COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO

NUOVO COLLEGAMENTO PALERMO - CATANIA U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

TRATTA LERCARA DIR. – CALTANISSETTA XIRBI (LOTTO 3)

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500m

Relazione di calcolo Pile – P23

SCALA:
-

COMMESSA	LOTTO FAS	SE ENTE T	TPO DOC. O	PERA/DISCIPLINA	PROGR.	REV
RS 3 T	3 0	D 0 9	CL	V I 1 2 0 5	$\begin{bmatrix} 0 & 0 & 4 \end{bmatrix}$	В

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
A	Emissione Esecutiva	G. Grimaldi	Gen. 2020	A. Frri	Gen. 2020	A.Barreca	Gen. 2020	A. Vittozzi Gen. 2020
В	1° agg. A consegna CSLLPP	G. Grimaldi	Mag. 2020	A. Ferri	Mag. 2020	A.Barreca	Mag. 2020	A. Vittozza Mag. 202
				710		000		ITAI Pott. Ing Ii-Ingegn
								U.O. Ope

File: RS3T30D09CLVI1205004B		n. Elab.: 09_315_3
-----------------------------	--	---------------------------

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO
RS3T 30

CODIFICA

D09CL

DOCUMENTO VI1205003

REV. FOGLIO **B** 1 di 113

INDICE

1. PI	REMESSA	3
1.1	Descrizione dell'opera	3
2. D	OCUMENTI DI RIFERIMENTO	7
3. M	IATERIALI	7
3.1	Verifiche SLE	
3.	1.1 Verifiche tensionali	8
	1.2 Verifiche a fessurazione	
4. D	PATI DI BASE	10
4.1	Geometrie di base	10
4.2	Modelli di analisi e verifica	12
4.3	Condizioni elementari e combinazioni di carico	12
4.4	Sistemi di riferimento ed unità di misura	16
5. A	NALISI DEI CARICHI	17
5.1	Peso proprio elementi strutturali	17
5.2	Carichi strutturali trasmessi dall'impalcato	18
5.3	Carichi da traffico verticali	18
5.4	Effetti dinamici	20
5.5	Disposizione treni di carico	20
5.6	Carichi da traffico orizzontali	23
<i>5</i> .	6.1 Forza centrifuga	23
<i>5</i> .	6.2 Serpeggio	26
<i>5</i> .	6.3 Frenatura ed avviamento.	27
<i>5</i> .	6.4 Forza d'attrito	28
<i>5</i> .	.6.5 Azione del Vento	28
5.7	Azione Sismica	31
<i>5</i> .	7.1 Inquadramento Sismico	32
<i>5</i> .	7.2 Definizione della domanda sismica	33
<i>5</i> .	7.3 Calcolo dell'azione Sismica	38
5.	7.4 Risposta sismica locale	39
5.	7.5 Check analisi statica	
5.	7.6 Analisi statica equivalente	41
5.	7.7 Analisi dinamica modale	42
6. SC	OLLECITAZIONI	43
6.1	Combinazioni di carico	43
6.	1.1 Configurazione 1	43

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1205003	В	2 di 113

6.1.2 Configurazione 2	49
6.1.3 Configurazione 3	55
6.2 Tabelle riassuntive, massime sollecitazioni	61
6.2.1 Stati limiti di esercizio	61
6.2.2 Stati limiti utlimi	67
7. VERIFICHE STRUTTURALI	70
8. FUSTO PILA	70
8.1 Modellazione	72
8.2 Verifica a presso flessione	72
8.3 Verifica a taglio	81
8.4 Verifica minimi di armatura	
8.5 Verifica spostamenti	84
9. PULVINO	85
9.1 Progettazione armatura principale e secondaria	86
9.2 Verifica dei nodi	87
10. PLINTO DI FONDAZIONE	88
10.1 Dimensionamento armature	90
10.2 Verifica a prsso-flessione	92
10.2.1 Direzione trasversale	92
10.2.2 Direzione longitudinale	96
10.3 Verifica a punzonamento	
11. PALI DI FONDAZIONE	103
11.1 Ridistribuzione sollecitazioni testa palo	103
11.2 Verifica strutturale	
11.3 Verifica a taglio	
12. INCIDENZE	113

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
23	RS3T	30	D09CL	VI1205003	В	3 di 113

1. PREMESSA

Relazione di calcolo Pile - P2

Progetto definitivo

La presente relazione ha per oggetto il dimensionamento e le verifiche di resistenza secondo il metodo semiprobabilistico agli Stati Limite (S.L.) di una delle Pile del viadotto ferroviario VI12 della tratta ferroviaria Palomba-Catenanuova, viadotto ferroviario previsto nell'ambito del progetto definitivo lungo la direttrice ferroviaria Messina-Catania-Palermo del nuovo collegamento Palermo-Catania. In particolare, si tratterà la Pila 23 che rappresenta la tipologica per tutte le pile di altezza minore o uguale a 15.50m, ed impalcato 50m..

Le analisi strutturali e le verifiche di sicurezza sono state effettuate secondo il DM 17 gennaio 2018.

1.1 Descrizione dell'opera

Il viadotto VI12 attraversa è a doppio binario, ha uno sviluppo complessivo di 1500m, ed è costituito da 39 campate isostatiche di luce 25m, 40 e 50m (asse pila-asse pila/ asse pila-asse giunto spalla). Le campate da 25 m sono realizzate con un impalcato in cap a due travi mentre, le campate di luce superiore sono realizzate con impalcati misti a due travi.

Le pile sono realizzate in c.a. gettato in opera, sono di forma circolare di dimensioni pari a 3.5m. Il pulvino ha una altezza pari a 2.50m. Su esso disposti gli apparecchi di appoggio dell'impalcato secondo lo schema sotto riportato

Il plinto presenta uno spessore di 3metri e una pianta rettangolare di 13.2x9.6, mentre le fondazioni previste sono su pali in c.a. di grande diametro F1200 sia per le pile che per le spalle. Il numero di pali pari a 12 e disposti ad interessa minimi di 3.6m. Si è assunta una distanza dal bordo degli stessi di 1.20 m.

Per l'implementazione delle geometrie, vista la vastità delle casistiche, sono state adottate delle schematizzazioni in special modo per plinto di fondazione e pulvino. Per il pulvino, ad esempio, è stata adottata un'altezza costante di 2m ma, tenuto propriamente conto dei reali bracci e delle masse.

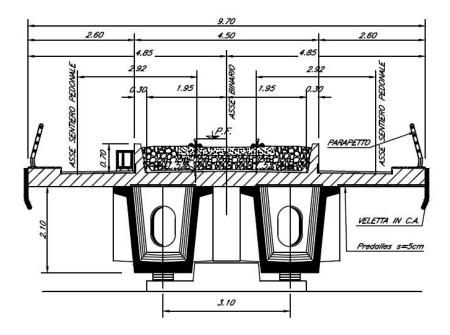
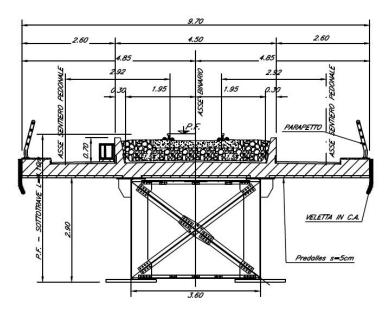



Figura 1: schema appoggi impakati sx e dx



VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA

RS3T 30 D09CL

DOCUMENTO REV. FOGLIO
VI1205003 B 5 di 113

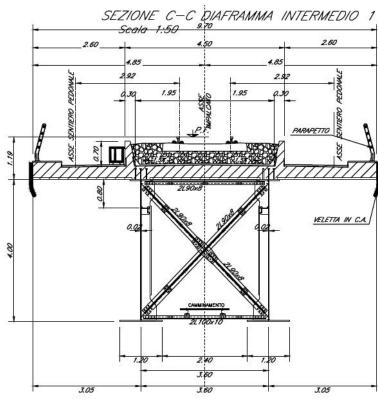
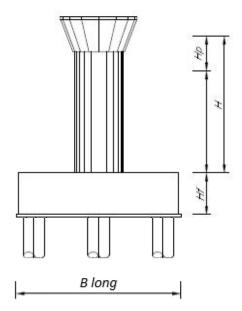
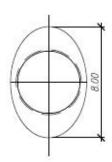
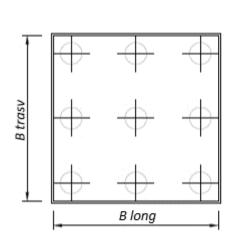


Figura 2: sezione trasversale impalcato




VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m


Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA RS3T LOTTO CODIFICA
30 D09CL

DOCUMENTO
VI1205003

REV. FOGLIO **B** 6 di 113

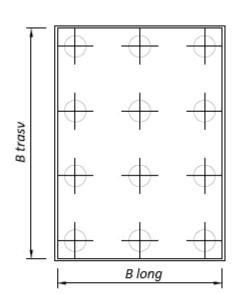


Figura 3: pianta, sezione e prospetti pila

Progetto definitivo Relazione di calco

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

0	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
rolo Pile – P23	RS3T	30	D09CL	VI1205003	В	7 di 113

2. DOCUMENTI DI RIFERIMENTO

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Ministero delle Infrastrutture, DM 17 gennaio 2018, Aggiornamento delle «Norme tecniche per le costruzioni».
- Ministero delle Infrastrutture e Trasporti, Circolare 21 gennaio 2019, n. 7/C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 17 gennaio 2018»
- Istruzione RFI DTC SI PS MA IFS 001- Manuale di Progettazione delle Opere Civili Parte II Sezione 2 Ponti e Strutture
- Istruzione RFI DTC SI CS MA IFS 001- Manuale di Progettazione delle Opere Civili Parte II Sezione 3 Corpo Stradale
- Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;

3. MATERIALI

Le caratteristiche dei materiali previsti le sottostrutture sono le seguenti:

Calcestruzzo pali di fondazione, cordoli, opere provvisionali, calcestruzzo fondazioni

classe di resistenza conglomerato	dasse	C25/30	
resistenza caratteristica cubica a comp.	Rdk	30	МРа
modulo elastico	Ec	31476	МРа
resistenza media cilindrica a comp.	fam	33	МРа
resistenza cilindrica caratteristica a comp.	fdk	25	МРа

Calcestruzzo fondazioni armate

classe di resistenza conglomerato	dasse	C28/35	
resistenza caratteristica cubica a comp.	Rdk	34	МРа
modulo elastico	Ec	32308	МРа
resistenza media cilindrica a comp.	fan	36	МРа
resistenza cilindrica caratteristica a comp.	fdk	28	МРа

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	8 di 113

Calcestruzzo elevazione pile (compresi pulvini, baggioli e ritegni), spalle

classe di resistenza conglomerato	dasse	C32/40	
resistenza caratteristica cubica a comp.	Rck	40	МРа
modulo elastico	Ec	33346	МРа
resistenza media cilindrica a comp.	fam	40	МРа
resistenza cilindrica caratteristica a comp.	fck	32	МРа

Acciaio ordinario per calcestruzzo armato

denominazione tipo d'acciaio	nome	B450	
modulo elastico	Es	210000	МРа
tensione media di snevamento	fym	480	МРа
tensione caratteristica di snevamento	fyk	450	МРа
tensione di snevamento di calcolo	fyd	391.30	МРа
tensione caratteristica a rottura	ftk	540	МРа

Le verifiche del plinto di fondazione vengono condotte, a favore di sicurezza, con una classe di calcestruzzo C25/30.

3.1 Verifiche SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato.

3.1.1 Verifiche tensionali

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario", ovvero:

tensione massima di compressione del calcestruzzo

• per combinazione caratteristica (rara) : 0.55 fck

• per combinazione quasi permanente : 0.40 fck

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	9 di 113

• per spessori minori di 5cm tali valori devono essere decrementati del 30%.

tensione massima di trazione dell'acciaio

• per combinazione caratteristica (rara) : $0.75 f_{yk}$

Per il caso in esame risulta in particolare per l'elevazione:

 $\sigma_{c \; max \; QP} = (0,40 \; f_{cK}) = 12.8 \qquad MPa \qquad (Combinazione di Carico Quasi Permanente)$ $\sigma_{c \; max \; R} = (0,55 \; f_{cK}) = 17.6 \qquad MPa \qquad (Combinazione di Carico Caratteristica - Rara)$ $\sigma_{s \; max \; R} = (0,75 \; f_{yK}) = 337.5 \qquad MPa \qquad (Combinazione di Carico Caratteristica - Rara)$

3.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]. In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 - Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Canani di				Armatura				
Gruppi di esigenza	Condizioni ambientali	Combinazione di azione	Sensibile	Poco sensibile				
esigeliza			Stato limite	wk	Stato limite	wk		
A	A Ordinarie	frequente	ap. fessure	\leq_{W_2}	ap. fessure	\leq_{W_3}		
Λ	Ordinarie	quasi permanente	ap. fessure	\leq_{W_1}	ap. fessure	\leq_{W_2}		
В	A gramagaixra	frequente	ap. fessure	\leq_{W_1}	ap. fessure	\leq_{W_2}		
Б	Aggressive	quasi permanente	decompressione	-	ap. fessure	\leq_{W_1}		
C Molto A	Molto Aggressive	frequente	formazione fessure	-	ap. fessure	\leq_{W_1}		
	Molto Aggressive	quasi permanente	decompressione	-	ap. fessure	\leq_{W_1}		

Tabella 2 - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1. XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Risultando:

- $w_1 = 0.2 \text{ mm}$
- $w_2 = 0.3 \text{ mm}$
- $w_3 = 0.4 \text{ mm}$

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23

RS3T	30	D09CL	VI1205003	В	10 di 113
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel par. 4.1.2.2.4.2 del DM 17.1.2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

• Combinazione Caratteristica (Rara)
$$\delta_f \leq w_1 = 0.2 \ mm$$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura del D.M. 9 gennaio 1996, in accordo a quanto previsto al punto "C4.1.2.2.4.5 Verifica allo stato limite di fessurazione" della Circolare 21 gennaio 2019 n.7/C.S.L.L:PP..

Considerando quanto sopra riportato, per una semplice implementazione nel programma di calcolo RC-SEC, la combinazione RARA riferita al gruppo 4 è stata implementata fittiziamente come "frequente" in modo da separarla ed applicare la restrizione dei 0.2mm. Tutte le combinazioni RARE restanti sono state verificate per le sole verifiche tensionali.

4. DATI DI BASE

4.1 Geometrie di base

La pila presenta una sezione circolare piena di dimensioni 3.5m, una altezza complessiva di 15.50m. Il pulvino è costituito da una sezione piena ellissoidale ed altezza variabile in funzione del tipo d'impalcato. Nei calcoli si è incrementato del 10% la massa del pulvino per tener conto di velette, baggioli e ritegni. Le fondazioni sono realizzate su pali di diametro 1200mm collegate in testa da una platea di spessore 3m.

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P23RS3T30D09CLVI1205003B11 di 113

PILA						
	6 1/	. 1	1 .		455	
altezza pila- estrad	osso fond/	estradosso 	o pulvino	Нр	15.5	m
tipolgoia di sezione	e				circolare	
larghezza trasversa	le pila			b	0.000	m
larghezza longitudi	nale pila			d	0.000	m
raggio della sezion	e			R	1.75	m
area della sezione				Α	9.621	m2
inerzia sezione dire	ezione trasv	ersale		I11	7.366	m4
inerzia sezione dire	ezione longi	tudinale		I22	7.366	m4
calcestruzzo				fck	32	MPa
massa pulvino				mp	3247	kN
				*		
PULVINO						
asse minore ellisse				a	5.48	m
asse maggiore ellis	se			b	8	m
altezza pulvino				h	2	m
massa pulvino	compresa del -	+10%		mp	1538	kN
FONDAZIONE						
asse minore ellisse				a	13.2	m
asse maggiore ellis	se			b	9.6	m
altezza della fonda	zione			h	3	m
altezza terreno di r	ricoprimente	0		ht	3.5	m
area netta per calco	ala micannin	l conto		A	117.1	m3
peso di vulume del	•				117.1	kN/3
peso di vululle del	terreno			У	19	KIN/ J
Ulteriori distanze	e bracci					
11			. 1	• 1	1.0	
distanza asse pila e	e appoggi pe	er momen	to longitud.	il	1.2	
interasse tra i bina	ri (se singol	0 0)		ib	4	m
dist. tra interasse d	, ,		sse pile	a	2	m

Progetto definitivo

Relazione di calcolo Pile – P23

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1205003	В	12 di 113

4.2 Modelli di analisi e verifica

Le sollecitazioni di verifica della pila sono state determinate a partire dai valori delle risultanti delle azioni trasmesse dagli impalcati alla quota degli apparecchi di appoggio alle quali sono state combinate le azioni determinate dalle azioni date dalle forze di inerzia e dal peso proprio delle sottostrutture. Il modello della struttura è stato implementato in un foglio di calcolo appositamente realizzato per la valutazione delle azioni agenti sulle singole parti della struttura, quali fusto pila e plinto. Per l'analisi e la verifica del plinto di fondazione, si è utilizzato un modello, a seconda della geometria, di tirante-puntone o trave inflessa.

Per quanto riguarda invece le sollecitazioni sui pali di fondazione a partire dalle azioni risultanti nel baricentro del plinto alla quota di intradosso, sono stati calcolati, per ciascuna combinazione di carico, gli sforzi assiali e di taglio in testa ai pali di fondazione utilizzando il classico modello a piastra rigida.

4.3 Condizioni elementari e combinazioni di carico

Le verifiche di sicurezza strutturali e geotecniche sono state condotte utilizzando combinazioni di carico definite in ottemperanza alle NTC18, secondo quanto riportato nei paragrafi 2.5.3, 5.1.3.12. Di seguito sono mostrati i coefficienti parziali di sicurezza utilizzati allo SLU ed i coefficienti di combinazione adoperati per i carichi variabili nella progettazione delle strutture da ponte.

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1205003	В	13 di 113

2.5.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1205003 B 14 di 113

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	$\gamma_{\rm P}$	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

(7) 1,20 per effetti locali

Azioni		Ψo	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	$0.80^{(2)}$	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3T	30	D09CL	VI1205003	В	15 di 113	

	Azioni	Ψο	Ψ1	Ψ2
	Treno di carico LM 71	0,80 ⁽³⁾	(1)	0,0
Azioni	Treno di carico SW /0	0,80(3)	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)	-	-
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Nel seguito si riportano le azioni considerate ai fini della valutazione delle sollecitazioni agenti sulle sottostrutture e quindi, alle verifiche strutturali.

Nome Combinazione	G1	G2	Treno	Treno scarico	F_fre	F_cent	F_serp	F_att	Vento	E_long	E_tra	E_ver
A1_SLU_gr1_Treno_	1.35	1.5	1.45	0	0.58	1.45	1.45	0.9	0	0	0	0
A1_SLU_gr2_Scarico_	1.35	1.5	0	1.45	0	1.45	1.45	0.9	0	0	0	0
A1_SLU_gr3_Fre/avv_	1.35	1.5	1.16	0	1.45	0.725	0.725	0.9	0	0	0	0
A1_SLU_gr4_centrif_	1.35	1.5	0.696	0	0.696	0.87	0.87	0.9	0	0	0	0
A1_SLU_gr1+vento_	1.35	1.5	1.45	0	0.58	1.45	1.45	0.9	0.9	0	0	0
A1_SLU_gr2+vento_	1.35	1.5	0	1.45	0	1.45	1.45	0.9	0.9	0	0	0
A1_SLU_gr3+vento_	1.35	1.5	1.16	0	1.45	0.725	0.725	0.9	0.9	0	0	0
A1_SLU_gr4+vento_	1.35	1.5	0.696	0	0.696	0.87	0.87	0.9	0.9	0	0	0
A1_SLU_vento_gr1_	1.35	1.5	1.16	0	0.58	1.45	1.45	0.9	1.5	0	0	0
A1_SLU_vento_gr2_	1.35	1.5	0	1.16	0	1.45	1.45	0.9	1.5	0	0	0
A1 SLU vento gr3	1.35	1.5	1.16	0	1.16	0.725	0.725	0.9	1.5	0	0	0
A1_SLU_vento_gr4_	1.35	1.5	0.696	0	0.696	0.87	0.87	0.9	1.5	0	0	0
SLE_rar_gr1_Treno_	1	1	1	0	0.4	1	1	0.6	0	0	0	0
SLE_rar_gr2_Scarico_	1	1	0	1	0	1	1	0.6	0	0	0	0
SLE_rar_gr3_Fre/avv_	1	1	0.8	0	1	0.5	0.5	0.6	0	0	0	0
SLE_rar_gr4_centrif_	1	1	0.48	0	0.48	0.6	0.6	0.6	0	0	0	0
SLE_rar_gr1+vento_	1	1	1	0	0.4	1	1	0.6	0.6	0	0	0
SLE rar gr2+vento	1	1	0	1	0	1	1	0.6	0.6	0	0	0
SLE_rar_gr3+vento_	1	1	0.8	0	1	0.5	0.5	0.6	0.6	0	0	0
SLE_rar_gr4+vento_	1	1	0.48	0	0.48	0.6	0.6	0.6	0.6	0	0	0
SLE_rar_vento_gr1_	1	1	0.8	0	0.4	1	1	0.6	1	0	0	0
SLE_rar_vento_gr2_	1	1	0	0.8	0	1	1	0.6	1	0	0	0
SLE_rar_vento_gr3_	1	1	0.8	0	0.8	0.5	0.5	0.6	1	0	0	0
SLE_rar_vento_gr4_	1	1	0.48	0	0.48	0.6	0.6	0.6	1	0	0	0
SLE_fre_gr1_Treno_	1	1	0.5	0	0	0	0	0.5	0	0	0	0
SLE_fre_gr2_Scarico_	1	1	0	0.8	0	0	0	0.5	0	0	0	0
SLE_fre_gr3_Fre/avv_	1	1	0	0	0.8	0	0	0.5	0	0	0	0
SLE_fre_gr4_centrif_	1	1	0	0	0	0.6	0.6	0.5	0	0	0	0
SLE_fre_gr1+vento_	1	1	0.5	0	0	0	0	0.5	0.2	0	0	0
SLE_fre_gr2+vento_	1	1	0	0.8	0	0	0	0.5	0.2	0	0	0
SLE fre gr3+vento	1	1	0	0	0.8	0	0	0.5	0.2	0	0	0
SLE_fre_gr4+vento_	1	1	0	0	0	0.6	0.6	0.5	0.2	0	0	0
SLE fre vento gr1	1	1	0	0	0	0	0	0.5	0.5	0	0	0
SLE_fre_vento_gr2_	1	1	0	0	0	0	0	0.5	0.5	0	0	0
SLE_fre_vento_gr3_	1	1	0	0	0	0	0	0.5	0.5	0	0	0
SLE_fre_vento_gr4_	1	1	0	0	0	0	0	0.5	0.5	0	0	0
SLE_fre_gr1_temp	1	1	0	0	0	0	0	0.6	0.2	0	0	0
SLE_fre_gr2_temp	1	1	0	0	0	0	0	0.6	0.2	0	0	0
SLE_fre_gr3_temp	1	1	0	0	0	0	0	0.6	0.2	0	0	0

⁽²⁾ Si usano gli stessi coefficienti ψ adottati per i carichi che provocano dette azioni.

⁽³⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1205003	В	16 di 113

Nome Combinazione	G1	G2	Treno	Treno scarico	F_fre	F_cent	F_serp	F_att	Vento	E_long	E_tra	E_ver
SLE_qp_gr1_Treno_	1	1	0	0	0	0	0	0.5	0	0	0	0
SLE_qp_gr2_Scarico_	1	1	0	0	0	0	0	0.5	0	0	0	0
SLE_qp_gr3_Fre/avv_	1	1	0	0	0	0	0	0.5	0	0	0	0
SLE_qp_gr4_centrif_	1	1	0	0	0	0	0	0.5	0	0	0	0
SLE_qp_gr1+vento_	1	1	0	0	0	0	0	0.5	0.2	0	0	0
SLE_qp_gr2+vento_	1	1	0	0	0	0	0	0.5	0.2	0	0	0
SLE_qp_gr3+vento_	1	1	0	0	0	0	0	0.5	0.2	0	0	0
SLE_qp_gr4+vento_	1	1	0	0	0	0	0	0.5	0.2	0	0	0
SLE_qp_vento_gr1_	1	1	0	0	0	0	0	0.5	0.2	0	0	0
SLE_qp_vento_gr2_	1	1	0	0	0	0	0	0.5	0.2	0	0	0
SLE_qp_vento_gr3_	1	1	0	0	0	0	0	0.5	0.2	0	0	0
SLE_qp_vento_gr4_	1	1	0	0	0	0	0	0.5	0.2	0	0	0
SLE_qp_gr1_temp	1	1	0	0	0	0	0	0.5	0	0	0	0
SLE_qp_gr2_temp	1	1	0	0	0	0	0	0.5	0	0	0	0
SLE_qp_gr3_temp	1	1	0	0	0	0	0	0.5	0	0	0	0
SLE_qp_gr3_temp	1	1	0	0	0	0	0	0.5	0	0	0	0
E_103x_	1	1	0.2	0	0	0	0	0.5	0.2	1	0.3	0.3
E_103y_	1	1	0.2	0	0	0	0	0.5	0.2	0.3	1	0.3
E_103z_	1	1	0.2	0	0	0	0	0.5	0.2	0.3	0.3	1

Le combinazioni di carico sismiche che tengo conto della componente verticale negativa non vengono ripotate in quanto poco significative.

Gli scarichi agli appoggi, riportati nei paragrafi seguenti, fanno riferimento alla seguente terna di assi:

- asse X coincidente con l'asse trasversale del ponte;
- asse Y coincidente con l'asse longitudinale del ponte;
- asse Z coincidente con l'asse verticale del ponte;

Per quanto riguarda la risposta alle diverse componenti dell'azione sismica, poiché si è adottata un'analisi in campo lineare, essa può essere calcolata separatamente per ciascuna delle componenti. Gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc) sono combinate successivamente applicando l'espressione

$$1.00 \cdot Ex + 0.30 \cdot Ey + 0.30 \cdot Ez$$

con rotazione ed inversione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

4.4 Sistemi di riferimento ed unità di misura

- Asse X parallelo all'asse trasversale dell'impalcato
- Asse Y ortogonale all'asse longitudinale dell'impalcato
- Asse Z verticale
- [Lunghezze] m
- [Forze] KN

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	17 di 113

5. ANALISI DEI CARICHI

5.1 Peso proprio elementi strutturali

I pesi degli elementi strutturali sono calcolati utilizzando un peso di volume del calcestruzzo pari a $25~\rm kN/m^3$.

-i. Jama - Linaria		C:1-			
viadotto a binario		Singolo			
lato impalcato		SX		DX	
tipologia di impalcato		2TR		2TR	
luce impalcato		50	m	50	m
DATI DI INPUT FOGLIO VERIFICHE					
altezza cassoncino	h	2.8	m	2.8	m
spessore medio soletta	S	0.4	m	0.4	m
estradosso impalcato	Н	3.2	m	3.2	m
spessore ballast + rotaia	hb	0.88	m	0.88	m
altezza PF da estradosso trave	h2	1.19	m	1.19	m
lunghezza travata	L	49.6	m	49.6	m
luce appoggi travata	La	48	m	48	m
larghezza totale impalcato	В	9.7	m		
peso permanente strutturale	G1	6544	kN	6544	kN
peso permanenti non strutt	G2	5570	kN	5570	kN

Altezze da intradosso del casson	cino					
baricentro del cassoncito		gc	1.12	m	1.12	m
area cassoncino		Ac	0.12	m2	0.12	m2
baricentro della soletta		gs	2.33	m	2.33	m
area soletta		As	3.00	m2	3.00	m2
baricentro sezione trave+soletta	(da intradosso trave)	Gb1	2.09	m	2.09	m
baricentro del ballast	(da intradosso trave)	Gb2	3.64	m	3.64	m
altezza piano del ferro	(da intradosso trave)	Н	3.99	m	3.99	m
baricentro treno	(da intradosso trave)	Gb3	5.79	m	5.79	m

Progetto definitivo

Relazione di calcolo Pile - P23

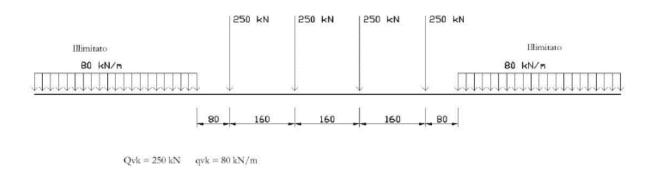
DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1205003	В	18 di 113

5.2 Carichi strutturali trasmessi dall'impalcato

Si riportano di seguito gli scarichi agli appoggi dedotti dall'analisi dell'impalcato, per la campata sinistra e destra:


		N	Mlong
		KN	kN m
scarichi estradosso Pila - G1		6544	0
scarichi estradosso Pila - G2		5570	0
scarichi estradosso Fondazione	- G1	11983	0
scarichi estradotto Fondazione	5570	0	
scarichi sui Pali - G1		29274	0
scarichi sui Pali - G2		5570	0

5.3 Carichi da traffico verticali

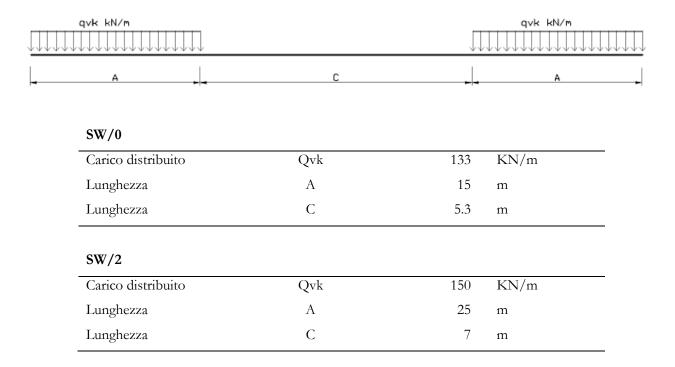
L'opera è stata progettata considerando le sollecitazioni dovute al carico da traffico ferroviario, considerando i modelli LM71 e/o SW/2. Si riportano di seguito le caratteristiche dei modelli di traffico presi in esame.

➤ Modello di carico LM71

Sia le istruzioni RFI che le NTC 2018 (par. 5.2.2.2.1.1), definiscono questo modello di carico tramite carichi concentrati e carichi distribuiti, riferiti all'asse dei binari.

Carichi concentrati: quattro assi da 250 kN disposti ad interasse di 1,60 m;

<u>Carico distribuito:</u> 80 kN/m in entrambe le direzioni, a partire da 0,8 m dagli assi d'estremità e per una lunghezza illimitata.


VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	19 di 113

Per questo modello di carico è prevista un'eccentricità del carico rispetto all'asse del binario.

➤ Modello di carico SW/2

Sia le istruzioni RFI che le NTC 2018 (par. 5.2.2.2.1.2), definiscono questo modello di carico tramite solo carichi distribuiti.

In questo modello di carico non è prevista alcuna eccentricità del carico ferroviario. Le azioni di entrambi i modelli dovranno essere moltiplicate per un coefficiente di adattamento definito dalla

seguente tabella (tab. 2.5.1.4.1.1 - RFI DTC SI PS MA IFS 001).

MODELLO DI CARICO	COEFFICIENTE " α "
LM/71	1.10
SW/0	1.10
SW/2	1.00

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	20 di 113

5.4 Effetti dinamici

Per la definizione del coefficiente dinamico si segue quanto contenuto nel par.5.2.2.2.3 del DM 17.1.2018 che per l'opera in esame riporta:

$$\Phi_3 = \frac{2.16}{\sqrt{L_{\Phi}} - 0.2} + 0.73 \quad con\ limitazione \quad 1.00 \le \Phi_3 \le 2.00$$

5.5 Disposizione treni di carico

La disposizione dei treni di carico è stata individuata per ottenere le seguenti massime sollecitazioni:

- Sforzo Assiale: il convoglio è localizzato sostanzialmente al di sopra della pila in esame
- Momento Longitudinale: il convoglio è localizzato sulla campata di luce maggiore, più o meno centrato a seconda dei rapporti di lunghezza del treno di carico e della campata.
- Momento Trasversale: è fornito dallo stesso schema di posizionamento del massimo sforzo

Da questi schemi si sono ottenute le seguenti caratteristiche di sollecitazione:

	N	Mlong	Mtrasv
	[kN]	[kN/m]	[kN/m]
COMBO N	5255	628	525
COMBO ML	3188	3825	319
СОМВО МТ	5255	628	525

Si riportano i medesimi schemi graficamente per un caso rappresentativo:

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1205003 B 21 di 113

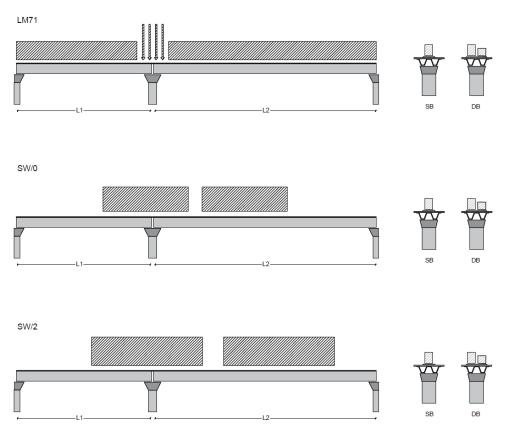


Figura 1- Posizione treni di carico - massimo sforzo assiale

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1205003 B 22 di 113

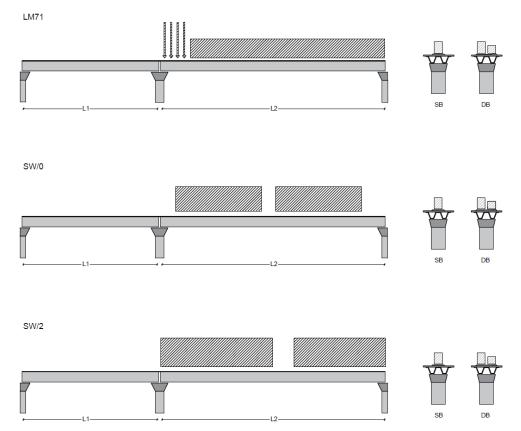


Figura 2- Posizione treni di carico – massimo momento longitudinale

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1205003 B 23 di 113

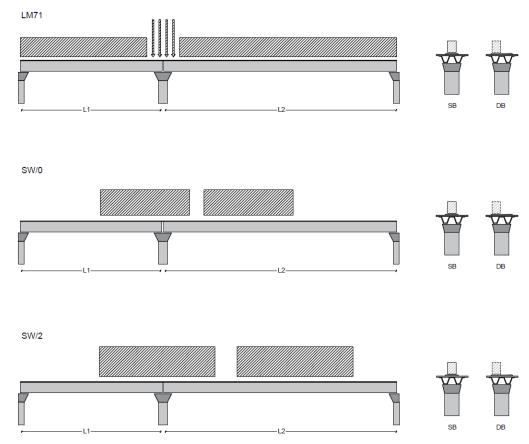


Figura 3- Posizione treni di carico — massimo momento trasversale

5.6 Carichi da traffico orizzontali

5.6.1 Forza centrifuga

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P23RS3T30D09CLVI1205003B24 di 113

raggio di curvatura	R	2950	m
velocità massima compatibile con il tracciato della linea	Vmax 160 SX Lf 48 f 0.793494		km/h
		SX	
lunghezza di influenza della parte curva del binario	Lf	48	m
fattore di riduzione funzione della Lf e della V	f	0.793494	
LM71 e SW/0			
Per i modelli di carico LM71 e SW l'azione centrifuga si dovrà	determinare partendo dall'	espressione	generale a
valori di V, α, e f in base al contenuto della tabella 1.4.3.1-1 se			6
LM71 caso a		SX	
velocità massima	Vmax	120	
fattore di riduzione funzione della Lf e della V	f	1.00	
coefficiente di adattamento	a	1.10	
valore caratteristico dei carichi verticali	Qvk	289.0	kN x ass
valore caratteristico dei carichi verticali	qvk	92.5	kN/m
valore caratteristico della forza centrifuga	Qtk	12.2	kN x ass
valore caratteristico della forza centrifuga	qtk	3.9	kN/m
LM71 caso b			
velocità massima compatibile con il tracciato della li	nea Vmax	160	
fattore di riduzione funzione della Lf e della V	f	0.79	
coefficiente di adattamento	a	1.0	

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P23RS3T30D09CLVI1205003B25 di 113

	valore caratteristico dei carichi verticali	Qvk	262.8	kN x asse
	valore caratteristico dei carichi verticali	qvk	84.1	kN/m
	valore caratteristico della forza centrifuga Qtk			kN x asse
	valore caratteristico della forza centrifuga	qtk	4.6	kN/m
SW/2				
Per quar	nto riguarda il modello di carico SW/2 si deve assumere: una ve	elocità V non supe	riore a 100	km/h,
un valor	e di f pari ad 1 ed il valore di α pari a 1,			
	velocità massima compatibile con il tracciato della linea	Vmax	100	
	fattore di riduzione funzione della Lf e della V	f	1.00	
	coefficiente di adattamento	a	1.00	
	valore caratteristico dei carichi verticali	qvk	157.66	kN/m
	valore caratteristico della forza centrifuga	qtk	4.21	kN/m

	Massima velocità della	Azione centrifuga basata su:				traffico verticale
Valore di α	linea [Km/h]	v	α	f		associato
orre (o	≥ 100	100	1	1	1 x 1 x SW/2	
SW/2	< 100	v	1	1	1 x 1 x SW/2	Φ x 1 x SW/2
		v	1	f	1 x f x (LM71"+"SW/0)	Φ x 1 x 1 x (LM71"+"SW/0)
LM71 e > 120		120	α	1	α x 1 x (LM71"+"SW/0)	
	≤ 120	v	α	1	α x 1 x (LM71"+"SW/0)	Φ x α x 1 x (LM71"+"SW/0)

Tab. 2.5.1.4.3.1-1 - Parametri per determinazione della forza centrifuga

Riassumendo:

	Qtk sx	qtk sx	Qtk dx	qtk dx	F testa Pila	Mom Tras
	KN	KN/m	KN	KN/m	KN	KN/m
Fcen_SW/2_1	0	4.2080742	0	4.20807	208.7205	1321.2

Progetto definitivo

Relazione di calcolo Pile – P23

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
3	RS3T	30	D09CL	VI1205003	В	26 di 113

5.6.2 Serpeggio

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario. Tale azione si applicherà sia in rettifilo che in curva.

viadotto a binario	Singolo		
combinazione treni	SW/2		
valore caratterstico della forza	Qsk	100	kN
coefficiente di adattamento	a	1	KIN
coefficiente di adattamento			
Questa forza laterale deve essere sempre	combinata c	on 1 carich	n verticali
altezza baggioli e apparecchi d'appoggio		0.45	m
altezza impalcato + soletta		3.2	m
armamento		0.88	m
incremento altezza rotaia + alta		0.1	m
1 1 1 5	P. 1	100	127
valore caratterstico della Forza	Fsk	100	kN
valore caratterstico Momento Tra	Msk	463	kN/m

Tale forza rappresenta l'azione complessiva in testa alla pila.

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	27 di 113

5.6.3 Frenatura ed avviamento

numero di binari		Singolo		
combinazione treni		SW/2		
posizionamento vincolo fissi	caso peggiore			
estradosso pulvino sommità binario	Н	0.45	m	
lunghezza del binario	L	49.6	m	

Le forze di frenatura e di avviamento agiscono sulla sommità del binario, nella direzione longitudinale dello stesso. Dette forze sono da considerarsi uniformemente distribuite su una lunghezza di binario L determinata per ottenere l'effetto più gravoso sull'elemento strutturale considerato.

FENATURA

LM/71					
coefficiente di adattamento lunghezza del binario			a	1.1	
			L	49.6	m
valore car	ratteristico	da della forza	Qla,k	1091.2	kN
SW/0					
coefficiente di adattamento			a	1.1	
lunghezza	a del binari	О	L	35.3	m
valore car	ratteristico	da della forza	Qla,k	776.6	kN
SW/2					
coefficier	nte di adatt	amento	a	1	
lunghezza	a del binari	О	L	42.6	
valore car	ratteristico	da della forza	Qla,k	1491	

AVVIAMENTO

LM/71				
valore caratteristico da della	forza	Qla,k	1000	kN
SW/0				
valore caratteristico da della	Qla,k	1000	kN	
SW/2				
valore caratteristico da della	forza	Qla,k	1000	kN

Progetto definitivo

Relazione di calcolo Pile - P23

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1205003	В	28 di 113

5.6.4 Forza d'attrito

Le forze parassitarie dei vincoli si esplicano in corrispondenza degli apparecchi d'appoggio mobili per traslazione relativa impalcato-apparecchi d'appoggio. Essendo funzione del carico verticale, la sua definizione è associata ai coefficienti moltiplicativi delle combinazioni γ e ψ dei carichi da peso proprio strutturali e non, e dei carichi verticali da traffico. Si riporta per questo motivo un esempio di forza d'attrito "caratteristica" solo come esempio di calcolo, in quanto il calcolo è stato eseguito a valle della combinazione di carico.

altezza baggioli e apparecchi d'appoggio	h	0.45	m
lunghezza del binario	L	49.6	m
reazione verticale massima associata ai carichi permanenti	Vg1	6544	kN
reazione verticale massima associata ai carichi permanenti	Vg2	5570	KN
reazione verticale massima associata ai carichi mobili	Vq	6716	kN
coefficiente d'attrito (da assum. In relazione alle cart. App.)	f	0.04	
forza d'attrito trasmessa alla pila	Fa	365.6	kN
momento longitudinale in testa pila	M	164.5	kN/m

5.6.5 Azione del Vento

Ricadendo nella classificazione ordinaria di ponti l'azione del vento è valutata come agente su una superficie continua, convenzionalmente alta 4m dal paino del ferro. Nel caso di ponte scarico si considera la superficie relativa alle barriere antirumore.

velocità di base di riferimento slm	Vbo	28	m/s
parametro di quota	ao	500	m
altitudine sul livello del mare	as	343	m
parametro adimensionale	ks	0.36	
coefficiente di altitudine	ca	1	
velocità di base di riferimento	Vb	28	m/s

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P23RS3T30D09CLVI1205003B29 di 113

termpo di ritorno azione del vento	Tr	112.5	anni
coefficiente di ritorno	cr	1.04562	
velocità di riferimento	Vr	29.2775	m/s
tab. 3.3.I	Zona	4	
tab.3.3.II	Categoria	II	
tab. 3.3.III	Classe rug	D	
fattore di terreno	Kr	0.19	
lunghezza di rugosità	ZO	0.05	m
altezza minima	zmin	4	m
VENTO SULL'IMPALCATO			
ponte carico			
altezza pila	z 1	15.5	m
altezza baggioli e app. appoggio	z2	0.45	m
altezza all'intradosso	zintradosso	15.95	m
altezza di riferimento	z	20.65	m
coefficiente di topografia	ct	1	
coefficienfe di esposizione	ce	2.83	
densità dell'aria convenzionale	ro	1.25	kg/m3
pressione statica di riferimento	qr	535.732	
pressione statica di picco	qpicco	1517.14	n/m2
larghezza impalcato	d	9.7	m
altezza impalcato+soletta	z3	4.4	m
armamento	z4	0.88	m
altezza treno	z5a	4	m
altezza barriere	z5b	5	m
altezza di impatto treno o barriere	htot	9.4	m
	d/h	1.03191	
coefficiente di forza trasversale	cfx	2.11622	
forza trasversale	fx	30.2	
forza equivalente in testa pila	Fx	1496.9	kN
momento trasv equivalente in testa pila	Mx	7709.1	kn/m

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

REV.

В

FOGLIO

30 di 113

 Progetto definitivo
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 Relazione di calcolo Pile – P23
 RS3T
 30
 D09CL
 VI1205003

ponte scarico			
altezza di impatto treno o barriere	htot	9.28	m
rapporto geometrico	d/h	1.04526	
coefficiente di forza trasversale	cfx	2.11255	
forza trasversale	fx	29.7	
forza equivalente in testa pila	Fx	1475.2	kN
momento trasv equivalente in testa pila	Mx	7509.0	kn/m
VENTO SULLA PILA			
direzione trasversale			
altezza di riferimento	z	15.5	m
coefficiente di topografia	ct	1	
coefficienfe di esposizione	ce	2.63762	
densità dell'aria convenzionale	ro	1.25	kg/m3
pressione statica di riferimento	qr	535.732	n/m2
pressione statica di picco	qpicco	1517.14	n/m2
		1.51714	Кра
tipolgoia di sezione		circolare	
larghezza trasversale pila	b	0	m
larghezza longitudinale pila	d	0	m
raggio della sezione	R	1.75	m
rapporto geometrico	b/d	0.1	
rapporto geometrico	r/b	0.1	
coefficiente di forza trasversale sez. ret.	cf, 0	2	
end-effect factor	ψλ	0.75	
viscosità cinematica dell'aria	ν	1.5E-05	m/s
numero di Reynolds	Re	9672948	
materiale pila		cls ruvido	
rugosità equivalente	k	1	mm
rapporto	k/b	0.00057	

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P23RS3T30D09CLVI1205003B31 di 113

coefficiente di forza trasversale sez. circ	cf,0	0.91041	
rapporto geometrico	1/b	4.42857	
snellezza effettiva	λ	4.42857	
rapporto di solidità	ф	1	
end-effect factor	ψλ	0.66146	
forza trasversale	f tras	0.9	
forza equivalente in testa pila	F tras	14.2	kN
alteza di applicatione sulla pila	h tra	9.3	m
irezione longitudinale			
tipolgoia di sezione		circolare	
larghezza trasversale pila	b	0	m
larghezza longitudinale pila	d	0	m
raggio della sezione	R	1.75	m
rapporto geometrico	b/d	0.1	
rapporto geometrico	r/b	0.1	
coefficiente di forza longitu sez.ret	cf,0	2	
end-effect factor	ψλ	0.75	
coefficiente di forza trasversale sez.circ.	. cf,0	0.91041	
rapporto geometrico	1/b	4.42857	
snellezza effettiva	λ	4.42857	
rapporto di solidità	ф	1	
end-effect factor	ψλ	0.66146	
forza longitudinale	flon	0.91362	
forza equivalente in testa pila	Flon	14.1612	kN
alteza di applicatione sulla pila	h lon	9.3	m

5.7 Azione Sismica

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17 gennaio 2018 e relativa circolare applicativa.

Progetto definitivo

Relazione di calcolo Pile - P23

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1205003	В	32 di 113

5.7.1 Inquadramento Sismico

La determinazione della pericolosità sismica di base è definita a partire dall'ubicazione dell'opera e dalle sue caratteristiche progettuali come la vita nominale V_N e la classe d'uso C_u . Sulla base del MDP [4]. I parametri indentificativi dell'opera sono:

Vita Nominale	Classe d'Uso	Coeff. D'uso
75	III	1.5

La geo-localizzazione permette di ottenere le coordinate geografiche delle singole opere e individuare puntualmente la domanda sismica secondo gli spettri normativi rappresentativi delle due componenti (orizzontale e verticale), ovvero determinare i singoli parametri indipendenti di riferimento.

Figura 4 - Individuazione geografica della linea ferroviaria

I parametri indipendenti per le forme spettrali di riferimento hanno una variazione spaziale lungo la linea poco influente tuttavia, per le seguenti analisi si è fatto riferimento alle coordinate dei singoli viadotti.

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P23RS3T30D09CLVI1205003B33 di 113

Tabella 3 - Sezione tipo esistente in viadotto (rifare la tabella N,E, ag Tc* ..tutti i parametri sismici)

LOTTO 3A-B							
Viadotto Fer.	Binario	n° camp	L tot [m]	Rcurv. [m]	altitudine [m]	N [se]	E [se]
VI01	D	20	605	1188	416	37°43'18.70	13°40'18.19
VI02	D	8	215	1060	418	37°43'9.38	13°40'31.63
VI03	D	1	17	1300	434	37°43'3.15	13°41'14.35
VI04	D	32	800	inf	445	37°43'1.42	13°42'17.20
VI05-06	S	12	440	725	422	37°41'25.58	13°51'40.40
VI07	S	5	210	inf	410	37°41'14.75	13°52'13.14
VI08	S	26	780	725	385	37°40'20.84	13°52'59.62
VI09	S	6	150	733	382	37°40'0.09	13°53'10.68
VI10	S	19	575	1000	373	37°39'52.17	13°53'27.88
VI11	S	32	885	1000	367	37°39'29.61	13°53'47.03
VI12	S	39	1500	2950	343	37°37'42.58	13°54'0.85
VI13	S	3	100	inf	342	37°34'6.35	13°56'27.65
VI14	S	3	100	inf	340	37°33'57.11	13°56'38.61
VI15	S	16	650	inf	282	37°32'54.77	13°57'45.53
VI16	D	16	425	2500	300	37°32'12.39	13°58'38.40
VI17	S	46	1390	1050	317	37°32'8.62	13°59'56.29
VI18	S	9	250	inf	355	37°31'58.58	14° 1'21.91

5.7.2 Definizione della domanda sismica

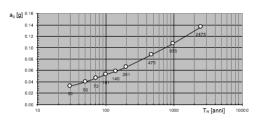
Secondo le NTC2018 l'azione sismica viene considerata mediante spettri di risposta elastici in accelerazione. Sulla base dello studio geologico del 2019, i terreni in esame sono prevalentemente di tipo C e B, pianeggianti o leggermente acclivi, tali da ricadere nella categoria topografica T1. Risulta quindi possibile tracciare lo spettro di riferimento normativo.

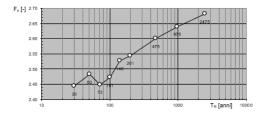
VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

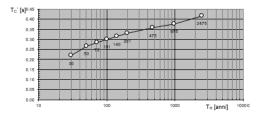
Progetto definitivo COMMESSA
Relazione di calcolo Pile – P23 RS3T

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1205003 B 34 di 113

Figura 5 - Sito di riferimento secondo "Spettri_NTC"

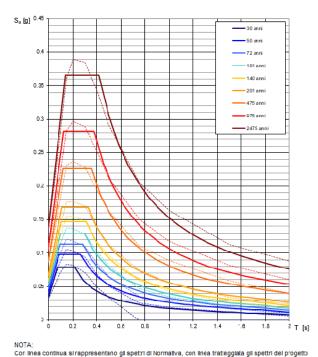



VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m


COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1205003 B 35 di 113

Progetto definitivo Relazione di calcolo Pile – P23

Valori dei parametri a_g, F_o, T_c*: variabilità col periodo di ritorno T_R



La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

Spettri di risposta elastici per i periodi di ritorno T_R di riferimento

S1-INGV da cui sono derivati.

La verifica dell'idoreità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso

Figura 6 - Parametri di riferimento del sito secondo "Spettri_NTC"

Valori dei parametri a_g , F_o , $T_C^{}$ per i periodi di ritorno T_R di riferimento

T _R	a _g	F _o	T _c *
[anni]	[g]	[-]	[s]
30	0.032	2.422	0.215
50	0.040	2.459	0.261
72	0.047	2.437	0.280
101	0.053	2.461	0.293
140	0.059	2.499	0.310
201	0.067	2.527	0.324
475	0.087	2.603	0.352
975	0.107	2.644	0.375
2475	0.136	2.710	0.409

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

Figura 7 - Tabella riassuntiva degli stati limite di riferimento del sito in esame

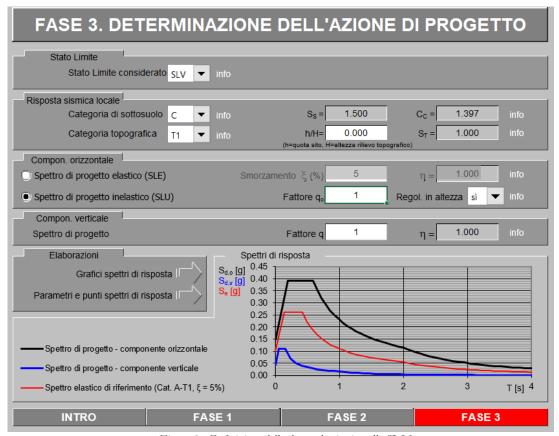
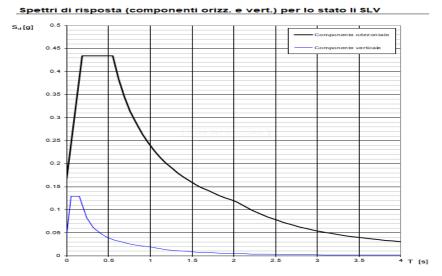



Figura 8 - Definizione della domanda sismica allo SLV

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

Figura 9 - Spettro in accelerazione SLV orizzontale e verticale

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23

COMMESSA	LOTTO	CODIF
RS3T	30	D090

FICA DOCUMENTO
CL VI1205003

REV. FOGLIO **B** 37 di 113

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Parametri indipendenti

SLV
0.099 g
2.641
0.421 s
1.500
1.397
1.000
1.000

Parametri dipendenti

S	1.500
η	1.000
T _B	0.196 s
T _c	0.588 s
T _D	1.995 s

Espressioni dei parametri dipendenti

$$S = S_S \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_n = T_c / 3$$
 (NTC-07 Eq. 3.2.8)

$$T_{c} = C_{c} \cdot T_{c}^{*}$$
 (NTC-07 Eq. 3.2.7)

$$T_0 = 4,0 \cdot a_a / g + 1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti d	lello spettro	di risposta
	T [s]	Se [g]
	0.000	0.148
T₽◀─	0.196	0.391
Tċ◀	0.588	0.391
	0.655	0.351
	0.722	0.319
	0.789	0.292
	0.856	0.269
	0.923	0.249
	0.990	0.232
	1.057	0.218
	1.124	0.205
	1.191	0.193
	1.258	0.183
	1.325	0.174
	1.392	0.165
	1.459	0.158
	1.526	0.151
	1.593	0.144
	1.660	0.139
	1.727	0.133
	1.794	0.128
	1.861	0.124
_	1.928	0.119
Tø◀─	1.995	0.115
	2.091	0.105
	2.186	0.096
	2.282	0.088
	2.377	0.081
	2.472	0.075
	2.568	0.070
4)	2.663	0.065
	2.759	0.060
	2.854	0.056
	2.950	0.053
	3.045	0.049
	3.141	0.047
	3.236	0.044
	3.332	0.041
	3,427	0.039
	3.523	0.037
	3.618	0.035
	3.714	0.033
	3.809	0.032
η	3.905	0.030
	4.000	0.029

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dell

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	38 di 113

5.7.3 Calcolo dell'azione Sismica

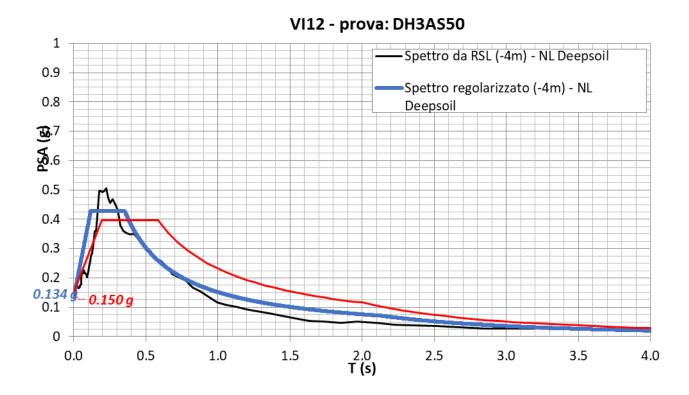
Per il calcolo delle azioni sismiche si utilizza una Analisi Statica Lineare, come riportata nel cap. 7.9.4.1 delle NTC 2018. Qualora le ipotesi non siano soddisfate, per il calcolo dei periodi propri della pila e quindi delle sollecitazioni sismiche, si è fatto riferimento ad una Analisi Dinamica Modale, attraverso la costruzione di un modello agli Elementi Finiti monodimensionali (Beam/Frame) mediante il software di calcolo Midas Civil. I Fattori di comportamento utilizzati sono:

- q= 1.5 per la verifica a presso flessione della pila;
- q= 1.5/1.1 per la verifica a capacità portante verticale dei pali, la presso-flessione e la verifica del plinto se non tozzo;
- q= 1 per le verifiche a taglio degli elementi strutturali e le verifiche a capacità portante orizzontale dei pali.

Nella scrittura delle combinazioni di carico si è distinta la posizione del convoglio per massimizzare le singole sollecitazioni (N,Mx,My,Tx,Ty), identificando tre configurazioni, ovvero tre masse statiche.

Nell'analisi sismica la massa partecipante riferita ai carichi da traffico è stata valutata in maniera distinta per le tre componenti del moto e successivamente messa in combinazione per le tre configurazioni statiche.

Relazione di calcolo Pile – P23


DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1205003	В	39 di 113

5.7.4 Risposta sismica locale

Si riporta graficamente quanto desunto da apposite analisi di Risposta Sismica Locale, volte alla quantificazione degli effetti locali di sito e alle possibili criticità emergenti in termini di fenomeni di risonanza delle strutture.

In tale caso la RSL risulta essere più gravosa dell'analisi semplificata di Norma.

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P23RS3T30D09CLVI1205003B40 di 113

5.7.5 Check analisi statica

Direzione Longitudinale			
massa treno per direzione long	Com Nmax	6376	kN
massa sismica treno per direzione long	treno	1275	kN
		0	
massa impalcato (G1 + G2)	Mimp	12114	kN
massa sismica portata sopra pila	Mimp t	13389	kN
1/5 della massa sismica sopra la pila	1/5 Mimp t	2678	kN
massa pulvino	Mpul	3247	kN
massa pila	Mpila	2192	kN
massa efficace pila	Mpe	3978	kN
massa sismica totale da utilizzare dir. Long	Mtot long	17367	kN
verifica di requisito di norma Mep<1/5Mi		NO per -12	299.9 KN
Direzione Trasversale			
massa treno per direzione long	Com Mmax	5255	kN
massa sismica treno per direzione long	treno	1051	kN
massa impalcato (G1 + G2)	Mimp	12114	kN
massa sismica portata sopra pila	Mimp t	13165	kN
massa pulvino	Mpul	3247	kN
massa pila	Mpila	2192	kN
massa efficace pila	Mpe	3978	kN
massa sismica totale da utilizzare dir. Trasv	Mtot tras	17143	kN
verifica di requisito di norma Mep<1/5Mi	mp	NO per -13	344.7 KN
Direzione Verticale			
massa treno per direzione long	Com Mmax	5255	kN
massa sismica treno per direzione long	treno	1051	kN
massa impalcato (G1 + G2)	Mimp	12114	kN
massa sismica portata sopra pila	Mimp t	13165	kN
massa pulvino	Mpul	3247	kN
massa pila	Mpila	2192	kN
massa efficace pila	Mpe	3978	kN
massa sismica totale da utilizzare dir. Vert	Mtot vert	17143	kN
verifica di requisito di norma Mep<1/		NO per -13	

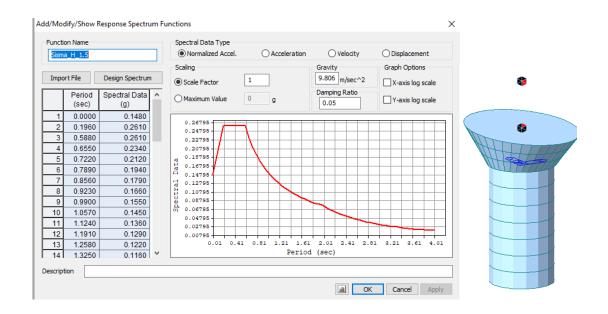
VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	41 di 113

5.7.6 Analisi statica equivalente

area della sezione	A	9.62	m2
inerzia sezione direzione trasversale	I11	7.37	m4
inerzia sezione direzione longitudinale	I22	7.37	m4
modulo elastico cls pila	Ec	33346	MPa
eventuale abbattimento del modulo	%	45.00	
modulo di calcolo	E	18340	MPa
calcestruzzo	fck	32.0	MPa
altezza pila est. fondazione - estr. pulvino	Н	11.00	m
altezza plinto di fondazione	hf	0.00	m
altrezza baggioli ed app. appoggio	hap	0.45	m
altezza equovalente sdof	Не	11.45	m
rigidezza flessionale sdof in dir. Trasv	Ktra	1.3E+08	N/m
rigidezza flessionale sdof in dir. Long	Klong	2.7E+08	N/m
rigidezza assiale sdof in dir. Vert	Kvert	2.2E+10	N/m
periodo di vibrare sdof dir. Trasversale	Ttra	0.72	sec
periodo di vibrare sdof dir. Longitudinale	Tlong	0.49	sec
periodo di vibrare sdof dir. Verticale	Tvert	0.05	sec

	SLV			SLD	
Tabella Riassuntiva	q=1.5	q=1.36	q=1	q=1	
accelerazione componente trasversale	0.15	0.15	0.23	0.11	g
accelerazione componente longitudin	ale 0.23	0.23	0.34	0.17	g
accelerazione componente verticale	0.12	0.12	0.12	0.04	g
Sforzo assiale	1993	1993	1993	662	kN
Taglio Sism testa pila direz. trasversal	le 2437	2681	3656	1707	kN
Taglio Sism testa pila direz. longitudi	nal 3733	4107	5600	2723	kN
Momento flessionale trasversale	35906	39497	53859	25154	kN m
Momento flessionale longitudinale	42850	47125	64223	31284	kN m



VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	42 di 113

5.7.7 Analisi dinamica modale

Nel caso specifico i periodi e quindi le forze alla base della pila sono stati valutati tramite una analisi spettrale. Le caratteristiche geometriche e meccaniche sono state definite coerentemente nei paragrafi precedenti. Le masse a diverse altezze sono associate alla tipologia di appoggio impalcato-pila, quindi differenti nelle due direzioni.

I risultati ottenuti sono i seguenti:

Load	N (kN)	Vtras (kN)	Vlong (kN)	Mtras (kN*m)	Mlong (kN*m)
SISMA q=1.5	1734.65	2495.53	3704.44	34455.65	39851.42
SISMA q=1	1734.65	3742.56	5550.55	51702	59720.69
SISMA sld	578.22	1765.69	2719.32	24372.67	29255.83

Confrontando i risultati di un'analisi statica con quelli dell'analisi modale si può osservare che quest'ultimi sono superiori per il caso specifico, quindi si procede con tali sollecitazioni.

Progetto definitivo

Relazione di calcolo Pile – P23

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1205003	В	43 di 113

6. SOLLECITAZIONI

Come precedentemente descritto si è valutata la posizione del singolo convoglio per massimizzare la sollecitazione d'interesse. Questo ha portato alla definizione di tre configurazioni per la progettazione e verifica del pulvino, del fusto pila, della fondazione e dei pali. Di seguito si riportano le tabelle di tutte le combinazioni di carico, funzione delle suddette configurazioni.

6.1 Combinazioni di carico

6.1.1 Configurazione 1

CARATTERISTICHE SOLLECITAZIONI IN TESTA PILA									
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv				
A1_SLU_gr1_Treno_1	24809.3	1080.98	700.712	1397.18	2856.82				
A1_SLU_gr2_Scarico_2	17885.8	0	451.467	0	1982.71				
A1_SLU_gr3_Fre/avv_3	24809.3	2161.95	549.39	1883.62	1898.95				
A1_SLU_gr4_centrif_4	23285.4	1729.56	585.323	1506.9	2296.59				
A1_SLU_gr1+vento_5	24809.3	1089.28	1958.52	1397.18	9216.79				
A1_SLU_gr2+vento_6	17885.8	8.30958	1709.28	0	8342.68				
A1_SLU_gr3+vento_7	24809.3	2170.26	1807.2	1883.62	8258.91				
A1_SLU_gr4+vento_8	23285.4	1737.87	1843.13	1506.9	8656.56				
A1_SLU_vento_gr1_9	23285.4	878.629	2613.03	1117.75	12865.7				
A1_SLU_vento_gr2_10	17746.6	13.8493	2453.52	0	12184.3				
A1_SLU_vento_gr3_11	23285.4	1743.41	2491.98	1506.9	12099.4				
A1_SLU_vento_gr4_12	23285.4	1743.41	2681.68	1506.9	12896.5				
SLE_rar_gr1_Treno_14	17369.1	745.5	417.347	963.575	1940.56				
SLE_rar_gr2_Scarico_15	12594.3	0	302.751	0	1363.51				
SLE_rar_gr3_Fre/avv_16	17369.1	1491	312.987	1299.05	1279.96				
SLE_rar_gr4_centrif_17	16318.1	1192.8	350.38	1039.24	1559.88				
SLE_rar_gr1+vento_18	17369.1	751.04	1255.89	963.575	6180.54				
SLE_rar_gr2+vento_19	12594.3	5.53972	1141.29	0	5603.49				
SLE_rar_gr3+vento_20	17369.1	1496.54	1151.53	1299.05	5519.94				
SLE_rar_gr4+vento_21	16318.1	1198.34	1188.92	1039.24	5799.85				
SLE_rar_vento_gr1_22	16318.1	605.633	1711.27	770.86	8610				
SLE_rar_vento_gr2_23	12498.3	9.23286	1637.93	0	8156.61				
SLE_rar_vento_gr3_24	16318.1	1202.03	1627.78	1039.24	8081.52				
SLE_rar_vento_gr4_25	16318.1	1202.03	1747.95	1039.24	8626.51				

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1205003 B 44 di 113

SLE_fre_gr1_Treno_27	16318.1	596.4	289.245	770.86	1532.37
SLE_fre_gr2_Scarico_28	12498.3	0	228.128	0	1084.48
SLE_fre_gr3_Fre/avv_29	16318.1	1192.8	205.757	1039.24	1003.89
SLE_fre_gr4_centrif_30	16318.1	1192.8	319.812	1039.24	1546.12
SLE_fre_gr1+vento_31	16318.1	598.247	568.759	770.86	2945.69
SLE_fre_gr2+vento_32	12498.3	1.84657	507.642	0	2497.8
SLE_fre_gr3+vento_33	16318.1	1194.65	485.271	1039.24	2417.21
SLE_fre_gr4+vento_34	16318.1	1194.65	599.326	1039.24	2959.45
SLE_fre_vento_gr1_35	12114.3	4.61643	767.544	0	3564.26
SLE_fre_vento_gr2_36	12114.3	4.61643	767.544	0	3564.26
SLE_fre_vento_gr3_37	12114.3	4.61643	767.544	0	3564.26
SLE_fre_vento_gr4_38	12114.3	4.61643	767.544	0	3564.26
SLE_fre_gr1_temp39	12114.3	1.84657	362.025	0	1450.46
SLE_fre_gr2_temp40	12114.3	1.84657	362.025	0	1450.46
SLE_fre_gr3_temp41	12114.3	1.84657	362.025	0	1450.46
SLE_fre_gr3_temp42	12114.3	1.84657	362.025	0	1450.46
SLE_qp_gr1_Treno_44	12114.3	0	68.7592	0	30.9416
SLE_qp_gr2_Scarico_45	12114.3	0	68.7592	0	30.9416
SLE_qp_gr3_Fre/avv_46	12114.3	0	68.7592	0	30.9416
SLE_qp_gr4_centrif_47	12114.3	0	68.7592	0	30.9416
SLE_qp_gr1+vento_48	12114.3	1.84657	348.273	0	1444.27
SLE_qp_gr2+vento_49	12114.3	1.84657	348.273	0	1444.27
SLE_qp_gr3+vento_50	12114.3	1.84657	348.273	0	1444.27
SLE_qp_gr4+vento_51	12114.3	1.84657	348.273	0	1444.27
SLE_qp_vento_gr1_52	12114.3	1.84657	348.273	0	1444.27
SLE_qp_vento_gr2_53	12114.3	1.84657	348.273	0	1444.27
SLE_qp_vento_gr3_54	12114.3	1.84657	348.273	0	1444.27
SLE_qp_vento_gr4_55	12114.3	1.84657	348.273	0	1444.27
SLE_qp_gr1_temp56	12114.3	0	68.7592	0	30.9416
SLE_qp_gr2_temp57	12114.3	0	68.7592	0	30.9416
SLE_qp_gr3_temp58	12114.3	0	68.7592	0	30.9416
SLE_qp_gr3_temp59	12114.3	0	68.7592	0	30.9416
SEE_qp_grs_temps9	12114.5	0	00.7372	U	30.2410
E_103x_SLV_q=1.5_60	12634.7	3706.29	1096.93	0	0
E_103y_SLV_q=1.5_61	12634.7	1113.18	2843.8	0	0
E_103y_SLV_q=1.5_61 E_103z_SLV_q=1.5_62	13848.9	1113.18	1096.93	0	0
L_1032_3Lv_q=1.3_02	13040.7	1113.10	1070.73	U	0
E_103x_SLV_q=1.36_63	12634.7	4076.73	1171.8	0	0
E_103y_SLV_q=1.36_64	12634.7	1224.31	3093.36	0	0
E_103y_SLV_q=1.36_65 E_103z_SLV_q=1.36_65	13848.9	1224.31	1171.8	0	0
E_103Z_SLV_q=1.30_03	13040.9	1224.31	11/1.0	U	0
F 103v SIV c=1 66	126347	5552.4	1471 04	0	0
E_103x_SLV_q=1_66	12634.7 12634.7	5552.4 1667.01	1471.04 4090.83	0	0
E_103y_SLV_q=1_67		1667.01		-	0
E_103z_SLV_q=1_68	13848.9	1007.01	1471.04	0	U
E 102; SID ==1 40	12207.7	2721 17	977.00	0	0
E_103x_SLD_q=1_69	12287.7	2721.17	877.98	0	0
E_103y_SLD_q=1_70	12287.7	817.643	2113.96	0	0
E_103z_SLD_q=1_71	12692.5	817.643	877.98	0	0

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO
RS3T 30

CODIFICA **D09CL**

DOCUMENTO VI1205003

REV. FOGLIO **B** 45 di 113

CARATTERISTICHE SOLLECITAZIONI BASE PILA									
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv				
A1_SLU_gr1_Treno_1	30690.9	1080.98	700.712	13287.9	10564.6				
A1_SLU_gr2_Scarico_2	23767.4	0	451.467	0	6948.85				
A1_SLU_gr3_Fre/avv_3	30690.9	2161.95	549.39	25665.1	7942.23				
A1_SLU_gr4_centrif_4	29167	1729.56	585.323	20532.1	8735.14				
A1_SLU_gr1+vento_5	30690.9	1089.28	1958.52	13379.3	30760.5				
A1_SLU_gr2+vento_6	23767.4	8.30958	1709.28	91.4053	27144.8				
A1_SLU_gr3+vento_7	30690.9	2170.26	1807.2	25756.5	28138.1				
A1_SLU_gr4+vento_8	29167	1737.87	1843.13	20623.5	28931				
A1_SLU_vento_gr1_9	29167	878.629	2613.03	10782.7	41609				
A1_SLU_vento_gr2_10	23628.2	13.8493	2453.52	152.342	39173				
A1_SLU_vento_gr3_11	29167	1743.41	2491.98	20684.4	39511.1				
A1_SLU_vento_gr4_12	29167	1743.41	2681.68	20684.4	42395				
_									
SLE_rar_gr1_Treno_14	21725.8	745.5	417.347	9164.07	6531.38				
SLE_rar_gr2_Scarico_15	16951	0	302.751	0	4693.78				
SLE_rar_gr3_Fre/avv_16	21725.8	1491	312.987	17700	4722.81				
SLE_rar_gr4_centrif_17	20674.9	1192.8	350.38	14160	5414.05				
SLE_rar_gr1+vento_18	21725.8	751.04	1255.89	9225.01	19995.3				
SLE_rar_gr2+vento_19	16951	5.53972	1141.29	60.9369	18157.7				
SLE_rar_gr3+vento_20	21725.8	1496.54	1151.53	17761	18186.7				
SLE_rar_gr4+vento_21	20674.9	1198.34	1188.92	14221	18878				
SLE_rar_vento_gr1_22	20674.9	605.633	1711.27	7432.82	27433.9				
SLE_rar_vento_gr2_23	16855	9.23286	1637.93	101.561	26173.8				
SLE_rar_vento_gr3_24	20674.9	1202.03	1627.78	14261.6	25987.1				
SLE_rar_vento_gr4_25	20674.9	1202.03	1747.95	14261.6	27853.9				
SLE_fre_gr1_Treno_27	20674.9	596.4	289.245	7331.26	4714.06				
SLE_fre_gr2_Scarico_28	16855	0	228.128	0	3593.88				
SLE_fre_gr3_Fre/avv_29	20674.9	1192.8	205.757	14160	3267.21				
SLE_fre_gr4_centrif_30	20674.9	1192.8	319.812	14160	5064.06				
SLE_fre_gr1+vento_31	20674.9	598.247	568.759	7351.57	9202.04				
SLE_fre_gr2+vento_32	16855	1.84657	507.642	20.3123	8081.86				
SLE_fre_gr3+vento_33	20674.9	1194.65	485.271	14180.4	7755.19				
SLE_fre_gr4+vento_34	20674.9	1194.65	599.326	14180.4	9552.04				
SLE_fre_vento_gr1_35	16471	4.61643	767.544	50.7807	12007.2				

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1205003 B 46 di 113

SLE_fre_vento_gr2_36	16471	4.61643	767.544	50.7807	12007.2
SLE_fre_vento_gr3_37	16471	4.61643	767.544	50.7807	12007.2
SLE_fre_vento_gr4_38	16471	4.61643	767.544	50.7807	12007.2
SLE_fre_gr1_temp39	16471	1.84657	362.025	20.3123	5432.73
SLE_fre_gr2_temp40	16471	1.84657	362.025	20.3123	5432.73
SLE_fre_gr3_temp41	16471	1.84657	362.025	20.3123	5432.73
SLE_fre_gr3_temp42	16471	1.84657	362.025	20.3123	5432.73
SLE_qp_gr1_Treno_44	16471	0	68.7592	0	787.292
SLE_qp_gr2_Scarico_45	16471	0	68.7592	0	787.292
SLE_qp_gr3_Fre/avv_46	16471	0	68.7592	0	787.292
SLE_qp_gr4_centrif_47	16471	0	68.7592	0	787.292
SLE_qp_gr1+vento_48	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr2+vento_49	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr3+vento_50	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr4+vento_51	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_vento_gr1_52	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_vento_gr2_53	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_vento_gr3_54	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_vento_gr4_55	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr1_temp56	16471	0	68.7592	0	787.292
SLE_qp_gr2_temp57	16471	0	68.7592	0	787.292
SLE_qp_gr3_temp58	16471	0	68.7592	0	787.292
SLE_qp_gr3_temp59	16471	0	68.7592	0	787.292
E_103x_SLV_q=1.5_60	16991.4	3706.29	1096.93	39851.4	11781
E_103y_SLV_q=1.5_61	16991.4	1113.18	2843.8	11955.4	35899.9
E_103z_SLV_q=1.5_62	18205.7	1113.18	1096.93	11955.4	11781
E_103x_SLV_q=1.36_63	16991.4	4076.73	1171.8	43836.6	12814.6
E_103y_SLV_q=1.36_64	16991.4	1224.31	3093.36	13151	39345.5
E_103z_SLV_q=1.36_65	18205.7	1224.31	1171.8	13151	12814.6
E_103x_SLV_q=1_66	16991.4	5552.4	1471.04	59720.7	16954.9
E_103y_SLV_q=1_67	16991.4	1667.01	4090.83	17916.2	53146.3
E_103z_SLV_q=1_68	18205.7	1667.01	1471.04	17916.2	16954.9
E_103x_SLD_q=1_69	166115	2721 17	977.09	20255.0	9756 07
	16644.5	2721.17	877.98	29255.8	8756.07
E_103y_SLD_q=1_70	16644.5	817.643	2113.96	8776.75	25816.9

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO
RS3T 30

CODIFICA

D09CL

DOCUMENTO
VI1205003

REV. FOGLIO **B** 47 di 113

CARATTERISTICHE SOLLECITAZIONI BASE FONDAZIONE

CARATTERISTICHES	OLLLCI	17121011	I DAISE I	OTTOTIZA	IOIIL
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_1	48026.7	1080.98	700.712	16530.8	12666.8
A1_SLU_gr2_Scarico_2	41103.2	0	451.467	0	8303.25
A1_SLU_gr3_Fre/avv_3	48026.7	2161.95	549.39	32150.9	9590.4
A1_SLU_gr4_centrif_4	46502.8	1729.56	585.323	25720.7	10491.1
A1_SLU_gr1+vento_5	48026.7	1089.28	1958.52	16647.2	36636.1
A1_SLU_gr2+vento_6	41103.2	8.30958	1709.28	116.334	32272.6
A1_SLU_gr3+vento_7	48026.7	2170.26	1807.2	32267.3	33559.7
A1_SLU_gr4+vento_8	46502.8	1737.87	1843.13	25837.1	34460.4
A1_SLU_vento_gr1_9	46502.8	878.629	2613.03	13418.6	49448.1
A1_SLU_vento_gr2_10	40964	13.8493	2453.52	193.89	46533.6
A1_SLU_vento_gr3_11	46502.8	1743.41	2491.98	25914.6	46987
A1_SLU_vento_gr4_12	46502.8	1743.41	2681.68	25914.6	50440
SLE_rar_gr1_Treno_14	34567.2	745.5	417.347	11400.6	7783.42
SLE_rar_gr2_Scarico_15	29792.4	0	302.751	0	5602.04
SLE_rar_gr3_Fre/avv_16	34567.2	1491	312.987	22173	5661.77
SLE_rar_gr4_centrif_17	33516.2	1192.8	350.38	17738.4	6465.19
SLE_rar_gr1+vento_18	34567.2	751.04	1255.89	11478.1	23763
SLE_rar_gr2+vento_19	29792.4	5.53972	1141.29	77.556	21581.6
SLE_rar_gr3+vento_20	34567.2	1496.54	1151.53	22250.6	21641.3
SLE_rar_gr4+vento_21	33516.2	1198.34	1188.92	17816	22444.7
SLE_rar_vento_gr1_22	33516.2	605.633	1711.27	9249.72	32567.8
SLE_rar_vento_gr2_23	29696.4	9.23286	1637.93	129.26	31087.6
SLE_rar_vento_gr3_24	33516.2	1202.03	1627.78	17867.7	30870.4
SLE_rar_vento_gr4_25	33516.2	1202.03	1747.95	17867.7	33097.8
SLE_fre_gr1_Treno_27	33516.2	596.4	289.245	9120.46	5581.8
SLE_fre_gr2_Scarico_28	29696.4	0	228.128	0	4278.27
SLE_fre_gr3_Fre/avv_29	33516.2	1192.8	205.757	17738.4	3884.48
SLE_fre_gr4_centrif_30	33516.2	1192.8	319.812	17738.4	6023.49
SLE_fre_gr1+vento_31	33516.2	598.247	568.759	9146.31	10908.3
SLE_fre_gr2+vento_32	29696.4	1.84657	507.642	25.852	9604.79
SLE_fre_gr3+vento_33	33516.2	1194.65	485.271	17764.3	9211
SLE_fre_gr4+vento_34	33516.2	1194.65	599.326	17764.3	11350
SLE_fre_vento_gr1_35	29312.4	4.61643	767.544	64.63	14309.9
SLE_fre_vento_gr2_36	29312.4	4.61643	767.544	64.63	14309.9

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09CL VI1205003 B 48 di 113

SLE_fre_vento_gr3_37	29312.4	4.61643	767.544	64.63	14309.9
SLE_fre_vento_gr4_38	29312.4	4.61643	767.544	64.63	14309.9
SLE_fre_gr1_temp39	29312.4	1.84657	362.025	25.852	6518.8
SLE_fre_gr2_temp40	29312.4	1.84657	362.025	25.852	6518.8
SLE_fre_gr3_temp41	29312.4	1.84657	362.025	25.852	6518.8
SLE_fre_gr3_temp42	29312.4	1.84657	362.025	25.852	6518.8
SLE_qp_gr1_Treno_44	29312.4	0	68.7592	0	993.57
SLE_qp_gr2_Scarico_45	29312.4	0	68.7592	0	993.57
SLE_qp_gr3_Fre/avv_46	29312.4	0	68.7592	0	993.57
SLE_qp_gr4_centrif_47	29312.4	0	68.7592	0	993.57
SLE_qp_gr1+vento_48	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_gr2+vento_49	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_gr3+vento_50	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_gr4+vento_51	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_vento_gr1_52	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_vento_gr2_53	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_vento_gr3_54	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_vento_gr4_55	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_gr1_temp56	29312.4	0	68.7592	0	993.57
SLE_qp_gr2_temp57	29312.4	0	68.7592	0	993.57
SLE_qp_gr3_temp58	29312.4	0	68.7592	0	993.57
SLE_qp_gr3_temp59	29312.4	0	68.7592	0	993.57
E_103x_SLV_q=1.5_60	30013.9	4981.98	1479.64	54797.4	16219.9
E_103y_SLV_q=1.5_61	30013.9	2388.87	3226.51	19122	45579.5
E_103z_SLV_q=1.5_62	31650.9	2388.87	1479.64	19122	16219.9
E_103x_SLV_q=1.36_63	30013.9	5352.42	1554.51	59893.8	17478.1
E_103y_SLV_q=1.36_64	30013.9	2500	3476.06	20651	49773.7
E_103z_SLV_q=1.36_65	31650.9	2500	1554.51	20651	17478.1
E_103x_SLV_q=1_66	30013.9	6828.09	1853.75	80205	22516.1
E_103y_SLV_q=1_67	30013.9	2942.7	4473.54	26744.3	66566.9
E_103z_SLV_q=1_68	21 (50 0	2942.7	1853.75	26744.3	22516.1
L_103Z_3L V_q=1_00	31650.9				
L_1032_5Lv_q-1_00	31650.9				
E_103x_SLD_q=1_69	29549.5	3397.84	1080.98	39449.3	11999
			1080.98 2316.96	39449.3 13259.7	11999 32767.8

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1205003	В	49 di 113

6.1.2 Configurazione 2

CARATTERISTICH	E SOLLE	CITAZIO	ONI IN T	ESTA PI	LA
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_72	21812.1	1080.98	592.814	6033.2	2508.55
A1_SLU_gr2_Scarico_73	17885.8	0	451.467	0	1982.71
A1_SLU_gr3_Fre/avv_74	21812.1	2161.95	441.492	6519.64	1550.68
A1_SLU_gr4_centrif_75	20887.6	1729.56	499.005	5215.71	2017.98
A1_SLU_gr1+vento_76	21812.1	1089.28	1850.63	6033.2	8868.51
A1_SLU_gr2+vento_77	17885.8	8.30958	1709.28	0	8342.68
A1_SLU_gr3+vento_78	21812.1	2170.26	1699.3	6519.64	7910.64
A1_SLU_gr4+vento_79	20887.6	1737.87	1756.82	5215.71	8377.94
A1_SLU_vento_gr1_80	20887.6	878.629	2543.98	4826.56	12594.8
A1_SLU_vento_gr2_81	17746.6	13.8493	2453.52	0	12184.3
A1_SLU_vento_gr3_82	20887.6	1743.41	2422.92	5215.71	11828.5
A1_SLU_vento_gr4_83	20887.6	1743.41	2595.36	5215.71	12617.9
SLE_rar_gr1_Treno_85	15302.1	745.5	367.739	4160.83	1711.54
SLE_rar_gr2_Scarico_86	12594.3	0	302.751	0	1363.51
SLE_rar_gr3_Fre/avv_87	15302.1	1491	263.378	4496.3	1050.94
SLE_rar_gr4_centrif_88	14664.5	1192.8	310.693	3597.04	1376.66
SLE_rar_gr1+vento_89	15302.1	751.04	1206.28	4160.83	5951.52
SLE_rar_gr2+vento_90	12594.3	5.53972	1141.29	0	5603.49
SLE_rar_gr3+vento_91	15302.1	1496.54	1101.92	4496.3	5290.92
SLE_rar_gr4+vento_92	14664.5	1198.34	1149.23	3597.04	5616.63
SLE_rar_vento_gr1_93	14664.5	605.633	1679.52	3328.66	8430.35
SLE_rar_vento_gr2_94	12498.3	9.23286	1637.93	0	8156.61
SLE_rar_vento_gr3_95	14664.5	1202.03	1596.03	3597.04	7901.87
SLE_rar_vento_gr4_96	14664.5	1202.03	1708.26	3597.04	8443.29
SLE_fre_gr1_Treno_98	14664.5	596.4	262.787	3328.66	1355.1
SLE_fre_gr2_Scarico_99	12498.3	0	228.128	0	1084.48
SLE_fre_gr3_Fre/avv_100	14664.5	1192.8	179.299	3597.04	826.619
SLE_fre_gr4_centrif_101	14664.5	1192.8	286.74	3597.04	1365.88
SLE_fre_gr1+vento_102	14664.5	598.247	542.301	3328.66	2768.43
SLE_fre_gr2+vento_103	12498.3	1.84657	507.642	0	2497.8
SLE_fre_gr3+vento_104	14664.5	1194.65	458.813	3597.04	2239.94
SLE_fre_gr4+vento_105	14664.5	1194.65	566.254	3597.04	2779.2

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1205003 B 50 di 113

SLE_fre_vento_gr1_106	12114.3	4.61643	767.544	0	3564.26
SLE_fre_vento_gr2_107	12114.3	4.61643	767.544	0	3564.26
SLE_fre_vento_gr3_108	12114.3	4.61643	767.544	0	3564.26
SLE_fre_vento_gr4_109	12114.3	4.61643	767.544	0	3564.26
SLE_fre_gr1_temp110	12114.3	1.84657	362.025	0	1450.46
SLE_fre_gr2_temp111	12114.3	1.84657	362.025	0	1450.46
SLE_fre_gr3_temp112	12114.3	1.84657	362.025	0	1450.46
SLE_fre_gr3_temp113	12114.3	1.84657	362.025	0	1450.46
SLE_qp_gr1_Treno_115	12114.3	0	68.7592	0	30.9416
SLE_qp_gr2_Scarico_116	12114.3	0	68.7592	0	30.9416
SLE_qp_gr3_Fre/avv_117	12114.3	0	68.7592	0	30.9416
SLE_qp_gr4_centrif_118	12114.3	0	68.7592	0	30.9416
SLE_qp_gr1+vento_119	12114.3	1.84657	348.273	0	1444.27
SLE_qp_gr2+vento_120	12114.3	1.84657	348.273	0	1444.27
SLE_qp_gr3+vento_121	12114.3	1.84657	348.273	0	1444.27
SLE_qp_gr4+vento_122	12114.3	1.84657	348.273	0	1444.27
SLE_qp_vento_gr1_123	12114.3	1.84657	348.273	0	1444.27
SLE_qp_vento_gr2_124	12114.3	1.84657	348.273	0	1444.27
SLE_qp_vento_gr3_125	12114.3	1.84657	348.273	0	1444.27
SLE_qp_vento_gr4_126	12114.3	1.84657	348.273	0	1444.27
SLE_qp_gr1_temp127	12114.3	0	68.7592	0	30.9416
SLE_qp_gr2_temp128	12114.3	0	68.7592	0	30.9416
SLE_qp_gr3_temp129	12114.3	0	68.7592	0	30.9416
SLE_qp_gr3_temp130	12114.3	0	68.7592	0	30.9416
E_103x_SLV_q=1.5_131	12634.7	3706.29	1096.93	0	0
E_103y_SLV_q=1.5_132	12634.7	1113.18	2843.8	0	0
E_103z_SLV_q=1.5_133	13848.9	1113.18	1096.93	0	0
E_103x_SLV_q=1.36_134	12634.7	4076.73	1171.8	0	0
E_103y_SLV_q=1.36_135	12634.7	1224.31	3093.36	0	0
E_103z_SLV_q=1.36_136	13848.9	1224.31	1171.8	0	0
E_103x_SLV_q=1_137	12634.7	5552.4	1471.04	0	0
E_103y_SLV_q=1_138	12634.7	1667.01	4090.83	0	0
E_103z_SLV_q=1_139	13848.9	1667.01	1471.04	0	0
E_103x_SLD_q=1_140	12312.8	2724.91	860.496	0	0
E_103y_SLD_q=1_141	12312.8	818.765	2055.68	0	0
E_103z_SLD_q=1_142	12775.9	818.765	860.496	0	0
	_	-	-	-	

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL V11205003 B 51 di 113

CARATTERISTICHE SOLLECITAZIONI BASE PILA								
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv			
A1_SLU_gr1_Treno_72	27693.7	1080.98	592.814	17923.9	9029.5			
A1_SLU_gr2_Scarico_73	23767.4	0	451.467	0	6948.85			
A1_SLU_gr3_Fre/avv_74	27693.7	2161.95	441.492	30301.1	6407.09			
A1_SLU_gr4_centrif_75	26769.2	1729.56	499.005	24240.9	7507.03			
A1_SLU_gr1+vento_76	27693.7	1089.28	1850.63	18015.3	29225.4			
A1_SLU_gr2+vento_77	23767.4	8.30958	1709.28	91.4053	27144.8			
A1_SLU_gr3+vento_78	27693.7	2170.26	1699.3	30392.5	26603			
A1_SLU_gr4+vento_79	26769.2	1737.87	1756.82	24332.3	27702.9			
A1_SLU_vento_gr1_80	26769.2	878.629	2543.98	14491.5	40578.6			
A1_SLU_vento_gr2_81	23628.2	13.8493	2453.52	152.342	39173			
A1_SLU_vento_gr3_82	26769.2	1743.41	2422.92	24393.2	38480.7			
A1_SLU_vento_gr4_83	26769.2	1743.41	2595.36	24393.2	41166.9			
SLE_rar_gr1_Treno_85	19658.8	745.5	367.739	12361.3	5756.66			
SLE_rar_gr2_Scarico_86	16951	0	302.751	0	4693.78			
SLE_rar_gr3_Fre/avv_87	19658.8	1491	263.378	20897.3	3948.1			
SLE_rar_gr4_centrif_88	19021.3	1192.8	310.693	16717.8	4794.28			
SLE_rar_gr1+vento_89	19658.8	751.04	1206.28	12422.3	19220.6			
SLE_rar_gr2+vento_90	16951	5.53972	1141.29	60.9369	18157.7			
SLE_rar_gr3+vento_91	19658.8	1496.54	1101.92	20958.2	17412			
SLE_rar_gr4+vento_92	19021.3	1198.34	1149.23	16778.8	18258.2			
SLE_rar_vento_gr1_93	19021.3	605.633	1679.52	9990.62	26905.1			
SLE_rar_vento_gr2_94	16855	9.23286	1637.93	101.561	26173.8			
SLE_rar_vento_gr3_95	19021.3	1202.03	1596.03	16819.4	25458.2			
SLE_rar_vento_gr4_96	19021.3	1202.03	1708.26	16819.4	27234.2			
SLE_fre_gr1_Treno_98	19021.3	596.4	262.787	9889.06	4245.76			
SLE_fre_gr2_Scarico_99	16855	0	228.128	0	3593.88			
SLE_fre_gr3_Fre/avv_100	19021.3	1192.8	179.299	16717.8	2798.91			
SLE_fre_gr4_centrif_101	19021.3	1192.8	286.74	16717.8	4520.02			
SLE_fre_gr1+vento_102	19021.3	598.247	542.301	9909.37	8733.74			
SLE_fre_gr2+vento_103	16855	1.84657	507.642	20.3123	8081.86			
SLE_fre_gr3+vento_104	19021.3	1194.65	458.813	16738.2	7286.89			
SLE_fre_gr4+vento_105	19021.3	1194.65	566.254	16738.2	9008			
SLE_fre_vento_gr1_106	16471	4.61643	767.544	50.7807	12007.2			

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P23RS3T30D09CLVI1205003B52 di 113

SLE_fre_vento_gr2_107	16471	4.61643	767.544	50.7807	12007.2
SLE_fre_vento_gr3_108	16471	4.61643	767.544	50.7807	12007.2
SLE_fre_vento_gr4_109	16471	4.61643	767.544	50.7807	12007.2
SLE_fre_gr1_temp110	16471	1.84657	362.025	20.3123	5432.73
SLE_fre_gr2_temp111	16471	1.84657	362.025	20.3123	5432.73
SLE_fre_gr3_temp112	16471	1.84657	362.025	20.3123	5432.73
SLE_fre_gr3_temp113	16471	1.84657	362.025	20.3123	5432.73
SLE_qp_gr1_Treno_115	16471	0	68.7592	0	787.292
SLE_qp_gr2_Scarico_116	16471	0	68.7592	0	787.292
SLE_qp_gr3_Fre/avv_117	16471	0	68.7592	0	787.292
SLE_qp_gr4_centrif_118	16471	0	68.7592	0	787.292
SLE_qp_gr1+vento_119	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr2+vento_120	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr3+vento_121	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr4+vento_122	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_vento_gr1_123	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_vento_gr2_124	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_vento_gr3_125	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_vento_gr4_126	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr1_temp127	16471	0	68.7592	0	787.292
SLE_qp_gr2_temp128	16471	0	68.7592	0	787.292
SLE_qp_gr3_temp129	16471	0	68.7592	0	787.292
SLE_qp_gr3_temp130	16471	0	68.7592	0	787.292
E_103x_SLV_q=1.5_131	16991.4	3706.29	1096.93	39851.4	11781
E_103y_SLV_q=1.5_132	16991.4	1113.18	2843.8	11955.4	35899.9
E_103z_SLV_q=1.5_133	18205.7	1113.18	1096.93	11955.4	11781
E_103x_SLV_q=1.36_134	16991.4	4076.73	1171.8	43836.6	12814.6
E_103y_SLV_q=1.36_135	16991.4	1224.31	3093.36	13151	39345.5
E_103z_SLV_q=1.36_136	18205.7	1224.31	1171.8	13151	12814.6
E_103x_SLV_q=1_137	16991.4	5552.4	1471.04	59720.7	16954.9
E_103y_SLV_q=1_138	16991.4	1667.01	4090.83	17916.2	53146.3
E_103z_SLV_q=1_139	18205.7	1667.01	1471.04	17916.2	16954.9
E_103x_SLD_q=1_140	16669.5	2724.91	860.496	31284.1	8990.42
E_103y_SLD_q=1_141	16669.5	818.765	2055.68	9385.24	26598.1
E_103z_SLD_q=1_142	17132.6	818.765	860.496	9385.24	8990.42

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

REV.

В

FOGLIO

53 di 113

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO
RS3T 30 D09CL VI1205003

CARATTERISTICHE SOLLECITAZIONI BASE FONDAZIONE								
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv			
A1_SLU_gr1_Treno_72	45029.5	1080.98	592.814	21166.9	10807.9			
A1_SLU_gr2_Scarico_73	41103.2	0	451.467	0	8303.25			
A1_SLU_gr3_Fre/avv_74	45029.5	2161.95	441.492	36786.9	7731.56			
A1_SLU_gr4_centrif_75	44105	1729.56	499.005	29429.6	9004.04			
A1_SLU_gr1+vento_76	45029.5	1089.28	1850.63	21283.2	34777.3			
A1_SLU_gr2+vento_77	41103.2	8.30958	1709.28	116.334	32272.6			
A1_SLU_gr3+vento_78	45029.5	2170.26	1699.3	36903.3	31700.9			
A1_SLU_gr4+vento_79	44105	1737.87	1756.82	29545.9	32973.4			
A1_SLU_vento_gr1_80	44105	878.629	2543.98	17127.4	48210.5			
A1_SLU_vento_gr2_81	40964	13.8493	2453.52	193.89	46533.6			
A1_SLU_vento_gr3_82	44105	1743.41	2422.92	29623.4	45749.4			
A1_SLU_vento_gr4_83	44105	1743.41	2595.36	29623.4	48952.9			
SLE_rar_gr1_Treno_85	32500.1	745.5	367.739	14597.8	6859.88			
SLE_rar_gr2_Scarico_86	29792.4	0	302.751	0	5602.04			
SLE_rar_gr3_Fre/avv_87	32500.1	1491	263.378	25370.3	4738.23			
SLE_rar_gr4_centrif_88	31862.6	1192.8	310.693	20296.2	5726.36			
SLE_rar_gr1+vento_89	32500.1	751.04	1206.28	14675.4	22839.4			
SLE_rar_gr2+vento_90	29792.4	5.53972	1141.29	77.556	21581.6			
SLE_rar_gr3+vento_91	32500.1	1496.54	1101.92	25447.9	20717.8			
SLE_rar_gr4+vento_92	31862.6	1198.34	1149.23	20373.8	21705.9			
SLE_rar_vento_gr1_93	31862.6	605.633	1679.52	11807.5	31943.6			
SLE_rar_vento_gr2_94	29696.4	9.23286	1637.93	129.26	31087.6			
SLE_rar_vento_gr3_95	31862.6	1202.03	1596.03	20425.5	30246.3			
SLE_rar_vento_gr4_96	31862.6	1202.03	1708.26	20425.5	32359			
SLE_fre_gr1_Treno_98	31862.6	596.4	262.787	11678.3	5034.12			
SLE_fre_gr2_Scarico_99	29696.4	0	228.128	0	4278.27			
SLE_fre_gr3_Fre/avv_100	31862.6	1192.8	179.299	20296.2	3336.81			
SLE_fre_gr4_centrif_101	31862.6	1192.8	286.74	20296.2	5380.24			
SLE_fre_gr1+vento_102	31862.6	598.247	542.301	11704.1	10360.6			
SLE_fre_gr2+vento_103	29696.4	1.84657	507.642	25.852	9604.79			
SLE_fre_gr3+vento_104	31862.6	1194.65	458.813	20322.1	8663.33			
SLE_fre_gr4+vento_105	31862.6	1194.65	566.254	20322.1	10706.8			
SLE_fre_vento_gr1_106	29312.4	4.61643	767.544	64.63	14309.9			

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P23RS3T30D09CLVI1205003B54 di 113

SLE_fre_vento_gr2_107	29312.4	4.61643	767.544	64.63	14309.9
SLE_fre_vento_gr3_108	29312.4	4.61643	767.544	64.63	14309.9
SLE_fre_vento_gr4_109	29312.4	4.61643	767.544	64.63	14309.9
SLE_fre_gr1_temp110	29312.4	1.84657	362.025	25.852	6518.8
SLE_fre_gr2_temp111	29312.4	1.84657	362.025	25.852	6518.8
SLE_fre_gr3_temp112	29312.4	1.84657	362.025	25.852	6518.8
SLE_fre_gr3_temp113	29312.4	1.84657	362.025	25.852	6518.8
SLE_qp_gr1_Treno_115	29312.4	0	68.7592	0	993.57
SLE_qp_gr2_Scarico_116	29312.4	0	68.7592	0	993.57
SLE_qp_gr3_Fre/avv_117	29312.4	0	68.7592	0	993.57
SLE_qp_gr4_centrif_118	29312.4	0	68.7592	0	993.57
SLE_qp_gr1+vento_119	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_gr2+vento_120	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_gr3+vento_121	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_gr4+vento_122	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_vento_gr1_123	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_vento_gr2_124	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_vento_gr3_125	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_vento_gr4_126	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_gr1_temp127	29312.4	0	68.7592	0	993.57
SLE_qp_gr2_temp128	29312.4	0	68.7592	0	993.57
SLE_qp_gr3_temp129	29312.4	0	68.7592	0	993.57
SLE_qp_gr3_temp130	29312.4	0	68.7592	0	993.57
E_103x_SLV_q=1.5_131	30013.9	4981.98	1479.64	54797.4	16219.9
E_103y_SLV_q=1.5_132	30013.9	2388.87	3226.51	19122	45579.5
E_103z_SLV_q=1.5_133	31650.9	2388.87	1479.64	19122	16219.9
E_103x_SLV_q=1.36_134	30013.9	5352.42	1554.51	59893.8	17478.1
E_103y_SLV_q=1.36_135	30013.9	2500	3476.06	20651	49773.7
E_103z_SLV_q=1.36_136	31650.9	2500	1554.51	20651	17478.1
E_103x_SLV_q=1_137	30013.9	6828.09	1853.75	80205	22516.1
E_103y_SLV_q=1_138	30013.9	2942.7	4473.54	26744.3	66566.9
E_103z_SLV_q=1_139	31650.9	2942.7	1853.75	26744.3	22516.1
E_103x_SLD_q=1_140	29574.5	3401.58	1063.5	41488.9	12180.9
E_103y_SLD_q=1_141	29574.5	1495.44	2258.68	13871.6	33374.2
E_103z_SLD_q=1_142	30186.3	1495.44	1063.5	13871.6	12180.9
-	-				

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1205003 B 55 di 113

6.1.3 Configurazione 3

combinazione N Tlong Ttrasv Mlong Mtrasv A1_SLU_gr1_Treno_143 24809.3 1080.98 700.712 1397.18 2856.82 A1_SLU_gr2_Scarico_144 17885.8 0 451.467 0 1982.71 A1_SLU_gr3_Fre/avv_145 24809.3 2161.95 549.39 1883.62 1898.95 A1_SLU_gr4_centrif_146 23285.4 1729.56 585.323 1506.9 2296.59 A1_SLU_gr1+vento_147 24809.3 1089.28 1958.52 1397.18 9216.79 A1_SLU_gr2+vento_148 17885.8 8.30958 1709.28 0 8342.68 A1_SLU_gr3+vento_149 24809.3 2170.26 1807.2 1883.62 8258.91 A1_SLU_gr4+vento_150 23285.4 1737.87 1843.13 1506.9 8656.56 A1_SLU_vento_gr1_151 23285.4 878.629 2613.03 1117.75 12865.7 A1_SLU_vento_gr2_152 17746.6 13.8493 2453.52 0 12184.3 A1_SLU_vento_gr3_153 23285.4	CARATTERISTICH	E SOLLE	CITAZIO	NI IN T	ESTA PI	I.A
A1_SLU_gr1_Treno_143 24809.3 1080.98 700.712 1397.18 2856.82 A1_SLU_gr2_Scarico_144 17885.8 0 451.467 0 1982.71 A1_SLU_gr3_Fre/avv_145 24809.3 2161.95 549.39 1883.62 1898.95 A1_SLU_gr4_vento_147 24809.3 1089.28 1958.52 1397.18 9216.59 A1_SLU_gr4+vento_148 17885.8 8.30958 1709.28 0 8342.68 A1_SLU_gr3+vento_149 24809.3 2170.26 1807.2 1883.62 8258.91 A1_SLU_gr4+vento_150 23285.4 1737.87 1843.13 1506.9 8656.56 A1_SLU_vento_gr1_151 23285.4 878.629 2613.03 1117.75 12865.7 A1_SLU_vento_gr2_152 17746.6 13.8493 2453.52 0 12184.3 A1_SLU_vento_gr3_153 23285.4 1743.41 2491.98 1506.9 12299.4 A1_SLU_vento_gr3_153 23285.4 1743.41 2491.98 1506.9 12299.5 SLE_rar_gr1_Treno_156 17369.1						
A1_SLU_gr2_Scarico_144 17885.8 0 451.467 0 1982.71 A1_SLU_gr3_Fre/avv_145 24809.3 2161.95 549.39 1883.62 1898.95 A1_SLU_gr4_centrif_146 23285.4 1729.56 585.323 1506.9 2296.59 A1_SLU_gr1+vento_147 24809.3 1089.28 1958.52 1397.18 9216.79 A1_SLU_gr2+vento_148 17885.8 8.30958 1709.28 0 8342.68 A1_SLU_gr3+vento_149 24809.3 2170.26 1807.2 1883.62 8258.91 A1_SLU_gr3+vento_150 23285.4 1737.87 1843.13 1506.9 8656.57 A1_SLU_vento_gr1_151 23285.4 878.629 2613.03 1117.75 12865.7 A1_SLU_vento_gr2_152 17746.6 13.8493 2453.52 0 12184.3 A1_SLU_vento_gr3_153 23285.4 1743.41 2491.98 1506.9 12099.4 A1_SLU_vento_gr3_153 23285.4 1743.41 2491.98 1506.9 12099.4 A1_SLU_vento_gr3_153 0						
A1_SLU_gr3_Fre/avv_145 24809.3 2161.95 549.39 1883.62 1898.95 A1_SLU_gr4_centrif_146 23285.4 1729.56 585.323 1506.9 2296.59 A1_SLU_gr1+vento_147 24809.3 1089.28 1958.52 1397.18 9216.79 A1_SLU_gr3+vento_148 17885.8 8.30958 1709.28 0 8342.68 A1_SLU_gr3+vento_149 24809.3 2170.26 1807.2 1883.62 8258.91 A1_SLU_gr4+vento_150 23285.4 173.87 1843.13 1506.9 8656.56 A1_SLU_vento_gr1_151 23285.4 878.629 2613.03 1117.75 12865.7 A1_SLU_vento_gr3_153 23285.4 1743.41 2491.98 1506.9 12099.4 SLE_rar_gr3_Fre/avv_158	e e		1080.98		1397.18	
A1_SLU_gr4_centrif_146 23285.4 1729.56 585.323 1506.9 2296.59 A1_SLU_gr1+vento_147 24809.3 1089.28 1958.52 1397.18 9216.79 A1_SLU_gr2+vento_148 17885.8 8.30958 1709.28 0 8342.68 A1_SLU_gr3+vento_149 24809.3 2170.26 1807.2 1883.62 8258.91 A1_SLU_gr4+vento_150 23285.4 1737.87 1843.13 1506.9 8656.56 A1_SLU_vento_gr1_151 23285.4 878.629 2613.03 1117.75 12865.7 A1_SLU_vento_gr2_152 17746.6 13.8493 2453.52 0 12184.3 A1_SLU_vento_gr3_153 23285.4 1743.41 2491.98 1506.9 12099.4 A1_SLU_vento_gr4_154 23285.4 1743.41 2681.68 1506.9 12299.4 SLE_rar_gr1_Treno_156 17369.1 745.5 417.347 963.575 1940.56 SLE_rar_gr2_scarico_157 12594.3 0 302.751 0 1363.51 SLE_rar_gr3_tre/avv_158 17369	•					
A1_SLU_gr1+vento_147 24809.3 1089.28 1958.52 1397.18 9216.79 A1_SLU_gr2+vento_148 17885.8 8.30958 1709.28 0 8342.68 A1_SLU_gr3+vento_149 24809.3 2170.26 1807.2 1883.62 8258.91 A1_SLU_gr4+vento_150 23285.4 1737.87 1843.13 1506.9 8656.56 A1_SLU_vento_gr2_151 23285.4 878.629 2613.03 1117.75 12865.7 A1_SLU_vento_gr2_152 17746.6 13.8493 2453.52 0 12184.3 A1_SLU_vento_gr3_153 23285.4 1743.41 2491.98 1506.9 12099.4 A1_SLU_vento_gr4_154 23285.4 1743.41 2681.68 1506.9 12099.4 A1_SLU_vento_gr4_154 23285.4 1743.41 2681.68 1506.9 12099.4 A1_SLU_vento_gr4_154 23285.4 1743.41 2681.68 1506.9 12099.4 A1_SLU_vento_gr3_156 17369.1 745.5 417.347 963.575 1940.56 SLE_rar_gr4-vento_160 17	A1_SLU_gr3_Fre/avv_145	24809.3	2161.95	549.39	1883.62	1898.95
A1_SLU_gr2+vento_148 17885.8 8.30958 1709.28 0 8342.68 A1_SLU_gr3+vento_149 24809.3 2170.26 1807.2 1883.62 8258.91 A1_SLU_gr4+vento_150 23285.4 1737.87 1843.13 1506.9 8656.56 A1_SLU_vento_gr1_151 23285.4 878.629 2613.03 1117.75 12865.7 A1_SLU_vento_gr2_152 17746.6 13.8493 2453.52 0 12184.3 A1_SLU_vento_gr3_153 23285.4 1743.41 2491.98 1506.9 12099.4 A1_SLU_vento_gr4_154 23285.4 1743.41 2681.68 1506.9 12099.4 A1_SLE_rar_gr1_Treno_156 17369.1 745.5 417.347 963.575 1940.56 SLE_rar_gr2_Scarico_157 12594.3 0 302.751 0 1363.51 SLE_rar_gr4_centrif_159 16318.1 1192.8 350.38 1039.24 1559.88 SLE_rar_gr1+vento_160 17369.1 751.04 1255.89 963.575 6180.54 SLE_rar_gr2+vento_161 12594.3 5.53972 1141.29 0 5603.49 SL	A1_SLU_gr4_centrif_146	23285.4	1729.56	585.323	1506.9	2296.59
A1_SLU_gr3+vento_149 24809.3 2170.26 1807.2 1883.62 8258.91 A1_SLU_gr4+vento_150 23285.4 1737.87 1843.13 1506.9 8656.56 A1_SLU_vento_gr1_151 23285.4 878.629 2613.03 1117.75 12865.7 A1_SLU_vento_gr2_152 17746.6 13.8493 2453.52 0 12184.3 A1_SLU_vento_gr3_153 23285.4 1743.41 2491.98 1506.9 12099.4 A1_SLU_vento_gr4_154 23285.4 1743.41 2491.98 1506.9 12099.4 A1_SLU_vento_gr4_154 23285.4 1743.41 2491.98 1506.9 12099.4 A1_SLU_vento_gr4_154 23285.4 1743.41 2491.98 1506.9 12099.4 A1_SLE_rar_gr1_Treno_156 17369.1 745.5 417.347 963.575 1940.56 SLE_rar_gr3_Fre/avv_158 17369.1 1491 312.987 1299.05 1279.96 SLE_rar_gr4_centrif_159 16318.1 1192.8 350.38 1039.24 1559.88 SLE_rar_gr1+vento_160	A1_SLU_gr1+vento_147	24809.3	1089.28	1958.52	1397.18	9216.79
A1_SLU_gr4+vento_150 23285.4 1737.87 1843.13 1506.9 8656.56 A1_SLU_vento_gr1_151 23285.4 878.629 2613.03 1117.75 12865.7 A1_SLU_vento_gr2_152 17746.6 13.8493 2453.52 0 12184.3 A1_SLU_vento_gr3_153 23285.4 1743.41 2491.98 1506.9 12099.4 A1_SLU_vento_gr4_154 23285.4 1743.41 2681.68 1506.9 12896.5 SLE_rar_gr1_Treno_156 17369.1 745.5 417.347 963.575 1940.56 SLE_rar_gr2_Scarico_157 12594.3 0 302.751 0 1363.51 SLE_rar_gr3_Fre/avv_158 17369.1 1491 312.987 1299.05 1279.96 SLE_rar_gr4_centrif_159 16318.1 1192.8 350.38 1039.24 1559.88 SLE_rar_gr1+vento_160 17369.1 751.04 1255.89 963.575 6180.54 SLE_rar_gr3+vento_162 17369.1 1496.54 1151.53 1299.05 5519.94 SLE_rar_gr4+vento_gr1_164	A1_SLU_gr2+vento_148	17885.8	8.30958	1709.28	0	8342.68
A1_SLU_vento_gr1_151 23285.4 878.629 2613.03 1117.75 12865.7 A1_SLU_vento_gr2_152 17746.6 13.8493 2453.52 0 12184.3 A1_SLU_vento_gr3_153 23285.4 1743.41 2491.98 1506.9 12099.4 A1_SLU_vento_gr4_154 23285.4 1743.41 2681.68 1506.9 12896.5 SLE_rar_gr1_Treno_156 17369.1 745.5 417.347 963.575 1940.56 SLE_rar_gr2_Scarico_157 12594.3 0 302.751 0 1363.51 SLE_rar_gr3_Fre/avv_158 17369.1 1491 312.987 1299.05 1279.96 SLE_rar_gr4_centrif_159 16318.1 1192.8 350.38 1039.24 1559.88 SLE_rar_gr1+vento_160 17369.1 751.04 1255.89 963.575 6180.54 SLE_rar_gr3+vento_162 17369.1 1496.54 1151.53 1299.05 5519.94 SLE_rar_vento_gr1_164 16318.1 1198.34 1188.92 1039.24 5799.85 SLE_rar_vento_gr2_165 12498.3 9.23286 1637.93 0 8156.61	A1_SLU_gr3+vento_149	24809.3	2170.26	1807.2	1883.62	8258.91
A1_SLU_vento_gr2_152 17746.6 13.8493 2453.52 0 12184.3 A1_SLU_vento_gr3_153 23285.4 1743.41 2491.98 1506.9 12099.4 A1_SLU_vento_gr4_154 23285.4 1743.41 2681.68 1506.9 12896.5 SLE_rar_gr1_Treno_156 17369.1 745.5 417.347 963.575 1940.56 SLE_rar_gr2_Scarico_157 12594.3 0 302.751 0 1363.51 SLE_rar_gr3_Fre/avv_158 17369.1 1491 312.987 1299.05 1279.96 SLE_rar_gr4_centrif_159 16318.1 1192.8 350.38 1039.24 1559.88 SLE_rar_gr1+vento_160 17369.1 751.04 1255.89 963.575 6180.54 SLE_rar_gr2+vento_161 12594.3 5.53972 1141.29 0 5603.49 SLE_rar_gr3+vento_162 17369.1 1496.54 1151.53 1299.05 5519.94 SLE_rar_vento_gr1_164 16318.1 1198.34 1188.92 1039.24 5799.85 SLE_rar_vento_gr2_165 12498.3 9.23286 1637.93 0 8156.61	A1_SLU_gr4+vento_150	23285.4	1737.87	1843.13	1506.9	8656.56
A1_SLU_vento_gr3_153 23285.4 1743.41 2491.98 1506.9 12099.4 A1_SLU_vento_gr4_154 23285.4 1743.41 2681.68 1506.9 12896.5 SLE_rar_gr1_Treno_156 17369.1 745.5 417.347 963.575 1940.56 SLE_rar_gr2_Scarico_157 12594.3 0 302.751 0 1363.51 SLE_rar_gr3_Fre/avv_158 17369.1 1491 312.987 1299.05 1279.96 SLE_rar_gr4_centrif_159 16318.1 1192.8 350.38 1039.24 1559.88 SLE_rar_gr4+vento_160 17369.1 751.04 1255.89 963.575 6180.54 SLE_rar_gr3+vento_161 12594.3 5.53972 1141.29 0 5603.49 SLE_rar_gr4+vento_163 16318.1 1198.34 1188.92 1039.24 5799.85 SLE_rar_vento_gr1_164 16318.1 1198.34 1188.92 1039.24 5799.85 SLE_rar_vento_gr2_165 12498.3 9.23286 1637.93 0 8156.61 SLE_rar_vento_gr3_166 16318.1 1202.03 1747.95 1039.24 806.51	A1_SLU_vento_gr1_151	23285.4	878.629	2613.03	1117.75	12865.7
A1_SLU_vento_gr4_154 23285.4 1743.41 2681.68 1506.9 12896.5 SLE_rar_gr1_Treno_156 17369.1 745.5 417.347 963.575 1940.56 SLE_rar_gr2_Scarico_157 12594.3 0 302.751 0 1363.51 SLE_rar_gr3_Fre/avv_158 17369.1 1491 312.987 1299.05 1279.96 SLE_rar_gr4_centrif_159 16318.1 1192.8 350.38 1039.24 1559.88 SLE_rar_gr1+vento_160 17369.1 751.04 1255.89 963.575 6180.54 SLE_rar_gr3+vento_161 12594.3 5.53972 1141.29 0 5603.49 SLE_rar_gr4+vento_163 16318.1 1198.34 1188.92 1039.24 5799.85 SLE_rar_vento_gr1_164 16318.1 1096.54 111.27 770.86 8610 SLE_rar_vento_gr3_166 16318.1 1202.03 1627.78 1039.24 8081.52 SLE_rar_vento_gr4_167 16318.1 1202.03 1747.95 1039.24 806.51 SLE_fre_gr1_Treno_169 16318.1 596.4 289.245 770.86 1532.37	A1_SLU_vento_gr2_152	17746.6	13.8493	2453.52	0	12184.3
SLE_rar_gr1_Treno_156 17369.1 745.5 417.347 963.575 1940.56 SLE_rar_gr2_Scarico_157 12594.3 0 302.751 0 1363.51 SLE_rar_gr3_Fre/avv_158 17369.1 1491 312.987 1299.05 1279.96 SLE_rar_gr4_centrif_159 16318.1 1192.8 350.38 1039.24 1559.88 SLE_rar_gr1+vento_160 17369.1 751.04 1255.89 963.575 6180.54 SLE_rar_gr2+vento_161 12594.3 5.53972 1141.29 0 5603.49 SLE_rar_gr3+vento_162 17369.1 1496.54 1151.53 1299.05 5519.94 SLE_rar_gr4+vento_163 16318.1 1198.34 1188.92 1039.24 5799.85 SLE_rar_vento_gr1_164 16318.1 605.633 1711.27 770.86 8610 SLE_rar_vento_gr3_166 16318.1 1202.03 1627.78 1039.24 8081.52 SLE_fre_gr1_Treno_169 16318.1 596.4 289.245 770.86 1532.37 SLE_fre_gr3_Fre/avv_171	A1_SLU_vento_gr3_153	23285.4	1743.41	2491.98	1506.9	12099.4
SLE_rar_gr2_Scarico_157 12594.3 0 302.751 0 1363.51 SLE_rar_gr3_Fre/avv_158 17369.1 1491 312.987 1299.05 1279.96 SLE_rar_gr4_centrif_159 16318.1 1192.8 350.38 1039.24 1559.88 SLE_rar_gr1+vento_160 17369.1 751.04 1255.89 963.575 6180.54 SLE_rar_gr2+vento_161 12594.3 5.53972 1141.29 0 5603.49 SLE_rar_gr3+vento_162 17369.1 1496.54 1151.53 1299.05 5519.94 SLE_rar_gr4+vento_163 16318.1 1198.34 1188.92 1039.24 5799.85 SLE_rar_vento_gr1_164 16318.1 605.633 1711.27 770.86 8610 SLE_rar_vento_gr2_165 12498.3 9.23286 1637.93 0 8156.61 SLE_rar_vento_gr3_166 16318.1 1202.03 1627.78 1039.24 8081.52 SLE_fre_gr1_Treno_169 16318.1 596.4 289.245 770.86 1532.37 SLE_fre_gr3_Fre/avv_171	A1_SLU_vento_gr4_154	23285.4	1743.41	2681.68	1506.9	12896.5
SLE_rar_gr2_Scarico_157 12594.3 0 302.751 0 1363.51 SLE_rar_gr3_Fre/avv_158 17369.1 1491 312.987 1299.05 1279.96 SLE_rar_gr4_centrif_159 16318.1 1192.8 350.38 1039.24 1559.88 SLE_rar_gr1+vento_160 17369.1 751.04 1255.89 963.575 6180.54 SLE_rar_gr2+vento_161 12594.3 5.53972 1141.29 0 5603.49 SLE_rar_gr3+vento_162 17369.1 1496.54 1151.53 1299.05 5519.94 SLE_rar_gr4+vento_163 16318.1 1198.34 1188.92 1039.24 5799.85 SLE_rar_vento_gr1_164 16318.1 605.633 1711.27 770.86 8610 SLE_rar_vento_gr2_165 12498.3 9.23286 1637.93 0 8156.61 SLE_rar_vento_gr3_166 16318.1 1202.03 1627.78 1039.24 8081.52 SLE_fre_gr1_Treno_169 16318.1 596.4 289.245 770.86 1532.37 SLE_fre_gr3_Fre/avv_171						
SLE_rar_gr3_Fre/avv_158 17369.1 1491 312.987 1299.05 1279.96 SLE_rar_gr4_centrif_159 16318.1 1192.8 350.38 1039.24 1559.88 SLE_rar_gr1+vento_160 17369.1 751.04 1255.89 963.575 6180.54 SLE_rar_gr2+vento_161 12594.3 5.53972 1141.29 0 5603.49 SLE_rar_gr3+vento_162 17369.1 1496.54 1151.53 1299.05 5519.94 SLE_rar_gr4+vento_163 16318.1 1198.34 1188.92 1039.24 5799.85 SLE_rar_vento_gr1_164 16318.1 605.633 1711.27 770.86 8610 SLE_rar_vento_gr2_165 12498.3 9.23286 1637.93 0 8156.61 SLE_rar_vento_gr3_166 16318.1 1202.03 1627.78 1039.24 8081.52 SLE_fre_gr1_Treno_169 16318.1 596.4 289.245 770.86 1532.37 SLE_fre_gr3_Fre/avv_171 16318.1 1192.8 205.757 1039.24 1003.89 SLE_fre_gr4_centrif_172	SLE_rar_gr1_Treno_156	17369.1	745.5	417.347	963.575	1940.56
SLE_rar_gr4_centrif_159 16318.1 1192.8 350.38 1039.24 1559.88 SLE_rar_gr1+vento_160 17369.1 751.04 1255.89 963.575 6180.54 SLE_rar_gr2+vento_161 12594.3 5.53972 1141.29 0 5603.49 SLE_rar_gr3+vento_162 17369.1 1496.54 1151.53 1299.05 5519.94 SLE_rar_gr4+vento_163 16318.1 1198.34 1188.92 1039.24 5799.85 SLE_rar_vento_gr1_164 16318.1 605.633 1711.27 770.86 8610 SLE_rar_vento_gr2_165 12498.3 9.23286 1637.93 0 8156.61 SLE_rar_vento_gr3_166 16318.1 1202.03 1627.78 1039.24 8081.52 SLE_fre_gr1_Treno_169 16318.1 1202.03 1747.95 1039.24 8626.51 SLE_fre_gr2_Scarico_170 12498.3 0 228.128 0 1084.48 SLE_fre_gr4_centrif_172 16318.1 1192.8 319.812 1039.24 1546.12 SLE_fre_gr1+vento_173 <	SLE_rar_gr2_Scarico_157	12594.3	0	302.751	0	1363.51
SLE_rar_gr1+vento_160 17369.1 751.04 1255.89 963.575 6180.54 SLE_rar_gr2+vento_161 12594.3 5.53972 1141.29 0 5603.49 SLE_rar_gr3+vento_162 17369.1 1496.54 1151.53 1299.05 5519.94 SLE_rar_gr4+vento_163 16318.1 1198.34 1188.92 1039.24 5799.85 SLE_rar_vento_gr1_164 16318.1 605.633 1711.27 770.86 8610 SLE_rar_vento_gr2_165 12498.3 9.23286 1637.93 0 8156.61 SLE_rar_vento_gr3_166 16318.1 1202.03 1627.78 1039.24 8081.52 SLE_rar_vento_gr4_167 16318.1 1202.03 1747.95 1039.24 8626.51 SLE_fre_gr1_Treno_169 16318.1 596.4 289.245 770.86 1532.37 SLE_fre_gr3_Fre/avv_171 16318.1 1192.8 205.757 1039.24 1003.89 SLE_fre_gr4_centrif_172 16318.1 1192.8 319.812 1039.24 1546.12 SLE_fre_gr2+vento_173	SLE_rar_gr3_Fre/avv_158	17369.1	1491	312.987	1299.05	1279.96
SLE_rar_gr2+vento_161 12594.3 5.53972 1141.29 0 5603.49 SLE_rar_gr3+vento_162 17369.1 1496.54 1151.53 1299.05 5519.94 SLE_rar_gr4+vento_163 16318.1 1198.34 1188.92 1039.24 5799.85 SLE_rar_vento_gr1_164 16318.1 605.633 1711.27 770.86 8610 SLE_rar_vento_gr2_165 12498.3 9.23286 1637.93 0 8156.61 SLE_rar_vento_gr3_166 16318.1 1202.03 1627.78 1039.24 8081.52 SLE_rar_vento_gr4_167 16318.1 1202.03 1747.95 1039.24 8626.51 SLE_fre_gr1_Treno_169 16318.1 596.4 289.245 770.86 1532.37 SLE_fre_gr2_Scarico_170 12498.3 0 228.128 0 1084.48 SLE_fre_gr4_centrif_172 16318.1 1192.8 319.812 1039.24 1546.12 SLE_fre_gr1+vento_173 16318.1 598.247 568.759 770.86 2945.69 SLE_fre_gr3+vento_175	SLE_rar_gr4_centrif_159	16318.1	1192.8	350.38	1039.24	1559.88
SLE_rar_gr2+vento_161 12594.3 5.53972 1141.29 0 5603.49 SLE_rar_gr3+vento_162 17369.1 1496.54 1151.53 1299.05 5519.94 SLE_rar_gr4+vento_163 16318.1 1198.34 1188.92 1039.24 5799.85 SLE_rar_vento_gr1_164 16318.1 605.633 1711.27 770.86 8610 SLE_rar_vento_gr2_165 12498.3 9.23286 1637.93 0 8156.61 SLE_rar_vento_gr3_166 16318.1 1202.03 1627.78 1039.24 8081.52 SLE_rar_vento_gr4_167 16318.1 1202.03 1747.95 1039.24 8626.51 SLE_fre_gr1_Treno_169 16318.1 596.4 289.245 770.86 1532.37 SLE_fre_gr2_Scarico_170 12498.3 0 228.128 0 1084.48 SLE_fre_gr3_Fre/avv_171 16318.1 1192.8 319.812 1039.24 1546.12 SLE_fre_gr4_centrif_172 16318.1 1192.8 319.812 1039.24 1546.12 SLE_fre_gr1+vento_173 <t< td=""><td>SLE_rar_gr1+vento_160</td><td>17369.1</td><td>751.04</td><td>1255.89</td><td>963.575</td><td>6180.54</td></t<>	SLE_rar_gr1+vento_160	17369.1	751.04	1255.89	963.575	6180.54
SLE_rar_gr3+vento_162 17369.1 1496.54 1151.53 1299.05 5519.94 SLE_rar_gr4+vento_163 16318.1 1198.34 1188.92 1039.24 5799.85 SLE_rar_vento_gr1_164 16318.1 605.633 1711.27 770.86 8610 SLE_rar_vento_gr2_165 12498.3 9.23286 1637.93 0 8156.61 SLE_rar_vento_gr3_166 16318.1 1202.03 1627.78 1039.24 8081.52 SLE_rar_vento_gr4_167 16318.1 1202.03 1747.95 1039.24 8626.51 SLE_fre_gr1_Treno_169 16318.1 596.4 289.245 770.86 1532.37 SLE_fre_gr2_Scarico_170 12498.3 0 228.128 0 1084.48 SLE_fre_gr3_Fre/avv_171 16318.1 1192.8 205.757 1039.24 1003.89 SLE_fre_gr1+vento_173 16318.1 1192.8 319.812 1039.24 1546.12 SLE_fre_gr2+vento_174 12498.3 1.84657 507.642 0 2497.8 SLE_fre_gr3+vento_175 16318.1 1194.65 485.271 1039.24 2417.21 <		12594.3	5.53972	1141.29	0	5603.49
SLE_rar_gr4+vento_163 16318.1 1198.34 1188.92 1039.24 5799.85 SLE_rar_vento_gr1_164 16318.1 605.633 1711.27 770.86 8610 SLE_rar_vento_gr2_165 12498.3 9.23286 1637.93 0 8156.61 SLE_rar_vento_gr3_166 16318.1 1202.03 1627.78 1039.24 8081.52 SLE_rar_vento_gr4_167 16318.1 1202.03 1747.95 1039.24 8626.51 SLE_fre_gr1_Treno_169 16318.1 596.4 289.245 770.86 1532.37 SLE_fre_gr3_Fre/avv_171 16318.1 1192.8 205.757 1039.24 1003.89 SLE_fre_gr4_centrif_172 16318.1 1192.8 319.812 1039.24 1546.12 SLE_fre_gr1+vento_173 16318.1 598.247 568.759 770.86 2945.69 SLE_fre_gr2+vento_174 12498.3 1.84657 507.642 0 2497.8 SLE_fre_gr3+vento_175 16318.1 1194.65 485.271 1039.24 2417.21		17369.1	1496.54	1151.53	1299.05	5519.94
SLE_rar_vento_gr1_164 16318.1 605.633 1711.27 770.86 8610 SLE_rar_vento_gr2_165 12498.3 9.23286 1637.93 0 8156.61 SLE_rar_vento_gr3_166 16318.1 1202.03 1627.78 1039.24 8081.52 SLE_rar_vento_gr4_167 16318.1 1202.03 1747.95 1039.24 8626.51 SLE_fre_gr1_Treno_169 16318.1 596.4 289.245 770.86 1532.37 SLE_fre_gr2_Scarico_170 12498.3 0 228.128 0 1084.48 SLE_fre_gr3_Fre/avv_171 16318.1 1192.8 205.757 1039.24 1003.89 SLE_fre_gr4_centrif_172 16318.1 1192.8 319.812 1039.24 1546.12 SLE_fre_gr1+vento_173 16318.1 598.247 568.759 770.86 2945.69 SLE_fre_gr2+vento_174 12498.3 1.84657 507.642 0 2497.8 SLE_fre_gr3+vento_175 16318.1 1194.65 485.271 1039.24 2417.21		16318.1	1198.34	1188.92	1039.24	5799.85
SLE_rar_vento_gr2_165 12498.3 9.23286 1637.93 0 8156.61 SLE_rar_vento_gr3_166 16318.1 1202.03 1627.78 1039.24 8081.52 SLE_rar_vento_gr4_167 16318.1 1202.03 1747.95 1039.24 8626.51 SLE_fre_gr1_Treno_169 16318.1 596.4 289.245 770.86 1532.37 SLE_fre_gr2_Scarico_170 12498.3 0 228.128 0 1084.48 SLE_fre_gr3_Fre/avv_171 16318.1 1192.8 205.757 1039.24 1003.89 SLE_fre_gr4_centrif_172 16318.1 1192.8 319.812 1039.24 1546.12 SLE_fre_gr1+vento_173 16318.1 598.247 568.759 770.86 2945.69 SLE_fre_gr2+vento_174 12498.3 1.84657 507.642 0 2497.8 SLE_fre_gr3+vento_175 16318.1 1194.65 485.271 1039.24 2417.21		16318.1	605.633	1711.27	770.86	8610
SLE_rar_vento_gr3_166 16318.1 1202.03 1627.78 1039.24 8081.52 SLE_rar_vento_gr4_167 16318.1 1202.03 1747.95 1039.24 8626.51 SLE_fre_gr1_Treno_169 16318.1 596.4 289.245 770.86 1532.37 SLE_fre_gr2_Scarico_170 12498.3 0 228.128 0 1084.48 SLE_fre_gr3_Fre/avv_171 16318.1 1192.8 205.757 1039.24 1003.89 SLE_fre_gr4_centrif_172 16318.1 1192.8 319.812 1039.24 1546.12 SLE_fre_gr1+vento_173 16318.1 598.247 568.759 770.86 2945.69 SLE_fre_gr2+vento_174 12498.3 1.84657 507.642 0 2497.8 SLE_fre_gr3+vento_175 16318.1 1194.65 485.271 1039.24 2417.21		12498.3	9.23286	1637.93	0	8156.61
SLE_rar_vento_gr4_167 16318.1 1202.03 1747.95 1039.24 8626.51 SLE_fre_gr1_Treno_169 16318.1 596.4 289.245 770.86 1532.37 SLE_fre_gr2_Scarico_170 12498.3 0 228.128 0 1084.48 SLE_fre_gr3_Fre/avv_171 16318.1 1192.8 205.757 1039.24 1003.89 SLE_fre_gr4_centrif_172 16318.1 1192.8 319.812 1039.24 1546.12 SLE_fre_gr1+vento_173 16318.1 598.247 568.759 770.86 2945.69 SLE_fre_gr2+vento_174 12498.3 1.84657 507.642 0 2497.8 SLE_fre_gr3+vento_175 16318.1 1194.65 485.271 1039.24 2417.21	G	16318.1	1202.03	1627.78	1039.24	8081.52
SLE_fre_gr1_Treno_169 16318.1 596.4 289.245 770.86 1532.37 SLE_fre_gr2_Scarico_170 12498.3 0 228.128 0 1084.48 SLE_fre_gr3_Fre/avv_171 16318.1 1192.8 205.757 1039.24 1003.89 SLE_fre_gr4_centrif_172 16318.1 1192.8 319.812 1039.24 1546.12 SLE_fre_gr1+vento_173 16318.1 598.247 568.759 770.86 2945.69 SLE_fre_gr2+vento_174 12498.3 1.84657 507.642 0 2497.8 SLE_fre_gr3+vento_175 16318.1 1194.65 485.271 1039.24 2417.21	0	16318.1	1202.03	1747.95	1039.24	8626.51
SLE_fre_gr2_Scarico_170 12498.3 0 228.128 0 1084.48 SLE_fre_gr3_Fre/avv_171 16318.1 1192.8 205.757 1039.24 1003.89 SLE_fre_gr4_centrif_172 16318.1 1192.8 319.812 1039.24 1546.12 SLE_fre_gr1+vento_173 16318.1 598.247 568.759 770.86 2945.69 SLE_fre_gr2+vento_174 12498.3 1.84657 507.642 0 2497.8 SLE_fre_gr3+vento_175 16318.1 1194.65 485.271 1039.24 2417.21						
SLE_fre_gr2_Scarico_170 12498.3 0 228.128 0 1084.48 SLE_fre_gr3_Fre/avv_171 16318.1 1192.8 205.757 1039.24 1003.89 SLE_fre_gr4_centrif_172 16318.1 1192.8 319.812 1039.24 1546.12 SLE_fre_gr1+vento_173 16318.1 598.247 568.759 770.86 2945.69 SLE_fre_gr2+vento_174 12498.3 1.84657 507.642 0 2497.8 SLE_fre_gr3+vento_175 16318.1 1194.65 485.271 1039.24 2417.21	SLE fre gr1 Treno 169	16318.1	596.4	289.245	770.86	1532.37
SLE_fre_gr3_Fre/avv_171 16318.1 1192.8 205.757 1039.24 1003.89 SLE_fre_gr4_centrif_172 16318.1 1192.8 319.812 1039.24 1546.12 SLE_fre_gr1+vento_173 16318.1 598.247 568.759 770.86 2945.69 SLE_fre_gr2+vento_174 12498.3 1.84657 507.642 0 2497.8 SLE_fre_gr3+vento_175 16318.1 1194.65 485.271 1039.24 2417.21					0	
SLE_fre_gr4_centrif_172 16318.1 1192.8 319.812 1039.24 1546.12 SLE_fre_gr1+vento_173 16318.1 598.247 568.759 770.86 2945.69 SLE_fre_gr2+vento_174 12498.3 1.84657 507.642 0 2497.8 SLE_fre_gr3+vento_175 16318.1 1194.65 485.271 1039.24 2417.21						
SLE_fre_gr1+vento_173 16318.1 598.247 568.759 770.86 2945.69 SLE_fre_gr2+vento_174 12498.3 1.84657 507.642 0 2497.8 SLE_fre_gr3+vento_175 16318.1 1194.65 485.271 1039.24 2417.21						
SLE_fre_gr2+vento_174 12498.3 1.84657 507.642 0 2497.8 SLE_fre_gr3+vento_175 16318.1 1194.65 485.271 1039.24 2417.21						
SLE_fre_gr3+vento_175						
	0					
15						
						3564.26

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1205003 B 56 di 113

SLE_fre_vento_gr2_178	12114.3	4.61643	767.544	0	3564.26
SLE_fre_vento_gr3_179	12114.3	4.61643	767.544	0	3564.26
SLE_fre_vento_gr4_180	12114.3	4.61643	767.544	0	3564.26
SLE_fre_gr1_temp181	12114.3	1.84657	362.025	0	1450.46
SLE_fre_gr2_temp182	12114.3	1.84657	362.025	0	1450.46
SLE_fre_gr3_temp183	12114.3	1.84657	362.025	0	1450.46
SLE_fre_gr3_temp184	12114.3	1.84657	362.025	0	1450.46
SLE_qp_gr1_Treno_186	12114.3	0	68.7592	0	30.9416
SLE_qp_gr2_Scarico_187	12114.3	0	68.7592	0	30.9416
SLE_qp_gr3_Fre/avv_188	12114.3	0	68.7592	0	30.9416
SLE_qp_gr4_centrif_189	12114.3	0	68.7592	0	30.9416
SLE_qp_gr1+vento_190	12114.3	1.84657	348.273	0	1444.27
SLE_qp_gr2+vento_191	12114.3	1.84657	348.273	0	1444.27
SLE_qp_gr3+vento_192	12114.3	1.84657	348.273	0	1444.27
SLE_qp_gr4+vento_193	12114.3	1.84657	348.273	0	1444.27
SLE_qp_vento_gr1_194	12114.3	1.84657	348.273	0	1444.27
SLE_qp_vento_gr2_195	12114.3	1.84657	348.273	0	1444.27
SLE_qp_vento_gr3_196	12114.3	1.84657	348.273	0	1444.27
SLE_qp_vento_gr4_197	12114.3	1.84657	348.273	0	1444.27
SLE_qp_gr1_temp198	12114.3	0	68.7592	0	30.9416
SLE_qp_gr2_temp199	12114.3	0	68.7592	0	30.9416
SLE_qp_gr3_temp200	12114.3	0	68.7592	0	30.9416
SLE_qp_gr3_temp201	12114.3	0	68.7592	0	30.9416
E_103x_SLV_q=1.5_202	12634.7	3706.29	1096.93	0	0
E_103y_SLV_q=1.5_203	12634.7	1113.18	2843.8	0	0
E_103z_SLV_q=1.5_204	13848.9	1113.18	1096.93	0	0
E_103x_SLV_q=1.36_205	12634.7	4076.73	1171.8	0	0
E_103y_SLV_q=1.36_206	12634.7	1224.31	3093.36	0	0
E_103z_SLV_q=1.36_207	13848.9	1224.31	1171.8	0	0
E_103x_SLV_q=1_208	12634.7	5552.4	1471.04	0	0
E_103y_SLV_q=1_209	12634.7	1667.01	4090.83	0	0
E_103z_SLV_q=1_210	13848.9	1667.01	1471.04	0	0
E_103x_SLD_q=1_211	12312.8	2724.91	860.496	0	0
	12312.0	2121.71			
E_103y_SLD_q=1_212	12312.8	818.765	2055.68	0	0

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO
RS3T 30

CODIFICA **D09CL**

DOCUMENTO VI1205003

REV. FOGLIO **B** 57 di 113

CARATTERISTICHE SOLLECITAZIONI BASE PILA								
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv			
A1_SLU_gr1_Treno_143	30690.9	1080.98	700.712	13287.9	10564.6			
A1_SLU_gr2_Scarico_144	23767.4	0	451.467	0	6948.85			
A1_SLU_gr3_Fre/avv_145	30690.9	2161.95	549.39	25665.1	7942.23			
A1_SLU_gr4_centrif_146	29167	1729.56	585.323	20532.1	8735.14			
A1_SLU_gr1+vento_147	30690.9	1089.28	1958.52	13379.3	30760.5			
A1_SLU_gr2+vento_148	23767.4	8.30958	1709.28	91.4053	27144.8			
A1_SLU_gr3+vento_149	30690.9	2170.26	1807.2	25756.5	28138.1			
A1_SLU_gr4+vento_150	29167	1737.87	1843.13	20623.5	28931			
A1_SLU_vento_gr1_151	29167	878.629	2613.03	10782.7	41609			
A1_SLU_vento_gr2_152	23628.2	13.8493	2453.52	152.342	39173			
A1_SLU_vento_gr3_153	29167	1743.41	2491.98	20684.4	39511.1			
A1_SLU_vento_gr4_154	29167	1743.41	2681.68	20684.4	42395			
SLE_rar_gr1_Treno_156	21725.8	745.5	417.347	9164.07	6531.38			
SLE_rar_gr2_Scarico_157	16951	0	302.751	0	4693.78			
SLE_rar_gr3_Fre/avv_158	21725.8	1491	312.987	17700	4722.81			
SLE_rar_gr4_centrif_159	20674.9	1192.8	350.38	14160	5414.05			
SLE_rar_gr1+vento_160	21725.8	751.04	1255.89	9225.01	19995.3			
SLE_rar_gr2+vento_161	16951	5.53972	1141.29	60.9369	18157.7			
SLE_rar_gr3+vento_162	21725.8	1496.54	1151.53	17761	18186.7			
SLE_rar_gr4+vento_163	20674.9	1198.34	1188.92	14221	18878			
SLE_rar_vento_gr1_164	20674.9	605.633	1711.27	7432.82	27433.9			
SLE_rar_vento_gr2_165	16855	9.23286	1637.93	101.561	26173.8			
SLE_rar_vento_gr3_166	20674.9	1202.03	1627.78	14261.6	25987.1			
SLE_rar_vento_gr4_167	20674.9	1202.03	1747.95	14261.6	27853.9			
SLE_fre_gr1_Treno_169	20674.9	596.4	289.245	7331.26	4714.06			
SLE_fre_gr2_Scarico_170	16855	0	228.128	0	3593.88			
SLE_fre_gr3_Fre/avv_171	20674.9	1192.8	205.757	14160	3267.21			
SLE_fre_gr4_centrif_172	20674.9	1192.8	319.812	14160	5064.06			
SLE_fre_gr1+vento_173	20674.9	598.247	568.759	7351.57	9202.04			
SLE_fre_gr2+vento_174	16855	1.84657	507.642	20.3123	8081.86			
SLE_fre_gr3+vento_175	20674.9	1194.65	485.271	14180.4	7755.19			
SLE_fre_gr4+vento_176	20674.9	1194.65	599.326	14180.4	9552.04			
SLE_fre_vento_gr1_177	16471	4.61643	767.544	50.7807	12007.2			

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1205003 B 58 di 113

SLE_fre_vento_gr2_178	16471	4.61643	767.544	50.7807	12007.2
SLE_fre_vento_gr3_179	16471	4.61643	767.544	50.7807	12007.2
SLE_fre_vento_gr4_180	16471	4.61643	767.544	50.7807	12007.2
SLE_fre_gr1_temp181	16471	1.84657	362.025	20.3123	5432.73
SLE_fre_gr2_temp182	16471	1.84657	362.025	20.3123	5432.73
SLE_fre_gr3_temp183	16471	1.84657	362.025	20.3123	5432.73
SLE_fre_gr3_temp184	16471	1.84657	362.025	20.3123	5432.73
SLE_qp_gr1_Treno_186	16471	0	68.7592	0	787.292
SLE_qp_gr2_Scarico_187	16471	0	68.7592	0	787.292
SLE_qp_gr3_Fre/avv_188	16471	0	68.7592	0	787.292
SLE_qp_gr4_centrif_189	16471	0	68.7592	0	787.292
SLE_qp_gr1+vento_190	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr2+vento_191	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr3+vento_192	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr4+vento_193	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_vento_gr1_194	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_vento_gr2_195	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_vento_gr3_196	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_vento_gr4_197	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr1_temp198	16471	0	68.7592	0	787.292
SLE_qp_gr2_temp199	16471	0	68.7592	0	787.292
SLE_qp_gr3_temp200	16471	0	68.7592	0	787.292
SLE_qp_gr3_temp201	16471	0	68.7592	0	787.292
E_103x_SLV_q=1.5_202	16991.4	3706.29	1096.93	39851.4	11781
E_103y_SLV_q=1.5_203	16991.4	1113.18	2843.8	11955.4	35899.9
E_103z_SLV_q=1.5_204	18205.7	1113.18	1096.93	11955.4	11781
E_103x_SLV_q=1.36_205	16991.4	4076.73	1171.8	43836.6	12814.6
E_103y_SLV_q=1.36_206	16991.4	1224.31	3093.36	13151	39345.5
E_103z_SLV_q=1.36_207	18205.7	1224.31	1171.8	13151	12814.6
E_103x_SLV_q=1_208	16991.4	5552.4	1471.04	59720.7	16954.9
E_103y_SLV_q=1_209	16991.4	1667.01	4090.83	17916.2	53146.3
E_103z_SLV_q=1_210	18205.7	1667.01	1471.04	17916.2	16954.9
E_103x_SLD_q=1_211	16669.5	2724.91	860.496	31284.1	8990.42
E_103y_SLD_q=1_212	16669.5	818.765	2055.68	9385.24	26598.1
E_103z_SLD_q=1_213	17132.6	818.765	860.496	9385.24	8990.42

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL VI1205003 B 59 di 113

CARATTERISTICHE S	SOLLECI	razion:	I BASE F	ONDAZI	IONE
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_143	48026.7	1080.98	700.712	16530.8	12666.8
A1_SLU_gr2_Scarico_144	41103.2	0	451.467	0	8303.25
A1_SLU_gr3_Fre/avv_145	48026.7	2161.95	549.39	32150.9	9590.4
A1_SLU_gr4_centrif_146	46502.8	1729.56	585.323	25720.7	10491.1
A1_SLU_gr1+vento_147	48026.7	1089.28	1958.52	16647.2	36636.1
A1_SLU_gr2+vento_148	41103.2	8.30958	1709.28	116.334	32272.6
A1_SLU_gr3+vento_149	48026.7	2170.26	1807.2	32267.3	33559.7
A1_SLU_gr4+vento_150	46502.8	1737.87	1843.13	25837.1	34460.4
A1_SLU_vento_gr1_151	46502.8	878.629	2613.03	13418.6	49448.1
A1_SLU_vento_gr2_152	40964	13.8493	2453.52	193.89	46533.6
A1_SLU_vento_gr3_153	46502.8	1743.41	2491.98	25914.6	46987
A1_SLU_vento_gr4_154	46502.8	1743.41	2681.68	25914.6	50440
SLE_rar_gr1_Treno_156	34567.2	745.5	417.347	11400.6	7783.42
SLE_rar_gr2_Scarico_157	29792.4	0	302.751	0	5602.04
SLE_rar_gr3_Fre/avv_158	34567.2	1491	312.987	22173	5661.77
SLE_rar_gr4_centrif_159	33516.2	1192.8	350.38	17738.4	6465.19
SLE_rar_gr1+vento_160	34567.2	751.04	1255.89	11478.1	23763
SLE_rar_gr2+vento_161	29792.4	5.53972	1141.29	77.556	21581.6
SLE_rar_gr3+vento_162	34567.2	1496.54	1151.53	22250.6	21641.3
SLE_rar_gr4+vento_163	33516.2	1198.34	1188.92	17816	22444.7
SLE_rar_vento_gr1_164	33516.2	605.633	1711.27	9249.72	32567.8
SLE_rar_vento_gr2_165	29696.4	9.23286	1637.93	129.26	31087.6
SLE_rar_vento_gr3_166	33516.2	1202.03	1627.78	17867.7	30870.4
SLE_rar_vento_gr4_167	33516.2	1202.03	1747.95	17867.7	33097.8
SLE_fre_gr1_Treno_169	33516.2	596.4	289.245	9120.46	5581.8
SLE_fre_gr2_Scarico_170	29696.4	0	228.128	0	4278.27
SLE_fre_gr3_Fre/avv_171	33516.2	1192.8	205.757	17738.4	3884.48
SLE_fre_gr4_centrif_172	33516.2	1192.8	319.812	17738.4	6023.49
SLE_fre_gr1+vento_173	33516.2	598.247	568.759	9146.31	10908.3
SLE_fre_gr2+vento_174	29696.4	1.84657	507.642	25.852	9604.79
SLE_fre_gr3+vento_175	33516.2	1194.65	485.271	17764.3	9211
SLE_fre_gr4+vento_176	33516.2	1194.65	599.326	17764.3	11350
SLE_fre_vento_gr1_177	29312.4	4.61643	767.544	64.63	14309.9

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL VI1205003 B 60 di 113

SLE_fre_vento_gr2_178	29312.4	4.61643	767.544	64.63	14309.9
SLE_fre_vento_gr3_179	29312.4	4.61643	767.544	64.63	14309.9
SLE_fre_vento_gr4_180	29312.4	4.61643	767.544	64.63	14309.9
SLE_fre_gr1_temp181	29312.4	1.84657	362.025	25.852	6518.8
SLE_fre_gr2_temp182	29312.4	1.84657	362.025	25.852	6518.8
SLE_fre_gr3_temp183	29312.4	1.84657	362.025	25.852	6518.8
SLE_fre_gr3_temp184	29312.4	1.84657	362.025	25.852	6518.8
SLE_qp_gr1_Treno_186	29312.4	0	68.7592	0	993.57
SLE_qp_gr2_Scarico_187	29312.4	0	68.7592	0	993.57
SLE_qp_gr3_Fre/avv_188	29312.4	0	68.7592	0	993.57
SLE_qp_gr4_centrif_189	29312.4	0	68.7592	0	993.57
SLE_qp_gr1+vento_190	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_gr2+vento_191	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_gr3+vento_192	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_gr4+vento_193	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_vento_gr1_194	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_vento_gr2_195	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_vento_gr3_196	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_vento_gr4_197	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_gr1_temp198	29312.4	0	68.7592	0	993.57
SLE_qp_gr2_temp199	29312.4	0	68.7592	0	993.57
SLE_qp_gr3_temp200	29312.4	0	68.7592	0	993.57
SLE_qp_gr3_temp201	29312.4	0	68.7592	0	993.57
E_103x_SLV_q=1.5_202	30013.9	4981.98	1479.64	54797.4	16219.9
E_103y_SLV_q=1.5_203	30013.9	2388.87	3226.51	19122	45579.5
E_103z_SLV_q=1.5_204	31650.9	2388.87	1479.64	19122	16219.9
E_103x_SLV_q=1.36_205	30013.9	5352.42	1554.51	59893.8	17478.1
E_103y_SLV_q=1.36_206	30013.9	2500	3476.06	20651	49773.7
E_103z_SLV_q=1.36_207	31650.9	2500	1554.51	20651	17478.1
E_103x_SLV_q=1_208	30013.9	6828.09	1853.75	80205	22516.1
E_103y_SLV_q=1_209	30013.9	2942.7	4473.54	26744.3	66566.9
E_103z_SLV_q=1_210	31650.9	2942.7	1853.75	26744.3	22516.1
E_103x_SLD_q=1_211	29574.5	3401.58	1063.5	41488.9	12180.9
E_103y_SLD_q=1_212	29574.5	1495.44	2258.68	13871.6	33374.2
E_103z_SLD_q=1_213	30186.3		1063.5		12180.9

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	61 di 113

6.2 Tabelle riassuntive, massime sollecitazioni

6.2.1 Stati limiti di esercizio

TESTA PILA					
combo	N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno_14	17369.1	745.5	417.347	963.575	1940.56
SLE_rar_gr3+vento_20	17369.1	1496.54	1151.53	1299.05	5519.94
SLE_rar_vento_gr4_25	16318.1	1202.03	1747.95	1039.24	8626.51
SLE_rar_gr3_Fre/avv_16	17369.1	1491	312.987	1299.05	1279.96
SLE_rar_vento_gr4_25	16318.1	1202.03	1747.95	1039.24	8626.51
SLE_rar_gr4_centrif_17	16318.1	1192.8	350.38	1039.24	1559.88
SLE_rar_vento_gr4_25	16318.1	1202.03	350.38	1039.24	8626.51
SLE_rar_vento_gr4_25	16318.1	1202.03	1747.95	1039.24	8626.51
SLE_rar_gr4_centrif_17	16318.1	1192.8	350.38	1039.24	1559.88
SLE_rar_vento_gr4_25	16318.1	1202.03	1747.95	1039.24	8626.51
SLE_qp_gr1_Treno_44	12114.3	0	68.7592	0	30.9416
SLE_qp_gr1+vento_48	12114.3	1.84657	348.273	0	1444.27
SLE_qp_gr1+vento_48	12114.3	1.84657	348.273	0	1444.27
SLE_qp_gr1_Treno_44	12114.3	0	68.7592	0	30.9416
SLE_qp_gr1+vento_48	12114.3	1.84657	348.273	0	1444.27
E_103x_SLD_q=1_69	12287.7	2721.17	877.98	0	0
E_103y_SLD_q=1_70	12287.7	817.643	2113.96	0	0
E_103z_SLD_q=1_71	12692.5	817.643	877.98	0	0

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL VI1205003 B 62 di 113

BASE PILA					
combo	N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno_14	21725.8	745.5	417.347	9164.07	6531.38
SLE_rar_gr3+vento_20	21725.8	1496.54	1151.53	17761	18186.7
SLE_rar_vento_gr4_25	20674.9	1202.03	1747.95	14261.6	27853.9
SLE_rar_gr3+vento_20	21725.8	1496.54	1151.53	17761	18186.7
SLE_rar_vento_gr4_25	20674.9	1202.03	1747.95	14261.6	27853.9
SLE_rar_gr4_centrif_17	20674.9	1192.8	350.38	14160	5414.05
SLE_rar_vento_gr4_25	20674.9	1202.03	1747.95	14261.6	27853.9
SLE_rar_vento_gr4_25	20674.9	1202.03	1747.95	14261.6	27853.9
SLE_rar_vento_gr4_25	20674.9	1202.03	1747.95	14261.6	27853.9
SLE_rar_vento_gr4_25	20674.9	1202.03	1747.95	14261.6	27853.9
SLE_qp_gr1_Treno_44	16471	0	68.7592	0	787.292
SLE_qp_gr1+vento_48	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr1+vento_48	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr1+vento_48	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr1+vento_48	16471	1.84657	348.273	20.3123	5275.27
E_103x_SLD_q=1_69	16644.5	2721.17	877.98	29255.8	8756.07
E_103y_SLD_q=1_70	16644.5	817.643	2113.96	8776.75	25816.9
E_103z_SLD_q=1_71	17049.3	817.643	877.98	8776.75	8756.07

BASE FONDAZI	ONE					
combo		N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Tren	ю_14	34567.2	745.5	417.347	11400.6	7783.42
SLE_rar_gr3+vent	to_20	34567.2	1496.54	1151.53	22250.6	21641.3
SLE_rar_vento_gr	4_25	33516.2	1202.03	1747.95	17867.7	33097.8
SLE_rar_gr3+vent	to_20	34567.2	1496.54	1151.53	22250.6	21641.3
SLE_rar_vento_gr	4_25	33516.2	1202.03	1747.95	17867.7	33097.8
SLE_rar_gr4_cent	rif_17	33516.2	1192.8	350.38	17738.4	6465.19
SLE_rar_vento_gr	4_25	33516.2	1202.03	1747.95	17867.7	33097.8
SLE_rar_vento_gr	4_25	33516.2	1202.03	1747.95	17867.7	33097.8
SLE_rar_vento_gr	4_25	33516.2	1202.03	1747.95	17867.7	33097.8
SLE_rar_vento_gr	4_25	33516.2	1202.03	1747.95	17867.7	33097.8
SLE_qp_gr1_Tren	o_44	29312.4	0	68.7592	0	993.57
SLE_qp_gr1+vent	.o_48	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_gr1+vent	co_48	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_gr1+vent	.o_48	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_gr1+vent	.o_48	29312.4	1.84657	348.273	25.852	6320.09
$E_103x_SLD_q=1$	1_69	29549.5	3397.84	1080.98	39449.3	11999
E_103y_SLD_q=1	1_70	29549.5	1494.31	2316.96	13259.7	32767.8
E_103z_SLD_q=1	1_71	30102.9	1494.31	1080.98	13259.7	11999

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1205003	В	63 di 113

TESTA I	PILA						
combo			N	Tlong	Ttras	Mlong	Mtras
SLE_rar_	gr1_Trenc	_85	15302.1	745.5	367.739	4160.83	1711.54
SLE_rar_	gr3+vento	_91	15302.1	1496.54	1101.92	4496.3	5290.92
SLE_rar_	vento_gr4	_96	14664.5	1202.03	1708.26	3597.04	8443.29
SLE_rar_	gr3_Fre/a	vv_87	15302.1	1491	263.378	4496.3	1050.94
SLE_rar_	vento_gr4	_96	14664.5	1202.03	1708.26	3597.04	8443.29
SLE_rar_	gr4_centri	f_88	14664.5	1192.8	310.693	3597.04	1376.66
SLE_rar_	vento_gr4	_96	14664.5	1202.03	1708.26	3597.04	8443.29
SLE_rar_	vento_gr4	_96	14664.5	1202.03	1708.26	3597.04	8443.29
SLE_rar_	gr4_centri	f_88	14664.5	1192.8	310.693	3597.04	1376.66
SLE_rar_	vento_gr4	_96	14664.5	1202.03	1708.26	3597.04	8443.29
SLE_qp_	gr1_Treno	_115	12114.3	0	68.7592	0	30.9416
SLE_qp_	gr1+vento	_119	12114.3	1.84657	348.273	0	1444.27
SLE_qp_	gr1+vento	_119	12114.3	1.84657	348.273	0	1444.27
SLE_qp_	gr1_Treno	_115	12114.3	0	68.7592	0	30.9416
	gr1+vento		12114.3	1.84657	348.273	0	1444.27
	SLD_q=1_		12312.8	2724.91	860.496	0	0
E_103y_5	SLD_q=1_	_141	12312.8	818.765	2055.68	0	0
E_103z_	SLD_q=1_	_142	12775.9	818.765	860.496	0	0

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P23RS3T30D09CLVI1205003B64 di 113

BASE PILA					
combo	N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno_85	19658.8	745.5	417.347	9164.07	6531.38
SLE_rar_gr3+vento_91	19658.8	1496.54	1101.92	20958.2	17412
SLE_rar_vento_gr4_96	19021.3	1202.03	1708.26	16819.4	27234.2
SLE_rar_gr3+vento_91	19658.8	1496.54	1101.92	20958.2	17412
SLE_rar_vento_gr4_96	19021.3	1202.03	1708.26	16819.4	27234.2
SLE_rar_gr4_centrif_88	19021.3	1192.8	310.693	16717.8	4794.28
SLE_rar_vento_gr4_96	19021.3	1202.03	1708.26	16819.4	27234.2
SLE_rar_vento_gr4_96	19021.3	1202.03	1708.26	16819.4	27234.2
SLE_rar_vento_gr4_96	19021.3	1202.03	1708.26	16819.4	27234.2
SLE_rar_vento_gr4_96	19021.3	1202.03	1708.26	16819.4	27234.2
SLE_qp_gr1_Treno_115	16471	0	68.7592	0	787.292
SLE_qp_gr1+vento_119	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr1+vento_119	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr1+vento_119	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr1+vento_119	16471	1.84657	348.273	20.3123	5275.27
E_103x_SLD_q=1_140	16669.5	2724.91	860.496	31284.1	8990.42
E_103y_SLD_q=1_141	16669.5	818.765	2055.68	9385.24	26598.1
E_103z_SLD_q=1_142	17132.6	818.765	860.496	9385.24	8990.42

BASE FO	ONDAZIO	NE					
combo			N	Tlong	Ttras	Mlong	Mtras
SLE_rar_	gr1_Trenc	_85	32500.1	745.5	417.347	11400.6	7783.42
SLE_rar_	gr3+vento	_ 91	32500.1	1496.54	1101.92	25447.9	20717.8
SLE_rar_	vento_gr4	_96	31862.6	1202.03	1708.26	20425.5	32359
SLE_rar_	gr3+vento	_ 91	32500.1	1496.54	1101.92	25447.9	20717.8
SLE_rar_	vento_gr4	_96	31862.6	1202.03	1708.26	20425.5	32359
SLE_rar_	gr4_centri	f_88	31862.6	1192.8	310.693	20296.2	5726.36
SLE_rar_	vento_gr4	_96	31862.6	1202.03	1708.26	20425.5	32359
SLE_rar_	vento_gr4	_96	31862.6	1202.03	1708.26	20425.5	32359
SLE_rar_	vento_gr4	_96	31862.6	1202.03	1708.26	20425.5	32359
SLE_rar_	vento_gr4	_96	31862.6	1202.03	1708.26	20425.5	32359
SLE_qp_	gr1_Treno	_115	29312.4	0	68.7592	0	993.57
SLE_qp_	gr1+vento	_119	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_	gr1+vento	_119	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_	gr1+vento	_119	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_	gr1+vento	_119	29312.4	1.84657	348.273	25.852	6320.09
E_103x_5	SLD_q=1_	_140	29574.5	3401.58	1063.5	41488.9	12180.9
E_103y_5	SLD_q=1_	_141	29574.5	1495.44	2258.68	13871.6	33374.2
E_103z_5	SLD_q=1_	_142	30186.3	1495.44	1063.5	13871.6	12180.9

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1205003	В	65 di 113

TESTA PILA						
combo		N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Tre	no_156	17369.1	745.5	417.347	963.575	1940.56
SLE_rar_gr3+ver	to_162	17369.1	1496.54	1151.53	1299.05	5519.94
SLE_rar_vento_g	r4_167	16318.1	1202.03	1747.95	1039.24	8626.51
SLE_rar_gr3_Fre	/avv_158	17369.1	1491	312.987	1299.05	1279.96
SLE_rar_vento_g	r4_167	16318.1	1202.03	1747.95	1039.24	8626.51
SLE_rar_gr4_cen	rif_159	16318.1	1192.8	350.38	1039.24	1559.88
SLE_rar_vento_g	r4_167	16318.1	1202.03	1747.95	1039.24	8626.51
SLE_rar_vento_g	r4_167	16318.1	1202.03	1747.95	1039.24	8626.51
SLE_rar_gr4_cen	rif_159	16318.1	1192.8	350.38	1039.24	1559.88
SLE_rar_vento_g	r4_167	16318.1	1202.03	1747.95	1039.24	8626.51
SLE_qp_gr1_Tres	no_186	12114.3	0	68.7592	0	30.9416
SLE_qp_gr1+ven	to_190	12114.3	1.84657	348.273	0	1444.27
SLE_qp_gr1+ven	to_190	12114.3	1.84657	348.273	0	1444.27
SLE_qp_gr1_Trea	no_186	12114.3	0	68.7592	0	30.9416
SLE_qp_gr1+ven	to_190	12114.3	1.84657	348.273	348.273	1444.27
E_103x_SLD_q=	1_211	12312.8	2724.91	860.496	0	0
E_103y_SLD_q=	1_212	12312.8	818.765	2055.68	0	0
E_103z_SLD_q=	1_213	12775.9	818.765	860.496	0	0

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL VI1205003 B 66 di 113

BASE PILA						
combo		N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Tres	no_156	21725.8	745.5	417.347	9164.07	6531.38
SLE_rar_gr3+ven	to_162	21725.8	1496.54	1151.53	17761	18186.7
SLE_rar_vento_gr	r4_167	20674.9	1202.03	1747.95	14261.6	27853.9
SLE_rar_gr3+ven	to_162	21725.8	1496.54	1151.53	17761	18186.7
SLE_rar_vento_gr	r4_167	20674.9	1202.03	1747.95	14261.6	27853.9
SLE_rar_gr4_cent	rif_159	20674.9	1192.8	350.38	14160	5414.05
SLE_rar_vento_gr	r4_167	20674.9	1202.03	1747.95	14261.6	27853.9
SLE_rar_vento_gr	r4_167	20674.9	1202.03	1747.95	14261.6	27853.9
SLE_rar_vento_gr	r4_167	20674.9	1202.03	1747.95	14261.6	27853.9
SLE_rar_vento_gr	r4_167	20674.9	1202.03	1747.95	14261.6	27853.9
SLE_qp_gr1_Tren	no_186	16471	0	68.7592	0	787.292
SLE_qp_gr1+ven	to_190	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr1+ven	to_190	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr1+ven	to_190	16471	1.84657	348.273	20.3123	5275.27
SLE_qp_gr1+ven	to_190	16471	1.84657	348.273	348.273	5275.27
E_103x_SLD_q=	1_211	16669.5	2724.91	860.496	31284.1	8990.42
E_103y_SLD_q=	1_212	16669.5	818.765	2055.68	9385.24	26598.1
E_103z_SLD_q=	1_213	17132.6	818.765	860.496	9385.24	8990.42

BASE FONDAZIONE						
combo		N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr	1_Treno_156	34567.2	745.5	417.347	11400.6	7783.42
SLE_rar_gr	3+vento_162	34567.2	1496.54	1151.53	22250.6	21641.3
SLE_rar_ve	nto_gr4_167	33516.2	1202.03	1747.95	17867.7	33097.8
SLE_rar_gr.	3+vento_162	34567.2	1496.54	1151.53	22250.6	21641.3
SLE_rar_ve	nto_gr4_167	33516.2	1202.03	1747.95	17867.7	33097.8
SLE_rar_gr	4_centrif_159	33516.2	1192.8	350.38	17738.4	6465.19
SLE_rar_ve	nto_gr4_167	33516.2	1202.03	1747.95	17867.7	33097.8
SLE_rar_ve	nto_gr4_167	33516.2	1202.03	1747.95	17867.7	33097.8
SLE_rar_ve	nto_gr4_167	33516.2	1202.03	1747.95	17867.7	33097.8
SLE_rar_ve	nto_gr4_167	33516.2	1202.03	1747.95	17867.7	33097.8
SLE_qp_gr1	_Treno_186	29312.4	0	68.7592	0	993.57
SLE_qp_gr1	+vento_190	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_gr1	+vento_190	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_gr1	+vento_190	29312.4	1.84657	348.273	25.852	6320.09
SLE_qp_gr1	+vento_190	29312.4	1.84657	348.273	348.273	6320.09
E_103x_SL	D_q=1_211	29574.5	3401.58	1063.5	41488.9	12180.9
E_103y_SL	D_q=1_212	29574.5	1495.44	2258.68	13871.6	33374.2
E_103z_SL	D_q=1_213	30186.3	1495.44	1063.5	13871.6	12180.9

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	67 di 113

6.2.2 Stati limiti utlimi

TESTA PILA					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_1	24809.3	1080.98	700.712	1397.18	2856.82
A1_SLU_gr3+vento_7	24809.3	2170.26	1807.2	1883.62	8258.91
A1_SLU_vento_gr4_12	23285.4	1743.41	2681.68	1506.9	12896.5
A1_SLU_gr3_Fre/avv_3	24809.3	2161.95	549.39	1883.62	1898.95
A1_SLU_vento_gr4_12	23285.4	1743.41	2681.68	1506.9	12896.5
E_103x_SLV_q=1.5_60	12634.7	3706.29	1096.93	0	0
E_103y_SLV_q=1.5_61	12634.7	1113.18	2843.8	0	0
E_103z_SLV_q=1.5_62	13848.9	1113.18	1096.93	0	0
E_103x_SLV_q=1_66	12634.7	5552.4	1471.04	0	0
E_103y_SLV_q=1_67	12634.7	1667.01	4090.83	0	0
E_103z_SLV_q=1_68	13848.9	1667.01	1471.04	0	0
BASE PILA					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_1	30690.9	1080.98	700.712	13287.9	10564.6
A1_SLU_gr3+vento_7	30690.9	2170.26	1807.2	25756.5	28138.1
A1_SLU_vento_gr4_12	29167	1743.41	2681.68	20684.4	42395
A1_SLU_gr3+vento_7	30690.9	2170.26	1807.2	25756.5	28138.1
A1_SLU_vento_gr4_12	29167	1743.41	2681.68	20684.4	42395
E_103x_SLV_q=1.5_60	16991.4	3706.29	1096.93	39851.4	11781
E_103y_SLV_q=1.5_61	16991.4	1113.18	2843.8	11955.4	35899.9
E_103z_SLV_q=1.5_62	18205.7	1113.18	1096.93	11955.4	11781
E_103x_SLV_q=1_66	16991.4	5552.4	1471.04	59720.7	16954.9
E_103y_SLV_q=1_67	16991.4	1667.01	4090.83	17916.2	53146.3
E_103z_SLV_q=1_68	18205.7	1667.01	1471.04	17916.2	16954.9
BASE FONDAZIONE					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_1	48026.7	1080.98	700.712	16530.8	12666.8
A1_SLU_gr3+vento_7	48026.7	2170.26	1807.2	32267.3	33559.7
A1_SLU_vento_gr4_12	46502.8	1743.41	2681.68	25914.6	50440
A1_SLU_gr3+vento_7	48026.7	2170.26	1807.2	32267.3	33559.7
A1_SLU_vento_gr4_12	46502.8	1743.41	2681.68	25914.6	50440
E_103x_SLV_q=1.36_63	30013.9	5352.42	1554.51	59893.8	17478.1
E_103y_SLV_q=1.36_64	30013.9	2500	3476.06	20651	49773.7
E_103z_SLV_q=1.36_65	31650.9	2500	1554.51	20651	17478.1
E_103x_SLV_q=1_66	30013.9	6828.09	1853.75	80205	22516.1
E_103y_SLV_q=1_67	30013.9	2942.7	4473.54	26744.3	66566.9
E_103z_SLV_q=1_68	31650.9	2942.7	1853.75	26744.3	22516.1

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1205003	В	68 di 113

TESTA PILA					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_72	21812.1	1080.98	592.814	6033.2	2508.55
A1_SLU_gr3+vento_78	21812.1	2170.26	1699.3	6519.64	7910.64
A1_SLU_vento_gr4_83	20887.6	1743.41	2595.36	5215.71	12617.9
A1_SLU_gr3_Fre/avv_74	21812.1	2161.95	441.492	6519.64	1550.68
A1_SLU_vento_gr4_83	20887.6	1743.41	2595.36	5215.71	12617.9
E_103x_SLV_q=1.5_131	12634.7	3706.29	1096.93	0	0
E_103y_SLV_q=1.5_132	12634.7	1113.18	2843.8	0	0
E_103z_SLV_q=1.5_133	13848.9	1113.18	1096.93	0	0
E_103x_SLV_q=1_137	12634.7	5552.4	1471.04	0	0
E_103y_SLV_q=1_138	12634.7	1667.01	4090.83	0	0
E_103z_SLV_q=1_139	13848.9	1667.01	1471.04	0	0
BASE PILA					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_72	27693.7	1080.98	592.814	17923.9	9029.5
A1_SLU_gr3+vento_78	27693.7	2170.26	1699.3	30392.5	26603
A1_SLU_vento_gr4_83	26769.2	1743.41	2595.36	24393.2	41166.9
A1_SLU_gr3+vento_78	27693.7	2170.26	1699.3	30392.5	26603
A1_SLU_vento_gr4_83	26769.2	1743.41	2595.36	24393.2	41166.9
E_103x_SLV_q=1.5_131	16991.4	3706.29	1096.93	39851.4	11781
E_103y_SLV_q=1.5_132	16991.4	1113.18	2843.8	11955.4	35899.9
E_103z_SLV_q=1.5_133	18205.7	1113.18	1096.93	11955.4	11781
E_103x_SLV_q=1_137	16991.4	5552.4	1471.04	59720.7	16954.9
E_103y_SLV_q=1_138	16991.4	1667.01	4090.83	17916.2	53146.3
E_103z_SLV_q=1_139	18205.7	1667.01	1471.04	17916.2	16954.9
BASE FONDAZIONE					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_72	45029.5	1080.98	592.814	21166.9	10807.9
A1_SLU_gr3+vento_78	45029.5	2170.26	1699.3	36903.3	31700.9
A1_SLU_vento_gr4_83	44105	1743.41	2595.36	29623.4	48952.9
A1_SLU_gr3+vento_78	45029.5	2170.26	1699.3	36903.3	31700.9
A1_SLU_vento_gr4_83	44105	1743.41	2595.36	29623.4	48952.9
E_103x_SLV_q=1.36_134	30013.9	5352.42	1554.51	59893.8	17478.1
E_103y_SLV_q=1.36_135	30013.9	2500	3476.06	20651	49773.7
E_103z_SLV_q=1.36_136	31650.9	2500	1554.51	20651	17478.1
E_103x_SLV_q=1_137	30013.9	6828.09	1853.75	80205	22516.1
E_103y_SLV_q=1_138	30013.9	2942.7	4473.54	26744.3	66566.9
E_103z_SLV_q=1_139	31650.9	2942.7	1853.75	26744.3	22516.1

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL VI1205003 B 69 di 113

TESTA PILA					
TBC TTT HZT	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_143	24809.3	1080.98	700.712	1397.18	2856.82
A1_SLU_gr3+vento_149	24809.3	2170.26	1807.2	1883.62	8258.91
A1_SLU_vento_gr4_154	23285.4	1743.41	2681.68	1506.9	12896.5
A1_SLU_gr3_Fre/avv_145	24809.3	2161.95	549.39	1883.62	1898.95
A1_SLU_vento_gr4_154	23285.4	1743.41	2681.68	1506.9	12896.5
E_103x_SLV_q=1.5_202	12634.7	3706.29	1096.93	0	0
E_103y_SLV_q=1.5_203	12634.7	1113.18	2843.8	0	0
E_103z_SLV_q=1.5_204	13848.9	1113.18	1096.93	0	0
E_103x_SLV_q=1_208	12634.7	5552.4	1471.04	0	0
E_103y_SLV_q=1_209	12634.7	1667.01	4090.83	0	0
E_103z_SLV_q=1_210	13848.9	1667.01	1471.04	0	0
BASE PILA					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_143	30690.9	1080.98	700.712	13287.9	10564.6
A1_SLU_gr3+vento_149	30690.9	2170.26	1807.2	25756.5	28138.1
A1_SLU_vento_gr4_154	29167	1743.41	2681.68	20684.4	42395
A1_SLU_gr3+vento_149	30690.9	2170.26	1807.2	25756.5	28138.1
A1_SLU_vento_gr4_154	29167	1743.41	2681.68	20684.4	42395
E_103x_SLV_q=1.5_202	16991.4	3706.29	1096.93	39851.4	11781
E_103y_SLV_q=1.5_203	16991.4	1113.18	2843.8	11955.4	35899.9
E_103z_SLV_q=1.5_204	18205.7	1113.18	1096.93	11955.4	11781
E_103x_SLV_q=1_208	16991.4	5552.4	1471.04	59720.7	16954.9
E_103y_SLV_q=1_209	16991.4	1667.01	4090.83	17916.2	53146.3
E_103z_SLV_q=1_210	18205.7	1667.01	1471.04	17916.2	16954.9
BASE FONDAZIONE					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_143	48026.7	1080.98	700.712	16530.8	12666.8
A1_SLU_gr3+vento_149	48026.7	2170.26	1807.2	32267.3	33559.7
A1_SLU_vento_gr4_154	46502.8	1743.41	2681.68	25914.6	50440
A1_SLU_gr3+vento_149	48026.7	2170.26	1807.2	32267.3	33559.7
A1_SLU_vento_gr4_154	46502.8	1743.41	2681.68	25914.6	50440
E_103x_SLV_q=1.36_205	30013.9	5352.42	1554.51	59893.8	17478.1
E_103y_SLV_q=1.36_206	30013.9	2500	3476.06	20651	49773.7
E_103z_SLV_q=1.36_207	31650.9	2500	1554.51	20651	17478.1
E_103x_SLV_q=1_208	30013.9	6828.09	1853.75	80205	22516.1
E_103y_SLV_q=1_209	30013.9	2942.7	4473.54	26744.3	66566.9
E_103z_SLV_q=1_210	31650.9	2942.7	1853.75	26744.3	22516.1

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	70 di 113

7. **VERIFICHE STRUTTURALI**

Le armature di calcolo derivanti dalle verifiche di resistenza e di esercizio soddisfano le quantità minime indicate dalla normativa, si riepilogano i quantitativi di ciascun elemento.

elemento	arm. flessionale	staffe	c.f		
fusto	318 Ф30 interasse 10 cm*	Ф12/15	8.7 cm		
plinto	Trasv: 4.5 strati Φ 30/10 Long 3 strati Φ 30/10	-	8.7 cm		
pali	24 Ф30 interasse 10 cm*	Ф12/20	9.7 cm		

^{*}è riferito alla corona esterna di armatura mentre, l'interasse della corona interna è funzione dell'allineamento con quella esterna. È comunque rispettato l'iterasse minimo.

Le spille adottate sono disposte nel rispetto della norma vigente.

FUSTO PILA 8.

Secondo quanto riportano al paragrafo 7.3 e 7.3.6.1 delle Norme Tecniche delle Costruzioni 2018, adottando un fattore di comportamento pari a 1.5, la struttura può essere progettata come non dissipativa:

Tab. 7.3.I – Limiti su q e modalità di modellazione dell'azione sismica

STATI LIMITE		Lineare (Di	namica e Statica)	Non Lineare		
		Dissipativo	Non Dissipativo	Dinamica	Statica	
SLE -	SLO	q = 1.0 § 3.2.3.4	q = 1.0 § 3.2.3.4			
	SLD	q≤1,5 § 3.2.3.5	q ≤ 1,5 § 3.2.3.5	§ 7.3.4.1	§ 7.3.4.2	
SLU	SLV	q≥1,5 § 3.2.3.5	q ≤ 1,5 § 3.2.3.5			
	SLC					

[&]quot;Nel caso di analisi lineare la verifica di duttilità si può ritenere soddisfatta, rispettando per tutti gli elementi strutturali, sia primari sia secondari, le regole specifiche per i dettagli costruttivi precisate nel presente capitolo per le

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	71 di 113

diverse tipologie costruttive; tali regole sono da considerarsi aggiuntive rispetto a quanto previsto nel Cap. 4 e a quanto imposto dalle regole della progettazione in capacità, il cui rispetto è comunque obbligatorio per gli elementi strutturali primari delle strutture a comportamento dissipativo.

Per strutture a comportamento dissipativo, qualora non siano rispettate le regole specifiche dei dettagli costruttivi, quali precisate nel presente capitolo, occorrerà procedere a verifiche di duttilità. diversamente specificato nei paragrafi successivi relativi alle diverse tipologie costruttive, accertando che la capacità in duttilità della costruzione sia almeno pari:

- a 1,2 volte la domanda in duttilità locale, valutata in corrispondenza dello SLV, nel caso si utilizzino modelli lineari,
- alla domanda in duttilità locale e globale allo SLC, nel caso si utilizzino modelli non lineari.

Le verifiche di duttilità non sono dovute nel caso di progettazione con $q \leq 1,5$.

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL VI1205003 B 72 di 113

8.1 Modellazione

La geometria della sezione della pila è stata implementata all'interno del software di calcolo RC-SEC con i relativi ferri di armatura longitudinale.

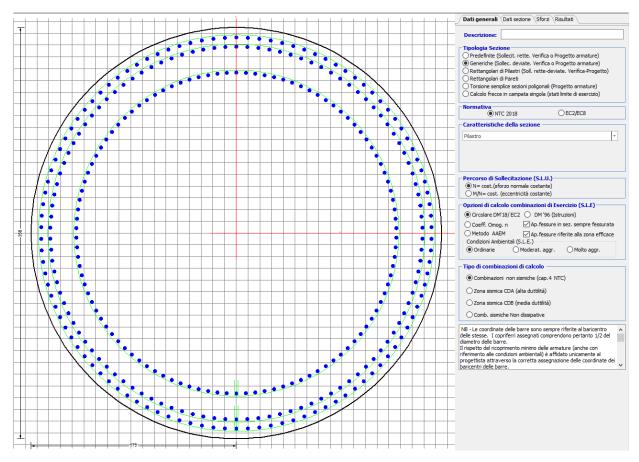


Figura 11 - Sezione implementata in RC-SEC

Per un totale di ferri 318 di diametro Φ 30 che corrispondono ad un passo di 10cm lungo il bordo esterno e speculari internamente.

8.2 Verifica a presso flessione

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: Circolare 3.5m

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi baric. X',Y' // assi coordinate.

PROGETTO DEFINITIVO

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

LOTTO CODIFICA DOCUMENTO COMMESSA REV. FOGLIO Progetto definitivo RS3T 30 D09CL VI1205003 В 73 di 113 Relazione di calcolo Pile – P23

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -Classe: C32/40

Resis. compr. di progetto fcd: 18.130 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 3334.6 MPa Resis. media a trazione fctm: 3.000 MPa

Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Frequenti: 176.00 daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO -B450C Tipo:

Resist. caratt. snervam. fyk: 450.00 MPa Resist, caratt, rottura ftk: 450.00 MPa Resist. snerv. di progetto fyd: 391.30 MPa 391.30 Resist. ultima di progetto ftd: MPa

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

337.50 MPa Sf limite S.L.E. Comb. Rare:

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C32/40

175.0 cm Raggio circ.: X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

N Mx

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate **N°Barre** Numero di barre generate equidist. disposte lungo la circonferenza

Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	0.0	0.0	166.5	106	30
2	0.0	0.0	136.5	106	30
3	0.0	0.0	158.6	106	30

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

con verso positivo se tale da comprimere il lembo sup. della sez.

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Progetto definitivo VI1205003 RS3T 30 D09CL В 74 di 113 Relazione di calcolo Pile – P23

Му		Momento flettente [kNm] intorno all'asse Y' // asse Y coord.								
Vy		con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse Y delle coord.								
Vx	Componente del Taglio [kN] parallela all'asse X delle coord.									
		•	0 1 11							
N°Comb.	N	MX	MY	VY	VX					
	00450.00	10150.00	40747.05	0.00	0.00					
1	32152.08	18152.30	13717.85	0.00	0.00					
2	32152.08	35591.39	37949.74	0.00	0.00					
	30628.19	28644.32	57261.19	0.00	0.00					
4	32152.08	35591.39	37949.74	0.00	0.00					
5	30628.19	28644.32	57261.19	0.00	0.00					
6 7	18099.85	49524.75	14932.10	0.00	0.00					
	18099.85	14857.43	46197.29	0.00	0.00					
8	19374.86	14857.43	14932.10	0.00	0.00					
9	29154.92	22788.31	11697.17	0.00	0.00					
10	29154.92	40227.41	35929.05	0.00	0.00					
11	28230.46	32353.14	55644.64	0.00	0.00					
12	29154.92	40227.41	35929.05	0.00	0.00					
13	28230.46	32353.14	55644.64	0.00	0.00					
14	18099.85	49524.75	14932.10	0.00	0.00					
15	18099.85	14857.43	46197.29	0.00	0.00					
16	19374.86	14857.43	14932.10	0.00	0.00					
17	32152.08	18152.30	13717.85	0.00	0.00					
18	32152.08	35591.39	37949.74	0.00	0.00					
19	30628.19	28644.32	57261.19	0.00	0.00					
20	32152.08	35591.39	37949.74	0.00	0.00					
21	30628.19	28644.32	57261.19	0.00	0.00					
22	18099.85	49524.75	14932.10	0.00	0.00					
23	18099.85	14857.43	46197.29	0.00	0.00					
24	19374.86	14857.43	14932.10	0.00	0.00					

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X delle coordinate (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse Y delle coordinate (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	MX	MY
1	22808.21	12518.82	8409.44
2	22808.21	24541.25	
			24488.09
3	21757.25	19747.14	37585.49
4	22808.21	24541.25	24488.09
5	21757.25	19747.14	37585.49
6	20741.20	12518.82	8409.44
7	20741.20	27738.50	23490.14
8	20103.65	22304.94	36787.13
9	20741.20	27738.50	23490.14
10	20103.65	22304.94	36787.13
11	22808.21	12518.82	8409.44
12	22808.21	24541.25	24488.09
13	21757.25	19747.14	37585.49
14	22808.21	24541.25	24488.09
15	21757.25	19747.14	37585.49
16	17735.56	28773.05	9273.60
17	17735.56	8631.92	27335.63
18	18160.57	8631.92	9273.60
19	17765.02	33006.86	10426.65

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	75 di 113

20	17765.02	9902.06	31179.10
21	18258.78	9902.06	10426.65
22	17765.02	33006.86	10426.65
23	17765.02	9902.06	31179.10
24	18258.78	9902.06	10426.65

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X delle coordinate (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse Y delle coordinate (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	MX	MY
1	21757.25	19527.64 (38701.52)	6990.76 (13854.88)
2	21757.25	19747.14 (12210.16)	37585.49 (23240.06)
3	21757.25	19747.14 (12210.16)	37585.49 (23240.06)
4	21757.25	19747.14 (12210.16)	37585.49 (23240.06)
5	21757.25	19747.14 (12210.16)	37585.49 (23240.06)
6	20103.65	22085.44 (33487.73)	6192.40 (9389.42)
7	20103.65	22304.94 (13209.30)	36787.13 (21785.86)
8	20103.65	22304.94 (13209.30)	36787.13 (21785.86)
9	20103.65	22304.94 (13209.30)	36787.13 (21785.86)
10	20103.65	22304.94 (13209.30)	36787.13 (21785.86)
11	21757.25	19527.64 (38701.52)	6990.76 (13854.88)
12	21757.25	19747.14 (12210.16)	37585.49 (23240.06)
13	21757.25	19747.14 (12210.16)	37585.49 (23240.06)
14	21757.25	19747.14 (12210.16)	37585.49 (23240.06)
15	21757.25	19747.14 (12210.16)	37585.49 (23240.06)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale	e [kN] applicato nel Baricentro (+ se di compressione)
------------------	--

Mx Momento flettente [kNm] intorno all'asse X delle coordinate (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse Y delle coordinate (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	MX	MY
1	17553.41	0.00 (12157.99)	1096.71 (0.00)
2	17553.41	43.90 (0.00)	7215.65 (0.00)
3	17553.41	43.90 (0.00)	7215.65 (0.00)
4	17553.41	43.90 (0.00)	7215.65 (0.00)
5	17553.41	43.90 (0.00)	7215.65 (0.00)
6	17553.41	0.00 (0.00)	1096.71 (0.00)
7	17553.41	43.90 (0.00)	7215.65 (0.00)
8	17553.41	43.90 (0.00)	7215.65 (0.00)
9	17553.41	43.90 (0.00)	7215.65 (0.00)
10	17553.41	43.90 (0.00)	7215.65 (0.00)
11	17553.41	0.00 (0.00)	1096.71 (0.00)
12	17553.41	43.90 (0.00)	7215.65 (0.00)
13	17553.41	43.90 (0.00)	7215.65 (0.00)
14	17553.41	43.90 (0.00)	7215.65 (0.00)
15	17553.41	366.64 (0.00)	7215.65 (0.00)

RISULTATI DEL CALCOLO

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Progetto definitivo RS3T 30 D09CL VI1205003 В 76 di 113 Relazione di calcolo Pile – P23

Copriferro netto minimo barre longitudinali: 7.0 cm Interferro netto minimo barre longitudinali:

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls. (positivo se di compressione) MXComponente X del momento assegnato [kNm] rifer. assi X,Y con origine nel baric. B del cls. MYComponente Y del momento assegnato [kNm] rifer. assi X,Y con origine nel baric. B del cls. Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compressione) N Res Momento flettente resistente [kNm] rif. X,Y,B (tra parentesi rif. assi princ. inerzia) MX Res Momento flettente resistente [kNm] rif. X,Y,B (tra parentesi rif. assi princ. inerzia) MY Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000 Mis.Sic.

Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa] As Totale

N°Comb	Ver	N	MX	MY	N Res	MX Res	MY Res	Mis.Sic.	As Totale
1	S	32152.08	18152.30	13717.85	32152.11	103952.91(103952.91) 78550	.42(78550.42)	5.732	247.8(288.6)
2	S	32152.08	35591.39	37949.74	32151.96	89142.86(89142.86) 95030	.34(95030.34)	2.502	247.8(288.6)
3	S	30628.19	28644.32	57261.19	30627.94	57976.48(57976.48)115886	6.63(115886.63)	2.022	247.8(288.6)
4	S	32152.08	35591.39	37949.74	32151.96	89142.86(89142.86) 95030	.34(95030.34)	2.502	247.8(288.6)
5	S	30628.19	28644.32	57261.19	30627.94	57976.48(57976.48)115886	6.63(115886.63)	2.022	247.8(288.6)
6	S	18099.85	49524.75	14932.10	18099.69	117498.94(117498.94) 35429	.90(35429.90)	2.372	247.8(288.6)
7	S	18099.85	14857.43	46197.29	18099.82	37583.15(37583.15)116829	9.06(116829.06)	2.532	247.8(288.6)
8	S	19374.86	14857.43	14932.10	19374.68	87101.01(87101.01) 87553	.38(87553.38)	5.862	247.8(288.6)
9	S	29154.92	22788.31	11697.17	29155.02	114641.28(114641.28) 58844	.98(58844.98)	5.032	247.8(288.6)
10	S	29154.92	40227.41	35929.05	29155.01	96116.49(96116.49) 85835	.36(85835.36)	2.392	247.8(288.6)
11	S	28230.46	32353.14	55644.64	28230.72	64535.67(64535.67)111010	0.25(111010.25)	1.992	247.8(288.6)
12	S	29154.92	40227.41	35929.05	29155.01	96116.49(96116.49) 85835	.36(85835.36)	2.392	247.8(288.6)
13	S	28230.46	32353.14	55644.64	28230.72	64535.67(64535.67)111010	0.25(111010.25)	1.992	247.8(288.6)
14	S	18099.85	49524.75	14932.10	18099.69	117498.94(117498.94) 35429	.90(35429.90)	2.372	247.8(288.6)
15	S	18099.85	14857.43	46197.29	18099.82	37583.15(37583.15)116829	9.06(116829.06)	2.532	247.8(288.6)
16	S	19374.86	14857.43	14932.10	19374.68	87101.01(87101.01) 87553	.38(87553.38)	5.862	247.8(288.6)
17	S	32152.08	18152.30	13717.85	32152.11	103952.91(103952.91) 78550	.42(78550.42)	5.732	247.8(288.6)
18	S	32152.08	35591.39	37949.74	32151.96	89142.86(89142.86) 95030	.34(95030.34)	2.502	247.8(288.6)
19	S	30628.19	28644.32	57261.19	30627.94	57976.48(57976.48)115886	6.63(115886.63)	2.022	247.8(288.6)
20	S	32152.08	35591.39	37949.74	32151.96	89142.86(89142.86) 95030	.34(95030.34)	2.502	247.8(288.6)
21	S	30628.19	28644.32	57261.19	30627.94	57976.48(57976.48)115886	6.63(115886.63)	2.022	247.8(288.6)
22	S	18099.85	49524.75	14932.10	18099.69	117498.94(117498.94) 35429	.90(35429.90)	2.372	247.8(288.6)

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	77 di 113

23	S	18099.85	14857.43	46197.29	18099.82	37583.15(37583.15)116829.06(116829.06)	2.532247.8(288.6)
24	ς	19374 86	14857 43	14932 10	19374 68	87101 01/87101 01) 87553 38/87553 38)	5 862247 8(288 6)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	105.5	0.0	0.00328	101.0	132.3	-0.00528	-101.0	-132.3
2	0.00350	127.6	1.1	0.00328	122.8	112.4	-0.00528	-122.8	-112.4
3	0.00350	156.5	1.1	0.00328	150.3	71.6	-0.00539	-150.3	-71.6
4	0.00350	127.6	1.1	0.00328	122.8	112.4	-0.00528	-122.8	-112.4
5	0.00350	156.5	1.1	0.00328	150.3	71.6	-0.00539	-150.3	-71.6
6	0.00350	50.5	0.0	0.00325	48.6	159.2	-0.00646	-48.6	-159.2
7	0.00350	166.6	1.1	0.00325	157.7	53.3	-0.00646	-157.7	-53.3
8	0.00350	124.1	1.1	0.00325	116.0	119.5	-0.00634	-116.0	-119.5
9	0.00350	79.9	1.1	0.00323	76.0	148.1	-0.00551	-76.0	-148.1
10	0.00350	116.6	1.1	0.00328	108.7	126.1	-0.00551	-108.7	-146.1 -126.1
11	0.00350	151.3	0.0	0.00327	145.8	80.4	-0.00558	-145.8	-80.4
12	0.00350	116.6	1.1	0.00328	108.7	126.1	-0.00550	-108.7	-126.1
13	0.00350	151.3	1.1	0.00327	145.8	80.4	-0.00558	-145.8	-80.4
14	0.00350	50.5	1.1	0.00325	48.6	159.2	-0.00646	-48.6	-159.2
15	0.00350	166.6	8.9	0.00325	157.7	53.3	-0.00646	-157.7	-53.3
16	0.00350	124.1	166.6	0.00325	116.0	119.5	-0.00634	-116.0	-119.5
17	0.00350	105.5	52.7	0.00328	101.0	132.3	-0.00528	-101.0	-132.3
18	0.00350	127.6	119.2	0.00328	122.8	112.4	-0.00528	-122.8	-112.4
19	0.00350	156.5	166.9	0.00328	150.3	71.6	-0.00539	-150.3	-71.6
20	0.00350	127.6	53.0	0.00328	122.8	112.4	-0.00528	-122.8	-112.4
21	0.00350	156.5	120.5	0.00328	150.3	71.6	-0.00539	-150.3	-71.6
22	0.00350	50.5	166.9	0.00325	48.6	159.2	-0.00646	-48.6	-159.2
23	0.00350	166.6	53.0	0.00325	157.7	53.3	-0.00646	-157.7	-53.3
24	0.00350	124.1	120.5	0.00325	116.0	119.5	-0.00634	-116.0	-119.5

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Rapp. di d	duttilità (travi e solette)[§	utro aX+bY+c=0 nel rif. X 4.1.2.1.2.1 NTC]: deve e flessione in travi continue		
N°Comb	a	b	С	x/d	C.Rid.
1	0.000015496	0.000020506	-0.000997978		
2	0.000018748	0.000017583	-0.000997954		
3	0.000023288	0.000011649	-0.001056789		
4	0.000018748	0.000017583	-0.000997954		
5	0.000023288	0.000011649	-0.001056789		
6	0.000008422	0.000027932	-0.001605445		
7	0.000027774	0.000008932	-0.001605624		
8	0.000020431	0.000020329	-0.001543857		

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	78 di 113

 	-0.001114637	0.000023459	0.000012042	9
 	-0.001114867	0.000019668	0.000017566	10
 	-0.001152132	0.000013362	0.000022981	11
 	-0.001114867	0.000019668	0.000017566	12
 	-0.001152132	0.000013362	0.000022981	13
 	-0.001605445	0.000027932	0.000008422	14
 	-0.001605624	0.000008932	0.000027774	15
 	-0.001543857	0.000020329	0.000020431	16
 	-0.000997978	0.000020506	0.000015496	17
 	-0.000997954	0.000017583	0.000018748	18
 	-0.001056789	0.000011649	0.000023288	19
 	-0.000997954	0.000017583	0.000018748	20
 	-0.001056789	0.000011649	0.000023288	21
 	-0.001605445	0.000027932	0.000008422	22
 	-0.001605624	0.000008932	0.000027774	23
 	-0.001543857	0.000020329	0.000020431	24

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff.

As eff.

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	4.10	97.6	300.0	-7.6	-93 0	-138.1	1426	63.6
2	Š	8.07	123.6			-116.0		8525	438.3
3	Š	9.71	154.9				-80.4		480.7
4	Š	8.07	123.6		-86.8			8525	438.3
5	S	9.71	154.9				-80.4		480.7
6	S	3.97	97.6		-10.8			2246	141.4
7	S	8.37	113.1	0.0	-102.6	-108.7	-126.1	9439	459.5
8	S	9.78	149.6	0.0	-138.9	-140.8	-88.9	10506	494.8
9	S	8.37	113.1	0.0	-102.6	-108.7	-126.1	9439	459.5
10	S	9.78	149.6	0.0	-138.9	-140.8	-88.9	10506	494.8
11	S	4.10	97.6	0.0	-7.6	-93.0	-138.1	1426	63.6
12	S	8.07	123.6	0.0	-86.8	-116.0	-119.5	8525	438.3
13	S	9.71	154.9	0.0	-129.4	-145.8	-80.4	10040	480.7
14	S	8.07	123.6	0.0	-86.8	-116.0	-119.5	8525	438.3
15	S	9.71	154.9	0.0	-129.4	-145.8	-80.4	10040	480.7
16	S	6.97	53.7	0.0	-83.5	-48.6	-159.2	9270	459.5
17	S	6.64	166.9	0.0	-75.8	-157.7	-53.3	8936	445.3
18	S	3.38	128.1	0.0	-7.9	-122.8	-112.4	1874	113.1
19	S	7.91	52.7	0.0	-105.4	-48.6	-159.2	10032	480.7
20	S	7.51	166.8	0.0	-95.8	-157.7	-53.3	9725	473.6
21	S	3.70	126.9	0.0	-13.0	-122.8	-112.4	2942	183.8
22	S	7.91	52.7	0.0	-105.4	-48.6	-159.2	10032	480.7
23	S	7.51	166.8	0.0	-95.8	-157.7	-53.3	9725	473.6
24	S	3.70	126.9	0.0	-13.0	-122.8	-112.4	2942	183.8

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata

e2 Minima deformazione di trazione del cls. (in sezione fessurata), valutata nella fibra più interna dell'area Ac eff

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]

PROGETTO DEFINITIVO

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Progetto definitivo RS3T 30 D09CL VI1205003 В 79 di 113 Relazione di calcolo Pile – P23

k2

= (e1 + e2)/(2*e1) [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali k4

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr ma	c wk	MX fess	MY fess
1	S	-0.00005	0	0.833	30.0	70	0.00002 (0.00002) 429	0.010 (990.00)	66735.47	44829.14
2	S	-0.00046	0	0.833	30.0	70	0.00026 (0.00026) 403	3 0.105 (990.00)	20601.29	20556.66
3	S	-0.00068	0	0.833	30.0	70	0.00039 (0.00039) 410	0.161 (990.00)	12210.16	23240.06
4	S	-0.00046	0	0.833	30.0	70	0.00026 (0.00026) 403	0.105 (990.00)	20601.29	20556.66
5	S	-0.00068	0	0.833	30.0	70	0.00039 (0.00039) 410	0.161 (990.00)	12210.16	23240.06
6	S	-0.00006	0	0.833	30.0	70	0.00003 (0.00003) 373	3 0.012 (990.00)	52027.75	34949.32
7	S	-0.00054	0	0.833	30.0	70	0.00031 (0.00031) 413	3 0.127 (990.00)	20850.81	17657.36
8	S	-0.00073	0	0.833	30.0	70	0.00042 (0.00042) 418	3 0.174 (990.00)	13209.30	21785.86
9	S	-0.00054	0	0.833	30.0	70	0.00031 (0.00031) 413	3 0.127 (990.00)	20850.81	17657.36
10	S	-0.00073	0	0.833	30.0	70	0.00042 (0.00042) 418	3 0.174 (990.00)	13209.30	21785.86
11	S	-0.00005	0	0.833	30.0	70	0.00002 (0.00002) 429	0.010 (990.00)	66735.47	44829.14
12	S	-0.00046	0	0.833	30.0	70	0.00026 (0.00026) 403	0.105 (990.00)	20601.29	20556.66
13	S	-0.00068	0	0.833	30.0	70	0.00039 (0.00039) 410	0.161 (990.00)	12210.16	23240.06
14	S	-0.00046	0	0.833	30.0	70	0.00026 (0.00026) 403	0.105 (990.00)	20601.29	20556.66
15	S	-0.00068	0	0.833	30.0	70	0.00039 (0.00039) 410	0.161 (990.00)	12210.16	23240.06
16	S	-0.00044	0	0.833	30.0	70	0.00025 (0.00025) 409	0.103 (990.00)	26301.52	8477.02
17	S	-0.00040	0	0.833	30.0	70	0.00023 (0.00023) 409	0.093 (990.00)	8514.35	26963.32
18	S	-0.00005	0	0.833	30.0	70	0.00002 (0.00002) 379	0.009 (990.00)	47106.13	50607.91
19	S	-0.00055	0	0.833	30.0	70	0.00032 (0.00032) 41	0.131 (990.00)	25046.13	7911.91
20	S	-0.00050	0	0.833	30.0	70	0.00029 (0.00029) 413	3 0.119 (990.00)	8113.48	25547.30
21	S	-0.00007	0	0.833	30.0	70	0.00004 (0.00004) 374	0.015 (990.00)	36900.00	38854.89
22	S	-0.00055	0	0.833	30.0	70	0.00032 (0.00032) 41	0.131 (990.00)	25046.13	7911.91
23	S	-0.00050	0	0.833	30.0	70	0.00029 (0.00029) 413	3 0.119 (990.00)	8113.48	25547.30
24	S	-0.00007	0	0.833	30.0	70	0.00004 (0.00004) 374	0.015 (990.00)	36900.00	38854.89

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	5.11	59.0	300.0	-28.3	-58.0	-156.1	4696	247.4
2	S	9.71	154.9	0.0	-129.4	-145.8	-80.4	10040	480.7
3	S	9.71	154.9	0.0	-129.4	-145.8	-80.4	10040	480.7
4	S	9.71	154.9	0.0	-129.4	-145.8	-80.4	10040	480.7
5	S	9.71	154.9	0.0	-129.4	-145.8	-80.4	10040	480.7
6	S	5.49	47.2	0.0	-41.5	-48.6	-159.2	6304	332.2
7	S	9.78	149.6	0.0	-138.9	-140.8	-88.9	10506	494.8
8	S	9.78	149.6	0.0	-138.9	-140.8	-88.9	10506	494.8
9	S	9.78	149.6	0.0	-138.9	-140.8	-88.9	10506	494.8
10	S	9.78	149.6	0.0	-138.9	-140.8	-88.9	10506	494.8
11	S	5.11	59.0	0.0	-28.3	-58.0	-156.1	4696	247.4
12	S	9.71	154.9	0.0	-129.4	-145.8	-80.4	10040	480.7
13	S	9.71	154.9	0.0	-129.4	-145.8	-80.4	10040	480.7
14	S	9.71	154.9	0.0	-129.4	-145.8	-80.4	10040	480.7
15	S	9.71	154.9	0.0	-129.4	-145.8	-80.4	10040	480.7

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto defini	Progetto definitivo			COM	MESSA		LOTTO	CODIFICA		DOCUMENTO	REV	. FOGLIO
Relazione di c		le — P23		R	RS3T		30	D09CL		VI1205003	В	80 di 113
1	S	-0.00015	0	0.833	30.0	70	0.0	(80000.0) 8000	399	0.034 (0.20)	38701.52	13854.88
2	S	-0.00068	0	0.833	30.0	70	0.0	0039 (0.00039)	416	0.161 (0.20)	12210.16	23240.06
3	S	-0.00068	0	0.833	30.0	70	0.0	0039 (0.00039)	416	0.161 (0.20)	12210.16	23240.06
4	S	-0.00068	0	0.833	30.0	70	0.0	0039 (0.00039)	416	0.161 (0.20)	12210.16	23240.06
5	S	-0.00068	0	0.833	30.0	70	0.0	0039 (0.00039)	416	0.161 (0.20)	12210.16	23240.06
6	S	-0.00022	0	0.833	30.0	70	0.0	0012 (0.00012)	399	0.050 (0.20)	33487.73	9389.42
7	S	-0.00073	0	0.833	30.0	70	0.0	0042 (0.00042)	418	0.174 (0.20)	13209.30	21785.86
8	S	-0.00073	0	0.833	30.0	70	0.0	0042 (0.00042)	418	0.174 (0.20)	13209.30	21785.86
9	S	-0.00073	0	0.833	30.0	70	0.0	0042 (0.00042)	418	0.174 (0.20)	13209.30	21785.86
10	S	-0.00073	0	0.833	30.0	70	0.0	0042 (0.00042)	418	0.174 (0.20)	13209.30	21785.86
11	S	-0.00015	0	0.833	30.0	70	0.0	(80000.0) 8000	399	0.034 (0.20)	38701.52	13854.88
12	S	-0.00068	0	0.833	30.0	70	0.0	0039 (0.00039)	416	0.161 (0.20)	12210.16	23240.06
13	S	-0.00068	0	0.833	30.0	70	0.0	0039 (0.00039)	416	0.161 (0.20)	12210.16	23240.06
14	S	-0.00068	0	0.833	30.0	70	0.0	0039 (0.00039)	416	0.161 (0.20)	12210.16	23240.06
15	S	-0.00068	0	0.833	30.0	70	0.0	0039 (0.00039)	416	0.161 (0.20)	12210.16	23240.06

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.52	175.0	300.0	17.9	-166.4	-4.9		
2	S	2.46	175.0	0.0	4.4	-166.4	-4.9		
3	S	2.46	175.0	0.0	4.4	-166.4	-4.9		
4	S	2.46	175.0	0.0	4.4	-166.4	-4.9		
5	S	2.46	175.0	0.0	4.4	-166.4	-4.9		
6	S	1.52	175.0	0.0	17.9	-166.4	-4.9		
7	S	2.46	175.0	0.0	4.4	-166.4	-4.9		
8	S	2.46	175.0	0.0	4.4	-166.4	-4.9		
9	S	2.46	175.0	0.0	4.4	-166.4	-4.9		
10	S	2.46	175.0	0.0	4.4	-166.4	-4.9		
11	S	1.52	175.0	0.0	17.9	-166.4	-4.9		
12	S	2.46	175.0	0.0	4.4	-166.4	-4.9		
13	S	2.46	175.0	0.0	4.4	-166.4	-4.9		
14	S	2.46	175.0	0.0	4.4	-166.4	-4.9		
15	S	2.46	174.8	0.0	4.4	-166.4	-4.9		

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	MX fess	MY fess
1	S	-0.00027	0						0.000 (0.20)	12157.99	0.00
2	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
3	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
4	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
5	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
6	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
7	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
8	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
9	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
10	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
11	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
12	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
13	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
14	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
15	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	81 di 113

8.3 Verifica a taglio

diametro armature trasversale	φ	12	mm
bracci staffe	bs	4	
area armature trasversale	Asw	5	cm2
passo staffe	S	15	cm
copriferro netto + staffa + fi/2	c'	9	cm
spessore anima sezione rettrangola	ır sb	0	cm
sezione	tipo	circolare	
tipologia di varifica taglio	secondo	statica q=	1
Direzione Longidinale			
resistenza ridotta	f'c	9	Mpa
braccio delle forze interne	z=0.9d	253	cm
larghezza biella	bw	295	cm
inclinazione staffe	α	90	gradi
inclinazione biella	θ	22	gradi
resistenza puntoni	Vc	23293	kN
resistenza staffe	Vs	7457	kN
taglio resisitente	Vr	7457	kN
taglio massimo agente	Ved	5744	kN
	Ved/Vrd	0.77	
Direzione Trasversale			
braccio delle forze interne	z=0.9d	253	cm
larghezza biella	bw	295	cm
inclinazione biella	ϑ	22	gradi
resistenza puntoni	Vc	23293	kN
resistenza staffe	Vs	7457	kN
taglio resisitente	Vr	7457	kN
taglio massimo agente	Ved	4417	kN
	Ved/Vrd	0.59	

Progetto definitivo

Relazione di calcolo Pile – P23

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1205003	В	82 di 113

8.4 Verifica minimi di armatura

Secondo quanto prescritto dalle NTC2018 e dal "Manuale di Progettazione delle Opere Civili" i quantitativi minimi di armatura da rispettare sono:

- L'area dell'armatura longitudinale dovrà essere non inferiore allo 0,6% dell'area della sezione effettiva del calcestruzzo. Questa prescrizione non si applica ai tratti di pile che, per motivi idraulici, sono realizzati a sezione piena; per queste, fatte salve le esigenze di calcolo, si manterrà l'armatura corrispondente alla sezione del tratto cavo immediatamente superiore;
- Le barre di armatura longitudinale non dovranno distare fra loro più di 300 mm compatibilmente con i limiti forniti nella Tab. 2.5.2.2.6-1;

Diametro delle barre	Massimo interasse delle barre
[mm]	[mm]
32	300
24	250
20	200

Tab. 2.5.2.2.6-1 - Diametri e relativi interassi massimi delle barre

- Non è ammesso l'impiego di staffe elicoidali (spirali);
- Non è consentito congiungere tra loro i bracci delle staffe per sovrapposizione. Le staffe devono essere chiuse risvoltando i bracci nel nucleo di calcestruzzo mediante la piegatura dei ferri di 135° verso l'interno e per una lunghezza non inferiore a 10 volte il diametro della staffa;
- Nella zona di spiccato delle pile e in quella di sommità delle pile a telaio, per un tratto di lunghezza non inferiore a 3 metri non è consentito operare alcun tipo di giunzione delle armature verticali; al di fuori di tale tratto è consentito congiungere, in modo graduale, le barre verticali mediante sovrapposizione o altro. In particolare, le giunzioni devono essere effettuate in modo da interessare non più di 1/3 delle barre longitudinali presenti nella generica sezione, sfalsando due riprese di armatura successive di almeno 40 diametri in senso verticale:

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1205003	В	83 di 113

- L'interasse delle armature trasversali s non deve essere superiore a 10 volte il diametro delle barre longitudinali, né a 1/5 del diametro del nucleo della sezione interna alle stesse;
- Nelle pile a sezione cava dovranno prevedersi spille di collegamento fra le armature longitudinali in numero di almeno 6 a metro quadro;
- Nel caso in cui il fattore di struttura "q" sia minore o uguale ad 1,5 l'armatura di confinamento delle pile si devono rispettare le limitazioni sulla percentuale meccanica:

minimi per armatura flessi	ionale			
numero di ferri longitudinali		n	318	
diametro del ferro longitudi	nale	fi	30	mm
diametro minimo armatura	a taglio	fi	8	mm
passo massimo longitudinale)	p	30	am
area dell'armatura longitudin	ale	As	224781	mm2
area di calcestruzzo (non rier	npito)	Ac	9621000.00	mm3
			2.34%	>0.6%
minimi per confinamento	se q≤1.5	5		
accelerazione al suolo per SI	V	ag	0.14	g
coefficiente di verifica		ζ	0.03	
interasse staffe		S	150	mm
diametro armature trasversal	le	φ	12	mm
Area della singola staffa		Asw	1.131	mm2
Area totale staffe		Asw	2.26	mm2
area totale legature		Asl	12.69	mm2
percentuale meccanica arm.	Trasv	wwd,r	0.0592	

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	84 di 113

8.5 Verifica spostamenti

Di seguito si riporta una tabella riassuntiva delle escursioni longitudinali per tutte le tipologie di luce presenti lungo la linea:

$$E_L \ge 2.30 \cdot \frac{L}{1000} + 0.073 \in E_L \ge 0.10m$$

L imp (m)	EL (cm)	Corsa appoggi (cm)	Escursione giunti (cm)	Varco (cm)
17.9	12.0	7.5	7.0	8.0
25	14.0	8.8	8.0	9.0
40	17.0	10.6	9.5	10.5
50	19.0	11.9	10.5	11.5
60	22.0	13.8	12.0	13.0

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	85 di 113

9. PULVINO

Geometria mensola						
a ac	Altezza menso	la		hc	2000	[mm]
FEd	larghezza men	sola		atot	3549.10288	[mm]
	profondità			b	2000	[mm]
+ a'	copriferro			С	85	[mm]
	applicazione ca	arico		ac	50	[mm]
	altezza utile			d	1915	[mm]
, , , , , , , , , , , , , , , , , , ,	braccio delle fe	orze interne		z	1532	[mm]
1						
a ₅						
	tipologia di mens	rola:	ME	VSOLA M	OLTO TOZZ	ZA 2a < z
<u>Materiali</u>						
	resistenza a co	mpressione cili	ndrica	fck	32	[Mpa]
	reisistenza di c	alcolo		fcd	18.13333333	[Mpa]
	coefficiente ric	luttivo		h'	0.872	[Mpa]
	tensiona massi	ma nodo CCC		sRd1,max	15.81226667	[Mpa]
	tensiona massi	ma nodo CCT		sRd2,max	13.44042667	[Mpa]
	resistenza dell'	acciaio		fyk	450	[Mpa]
	resistenda di c	alcolo dell'accia	.О	fyd	391.3043478	[Mpa]

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	86 di 113

9.1 Progettazione armatura principale e secondaria

Calcolo armatura princ	ipale				
on riferimento al modell	o 1 di traliccio semplificato, si determina l	l'armatura p	rincipale allo S	LU	
nodello 1	azione esterna applicata	Fed = Fc5	8038.020393	[Kn]	
	forza orizzontale trasmessa	Hed	175.177985		
1 1 - ac					
V _{Ed} F _{c1} =F _{Ed}	braccio della forza di trazione	Z	1532	[mm]	
Ft HEd	larghezza risultante di riferimento	a5	254.1704033	[mm]	
	braccio della forza di compressione	a	177.0852017	[mm]	
F_{c2}	trazione nelle barre che si verifica	Ft = Fc4	990.2967914	[Kn]	
	•	Δ	2520 750467	r 21	
2 F _{c3}	armatura superiore	As	2530.758467	[mm2]	
c4	diametro del ferro longitudinale	Φ	16	[mm]	
a _s Fds - vEd	passo armature	_	10	[cm]	
il_	numero di strati di barre	nst	1	[CIII]	
	numeri ferri predisposti in b	n	20		
	areare ferri resistenti	Ares	4019.2	[mm2]	
	coef. di sicurezza	Trd/Fc4	1.588140493	[]	
		1.,			
erifica nodo 1 CCC	lunghezza di applicazione delle s4	a4	766	[mm]	
	tensione di compressione 4	s4	0.646407827	[Mpa]	Ok
Calcolo armatura secon	ndaria orizzontale				
odello 2	angolo di inclinazione	Ψ	82.97290033	[gradi]	
F -,-	coefficiente di ripartizione	С	16.17351584	[%]	
1 "c 1 V _{Ed}	braccio della forza di trazione	z	1532	[mm]	
Ft" Ed	braccio della forza di compressione	a	177.0852017	[mm]	
	trazione nelle barre secondarie	Fwd	1452.238976	[Kn]	
14 F _{wd} 3 7 7	armatura secondaria	As	3711.277384	[mm2]	
	armatura minima 0.25As	Amin	1004.8		
A VEd	diametro ferri secondari	Φ	16	[mm]	
8 % ;!_	passo armature direzione b	s	10	[cm]	
	numero di strati di barre	nst	1		
	numeri ferri predisposti in b	n	20		
	areare ferri resistenti	Ares	4019.2	[mm2]	
	coef. di sicurezza	Trd/Fc4	1.588140493		
erifica nodo 2 CCT	area pistra di contatto	Aap	1440000	[mm2]	
sotto la piastra)	tensione di compr. sotto la piastra	sc1	5.581958606	[Mpa]	Ok

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	87 di 113

9.2 Verifica dei nodi

Nodo CCC

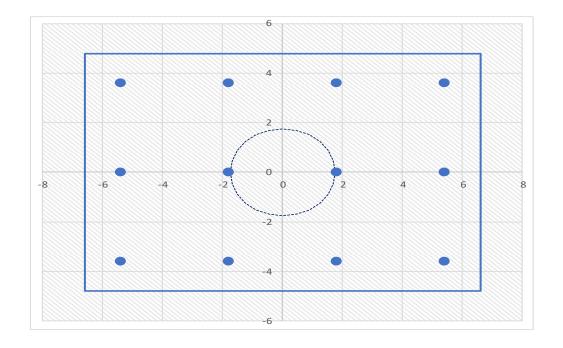
		biella di copressione verticale	Fc1	8038.020393	[Kn]	
		biella comprella orizzontale	Fc2	990.2967914	[Kn]	
		biella compresaa inclinata	Fc3	8098.898411	[Kn]	
		lunghezza di applicazione delle s5	a5	254.1704033	[mm]	
~ ^ _	/ / / _	tensione di compressione 5	s5	15.81226667	[Mpa]	Ok
14 Fc4 /\$	Fc3	per completezza possimoa comunqu	e determin	are le altre tensi	oni	
FC4 178	η	lunghezza di applicazione delle s4	a4	766	[mm]	
Fcs		lunghezza di applicazione puntone 3	a3	807.0678992	[mm]	
• a	15	lunghezza di applicazione puntone 3	a3*	256.0939657	[mm]	
		difetto di ortogonalià	С	64.65261274	[gradi]	
		tensione di compressione 4	s4	0.646407827	[Mpa]	0k
		tensione di compressione 3	s3	5.017482679	[Mpa]	Ok
		tensione di compressione 3*	s3*	15.81235698	[Mpa]	OK

Nodo CCT

forza	di contatto			Fc1	8038.020393	[Kn]	
biella	di calcestruzz	o inclinata		Fc3	8098.898411	[Kn]	
trazio	one barra			Т	990.2967914	[Kn]	
lungh	ezza di applica	azione con	tatto	a1	1200	[mm]	
lungh	unghezza di applicazione contatto			b	1200	[mm]	
lungh	ezza di applica	azione pun	tone	a2	1212.763656	[mm]	
lungh	ezza tirante			u	178	[mm]	
angol	angolo di inclinazione			h	82.97290033	[gradi]	
tesnione di contatto		s _{c1}	< s _{Rd2,1}	5.58	<u>≤</u>	13.44	Ok
tensione biella di calcestr	ızzo incl.	S _{c3}	$<$ $s_{Rd2,i}$	5.57	<u>≤</u>	13.44	Ok

Relazione di calcolo Pile – P23

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO


VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1205003	В	88 di 113

10. PLINTO DI FONDAZIONE

Per la progettazione e verifica del plinto di fondazione è necessario valutare preventivamente le sollecitazioni agenti sui singoli pali. Tali sollecitazioni sono state identificate mediante una ripartizione rigida dal baricentro della fondazione.

numero di pali	n.	12	
diametro pali	D	1.2	m
interasse pali	i	3.6	m
altezza plinto di fondazione	h	3	m
Check verifica			
sbalzo direzione trasversale	at	3.65	m
sbalzo direzione longitudinale	al	1.85	m
direzione trasversale	a/h	1.216667	Plinto basso
direzione longitudinale	a/h	0.616667	Plinto basso

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivoCOMMESSA
Relazione di calcolo Pile – P23LOTTO
RS3TCODIFICA
30DOCUMENTO
D09CLREV.
VI1205003FOGLIO
B89 di 113

Dalle sollecitazioni ottenute precedentemente nel baricentro in corrispondenza dell'intradosso della fondazione si sono ottenute le seguenti sollecitazioni in testa palo:

Scarichi 9	=1.5/1.1	se plinto s	nello		
n. palo	X	Y	Ncombo1	Ncombo2	Ncombo3
1	1.8	3.6	5433.4	4073.7	5522.1
2	1.8	-3.6	3192.6	2165.4	-98.7
3	5.4	3.6	6054.8	5310.5	5943.1
4	5.4	-3.6	3814.0	3402.2	322.3
5	-5.4	-3.6	1949.6	-308.2	-940.8
6	-5.4	3.6	4190.4	1600.1	4680.0
7	5.4	О	4934.4	4356.4	3132.7
8	-5.4	О	3070.0	646.0	1869.6
9	-1.8	О	3691.5	1882.8	2290.6
10	1.8	О	4313.0	3119.6	2711.7
11	-1.8	-3.6	2571.1	928.6	-519.8
12	-1.8	3.6	4811.9	2836.9	5101.0
	taglio con	nbinato in	235.3485	462.7553	610.908
Scarichi 9	=1 se plin	to tozzo e	verifica a t	aglio	
n. palo	X	Y	Ncombo1	Ncombo2	Ncombo3
1	1.8	3.6	3802.2	4073.7	5522.1
2	1.8	-3.6	1894.0	2165.4	-98.7
3	5.4	3.6	4223.3	5310.5	5943.1
4	5.4	-3.6	2315.0	3402.2	322.3
5	-5.4	-3.6	1051.9	-308.2	-940.8
6	-5.4	3.6	2960.1	1600.1	4680.0
7	5.4	О	3269.1	4356.4	3132.7
8	-5.4	О	2006.0	646.0	1869.6
9	-1.8	0	2427.1	1882.8	2290.6
10	1.8	О	2848.1	3119.6	2711.7
11	-1.8	-3.6	1472.9	928.6	-519.8
12	-1.8	3.6	3381.2	2836.9	5101.0
	taglio con	nbinato in	310.4132	462.7553	610.908

Il plinto di fondazione è stato verificato ipotizzando un meccanismo di tirante puntone ricadendo nella categoria di elementi tozzi. La larghezza collaborante è stata valutata tramite una diffusione a 45° rispetto al dimetro del palo più sollecitato, quindi fermata in corrispondenza della pila o della linea media dell'interasse del palo successivo.

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	90 di 113

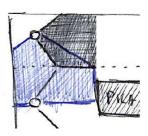


Figura 12 - mensola di riferimento

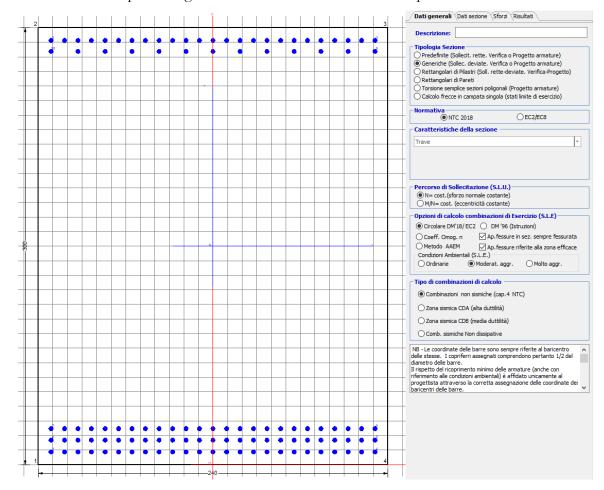
10.1 Dimensionamento armature

posizione del palo più sollecitato			
coortinata in direzione trasvesale	X	5.4	m
coortinata in direzione longitudinale	Y	3.6	m
angolo di deviazione risultate rispetto alle ascisse	α	33.6901	gradi
ipotenusa poiezione orizzontale puntone	L	6.48999	m
altezza della fondazione	h	3	m
inclinazione rispetto all'orizzontale puntone	θ	24.8087	gradi
reazione in testa palo più sollecitato	Rmax	6176.15	KN
forza di trazione risultante	T	13361.1	KN
proiezione forza di trazione in trasversale	Tt	11117.1	KN
proiezione forza di trazione in longitudinale	T1	7411.39	KN
lunghezza collaborante		media	

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P23RS3T30D09CLVI1205003B91 di 113

dimensionamento armature			
area dell'armatura inferiore richiesta in tras	At	28410.6	mm2
diametro armatura	Φ	30	mm
passo armatura trasversale	р	10	cm
numero di strati	ns	2	
lunghezza di collaborazione	L	2.40258	m
numero di ferri per strato	n	24	
area complessiva sulla lunghezza collaborar	nte Ares	33929.2	mm2
	coef. Sicu	0.83735	
area dell'armatura inferiore richiesta in long	; Al	18940.4	mm2
diametro armatura	Ф	30	
passo armatura longitudinale	р	10	cm
numero di strati	ns	2	
lunghezza di collaborazione	L	2.4	m
numero di ferri per strato	n	24	
area complessiva sulla lunghezza collaborar	nte Ares	33929.2	mm2
	coef. Sicu	0.55823	
tasso di lavoro armatura allo SLU	σt	327.655	MPa
tasso di lavoro armatura allo SLU	σl	218.437	MPa


VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	92 di 113

10.2 Verifica a prsso-flessione

10.2.1 Direzione trasversale

Armatura disposta lungo la direzione trasversale all'asse del ponte

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: fondazione X 240x300

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione:
Condizioni Ambientali:
Riferimento Sforzi assegnati:
Riferimento alla sismicità:
A Sforzo Norm. costante
Moderat. aggressive
Assi x,y principali d'inerzia
Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C25/30 Resis. compr. di progetto fcd: 14.160 MPa

Resis. compr. di progetto fcd: 14.160 MP Def.unit. max resistenza ec2: 0.0020

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

daN/cm²

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P23RS3T30D09CLVI1205003B93 di 113

0.0035 Def.unit. ultima ecu: Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 31475.0 MPa Resis. media a trazione fctm: 2.560 MPa Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Frequenti: 137.50 daN/cm²

Ap.Fessure limite S.L.E. comb. Frequenti:

Sc limite S.L.E. comb. Frequenti:

Sc limite S.L.E. comb. Q.Permanenti:

0.200 mm

Ap.Fess.limite S.L.E. comb. Q.Perm.:

0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:450.00MPaResist. caratt. rottura ftk:450.00MPaResist. snerv. di progetto fyd:391.30MPaResist. ultima di progetto ftd:391.30MPa

Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef 2000000

Modulo Elastico Ef

2000000

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo β1*β2:

Coeff. Aderenza differito β1*β2:

0.50

Coeff. Aderenza differito Is1*Is2 : 0.50
Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C25/30
N°vertice:	X [cm]	Y [cm]
1 2 3	-120.0 -120.0 120.0	0.0 300.0 300.0
4	120.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-111.3	8.7	30
2	-111.3	291.3	30
3	111.3	291.3	30
4	111.3	8.7	30
5	111.3	16.7	30
6	-111.3	16.7	30
7	-111.3	24.7	30
8	111.3	24.7	30
9	111.3	283.7	30
10	-111.3	283.7	30

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	2	3	23	30

2

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	94 di 113

2	6	5	23	30
3	1	4	23	30
4	7	8	23	30
5	9	10	11	30

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia							
Му		con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.							
Vy Vx		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x							
N°Comb.	N	Mx	Му	Vy	Vx				
1	0.00	20368.00	0.00	0.00	0.00				

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

16924.00

0.00

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

0.00

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

0.00

0.00

N°Comb. N Mx My 1 0.00 14002.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 14002.00 (13440.77) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 7178.00 (13440.77) 0.00 (0.00)

RISULTATI DEL CALCOLO

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P23RS3T30D09CLVI1205003B95 di 113

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 4.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

 Mx
 Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia

 My
 Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia

 N Res
 Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

 Mx Res
 Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

 Mx Res
 Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

 My Res
 Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia

 Mis.Sic.
 Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	20368.00	0.00	0.00	55998.20	0.00	2.7553	30.1(103.4)
2	S	0.00	16924.00	0.00	0.00	55998.20	0.00	3.3153	30.1(103.4)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp, a es max (sistema rif, X Y O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.128	-120.0	300.0	0.00268	-111.3	291.3	-0.02391	-111.3	8.7
2	0.00350	0.128	-120.0	300.0	0.00268	-111.3	291.3	-0.02391	-111.3	8.7

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1 2	0.00000000	0.000094082	-0.024724539	0.128	0.700
	0.000000000	0.000094082	-0.024724539	0.128	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO

NUOVO COLLEGAMENTO PALERMO - CATANIA

PROGETTO DEFINITIVO

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	96 di 113

1 S 3.59 120.0 300.0 -107.6 -83.5 8.7 10080 530.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.	Esito della verifica
e1	Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata
e2	Minima deformazione di trazione del cls. (in sezione fessurata), valutata nella fibra più interna dell'area Ac eff
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]
k2	= (e1 + e2)/(2*e1) [eq.(7.13)EC2]
k3	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali
k4	= 0.425 Coeff. in eq.(7.11) come da annessi nazionali
Ø	Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]
Cf	Copriferro [mm] netto calcolato con riferimento alla barra più tesa
e sm - e cm	Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]
	Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]
sr max	Massima distanza tra le fessure [mm]
wk	Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver e2 k2 Cf Mx fess My fess e sm - e cm sr max 1 S -0.00056 0 0.897 30.0 72 0.00034 (0.00032) 419 0.144 (990.00) 13440.77 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.59	120.0 300.0	-107.6	-83.5	8.7	10080	530.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr m	nax	wk	Mx fess	My fess
1	S	-0.00056	0	0.897	30.0	72	0.00034 (0.00032) 4	119	0.144 (0.20)	13440.77	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.84	120.0 300.0	-55.1	-92.8	8.7	10076	530.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00029	0	0.897	30.0	72	0.00017 (0.00017)	419	0.069 (0.20)	13440.77	0.00

10.2.2 Direzione longitudinale

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

REV.

В

FOGLIO

97 di 113

Progetto definitivo Relazione di calcolo Pile – P23 COMMESSA LOTTO CODIFICA DOCUMENTO RS3T 30 D09CL VI1205003

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: fondazione y 240x300

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione:
Condizioni Ambientali:
Riferimento Sforzi assegnati:
Riferimento alla sismicità:
A Sforzo Norm. costante
Moderat. aggressive
Assi x,y principali d'inerzia
Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30	
	Resis. compr. di progetto fcd:	14.160	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	31475.0	MPa
	Resis. media a trazione fctm:	2.560	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	137.50	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Frequen	ti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Mpa

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

0.200 mm

Progetto definitivo Relazione di calcolo Pile – P23

ACCIAIO -

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1205003 B 98 di 113

Tipo: B450C
Resist. caratt. snervam. fyk: 450.00 MPa
Resist. caratt. rottura ftk: 450.00 MPa
Resist. snerv. di progetto fyd: 391.30 MPa

Ap.Fess.limite S.L.E. comb. Q.Perm.:

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

391.30 MPa
0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C25/30
N°vertice:	X [cm]	Y [cm]
1 2 3	-120.0 -120.0 120.0	0.0 300.0 300.0
4	120.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-111.3	8.7	30
2	-111.3	291.3	30
3	111.3	291.3	30
4	111.3	8.7	30
5	111.3	16.7	30
6	-111.3	16.7	30
7	-111.3	24.7	1
8	111.3	24.7	1
9	111.3	283.7	1
10	-111.3	283.7	1

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	2	3	23	30
2	6	5	23	30
3	1	4	23	30

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

PROGETTO DEFINITIVO

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	99 di 113

con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia My con verso positivo se tale da comprimere il lembo destro della sez. ۷y Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x ٧x

N°Comb.	N	Mx	Му	Vy	Vx
1	0.00	13578.00	0.00	0.00	0.00
2	0.00	11282.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) My

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx Μy 0.00 9335.00 0.00 1

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx My

1 0.00 9335.00 (12157.99) 0.00(0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx

0.00 4785.00 (12157.99) 0.00 (0.00) 1

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali:

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Ν Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia My Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) N Res

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P23RS3T30D09CLVI1205003B100 di 113

My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	13578.00	0.00	0.00	38409.67	0.00	2.8335	53.4(103.4)
2	S	0.00	11282.00	0.00	0.00	38409.67	0.00	3.4035	3.4(103.4)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	max x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max	
1	0.00350	0.086	-120.0	300.0	0.00229	-111.3	291.3	-0.03706	-111.3	8.7	
2	0.00350	0.086	-120.0	300.0	0.00229	-111.3	291.3	-0.03706	-111.3	8.7	

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue							
N°Comb	a	b	С	x/d	C.Rid.			
1	0.000000000	0.000139245	-0.038273425	0.086	0.700			
2	0.000000000	0.000139245	-0.038273425	0.086	0.700			

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

As min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a St min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

 N°Comb
 Ver
 Sc max
 Xc max
 Yc max
 Sf min
 Xs min
 Ys min
 Ac eff.
 As eff.

 1
 S
 2.82
 120.0
 300.0
 -102.5
 9.3
 8.7
 7680
 353.4

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm
Ver.	Esito della verifica
e1	Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata
e2	Minima deformazione di trazione del cls. (in sezione fessurata), valutata nella fibra più interna dell'area Ac eff
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]
kt	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]
k2	= (e1 + e2)/(2*e1) [eq.(7.13)EC2]
k3	= 3.400 Coeff. in eq.(7.11) come da annessi nazionali

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P23RS3T30D09CLVI1205003B101 di 113

k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver e2 k2 Ø Cf Mx fess My fess e sm - e cm sr max 450 0.138 (990.00) 12157.99 -0.00053 0 0.926 30.0 72 1 S 0.00031 (0.00031) 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 2.82 120.0 300.0 -102.5 9.3 8.7 7680 353.4

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e2 k2 Ø Cf e1 My fess e sm - e cm sr max Mx fess 1 S -0.00053 0 0.926 30.0 72 0.00031 (0.00031) 450 0.138 (0.20) 12157.99 0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 1.45 120.0 300.0 -52.5 27.8 8.7 7680 353.4

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. e2 Ø Cf Ver e1 k2 e sm - e cm sr max Mx fess My fess 1 S -0.00027 0 0.926 30.0 72 0.00016 (0.00016) 450 0.071 (0.20) 12157.99 0.00

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P23RS3T30D09CLVI1205003B102 di 113

10.3 Verifica a punzonamento

perimetro del palo	uo	3.76991	m
diffuzione dello sforzo		NS 3483E	
angolo d'inclinazione superficie	θ	45	gradi
perimetro zona critica	u1	20.169	m
altezza della sezione utile	d	2.61	m
raggio interno	r	0.6	m
raggio esterno	R	3.21	m
ipotenusa triangolo interno del cono	a	3.6911	m
angolo massimo di sviluppo	α1	25	gradi
angolo minimo di sviluppo	α2	-115	gradi
sviluppo della superficie resistente	α	1.22173	rad
superficie totale del tronco cono	S1	17.1813	m2
coefficiente carico	β	1.4	
resistenza caratterisitica del calcestruzzo	fck	25	MPa
resistenza di calcolo del calcestruzzo	fcd	14.1667	MPa
valore di progetto del taglio	Ved	7500.11	kN
valore massimo della resistenza unitaria i	in adiacenza palo)	
tensione di progetto di verifica su perimetro		1.06715	MPa
resistenza associata	vRd,max	5	MPa
		0.21343	
valore di progetto di una piastra priva di a	armature a punzo	onamento	
coefficiente di dato dai carichi	CRd,c	0.12	
fattore di scala	k	1.97358	
percenturale geometrica armatura fless. trasv	Qly	0.00541	
percenturale geometrica armatura fless. long	Qlz	0.00542	
percentuale meccanica complessiva	Ql	0.00766	
coefficiente	k1	0.1	
tensione di progetto di verifica su perimetro	u1 ved	0.61114	MPa
	vRd,c	0.62495	MPa
		0.97791	

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1205003	В	103 di 113

11. PALI DI FONDAZIONE

11.1Ridistribuzione sollecitazioni testa palo

Le sollecitazioni agenti in testa palo vengono calcolate nell'ipotesi di platea di fondazione infinitamente rigida, attraverso la relazione

$$R(x,y) = \frac{N}{n} + \frac{M_l}{J_l} \cdot y + \frac{M_t}{J_t} \cdot x$$

dove N, M_I , M_t sono lo sforzo normale e i momenti flettenti longitudinale e trasversale agenti al baricentro della palificata, n è il numero di pali e J_I , J_t sono le inerzie longitudinale e trasversale della palificata

$$J_l = \sum y_i^2 \qquad \qquad J_t = \sum x_i^2$$

Per quanto riguarda le sollecitazioni orizzontali in testa palo, si assume che le azioni di taglio di ripartiscano uniformemente tra i pali, risultando

$$T(x,y) = \frac{\sqrt{H_i^2 + H_t^2}}{n}$$

dove H_I, H_I sono le forze orizzontali longitudinale e trasversale agenti al baricentro della palificata.

11.2 Verifica strutturale

A seconda della verifica di riferimento le sollecitazioni identificate sono riferite ad un fattore di comportamento differente, ottenendo per cui le seguenti ridistribuzioni in testa palo:

Sollecitazioni nel baricentro della fondazione per analisi di presso-flessione

TABELLA PER FLESSIONE					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr3+vento_7	48027	2170	1807	32267	33560
E_103x_SLV_q=1.36_63	30014	5352	1555	59894	17478
E_103y_SLV_q=1.36_64	30014	2500	3476	20651	49774
E_103x_SLV_q=1.36_63	30014	5352	1555	59894	17478
A1_SLU_vento_gr4_12	46503	1743	2682	25915	50440

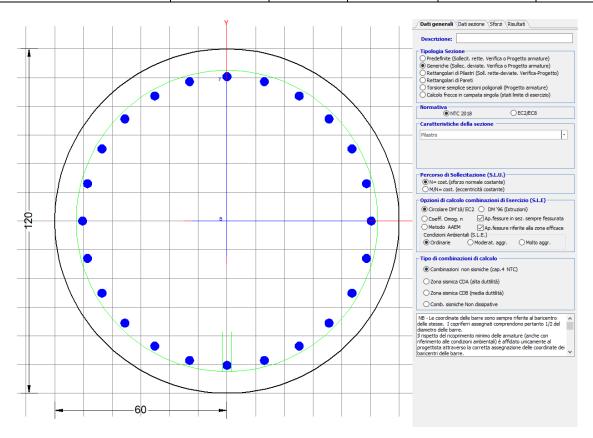
VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile – P23

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	RS3T 30 D09CL		VI1205003	В	104 di 113

Ridistribuzione

n. palo	X	Y	combo1	combo2	combo3
1	1.8	3.6	5433.35	4742.64	5242.08
2	1.8	-3.6	3192.57	583.348	3442.45
3	5.4	3.6	6054.83	5066.31	6176.15
4	5.4	-3.6	3814.05	907.018	4376.53
5	-5.4	-3.6	1949.62	-63.991	1574.31
6	-5.4	3.6	4190.4	4095.3	3373.93
7	5.4	0	4934.44	2986.66	5276.34
8	-5.4	0	3070.01	2015.66	2474.12
9	-1.8	0	3691.48	2339.33	3408.19
10	1.8	0	4312.96	2663	4342.27
11	-1.8	-3.6	2571.09	259.679	2508.38
12	-1.8	3.6	4811.87	4418.97	4308.01
taglio equiva	lente		235.349	464.466	266.548
alfa derivant	e dall'analisi geot	ecnica	α		2.75
	N	Tl	Tt	ML	Mt
combo1	6055	181	151	543	452
combo2	5066	446	130	1338	389
combo3	6176	145	223	436	670
combo4	-64	446	130	1338	389



VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo Relazione di calcolo Pile - P23 COMMESSA LOTTO CODIFICA DOCUMENTO REV. RS3T 30 D09CL VI1205003 В

FOGLIO

105 di 113

DATI GENERALI SEZIONE GENERICA IN C.A. **NOME SEZIONE: palo 1.2**

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30	
	Resis. compr. di progetto fcd:	14.160	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	31475.0	MPa
	Resis. media a trazione fctm:	2.560	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	137.50	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	

450.00 MPa Resist. caratt. snervam. fyk:

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P23RS3T30D09CLVI1205003B106 di 113

450.00 Resist. caratt. rottura ftk: MPa Resist. snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: MPa 391.30 Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef 2000000 daN/cm² Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 60.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Diametro [mm] della singola barra generata

 N°Gen.
 Xcentro
 Ycentro
 Raggio
 N°Barre
 Ø

 1
 0.0
 0.0
 50.3
 24
 30

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	My	Vy	Vx
1	7500.11	401.23	646.12	0.00	0.00
2	1218.59	247.72	160.58	0.00	0.00
3	7298.58	498.37	433.09	0.00	0.00
4	7500.11	401.23	646.12	0.00	0.00
5	7298.58	498.37	433.09	0.00	0.00
6	7500.11	401.23	646.12	0.00	0.00
7	5985.66	1178.56	376.21	0.00	0.00
8	-46.51	1178.56	376.21	0.00	0.00
9	5985.66	1178.56	376.21	0.00	0.00
10	5512.19	597.96	814.05	0.00	0.00
11	5985.66	1178.56	376.21	0.00	0.00
12	5512.19	597.96	814.05	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P23RS3T30D09CLVI1205003B107 di 113

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	5262.77	276.60	421.62
2	1044.15	276.60	412.52
3	5130.71	343.63	276.52
4	5262.77	276.60	421.62
5	5130.71	343.63	276.52
6	5262.77	276.60	421.62
7	4746.29	612.84	235.01
8	1110.69	612.84	235.01
9	4546.72	612.84	235.01
10	4293.47	305.82	465.81
11	4546.72	646.96	235.01
12	4293.47	305.82	489.36

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	5262.77	276.60 (0.00)	421.62 (0.00)
2	1044.15	276.60 (481.51)	412.52 (718.12)
3	5262.77	276.60 (0.00)	421.62 (0.00)
4	5262.77	276.60 (0.00)	421.62 (0.00)
5	5262.77	276.60 (0.00)	421.62 (0.00)
6	5262.77	276.60 (0.00)	421.62 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му	
1	3136.51	0.65 (0.00)	84.02 (0.00)	
2	2670.90	0.65 (0.00)	84.02 (0.00)	
3	3136.51	0.65 (0.00)	84.02 (0.00)	
4	3136.51	0.65 (0.00)	84.02 (0.00)	
5	3136.51	0.65 (0.00)	84.02 (0.00)	
6	3136.51	0.65 (0.00)	84.02 (0.00)	

RISULTATI DEL CALCOLO

Му

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.2 cm Interferro netto minimo barre longitudinali: 10.1 cm

VI12 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 1500 m

LOTTO CODIFICA DOCUMENTO COMMESSA REV. FOGLIO Progetto definitivo RS3T D09CL VI1205003 В 108 di 113 30 Relazione di calcolo Pile – P23

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Мх Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.) Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My N Res

Mx Res My Res Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa] As Totale

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	7500.11	401.23	646.12	7500.40	2019.83	3254.29	5.04 169.6(33.9)
2	S	1218.59	247.72	160.58	1218.57	2647.84	1710.20	10.68 169.6(33.9)
3	S	7298.58	498.37	433.09	7298.72	2895.19	2519.38	5.81 169.6(33.9)
4	S	7500.11	401.23	646.12	7500.40	2019.83	3254.29	5.04 169.6(33.9)
5	S	7298.58	498.37	433.09	7298.72	2895.19	2519.38	5.81 169.6(33.9)
6	S	7500.11	401.23	646.12	7500.40	2019.83	3254.29	5.04 169.6(33.9)
7	S	5985.66	1178.56	376.21	5985.80	3651.61	1159.59	3.10 169.6(33.9)
8	S	-46.51	1178.56	376.21	-46.65	2669.37	863.43	2.27 169.6(33.9)
9	S	5985.66	1178.56	376.21	5985.80	3651.61	1159.59	3.10 169.6(33.9)
10	S	5512.19	597.96	814.05	5511.98	2256.50	3068.67	3.77 169.6(33.9)
11	S	5985.66	1178.56	376.21	5985.80	3651.61	1159.59	3.10 169.6(33.9)
12	S	5512.19	597.96	814.05	5511.98	2256.50	3068.67	3.77 169.6(33.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	51.0	0.5	0.00299	43.6	25.2	-0.00234	-43.6	-25.2
2	0.00350	32.6	0.5	0.00260	25.2	43.6	-0.00671	-25.2	-43.6
3	0.00350	39.4	0.5	0.00297	35.6	35.6	-0.00241	-35.6	-35.6
4	0.00350	51.0	0.5	0.00299	43.6	25.2	-0.00234	-43.6	-25.2
5	0.00350	39.4	0.5	0.00297	35.6	35.6	-0.00241	-35.6	-35.6
6	0.00350	51.0	0.5	0.00299	43.6	25.2	-0.00234	-43.6	-25.2
7	0.00350	18.2	56.0	0.00293	13.0	48.6	-0.00299	-13.0	-48.6
8	0.00350	18.2	56.0	0.00243	13.0	48.6	-0.00856	-13.0	-48.6
9	0.00350	18.2	56.0	0.00293	13.0	48.6	-0.00299	-13.0	-48.6
10	0.00350	48.4	32.9	0.00289	43.6	25.2	-0.00320	-43.6	-25.2
11	0.00350	18.2	56.4	0.00293	13.0	48.6	-0.00299	-13.0	-48.6
12	0.00350	48.4	31.8	0.00289	43.6	25.2	-0.00320	-43.6	-25.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

Coeff. di riduz. momenti per sola flessione in travi continue C.Rid.

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	109 di 113

N°Comb	а	b	С	x/d	C.Rid.
1	0.000044965	0.000027922	0.000324248		
2	0.000050364	0.000077695	-0.002055451		
3	0.000035189	0.000040493	0.000281249		
4	0.000044965	0.000027922	0.000324248		
5	0.000035189	0.000040493	0.000281249		
6	0.000044965	0.000027922	0.000324248		
7	0.000017894	0.000056055	-0.000030517		
8	0.000033274	0.000104238	-0.003065222		
9	0.000017894	0.000056055	-0.000030517		
10	0.000049097	0.000036065	-0.000155184		
11	0.000017894	0.000056055	-0.000030517		
12	0.000049097	0.000036065	-0.000155184		

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff.

As eff.

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	6.06	50.2	0.0	28.6	-43.6	-25.2		
2	S	3.58	49.8	0.0	-36.5	-43.6	-25.2	1059	28.3
3	S	5.68	37.6	0.0	30.9	-35.6	-35.6		
4	S	6.06	50.2	0.0	28.6	-43.6	-25.2		
5	S	5.68	37.6	0.0	30.9	-35.6	-35.6		
6	S	6.06	50.2	0.0	28.6	-43.6	-25.2		
7	S	6.37	21.5	0.0	14.6	-13.0	-48.6		
8	S	4.74	21.5	0.0	-60.6	-13.0	-48.6	1250	35.3
9	S	6.22	21.5	0.0	12.5	-13.0	-48.6		
10	S	5.59	50.2	0.0	15.2	-43.6	-25.2		
11	S	6.36	20.5	0.0	10.6	-13.0	-48.6		
12	S	5 68	50.9	0.0	14 0	-43 6	-25.2		

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

S

0.00000

0.00000

1

Ver.		La sezione v Esito della ve		sempre fes	surata a	anche nel cas	so in cui la trazione minima del calcestruzzo sia inferio	ore a fo	ctm	
						t	to be a solve of a constant			
e1						,	ata in sezione fessurata			
e2							rata), valutata nella fibra più interna dell'area Ac eff			
k1		= 0.8 per ba	rre ad aderena	za migliora	ta [eq.(7	7.11)EC2]				
kt		= 0.4 per co	omb. quasi per	manenti /	= 0.6 pe	r comb.frequ	enti [cfr. eq.(7.9)EC2]			
k2			2*e1) [eq.(7.1							
k3		= 3.400 Coe	ff. in eq.(7.11)	come da a	annessi	nazionali				
k4		= 0.425 Coet	ff. in eq.(7.11)	come da a	annessi	nazionali				
Ø		Diametro [mi	m] equivalente	delle barr	e tese c	omprese nell	'area efficace Ac eff [eq.(7.11)EC2]			
Cf		Copriferro [m	nm] netto calco	olato con ri	feriment	to alla barra p	più tesa			
e sm	- e cm	Differenza tra	a le deformazi	oni medie	di acciai	o e calcestru	zzo [(7.8)EC2 e (C4.1.7)NTC]			
		Tra parentes	i: valore minim	no = 0.6 Sr	max / Es	(7.9)EC2	e (C4.1.8)NTC]			
sr ma	IX	Massima dis	tanza tra le fes	ssure [mm]	1	. ,	•			
wk		Apertura fess	sure in mm cal	lcolata = si	r max*(e	sm - e cm)	[(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentes	i		
Mx fe	ee		momento di p							
My fe	88.	Componente	momento di p	nina tessi	ııa∠lone	intorno ali as	sse i [kiniii]			
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess

--- 0.000 (990.00)

0.00

0.00

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto defini	tivo			CON	MMESSA		LOTTO	CODIFICA		DOCUMENTO	REV.	FOGLIO	
Relazione di c		le — P23		I	RS3T		30	D09CL		VI1205003	В	110 di 113	;
2	S	-0.00022	0	0.833	30.0	82	0.0	0011 (0.00011)	597	0.065 (990.00)	481.51	718.12	
3	S	0.00000	0.00000							0.000 (990.00)	0.00	0.00	
4	S	0.00000	0.00000							0.000 (990.00)	0.00	0.00	
5	S	0.00000	0.00000							0.000 (990.00)	0.00	0.00	
6	S	0.00000	0.00000							0.000 (990.00)	0.00	0.00	
7	S	-0.00003	0							0.000 (990.00)	4744.81	1507.50	
8	S	-0.00036	0	0.833	30.0	82	0.0	0018 (0.00018)	579	0.105 (990.00)	733.91	281.44	
9	S	-0.00006	0							0.000 (990.00)	2788.97	886.10	
10	S	-0.00001	0							0.000 (990.00)	7594.01	11287.71	
11	S	-0.00011	0							0.000 (990.00)	1892.70	523.91	
12	S	-0.00005	0							0.000 (990.00)	1627.14	2944.46	

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

As eff.	Ac eff.	Ys min	Xs min	Sf min	Yc max	Xc max	Sc max	Ver	N°Comb
		-25.2	-43.6	28.6	0.0	50.2	6.06	S	1
28.3	1059	-25.2	-43.6	-36.5	0.0	49.8	3.58	S	2
		-25.2	-43.6	28.6	0.0	50.2	6.06	S	3
		-25.2	-43.6	28.6	0.0	50.2	6.06	S	4
		-25.2	-43.6	28.6	0.0	50.2	6.06	S	5
		-25.2	-43 6	28.6	0.0	50.2	6.06	S	6

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
2	S	-0.00022	0	0.833	30.0	82	0.00011 (0.00011)	597	0.065 (0.20)	481.51	718.12
3	S	0.00000	0.00000				`		0.000 (0.20)	0.00	0.00
4	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
5	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
6	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

As eff.	Ac eff.	Ys min	Xs min	Sf min	c max	Xc max Y	Sc max	Ver	N°Comb
		0.0	-50.3	29.2	0.0	60.0	2.64	S	1
		0.0	-50.3	24.2	0.0	60.0	2.30	S	2
		0.0	-50.3	29.2	0.0	60.0	2.64	S	3
		0.0	-50.3	29.2	0.0	60.0	2.64	S	4
		0.0	-50.3	29.2	0.0	60.0	2.64	S	5
		0.0	-50.3	29.2	0.0	60.0	2.64	S	6

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
	_									
1	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00
2	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00
3	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00
4	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00
5	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00
6	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00

Progetto definitivo

Relazione di calcolo Pile – P23

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1205003	В	111 di 113

11.3 Verifica a taglio

A seconda della verifica di riferimento le sollecitazioni identificate sono riferite ad un fattore di comportamento differente,

TABELLA PER TAGLIO					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr3+vento_7	48027	2170	1807	32267	33560
E_103x_SLV_q=1_66	30014	6828	1854	80205	22516
E_103y_SLV_q=1_67	30014	2943	4474	26744	66567
E_103x_SLV_q=1_66	30014	6828	1854	80205	22516
E_103y_SLV_q=1_67	30014	2943	4474	26744	66567

Ottenendo per cui le seguenti azioni in testa palo

		combo1	combo2
sollecitazione massima direzione x	Tx	6828	2943
sollecitazione massima direzione y	Ту	1854	4474
vettore complessivo, singolo palo	Т	590	446

Progetto armature

diametro armature trasversale	φ	12	mm
bracci staffe	bs	2	
diametro pali	R	0.6	m
area armature trasversale	Asw	2.3	cm2
passo staffe	s 20.0		cm
copriferro netto + staffa + fi/2	c'	9.7	cm
resistenza di calcolo armatura	f yd	391.0	Mpa
resistenza caratteristica res cls	f ck	25.0	
resistenza di calcolo res. Calc	f cd	18.5	Mpa
resistenza ridotta	f'c	9.2	Mpa
braccio delle forze interne	z=0.9d	88.3	cm
larghezza biella	bw	100.9	cm
inclinazione staffe	α	90	gradi
inclinazione biella	β	22	gradi
resistenza puntoni	Vc	2839	kN
resistenza staffe	Vs	977	kN
taglio resisitente	Vr	977	kN
taglio massimo agente	Ved	590	kN
	Ved/Vrd	0.60	

VI12 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 1500 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P23	RS3T	30	D09CL	VI1205003	В	112 di 113

12. INCIDENZE

Baggioli/Ritegni 350 kg/mc

Pulvino 180 kg/mc

Fusto Pila 230 kg/mc

Plinto di fondazione 160 kg/mc

Pali di fondazione primo tratto 140 kg/mc