si è deciso di adottare l'approccio 2 (A1+M1+R3) del NTC08. Le azioni di progetto (E_d) sono state ricavate dal calcolo strutturale con riferimento alle combinazioni statiche SLU-STR e sismiche SLV.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo


CAPACITA' PORTANTE DI UN MICROPALO

OPERA: Plinto di fondazione

DATI DI INPUT:

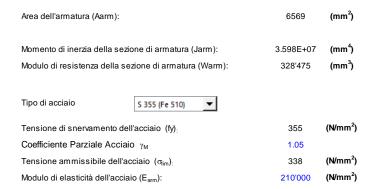
Sollecitazioni Agenti:

	Permanenti	Temporanee	Calcolo
N (kN)	345.00		345.00
T (kN)	28.80		28.80

	coefficienti parzial	i	azioi	ni	resistenz	resistenza laterale		
	Metodo di calcolo		permanenti	variabili	.,			
	Wetodo di Calcolo		γg	γο	γs	γs traz		
	A1+M1+R1	0	1.30	1.50	1.00	1.00		
⊃.	A2+M1+R2	0	1.00	1.30	1.45	1.60		
SLU	A1+M1+R3	0	1.30	1.50	1.15	1.25		
	SISMA	0	1.00	1.00	1.15	1.25		
DM88		0	1.00	1.00	1.00	1.00		
definiti dal progettista		•	1.00	1.00	1.15	1.25		

	n	1	02	3	0	5	7	≥10 ○	DM88	prog.
	ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
Ī	ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

Caratteristiche del micropalo:


Diametro di perforazione del micropalo (D): 0.3 (m)

Lunghezza del micropalo (L): 14.00 (m)

Armatura:

ø219,1 x 10,0

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

Coefficiente di Reazione Laterale:

Coeff. di Winkler (k): 18.0 (MN/m³)

CAPACITA' PORTANTE ESTERNA

Qlim = Qb + Ql

Capacità portante di fusto

 $QI = \Sigma_i \pi^*Ds_i^*s_i^*Is_i$

Fs = Qlim/N

(Fs > 1)

Tipo di Terreno	Spessore Is _i (m)	α (-)	$Ds_i = \alpha * D$ (m)	s; media (MPa)	s _i minima (MPa)	s _i calcolo (MPa)	Qsi (kN)
	4.00	0.00	0.00			0.000	0.00
	10.00	1.10	0.33	0.08	0.08	0.043	450.22
			0.00			0.000	0.00

Qlim = 495.24 (kN) Fs = 1.44

13.2.2 Capacità portante per instabilità dell'equilibrio elastico

Per quanto riguarda il carico critico relativo ad instabilità di tipo elastico del micropalo, questo può essere espresso attraverso la relazione:

$$P_k = 2 \cdot (\beta \cdot E_{arm} \cdot J_{arm})^{0.5}$$

In cui β =k \cdot D esprime la reazione laterale per unità di lunghezza e spostamento.

Il valore del coefficiente di sicurezza viene assunto, per questa tipologia di fenomenologia, pari a:

$$\eta = P_k / N$$
 con $\eta > 10$

CAPACITA' PORTANTE PER INSTABILITA' DELL'EQUILIBRIO ELASTICO

Reaz. Laterale per unità di lunghezza e di spostam.(β) ($\beta = k^*D_{am}$): 3,49 (N/mm²)

Pk = $2*(\beta*Earm*Jarm)^{0.5}$ $\eta = Pk/N$ (consigliato $\eta > 10$)

Pk = 9118,82 (MN) $\eta = 16,88$

CAPACITA' PORTANTE PER INSTABILITA' DELL'EQUILIBRIO ELASTICO

Reaz. Laterale per unità di lunghezza e di spostam.(β) (β = k*D_{am}): 3.94 (N/mm²)

 $Pk = 2*(\beta*Earm*Jarm)^{0.5} \qquad \eta = Pk/N \quad (consigliato \quad \eta > 10)$

Pk = 10918.28 (MN) $\eta = 31.65$

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

13.2.3 Verifiche alle forze orizzontali e verifica strutturale del micropalo

La verifica alle forze orizzontali del micropalo viene svolta considerando il valore del momento agente in testa, ipotizzando la testa del palo impedita di ruotare:

$$M = T/(2b)$$

Con

$$b = (k \cdot D/4 \cdot E_{arm} \cdot J_{arm})^{1/4}$$

in modo da poter determinare

$$\sigma = N/A_{arm} \pm M/W_{arm}$$

е

$$\tau = 2 \; T/A_{arm}$$

Con tali sollecitazioni è possibile ricavare la tensione ideale (o equivalente) del criterio di rottura di Von Mises:

$$\sigma_{id} = (\sigma 2 + 3^* \tau^2)^{0.5}$$

che deve risultare:

 $\sigma_{id} < \sigma_{adm}$

 σ_{adm} ricavata in funzione della tipologia dell'acciaio fornita della normativa vigente.

Ai fini della durabilità le verifiche delle armature tubolari sono state ripetute considerando uno spessore sacrificale di 1.2 mm legato alla perdita per corrosione, in accordo alla tabella 4-1 della norma EC3-5. Le verifiche sono mostrate nel seguito.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

VERIFICA ALLE FORZE ORIZZONTALI

Momento massimo per carichi orizzontali (M): (Ipotesi di palo con testa impedita di ruotare)

$$M = T/(2 \cdot b)$$

$$b = \sqrt[4]{\frac{k \cdot D}{4 \cdot E_{arm} \cdot J_{arm}}}$$

b = 0.691 (1/m)

Momento Massimo (M):

$$M = 20.85 \quad (kN m)$$

VERIFICHE STRUTTURALI DEL MICROPALO

Acciaio S 355 (Fe 510)

Tensioni nel singolo micropalo

 $\sigma = N/Aarm +/- M/Warm$

 $\tau = T/Ataglio$

$$\sigma_{\text{max}} = 149.12 \ (N/mm^2)$$
 $\sigma_{\text{min}} = -12.49 \ (N/mm^2)$
 $\tau = 5.70 \ (N/mm^2)$

$$\sigma_{id} = (\sigma^2 + 3 \tau^2)^{0.5}$$

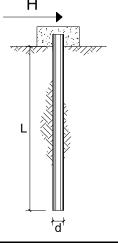
 σ_{id} = 149.45 (N/mm²) verifica soddisfatta

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

13.2.4 Verifica geotecnica per forze orizzontali


CARICO LIMITE ORIZZONTALE DI UN PALO IN TERRENI INCOERENTI PALI CON ROTAZIONE IN TESTA IMPEDITA

Plinto di fondazione

TEORIA DI BASE:

(Broms, 1964)

CO	efficienti parz	iali	Α		M	R
Metodo di calcolo			permanenti YG	variabili γο	$\gamma_{\phi'}$	γт
	A1+M1+R1	0	1.30	1.50	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.60
S	A1+M1+R3	0	1.30	1.50	1.00	1.30
	SISMA	0	1.00	1.00	1.00	1.30
DM88		0	1.00	1.00	1.00	1.00
definiti da	definiti dal progettista			1.00	1.00	1.30

n	1	2	30	40	50	70	≥10	T.A.	prog.
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

 $H=1.5k_p\gamma d^3\bigg(\frac{L}{d}\bigg)^2$ Palo corto:

Palo intermedio:

$$\begin{split} H &= \frac{1}{2} k_p \gamma d^3 \bigg(\frac{L}{d}\bigg)^2 + \frac{M_y}{L} \\ H &= k_p \gamma d^3 \sqrt[3]{\bigg(3.676\,\frac{M_y}{k_p \gamma d^4}\bigg)^2} \end{split}$$
Palo lungo:

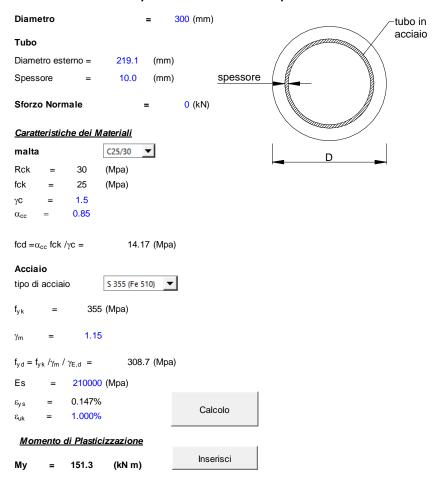
Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

DATI DI INPUT:

Lunghezza del palo	L =	14.00	(m)		
Diametro del palo	d =	0.30	(m)		
Momento di plasticizzazione della sezione	My =	151.33	(kN m)		_
Angolo di attrito del terreno	$\phi'_{med} =$	32.00	(°)	$\phi'_{min} =$	32.00 (°)
Angolo di attrito di calcolo del terreno	$\phi'_{\text{ med,d}}\!\!=\!$	32.00	(°)	$\phi'_{min,d} =$	32.00 (°)
Coeff. di spinta passiva (kp = $(1+\sin\phi)/(1-\sin\phi)$	φ')) kp _{med} =	3.25	(-)	kp _{min} =	3.25 (-)
Peso di unità di volume (con falda $\gamma = \gamma'$)	γ =	18.00	(kN/m^3)		
Carico Assiale Permanente (G):	G =	28.8	(kN)		
Carico Assiale variabile (Q):	Q =		(kN)		
Palo corto:					
H1 _{med} = 5166.98 (kN)		H1 _{min} =	5166.98	(kN)	
Palo intermedio:					
H2 _{med} = 1733.14 (kN)		H2 _{min} =	1733.14	(kN)	
<u>Palo lungo:</u>					
H3 _{med} = 175.86 (kN)		H3 _{min} =	175.86	(kN)	
H med = 175.86 (kN) palo lung	go	H _{min} =	175.86	(kN)	palo lungo
$H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4) =$	103.45	(kN)			
$H_d = H_k / \gamma_T =$	79.57	(kN)			
$F_d = G \cdot \gamma_G + Q \cdot \gamma_Q =$	28.80	(kN)			
FS = Hd / Fd =	2.76				


Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo

Calcolo del momento di plasticizzazione di un micropalo

