

Direzione Progettazione e Realizzazione Lavori

S.S.291 "Della Nurra"

Lavori di costruzione del Lotto 1 da Alghero ad Olmedo, in località bivio cantoniera di Rudas (completamento collegamento Alghero—Sassari) e del Lotto 4 tra bivio Olmedo e l'aeroporto di Alghero -Fertilia (bretella per l'aeroporto)

PROGETTO ESECUTIVO

COD. CA29

PROGETTAZIONE: ATT: WA - SERING - WDP - BRENG

PROGETTISTA E RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE:

Dott. Ing. Giovanni Piazza (Ord. Ing. Prov. Roma A27296)

RESPONSABILE D'AREA

Responsabile Tracciato stradale: Dott. Ing. Massimo Capasso

(Ord. Ing. Prov. Roma 26031)
Responsabile Strutture: Dott. Ing. Giovanni Piazza

(*Ord. Ing. Prov. Roma 27296*) Responsabile Idraulica, Geotecnica e Impianti: *Dott. Ing. Sergio Di Maio*

(Ord. Ing. Prov. Roma 14660)

GEOLOGO:

Dott. Geol. Enrico Curcuruto (Ord. Geo. Regione Sicilia 966)

COORDINATORE SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Sergio Di Maio (Ord. Ing. Prov. Palermo 2872)

COORDINATORE ATTIVITA' DI PROGETTAZIONE:

Dott. Ing. MariaAntonietta Merendino (Ord. Ing. Prov. Roma A28481)

VISTO: IL RESPONSABILE DEL PROCEDIMENTO:

Dott. Ing. Salvatore Campione

MANDATARIA:

MANDANTE:

MANDANTE:

MANDANTE:

SOTTOVIA

ASSE TIPO C

ST01C Sottovia al km 2+752

Relazione tecnica e di calcolo muri imbocco

CODICE PF	ROGETTO LIV. PROG. ANNO	NOME FILE TO3_STO1_STR_REO2_	_A		REVISIONE	SCALA:
	0029 E 21	CODICE TO3ST01S	TR REO	2	A	_
D			_	_	-	-
С			-	_	_	_
В			_	_	_	_
Α	EMISSIONE		Giugno 2021	E. RICCI	G. CAPOGNA	G.PIAZZA
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

INDICE

1	PREMES	SA	3
2	NORMAT	TIVA E BIBLIOGRAFIA DI RIFERIMENTO	4
3	UNITÀ DI	I MISURA	4
4	CARATT	ERISTICHE DEI MATERIALI	5
	4.1 Calce	estruzzo	5
	4.1.1	Calcestruzzo magrone – classe di resistenza C12/15	5
	4.1.2	Calcestruzzo classe di resistenza C32/40	5
	4.1.3	Legame costitutivo del calcestruzzo	6
	4.1.4	Acciaio per cemento armato	6
	4.1.5	Legame costitutivo dell'acciaio	7
	4.2 Dura	abilità dei materiali	7
5	STRATIG	RAFIA E PARAMETRI GEOTECNICI	8
6	METODO	DI CALCOLO	g
	6.1 Cont	testo Normativo e Metodo di Analisi	<u>c</u>
	6.2 Verif	fiche strutturali	9
	6.2.1	Verifiche per gli stati limite utlimi a flessione – pressoflessione	S
	6.2.2	Verifica agli stati limite utlimi a taglio	10
	6.2.3	Verifica agli stati limite d'esercizio	11
7	SOFTWA	RE DI CALCOLO	11
8	DEFINIZI	ONE DELL'AZIONE SISMICA	12
	8.1 Perio	odo di riferimento per l'azione sismica	12
	8.2 Cara	tterizzazione sismica del terreno e condizioni topografiche	15
	8.3 Fatto	ore di struttura	16
	8.4 Para	metri sismici di calcolo	16
9	DEFINIZI	ONE DELLE AZIONI SULLA STRUTTURA	17
	9.1 Cario	chi unitari sulla struttura	17
	9.1.1	Carichi permanenti strutturali	17
	9.1.2	Carichi permanenti non strutturali	17
	9.1.3	Spinta statica del terreno	18
	9.1.4	Spinta del terreno in condizioni sismiche	18
	9.1.5		
	9.1.6		
	9.2 Com	ıbinazioni di carico	20
10	ANALISI	STRUTTURALE	22

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

10.1 Riepilogo dei carichi applicati	23
10.1.1 Sezione caratterizzata dai piedritti di altezza massima – Modello N°1	23
10.1.2 Sezione caratterizzata dai piedritti nel tratto costante – Modello N°2	25
10.2 Combinazioni	26
10.3 Sollecitazioni	28
10.3.1 Modello N°1 – Piedritti di altezza massima	28
10.3.2 Riepilogo sollecitazioni - Modello N°1 – Piedritti di altezza massima	31
10.3.3 Modello N°2 – Piedritti di altezza costante	32
10.3.4 Riepilogo sollecitazioni - Modello N°2 – Piedritti di spessore costante	35
10.4 Verifiche strutturali a pressoflessione (SLU-SLE) – Modello N°1	36
10.4.1 Verifica soletta inferiore in appoggio (S_inf-1)	37
10.4.2 Verifica piedritti allo spiccato (P_inf-2)	40
10.5 Verifiche a taglio	43
10.6 Verifiche strutturali a pressoflessione (SLU-SLE) – Modello N°2	44
10.6.1 Verifica soletta inferiore in appoggio (S_inf-1)	45
10.6.2 Verifica piedritti allo spiccato (P_inf-2)	49
10.7 Verifiche a taglio	52

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia



CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

1 PREMESSA

La presente relazione riporta il dimensionamento e le verifiche delle strutture in cemento armato ordinario gettato in opera dei "Muri di imbocco" del sottovia denominato "ST01C Sottovia al km 2+752" del LOTTO 4 nell'ambito del progetto definitivo "NUOVA S.S. 291 - COLLEGAMENTO SASSARI – ALGHERO – AEROPORTO - Lavori di costruzione del 1° lotto Mamuntanas - Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia".

Il muro a U in cemento armato ordinario gettato in opera, è giuntato allo scatolare e presenta una sezione trasversale avente le seguenti dimensioni geometriche:

- Fondazione 9.00x12.00m spess 1.10m;
- Piedritti Lungh 12.00m spess variabile 0.50÷0.90m altezza variabile tra 7.90÷1.25m.

Si analizzeranno due distinte sezioni caratterizzate rispettivamente dai piedritti di altezza massima (Modello N°1) e dai piedritti di altezza costante (Modello N°2).

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

2 NORMATIVA E BIBLIOGRAFIA DI RIFERIMENTO

La progettazione è stata svolta nel rispetto della seguente normativa:

- D.M. 14/01/2008 Norme tecniche per le costruzioni
- Circolare 02 Febbraio 2009, n. 617 Ministero delle Infrastrutture e dei Trasporti Istruzioni per l'applicazione delle «Norme tecniche per le costruzioni» di cui al decreto ministeriale 14 gennaio 2008.
- UNI EN 1992-1 "Progettazione delle strutture di calcestruzzo Regole generali".
- UNI EN 1992-2 "Progettazione delle strutture di calcestruzzo Ponti".
- **UNI EN 1998-5 (Eurocodice 8)** Gennaio 2005: "Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici".
- UNI EN 206-1:2014: "Calcestruzzo Specificazione, prestazione, produzione e conformità".
- **UNI 11104**: "Calcestruzzo Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1".
- "Linee guida sul calcestruzzo strutturale Servizio Tecnico Centrale della Presidenza del Consiglio Superiore dei LL.PP.".

3 UNITÀ DI MISURA

Nella presente relazione di calcolo di calcolo è stato fatto uso delle seguenti unità di misura:

- per i carichi: kN/m², kN/m, kN

per i momenti: kNm
 per i tagli e sforzi normali: kN
 per le tensioni: N/mm²
 per le accelerazioni: m/sec²

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

4 CARATTERISTICHE DEI MATERIALI

4.1 Calcestruzzo

In conformità a quanto specificato al paragrafo 4.1 delle NTC 2008, il calcestruzzo deve possedere i requisiti richiesti dalle norme UNI EN 206-1 e UNI 11104. Le caratteristiche del calcestruzzo sono desunte dalle formulazioni indicate al paragrafo 11.2.10 delle NTC 2008. Per quanto non previsto si fa riferimento alle norme UNI EN 1992-1-1:2005.

Si assume che le varie parti siano realizzate con le classi di calcestruzzo di seguito indicate:

Magrone C12/15
Piedritti C32/40
Soletta di fondazione C32/40

4.1.1 Calcestruzzo magrone – classe di resistenza C12/15

Resistenza cubica caratteristica a compressione R_{ck} ≥ 15 N/mm²

Dosaggio minimo cemento 150 kg/mc

4.1.2 Calcestruzzo classe di resistenza C32/40

γ_{cls} =25 kN/m³ Peso specifico del calcestruzzo

 $R_{ck} \ge 40 \text{ N/mm}^2$ Resistenza cubica caratteristica a compressione

 $f_{ck} = 0.83 \times R_{ck} = 33.2 \text{ N/mm}^2$ Resistenza cilindrica caratteristica a compressione

 $f_{cm} = f_{ck} + 8 = 41.2 \text{ N/mm}^2$ Resistenza cilindrica media a compressione

 $f_{cd} = 0.85 \times f_{ck}/1.5 = 18.81 \text{ N/mm}^2$ Resistenza di calcolo a compressione

 $f_{ctm} = 0.30 \times f_{ck}^{2/3} = 3.10 \text{ N/mm}^2$ Resistenza media trazione (classi \leq C50/60)

 $f_{ctk} = 0.7 \times f_{ctm} = 2.17 \text{ N/mm}^2$ Resistenza caratteristica a trazione

 γ_c = 1.5 Coefficiente di sicurezza parziale del calcestruzzo

Resistenza di calcolo a trazione

Resistenza tangenziale caratteristica di aderenza

Resistenza di aderenza di calcolo

Modulo elastico

Coefficiente di Poisson – Calcestruzzo fessurato

Coefficiente di Poisson-Calcestruzzo non fessurato

Coefficiente di espansione termica lineare

Classe di esposizione (norme UNI EN 206-1)

5

 $v_{cls fess.} = 0$

XC2+XA1

 $v_{cls non fess.} = 0.2$

 $\alpha = 10 \times 10^{-6} \, ^{\circ}\text{C}^{-1}$

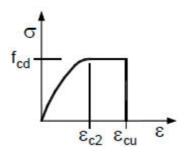
 $f_{ctd} = f_{ctk}/1.5 = 1.45 \text{ N/mm}^2$

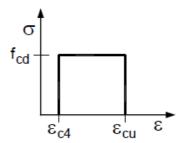
 $f_{bd} = f_{bk}/1.5 = 3.25 \text{ N/mm}^2$

 $f_{bk} = 2.25 \times 1.0 \times f_{ctk} = 4.88 \text{ N/mm}^2$

 $E_{cm} = 22000 \times [f_{cm}/10]^{0.3} = 33642 \text{ N/mm}^2$

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia




CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

Legame costitutivo del calcestruzzo

Per il calcestruzzo si adotta un diagramma tensione-deformazione di tipo parabola-rettangolo per le verifiche strutturali e di ripo rettangolo per le verifiche dei collegamenti, come mostrato di seguito.

in cui εc2, εc4 e εcu assumono i seguenti valori per classi di resistenza inferiori a C50/60:

deformazione in corrispondenza del valore massimo della tensione deformazione in corrispondenza del valore massimo della tensione deformazione unitaria a rottura

 $\varepsilon_{c4} = 0.07\%$

 $\varepsilon_{cu} = 3.5\%$

 $\varepsilon_{c2} = 2.0\%$

4.1.4 Acciaio per cemento armato

Le armature degli elementi in cemento armato sono realizzati con acciaio B450C, caratterizzato dai seguenti valori delle tensioni caratteristiche (par. 11.3.2 delle NTC 2008 e par. 4.1.2.1.2.2 NTC 2008):

 $\gamma_{acc} = 78.5 \text{ kN/m}^3$ Peso specifico

 $f_{y nom} = 450 \text{ N/mm}^2$ Valore nominale della tensione di snervamento

 $f_{t nom} = 540 \text{ N/mm}^2$ Valore nominale della tensione di rottura

 $y_s = 1.15$ Coefficiente di sicurezza parziale dell'acciaio

 $f_{yd} = f_{yk} / \gamma_s = 391.3 \text{ N/mm}^2$ Resistenza di calcolo

 $(f_y / f_{yk})_k$ 1.25

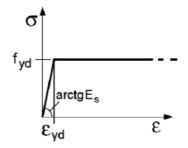
(f_t /f_y) medio \geq 1.15 < 1.35

Per la realizzazione delle barriere sono previsti i seguenti materiali le cui caratteristiche sono riportate in funzione del metodo di verifica della sicurezza che è quello degli Stati Limite Ultimi.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752


4.1.5 Legame costitutivo dell'acciaio

Per l'acciaio si adotta un legame costitutivo elastico perfettamente plastico, con rottura in corrispondenza di un valore della deformazione pari a:

deformazione in corrispondenza della tensione di snervamento deformazione massima a rottura

 $\varepsilon_{yd} = f_{yd}/E$;

 $\epsilon_{ud} = 1.00\%$

4.2 Durabilità dei materiali

Con riferimento al punto 4.1.6.1.3 delle NTC, al fine della protezione delle armature dalla corrosione il valore minimo dello strato di ricoprimento di calcestruzzo (copriferro) deve rispettare quanto indicato nella tabella C4.1.IV della Circolare 02.02.2009, riportata di seguito, nella quale sono distinte le tre condizioni ambientali di Tabella 4.1.IV delle NTC.

		barre da c.a.		barre da c.a.		cavi da c.a.p		cavi da c.a.p		
		elementi a piastra altri elementi e		elementi a piastra		altri elementi				
Cmin	Со	ambiente	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<>	C≥Co	Cmin≤C <co< td=""></co<>
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

5 STRATIGRAFIA E PARAMETRI GEOTECNICI

I parametri geotecnici presi a riferimento per i terreni sono:

Terreno di ricoprimento

 φ = 35°

 γ = 18 kN/m³

 $c = 0 \text{ kN/m}^2$

Terreno di rinfianco

 φ = 35°

 γ = 18 kN/m³

 $c = 0 \text{ kN/m}^2$

Per la valutazione dell'interazione tra terreno e struttura è stata considerata una costante di sottofondo del terreno pari a **k=15.000,00 kN/m³**.

Il valore di k è stato considerato costante lungo l'intero sviluppo longitudinale del manufatto.

Sono state considerate condizioni di falda assente.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

6 METODO DI CALCOLO

6.1 Contesto Normativo e Metodo di Analisi

L'analisi e la verifica degli elementi strutturali viene effettuata secondo il metodo semiprobabilistico degli stati limite, in conformità a quanto previsto dalle normative di riferimento (Capitolo 2 delle NTC 2018). Anche l'analisi dell'interazione struttura-terreno di fondazione viene effettuata secondo tale metodo.

Dal punto di vista delle strutture si farà riferimento agli stati limite descritti brevemente a seguire, secondo quanto riportato nel paragrafo 2.2.6 delle NTC 2018.

6.2 Verifiche strutturali

Le verifiche di resistenza delle sezioni sono eseguite secondo il metodo semiprobabilistico agli stati limite. I coefficienti di sicurezza adottati sono i seguenti:

- coefficiente parziale di sicurezza per il calcestruzzo: 1.50;
- coefficiente parziale di sicurezza per l'acciaio in barre: 1.15.

Il paragrafo in oggetto illustra nel dettaglio i criteri generali adottati per le verifiche strutturali e geotecniche condotte nel progetto. Ulteriori dettagli di carattere specifico, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche.

Per le sezioni in cemento armato si effettuano:

- verifiche per gli stati limite ultimi a presso-flessione;
- · verifiche per gli stati limite ultimi a taglio;
- verifiche per gli stati limite di esercizio.

6.2.1 Verifiche per gli stati limite utlimi a flessione – pressoflessione

Allo stato limite ultimo, le verifiche a flessione o presso-flessione sono condotte confrontando (per le sezioni più significative) le resistenze ultime e le sollecitazioni massime agenti, valutando di conseguenza il corrispondente fattore di sicurezza.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

6.2.2 Verifica agli stati limite utlimi a taglio

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dal DM14/01/2008, per elementi con armatura a taglio verticali.

Si fa, pertanto, riferimento ai seguenti valori della resistenza di calcolo:

$$V_{\text{Rd,c}} = max \left\{ \left[\frac{0.18}{\gamma_c} \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck} \right)^{1/3} + 0.15 \cdot \sigma_{cp} \right] \cdot b_w \cdot d; \left(v_{min} + 0.15 \cdot \sigma_{cp} \right) \cdot b_w \cdot d \right\}_{\text{resistenza}} \right\} \cdot \left(v_{min} + 0.15 \cdot \sigma_{cp} \right) \cdot \left(v_{min} + 0.15 \cdot$$

di calcolo dell'elemento privo di armatura a taglio

$$V_{\text{Rd,s}} = 0.9 \cdot \frac{A_{\text{sw}}}{\text{S}} \cdot z \cdot f_{\text{ywd}} \cdot (\cot \alpha + \cot \theta) \cdot \textit{sen}\alpha$$
, valore di progetto dello sforzo di taglio che può essere sopportato dall'armatura a taglio alla tensione di snervamento

$$V_{\rm Rd,max} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd}^{'}(\cot\alpha + \cot\beta)/(1+\cot^2\beta) \, , \ {\rm valore \ di \ progetto \ del \ massimo \ sforzo \ di \ taglio \ che può essere sopportato \ dall'elemento, limitato \ dalla rottura \ delle \ bielle \ compresse. }$$

Nelle espressioni precedenti, i simboli hanno i seguenti significati:

$$k = 1 + \sqrt{\frac{200}{d}} \leq 2$$
 con d in mm;

$$\rho_1 = \frac{A_{sl}}{b_w \cdot d} \le 0.02$$

 $A_{\rm sl}\,$ è l'area dell'armatura tesa;

 $\boldsymbol{b}_{\mathrm{w}}\,$ è la larghezza minima della sezione in zona tesa;

$$\sigma_{cp} = \frac{N_{Ed}}{A_c} < 0.2 \cdot f_{cd}$$

 $N_{\text{Ed}}\,$ è la forza assiale nella sezione dovuta ai carichi;

 ${\bf A}_{\rm c}\,$ è l'area della sezione di calcestruzzo;

$$v_{min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$

 $1 \le \cot \vartheta \le 2.5$ è l'inclinazione dei puntoni di calcestruzzo rispetto all'asse della trave

 \mathbf{A}_{sw} è l'area della sezione trasversale dell'armatura a taglio;

S è il passo delle staffe;

 $f_{\ \mathrm{ywd}}\,$ è la tensione di snervamento di progetto dell'armatura a taglio;

 $f^{'}{}_{cd} = 0.5 \cdot f_{cd}$ è la resistenza ridotta a compressione del calcestruzzo d'anima;

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

 $\alpha_{cw}=1$ è un coefficiente che tiene conto dell'interazione tra la tensione nel corrente compresso e qualsiasi tensione di compressione assiale.

6.2.3 Verifica agli stati limite d'esercizio

Si effettuano le seguenti verifiche agli stati limite di esercizio:

- stato limite delle tensioni in esercizio;
- stato limite di fessurazione.

Nel primo caso, si esegue il controllo delle tensioni nei materiali supponendo una legge costitutiva tensionideformazioni di tipo lineare. In particolare si controlla la tensione massima di compressione del calcestruzzo e di trazione dell'acciaio, verificando che:

 $\sigma c < 0.60$ fck per combinazione di carico caratteristica (rara);

 σc < 0.45 fck per combinazione di carico quasi permanente;

 σ s < 0.80 fyd per combinazione di carico caratteristica (rara).

Nel secondo caso, si verifica che le aperture delle fessure siano inferiori al valore limite dell'apertura delle fessure previste per condizioni ambientali "aggressive".

C: 4:	Conditions	Combinazione di azioni	Armatura					
Gruppi di	Condizioni ambientali		Sensibile	Poco sensibile				
esigenze			Stato limite	$\mathbf{w_d}$	Stato limite	$\mathbf{w_d}$		
a	Ordinarie	frequente	ap. fessure	$\leq w_2$	ap. fessure	$\leq w_3$		
		quasi permanente	ap. fessure	$\leq \mathbf{w}_1$	ap. fessure	$\leq w_2$		
b	Aggressive	frequente	ap. fessure	$\leq \mathbf{w}_1$	ap. fessure	$\leq w_2$		
		quasi permanente	decompressione		ap. fessure	$\leq \mathbf{w}_1$		
c	Molto aggressive	frequente	formazione fessure	-	ap. fessure	$\leq \mathbf{w}_1$		
		quasi permanente	decompressione	-	ap. fessure	$\leq \mathbf{w}_1$		

I valori nominali di riferimento sono:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

7 SOFTWARE DI CALCOLO

Per l'elaborazione dei dati di input/output in generale e la creazione di tabelle riepilogative si adottano procedure opportunamente implementate in fogli elettronici **Microsoft** ® **Office Excel**. Per l'analisi

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

strutturale dei muri ad U si è utilizzato il software per il calcolo agli elementi finiti **SAP2000 della CSI-Italia v.21.0.2**, corredato di certificazione di affidabilità così come previsto dal paragrafo 10.2 delle NTC 2018. Per le verifiche delle sezioni in cemento armato si ricorre ai seguenti programmi:

VCA_SLU.

8 DEFINIZIONE DELL'AZIONE SISMICA

Con riferimento alla normativa vigente (NTC 2008), le azioni sismiche di progetto si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione. Essa costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A quale definita al paragrafo 3.2.2 delle NTC 2008), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente $S_e(T)$, con riferimento a prefissate probabilità di eccedenza PVR, come definite nel paragrafo 3.2.1 delle NTC 2008, nel periodo di riferimento V_R , come definito nel paragrafo 2.4 delle NTC 20108.

Le forme spettrali sono definite, per ciascuna delle probabilità di superamento nel periodo di riferimento PVR, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

- a_g accelerazione orizzontale massima al sito;
- F₀ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_c* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Gli spettri di risposta di progetto sono stati definiti per tutti gli stati limite considerati, e, note la latitudine e la longitudine del sito, si sono ricavati i valori dei parametri necessari alla definizione dell'azione sismica e quindi del relativo spettro di risposta. Più avanti sono indicati i valori di ag, Fo e Tc* necessari per la determinazione delle azioni sismiche.

8.1 Periodo di riferimento per l'azione sismica

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U .

La vita nominale di un'opera strutturale V_N è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata. Per la definizione della Vita Nominale si rimanda alla tabella 2.4.I delle NTC 2008.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

 $\textbf{Tab. 2.4.I} - \textit{Valori minimi della Vita nominale } V_{N} \textit{ di progetto per i diversi tipi di costruzioni}$

	TIPI DI COSTRUZIONI	Valori minimi di V _N (anni)
1	Costruzioni temporanee e provvisorie	10
2	Costruzioni con livelli di prestazioni ordinari	50
3	Costruzioni con livelli di prestazioni elevati	100

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite:

- Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.
- Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
- Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.
- Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad i-tinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

A seconda della classe d'uso di appartenenza si ha un coefficiente CU specifico associato, che si determina in accordo con la tabella 2.4.Il delle NTC 2018.

Tab. 2.4.II - Valori del coefficiente d'uso C11

CLASSE D'USO	I	п	Ш	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

I parametri utilizzati per la definizione del periodo di riferimento dell'azione sismica sono riportati di seguito.

- Classe d'uso: IV;
- Coefficiente d'uso CU = 2.0;
- Vita nominale VN = 50 anni;
- Periodo di riferimento VR = 100 anni.

Fissata la vita di riferimento V_R , i due parametri T_R e P_{VR} sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante l'espressione:

$$T_R = -\frac{V_R}{ln(1 - P_{VR})} = -\frac{C_U V_N}{ln(1 - P_{VR})}$$

Stati Limite	P _{VR} : Probabilità	di superamento nel periodo di riferimento ${ m V_R}$
Ct_t: 1::t 1::_	SLO	81%
Stati limite di esercizio	SLD	63%
Ct. 1: .:t 11: .::	SLV	10%
Stati limite ultimi	SLC	5%

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

8.2 Caratterizzazione sismica del terreno e condizioni topografiche

Categorie di sottosuolo

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale.

Per la definizione dell'azione sismica si può fare riferimento a un approccio semplificato, che si basa sull'individuazione delle categorie di sottosuolo di riferimento in accordo a quanto indicato nel paragrafo 3.2.2 delle NTC 2008 e riportato nella tabella 3.2.II delle NTC 2008.

Tab. 3.2.II - Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

Categoria	Caratteristiche della superficie topografica
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

La categoria di sottosuolo considerata è: B

Condizioni topografiche

In condizioni topografiche superficiali semplici si può adottare la seguente classificazione, riportata nella tabella 3.2.III delle NTC 2018.

Tab. 3.2.III - Categorie topografiche

Categoria	Caratteristiche della superficie topografica			
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°			
T2	Pendii con inclinazione media i > 15°			
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^{\circ} \le i \le 30^{\circ}$			
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°			

Le categorie topografiche appena definite si riferiscono a configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, e devono essere considerate nella definizione dell'azione sismica se di altezza maggiore di 30 m.

Le condizioni topografiche dell'area in esame sono ascrivibili alla categoria topografica T1, alla quale corrisponde **St=1**.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

8.3 Fattore di struttura

Le strutture sono dimensionate considerando un comportamento non dissipativo, pertanto le membrature rimangono in campo elastico o sostanzialmente elastico anche in caso di sisma con alto periodo di ritorno senza attingere alle proprie risorse dissipative o riserve plastiche.

Assumendo un comportamento non dissipativo, non è necessario l'utilizzo di accorgimenti quali la gerarchia delle resistenze, il cui effetto può esplicarsi solo al superamento del comportamento elastico della struttura. Pertanto le regole progettuali fissate dalla Norma, volte a garantire capacità dissipativa e duttilità strutturale, non trovano in tal caso applicazione poiché le membrature non attingono mai alle proprie risorse dissipative, né accedono alle loro riserve plastiche, rimanendo in campo elastico anche in caso di sisma con alto periodo di ritorno.

Per le opere strutturali in esame si considera un fattore di struttura di entità unitaria.

8.4 Parametri sismici di calcolo

I parametri di pericolosità sismica relativi all'area di progetto ricadente nel Comune di Alghero sono riportati in tabella sotto.

	Parametri di pericolosità Sismica							
		accelerazione	amplificazione	Periodo inizio tratto veloiìcità				
	perio di ritorno T _r	orizzontale a _g	spettrale F _o	cost.T*c				
"Stato Limite"	[anni]	[g]	[-]	[s]				
Operativitá	60	0.025	2.670	0.299				
Danno	101	0.031	2.730	0.307				
Salvaguardia Vita	949	0.060	2.880	0.371				
Prevenzione Collasso	1950	0.071	2.980	0.393				

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

9 DEFINIZIONE DELLE AZIONI SULLA STRUTTURA

9.1 Carichi unitari sulla struttura

Nei paragrafi successivi si riporta una descrizione di tutti i carichi agenti sugli elementi strutturali.

9.1.1 Carichi permanenti strutturali

I carichi caratteristici dovuti agli elementi strutturali sono:

Peso proprio del calcestruzzo armato ordinario

25.00 kN/m3

Il peso dei differenti elementi strutturali viene calcolato automaticamente dal programma di calcolo utilizzato.

9.1.2 Carichi permanenti non strutturali

I pesi propri non strutturali sono costituiti da:

Soletta inf :

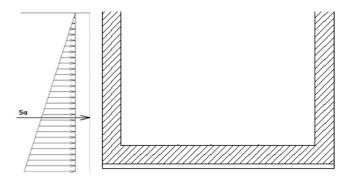
Peso del rinterro (1.30x19) 24.70kN/m²

Risvolti soletta inf:

Pavimentazione superiore (0.10x20) 2.00kN/m²

Peso del rinterro Modello N°1 ((7.50)x19) 142.50kN/m²
Peso del rinterro Modello N°2 ((3.20)x19) 60.80kN/m²

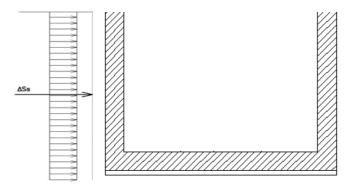
Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia



CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

9.1.3 Spinta statica del terreno

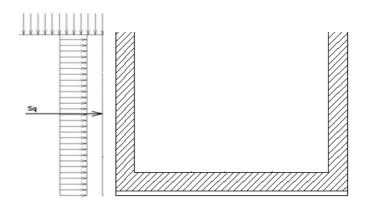

Le spinte del terreno a monte degli elementi verticali della spalla sono calcolate con la teoria di Rankine, con distribuzione triangolare delle tensioni e conseguente risultante della spinta al metro pari a $S=1/2\cdot k_0\cdot \gamma\cdot H^2$, applicata ad 1/3 dal basso.

La spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta a riposo k₀.

9.1.4 Spinta del terreno in condizioni sismiche

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio. La sovraspinta sismica è calcolata con la teoria di Wood, risultando in un valore di spinta al metro, distribuito uniformemente sull'intera altezza del piedritto, da applicare ad una quota pari ad H/2.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia



CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

9.1.5 Spinta del terreno dovuta ai sovraccarichi accidentali

Per considerare la presenza di un sovraccarico da traffico gravante a tergo, si considera un carico uniformemente distribuito. Il valore della spinta risultante al metro è dunque pari a S=k0·q·H, con punto di applicazione posizionato a metà dell'altezza dell'elemento su cui insiste.

9.1.6 Azione sismica

Per quanto riguarda la caratterizzazione sismica e i parametri dello spettro di risposta in accelerazione utilizzato per il progetto si rimanda al paragrafo specifico della suddetta relazione di calcolo.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

9.2 Combinazioni di carico

Le combinazioni di carico da considerare nelle verifiche strutturali e geotecniche devono essere stabilite in modo da garantire la sicurezza secondo quanto prescritto dalle NTC 2008.

Come indicato al paragrafo 2.6.1 delle NTC 2008, per le verifiche nei confronti degli stati limite ultimi strutturali (STR) e geotecnici (GEO) è stato adottato l'Approccio progettuale di tipo 2. Solo per alcune verifiche geotecniche è stato fatto uso dell'Approccio di tipo 1.

Secondo tale approcci, si impiegano due diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A), per la resistenza dei materiali (M) e, eventualmente, per la resistenza globale del sistema (R).

Le verifiche geotecniche e strutturali sono svolte seguendo l'approccio 2 (combinazione unica A1+M1+R3). Nelle verifiche nei confronti degli stati limite ultimi di tipo strutturale, il coefficiente R3 non deve essere portato in conto. La verifica di stabilità globale è stata effettuata seguendo la combinazione 2 dell'approccio 1 (A2+M2+R2).

I coefficienti per i materiali (M1 e M2) e per le resistenze (R1, R2 e R3) sono riportati nei paragrafi di verifica

I coefficienti parziali per le azioni (A1 e A2) sono riportati nella tabella 2.6.I delle NTC 2008.

Tab. 2.6.I - Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente	EQU	A1	A2
		$\gamma_{\mathtt{F}}$			
C	Favorevoli	24	0,9	1,0	1,0
Carichi permanenti G1	Sfavorevoli	γ _{G1}	1,1	1,3	1,0
C : 1:	Favorevoli		0,8	0,8	0,8
Carichi permanenti non strutturali G2 ⁽¹⁾	Sfavorevoli	Y _{G2}	1,5	1,5	1,3
	Favorevoli		0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli	YQI	1,5	1,5	1,3

⁽i) Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

I coefficienti parziali di sicurezza per i parametri geotecnici (M1 e M2) sono indicati nella tabella 6.2.II delle NTC 2008.

Tab. 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	tan φ' _k	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c'_k	Ye	1,0	1,25
Resistenza non drenata	$c_{ m uk}$	Yeu	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

I coefficienti per le resistenze (R1, R2 e R3) sono riportati nei paragrafi di verifica.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

I valori dei coefficienti ψ_{0i} , ψ_{1i} e ψ_{2i} , per tener conto della non contemporaneità delle azioni sono riportati nella tabella seguente in base al carico di riferimento.

Tab. 2.5.I - Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψοϳ	ψ_{1j}	Ψ2j
Categoria A - Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B - Uffici	0,7	0,5	0,3
Categoria C - Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D - Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E – Aree per immagazzinamento, uso commerciale e uso industriale Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F - Rimesse , parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso $\leq 30~\mathrm{kN})$	0,7	0,7	0,6
Categoria G – Rimesse, parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H - Coperture accessibili per sola manutenzione	0,0	0,0	0,0
Categoria I – Coperture praticabili	da valutarsi caso per		
Categoria K – Coperture per usi speciali (impianti, eliporti,)	1	caso	
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

Per quanto riguarda le azioni variabili associate al carico aerodinamico da pressione veicolare e il carico dinamico da rimozione neve si adotta lo stesso coefficiente parziale di sicurezza previsto per l'azione del vento.

Le combinazioni di carico prese in considerazione nelle verifiche sono state definite in base a quanto prescritto al paragrafo 2.5.3 delle NTC 2008 e sono le seguenti.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):
 - $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$ [2.5.1]
- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili: $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$ [2.5.2]
- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili: $G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$ [2.5.3]
- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine: $G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$ [2.5.4]
- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E: $E+G_1+G_2+P+\psi_{21}\cdot Q_{k1}+\psi_{22}\cdot Q_{k2}+\dots \qquad [2.5.5]$
- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A: $G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$ [2.5.6]

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_j \psi_{2j} Q_{kj}$$
 [2.5.7]

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

10 ANALISI STRUTTURALE

Le analisi sono state condotte mediante l'ausilio del SAP2000, un Codice di calcolo F.E.M. (Finite Element Method) capace di gestire analisi lineari e non lineari ed analisi sismiche con integrazione al passo delle equazioni nel tempo. Dal modello sono state dedotte, per le combinazioni di calcolo statiche e sismiche descritte in precedenza, le sollecitazioni complessive agenti sugli elementi strutturali al fine di procedere con le verifiche di sicurezza previste dalle Normative di riferimento.

Convenzione assi

x = asse trasversale dello scatolare

y = asse longitudinale dello scatolare

z = asse verticale dello scatolare

Il modello di calcolo attraverso il quale viene discretizzata la struttura è quello di telaio aperto. Per simulare il comportamento del terreno di fondazione vengono inserite molle alla Winkler.

La soletta inferiore viene divisa in elementi per poter schematizzare, tramite molle applicate, l'interazione terreno- struttura. In funzione dello stato di sollecitazione, si differenziano le rigidezze delle molle verso il piedritto.

Il coefficiente di sottofondo alla Winkler viene determinato con la seguente relazione:

$$k_{_{t_n}} = \frac{E}{(1 - v^2) \cdot B \cdot c_{_{\rm f}}}$$

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

10.1 Riepilogo dei carichi applicati

10.1.1 Sezione caratterizzata dai piedritti di altezza massima – Modello N°1

(a)	Caratteristiche materiali e terreno				
(a)	Calcestruzzo armato - Peso specifico	γ		25	kN/m³
	Calcestruzzo armato - Tipo			C32/40	,
	Calcestruzzo armato - Res. caratt. cubica	Rck		40	N/mm ²
	Calcestruzzo armato - Res. caratt. cilindrica	fck		33	N/mm²
	Calcestruzzo armato - Modulo elastico	E		33600	N/mm²
	Pacchetto stradale - Peso specifico	Υ		20	kN/m³
	Terreno del rilevato - Peso specifico Terreno del rilevato - Angolo di attrito	γ		19 35	kN/m³
	Terreno di fondazione	Ψ Kw		15000	kN/m³
	Condizioni ambientali per ver. a fessurazione	IXW		aggressive	KNITH
(b)	Ricoprimento			uggicosive	
(5)	Spessore pacchetto stradale	Hp		0.00	m
	Spessore del rinterro soletta superiore	Hr		0.00	m
	Spessore del rinterro soletta inferiore			1.30	m
(c)	Geometria				
	Spessore soletta superiore	Ss		0.00	m
	Spessore soletta di fondazione	Sf		1.10	m
	Spessore piedritti	Sp		0.90	m
	Altezza netta	Hint		7.50	m
	Larghezza netta Lunghezza risvolti sol. inf.	Lint Lr		6.00 0.67	m m
(4)	Rigidezze molle	LI		0.07	111
(d)	Interasse molle	i	(0.90/2 + 6.00 + 0.90/2) / 10 =	0.69	m
	Molle centrali	K1	15000 · 0.69 =	10,350	kN/m
	Molle intermedie	K2	1.5 · 15000 · 0.69 =	15,525	kN/m
	Molle laterali	K3	2.0 · 15000 · (0.69/2 + 0.90/2) =	23,850	kN/m
	Molle risvolto	K4	1.5 · 15000 · 0.67 =	15,075	kN/m
(e)	Carichi permanenti				
	Soletta inferiore				
	Peso del rinterro	Pr	1,30 · 19 =	24.70	kN/m²
	Risvolti soletta inferiore				-
	Peso pacchetto stradale	Ps	0.10 · 20 =	2.00	kN/m²
	Peso del rinterro	Pr	(0.00+0.00+7.50) · 19 =	142.50	kN/m²
	Totale			144.50	kN/m²
(I)	Spinta del terreno				
• • •	K0		1 - sen (35°) =	0.426	
	Spinta in asse sol. inf.	р3	$0.426 \cdot [0.00 + 19 \cdot (0.00/2 + 7.50 + 1.10/2)] =$	65.22	kN/m²
	Spinta alla quota di intradosso sol. inf.	p4	0.426 · [0.00 + 19·(0.00/2+7.50+1.10)] =	69.68	kN/m²
	Spinta semispessore sol. inf.	F2	(65.22+69.68)/2 · 1.10/2	37.10	kN/m
(n)	Sisma orizzontale			CIV	
	Stato limite	Vr	Salvaguardia della vita - SLU -	SLV 50	
	Vita nominale Classe d'uso	vr Cu		IV	anni
	accelerazione orizzontale	a _g /g		0.06	
	amplificazione spettrale	Fo		2.88	
	Categoria sottosuolo		A, B, C, D, E	В	
	Coeff. Amplificazione stratigrafica	Ss	., -, -, -, -	1.200	
	Coeff. Amplificazione topografica	St		1	
	Coefficiente S	S	=Ss·St	1.200	
	accellerazione orizzontale max	a _{max} /g	=ag/g · S	0.0720	
	Fattore di struttura	q		1.00	
	Forza orizz. sui piedritti	FHp	0.072 · (0.90 · 25) / 1.00 =	1.62	kN/m²
(o)	Spinta del terreno in fase sismica				
	Coefficiente sismico orizzontale	kh	=a _{max} /g	0.072	
	Coefficiente sismico verticale	kν	$= \pm 0.5$ *kh	0.036	
	Risultante della spinta sismica	ΔSE	= $(amax/g) \cdot \gamma \cdot (Hint+Ss+Sf+Hr)^2$	101.2	kN/m
	Pressione risultante	Δрε	= $\Delta SE / (Hint+Ss+Sf)$	12.6	kN/m²

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

(2)	Caratteristiche materiali e terreno				
(a)	Calcestruzzo armato - Peso specifico	γ		25	kN/m³
	Calcestruzzo armato - Tipo	'		C32/40	,
	Calcestruzzo armato - Res. caratt. cubica	R _{ck}		40	N/mm ²
	Calcestruzzo armato - Res. caratt. cilindrica	f _{ck}		33	N/mm²
	Calcestruzzo armato - Modulo elastico	E		33600	N/mm²
	Pacchetto stradale - Peso specifico	γ		20	kN/m³
	Terreno del rilevato - Peso specifico	Y		19	kN/m³
	Terreno del rilevato - Angolo di attrito	φ		35	0
	Terreno di fondazione	Kw		15000	kN/m³
	Condizioni ambientali per ver. a fessurazione			aggressive	
(b)	Ricoprimento				
	Spessore pacchetto stradale	Нр		0.00	m
	Spessore del rinterro soletta superiore	Hr		0.00	m
	Spessore del rinterro soletta inferiore			1.30	m
(c)	Geometria				
	Spessore soletta superiore	Ss		0.00	m
	Spessore soletta di fondazione	Sf		1.10	m
	Spessore piedritti	Sp		0.90	m
	Altezza netta	Hint		6.12	m
	Larghezza netta	Lint		6.00	m
	Lunghezza risvolti sol. inf.	Lr		0.67	m
(d)	Rigidezze molle		(0.00/2 - 6.00 - 0.00/2) / 40	0.60	
	Interasse molle	į V4	(0.90/2 + 6.00 + 0.90/2) / 10 =	0.69	m
	Molle centrali	K1	15000 · 0.69 =	10,350	kN/m
	Molle intermedie	K2	1.5 · 15000 · 0.69 =	15,525	kN/m
	Molle laterali	K3 K4	2.0 · 15000 · (0.69/2 + 0.90/2) =	23,850	kN/m
(-)	Molle risvolto	K4	1.5 · 15000 · 0,67 =	15,075	kN/m
(e)	Carichi permanenti				
	Soletta inferiore	_	1.00 10		
	Peso del rinterro	Pr	1,30 · 19 =	24.70	kN/m²
	Risvolti soletta inferiore	D-	0.10 - 20	2.00	I-NI/ma 2
	Peso pacchetto stradale Peso del rinterro	Ps Pr	0,10 · 20 =	2.00 116.28	kN/m²
	Totale	FI	$(0.00+0.00+6.12) \cdot 19 =$	118.28	kN/m²
(I)				110.20	kN/m²
(I)	Spinta del terreno KO		1 - sen (35°) =	0.426	
	Spinta in asse sol. inf.	р3	0.426 · [0.00 + 19·(0.00/2+6.12+1.10/2)] =	0.426 54.04	kN/m²
	Spinta illa quota di intradosso sol. inf.	р3 p4	0.426 · [0.00 + 19 (0.00/2+0.12+1.10/2)] =	58.50	kN/m²
	Spinta and quota di indudosso soi: ini. Spinta semispessore sol. inf.	F2	(54.04+58.50)/2 · 1.10/2	30.95	kN/m
(n)	Sisma orizzontale	12	(31.01130.30)/2 1.10/2	30.33	KIY, III
(11)	Stato limite		Salvaguardia della vita - SLU -	SLV	
	Vita nominale	Vr	Survaguardia della vita SES		anni
	Classe d'uso	Cu		IV	GIIII
	accelerazione orizzontale	a _q /g		0.06	
	amplificazione spettrale	Fo		2.88	
	Categoria sottosuolo		A, B, C, D, E	В	
	Coeff. Amplificazione stratigrafica	Ss	1 7 -1 7	1.200	
	Coeff. Amplificazione topografica	St		1	
	Coefficiente S	S	=Ss · St	1.200	
	accellerazione orizzontale max	a _{max} /g	=ag/g · S	0.0720	
	Fattore di struttura	q		1.00	
	Forza orizz. sui piedritti	FHp	0.072 · (0.90 · 25) / 1.00 =	1.62	kN/m²
(o)	Spinta del terreno in fase sismica	•			
• •	Coefficiente sismico orizzontale	\mathbf{k}_{h}	=a _{max} /q	0.072	
	Coefficiente sismico verticale	k _v	$=\pm 0.5$ ·k _h	0.036	
	Risultante della spinta sismica	ΔS_{E}	= (amax/g) · γ · (Hint+Ss+Sf+Hr) ²	71.3	kN/m
	Pressione risultante	Δpe	= $\Delta SE / (Hint+Ss+Sf)$	10.7	kŃ/m²
		•	•		

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

10.1.2 Sezione caratterizzata dai piedritti nel tratto costante – Modello N°2

(a)					
	Calcestruzzo armato - Peso specifico	Υ		25	kN/m³
	Calcestruzzo armato - Tipo			C32/40	
	Calcestruzzo armato - Res. caratt. cubica	R_{ck}		40	N/mm²
	Calcestruzzo armato - Res. caratt. cilindrica	f_{ck}		33	N/mm²
	Calcestruzzo armato - Modulo elastico	Е		33600	N/mm²
	Pacchetto stradale - Peso specifico	Υ		20	kN/m³
	Terreno del rilevato - Peso specifico	Υ		19	kN/m³
	Terreno del rilevato - Angolo di attrito	φ		35	0
	Terreno di fondazione	Kw		15000	kN/m³
	Condizioni ambientali per ver. a fessurazione			aggressive	
(b)	Ricoprimento				
	Spessore pacchetto stradale	Hp		0.00	m
	Spessore del rinterro soletta superiore	Hr		0.00	m
	Spessore del rinterro soletta inferiore			1.30	m
(c)	Geometria			2.00	
	Spessore soletta superiore	Ss		0.00	m
	Spessore soletta di fondazione	Sf		1.10	m
	Spessore piedritti	Sp		0.66	m
	Altezza netta	Hint Lint		3.20 6.00	m
	Larghezza netta	Lini			m
(4)	Lunghezza risvolti sol. inf.	LI		0.84	m
(a)	Rigidezze molle		(0.66/2 + 6.00 + 0.66/2) / 10	0.67	
	Interasse molle	į V1	(0.66/2 + 6.00 + 0.66/2) / 10 =	0.67	m IdN/m
	Molle centrali Molle intermedie	K1 K2	15000 · 0.67 = 1.5 · 15000 · 0.67 =	9,990 14 <i>.</i> 985	kN/m kN/m
	Molle laterali	KZ K3	2.0 · 15000 · (0.67/2 + 0.66/2) =	14,985	kN/m
	Molle risvolto	K4	1.5 · 15000 · (0.67/2 + 0.66/2) =	18,900	kN/m
(0)		K4	1.5 15000 0.64 -	10,900	KIN/III
(e)	Carichi permanenti				
	Soletta inferiore	ъ.	1.20 - 10	24.70	1-81/2
	Peso del rinterro	Pr	1,30 · 19 =	24.70	kN/m²
	Risvolti soletta inferiore	_			
	Peso pacchetto stradale	Ps	0.10 · 20 =	2.00	kN/m²
	Peso del rinterro	Pr	$(0.00+0.00+3.20) \cdot 19 =$	60.80	kN/m²
	Totale			62.80	kN/m²
(I)	Spinta del terreno				
	K0		1 - sen (35°) =	0.426	
	Spinta in asse sol. inf.	р3	$0.426 \cdot [0.00 + 19 \cdot (0.00/2 + 3.20 + 1.10/2)] =$	30.38	kN/m²
	Spinta alla quota di intradosso sol. inf.	p4	$0.426 \cdot [0.00 + 19 \cdot (0.00/2 + 3.20 + 1.10)] =$	34.84	kN/m²
	Spinta semispessore sol. inf.	F2	(30.38+34.84)/2 · 1.10/2	17.94	kN/m
(n)	Sisma orizzontale				
	Stato limite		Salvaguardia della vita - SLU -	SLV	
	Vita nominale	Vr			anni
	Classe d'uso	Cu		IV	
	accelerazione orizzontale	a _g /g		0.06	
	amplificazione spettrale	Fo		2.88	
	Categoria sottosuolo	_	A, B, C, D, E	В	
	Coeff. Amplificazione stratigrafica	Ss		1.200	
	Coeff. Amplificazione topografica	St		1	
	Coefficiente S	S,	=Ss · St	1.200	
	accellerazione orizzontale max		=ag/g·S	0.0720	
	Fattore di struttura	q	0.072 (0.66 .25) / 4.00	1.00	
	Forza orizz. sui piedritti	FHp	0.072 · (0.66 · 25) / 1.00 =	1.19	kN/m²
(o)	Spinta del terreno in fase sismica				
	Coefficiente sismico orizzontale	\mathbf{k}_{h}	$=a_{max}/g$	0.072	
			10.5.1.	0.036	
	Coefficiente sismico verticale	k_v	$= \pm 0.5 \cdot k_h$	0.030	
	Risultante della spinta sismica	K_{V} ΔS_{E}	= (amax/g) · γ · (Hint+Ss+Sf+Hr) ²	25.3	kN/m
			· · · · · · · · · · · · · · · · · · ·		kN/m kN/m²

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

10.2 Combinazioni

dove:

PERM: carichi permanenti **FALDA (F)**: spinta idraulica

Q1k-M : carichi da traffico concentrato (disposizione per massimizzare il momento)
 Q1K-T : carichi da traffico concentrato (disposizione per massimizzare il taglio)
 Q2-M : carichi da traffico distribuito (disposizione per massimizzare il momento)
 Q2-T : carichi da traffico distribuito (disposizione per massimizzare il taglio)

Q3 : azione longitudinale di frenamento

SPTSx : spinta del terreno sulla parete sxSPTDx : spinta del terreno sulla parete dx

SPACCSx : spinta del carico accidentale sulla parete sx **SPACCDx** : spinta del carico accidentale sulla parete sx

TERM: termica **RITIRO**: ritiro

SISMAH : azione sismica

SPSDX: incremento sismico della spinta del terreno **SPSSX**: incremento sismico della spinta del terreno

ComboName	ComboType	AutoDesign	CaseType CaseName		ScaleFactor
CB1	Linear Add	No	Linear Static	PERM	1.35
CB1			Linear Static	SPTSX	1
CB1			Linear Static	SPTDX	1
CB2	Linear Add	No	Linear Static	PERM	1.35
CB2			Linear Static	SPTSX	1.35
CB2			Linear Static	SPTDX	1.35
CB3	Linear Add	No	Linear Static	PERM	1.35
CB3			Linear Static	SPTSX	1
CB3			Linear Static	SPTDX	1.35
CB4	Linear Add	No	Linear Static	PERM	1.35
CB4			Linear Static	SPTSX	1.35
CB4			Linear Static	SPTDX	1
CB5_ED	Linear Add	No	Linear Static	PERM	1
CB5_ED			Linear Static	SPTSX	1
CB5_ED			Linear Static	SPTDX	0.7
CB5_ED			Linear Static	SISMAH+	1
CB5_ED			Linear Static	SPSSX	1
CB6_ED	Linear Add	No	Linear Static	PERM	1
CB6_ED			Linear Static	SPTSX	0.7
CB6_ED			Linear Static	SPTDX	1
CB6_ED			Linear Static	SISMAH-	1
CB6_ED			Linear Static	SPSDX	1

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

ComboName	ComboType	AutoDesign	CaseType	CaseName	ScaleFactor
INVSLU	Envelope	No	Response Combo	CB1	1
INVSLU			Response Combo	CB2	1
INVSLU			Response Combo	CB3	1
INVSLU			Response Combo	CB4	1
INVSLU			Response Combo	CB5_ED	1
INVSLU			Response Combo	CB6_ED	1
CB7_QP_FQ	Linear Add	No	Linear Static	PERM	1
CB7_QP_FQ			Linear Static	SPTSX	0.7
CB7_QP_FQ			Linear Static	SPTDX	0.7
CB8_QP_FQ	Linear Add	No	Linear Static	PERM	1
CB8_QP_FQ			Linear Static	SPTSX	1
CB8_QP_FQ			Linear Static	SPTDX	1
CB9_QP_FQ	Linear Add	No	Linear Static	PERM	1
CB9_QP_FQ			Linear Static	SPTSX	0.7
CB9_QP_FQ			Linear Static	SPTDX	1
CB10_QP_FQ	Linear Add	No	Linear Static	PERM	1
CB10_QP_FQ			Linear Static	SPTSX	1
CB10_QP_FQ			Linear Static	SPTDX	0.7
INVQP	Envelope	No	Response Combo	CB7_QP_FQ	1
INVQP			Response Combo	CB8_QP_FQ	1
INVQP			Response Combo	CB9_QP_FQ	1
INVQP			Response Combo	CB10_QP_FQ	1

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

10.3 Sollecitazioni

10.3.1 Modello N°1 – Piedritti di altezza massima

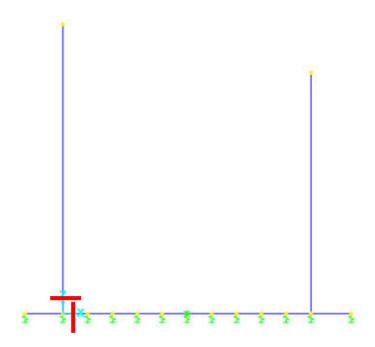


Figura 1 – Sezioni di verifica

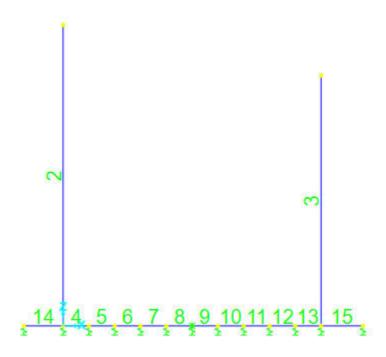


Figura 2 - Nomenclatura frame

CA-029

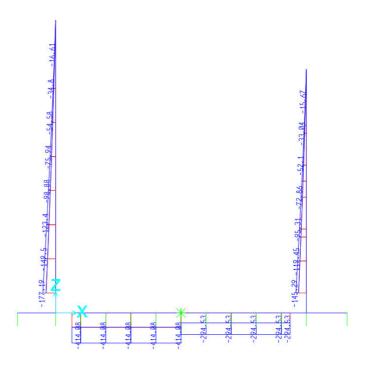


Figura 3 – Sforzo Normale – Inviluppo SLU-SLV

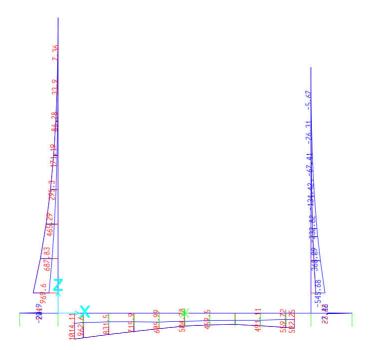


Figura 4 – Momento flettente – Inviluppo SLU-SLV

CA-029

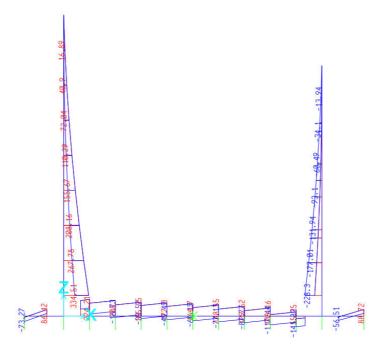


Figura 5 - Taglio - Inviluppo SLU-SLV

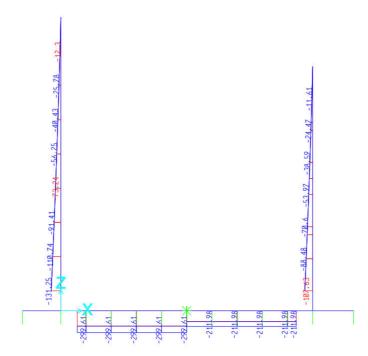


Figura 6 - Sforzo Normale - Inviluppo SLE freq

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

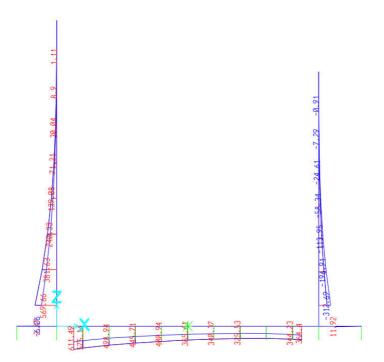


Figura 7 – Momento flettente – Inviluppo SLE freq

10.3.2 Riepilogo sollecitazioni - Modello N°1 - Piedritti di altezza massima

Pied spice	P_inf1								
		(Comb.		Nsd		Msd		Ved
					k	N	kN	m	kN
SLU/SLV	(Nmax) (CB1			177		570	
	(Nmin)	(CB5_ED			131		970	
	(Mmax	() (CB2			177		769	
	(Mmin) (CB6_ED			131		353	
	Ved,m		CB5_ED						335
SLE	(Mmax	() (CB8_QP_I	FQ		131		570	
Sol_inf	S_inf_1								
		Con	nb.	Nsc	l	Msd		Ved	
					kN	k۱	١m	kN	
SLU/SLV	(Nmax)	CB5	S_ED		414		1014		
	(Nmin)	CB6	S_ED		197		394		
	(Mmax)	CB5	S_ED		414		1014		
	(Mmin)	CB1	<u>[</u>		300		594		
	Ved,max	CB5	S_ED					2	208
SLE	(Mmax)	CB8	3_QP_FQ		300		611		

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

10.3.3 Modello N°2 – Piedritti di altezza costante

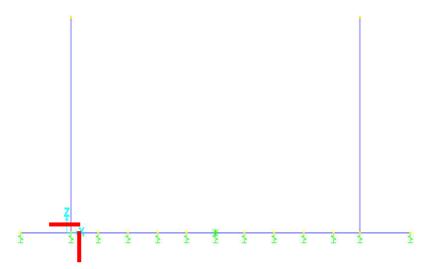


Figura 8 – Sezioni di verifica

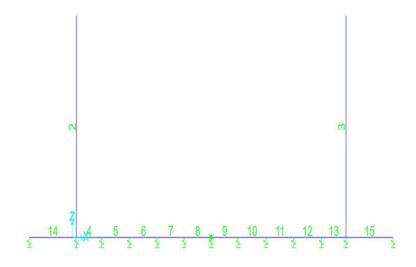


Figura 9 - Nomenclatura frame

CA-029

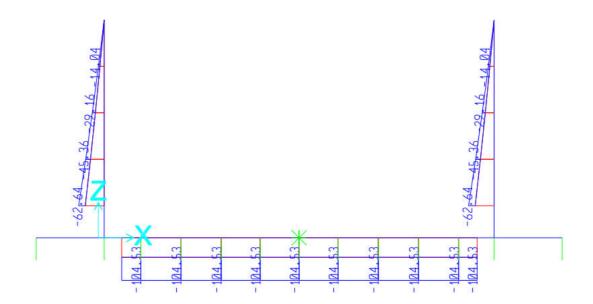


Figura 10 – Sforzo Normale – Inviluppo SLU-SLV

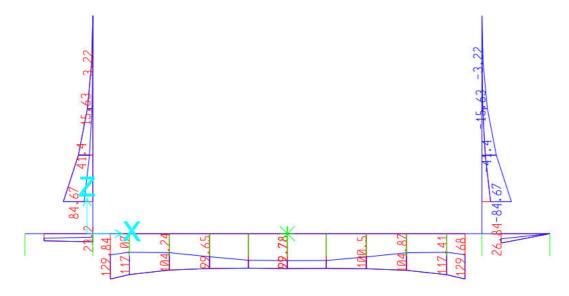


Figura 11 – Momento flettente – Inviluppo SLU-SLV

CA-029

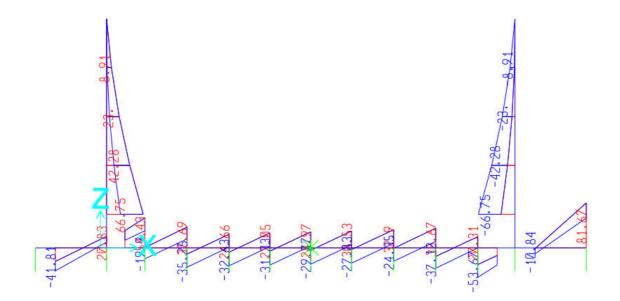


Figura 12 - Taglio - Inviluppo SLU-SLV

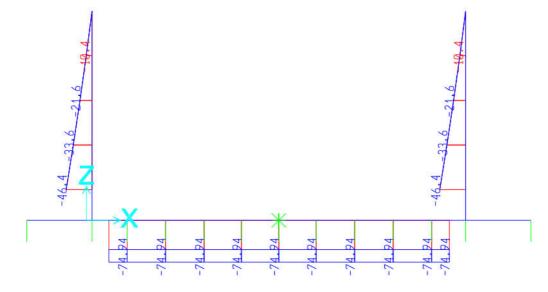


Figura 13 - Sforzo Normale - Inviluppo SLE freq

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

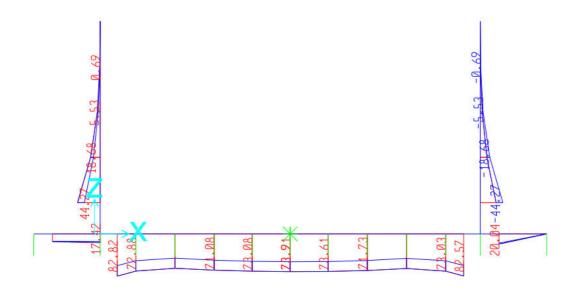


Figura 14 - Momento flettente - Inviluppo SLE freq

10.3.4 Riepilogo sollecitazioni - Modello N°2 - Piedritti di spessore costante

Pied_spic	c P_in	ıf_1						
			Comb.		Nsd		Msd	Ved
					kI	V	kNm	kN
SLU/SLV	(Nm	ax)	CB1			63	44	
	(Nm	in)	CB5_E)		46	85	
	(Mn	nax)	CB5_E)		46	85	
	(Mn	nin)	CB6_E)		46	25	
	Ved	,max	CB5_E)				67
SLE	(Mn	nax)	CB8_Q	P_FQ		46	44	
Sol_inf	S_inf_1							
		Com	b.	Nsd	Ms	sd	Ved	
				kN		kNm	kN	
SLU/SLV	(Nmax)	CB5_	_ED	10	05	130)	
	(Nmin)	CB6_	_ED	4	48	61	L	
	(Mmax)	CB5_	_ED	10	05	130)	
	(Mmin)	CB6_	_ED	4	48	61	L	
	Ved,max	CB5_	_ED				31	
SLE	(Mmax)	CB9_	_QP_FQ	•	75	83	3	

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

10.4 Verifiche strutturali a pressoflessione (SLU-SLE) - Modello N°1

Modello N°1				
	Arm. tesa		Arm. comp	١.
	1° strato	2° strato	1° strato	2° strato
Piedritto - Spiccato	5 Ø24	5 Ø24	5 Ø20	-
Soletta inferiore - Appoggio	10 Ø20	-	5 Ø20	-

Modello N°2				
	Arm. tesa		Arm. comp	
	1° strato	2° strato	1° strato	2° strato
Piedritto - Spiccato	5 Ø24	5 Ø24	5 Ø20	-
Soletta inferiore - Appoggio	10 Ø20	-	5 Ø20	-

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

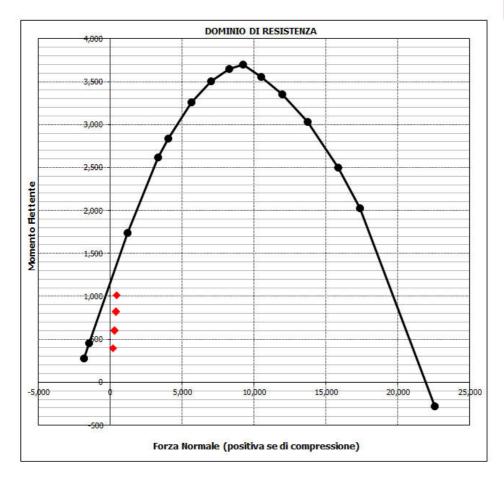
10.4.1 Verifica soletta inferiore in appoggio (S_inf-1)

Verifiche in presso-tenso flessione

Acciaio				
Tensione car. di rottura	ftk	=	540	N/mm²
Tensione car. di snervamento	fyk	=	450	N/mm²
Coeff. parziale di sicurezza	Ys	=	1.15	
Resistenza di calcolo	fyd	\equiv	391	N/mm²
Modulo elastico	Es		205000	N/mm ²
	Eyd	=	0.00191	

Calcestruz	Z0	
Tipo	C32/40	
Rck	40	N/mm²
fck	33.2	N/mm²
Yc	1.5	
fcd	22.1	N/mm²
fcc	18.8	N/mm²

Geometria della sezione		8898		
Altezza geometrica della sezi	ion h	=	110 cr	n
Base della sezione	b	=	100 cr	n
Copriferro	d'	:=:	7.8 cr	n
Altezza utile della sezione	d	s=	101.2 cr	n


Armatura 1	tesa		
Nº ferri	Diametro	Area	
5	20	15.71	cm ²
5	20	15.71	cm ²
		0.00	cm ²
		31.42	cm ²

matura (compressa		
Nº ferri	Diametro	Area	
5	20	15.71	cm ²
		0.00	cm ²
		0.00	cm ²
		15.71	cm ²

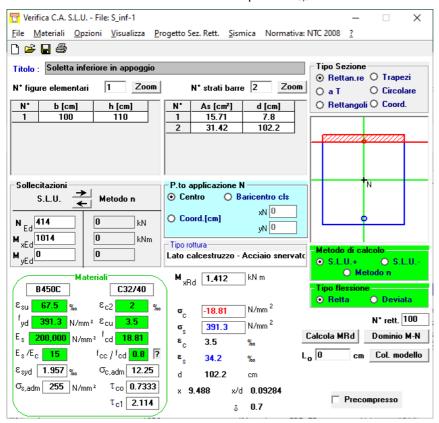
	(Nmax)
1412	(Nmin)
1020	(Mmax)
1.384313725	(Mmin)

Caratteristiche di sollecitazione						
Msd						
1014						
394						
1014						
394						

Caratteristiche di sollecitazione						
Comb.	Nsd	Msd				
CB1	300	594				
CB2	404	826				
CB3	300	604				
CB4	404	816				
CB5_ED	414	1014				
CB6_ED	197	394				

La combinazione maggiormente gravosa è risultata la combinazione CB5ED-.

L'azione normale di calcolo è assunta pari a $N_{s,d}$ = 414 kN.


Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

Il momento flettente di calcolo è assunto pari a M_{S,d} = 1014 kNm.

Il momento resistente della sezione vale:

- $M_{R,d}$ = 1412.00 kNm > $M_{S,d}$ = 1014.00 kNm
- Fattore di sicurezza FS=1.39.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

Verifiche in esercizio

Sollecitazioni			1	1				
Momento flettente	M	611	kN m					
Sforzo normale	N	300	kN	J				
Materiali				,				
Res. caratteristica cls	R _{ck}	40	N/mm²					
Tensione ammissibile cls	σc_{amm}	12.3	N/mm²					
Res. media a trazione cls	f_{ctm}	3.2	N/mm²					
Res. caratteristica a trazione cls	f _{ctk}	2.2	N/mm²					
Tensione ammissibile acciaio	σs_{amm}	260	N/mm²					
Coefficiente omog. acciaio-cls	n	15						
Caratteristiche geometriche								
Altezza sezione	Н	110	cm					
Larghezza sezione	В	100	cm				_	
Armatura compressa (1º strato)	As ₁ '	15.71	cm ²		5	Ø 20	$c_{s1} = 7.8$	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²			Ø	c _{s2} =	cm
Armatura tesa (2º strato)	As ₂	0.00	cm ²			Ø	c _{i2} =	cm
Armatura tesa (1º strato)	As ₁	31.42	cm ²		10	Ø 20	c _{i1} = 7.8	cm
Tensioni nei materiali								
Compressione max nel cls.	σς	4.7	N/mm²	<	σc _{amm}]	
Trazione nell'acciaio (1º strato)	σs	164.4	N/mm²	<	σa_{amm}			
, ,					-			
Eccentricità	e (M)	203.7	cm	>	H/6	Sez. pa	arzializzata	Risolvi
	u (M)	148.7	cm					KISUWI
Posizione asse neutro	y (M)	30.9	cm					0.00000
Area ideale (sez. int. reagente)	A _{id}	11660	cm ²					
Mom. di inerzia ideale (sez. int. reag.)	J_{id}	1.3E+07	cm ⁴					
Mom. di inerzia ideale (sez. parz. N=0)	J _{id} *	3504118	cm ⁴					
Verifica a fessurazione								
Momento di fessurazione (f _{ctk})	M _{fess} *	568	kN m	las	ezione é	è fessura	ata	1
Momento di fessurazione (f _{ctm})	M _{fess}	787	kN m					
Eccentricità per M=M _{fess}	e (M _{fess})	262.2	cm					
Ecocontricita per in-injess	u (M _{fess})	207.2	cm					
Compressione max nel cls. per M=M _{fess}	σcr	6.1	CIII					
Traz. nell'acciaio (1º str.) per M=M _{fess}	σsr	223.7	N/mm²					Risolvi
Posizione asse neutro per M=M _{fess}	y (M _{fess})	29.6	cm					0.00000
1 03/2/01/c d33c Hedito per III—III _{Tess}		*	CIII					0.00000
	β_1	1						
	β_2	0.5						
Deform. unitaria media dell'arm.	€sm	0.00031						
Copriferro netto	C'	6.8						
Altezza efficace	d _{eff}	21.8						
Area efficace	Aceff	2180	cm ²					
Armatura nell'area efficace	Aseff	31.4	cm ²					
Distance to la bassa	ρr	0.01441						
Distanza tra le barre	S	10.0	cm					
	K ₂	0.4						
	K ₃	0.125						
Distanza media tra le fessure	S _{rm}	22.5	cm					
Valore medio dell'ap. delle fessure	wm	0.07	mm					
Valore caratter. dell'ap. delle fessure	wk	0.12	mm					

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

10.4.2 Verifica piedritti allo spiccato (P_inf-2)

Verifiche in presso-tenso flessione

Acciaio				
Tensione car. di rottura	ftk	=	540	N/mm²
Tensione car. di snervamento	fyk		450	N/mm²
Coeff. parziale di sicurezza	Ys	=	1.15	
Resistenza di calcolo	f_{yd}	\equiv	391	N/mm²
Modulo elastico	Es		200000	N/mm ²
	Eyd	=	0.00196	

Calcestruz	Z0	
Tipo	C32/40	
Rck	40	N/mm ²
fck	33.2	N/mm ²
Yc	1.5	
fod	22.1	N/mm²
fcc	18.8	N/mm²

Geometria della sezione			
Altezza geometrica della sezi	on h	=	90 cm
Base della sezione	b	=	100 cm
Copriferro	d'	=	8 cm
Altezza utile della sezione	d	=	80.8 cm

Armatura tesa						
Nº ferri	Diametro	Area				
5	24	22.62	cm ²			
5	24	22.62	cm ²			
		0.00	cm ²			
		45.24	cm ²			

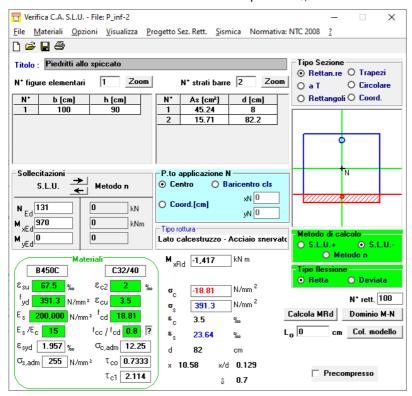
rmatura (compressa		
Nº ferri	Diametro	Area	
5	20	15.71	cm ²
		0.00	cm ²
		0.00	cm ²
		15.71	cm ²

1417	(Nmax)
970	(Nmin)
1.460824742	(Mmax)
	(Mmin)

Caratteristiche di sollecitazione				
Comb.	Nsd	Msd		
CB1	177	570		
CB5_ED	131	970		
CB5_ED	131	970		
CB6_ED	131	353		

Caratteristiche di sollecitazione							
Comb.	Comb. Nsd Msd						
CB1	177	570					
CB2	177	769					
CB3	177	570					
CB4	177	769					
CB5_ED	131	970					
CB6_ED	131	353					

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia


CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

La combinazione maggiormente gravosa è risultata la combinazione CB5ED-.

L'azione normale di calcolo è assunta pari a N_{S,d} = 131 kN.

Il momento flettente di calcolo è assunto pari a M_{S,d} = 970 kNm.

Il momento resistente della sezione vale:

- $M_{R,d}$ = 1417.00 kNm > $M_{S,d}$ = 970.00 kNm
- Fattore di sicurezza FS=1.46.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

Verifiche in esercizio

Sollecitazioni				_							
Momento flettente	М	570	kN m]							
Sforzo normale	N	131	kN								
Materiali											
Res. caratteristica cls	R _{ck}	40	N/mm²]							
Tensione ammissibile cls	σc_{amm}	12.3	N/mm²								
Res. media a trazione cls	f _{ctm}	3.2	N/mm²								
Res. caratteristica a trazione cls	f _{ctk}	2.2	N/mm²								
Tensione ammissibile acciaio	σs _{amm}	260	N/mm²								
Coefficiente omog. acciaio-cls	n	15									
Caratteristiche geometriche											
Altezza sezione	Н	90	cm								1
Larghezza sezione	В	100	cm					_			
Armatura compressa (1º strato)	As ₁ '	15.71	cm ²		5	Ø	20	c _{s1} =	7.8	cm	
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²			Ø		c _{s2} =		cm	
Armatura tesa (2º strato)	As ₂	22.62	cm ²		5	Ø	24	c _{i2} =	8	cm	
Armatura tesa (1º strato)	As ₁	22.62	cm²		5	Ø	24	c _{i1} =	8.0	cm	
Tensioni nei materiali											
Compressione max nel cls.	σς	5.4	N/mm²	<	σc _{amm}]			
Trazione nell'acciaio (1º strato)	σs	158.6	N/mm²	<	σa_{amm}						
						_					
Eccentricità	e (M)	435.1	cm	>	H/6	Sez	. pa	arzializz	ata		Risolvi
Desirione and neutro	u (M)	390.1	cm								0.0001
Posizione asse neutro	y (M)	27.8	cm								-0.0001
Area ideale (sez. int. reagente)	A _{id}	9853	cm ²								
Mom. di inerzia ideale (sez. int. reag.)	J _{id}	7330041	cm ⁴								
Mom. di inerzia ideale (sez. parz. N=0)	J _{id} *	2804332	cm ⁴								
Verifica a fessurazione										_	
Momento di fessurazione (f _{ctk})	M _{fess} *	382	kN m	La s	sezione (è fes	sura	ata			
Momento di fessurazione (f _{ctm})	M _{fess}	536	kN m								
Eccentricità per M=M _{fess}	e (M _{fess})	409.2	cm								
	u (M _{fess})	364.2	cm								
Compressione max nel cls. per M=M _{fess}	σcr	5.1									Risolvi
Traz. nell'acciaio (1º str.) per M=M _{fess}	σsr	148.4	N/mm²								TUSOW
Posizione asse neutro per M=M _{fess}	y (M _{fess})	28.0	cm								-0.0000
	β_1	1									
	β_2	0.5									
Deform, unitaria media dell'arm.	Esm	0.00042									
Copriferro netto	c'	6.8	cm								
Altezza efficace	d_{eff}	24.8	cm								
Area efficace	Aceff	2480	cm ²								
Armatura nell'area efficace	Aseff	45.2	cm ²								
	ρr	0.01824									
Distanza tra le barre	S	20.0	cm								
	K ₂	0.4									
	.,	•								1	

0.125

24.2

0.10

0.17

cm

mm

К3

S_{rm}

wm

wk

Distanza media tra le fessure

Valore medio dell'ap. delle fessure

Valore caratter. dell'ap. delle fessure

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

10.5 Verifiche a taglio

Acciaio		
ftk	540	N/mm²
f_{yk}	450	N/mm ²
γs	1.15	
f_{yd}	391	N/mm ²

Sezioni Sollecitazioni		S_Inf - 1 Soletta inf	P_Inf - 2 Piedritto dx
V _{Ed}	kN	209	335
N _{Ed}	kN	0	0
NEG	NIV.	· ·	· ·
Armatura a taglio			
Diametro	mm	12	12
Numero barre		5	5
Asw	cm ²	5.65	5.65
Passo s	cm	20	20
Angolo α	0	90	90
Armatura longitudinale			
n_1		10.0	10.0
\emptyset_1	mm	20	24
n_2			
\emptyset_2	mm		
Asl	cm ²	31.42	45.24
Sezione			
b _w	cm	100	100
Н	cm	110	90
С	cm	7.8	7.8
d	cm	102.2	82.2
k	N/mm²	1.44	1.49
V _{min}	N/mm²	0.35	0.37
ρ		0.0031	0.0055
σср	N/mm²	0.00	0.00
α_c		1.00	1.00
Resistenza senza armatura a tagli			
V _{Rd}	kN	384	388
	FS	1.84	1.16
Resistenza con armatura a taglio	۰	45	45
Inclinazione puntone θ		45	45
V _{RSd}	kN	1018	819
V _{RCd}	kN	4326	3480
V _{Rd}	kN FS	1018	819
	L2	4.87	2.44

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

10.6 Verifiche strutturali a pressoflessione (SLU-SLE) - Modello N°2

Modello N°2				
	Arm. tesa	l	Arm. comp).
	1° strato	2° strato	1° strato	2° strato
Piedritto - Spiccato	5 Ø24	5 Ø24	5 Ø20	-
Soletta inferiore - Appoggio	10 Ø20	-	5 Ø20	-

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

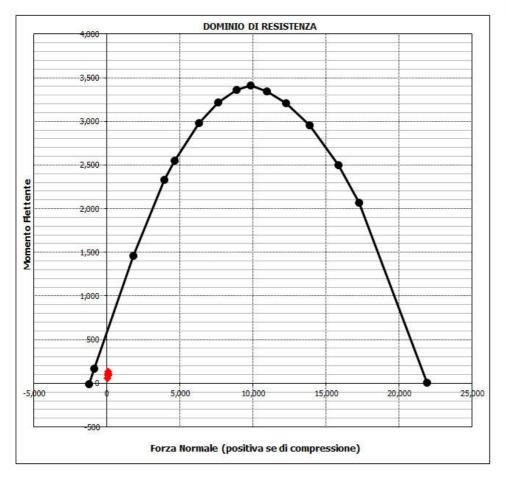
10.6.1 Verifica soletta inferiore in appoggio (S_inf-1)

Verifiche in presso-tenso flessione

Acciaio				
Tensione car. di rottura	ftk	=	540	N/mm²
Tensione car. di snervamento	fyk	=	450	N/mm²
Coeff. parziale di sicurezza	Ys	=	1.15	
Resistenza di calcolo	f_{yd}	\equiv	391	N/mm²
Modulo elastico	Es		205000	N/mm²
	Evd	=	0.00191	

Calcestruz	Z0	
Tipo	C32/40	
Rck	40	N/mm ²
fck	33.2	N/mm ²
Yc	1.5	
fcd	22.1	N/mm ²
fcc	18.8	N/mm²

Geometria della sezione		KEEK		
Altezza geometrica della sezi	on h	=	110	cm
Base della sezione	b	=	100	cm
Copriferro	d'	=	7.8	cm
Altezza utile della sezione	d	=	101.2	cm


Armatura tesa							
Nº ferri	Diametro	Area					
5	20	15.71	cm ²				
		0.00	cm ²				
		0.00	cm ²				
		15.71	cm ²				

Armatura	compressa		
Nº ferri	Diametro	Area	
5	20	15.71	cm ²
		0.00	cm ²
		0.00	cm ²
		15 71	cm2

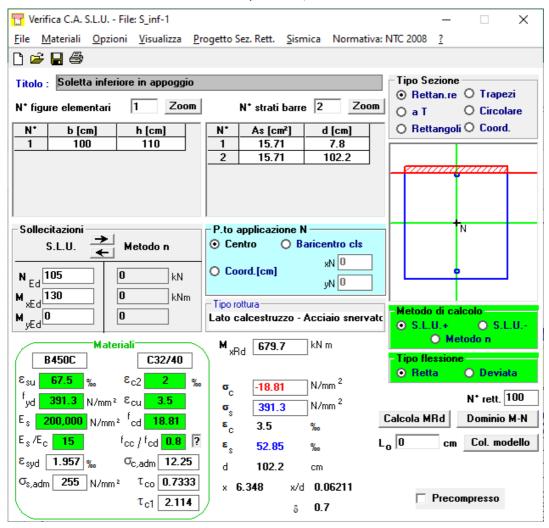
	(Nmax)
1412	(Nmin)
1020	(Mmax)
1.384313725	(Mmin)

Caratteristiche di sollecitazione						
Nsd	Msd					
105	130					
48	61					
105	130					
48	61					
	Nsd 105 48 105					

Caratteristiche di sollecitazione							
Comb.	Nsd	Msd					
CB1	75	88					
CB2	101	112					
CB3	75	90					
CB4	101	110					
CB5_ED	105	130					
CB6_ED	48	61					

La combinazione maggiormente gravosa è risultata la combinazione CB5ED-.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia



CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

L'azione normale di calcolo è assunta pari a N_{S,d} = 105 kN.

Il momento flettente di calcolo è assunto pari a M_{S,d} = 130 kNm.

Il momento resistente della sezione vale:

- $M_{R,d} = 679.70 \text{ kNm} > M_{S,d} = 130.0 \text{ kNm}$
- Fattore di sicurezza FS=5.22.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

Verifiche in esercizio

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

Sollecitazioni

Momento flettente	M	83	kN m
Sforzo normale	N	75	kN

Materiali

Res. caratteristica cls	R _{ck}	40	N/mm²
Tensione ammissibile cls	σc_{amm}	12.3	N/mm ²
Res. media a trazione cls	f _{ctm}	3.2	N/mm ²
Res. caratteristica a trazione cls	f _{ctk}	2.2	N/mm ²
Tensione ammissibile acciaio	$\sigma_{S_{amm}}$	260	N/mm ²
Coefficiente omog. acciaio-cls	n	15	

Caratteristiche geometriche

Altezza sezione	Н	110	cm				
Larghezza sezione	В	100	cm				
Armatura compressa (1º strato)	As ₁ '	15.71	cm ²	5	Ø 20	c _{s1} = 7.8	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²		Ø	c _{s2} =	cm
Armatura tesa (2º strato)	As ₂	0.00	cm ²		Ø	c _{i2} =	cm
Armatura tesa (1º strato)	As ₁	15.71	cm ²	5	Ø 20	c _{i1} = 7.8	cm

Tensioni nei materiali

σc	0.8	N/mm ²	<	σc_{amm}	
σs	33.2	N/mm²	<	σa_{amm}	
e (M)	110.7	cm	>	H/6	Sez. parzializzata
u (M)	55.7	cm		- 4 -	
y (M)	27.6	cm			
A _{id}	11440	cm ²			
J_{id}	1.2E+07	cm ⁴			
J _{id} *	2106132	cm ⁴			
	σs e (M) u (M) y (M) A _{id} J _{id}	e (M) 110.7 u (M) 55.7 y (M) 27.6 A _{id} 11440 J _{id} 1.2E+07	e (M) 110.7 cm u (M) 55.7 cm y (M) 27.6 cm Ald 11440 cm² Jid 1.2E+07 cm ⁴	σs 33.2 N/mm² < e (M) 110.7 cm > u (M) 55.7 cm y (M) 27.6 cm A _{id} 11440 cm² J _{id} 1.2E+07 cm⁴	σs 33.2 N/mm² < σa _{amm} e (M) 110.7 cm > H/6 u (M) 55.7 cm y (M) 27.6 cm A _{id} 11440 cm² J _{id} 1.2E+07 cm⁴

Risolvi -0.00003

Verifica a fessurazione

Momento di fessurazione (f _{ctk})	M _{fess} *	502	kN m	La sezione non è fessurata
Momento di fessurazione (f _{ctm})	M _{fess}	712	kN m	
Eccentricità per M=M _{fess}	e (M _{fess})	948.8	cm	
	u (M _{fess})	893.8	cm	
Compressione max nel cls. per M=M _{fess}	σcr	7.0		
Traz. nell'acciaio (1º str.) per M=M _{fess}	σsr	449.9	N/mm²	
Posizione asse neutro per M=M _{fess}	y (M _{fess})	19.4	cm	
	β1	ĭ		
	β2	0.5		
Deform, unitaria media dell'arm.	Esm .	6.3E-05		
Copriferro netto	c'	6.8 (:m	
Altezza efficace	der	21.8 (om.	
Area efficace	Acerr	2180	cm²	
Armatura nell'area efficace	Aseff	15.7	cm²	
	ρr	0.00721		
Distanza tra le barre	S	20.0	cm	
	K ₂	0.4		
	K ₃	0.125		
Distanza media tra le fessure	Sm	31.5	cm	
Valore medio dell'ap. delle fessure	wm	0.02	mm	_
Valore caratter, dell'ap, delle fessure	wk	-	mm	

-0.00055

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

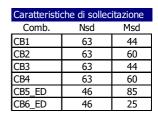
Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

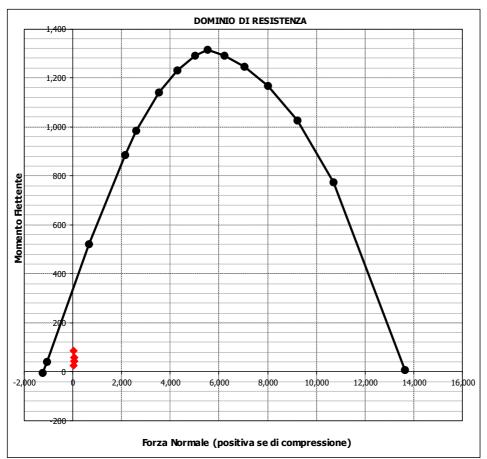
10.6.2 Verifica piedritti allo spiccato (P_inf-2)

Verifiche in presso-tenso flessione

Acciaio				
Tensione car. di rottura	f_{tk}	=	540	N/mm²
Tensione car. di snervamento	f_{yk}	=	450	N/mm²
Coeff. parziale di sicurezza	γ_{s}	=	1.15	
Resistenza di calcolo	f_{yd}	=	391	N/mm²
Modulo elastico	E _s	=	200000	N/mm²
	ϵ_{yd}	=	0.00196	

Calcestruzz	.0	
Tipo	C32/40	
R_{ck}	40	N/mm²
f_{ck}	33.2	N/mm²
γ_c	1.5	
f_{cd}	22.1	N/mm²
f_{cc}	18.8	N/mm²


Geometria della sezione			
Altezza geometrica della sezio	n h	=	66 cm
Base della sezione	b	=	100 cm
Copriferro	ď'	=	7.8 cm
Altezza utile della sezione	d	=	57.2 cm

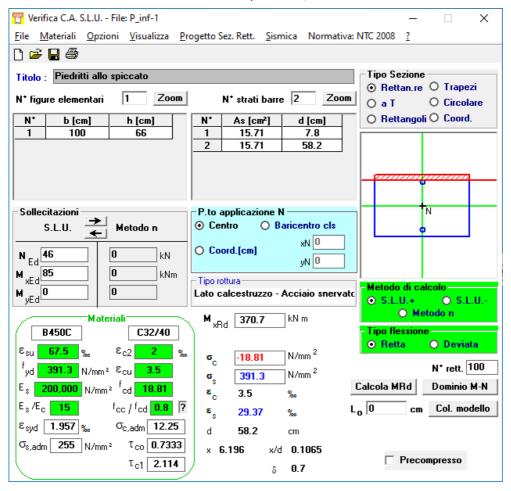

Armatura tesa							
Nº ferri	Diametro	Area					
5	20	15.71	cm ²				
		0.00	cm ²				
		0.00	cm ²				
		15.71	cm ²				

Armatura compressa								
Nº ferri	Diametro	Area						
5	20	15.71	cm ²					
		0.00	cm ²					
		0.00	cm ²					
		15 71	cm²					

(Nmax)
(Nmin)
(Mmax)
(Mmin)

Caratteristiche di sollecitazione							
Comb.	Nsd	Msd					
CB1	63	44					
CB5_ED	46	85					
CB5_ED	46	85					
CB6_ED	46	25					

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia


CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

La combinazione maggiormente gravosa è risultata la combinazione CB5ED-.

L'azione normale di calcolo è assunta pari a N_{S,d} = 46 kN.

Il momento flettente di calcolo è assunto pari a M_{S,d} = 85 kNm.

Il momento resistente della sezione vale:

- $M_{R,d} = 370.7 \text{ kNm} > M_{S,d} = 85.00 \text{ kNm}$
- Fattore di sicurezza FS=4.36.

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

Verifiche in esercizio

Sollecitazioni			
Momento flettente	М	47	kN m
Sforzo normale	N	45	kN

Materiali

Res. caratteristica cls	R _{ck}	40	N/mm²
Tensione ammissibile cls	σc_{amm}	12.3	N/mm²
Res. media a trazione cls	f _{ctm}	3.2	N/mm²
Res. caratteristica a trazione cls	f _{ctk}	2.2	N/mm ²
Tensione ammissibile acciaio	σs _{amm}	260	N/mm²
Coefficiente omog. acciaio-cls	n	15	

Caratteristiche geometriche

caracteristic geometricite							
Altezza sezione	Н	66	cm				
Larghezza sezione	В	100	cm				
Armatura compressa (1º strato)	As ₁ '	15.71	cm ²	5	Ø 20	c _{s1} = 7.8	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²		Ø	c _{s2} =	cm
Armatura tesa (2º strato)	As ₂	0.00	cm ²		Ø	c _{i2} =	cm
Armatura tesa (1º strato)	As ₁	15.71	cm ²	5	Ø 20	c _{i1} = 7.8	cm

Tensioni nei materiali

Compressione max nel cls.	σc	1.2	N/mm²	<	σc_{amm}	
Trazione nell'acciaio (1º strato)	σs	42.4	N/mm²	<	σa_{amm}	
Eccentricità	e (M)	104.4	cm	>	H/6	Sez. parzializzata
Posizione asse neutro	u (M) y (M)	71.4 16.9	cm cm			
Area ideale (sez. int. reagente)	A _{id}	7040	cm ²			
Mom. di inerzia ideale (sez. int. reag.)	J_{id}	2695056	cm ⁴			
Mom. di inerzia ideale (sez. parz. N=0)	J _{id} *	581647	cm ⁴			

Risolvi 0.00000

Verifica a fessurazione

Momento di fessurazione (fctk)	M _{fess} *	186	kN m	La sezione non è fessurata
Momento di fessurazione (f _{com})	Mfess	263	kN m	
Eccentricità per M=M _{fess}	e (M _{fess})	584.7	cm	
	u (M _{fess})	551.7	cm	
Compressione max nel cls. per M=Mfess	σcr	6.4		
Traz. nell'acciaio (1º str.) per M=M _{fess}	σsr	300.4	N/mm²	
Posizione asse neutro per M=M _{fess}	y (M _{fess})	14.1	cm	
	β1	1		
	β ₂	0.5		
Deform, unitaria media dell'arm.	Esm	8.1E-05		
Copriferro netto	c'	6.8	cm	
Altezza efficace	deff	21.8	cm	
Area efficace	Aceff	2180	cm²	
Armatura nell'area efficace	Asen	15.7	cm²	
	ρr	0.00721		
Distanza tra le barre	S	20.0	cm	
	K ₂	0.4		
	K ₃	0.125		
Distanza media tra le fessure	Sım	31.5	cm	
Valore medio dell'ap. delle fessure	wm	0.03	mm	_
Valore caratter, dell'ap, delle fessure	wk	-	mm	

Risolvi 0.00000

Lavori di costruzione del 1° lotto Mamuntanas – Alghero e del 4° lotto di collegamento con l'aeroporto di Fertilia

CA-029

Relazione tecnica e di calcolo Muri Imbocco Sottovia Asse C al km 2+752

10.7 Verifiche a taglio

Calcestruzzo		
Tipo	C32/40	•
R _{ck} f _{ck} γ _c α _{cc}	40	N/mm ²
f _{ck}	33.2	N/mm²
γc	1.5	
α_{cc}	0.85	
f _{cd}	18.8	N/mm²

Acciaio		
ftk	540	N/mm²
f _{yk}	450	N/mm²
γs	1.15	
f _{yd}	391	N/mm²

Sezioni Sollecitazioni V _{Ed} N _{Ed}	kN kN	S_Inf - 1 Soletta inf 31 0	P_Inf - 2 Piedritto dx 42 0	
Armatura a taglio				
Diametro	mm	-	-	
Numero barre	-	-	-	
Asw	cm ²	-	-	
Passo s	cm	20	20	
Angolo α	0	90	90	
Armatura longitudinale				
n_1		5.0	5.0	
\emptyset_1	mm	20	20	
n_2				
\emptyset_2	mm			
Asl	cm ²	15.71	15.71	
Sezione				
b_w	cm	100	100	
Н	cm	110	66	
С	cm	7.8	7.8	
d	cm	102.2	58.2	
k	N/mm ²	1.44	1.59	
V _{min}	N/mm²	0.35	0.40	
ρ		0.0015	0.0027	
σcp	N/mm²	0.00	0.00	
α_{c}		1.00	1.00	
Resistenza senza armatura a taglio				
V _{Rd}	kN	357	234	
	FS	11.52	5.58	