COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO

NUOVO COLLEGAMENTO PALERMO - CATANIA U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

TRATTA LERCARA DIR. – CALTANISSETTA XIRBI (LOTTO 3)

VIII - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885m

Relazione di calcolo Pile - P12

SCALA:
-

COMMESSA	LOTTO FASE	ENTE TIPO DOC.	OPERA/DISCIPLINA	PROGR.	KE\
RS 3 T	3 0 D	$\begin{bmatrix} 0 & 9 & C \end{bmatrix}$	V I 1 1 0 5	$\begin{bmatrix} 0 & 0 & 4 \end{bmatrix}$	В

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
A	Emissione Esecutiva	G. Grimaldi	Gen. 2020	A. Frri	Gen. 2020	A.Barreca	Gen. 2020	A. Vittozzi Gen. 2020
В	1° agg. A consegna CSLLPP	G. Grimaldi	Mag. 2020	A. Ferri	Mag. 2020	A.Barreca	Mag. 2020	A. Vittozza Mag. 202
				710		000		ITAI Pott. Ing Ii-Ingegn
								U.O. Ope

File: RS3T30D09CLVI1105004B		n. Elab.: 09_264_3
-----------------------------	--	---------------------------

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL VI1105004 B 1 di 116

INDICE

1. PREMESSA	3
1.1 Descrizione dell'opera	3
2. DOCUMENTI DI RIFERIMENTO	7
2. Begenali (II BI RII ERRIME) (I e	
3. MATERIALI	7
3.1 Verifiche SLE	8
3	
3.1.2 Verifiche a fessurazione	9
4. DATI DI BASE	10
4.1 Geometrie di base	10
4.2 Modelli di analisi e verifica	12
4.3 Condizioni elementari e combinazioni di car	ico12
4.4 Sistemi di riferimento ed unità di misura	16
5. ANALISI DEI CARICHI	17
5.1 Peso proprio elementi strutturali	17
÷ ÷	18
	18
5.4 Effetti dinamici	20
5.5 Disposizione treni di carico	20
5.6 Carichi da traffico orizzontali	24
5.6.1 Forza centrifuga	24
5.6.2 Serpeggio	26
5.6.3 Frenatura ed avviamento	27
C	28
5.6.5 Azione del Vento	28
5.7 Azione Sismica	31
1	
<i>v</i> •	
G	
1	39
	40
1	41
	42
5.8 Azione Idrostatica	43
6. SOLLECITAZIONI	45
6.1 Combinazioni di carico	46

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1105004	В	2 di 116

6.1.1 Configurazione 1	46
6.1.2 Configurazione2	52
6.1.3 Configurazione 3	58
6.2 Tabelle riassuntive, massime sollecitazioni	64
6.2.1 Stati limiti di esercizio	
6.2.2 Stati limiti utlimi	70
7. VERIFICHE STRUTTURALI	73
8. FUSTO PILA	73
8.1 Modellazione	75
8.2 Verifica a presso flessione	75
8.3 Verifica a taglio	84
8.4 Verifica minimi di armatura	85
8.5 Verifica spostamenti	87
9. PULVINO	88
9.1 Progettazione armatura principale e secondaria	89
9.2 Verifica dei nodi	90
10. PLINTO DI FONDAZIONE	91
10.1 Dimensionamento armature	93
10.2 Verifica a prsso-flessione	95
10.2.1 Direzione trasversale	95
10.2.2 Direzione longitudinale	
10.3 Verifica a punzonamento	105
11. PALI DI FONDAZIONE	106
11.1 Ridistribuzione sollecitazioni testa palo	106
11.2 Verifica strutturale	106
11.3 Verifica a taglio	108
12. INCIDENZE	115

Progetto definitivo

Relazione di calcolo Pile – P12

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1105004	В	3 di 116

1. PREMESSA

La presente relazione ha per oggetto il dimensionamento e le verifiche di resistenza secondo il metodo semiprobabilistico agli Stati Limite (S.L.) di una delle Pile del viadotto ferroviario VI11 della tratta ferroviaria Palomba-Catenanuova, viadotto ferroviario previsto nell'ambito del progetto definitivo lungo la direttrice ferroviaria Messina-Catania-Palermo del nuovo collegamento Palermo-Catania. In particolare, si tratterà la Pila 12 che rappresenta la tipologica per tutte le pile di altezze minore o uguale a 7.80m, con impalcato 40m.

Le analisi strutturali e le verifiche di sicurezza sono state effettuate secondo il DM 17 gennaio 2018.

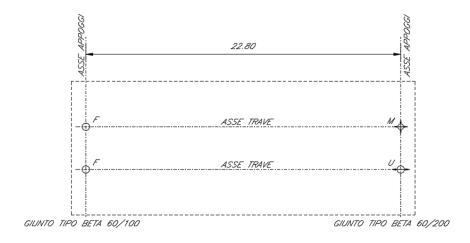
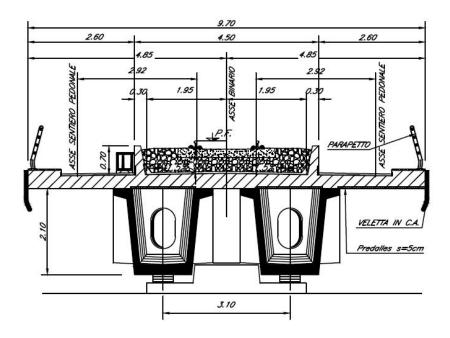
1.1 Descrizione dell'opera

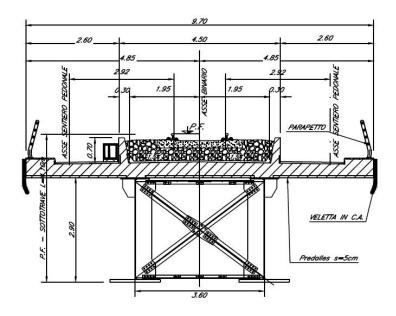
Il viadotto VI11 attraversa un corso d'acqua maggiore e corre parallelamente alla linea torica. Il viadotto è a doppio binario, ha uno sviluppo complessivo di 885m, ed è costituito da 32 campate isostatiche di luce 25m, 40 e 50m (asse pila-asse pila/ asse pila-asse giunto spalla). Le campate da 25 m sono realizzate con un impalcato in cap a due travi mentre, le campate di luce maggiore sono miste a due travi.

Le pile sono realizzate in c.a. gettato in opera, sono di forma circolare di dimensioni pari a 3.5m. Il pulvino ha una altezza pari a 3.30m. Su esso disposti gli apparecchi di appoggio dell'impalcato secondo lo schema sotto riportato

Il plinto presenta uno spessore di 3metri e una pianta rettangolare di 9.6x9.6, mentre le fondazioni previste sono su pali in c.a. di grande diametro F1200 sia per le pile che per le spalle. Il numero di pali pari a 9 e disposti ad interessa minimi di 3.6m. Si è assunta una distanza dal bordo degli stessi di 1.250m.

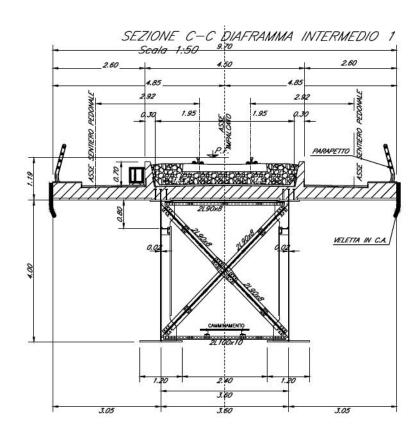
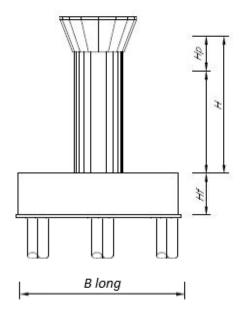
Per l'implementazione delle geometrie, vista la vastità delle casistiche, sono state adottate delle schematizzazioni in special modo per plinto di fondazione e pulvino. Per il pulvino, ad esempio, è stata adottata un'altezza costante di 2m ma, tenuto propriamente conto dei reali bracci e delle masse.

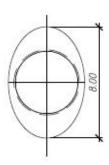



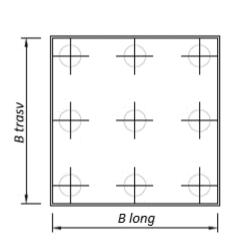

Figura 1: schema appoggi impakati sx e dx

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B5 di 116


Figura 2: sezione trasversale impalcato



VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B6 di 116

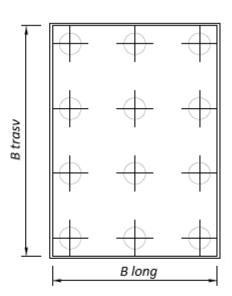


Figura 3: pianta, sezione e prospetti pila

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	7 di 116

2. DOCUMENTI DI RIFERIMENTO

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Ministero delle Infrastrutture, DM 17 gennaio 2018, Aggiornamento delle «Norme tecniche per le costruzioni».
- Ministero delle Infrastrutture e Trasporti, Circolare 21 gennaio 2019, n. 7/C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 17 gennaio 2018»
- Istruzione RFI DTC SI PS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 2 Ponti e Strutture
- Istruzione RFI DTC SI CS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 3 Corpo Stradale
- Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;

3. MATERIALI

Le caratteristiche dei materiali previsti le sottostrutture sono le seguenti:

Calcestruzzo pali di fondazione, cordoli, opere provvisionali, calcestruzzo fondazioni

classe di resistenza conglomerato	dasse	C25/30	
resistenza caratteristica cubica a comp.	Rdk	30	МРа
modulo elastico	Ec	31476	МРа
resistenza media cilindrica a comp.	fam	33	МРа
resistenza cilindrica caratteristica a comp.	fck	25	МРа

Calcestruzzo fondazioni armate

classe di resistenza conglomerato	dasse	C28/35	
resistenza caratteristica cubica a comp.	Rdk	35	МРа
modulo elastico	Ec	32308	МРа
resistenza media cilindrica a comp.	fam	36	МРа
resistenza cilindrica caratteristica a comp.	fdk	28	МРа

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	8 di 116

Calcestruzzo elevazione pile (compresi pulvini, baggioli e ritegni), spalle

classe di resistenza conglomerato	dasse	C32/40	
resistenza caratteristica cubica a comp.	Rck	40	МРа
modulo elastico	Ec	33346	МРа
resistenza media cilindrica a comp.	fam	40	МРа
resistenza cilindrica caratteristica a comp.	fck	32	МРа

Acciaio ordinario per calcestruzzo armato

denominazione tipo d'acciaio	nome	B450	
modulo elastico	Es	210000	МРа
tensione media di snevamento	fym	480	МРа
tensione caratteristica di snevamento	fyk	450	МРа
tensione di snevamento di calcolo	fyd	391.30	МРа
tensione caratteristica a rottura	ftk	540	МРа

Le verifiche del plinto di fondazione vengono condotte, a favore di sicurezza, con una classe di calcestruzzo C25/30.

3.1 Verifiche SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato.

3.1.1 Verifiche tensionali

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario", ovvero:

tensione massima di compressione del calcestruzzo

• per combinazione caratteristica (rara) : 0.55 fck

• per combinazione quasi permanente : 0.40 fck

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	9 di 116

• per spessori minori di 5cm tali valori devono essere decrementati del 30%.

tensione massima di trazione dell'acciaio

• per combinazione caratteristica (rara) : $0.75 f_{yk}$

Per il caso in esame risulta in particolare per l'elevazione:

 $\sigma_{c \max QP} = (0,40 \ f_{cK}) = 12.8$ MPa (Combinazione di Carico Quasi Permanente) $\sigma_{c \max R} = (0,55 \ f_{cK}) = 17.6$ MPa (Combinazione di Carico Caratteristica - Rara) $\sigma_{s \max R} = (0,75 \ f_{yK}) = 337.5$ MPa (Combinazione di Carico Caratteristica - Rara)

3.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]. In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 - Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Coupai di		-	Armatura				
Gruppi di esigenza	Condizioni ambientali	Combinazione di azione	Sensibile		Poco sensi	bile	
esigeliza			Stato limite	wk	Stato limite	wk	
Δ	Ordinarie	frequente	ap. fessure	\leq_{W_2}	ap. fessure	\leq_{W_3}	
A Ordinarie	Ordinarie	quasi permanente	ap. fessure	\leq_{W_1}	ap. fessure	\leq_{W_2}	
В	A gramagaixra	frequente	ap. fessure	\leq_{W_1}	ap. fessure	\leq_{W_2}	
B Aggressive		quasi permanente	decompressione	-	ap. fessure	\leq_{W_1}	
С	Molto Aggressive	frequente	formazione fessure	-	ap. fessure	\leq_{W_1}	
C	Molto Aggressive	quasi permanente	decompressione	-	ap. fessure	\leq_{W_1}	

Tabella 2 - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1. XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Risultando:

- $w_1 = 0.2 \text{ mm}$
- $w_2 = 0.3 \text{ mm}$
- $w_3 = 0.4 \text{ mm}$

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1105004	В	10 di 116

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel par. 4.1.2.2.4.2 del DM 17.1.2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

• Combinazione Caratteristica (Rara)
$$\delta_f \leq w_1 = 0.2 \ mm$$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura del D.M. 9 gennaio 1996, in accordo a quanto previsto al punto "C4.1.2.2.4.5 Verifica allo stato limite di fessurazione" della Circolare 21 gennaio 2019 n.7/C.S.L.L:PP..

Considerando quanto sopra riportato, per una semplice implementazione nel programma di calcolo RC-SEC, la combinazione RARA riferita al gruppo 4 è stata implementata fittiziamente come "frequente" in modo da separarla ed applicare la restrizione dei 0.2mm. Tutte le combinazioni RARE restanti sono state verificate per le sole verifiche tensionali.

4. DATI DI BASE

4.1 Geometrie di base

La pila presenta una sezione circolare piena di dimensioni 3.5m, una altezza complessiva di 7.80m. Il pulvino è costituito da una sezione piena ellissoidale ed altezza variabile in funzione del tipo d'impalcato. Nei calcoli si è incrementato del 10% la massa del pulvino per tener conto di velette, baggioli e ritegni. Le fondazioni sono realizzate su pali di diametro 1200mm collegate in testa da una platea di spessore 3m.

Considerando quanto sopra riportato, per una semplice implementazione nel programma di calcolo RC-SEC, la combinazione RARA riferita al gruppo 4 è stata implementata fittiziamente come "frequente" in modo da separarla ed applicare la restrizione dei 0.2mm. Tutte le combinazioni RARE restanti sono state verificate per le sole verifiche tensionali.

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B11 di 116

PILA			
		7.0	
altezza pila- estradosso fond/estradosso pulvin	по Нр	7.8	m
tipolgoia di sezione		circolare	
larghezza trasversale pila	b	0.000	m
larghezza longitudinale pila	d	0.000	m
raggio della sezione	R	1.75	m
area della sezione	A	9.621	m2
inerzia sezione direzione trasversale	I11	7.366	m4
inerzia sezione direzione longitudinale	I22	7.366	m4
calcestruzzo	fck	32	MPa
massa pulvino	mp	1395	kN
Pull land		1070	
PULVINO			
asse minore ellisse	a	5.48	m
asse maggiore ellisse	b	8	m
altezza pulvino	h	2	m
massa pulvino compresa del +10%	mp	2295	kN
FONDAZIONE			
asse minore ellisse	a	9.6	m
asse maggiore ellisse	b	9.6	m
altezza della fondazione	h	3	m
altezza terreno di ricoprimento	ht	1.5	m
area netta per calcolo ricoprimento	A	82.5	m3
peso di vulume del terreno	у	19	kN/3
			,, -
Ulteriori distanze e bracci			
distanza asse pila e appoggi per momento longi	itud. il	1.2	
interasse tra i binari (se singolo 0)	ib	4	m
dist. tra interasse del singolo binario e asse pila		2	m

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	12 di 116

4.2 Modelli di analisi e verifica

Le sollecitazioni di verifica della pila sono state determinate a partire dai valori delle risultanti delle azioni trasmesse dagli impalcati alla quota degli apparecchi di appoggio alle quali sono state combinate le azioni determinate dalle azioni date dalle forze di inerzia e dal peso proprio delle sottostrutture. Il modello della struttura è stato implementato in un foglio di calcolo appositamente realizzato per la valutazione delle azioni agenti sulle singole parti della struttura, quali fusto pila e plinto. Per l'analisi e la verifica del plinto di fondazione, si è utilizzato un modello, a seconda della geometria, di tirante-puntone o trave inflessa.

Per quanto riguarda invece le sollecitazioni sui pali di fondazione a partire dalle azioni risultanti nel baricentro del plinto alla quota di intradosso, sono stati calcolati, per ciascuna combinazione di carico, gli sforzi assiali e di taglio in testa ai pali di fondazione utilizzando il classico modello a piastra rigida.

4.3 Condizioni elementari e combinazioni di carico

Le verifiche di sicurezza strutturali e geotecniche sono state condotte utilizzando combinazioni di carico definite in ottemperanza alle NTC18, secondo quanto riportato nei paragrafi 2.5.3, 5.1.3.12. Di seguito sono mostrati i coefficienti parziali di sicurezza utilizzati allo SLU ed i coefficienti di combinazione adoperati per i carichi variabili nella progettazione delle strutture da ponte.

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1105004	В	13 di 116

2.5.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B14 di 116

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	$\gamma_{\rm G2}$	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	$\gamma_{\rm P}$	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

(7) 1,20 per effetti locali

Azioni		Ψo	Ψ1	Ψ 2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B15 di 116

	Azioni	Ψο	Ψ1	Ψ2
	Treno di carico LM 71	0,80(3)	(1)	0,0
Azioni	Treno di carico SW /0	0,80 ⁽³⁾	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)	•	1
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Nel seguito si riportano le azioni considerate ai fini della valutazione delle sollecitazioni agenti sulle sottostrutture e quindi, alle verifiche strutturali.

Nome Combinazione	G1	G2	Treno	Treno scarico	F_fre	F_cent	F_serp	F_att	Vento	E_long	E_tra	E_ver	ldra
A1_SLU_gr1_Treno_	1.35	1.5	1.45	0	0.725	1.45	1.45	0.9	0	0	0	0	1.5
A1 SLU gr2 Scarico	1.35	1.5	0	1.45	0	1.45	1.45	0.9	0	0	0	0	1.5
A1_SLU_gr3_Fre/avv_	1.35	1.5	1.45	0	1.45	0.725	0.725	0.9	0	0	0	0	1.5
A1_SLU_gr4_centrif_	1.35	1.5	1.16	0	1.16	1.16	1.16	0.9	0	0	0	0	1.5
A1_SLU_gr1+vento_	1.35	1.5	1.45	0	0.725	1.45	1.45	0.9	0.9	0	0	0	1.5
A1_SLU_gr2+vento_	1.35	1.5	0	1.45	0	1.45	1.45	0.9	0.9	0	0	0	1.5
A1_SLU_gr3+vento_	1.35	1.5	1.45	0	1.45	0.725	0.725	0.9	0.9	0	0	0	1.5
A1_SLU_gr4+vento_	1.35	1.5	1.16	0	1.16	1.16	1.16	0.9	0.9	0	0	0	1.5
A1_SLU_vento_gr1_	1.35	1.5	0	0	0	0	0	0	1.5	0	0	0	1.5
A1_SLU_vento_gr2_	1.35	1.5	0	0	0	0	0	0	1.5	0	0	0	1.5
A1_SLU_vento_gr3_	1.35	1.5	0	0	0	0	0	0	1.5	0	0	0	1.5
A1_SLU_vento_gr4_	1.35	1.5	0	0	0	0	0	0	1.5	0	0	0	1.5
A1_SLU_Scalz_gr1_	1.35	1.5	1.16	0	0.58	1.16	1.16	0.72	0	0	0	0	1.5
A1_SLU_Scalz_gr2_	1.35	1.5	0	1.16	0	1.16	1.16	0.72	0	0	0	0	1.5
A1_SLU_Scalz_gr3_	1.35	1.5	1.16	0	1.16	0.58	0.58	0.72	0	0	0	0	1.5
A1_SLU_Scalz_gr4_	1.35	1.5	1.16	0	1.16	1.16	1.16	0.9	0	0	0	0	1.5
SLE_rar_gr1_Treno_	1	1	1	0	0.5	1	1	0.6	0	0	0	0	1
SLE_rar_gr2_Scarico_	1	1	0	1	0	1	1	0.6	0	0	0	0	1
SLE_rar_gr3_Fre/avv_	1	1	1	0	1	0.5	0.5	0.6	0	0	0	0	1
SLE_rar_gr4_centrif_	1	1	0.8	0	0.8	0.8	0.8	0.6	0	0	0	0	1
SLE_rar_gr1+vento_	1	11	1	0	0.5	1	1	0.6	0.6	0	0	0	11
SLE_rar_gr2+vento_	1	1	0	1	0	1	1	0.6	0.6	0	0	0	1
SLE_rar_gr3+vento_	1	11	11	0	11	0.5	0.5	0.6	0.6	0	0	0	11
SLE_rar_gr4+vento_	1	1	0.8	0	0.8	0.8	0.8	0.6	0.6	0	0	0	1
SLE_rar_vento_gr1_	1	11	0	0	0	0	0	0	11	0	0	0	11
SLE_rar_vento_gr2_	1	1	0	0	0	0	0	0	1	0	0	0	1
SLE_rar_vento_gr3_	1	11	0	0	0	0	0	0	11	0	0	0	11
SLE_rar_vento_gr4_	1	1	0	0	0	0	0	0	1	0	0	0	1
SLE_fre_gr1_Treno_	1	11	0.8	0	0.4	0.8	0.8	0.4	0	0	0	0	11
SLE_fre_gr2_Scarico_	1	1	0	0.8	0	0.8	0.8	0.4	0	0	0	0	1
SLE_fre_gr3_Fre/avv_	1	11	0.8	0	0.8	0.4	0.4	0.4	0	0	0	0	1
SLE_fre_gr4_centrif_	1	1	0.8	0	0.8	0.8	0.8	0.5	0	0	0	0	1
SLE_fre_gr1+vento_	1	1	0.8	0	0.4	0.8	0.8	0.4	0.2	0	0	0	1
SLE_fre_gr2+vento_	1	1	0	0.8	0	0.8	0.8	0.4	0.2	0	0	0	1
SLE_fre_gr3+vento_	1	1	0.8	0	0.8	0.4	0.4	0.4	0.2	0	0	0	1
SLE_fre_gr4+vento_	1	1	0.8	0	0.8	0.8	0.8	0.5	0.2	0	0	0	1
SLE_fre_vento_gr1_	1	1	0	0	0	0	0	0.5	0.5	0	0	0	11
SLE_fre_vento_gr2_	1	1	0	0	0	0	0	0.5	0.5	0	0	0	1
SLE_fre_vento_gr3_	11	1	0	0	0	0	0	0.5	0.5	0	0	0	1
SLE_fre_vento_gr4_	1	1	0	0	0	0	0	0.5	0.5	0	0	0	1
SLE_fre_gr1_temp	11	1	0	0	0	0	0	0.6	0.2	0	0	0	1
SLE_fre_gr2_temp	1	1	0	0	0	0	0	0.6	0.2	0	0	0	1
SLE_fre_gr3_temp	11	1	0	0	0	0	0	0.6	0.2	0	0	0	1
SLE_fre_gr3_temp	1	1	0	0	0	0	0	0.6	0.2	0	0	0	1

⁽²⁾ Si usano gli stessi coefficienti ψ adottati per i carichi che provocano dette azioni.

⁽³⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1105004	В	16 di 116

Nome Combinazione	G1	G2	Treno	Treno scarico	F_fre	F_cent	F_serp	F_att	Vento	E_long	E_tra	E_ver	Idra
SLE_qp_gr1_Treno_	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr2_Scarico_	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr3_Fre/avv_	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr4_centrif_	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr1+vento_	1	1	0	0	0	0	0	0.5	0.2	0	0	0	1
SLE_qp_gr2+vento_	1	11	0	0	0	0	0	0.5	0.2	0	0	0	1
SLE_qp_gr3+vento_	1	1	0	0	0	0	0	0.5	0.2	0	0	0	1
SLE_qp_gr4+vento_	1	1	0	0	0	0	0	0.5	0.2	0	0	0	1
SLE_qp_vento_gr1_	1	1	0	0	0	0	0	0.5	0.2	0	0	0	1
SLE_qp_vento_gr2_	1	1	0	0	0	0	0	0.5	0.2	0	0	0	1
SLE_qp_vento_gr3_	1	1	0	0	0	0	0	0.5	0.2	0	0	0	1
SLE_qp_vento_gr4_	1	1	0	0	0	0	0	0.5	0.2	0	0	0	1
SLE_qp_gr1_temp	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr2_temp	1	11	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr3_temp	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr3_temp	1	1	0	0	0	0	0	0.5	0	0	0	0	1
E_103x_	1	1	0.2	0	0	0	0	0.5	0.2	1	0.3	0.3	1
E_103y_	1	1	0.2	0	0	0	0	0.5	0.2	0.3	1	0.3	1
E_103z_	1	1	0.2	0	0	0	0	0.5	0.2	0.3	0.3	1	1

Le combinazioni di carico sismiche che tengo conto della componente verticale negativa non vengono ripotate in quanto poco significative.

Gli scarichi agli appoggi, riportati nei paragrafi seguenti, fanno riferimento alla seguente terna di assi:

- asse X coincidente con l'asse trasversale del ponte;
- asse Y coincidente con l'asse longitudinale del ponte;
- asse Z coincidente con l'asse verticale del ponte;

Per quanto riguarda la risposta alle diverse componenti dell'azione sismica, poiché si è adottata un'analisi in campo lineare, essa può essere calcolata separatamente per ciascuna delle componenti. Gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc) sono combinate successivamente applicando l'espressione

$$1.00 \cdot Ex + 0.30 \cdot Ey + 0.30 \cdot Ez$$

con rotazione ed inversione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

4.4 Sistemi di riferimento ed unità di misura

- Asse X parallelo all'asse trasversale dell'impalcato
- Asse Y ortogonale all'asse longitudinale dell'impalcato
- Asse Z verticale

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	17 di 116

5. ANALISI DEI CARICHI

5.1 Peso proprio elementi strutturali

I pesi degli elementi strutturali sono calcolati utilizzando un peso di volume del calcestruzzo pari a $25~\rm kN/m^3$.

viadotto a binario		Singolo			
lato impalcato		SX		DX	
tipologia di impalcato		2TR		2TR	
luce impalcato		40	m	40	m
DATI DI INPUT FOGLIO VERIFICHE					
altezza cassoncino	h	1.8	m	1.8	m
spessore medio soletta	s	0.35	m	0.35	m
estradosso impalcato	Н	2.15	m	2.15	m
spessore ballast + rotaia	hb	0.88	m	0.88	m
altezza PF da estradosso trave	h2	1.225	m	1.225	m
lunghezza travata	L	40	m	40	m
luce appoggi travata	La	38	m	38	m
larghezza totale impalcato	В	9.7	m		
peso permanente strutturale	G1	4978	kN	4978	kN
peso permanenti non strutt	G2	4674	kN	4674	kN

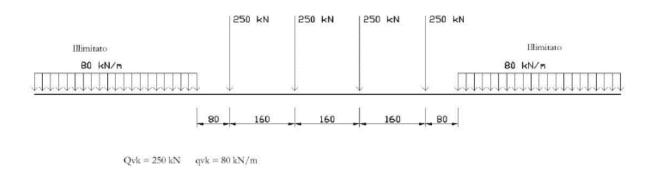
Altezze da intradosso del casson	cino					
baricentro del cassoncito		gc	0.76	m	0.76	m
area cassoncino		Ac	0.11	m2	0.11	m2
baricentro della soletta		gs	2.04	m	2.04	m
area soletta		As	1.88	m2	1.88	m2
baricentro sezione trave+soletta	(da intradosso trave)	Gb1	1.70	m	1.70	m
baricentro del ballast	(da intradosso trave)	Gb2	2.59	m	2.59	m
altezza piano del ferro	(da intradosso trave)	Н	3.025	m	3.025	m
baricentro treno	(da intradosso trave)	Gb3	4.825	m	4.825	m

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	18 di 116

5.2 Carichi strutturali trasmessi dall'impalcato

Si riportano di seguito gli scarichi agli appoggi dedotti dall'analisi dell'impalcato, per la campata sinistra e destra:


		N	Mlong
		KN	kN m
scarichi estradosso Pila - G1		4978	0
scarichi estradosso Pila - G2		4674	0
scarichi estradosso Fondazione	- G1	8565	0
scarichi estradotto Fondazione	- G2	4674	0
scarichi sui Pali - G1		17829	0
scarichi sui Pali - G2		4674	0

5.3 Carichi da traffico verticali

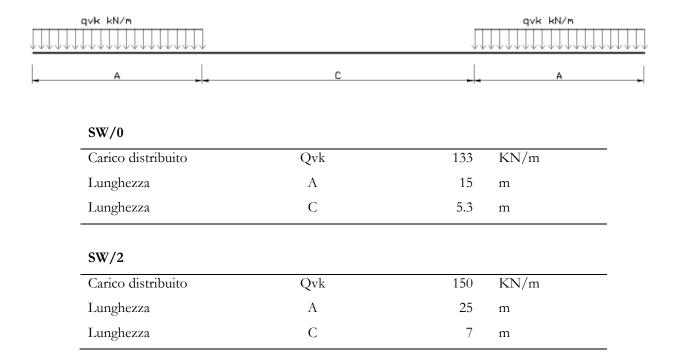
L'opera è stata progettata considerando le sollecitazioni dovute al carico da traffico ferroviario, considerando i modelli LM71 e/o SW/2. Si riportano di seguito le caratteristiche dei modelli di traffico presi in esame.

➤ Modello di carico LM71

Sia le istruzioni RFI che le NTC 2018 (par. 5.2.2.2.1.1), definiscono questo modello di carico tramite carichi concentrati e carichi distribuiti, riferiti all'asse dei binari.

Carichi concentrati: quattro assi da 250 kN disposti ad interasse di 1,60 m;

<u>Carico distribuito:</u> 80 kN/m in entrambe le direzioni, a partire da 0,8 m dagli assi d'estremità e per una lunghezza illimitata.


VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	19 di 116

Per questo modello di carico è prevista un'eccentricità del carico rispetto all'asse del binario.

➤ Modello di carico SW/2

Sia le istruzioni RFI che le NTC 2018 (par. 5.2.2.2.1.2), definiscono questo modello di carico tramite solo carichi distribuiti.

In questo modello di carico non è prevista alcuna eccentricità del carico ferroviario. Le azioni di entrambi i modelli dovranno essere moltiplicate per un coefficiente di adattamento definito dalla

seguente tabella (tab. 2.5.1.4.1.1 - RFI DTC SI PS MA IFS 001).

MODELLO DI CARICO	COEFFICIENTE " α "		
LM/71	1.10		
SW/0	1.10		
SW/2	1.00		

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	20 di 116

5.4 Effetti dinamici

Per la definizione del coefficiente dinamico si segue quanto contenuto nel par.5.2.2.2.3 del DM 17.1.2018 che per l'opera in esame riporta:

$$\Phi_3 = \frac{2.16}{\sqrt{L_{\Phi}} - 0.2} + 0.73 \quad con\ limitazione \quad 1.00 \le \Phi_3 \le 2.00$$

5.5 Disposizione treni di carico

La disposizione dei treni di carico è stata individuata per ottenere le seguenti massime sollecitazioni:

- <u>Sforzo Assiale</u>: il convoglio è localizzato sostanzialmente al di sopra della pila in esame
- Momento Longitudinale: il convoglio è localizzato sulla campata di luce maggiore, più o meno centrato a seconda dei rapporti di lunghezza del treno di carico e della campata.
- Momento Trasversale: è fornito dallo stesso schema di posizionamento del massimo sforzo

Da questi schemi si sono ottenute le seguenti caratteristiche di sollecitazione:

	N	Mlong	Mtrasv
	[kN]	[kN/m]	[kN/m]
COMBO N	4742	786	474
COMBO ML	2731	3278	273
COMBO MT	4742	786	474

Si riportano i medesimi schemi graficamente per un caso rappresentativo:

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1105004 B 21 di 116

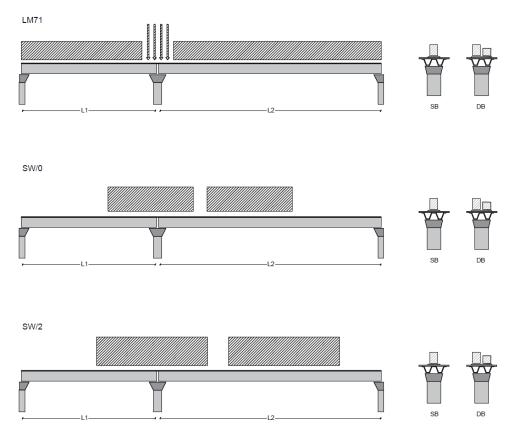


Figura 1- Posizione treni di carico - massimo sforzo assiale

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

FOGLIO

22 di 116

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.Relazione di calcolo Pile – P12RS3T30D09CLVI1105004B

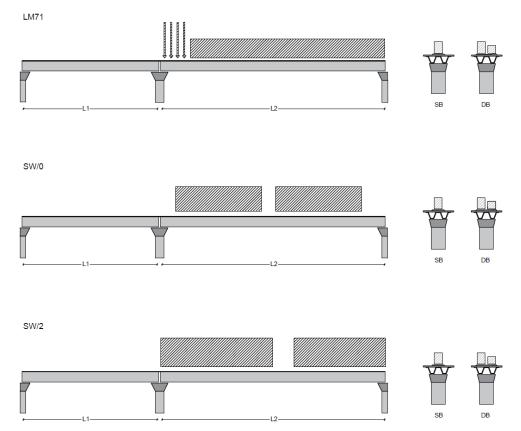


Figura 2- Posizione treni di carico – massimo momento longitudinale

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VII105004 B 23 di 116

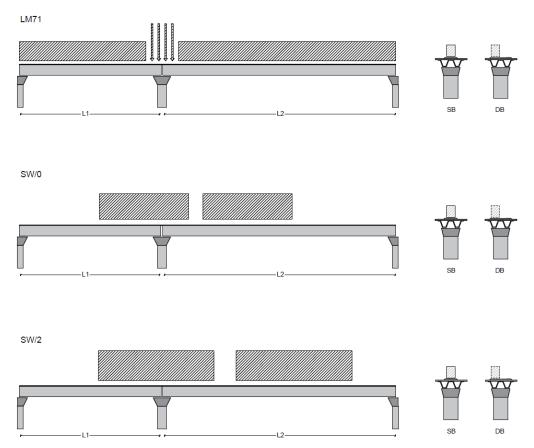


Figura 3- Posizione treni di carico – massimo momento trasversale

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	24 di 116

5.6 Carichi da traffico orizzontali

5.6.1 Forza centrifuga

raggio di curvatura			R	1000	m
velocità massima compatibil	e con il tracciato della linea		Vmax	160	km/h
				SX	
lunghezza di influenza della	parte curva del binario		Lf	38	m
fattore di riduzione funzione	della Lf e della V		f	0.801794	
LM71 e SW/0					
	e SW l'azione centrifuga si dov	rà determinare pa	rtendo dall	'espressione	generale a
	ontenuto della tabella 1.4.3.1-1	•		•	Ĭ
LM71 caso a				SX	
velocità massima			Vmax	120	
fattore di riduzion	e funzione della Lf e della V		f	1.00	
coefficiente di ada	ttamento		a	1.10	
valore caratteristic	o dei carichi verticali		Qvk	300.3	kN x asse
valore caratteristic	o dei carichi verticali		qvk	96.1	kN/m
valore caratteristic	o della forza centrifuga		Qtk	37.5	kN x asse
valore caratteristic	o della forza centrifuga		qtk	12.0	kN/m
LM71 caso b					
velocità massima o	compatibile con il tracciato della	linea	Vmax	160	
	e funzione della Lf e della V		f	0.80	
coefficiente di ada	ttamento		a	1.0	

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B25 di 116

	valore caratteristico dei carichi verticali	Qvk	273.0	kN x asse
	valore caratteristico dei carichi verticali	qvk	87.4	kN/m
	valore caratteristico della forza centrifuga	Qtk	44.1	kN x asse
	valore caratteristico della forza centrifuga	qtk	14.1	kN/m
SW/2				
Per quan	nto riguarda il modello di carico SW/2 si deve assumere: un	a velocità V non super	riore a 100	km/h,
un valor	e di f pari ad 1 ed il valore di α pari a 1,			
	velocità massima compatibile con il tracciato della linea	Vmax	100	
	fattore di riduzione funzione della Lf e della V	f	1.00	
	coefficiente di adattamento	a	1.00	
	valore caratteristico dei carichi verticali	qvk	163.82	kN/m
	valore caratteristico della forza centrifuga	qtk	12.90	kN/m

	Massima velocità della		Azione	e centrifu	ga basata su:	traffico verticale	
Valore di α	linea [Km/h]	v	α	f		associato	
orm/o	≥ 100	100	1	1	1 x 1 x SW/2		
SW/2	< 100	v	1	1	1 x 1 x SW/2	Φ x 1 x SW/2	
		v	1	f	1 x f x (LM71"+"SW/0)	Φ x 1 x 1 x (LM71"+"SW/0	
LM71 e SW/0	> 120	120	α	1	α x 1 x (LM71"+"SW/0)		
	≤ 120	v	α	1	α x 1 x (LM71"+"SW/0)	Φxαx1x (LM71"+"SW/0	

Tab. 2.5.1.4.3.1-1 - Parametri per determinazione della forza centrifuga

Riassumendo:

	Qtk sx	qtk sx	Qtk dx	qtk dx	F testa Pila	Mom Tras
	KN	KN/m	KN	KN/m	KN	KN/m
Fcen_SW/2_1	0	12.899385	0	12.8994	515.9754	2724.35

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	26 di 116
-						

5.6.2 Serpeggio

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario. Tale azione si applicherà sia in rettifilo che in curva.

viadotto a binario	Singolo		
combinazione treni	SW/2		
valore caratterstico della forza	Qsk	100	kN
coefficiente di adattamento	a	1	
coefficiente di adattamento			
Questa forza laterale deve essere sempre	combinata c	on i carich	i verticali
altezza baggioli e apparecchi d'appoggio		0.45	m
altezza impalcato + soletta		2.15	m
armamento		0.88	m
incremento altezza rotaia + alta		0.1	m
valore caratterstico della Forza	Fsk	100	kN
valore caratterstico Momento Tra	Msk	358	kN/m

Tale forza rappresenta l'azione complessiva in testa alla pila.

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSA
Relazione di calcolo Pile – P12COMMESSA
RS3TLOTTO
30CODIFICA
D09CLDOCUMENTO
VI1105004REV.
BFOGLIO
27 di 116

5.6.3 Frenatura ed avviamento

numero di binari		Singolo		
combinazione treni	SW/2			
posizionamento vincolo fissi	caso peggiore			
estradosso pulvino sommità binario	Н	0.45	m	
lunghezza del binario	L	40	m	

Le forze di frenatura e di avviamento agiscono sulla sommità del binario, nella direzione longitudinale dello stesso. Dette forze sono da considerarsi uniformemente distribuite su una lunghezza di binario L determinata per ottenere l'effetto più gravoso sull'elemento strutturale considerato.

FENATURA

LM/71					
coefficier	ite di adatt	amento	a	1.1	
lunghezza	a del binari	О	L	40	m
valore car	ratteristico	da della forza	Qla,k	880	kN
SW/0					
coefficiente di adattamento		a	1.1		
lunghezza del binario		L	35.3	m	
valore caratteristico da della forza		Qla,k	776.6	kN	
SW/2					
coefficiente di adattamento		a	1		
lunghezza	a del binari	О	L	33	
valore car	ratteristico	da della forza	Qla,k	1155	

AVVIAMENTO

LM/71				
valore caratteristico da della	forza	Qla,k	1000	kN
SW/0				
valore caratteristico da della forza		Qla,k	1000	kN
SW/2				
valore caratteristico da della	forza	Qla,k	1000	kN

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	K551	30		VI1105004	В	28 di 116

5.6.4 Forza d'attrito

Le forze parassitarie dei vincoli si esplicano in corrispondenza degli apparecchi d'appoggio mobili per traslazione relativa impalcato-apparecchi d'appoggio. Essendo funzione del carico verticale, la sua definizione è associata ai coefficienti moltiplicativi delle combinazioni γ e ψ dei carichi da peso proprio strutturali e non, e dei carichi verticali da traffico. Si riporta per questo motivo un esempio di forza d'attrito "caratteristica" solo come esempio di calcolo, in quanto il calcolo è stato eseguito a valle della combinazione di carico.

altezza baggioli e apparecchi d'appoggio	h	0.45	m
lunghezza del binario	L	40	m
reazione verticale massima associata ai carichi permanenti	Vg1	4978	kN
reazione verticale massima associata ai carichi permanenti	Vg2	4674	KN
reazione verticale massima associata ai carichi mobili	Vq	5406	kN
coefficiente d'attrito (da assum. In relazione alle cart. App.)	f	0.04	
forza d'attrito trasmessa alla pila	Fa	293.5	kN
momento longitudinale in testa pila	M	132.1	kN/m

5.6.5 Azione del Vento

Ricadendo nella classificazione ordinaria di ponti l'azione del vento è valutata come agente su una superficie continua, convenzionalmente alta 4m dal paino del ferro. Nel caso di ponte scarico si considera la superficie relativa alle barriere antirumore.

velocità di base di riferimento slm	Vbo	28	m/s
parametro di quota	ao	500	m
altitudine sul livello del mare	as	367	m
parametro adimensionale	ks	0.36	
coefficiente di altitudine	ca	1	
velocità di base di riferimento	Vb	28	m/s

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B29 di 116

termpo di ritorno azione del vento	Tr	112.5	anni
coefficiente di ritorno	cr	1.04562	
velocità di riferimento	Vr	29.2775	m/s
tab. 3.3.I	Zona	4	
tab.3.3.II	Categoria	II	
tab. 3.3.III	Classe rug	D	
fattore di terreno	Kr	0.19	
lunghezza di rugosità	zo	0.05	m
altezza minima	zmin	4	m
VENTO SULL'IMPALCATO			
ponte carico			
altezza pila	z 1	7.8	m
altezza baggioli e app. appoggio	z2	0.45	m
altezza all'intradosso	zintradosso	8.25	m
altezza di riferimento	z	12.375	m
coefficiente di topografia	ct	1	
coefficienfe di esposizione	ce	2.49	
densità dell'aria convenzionale	ro	1.25	kg/m3
pressione statica di riferimento	qr	535.732	
pressione statica di picco	qpicco	1333.59	n/m2
larghezza impalcato	d	9.7	m
altezza impalcato+soletta	z3	3.25	m
armamento	z4	0.88	m
altezza treno	z5a	4	m
altezza barriere	z5b	5	m
altezza di impatto treno o barriere	htot	8.25	m
	d/h	1.17576	
coefficiente di forza trasversale	cfx	2.07667	
forza trasversale	fx	22.8	
forza equivalente in testa pila	Fx	913.9	kN
momento trasv equivalente in testa pila	Mx	4181.1	kn/m

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B30 di 116

ponte scarico			
altezza di impatto treno o barriere	htot	8.13	m
rapporto geometrico	d/h	1.19311	
coefficiente di forza trasversale	cfx	2.07189	
forza trasversale	fx	22.5	
forza equivalente in testa pila	Fx	898.5	kN
momento trasv equivalente in testa pila	Mx	4056.9	kn/m
VENTO SULLA PILA			
direzione trasversale			
altezza di riferimento	z	7.8	m
coefficiente di topografia	ct	1	
coefficienfe di esposizione	ce	2.19669	
densità dell'aria convenzionale	ro	1.25	kg/m3
pressione statica di riferimento	qr	535.732	n/m2
pressione statica di picco	qpicco	1333.59	n/m2
		1.33359	Kpa
tipolgoia di sezione		circolare	
larghezza trasversale pila	b	0	m
larghezza longitudinale pila	d	0	m
raggio della sezione	R	1.75	m
rapporto geometrico	b/d	0.1	
rapporto geometrico	r/b	0.1	
coefficiente di forza trasversale sez. ret.	cf,0	2	
end-effect factor	ψλ	0.75	
viscosità cinematica dell'aria	ν	1.5E-05	m/s
numero di Reynolds	Re	8502698	111/ 3
materiale pila	IC	cls ruvido	
rugosità equivalente	k	1	mm
rapporto	k/b	0.00057	

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B31 di 116

	coefficiente di forza trasversale sez. circ.	cf, 0	0.90569	
	rapporto geometrico	l/b	2.22857	
	snellezza effettiva	λ	2.22857	
	rapporto di solidità	ф	1	
	end-effect factor	ψλ	0.6331	
	forza trasversale	f tras	0.8	
	forza equivalente in testa pila	F tras	6.0	kN
	alteza di applicatione sulla pila	h tra	4.7	m
direzione	e longitudinale			
	tipolgoia di sezione		circolare	
	larghezza trasversale pila	b	0	m
	larghezza longitudinale pila	d	0	m
	raggio della sezione	R	1.75	m
	rapporto geometrico	b/d	0.1	
	rapporto geometrico	r/b	0.1	
	coefficiente di forza longitu sez.ret	cf, 0	2	
	end-effect factor	ψλ	0.75	
	coefficiente di forza trasversale sez.circ.	cf, 0	0.90569	
	rapporto geometrico	l/b	2.22857	
	snellezza effettiva	λ	2.22857	
	rapporto di solidità	ф	1	
	end-effect factor	ψλ	0.6331	
	forza longitudinale	flon	0.76466	
	forza equivalente in testa pila	Flon	5.96438	kN
	alteza di applicatione sulla pila	h lon	4.68	m

5.7 Azione Sismica

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17 gennaio 2018 e relativa circolare applicativa.

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	32 di 116

5.7.1 Inquadramento Sismico

La determinazione della pericolosità sismica di base è definita a partire dall'ubicazione dell'opera e dalle sue caratteristiche progettuali come la vita nominale V_N e la classe d'uso C_u . Sulla base del MDP [4]. I parametri indentificativi dell'opera sono:

Vita Nominale	Classe d'Uso	Coeff. D'uso
75	III	1.5

La geo-localizzazione permette di ottenere le coordinate geografiche delle singole opere e individuare puntualmente la domanda sismica secondo gli spettri normativi rappresentativi delle due componenti (orizzontale e verticale), ovvero determinare i singoli parametri indipendenti di riferimento.

Figura 4 - Individuazione geografica della linea ferroviaria

I parametri indipendenti per le forme spettrali di riferimento hanno una variazione spaziale lungo la linea poco influente tuttavia, per le seguenti analisi si è fatto riferimento alle coordinate dei singoli viadotti.

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B33 di 116

Tabella 3 - Sezione tipo esistente in viadotto (rifare la tabella N,E, ag Tc* ..tutti i parametri sismici)

LOTTO 3A-B							
Viadotto Fer.	Binario	n° camp	L tot [m]	Rcurv. [m]	altitudine [m]	N [se]	E [se]
VI01	D	20	605	1188	416	37°43'18.70	13°40'18.19
VI02	D	8	215	1060	418	37°43'9.38	13°40'31.63
VI03	D	1	17	1300	434	37°43'3.15	13°41'14.35
VI04	D	32	800	inf	445	37°43'1.42	13°42'17.20
VI05-06	S	12	440	725	422	37°41'25.58	13°51'40.40
VI07	S	5	210	inf	410	37°41'14.75	13°52'13.14
VI08	S	26	780	725	385	37°40'20.84	13°52'59.62
VI09	S	6	150	733	382	37°40'0.09	13°53'10.68
VI10	S	19	575	1000	373	37°39'52.17	13°53'27.88
VI11	S	32	885	1000	367	37°39'29.61	13°53'47.03
VI12	S	39	1500	2950	343	37°37'42.58	13°54'0.85
VI13	S	3	100	inf	342	37°34'6.35	13°56'27.65
VI14	S	3	100	inf	340	37°33'57.11	13°56'38.61
VI15	S	16	650	inf	282	37°32'54.77	13°57'45.53
VI16	D	16	425	2500	300	37°32'12.39	13°58'38.40
VI17	S	46	1390	1050	317	37°32'8.62	13°59'56.29
VI18	S	9	250	inf	355	37°31'58.58	14° 1'21.91

5.7.2 Definizione della domanda sismica

Secondo le NTC2018 l'azione sismica viene considerata mediante spettri di risposta elastici in accelerazione. Sulla base dello studio geologico del 2019, i terreni in esame sono prevalentemente di tipo C e B, pianeggianti o leggermente acclivi, tali da ricadere nella categoria topografica T1. Risulta quindi possibile tracciare lo spettro di riferimento normativo.

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	34 di 116	

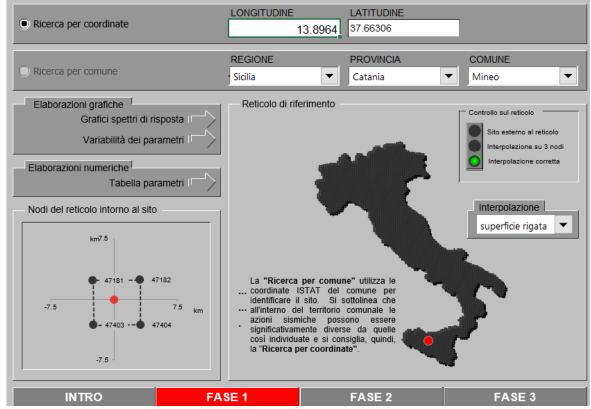
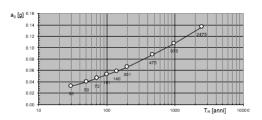
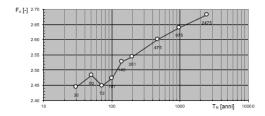
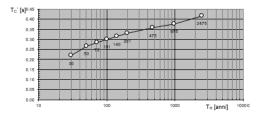


Figura 5 - Sito di riferimento secondo "Spettri_NTC"

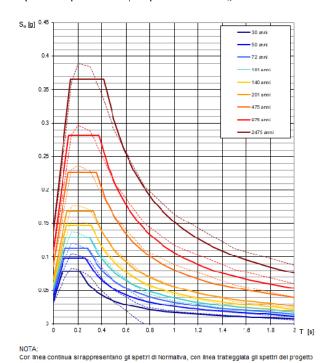
Progetto definitivo


Relazione di calcolo Pile – P12


DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO


VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1105004 B 35 di 116



La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

Spettri di risposta elastici per i periodi di ritorno T_R di riferimento

S1-NGV da cui sono derivati.

La verifica dell'idoreità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso

Figura 6 - Parametri di riferimento del sito secondo "Spettri_NTC"

Valori dei parametri ag, Fo, Tc* per i periodi di ritorno TR di riferimento

T _R	a _g	F _o	T _c *
[anni]	[g]	[-]	[s]
30	0.032	2.422	0.215
50	0.040	2.459	0.261
72	0.047	2.437	0.280
101	0.053	2.461	0.293
140	0.059	2.499	0.310
201	0.067	2.527	0.324
475	0.087	2.603	0.352
975	0.107	2.644	0.375
2475	0.136	2.710	0.409

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

Figura 7 - Tabella riassuntiva degli stati limite di riferimento del sito in esame

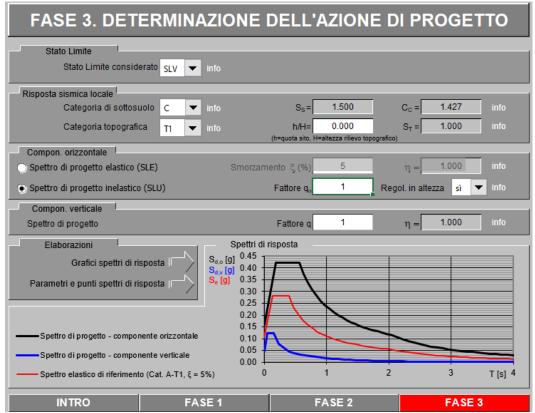
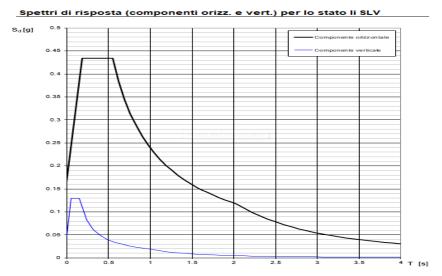



Figura 8 - Definizione della domanda sismica allo SLV

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

Figura 9 - Spettro in accelerazione SLV orizzontale e verticale

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	37 di 116

Parametri e punti dello spettro di risposta orizzontale per lo stato lir&LV

Parametri indipendenti	Punti dello	spettro (di rispost
STATOLIMITE SLV		T [s]	Se [g]
a_ 0.107 q	Г	0.000	0.160
F. 2.635	Tp.←	0.188	0.422
T _C 0.395 s	Tc◆	0.564	0.422
S ₅ 1.500		0.633	0.375
C _c 1.427		0.703	0.338
S _T 1.000	Г	0.773	0.308
q 1.000		0.842	0.282
		0.912	0.261
		0.982	0.242
Parametri dipendenti		1.051	0.226
S 1.500	Г	1.121	0.212
η 1.000	Г	1.191	0.200
T _B 0.188 x	Г	1.260	0.189
Tc 0.564 z	Γ	1.330	0.179
T _D 2.027 s	Γ	1.400	0.170
<u> </u>	Г	1.469	0.162
	Г	1.539	0.154
Espressioni dei parametri dipenden	ti	1.609	0.148
	Г	1.678	0.142
S=S,-S, (NTC-08E4	.3.2.5)	1.748	0.136
		1.818	0.131
$\eta = \sqrt{10/(5+\xi)} \ge 0.55$, $\eta = 1/q$ (NTC-08E4.3.2.6)	6; 5 . 3.2.3.5)	1.887	0.126
•		1.957	0.121
$T_n = T_C/3 (NTC-07E_4$	ı.3.2.8) To ∢	2.027	0.117
		2.121	0.107
$T_{c} = C_{c} \cdot T_{c}^{r}$ (NTC-07E4)	.3.2.7)	2.215	0.098
		2.309	0.090
$\Gamma_{\rm D} = 4.0 \cdot a_{\rm o}/g + 1.6$ (NTC-07E)	1.3.2.9)	2.403	0.083
		2.497	0.077
		2.590	0.072
Espressioni dello spettro di rispos!	ta (NTC-08E4.3.2.4)	2.684	0.067
_	_ [2.778	0.062
$0 \le T \le T_B$ $S_b(T) = a_{\mu} \cdot S \cdot \eta \cdot F_b \cdot \left[\frac{T}{T_b} + \frac{1}{\eta \cdot F} \left(1 - \frac{1}{T_b} \right) \right]$	T)	2.872	0.058
$A = 1 \times 18$ $A_{\nu}(1) = a_{\nu} \cdot 3 \cdot \eta \cdot r_{\nu} \cdot \frac{1}{T_{\nu}} + \frac{1}{\eta \cdot F_{\nu}} \cdot \frac{1}{T_{\nu}}$	<u>r</u> ,	2.966	0.055
[4 4 4 4	/_	3.060	0.051
$T_B \le T < T_C \mid S_c(T) = a_{\mu} \cdot S \cdot \eta \cdot F_c$	L	3.154	0.048
(T)		3.248	0.046
$T_C \le T < T_D$ $S_c(T) = a_{g_c} \cdot S \cdot \eta \cdot F_c \cdot \left(\frac{T_C}{T}\right)$		3.342	0.043
\ - /		3.436	0.041
(T _c T _D)		3.530	0.039
$S_D \le T$ $S_C(T) = a_{\chi} \cdot S \cdot \eta \cdot F_C \cdot \left(\frac{T_C T_D}{T^2}\right)$		3.624	0.037
(1	Г	3.718	0.035
aspottra di praqotta S _d (T) por lo vorificho aqli Stati Li:	mito Ultimi &	3.812	0.033

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dell

4.000

con 1/q, davo q è il fattaro distruttura. (NTC-08 § 3.2.3.5)

Figura 10 - Parametri indipendenti e dipendenti spettro orizzontale allo SLV

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1105004	В	38 di 116

5.7.3 Calcolo dell'azione Sismica

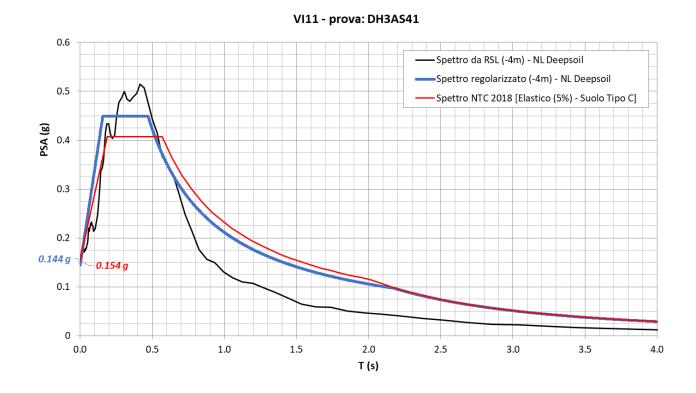
Per il calcolo delle azioni sismiche si utilizza una Analisi Statica Lineare, come riportata nel cap. 7.9.4.1 delle NTC 2018. Qualora le ipotesi non siano soddisfate, per il calcolo dei periodi propri della pila e quindi delle sollecitazioni sismiche, si è fatto riferimento ad una Analisi Dinamica Modale, attraverso la costruzione di un modello agli Elementi Finiti monodimensionali (Beam/Frame) mediante il software di calcolo Midas Civil. I Fattori di comportamento utilizzati sono:

- q= 1.5 per la verifica a presso flessione della pila;
- q= 1.5/1.1 per la verifica a capacità portante verticale dei pali, la presso-flessione e la verifica del plinto se non tozzo;
- q= 1 per le verifiche a taglio degli elementi strutturali e le verifiche a capacità portante orizzontale dei pali.

Nella scrittura delle combinazioni di carico si è distinta la posizione del convoglio per massimizzare le singole sollecitazioni (N,Mx,My,Tx,Ty), identificando tre configurazioni, ovvero tre masse statiche.

Nell'analisi sismica la massa partecipante riferita ai carichi da traffico è stata valutata in maniera distinta per le tre componenti del moto e successivamente messa in combinazione per le tre configurazioni statiche.

Relazione di calcolo Pile – P12


DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3T	30	D09CL	VI1105004	В	39 di 116	

5.7.4 Risposta sismica locale

Si riporta graficamente quanto desunto da apposite analisi di Risposta Sismica Locale, volte alla quantificazione degli effetti locali di sito e alle possibili criticità emergenti in termini di fenomeni di risonanza delle strutture.

In tale caso la RSL risulta essere più gravosa dell'analisi semplificata di Norma.

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	40 di 116

5.7.5 Check analisi statica

Direzione Longitudinale			
massa treno per direzione long	Com Nmax	5463	kN
massa sismica treno per direzione long	treno	1093	kN
		0	
massa impalcato (G1 + G2)	Mimp	9652	kN
massa sismica portata sopra pila	Mimp t	10745	kN
1/5 della massa sismica sopra la pila	1/5 Mimp t	2149	kN
massa pulvino	Mpul	2192	kN
massa pila	Mpila	1395	kN
massa efficace pila	Mpe	2657	kN
massa sismica totale da utilizzare dir. Long	Mtot long	13402	kN
verifica di requisito di norma Mep<1/5Mimp	, ,	NO per -50	08.1 KN
Direzione Trasversale			
massa treno per direzione long	Com Mmax	4742	kN
massa sismica treno per direzione long	treno	948	kN
massa sismica treno per unezione long	ticho	210	IXI
massa impalcato (G1 + G2)	Mimp	9652	kN
massa sismica portata sopra pila	Mimp t	10600	kN
	•		
massa pulvino	Mpul	2192	kN
massa pila	Mpila	1395	kN
massa efficace pila	Mpe	2657	kN
massa sismica totale da utilizzare dir. Trasv	Mtot tras	13257	kN
verifica di requisito di norma Mep<1/5Mimp		NO per -5.	36.9 KN
Direzione Verticale			
massa treno per direzione long	Com Mmax	4742	kN
massa sismica treno per direzione long	treno	948	kN
massa impalcato (G1 + G2)	Mimp	9652	kN
massa sismica portata sopra pila	Mimp t	10600	kN
	-		
massa pulvino	Mpul	2192	kN
massa pila	Mpila	1395	kN
massa efficace pila	Mpe	2657	kN
massa sismica totale da utilizzare dir. Vert	Mtot vert	13257	kN
verifica di requisito di norma Mep<1/5N	⁄limp	NO per -5.	36.9 KN

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	41 di 116

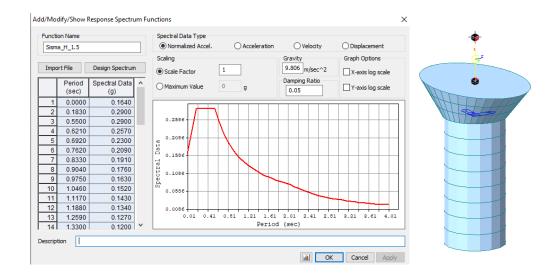
5.7.6 Analisi statica equivalente

area della sezione	A	9.62	m2
inerzia sezione direzione trasversale	I11	7.37	m4
inerzia sezione direzione longitudinale	I22	7.37	m4
modulo elastico cls pila	Ec	33346	MPa
eventuale abbattimento del modulo	%	45.00	
modulo di calcolo	E	18340	MPa
calcestruzzo	fck	32.0	MPa
altezza pila est. fondazione - estr. pulvino	Н	7.80	m
altezza plinto di fondazione	hf	0.00	m
altrezza baggioli ed app. appoggio	hap	0.45	m
altezza equovalente sdof	Не	8.25	m
rigidezza flessionale sdof in dir. Trasv	Ktra	3.1E+08	N/m
rigidezza flessionale sdof in dir. Long	Klong	7.2E+08	N/m
rigidezza assiale sdof in dir. Vert	Kvert	2.9E+10	N/m
periodo di vibrare sdof dir. Trasversale	Ttra	0.41	sec
periodo di vibrare sdof dir. Longitudinale	Tlong	0.27	sec
periodo di vibrare sdof dir. Verticale	Tvert	0.04	sec

	SLV			SLD	
Tabella Riassuntiva	q=1.5	q=1.36	q=1	q=1	
accelerazione componente trasversa	le 0.30	0.30	0.45	0.21	g
accelerazione componente longitudi	inale 0.30	0.30	0.45	0.21	g
accelerazione componente verticale	0.11	0.11	0.11	0.04	g
Sforzo assiale	1473	1473	1473	491	kN
Taglio Sism testa pila direz. trasvers	sale 3966	4362	5949	2798	kN
Taglio Sism testa pila direz. longitud	dinal 4009	4410	6013	2829	kN
Momento flessionale trasversale	43141	47455	64711	30439	kN m
Momento flessionale longitudinale	33168	36475	49704	23430	kN m

Progetto definitivo

Relazione di calcolo Pile – P12


DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1105004	В	42 di 116

5.7.7 Analisi dinamica modale

Nel caso specifico i periodi e quindi le forze alla base della pila sono stati valutati tramite una analisi spettrale. Le caratteristiche geometriche e meccaniche sono state definite coerentemente nei paragrafi precedenti. Le masse a diverse altezze sono associate alla tipologia di appoggio impalcato-pila, quindi differenti nelle due direzioni.

I risultati ottenuti sono i seguenti:

Load	N (kN)	Vtras (kN)	Vlong (kN)	Mtras (kN*m)	Mlong (kN*m)
SISMA q=1.5	1638.19	3545.26	3621.99	35181.04	26586.39
SISMA q=1	1638.19	5322.55	5438.42	52829.9	39923.84
SISMA sld	418.9	2501.33	2555.74	24826.56	18761.55

Si è proceduto con tali sollecitazioni.

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1105004 B 43 di 116

Progetto definitivo Relazione di calcolo Pile – P12

5.8 Azione Idrostatica

Secondo quanto prescritto nelle cap5.2.2.8 delle NTC2018 le azioni idrodinamiche devo essere considerate sia come pressione sulle parti immerse che come effetti di modificazioni locali dell'alveo. In riferimento alla relazione idraulica si richiamano in forma tabellare i dati di base per la progettazione e verifica strutturale.

6.3.12 Escavazioni localizzate viadotto VI11

Pila	Tirante Idraulico [m]	Velocità [m/s]	Incidenza plia- comente [*]	Forma plla	Base pila [m]	Lunghezza plia [m]	Forma plinto	Base plinto [m]	Lunghezza plinto [m]	d50 [mm]	Scavo [m]	Tipo di scavo
P01	0.00	0.00	31	circ	3.50	3.50	quad	11.50	11.50	0.0265	0.00	no scavo
P02	0.00	0.00	29	circ	3.50	3.50	quad	11.50	11.50	0.0265	0.00	no scavo
P03	0.39	0.06	52	circ	3.50	3.50	quad	11.50	11.50	0.0265	0.12	plinto non scoperto
P04	0.54	0.18	36	circ	3.50	3.50	quad	11.50	11.50	0.0265	0.44	plinto non scoperto
P05	0.57	0.37	15	circ	3.50	3.50	quad	11.50	11.50	0.0265	1.03	plinto non scoperto
P06	0.51	0.57	18	circ	3.50	3.50	quad	11.50	11.50	0.0265	2.77	plinto scoperto
P07	0.70	0.41	39	circ	3.50	3.50	quad	11.50	11.50	0.0265	1.25	plinto non scoperto
P08	0.88	0.42	27	circ	3.50	3.50	quad	11.50	11.50	0.0265	2.52	plinto scoperto
P09	1.08	0.65	15	circ	3.50	3.50	quad	11.50	11.50	0.0265	3.24	plinto scoperto
P10	1.17	0.90	20	circ	3.50	3.50	quad	11.50	11.50	0.0265	4.23	plinto scoperto
P11	1.17	1.07	14	circ	3.50	3.50	quad	11.50	11.50	0.0265	4.49	plinto scoperto
P12	1.38	1.19	14	circ	3.50	3.50	quad	11.50	11.50	0.0265	4.97	plinto scoperto
P13	2.07	2.03	8	circ	3.50	3.50	quad	11.50	11.50	0.0265	3.77	plinto non scoperto
P14	2.24	2.92	31	circ	3.50	3.50	quad	11.50	11.50	0.0265	10.16	plinto scoperto
P15	1.36	1.75	30	circ	3.50	3.50	quad	11.50	11.50	0.0265	7.10	plinto scoperto
P16	1.45	1.77	35	circ	3.50	3.50	quad	11.50	11.50	0.0265	7.34	plinto scoperto
P17	1.63	1.66	45	circ	3.50	3.50	quad	11.50	11.50	0.0265	7.30	plinto scoperto
P18	1.88	1.60	41	circ	3.50	3.50	quad	11.50	11.50	0.0265	7.19	plinto scoperto
P19	1.77	1.54	30	circ	3.50	3.50	quad	11.50	11.50	0.0265	6.76	plinto scoperto
P20	1.77	1.52	32	circ	3.50	3.50	quad	11.50	11.50	0.0265	6.67	plinto scoperto
P21	1.41	1.70	22	circ	3.50	3.50	quad	11.50	11.50	0.0265	6.71	plinto scoperto
P22	0.69	2.28	17	circ	3.50	3.50	quad	11.50	11.50	0.0265	7.30	plinto scoperto
P23	0.93	1.55	18	circ	3.50	3.50	quad	11.50	11.50	0.0265	5.89	plinto scoperto
P24	1.17	1.51	14	circ	3.50	3.50	quad	11.50	11.50	0.0265	5.74	plinto scoperto
P25	0.57	1.12	38	circ	3.50	3.50	quad	11.50	11.50	0.0265	4.83	plinto scoperto
P26	0.45	0.96	28	circ	3.50	3.50	quad	11.50	11.50	0.0265	4.07	plinto scoperto
P27	0.79	1.01	0	circ	3.50	3.50	quad	11.50	11.50	0.0265	3.59	plinto scoperto
P28	1.04	0.89	6	circ	3.50	3.50	quad	11.50	11.50	0.0265	3.64	plinto scoperto
P29	0.70	1.01	5	circ	3.50	3.50	quad	11.50	11.50	0.0265	3.73	plinto scoperto
P30	1.05	0.72	4	circ	3.50	3.50	quad	11.50	11.50	0.0265	3.14	plinto scoperto
P31	0.30	1.02	20	circ	3.50	3.50	quad	11.50	11.50	0.0265	3.85	plinto scoperto

Il livello medio annuo risulta essere di circa 5m pertanto si ritengono trascurabili gli effetti idrodinamici. Per quanto riguarda la pressione statica che esercita l'acqua può essere valutata con la seguente espressione:

$$p = \frac{1}{2} \rho C_D v^2$$

dove il coefficiente di forma varia tipicamente tra 0.5 e 1.5 ed è stato valutato secondo la seguente tabella:

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1105004	В	44 di 116

Forme	N.r Reynolds	Dimensioni	Coefficiente C
h v	>10 ³	$\frac{b}{h} = 1$ 10 ∞	1.16 1.20 1.50 1.90
	105	$\frac{L}{D} = \frac{1}{2} \\ \frac{5}{10} \\ \frac{20}{40} \\ \infty$	0.63 0.68 0.74 0.82 0.90 0.98 1.20
	>5×10 ⁵	$\frac{L}{D} = \frac{5}{\infty}$	0.35 0.34

Figura 11 - Coefficiente di forma (M.P. Pietrangeli - Progettazione e costruzione di ponti 1996)

Poiché l'azione è dipendente dal l'altezza idrica di progetto si riporta un esempio al passo e successivamente una tabella riassuntiva dell'azione caratteristica.

velocità dell'acqua	V	1.75	m/sec
densità dell'acqua	ro	1	kN sec2/m4
altezza di riinterro pila	hri	1.5	m
altezza della pila	hp	7.8	m
altezza idrica Tr 300	h300	1.36	m
scalzamento massimo Tr300) dl	7.1	m
tipolgoia di sezione		circolare	m
larghezza trasversale pila	b	0	m
larghezza longitudinale pila	d	0	m
raggio della sezione	r	1.75	m
rapporto geometrico	L/D	0.003143	m
viscosità cinamatica	mi	0.000894	N s/m2
numero di Reynodls	Re	6851230	
coefficiente di forma	Cd	0.35	*
* si utilizzano le formulazioni di F	Pietrangeli per pi	le ellittiche	

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

Progetto definitivoCOMMESSA
Relazione di calcolo Pile – P12COMMESSA
RS3TLOTTO
30CODIFICA
D09CLDOCUMENTO
VI1105004REV.
BFOGLIO
45 di 116

pressione dell'acqua	р	0.535938	kN/m2
forza risultante	Fidro	78.51599	kN
momento alla base pila	Mpila	-108.243	kN

tabella riassuntiva - Tr300			
	Fusto pila	Fondazioni	Pali
h	2.86	3	2.6
D	1.75	9.6	1.2
L/D	1.634	3.2	2.16666667
Re	3.43E+06	1.88E+07	2.35E+06
forma	smussara	rettangolare	circolare
Cd	0.35	1.18	0.35
р	0.5359375	1.806875	0.5359375
В	1.75	9.6	6
F	2.68	67.47	8.36
М	3.84	-101.21	-10.87

Secondo quanto prescritto nel capitolo 5.1.2.3 delle NTC18, le azioni caratteristiche idrostatiche devono essere combinate differentemente con le altre azioni variabili. Lo scalzamento ad esse associate, per tanto, dovrà essere valutato e verificato in entrambe le condizioni.

Nel caso specifico, l'effetto globale dell'azione idrostatica sui vari elementi strutturali risulta poco significativa. Quindi, tali combinazioni sono state implementate per la verifica geotecnica dei pali di fondazione, che vede una riduzione complessiva della sollecitazione ma anche della lunghezza portante del palo stesso.

6. SOLLECITAZIONI

Come precedentemente descritto si è valutata la posizione del singolo convoglio per massimizzare la sollecitazione d'interesse. Questo ha portato alla definizione di tre configurazioni per la progettazione e verifica del pulvino, del fusto pila, della fondazione e dei pali. Di seguito si riportano le tabelle di tutte le combinazioni di carico, funzione delle suddette configurazioni.

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	46 di 116

6.1 Combinazioni di carico

6.1.1 Configurazione 1

CARATTERISTICH	E SOLLE	CITAZIO	NI IN T	ESTA PI	LA
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_1	20607.5	837.375	1094.57	1517.02	4793.81
A1_SLU_gr2_Scarico_2	14282.3	0	866.866	0	4003.72
A1_SLU_gr3_Fre/avv_3	20607.5	1674.75	720.491	1893.84	2818.66
A1_SLU_gr4_centrif_4	19232.3	1339.8	895.432	1515.07	3843.95
A1_SLU_gr1+vento_5	20607.5	842.677	1773.74	1517.02	7465.7
A1_SLU_gr2+vento_6	14282.3	5.30172	1546.03	0	6675.6
A1_SLU_gr3+vento_7	20607.5	1680.05	1399.66	1893.84	5490.54
A1_SLU_gr4+vento_8	19232.3	1345.1	1574.6	1515.07	6515.83
A1_SLU_vento_gr1_9	19232.3	678.736	1968	1213.62	8270.36
A1_SLU_vento_gr2_10	14172.1	8.83619	1822.27	0	7654.69
A1_SLU_vento_gr3_11	19232.3	1348.64	1668.73	1515.07	6690.24
A1_SLU_vento_gr4_12	19232.3	1348.64	2027.38	1515.07	8297.08
SLE_rar_gr1_Treno_14	14394.2	577.5	695.699	1046.22	3279.45
SLE_rar_gr2_Scarico_15	10032	0	591.006	0	2758.11
SLE_rar_gr3_Fre/avv_16	14394.2	1155	437.711	1306.1	1917.27
SLE_rar_gr4_centrif_17	13445.8	924	569.741	1044.88	2629.49
SLE_rar_gr1+vento_18	14394.2	581.034	1148.48	1046.22	5060.7
SLE_rar_gr2+vento_19	10032	3.53448	1043.78	0	4539.37
SLE_rar_gr3+vento_20	14394.2	1158.53	890.49	1306.1	3698.53
SLE_rar_gr4+vento_21	13445.8	927.534	1022.52	1044.88	4410.74
SLE_rar_vento_gr1_22	13445.8	467.891	1292.98	836.977	5584.12
SLE_rar_vento_gr2_23	9956	5.8908	1225.98	0	5174.59
SLE_rar_vento_gr3_24	13445.8	929.891	1086.59	1044.88	4494.38
SLE_rar_vento_gr4_25	13445.8	929.891	1324.37	1044.88	5598.25

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B47 di 116

SLE_fre_gr1_Treno_27	13445.8	462	517.421	836.977	2605.95
SLE_fre_gr2_Scarico_28	9956	0	461.584	0	2201.44
SLE_fre_gr3_Fre/avv_29	13445.8	924	311.031	1044.88	1516.21
SLE_fre_gr4_centrif_30	13445.8	924	543.581	1044.88	2617.72
SLE_fre_gr1+vento_31	13445.8	463.178	668.347	836.977	3199.7
SLE_fre_gr2+vento_32	9956	1.17816	612.511	0	2795.19
SLE_fre_gr3+vento_33	13445.8	925.178	461.957	1044.88	2109.96
SLE_fre_gr4+vento_34	13445.8	925.178	694.507	1044.88	3211.47
SLE_fre_vento_gr1_35	9652	2.9454	432.241	0	1509.09
SLE_fre_vento_gr2_36	9652	2.9454	432.241	0	1509.09
SLE_fre_vento_gr3_37	9652	2.9454	432.241	0	1509.09
SLE_fre_vento_gr4_38	9652	2.9454	432.241	0	1509.09
SLE_fre_gr1_temp39	9652	1.17816	216.837	0	623.411
SLE_fre_gr2_temp40	9652	1.17816	216.837	0	623.411
SLE_fre_gr3_temp41	9652	1.17816	216.837	0	623.411
SLE_fre_gr3_temp42	9652	1.17816	216.837	0	623.411
SLE_qp_gr1_Treno_44	9652	0	54.9252	0	24.7163
SLE_qp_gr2_Scarico_45	9652	0	54.9252	0	24.7163
SLE_qp_gr3_Fre/avv_46	9652	0	54.9252	0	24.7163
SLE_qp_gr4_centrif_47	9652	0	54.9252	0	24.7163
SLE_qp_gr1+vento_48	9652	1.17816	205.852	0	618.468
SLE_qp_gr2+vento_49	9652	1.17816	205.852	0	618.468
SLE_qp_gr3+vento_50	9652	1.17816	205.852	0	618.468
SLE_qp_gr4+vento_51	9652	1.17816	205.852	0	618.468
SLE_qp_vento_gr1_52	9652	1.17816	205.852	0	618.468
SLE_qp_vento_gr2_53	9652	1.17816	205.852	0	618.468
SLE_qp_vento_gr3_54	9652	1.17816	205.852	0	618.468
SLE_qp_vento_gr4_55	9652	1.17816	205.852	0	618.468
SLE_qp_gr1_temp56	9652	0	54.9252	0	24.7163
SLE_qp_gr2_temp57	9652	0	54.9252	0	24.7163
SLE_qp_gr3_temp58	9652	0	54.9252	0	24.7163
SLE_qp_gr3_temp59	9652	0	54.9252	0	24.7163
obb_qp_sto_tempe>	7002		0 117202		2117100
E_103x_SLV_q=1.5_60	10143.5	3623.17	1269.43	0	0
E_103y_SLV_q=1.5_61	10143.5	1087.78	3751.11	0	0
E_103z_SLV_q=1.5_62	11290.2	1087.78	1269.43	0	0
	112,012	1007770	1207118		
E_103x_SLV_q=1.36_63	10143.5	3985.37	1375.79	0	0
E_103y_SLV_q=1.36_64	10143.5	1196.43	4105.64	0	0
E_103z_SLV_q=1.36_65	11290.2	1196.43	1375.79	0	0
	11270.2	1170.13	10,0.79		
E_103x_SLV_q=1_66	10143.5	5439.6	1802.62	0	0
E_103y_SLV_q=1_67	10143.5	1632.7	5528.4	0	0
E_103y_SLV_q=1_68	11290.2	1632.7	1802.62	0	0
	11270.2	1002.7	1002.02		
E_103x_SLD_q=1_69	9777.67	2556.92	956.251	0	0
E_103x_SLD_q=1_09 E_103y_SLD_q=1_70	9777.67	767.9	2707.18	0	0
E_103y_SLD_q=1_70 E_103z_SLD_q=1_71	10070.9	767.9	956.251	0	0
12_1032_0110_q=1_/1	100/0.7	101.7	750.231	U	U

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12 COMMESSA LOTTO
RS3T 30

CODIFICA **D09CL**

DOCUMENTO VI1105004

REV. FOGLIO **B** 48 di 116

CARATTERISTIC	CHE SOLI	LECITAZ	ZIONI BA	SE PILA	
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_1	25450.1	837.375	1094.57	8048.55	13331.5
A1_SLU_gr2_Scarico_2	19124.8	0	866.866	0	10765.3
A1_SLU_gr3_Fre/avv_3	25450.1	1674.75	720.491	14956.9	8438.49
A1_SLU_gr4_centrif_4	24074.8	1339.8	895.432	11965.5	10828.3
A1_SLU_gr1+vento_5	25450.1	842.677	1773.74	8089.9	21300.9
A1_SLU_gr2+vento_6	19124.8	5.30172	1546.03	41.3534	18734.7
A1_SLU_gr3+vento_7	25450.1	1680.05	1399.66	14998.2	16407.9
A1_SLU_gr4+vento_8	24074.8	1345.1	1574.6	12006.9	18797.7
A1_SLU_vento_gr1_9	24074.8	678.736	1968	6507.76	23620.8
A1_SLU_vento_gr2_10	19014.6	8.83619	1822.27	68.9223	21868.4
A1_SLU_vento_gr3_11	24074.8	1348.64	1668.73	12034.4	19706.4
A1_SLU_vento_gr4_12	24074.8	1348.64	2027.38	12034.4	24110.6
SLE_rar_gr1_Treno_14	17981.3	577.5	695.699	5550.72	8705.9
SLE_rar_gr2_Scarico_15	13619.1	0	591.006	0	7367.96
SLE_rar_gr3_Fre/avv_16	17981.3	1155	437.711	10315.1	5331.42
SLE_rar_gr4_centrif_17	17032.8	924	569.741	8252.08	7073.47
SLE_rar_gr1+vento_18	17981.3	581.034	1148.48	5578.29	14018.8
SLE_rar_gr2+vento_19	13619.1	3.53448	1043.78	27.5689	12680.9
SLE_rar_gr3+vento_20	17981.3	1158.53	890.49	10342.7	10644.4
SLE_rar_gr4+vento_21	17032.8	927.534	1022.52	8279.65	12386.4
SLE_rar_vento_gr1_22	17032.8	467.891	1292.98	4486.53	15669.4
SLE_rar_vento_gr2_23	13543.1	5.8908	1225.98	45.9482	14737.2
SLE_rar_vento_gr3_24	17032.8	929.891	1086.59	8298.03	12969.8
SLE_rar_vento_gr4_25	17032.8	929.891	1324.37	8298.03	15928.4
SLE_fre_gr1_Treno_27	17032.8	462	517.421	4440.58	6641.83
SLE_fre_gr2_Scarico_28	13543.1	0	461.584	0	5801.8
SLE_fre_gr3_Fre/avv_29	17032.8	924	311.031	8252.08	3942.25
SLE_fre_gr4_centrif_30	17032.8	924	543.581	8252.08	6857.65
SLE_fre_gr1+vento_31	17032.8	463.178	668.347	4449.77	8412.81
SLE_fre_gr2+vento_32	13543.1	1.17816	612.511	9.18964	7572.78
SLE_fre_gr3+vento_33	17032.8	925.178	461.957	8261.27	5713.22
SLE_fre_gr4+vento_34	17032.8	925.178	694.507	8261.27	8628.63
SLE_fre_vento_gr1_35	13239.1	2.9454	432.241	22.9741	4880.57

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1105004 B 49 di 116

SLE_fre_vento_gr3_37 SLE_fre_vento_gr4_38 SLE_fre_gr1_temp39 SLE_fre_gr2_temp40 SLE_fre_gr3_temp41	13239.1 13239.1 13239.1 13239.1 13239.1 13239.1	2.9454 2.9454 2.9454 1.17816	432.241 432.241 432.241 216.837	22.9741 22.9741 22.9741	4880.57 4880.57 4880.57
SLE_fre_vento_gr4_38 SLE_fre_gr1_temp39 SLE_fre_gr2_temp40 SLE_fre_gr3_temp41	13239.1 13239.1 13239.1	2.9454 1.17816	432.241	22.9741	4880.57
SLE_fre_gr1_temp39 SLE_fre_gr2_temp40 SLE_fre_gr3_temp41	13239.1 13239.1	1.17816			
SLE_fre_gr2_temp40 SLE_fre_gr3_temp41	13239.1		216.837	0.10074	
SLE_fre_gr3_temp41		4 4 7 0 4 4		9.18964	2314.74
9 1	13239 1	1.17816	216.837	9.18964	2314.74
SLE_fre_gr3_temp42	10-07-1	1.17816	216.837	9.18964	2314.74
	13239.1	1.17816	216.837	9.18964	2314.74
The state of the s					
SLE_qp_gr1_Treno_44	13239.1	0	54.9252	0	453.133
SLE_qp_gr2_Scarico_45	13239.1	0	54.9252	0	453.133
SLE_qp_gr3_Fre/avv_46	13239.1	0	54.9252	0	453.133
SLE_qp_gr4_centrif_47	13239.1	0	54.9252	0	453.133
SLE_qp_gr1+vento_48	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr2+vento_49	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr3+vento_50	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr4+vento_51	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_vento_gr1_52	13239.1	1.17816	205.852	9.18964	2224.11
	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_vento_gr3_54	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_vento_gr4_55	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr1_temp56	13239.1	0	54.9252	0	453.133
SLE_qp_gr2_temp57	13239.1	0	54.9252	0	453.133
SLE_qp_gr3_temp58	13239.1	0	54.9252	0	453.133
SLE_qp_gr3_temp59	13239.1	0	54.9252	0	453.133
E_103x_SLV_q=1.5_60	13730.5	3623.17	1269.43	26586.4	11172.8
E_103y_SLV_q=1.5_61	13730.5	1087.78	3751.11	7975.92	35799.5
	14877.3	1087.78	1269.43	7975.92	11172.8
E_103x_SLV_q=1.36_63	13730.5	3985.37	1375.79	29245	12228.2
_	13730.5	1196.43	4105.64	8773.51	39317.6
	14877.3	1196.43	1375.79	8773.51	12228.2
L_1032_3LV_q=1.30_03	170//.3	1170.43	13/3./3	0113.31	14440.4
E_103x_SLV_q=1_66	13730.5	5439.6	1802.62	39923.8	16467.4
*	13730.5	1632.7	5528.4	11977.2	53448.4
·	14877.3	1632.7	1802.62	11977.2	16467.4
	- 101710	1002.7	1002.02		
E_103x_SLD_q=1_69	13364.7	2556.92	956.251	18761.6	8066.44
•	13364.7	767.9	2707.18	5628.47	25445
E_103y_SLD_q=1_70	-UUU 101				

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12 COMMESSA LOTTO
RS3T 30

CODIFICA **D09CL**

DOCUMENTO VI1105004

REV. FOGLIO **B** 50 di 116

CARATTERISTICHE SOLLECITAZIONI BASE FONDAZIONE

	_				
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_1	37956.9	837.375	1094.57	10560.7	16615.2
A1_SLU_gr2_Scarico_2	31631.7	0	866.866	0	13365.9
A1_SLU_gr3_Fre/avv_3	37956.9	1674.75	720.491	19981.1	10600
A1_SLU_gr4_centrif_4	36581.7	1339.8	895.432	15984.9	13514.6
A1_SLU_gr1+vento_5	37956.9	842.677	1773.74	10617.9	26622.1
A1_SLU_gr2+vento_6	31631.7	5.30172	1546.03	57.2585	23372.8
A1_SLU_gr3+vento_7	37956.9	1680.05	1399.66	20038.4	20606.9
A1_SLU_gr4+vento_8	36581.7	1345.1	1574.6	16042.2	23521.5
A1_SLU_vento_gr1_9	36581.7	678.736	1968	8543.97	29524.8
A1_SLU_vento_gr2_10	31521.5	8.83619	1822.27	95.4309	27335.2
A1_SLU_vento_gr3_11	36581.7	1348.64	1668.73	16080.3	24712.6
A1_SLU_vento_gr4_12	36581.7	1348.64	2027.38	16080.3	30192.8
SLE_rar_gr1_Treno_14	27245.6	577.5	695.699	7283.22	10793
SLE_rar_gr2_Scarico_15	22883.4	0	591.006	0	9140.97
SLE_rar_gr3_Fre/avv_16	27245.6	1155	437.711	13780.1	6644.55
SLE_rar_gr4_centrif_17	26297.2	924	569.741	11024.1	8782.7
SLE_rar_gr1+vento_18	27245.6	581.034	1148.48	7321.39	17464.3
SLE_rar_gr2+vento_19	22883.4	3.53448	1043.78	38.1724	15812.2
SLE_rar_gr3+vento_20	27245.6	1158.53	890.49	13818.3	13315.8
SLE_rar_gr4+vento_21	26297.2	927.534	1022.52	11062.2	15454
SLE_rar_vento_gr1_22	26297.2	467.891	1292.98	5890.2	19548.3
SLE_rar_vento_gr2_23	22807.4	5.8908	1225.98	63.6206	18415.1
SLE_rar_vento_gr3_24	26297.2	929.891	1086.59	11087.7	16229.6
SLE_rar_vento_gr4_25	26297.2	929.891	1324.37	11087.7	19901.5
SLE_fre_gr1_Treno_27	26297.2	462	517.421	5826.58	8194.09
SLE_fre_gr2_Scarico_28	22807.4	0	461.584	0	7186.55
SLE_fre_gr3_Fre/avv_29	26297.2	924	311.031	11024.1	4875.34
SLE_fre_gr4_centrif_30	26297.2	924	543.581	11024.1	8488.39
SLE_fre_gr1+vento_31	26297.2	463.178	668.347	5839.3	10417.8
SLE_fre_gr2+vento_32	22807.4	1.17816	612.511	12.7241	9410.31
SLE_fre_gr3+vento_33	26297.2	925.178	461.957	11036.8	7099.09
SLE_fre_gr4+vento_34	26297.2	925.178	694.507	11036.8	10712.1
SLE_fre_vento_gr1_35	22503.4	2.9454	432.241	31.8103	6177.3
SLE_fre_vento_gr2_36	22503.4	2.9454	432.241	31.8103	6177.3
SDE_ne_vento_gi2_30	22303.1	2.7131	132.211	31.0103	0177.3

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

REV.

В

FOGLIO

51 di 116

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTORelazione di calcolo Pile – P12RS3T30D09CLVI1105004

SLE_fre_vento_gr4_38 22503.4 2.9454 432.241 31.8103 6177. SLE_fre_gr1_temp39 22503.4 1.17816 216.837 12.7241 2965.2 SLE_fre_gr2_temp40 22503.4 1.17816 216.837 12.7241 2965.2 SLE_fre_gr3_temp41 22503.4 1.17816 216.837 12.7241 2965.2 SLE_fre_gr3_temp42 22503.4 0.54.9252 0.617.90 SLE_qp_gr1_Treno_44 22503.4 0.54.9252 0.617.90 SLE_qp_gr2_Scarico_45 22503.4 0.54.9252 0.617.90 SLE_qp_gr4_centrif_47 22503.4 0.54.9252 0.617.90 SLE_qp_gr1+vento_48 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr2+vento_49 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr3+vento_50 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr4+vento_gr1_52 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr3_54 22503.4						
SLE_fre_gr1_temp39 22503.4 1.17816 216.837 12.7241 2965.2 SLE_fre_gr2_temp40 22503.4 1.17816 216.837 12.7241 2965.2 SLE_fre_gr3_temp41 22503.4 1.17816 216.837 12.7241 2965.2 SLE_fre_gr3_temp42 22503.4 1.17816 216.837 12.7241 2965.2 SLE_gp_gr1_Treno_44 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_Fre/avv_46 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_Fre/avv_46 22503.4 0 54.9252 0 617.90 SLE_qp_gr1+vento_48 22503.4 0 54.9252 0 617.90 SLE_qp_gr1+vento_49 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr3+vento_50 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr4+vento_gr1_52 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr4_53 22503.4 1.17816	SLE_fre_vento_gr3_37	22503.4	2.9454	432.241	31.8103	6177.3
SLE_fre_gr2_temp40 22503.4 1.17816 216.837 12.7241 2965.2 SLE_fre_gr3_temp41 22503.4 1.17816 216.837 12.7241 2965.2 SLE_fre_gr3_temp42 22503.4 1.17816 216.837 12.7241 2965.2 SLE_gp_gr1_Treno_44 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_Fre/avv_46 22503.4 0 54.9252 0 617.90 SLE_qp_gr4_ventrif_47 22503.4 0 54.9252 0 617.90 SLE_qp_gr1+vento_48 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr3+vento_50 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr3+vento_51 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr3+vento_51 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr4+vento_gr1_52 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr2_53 22503.4 1.17816	SLE_fre_vento_gr4_38	22503.4	2.9454	432.241	31.8103	6177.3
SLE_fre_gr3_temp41 22503.4 1.17816 216.837 12.7241 2965.2 SLE_fre_gr3_temp42 22503.4 1.17816 216.837 12.7241 2965.2 SLE_qp_gr1_Treno_44 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_Fre/avv_46 22503.4 0 54.9252 0 617.90 SLE_qp_gr1+vento_48 22503.4 0 54.9252 0 617.90 SLE_qp_gr1+vento_48 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr2+vento_49 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr3+vento_50 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr4+vento_51 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr1_52 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr3_54 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr1_temp56 22503.4 1.17816	SLE_fre_gr1_temp39	22503.4	1.17816	216.837	12.7241	2965.25
SLE_fre_gr3_temp42 22503.4 1.17816 216.837 12.7241 2965.2 SLE_qp_gr1_Treno_44 22503.4 0 54.9252 0 617.90 SLE_qp_gr2_Scarico_45 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_Fre/avv_46 22503.4 0 54.9252 0 617.90 SLE_qp_gr4_centrif_47 22503.4 0 54.9252 0 617.90 SLE_qp_gr1+vento_48 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr3+vento_49 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr3+vento_50 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr4+vento_51 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr1_52 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr2_53 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr1_temp56 22503.4 1.17816 2	SLE_fre_gr2_temp40	22503.4	1.17816	216.837	12.7241	2965.25
SLE_qp_gr1_Treno_44	SLE_fre_gr3_temp41	22503.4	1.17816	216.837	12.7241	2965.25
SLE_qp_gr2_Scarico_45 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_Fre/avv_46 22503.4 0 54.9252 0 617.90 SLE_qp_gr4_centrif_47 22503.4 0 54.9252 0 617.90 SLE_qp_gr1+vento_48 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr2+vento_49 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr3+vento_50 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr3+vento_51 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_yento_gr1_52 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr2_53 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr3_54 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr1_temp56 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp58 22503.4 0 54.9252<	SLE_fre_gr3_temp42	22503.4	1.17816	216.837	12.7241	2965.25
SLE_qp_gr2_Scarico_45 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_Fre/avv_46 22503.4 0 54.9252 0 617.90 SLE_qp_gr4_centrif_47 22503.4 0 54.9252 0 617.90 SLE_qp_gr1+vento_48 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr2+vento_49 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr3+vento_50 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr3+vento_51 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_yento_gr1_52 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr2_53 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr3_54 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr1_temp56 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp58 22503.4 0 54.9252<						
SLE_qp_gr3_Fre/avv_46 22503.4 0 54.9252 0 617.90 SLE_qp_gr4_centrif_47 22503.4 0 54.9252 0 617.90 SLE_qp_gr1+vento_48 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr2+vento_49 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr4+vento_50 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr4+vento_51 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr1_52 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr2_53 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr3_54 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_yer1_temp56 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr1_temp56 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp58 22503.4 0 <th< td=""><td>SLE_qp_gr1_Treno_44</td><td>22503.4</td><td>0</td><td>54.9252</td><td>0</td><td>617.909</td></th<>	SLE_qp_gr1_Treno_44	22503.4	0	54.9252	0	617.909
SLE_qp_gr4_centrif_47 22503.4 0 54.9252 0 617.90 SLE_qp_gr1+vento_48 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr2+vento_49 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr3+vento_50 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr4+vento_51 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr1_52 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr2_53 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr3_54 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr3_54 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_yento_gr3_54 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr1_temp56 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp58 22503.4 0	SLE_qp_gr2_Scarico_45	22503.4	0	54.9252	0	617.909
SLE_qp_gr1+vento_48 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr2+vento_49 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr3+vento_50 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr4+vento_51 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr1_52 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr2_53 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr2_53 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr2_54 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_yento_gr4_55 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr1_temp56 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp57 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp58 22503.4 0	SLE_qp_gr3_Fre/avv_46	22503.4	0	54.9252	0	617.909
SLE_qp_gr2+vento_49 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr3+vento_50 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr4+vento_51 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr1_52 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr2_53 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr3_54 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr4_55 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr1_temp56 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp57 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp58 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp59 22503.4 0 54.9252 0 617.90 E_103x_SLV_q=1.5_61 23125.6 2084.82 4050.22 14230.4 47950. E_103x_SLV_q=1.36_63 23125.6	SLE_qp_gr4_centrif_47	22503.4	0	54.9252	0	617.909
SLE_qp_gr3+vento_50 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr4+vento_51 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr1_52 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr2_53 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr3_54 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr3_54 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr3_54 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr4_55 22503.4 0 54.9252 0 617.90 SLE_qp_gr1_temp56 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp57 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp59 22503.4 0 54.9252 0 617.90 E_103x_SLV_q=1.5_61 23125.6 2084.82 4050.22 <td>SLE_qp_gr1+vento_48</td> <td>22503.4</td> <td>1.17816</td> <td>205.852</td> <td>12.7241</td> <td>2841.66</td>	SLE_qp_gr1+vento_48	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_gr4+vento_51 SLE_qp_vento_gr1_52 SLE_qp_vento_gr2_53 SLE_qp_vento_gr3_54 SLE_qp_vento_gr3_54 SLE_qp_vento_gr3_54 SLE_qp_vento_gr4_55 SLE_qp_vento_gr4_55 SLE_qp_vento_gr4_55 SLE_qp_vento_gr4_55 SLE_qp_gr1_temp56 SLE_qp_gr1_temp56 SLE_qp_gr3_temp57 SLE_qp_gr3_temp58 SLE_qp_gr3_temp59 SLE_qp_gr3_temp59 SLE_qp_gr3_temp59 E_103x_SLV_q=1.5_60 E_103z_SLV_q=1.5_62 SLE_103z_SLV_q=1.36_63 E_103z_SLV_q=1.36_63 E_103z_SLV_q=1.36_64 SLE_103z_SLV_q=1.36_65 SLE_103z_SLV_q=1.36_65 SLE_103z_SLV_q=1.66 SLE_103z_SLV_q=1.66	SLE_qp_gr2+vento_49	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_vento_gr1_52 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr2_53 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr3_54 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr4_55 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr1_temp56 22503.4 0 54.9252 0 617.90 SLE_qp_gr2_temp57 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp58 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp59 22503.4 0 54.9252 0 617.90 E_103x_SLV_q=1.5_60 23125.6 4620.21 1568.54 40447 15878. E_103z_SLV_q=1.5_62 24577.3 2084.82 4050.22 14230.4 47950. E_103x_SLV_q=1.36_63 23125.6 4982.41 1674.9 44192.3 17252. E_103z_SLV_q=1.36_65 24577.3 2193.48 4404.75 15353.9 52531. E_103x_SLV_q=1_66 23125.6	SLE_qp_gr3+vento_50	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_vento_gr2_53 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr3_54 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr4_55 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr1_temp56 22503.4 0 54.9252 0 617.90 SLE_qp_gr2_temp57 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp58 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp59 22503.4 0 54.9252 0 617.90 E_103x_SLV_q=1.5_60 23125.6 4620.21 1568.54 40447 15878. E_103z_SLV_q=1.5_61 23125.6 2084.82 4050.22 14230.4 47950. E_103z_SLV_q=1.36_63 23125.6 4982.41 1674.9 44192.3 17252. E_103z_SLV_q=1.36_64 23125.6 2193.48 4404.75 15353.9 52531. E_103z_SLV_q=1.36_65 24577.3 2193.48 1674.9 15353.9 17252. E_103z_SLV_q=1_66 23125.6	SLE_qp_gr4+vento_51	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_vento_gr3_54 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_vento_gr4_55 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr1_temp56 22503.4 0 54.9252 0 617.90 SLE_qp_gr2_temp57 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp58 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp59 22503.4 0 54.9252 0 617.90 E_103x_SLV_q=1.5_60 23125.6 4620.21 1568.54 40447 15878. E_103z_SLV_q=1.5_61 23125.6 2084.82 4050.22 14230.4 47950. E_103z_SLV_q=1.36_63 23125.6 4982.41 1674.9 44192.3 17252. E_103z_SLV_q=1.36_64 23125.6 2193.48 4404.75 15353.9 52531. E_103z_SLV_q=1.36_65 24577.3 2193.48 1674.9 15353.9 17252. E_103y_SLV_q=1_66 23125.6 6436.64 2101.73 59233.8 22772. E_103y_SLV_q=1_67 23125.6 66	SLE_qp_vento_gr1_52	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_vento_gr4_55 22503.4 1.17816 205.852 12.7241 2841.6 SLE_qp_gr1_temp56 22503.4 0 54.9252 0 617.90 SLE_qp_gr2_temp57 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp58 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp59 22503.4 0 54.9252 0 617.90 E_103x_SLV_q=1.5_60 23125.6 4620.21 1568.54 40447 15878. E_103y_SLV_q=1.5_61 23125.6 2084.82 4050.22 14230.4 47950. E_103z_SLV_q=1.36_63 23125.6 4982.41 1674.9 44192.3 17252. E_103z_SLV_q=1.36_64 23125.6 2193.48 4404.75 15353.9 52531. E_103z_SLV_q=1.36_65 24577.3 2193.48 1674.9 15353.9 17252. E_103x_SLV_q=1.66 23125.6 6436.64 2101.73 59233.8 22772. E_103y_SLV_q=1_67 23125.6 2629.75 5827.51	SLE_qp_vento_gr2_53	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_gr1_temp56 22503.4 0 54.9252 0 617.90 SLE_qp_gr2_temp57 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp58 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp59 22503.4 0 54.9252 0 617.90 E_103x_SLV_q=1.5_60 23125.6 4620.21 1568.54 40447 15878. E_103y_SLV_q=1.5_61 23125.6 2084.82 4050.22 14230.4 47950. E_103x_SLV_q=1.5_62 24577.3 2084.82 1568.54 14230.4 15878. E_103x_SLV_q=1.36_63 23125.6 4982.41 1674.9 44192.3 17252. E_103z_SLV_q=1.36_64 23125.6 2193.48 4404.75 15353.9 52531. E_103z_SLV_q=1.36_65 24577.3 2193.48 1674.9 15353.9 17252. E_103x_SLV_q=1_66 23125.6 6436.64 2101.73 59233.8 22772. E_103y_SLV_q=1_67 23125.6 2629.75 5827.51 19866.4 70930.	SLE_qp_vento_gr3_54	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_gr2_temp57 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp58 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp59 22503.4 0 54.9252 0 617.90 E_103x_SLV_q=1.5_60 23125.6 4620.21 1568.54 40447 15878. E_103y_SLV_q=1.5_61 23125.6 2084.82 4050.22 14230.4 47950. E_103z_SLV_q=1.5_62 24577.3 2084.82 1568.54 14230.4 15878. E_103y_SLV_q=1.36_63 23125.6 4982.41 1674.9 44192.3 17252. E_103y_SLV_q=1.36_64 23125.6 2193.48 4404.75 15353.9 52531. E_103x_SLV_q=1.36_65 24577.3 2193.48 1674.9 15353.9 17252. E_103x_SLV_q=1_66 23125.6 6436.64 2101.73 59233.8 22772. E_103y_SLV_q=1_67 23125.6 2629.75 5827.51 19866.4 70930.	SLE_qp_vento_gr4_55	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_gr3_temp58 22503.4 0 54.9252 0 617.90 SLE_qp_gr3_temp59 22503.4 0 54.9252 0 617.90 E_103x_SLV_q=1.5_60 23125.6 4620.21 1568.54 40447 15878. E_103y_SLV_q=1.5_61 23125.6 2084.82 4050.22 14230.4 47950. E_103z_SLV_q=1.5_62 24577.3 2084.82 1568.54 14230.4 15878. E_103y_SLV_q=1.36_63 23125.6 4982.41 1674.9 44192.3 17252. E_103z_SLV_q=1.36_64 23125.6 2193.48 4404.75 15353.9 52531. E_103z_SLV_q=1.36_65 24577.3 2193.48 1674.9 15353.9 17252. E_103y_SLV_q=1_66 23125.6 6436.64 2101.73 59233.8 22772. E_103y_SLV_q=1_67 23125.6 2629.75 5827.51 19866.4 70930.	SLE_qp_gr1_temp56	22503.4	0	54.9252	0	617.909
SLE_qp_gr3_temp59 22503.4 0 54.9252 0 617.90 E_103x_SLV_q=1.5_60 23125.6 4620.21 1568.54 40447 15878.5 E_103y_SLV_q=1.5_61 23125.6 2084.82 4050.22 14230.4 47950.5 E_103z_SLV_q=1.5_62 24577.3 2084.82 1568.54 14230.4 15878.5 E_103y_SLV_q=1.36_63 23125.6 4982.41 1674.9 44192.3 17252.5 E_103z_SLV_q=1.36_64 23125.6 2193.48 4404.75 15353.9 52531.5 E_103z_SLV_q=1.36_65 24577.3 2193.48 1674.9 15353.9 17252.5 E_103x_SLV_q=1_66 23125.6 6436.64 2101.73 59233.8 22772.5 E_103y_SLV_q=1_67 23125.6 2629.75 5827.51 19866.4 70930.5	SLE_qp_gr2_temp57	22503.4	0	54.9252	0	617.909
E_103x_SLV_q=1.5_60	SLE_qp_gr3_temp58	22503.4	0	54.9252	0	617.909
E_103y_SLV_q=1.5_61 23125.6 2084.82 4050.22 14230.4 47950.2 E_103z_SLV_q=1.5_62 24577.3 2084.82 1568.54 14230.4 15878.2 E_103x_SLV_q=1.36_63 23125.6 4982.41 1674.9 44192.3 17252.2 E_103y_SLV_q=1.36_64 23125.6 2193.48 4404.75 15353.9 52531.2 E_103z_SLV_q=1.36_65 24577.3 2193.48 1674.9 15353.9 17252.2 E_103y_SLV_q=1_66 23125.6 6436.64 2101.73 59233.8 22772.2 E_103y_SLV_q=1_67 23125.6 2629.75 5827.51 19866.4 70930.2	SLE_qp_gr3_temp59	22503.4	0	54.9252	0	617.909
E_103y_SLV_q=1.5_61 23125.6 2084.82 4050.22 14230.4 47950.2 E_103z_SLV_q=1.5_62 24577.3 2084.82 1568.54 14230.4 15878.2 E_103x_SLV_q=1.36_63 23125.6 4982.41 1674.9 44192.3 17252.2 E_103y_SLV_q=1.36_64 23125.6 2193.48 4404.75 15353.9 52531.2 E_103z_SLV_q=1.36_65 24577.3 2193.48 1674.9 15353.9 17252.2 E_103y_SLV_q=1_66 23125.6 6436.64 2101.73 59233.8 22772.2 E_103y_SLV_q=1_67 23125.6 2629.75 5827.51 19866.4 70930.2						
E_103z_SLV_q=1.5_62 24577.3 2084.82 1568.54 14230.4 15878. E_103x_SLV_q=1.36_63 23125.6 4982.41 1674.9 44192.3 17252. E_103y_SLV_q=1.36_64 23125.6 2193.48 4404.75 15353.9 52531. E_103z_SLV_q=1.36_65 24577.3 2193.48 1674.9 15353.9 17252. E_103x_SLV_q=1_66 23125.6 6436.64 2101.73 59233.8 22772. E_103y_SLV_q=1_67 23125.6 2629.75 5827.51 19866.4 70930.	E_103x_SLV_q=1.5_60	23125.6	4620.21	1568.54	40447	15878.4
E_103x_SLV_q=1.36_63 23125.6 4982.41 1674.9 44192.3 17252. E_103y_SLV_q=1.36_64 23125.6 2193.48 4404.75 15353.9 52531. E_103z_SLV_q=1.36_65 24577.3 2193.48 1674.9 15353.9 17252. E_103x_SLV_q=1_66 23125.6 6436.64 2101.73 59233.8 22772. E_103y_SLV_q=1_67 23125.6 2629.75 5827.51 19866.4 70930.	E_103y_SLV_q=1.5_61	23125.6	2084.82	4050.22	14230.4	47950.2
E_103y_SLV_q=1.36_64 23125.6 2193.48 4404.75 15353.9 52531.2 E_103z_SLV_q=1.36_65 24577.3 2193.48 1674.9 15353.9 17252.2 E_103x_SLV_q=1_66 23125.6 6436.64 2101.73 59233.8 22772.2 E_103y_SLV_q=1_67 23125.6 2629.75 5827.51 19866.4 70930.2	E_103z_SLV_q=1.5_62	24577.3	2084.82	1568.54	14230.4	15878.4
E_103y_SLV_q=1.36_64 23125.6 2193.48 4404.75 15353.9 52531.2 E_103z_SLV_q=1.36_65 24577.3 2193.48 1674.9 15353.9 17252.2 E_103x_SLV_q=1_66 23125.6 6436.64 2101.73 59233.8 22772.2 E_103y_SLV_q=1_67 23125.6 2629.75 5827.51 19866.4 70930.2						
E_103z_SLV_q=1.36_65 24577.3 2193.48 1674.9 15353.9 17252. E_103x_SLV_q=1_66 23125.6 6436.64 2101.73 59233.8 22772. E_103y_SLV_q=1_67 23125.6 2629.75 5827.51 19866.4 70930.	E_103x_SLV_q=1.36_63	23125.6	4982.41	1674.9	44192.3	17252.9
E_103x_SLV_q=1_66	E_103y_SLV_q=1.36_64	23125.6	2193.48	4404.75	15353.9	52531.9
E_103y_SLV_q=1_67	E_103z_SLV_q=1.36_65	24577.3	2193.48	1674.9	15353.9	17252.9
E_103y_SLV_q=1_67						
	E_103x_SLV_q=1_66	23125.6	6436.64	2101.73	59233.8	22772.6
E_103z_SLV_q=1_68	E_103y_SLV_q=1_67	23125.6	2629.75	5827.51	19866.4	70930.9
	E_103z_SLV_q=1_68	24577.3	2629.75	2101.73	19866.4	22772.6
E_103x_SLD_q=1_69	E_103x_SLD_q=1_69	22675	3053.57	1105.25	27922.3	11382.2
E_103y_SLD_q=1_70	E_103y_SLD_q=1_70	22675	1264.55	2856.18	9422.12	34013.6
E 102 SID1 71 0207F F 1004 FF 1105 OF 0400 10 11000	E_103z_SLD_q=1_71	23075.5	1264.55	1105.25	9422.12	11382.2

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1105004	В	52 di 116

6.1.2 Configurazione2

CARATTERISTICHE SOLLECITAZIONI IN TESTA PILA							
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv		
A1_SLU_gr1_Treno_72	17691.7	837.375	989.605	5129.32	4455		
A1_SLU_gr2_Scarico_73	14282.3	0	866.866	0	4003.72		
A1_SLU_gr3_Fre/avv_74	17691.7	1674.75	615.523	5506.14	2479.84		
A1_SLU_gr4_centrif_75	16899.6	1339.8	811.457	4404.91	3572.9		
A1_SLU_gr1+vento_76	17691.7	842.677	1668.77	5129.32	7126.88		
A1_SLU_gr2+vento_77	14282.3	5.30172	1546.03	0	6675.6		
A1_SLU_gr3+vento_78	17691.7	1680.05	1294.69	5506.14	5151.73		
A1_SLU_gr4+vento_79	16899.6	1345.1	1490.63	4404.91	6244.78		
A1_SLU_vento_gr1_80	16899.6	678.736	1900.82	4103.46	8006.87		
A1_SLU_vento_gr2_81	14172.1	8.83619	1822.27	0	7654.69		
A1_SLU_vento_gr3_82	16899.6	1348.64	1601.55	4404.91	6426.75		
A1_SLU_vento_gr4_83	16899.6	1348.64	1943.4	4404.91	8026.03		
SLE_rar_gr1_Treno_85	12383.3	577.5	647.437	3537.47	3056.64		
SLE_rar_gr2_Scarico_86	10032	0	591.006	0	2758.11		
SLE_rar_gr3_Fre/avv_87	12383.3	1155	389.45	3797.34	1694.47		
SLE_rar_gr4_centrif_88	11837.1	924	531.132	3037.87	2451.24		
SLE_rar_gr1+vento_89	12383.3	581.034	1100.22	3537.47	4837.89		
SLE_rar_gr2+vento_90	10032	3.53448	1043.78	0	4539.37		
SLE_rar_gr3+vento_91	12383.3	1158.53	842.229	3797.34	3475.72		
SLE_rar_gr4+vento_92	11837.1	927.534	983.911	3037.87	4232.5		
SLE_rar_vento_gr1_93	11837.1	467.891	1262.09	2829.97	5409.35		
SLE_rar_vento_gr2_94	9956	5.8908	1225.98	0	5174.59		
SLE_rar_vento_gr3_95	11837.1	929.891	1055.7	3037.87	4319.61		
SLE_rar_vento_gr4_96	11837.1	929.891	1285.76	3037.87	5420		
SLE_fre_gr1_Treno_98	11837.1	462	491.681	2829.97	2433.49		
SLE_fre_gr2_Scarico_99	9956	0	461.584	0	2201.44		
SLE_fre_gr3_Fre/avv_100	11837.1	924	285.291	3037.87	1343.75		
SLE_fre_gr4_centrif_101	11837.1	924	511.407	3037.87	2442.37		
SLE_fre_gr1+vento_102	11837.1	463.178	642.608	2829.97	3027.24		
SLE_fre_gr2+vento_103	9956	1.17816	612.511	0	2795.19		
SLE_fre_gr3+vento_104	11837.1	925.178	436.218	3037.87	1937.5		
SLE_fre_gr4+vento_105	11837.1	925.178	662.333	3037.87	3036.12		

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo
Relazione di calcolo Pile – P12
RS3T
LOTTO
RS3T
30

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1105004 B 53 di 116

SLE_fre_vento_gr1_106	9652	2.9454	432.241	0	1509.09
SLE_fre_vento_gr2_107	9652	2.9454	432.241	0	1509.09
SLE_fre_vento_gr3_108	9652	2.9454	432.241	0	1509.09
SLE_fre_vento_gr4_109	9652	2.9454	432.241	0	1509.09
SLE_fre_gr1_temp110	9652	1.17816	216.837	0	623.411
SLE_fre_gr2_temp111	9652	1.17816	216.837	0	623.411
SLE_fre_gr3_temp112	9652	1.17816	216.837	0	623.411
SLE_fre_gr3_temp113	9652	1.17816	216.837	0	623.411
SLE_qp_gr1_Treno_115	9652	0	54.9252	0	24.7163
SLE_qp_gr2_Scarico_116	9652	0	54.9252	0	24.7163
SLE_qp_gr3_Fre/avv_117	9652	0	54.9252	0	24.7163
SLE_qp_gr4_centrif_118	9652	0	54.9252	0	24.7163
SLE_qp_gr1+vento_119	9652	1.17816	205.852	0	618.468
SLE_qp_gr2+vento_120	9652	1.17816	205.852	0	618.468
SLE_qp_gr3+vento_121	9652	1.17816	205.852	0	618.468
SLE_qp_gr4+vento_122	9652	1.17816	205.852	0	618.468
SLE_qp_vento_gr1_123	9652	1.17816	205.852	0	618.468
SLE_qp_vento_gr2_124	9652	1.17816	205.852	0	618.468
SLE_qp_vento_gr3_125	9652	1.17816	205.852	0	618.468
SLE_qp_vento_gr4_126	9652	1.17816	205.852	0	618.468
SLE_qp_gr1_temp127	9652	0	54.9252	0	24.7163
SLE_qp_gr2_temp128	9652	0	54.9252	0	24.7163
SLE_qp_gr3_temp129	9652	0	54.9252	0	24.7163
SLE_qp_gr3_temp130	9652	0	54.9252	0	24.7163
E_103x_SLV_q=1.5_131	10143.5	3623.17	1269.43	0	0
E_103y_SLV_q=1.5_132	10143.5	1087.78	3751.11	0	0
E_103z_SLV_q=1.5_133	11290.2	1087.78	1269.43	0	0
E_103x_SLV_q=1.36_134	10143.5	3985.37	1375.79	0	0
E_103y_SLV_q=1.36_135	10143.5	1196.43	4105.64	0	0
E_103z_SLV_q=1.36_136	11290.2	1196.43	1375.79	0	0
E_103x_SLV_q=1_137	10143.5	5439.6	1802.62	0	0
E_103y_SLV_q=1_138	10143.5	1632.7	5528.4	0	0
E_103z_SLV_q=1_139	11290.2	1632.7	1802.62	0	0
E_103x_SLD_q=1_140	9799.33	2829.71	1045.29	0	0
E_103y_SLD_q=1_141	9799.33	849.738	3003.97	0	0

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1105004 B 54 di 116

CARATTERISTICHE SOLLECITAZIONI BASE PILA							
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv		
A1_SLU_gr1_Treno_72	22534.3	837.375	989.605	11660.8	12173.9		
A1_SLU_gr2_Scarico_73	19124.8	0	866.866	0	10765.3		
A1_SLU_gr3_Fre/avv_74	22534.3	1674.75	615.523	18569.2	7280.92		
A1_SLU_gr4_centrif_75	21742.2	1339.8	811.457	14855.4	9902.26		
A1_SLU_gr1+vento_76	22534.3	842.677	1668.77	11702.2	20143.3		
A1_SLU_gr2+vento_77	19124.8	5.30172	1546.03	41.3534	18734.7		
A1_SLU_gr3+vento_78	22534.3	1680.05	1294.69	18610.5	15250.3		
A1_SLU_gr4+vento_79	21742.2	1345.1	1490.63	14896.7	17871.7		
A1_SLU_vento_gr1_80	21742.2	678.736	1900.82	9397.6	22833.3		
A1_SLU_vento_gr2_81	19014.6	8.83619	1822.27	68.9223	21868.4		
A1_SLU_vento_gr3_82	21742.2	1348.64	1601.55	14924.3	18918.9		
A1_SLU_vento_gr4_83	21742.2	1348.64	1943.4	14924.3	23184.6		
_							
SLE_rar_gr1_Treno_85	15970.4	577.5	647.437	8041.97	8106.65		
SLE_rar_gr2_Scarico_86	13619.1	0	591.006	0	7367.96		
SLE_rar_gr3_Fre/avv_87	15970.4	1155	389.45	12806.3	4732.17		
SLE_rar_gr4_centrif_88	15424.1	924	531.132	10245.1	6594.07		
SLE_rar_gr1+vento_89	15970.4	581.034	1100.22	8069.53	13419.6		
SLE_rar_gr2+vento_90	13619.1	3.53448	1043.78	27.5689	12680.9		
SLE_rar_gr3+vento_91	15970.4	1158.53	842.229	12833.9	10045.1		
SLE_rar_gr4+vento_92	15424.1	927.534	983.911	10272.6	11907		
SLE_rar_vento_gr1_93	15424.1	467.891	1262.09	6479.52	15253.7		
SLE_rar_vento_gr2_94	13543.1	5.8908	1225.98	45.9482	14737.2		
SLE_rar_vento_gr3_95	15424.1	929.891	1055.7	10291	12554.1		
SLE_rar_vento_gr4_96	15424.1	929.891	1285.76	10291	15449		
SLE_fre_gr1_Treno_98	15424.1	462	491.681	6433.57	6268.61		
SLE_fre_gr2_Scarico_99	13543.1	0	461.584	0	5801.8		
SLE_fre_gr3_Fre/avv_100	15424.1	924	285.291	10245.1	3569.02		
SLE_fre_gr4_centrif_101	15424.1	924	511.407	10245.1	6431.34		
SLE_fre_gr1+vento_102	15424.1	463.178	642.608	6442.76	8039.58		
SLE_fre_gr2+vento_103	13543.1	1.17816	612.511	9.18964	7572.78		
SLE_fre_gr3+vento_104	15424.1	925.178	436.218	10254.3	5340		
SLE_fre_gr4+vento_105	15424.1	925.178	662.333	10254.3	8202.32		
SLE_fre_vento_gr1_106	13239.1	2.9454	432.241	22.9741	4880.57		

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B55 di 116

CLE 6 2 107	12220 1	2.0454	122 241	22.9741	4990 F7
SLE_fre_vento_gr2_107	13239.1	2.9454	432.241		4880.57
SLE_fre_vento_gr3_108	13239.1	2.9454	432.241	22.9741	4880.57
SLE_fre_vento_gr4_109	13239.1	2.9454	432.241	22.9741	4880.57
SLE_fre_gr1_temp110	13239.1	1.17816	216.837	9.18964	2314.74
SLE_fre_gr2_temp111	13239.1	1.17816	216.837	9.18964	2314.74
SLE_fre_gr3_temp112	13239.1	1.17816	216.837	9.18964	2314.74
SLE_fre_gr3_temp113	13239.1	1.17816	216.837	9.18964	2314.74
SLE_qp_gr1_Treno_115	13239.1	0	54.9252	0	453.133
SLE_qp_gr2_Scarico_116	13239.1	0	54.9252	0	453.133
SLE_qp_gr3_Fre/avv_117	13239.1	0	54.9252	0	453.133
SLE_qp_gr4_centrif_118	13239.1	0	54.9252	0	453.133
SLE_qp_gr1+vento_119	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr2+vento_120	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr3+vento_121	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr4+vento_122	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_vento_gr1_123	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_vento_gr2_124	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_vento_gr3_125	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_vento_gr4_126	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr1_temp127	13239.1	0	54.9252	0	453.133
SLE_qp_gr2_temp128	13239.1	0	54.9252	0	453.133
SLE_qp_gr3_temp129	13239.1	0	54.9252	0	453.133
SLE_qp_gr3_temp130	13239.1	0	54.9252	0	453.133
E_103x_SLV_q=1.5_131	13730.5	3623.17	1269.43	26586.4	11172.8
E_103y_SLV_q=1.5_132	13730.5	1087.78	3751.11	7975.92	35799.5
E_103z_SLV_q=1.5_133	14877.3	1087.78	1269.43	7975.92	11172.8
E_103x_SLV_q=1.36_134	13730.5	3985.37	1375.79	29245	12228.2
E_103y_SLV_q=1.36_135	13730.5	1196.43	4105.64	8773.51	39317.6
E_103z_SLV_q=1.36_136	14877.3	1196.43	1375.79	8773.51	12228.2
E_103x_SLV_q=1_137	13730.5	5439.6	1802.62	39923.8	16467.4
E_103y_SLV_q=1_138	13730.5	1632.7	5528.4	11977.2	53448.4
E_103z_SLV_q=1_139	14877.3	1632.7	1802.62	11977.2	16467.4
_ = ===================================	1.077.0				
E_103x_SLD_q=1_140	13386.4	2829.71	1045.29	23430.2	9750.2
E_103y_SLD_q=1_141	13386.4	849.738	3003.97	7029.07	31057.6
E_103z_SLD_q=1_142	13730.2	849.738	1045.29	7029.07	9750.2
	15/50.2	517.750	10 13.27	7027.07	7130.2

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12 COMMESSA LOTTO
RS3T 30

CODIFICA **D09CL**

DOCUMENTO VI1105004

REV. FOGLIO **B** 56 di 116

CARATTERISTICHE SOLLECITAZIONI BASE FONDAZIONE							
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv		
A1_SLU_gr1_Treno_72	35041.1	837.375	989.605	14173	15142.7		
A1_SLU_gr2_Scarico_73	31631.7	0	866.866	0	13365.9		
A1_SLU_gr3_Fre/avv_74	35041.1	1674.75	615.523	23593.4	9127.49		
A1_SLU_gr4_centrif_75	34249.1	1339.8	811.457	18874.8	12336.6		
A1_SLU_gr1+vento_76	35041.1	842.677	1668.77	14230.2	25149.6		
A1_SLU_gr2+vento_77	31631.7	5.30172	1546.03	57.2585	23372.8		
A1_SLU_gr3+vento_78	35041.1	1680.05	1294.69	23650.7	19134.4		
A1_SLU_gr4+vento_79	34249.1	1345.1	1490.63	18932	22343.5		
A1_SLU_vento_gr1_80	34249.1	678.736	1900.82	11433.8	28535.7		
A1_SLU_vento_gr2_81	31521.5	8.83619	1822.27	95.4309	27335.2		
A1_SLU_vento_gr3_82	34249.1	1348.64	1601.55	18970.2	23723.5		
A1_SLU_vento_gr4_83	34249.1	1348.64	1943.4	18970.2	29014.8		
SLE_rar_gr1_Treno_85	25234.7	577.5	647.437	9774.47	10049		
SLE_rar_gr2_Scarico_86	22883.4	0	591.006	0	9140.97		
SLE_rar_gr3_Fre/avv_87	25234.7	1155	389.45	16271.3	5900.52		
SLE_rar_gr4_centrif_88	24688.5	924	531.132	13017.1	8187.47		
SLE_rar_gr1+vento_89	25234.7	581.034	1100.22	9812.64	16720.2		
SLE_rar_gr2+vento_90	22883.4	3.53448	1043.78	38.1724	15812.2		
SLE_rar_gr3+vento_91	25234.7	1158.53	842.229	16309.5	12571.8		
SLE_rar_gr4+vento_92	24688.5	927.534	983.911	13055.2	14858.7		
SLE_rar_vento_gr1_93	24688.5	467.891	1262.09	7883.19	19040		
SLE_rar_vento_gr2_94	22807.4	5.8908	1225.98	63.6206	18415.1		
SLE_rar_vento_gr3_95	24688.5	929.891	1055.7	13080.7	15721.2		
SLE_rar_vento_gr4_96	24688.5	929.891	1285.76	13080.7	19306.2		
SLE_fre_gr1_Treno_98	24688.5	462	491.681	7819.57	7743.65		
SLE_fre_gr2_Scarico_99	22807.4	0	461.584	0	7186.55		
SLE_fre_gr3_Fre/avv_100	24688.5	924	285.291	13017.1	4424.9		
SLE_fre_gr4_centrif_101	24688.5	924	511.407	13017.1	7965.56		
SLE_fre_gr1+vento_102	24688.5	463.178	642.608	7832.3	9967.41		
SLE_fre_gr2+vento_103	22807.4	1.17816	612.511	12.7241	9410.31		
SLE_fre_gr3+vento_104	24688.5	925.178	436.218	13029.8	6648.65		
SLE_fre_gr4+vento_105	24688.5	925.178	662.333	13029.8	10189.3		
SLE_fre_vento_gr1_106	22503.4	2.9454	432.241	31.8103	6177.3		

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B57 di 116

SLE_fre_vento_gr2_107	22503.4	2.9454	432.241	31.8103	6177.3
SLE_fre_vento_gr3_108	22503.4	2.9454	432.241	31.8103	6177.3
SLE_fre_vento_gr4_109	22503.4	2.9454	432.241	31.8103	6177.3
SLE_fre_gr1_temp110	22503.4	1.17816	216.837	12.7241	2965.25
SLE_fre_gr2_temp111	22503.4	1.17816	216.837	12.7241	2965.25
SLE_fre_gr3_temp112	22503.4	1.17816	216.837	12.7241	2965.25
SLE_fre_gr3_temp113	22503.4	1.17816	216.837	12.7241	2965.25
SLE_qp_gr1_Treno_115	22503.4	0	54.9252	0	617.909
SLE_qp_gr2_Scarico_116	22503.4	0	54.9252	0	617.909
SLE_qp_gr3_Fre/avv_117	22503.4	0	54.9252	0	617.909
SLE_qp_gr4_centrif_118	22503.4	0	54.9252	0	617.909
SLE_qp_gr1+vento_119	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_gr2+vento_120	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_gr3+vento_121	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_gr4+vento_122	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_vento_gr1_123	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_vento_gr2_124	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_vento_gr3_125	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_vento_gr4_126	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_gr1_temp127	22503.4	0	54.9252	0	617.909
SLE_qp_gr2_temp128	22503.4	0	54.9252	0	617.909
SLE_qp_gr3_temp129	22503.4	0	54.9252	0	617.909
SLE_qp_gr3_temp130	22503.4	0	54.9252	0	617.909
E_103x_SLV_q=1.5_131	23125.6	4620.21	1568.54	40447	15878.4
E_103y_SLV_q=1.5_132	23125.6	2084.82	4050.22	14230.4	47950.2
E_103z_SLV_q=1.5_133	24577.3	2084.82	1568.54	14230.4	15878.4
E_103x_SLV_q=1.36_134	23125.6	4982.41	1674.9	44192.3	17252.9
E_103y_SLV_q=1.36_135	23125.6	2193.48	4404.75	15353.9	52531.9
E_103z_SLV_q=1.36_136	24577.3	2193.48	1674.9	15353.9	17252.9
E_103x_SLV_q=1_137	23125.6	6436.64	2101.73	59233.8	22772.6
E_103y_SLV_q=1_138	23125.6	2629.75	5827.51	19866.4	70930.9
E_103z_SLV_q=1_139	24577.3	2629.75	2101.73	19866.4	22772.6
E_103x_SLD_q=1_140	22696.7	3326.36	1194.28	33409.3	13333.1
E_103y_SLD_q=1_141	22696.7	1346.39	3152.97	11068.2	40516.5
E_103z_SLD_q=1_142	23147.7	1346.39	1194.28	11068.2	13333.1

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B58 di 116

6.1.3 Configurazione 3

CARATTERISTICH	E SOLLE	CITAZIO	ONI IN T	ESTA PI	LA
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_143	20607.5	837.375	1094.57	1517.02	4793.81
A1_SLU_gr2_Scarico_144	14282.3	0	866.866	0	4003.72
A1_SLU_gr3_Fre/avv_145	20607.5	1674.75	720.491	1893.84	2818.66
A1_SLU_gr4_centrif_146	19232.3	1339.8	895.432	1515.07	3843.95
A1_SLU_gr1+vento_147	20607.5	842.677	1773.74	1517.02	7465.7
A1_SLU_gr2+vento_148	14282.3	5.30172	1546.03	0	6675.6
A1_SLU_gr3+vento_149	20607.5	1680.05	1399.66	1893.84	5490.54
A1_SLU_gr4+vento_150	19232.3	1345.1	1574.6	1515.07	6515.83
A1_SLU_vento_gr1_151	19232.3	678.736	1968	1213.62	8270.36
A1_SLU_vento_gr2_152	14172.1	8.83619	1822.27	0	7654.69
A1_SLU_vento_gr3_153	19232.3	1348.64	1668.73	1515.07	6690.24
A1_SLU_vento_gr4_154	19232.3	1348.64	2027.38	1515.07	8297.08
SLE_rar_gr1_Treno_156	14394.2	577.5	695.699	1046.22	3279.45
SLE_rar_gr2_Scarico_157	10032	0	591.006	0	2758.11
SLE_rar_gr3_Fre/avv_158	14394.2	1155	437.711	1306.1	1917.27
SLE_rar_gr4_centrif_159	13445.8	924	569.741	1044.88	2629.49
SLE_rar_gr1+vento_160	14394.2	581.034	1148.48	1046.22	5060.7
SLE_rar_gr2+vento_161	10032	3.53448	1043.78	0	4539.37
SLE_rar_gr3+vento_162	14394.2	1158.53	890.49	1306.1	3698.53
SLE_rar_gr4+vento_163	13445.8	927.534	1022.52	1044.88	4410.74
SLE_rar_vento_gr1_164	13445.8	467.891	1292.98	836.977	5584.12
SLE_rar_vento_gr2_165	9956	5.8908	1225.98	0	5174.59
SLE_rar_vento_gr3_166	13445.8	929.891	1086.59	1044.88	4494.38
SLE_rar_vento_gr4_167	13445.8	929.891	1324.37	1044.88	5598.25
SLE_fre_gr1_Treno_169	13445.8	462	517.421	836.977	2605.95
SLE_fre_gr2_Scarico_170	9956	0	461.584	0	2201.44
SLE_fre_gr3_Fre/avv_171	13445.8	924	311.031	1044.88	1516.21
SLE_fre_gr4_centrif_172	13445.8	924	543.581	1044.88	2617.72
SLE_fre_gr1+vento_173	13445.8	463.178	668.347	836.977	3199.7
SLE_fre_gr2+vento_174	9956	1.17816	612.511	0	2795.19
SLE_fre_gr3+vento_175	13445.8	925.178	461.957	1044.88	2109.96
SLE_fre_gr4+vento_176	13445.8	925.178	694.507	1044.88	3211.47
SLE_fre_vento_gr1_177	9652	2.9454	432.241	0	1509.09

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VII105004 B 59 di 116

SLE_fre_vento_gr2_178	9652	2.9454	432.241	0	1509.09
SLE_fre_vento_gr3_179	9652	2.9454	432.241	0	1509.09
SLE_fre_vento_gr4_180	9652	2.9454	432.241	0	1509.09
SLE_fre_gr1_temp181	9652	1.17816	216.837	0	623.411
SLE_fre_gr2_temp182	9652	1.17816	216.837	0	623.411
SLE_fre_gr3_temp183	9652	1.17816	216.837	0	623.411
SLE_fre_gr3_temp184	9652	1.17816	216.837	0	623.411
SLE_qp_gr1_Treno_186	9652	0	54.9252	0	24.7163
SLE_qp_gr2_Scarico_187	9652	0	54.9252	0	24.7163
SLE_qp_gr3_Fre/avv_188	9652	0	54.9252	0	24.7163
SLE_qp_gr4_centrif_189	9652	0	54.9252	0	24.7163
SLE_qp_gr1+vento_190	9652	1.17816	205.852	0	618.468
SLE_qp_gr2+vento_191	9652	1.17816	205.852	0	618.468
SLE_qp_gr3+vento_192	9652	1.17816	205.852	0	618.468
SLE_qp_gr4+vento_193	9652	1.17816	205.852	0	618.468
SLE_qp_vento_gr1_194	9652	1.17816	205.852	0	618.468
SLE_qp_vento_gr2_195	9652	1.17816	205.852	0	618.468
SLE_qp_vento_gr3_196	9652	1.17816	205.852	0	618.468
SLE_qp_vento_gr4_197	9652	1.17816	205.852	0	618.468
SLE_qp_gr1_temp198	9652	0	54.9252	0	24.7163
SLE_qp_gr2_temp199	9652	0	54.9252	0	24.7163
SLE_qp_gr3_temp200	9652	0	54.9252	0	24.7163
SLE_qp_gr3_temp201	9652	0	54.9252	0	24.7163
E_103x_SLV_q=1.5_202	10143.5	3623.17	1269.43	0	0
E_103v_SLV_q=1.5_203	10143.5	1087.78	3751.11	0	0
E_103z_SLV_q=1.5_204	11290.2	1087.78	1269.43	0	0
E_103x_SLV_q=1.36_205	10143.5	3985.37	1375.79	0	0
E_103y_SLV_q=1.36_206	10143.5	1196.43	4105.64	0	0
E_103z_SLV_q=1.36_207	11290.2	1196.43	1375.79	0	0
E_103x_SLV_q=1_208	10143.5	5439.6	1802.62	0	0
E_103y_SLV_q=1_209	10143.5	1632.7	5528.4	0	0
E_103z_SLV_q=1_210		1632.7	1802.62	0	0
	11290.2				
B_1032_6B.V_q 1_B10	11290.2				
			1045.29	0	0
E_103x_SLD_q=1_211 E_103y_SLD_q=1_212	9799.33 9799.33	2829.71 849.738	1045.29 3003.97	0	0

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL VI1105004 B 60 di 116

CARATTERISTICHE SOLLECITAZIONI BASE PILA							
N	Tlong	Ttrasv	Mlong	Mtrasv			
25450.1	837.375	1094.57	8048.55	13331.5			
19124.8	0	866.866	0	10765.3			
25450.1	1674.75	720.491	14956.9	8438.49			
24074.8	1339.8	895.432	11965.5	10828.3			
25450.1	842.677	1773.74	8089.9	21300.9			
19124.8	5.30172	1546.03	41.3534	18734.7			
25450.1	1680.05	1399.66	14998.2	16407.9			
24074.8	1345.1	1574.6	12006.9	18797.7			
24074.8	678.736	1968	6507.76	23620.8			
19014.6	8.83619	1822.27	68.9223	21868.4			
24074.8	1348.64	1668.73	12034.4	19706.4			
24074.8	1348.64	2027.38	12034.4	24110.6			
17981.3	577.5	695.699	5550.72	8705.9			
13619.1	0	591.006	0	7367.96			
17981.3	1155	437.711	10315.1	5331.42			
17032.8	924	569.741	8252.08	7073.47			
17981.3	581.034	1148.48	5578.29	14018.8			
13619.1	3.53448	1043.78	27.5689	12680.9			
17981.3	1158.53	890.49	10342.7	10644.4			
17032.8	927.534	1022.52	8279.65	12386.4			
17032.8	467.891	1292.98	4486.53	15669.4			
13543.1	5.8908	1225.98	45.9482	14737.2			
17032.8	929.891	1086.59	8298.03	12969.8			
17032.8	929.891	1324.37	8298.03	15928.4			
17032.8	462	517.421	4440.58	6641.83			
	0		0	5801.8			
	924		8252.08	3942.25			
				6857.65			
		668.347		8412.81			
				7572.78			
				5713.22			
				8628.63			
				4880.57			
	N 25450.1 19124.8 25450.1 24074.8 25450.1 19124.8 25450.1 24074.8 24074.8 19014.6 24074.8 24074.8 17981.3 17032.8 17981.3 17032.8 17981.3 17032.8 17032.8 17032.8 17032.8	N Tlong 25450.1 837.375 19124.8 0 25450.1 1674.75 24074.8 1339.8 25450.1 842.677 19124.8 5.30172 25450.1 1680.05 24074.8 1345.1 24074.8 678.736 19014.6 8.83619 24074.8 1348.64 24074.8 1348.64 24074.8 1348.64 24074.8 13543.1 0 17981.3 577.5 13619.1 0 17981.3 1155 17032.8 924 17981.3 581.034 13619.1 3.53448 17981.3 1158.53 17032.8 927.534 17032.8 927.534 17032.8 927.534 17032.8 927.534 17032.8 929.891 17032.8 929.891 17032.8 929.891 17032.8 929.891 17032.8 929.891 17032.8 924 17032.8 924 17032.8 924 17032.8 924 17032.8 925.178 13543.1 1.17816 17032.8 925.178 17032.8 925.178	N Tlong Ttrasv 25450.1 837.375 1094.57 19124.8 0 866.866 25450.1 1674.75 720.491 24074.8 1339.8 895.432 25450.1 842.677 1773.74 19124.8 5.30172 1546.03 25450.1 1680.05 1399.66 24074.8 1345.1 1574.6 24074.8 678.736 1968 19014.6 8.83619 1822.27 24074.8 1348.64 1668.73 24074.8 1348.64 2027.38 17981.3 577.5 695.699 13619.1 0 591.006 17981.3 1155 437.711 17032.8 924 569.741 17981.3 1158.53 890.49 17032.8 927.534 1022.52 17032.8 927.534 1022.52 17032.8 927.534 1022.52 17032.8 929.891 1324.37	N Tlong Ttrasv Mlong 25450.1 837.375 1094.57 8048.55 19124.8 0 866.866 0 25450.1 1674.75 720.491 14956.9 24074.8 1339.8 895.432 11965.5 25450.1 842.677 1773.74 8089.9 19124.8 5.30172 1546.03 41.3534 25450.1 1680.05 1399.66 14998.2 24074.8 678.736 1968 6507.76 19014.6 8.83619 1822.27 68.9223 24074.8 1348.64 1668.73 12034.4 24074.8 1348.64 1668.73 12034.4 24074.8 1348.64 1668.73 12034.4 24074.8 1348.64 1668.73 12034.4 24074.8 1348.64 1668.73 12034.4 24074.8 1348.64 1668.73 12034.4 17981.3 1155 437.711 10315.1 17032.8 924			

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1105004 B 61 di 116

SLE_fre_vento_gr2_178	13239.1	2.9454	432.241	22.9741	4880.57
SLE_fre_vento_gr3_179	13239.1	2.9454	432.241	22.9741	4880.57
SLE_fre_vento_gr4_180	13239.1	2.9454	432.241	22.9741	4880.57
SLE_fre_gr1_temp181	13239.1	1.17816	216.837	9.18964	2314.74
SLE_fre_gr2_temp182	13239.1	1.17816	216.837	9.18964	2314.74
SLE_fre_gr3_temp183	13239.1	1.17816	216.837	9.18964	2314.74
SLE_fre_gr3_temp184	13239.1	1.17816	216.837	9.18964	2314.74
SLE_qp_gr1_Treno_186	13239.1	0	54.9252	0	453.133
SLE_qp_gr2_Scarico_187	13239.1	0	54.9252	0	453.133
SLE_qp_gr3_Fre/avv_188	13239.1	0	54.9252	0	453.133
SLE_qp_gr4_centrif_189	13239.1	0	54.9252	0	453.133
SLE_qp_gr1+vento_190	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr2+vento_191	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr3+vento_192	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr4+vento_193	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_vento_gr1_194	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_vento_gr2_195	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_vento_gr3_196	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_vento_gr4_197	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr1_temp198	13239.1	0	54.9252	0	453.133
SLE_qp_gr2_temp199	13239.1	0	54.9252	0	453.133
SLE_qp_gr3_temp200	13239.1	0	54.9252	0	453.133
SLE_qp_gr3_temp201	13239.1	0	54.9252	0	453.133
E_103x_SLV_q=1.5_202	13730.5	3623.17	1269.43	26586.4	11172.8
E_103y_SLV_q=1.5_203	13730.5	1087.78	3751.11	7975.92	35799.5
E_103z_SLV_q=1.5_204	14877.3	1087.78	1269.43	7975.92	11172.8
E_103x_SLV_q=1.36_205	13730.5	3985.37	1375.79	29245	12228.2
E_103y_SLV_q=1.36_206	13730.5	1196.43	4105.64	8773.51	39317.6
E_103z_SLV_q=1.36_207	14877.3	1196.43	1375.79	8773.51	12228.2
E_103x_SLV_q=1_208	13730.5	5439.6	1802.62	39923.8	16467.4
E_103y_SLV_q=1_209	13730.5	1632.7	5528.4	11977.2	53448.4
E_103z_SLV_q=1_210	14877.3	1632.7	1802.62	11977.2	16467.4
E_103x_SLD_q=1_211	13386.4	2829.71	1045.29	23430.2	9750.2
E_103y_SLD_q=1_212	13386.4	849.738	3003.97	7029.07	31057.6
E_103z_SLD_q=1_213	13730.2	849.738	1045.29	7029.07	9750.2

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL VI1105004 B 62 di 116

CARATTERISTICHE S	OLLECI	ΓAZION	I BASE F	ONDAZI	ONE
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_143	37956.9	837.375	1094.57	10560.7	16615.2
A1_SLU_gr2_Scarico_144	31631.7	0	866.866	0	13365.9
A1_SLU_gr3_Fre/avv_145	37956.9	1674.75	720.491	19981.1	10600
A1_SLU_gr4_centrif_146	36581.7	1339.8	895.432	15984.9	13514.6
A1_SLU_gr1+vento_147	37956.9	842.677	1773.74	10617.9	26622.1
A1_SLU_gr2+vento_148	31631.7	5.30172	1546.03	57.2585	23372.8
A1_SLU_gr3+vento_149	37956.9	1680.05	1399.66	20038.4	20606.9
A1_SLU_gr4+vento_150	36581.7	1345.1	1574.6	16042.2	23521.5
A1_SLU_vento_gr1_151	36581.7	678.736	1968	8543.97	29524.8
A1_SLU_vento_gr2_152	31521.5	8.83619	1822.27	95.4309	27335.2
A1_SLU_vento_gr3_153	36581.7	1348.64	1668.73	16080.3	24712.6
A1_SLU_vento_gr4_154	36581.7	1348.64	2027.38	16080.3	30192.8
SLE_rar_gr1_Treno_156	27245.6	577.5	695.699	7283.22	10793
SLE_rar_gr2_Scarico_157	22883.4	0	591.006	0	9140.97
SLE_rar_gr3_Fre/avv_158	27245.6	1155	437.711	13780.1	6644.55
SLE_rar_gr4_centrif_159	26297.2	924	569.741	11024.1	8782.7
SLE_rar_gr1+vento_160	27245.6	581.034	1148.48	7321.39	17464.3
SLE_rar_gr2+vento_161	22883.4	3.53448	1043.78	38.1724	15812.2
SLE_rar_gr3+vento_162	27245.6	1158.53	890.49	13818.3	13315.8
SLE_rar_gr4+vento_163	26297.2	927.534	1022.52	11062.2	15454
SLE_rar_vento_gr1_164	26297.2	467.891	1292.98	5890.2	19548.3
SLE_rar_vento_gr2_165	22807.4	5.8908	1225.98	63.6206	18415.1
SLE_rar_vento_gr3_166	26297.2	929.891	1086.59	11087.7	16229.6
SLE_rar_vento_gr4_167	26297.2	929.891	1324.37	11087.7	19901.5
SLE_fre_gr1_Treno_169	26297.2	462	517.421	5826.58	8194.09
SLE_fre_gr2_Scarico_170	22807.4	0	461.584	0	7186.55
SLE_fre_gr3_Fre/avv_171	26297.2	924	311.031	11024.1	4875.34
SLE_fre_gr4_centrif_172	26297.2	924	543.581	11024.1	8488.39
SLE_fre_gr1+vento_173	26297.2	463.178	668.347	5839.3	10417.8
SLE_fre_gr2+vento_174	22807.4	1.17816	612.511	12.7241	9410.31
SLE_fre_gr3+vento_175	26297.2	925.178	461.957	11036.8	7099.09
SLE_fre_gr4+vento_176	26297.2	925.178	694.507	11036.8	10712.1
SLE_fre_vento_gr1_177	22503.4	2.9454	432.241	31.8103	6177.3

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B63 di 116

SLE_fre_vento_gr2_178	22503.4	2.9454	432.241	31.8103	6177.3
SLE_fre_vento_gr3_179	22503.4	2.9454	432.241	31.8103	6177.3
SLE_fre_vento_gr4_180	22503.4	2.9454	432.241	31.8103	6177.3
SLE_fre_gr1_temp181	22503.4	1.17816	216.837	12.7241	2965.25
SLE_fre_gr2_temp182	22503.4	1.17816	216.837	12.7241	2965.25
SLE_fre_gr3_temp183	22503.4	1.17816	216.837	12.7241	2965.25
SLE_fre_gr3_temp184	22503.4	1.17816	216.837	12.7241	2965.25
SLE_qp_gr1_Treno_186	22503.4	0	54.9252	0	617.909
SLE_qp_gr2_Scarico_187	22503.4	0	54.9252	0	617.909
SLE_qp_gr3_Fre/avv_188	22503.4	0	54.9252	0	617.909
SLE_qp_gr4_centrif_189	22503.4	0	54.9252	0	617.909
SLE_qp_gr1+vento_190	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_gr2+vento_191	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_gr3+vento_192	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_gr4+vento_193	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_vento_gr1_194	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_vento_gr2_195	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_vento_gr3_196	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_vento_gr4_197	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_gr1_temp198	22503.4	0	54.9252	0	617.909
SLE_qp_gr2_temp199	22503.4	0	54.9252	0	617.909
SLE_qp_gr3_temp200	22503.4	0	54.9252	0	617.909
SLE_qp_gr3_temp201	22503.4	0	54.9252	0	617.909
E_103x_SLV_q=1.5_202	23125.6	4620.21	1568.54	40447	15878.4
E_103y_SLV_q=1.5_203	23125.6	2084.82	4050.22	14230.4	47950.2
E_103z_SLV_q=1.5_204	24577.3	2084.82	1568.54	14230.4	15878.4
E_103x_SLV_q=1.36_205	23125.6	4982.41	1674.9	44192.3	17252.9
E_103y_SLV_q=1.36_206	23125.6	2193.48	4404.75	15353.9	52531.9
E_103z_SLV_q=1.36_207	24577.3	2193.48	1674.9	15353.9	17252.9
E_103x_SLV_q=1_208	23125.6	6436.64	2101.73	59233.8	22772.6
E_103y_SLV_q=1_209	23125.6	2629.75	5827.51	19866.4	70930.9
E_103z_SLV_q=1_210	24577.3	2629.75	2101.73	19866.4	22772.6
E_103x_SLD_q=1_211	22696.7	3326.36	1194.28	33409.3	13333.1
E_103y_SLD_q=1_212	22696.7	1346.39	3152.97	11068.2	40516.5

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	64 di 116

6.2 Tabelle riassuntive, massime sollecitazioni

6.2.1 Stati limiti di esercizio

Configurazione1

TESTA PILA					
combo	N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno_14	14394.2	577.5	695.699	1046.22	3279.45
SLE_rar_gr3+vento_20	14394.2	1158.53	890.49	1306.1	3698.53
SLE_rar_vento_gr4_25	13445.8	929.891	1324.37	1044.88	5598.25
SLE_rar_gr3_Fre/avv_16	14394.2	1155	437.711	1306.1	1917.27
SLE_rar_vento_gr4_25	13445.8	929.891	1324.37	1044.88	5598.25
SLE_rar_gr4_centrif_17	13445.8	924	569.741	1044.88	2629.49
SLE_rar_vento_gr4_25	13445.8	929.891	569.741	1044.88	5598.25
SLE_rar_vento_gr4_25	13445.8	929.891	1324.37	1044.88	5598.25
SLE_rar_gr4_centrif_17	13445.8	924	569.741	1044.88	2629.49
SLE_rar_vento_gr4_25	13445.8	929.891	1324.37	1044.88	5598.25
SLE_qp_gr1_Treno_44	9652	0	54.9252	0	24.7163
SLE_qp_gr1+vento_48	9652	1.17816	205.852	0	618.468
SLE_qp_gr1+vento_48	9652	1.17816	205.852	0	618.468
SLE_qp_gr1_Treno_44	9652	0	54.9252	0	24.7163
SLE_qp_gr1+vento_48	9652	1.17816	205.852	0	618.468
E_103x_SLD_q=1_69	9777.67	2556.92	956.251	0	0
E_103y_SLD_q=1_70	9777.67	767.9	2707.18	0	0
E_103z_SLD_q=1_71	10070.9	767.9	956.251	0	0

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1105004 B 65 di 116

BASE PILA							
combo		N		Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_	_Treno_14	1	7981.3	577.5	695.699	5550.72	8705.9
SLE_rar_gr3-	+vento_20) 1	7981.3	1158.53	890.49	10342.7	10644.4
SLE_rar_ven	to_gr4_25	1	7032.8	929.891	1324.37	8298.03	15928.4
SLE_rar_gr3-	+vento_20) 1	7981.3	1158.53	890.49	10342.7	10644.4
SLE_rar_ven	to_gr4_25	1	7032.8	929.891	1324.37	8298.03	15928.4
SLE_rar_gr4_	_centrif_1	7 1	7032.8	924	569.741	8252.08	7073.47
SLE_rar_ven	to_gr4_25	1	7032.8	929.891	1324.37	8298.03	15928.4
SLE_rar_ven	to_gr4_25	1	7032.8	929.891	1324.37	8298.03	15928.4
SLE_rar_ven	to_gr4_25	1	7032.8	929.891	1324.37	8298.03	15928.4
SLE_rar_ven	to_gr4_25	1	7032.8	929.891	1324.37	8298.03	15928.4
SLE_qp_gr1_	_Treno_44	. 13	3239.1	0	54.9252	0	453.133
SLE_qp_gr1-	+vento_48	3 13	3239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr1-	+vento_48	3 13	3239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr1-	+vento_48	3 13	3239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr1-	+vento_48	3 13	3239.1	1.17816	205.852	9.18964	2224.11
E_103x_SLD)_ q=1_69	1.	3364.7	2556.92	956.251	18761.6	8066.44
E_103y_SLD	0_ q=1_70	1.	3364.7	767.9	2707.18	5628.47	25445
E_103z_SLD) _q=1_71		13658	767.9	956.251	5628.47	8066.44

BASE FOND	AZIONE					
combo		N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_	Treno_14	27245.6	577.5	695.699	7283.22	10793
SLE_rar_gr3+	-vento_20	27245.6	1158.53	890.49	13818.3	13315.8
SLE_rar_vent	co_gr4_25	26297.2	929.891	1324.37	11087.7	19901.5
SLE_rar_gr3+	-vento_20	27245.6	1158.53	890.49	13818.3	13315.8
SLE_rar_vent	.o_gr4_25	26297.2	929.891	1324.37	11087.7	19901.5
SLE_rar_gr4_	centrif_17	26297.2	924	569.741	11024.1	8782.7
SLE_rar_vent	.o_gr4_25	26297.2	929.891	1324.37	11087.7	19901.5
SLE_rar_vent	.o_gr4_25	26297.2	929.891	1324.37	11087.7	19901.5
SLE_rar_vent	co_gr4_25	26297.2	929.891	1324.37	11087.7	19901.5
SLE_rar_vent	.o_gr4_25	26297.2	929.891	1324.37	11087.7	19901.5
SLE_qp_gr1_	Treno_44	22503.4	0	54.9252	0	617.909
SLE_qp_gr1+	vento_48	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_gr1+	-vento_48	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_gr1+	vento_48	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_gr1+	vento_48	22503.4	1.17816	205.852	12.7241	2841.66
E_103x_SLD	_q=1_69	22675	3053.57	1105.25	27922.3	11382.2
E_103y_SLD	_q=1_70	22675	1264.55	2856.18	9422.12	34013.6
E_103z_SLD	_q=1_71	23075.5	1264.55	1105.25	9422.12	11382.2

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1105004	В	66 di 116

Configurazione2

TESTA PILA					
combo	N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno_85	12383.3	577.5	647.437	3537.47	3056.64
SLE_rar_gr3+vento_91	12383.3	1158.53	842.229	3797.34	3475.72
SLE_rar_vento_gr4_96	11837.1	929.891	1285.76	3037.87	5420
SLE_rar_gr3_Fre/avv_87	12383.3	1155	389.45	3797.34	1694.47
SLE_rar_vento_gr4_96	11837.1	929.891	1285.76	3037.87	5420
SLE_rar_gr4_centrif_88	11837.1	924	531.132	3037.87	2451.24
SLE_rar_vento_gr4_96	11837.1	929.891	1285.76	3037.87	5420
SLE_rar_vento_gr4_96	11837.1	929.891	1285.76	3037.87	5420
SLE_rar_gr4_centrif_88	11837.1	924	531.132	3037.87	2451.24
SLE_rar_vento_gr4_96	11837.1	929.891	1285.76	3037.87	5420
SLE_qp_gr1_Treno_115	9652	0	54.9252	0	24.7163
SLE_qp_gr1+vento_119	9652	1.17816	205.852	0	618.468
SLE_qp_gr1+vento_119	9652	1.17816	205.852	0	618.468
SLE_qp_gr1_Treno_115	9652	0	54.9252	0	24.7163
SLE_qp_gr1+vento_119	9652	1.17816	205.852	0	618.468
E_103x_SLD_q=1_140	9799.33	2829.71	1045.29	0	0
E_103y_SLD_q=1_141	9799.33	849.738	3003.97	0	0
E_103z_SLD_q=1_142	10143.1	849.738	1045.29	0	0

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B67 di 116

BASE PILA					
combo	N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno_85	15970.4	577.5	695.699	5550.72	8705.9
SLE_rar_gr3+vento_91	15970.4	1158.53	842.229	12833.9	10045.1
SLE_rar_vento_gr4_96	15424.1	929.891	1285.76	10291	15449
SLE_rar_gr3+vento_91	15970.4	1158.53	842.229	12833.9	10045.1
SLE_rar_vento_gr4_96	15424.1	929.891	1285.76	10291	15449
SLE_rar_gr4_centrif_88	15424.1	924	531.132	10245.1	6594.07
SLE_rar_vento_gr4_96	15424.1	929.891	1285.76	10291	15449
SLE_rar_vento_gr4_96	15424.1	929.891	1285.76	10291	15449
SLE_rar_vento_gr4_96	15424.1	929.891	1285.76	10291	15449
SLE_rar_vento_gr4_96	15424.1	929.891	1285.76	10291	15449
SLE_qp_gr1_Treno_115	13239.1	0	54.9252	0	453.133
SLE_qp_gr1+vento_119	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr1+vento_119	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr1+vento_119	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr1+vento_119	13239.1	1.17816	205.852	9.18964	2224.11
E_103x_SLD_q=1_140	13386.4	2829.71	1045.29	23430.2	9750.2
E_103y_SLD_q=1_141	13386.4	849.738	3003.97	7029.07	31057.6
E_103z_SLD_q=1_142	13730.2	849.738	1045.29	7029.07	9750.2

BASE FONDAZIONE						
combo		N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno	_85	25234.7	577.5	695.699	7283.22	10793
SLE_rar_gr3+vento	_91	25234.7	1158.53	842.229	16309.5	12571.8
SLE_rar_vento_gr4_	_96	24688.5	929.891	1285.76	13080.7	19306.2
SLE_rar_gr3+vento	_91	25234.7	1158.53	842.229	16309.5	12571.8
SLE_rar_vento_gr4_	_96	24688.5	929.891	1285.76	13080.7	19306.2
SLE_rar_gr4_centrif	f_88	24688.5	924	531.132	13017.1	8187.47
SLE_rar_vento_gr4_	_96	24688.5	929.891	1285.76	13080.7	19306.2
SLE_rar_vento_gr4_	_96	24688.5	929.891	1285.76	13080.7	19306.2
SLE_rar_vento_gr4_	_96	24688.5	929.891	1285.76	13080.7	19306.2
SLE_rar_vento_gr4_	_96	24688.5	929.891	1285.76	13080.7	19306.2
SLE_qp_gr1_Treno	_115	22503.4	0	54.9252	0	617.909
SLE_qp_gr1+vento	_119	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_gr1+vento	_119	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_gr1+vento	_119	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_gr1+vento	SLE_qp_gr1+vento_119		1.17816	205.852	12.7241	2841.66
E_103x_SLD_q=1_140		22696.7	3326.36	1194.28	33409.3	13333.1
E_103y_SLD_q=1_	_141	22696.7	1346.39	3152.97	11068.2	40516.5
E_103z_SLD_q=1_	_142	23147.7	1346.39	1194.28	11068.2	13333.1

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B68 di 116

Configurazione3

TESTA PILA						
combo		N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Tr	reno_156	14394.2	577.5	695.699	1046.22	3279.45
SLE_rar_gr3+v	ento_162	14394.2	1158.53	890.49	1306.1	3698.53
SLE_rar_vento_	_gr4_167	13445.8	929.891	1324.37	1044.88	5598.25
SLE_rar_gr3_F1	e/avv_158	14394.2	1155	437.711	1306.1	1917.27
SLE_rar_vento_	_gr4_167	13445.8	929.891	1324.37	1044.88	5598.25
SLE_rar_gr4_ce	entrif_159	13445.8	924	569.741	1044.88	2629.49
SLE_rar_vento_gr4_167		13445.8	929.891	1324.37	1044.88	5598.25
SLE_rar_vento_	SLE_rar_vento_gr4_167		929.891	1324.37	1044.88	5598.25
SLE_rar_gr4_ce	entrif_159	13445.8	924	569.741	1044.88	2629.49
SLE_rar_vento_	_gr4_167	13445.8	929.891	1324.37	1044.88	5598.25
SLE_qp_gr1_T1	eno_186	9652	0	54.9252	0	24.7163
SLE_qp_gr1+v	ento_190	9652	1.17816	205.852	0	618.468
SLE_qp_gr1+v	ento_190	9652	1.17816	205.852	0	618.468
SLE_qp_gr1_T1	SLE_qp_gr1_Treno_186		0	54.9252	0	24.7163
SLE_qp_gr1+vento_190		9652	1.17816	205.852	205.852	618.468
E_103x_SLD_q=1_211		9799.33	2829.71	1045.29	0	0
E_103y_SLD_q=1_212		9799.33	849.738	3003.97	0	0
E_103z_SLD_q	=1_213	10143.1	849.738	1045.29	0	0

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1105004 B 69 di 116

BASE PILA	4						
combo			N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr	1_Treno	_156	17981.3	577.5	695.699	5550.72	8705.9
SLE_rar_gr	3+vento	_162	17981.3	1158.53	890.49	10342.7	10644.4
SLE_rar_ve	ento_gr4_	_167	17032.8	929.891	1324.37	8298.03	15928.4
SLE_rar_gr	3+vento	_162	17981.3	1158.53	890.49	10342.7	10644.4
SLE_rar_ve	ento_gr4_	_167	17032.8	929.891	1324.37	8298.03	15928.4
SLE_rar_gr	4_centri	f_159	17032.8	924	569.741	8252.08	7073.47
SLE_rar_ve	ento_gr4_	_167	17032.8	929.891	1324.37	8298.03	15928.4
SLE_rar_ve	ento_gr4_	_167	17032.8	929.891	1324.37	8298.03	15928.4
SLE_rar_ve	ento_gr4_	_167	17032.8	929.891	1324.37	8298.03	15928.4
SLE_rar_ve	ento_gr4_	_167	17032.8	929.891	1324.37	8298.03	15928.4
SLE_qp_gr	1_Treno	_186	13239.1	0	54.9252	0	453.133
SLE_qp_gr	1+vento	_190	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr	1+vento	_190	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr	1+vento	_190	13239.1	1.17816	205.852	9.18964	2224.11
SLE_qp_gr	1+vento	_190	13239.1	1.17816	205.852	205.852	2224.11
E_103x_SI	LD_q=1_	_211	13386.4	2829.71	1045.29	23430.2	9750.2
E_103y_SI	LD_q=1_	_212	13386.4	849.738	3003.97	7029.07	31057.6
E_103z_SI	_D_q=1_	_213	13730.2	849.738	1045.29	7029.07	9750.2

BASE FONDAZIONE							
combo			N	Tlong	Ttras	Mlong	Mtras
SLE_rar_	gr1_Treno	_156	27245.6	577.5	695.699	7283.22	10793
SLE_rar_	gr3+vento	_162	27245.6	1158.53	890.49	13818.3	13315.8
SLE_rar_	vento_gr4	_167	26297.2	929.891	1324.37	11087.7	19901.5
SLE_rar_	gr3+vento	_162	27245.6	1158.53	890.49	13818.3	13315.8
SLE_rar_	vento_gr4	_167	26297.2	929.891	1324.37	11087.7	19901.5
SLE_rar_	gr4_centri	f_159	26297.2	924	569.741	11024.1	8782.7
SLE_rar_	vento_gr4	_167	26297.2	929.891	1324.37	11087.7	19901.5
SLE_rar_	vento_gr4	_167	26297.2	929.891	1324.37	11087.7	19901.5
SLE_rar_	vento_gr4	_167	26297.2	929.891	1324.37	11087.7	19901.5
SLE_rar_	vento_gr4	_167	26297.2	929.891	1324.37	11087.7	19901.5
SLE_qp_	gr1_Treno	_186	22503.4	0	54.9252	0	617.909
SLE_qp_	gr1+vento	_190	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_	gr1+vento	_190	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_	gr1+vento	_190	22503.4	1.17816	205.852	12.7241	2841.66
SLE_qp_	gr1+vento	_190	22503.4	1.17816	205.852	205.852	2841.66
E_103x_SLD_q=1_211			22696.7	3326.36	1194.28	33409.3	13333.1
E_103y_SLD_q=1_212			22696.7	1346.39	3152.97	11068.2	40516.5
E_103z_5	SLD_q=1_	_213	23147.7	1346.39	1194.28	11068.2	13333.1

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	70 di 116

6.2.2 Stati limiti utlimi

Configurazione1

TESTA PILA					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_1	20607.5	837.375	1094.57	1517.02	4793.81
A1_SLU_gr3+vento_7	20607.5	1680.05	1399.66	1893.84	5490.54
A1_SLU_vento_gr4_12	19232.3	1348.64	2027.38	1515.07	8297.08
A1_SLU_gr3_Fre/avv_3	20607.5	1674.75	720.491	1893.84	2818.66
A1_SLU_vento_gr4_12	19232.3	1348.64	2027.38	1515.07	8297.08
E_103x_SLV_q=1.5_60	10143.5	3623.17	1269.43	0	0
E_103y_SLV_q=1.5_61	10143.5	1087.78	3751.11	0	0
E_103z_SLV_q=1.5_62	11290.2	1087.78	1269.43	0	0
E_103x_SLV_q=1_66	10143.5	5439.6	1802.62	0	0
E_103y_SLV_q=1_67	10143.5	1632.7	5528.4	0	0
E_103z_SLV_q=1_68	11290.2	1632.7	1802.62	0	0
BASE PILA					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_1	25450.1	837.375	1094.57	8048.55	13331.5
A1_SLU_gr3+vento_7	25450.1	1680.05	1399.66	14998.2	16407.9
A1_SLU_vento_gr4_12	24074.8	1348.64	2027.38	12034.4	24110.6
A1_SLU_gr3+vento_7	25450.1	1680.05	1399.66	14998.2	16407.9
A1_SLU_vento_gr4_12	24074.8	1348.64	2027.38	12034.4	24110.6
E_103x_SLV_q=1.5_60	13730.5	3623.17	1269.43	26586.4	11172.8
E_103y_SLV_q=1.5_61	13730.5	1087.78	3751.11	7975.92	35799.5
E_103z_SLV_q=1.5_62	14877.3	1087.78	1269.43	7975.92	11172.8
E_103x_SLV_q=1_66	13730.5	5439.6	1802.62	39923.8	16467.4
E_103y_SLV_q=1_67	13730.5	1632.7	5528.4	11977.2	53448.4
E_103z_SLV_q=1_68	14877.3	1632.7	1802.62	11977.2	16467.4
BASE FONDAZIONE					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_1	37956.9		1094.57		16615.2
A1_SLU_gr3+vento_7	37956.9	1680.05	1399.66	20038.4	20606.9
A1_SLU_vento_gr4_12	36581.7	1348.64	2027.38	16080.3	30192.8
A1_SLU_gr3+vento_7	37956.9	1680.05	1399.66	20038.4	20606.9
A1_SLU_vento_gr4_12	36581.7	1348.64	2027.38	16080.3	30192.8
E_103x_SLV_q=1.36_63	23125.6	4982.41	1674.9	44192.3	17252.9
E_103y_SLV_q=1.36_64	23125.6	2193.48	4404.75	15353.9	52531.9
E_103z_SLV_q=1.36_65	24577.3	2193.48	1674.9	15353.9	17252.9
E_103x_SLV_q=1_66	23125.6	6436.64	2101.73	59233.8	22772.6
E_103y_SLV_q=1_67	23125.6	2629.75	5827.51	19866.4	70930.9
E_103z_SLV_q=1_68	24577.3	2629.75	2101.73	19866.4	22772.6

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B71 di 116

Configurazione2

TESTA PILA					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_72	17691.7	837.375	989.605	5129.32	4455
A1_SLU_gr3+vento_78	17691.7	1680.05	1294.69	5506.14	5151.73
A1_SLU_vento_gr4_83	16899.6	1348.64	1943.4	4404.91	8026.03
A1_SLU_gr3_Fre/avv_74	17691.7	1674.75	615.523	5506.14	2479.84
A1_SLU_vento_gr4_83	16899.6	1348.64	1943.4	4404.91	8026.03
E_103x_SLV_q=1.5_131	10143.5	3623.17	1269.43	0	0
E_103y_SLV_q=1.5_132	10143.5	1087.78	3751.11	0	0
E_103z_SLV_q=1.5_133	11290.2	1087.78	1269.43	0	0
E_103x_SLV_q=1_137	10143.5	5439.6	1802.62	0	0
E_103y_SLV_q=1_138	10143.5	1632.7	5528.4	0	0
E_103z_SLV_q=1_139	11290.2	1632.7	1802.62	0	0
BASE PILA					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_72	22534.3	837.375	989.605	11660.8	12173.9
A1_SLU_gr3+vento_78	22534.3	1680.05	1294.69	18610.5	15250.3
A1_SLU_vento_gr4_83	21742.2	1348.64	1943.4	14924.3	23184.6
A1_SLU_gr3+vento_78	22534.3	1680.05	1294.69	18610.5	15250.3
A1_SLU_vento_gr4_83	21742.2	1348.64	1943.4	14924.3	23184.6
E_103x_SLV_q=1.5_131	13730.5	3623.17	1269.43	26586.4	11172.8
E_103y_SLV_q=1.5_132	13730.5	1087.78	3751.11	7975.92	35799.5
E_103z_SLV_q=1.5_133	14877.3	1087.78	1269.43	7975.92	11172.8
E_103x_SLV_q=1_137	13730.5	5439.6	1802.62	39923.8	16467.4
E_103y_SLV_q=1_138	13730.5	1632.7	5528.4	11977.2	53448.4
E_103z_SLV_q=1_139	14877.3	1632.7	1802.62	11977.2	16467.4
BASE FONDAZIONE					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_72	35041.1	837.375	989.605	14173	15142.7
A1_SLU_gr3+vento_78	35041.1	1680.05	1294.69	23650.7	19134.4
A1_SLU_vento_gr4_83	34249.1	1348.64	1943.4	18970.2	29014.8
A1_SLU_gr3+vento_78	35041.1	1680.05	1294.69	23650.7	19134.4
A1_SLU_vento_gr4_83	34249.1	1348.64	1943.4	18970.2	29014.8
E_103x_SLV_q=1.36_134	23125.6	4982.41	1674.9	44192.3	17252.9
E_103y_SLV_q=1.36_135	23125.6	2193.48	4404.75	15353.9	52531.9
E_103z_SLV_q=1.36_136	24577.3	2193.48	1674.9	15353.9	17252.9
E_103x_SLV_q=1_137	23125.6	6436.64	2101.73	59233.8	22772.6
E_103y_SLV_q=1_138	23125.6	2629.75	5827.51	19866.4	70930.9
E_103z_SLV_q=1_139	24577.3	2629.75	2101.73	19866.4	22772.6

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B72 di 116

Configurazione3

TESTA PILA					
THE TITLE	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_143	20607.5	837.375	1094.57	1517.02	4793.81
A1_SLU_gr3+vento_149	20607.5	1680.05	1399.66	1893.84	5490.54
A1_SLU_vento_gr4_154	19232.3	1348.64	2027.38	1515.07	8297.08
A1_SLU_gr3_Fre/avv_145	20607.5	1674.75	720.491	1893.84	2818.66
A1_SLU_vento_gr4_154	19232.3	1348.64	2027.38	1515.07	8297.08
E_103x_SLV_q=1.5_202	10143.5	3623.17	1269.43	0	0
E_103y_SLV_q=1.5_203	10143.5	1087.78	3751.11	0	0
E_103z_SLV_q=1.5_204	11290.2	1087.78	1269.43	0	0
E_103x_SLV_q=1_208	10143.5	5439.6	1802.62	0	0
E_103y_SLV_q=1_209	10143.5	1632.7	5528.4	0	0
E_103z_SLV_q=1_210	11290.2	1632.7	1802.62	0	0
BASE PILA					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_143	25450.1	837.375	1094.57	8048.55	13331.5
A1_SLU_gr3+vento_149	25450.1	1680.05	1399.66	14998.2	16407.9
A1_SLU_vento_gr4_154	24074.8	1348.64	2027.38	12034.4	24110.6
A1_SLU_gr3+vento_149	25450.1	1680.05	1399.66	14998.2	16407.9
A1_SLU_vento_gr4_154	24074.8	1348.64	2027.38	12034.4	24110.6
E_103x_SLV_q=1.5_202	13730.5	3623.17	1269.43	26586.4	11172.8
E_103y_SLV_q=1.5_203	13730.5	1087.78	3751.11	7975.92	35799.5
E_103z_SLV_q=1.5_204	14877.3	1087.78	1269.43	7975.92	11172.8
E_103x_SLV_q=1_208	13730.5	5439.6	1802.62	39923.8	16467.4
E_103y_SLV_q=1_209	13730.5	1632.7	5528.4	11977.2	53448.4
E_103z_SLV_q=1_210	14877.3	1632.7	1802.62	11977.2	16467.4
BASE FONDAZIONE					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_143	37956.9	837.375	1094.57	10560.7	16615.2
A1_SLU_gr3+vento_149	37956.9	1680.05	1399.66	20038.4	20606.9
A1_SLU_vento_gr4_154	36581.7	1348.64	2027.38	16080.3	30192.8
A1_SLU_gr3+vento_149	37956.9	1680.05	1399.66	20038.4	20606.9
A1_SLU_vento_gr4_154	36581.7	1348.64	2027.38	16080.3	30192.8
E_103x_SLV_q=1.36_205	23125.6	4982.41	1674.9	44192.3	17252.9
E_103y_SLV_q=1.36_206	23125.6	2193.48	4404.75	15353.9	52531.9
E_103z_SLV_q=1.36_207	24577.3	2193.48	1674.9	15353.9	17252.9
E_103x_SLV_q=1_208	23125.6	6436.64	2101.73	59233.8	22772.6
E_103y_SLV_q=1_209	23125.6	2629.75	5827.51	19866.4	70930.9
E_103z_SLV_q=1_210	24577.3	2629.75	2101.73	19866.4	22772.6

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	73 di 116

7. VERIFICHE STRUTTURALI

Le armature di calcolo derivanti dalle verifiche di resistenza e di esercizio soddisfano le quantità minime indicate dalla normativa, si riepilogano i quantitativi di ciascun elemento.

elemento	arm. flessionale	staffe	c.f
fusto	164 Φ26 interasse 10 cm*	Ф12/15	8.7 cm
plinto	Trasv: 3 strati Φ 30/10 Long 3 strati Φ 30/10	-	8.7 cm
pali	36 Ф30 interasse 15 cm*	Ф12/20	9.7 cm

^{*}è riferito alla corona esterna di armatura mentre, l'interasse della corona interna è funzione dell'allineamento con quella esterna. È comunque rispettato l'iterasse minimo.

Le spille adottate sono disposte nel rispetto della norma vigente.

8. FUSTO PILA

Secondo quanto riportano al paragrafo 7.3 e 7.3.6.1 delle Norme Tecniche delle Costruzioni 2018, adottando un fattore di comportamento pari a 1.5, la struttura può essere progettata come non dissipativa:

Tab. 7.3.I – Limiti su q e modalità di modellazione dell'azione sismica

CT ATLI IMITE		Lineare (Di	namica e Statica)	Non Lineare	
STATI LIMITE		Dissipativo	Non Dissipativo	Dinamica	Statica
CLE	SLO	q = 1.0 § 3.2.3.4	q = 1.0 § 3.2.3.4		
SLE	SLD	q≤1,5 § 3.2.3.5	q ≤ 1,5 § 3.2.3.5	§ 7.3.4.1	§ 7.3.4.2
SLU	SLV	q≥1,5 § 3.2.3.5	q ≤ 1,5 § 3.2.3.5		
	SLC				

[&]quot;Nel caso di analisi lineare la verifica di duttilità si può ritenere soddisfatta, rispettando per tutti gli elementi strutturali, sia primari sia secondari, le regole specifiche per i dettagli costruttivi precisate nel presente capitolo per le

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	74 di 116

diverse tipologie costruttive; tali regole sono da considerarsi aggiuntive rispetto a quanto previsto nel Cap. 4 e a quanto imposto dalle regole della progettazione in capacità, il cui rispetto è comunque obbligatorio per gli elementi strutturali primari delle strutture a comportamento dissipativo.

Per strutture a comportamento dissipativo, qualora non siano rispettate le regole specifiche dei dettagli costruttivi, quali precisate nel presente capitolo, occorrerà procedere a verifiche di duttilità. diversamente specificato nei paragrafi successivi relativi alle diverse tipologie costruttive, accertando che la capacità in duttilità della costruzione sia almeno pari:

- a 1,2 volte la domanda in duttilità locale, valutata in corrispondenza dello SLV, nel caso si utilizzino modelli lineari,
- alla domanda in duttilità locale e globale allo SLC, nel caso si utilizzino modelli non lineari.

Le verifiche di duttilità non sono dovute nel caso di progettazione con $q \leq 1,5$.

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1105004 B 75 di 116

Progetto definitivo Relazione di calcolo Pile – P12

8.1 Modellazione

La geometria della sezione della pila è stata implementata all'interno del software di calcolo RC-SEC con i relativi ferri di armatura longitudinale.

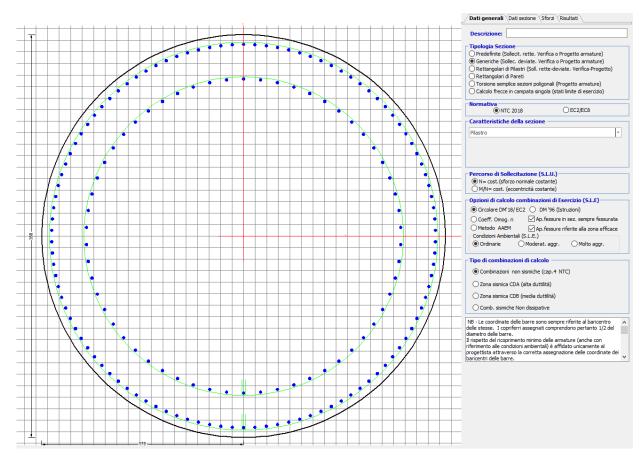


Figura 12 - Sezione implementata in RC-SEC

Per un totale di ferri 164 di diametro Φ 26 che corrispondono ad un passo di 10cm lungo il bordo esterno e speculari all'interno della sezione.

8.2 Verifica a presso flessione

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: Circolare 3.5m

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO

NUOVO COLLEGAMENTO PALERMO - CATANIA

PROGETTO DEFINITIVO

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

15.00

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	76 di 116

Condizioni Ambientali:

Poco aggressive

Riferimento Sforzi assegnati:

Assi baric. X',Y' // assi coordinate.

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -C32/40 Classe:

> Resis. compr. di progetto fcd: 18.130 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 3334.6 MPa Resis. media a trazione fctm: 3.000 MPa Coeff. Omogen. S.L.E.: 15.00

Coeff. Omogen. S.L.E.: Sc limite S.L.E. comb. Frequenti: 176.00 daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO -Tipo: B450C

450.00 Resist. caratt. snervam. fyk: MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di progetto fyd: MPa 391.30 Resist. ultima di progetto ftd: 391.30 MPa

Deform. ultima di progetto Epu: 0.068

2000000 Modulo Elastico Ef daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C32/40

Raggio circ.: 175.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Xcentro Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Raggio [cm] della circonferenza lungo cui sono disposte le barre generate Raggio Numero di barre generate equidist. disposte lungo la circonferenza N°Barre

Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	0.0	0.0	166.5	106	26
2	0.0	0.0	136.5	58	26

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ø

Му

Vy

٧x

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Progetto definitivo VI1105004 Relazione di calcolo Pile – P12 RS3T 30 D09CL В 77 di 116

> con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse Y' // asse Y coord. con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse Y delle coord. Componente del Taglio [kN] parallela all'asse X delle coord.

N°Comb.	N	MX	MY	VY	VX
1	25450.06	8048.55	13331.49	0.00	0.00
2	25450.06	14998.24	16407.89	0.00	0.00
3	24074.81	12034.43	24110.64	0.00	0.00
4	25450.06	14998.24	16407.89	0.00	0.00
5	24074.81	12034.43	24110.64	0.00	0.00
6	13730.52	26586.39	11172.78	0.00	0.00
7	13730.52	7975.92	35799.51	0.00	0.00
8	14877.25	7975.92	11172.78	0.00	0.00
9	22534.26	11660.85	12173.92	0.00	0.00
10	22534.26	18610.55	15250.32	0.00	0.00
11	21742.17	14924.28	23184.59	0.00	0.00
12	22534.26	18610.55	15250.32	0.00	0.00
13	21742.17	14924.28	23184.59	0.00	0.00
14	13730.52	26586.39	11172.78	0.00	0.00
15	13730.52	7975.92	35799.51	0.00	0.00
16	14877.25	7975.92	11172.78	0.00	0.00
17	25450.06	8048.55	13331.49	0.00	0.00
18	25450.06	14998.24	16407.89	0.00	0.00
19	24074.81	12034.43	24110.64	0.00	0.00
20	25450.06	14998.24	16407.89	0.00	0.00
21	24074.81	12034.43	24110.64	0.00	0.00
22	13730.52	26586.39	11172.78	0.00	0.00
23	13730.52	7975.92	35799.51	0.00	0.00
24	14877.25	7975.92	11172.78	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse X delle coordinate (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse Y delle coordinate (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	MX	MY
1	17981.28	5550.72	8705.90
2	17981.28	10342.67	10644.35
3	17032.84	8298.03	15928.35
4	17981.28	10342.67	10644.35
5	17032.84	8298.03	15928.35
6	15970.39	5550.72	8705.90
7	15970.39	12833.91	10045.10
8	15424.12	10291.02	15448.96
9	15970.39	12833.91	10045.10
10	15424.12	10291.02	15448.96
11	17981.28	5550.72	8705.90
12	17981.28	10342.67	10644.35
13	17032.84	8298.03	15928.35
14	17981.28	10342.67	10644.35
15	17032.84	8298.03	15928.35
16	13364.73	18761.55	8066.44
17	13364.73	5628.47	25445.03
18	13657.96	5628.47	8066.44
19	13386.40	23430.24	9750.20

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	78 di 116

20	13386.40	7029.07	31057.59
21	13730.17	7029.07	9750.20
22	13386.40	23430.24	9750.20
23	13386.40	7029.07	31057.59
24	13730.17	7029.07	9750.20

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X delle coordinate (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse Y delle coordinate (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	MX	MY
1	17032.84	8252.08 (44011.81)	7073.47 (37725.79)
2	17032.84	8298.03 (12789.08)	15928.35 (24549.06)
3	17032.84	8298.03 (12789.08)	15928.35 (24549.06)
4	17032.84	8298.03 (12789.08)	15928.35 (24549.06)
5	17032.84	8298.03 (12789.08)	15928.35 (24549.06)
6	15424.12	10245.07 (31805.64)	6594.07 (20471.18)
7	15424.12	10291.02 (13961.33)	15448.96 (20958.86)
8	15424.12	10291.02 (13961.33)	15448.96 (20958.86)
9	15424.12	10291.02 (13961.33)	15448.96 (20958.86)
10	15424.12	10291.02 (13961.33)	15448.96 (20958.86)
11	17032.84	8252.08 (44011.81)	7073.47 (37725.79)
12	17032.84	8298.03 (12789.08)	15928.35 (24549.06)
13	17032.84	8298.03 (12789.08)	15928.35 (24549.06)
14	17032.84	8298.03 (12789.08)	15928.35 (24549.06)
15	17032.84	8298.03 (12789.08)	15928.35 (24549.06)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale	[kN] applicato nel Baricentro (+ se di compressione)
------------------	--

Mx Momento flettente [kNm] intorno all'asse X delle coordinate (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse Y delle coordinate (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	MX	MY
1	13239.06	0.00 (0.00)	453.13 (0.00)
2	13239.06	9.19 (0.00)	2224.11 (0.00)
3	13239.06	9.19 (0.00)	2224.11 (0.00)
4	13239.06	9.19 (0.00)	2224.11 (0.00)
5	13239.06	9.19 (0.00)	2224.11 (0.00)
6	13239.06	0.00 (0.00)	453.13 (0.00)
7	13239.06	9.19 (0.00)	2224.11 (0.00)
8	13239.06	9.19 (0.00)	2224.11 (0.00)
9	13239.06	9.19 (0.00)	2224.11 (0.00)
10	13239.06	9.19 (0.00)	2224.11 (0.00)
11	13239.06	0.00 (0.00)	453.13 (0.00)
12	13239.06	9.19 (0.00)	2224.11 (0.00)
13	13239.06	9.19 (0.00)	2224.11 (0.00)
14	13239.06	9.19 (0.00)	2224.11 (0.00)
15	13239.06	205.85 (0.00)	2224.11 (0.00)

RISULTATI DEL CALCOLO

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Progetto definitivo RS3T 30 D09CL VI1105004 В 79 di 116 Relazione di calcolo Pile – P12

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 7.3 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls. (positivo se di compressione) MXComponente X del momento assegnato [kNm] rifer. assi X,Y con origine nel baric. B del cls. MY Componente Y del momento assegnato [kNm] rifer. assi X,Y con origine nel baric. B del cls. Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compressione) N Res Momento flettente resistente [kNm] rif. X,Y,B (tra parentesi rif. assi princ. inerzia) MX Res Momento flettente resistente [kNm] rif. X,Y,B (tra parentesi rif. assi princ. inerzia) MY Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)
Verifica positiva se tale rapporto risulta >=1.000
Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa] Mis.Sic.

As Totale

N°Comb	Ver	N	MX	MY	N Res	MX Res	MY Res	Mis.Sic. As Totale
1	S	25450.06	8048.55	13331.49	25449.99	37151.91(37151.91) 61545	5.57(61545.57)	4.62870.7(288.6)
2	Š	25450.06	14998.24	16407.89	25450.14	48510.22(48510.22) 53060		3.23870.7(288.6)
3	Š	24074.81	12034.43	24110.64	24074.93	31627.94(31627.94) 63373		2.63870.7(288.6)
4	Š	25450.06	14998.24	16407.89	25450.14	48510.22(48510.22) 53060		3.23870.7(288.6)
5	Š	24074.81	12034.43	24110.64	24074.93	31627.94(31627.94) 63373	` ,	2.63870.7(288.6)
6	S	13730.52	26586.39	11172.78	13730.62	57113.32(57113.32) 23993	` ,	2.15870.7(288.6)
7	S	13730.52	7975.92	35799.51	13730.62	13473.76(13473.76) 60465		1.69870.7(288.6)
8	S	14877.25	7975.92	11172.78	14877.19	36610.94(36610.94) 51281		4.59870.7(288.6)
9	S	22534.26	11660.85	12173.92	22534.43	48154.58(48154.58) 50261		4.13870.7(288.6)
10	S	22534.26	18610.55	15250.32	22534.04	53847.35(53847.35) 44110	` ,	2.89870.7(288.6)
11	S	21742.17	14924.28	23184.59	21742.16	37335.97(37335.97) 57982		2.50870.7(288.6)
12	S	22534.26	18610.55	15250.32	22534.04	53847.35(53847.35) 44110		2.89870.7(288.6)
13	S	21742.17	14924.28	23184.59	21742.16	37335.97(37335.97) 57982		2.50870.7(288.6)
14	S	13730.52	26586.39	11172.78	13730.62	57113.32(57113.32) 23993		2.15870.7(288.6)
15	S	13730.52	7975.92	35799.51	13730.62	13473.76(13473.76) 60465	5.07(60465.07)	1.69870.7(288.6)
16	S	14877.25	7975.92	11172.78	14877.19	36610.94(36610.94) 51281	1.14(51281.14)	4.59870.7(288.6)
17	S	25450.06	8048.55	13331.49	25449.99	37151.91(37151.91) 61545	5.57(61545.57)	4.62870.7(288.6)
18	S	25450.06	14998.24	16407.89	25450.14	48510.22(48510.22) 53060	0.09(53060.09)	3.23870.7(288.6)
19	S	24074.81	12034.43	24110.64	24074.93	31627.94(31627.94) 63373	3.40(63373.40)	2.63870.7(288.6)
20	S	25450.06	14998.24	16407.89	25450.14	48510.22(48510.22) 53060	0.09(53060.09)	3.23870.7(288.6)
21	S	24074.81	12034.43	24110.64	24074.93	31627.94(31627.94) 63373	3.40(63373.40)	2.63870.7(288.6)
22	S	13730.52	26586.39	11172.78	13730.62	57113.32(57113.32) 23993	3.01(23993.01)	2.15870.7(288.6)
23	S	13730.52	7975.92	35799.51	13730.62	13473.76(13473.76) 60465	5.07(60465.07)	1.69870.7(288.6)
24	S	14877.25	7975.92	11172.78	14877.19	36610.94(36610.94) 51281	1.14(51281.14)	4.59870.7(288.6)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del conglomerato a compressione
Deform. unit. massima del conglomerato a compressione
Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Deform. unit. minima nell'acciaio (negativa se di trazione)
Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Deform. unit. massima nell'acciaio (positiva se di compress.)
Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	149.8	0.0	0.00323	140.8	88.9	-0.00735	-140.8	-88.9
2	0.00350	129.2	0.7	0.00323	122.8	112.4	-0.00735	-122.8	-112.4
3	0.00350	156.6	0.7	0.00322	150.3	71.6	-0.00758	-150.3	-71.6
4	0.00350	129.2	0.7	0.00323	122.8	112.4	-0.00735	-122.8	-112.4

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

Progetto definitivo			COMMES	SA	LOTTO	CODIFI	CA	DOCUMENTO	REV.	FOGLIO
	alcolo Pile – P12		RS3T		30	D09C	L	VI1105004	В	80 di 116
				•			•			
5	0.00350	156.6	0.7	0.00322	150.3	71.6	-0.00758	8 -150.3	-71.6	
6	0.00350	67.8	0.0	0.00317	67.1	152.4	-0.00968	8 -67.1	-152.4	
7	0.00350	170.8	0.7	0.00317	162.9	34.3	-0.00968	8 -162.9	-34.3	
8	0.00350	142.4	0.7	0.00318	3 135.3	97.1	-0.0094°	1 -135.3	-97.1	
9	0.00350	126.4	0.7	0.00322	122.8	112.4	-0.0078	4 -122.8	-112.4	
10	0.00350	110.9	0.7	0.00322	108.7	126.1	-0.0078	4 -108.7	-126.1	
11	0.00350	147.1	0.0	0.0032	140.8	88.9	-0.00799	9 -140.8	-88.9	
12	0.00350	110.9	0.7	0.00322	2 108.7	126.1	-0.0078	4 -108.7	-126.1	
13	0.00350	147.1	0.7	0.0032	140.8	88.9	-0.00799	9 -140.8	-88.9	
14	0.00350	67.8	0.7	0.00317	67.1	152.4	-0.00968	8 -67.1	-152.4	
15	0.00350	170.8	16.1	0.00317	162.9	34.3	-0.00968	8 -162.9	-34.3	
16	0.00350	142.4	160.8	0.00318	3 135.3	97.1	-0.0094°	1 -135.3	-97.1	
17	0.00350	149.8	37.8	0.00323	140.8	88.9	-0.0073	5 -140.8	-88.9	
18	0.00350	129.2	100.1	0.00323	122.8	112.4	-0.0073	5 -122.8	-112.4	
19	0.00350	156.6	161.6	0.00322	150.3	71.6	-0.0075	8 -150.3	-71.6	
20	0.00350	129.2	38.6	0.00323	122.8	112.4	-0.0073	5 -122.8	-112.4	
21	0.00350	156.6	102.3	0.00322	2 150.3	71.6	-0.0075	8 -150.3	-71.6	
22	0.00350	67.8	161.6	0.00317	67.1	152.4	-0.00968	8 -67.1	-152.4	
23	0.00350	170.8	38.6	0.00317	162.9	34.3	-0.00968	8 -162.9	-34.3	
24	0.00350	142.4	102.3	0.00318	135.3	97.1	-0.0094°	1 -135.3	-97.1	

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c
Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d
Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.
Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb C.Rid. x/d 0.000027201 0.000016422 -0.002060503 1 2 0.000023452 0.000021438 -0.002060444 3 0.000029026 0.000014488 -0.002177047 4 0.000023452 0.000021438-0.002060444 5 0.000029026 0.000014488 -0.002177047 6 0.000014955 0.000035587 -0.003255352 -0.003255220 7 0.000037677 0.000008394 8 0.000030766 0.000021963 -0.003115205 9 0.000023992 0.000022981 -0.002314061 0.00002569710 0.000021057 -0.002313956 11 0.000028287 0.000018209 -0.002387251 12 0.000021057 0.000025697 -0.002313956 13 0.000028287 0.000018209 -0.002387251 14 0.000014955 0.000035587 -0.003255352 15 0.000037677 0.000008394 -0.003255220 16 0.000030766 0.000021963 -0.003115205 17 0.000027201 0.000016422 -0.002060503 18 0.000023452 0.000021438 -0.002060444 19 0.000029026 0.000014488 -0.002177047 20 0.000023452 0.000021438 -0.002060444

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

-0.002177047

-0.003255352

-0.003255220

-0.003115205

Ver S = comb. verificata/ N = comb. non verificata

0.000014488

0.000035587

0.000008394

0.000021963

21

22

23

0.000029026

0.000014955

0.000037677

0.000030766

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

S

S

S

S

S

S

S

S

S

S

S

S

S

S

11

12

13

14

15

16

17

18

19

20

21

22

23

24

3.68

4.82

5.78

4.82

5.78

6.79

8.85

3.27

8.60

10.96

3.88

8.60

10.96

3.88

147.6

125.5

155.2

125.5

155.2

69.1

170.9

143.5

67.2

170.7

142.0

67.2

170.7

142.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

37.2

95.6

143.4

95.6

143.4

196.4

217.7

79.6

212.4

223.0

100.9

212.4

223.0

100.9

883

4085

6894

4085

6894

10597

11885

2917

11780

12472

4456

11780

12472

4456

LOTTO CODIFICA COMMESSA DOCUMENTO REV. FOGLIO Progetto definitivo RS3T 30 D09CL VI1105004 В 81 di 116 Relazione di calcolo Pile – P12

Xs mir Ac eff. As eff.		n	Area di c	Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure								
N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.			
1	S	3.68	147.6	0.0	-4.5	-140.8	-88.9	883	37.2			
2	S	4.82	125.5	0.0	-24.8	-116.0	-119.5	4085	95.6			
3	S	5.78	155.2	0.0	-50.5	-145.8	-80.4	6894	143.4			
4	S	4.82	125.5	0.0	-24.8	-116.0	-119.5	4085	95.6			
5	S	5.78	155.2	0.0	-50.5	-145.8	-80.4	6894	143.4			
6	S	3.53	147.6	0.0	-8.3	-140.8	-88.9	1849	58.4			
7	S	5.24	107.9	0.0	-43.1	-101.0	-132.3	6598	143.4			
8	S	6.03	145.6	0.0	-65.6	-140.8	-88.9	8489	169.9			
9	S	5.24	107.9	0.0	-43.1	-101.0	-132.3	6598	143.4			
10	S	6.03	145.6	0.0	-65.6	-140.8	-88.9	8489	169.9			

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

	La sezione viene assunta sempre tessurata anche nei caso in cui la trazione minima dei calcestruzzo sia interiore a totm
Ver.	Esito della verifica
e1	Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata

e2 Minima deformazione di trazione del cls. (in sezione fessurata), valutata nella fibra più interna dell'area Ac eff

-4.5 -140.8

-24.8 -116.0

-50.5 -145.8

-24.8 -116.0

-50.5 -145.8

-67.1

-162.9

-135.3

-162.9

-135.3

-162.9

-23.1 -135.3

-67.1

-67.1

-100.4

-163.7

-11.4

-155.6

-231.8

-155.6

-231.8

-23.1

-88.9

-80.4

-119.5

-80.4

-152.4

-34.3

-97.1

-152.4

-34.3

-97.1

-152.4

-34.3

-97.1

-119.5

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt

= (e1 + e2)/(2*e1) [eq.(7.13)EC2]k2

= 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess.

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr m	x wk	MX fess	MY fess
	•						0.0004 (0.0004)			
1	S	-0.00003	0	0.833	26.0	72	0.00001 (0.00001) 43	0 0.006 (990.00)	45061.95	70676.39
2	S	-0.00014	0	0.833	26.0	72	0.00007 (0.00007) 5	0 0.042 (990.00)	24801.40	25524.82
3	S	-0.00027	0	0.833	26.0	72	0.00015 (0.00015) 59	9 0.091 (990.00)	12789.08	24549.06
4	S	-0.00014	0	0.833	26.0	72	0.00007 (0.00007) 5	0 0.042 (990.00)	24801.40	25524.82
5	S	-0.00027	0	0.833	26.0	72	0.00015 (0.00015) 5	9 0.091 (990.00)	12789.08	24549.06
6	S	-0.00005	0	0.833	26.0	72	0.00002 (0.00002) 4	8 0.012 (990.00)	30081.66	47180.90
7	S	-0.00023	0	0.833	26.0	72	0.00013 (0.00013) 5	4 0.076 (990.00)	22394.37	17528.07
8	S	-0.00035	0	0.833	26.0	72	0.00020 (0.00020) 6	3 0.121 (990.00)	13961.33	20958.86
9	S	-0.00023	0	0.833	26.0	72	0.00013 (0.00013) 5	4 0.076 (990.00)	22394.37	17528.07
10	S	-0.00035	0	0.833	26.0	72	0.00020 (0.00020) 6	3 0.121 (990.00)	13961.33	20958.86
11	S	-0.00003	0	0.833	26.0	72	0.00001 (0.00001) 4:	0 0.006 (990.00)	45061.95	70676.39

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto defin	iitivo			COV	MESSA		LOTTO	CODIFICA		DOCUMENTO	REV	FOGLIO
Relazione di	calcolo Pi	le — P12		F	RS3T		30	D09CL		VI1105004	В	82 di 116
12	S	-0.00014	0	0.833	26.0	72	0.0	0007 (0.00007)	560	0.042 (990.00)	24801.40	25524.82
13	S	-0.00027	0	0.833	26.0	72	0.0	0015 (0.00015)	599	0.091 (990.00)	12789.08	24549.06
14	S	-0.00014	0	0.833	26.0	72	0.0	0007 (0.00007)	560	0.042 (990.00)	24801.40	25524.82
15	S	-0.00027	0	0.833	26.0	72	0.0	0015 (0.00015)	599	0.091 (990.00)	12789.08	24549.06
16	S	-0.00053	0	0.833	26.0	72	0.0	0030 (0.00030)	642	0.193 (990.00)	20373.18	8759.35
17	S	-0.00086	0	0.833	26.0	72	0.0	0049 (0.00049)	647	0.318 (990.00)	4371.02	19760.38
18	S	-0.00006	0	0.833	26.0	72	0.0	0003 (0.00003)	515	0.018 (990.00)	25210.59	36130.55
19	S	-0.00081	0	0.833	26.0	72	0.0	0047 (0.00047)	653	0.305 (990.00)	18855.17	7846.34
20	S	-0.00121	0	0.833	26.0	72	0.0	0070 (0.00070)	657	0.457 (990.00)	4226.14	18672.99
21	S	-0.00013	0	0.833	26.0	72	0.0	0007 (0.00007)	570	0.040 (990.00)	19357.41	26851.15
22	S	-0.00081	0	0.833	26.0	72	0.0	0047 (0.00047)	653	0.305 (990.00)	18855.17	7846.34
23	S	-0.00121	0	0.833	26.0	72	0.0	0070 (0.00070)	657	0.457 (990.00)	4226.14	18672.99
24	S	-0.00013	0	0.833	26.0	72	0.0	0007 (0.00007)	570	0.040 (990.00)	19357.41	26851.15

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.73	113.9	0.0	-8.2	-108.7	-126.1	1751	58.4
2	S	5.78	155.2	0.0	-50.5	-145.8	-80.4	6894	143.4
3	S	5.78	155.2	0.0	-50.5	-145.8	-80.4	6894	143.4
4	S	5.78	155.2	0.0	-50.5	-145.8	-80.4	6894	143.4
5	S	5.78	155.2	0.0	-50.5	-145.8	-80.4	6894	143.4
6	S	3.98	94.7	0.0	-18.3	-93.0	-138.1	3765	90.3
7	S	6.03	145.6	0.0	-65.6	-140.8	-88.9	8489	169.9
8	S	6.03	145.6	0.0	-65.6	-140.8	-88.9	8489	169.9
9	S	6.03	145.6	0.0	-65.6	-140.8	-88.9	8489	169.9
10	S	6.03	145.6	0.0	-65.6	-140.8	-88.9	8489	169.9
11	S	3.73	113.9	0.0	-8.2	-108.7	-126.1	1751	58.4
12	S	5.78	155.2	0.0	-50.5	-145.8	-80.4	6894	143.4
13	S	5.78	155.2	0.0	-50.5	-145.8	-80.4	6894	143.4
14	S	5.78	155.2	0.0	-50.5	-145.8	-80.4	6894	143.4
15	S	5.78	155.2	0.0	-50.5	-145.8	-80.4	6894	143.4

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm si	r max	wk	MX fess	MY fess
1	S	-0.00005	0	0.833	26.0	72	0.00002 (0.00002)	466	0.012 (0.20)	44011.81	37725.79
2	S	-0.00027	0	0.833	26.0	72	0.00015 (0.00015)	599	0.091 (0.20)	12789.08	24549.06
3	S	-0.00027	0	0.833	26.0	72	0.00015 (0.00015)	599	0.091 (0.20)	12789.08	24549.06
4	S	-0.00027	0	0.833	26.0	72	0.00015 (0.00015)	599	0.091 (0.20)	12789.08	24549.06
5	S	-0.00027	0	0.833	26.0	72	0.00015 (0.00015)	599	0.091 (0.20)	12789.08	24549.06
6	S	-0.00010	0	0.833	26.0	72	0.00005 (0.00005)	552	0.030 (0.20)	31805.64	20471.18
7	S	-0.00035	0	0.833	26.0	72	0.00020 (0.00020)	613	0.121 (0.20)	13961.33	20958.86
8	S	-0.00035	0	0.833	26.0	72	0.00020 (0.00020)	613	0.121 (0.20)	13961.33	20958.86
9	S	-0.00035	0	0.833	26.0	72	0.00020 (0.00020)	613	0.121 (0.20)	13961.33	20958.86
10	S	-0.00035	0	0.833	26.0	72	0.00020 (0.00020)	613	0.121 (0.20)	13961.33	20958.86
11	S	-0.00005	0	0.833	26.0	72	0.00002 (0.00002)	466	0.012 (0.20)	44011.81	37725.79
12	S	-0.00027	0	0.833	26.0	72	0.00015 (0.00015)	599	0.091 (0.20)	12789.08	24549.06
13	S	-0.00027	0	0.833	26.0	72	0.00015 (0.00015)	599	0.091 (0.20)	12789.08	24549.06
14	S	-0.00027	0	0.833	26.0	72	0.00015 (0.00015)	599	0.091 (0.20)	12789.08	24549.06
15	S	-0.00027	0	0.833	26.0	72	0.00015 (0.00015)	599	0.091 (0.20)	12789.08	24549.06

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

As eff.	Ac eff.	Ys min	Xs min	Sf min	Yc max	Xc max	Sc max	Ver	N°Comb
		-4.9	-166.4	16.9	0.0	175.0	1.30	S	1
		-4.9	-166.4	12.0	0.0	175.0	1.65	S	2
		-4.9	-166.4	12.0	0.0	175.0	1.65	S	3

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto a	lefinitii	0'				COMMESS	A	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione			le – P12			RS3T		30	D09CL	VI1105004	В	83 di 116
										•		
4	ļ	S	1.65	175.0	0.0	12.0	-166.4	-4.9	 			
5	<u>, </u>	S	1.65	175.0	0.0	12.0	-166.4	-4.9	 			
6)	S	1.30	175.0	0.0	16.9	-166.4	-4.9	 			
7	,	S	1.65	175.0	0.0	12.0	-166.4	-4.9	 			
8	}	S	1.65	175.0	0.0	12.0	-166.4	-4.9	 			
9)	S	1.65	175.0	0.0	12.0	-166.4	-4.9	 			
10	0	S	1.65	175.0	0.0	12.0	-166.4	-4.9	 			
1	1	S	1.30	175.0	0.0	16.9	-166.4	-4.9	 			
1:	2	S	1.65	175.0	0.0	12.0	-166.4	-4.9	 			
1;	3	S	1.65	175.0	0.0	12.0	-166.4	-4.9	 			
14	4	S	1.65	175.0	0.0	12.0	-166.4	-4.9	 			
1:	5	S	1.65	174.3	0.0	12.0	-165.8	-14.8	 			

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr r	max	wk	MX fess	MY fess
1	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
2	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
3	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
4	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
5	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
6	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
7	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
8	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
9	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
10	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
11	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
12	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
13	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
14	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
15	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	84 di 116

8.3 Verifica a taglio

diametro armature trasversale	φ	12	mm
bracci staffe	bs	4	
area armature trasversale	Asw	5	cm2
passo staffe	S	15	cm
copriferro netto + staffa + fi/2	c'	9	cm
spessore anima sezione rettrangolar	sb	0	cm
sezione	tipo	circolare	
tipologia di varifica taglio	secondo	statica q=	-1
Direzione Longidinale			
resistenza ridotta	f'c	9	Мра
braccio delle forze interne	z=0.9d	253	cm
larghezza biella	bw	295	cm
inclinazione staffe	α	90	gradi
inclinazione biella	θ	22	gradi
resistenza puntoni	Vc	23293	kN
resistenza staffe	Vs	7457	kN
taglio resisitente	Vr	7457	kN
taglio massimo agente	Ved	5731	kN
	Ved/Vrd	0.77	
Direzione Trasversale			
braccio delle forze interne	z=0.9d	253	cm
larghezza biella	bw	295	cm
inclinazione biella	θ	22	gradi
resistenza puntoni	Vc	23293	kN
resistenza staffe	Vs	7457	kN
taglio resisitente	Vr	7457	kN
taglio massimo agente	Ved	5764	kN
	Ved/Vrd	0.77	

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	85 di 116

8.4 Verifica minimi di armatura

Secondo quanto prescritto dalle NTC2018 e dal "Manuale di Progettazione delle Opere Civili" i quantitativi minimi di armatura da rispettare sono:

- L'area dell'armatura longitudinale dovrà essere non inferiore allo 0,6% dell'area della sezione effettiva del calcestruzzo. Questa prescrizione non si applica ai tratti di pile che, per motivi idraulici, sono realizzati a sezione piena; per queste, fatte salve le esigenze di calcolo, si manterrà l'armatura corrispondente alla sezione del tratto cavo immediatamente superiore;
- Le barre di armatura longitudinale non dovranno distare fra loro più di 300 mm compatibilmente con i limiti forniti nella Tab. 2.5.2.2.6-1;

Diametro delle barre	Massimo interasse delle barre
[mm]	[mm]
32	300
24	250
20	200

Tab. 2.5.2.2.6-1 - Diametri e relativi interassi massimi delle barre

- Non è ammesso l'impiego di staffe elicoidali (spirali);
- Non è consentito congiungere tra loro i bracci delle staffe per sovrapposizione. Le staffe devono essere chiuse risvoltando i bracci nel nucleo di calcestruzzo mediante la piegatura dei ferri di 135° verso l'interno e per una lunghezza non inferiore a 10 volte il diametro della staffa;
- Nella zona di spiccato delle pile e in quella di sommità delle pile a telaio, per un tratto di lunghezza non inferiore a 3 metri non è consentito operare alcun tipo di giunzione delle armature verticali; al di fuori di tale tratto è consentito congiungere, in modo graduale, le barre verticali mediante sovrapposizione o altro. In particolare, le giunzioni devono essere effettuate in modo da interessare non più di 1/3 delle barre

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1105004	В	86 di 116

longitudinali presenti nella generica sezione, sfalsando due riprese di armatura successive di almeno 40 diametri in senso verticale;

- L'interasse delle armature trasversali s non deve essere superiore a 10 volte il diametro delle barre longitudinali, né a 1/5 del diametro del nucleo della sezione interna alle stesse;
- Nelle pile a sezione cava dovranno prevedersi spille di collegamento fra le armature longitudinali in numero di almeno 6 a metro quadro;
- Nel caso in cui il fattore di struttura "q" sia minore o uguale ad 1,5 l'armatura di confinamento delle pile si devono rispettare le limitazioni sulla percentuale meccanica:

minimi per armatura fl	essionale16	4		
numero di ferri longitudi	nali	n	164	
diametro del ferro longit	udinale	fi	26	mm
diametro minimo armatu	ıra a taglio	fi	8	mm
passo massimo longitudi	nale	р	30	am
area dell'armatura longitu	ıdinale	As	87072	mm2
area di calcestruzzo (non	riempito)	Ac	9621000.00	mm3
			0.91%	>0.6%
minimi per confiname	nto se q≤1.5	5		
accelerazione al suolo per	r SLV	ag	0.15	g
coefficiente di verifica		ζ	0.07	
interasse staffe		S	150	mm
diametro armature trasve	ersale	φ	12	mm
Area della singola staffa		Asw	1.131	mm2
Area totale staffe		Asw	2.26	mm2
area totale legature	Asl	12.69	mm2	
percentuale meccanica ar	m. Trasv	wwd,r	0.0592	

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	87 di 116

8.5 Verifica spostamenti

Di seguito si riporta una tabella riassuntiva delle escursioni longitudinali per tutte le tipologie di luce presenti lungo la linea:

$$E_L \ge 2.30 \cdot \frac{L}{1000} + 0.073 \in E_L \ge 0.10m$$

L imp (m)	EL (cm)	Corsa appoggi (cm)	Escursione giunti (cm)	Varco (cm)
17.9	12.0	7.5	7.0	8.0
25	14.0	8.8	8.0	9.0
40	17.0	10.6	9.5	10.5
50	19.0	11.9	10.5	11.5
60	22.0	13.8	12.0	13.0

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	88 di 116

9. PULVINO

Geometria mensola				
h				
a ac	Altezza mensola	hc	2000	[mm]
FEd	larghezza mensola	atot	3549.10288	[mm]
	profondità	b	2000	[mm]
a	copriferro	С	85	[mm]
	applicazione carico	ac	50	[mm]
	altezza utile	d	1915	[mm]
	braccio delle forze interne	z	1532	[mm]
a ₅	tipologia di mensola:	MENSOLA M	OLTO TOZZ	ZA 2a <z< th=""></z<>
<u>Materiali</u>				
	resistenza a compressione cilin	ndrica fck	32	[Mpa]
	reisistenza di calcolo	fcd	18.13333333	[Mpa]
	coefficiente riduttivo	h'	0.872	[Mpa]
	tensiona massima nodo CCC	sRd1,max	15.81226667	[Mpa]
	tensiona massima nodo CCT	sRd2,max	13.44042667	[Mpa]
	resistenza dell'acciaio	fyk	450	[Mpa]
	resistenda di calcolo dell'acciac	o fyd	391.3043478	[Mpa]

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	89 di 116

9.1 Progettazione armatura principale e secondaria

Calcolo armatura princ	cipale				
· · · · · · · · · · · · · · · · · · ·	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 .	1 11 0		
on riferimento al model	lo 1 di traliccio semplificato, si determina	l'armatura p	rincipale allo S	LU	
nodello 1	azione esterna applicata	Fed = Ec5	6362.514091	[Kn]	
nouello 1	forza orizzontale trasmessa	Hed	273.6434031		
FT-	IOIZA OIIZZOIITAIC (TASIIICSSA	Tica	273.0434031		
a ac	braccio della forza di trazione	z	1532	[mm]	
V _{Ed} F _{c1} =F _{Ed}	larghezza risultante di riferimento	a5	201.1891851	[mm]	
Ft Ea	braccio della forza di compressione	a	150.5945926	[mm]	
a F _{c2}	trazione nelle barre che si verifica	Ft = Fc4	720.9918001	[Kn]	
2 F _{c3}	armatura superiore	As	1842.5346	[mm2]	
F _{c4}					
$F_{d5} = V_{Ed}$	diametro del ferro longitudinale	Ф	16	[mm]	
a, 11_	passo armature	p	15	[cm]	
	numero di strati di barre	nst	1		
	numeri ferri predisposti in b	n	13.33333333		
	areare ferri resistenti	Ares	2679.466667	[mm2]	
	coef. di sicurezza	Trd/Fc4	1.454228684		
erifica nodo 1 CCC	lunghezza di applicazione delle s4	a4	766	[mm]	
	tensione di compressione 4	s4	0.470621279	[Mpa]	Ok
Calcolo armatura seco	ndaria orizzontale				
1.11.0	1 1 1 1	177	00.50474772	r 1'1	
nodello 2	angolo di inclinazione	Ψ	83.53161673	[gradi]	
⊦	coefficiente di ripartizione	С	14.43634326	[%]	
! []	braccio della forza di trazione	z	1532	[mm]	
Ft" VEd	braccio della forza di compressione	a	150.5945926	[mm]	
	trazione nelle barre secondarie	Fwd	1179.594861	[Kn]	
_ ! <u>~ ^ </u>	5				
14 F _{wd} 3 N 9	armatura secondaria	As	3014.520199	[mm2]	
	armatura minima 0.25As	Amin	669.8666667		
· 17					
A VEd	diametro ferri secondari	Φ	16	[mm]	
ag © ;!_	passo armature direzione b	S	15	[cm]	
	numero di strati di barre	nst	1		
	numeri ferri predisposti in b	n	13.33333333		
	areare ferri resistenti	Ares	2679.466667	[mm2]	
	coef. di sicurezza	Trd/Fc4	1.454228684		
verifica nodo 2 CCT	area pistra di contatto	Aap	1440000	[mm2]	
sotto la piastra)	tensione di compr. sotto la piastra	sc1	4.418412563	[Mpa]	Ok

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	90 di 116

9.2 Verifica dei nodi

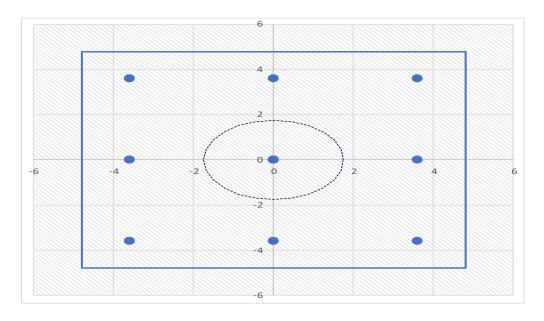
Nodo CCC

	biella di copressione verticale	Fc1	6362.514091	[Kn]	
	biella comprella orizzontale	Fc2	720.9918001	[Kn]	
	biella compresaa inclinata	Fc3	6403.307469	[Kn]	
	lunghezza di applicazione delle s5	a5	201.1891851	[mm]	
~^ / / /	tensione di compressione 5	s5	15.81226667	[Mpa]	Ok
R ₂ Fc ₃	per completezza possimoa comunque	determin	are le altre tensi	oni	
Fc4 18	lunghezza di applicazione delle s4	a4	766	[mm]	
Fc5	lunghezza di applicazione puntone 3	a3	791.9804847	[mm]	
as -	lunghezza di applicazione puntone 3	a3*	202.4780496	[mm]	
	difetto di ortogonalià	с	68.8535078	[gradi]	
	tensione di compressione 4	s4	0.470621279	[Mpa]	Ok
	tensione di compressione 3	s3	4.0425917	[Mpa]	Ok
	tensione di compressione 3*	s3*	15.81234973	[Mpa]	OK

Nodo CCT

	forza di contatto		Fc1	6362.514091	[Kn]	
	biella di calcestruzz	Fc3	6403.307469	[Kn]		
	trazione barra		Т	720.9918001	[Kn]	
	lunghezza di applica	azione contatto	a1	1200	[mm]	
	lunghezza di applica	azione contatto	b	1200	[mm]	
	lunghezza di applica	azione puntone	a2	1212.415374	[mm]	
	lunghezza tirante		u	178	[mm]	
	angolo di inclinazio	ne	h	83.53161673	[gradi]	
tesnione di contatto		$s_{c1} < s_{Rd2,i}$	4.42	<u>≤</u>	13.44	Ok
tensione biella di calcestruzzo incl.		$s_{c3} < s_{Rd2,t}$	4.40	<u>≤</u>	13.44	Ok

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m


Progetto definitivo Relazione di calcolo Pile – P12

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1105004	В	91 di 116

10. PLINTO DI FONDAZIONE

Per la progettazione e verifica del plinto di fondazione è necessario valutare preventivamente le sollecitazioni agenti sui singoli pali. Tali sollecitazioni sono state identificate mediante una ripartizione rigida dal baricentro della fondazione.

numero di pali	n.	9	
diametro pali	D	1.2	m
interasse pali	i	3.6	m
altezza plinto di fondazione	h	3	m
Check verifica			
sbalzo direzione trasversale	at	1.85	m
sbalzo direzione longitudinale	al	1.85	m
direzione trasversale	a/h	0.616667	Plinto basso
direzione longitudinale	a/h	0.616667	Plinto basso

Dalle sollecitazioni ottenute precedentemente nel baricentro in corrispondenza dell'intradosso della fondazione si sono ottenute le seguenti sollecitazioni in testa palo:

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1105004 B 92 di 116

Scarichi q=1.5/1.1 se plinto snello								
n. palo	X	Y	Ncombo1	Ncombo2	Ncombo3			
1	0	3.6	5145.1	3489.3	5311.8			
2	0	-3.6	3289.7	1649.8	-172.8			
3	3.6	3.6	6099.2	6773.1	6366.1			
4	3.6	-3.6	4243.8	4933.6	881.5			
5	-3.6	-3.6	2335.7	-1634.1	-1227.1			
6	-3.6	3.6	4191.1	205.4	4257.5			
7	3.6	0	5171.5	5853.3	3623.8			
8	-3.6	0	3263.4	-714.3	1515.2			
9	0	0	4217.4	2569.5	2569.5			
	0	0	4217.4	2569.5	2569.5			
	0	0	4217.4	2569.5	2569.5			
	0	0	4217.4	2569.5	2569.5			
	taglio con	nbinato in	182.2243	532.7828	564.257			
Scarichi q	=1 se plin	to tozzo e	verifica a t	aglio				
n. palo	X	Y	Ncombo1	Ncombo2	Ncombo3			
1	0	3.6	3650.6	3489.3	5311.8			
2	0	-3.6	1811.1	1649.8	-172.8			
3	3.6	3.6	4704.8	6773.1	6366.1			
4	3.6	-3.6	2865.4	4933.6	881.5			
5	-3.6	-3.6	756.8	-1634.1	-1227.1			
6	-3.6	3.6	2596.3	205.4	4257.5			
7	3.6	0	3785.1	5853.3	3623.8			
8	-3.6	0	1676.5	-714.3	1515.2			
9	0	0	2730.8	2569.5	2569.5			
	0	0	2730.8	2569.5	2569.5			
	0	0	2730.8	2569.5	2569.5			
	0	0	2730.8	2569.5	2569.5			
	taglio con	nbinato in	280.5355	532.7828	564.257			

Il plinto di fondazione è stato verificato ipotizzando un meccanismo di tirante puntone ricadendo nella categoria di elementi tozzi. La larghezza collaborante è stata valutata tramite una diffusione a 45° rispetto al dimetro del palo più sollecitato, quindi fermata in corrispondenza della pila o della linea media dell'interasse del palo successivo.

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	93 di 116

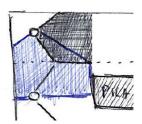


Figura 13 - mensola di riferimento

10.1 Dimensionamento armature

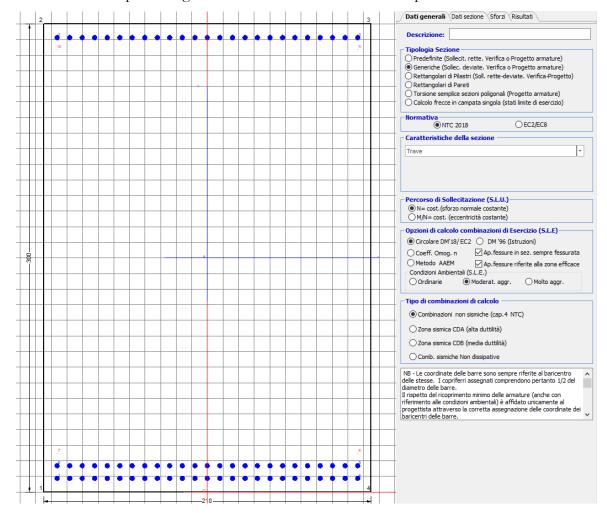
posizione del palo più sollecitato			
coortinata in direzione trasvesale	X	3.6	m
coortinata in direzione longitudinale	Y	3.6	m
angolo di deviazione risultate rispetto alle ascisse	α	45	gradi
ipotenusa poiezione orizzontale puntone	L	5.09117	m
altezza della fondazione	h	3	m
inclinazione rispetto all'orizzontale puntone	θ	30.509	gradi
reazione in testa palo più sollecitato	Rmax	6206.91	KN
forza di trazione risultante	Т	10533.5	KN
proiezione forza di trazione in trasversale	Tt	7448.29	KN
proiezione forza di trazione in longitudinale	Tl	7448.29	KN
lunghezza collaborante		media 45°	

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo
Relazione di calcolo Pile – P12
RS3T

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1105004	В	94 di 116

dimensionamento armature				
area dell'armatura inferiore richiesta in tr	ras	At	19034.7	mm2
diametro armatura		Ф	30	mm
passo armatura trasversale		р	10	cm
numero di strati		ns	2	
lunghezza di collaborazione		L	2.06288	m
numero di ferri per strato		n	21	
area complessiva sulla lunghezza collabo	orante	Ares	29688.1	mm2
		coef. Sicur	0.64116	
area dell'armatura inferiore richiesta in le	ong	Al	19034.7	mm2
diametro armatura		Ф	30	
passo armatura longitudinale		р	10	cm
numero di strati		ns	2	
lunghezza di collaborazione		L	2.1	m
numero di ferri per strato		n	21	
area complessiva sulla lunghezza collabo	orante	Ares	29688.1	mm2
		coef. Sicur	0.64116	
tasso di lavoro armatura allo SLU		σt	250.885	MPa
tasso di lavoro armatura allo SLU		σl	250.885	MPa


VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

Progetto definitivoCOMMESSA
Relazione di calcolo Pile – P12COMMESSA
RS3TLOTTO
30CODIFICA
D09CLDOCUMENTO
VI1105004REV.
BFOGLIO
95 di 116

10.2 Verifica a prsso-flessione

10.2.1 Direzione trasversale

Armatura disposta lungo la direzione trasversale all'asse del ponte

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: fondazione X 210x300

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante
Condizioni Ambientali: Moderat. aggressive
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C25/30

Resis. compr. di progetto fcd: 14.160 MPa Def.unit. max resistenza ec2: 0.0020

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

Progetto definitivoCOMMESSA
Relazione di calcolo Pile – P12COMMESSA
RS3TLOTTO
30CODIFICA
D09CLDOCUMENTO
VI1105004REV.
BFOGLIO
96 di 116

Def.unit. ultima ecu:

Diagramma tensione-deformaz.:

Modulo Elastico Normale Ec:

Resis. media a trazione fctm:

Coeff. Omogen. S.L.E.:

Coeff. Omogen. S.L.E.:

Diagramma tensione-deformaz.:

Parabola-Rettangolo

MPa

2.560

MPa

15.00

Coeff. Omogen. S.L.E.:

15.00

Sc limite S.L.E. comb. Frequenti: 137.50 daN/cm²
Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm
Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa
Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk: 450.00 MPa
Resist. caratt. rottura ftk: 450.00 MPa
Resist. snerv. di progetto fyd: 391.30 MPa
Resist. ultima di progetto ftd: 391.30 MPa

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

0.50

Sf limite S.L.E. Comb. Rare: 0.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do	Poligonale	
Classe Conglo	C25/30	
N°vertice:	X [cm]	Y [cm]
1	-105.0	0.0
2	-105.0	300.0
3	105.0	300.0
4	105.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-96.3	8.7	30
2	-96.3	291.3	30
3	96.3	291.3	30
4	96.3	8.7	30
5	96.3	16.7	30
6	-96.3	16.7	30
7	-96.3	24.7	1
8	96.3	24.7	1
9	96.3	283.3	1
10	-96.3	283.3	1

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	2	3	23	30

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	97 di 116

2 6 5 23 30 3 1 4 23 30

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	0.00	13146.00	0.00	0.00	0.00
2	0.00	12328 00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 10433.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 9125.00 (11009.93) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 5052.00 (11009.93) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali:

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	98 di 116

Interferro netto minimo barre longitudinali:

5.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mx Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	13146.00	0.00	0.00	38306.40	0.00	2.91 3	53.4(90.5)
2	S	0.00	12328.00	0.00	0.00	38306.40	0.00	3.11 3	53.4(90.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.099	-105.0	300.0	0.00244	-96.3	291.3	-0.03199	-96.3	8.7
2	0.00350	0.099	-105.0	300.0	0.00244	-96.3	291.3	-0.03199	-96.3	8.7

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000121830	-0.033048913	0.099	0.700
2	0.000000000	0.000121830	-0.033048913	0.099	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

Ver S = comb. verificata/ N = comb. non verificata

As eff.

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min As eff. Ac eff. S 3.39 105.0 300.0 -115.0 -56.2 6720 353.4 1 8.7

PROGETTO DEFINITIVO

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	99 di 116

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Esito della verifica										
Massima de	formazione o	di trazione	del calces	struzzo, valuta	ta in sezione fessurata						
	· ·										
					enti [cfr. eq.(7.9)EC2]						
	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]										
						•					
Massima dis	stanza tra le	fessure [mi	m]	. ,	` , ,						
Apertura fes	sure in mm	calcolata =	sr max*(e	e_sm - e_cm)	[(7.8)EC2 e (C4.1.7)NTC]	. Valore limit	e tra parentesi				
							•				
e1	e2	k2	Ø	Cf	e sm - e	cm sr max	wk	Mx fess	My fess		
0.0000	•	0.005	00.0	70	0.00000 (0.000	0.4) 40.4	0.404 (000.00)	44000.00	0.00		
-0.00060	0	0.925	30.0	72	0.00038 (0.000	34) 424	0.161 (990.00)	11009.93	0.00		
LEDEOUENEU	LEGERAL		001115	TENOIONI N	ODMAN ED ADEDTIN		DE (NTO/E00)				
-0.00060	0 N ESERCIZ	0.925	30.0 SSIME 1	72 TENSIONI N	,	,	, ,	11009.93	0.00		
	Massima de Minima defo = 0.8 per ba = 0.4 per c = (e1 + e2)/l = 3.400 Coe = 0.425 Coe Diametro [m Copriferro [r Differenza tr Tra parente: Massima dis Apertura fes Componente Componente = 1	Massima deformazione di Minima deformazione di = 0.8 per barre ad adere = 0.4 per comb. quasi p = (e1 + e2)/(2*e1) [eq.(7:e3.400 Coeff: in eq.(7.1) Diametro [mm] equivaler Copriferro [mm] netto ca Differenza tra le deforma Tra parentesi: valore mir Massima distanza tra le Apertura fessure in mm Componente momento de componente momento de e1 e2	Massima deformazione di trazione e Minima deformazione di trazione de = 0.8 per barre ad aderenza miglio = 0.4 per comb. quasi permanenti = (e1 + e2)/(2*e1) [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come de = 0.425 Coeff. in eq.(7.11) come de Diametro [mm] equivalente delle ba Copriferro [mm] netto calcolato con Differenza tra le deformazioni medi Tra parentesi: valore minimo = 0.6 Massima distanza tra le fessure [m Apertura fessure in mm calcolata = Componente momento di prima fes Componente momento di prima fes e1 e2 k2	Massima deformazione di trazione del calce: Minima deformazione di trazione del cls. (in := 0.8 per barre ad aderenza migliorata [eq.(:= 0.4 per comb. quasi permanenti / = 0.6 pe := (e1 + e2)/(2*e1) [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi Diametro [mm] equivalente delle barre tese of Copriferro [mm] netto calcolato con riferimen Differenza tra le deformazioni medie di accia Tra parentesi: valore minimo = 0.6 Smax / E Massima distanza tra le fessure [mm] Apertura fessure in mm calcolata = sr max*(Componente momento di prima fessurazione e1 e2 k2 Ø -0.00060 0 0.925 30.0	Massima deformazione di trazione del calcestruzzo, valuta Minima deformazione di trazione del cls. (in sezione fessur = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.freque = (e1 + e2)/(2*e1) [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali = 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'i Copriferro [mm] netto calcolato con riferimento alla barra pi Differenza tra le deformazioni medie di acciaio e calcestruz Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 et Massima distanza tra le fessure [mm] Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) Componente momento di prima fessurazione intorno all'assi Componente momento di prima fessurazione intorno all'assi e1 e2 k2 Ø Cf	Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata Minima deformazione di trazione del cls. (in sezione fessurata), valutata nella fibra p = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] = (e1 + e2)/(2*e1) [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali = 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7 Copriferro [mm] netto calcolato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)N Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] Massima distanza tra le fessure [mm] Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC] Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] e1 e2 k2 Ø Cf e sm - e	Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata Minima deformazione di trazione del cls. (in sezione fessurata), valutata nella fibra più interna del = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] = (e1 + e2)/(2*e1) [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali = 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Copriferro [mm] netto calcolato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] Massima distanza tra le fessure [mm] Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limit Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] e1 e2 k2 Ø Cf e sm - e cm sr max -0.00060 0 0.925 30.0 72 0.00038 (0.00034) 424	Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata Minima deformazione di trazione del cls. (in sezione fessurata), valutata nella fibra più interna dell'area Ac eff = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] = (e1 + e2)/(2*e1) [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali = 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Copriferro [mm] netto calcolato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] Massima distanza tra le fessure [mm] Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm]	Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata Minima deformazione di trazione del cls. (in sezione fessurata), valutata nella fibra più interna dell'area Ac eff = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] = (e1 + e2)/(2*e1) [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali = 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] netto calcolato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] Massima distanza tra le fessure [mm] Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] e1 e2 k2 Ø Cf e sm - e cm sr max wk Mx fess -0.00060 0 0.925 30.0 72 0.00038 (0.00034) 424 0.161 (990.00) 11009.93		

CC

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.96	105.0 300.0	-100.6	-96.3	8.7	6720	353.4

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

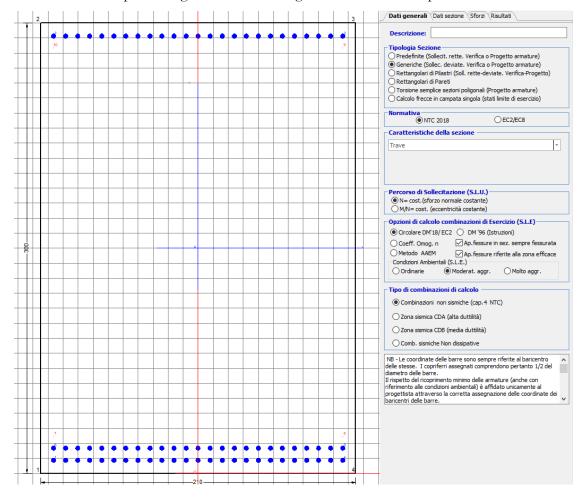
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00052	0	0.925	30.0	72	0.00031 (0.00030)	424	0.131 (0.20)	11009.93	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.64	105.0 300.0	-55.7	-64.2	8.7	6720	353.4

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00029	0	0.925	30.0	72	0.00017 (0.00017)	424	0.071 (0.20)	11009.93	0.00



VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

Progetto definitivoCOMMESSA
Relazione di calcolo Pile – P12COMMESSA
RS3TLOTTO
30CODIFICA
D09CLDOCUMENTO
VI1105004REV.
BFOGLIO
100 di 116

10.2.2 Direzione longitudinale

Armatura disposta lungo la direzione longitudinale all'asse del ponte

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: fondazione Y 210x300

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione:

Condizioni Ambientali:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

A Sforzo Norm. costante

Moderat. aggressive

Assi x,y principali d'inerzia

Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C25/30

Resis. compr. di progetto fcd: 14.160 MPa
Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035
Diagramma tensione-deformaz.: Parabola-Rettangolo
Modulo Elastico Normale Ec: 31475.0 MPa

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B101 di 116

	Resis. media a trazione fctm: Coeff. Omogen. S.L.E.:	2.560 15.00	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	137.50	daN/cm²
	Ap.Fessure limite S.L.E. comb. Frequenti:	0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Sf limite S.L.E. Comb. Rare:	337.50	MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C25/30
N°vertice:	X [cm]	Y [cm]
1	-105.0	0.0
2	-105.0	300.0
3	105.0	300.0
4	105.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-96.3	8.7	30
2	-96.3	291.3	30
3	96.3	291.3	30
4	96.3	8.7	30
5	96.3	16.7	30
6	-96.3	16.7	30
7	-96.3	24.7	1
8	96.3	24.7	1
9	96.3	283.3	1
10	-96.3	283.3	1

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.

Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.

Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.

Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	2	3	23	30
2	6	5	23	30
3	1	4	23	30

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	102 di 116

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N				ric. (+ se di compres	,		
Mx		Momento flettente [kNm] intorno all'asse x princ. d'inerzia					
Му		con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.					
Vy		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y					
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x						
N°Comb.	N	Mx	Му	Vy	Vx		

1 0.00 13146.00 0.00 0.00 0.00 2 0.00 12328.00 0.00 0.00 0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

 N°Comb.
 N
 Mx
 My

 1
 0.00
 10433.00
 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 9125.00 (11009.93) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My

1 0.00 5052.00 (11009.93) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 5.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Progetto definitivo RS3T D09CL VI1105004 В 103 di 116 30 Relazione di calcolo Pile – P12

Ver S = combinazione verificata / N = combin. non verificata

Ν Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Му N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mx Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	13146.00	0.00	0.00	38306.40	0.00	2.91 3	53.4(90.5)
2	S	0.00	12328.00	0.00	0.00	38306.40	0.00	3.11 3	53.4(90.5)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del conglomerato a compressione ec max Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 x/d Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) es min Deform. unit. minima nell'acciaio (negativa se di trazione) Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Xs min Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Deform. unit. massima nell'acciaio (positiva se di compress.) es max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Ys max

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.099	-105.0	300.0	0.00244	-96.3	291.3	-0.03199	-96.3	8.7
2	0.00350	0 099	-105.0	300.0	0.00244	-96.3	291.3	-0 03199	-96.3	8.7

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000121830	-0.033048913	0.099	0.700
2	0.000000000	0.000121830	-0.033048913	0.099	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb Sf min Xs min Ys min Ver Sc max Xc max Yc max Ac eff. As eff. -115.0 S 3.39 105.0 300.0 -56.2 6720 353.4

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	104 di 116

Esito della verifica Ver Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata e1 e2

Minima deformazione di trazione del cls. (in sezione fessurata), valutata nella fibra più interna dell'area Ac eff

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt

k2 = (e1 + e2)/(2*e1) [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali = 0.425 Coeff. in eq.(7.11) come da annessi nazionali k4

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess.

k2 Cf Comb. Ver e1 e2 Mx fess My fess e sm - e cm sr max S -0.00060 0 0.925 30.0 72 0.00038 (0.00034) 424 0.161 (990.00) 11009.93 0.00 1

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 1 2.96 105.0 300.0 -100.6 -96.3 8.7 6720 353.4

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e2 k2 Ø Cf Mx fess e1 e sm - e cm sr max My fess S -0.00052 0.925 30.0 72 0 0.00031 (0.00030) 424 0.131 (0.20) 11009.93 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. S 1 1.64 105.0 300.0 -55.7 -64.28.7 6720 353.4

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e2 Ø Cf ۵1 k2 e sm - e cm sr max Mx fess My fess 72 0.00017 (0.00017) 4240.071 (0.20) 11009.93 0.00 1 S -0.00029 0 0.925 30.0

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

CODIFICA

D09CL

Progetto definitivo Relazione di calcolo Pile – P12

COMMESSA	LOTTO	
RS3T	30	

DOCUMENTO REV.
VI1105004 B

FOGLIO **105 di 116**

10.3 Verifica a punzonamento

perimetro del palo	uo	3.76991	m
diffuzione dello sforzo		NS 3483E	
angolo d'inclinazione superficie	θ	45	gradi
perimetro zona critica	u1	20.169	m
altezza della sezione utile	d	2.61	m
raggio interno	r	0.6	m
raggio esterno	R	3.21	m
ipotenusa triangolo interno del cono	a	3.6911	m
ipotenusa triangolo interno del cono	a	3.0911	111
angolo massimo di sviluppo	α1	25	gradi
angolo minimo di sviluppo	α2	-115	gradi
sviluppo della superficie resistente	α	1.22173	rad
superficie totale del tronco cono	S1	17.1813	m2
coefficiente carico	β	1.4	
resistenza caratterisitica del calcestruzzo	fck	25	MPa
resistenza di calcolo del calcestruzzo	fcd	14.1667	MPa
valore di progetto del taglio	Ved	6394.94	kN
valore massimo della resistenza unitaria i	in adiacenza pal	D	
tensione di progetto di verifica su perimetro	uo ved	0.9099	MPa
resistenza associata	vRd,max	5	MPa
		0.18198	
valore di progetto di una piastra priva di a	armature a punz	onamento	
coefficiente di dato dai carichi	CRd,c	0.12	
fattore di scala	k	1.97358	
percenturale geometrica armatura fless. trasv	Qly	0.00551	
percenturale geometrica armatura fless. long	Qlz	0.00542	
percentuale meccanica complessiva	Ql	0.00773	
coefficiente	k1	0.1	
tensione di progetto di verifica su perimetro	u1 ved	0.52109	MPa
	vRd,c	0.59964	MPa
		0.86899	

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12 COMMESSA LOTTO
RS3T 30

CODIFICA **D09CL**

DOCUMENTO VI1105004 REV. FOGLIO **B** 106 di 116

11. PALI DI FONDAZIONE

11.1Ridistribuzione sollecitazioni testa palo

Le sollecitazioni agenti in testa palo vengono calcolate nell'ipotesi di platea di fondazione infinitamente rigida, attraverso la relazione

$$R(x,y) = \frac{N}{n} + \frac{M_l}{J_l} \cdot y + \frac{M_t}{J_t} \cdot x$$

dove N, M_I , M_t sono lo sforzo normale e i momenti flettenti longitudinale e trasversale agenti al baricentro della palificata, n è il numero di pali e J_I , J_t sono le inerzie longitudinale e trasversale della palificata

$$J_l = \sum y_i^2 \qquad \qquad J_t = \sum x_i^2$$

Per quanto riguarda le sollecitazioni orizzontali in testa palo, si assume che le azioni di taglio di ripartiscano uniformemente tra i pali, risultando

$$T(x,y) = \frac{\sqrt{H_i^2 + H_t^2}}{n}$$

dove Hı, Hı sono le forze orizzontali longitudinale e trasversale agenti al baricentro della palificata.

11.2 Verifica strutturale

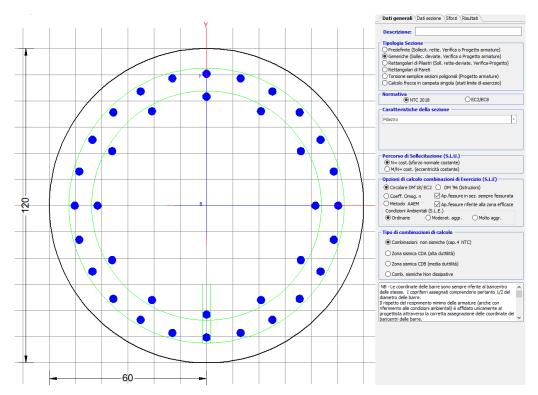
A seconda della verifica di riferimento le sollecitazioni identificate sono riferite ad un fattore di comportamento differente, ottenendo per cui le seguenti ridistribuzioni in testa palo:

Sollecitazioni nel baricentro della fondazione per analisi di presso-flessione

TABELLA PER FLESSIONE					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr3+vento_7	37957	1680	1400	20038	20607
E_103x_SLV_q=1.36_63	23126	4982	1675	44192	17253
E_103y_SLV_q=1.36_64	23126	2193	4405	15354	52532
E_103x_SLV_q=1.36_63	23126	4982	1675	44192	17253
E_103y_SLV_q=1.36_64	23126	2193	4405	15354	52532

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	107 di 116


Ridistribuzione

n. palo	X	Y	combo1	combo2	combo3
1	0	3.6	5145.17	4615.45	3280.34
2	0	-3.6	3289.7	523.57	1858.68
3	3.6	3.6	6211.98	5428.43	5726.61
4	3.6	-3.6	4356.51	1336.56	4304.95
5	-3.6	-3.6	2222.89	-289.41	-587.59
6	-3.6	3.6	4078.36	3802.46	834.073
7	3.6	0	5284.25	3382.49	5015.78
8	-3.6	0	3150.63	1756.52	123.24
9	0	0	4217.44	2569.51	2569.51
taglio equiva	lente		252.827	585.115	549.727
alfa derivant	e dall'analisi geot	ecnica		α	2.77
	N	Tl	Tt	ML	Mt
combo1	6212	187	171	560	512
combo2	5428	554	189	1661	568
combo3	5727	244	493	731	1478
combo4	-588	244	493	731	1478

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo Relazione di calcolo Pile – P12 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL VI1105004 B 108 di 116

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30	
	Resis. compr. di progetto fcd:	14.160	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	31475.0	MPa
	Resis. media a trazione fctm:	2.560	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	137.50	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Frequer	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Mpa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm²

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P12RS3T30D09CLVI1105004B109 di 116

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 60.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	0.0	0.0	50.3	24	30
2	0.0	0.0	41.6	12	30

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	6394.94	415.11	693.18	0.00	0.00
2	1395.89	257.73	336.89	0.00	0.00
3	6211.98	517.10	472.30	0.00	0.00
4	6394.94	415.11	693.18	0.00	0.00
5	6211.98	517.10	472.30	0.00	0.00
6	6394.94	415.11	693.18	0.00	0.00
7	5726.61	675.11	1364.91	0.00	0.00
8	-587.59	675.11	1364.91	0.00	0.00
9	5428.43	1533.48	524.72	0.00	0.00
10	5726.61	675.11	1364.91	0.00	0.00
11	5428.43	1533.48	524.72	0.00	0.00
12	5726.61	675.11	1364.91	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	110 di 116

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	4481.95	286.22	453.74
2	1118.41	286.22	441.86
3	4358.72	356.58	301.75
4	4481.95	286.22	453.74
5	4358.72	356.58	301.75
6	4481.95	286.22	453.74
7	4924.28	389.21	888.29
8	119.43	389.21	888.29
9	4353.34	939.83	349.40
10	4544.60	389.21	888.29
11	4353.34	1023.78	349.40
12	4544.60	389.21	979.64

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	4481.95	286.22 (0.00)	453.74 (0.00)
2	1118.41	286.22 (509.09)	441.86 (785.92)
3	4481.95	286.22 (0.00)	453.74 (0.00)
4	4481.95	286.22 (0.00)	453.74 (0.00)
5	4481.95	286.22 (0.00)	453.74 (0.00)
6	4481.95	286.22 (0.00)	453.74 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Mx

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	2657.60	0.37 (0.00)	72.58 (0.00)
2	2343.16	0.37 (0.00)	72.58 (0.00)
3	2657.60	0.37 (0.00)	72.58 (0.00)
4	2657.60	0.37 (0.00)	72.58 (0.00)
5	2657.60	0.37 (0.00)	72.58 (0.00)
6	2657.60	0.37 (0.00)	72.58 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.2 cm Interferro netto minimo barre longitudinali: 5.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Progetto definitivo D09CL RS3T 30 VI1105004 В 111 di 116 Relazione di calcolo Pile – P12

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Mx Му N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Mx Res My Res Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	6394.94	415.11	693.18	6394.69	2367.02	3958.19	5.71 254.5(33.9)
2	S	1395.89	257.73	336.89	1395.90	2520.22	3280.51	9.75 254.5(33.9)
3	S	6211.98	517.10	472.30	6211.86	3397.84	3108.59	6.58 254.5(33.9)
4	S	6394.94	415.11	693.18	6394.69	2367.02	3958.19	5.71 254.5(33.9)
5	S	6211.98	517.10	472.30	6211.86	3397.84	3108.59	6.58 254.5(33.9)
6	S	6394.94	415.11	693.18	6394.69	2367.02	3958.19	5.71 254.5(33.9)
7	S	5726.61	675.11	1364.91	5726.47	2044.30	4118.44	3.02 254.5(33.9)
8	S	-587.59	675.11	1364.91	-587.66	1625.14	3317.10	2.43 254.5(33.9)
9	S	5428.43	1533.48	524.72	5428.52	4341.98	1486.86	2.83 254.5(33.9)
10	S	5726.61	675.11	1364.91	5726.47	2044.30	4118.44	3.02 254.5(33.9)
11	S	5428.43	1533.48	524.72	5428.52	4341.98	1486.86	2.83 254.5(33.9)
12	S	5726.61	675.11	1364.91	5726.47	2044.30	4118.44	3.02 254.5(33.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrispi a es max (sistema rif X Y O sez)

$N^{\circ}Comb$	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	51.5	0.3	0.00294	43.6	25.2	-0.00282	-43.6	-25.2
2	0.00350	47.7	0.3	0.00268	43.6	25.2	-0.00541	-43.6	-25.2
3	0.00350	40.5	0.3	0.00293	35.6	35.6	-0.00289	-35.6	-35.6
4	0.00350	51.5	0.3	0.00294	43.6	25.2	-0.00282	-43.6	-25.2
5	0.00350	40.5	0.3	0.00293	35.6	35.6	-0.00289	-35.6	-35.6
6	0.00350	51.5	0.3	0.00294	43.6	25.2	-0.00282	-43.6	-25.2
7	0.00350	53.8	24.1	0.00291	43.6	25.2	-0.00308	-43.6	-25.2
8	0.00350	54.0	24.1	0.00255	43.6	25.2	-0.00716	-43.6	-25.2
9	0.00350	19.4	56.2	0.00290	13.0	48.6	-0.00319	-13.0	-48.6
10	0.00350	53.8	24.1	0.00291	43.6	25.2	-0.00308	-43.6	-25.2
11	0.00350	19.4	56.8	0.00290	13.0	48.6	-0.00319	-13.0	-48.6
12	0.00350	53.8	22.2	0.00291	43.6	25.2	-0.00308	-43.6	-25.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C Did	Coeff di riduz momenti per colo fleccione in travi continue

Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000049135	0.000029424	0.000063722		
2	0.000064407	0.000049273	-0.001365587		

VI11 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	112 di 116

 	0.000022893	0.000042790	0.000039083	3
 	0.000063722	0.000029424	0.000049135	4
 	0.000022893	0.000042790	0.000039083	5
 	0.000063722	0.000029424	0.000049135	6
 	-0.000080746	0.000026459	0.000053493	7
 	-0.002304496	0.000042037	0.000087131	8
 	-0.000140800	0.000057412	0.000019645	9
 	-0.000080746	0.000026459	0.000053493	10
 	-0.000140800	0.000057412	0.000019645	11
 	-0.000080746	0.000026459	0.000053493	12

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	5.18	50.7	0.0	16.5	-43.6	-25.2		
2	S	3.39	50.4	0.0	-31.5	-43.6	-25.2	989	28.3
3	S	4.81	38.8	0.0	19.0	-35.6	-35.6		
4	S	5.18	50.7	0.0	16.5	-43.6	-25.2		
5	S	4.81	38.8	0.0	19.0	-35.6	-35.6		
6	S	5.18	50.7	0.0	16.5	-43.6	-25.2		
7	S	7.30	55.0	0.0	-2.1	-43.6	-25.2	456	14.1
8	S	5.94	55.0	0.0	-132.9	-43.6	-25.2	1735	56.5
9	S	7.14	20.9	0.0	-11.7	-13.0	-48.6	466	14.1
10	S	7.08	55.0	0.0	-6.7	-43.6	-25.2	357	7.1
11	S	7.54	19.4	0.0	-17.8	-13.0	-48.6	461	14.1
12	S	7.49	55.8	0.0	-12.6	-48.6	-13.0	478	14.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata

e1 e2 Minima deformazione di trazione del cls. (in sezione fessurata), valutata nella fibra più interna dell'area Ac eff

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]

k2

= (e1 + e2)/(2*e1) [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali k4

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr	max	wk	Mx fess	My fess
1	c	0.00000	0.00000						0.000 (990.00)	0.00	0.00
2	S	-0.00019	0.00000	0.833	30.0	82	0.00009 (0.00009)		0.055 (990.00)	509.09	785.92
3	S	0.00000	0.00000				·		0.000 (990.00)	0.00	0.00
4	S	0.00000	0.00000						0.000 (990.00)	0.00	0.00
5	S	0.00000	0.00000						0.000 (990.00)	0.00	0.00

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Pr	ogetto definit	ivo			COI	MMESSA		LOTTO	CODIFICA		DOCUMENTO	REV.	FOGI	OL
Re	lazione di ca	ılcolo Pi	le — P12		I	RS3T		30	D09CL		VI1105004	В	113 di	116
	6	S	0.00000	0.00000							0.000 (990.00)	0.00	0.00	
	7	S	-0.00006	0	0.567	30.0	82	0.0	00001 (0.00001)	465	0.003 (990.00)	1314.46	2999.98	
	8	S	-0.00077	0	0.833	30.0	82	0.0	0040 (0.00040)	540	0.215 (990.00)	253.25	577.98	
	9	S	-0.00011	0	0.742	30.0	82	0.0	0.0003	529	0.018 (990.00)	1892.32	703.51	
	10	S	-0.00008	0	0.694	30.0	82	0.0	0002 (0.00002)	636	0.013 (990.00)	987.48	2253.72	
	11	S	-0.00015	0	0.785	30.0	82	0.0	0.0005 (0.00005)	540	0.029 (990.00)	1639.38	559.49	
	12	S	-0.00012	0	0.742	30.0	82	0.0	0004 (0.00004)	535	0.020 (990.00)	733.76	1846.88	

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

As eff.	Ac eff.	Ys min	Xs min	Sf min	c max	Xc max Y	Sc max	Ver	N°Comb
		-25.2	-43.6	16.5	0.0	50.7	5.18	S	1
28.3	989	-25.2	-43.6	-31.5	0.0	50.4	3.39	S	2
		-25.2	-43.6	16.5	0.0	50.7	5.18	S	3
		-25.2	-43.6	16.5	0.0	50.7	5.18	S	4
		-25.2	-43.6	16.5	0.0	50.7	5.18	S	5
		-25.2	-43.6	16.5	0.0	50.7	5.18	S	6

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
2	S	-0.00019	0	0.833	30.0	82	0.00009 (0.00009)	576	0.055 (0.20)	509.09	785.92
3	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
4	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
5	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
6	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.06	60.0	0.0	22.6	-50.3	0.0		
2	S	1.85	60.0	0.0	19.5	-50.3	0.0		
3	S	2.06	60.0	0.0	22.6	-50.3	0.0		
4	S	2.06	60.0	0.0	22.6	-50.3	0.0		
5	S	2.06	60.0	0.0	22.6	-50.3	0.0		
6	S	2.06	60.0	0.0	22.6	-50.3	0.0		

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
2	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
3	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
4	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
5	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
6	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	114 di 116

11.3 Verifica a taglio

A seconda della verifica di riferimento le sollecitazioni identificate sono riferite ad un fattore di comportamento differente,

TABELLA PER TAGLIO					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr3+vento_7	37957	1680	1400	20038	20607
E_103x_SLV_q=1_66	23126	6437	2102	59234	22773
E_103y_SLV_q=1_67	23126	2630	5828	19866	70931
E_103x_SLV_q=1_66	23126	6437	2102	59234	22773
E_103y_SLV_q=1_67	23126	2630	5828	19866	70931

Ottenendo per cui le seguenti azioni in testa palo

		combo1	combo2
sollecitazione massima direzione x	Tx	6437	2630
sollecitazione massima direzione y	Ту	2102	5828
vettore complessivo, singolo palo	Т	752	710

Progetto armature

diametro armature trasversale	φ	12	mm
bracci staffe	bs	2	
diametro pali	R	0.6	m
area armature trasversale	Asw	2.3	cm2
passo staffe	S	20.0	cm
copriferro netto + staffa + fi/2	c'	9.7	cm
resistenza di calcolo armatura	f yd	391.0	Mpa
resistenza caratteristica res cls	f ck	25.0	
resistenza di calcolo res. Calc	f cd	18.5	Mpa
resistenza ridotta	f'c	9.2	Mpa
braccio delle forze interne	z=0.9d	88.3	cm
larghezza biella	bw	100.9	cm
inclinazione staffe	α	90	gradi
inclinazione biella	β	22	gradi
resistenza puntoni	Vc	2839	kN
resistenza staffe	Vs	977	kN
taglio resisitente	Vr	977	kN
taglio massimo agente	Ved	752	kN
	Ved/Vrd	0.77	

VI11 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 885 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P12	RS3T	30	D09CL	VI1105004	В	115 di 116

12. INCIDENZE

Baggioli/Ritegni 350 kg/mc

Pulvino 180 kg/mc

Fusto Pila 100 kg/mc

Plinto di fondazione 150 kg/mc

Pali di fondazione primo tratto 195 kg/mc