COMMITTENTE: RETE FERROVIARIA ITALIANA GRUPPO FERROVIE DELLO STATO ITALIANE PROGETTAZIONE: **TALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE **U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI** PROGETTO DEFINITIVO TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3) **ELABORATI GENERALI** RISPOSTA SISMICA LOCALE: RELAZIONE VIADOTTO VI14 - Lotto 3B SCALA: COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. S 3 3 R B0 D 0 9 1 4 0 3 0 1 6 T Data Verificato Data Approvato Autorizzato Data Descrizione Rev. Redatto ATI Sintagma Giugno Giugno A. \ tozzi Giuano **EMISSIONE ESECUTIVA** Α 2020 ug 5 2020 ROCKSOIL-Edin 2020 2020

	205	
	B 8	
	9 9	=
	I n. Elan.: 🗶 09 343 1	
	3 6	

INDICE

1.	PREMESSA	3
2.	SCOPO DEL DOCUMENTO	4
3.	NORMATIVA E DOCUMENTI DI RIFERIMENTO	5
3.1	NORMATIVA DI RIFERIMENTO	5
3.2	DOCUMENTI DI RIFERIMENTO	5
3.3	Software	6
4.	CARATTERIZZAZIONE GEOTECNICA	7
4.1	Stratigrafia	7
4.2	PARAMETRI GEOTECNICI DI PROGETTO	8
5.	CONDIZIONI SISMICHE	10
5.1	DEFINIZIONE DELL'ACCELERAZIONE ORIZZONTALE MASSIMA ATTESA SU SITO DI RIFERIMENTO RIGIDO (A _G)	10
5.2	Analisi di disaggregazione	11
5.3	ACCELEROGRAMMI NATURALI	12
6.	RISPOSTA SISMICA LOCALE	18
6.1	IL MODELLO DI TERRENO ADOTTATO	18
6.2	SOLLECITAZIONE SISMICA E MODALITÀ DI PROPAGAZIONE	18
6.3	Analisi Non Lineare mediante il software Deepsoil V.7	18
6.4	DEFINIZIONE SOIL PROFILE	19
6.5	INPUT SISMICO	21
6.6	RISULTATI	21
7.	CONCLUSIONI	23

1. PREMESSA

All'interno del presente elaborato vengono analizzate le tematiche progettuali e gli aspetti tecnici relativi alla valutazione della risposta simica locale necessaria alla fase di progettazione definitiva dei viadotti del nuovo collegamento Palermo-Catania della Direttrice ferroviaria Messina-Palermo-Catania, tratta Lercara – Caltanissetta Xirbi.

La tratta citata ha un'estensione di 46703.290 km, compresa tra le stazioni di Lercara Diramazione, sita al km 0+000 (coincidente con la pk 76+730 circa della linea storica Palermo Catania), e Caltanissetta Xirbi, sita al km 46+703.290 (coincidente con la pk 126+412 circa della linea storica Palermo Catania).

La tratta Lercara – Caltanissetta Xirbi si divede in due lotti funzionali:

- Lotto 3A: dal km 0+000 (coincidente con la pk 76+730 della linea storica Palermo Catania) al km 18+636
- Lotto 3B: dal km 18+636 al km 46+703.29 (coincidente con la pk 126+412 della linea storica Palermo Catania).

La presente relazione è da considerare come documento di riferimento per l'analisi di Risposta Sismica Locale del Viadotto di Linea VI14 del lotto 3B.

2. SCOPO DEL DOCUMENTO

L'analisi di risposta sismica locale, per come dettato dalle Norme Tecniche sulle Costruzioni, è un tipo di studio approfondito che deve essere applicato qualore le costruzioni ricadano in classe d'uso III o IV, quando si riscontrano delle significative inversioni nel profilo di velocità delle onde di taglio (Rif.xx), o quando la morfologia di superficie e/o della stratigrafia non è considerata semplice. Attraverso questa metodologia si valutano le variazioni in termini di ampiezza e frequenza, che subisce il moto sismica (accelerogramma spettro-compatibile) nella sua propagazione dal substrato sismico (velocità delle onde di taglio almeno 800 m/s) fino alla superficie, a seconda delle caratteristiche fisico-meccaniche degli strati attraversati.

Le fasi per eseguire la risposta sismica locale sono le seguenti:

- Scelta dell'input sismico spettro-compatibile con quello del sito in esame, riferito ad un suolo rigido attraverso un'analisi di disaggregazione per gli stati limite richiesti (nello specifico SLV)
- Definizione della stratigrafia compresa nell'intervallo bedrock sismico-superficie e caratterizzazione fisico-meccanica
- Cacolo dell'output sismico alla profondità richiesta attraverso l'integrazione delle equazioni dinamiche del moto mediante analisi di tipo non-lineare.
- Estrapolazione dei parametri dipendenti di ouput per la progettazione per gli stati limite richiesti (nello specifico SLV).

Il presente documento ha lo scopo di descrivere l'analisi di risposta sismica locale eseguita per il viadotto di Linea VI14 del Lotto 3B.

L'analisi è stata svolta in quanto l'indagine sismica, appositamente eseguita in corrispondenza dell'opera d'arte (DH3AS55), ha evidenziato un'andamento delle velocità (Vs) con la profondità non sempre crescente; motivo per cui si è resa necessaria una apposita analisi di risposta sismica locale considerando le effettive condizioni geotecniche del sito oggetto di studio.

In particolare verranno affrontati i seguenti aspetti:

- Richiamo delle condizioni geotecniche locali;
- Definizione delle azioni sismiche e analisi dei dati di disaggregazione locale;
- Determinazione degli accelerogrammi naturali, spettro compatibili;
- Analisi di risposta sismica locale: valutazione dell'amplificazione del segnale al piano delle fondazioni dei viadotti (-4.00m) e calcolo dei relativi spettri in pseudo-accelerazione.

Tutte le analisi svolte nel seguito sono eseguite in conformità alla normativa italiana vigente sulle opere civili (D.M. 17/01/2018).

	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO						
II ITALFERR	NUOVO COLLEGAMENTO PALERMO - CATANIA						
GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA LERCARA – CALTANISSETTA XIRBI						
Risposta Sismica Locale:	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO						
Relazione Viadotto VI14 – Lotto 3B	RS3T 30 D 09 RB VI 14 03 016 A 5 di 23						

3. NORMATIVA E DOCUMENTI DI RIFERIMENTO

3.1 Normativa di riferimento

- [N.1]. Norme Tecniche per le Costruzioni D.M. 17-01-2018 (NTC-2018).
- [N.2]. Specifica RFI del 21/12/11 per la progettazione geotecnica delle opere civili ferroviarie.
- [N.3]. Ordinanza n. 55 del 24 aprile 2018. Disciplina per la delocalizzazione temporanea delle attività economiche o produttive e dei servizi pubblici danneggiati dal sisma eseguiti e conclusi in data anteriore a quella di entrata in vigore del decreto legge n. 189 del 2016. Modifiche alle ordinanze n. 24 del 12 maggio 2017, n. 39 dell'8 settembre 2017 e n. 51 del 29 marzo 2018. Proroga del termine di cui all'articolo 8, comma 4, del decreto-legge 17 ottobre 2016, n. 189, convertito con modificazioni dalla legge 15 dicembre 2016, n. 229, e s.m.i. Termine per il deposito delle schede AeDES.

3.2 Documenti di riferimento

- [DC1]. RS3T 30 D78 GE GE0000 002D Direttrice ferroviaria Messina-Catania-Palermo. Nuovo Collegamento Palermo-Catania tratta Lercara dir. Caltanissetta Xirbi (Lotto 3). Progetto Definitivo. Elaborati generali. Relazione geotecnica generale opere all'aperto Lotto 3B
- [DC2]. RS3T 30 D78 GE GE0000 006D Direttrice ferroviaria Messina-Catania-Palermo. Nuovo Collegamento Palermo–Catania tratta Lercara dir. Caltanissetta Xirbi (Lotto 3). Progetto Definitivo. Profilo geotecnico linea Tav. 4 di 8
- [DC3]. RS3T 30 D78 GE GE0000 007D Direttrice ferroviaria Messina-Catania-Palermo. Nuovo Collegamento Palermo-Catania tratta Lercara dir. Caltanissetta Xirbi (Lotto 3). Progetto Definitivo. Profilo geotecnico linea Tav. 5 di 8
- [DC4]. RS3T 30 D78 GE GE0000 008D Direttrice ferroviaria Messina-Catania-Palermo. Nuovo Collegamento Palermo-Catania tratta Lercara dir. Caltanissetta Xirbi (Lotto 3). Progetto Definitivo. Profilo geotecnico linea Tav. 6 di 8
- [DC5]. RS3T 30 D78 GE GE0000 009D Direttrice ferroviaria Messina-Catania-Palermo. Nuovo Collegamento Palermo-Catania tratta Lercara dir. Caltanissetta Xirbi (Lotto 3). Progetto Definitivo. Profilo geotecnico linea Tav. 7 di 8
- [DC6]. RS3T 30 D78 GE GE0000 010D Direttrice ferroviaria Messina-Catania-Palermo. Nuovo Collegamento Palermo–Catania tratta Lercara dir. Caltanissetta Xirbi (Lotto 3). Progetto Definitivo. Profilo geotecnico linea Tav. 8 di 8
- [DC7]. RS3T 30 D69 IG GE0005 001A Direttrice ferroviaria Messina-Catania-Palermo. Nuovo Collegamento Palermo-Catania tratta Lercara dir. Caltanissetta Xirbi (Lotto 3). Progetto Definitivo. Indagini geofisiche. Prove MASW ed HVSR
- [DC8]. RS3T 30 D69 IG GE0005 002A Direttrice ferroviaria Messina-Catania-Palermo. Nuovo Collegamento Palermo-Catania tratta Lercara dir. Caltanissetta Xirbi (Lotto 3). Progetto Definitivo. Indagini geofisiche. Prove Down Hole

	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO						
GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA LERCARA – CALTANISSETTA XIRBI						
Risposta Sismica Locale: Relazione Viadotto VI14 – Lotto 3B	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D 09 RB VI 14 03 016 A 6 di 23						

[DC9]. RS3T 30 D09 RB VI0003 008A - Direttrice ferroviaria Messina-Catania-Palermo. Nuovo Collegamento Palermo-Catania tratta Lercara dir. - Caltanissetta Xirbi (Lotto 3). Progetto Definitivo. Risposta Sismica Locale: Relazione Generale Viadotti - Lotto 3B

3.3 Software

- [ST1]. REXEL: computer aided record selection for code-based seismic structural analysis. Iervolino, I., Galasso, C., Cosenza, E. Bulletin of Earthquake Engineering, 8:339-362, 2010 DOI 10.1007/s10518-009-9146-1.
- [ST2]. DEEPSOIL V.7.0: Nonlinear and Equivalent Linear Seismic Site Response of One-Dimensional Soil Columns. Hashash, Y.M.A., Musgrove, M.I., Harmon, J.A., Okan, I., Xing, G., Groholski, D.R., Phillips, C.A., and Park, D. (2020) "DEEPSOIL 7.0, User Manual". Urbana, IL, Board of Trustees of University of Illinois at Urbana-Champaign.

	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO						
II ITALFERR	NUOVO COLLEGAMENTO PALERMO - CATANIA						
GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA LERCARA – CALTANISSETTA XIRBI						
Risposta Sismica Locale:	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO						
Relazione Viadotto VI14 – Lotto 3B	RS3T 30 D 09 RB VI 14 03 016 A 7 di 23						

4. CARATTERIZZAZIONE GEOTECNICA

Nel presente capitolo si riporta la caratterizzazione geotecnica per il viadotto in esame, valutata sulla base dell'interpretazione delle indagini geotecniche svolte in prossimità dell'opera.

La stratigrafia di riferimento è individuata sulla base delle indagini eseguite in corrispondenza dell'opera, come rappresentate nel profilo stratigrafico longitudinale [DC2][DC3][DC4][DC5][DC6]. Per maggiori dettagli sulla caratterizzazione geotecnica si rimanda alla Relazione geotecnica generale del Lotto 3B [DC1].

4.1 Stratigrafia

L'opera in esame è ubicata tra le progressive km 35+107 e km 35+222, il viadotto ricade nei depositi del Gruppo della Gessoso-Solfifera suddivisi tra formazione di Pasquasia e formazione di Cattolica, localmente sovrastati da deposito alluvionale recente (*unità a2*) (Figura 1: Profilo stratigrafico relativo al viadotto VI.

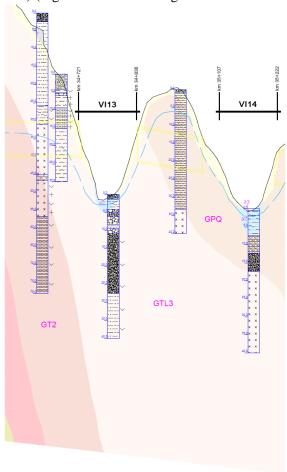


Figura 1: Profilo stratigrafico relativo al viadotto VI14

L'unità a2 è costituita principalmente da limi e limi argillosi con subordinate sabbie limose

<u>L'unità GPQ</u> (Formazione di Pasquania) è costituita da conglomerati e quarzareniti ciottolose alla base della successione, passanti verso l'alto ad arenarie bruno-rossastre a grana media o fine, in gruppi di strati tabulari da sottili a spessi (unità di delta-top) con base erosiva, gradazione normale, stratificazione interna da orizzontale a leggermente inclinata e stratificazione incrociata a dune.

Per quanto riguarda la formazione di Cattolica l'unica formazione di interesse per la presente relazione e il <u>Membro Salifero (GTL3)</u>. Queste evaporiti non affiorano nell'area, essendo ricoperte o dalla formazione di Pasquasia o da depositi di versante che in parte la preservano dai fenomeni di dissoluzione, fenomeni che sono comunque testimoniati dalla diffusa presenza di sorgenti, con portata estremamente ridotta, da cui fuoriescono acque sature in sali e brine. L'*unità GTL3* è costituita da salgemma con intercalati livelli di sali potassico-magnesiaci (kainite). La roccia è caratterizzata da un agglomerato cristallino, con tipici cristalli di cloruro di sodio a morfologia cubica e talvolta con mineralizzazioni solfifere. A luoghi si riconoscono intercalazioni di anidriti (1-10 cm) e argilliti rosse.

4.2 Parametri geotecnici di progetto

La Tabella 1 riassume i parametri geotecnici relativi alle unità intercettate, e la Figura 2 presenta la Down Hole 3AS55 (Vs,_q= 313 m/s - Suolo tipo E), che costituiscono l'indagine sismica di riferimento per il viadotto VI14, con sovrapposta la relativa stratigrafia. L'indagine evidenzia inversione delle onde di taglio, da cui discende la necessità dell'analisi di risposta sismica locale.

Tabella 1 – VI14: Parametri geotecnici unità intercettate

	γ	φ'	c'	Ео
	$[kN/m^3]$	[gradi]	[kPa]	[MPa]
a2	19.0	18.5 ÷ 30	10 ÷ 25	100 ÷ 600
GPQ	21.0	25	20 ÷ 35	40
GTL3	21.0	23 ÷ 30	10 ÷ 25	500

Dove:

 γ = peso di volume naturale

 φ' = angolo di attrito di picco

c' = coesione

Eo = modulo di deformazione dinamico

	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO					
GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA LERCARA – CALTANISSETTA XIRBI					
Risposta Sismica Locale:	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO					
Relazione Viadotto VI14 – Lotto 3B	RS3T 30 D 09 RB VI 14 03 016 A 9 di 23					

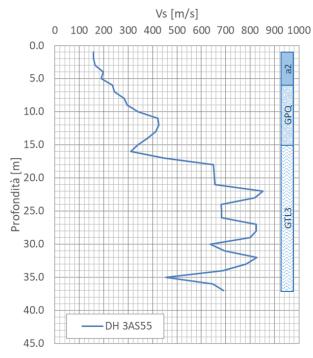


Figura 2 – Prova sismica in foro eseguita per il viadotto VII4 con relativa stratigrafia: DOWN HOLE ($Vs_{,q}$ = 313 m/s - Suolo tipo E)

	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO						
GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA LERCARA – CALTANISSETTA XIRBI						
Risposta Sismica Locale: Relazione Viadotto VI14 – Lotto 3B	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D 09 RB VI 14 03 016 A 10 di 23						

5. CONDIZIONI SISMICHE

5.1 Definizione dell'accelerazione orizzontale massima attesa su sito di riferimento rigido (ag)

Per la definizione l'accelerazione orizzontale massima attesa su sito di riferimento rigido (ag), si è utilizzato il foglio "Spettri del Ministero" con ricerca per coordinate (Spettri-NTCver.1.0.3).

Il sito ricade nel Comune di Caltanissetta ed in base alle coordinate geografiche del viadotto si prenderà a riferimento il punto del grigliato 47626 (Figura 3), da cui si estrapola per lo stato Limite di Salvaguardia della Vita (SLV) lo spettro di risposta rappresentativo della componente orizzontale delle azioni sismiche di progetto per lo specifico sito, per una classe di sottosuolo A, categoria topografica T_1 , $V_N = 75$ anni e C_U di tipo III, rappresentato in, in cui sono riassunti anche i paramentri caratterizzanti lo spettro stesso.

Figura 3 - individuazione della pericolosità sismica del sito

SLATO LIMITE	T _R [anni]	a _g [g]	F _o [-]	T _c * [s]
SLO	68	0,039	2,519	0,283
SLD	113	0,047	2,501	0,314
SLV	1068	0,094	2,670	0,440
SLC	2193	0,112	2,755	0,476

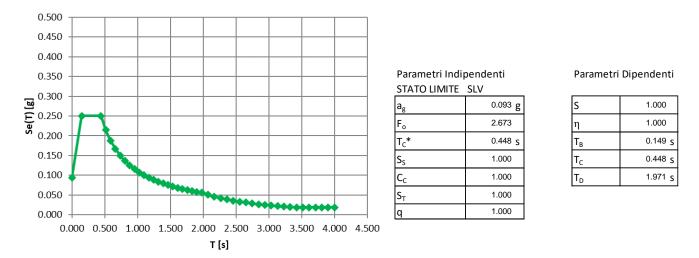


Figura 4 – VI14 Stato Limite di Salvaguardia della Vita: Spettro di risposta elastico in accellerazione, classe di sottosuolo A, categoria topografica T_1 , $V_N = 75$ anni e C_U di tipo III (NTC 2018)

5.2 Analisi di disaggregazione

L'analisi di disaggregazione è stata svolta utilizzando il sito dell'INGV (Istituto dNazionale di Geofisica e Vulcanologia, "esse1-gis.mi.ingv.it").

Poichè i dati dell'INGV sono riferiti esclusivamente ad un periodo di riferimento (V_R =50 anni), differente da quello dell'opera in oggetto, l'analisi di disaggregazione è stata eseguita considerando la P_{VR} disponibile dalla fonte dell'INGV più simile a quella del sito, che è pari al 5%.

In Figura 5 e in Figura 6 sono riportati i principali risultati della ricerca dei dati di disaggregazione sismica da cui si evince:

- Magnitudo $M = 4.5 \div 6.0$
- Distanza dalla sorgente = $30 \div 50 \text{ km}$

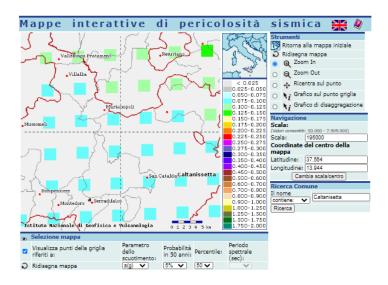


Figura 5 – VII4: Mappa di pericolosità sismica

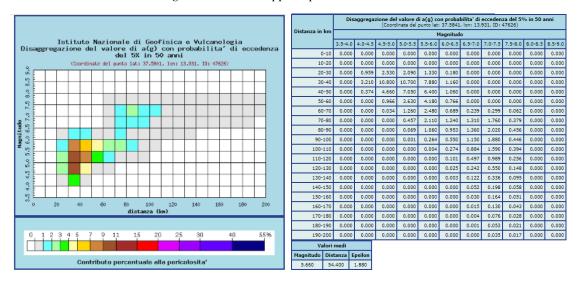


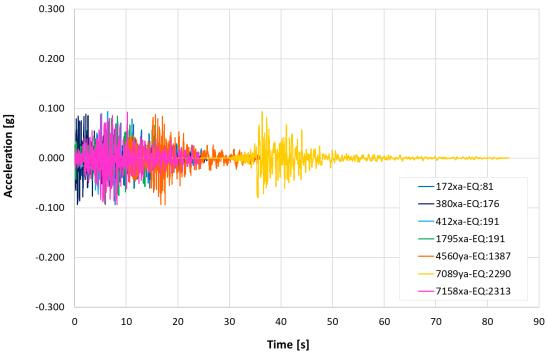
Figura 6 – VI14: Magnitudo e distanza

5.3 Accelerogrammi naturali

La ricerca degli accelerogrammi naturali compatibili con un dato spettro di riferimento viene eseguita mediante il programma REXEL con riferimento alla registrazione di dati europeri "Strong Motion Data" [ST1]

Nel programma si carica tramite l'opzione "user defined spectrum", lo spettro di normativa ricavato tramite il foglio "Spettri del Ministero" con ricerca per coordinate (Spettri-NTCver.1.0.3) ricavato per suolo rigido tipo A, e categoria topografica T₁, imponendo la vita nominale (V_N) di 75 anni e la classe d'uso (C_U) di 1,5 (parametri relativi al VI14), opportunamente scalato per avere l'accelerazione in ms⁻². Si considera il solo stato limite di salvaguardia della vita (SLV). La ricerca dei dati degli accelerogrammi da considerare nelle analisi è stata fatta

	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO						
GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA LERCARA – CALTANISSETTA XIRBI						
Risposta Sismica Locale: Relazione Viadotto VI14 – Lotto 3B	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D 09 RB VI 14 03 016 A 13 di 23						


considerando una magnitudo e distanza da sorgente, in relazione alle risultanze dell'analisi dei dati di disaggregazione.

Gli accelerogrammi naturali così individuati ed i relativi dati indentificativi sono sintetizzati in un'unica rappresentazione (Figura 7), per agevolarne il confronto, e singolarmente da Figura 8 a Figura 14:

- sono in numero di n.7 su suolo di tipo A e categoria topografica T₁
- sono scalati con un fattore scala medio 4.9848
- sono compatibili con lo spettro elastico (5%), valutati con range di tolleranza del 10% ÷ 30%
- la spettro compatibilità è stata estesa fino ad un tempo di 2 sec.

In Figura 15 sono mostrati gli spettri relativi agli accelerogrammi naturali selezionati. Nella legenda del grafico per ogni spettro, relativo ad un accelerogramma specifico, è indicato il corrispondente fattore di scala. Inoltre si precisa che: *Target Spectrum* è lo spettro di normativa, *Lower Tollerance* è -10% rispetto allo spettro di normativa, *Upper Tollerance* è +30% rispetto allo spettro di normativa e Average Spectrum è lo spettro medio. Tutti i dati costituiscono l'output di *Rexel*.

Accelerogrammi e spettri costituiranno i dati di input che verranno utilizzati nella successiva Analisi Non Lineare

Waveform ID	Earthquake ID	Station ID	Earthquake Name	Date	Mw	Fault Mechanism	Epicentral Distance [km]	PGA_X [m/s^2]	PGA_Y [m/s^2]	EC8 Site class
7089	2290	ST557	Pasinler	10/07/2001	5.4	strike slip	32	0.1916	0.2128	Α
4560	1387	ST727	Bovec	12/04/1998	5.6	strike slip	38	0.0802	0.097	Α
7158	2313	ST3293	Firuzabad	20/06/1994	5.9	strike slip	39	0.2155	0.1928	Α
172	81	ST48	Basso Tirreno	15/04/1978	6	oblique	58	0.3176	0.3682	Α
1795	191	ST587	Golbasi	06/06/1986	5.8	strike slip	52	0.1708	0.1751	Α
380	176	ST274	Lazio Abruzzo (aftershock)	11/05/1984	5.5	normal	60	0.3572	0.403	Α
412	191	ST161	Golbasi	06/06/1986	5.8	strike slip	34	0.1667	0.3089	Α

Figura 7 - Accelerogrammi naturali

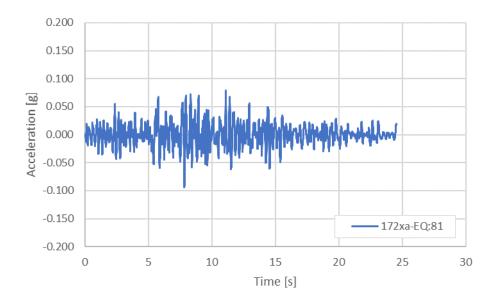


Figura 8 – Accelerogramma naturale: Waveform 172xa – Eartquake 81

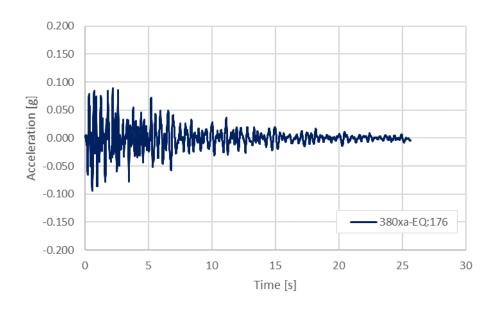


Figura 9 – Accelerogramma naturale: Waveform 380xa – Eartquake 176

Figura~10-Accelerogramma~naturale:~Waveform~412xa-Eartquake~191



Figura 11 – Accelerogramma naturale: Waveform 1795xa – Eartquake 191

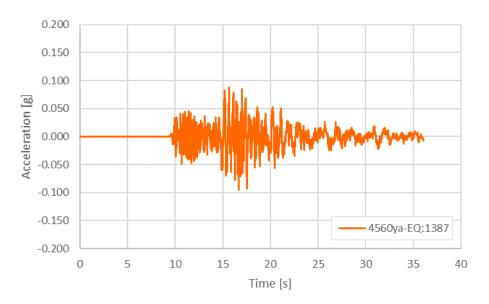


Figura 12 – Accelerogramma naturale: Waveform 4560ya – Eartquake 1387

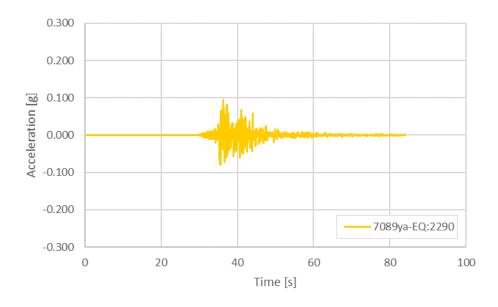


Figura 13 – Accelerogramma naturale: Waveform 7089ya – Eartquake 2290

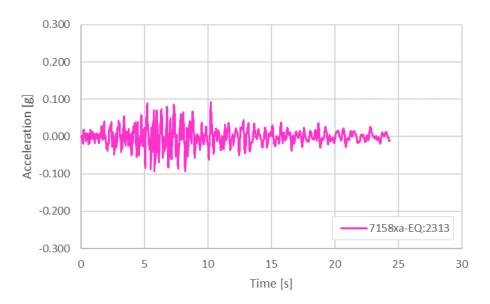


Figura 14 – Accelerogramma naturale: Waveform 7158xa – Eartquake 2313

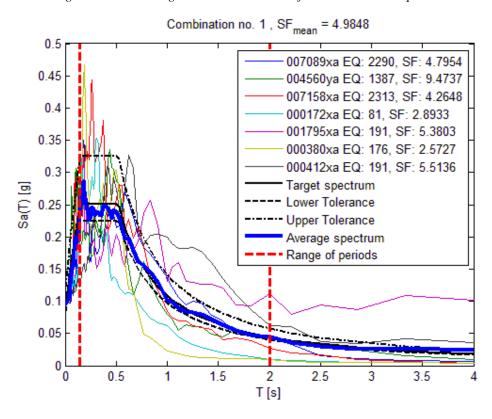


Figura 15 – Spettri di input per l'analisi non lineare (output di Rexel)

	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO					
II ITALFERR	NUOVO COLLEGAMENTO PALERMO - CATANIA					
GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA LERCARA – CALTANISSETTA XIRBI					
Risposta Sismica Locale:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione Viadotto VI14 – Lotto 3B	RS3T 30 D 09 RB VI 14 03 016 A 18 di 23					

6. RISPOSTA SISMICA LOCALE

Nel presente capitolo viene illustra la risposta simica locale del viadotto VI14 del Lotto 3B, valutata su un modello monodimensionale tramite un'analisi non lineare.

6.1 Il modello di terreno adottato

Nell'analisi si utilizza un modello monodimensionale (1D), per il quale si assume che:

- il bedrock sia orizzontale e indefinitamente esteso;
- il deposito sia stratificato orizzontalmente;
- la sollecitazione sismica sia costituita da sole onde di taglio polarizzate sul piano orizzontale (SH) incidenti il bedrock con direzione di propagazione verticale.

I parametri richiesti per la modellazione numerica sono:

- spessore degli strati
- velocità delle onde di taglio nei singoli sismostrati identificati
- · peso di volume
- parametri dinamici dei terreni (Smorzamento e modulo di taglio in funzione della deformazione)

6.2 Sollecitazione sismica e modalità di propagazione

Le ipotesi riguardanti la sollecitazione sismica e le sue modalità di propagazione all'interno del deposito sono così giustificate:

- per quanto riguarda la direzione di propagazione assunta verticale, dal fatto che le onde sismiche subiscono, nell'attraversare il terreno e le relative discontinuità stratigrafiche, numerosi fenomeni di riflessione e rifrazione secondo angoli legati alla velocità di propagazione all'interno di ciascuno degli strati attraversati dalla legge di Snell; essendo le velocità degli strati più superficiali mediamente più basse, le onde sismiche tendono ad assumere una direzione di propagazione verticale in prossimità della superficie;
- per quanto riguarda la predominanza di onde SH, dal fatto che, dal punto di vista ingegneristico, le sollecitazioni sismiche più significative ai fini della sicurezza sono quelle di taglio orizzontali.

6.3 Analisi Non Lineare mediante il software Deepsoil V.7

Il software DEEPSOIL, in un contesto non lineare, opera un'analisi monodimensionale con soluzione dell'equazione del moto secondo un modello a masse discrete nel dominio del tempo.

Il modello iperbolico modificato (GQ/H with masing Ruleas) implementato nel codice e utilizzato per le analisi oggetto della presente relazione permette infatti di tenere conto della dipendenza del comportamento del terreno dallo stato tensio-deformativo: i parametri del modello vengono ottenuti calibrando la risposta numerica sulle curve sperimentali assunte a caratterizzare il comportamento dell'elemento di volume di terreno.

	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO					
II ITALFERR	NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA LERCARA – CALTANISSETTA XIRBI					
GRUPPO FERROVIE DELLO STATO ITALIANE						
Risposta Sismica Locale:	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO					FOGLIO
Relazione Viadotto VI14 – Lotto 3B	RS3T	30 D 09	RB	VI 14 03 016	Α	19 di 23

6.4 Definizione Soil Profile

Il mezzo stratificato da far attraversare agli accelerogrammi selezionati, viene definito in base alla prova sismica di riferimento, che è la DH 3AS55 e per ogni layer che lo compone è necessario definire:

- Spessore [m]
- Peso per unità di Volume [kN/m³]
- Velocità delle onde di taglio [m/s]
- Resistenza al taglio [kPa]

Essendo in presenza di alluvioni la resistenza al taglio da associare ad ogni singolo layer verrà calcolata applicando il criterio di rottura di Criterio di Mohr-Coulomb considerando però coesione nulla:

$$\tau_f = c' + (\sigma - u) * tan \varphi' = c' + \sigma' * tan \varphi'$$

Per ogni layer viene poi selezionata una curva di decadimento di riferimento. Nello specifico per la formazione *a*2 si adotta quella di Seed&Idriss (1970), per la formazione *GPQ* si adotta quella di Vucetic & Dobry (1991) associata ad un indice di plasticità pari a 18, mentre per la formazione *GTL3* si adotta quella di Vucetic & Dobry (1991) associata ad un indice di plasticità pari a 29. Su tali curve viene calibrata la curva di decadimento specifica del singolo strato.

Se	ed&Idriss ((1970)	Vucetio	c&Dobry - I	P18 (1991)	Vuceti	Vucetic&Dobry - IP29 (1991)				
Strain [%]	G/Gmax	Damping [%]	Strain [%]	G/Gmax	Damping [%]	Strain [%]	G/Gmax	Damping [%]			
0.0001	1	0.48	0.0001	1	1	0.0001	1	1			
0.0003	0.99	0.8	0.0003	0.998	1	0.0003	0.998	1			
0.001	0.96	1.5	0.001	0.995	1	0.001	0.995	1			
0.003	0.9	3.2	0.003	0.946	2.32	0.003	0.946	2.32			
0.01	0.76	5.7	0.01	0.822	4.34	0.01	0.822	4.34			
0.03	0.57	9.5	0.03	0.656	7.11	0.03	0.656	7.11			
0.1	0.3	15.2	0.1	0.413	11.27	0.1	0.413	11.27			
0.3	0.15	20.5	0.3	0.226	15.48	0.3	0.226	15.48			
1	0.06	24.6	1	0.086	19.58	1	0.086	19.58			
3	0.04	27									
10	0.03	28.5									

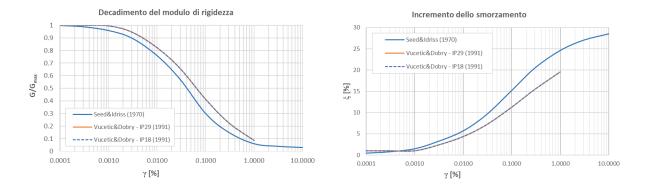


Figura 16 – Curve di decadimento adottate

	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO							
GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA LERCARA – CALTANISSETTA XIRBI							
Risposta Sismica Locale: Relazione Viadotto VI14 – Lotto 3B	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D 09 RB VI 14 03 016 A 20 di 23							

Per quanto riguarda il bedrock sismico, è univocamente definito da un peso di volume pari a 22 kN/m^3 e da una V_s pari a 800 ms^{-1} . Dato che la prova sismica di riferimento non raggiunge tale valore, la posizione del bedrock è stata desunta interpolando i dati della prova stessa, stimandola ad una profondità di circa 46 m dal piano campagna.

In Tabella 2 sono riassunti i parametri adottati per l'analisi, nella quale la falda è stata considerata ad una profondità di 2.0 m da P.C.; mentre la Figura 17 – Soil Profile adottatomostra il confronto tra prova sismica di riferimento e profilo inserito in DEEPSOIL per l'analisi non lineare.

Tabella 2 – VI14: Parametri adottati per l'analisi non lineare

	γ [kNm ⁻³]	c' [kPa]	φ' [°]	IP [index]	Curve di decadimento	Fitting
a2 (da P.C. a 6m)	19	0	24.25	-	Seed & Idriss, 1971	
GPQ (da 6m a 14m)	21	0	26.25	18	Vucetic & Dobry, 1991	Modulus Reduction Only (MR)
GTL3 (da 14m a 46.3m)	21	0	26.5	29	Vucetic & Dobry, 1991	

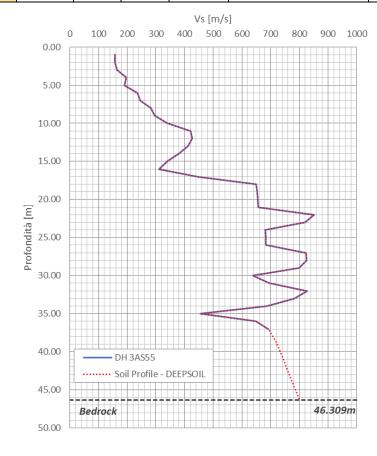


Figura 17 – Soil Profile adottato

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO						
II ITALFERR	NUOVO COLLEGAMENTO PALERMO - CATANIA					
GRUPPO FERROVIE DELLO STATO ITALIANE	TRATTA LERCARA – CALTANISSETTA XIRBI					
Risposta Sismica Locale:	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO					FOGLIO
Relazione Viadotto VI14 – Lotto 3B	RS3T	30 D 09	RB	VI 14 03 016	Α	21 di 23

6.5 Input Sismico

Si procede poi all'upload dell'input sismico costituito dai 7 accelerogrammi spettrocompatibili (Figura 7) ricavati tramite Rexel (cfr. par.5.3). La struttura del codice di calcolo prevede innanzitutto l'inserimento dell'accelerogramma da applicare al bedrock con P.G.A. in [g], quindi i files di output di Rexel (in m/s²) andranno opportunamente modificati. In aggiunta, l'accelerogramma deve essere scalato in ampiezza per la massima accelerazione prevista in sito (PGA) (utilizzando il fattore di scala di Rexel).

6.6 Risultati

Dall'analisi non lineare di Risposta Simica Locale si ottengono gli accellerogrammi amplificati secondo le condizioni locali (Figura 18) e gli spettri di riferimento, da cui si calcola lo spettro medio di RSL. Dato che l'interesse progettuale risiede al piano delle fondazioni dei viadotti, i risultati vengono ricercati a 4,00m di profondità.

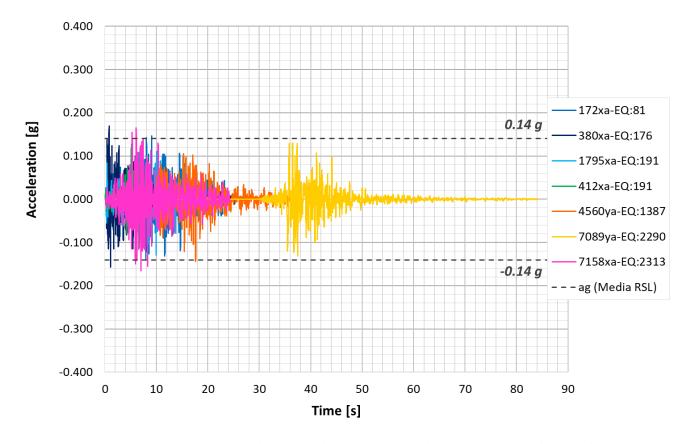


Figura 18 – Risposta Sismica Locale per SLV di L3B – VI14: Accelerogrammi a 4,0 m di profondità

	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO						
GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA LERCARA – CALTANISSETTA XIRBI						
Risposta Sismica Locale:	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO					FOGLIO	
Relazione Viadotto VI14 – Lotto 3B	RS3T	30 D 09	RB	VI 14 03 016	Α	22 di 23	

Lo spettro medio così ottenuto va regolarizzato per ottenere uno spettro con forma standard (NTC, 2018), costituita da un ramo con accelerazione crescente lineare, un ramo ad accelerazione costante, ed un ramo in cui l'accelerazione decresce con 1/T e quindi con velocità costante.

VI14 - prova: DH3AS55 0.6 -Spettro da RSL (-4m) - NL Deepsoil Spettro regolarizzato (-4m) - NL Deepsoil 0.5 Spettro NTC 2018 [Elastico (5%) - Suolo Tipo E] 0.4 0.3 0.2 0.123 g 0.150 g 0.1 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 T (s)

Figura 19 – Risposta Sismica Locale per SLV di L3B – VII4: confronto tra spettro di RSL e spettro di normativa

Rimane compito del Progettista Strutturale la scelta dello spettro di progetto maggiormente idoneo anche in funzione del tipo di struttura da realizzare.

	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO					
II ITALFERR	NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA LERCARA – CALTANISSETTA XIRBI					
GRUPPO FERROVIE DELLO STATO ITALIANE						
Risposta Sismica Locale:	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO					FOGLIO
Relazione Viadotto VI14 – Lotto 3B	RS3T	30 D 09	RB	VI 14 03 016	A	23 di 23

7. CONCLUSIONI

La Risposta Sismica Locale deriva dalla pericolosità sismica di base e tiene conto delle amplificazioni di origine stratigrafica e topografica. Per determinare la risposta sismica locale sono disponibili due approcci:

- un approccio semplificato che si basa sulla classificazione del sottosuolo e l'individuazione, mediante apposite tabelle fornite dalla normativa, del coefficiente di amplificazione stratigrafica S_S, del coefficiente di amplificazione topografica S_T nonché del coefficiente C_C che modifica il periodo T_C e di conseguenza gli altri periodi notevoli dello spettro (NTC 2018, §3.2.2-3)
- un approccio rigoroso che per mezzo di un'analisi della risposta sismica locale fornisce in modo più accurato i valori dei parametri necessari per definire gli spettri di risposta in accelerazione per il sito della costruzione.

La presente relazione illustrata l'Analisi di Risposta Simica Locale eseguita per il viadotto VI14 del Lotto 3B. In particolare sono stati analizzati i seguenti aspetti:

- Richiamo delle condizioni geotecniche locali;
- Definizione delle azioni sismiche e analisi dei dati di disaggregazione locale;
- Determinazione degli accelerogrammi naturali, spettro compatibili;
- Analisi di risposta sismica locale: valutazione dell'amplificazione del segnale al piano delle fondazioni dei viadotti (-4.00m) e calcolo dei relativi spettri in pseudo-accelerazione mediante l'utilizzo di codice di calcolo DEEPSOIL.

L'intero studio è stato effettuato ai sensi della normativa che disciplina questo tipo di valutazioni (D.M. 17.01.2018).

La sintesi del lavoro svolto è rappresentata dal grafico riepilogativo (Figura 19) che mette a confronto:

- lo spettro calcolato mediante l'approccio semplificato indicato dalle NTC 2018 [N.1] e calcolato mediante il foglio Spettri-NTCver.1.0.3
- lo spettro di risposta sismica locale calcolato mediante Analisi Non Lineare con il software Deepsoil
- lo spettro regolarizzato di risposta sismica locale calcolato mediante l'approccio prescritto in [N.3].

Che permette l'identificazione dello spettro elastico da adottare come riferimento per la progettazine dell'opera in esame.

L'analisi è da ritenersi valida per l'intero viadotto VI14.