COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO

NUOVO COLLEGAMENTO PALERMO - CATANIA U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

TRATTA CALTANISSETTA XIRBI – NUOVA ENNA (LOTTO 3)

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650m

Relazione di calcolo Pile – P2

SCALA:
-

COMMESSA LOTTO FASE	ENTE TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV
R S 3 T 3 0 D	0 9 C L	V I 1 5 0 5	0 0 4	В

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
A B	Emissione Esecutiva 1° agg. A consegna CSLLPP	G. Grimaldi G. Grimaldi	Gen. 2020	A. Ferri	Gen. 2020 Mag. 2020	A.Barreca	Gen. 2020 Mag. 2020	A. Vittozzi
						<i>3</i>		IT. U.D. Opere Civi Dott. ti

File: RS3	3T30D09CLVI1505004B		n. Elab.: 09_371_3
-----------	---------------------	--	---------------------------

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2 COMMESSA RS3T LOTTO CODIFICA
30 D09CL

DOCUMENTO VI1505003

REV. FOGLIO **B** 1 di 114

INDICE

1. PH	REMESSA	3
1.1	Descrizione dell'opera	3
2. D	OCUMENTI DI RIFERIMENTO	8
3. M	[ATERIALI	8
3.1	Verifiche SLE	9
3.	1.1 Verifiche tensionali	9
3.	1.2 Verifiche a fessurazione	10
4. D.	ATI DI BASE	11
4.1	Geometrie di base	11
4.2	Modelli di analisi e verifica	13
4.3	Condizioni elementari e combinazioni di carico	13
4.4	Sistemi di riferimento ed unità di misura	18
5. Al	NALISI DEI CARICHI	19
5.1	Peso proprio elementi strutturali	19
5.2	Carichi strutturali trasmessi dall'impalcato	20
5.3	Carichi da traffico verticali	20
5.4	Effetti dinamici	22
5.5	Disposizione treni di carico	22
5.6	Carichi da traffico orizzontali	26
5.0	6.1 Forza centrifuga	26
5.0	6.2 Serpeggio	28
5.0	6.3 Frenatura ed avviamento	29
5.0	6.4 Forza d'attrito	30
5.0	6.5 Azione del Vento	30
5.7	Azione Sismica	33
5.	7.1 Inquadramento Sismico	34
5.	7.2 Definizione della domanda sismica	35
5.	7.3 Calcolo dell'azione Sismica	40
5.	7.4 Check analisi statica	41
5.	7.5 Analisi statica equivalente	42
5.	7.6 Analisi dinamica modale	43
5.8	Azione Idrostatica	44
6. SC	OLLECITAZIONI	45
6.1	Combinazioni di carico	45
6.	1.1 Configurazione 1	45

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1505003	В	2 di 114

6.1.2 Configurazione 2	51
6.1.3 Configurazione 3	
6.2 Tabelle riassuntive, massime sollecitazioni	
6.2.1 Stati limiti di esercizio	63
6.2.2 Stati limiti utlimi	
7. VERIFICHE STRUTTURALI	72
8. FUSTO PILA	72
8.1 Modellazione	74
8.2 Verifica a presso flessione	74
8.3 Verifica a taglio	83
8.4 Verifica minimi di armatura	84
8.5 Verifica spostamenti	86
9. PLINTO DI FONDAZIONE	89
9.1 Dimensionamento armature	91
9.2 Verifica a presso-flessione	93
9.2.1 Direzione trasversale	93
9.2.2 Direzione longitudinale	98
9.3 Verifica a punzonamento	103
10. PALI DI FONDAZIONE	104
10.1 Ridistribuzione sollecitazioni testa palo	104
10.2 Verifica strutturale	104
10.3 Verifica a taglio	112
11. INCIDENZE	113

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	3 di 114

1. PREMESSA

La presente relazione ha per oggetto il dimensionamento e le verifiche di resistenza secondo il metodo semiprobabilistico agli Stati Limite (S.L.) di una delle Pile del viadotto ferroviario VI15 della tratta ferroviaria Palomba-Catenanuova, viadotto ferroviario previsto nell'ambito del progetto definitivo lungo la direttrice ferroviaria Messina-Catania-Palermo del nuovo collegamento Palermo-Catania. In particolare, si tratterà la Pila 2 che rappresenta la tipologica per tutte le pile di altezza minore o uguale a 22.80m, ed impalcato 40m.

Le analisi strutturali e le verifiche di sicurezza sono state effettuate secondo il DM 17 gennaio 2018.

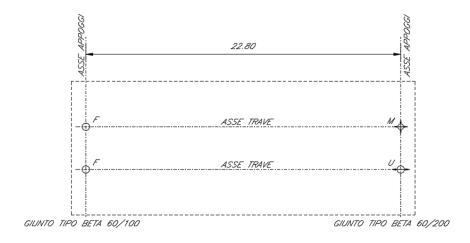
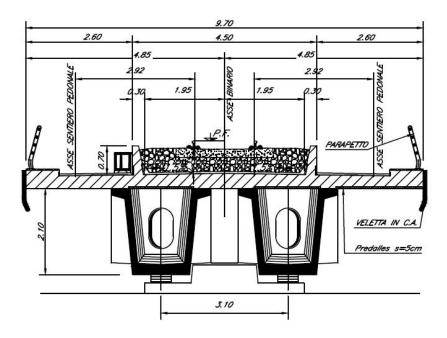
1.1 Descrizione dell'opera

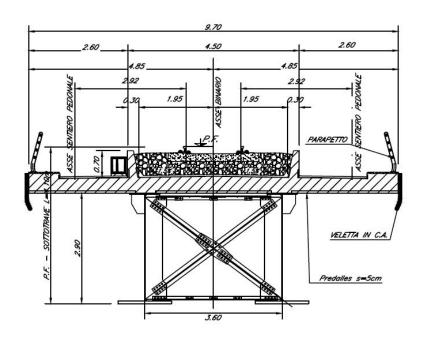
Il viadotto VI15 attraversa un corso d'acqua maggiore e corre parallelamente alla linea torica. Il viadotto è a doppio binario, ha uno sviluppo complessivo di 650m, ed è costituito da 16 campate isostatiche di luce 25m, 40m, 50m e 60m (asse pila-asse pila/ asse pila-asse giunto spalla). Le campate da 25 m sono realizzate con un impalcato in cap a due travi mentre, gli impalcati di luce maggiore con una sezione mista a due travi.

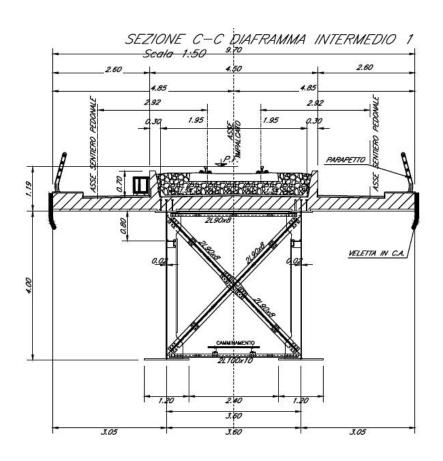
Le pile sono realizzate in c.a. gettato in opera, sono di forma circolare di dimensioni pari a 4.5m. Il pulvino ha una altezza pari a 3.30m. Su esso disposti gli apparecchi di appoggio dell'impalcato secondo lo schema sotto riportato

Il plinto presenta uno spessore di 3metri e una pianta rettangolare di 13.2x9.6, mentre le fondazioni previste sono su pali in c.a. di grande diametro F1200 sia per le pile che per le spalle. Il numero di pali pari a 12 e disposti ad interessa minimi di 3.6m. Si è assunta una distanza dal bordo degli stessi di 1.20 m.

Per l'implementazione delle geometrie, vista la vastità delle casistiche, sono state adottate delle schematizzazioni in special modo per plinto di fondazione e pulvino. Per il pulvino, ad esempio, è stata adottata un'altezza costante di 2m ma, tenuto propriamente conto dei reali bracci e delle masse.


Figura 1: schema appoggi impakati sx e dx



VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B5 di 114

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B6 di 114

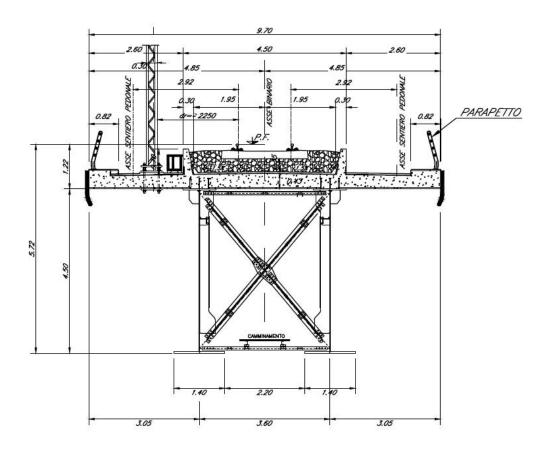


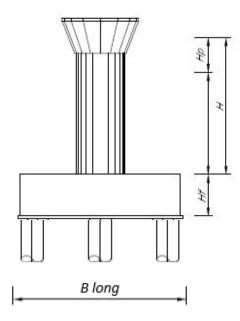
Figura 2: sezione trasversale impalcato

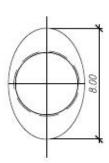
30

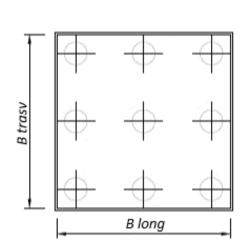
VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2

LOTTO COMMESSA RS3T


CODIFICA D09CL


DOCUMENTO VI1505003


FOGLIO 7 di 114

REV.

В

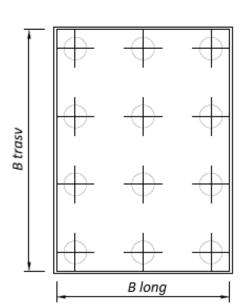


Figura 3: pianta, sezione e prospetti pila

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	8 di 114

2. DOCUMENTI DI RIFERIMENTO

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Ministero delle Infrastrutture, DM 17 gennaio 2018, Aggiornamento delle «Norme tecniche per le costruzioni».
- Ministero delle Infrastrutture e Trasporti, Circolare 21 gennaio 2019, n. 7/C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 17 gennaio 2018»
- Istruzione RFI DTC SI PS MA IFS 001 Manuale di Progettazione delle Opere Civili Parte II Sezione 2 Ponti e Strutture
- Istruzione RFI DTC SI CS MA IFS 001 Manuale di Progettazione delle Opere Civili Parte II Sezione 3 Corpo Stradale
- Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;

3. MATERIALI

Le caratteristiche dei materiali previsti le sottostrutture sono le seguenti:

Calcestruzzo pali di fondazione, cordoli, opere provvisionali, calcestruzzo fondazioni

classe di resistenza conglomerato	dasse	C25/30	
resistenza caratteristica cubica a comp.	Rdk	30	МРа
modulo elastico	Ec	31476	МРа
resistenza media cilindrica a comp.	fam	33	МРа
resistenza cilindrica caratteristica a comp.	fdk	25	МРа

Calcestruzzo fondazioni armate

classe di resistenza conglomerato	dasse	C28/35	
resistenza caratteristica cubica a comp.	Rdk	34	MPa
modulo elastico	Ec	32308	MPa
resistenza media cilindrica a comp.	fan	36	MPa
resistenza cilindrica caratteristica a comp.	fdk	28	МРа

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	9 di 114

Calcestruzzo elevazione pile (compresi pulvini, baggioli e ritegni), spalle

classe di resistenza conglomerato	dasse	C32/40	
resistenza caratteristica cubica a comp.	Rck	40	МРа
modulo elastico	Ec	33346	МРа
resistenza media cilindrica a comp.	fan	40	МРа
resistenza cilindrica caratteristica a comp.	fck	32	МРа

Acciaio ordinario per calcestruzzo armato

denominazione tipo d'acciaio	nome	B450	
modulo elastico	Es	210000	МРа
tensione media di snevamento	fym	480	МРа
tensione caratteristica di snevamento	fyk	450	МРа
tensione di snevamento di calcolo	fyd	391.30	МРа
tensione caratteristica a rottura	ftk	540	МРа

Le verifiche del plinto di fondazione vengono condotte, a favore di sicurezza, con una classe di calcestruzzo C25/30.

3.1 Verifiche SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato.

3.1.1 Verifiche tensionali

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario", ovvero:

tensione massima di compressione del calcestruzzo

• per combinazione caratteristica (rara) : 0.55 fck

• per combinazione quasi permanente : 0.40 fck

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSA
Relazione di calcolo Pile – P2COMMESSA
RS3TLOTTO
30CODIFICA
D09CLDOCUMENTO
VI1505003REV.
BFOGLIO
10 di 114

• per spessori minori di 5cm tali valori devono essere decrementati del 30%.

tensione massima di trazione dell'acciaio

• per combinazione caratteristica (rara) : $0.75 f_{yk}$

Per il caso in esame risulta in particolare per l'elevazione:

 $\sigma_{c \max QP} = (0,40 \ f_{cK}) = 12.8$ MPa (Combinazione di Carico Quasi Permanente) $\sigma_{c \max R} = (0,55 \ f_{cK}) = 17.6$ MPa (Combinazione di Carico Caratteristica - Rara) $\sigma_{s \max R} = (0,75 \ f_{vK}) = 337.5$ MPa (Combinazione di Carico Caratteristica - Rara)

3.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]. In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 - Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Canani di		-	Armatura					
Gruppi di esigenza	Condizioni ambientali	Combinazione di azione	Sensibile	Poco sensibile				
esigeliza			Stato limite	wk	Stato limite	wk		
A	Ordinarie	frequente	ap. fessure	\leq_{W_2}	ap. fessure	\leq_{W_3}		
Λ	Ordinarie	quasi permanente	ap. fessure	\leq_{W_1}	ap. fessure	\leq_{W_2}		
В	A gramagaixra	frequente	ap. fessure	\leq_{W_1}	ap. fessure	\leq_{W_2}		
Б	Aggressive	quasi permanente	decompressione	-	ap. fessure	\leq_{W_1}		
С	Molto Aggressive	frequente frequente		-	ap. fessure	\leq_{W_1}		
	Molto Aggressive	quasi permanente	decompressione	-	ap. fessure	\leq_{W_1}		

Tabella 2 - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1. XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Risultando:

- $w_1 = 0.2 \text{ mm}$
- $w_2 = 0.3 \text{ mm}$
- $w_3 = 0.4 \text{ mm}$

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1505003 B 11 di 114

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel par. 4.1.2.2.4.2 del DM 17.1.2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

• Combinazione Caratteristica (Rara) $\delta_f \leq w_1 = 0.2 \ mm$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura del D.M. 9 gennaio 1996, in accordo a quanto previsto al punto "C4.1.2.2.4.5 Verifica allo stato limite di fessurazione" della Circolare 21 gennaio 2019 n.7/C.S.L.L:PP..

4. DATI DI BASE

4.1 Geometrie di base

La pila presenta una sezione circolare piena di dimensioni 4.5m, una altezza complessiva di 22.80m. Il pulvino è costituito da una sezione piena ellissoidale ed altezza variabile in funzione del tipo d'impalcato. Nei calcoli si è incrementato del 10% la massa del pulvino per tener conto di velette, baggioli e ritegni. Le fondazioni sono realizzate su pali di diametro 1500mm collegate in testa da una platea di spessore 3m.

Considerando quanto sopra riportato, per una semplice implementazione nel programma di calcolo RC-SEC, la combinazione RARA riferita al gruppo 4 è stata implementata fittiziamente come "frequente" in modo da separarla ed applicare la restrizione dei 0.2mm. Tutte le combinazioni RARE restanti sono state verificate per le sole verifiche tensionali.

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B12 di 114

PILA			
	***	22.0	
altezza pila- estradosso fond/estradosso pulvino	Нр	22.8	m
tipolgoia di sezione		circolare	
larghezza trasversale pila	b	0.000	m
larghezza longitudinale pila	d	0.000	m
raggio della sezione	R	2.25	m
area della sezione	Α	15.904	m2
inerzia sezione direzione trasversale	I11	20.129	m4
inerzia sezione direzione longitudinale	I22	20.129	m4
calcestruzzo	fck	32	MPa
massa pulvino	mp	8270	kN
PULVINO			
asse minore ellisse	a	5.48	m
asse maggiore ellisse	b	8	m
altezza pulvino	h	2	m
massa pulvino compresa del +10%	mp	2552	kN
FONDAZIONE			
FONDAZIONE			
asse minore ellisse	a	13.2	m
asse maggiore ellisse	b	9.6	m
altezza della fondazione	h	3	m
altezza terreno di ricoprimento	ht	1.5	m
area netta per calcolo ricoprimento	A	110.8	m3
peso di vulume del terreno	у	110.8	$\frac{m_3}{kN/3}$
pess at raidine del terreno	У	1 /	13.1/3
Ulteriori distanze e bracci			
	.,		
distanza asse pila e appoggi per momento longitud.	il	1.2	
interasse tra i binari (se singolo 0)	ib	4	m
dist. tra interasse del singolo binario e asse pila	a	2	m

VI15 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	13 di 114

4.2 Modelli di analisi e verifica

Le sollecitazioni di verifica della pila sono state determinate a partire dai valori delle risultanti delle azioni trasmesse dagli impalcati alla quota degli apparecchi di appoggio alle quali sono state combinate le azioni determinate dalle azioni date dalle forze di inerzia e dal peso proprio delle sottostrutture. Il modello della struttura è stato implementato in un foglio di calcolo appositamente realizzato per la valutazione delle azioni agenti sulle singole parti della struttura, quali fusto pila e plinto. Per l'analisi e la verifica del plinto di fondazione, si è utilizzato un modello, a seconda della geometria, di tirante-puntone o trave inflessa.

Per quanto riguarda invece le sollecitazioni sui pali di fondazione a partire dalle azioni risultanti nel baricentro del plinto alla quota di intradosso, sono stati calcolati, per ciascuna combinazione di carico, gli sforzi assiali e di taglio in testa ai pali di fondazione utilizzando il classico modello a piastra rigida.

4.3 Condizioni elementari e combinazioni di carico

Le verifiche di sicurezza strutturali e geotecniche sono state condotte utilizzando combinazioni di carico definite in ottemperanza alle NTC18, secondo quanto riportato nei paragrafi 2.5.3, 5.1.3.12. Di seguito sono mostrati i coefficienti parziali di sicurezza utilizzati allo SLU ed i coefficienti di combinazione adoperati per i carichi variabili nella progettazione delle strutture da ponte.

VI15 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 650 m

Progetto definitivo	
Relazione di calcolo Pile – P	2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1505003	В	14 di 114

2.5.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B15 di 114

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γG1	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	$\gamma_{\rm P}$	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

(7) 1,20 per effetti locali

Azioni		Ψo	V 1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B16 di 114

	Azioni	Ψο	Ψ1	Ψ2
	Treno di carico LM 71	0,80(3)	(1)	0,0
Azioni	Treno di carico SW /0	0,80(3)	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)	-	-
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Nel seguito si riportano le azioni considerate ai fini della valutazione delle sollecitazioni agenti sulle sottostrutture e quindi, alle verifiche strutturali.

⁽²⁾ Si usano gli stessi coefficienti ψ adottati per i carichi che provocano dette azioni.

⁽³⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B17 di 114

Nome Combinazione	G1	G2	Treno	Treno scarico	F_fre	F_cent	F_serp	F_att	Vento	E_long	E_tra	E_ver	ldra
A1 SLU gr1 Treno	1.35	1.5	1.45	0	0.725	1.45	1.45	0.9	0	0	0	0	1.5
A1_SLU_gr2_Scarico_	1.35	1.5	0	1.45	0	1.45	1.45	0.9	0	0	0	0	1.5
A1_SLU_gr3_Fre/avv_	1.35	1.5	1.45	0	1.45	0.725	0.725	0.9	0	0	0	0	1.5
A1_SLU_gr4_centrif_	1.35	1.5	1.16	0	1.16	1.16	1.16	0.9	0	0	0	0	1.5
A1_SLU_gr1+vento_	1.35	1.5	1.45	0	0.725	1.45	1.45	0.9	0.9	0	0	0	1.5
A1_SLU_gr2+vento_	1.35	1.5	0	1.45	0	1.45	1.45	0.9	0.9	0	0	0	1.5
A1_SLU_gr3+vento_	1.35	1.5	1.45	0	1.45	0.725	0.725	0.9	0.9	0	0	0	1.5
A1_SLU_gr4+vento_	1.35	1.5	1.16	0	1.16	1.16	1.16	0.9	0.9	0	0	0	1.5
A1_SLU_vento_gr1_	1.35	1.5	0	0	0	0	0	0	1.5	0	0	0	1.5
A1_SLU_vento_gr2_	1.35	1.5	0	0	0	0	0	0	1.5	0	0	0	1.5
A1_SLU_vento_gr3_	1.35	1.5	0	0	0	0	0	0	1.5	0	0	0	1.5
A1_SLU_vento_gr4_	1.35	1.5	0	0	0	0	0	0	1.5	0	0	0	1.5
A1_SLU_Scalz_gr1_	1.35	1.5	1.16	0	0.58	1.16	1.16	0.72	0	0	0	0	1.5
A1_SLU_Scalz_gr2_	1.35	1.5	0	1.16	0	1.16	1.16	0.72	0	0	0	0	1.5
A1_SLU_Scalz_gr3_	1.35	1.5	1.16	0	1.16	0.58	0.58	0.72	0	0	0	0	1.5
A1_SLU_Scalz_gr4_	1.35	1.5	1.16	0	1.16	1.16	1.16	0.9	0	0	0	0	1.5
SLE_rar_gr1_Treno_	1	1	1	0	0.5	1	1	0.6	0	0	0	0	1
SLE_rar_gr2_Scarico_	1	1	0	1	0	1	1	0.6	0	0	0	0	1
SLE_rar_gr3_Fre/avv_	1	1	1	0	1	0.5	0.5	0.6	0	0	0	0	1
SLE_rar_gr4_centrif_	1	1	0.8	0	0.8	0.8	0.8	0.6	0	0	0	0	1
SLE_rar_gr1+vento_	1	1	1	0	0.5	1	1	0.6	0.6	0	0	0	1
SLE_rar_gr2+vento_	1	1	0	1	0	1	1	0.6	0.6	0	0	0	1
SLE_rar_gr3+vento_	1	1	1	0	1	0.5	0.5	0.6	0.6	0	0	0	1
SLE_rar_gr4+vento_	1	1	0.8	0	0.8	0.8	0.8	0.6	0.6	0	0	0	1
SLE_rar_vento_gr1_	1	1	0	0	0	0	0	0	1	0	0	0	1
SLE_rar_vento_gr2_	1	1	0	0	0	0	0	0	1	0	0	0	1
SLE_rar_vento_gr3_	1	1	0	0	0	0	0	0	1	0	0	0	1
SLE_rar_vento_gr4_	1	1	0	0	0	0	0	0	1	0	0	0	1
SLE_fre_gr1_Treno_	1	1	0.8	0	0.4	0.8	0.8	0.4	0	0	0	0	1
SLE_fre_gr2_Scarico_	1	1	0	0.8	0	0.8	8.0	0.4	0	0	0	0	1
SLE_fre_gr3_Fre/avv_	1	1	0.8	0	0.8	0.4	0.4	0.4	0	0	0	0	1
SLE_fre_gr4_centrif_	1	1	0.8	0	0.8	0.8	0.8	0.5	0	0	0	0	1
SLE_fre_gr1+vento_	1	1	0.8	0	0.4	0.8	0.8	0.4	0.2	0	0	0	1
SLE_fre_gr2+vento_	1	1	0	0.8	0	0.8	0.8	0.4	0.2	0	0	0	1
SLE_fre_gr3+vento_	1	1	0.8	0	0.8	0.4	0.4	0.4	0.2	0	0	0	1
SLE_fre_gr4+vento_	1	1	0.8	0	0.8	0.8	0.8	0.5	0.2	0	0	0	1
SLE_fre_vento_gr1_	1	1	0	0	0	0	0	0.5	0.5	0	0	0	1
SLE_fre_vento_gr2_	1	1	0	0	0	0	0	0.5	0.5	0	0	0	1
SLE_fre_vento_gr3_	1	1	0	0	0	0	0	0.5	0.5	0	0	0	1
SLE_fre_vento_gr4_	1	1	0	0	0	0	0	0.5	0.5	0	0	0	1
SLE_fre_gr1_temp	1	1	0	0	0	0	0	0.6	0.2	0	0	0	1
SLE_fre_gr2_temp	1	1	0	0	0	0	0	0.6	0.2	0	0	0	1
SLE_fre_gr3_temp	1	1	0	0	0	0	0	0.6	0.2	0	0	0	1
SLE_fre_gr3_temp	1	1	0	0	0	0	0	0.6	0.2	0	0	0	1

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1505003	В	18 di 114

Nome Combinazione	G1	G2	Treno	Treno scarico	F_fre	F_cent	F_serp	F_att	Vento	E_long	E_tra	E_ver	ldra
SLE_qp_gr1_Treno_	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr2_Scarico_	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr3_Fre/avv_	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr4_centrif_	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr1+vento_	1	1	0	0	0	0	0	0.5	0.2	0	0	0	1
SLE_qp_gr2+vento_	1	1	0	0	0	0	0	0.5	0.2	0	0	0	1
SLE_qp_gr3+vento_	1	1	0	0	0	0	0	0.5	0.2	0	0	0	1
SLE_qp_gr4+vento_	1	1	0	0	0	0	0	0.5	0.2	0	0	0	1
SLE_qp_vento_gr1_	1	1	0	0	0	0	0	0.5	0.2	0	0	0	1
SLE_qp_vento_gr2_	1	1	0	0	0	0	0	0.5	0.2	0	0	0	1
SLE_qp_vento_gr3_	1	1	0	0	0	0	0	0.5	0.2	0	0	0	1
SLE_qp_vento_gr4_	1	1	0	0	0	0	0	0.5	0.2	0	0	0	1
SLE_qp_gr1_temp	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr2_temp	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr3_temp	1	1	0	0	0	0	0	0.5	0	0	0	0	1
SLE_qp_gr3_temp	1	1	0	0	0	0	0	0.5	0	0	0	0	1
E_103x_	1	1	0.2	0	0	0	0	0.5	0.2	1	0.3	0.3	1
E_103y_	1	1	0.2	0	0	0	0	0.5	0.2	0.3	1	0.3	1
E_103z_	1	1	0.2	0	0	0	0	0.5	0.2	0.3	0.3	1	1

Le combinazioni di carico sismiche che tengo conto della componente verticale negativa non vengono ripotate in quanto poco significative.

Gli scarichi agli appoggi, riportati nei paragrafi seguenti, fanno riferimento alla seguente terna di assi:

- asse X coincidente con l'asse trasversale del ponte;
- asse Y coincidente con l'asse longitudinale del ponte;
- asse Z coincidente con l'asse verticale del ponte;

Per quanto riguarda la risposta alle diverse componenti dell'azione sismica, poiché si è adottata un'analisi in campo lineare, essa può essere calcolata separatamente per ciascuna delle componenti. Gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc) sono combinate successivamente applicando l'espressione

$$1.00 \cdot Ex + 0.30 \cdot Ey + 0.30 \cdot Ez$$

con rotazione ed inversione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

4.4 Sistemi di riferimento ed unità di misura

- Asse X parallelo all'asse trasversale dell'impalcato
- Asse Y ortogonale all'asse longitudinale dell'impalcato
- Asse Z verticale

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	19 di 114

5. ANALISI DEI CARICHI

5.1 Peso proprio elementi strutturali

I pesi degli elementi strutturali sono calcolati utilizzando un peso di volume del calcestruzzo pari a $25~\rm kN/m^3$.

-						
viadotto a binario			Singolo			
lato impalcato			SX		DX	
tipologia di impalcato			2TR		2TR	
luce impalcato			40	m	40	m
DATI DI INPUT FOGLIO VEI	RIFICHE					
altezza cassoncino		h	1.8	m	1.8	m
spessore medio soletta		S	0.35	m	0.35	m
estradosso impalcato		Н	2.15	m	2.15	m
spessore ballast + rotaia		hb	0.88	m	0.88	m
altezza PF da estradosso trave		h2	1.225	m	1.225	m
lunghezza travata		L	40	m	40	m
luce appoggi travata		La	38	m	38	m
larghezza totale impalcato		В	9.7	m		
peso permanente strutturale		G1	4978	kN	4978	kN
peso permanenti non strutt		G2	4674	kN	4674	kN
Altezze da intradosso del cassor	ncino					
baricentro del cassoncito		gc	0.76	m	0.76	m
area cassoncino		Ac	0.11	m2	0.11	m2
baricentro della soletta		gs	2.04	m	2.04	m
area soletta		As	1.88	m2	1.88	m2
baricentro sezione trave+soletta	(da intradosso trave)	Gb1	1.70	m	1.70	m
baricentro del ballast	(da intradosso trave)	Gb2	2.59	m	2.59	m
altezza piano del ferro	(da intradosso trave)	Н	3.025	m	3.025	m
baricentro treno	(da intradosso trave)	Gb3	4.825	m	4.825	m

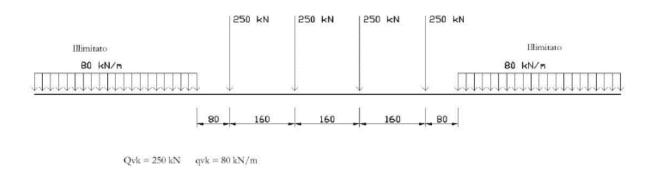
DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI15 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	20 di 114

5.2 Carichi strutturali trasmessi dall'impalcato

Si riportano di seguito gli scarichi agli appoggi dedotti dall'analisi dell'impalcato, per la campata sinistra e destra:


		N	Mlong
		KN	kN m
scarichi estradosso Pila - G1		4978	0
scarichi estradosso Pila - G2		4674	0
scarichi estradosso Fondazione -	G1	15440	0
scarichi estradotto Fondazione -	G2	4674	0
scarichi sui Pali - G1		28102	0
scarichi sui Pali - G2		4674	0

5.3 Carichi da traffico verticali

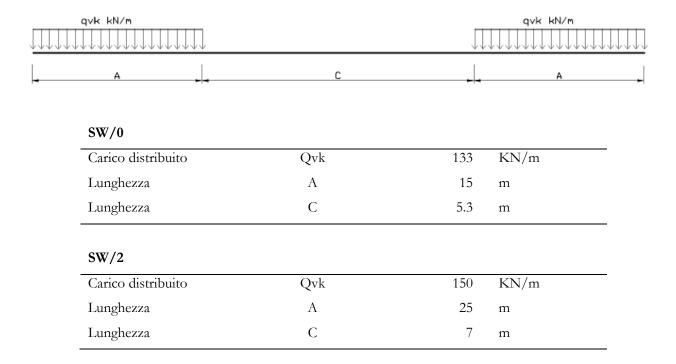
L'opera è stata progettata considerando le sollecitazioni dovute al carico da traffico ferroviario, considerando i modelli LM71 e/o SW/2. Si riportano di seguito le caratteristiche dei modelli di traffico presi in esame.

Modello di carico LM71

Sia le istruzioni RFI che le NTC 2018 (par. 5.2.2.2.1.1), definiscono questo modello di carico tramite carichi concentrati e carichi distribuiti, riferiti all'asse dei binari.

Carichi concentrati: quattro assi da 250 kN disposti ad interasse di 1,60 m;

Carico distribuito: 80 kN/m in entrambe le direzioni, a partire da 0,8 m dagli assi d'estremità e per una lunghezza illimitata.


VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	21 di 114

Per questo modello di carico è prevista un'eccentricità del carico rispetto all'asse del binario.

➤ Modello di carico SW/2

Sia le istruzioni RFI che le NTC 2018 (par. 5.2.2.2.1.2), definiscono questo modello di carico tramite solo carichi distribuiti.

In questo modello di carico non è prevista alcuna eccentricità del carico ferroviario. Le azioni di entrambi i modelli dovranno essere moltiplicate per un coefficiente di adattamento definito dalla

seguente tabella (tab. 2.5.1.4.1.1 - RFI DTC SI PS MA IFS 001).

MODELLO DI CARICO	COEFFICIENTE " α "
LM/71	1.10
SW/0	1.10
SW/2	1.00

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	22 di 114

5.4 Effetti dinamici

Per la definizione del coefficiente dinamico si segue quanto contenuto nel par.5.2.2.2.3 del DM 17.1.2018 che per l'opera in esame riporta:

$$\Phi_3 = \frac{2.16}{\sqrt{L_{\Phi}} - 0.2} + 0.73 \quad con\ limitazione \quad 1.00 \le \Phi_3 \le 2.00$$

5.5 Disposizione treni di carico

La disposizione dei treni di carico è stata individuata per ottenere le seguenti massime sollecitazioni:

- <u>Sforzo Assiale</u>: il convoglio è localizzato sostanzialmente al di sopra della pila in esame
- Momento Longitudinale: il convoglio è localizzato sulla campata di luce maggiore, più o meno centrato a seconda dei rapporti di lunghezza del treno di carico e della campata.
- Momento Trasversale: è fornito dallo stesso schema di posizionamento del massimo sforzo

Da questi schemi si sono ottenute le seguenti caratteristiche di sollecitazione:

	N	Mlong	Mtrasv
	[kN]	[kN/m]	[kN/m]
COMBO N	4742	786	474
COMBO ML	2731	3278	273
СОМВО МТ	4742	786	474

Si riportano i medesimi schemi graficamente per un caso rappresentativo:

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B23 di 114

Figura 1- Posizione treni di carico - massimo sforzo assiale

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1505003 B 24 di 114

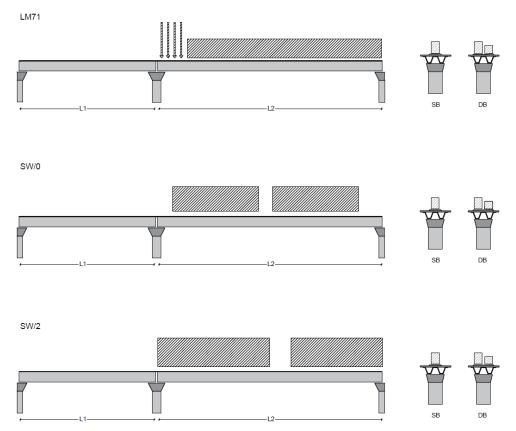


Figura 2- Posizione treni di carico – massimo momento longitudinale

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1505003 B 25 di 114

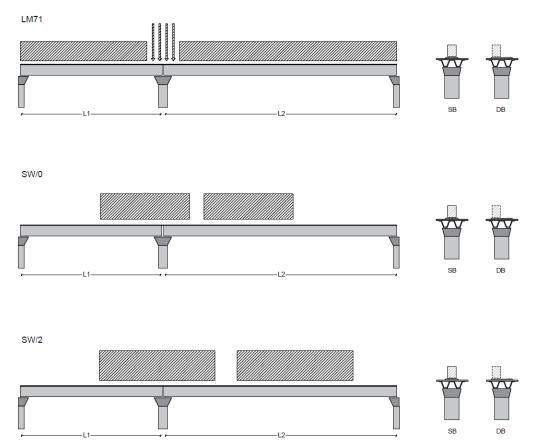


Figura 3- Posizione treni di carico – massimo momento trasversale

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	26 di 114

5.6 Carichi da traffico orizzontali

5.6.1 Forza centrifuga

raggio di curvatura		R	10000000	m
velocità massima compatibile con il tracc	iato della linea	Vmax	160	km/h
			SX	
lunghezza di influenza della parte curva d	lel binario	Lf	38	m
fattore di riduzione funzione della Lf e de	ella V	f	0.801794	
LM71 e SW/0				
Per i modelli di carico LM71 e SW l'azion	ne centrifuga si dovrà de	terminare partendo dall'e	espressione	generale as
valori di V, α, e f in base al contenuto del	lla tabella 1.4.3.1-1 segu	ente.		
LM71 caso a			SX	
velocità massima		Vmax	120	
fattore di riduzione funzione de	ella Lf e della V	f	1.00	
coefficiente di adattamento		a	1.10	
valore caratteristico dei carichi	verticali	Qvk	300.3	kN x asse
valore caratteristico dei carichi	verticali	qvk	96.1	kN/m
valore caratteristico della forza	centrifuga	Qtk	0.0	kN x asse
valore caratteristico della forza	centrifuga	qtk	0.0	kN/m
LM71 caso b				
velocità massima compatibile c	con il tracciato della linea	a Vmax	160	
fattore di riduzione funzione de		f	0.80	
coefficiente di adattamento		a	1.0	

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B27 di 114

	valore caratteristico dei carichi verticali	Qvk	273.0	kN x asse
	valore caratteristico dei carichi verticali	qvk	87.4	kN/m
	valore caratteristico della forza centrifuga	Qtk	0.0	kN x asse
	valore caratteristico della forza centrifuga	qtk	0.0	kN/m
SW/2				
Per quai	nto riguarda il modello di carico SW/2 si deve assumere: una vel	ocità V non supe	eriore a 100	km/h,
un valor	re di f pari ad 1 ed il valore di α pari a 1,			
	velocità massima compatibile con il tracciato della linea	Vmax	100	
	fattore di riduzione funzione della Lf e della V	f	1.00	
	coefficiente di adattamento	a	1.00	
	valore caratteristico dei carichi verticali	qvk	163.82	kN/m
	valore caratteristico della forza centrifuga	qtk	0.00	kN/m

	Massima velocità della		Azione	traffico verticale		
Valore di α	linea [Km/h]	v	α	f		associato
orra (o	≥ 100	100	1	1	1 x 1 x SW/2	
SW/2	< 100	v	1	1	1 x 1 x SW/2	Φ x 1 x SW/2
		v	1	f	1 x f x (LM71"+"SW/0)	Φx1x1x (LM71"+"SW/0)
LM71 e SW/0	> 120	120	α	1	α x 1 x (LM71"+"SW/0)	
	≤120	v	α	1	α x 1 x (LM71"+"SW/0)	Φ x α x 1 x (LM71"+"SW/0)

Tab. 2.5.1.4.3.1-1 - Parametri per determinazione della forza centrifuga

Riassumendo:

	Qtk sx	qtk sx	Qtk dx	qtk dx	F testa Pila	Mom Tras
	KN	KN/m	KN	KN/m	KN	KN/m
Fcen_SW/2_1	0	0.0012899	0	0.00129	0.051598	0.27244

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	28 di 114

5.6.2 Serpeggio

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario. Tale azione si applicherà sia in rettifilo che in curva.

viadotto a binario	Singolo		
combinazione treni	SW/2		
valore caratterstico della forza	Qsk	100	kN
coefficiente di adattamento	a	1	
coefficiente di adattamento			
Questa forza laterale deve essere sempre	combinata c	on i carich	ni verticali
altezza baggioli e apparecchi d'appoggio		0.45	m
altezza impalcato + soletta		2.15	m
armamento		0.88	m
incremento altezza rotaia + alta		0.1	m
valore caratterstico della Forza	Fsk	100	kN
valore caratterstico Momento Tra	Msk	358	kN/m

Tale forza rappresenta l'azione complessiva in testa alla pila.

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	29 di 114

5.6.3 Frenatura ed avviamento

numero di binari		Singolo	
combinazione treni		SW/2	
posizionamento vincolo fissi	nto vincolo fissi c		ore
estradosso pulvino sommità binario	Н	0.45	m
lunghezza del binario	L	40	m

Le forze di frenatura e di avviamento agiscono sulla sommità del binario, nella direzione longitudinale dello stesso. Dette forze sono da considerarsi uniformemente distribuite su una lunghezza di binario L determinata per ottenere l'effetto più gravoso sull'elemento strutturale considerato.

FENATURA

LM/71					
coefficiente di adattamento			a	1.1	
lunghezza	a del binari	О	L	40	m
valore car	ratteristico	da della forza	Qla,k	880	kN
SW/0					
coefficien	coefficiente di adattamento			1.1	
lunghezza	a del binari	О	L	35.3	m
valore car	ratteristico	da della forza	Qla,k	776.6	kN
SW/2					
coefficiente di adattamento			a	1	
lunghezza del binario			L	33	
valore car	ratteristico	da della forza	Qla,k	1155	

AVVIAMENTO

LM/71				
valore caratteristico da della	forza	Qla,k	1000	kN
SW/0				
valore caratteristico da della	Qla,k	1000	kN	
SW/2				
valore caratteristico da della	forza	Qla,k	1000	kN

Relazione di calcolo Pile – P2

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1505003	В	30 di 114

5.6.4 Forza d'attrito

Le forze parassitarie dei vincoli si esplicano in corrispondenza degli apparecchi d'appoggio mobili per traslazione relativa impalcato-apparecchi d'appoggio. Essendo funzione del carico verticale, la sua definizione è associata ai coefficienti moltiplicativi delle combinazioni γ e ψ dei carichi da peso proprio strutturali e non, e dei carichi verticali da traffico. Si riporta per questo motivo un esempio di forza d'attrito "caratteristica" solo come esempio di calcolo, in quanto il calcolo è stato eseguito a valle della combinazione di carico.

altezza baggioli e apparecchi d'appoggio	h	0.45	m
lunghezza del binario	L	40	m
reazione verticale massima associata ai carichi permanenti	Vg1	4978	kN
reazione verticale massima associata ai carichi permanenti	Vg2	4674	KN
reazione verticale massima associata ai carichi mobili	Vq	5406	kN
coefficiente d'attrito (da assum. In relazione alle cart. App.)	f	0.04	
forza d'attrito trasmessa alla pila	Fa	293.5	kN
momento longitudinale in testa pila	M	132.1	kN/m

5.6.5 Azione del Vento

Ricadendo nella classificazione ordinaria di ponti l'azione del vento è valutata come agente su una superficie continua, convenzionalmente alta 4m dal paino del ferro. Nel caso di ponte scarico si considera la superficie relativa alle barriere antirumore.

velocità di base di riferimento slm	Vbo	28	m/s
parametro di quota	ao	500	m
altitudine sul livello del mare	as	282	m
parametro adimensionale	ks	0.36	
coefficiente di altitudine	ca	1	
velocità di base di riferimento	Vb	28	m/s

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B31 di 114

termpo di ritorno azione del vento	Tr	112.5	anni
coefficiente di ritorno	cr	1.04562	
velocità di riferimento	Vr	29.2775	m/s
tab. 3.3.I	Zona	4	
tab.3.3.II	Categoria	II	
tab. 3.3.III	Classe rug	D	
fattore di terreno	Kr	0.19	
lunghezza di rugosità	zo	0.05	m
altezza minima	zmin	4	m
VENTO SULL'IMPALCATO			
ponte carico			
altezza pila	z 1	22.8	m
altezza baggioli e app. appoggio	z2	0.45	m
altezza all'intradosso	zintradosso	23.25	m
altezza di riferimento	z	27.375	m
coefficiente di topografia	ct	1	
coefficienfe di esposizione	ce	3.03	
densità dell'aria convenzionale	ro	1.25	kg/m3
pressione statica di riferimento	qr	535.732	
pressione statica di picco	qpicco	1622.53	n/m2
larghezza impalcato	d	9.7	m
altezza impalcato+soletta	z3	3.25	m
armamento	z4	0.88	m
altezza treno	z5a	4	m
altezza barriere	z5b	5	m
altezza di impatto treno o barriere	htot	8.25	m
	d/h	1.17576	
coefficiente di forza trasversale	cfx	2.07667	
forza trasversale	fx	27.8	
forza equivalente in testa pila	Fx	1111.9	kN
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			kn/m

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B32 di 114

ponte scarico			
altezza di impatto treno o barriere	htot	8.13	m
rapporto geometrico	d/h	1.19311	
coefficiente di forza trasversale	cfx	2.07189	
forza trasversale	fx	27.3	
forza equivalente in testa pila	Fx	1093.2	kN
momento trasv equivalente in testa pila	Mx	4935.9	kn/m
VENTO SULLA PILA			
direzione trasversale			
altezza di riferimento	z	22.8	m
coefficiente di topografia	ct	1	
coefficienfe di esposizione	ce	2.90036	
densità dell'aria convenzionale	ro	1.25	kg/m3
pressione statica di riferimento	qr	535.732	n/m2
pressione statica di picco	qpicco	1622.53	n/m2
		1.62253	Kpa
tipolgoia di sezione		circolare	
larghezza trasversale pila	ь	0	m
larghezza longitudinale pila	d	0	m
raggio della sezione	R	2.25	m
rapporto geometrico	b/d	0.1	
rapporto geometrico	r/b	0.1	
coefficiente di forza trasversale sez. ret.	cf, 0	2	
end-effect factor	ψλ	0.75	
viscosità cinematica dell'aria	ν	1.5E-05	m/s
numero di Reynolds	Re	1.3E+07	, -
materiale pila	110	cls ruvido	
rugosità equivalente	k	1	mm
rapporto	k/b	0.00044	

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B33 di 114

	coefficiente di forza trasversale sez. circ.	cf, 0	0.90791	
	rapporto geometrico	l/b	5.06667	
	snellezza effettiva	λ	5.06667	
	rapporto di solidità	ф	1	
	end-effect factor	ψλ	0.66702	
	forza trasversale	f tras	1.0	
	forza equivalente in testa pila	F tras	22.4	kN
	alteza di applicatione sulla pila	h tra	13.7	m
lirezione	longitudinale			
	tipolgoia di sezione		circolare	
	larghezza trasversale pila	b	0	m
	larghezza longitudinale pila	d	0	m
	raggio della sezione	R	2.25	m
	rapporto geometrico	b/d	0.1	
	rapporto geometrico	r/b	0.1	
	coefficiente di forza longitu sez.ret	cf, 0	2	
	end-effect factor	ψλ	0.75	
	coefficiente di forza trasversale sez.circ.	cf, 0	0.90791	
	rapporto geometrico	l/b	5.06667	
	snellezza effettiva	λ	5.06667	
	rapporto di solidità	ф	1	
	end-effect factor	ψλ	0.66702	
	forza longitudinale	flon	0.98259	
	forza equivalente in testa pila	Flon	22.4031	kN
	alteza di applicatione sulla pila	h lon	13.68	m

5.7 Azione Sismica

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17 gennaio 2018 e relativa circolare applicativa.

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	34 di 114

5.7.1 Inquadramento Sismico

La determinazione della pericolosità sismica di base è definita a partire dall'ubicazione dell'opera e dalle sue caratteristiche progettuali come la vita nominale V_N e la classe d'uso C_u . Sulla base del MDP [4]. I parametri indentificativi dell'opera sono:

Vita Nominale	Classe d'Uso	Coeff. D'uso
75	III	1.5

La geo-localizzazione permette di ottenere le coordinate geografiche delle singole opere e individuare puntualmente la domanda sismica secondo gli spettri normativi rappresentativi delle due componenti (orizzontale e verticale), ovvero determinare i singoli parametri indipendenti di riferimento.



Figura 4 - Individuazione geografica della linea ferroviaria

I parametri indipendenti per le forme spettrali di riferimento hanno una variazione spaziale lungo la linea poco influente tuttavia, per le seguenti analisi si è fatto riferimento alle coordinate dei singoli viadotti.

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1505003	В	35 di 114

Tabella 3 - Sezione tipo esistente in viadotto (rifare la tabella N,E, ag Tc* ..tutti i parametri sismici)

LOTTO 3A-B							
Viadotto Fer.	Binario	n° camp	L tot [m]	Rcurv. [m]	altitudine [m]	N [se]	E [se]
VI01	D	20	605	1188	416	37°43'18.70	13°40'18.19
VI02	D	8	215	1060	418	37°43'9.38	13°40'31.63
VI03	D	1	17	1300	434	37°43'3.15	13°41'14.35
VI04	D	32	800	inf	445	37°43'1.42	13°42'17.20
VI05-06	S	12	440	725	422	37°41'25.58	13°51'40.40
VI07	S	5	210	inf	410	37°41'14.75	13°52'13.14
VI08	S	26	780	725	385	37°40'20.84	13°52'59.62
VI09	S	6	150	733	382	37°40'0.09	13°53'10.68
VI10	S	19	575	1000	373	37°39'52.17	13°53'27.88
VI11	S	32	885	1000	367	37°39'29.61	13°53'47.03
VI12	S	39	1500	2950	343	37°37'42.58	13°54'0.85
VI13	S	3	100	inf	342	37°34'6.35	13°56'27.65
VI14	S	3	100	inf	340	37°33'57.11	13°56'38.61
VI15	S	16	650	inf	282	37°32'54.77	13°57'45.53
VI16	D	16	425	2500	300	37°32'12.39	13°58'38.40
VI17	S	46	1390	1050	317	37°32'8.62	13°59'56.29
VI18	S	9	250	inf	355	37°31'58.58	14° 1'21.91

5.7.2 Definizione della domanda sismica

Secondo le NTC2018 l'azione sismica viene considerata mediante spettri di risposta elastici in accelerazione. Sulla base dello studio geologico del 2019, i terreni in esame sono prevalentemente di tipo C e B, pianeggianti o leggermente acclivi, tali da ricadere nella categoria topografica T1. Risulta quindi possibile tracciare lo spettro di riferimento normativo.

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B36 di 114

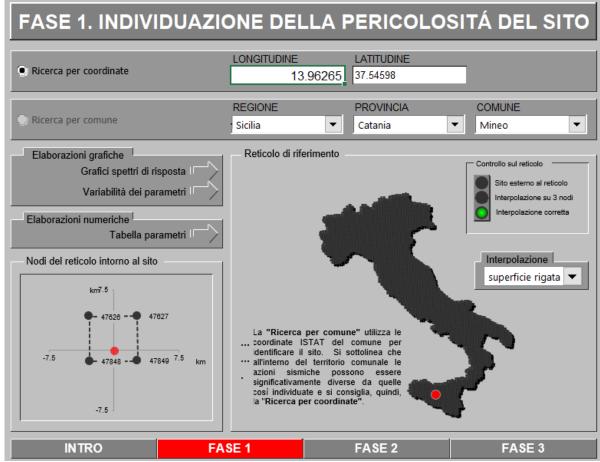
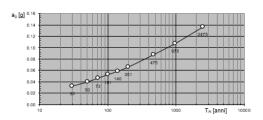
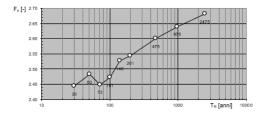
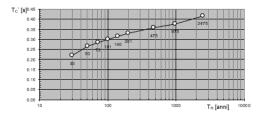


Figura 5 - Sito di riferimento secondo "Spettri_NTC"

Progetto definitivo


Relazione di calcolo Pile – P2


DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO


VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1505003 B 37 di 114



La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

Spettri di risposta elastici per i periodi di ritorno T_R di riferimento

S1-NGV da cui sono derivati.

La verifica dell'idoreità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso

Figura 6 - Parametri di riferimento del sito secondo "Spettri_NTC"

Valori dei parametri $\mathbf{a_g},\,\mathbf{F_o},\,\mathbf{T_C}^{\star}$ per i periodi di ritorno $\mathbf{T_R}$ di riferimento

T _R	a _g	F。	T _c *
[anni]	[g]	[-]	[s]
30	0.032	2.422	0.215
50	0.040	2.459	0.261
72	0.047	2.437	0.280
101	0.053	2.461	0.293
140	0.059	2.499	0.310
201	0.067	2.527	0.324
475	0.087	2.603	0.352
975	0.107	2.644	0.375
2475	0.136	2.710	0.409

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

Figura 7 - Tabella riassuntiva degli stati limite di riferimento del sito in esame

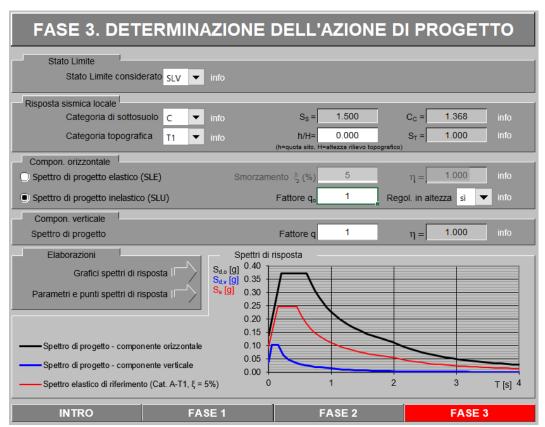
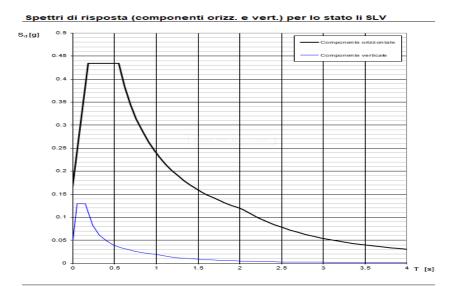



Figura 8 - Definizione della domanda sismica allo SLV

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

Figura 9 - Spettro in accelerazione SLV orizzontale e verticale

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSA
Relazione di calcolo Pile – P2COMMESSA
RS3TLOTTO
30CODIFICA
D09CLDOCUMENTO
VI1505003REV.
BFOGLIO
39 di 114

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Parametri indipendenti

STATO LIMITE	SLV
a。	0.093 g
F _o	2.674
T _c *	0.448 s
Ss	1.500
Co	1.368
S _T	1.000
q	1.000

Parametri dipendenti

S	1.500
η	1.000
T _B	0.204 s
T _C	0.613 s
Tp	1.970 s

Espressioni dei parametri dipendenti

$$S = S_x \cdot S_T$$
 (NTC-08 Eq. 3.2.5)

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_n = T_c / 3$$
 (NTC-07 Eq. 3.2.8)

$$T_{c} = C_{c} \cdot T_{c}^{*}$$
 (NTC-07 Eq. 3.2.7)

$$T_0 = 4,0 \cdot a_a/g + 1,6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_{\mathrm{B}} & \quad S_{\mathrm{e}}(T) = a_{\mathrm{g}} \cdot S \cdot \eta \cdot F_{\mathrm{o}} \cdot \left[\frac{T}{T_{\mathrm{B}}} + \frac{1}{\eta \cdot F_{\mathrm{o}}} \left(1 - \frac{T}{T_{\mathrm{B}}} \right) \right] \\ T_{\mathrm{B}} \leq T < T_{\mathrm{C}} & \quad S_{\mathrm{e}}(T) = a_{\mathrm{g}} \cdot S \cdot \eta \cdot F_{\mathrm{o}} \\ T_{\mathrm{C}} \leq T < T_{\mathrm{D}} & \quad S_{\mathrm{e}}(T) = a_{\mathrm{g}} \cdot S \cdot \eta \cdot F_{\mathrm{o}} \cdot \left(\frac{T_{\mathrm{C}}}{T} \right) \\ T_{\mathrm{D}} \leq T & \quad S_{\mathrm{e}}(T) = a_{\mathrm{g}} \cdot S \cdot \eta \cdot F_{\mathrm{o}} \cdot \left(\frac{T_{\mathrm{C}} T_{\mathrm{D}}}{T^{2}} \right) \end{split}$$

Lo spettro di progetto $S_4(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_*(T)$ sostituendo $\mathfrak q$ con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

T [s] Se [g] 0.000 0.139 T
T→ 0.204 0.371 T→ 0.613 0.371 0.678 0.336 0.742 0.307 0.807 0.282 0.872 0.261 0.936 0.243 1.001 0.227 1.066 0.214 1.130 0.201 1.195 0.191 1.259 0.181 1.324 0.172 1.389 0.164 1.453 0.157 1.518 0.150 1.583 0.144 1.647 0.138 1.712 0.133 1.776 0.128 1.841 0.124 1.906 0.119 T→ 1.970 0.116 2.067 0.105 2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
Te
0.678
0.742 0.307 0.807 0.282 0.872 0.261 0.936 0.243 1.001 0.227 1.066 0.214 1.130 0.201 1.195 0.191 1.259 0.181 1.324 0.172 1.389 0.164 1.453 0.157 1.518 0.150 1.583 0.144 1.647 0.138 1.712 0.133 1.776 0.128 1.841 0.124 1.906 0.119 To 1.970 0.116 2.067 0.105 2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
0.807 0.282 0.872 0.261 0.936 0.243 1.001 0.227 1.066 0.214 1.130 0.201 1.195 0.191 1.259 0.181 1.324 0.172 1.389 0.164 1.453 0.157 1.518 0.150 1.583 0.144 1.647 0.138 1.712 0.133 1.776 0.128 1.841 0.124 1.906 0.119 To 1.970 0.116 2.067 0.105 2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
0.872
0.936 0.243 1.001 0.227 1.066 0.214 1.130 0.201 1.195 0.191 1.259 0.181 1.324 0.172 1.389 0.164 1.453 0.157 1.518 0.150 1.583 0.144 1.647 0.138 1.712 0.133 1.776 0.128 1.841 0.124 1.906 0.119 1.970 0.116 2.067 0.105 2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
1,001 0,227 1,066 0,214 1,130 0,201 1,195 0,191 1,259 0,181 1,324 0,172 1,389 0,164 1,453 0,157 1,518 0,150 1,583 0,144 1,647 0,138 1,712 0,133 1,776 0,128 1,841 0,124 1,906 0,119 1,970 0,116 2,067 0,105 2,164 0,096 2,260 0,088 2,357 0,081 2,454 0,075 2,550 0,069 2,647 0,064 2,744 0,060 2,840 0,056 2,937 0,052 3,033 0,049 3,130 0,046 3,227 0,043
1.066 0.214 1.130 0.201 1.195 0.191 1.259 0.181 1.324 0.172 1.389 0.164 1.453 0.157 1.518 0.150 1.583 0.144 1.647 0.138 1.712 0.133 1.776 0.128 1.841 0.124 1.906 0.119 To 1.970 0.116 2.067 0.105 2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
1.130 0.201 1.195 0.191 1.259 0.181 1.324 0.172 1.389 0.164 1.453 0.157 1.518 0.150 1.583 0.144 1.647 0.138 1.712 0.133 1.776 0.128 1.841 0.124 1.906 0.119 To 1.970 0.116 2.067 0.105 2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
1.195 0.191 1.259 0.181 1.324 0.172 1.389 0.164 1.453 0.157 1.518 0.150 1.583 0.144 1.647 0.138 1.712 0.133 1.776 0.128 1.841 0.124 1.906 0.119 To 1.970 0.116 2.067 0.105 2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
1.259 0.181 1.324 0.172 1.389 0.164 1.453 0.157 1.518 0.150 1.583 0.144 1.647 0.138 1.712 0.133 1.776 0.128 1.841 0.124 1.906 0.119 1.970 0.116 2.067 0.105 2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
1.324 0.172 1.389 0.164 1.453 0.157 1.518 0.150 1.583 0.144 1.647 0.138 1.712 0.133 1.776 0.128 1.841 0.124 1.906 0.119 1.970 0.116 2.067 0.105 2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
1.389 0.164 1.453 0.157 1.518 0.150 1.583 0.144 1.647 0.138 1.712 0.133 1.776 0.128 1.841 0.124 1.906 0.119 1.970 0.116 2.067 0.105 2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
1.453 0.157 1.518 0.150 1.583 0.144 1.647 0.138 1.712 0.133 1.776 0.128 1.841 0.124 1.906 0.119 1.970 0.116 2.067 0.105 2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
1.518 0.150 1.583 0.144 1.647 0.138 1.712 0.133 1.776 0.128 1.841 0.124 1.906 0.119 1.970 0.116 2.067 0.105 2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
1.583 0.144 1.647 0.138 1.712 0.133 1.776 0.128 1.841 0.124 1.906 0.119 1.970 0.116 2.067 0.105 2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
1.647 0.138 1.712 0.133 1.776 0.128 1.841 0.124 1.906 0.119 1.970 0.116 2.067 0.105 2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
1.712 0.133 1.776 0.128 1.841 0.124 1.906 0.119 1.970 0.116 2.067 0.105 2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
1.776 0.128 1.841 0.124 1.906 0.119 1.970 0.116 2.067 0.105 2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
1,841 0,124 1,906 0,119 1,970 0,116 2,067 0,105 2,164 0,096 2,260 0,088 2,357 0,081 2,454 0,075 2,550 0,069 2,647 0,064 2,744 0,060 2,840 0,056 2,937 0,052 3,033 0,049 3,130 0,046 3,227 0,043
1,906 0,119 1,970 0,116 2,067 0,105 2,164 0,096 2,260 0,088 2,357 0,081 2,454 0,075 2,550 0,069 2,647 0,064 2,744 0,060 2,840 0,056 2,937 0,052 3,033 0,049 3,130 0,046 3,227 0,043
T₀← 1.970 0.116 2.067 0.105 2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
2.067 0.105 2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
2.164 0.096 2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
2.260 0.088 2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
2.357 0.081 2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
2.454 0.075 2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
2.550 0.069 2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
2.647 0.064 2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
2.744 0.060 2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
2.840 0.056 2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
2.937 0.052 3.033 0.049 3.130 0.046 3.227 0.043
3.033 0.049 3.130 0.046 3.227 0.043
3.130 0.046 3.227 0.043
3.227 0.043
3.323 0.041
3.420 0.038
3.517 0.036
3.613 0.034
3.710 0.033
3.807 0.031
3.903 0.029
4.000 0.028

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dell

VI15 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 650 m

REV.

В

FOGLIO

40 di 114

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTORelazione di calcolo Pile – P2RS3T30D09CLVI1505003

5.7.3 Calcolo dell'azione Sismica

Per il calcolo delle azioni sismiche si utilizza una Analisi Statica Lineare, come riportata nel cap. 7.9.4.1 delle NTC 2018. Qualora le ipotesi non siano soddisfate, per il calcolo dei periodi propri della pila e quindi delle sollecitazioni sismiche, si è fatto riferimento ad una Analisi Dinamica Modale, attraverso la costruzione di un modello agli Elementi Finiti monodimensionali (Beam/Frame) mediante il software di calcolo Midas Civil. I Fattori di comportamento utilizzati sono:

- q= 1.5 per la verifica a presso flessione della pila;
- q= 1.5/1.1 per la verifica a capacità portante verticale dei pali, la presso-flessione e la verifica del plinto se non tozzo;
- q= 1 per le verifiche a taglio degli elementi strutturali e le verifiche a capacità portante orizzontale dei pali.

Nella scrittura delle combinazioni di carico si è distinta la posizione del convoglio per massimizzare le singole sollecitazioni (N,Mx,My,Tx,Ty), identificando tre configurazioni, ovvero tre masse statiche.

Nell'analisi sismica la massa partecipante riferita ai carichi da traffico è stata valutata in maniera distinta per le tre componenti del moto e successivamente messa in combinazione per le tre configurazioni statiche.

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B41 di 114

5.7.4 Check analisi statica

Direzione Longitudinale			
massa treno per direzione long	Com Nmax	5463	kN
massa sismica treno per direzione long	treno	1093	kN
		0	
massa impalcato (G1 + G2)	Mimp	9652	kN
massa sismica portata sopra pila	Mimp t	10745	kN
1/5 della massa sismica sopra la pila	1/5 Mimp t	2149	kN
massa pulvino	Mpul	2192	kN
massa pila	Mpila	8270	kN
massa efficace pila	Mpe	4949	kN
1 1 1 1 1 T	26 1	15702	1 3 7
massa sismica totale da utilizzare dir. Long	Mtot long	15693	kN
verifica di requisito di norma Mep<1/5N	11тр	NO per -2	799.8 KN
D:			
Direzione Trasversale	0.35	47.40	1 3 7
massa treno per direzione long	Com Mmax		kN
massa sismica treno per direzione long	treno	948	kN
massa impalcato (G1 + G2)	Mimp	9652	kN
massa sismica portata sopra pila	Mimp t	10600	kN
massa pulvino	Mpul	2192	kN
massa pila	Mpila	8270	kN
massa efficace pila	Mpe	4949	kN
	2.6	15510	127
massa sismica totale da utilizzare dir. Trasv	Mtot tras	15549	kN
verifica di requisito di norma Mep<1/5N.	limp	NO per -28	828.7 KN
Direzione Verticale			
massa treno per direzione long	Com Mmax	4742	kN
massa sismica treno per direzione long	treno	948	kN
massa impalcato (G1 + G2)	Mimp	9652	kN
massa sismica portata sopra pila	Mimp t	10600	kN
massa pulvino	Mpul	2192	kN
massa pila	Mpila	8270	kN
massa efficace pila	Mpe	4949	kN
massa sismica totale da utilizzare dir. Vert	Mtot vert	15549	kN
verifica di requisito di norma Mep<1	/5Mimp	NO per -28	828.7 KN

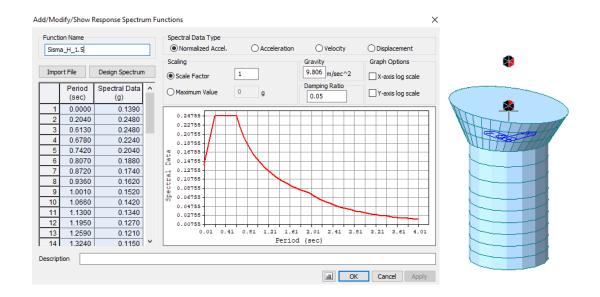
VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	42 di 114

5.7.5 Analisi statica equivalente

area della sezione	A	15.90	m2	
inerzia sezione direzione trasversale	I11	20.13	m4	
inerzia sezione direzione longitudinale	I22	20.13	m4	
modulo elastico cls pila	Ec	33346	MPa	
eventuale abbattimento del modulo	%	% 45.00		
modulo di calcolo	Е	18340	MPa	
calcestruzzo	fck	32.0	MPa	
altezza pila est. fondazione - estr. pulvino	Н	Н 22.80		
altezza plinto di fondazione	hf	0.00	m	
altrezza baggioli ed app. appoggio	hap	hap 0.45		
altezza equovalente sdof	Не	Не 23.25		
rigidezza flessionale sdof in dir. Trasv	Ktra	6.4E+07	N/m	
rigidezza flessionale sdof in dir. Long	Klong	Klong 8.8E+07		
rigidezza assiale sdof in dir. Vert	Kvert	2.0E+10	N/m	
periodo di vibrare sdof dir. Trasversale	Ttra	1.12	sec	
periodo di vibrare sdof dir. Longitudinale	Tlong	0.95	sec	
periodo di vibrare sdof dir. Verticale	Tvert	0.06	sec	

	SLV			SLD	
Tabella Riassuntiva	q=1.5	q=1.36	q=1	q=1	
accelerazione componente trasversale	0.14	0.14	0.21	0.08	g
accelerazione componente longitudinal	e 0.16	0.16	0.24	0.09	g
accelerazione componente verticale	0.10	0.10	0.10	0.10	g
Sforzo assiale	1993	1993	1993	2046	kN
Taglio Sism testa pila direz. trasversale	2792	3071	4188	1500	kN
Taglio Sism testa pila direz. longitudina	.1 3201	3521	4802	1816	kN
Momento flessionale trasversale	72259	79485	108388	38815	kN m
Momento flessionale longitudinale	74519	81961	111731	42328	kN m



VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	43 di 114

5.7.6 Analisi dinamica modale

Nel caso specifico i periodi e quindi le forze alla base della pila sono stati valutati tramite una analisi spettrale. Le caratteristiche geometriche e meccaniche sono state definite coerentemente nei paragrafi precedenti. Le masse a diverse altezze sono associate alla tipologia di appoggio impalcato-pila, quindi differenti nelle due direzioni.

I risultati ottenuti sono i seguenti:

Load	N (kN)	Vtras (kN)	Vlong (kN)	Mtras (kN*m)	Mlong (kN*m)
SISMA q=1.5	1787.13	2821.12	3283.93	63965.48	68153.11
SISMA q=1	1787.13	4223.91	4933.62	95938.06	102516.24
SISMA sld	595.72	1598.84	1843.14	35777.98	37960.02

si procede con tali sollecitazioni.

Progetto definitivo

Relazione di calcolo Pile – P2

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1505003	В	44 di 114

5.8 Azione Idrostatica

Secondo quanto prescritto nelle cap5.2.2.8 delle NTC2018 le azioni idrodinamiche devo essere considerate sia come pressione sulle parti immerse che come effetti di modificazioni locali dell'alveo. In riferimento alla relazione idraulica si richiamano in forma tabellare i dati di base per la progettazione e verifica strutturale.

6.3.14 Escavazioni localizzate viadotto VI15

Pila	Tirante Idraulico [m]	Velocità [m/s]	Incidenza plia- comente [*]	Forma plla	Base pila [m]	Lunghezza plia [m]	Forma plinto	Base plinto [m]	Lunghezza plinto [m]	d50 [mm]	Scavo [m]	Tipo di scavo
P01	0.00	0.00	13	circ	4.50	4.50	quad	11.50	11.50	0.0265	0.00	no scavo
P02	1.04	1.01	13	circ	4.50	4.50	quad	11.50	11.50	0.0265	2.53	plinto non scoperto
P03	1.44	1.29	19	circ	4.50	4.50	quad	11.50	11.50	0.0265	3.23	plinto non scoperto
P04	3.02	1.61	10	circ	4.50	4.50	quad	11.50	11.50	0.0265	6.24	plinto scoperto
P05	2.00	1.94	53	circ	4.50	4.50	quad	11.50	11.50	0.0265	8.18	plinto scoperto
P06	1.73	1.51	53	circ	4.50	4.50	quad	11.50	11.50	0.0265	6.89	plinto scoperto
P07	0.98	1.52	53	circ	4.50	4.50	quad	11.50	11.50	0.0265	6.40	plinto scoperto
P08	0.00	0.00	24	circ	4.50	4.50	quad	11.50	11.50	0.0265	0.00	no scavo
P09	0.44	0.49	18	circ	4.50	4.50	quad	11.50	11.50	0.0265	2.46	plinto scoperto
P10	0.00	0.00	12	circ	4.50	4.50	quad	11.50	11.50	0.0265	0.00	no scavo
P11	0.00	0.00	12	circ	4.50	4.50	quad	11.50	11.50	0.0265	0.00	no scavo
P12	0.00	0.00	12	circ	4.50	4.50	quad	11.50	11.50	0.0265	0.00	no scavo
P13	0.00	0.00	12	circ	4.50	4.50	quad	11.50	11.50	0.0265	0.00	no scavo
P14	0.00	0.00	12	circ	4.50	4.50	quad	11.50	11.50	0.0265	0.00	no scavo
P15	0.00	0.00	12	circ	4.50	4.50	quad	11.50	11.50	0.0265	0.00	no scavo

Tabella 19: Viadotto VI15, massima profondità di escavazione

Secondo quanto riportato nella relazione idraulica di riferimento, la pila in esame non presenta uno scalzamento tale da scoprire il plinto di fondazione. Tale azione risulta quindi non dimensionante, per tale motivo non implementata nelle verifiche.

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	45 di 114

6. SOLLECITAZIONI

Come precedentemente descritto si è valutata la posizione del singolo convoglio per massimizzare la sollecitazione d'interesse. Questo ha portato alla definizione di tre configurazioni per la progettazione e verifica del pulvino, del fusto pila, della fondazione e dei pali. Di seguito si riportano le tabelle di tutte le combinazioni di carico, funzione delle suddette configurazioni.

6.1 Combinazioni di carico

6.1.1 Configurazione 1

CARATTERISTICHE SOLLECITAZIONI IN TESTA PILA							
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv		
A1_SLU_gr1_Treno_1	20607.5	837.375	346.484	1517.02	843.901		
A1_SLU_gr2_Scarico_2	14282.3	0	118.776	0	53.8106		
A1_SLU_gr3_Fre/avv_3	20607.5	1674.75	346.447	1893.84	843.704		
A1_SLU_gr4_centrif_4	19232.3	1339.8	296.96	1515.07	684.019		
A1_SLU_gr1+vento_5	20607.5	857.538	1350.55	1517.02	5286.22		
A1_SLU_gr2+vento_6	14282.3	20.1628	1122.84	0	4496.13		
A1_SLU_gr3+vento_7	20607.5	1694.91	1350.51	1893.84	5286.02		
A1_SLU_gr4+vento_8	19232.3	1359.96	1301.03	1515.07	5126.34		
A1_SLU_vento_gr1_9	19232.3	703.505	1911.02	1213.62	8061.16		
A1_SLU_vento_gr2_10	14172.1	33.6046	1765.29	0	7445.49		
A1_SLU_vento_gr3_11	19232.3	1373.4	1910.99	1515.07	8061.01		
A1_SLU_vento_gr4_12	19232.3	1373.4	1970.4	1515.07	8087.89		
SLE_rar_gr1_Treno_14	14394.2	577.5	179.775	1046.22	555.37		
SLE_rar_gr2_Scarico_15	10032	0	75.0818	0	34.036		
SLE_rar_gr3_Fre/avv_16	14394.2	1155	179.749	1306.1	555.234		
SLE_rar_gr4_centrif_17	13445.8	924	157.002	1044.88	450.228		
SLE_rar_gr1+vento_18	14394.2	590.942	849.152	1046.22	3516.92		
SLE_rar_gr2+vento_19	10032	13.4418	744.459	0	2995.58		
SLE_rar_gr3+vento_20	14394.2	1168.44	849.126	1306.1	3516.78		
SLE_rar_gr4+vento_21	13445.8	937.442	826.379	1044.88	3411.77		
SLE_rar_vento_gr1_22	13445.8	484.403	1241.24	836.977	5372.01		
SLE_rar_vento_gr2_23	9956	22.4031	1174.23	0	4962.48		
SLE_rar_vento_gr3_24	13445.8	946.403	1241.22	1044.88	5371.9		
SLE_rar_vento_gr4_25	13445.8	946.403	1272.63	1044.88	5386.14		

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B46 di 114

SLE_fre_gr1_Treno_27	13445.8	462	104.682	836.977	426.684
SLE_fre_gr2_Scarico_28	9956	0	48.8454	0	22.1798
SLE_fre_gr3_Fre/avv_29	13445.8	924	104.661	1044.88	426.575
SLE_fre_gr4_centrif_30	13445.8	924	130.842	1044.88	438.456
SLE_fre_gr1+vento_31	13445.8	466.481	327.807	836.977	1413.87
SLE_fre_gr2+vento_32	9956	4.48062	271.971	0	1009.36
SLE_fre_gr3+vento_33	13445.8	928.481	327.787	1044.88	1413.76
SLE_fre_gr4+vento_34	13445.8	928.481	353.968	1044.88	1425.64
SLE_fre_vento_gr1_35	9652	11.2015	612.739	0	2492.67
SLE_fre_vento_gr2_36	9652	11.2015	612.739	0	2492.67
SLE_fre_vento_gr3_37	9652	11.2015	612.739	0	2492.67
SLE_fre_vento_gr4_38	9652	11.2015	612.739	0	2492.67
SLE_fre_gr1_temp39	9652	4.48062	289.036	0	1016.84
SLE_fre_gr2_temp40	9652	4.48062	289.036	0	1016.84
SLE_fre_gr3_temp41	9652	4.48062	289.036	0	1016.84
SLE_fre_gr3_temp42	9652	4.48062	289.036	0	1016.84
			311000		
SLE_qp_gr1_Treno_44	9652	0	54.9252	0	24.7163
SLE_qp_gr2_Scarico_45	9652	0	54.9252	0	24.7163
SLE_qp_gr3_Fre/avv_46	9652	0	54.9252	0	24.7163
SLE_qp_gr4_centrif_47	9652	0	54.9252	0	24.7163
SLE_qp_gr1+vento_48	9652	4.48062	278.051	0	1011.9
SLE_qp_gr2+vento_49	9652	4.48062	278.051	0	1011.9
SLE_qp_gr3+vento_50	9652	4.48062	278.051	0	1011.9
SLE_qp_gr4+vento_51	9652	4.48062	278.051	0	1011.9
SLE_qp_vento_gr1_52	9652	4.48062	278.051	0	1011.9
SLE_qp_vento_gr2_53	9652	4.48062	278.051	0	1011.9
SLE_qp_vento_gr3_54	9652	4.48062	278.051	0	1011.9
SLE_qp_vento_gr4_55	9652	4.48062	278.051	0	1011.9
SLE_qp_gr1_temp56	9652	0	54.9252	0	24.7163
SLE_qp_gr2_temp57	9652	0	54.9252	0	24.7163
SLE_qp_gr3_temp58	9652	0	54.9252	0	24.7163
SLE_qp_gr3_temp59	9652	0	54.9252	0	24.7163
533_qp_\$15_temp61	7002		0 117202		2117100
E_103x_SLV_q=1.5_60	10188.1	3288.41	1124.39	0	0
E_103y_SLV_q=1.5_61	10188.1	989.66	3099.17	0	0
E_103z_SLV_q=1.5_62	11439.1	989.66	1124.39	0	0
		7 07 10 0			
E_103x_SLV_q=1.36_63	10188.1	3616.8	1209.02	0	0
E_103y_SLV_q=1.36_64	10188.1	1088.18	3381.28	0	0
E_103z_SLV_q=1.36_65	11439.1	1088.18	1209.02	0	0
	.57.1				
E_103x_SLV_q=1_66	10188.1	4938.1	1545.22	0	0
E_103y_SLV_q=1_67	10188.1	1484.57	4501.96	0	0
E_103z_SLV_q=1_68	11439.1	1484.57	1545.22	0	0
					-
E_103x_SLD_q=1_69	9830.72	1847.62	757.703	0	0
E_103y_SLD_q=1_70	9830.72	557.423	1876.89	0	0
E_103z_SLD_q=1_71	10247.7	557.423	757.703	0	0
	1021/11	227.123		Ü	Ü

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2 COMMESSA LOTTO
RS3T 30

CODIFICA **D09CL**

DOCUMENTO VI1505003

REV. FOGLIO **B** 47 di 114

CARATTERISTICHE SOLLECITAZIONI BASE PILA								
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv			
A1_SLU_gr1_Treno_1	34731.5	837.375	346.484	20609.2	8743.74			
A1_SLU_gr2_Scarico_2	28406.3	0	118.776	0	2761.91			
A1_SLU_gr3_Fre/avv_3	34731.5	1674.75	346.447	40078.1	8742.69			
A1_SLU_gr4_centrif_4	33356.3	1339.8	296.96	32062.5	7454.72			
A1_SLU_gr1+vento_5	34731.5	857.538	1350.55	21068.9	36078.7			
A1_SLU_gr2+vento_6	28406.3	20.1628	1122.84	459.711	30096.9			
A1_SLU_gr3+vento_7	34731.5	1694.91	1350.51	40537.9	36077.7			
A1_SLU_gr4+vento_8	33356.3	1359.96	1301.03	32522.2	34789.7			
A1_SLU_vento_gr1_9	33356.3	703.505	1911.02	17253.5	51632.5			
A1_SLU_vento_gr2_10	28296.1	33.6046	1765.29	766.185	47694.1			
A1_SLU_vento_gr3_11	33356.3	1373.4	1910.99	32828.7	51631.6			
A1_SLU_vento_gr4_12	33356.3	1373.4	1970.4	32828.7	53013.1			
SLE_rar_gr1_Treno_14	24856.5	577.5	179.775	14213.2	4654.24			
SLE_rar_gr2_Scarico_15	20494.2	0	75.0818	0	1745.9			
SLE_rar_gr3_Fre/avv_16	24856.5	1155	179.749	27640.1	4653.52			
SLE_rar_gr4_centrif_17	23908	924	157.002	22112.1	4029.88			
SLE_rar_gr1+vento_18	24856.5	590.942	849.152	14519.7	22877.6			
SLE_rar_gr2+vento_19	20494.2	13.4418	744.459	306.474	19969.2			
SLE_rar_gr3+vento_20	24856.5	1168.44	849.126	27946.6	22876.9			
SLE_rar_gr4+vento_21	23908	937.442	826.379	22418.6	22253.2			
SLE_rar_vento_gr1_22	23908	484.403	1241.24	11881.4	33672.2			
SLE_rar_vento_gr2_23	20418.2	22.4031	1174.23	510.79	31735			
SLE_rar_vento_gr3_24	23908	946.403	1241.22	22622.9	33671.7			
SLE_rar_vento_gr4_25	23908	946.403	1272.63	22622.9	34402.1			
SLE_fre_gr1_Treno_27	23908	462	104.682	11370.6	2813.43			
SLE_fre_gr2_Scarico_28	20418.2	0	48.8454	0	1135.86			
SLE_fre_gr3_Fre/avv_29	23908	924	104.661	22112.1	2812.85			
SLE_fre_gr4_centrif_30	23908	924	130.842	22112.1	3421.65			
SLE_fre_gr1+vento_31	23908	466.481	327.807	11472.7	8887.88			
SLE_fre_gr2+vento_32	20418.2	4.48062	271.971	102.158	7210.3			
SLE_fre_gr3+vento_33	23908	928.481	327.787	22214.2	8887.3			
SLE_fre_gr4+vento_34	23908	928.481	353.968	22214.2	9496.1			
SLE_fre_vento_gr1_35	20114.2	11.2015	612.739	255.395	16463.1			

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1505003 B 48 di 114

SLE_fre_vento_gr3_37 20114.2 11.2015 612.739 255.395 16463. SLE_fre_vento_gr4_38 20114.2 11.2015 612.739 255.395 16463. SLE_fre_gr1_temp39 20114.2 4.48062 289.036 102.158 7606.8 SLE_fre_gr2_temp40 20114.2 4.48062 289.036 102.158 7606.8 SLE_fre_gr3_temp41 20114.2 4.48062 289.036 102.158 7606.8 SLE_fre_gr3_temp42 20114.2 4.48062 289.036 102.158 7606.8 SLE_qp_gr1_Treno_44 20114.2 0 54.9252 0 1277.0 SLE_qp_gr2_Scarico_45 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_fre/avv_46 20114.2 0 54.9252 0 1277.0 SLE_qp_gr1+vento_48 20114.2 0 54.9252 0 1277.0 SLE_qp_gr4+vento_49 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr3+vento_gr1_52 20114.2 4.48062 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
SLE_fre_vento_gr4_38 20114.2 11.2015 612.739 255.395 16463. SLE_fre_gr1_temp39 20114.2 4.48062 289.036 102.158 7606.8 SLE_fre_gr2_temp40 20114.2 4.48062 289.036 102.158 7606.8 SLE_fre_gr3_temp41 20114.2 4.48062 289.036 102.158 7606.8 SLE_fre_gr3_temp42 20114.2 4.48062 289.036 102.158 7606.8 SLE_gr_gr1_Treno_44 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_Fre/avv_46 20114.2 0 54.9252 0 1277.0 SLE_qp_gr4_vento_48 20114.2 0 54.9252 0 1277.0 SLE_qp_gr4+vento_49 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3+vento_50 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr3+vento_gr1_52 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_yento_gr3+5 20114.2 4.48062 27	SLE_fre_vento_gr2_36	20114.2	11.2015	612.739	255.395	16463.1
SLE_fre_gr1_temp39 20114.2 4.48062 289.036 102.158 7606.8 SLE_fre_gr2_temp40 20114.2 4.48062 289.036 102.158 7606.8 SLE_fre_gr3_temp41 20114.2 4.48062 289.036 102.158 7606.8 SLE_fre_gr3_temp42 20114.2 4.48062 289.036 102.158 7606.8 SLE_qp_gr1_Treno_44 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_Fre/avv_46 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_Fre/avv_46 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_tvento_48 20114.2 0 54.9252 0 1277.0 SLE_qp_gr4_vento_49 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr3_vento_50 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr3_vento_gr1_52 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr1_52 20114.2 4.48062 <th< td=""><td>SLE_fre_vento_gr3_37</td><td>20114.2</td><td>11.2015</td><td>612.739</td><td>255.395</td><td>16463.1</td></th<>	SLE_fre_vento_gr3_37	20114.2	11.2015	612.739	255.395	16463.1
SLE_fre_gr2_temp40 20114.2 4.48062 289.036 102.158 7606.8 SLE_fre_gr3_temp41 20114.2 4.48062 289.036 102.158 7606.8 SLE_fre_gr3_temp42 20114.2 4.48062 289.036 102.158 7606.8 SLE_qp_gr1_Treno_44 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_Fre/avv_46 20114.2 0 54.9252 0 1277.0 SLE_qp_gr1+vento_48 20114.2 0 54.9252 0 1277.0 SLE_qp_gr1+vento_49 20114.2 0 54.9252 0 1277.0 SLE_qp_gr2+vento_49 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3+vento_50 20114.2 0 54.9252 0 1277.0 SLE_qp_gr4+vento_51 20114.2 0 54.9252 0 1277.0 SLE_qp_gr4+vento_gr1_52 20114.2 0 54.9251 102.158 7351.4 SLE_qp_gr4+vento_gr2_53 20114.2 0 4.8062 278.051	SLE_fre_vento_gr4_38	20114.2	11.2015	612.739	255.395	16463.1
SLE_fre gr3_temp41 20114.2 4.48062 289.036 102.158 7606.8 SLE_fre gr3_temp42 20114.2 4.48062 289.036 102.158 7606.8 SLE_gp_gr1_Treno_44 20114.2 0 54.9252 0 1277.0 SLE_qp_gr2_Scarico_45 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_Fre/avv_46 20114.2 0 54.9252 0 1277.0 SLE_qp_gr4_centrif_47 20114.2 0 54.9252 0 1277.0 SLE_qp_gr4+vento_48 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr4+vento_49 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr4+vento_51 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr4+vento_gr1_52 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr4_55 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_yento_gr4_55 20114.2 4.48062	SLE_fre_gr1_temp39	20114.2	4.48062	289.036	102.158	7606.86
SLE_fre_gr3_temp42 20114.2 4.48062 289.036 102.158 7606.8 SLE_qp_gr1_Treno_44 20114.2 0 54.9252 0 1277.0 SLE_qp_gr2_Scarico_45 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_Fre/avv_46 20114.2 0 54.9252 0 1277.0 SLE_qp_gr4_centrif_47 20114.2 0 54.9252 0 1277.0 SLE_qp_gr1+vento_48 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr3+vento_50 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr3+vento_51 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr3+vento_gr1_52 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr2_53 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr3_54 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr1_temp56 20114.2 0 54.	SLE_fre_gr2_temp40	20114.2	4.48062	289.036	102.158	7606.86
SLE_qp_gr1_Treno_44	SLE_fre_gr3_temp41	20114.2	4.48062	289.036	102.158	7606.86
SLE_qp_gr2_Scarico_45 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_Fre/avv_46 20114.2 0 54.9252 0 1277.0 SLE_qp_gr4_centrif_47 20114.2 0 54.9252 0 1277.0 SLE_qp_gr1+vento_48 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr2+vento_49 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr3+vento_50 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr4+vento_51 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr1_52 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr2_53 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr3_54 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_yento_gr3_temp56 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp58 20114.2 0 54	SLE_fre_gr3_temp42	20114.2	4.48062	289.036	102.158	7606.86
SLE_qp_gr2_Scarico_45 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_Fre/avv_46 20114.2 0 54.9252 0 1277.0 SLE_qp_gr4_centrif_47 20114.2 0 54.9252 0 1277.0 SLE_qp_gr1+vento_48 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr2+vento_49 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr3+vento_50 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr4+vento_51 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr1_52 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr2_53 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr3_54 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_yento_gr3_temp56 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp58 20114.2 0 54						
SLE_qp_gr3_Fre/avv_46 20114.2 0 54.9252 0 1277.0 SLE_qp_gr4_centrif_47 20114.2 0 54.9252 0 1277.0 SLE_qp_gr1+vento_48 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr2+vento_49 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr3+vento_50 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr4+vento_51 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr1_52 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr2_53 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr3_54 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr4_55 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr1_temp56 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp59 20114.2 0 <t< td=""><td>SLE_qp_gr1_Treno_44</td><td>20114.2</td><td>0</td><td>54.9252</td><td>0</td><td>1277.01</td></t<>	SLE_qp_gr1_Treno_44	20114.2	0	54.9252	0	1277.01
SLE_qp_gr4_centrif_47 20114.2 0 54.9252 0 1277.0 SLE_qp_gr1+vento_48 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr2+vento_49 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr3+vento_50 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr4+vento_51 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr1_52 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr2_53 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr3_54 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr4_55 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr1_temp56 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp59 20114.2 0 54.9252 0 1277.0 SLE_103x_SLV_q=1.5_60 20650.4 3288.41	SLE_qp_gr2_Scarico_45	20114.2	0	54.9252	0	1277.01
SLE_qp_gr1+vento_48 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr2+vento_49 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr3+vento_50 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr4+vento_51 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr1_52 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr2_53 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr3_54 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr4_55 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr1_temp56 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp57 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp59 20114.2 0 54.9252 0 1277.0 E_103x_SLV_q=1.5_61 20650.4 388.41 <td< td=""><td>SLE_qp_gr3_Fre/avv_46</td><td>20114.2</td><td>0</td><td>54.9252</td><td>0</td><td>1277.01</td></td<>	SLE_qp_gr3_Fre/avv_46	20114.2	0	54.9252	0	1277.01
SLE_qp_gr2+vento_49 20114.2 4.48062 278.051 102.158 7351.44 SLE_qp_gr3+vento_50 20114.2 4.48062 278.051 102.158 7351.44 SLE_qp_gr4+vento_51 20114.2 4.48062 278.051 102.158 7351.44 SLE_qp_vento_gr1_52 20114.2 4.48062 278.051 102.158 7351.44 SLE_qp_vento_gr2_53 20114.2 4.48062 278.051 102.158 7351.44 SLE_qp_vento_gr3_54 20114.2 0 54.9252 0 1277.0 SLE_qp_gr1_temp56 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp58 20114.2 0 54.9252 0 1277.0 E_103x_SLV_q=1.5_61 20650.4 388.41	SLE_qp_gr4_centrif_47	20114.2	0	54.9252	0	1277.01
SLE_qp_gr3+vento_50 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr4+vento_51 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr1_52 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr2_53 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr3_54 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr4_55 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr1_temp56 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp57 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp58 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp59 20114.2 0 54.9252 0 1277.0 E_103x_SLV_q=1.5_60 20650.4 3288.41 1124.39 68153.1 20201. E_103x_SLV_q=1.5_62 21901.4 989.66 3099.17	SLE_qp_gr1+vento_48	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr4+vento_51 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr1_52 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr2_53 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr3_54 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_vento_gr4_55 20114.2 4.48062 278.051 102.158 7351.4 SLE_qp_gr1_temp56 20114.2 0 54.9252 0 1277.0 SLE_qp_gr2_temp57 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp58 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp59 20114.2 0 54.9252 0 1277.0 E_103x_SLV_q=1.5_60 20650.4 3288.41 1124.39 68153.1 20201. E_103z_SLV_q=1.5_62 21901.4 989.66 3099.17 20445.9 64977. E_103z_SLV_q=1.36_63 20650.4 3616.8 1209.02	SLE_qp_gr2+vento_49	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_vento_gr1_52 20114.2 4.48062 278.051 102.158 7351.44 SLE_qp_vento_gr2_53 20114.2 4.48062 278.051 102.158 7351.44 SLE_qp_vento_gr3_54 20114.2 4.48062 278.051 102.158 7351.44 SLE_qp_vento_gr4_55 20114.2 4.48062 278.051 102.158 7351.44 SLE_qp_gr1_temp56 20114.2 0 54.9252 0 1277.0 SLE_qp_gr2_temp57 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp58 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp59 20114.2 0 54.9252 0 1277.0 E_103x_SLV_q=1.5_60 20650.4 3288.41 1124.39 68153.1 20201. E_103z_SLV_q=1.5_62 21901.4 989.66 3099.17 20445.9 64977. E_103z_SLV_q=1.36_63 20650.4 3616.8 1209.02 74968.4 22120. E_103z_SLV_q=1.36_65 21901.4 1088.18 1381.28<	SLE_qp_gr3+vento_50	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_vento_gr2_53 20114.2 4.48062 278.051 102.158 7351.44 SLE_qp_vento_gr3_54 20114.2 4.48062 278.051 102.158 7351.44 SLE_qp_vento_gr4_55 20114.2 4.48062 278.051 102.158 7351.44 SLE_qp_gr1_temp56 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp57 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp58 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp59 20114.2 0 54.9252 0 1277.0 E_103x_SLV_q=1.5_60 20650.4 3288.41 1124.39 68153.1 20201. E_103z_SLV_q=1.5_61 20650.4 989.66 3099.17 20445.9 64977. E_103z_SLV_q=1.36_63 20650.4 3616.8 1209.02 74968.4 22120. E_103z_SLV_q=1.36_64 20650.4 1088.18 3381.28 22490.5 71373. E_103z_SLV_q=1_66 20650.4 4938.1 1545.22	SLE_qp_gr4+vento_51	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_vento_gr3_54 20114.2 4.48062 278.051 102.158 7351.44 SLE_qp_vento_gr4_55 20114.2 4.48062 278.051 102.158 7351.44 SLE_qp_gr1_temp56 20114.2 0 54.9252 0 1277.0 SLE_qp_gr2_temp57 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp58 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp59 20114.2 0 54.9252 0 1277.0 E_103x_SLV_q=1.5_60 20650.4 3288.41 1124.39 68153.1 20201. E_103z_SLV_q=1.5_61 20650.4 989.66 3099.17 20445.9 64977. E_103z_SLV_q=1.36_63 20650.4 3616.8 1209.02 74968.4 22120. E_103z_SLV_q=1.36_64 20650.4 1088.18 3381.28 22490.5 71373. E_103z_SLV_q=1_66 20650.4 4938.1 1545.22 102516 29793. E_103z_SLV_q=1_68 21901.4 1484.57 4501.96 30754.9 29650 E_103z_SLV_q=1_68 21901.4 1484	SLE_qp_vento_gr1_52	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_vento_gr4_55 20114.2 4.48062 278.051 102.158 7351.46 SLE_qp_gr1_temp56 20114.2 0 54.9252 0 1277.0 SLE_qp_gr2_temp57 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp58 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp59 20114.2 0 54.9252 0 1277.0 E_103x_SLV_q=1.5_60 20650.4 3288.41 1124.39 68153.1 20201. E_103y_SLV_q=1.5_61 20650.4 989.66 3099.17 20445.9 64977. E_103x_SLV_q=1.36_63 20650.4 989.66 1124.39 20445.9 20201. E_103x_SLV_q=1.36_64 20650.4 3616.8 1209.02 74968.4 22120. E_103x_SLV_q=1.36_65 21901.4 1088.18 3381.28 22490.5 71373. E_103x_SLV_q=1_66 20650.4 4938.1 1545.22 102516 29793. E_103z_SLV_q=1_68 21901.4 1484.57 4501.96	SLE_qp_vento_gr2_53	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr1_temp56 20114.2 0 54.9252 0 1277.0 SLE_qp_gr2_temp57 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp58 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp59 20114.2 0 54.9252 0 1277.0 E_103x_SLV_q=1.5_60 20650.4 3288.41 1124.39 68153.1 20201. E_103y_SLV_q=1.5_61 20650.4 989.66 3099.17 20445.9 64977. E_103z_SLV_q=1.36_62 21901.4 989.66 1124.39 20445.9 20201. E_103x_SLV_q=1.36_63 20650.4 3616.8 1209.02 74968.4 22120. E_103z_SLV_q=1.36_65 21901.4 1088.18 3381.28 22490.5 71373. E_103z_SLV_q=1_66 20650.4 4938.1 1545.22 102516 29793. E_103z_SLV_q=1_68 21901.4 1484.57 4501.96 30754.9 29793. E_103x_SLD_q=1_69 20293 1847.62 757.703 <	SLE_qp_vento_gr3_54	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr2_temp57 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp58 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp59 20114.2 0 54.9252 0 1277.0 E_103x_SLV_q=1.5_60 20650.4 3288.41 1124.39 68153.1 20201. E_103y_SLV_q=1.5_61 20650.4 989.66 3099.17 20445.9 64977. E_103z_SLV_q=1.5_62 21901.4 989.66 1124.39 20445.9 20201. E_103x_SLV_q=1.36_63 20650.4 3616.8 1209.02 74968.4 22120. E_103y_SLV_q=1.36_64 20650.4 1088.18 3381.28 22490.5 71373.9 E_103z_SLV_q=1.66 20650.4 4938.1 1545.22 102516 29793. E_103z_SLV_q=1_66 20650.4 1484.57 4501.96 30754.9 96950 E_103z_SLV_q=1_68 21901.4 1484.57 1545.22 30754.9 29793. E_103x_SLD_q=1_69 20293 1847.62 757.703 37960 11745.	SLE_qp_vento_gr4_55	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr3_temp58 20114.2 0 54.9252 0 1277.0 SLE_qp_gr3_temp59 20114.2 0 54.9252 0 1277.0 E_103x_SLV_q=1.5_60 20650.4 3288.41 1124.39 68153.1 20201. E_103y_SLV_q=1.5_61 20650.4 989.66 3099.17 20445.9 64977. E_103z_SLV_q=1.5_62 21901.4 989.66 1124.39 20445.9 20201. E_103x_SLV_q=1.36_63 20650.4 3616.8 1209.02 74968.4 22120. E_103y_SLV_q=1.36_64 20650.4 1088.18 3381.28 22490.5 71373.9 E_103z_SLV_q=1.36_65 21901.4 1088.18 1209.02 22490.5 22120. E_103x_SLV_q=1_66 20650.4 4938.1 1545.22 102516 29793. E_103z_SLV_q=1_68 21901.4 1484.57 4501.96 30754.9 96950 E_103x_SLD_q=1_69 20293 1847.62 757.703 37960 11745.	SLE_qp_gr1_temp56	20114.2	0	54.9252	0	1277.01
SLE_qp_gr3_temp59 20114.2 0 54.9252 0 1277.0 E_103x_SLV_q=1.5_60 20650.4 3288.41 1124.39 68153.1 20201. E_103y_SLV_q=1.5_61 20650.4 989.66 3099.17 20445.9 64977. E_103z_SLV_q=1.5_62 21901.4 989.66 1124.39 20445.9 20201. E_103x_SLV_q=1.36_63 20650.4 3616.8 1209.02 74968.4 22120. E_103y_SLV_q=1.36_64 20650.4 1088.18 3381.28 22490.5 71373. E_103z_SLV_q=1.36_65 21901.4 1088.18 1209.02 22490.5 22120. E_103y_SLV_q=1_66 20650.4 4938.1 1545.22 102516 29793. E_103z_SLV_q=1_68 21901.4 1484.57 4501.96 30754.9 96950 E_103x_SLD_q=1_69 20293 1847.62 757.703 37960 11745.	SLE_qp_gr2_temp57	20114.2	0	54.9252	0	1277.01
E_103x_SLV_q=1.5_60 20650.4 3288.41 1124.39 68153.1 20201. E_103y_SLV_q=1.5_61 20650.4 989.66 3099.17 20445.9 64977. E_103z_SLV_q=1.5_62 21901.4 989.66 1124.39 20445.9 20201. E_103x_SLV_q=1.36_63 20650.4 3616.8 1209.02 74968.4 22120. E_103y_SLV_q=1.36_64 20650.4 1088.18 3381.28 22490.5 71373.9 E_103z_SLV_q=1.36_65 21901.4 1088.18 1209.02 22490.5 22120. E_103y_SLV_q=1_66 20650.4 4938.1 1545.22 102516 29793. E_103z_SLV_q=1_67 20650.4 1484.57 4501.96 30754.9 96950 E_103z_SLV_q=1_68 21901.4 1484.57 1545.22 30754.9 29793. E_103x_SLD_q=1_69 20293 1847.62 757.703 37960 11745.	SLE_qp_gr3_temp58	20114.2	0	54.9252	0	1277.01
E_103y_SLV_q=1.5_61 20650.4 989.66 3099.17 20445.9 64977.5 E_103z_SLV_q=1.5_62 21901.4 989.66 1124.39 20445.9 20201.5 E_103x_SLV_q=1.36_63 20650.4 3616.8 1209.02 74968.4 22120.5 E_103y_SLV_q=1.36_64 20650.4 1088.18 3381.28 22490.5 71373.5 E_103z_SLV_q=1.36_65 21901.4 1088.18 1209.02 22490.5 22120.5 E_103y_SLV_q=1_66 20650.4 4938.1 1545.22 102516 29793.5 E_103z_SLV_q=1_68 21901.4 1484.57 4501.96 30754.9 96950 E_103x_SLD_q=1_68 21901.4 1484.57 1545.22 30754.9 29793.5 E_103x_SLD_q=1_69 20293 1847.62 757.703 37960 11745.5	SLE_qp_gr3_temp59	20114.2	0	54.9252	0	1277.01
E_103y_SLV_q=1.5_61 20650.4 989.66 3099.17 20445.9 64977.5 E_103z_SLV_q=1.5_62 21901.4 989.66 1124.39 20445.9 20201.5 E_103x_SLV_q=1.36_63 20650.4 3616.8 1209.02 74968.4 22120.5 E_103y_SLV_q=1.36_64 20650.4 1088.18 3381.28 22490.5 71373.5 E_103z_SLV_q=1.36_65 21901.4 1088.18 1209.02 22490.5 22120.5 E_103y_SLV_q=1_66 20650.4 4938.1 1545.22 102516 29793.5 E_103z_SLV_q=1_68 21901.4 1484.57 4501.96 30754.9 96950 E_103x_SLD_q=1_68 21901.4 1484.57 1545.22 30754.9 29793.5 E_103x_SLD_q=1_69 20293 1847.62 757.703 37960 11745.5						
E_103z_SLV_q=1.5_62 21901.4 989.66 1124.39 20445.9 20201. E_103x_SLV_q=1.36_63 20650.4 3616.8 1209.02 74968.4 22120. E_103y_SLV_q=1.36_64 20650.4 1088.18 3381.28 22490.5 71373.9 E_103z_SLV_q=1.36_65 21901.4 1088.18 1209.02 22490.5 22120. E_103x_SLV_q=1_66 20650.4 4938.1 1545.22 102516 29793. E_103z_SLV_q=1_67 20650.4 1484.57 4501.96 30754.9 96950 E_103z_SLV_q=1_68 21901.4 1484.57 1545.22 30754.9 29793. E_103x_SLD_q=1_69 20293 1847.62 757.703 37960 11745.	E_103x_SLV_q=1.5_60	20650.4	3288.41	1124.39	68153.1	20201.5
E_103x_SLV_q=1.36_63 20650.4 3616.8 1209.02 74968.4 22120 E_103y_SLV_q=1.36_64 20650.4 1088.18 3381.28 22490.5 71373.9 E_103z_SLV_q=1.36_65 21901.4 1088.18 1209.02 22490.5 22120 E_103x_SLV_q=1_66 20650.4 4938.1 1545.22 102516 29793 E_103z_SLV_q=1_67 20650.4 1484.57 4501.96 30754.9 96950 E_103z_SLV_q=1_68 21901.4 1484.57 1545.22 30754.9 29793 E_103x_SLD_q=1_69 20293 1847.62 757.703 37960 11745	E_103y_SLV_q=1.5_61	20650.4	989.66	3099.17	20445.9	64977.4
E_103y_SLV_q=1.36_64 20650.4 1088.18 3381.28 22490.5 71373.3 E_103z_SLV_q=1.36_65 21901.4 1088.18 1209.02 22490.5 22120.3 E_103x_SLV_q=1_66 20650.4 4938.1 1545.22 102516 29793.3 E_103y_SLV_q=1_67 20650.4 1484.57 4501.96 30754.9 96950 E_103z_SLV_q=1_68 21901.4 1484.57 1545.22 30754.9 29793.3 E_103x_SLD_q=1_69 20293 1847.62 757.703 37960 11745.3	E_103z_SLV_q=1.5_62	21901.4	989.66	1124.39	20445.9	20201.5
E_103y_SLV_q=1.36_64 20650.4 1088.18 3381.28 22490.5 71373.3 E_103z_SLV_q=1.36_65 21901.4 1088.18 1209.02 22490.5 22120.3 E_103x_SLV_q=1_66 20650.4 4938.1 1545.22 102516 29793.3 E_103y_SLV_q=1_67 20650.4 1484.57 4501.96 30754.9 96950 E_103z_SLV_q=1_68 21901.4 1484.57 1545.22 30754.9 29793.3 E_103x_SLD_q=1_69 20293 1847.62 757.703 37960 11745.3	F 103x SIV g=1.36.63	20650.4	3616.8	1209.02	74968 4	22120.5
E_103z_SLV_q=1.36_65 21901.4 1088.18 1209.02 22490.5 22120 E_103x_SLV_q=1_66 20650.4 4938.1 1545.22 102516 29793 E_103y_SLV_q=1_67 20650.4 1484.57 4501.96 30754.9 96950 E_103z_SLV_q=1_68 21901.4 1484.57 1545.22 30754.9 29793 E_103x_SLD_q=1_69 20293 1847.62 757.703 37960 11745	-					
E_103x_SLV_q=1_66 20650.4 4938.1 1545.22 102516 29793 E_103y_SLV_q=1_67 20650.4 1484.57 4501.96 30754.9 96950 E_103z_SLV_q=1_68 21901.4 1484.57 1545.22 30754.9 29793 E_103x_SLD_q=1_69 20293 1847.62 757.703 37960 11745						
E_103y_SLV_q=1_67 20650.4 1484.57 4501.96 30754.9 96950 E_103z_SLV_q=1_68 21901.4 1484.57 1545.22 30754.9 29793.3 E_103x_SLD_q=1_69 20293 1847.62 757.703 37960 11745.3		21701.7	1000.10	1207.02	22770.3	22120.3
E_103y_SLV_q=1_67 20650.4 1484.57 4501.96 30754.9 96950 E_103z_SLV_q=1_68 21901.4 1484.57 1545.22 30754.9 29793.3 E_103x_SLD_q=1_69 20293 1847.62 757.703 37960 11745.3	E 103x SLV q=1 66	20650.4	4938.1	1545.22	102516	29793.3
E_103z_SLV_q=1_68 21901.4 1484.57 1545.22 30754.9 29793 E_103x_SLD_q=1_69 20293 1847.62 757.703 37960 11745	-					
E_103x_SLD_q=1_69 20293 1847.62 757.703 37960 11745	•					
			1.01.07	10.0.22	5015117	
	E 103x SLD q=1 69	20293	1847.62	757.703	37960	11745.3
E 103v SLD q=1 70 $ 20293 557.423 1876.89 11388 36789.69 36789.69 3678$	E_103y_SLD_q=1_70	20293	557.423	1876.89	11388	36789.9
	•					11745.3

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2 COMMESSA LOTTO
RS3T 30

CODIFICA

D09CL

DOCUMENTO VI1505003

REV. FOGLIO **B** 49 di 114

CARATTERISTICHE SOLLECITAZIONI BASE FONDAZIONE

combinazione					
	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_1	51825.6	837.375	346.484	23121.3	9783.19
A1_SLU_gr2_Scarico_2	45500.4	0	118.776	0	3118.24
A1_SLU_gr3_Fre/avv_3	51825.6	1674.75	346.447	45102.4	9782.03
A1_SLU_gr4_centrif_4	50450.3	1339.8	296.96	36081.9	8345.6
A1_SLU_gr1+vento_5	51825.6	857.538	1350.55	23641.5	40130.4
A1_SLU_gr2+vento_6	45500.4	20.1628	1122.84	520.199	33465.4
A1_SLU_gr3+vento_7	51825.6	1694.91	1350.51	45622.6	40129.2
A1_SLU_gr4+vento_8	50450.3	1359.96	1301.03	36602.1	38692.8
A1_SLU_vento_gr1_9	50450.3	703.505	1911.02	19364	57365.5
A1_SLU_vento_gr2_10	45390.2	33.6046	1765.29	866.999	52990
A1_SLU_vento_gr3_11	50450.3	1373.4	1910.99	36948.9	57364.6
A1_SLU_vento_gr4_12	50450.3	1373.4	1970.4	36948.9	58924.3
SLE_rar_gr1_Treno_14	37518.7	577.5	179.775	15945.7	5193.57
SLE_rar_gr2_Scarico_15	33156.5	0	75.0818	0	1971.15
SLE_rar_gr3_Fre/avv_16	37518.7	1155	179.749	31105.1	5192.77
SLE_rar_gr4_centrif_17	36570.3	924	157.002	24884.1	4500.88
SLE_rar_gr1+vento_18	37518.7	590.942	849.152	16292.5	25425
SLE_rar_gr2+vento_19	33156.5	13.4418	744.459	346.8	22202.6
SLE_rar_gr3+vento_20	37518.7	1168.44	849.126	31451.9	25424.2
SLE_rar_gr4+vento_21	36570.3	937.442	826.379	25230.9	24732.4
SLE_rar_vento_gr1_22	36570.3	484.403	1241.24	13334.6	37396
SLE_rar_vento_gr2_23	33080.5	22.4031	1174.23	577.999	35257.7
SLE_rar_vento_gr3_24	36570.3	946.403	1241.22	25462.1	37395.3
SLE_rar_vento_gr4_25	36570.3	946.403	1272.63	25462.1	38220
SLE_fre_gr1_Treno_27	36570.3	462	104.682	12756.6	3127.48
SLE_fre_gr2_Scarico_28	33080.5	0	48.8454	0	1282.39
SLE_fre_gr3_Fre/avv_29	36570.3	924	104.661	24884.1	3126.83
SLE_fre_gr4_centrif_30	36570.3	924	130.842	24884.1	3814.18
SLE_fre_gr1+vento_31	36570.3	466.481	327.807	12872.2	9871.3
SLE_fre_gr2+vento_32	33080.5	4.48062	271.971	115.6	8026.22
SLE_fre_gr3+vento_33	36570.3	928.481	327.787	24999.7	9870.66
SLE_fre_gr4+vento_34	36570.3	928.481	353.968	24999.7	10558
SLE_fre_vento_gr1_35	32776.5	11.2015	612.739	289	18301.3
SLE_fre_vento_gr2_36	32776.5	11.2015	612.739	289	18301.3

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B50 di 114

				_	
SLE_fre_vento_gr3_37	32776.5	11.2015	612.739	289	18301.3
SLE_fre_vento_gr4_38	32776.5	11.2015	612.739	289	18301.3
SLE_fre_gr1_temp39	32776.5	4.48062	289.036	115.6	8473.97
SLE_fre_gr2_temp40	32776.5	4.48062	289.036	115.6	8473.97
SLE_fre_gr3_temp41	32776.5	4.48062	289.036	115.6	8473.97
SLE_fre_gr3_temp42	32776.5	4.48062	289.036	115.6	8473.97
SLE_qp_gr1_Treno_44	32776.5	0	54.9252	0	1441.79
SLE_qp_gr2_Scarico_45	32776.5	0	54.9252	0	1441.79
SLE_qp_gr3_Fre/avv_46	32776.5	0	54.9252	0	1441.79
SLE_qp_gr4_centrif_47	32776.5	0	54.9252	0	1441.79
SLE_qp_gr1+vento_48	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_gr2+vento_49	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_gr3+vento_50	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_gr4+vento_51	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_vento_gr1_52	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_vento_gr2_53	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_vento_gr3_54	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_vento_gr4_55	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_gr1_temp56	32776.5	0	54.9252	0	1441.79
SLE_qp_gr2_temp57	32776.5	0	54.9252	0	1441.79
SLE_qp_gr3_temp58	32776.5	0	54.9252	0	1441.79
SLE_qp_gr3_temp59	32776.5	0	54.9252	0	1441.79
E_103x_SLV_q=1.5_60	33457.1	4608.22	1520.33	81977.8	24762.5
E_103y_SLV_q=1.5_61	33457.1	2309.47	3495.11	27374.3	75462.7
E_103z_SLV_q=1.5_62	35045.1	2309.47	1520.33	27374.3	24762.5
E_103x_SLV_q=1.36_63	33457.1	4936.61	1604.96	89778.3	26935.4
E_103y_SLV_q=1.36_64	33457.1	2407.98	3777.22	29714.5	82705.6
E_103z_SLV_q=1.36_65	35045.1	2407.98	1604.96	29714.5	26935.4
E_103x_SLV_q=1_66	33457.1	6257.91	1941.17	121290	35616.8
E_103y_SLV_q=1_67	33457.1	2804.37	4897.9	39168	111644
E_103z_SLV_q=1_68	35045.1	2804.37	1941.17	39168	35616.8
E_103x_SLD_q=1_69	33219.2	2508.13	955.856	45484.4	14612.9
E_103y_SLD_q=1_70	33219.2	1217.93	2075.04	15041.8	43015
E_103z_SLD_q=1_71	34252.2	1217.93	955.856	15041.8	14612.9

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1505003	В	51 di 114

6.1.2 Configurazione 2

CARATTERISTICHE SOLLECITAZIONI IN TESTA PILA							
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv		
A1_SLU_gr1_Treno_72	17691.7	837.375	241.515	5129.32	505.085		
A1_SLU_gr2_Scarico_73	14282.3	0	118.776	0	53.8106		
A1_SLU_gr3_Fre/avv_74	17691.7	1674.75	241.478	5506.14	504.888		
A1_SLU_gr4_centrif_75	16899.6	1339.8	212.985	4404.91	412.966		
A1_SLU_gr1+vento_76	17691.7	857.538	1245.58	5129.32	4947.41		
A1_SLU_gr2+vento_77	14282.3	20.1628	1122.84	0	4496.13		
A1_SLU_gr3+vento_78	17691.7	1694.91	1245.54	5506.14	4947.21		
A1_SLU_gr4+vento_79	16899.6	1359.96	1217.05	4404.91	4855.29		
A1_SLU_vento_gr1_80	16899.6	703.505	1843.84	4103.46	7797.67		
A1_SLU_vento_gr2_81	14172.1	33.6046	1765.29	0	7445.49		
A1_SLU_vento_gr3_82	16899.6	1373.4	1843.81	4404.91	7797.51		
A1_SLU_vento_gr4_83	16899.6	1373.4	1886.43	4404.91	7816.83		
SLE_rar_gr1_Treno_85	12383.3	577.5	131.514	3537.47	332.563		
SLE_rar_gr2_Scarico_86	10032	0	75.0818	0	34.036		
SLE_rar_gr3_Fre/avv_87	12383.3	1155	131.488	3797.34	332.427		
SLE_rar_gr4_centrif_88	11837.1	924	118.393	3037.87	271.982		
SLE_rar_gr1+vento_89	12383.3	590.942	800.891	3537.47	3294.11		
SLE_rar_gr2+vento_90	10032	13.4418	744.459	0	2995.58		
SLE_rar_gr3+vento_91	12383.3	1168.44	800.865	3797.34	3293.97		
SLE_rar_gr4+vento_92	11837.1	937.442	787.77	3037.87	3233.53		
SLE_rar_vento_gr1_93	11837.1	484.403	1210.35	2829.97	5197.24		
SLE_rar_vento_gr2_94	9956	22.4031	1174.23	0	4962.48		
SLE_rar_vento_gr3_95	11837.1	946.403	1210.33	3037.87	5197.13		
SLE_rar_vento_gr4_96	11837.1	946.403	1234.02	3037.87	5207.89		
SLE_fre_gr1_Treno_98	11837.1	462	78.9424	2829.97	254.229		
SLE_fre_gr2_Scarico_99	9956	0	48.8454	0	22.1798		
SLE_fre_gr3_Fre/avv_100	11837.1	924	78.9218	3037.87	254.121		
SLE_fre_gr4_centrif_101	11837.1	924	98.6677	3037.87	263.106		
SLE_fre_gr1+vento_102	11837.1	466.481	302.068	2829.97	1241.41		
SLE_fre_gr2+vento_103	9956	4.48062	271.971	0	1009.36		
SLE_fre_gr3+vento_104	11837.1	928.481	302.047	3037.87	1241.3		
SLE_fre_gr4+vento_105	11837.1	928.481	321.793	3037.87	1250.29		

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B52 di 114

SLE_fre_vento_gr1_106	9652	11.2015	612.739	0	2492.67
SLE_fre_vento_gr2_107	9652	11.2015	612.739	0	2492.67
SLE_fre_vento_gr3_108	9652	11.2015	612.739	0	2492.67
SLE_fre_vento_gr4_109	9652	11.2015	612.739	0	2492.67
SLE_fre_gr1_temp110	9652	4.48062	289.036	0	1016.84
SLE_fre_gr2_temp111	9652	4.48062	289.036	0	1016.84
SLE_fre_gr3_temp112	9652	4.48062	289.036	0	1016.84
SLE_fre_gr3_temp113	9652	4.48062	289.036	0	1016.84
SLE_qp_gr1_Treno_115	9652	0	54.9252	0	24.7163
SLE_qp_gr2_Scarico_116	9652	0	54.9252	0	24.7163
SLE_qp_gr3_Fre/avv_117	9652	0	54.9252	0	24.7163
SLE_qp_gr4_centrif_118	9652	0	54.9252	0	24.7163
SLE_qp_gr1+vento_119	9652	4.48062	278.051	0	1011.9
SLE_qp_gr2+vento_120	9652	4.48062	278.051	0	1011.9
SLE_qp_gr3+vento_121	9652	4.48062	278.051	0	1011.9
SLE_qp_gr4+vento_122	9652	4.48062	278.051	0	1011.9
SLE_qp_vento_gr1_123	9652	4.48062	278.051	0	1011.9
SLE_qp_vento_gr2_124	9652	4.48062	278.051	0	1011.9
SLE_qp_vento_gr3_125	9652	4.48062	278.051	0	1011.9
SLE_qp_vento_gr4_126	9652	4.48062	278.051	0	1011.9
SLE_qp_gr1_temp127	9652	0	54.9252	0	24.7163
SLE_qp_gr2_temp128	9652	0	54.9252	0	24.7163
SLE_qp_gr3_temp129	9652	0	54.9252	0	24.7163
SLE_qp_gr3_temp130	9652	0	54.9252	0	24.7163
E_103x_SLV_q=1.5_131	10188.1	3288.41	1124.39	0	0
E_103y_SLV_q=1.5_132	10188.1	989.66	3099.17	0	0
E_103z_SLV_q=1.5_133	11439.1	989.66	1124.39	0	0
E_103x_SLV_q=1.36_134	10188.1	3616.8	1209.02	0	0
E_103y_SLV_q=1.36_135	10188.1	1088.18	3381.28	0	0
E_103z_SLV_q=1.36_136	11439.1	1088.18	1209.02	0	0
E_103x_SLV_q=1_137	10188.1	4938.1	1545.22	0	0
E_103y_SLV_q=1_138	10188.1	1484.57	4501.96	0	0
E_103z_SLV_q=1_139	11439.1	1484.57	1545.22	0	0
E_103x_SLD_q=1_140	10265.9	1820.94	728.023	0	0
E_103y_SLD_q=1_141	10265.9	549.42	1777.96	0	0
E_103z_SLD_q=1_142	11698.2	549.42	728.023	0	0

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL VI1505003 B 53 di 114

CARATTERISTIC	CARATTERISTICHE SOLLECITAZIONI BASE PILA							
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv			
A1_SLU_gr1_Treno_72	31815.7	837.375	241.515	24221.5	6011.64			
A1_SLU_gr2_Scarico_73	28406.3	0	118.776	0	2761.91			
A1_SLU_gr3_Fre/avv_74	31815.7	1674.75	241.478	43690.4	6010.59			
A1_SLU_gr4_centrif_75	31023.7	1339.8	212.985	34952.4	5269.03			
A1_SLU_gr1+vento_76	31815.7	857.538	1245.58	24681.2	33346.6			
A1_SLU_gr2+vento_77	28406.3	20.1628	1122.84	459.711	30096.9			
A1_SLU_gr3+vento_78	31815.7	1694.91	1245.54	44150.2	33345.6			
A1_SLU_gr4+vento_79	31023.7	1359.96	1217.05	35412.1	32604			
A1_SLU_vento_gr1_80	31023.7	703.505	1843.84	20143.4	49837.3			
A1_SLU_vento_gr2_81	28296.1	33.6046	1765.29	766.185	47694.1			
A1_SLU_vento_gr3_82	31023.7	1373.4	1843.81	35718.5	49836.4			
A1_SLU_vento_gr4_83	31023.7	1373.4	1886.43	35718.5	50827.4			
SLE_rar_gr1_Treno_85	22845.6	577.5	131.514	16704.5	3331.07			
SLE_rar_gr2_Scarico_86	20494.2	0	75.0818	0	1745.9			
SLE_rar_gr3_Fre/avv_87	22845.6	1155	131.488	30131.3	3330.35			
SLE_rar_gr4_centrif_88	22299.3	924	118.393	24105.1	2971.34			
SLE_rar_gr1+vento_89	22845.6	590.942	800.891	17010.9	21554.4			
SLE_rar_gr2+vento_90	20494.2	13.4418	744.459	306.474	19969.2			
SLE_rar_gr3+vento_91	22845.6	1168.44	800.865	30437.8	21553.7			
SLE_rar_gr4+vento_92	22299.3	937.442	787.77	24411.5	21194.7			
SLE_rar_vento_gr1_93	22299.3	484.403	1210.35	13874.4	32793.2			
SLE_rar_vento_gr2_94	20418.2	22.4031	1174.23	510.79	31735			
SLE_rar_vento_gr3_95	22299.3	946.403	1210.33	24615.9	32792.7			
SLE_rar_vento_gr4_96	22299.3	946.403	1234.02	24615.9	33343.6			
SLE_fre_gr1_Treno_98	22299.3	462	78.9424	13363.6	2054.12			
SLE_fre_gr2_Scarico_99	20418.2	0	48.8454	0	1135.86			
SLE_fre_gr3_Fre/avv_100	22299.3	924	78.9218	24105.1	2053.54			
SLE_fre_gr4_centrif_101	22299.3	924	98.6677	24105.1	2512.73			
SLE_fre_gr1+vento_102	22299.3	466.481	302.068	13465.7	8128.56			
SLE_fre_gr2+vento_103	20418.2	4.48062	271.971	102.158	7210.3			
SLE_fre_gr3+vento_104	22299.3	928.481	302.047	24207.2	8127.98			
SLE_fre_gr4+vento_105	22299.3	928.481	321.793	24207.2	8587.18			
SLE_fre_vento_gr1_106	20114.2	11.2015	612.739	255.395	16463.1			

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B54 di 114

SLE_fre_vento_gr2_107	20114.2	11.2015	612.739	255.395	16463.1
SLE_fre_vento_gr3_108	20114.2	11.2015	612.739	255.395	16463.1
SLE_fre_vento_gr4_109	20114.2	11.2015	612.739	255.395	16463.1
SLE_fre_gr1_temp110	20114.2	4.48062	289.036	102.158	7606.86
SLE_fre_gr2_temp111	20114.2	4.48062	289.036	102.158	7606.86
SLE_fre_gr3_temp112	20114.2	4.48062	289.036	102.158	7606.86
SLE_fre_gr3_temp113	20114.2	4.48062	289.036	102.158	7606.86
SLE_qp_gr1_Treno_115	20114.2	0	54.9252	0	1277.01
SLE_qp_gr2_Scarico_116	20114.2	0	54.9252	0	1277.01
SLE_qp_gr3_Fre/avv_117	20114.2	0	54.9252	0	1277.01
SLE_qp_gr4_centrif_118	20114.2	0	54.9252	0	1277.01
SLE_qp_gr1+vento_119	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr2+vento_120	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr3+vento_121	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr4+vento_122	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_vento_gr1_123	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_vento_gr2_124	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_vento_gr3_125	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_vento_gr4_126	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr1_temp127	20114.2	0	54.9252	0	1277.01
SLE_qp_gr2_temp128	20114.2	0	54.9252	0	1277.01
SLE_qp_gr3_temp129	20114.2	0	54.9252	0	1277.01
SLE_qp_gr3_temp130	20114.2	0	54.9252	0	1277.01
E_103x_SLV_q=1.5_131	20650.4	3288.41	1124.39	68153.1	20201.5
E_103y_SLV_q=1.5_132	20650.4	989.66	3099.17	20445.9	64977.4
E_103z_SLV_q=1.5_133	21901.4	989.66	1124.39	20445.9	20201.5
E_103x_SLV_q=1.36_134	20650.4	3616.8	1209.02	74968.4	22120.5
E_103y_SLV_q=1.36_135	20650.4	1088.18	3381.28	22490.5	71373.9
E_103z_SLV_q=1.36_136	21901.4	1088.18	1209.02	22490.5	22120.5
E_103x_SLV_q=1_137	20650.4	4938.1	1545.22	102516	29793.3
E_103y_SLV_q=1_138	20650.4	1484.57	4501.96	30754.9	96950
E_103z_SLV_q=1_139	21901.4	1484.57	1545.22	30754.9	29793.3
E_103x_SLD_q=1_140	20728.1	1820.94	728.023	42327.6	12656.5
E_103y_SLD_q=1_141	20728.1	549.42	1777.96	12698.3	39827.1
E_103z_SLD_q=1_142	22160.4	549.42	728.023	12698.3	12656.5

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B55 di 114

CARATTERISTICHE S	OLLECI	ΓAZION	BASE F	ONDAZ	IONE
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_72	48909.8	837.375	241.515	26733.6	6736.18
A1_SLU_gr2_Scarico_73	45500.4	0	118.776	0	3118.24
A1_SLU_gr3_Fre/avv_74	48909.8	1674.75	241.478	48714.7	6735.02
A1_SLU_gr4_centrif_75	48117.7	1339.8	212.985	38971.8	5907.99
A1_SLU_gr1+vento_76	48909.8	857.538	1245.58	27253.8	37083.4
A1_SLU_gr2+vento_77	45500.4	20.1628	1122.84	520.199	33465.4
A1_SLU_gr3+vento_78	48909.8	1694.91	1245.54	49234.9	37082.2
A1_SLU_gr4+vento_79	48117.7	1359.96	1217.05	39492	36255.2
A1_SLU_vento_gr1_80	48117.7	703.505	1843.84	22253.9	55368.8
A1_SLU_vento_gr2_81	45390.2	33.6046	1765.29	866.999	52990
A1_SLU_vento_gr3_82	48117.7	1373.4	1843.81	39838.8	55367.9
A1_SLU_vento_gr4_83	48117.7	1373.4	1886.43	39838.8	56486.7
SLE_rar_gr1_Treno_85	35507.8	577.5	131.514	18437	3725.61
SLE_rar_gr2_Scarico_86	33156.5	0	75.0818	0	1971.15
SLE_rar_gr3_Fre/avv_87	35507.8	1155	131.488	33596.3	3724.81
SLE_rar_gr4_centrif_88	34961.6	924	118.393	26877.1	3326.52
SLE_rar_gr1+vento_89	35507.8	590.942	800.891	18783.8	23957.1
SLE_rar_gr2+vento_90	33156.5	13.4418	744.459	346.8	22202.6
SLE_rar_gr3+vento_91	35507.8	1168.44	800.865	33943.1	23956.3
SLE_rar_gr4+vento_92	34961.6	937.442	787.77	27223.9	23558
SLE_rar_vento_gr1_93	34961.6	484.403	1210.35	15327.6	36424.3
SLE_rar_vento_gr2_94	33080.5	22.4031	1174.23	577.999	35257.7
SLE_rar_vento_gr3_95	34961.6	946.403	1210.33	27455.1	36423.7
SLE_rar_vento_gr4_96	34961.6	946.403	1234.02	27455.1	37045.6
SLE_fre_gr1_Treno_98	34961.6	462	78.9424	14749.6	2290.94
SLE_fre_gr2_Scarico_99	33080.5	0	48.8454	0	1282.39
SLE_fre_gr3_Fre/avv_100	34961.6	924	78.9218	26877.1	2290.3
SLE_fre_gr4_centrif_101	34961.6	924	98.6677	26877.1	2808.73
SLE_fre_gr1+vento_102	34961.6	466.481	302.068	14865.2	9034.77
SLE_fre_gr2+vento_103	33080.5	4.48062	271.971	115.6	8026.22
SLE_fre_gr3+vento_104	34961.6	928.481	302.047	26992.7	9034.13
SLE_fre_gr4+vento_105	34961.6	928.481	321.793	26992.7	9552.56
SLE_fre_vento_gr1_106	32776.5	11.2015	612.739	289	18301.3

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B56 di 114

SLE_fre_vento_gr2_107	32776.5	11.2015	612.739	289	18301.3
SLE_fre_vento_gr3_108	32776.5	11.2015	612.739	289	18301.3
SLE_fre_vento_gr4_109	32776.5	11.2015	612.739	289	18301.3
SLE_fre_gr1_temp110	32776.5	4.48062	289.036	115.6	8473.97
SLE_fre_gr2_temp111	32776.5	4.48062	289.036	115.6	8473.97
SLE_fre_gr3_temp112	32776.5	4.48062	289.036	115.6	8473.97
SLE_fre_gr3_temp113	32776.5	4.48062	289.036	115.6	8473.97
SLE_qp_gr1_Treno_115	32776.5	0	54.9252	0	1441.79
SLE_qp_gr2_Scarico_116	32776.5	0	54.9252	0	1441.79
SLE_qp_gr3_Fre/avv_117	32776.5	0	54.9252	0	1441.79
SLE_qp_gr4_centrif_118	32776.5	0	54.9252	0	1441.79
SLE_qp_gr1+vento_119	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_gr2+vento_120	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_gr3+vento_121	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_gr4+vento_122	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_vento_gr1_123	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_vento_gr2_124	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_vento_gr3_125	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_vento_gr4_126	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_gr1_temp127	32776.5	0	54.9252	0	1441.79
SLE_qp_gr2_temp128	32776.5	0	54.9252	0	1441.79
SLE_qp_gr3_temp129	32776.5	0	54.9252	0	1441.79
SLE_qp_gr3_temp130	32776.5	0	54.9252	0	1441.79
E_103x_SLV_q=1.5_131	33457.1	4608.22	1520.33	81977.8	24762.5
E_103y_SLV_q=1.5_132	33457.1	2309.47	3495.11	27374.3	75462.7
E_103z_SLV_q=1.5_133	35045.1	2309.47	1520.33	27374.3	24762.5
E_103x_SLV_q=1.36_134	33457.1	4936.61	1604.96	89778.3	26935.4
E_103y_SLV_q=1.36_135	33457.1	2407.98	3777.22	29714.5	82705.6
E_103z_SLV_q=1.36_136	35045.1	2407.98	1604.96	29714.5	26935.4
E_103x_SLV_q=1_137	33457.1	6257.91	1941.17	121290	35616.8
E_103y_SLV_q=1_138	33457.1	2804.37	4897.9	39168	111644
E_103z_SLV_q=1_139	35045.1	2804.37	1941.17	39168	35616.8
E_103x_SLD_q=1_140	33654.3	2481.45	926.176	49772	15435
E_103y_SLD_q=1_141	33654.3	1209.93	1976.11	16328.1	45755.4
	33031.3	1207.75		100-011	13733.1

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL VI1505003 B 57 di 114

6.1.3 Configurazione 3

CARATTERISTICH	E SOLLE	CITAZIO	ONI IN T	ESTA PI	LA
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_143	20607.5	837.375	346.484	1517.02	843.901
A1_SLU_gr2_Scarico_144	14282.3	0	118.776	0	53.8106
A1_SLU_gr3_Fre/avv_145	20607.5	1674.75	346.447	1893.84	843.704
A1_SLU_gr4_centrif_146	19232.3	1339.8	296.96	1515.07	684.019
A1_SLU_gr1+vento_147	20607.5	857.538	1350.55	1517.02	5286.22
A1_SLU_gr2+vento_148	14282.3	20.1628	1122.84	0	4496.13
A1_SLU_gr3+vento_149	20607.5	1694.91	1350.51	1893.84	5286.02
A1_SLU_gr4+vento_150	19232.3	1359.96	1301.03	1515.07	5126.34
A1_SLU_vento_gr1_151	19232.3	703.505	1911.02	1213.62	8061.16
A1_SLU_vento_gr2_152	14172.1	33.6046	1765.29	0	7445.49
A1_SLU_vento_gr3_153	19232.3	1373.4	1910.99	1515.07	8061.01
A1_SLU_vento_gr4_154	19232.3	1373.4	1970.4	1515.07	8087.89
SLE_rar_gr1_Treno_156	14394.2	577.5	179.775	1046.22	555.37
SLE_rar_gr2_Scarico_157	10032	0	75.0818	0	34.036
SLE_rar_gr3_Fre/avv_158	14394.2	1155	179.749	1306.1	555.234
SLE_rar_gr4_centrif_159	13445.8	924	157.002	1044.88	450.228
SLE_rar_gr1+vento_160	14394.2	590.942	849.152	1046.22	3516.92
SLE_rar_gr2+vento_161	10032	13.4418	744.459	0	2995.58
SLE_rar_gr3+vento_162	14394.2	1168.44	849.126	1306.1	3516.78
SLE_rar_gr4+vento_163	13445.8	937.442	826.379	1044.88	3411.77
SLE_rar_vento_gr1_164	13445.8	484.403	1241.24	836.977	5372.01
SLE_rar_vento_gr2_165	9956	22.4031	1174.23	0	4962.48
SLE_rar_vento_gr3_166	13445.8	946.403	1241.22	1044.88	5371.9
SLE_rar_vento_gr4_167	13445.8	946.403	1272.63	1044.88	5386.14
SLE_fre_gr1_Treno_169	13445.8	462	104.682	836.977	426.684
SLE_fre_gr2_Scarico_170	9956	0	48.8454	0	22.1798
SLE_fre_gr3_Fre/avv_171	13445.8	924	104.661	1044.88	426.575
SLE_fre_gr4_centrif_172	13445.8	924	130.842	1044.88	438.456
SLE_fre_gr1+vento_173	13445.8	466.481	327.807	836.977	1413.87
SLE_fre_gr2+vento_174	9956	4.48062	271.971	0	1009.36
SLE_fre_gr3+vento_175	13445.8	928.481	327.787	1044.88	1413.76
SLE_fre_gr4+vento_176	13445.8	928.481	353.968	1044.88	1425.64
SLE_fre_vento_gr1_177	9652	11.2015	612.739	0	2492.67

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1505003 B 58 di 114

SLE_fre_vento_gr3_179 9652 11.2015 612.739 0 2 SLE_fre_vento_gr4_180 9652 11.2015 612.739 0 2 SLE_fre_gr1_temp181 9652 4.48062 289.036 0 1 SLE_fre_gr2_temp182 9652 4.48062 289.036 0 1 SLE_fre_gr3_temp183 9652 4.48062 289.036 0 1 SLE_fre_gr3_temp184 9652 4.48062 289.036 0 1 SLE_qp_gr1_Treno_186 9652 0 54.9252 0 2 SLE_qp_gr2_Scarico_187 9652 0 54.9252 0 2 SLE_qp_gr3_Fre/avv_188 9652 0 54.9252 0 2	2492.67 2492.67 2492.67 1016.84 1016.84 1016.84 1016.84
SLE_fre_vento_gr4_180 9652 11.2015 612.739 0 2 SLE_fre_gr1_temp181 9652 4.48062 289.036 0 1 SLE_fre_gr2_temp182 9652 4.48062 289.036 0 1 SLE_fre_gr3_temp183 9652 4.48062 289.036 0 1 SLE_fre_gr3_temp184 9652 4.48062 289.036 0 1 SLE_qp_gr1_Treno_186 9652 0 54.9252 0 2 SLE_qp_gr2_Scarico_187 9652 0 54.9252 0 2 SLE_qp_gr3_Fre/avv_188 9652 0 54.9252 0 2	2492.67 1016.84 1016.84 1016.84 1016.84 24.7163
SLE_fre_gr1_temp181 9652 4.48062 289.036 0 1 SLE_fre_gr2_temp182 9652 4.48062 289.036 0 1 SLE_fre_gr3_temp183 9652 4.48062 289.036 0 1 SLE_fre_gr3_temp184 9652 4.48062 289.036 0 1 SLE_qp_gr1_Treno_186 9652 0 54.9252 0 2 SLE_qp_gr2_Scarico_187 9652 0 54.9252 0 2 SLE_qp_gr3_Fre/avv_188 9652 0 54.9252 0 2	1016.84 1016.84 1016.84 1016.84 24.7163
SLE_fre_gr2_temp182 9652 4.48062 289.036 0 1 SLE_fre_gr3_temp183 9652 4.48062 289.036 0 1 SLE_fre_gr3_temp184 9652 4.48062 289.036 0 1 SLE_qp_gr1_Treno_186 9652 0 54.9252 0 2 SLE_qp_gr2_Scarico_187 9652 0 54.9252 0 2 SLE_qp_gr3_Fre/avv_188 9652 0 54.9252 0 2	1016.84 1016.84 1016.84 24.7163
SLE_fre_gr3_temp183 9652 4.48062 289.036 0 1 SLE_fre_gr3_temp184 9652 4.48062 289.036 0 1 SLE_qp_gr1_Treno_186 9652 0 54.9252 0 2 SLE_qp_gr2_Scarico_187 9652 0 54.9252 0 2 SLE_qp_gr3_Fre/avv_188 9652 0 54.9252 0 2	1016.84 1016.84 24.7163
SLE_fre_gr3_temp184 9652 4.48062 289.036 0 1 SLE_qp_gr1_Treno_186 9652 0 54.9252 0 2 SLE_qp_gr2_Scarico_187 9652 0 54.9252 0 2 SLE_qp_gr3_Fre/avv_188 9652 0 54.9252 0 2	1016.84 24.7163
SLE_qp_gr1_Treno_186 9652 0 54.9252 0 2 SLE_qp_gr2_Scarico_187 9652 0 54.9252 0 2 SLE_qp_gr3_Fre/avv_188 9652 0 54.9252 0 2	24.7163
SLE_qp_gr2_Scarico_187 9652 0 54.9252 0 2 SLE_qp_gr3_Fre/avv_188 9652 0 54.9252 0 2	
SLE_qp_gr2_Scarico_187 9652 0 54.9252 0 2 SLE_qp_gr3_Fre/avv_188 9652 0 54.9252 0 2	
SLE_qp_gr3_Fre/avv_188 9652 0 54.9252 0 2	24 71 62
n e	24.7163
SLE on ord centrif 180 0652 0 54,0252 0	24.7163
SLE_qp_gr4_centin_roy	24.7163
	1011.9
SLE_qp_gr2+vento_191 9652 4.48062 278.051 0	1011.9
SLE_qp_gr3+vento_192 9652 4.48062 278.051 0	1011.9
SLE_qp_gr4+vento_193 9652 4.48062 278.051 0	1011.9
SLE_qp_vento_gr1_194 9652 4.48062 278.051 0	1011.9
SLE_qp_vento_gr2_195 9652 4.48062 278.051 0	1011.9
SLE_qp_vento_gr3_196 9652 4.48062 278.051 0	1011.9
	1011.9
SLE_qp_gr1_temp198 9652 0 54.9252 0 2	24.7163
SLE_qp_gr2_temp199 9652 0 54.9252 0 2	24.7163
SLE_qp_gr3_temp200 9652 0 54.9252 0 2	24.7163
SLE_qp_gr3_temp201 9652 0 54.9252 0 2	24.7163
E_103x_SLV_q=1.5_202	0
E_103y_SLV_q=1.5_203	0
E_103z_SLV_q=1.5_204	0
E_103x_SLV_q=1.36_205	0
E_103y_SLV_q=1.36_206	0
E_103z_SLV_q=1.36_207	0
E_103x_SLV_q=1_208	0
E_103y_SLV_q=1_209	0
E_103z_SLV_q=1_210	0
E_103x_SLD_q=1_211	0
E_103y_SLD_q=1_212	0
E_103z_SLD_q=1_213	0

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL VI1505003 B 59 di 114

CARATTERISTICHE SOLLECITAZIONI BASE PILA							
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv		
A1_SLU_gr1_Treno_143	34731.5	837.375	346.484	20609.2	8743.74		
A1_SLU_gr2_Scarico_144	28406.3	0	118.776	0	2761.91		
A1_SLU_gr3_Fre/avv_145	34731.5	1674.75	346.447	40078.1	8742.69		
A1_SLU_gr4_centrif_146	33356.3	1339.8	296.96	32062.5	7454.72		
A1_SLU_gr1+vento_147	34731.5	857.538	1350.55	21068.9	36078.7		
A1_SLU_gr2+vento_148	28406.3	20.1628	1122.84	459.711	30096.9		
A1_SLU_gr3+vento_149	34731.5	1694.91	1350.51	40537.9	36077.7		
A1_SLU_gr4+vento_150	33356.3	1359.96	1301.03	32522.2	34789.7		
A1_SLU_vento_gr1_151	33356.3	703.505	1911.02	17253.5	51632.5		
A1_SLU_vento_gr2_152	28296.1	33.6046	1765.29	766.185	47694.1		
A1_SLU_vento_gr3_153	33356.3	1373.4	1910.99	32828.7	51631.6		
A1_SLU_vento_gr4_154	33356.3	1373.4	1970.4	32828.7	53013.1		
SLE_rar_gr1_Treno_156	24856.5	577.5	179.775	14213.2	4654.24		
SLE_rar_gr2_Scarico_157	20494.2	0	75.0818	0	1745.9		
SLE_rar_gr3_Fre/avv_158	24856.5	1155	179.749	27640.1	4653.52		
SLE_rar_gr4_centrif_159	23908	924	157.002	22112.1	4029.88		
SLE_rar_gr1+vento_160	24856.5	590.942	849.152	14519.7	22877.6		
SLE_rar_gr2+vento_161	20494.2	13.4418	744.459	306.474	19969.2		
SLE_rar_gr3+vento_162	24856.5	1168.44	849.126	27946.6	22876.9		
SLE_rar_gr4+vento_163	23908	937.442	826.379	22418.6	22253.2		
SLE_rar_vento_gr1_164	23908	484.403	1241.24	11881.4	33672.2		
SLE_rar_vento_gr2_165	20418.2	22.4031	1174.23	510.79	31735		
SLE_rar_vento_gr3_166	23908	946.403	1241.22	22622.9	33671.7		
SLE_rar_vento_gr4_167	23908	946.403	1272.63	22622.9	34402.1		
SLE_fre_gr1_Treno_169	23908	462	104.682	11370.6	2813.43		
SLE_fre_gr2_Scarico_170	20418.2	0	48.8454	0	1135.86		
SLE_fre_gr3_Fre/avv_171	23908	924	104.661	22112.1	2812.85		
SLE_fre_gr4_centrif_172	23908	924	130.842	22112.1	3421.65		
SLE_fre_gr1+vento_173	23908	466.481	327.807	11472.7	8887.88		
SLE_fre_gr2+vento_174	20418.2	4.48062	271.971	102.158	7210.3		
SLE_fre_gr3+vento_175	23908	928.481	327.787	22214.2	8887.3		
SLE_fre_gr4+vento_176	23908	928.481	353.968	22214.2	9496.1		
SLE_fre_vento_gr1_177	20114.2	11.2015	612.739	255.395	16463.1		

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

FOGLIO

60 di 114

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.Relazione di calcolo Pile – P2RS3T30D09CLVI1505003B

SLE_fre_vento_gr2_178	20114.2	11.2015	612.739	255.395	16463.1
SLE_fre_vento_gr3_179	20114.2	11.2015	612.739	255.395	16463.1
SLE_fre_vento_gr4_180	20114.2	11.2015	612.739	255.395	16463.1
SLE_fre_gr1_temp181	20114.2	4.48062	289.036	102.158	7606.86
SLE_fre_gr2_temp182	20114.2	4.48062	289.036	102.158	7606.86
SLE_fre_gr3_temp183	20114.2	4.48062	289.036	102.158	7606.86
SLE_fre_gr3_temp184	20114.2	4.48062	289.036	102.158	7606.86
SLE_qp_gr1_Treno_186	20114.2	0	54.9252	0	1277.01
SLE_qp_gr2_Scarico_187	20114.2	0	54.9252	0	1277.01
SLE_qp_gr3_Fre/avv_188	20114.2	0	54.9252	0	1277.01
SLE_qp_gr4_centrif_189	20114.2	0	54.9252	0	1277.01
SLE_qp_gr1+vento_190	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr2+vento_191	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr3+vento_192	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr4+vento_193	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_vento_gr1_194	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_vento_gr2_195	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_vento_gr3_196	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_vento_gr4_197	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr1_temp198	20114.2	0	54.9252	0	1277.01
SLE_qp_gr2_temp199	20114.2	0	54.9252	0	1277.01
SLE_qp_gr3_temp200	20114.2	0	54.9252	0	1277.01
SLE_qp_gr3_temp201	20114.2	0	54.9252	0	1277.01
E_103x_SLV_q=1.5_202	20650.4	3288.41	1124.39	68153.1	20201.5
E_103y_SLV_q=1.5_203	20650.4	989.66	3099.17	20445.9	64977.4
E_103z_SLV_q=1.5_204	21901.4	989.66	1124.39	20445.9	20201.5
E_103x_SLV_q=1.36_205	20650.4	3616.8	1209.02	74968.4	22120.5
E_103y_SLV_q=1.36_206	20650.4	1088.18	3381.28	22490.5	71373.9
E_103z_SLV_q=1.36_207	21901.4	1088.18	1209.02	22490.5	22120.5
E_103x_SLV_q=1_208	20650.4	4938.1	1545.22	102516	29793.3
E_103y_SLV_q=1_209	20650.4	1484.57	4501.96	30754.9	96950
E_103z_SLV_q=1_210	21901.4	1484.57	1545.22	30754.9	29793.3
E_103x_SLD_q=1_211	20728.1	1820.94	728.023	42327.6	12656.5
E_103y_SLD_q=1_212	20728.1	549.42	1777.96	12698.3	39827.1
E_103z_SLD_q=1_213	22160.4	549.42	728.023	12698.3	12656.5

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1505003 B 61 di 114

CARATTERISTICHE S	OLLECI	ΓAZION	I BASE F	ONDAZI	ONE
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_143	51825.6	837.375	346.484	23121.3	9783.19
A1_SLU_gr2_Scarico_144	45500.4	0	118.776	0	3118.24
A1_SLU_gr3_Fre/avv_145	51825.6	1674.75	346.447	45102.4	9782.03
A1_SLU_gr4_centrif_146	50450.3	1339.8	296.96	36081.9	8345.6
A1_SLU_gr1+vento_147	51825.6	857.538	1350.55	23641.5	40130.4
A1_SLU_gr2+vento_148	45500.4	20.1628	1122.84	520.199	33465.4
A1_SLU_gr3+vento_149	51825.6	1694.91	1350.51	45622.6	40129.2
A1_SLU_gr4+vento_150	50450.3	1359.96	1301.03	36602.1	38692.8
A1_SLU_vento_gr1_151	50450.3	703.505	1911.02	19364	57365.5
A1_SLU_vento_gr2_152	45390.2	33.6046	1765.29	866.999	52990
A1_SLU_vento_gr3_153	50450.3	1373.4	1910.99	36948.9	57364.6
A1_SLU_vento_gr4_154	50450.3	1373.4	1970.4	36948.9	58924.3
SLE_rar_gr1_Treno_156	37518.7	577.5	179.775	15945.7	5193.57
SLE_rar_gr2_Scarico_157	33156.5	0	75.0818	0	1971.15
SLE_rar_gr3_Fre/avv_158	37518.7	1155	179.749	31105.1	5192.77
SLE_rar_gr4_centrif_159	36570.3	924	157.002	24884.1	4500.88
SLE_rar_gr1+vento_160	37518.7	590.942	849.152	16292.5	25425
SLE_rar_gr2+vento_161	33156.5	13.4418	744.459	346.8	22202.6
SLE_rar_gr3+vento_162	37518.7	1168.44	849.126	31451.9	25424.2
SLE_rar_gr4+vento_163	36570.3	937.442	826.379	25230.9	24732.4
SLE_rar_vento_gr1_164	36570.3	484.403	1241.24	13334.6	37396
SLE_rar_vento_gr2_165	33080.5	22.4031	1174.23	577.999	35257.7
SLE_rar_vento_gr3_166	36570.3	946.403	1241.22	25462.1	37395.3
SLE_rar_vento_gr4_167	36570.3	946.403	1272.63	25462.1	38220
SLE_fre_gr1_Treno_169	36570.3	462	104.682	12756.6	3127.48
SLE_fre_gr2_Scarico_170	33080.5	0	48.8454	0	1282.39
SLE_fre_gr3_Fre/avv_171	36570.3	924	104.661	24884.1	3126.83
SLE_fre_gr4_centrif_172	36570.3	924	130.842	24884.1	3814.18
SLE_fre_gr1+vento_173	36570.3	466.481	327.807	12872.2	9871.3
SLE_fre_gr2+vento_174	33080.5	4.48062	271.971	115.6	8026.22
SLE_fre_gr3+vento_175	36570.3	928.481	327.787	24999.7	9870.66
SLE_fre_gr4+vento_176	36570.3	928.481	353.968	24999.7	10558
SLE_fre_vento_gr1_177	32776.5	11.2015	612.739	289	18301.3

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B62 di 114

SLE_fre_vento_gr2_178	32776.5	11.2015	612.739	289	18301.3
SLE_fre_vento_gr3_179	32776.5	11.2015	612.739	289	18301.3
SLE_fre_vento_gr4_180	32776.5	11.2015	612.739	289	18301.3
SLE_fre_gr1_temp181	32776.5	4.48062	289.036	115.6	8473.97
SLE_fre_gr2_temp182	32776.5	4.48062	289.036	115.6	8473.97
SLE_fre_gr3_temp183	32776.5	4.48062	289.036	115.6	8473.97
SLE_fre_gr3_temp184	32776.5	4.48062	289.036	115.6	8473.97
SLE_qp_gr1_Treno_186	32776.5	0	54.9252	0	1441.79
SLE_qp_gr2_Scarico_187	32776.5	0	54.9252	0	1441.79
SLE_qp_gr3_Fre/avv_188	32776.5	0	54.9252	0	1441.79
SLE_qp_gr4_centrif_189	32776.5	0	54.9252	0	1441.79
SLE_qp_gr1+vento_190	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_gr2+vento_191	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_gr3+vento_192	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_gr4+vento_193	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_vento_gr1_194	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_vento_gr2_195	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_vento_gr3_196	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_vento_gr4_197	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_gr1_temp198	32776.5	0	54.9252	0	1441.79
SLE_qp_gr2_temp199	32776.5	0	54.9252	0	1441.79
SLE_qp_gr3_temp200	32776.5	0	54.9252	0	1441.79
SLE_qp_gr3_temp201	32776.5	0	54.9252	0	1441.79
E_103x_SLV_q=1.5_202	33457.1	4608.22	1520.33	81977.8	24762.5
E_103y_SLV_q=1.5_203	33457.1	2309.47	3495.11	27374.3	75462.7
E_103z_SLV_q=1.5_204	35045.1	2309.47	1520.33	27374.3	24762.5
E_103x_SLV_q=1.36_205	33457.1	4936.61	1604.96	89778.3	26935.4
E_103y_SLV_q=1.36_206	33457.1	2407.98	3777.22	29714.5	82705.6
E_103z_SLV_q=1.36_207	35045.1	2407.98	1604.96	29714.5	26935.4
E_103x_SLV_q=1_208	33457.1	6257.91	1941.17	121290	35616.8
E_103y_SLV_q=1_209	33457.1	2804.37	4897.9	39168	111644
E_103z_SLV_q=1_210	35045.1	2804.37	1941.17	39168	35616.8
E_103x_SLD_q=1_211	33654.3	2481.45	926.176	49772	15435
E_103y_SLD_q=1_212	33654.3	1209.93	1976.11	16328.1	45755.4
E_103z_SLD_q=1_213	35702.7	1209.93	926.176	16328.1	15435

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	63 di 114

6.2 Tabelle riassuntive, massime sollecitazioni

6.2.1 Stati limiti di esercizio

TESTA PILA					
combo	N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno_14	14394.2	577.5	179.775	1046.22	555.37
SLE_rar_gr3+vento_20	14394.2	1168.44	849.126	1306.1	3516.78
SLE_rar_vento_gr4_25	13445.8	946.403	1272.63	1044.88	5386.14
SLE_rar_gr3_Fre/avv_16	14394.2	1155	179.749	1306.1	555.234
SLE_rar_vento_gr4_25	13445.8	946.403	1272.63	1044.88	5386.14
SLE_rar_gr4_centrif_17	13445.8	924	157.002	1044.88	450.228
SLE_rar_vento_gr4_25	13445.8	946.403	157.002	1044.88	5386.14
SLE_rar_vento_gr4_25	13445.8	946.403	1272.63	1044.88	5386.14
SLE_rar_gr4_centrif_17	13445.8	924	157.002	1044.88	450.228
SLE_rar_vento_gr4_25	13445.8	946.403	1272.63	1044.88	5386.14
SLE_qp_gr1_Treno_44	9652	0	54.9252	0	24.7163
SLE_qp_gr1+vento_48	9652	4.48062	278.051	0	1011.9
SLE_qp_gr1+vento_48	9652	4.48062	278.051	0	1011.9
SLE_qp_gr1_Treno_44	9652	0	54.9252	0	24.7163
SLE_qp_gr1+vento_48	9652	4.48062	278.051	0	1011.9
E_103x_SLD_q=1_69	9830.72	1847.62	757.703	0	0
E_103y_SLD_q=1_70	9830.72	557.423	1876.89	0	0
E_103z_SLD_q=1_71	10247.7	557.423	757.703	0	0

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B64 di 114

BASE PILA					
combo	N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno_14	24856.5	577.5	179.775	14213.2	4654.24
SLE_rar_gr3+vento_20	24856.5	1168.44	849.126	27946.6	22876.9
SLE_rar_vento_gr4_25	23908	946.403	1272.63	22622.9	34402.1
SLE_rar_gr3+vento_20	24856.5	1168.44	849.126	27946.6	22876.9
SLE_rar_vento_gr4_25	23908	946.403	1272.63	22622.9	34402.1
SLE_rar_gr4_centrif_17	23908	924	157.002	22112.1	4029.88
SLE_rar_vento_gr4_25	23908	946.403	1272.63	22622.9	34402.1
SLE_rar_vento_gr4_25	23908	946.403	1272.63	22622.9	34402.1
SLE_rar_vento_gr4_25	23908	946.403	1272.63	22622.9	34402.1
SLE_rar_vento_gr4_25	23908	946.403	1272.63	22622.9	34402.1
SLE_qp_gr1_Treno_44	20114.2	0	54.9252	0	1277.01
SLE_qp_gr1+vento_48	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr1+vento_48	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr1+vento_48	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr1+vento_48	20114.2	4.48062	278.051	102.158	7351.46
E_103x_SLD_q=1_69	20293	1847.62	757.703	37960	11745.3
E_103y_SLD_q=1_70	20293	557.423	1876.89	11388	36789.9
E_103z_SLD_q=1_71	20710	557.423	757.703	11388	11745.3

BASE FONDAZIONE					
combo	N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno_14	37518.7	577.5	179.775	15945.7	5193.57
SLE_rar_gr3+vento_20	37518.7	1168.44	849.126	31451.9	25424.2
SLE_rar_vento_gr4_25	36570.3	946.403	1272.63	25462.1	38220
SLE_rar_gr3+vento_20	37518.7	1168.44	849.126	31451.9	25424.2
SLE_rar_vento_gr4_25	36570.3	946.403	1272.63	25462.1	38220
SLE_rar_gr4_centrif_17	36570.3	924	157.002	24884.1	4500.88
SLE_rar_vento_gr4_25	36570.3	946.403	1272.63	25462.1	38220
SLE_rar_vento_gr4_25	36570.3	946.403	1272.63	25462.1	38220
SLE_rar_vento_gr4_25	36570.3	946.403	1272.63	25462.1	38220
SLE_rar_vento_gr4_25	36570.3	946.403	1272.63	25462.1	38220
SLE_qp_gr1_Treno_44	32776.5	0	54.9252	0	1441.79
SLE_qp_gr1+vento_48	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_gr1+vento_48	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_gr1+vento_48	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_gr1+vento_48	32776.5	4.48062	278.051	115.6	8185.61
E_103x_SLD_q=1_69	33219.2	2508.13	955.856	45484.4	14612.9
E_103y_SLD_q=1_70	33219.2	1217.93	2075.04	15041.8	43015
E_103z_SLD_q=1_71	34252.2	1217.93	955.856	15041.8	14612.9

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1505003	В	65 di 114

TESTA PILA					
combo	N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno_8	85 12383.	3 577.5	131.514	3537.47	332.563
SLE_rar_gr3+vento_9	91 12383.	3 1168.44	800.865	3797.34	3293.97
SLE_rar_vento_gr4_9	06 11837.	1 946.403	1234.02	3037.87	5207.89
SLE_rar_gr3_Fre/avv	v_87 12383.	3 1155	131.488	3797.34	332.427
SLE_rar_vento_gr4_9	06 11837.	1 946.403	1234.02	3037.87	5207.89
SLE_rar_gr4_centrif_	88 11837.	1 924	118.393	3037.87	271.982
SLE_rar_vento_gr4_9	06 11837.	1 946.403	1234.02	3037.87	5207.89
SLE_rar_vento_gr4_9	06 11837.	1 946.403	1234.02	3037.87	5207.89
SLE_rar_gr4_centrif_	88 11837.	1 924	118.393	3037.87	271.982
SLE_rar_vento_gr4_9	06 11837.	1 946.403	1234.02	3037.87	5207.89
SLE_qp_gr1_Treno_1	115 965	2 0	54.9252	0	24.7163
SLE_qp_gr1+vento_1	119 965	2 4.48062	278.051	0	1011.9
SLE_qp_gr1+vento_1	119 965	2 4.48062	278.051	0	1011.9
SLE_qp_gr1_Treno_1	115 965	2 0	54.9252	0	24.7163
SLE_qp_gr1+vento_1	119 965	2 4.48062	278.051	0	1011.9
E_103x_SLD_q=1_1	40 10265.	9 1820.94	728.023	0	0
E_103y_SLD_q=1_1	41 10265.	9 549.42	1777.96	0	0
E_103z_SLD_q=1_1	42 11698.	2 549.42	728.023	0	0

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B66 di 114

BASE PILA					
combo	N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno_85	22845.6	577.5	179.775	14213.2	4654.24
SLE_rar_gr3+vento_91	22845.6	1168.44	800.865	30437.8	21553.7
SLE_rar_vento_gr4_96	22299.3	946.403	1234.02	24615.9	33343.6
SLE_rar_gr3+vento_91	22845.6	1168.44	800.865	30437.8	21553.7
SLE_rar_vento_gr4_96	22299.3	946.403	1234.02	24615.9	33343.6
SLE_rar_gr4_centrif_88	22299.3	924	118.393	24105.1	2971.34
SLE_rar_vento_gr4_96	22299.3	946.403	1234.02	24615.9	33343.6
SLE_rar_vento_gr4_96	22299.3	946.403	1234.02	24615.9	33343.6
SLE_rar_vento_gr4_96	22299.3	946.403	1234.02	24615.9	33343.6
SLE_rar_vento_gr4_96	22299.3	946.403	1234.02	24615.9	33343.6
SLE_qp_gr1_Treno_115	20114.2	0	54.9252	0	1277.01
SLE_qp_gr1+vento_119	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr1+vento_119	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr1+vento_119	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr1+vento_119	20114.2	4.48062	278.051	102.158	7351.46
E_103x_SLD_q=1_140	20728.1	1820.94	728.023	42327.6	12656.5
E_103y_SLD_q=1_141	20728.1	549.42	1777.96	12698.3	39827.1
E_103z_SLD_q=1_142	22160.4	549.42	728.023	12698.3	12656.5

BASE FO	ONDAZIO	NE					
combo			N	Tlong	Ttras	Mlong	Mtras
SLE_rar_	gr1_Trenc	_85	35507.8	577.5	179.775	15945.7	5193.57
SLE_rar_	gr3+vento	_ 91	35507.8	1168.44	800.865	33943.1	23956.3
SLE_rar_	vento_gr4	_96	34961.6	946.403	1234.02	27455.1	37045.6
SLE_rar_	gr3+vento	_ 91	35507.8	1168.44	800.865	33943.1	23956.3
SLE_rar_	vento_gr4	_96	34961.6	946.403	1234.02	27455.1	37045.6
SLE_rar_	gr4_centri	f_88	34961.6	924	118.393	26877.1	3326.52
SLE_rar_	vento_gr4	_96	34961.6	946.403	1234.02	27455.1	37045.6
SLE_rar_	vento_gr4	_96	34961.6	946.403	1234.02	27455.1	37045.6
SLE_rar_	vento_gr4	_96	34961.6	946.403	1234.02	27455.1	37045.6
SLE_rar_	vento_gr4	_96	34961.6	946.403	1234.02	27455.1	37045.6
SLE_qp_	gr1_Treno	_115	32776.5	0	54.9252	0	1441.79
SLE_qp_	gr1+vento	_119	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_	gr1+vento	_119	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_	gr1+vento	_119	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_	gr1+vento	_119	32776.5	4.48062	278.051	115.6	8185.61
E_103x_5	SLD_q=1_	_140	33654.3	2481.45	926.176	49772	15435
E_103y_5	SLD_q=1_	_141	33654.3	1209.93	1976.11	16328.1	45755.4
E_103z_5	SLD_q=1_	_142	35702.7	1209.93	926.176	16328.1	15435

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1505003	В	67 di 114

TESTA PILA					
combo	N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno_156	14394.2	577.5	179.775	1046.22	555.37
SLE_rar_gr3+vento_162	14394.2	1168.44	849.126	1306.1	3516.78
SLE_rar_vento_gr4_167	13445.8	946.403	1272.63	1044.88	5386.14
SLE_rar_gr3_Fre/avv_158	14394.2	1155	179.749	1306.1	555.234
SLE_rar_vento_gr4_167	13445.8	946.403	1272.63	1044.88	5386.14
SLE_rar_gr4_centrif_159	13445.8	924	157.002	1044.88	450.228
SLE_rar_vento_gr4_167	13445.8	946.403	1272.63	1044.88	5386.14
SLE_rar_vento_gr4_167	13445.8	946.403	1272.63	1044.88	5386.14
SLE_rar_gr4_centrif_159	13445.8	924	157.002	1044.88	450.228
SLE_rar_vento_gr4_167	13445.8	946.403	1272.63	1044.88	5386.14
SLE_qp_gr1_Treno_186	9652	0	54.9252	0	24.7163
SLE_qp_gr1+vento_190	9652	4.48062	278.051	0	1011.9
SLE_qp_gr1+vento_190	9652	4.48062	278.051	0	1011.9
SLE_qp_gr1_Treno_186	9652	0	54.9252	0	24.7163
SLE_qp_gr1+vento_190	9652	4.48062	278.051	278.051	1011.9
E_103x_SLD_q=1_211	10265.9	1820.94	728.023	0	0
E_103y_SLD_q=1_212	10265.9	549.42	1777.96	0	0
E_103z_SLD_q=1_213	11698.2	549.42	728.023	0	0

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B68 di 114

BASE PILA					
combo	N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno_156	24856.5	577.5	179.775	14213.2	4654.24
SLE_rar_gr3+vento_162	24856.5	1168.44	849.126	27946.6	22876.9
SLE_rar_vento_gr4_167	23908	946.403	1272.63	22622.9	34402.1
SLE_rar_gr3+vento_162	24856.5	1168.44	849.126	27946.6	22876.9
SLE_rar_vento_gr4_167	23908	946.403	1272.63	22622.9	34402.1
SLE_rar_gr4_centrif_159	23908	924	157.002	22112.1	4029.88
SLE_rar_vento_gr4_167	23908	946.403	1272.63	22622.9	34402.1
SLE_rar_vento_gr4_167	23908	946.403	1272.63	22622.9	34402.1
SLE_rar_vento_gr4_167	23908	946.403	1272.63	22622.9	34402.1
SLE_rar_vento_gr4_167	23908	946.403	1272.63	22622.9	34402.1
SLE_qp_gr1_Treno_186	20114.2	0	54.9252	0	1277.01
SLE_qp_gr1+vento_190	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr1+vento_190	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr1+vento_190	20114.2	4.48062	278.051	102.158	7351.46
SLE_qp_gr1+vento_190	20114.2	4.48062	278.051	278.051	7351.46
E_103x_SLD_q=1_211	20728.1	1820.94	728.023	42327.6	12656.5
E_103y_SLD_q=1_212	20728.1	549.42	1777.96	12698.3	39827.1
E_103z_SLD_q=1_213	22160.4	549.42	728.023	12698.3	12656.5

BASE FO	NDAZIC	NE					
combo			N	Tlong	Ttras	Mlong	Mtras
SLE_rar_e	gr1_Treno	_156	37518.7	577.5	179.775	15945.7	5193.57
SLE_rar_g	gr3+vento	_162	37518.7	1168.44	849.126	31451.9	25424.2
SLE_rar_v	vento_gr4_	_167	36570.3	946.403	1272.63	25462.1	38220
SLE_rar_e	gr3+vento	_162	37518.7	1168.44	849.126	31451.9	25424.2
SLE_rar_v	vento_gr4_	_167	36570.3	946.403	1272.63	25462.1	38220
SLE_rar_{	gr4_centri	f_159	36570.3	924	157.002	24884.1	4500.88
SLE_rar_v	vento_gr4_	_167	36570.3	946.403	1272.63	25462.1	38220
SLE_rar_v	vento_gr4_	_167	36570.3	946.403	1272.63	25462.1	38220
SLE_rar_v	vento_gr4_	_167	36570.3	946.403	1272.63	25462.1	38220
SLE_rar_v	vento_gr4_	_167	36570.3	946.403	1272.63	25462.1	38220
SLE_qp_g	gr1_Treno	_186	32776.5	0	54.9252	0	1441.79
SLE_qp_g	gr1+vento	_190	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_g	gr1+vento	_190	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_g	gr1+vento	_190	32776.5	4.48062	278.051	115.6	8185.61
SLE_qp_g	gr1+vento	_190	32776.5	4.48062	278.051	278.051	8185.61
E_103x_S	SLD_q=1_	_211	33654.3	2481.45	926.176	49772	15435
E_103y_S	SLD_q=1_	_212	33654.3	1209.93	1976.11	16328.1	45755.4
E_103z_S	SLD_q=1_	_213	35702.7	1209.93	926.176	16328.1	15435

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	69 di 114

6.2.2 Stati limiti utlimi

<u>Comigurazione i</u>					
TESTA PILA					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_1	20607.5	837.375	346.484	1517.02	843.901
A1_SLU_gr3+vento_7	20607.5	1694.91	1350.51	1893.84	5286.02
A1_SLU_vento_gr4_12	19232.3	1373.4	1970.4	1515.07	8087.89
A1_SLU_gr3_Fre/avv_3	20607.5	1674.75	346.447	1893.84	843.704
A1_SLU_vento_gr4_12	19232.3	1373.4	1970.4	1515.07	8087.89
E_103x_SLV_q=1.5_60	10188.1	3288.41	1124.39	0	0
E_103y_SLV_q=1.5_61	10188.1	989.66	3099.17	0	0
E_103z_SLV_q=1.5_62	11439.1	989.66	1124.39	0	0
E_103x_SLV_q=1_66	10188.1	4938.1	1545.22	0	0
E_103y_SLV_q=1_67	10188.1	1484.57	4501.96	0	0
E_103z_SLV_q=1_68	11439.1	1484.57	1545.22	0	0
BASE PILA					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_1	34731.5	837.375	346.484	20609.2	8743.74
A1_SLU_gr3+vento_7	34731.5	1694.91	1350.51	40537.9	36077.7
A1_SLU_vento_gr4_12	33356.3	1373.4	1970.4	32828.7	53013.1
A1_SLU_gr3+vento_7	34731.5	1694.91	1350.51	40537.9	36077.7
A1_SLU_vento_gr4_12	33356.3	1373.4	1970.4	32828.7	53013.1
E_103x_SLV_q=1.5_60	20650.4	3288.41	1124.39	68153.1	20201.5
E_103y_SLV_q=1.5_61	20650.4	989.66	3099.17	20445.9	64977.4
E_103z_SLV_q=1.5_62	21901.4	989.66	1124.39	20445.9	20201.5
E_103x_SLV_q=1_66	20650.4	4938.1	1545.22	102516	29793.3
E_103y_SLV_q=1_67	20650.4	1484.57	4501.96	30754.9	96950
E_103z_SLV_q=1_68	21901.4	1484.57	1545.22	30754.9	29793.3
BASE FONDAZIONE					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_1	51825.6	837.375	346.484	23121.3	9783.19
A1_SLU_gr3+vento_7	51825.6	1694.91	1350.51	45622.6	40129.2
A1_SLU_vento_gr4_12	50450.3	1373.4	1970.4	36948.9	58924.3
A1_SLU_gr3+vento_7	51825.6	1694.91	1350.51	45622.6	40129.2
A1_SLU_vento_gr4_12	50450.3	1373.4	1970.4	36948.9	58924.3
E_103x_SLV_q=1.36_63	33457.1	4936.61	1604.96	89778.3	26935.4
E_103y_SLV_q=1.36_64	33457.1	2407.98	3777.22	29714.5	82705.6
E_103z_SLV_q=1.36_65	35045.1	2407.98	1604.96	29714.5	26935.4
E_103x_SLV_q=1_66	33457.1	6257.91	1941.17	121290	35616.8
E_103y_SLV_q=1_67	33457.1	2804.37	4897.9	39168	111644
E_103z_SLV_q=1_68	35045.1	2804.37	1941.17	39168	35616.8

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	70 di 114

TESTA PILA						
		N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Trenc	72	17691.7	837.375	241.515	5129.32	505.085
A1_SLU_gr3+vento		17691.7	1694.91	1245.54	5506.14	4947.21
A1_SLU_vento_gr4		16899.6	1373.4	1886.43	4404.91	7816.83
A1_SLU_gr3_Fre/a		17691.7	1674.75	241.478	5506.14	504.888
A1_SLU_vento_gr4		16899.6	1373.4	1886.43	4404.91	7816.83
E_103x_SLV_q=1	5_131	10188.1	3288.41	1124.39	0	0
E_103y_SLV_q=1	5_132	10188.1	989.66	3099.17	0	0
E_103z_SLV_q=1	5_133	11439.1	989.66	1124.39	0	0
E_103x_SLV_q=1_	137	10188.1	4938.1	1545.22	0	0
E_103y_SLV_q=1_	138	10188.1	1484.57	4501.96	0	0
E_103z_SLV_q=1_	139	11439.1	1484.57	1545.22	0	0
BASE PILA						
		N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Trend	_72	31815.7	837.375	241.515	24221.5	6011.64
A1_SLU_gr3+vento	_ 78	31815.7	1694.91	1245.54	44150.2	33345.6
A1_SLU_vento_gr4	_83	31023.7	1373.4	1886.43	35718.5	50827.4
A1_SLU_gr3+vento	_ 78	31815.7	1694.91	1245.54	44150.2	33345.6
A1_SLU_vento_gr4	_83	31023.7	1373.4	1886.43	35718.5	50827.4
E_103x_SLV_q=1	5_131	20650.4	3288.41	1124.39	68153.1	20201.5
E_103y_SLV_q=1	5_132	20650.4	989.66	3099.17	20445.9	64977.4
E_103z_SLV_q=1	5_133	21901.4	989.66	1124.39	20445.9	20201.5
E_103x_SLV_q=1_	_137	20650.4	4938.1	1545.22	102516	29793.3
E_103y_SLV_q=1_	138	20650.4	1484.57	4501.96	30754.9	96950
E_103z_SLV_q=1_	139	21901.4	1484.57	1545.22	30754.9	29793.3
BASE FONDAZIO	NE					
		N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Trend	_72	48909.8	837.375	241.515	26733.6	6736.18
A1_SLU_gr3+vento	_ 78	48909.8	1694.91	1245.54	49234.9	37082.2
A1_SLU_vento_gr4	_83	48117.7	1373.4	1886.43	39838.8	56486.7
A1_SLU_gr3+vento	_ 78	48909.8	1694.91	1245.54	49234.9	37082.2
A1_SLU_vento_gr4	_83	48117.7	1373.4	1886.43	39838.8	56486.7
E_103x_SLV_q=1	36_134	33457.1	4936.61	1604.96	89778.3	26935.4
E_103y_SLV_q=1	36_135	33457.1	2407.98	3777.22	29714.5	82705.6
E_103z_SLV_q=1	36_136	35045.1	2407.98	1604.96	29714.5	26935.4
E_103x_SLV_q=1_	137	33457.1	6257.91	1941.17	121290	35616.8
E_103y_SLV_q=1_	138	33457.1	2804.37	4897.9	39168	111644
E_103z_SLV_q=1_	139	35045.1	2804.37	1941.17	39168	35616.8

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B71 di 114

TESTA PILA					
TESTI HET	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_143	20607.5	837.375	346.484	1517.02	843.901
A1_SLU_gr3+vento_149	20607.5	1694.91	1350.51	1893.84	5286.02
A1_SLU_vento_gr4_154	19232.3	1373.4	1970.4	1515.07	8087.89
A1_SLU_gr3_Fre/avv_145	20607.5	1674.75	346.447	1893.84	843.704
A1_SLU_vento_gr4_154	19232.3	1373.4	1970.4	1515.07	8087.89
E_103x_SLV_q=1.5_202	10188.1	3288.41	1124.39	0	0
E_103y_SLV_q=1.5_203	10188.1	989.66	3099.17	0	0
E_103z_SLV_q=1.5_204	11439.1	989.66	1124.39	0	0
E_103x_SLV_q=1_208	10188.1	4938.1	1545.22	0	0
E_103y_SLV_q=1_209	10188.1	1484.57	4501.96	0	0
E_103z_SLV_q=1_210	11439.1	1484.57	1545.22	0	0
BASE PILA					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_143	34731.5	837.375	346.484	20609.2	8743.74
A1_SLU_gr3+vento_149	34731.5	1694.91	1350.51	40537.9	36077.7
A1_SLU_vento_gr4_154	33356.3	1373.4	1970.4	32828.7	53013.1
A1_SLU_gr3+vento_149	34731.5	1694.91	1350.51	40537.9	36077.7
A1_SLU_vento_gr4_154	33356.3	1373.4	1970.4	32828.7	53013.1
E_103x_SLV_q=1.5_202	20650.4	3288.41	1124.39	68153.1	20201.5
E_103y_SLV_q=1.5_203	20650.4	989.66	3099.17	20445.9	64977.4
E_103z_SLV_q=1.5_204	21901.4	989.66	1124.39	20445.9	20201.5
E_103x_SLV_q=1_208	20650.4	4938.1	1545.22	102516	29793.3
E_103y_SLV_q=1_209	20650.4	1484.57	4501.96	30754.9	96950
E_103z_SLV_q=1_210	21901.4	1484.57	1545.22	30754.9	29793.3
BASE FONDAZIONE					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_143	51825.6	837.375	346.484	23121.3	9783.19
A1_SLU_gr3+vento_149	51825.6	1694.91	1350.51	45622.6	40129.2
A1_SLU_vento_gr4_154	50450.3	1373.4	1970.4	36948.9	58924.3
A1_SLU_gr3+vento_149	51825.6	1694.91	1350.51	45622.6	40129.2
A1_SLU_vento_gr4_154	50450.3	1373.4	1970.4	36948.9	58924.3
E_103x_SLV_q=1.36_205	33457.1	4936.61	1604.96	89778.3	26935.4
E_103y_SLV_q=1.36_206	33457.1	2407.98	3777.22	29714.5	82705.6
E_103z_SLV_q=1.36_207	35045.1	2407.98	1604.96	29714.5	26935.4
E_103x_SLV_q=1_208	33457.1	6257.91	1941.17	121290	35616.8
E_103y_SLV_q=1_209	33457.1	2804.37	4897.9	39168	111644
E_103z_SLV_q=1_210	35045.1	2804.37	1941.17	39168	35616.8

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	72 di 114

7. VERIFICHE STRUTTURALI

Le armature di calcolo derivanti dalle verifiche di resistenza e di esercizio soddisfano le quantità minime indicate dalla normativa, si riepilogano i quantitativi di ciascun elemento.

elemento arm. flessionale		staffe	c.f
fusto	204 Φ30 interasse 20 cm*	Ф12/20	8.7 cm
plinto	Trasv: 4 strati Φ 30/10 Long 4 strati Φ 30/10	-	8.7 cm
pali	36 Ф30 interasse 15 cm*	Ф12/20	9.7 cm

^{*}è riferito alla corona esterna di armatura mentre, l'interasse della corona interna è funzione dell'allineamento con quella esterna. È comunque rispettato l'iterasse minimo.

Le spille adottate sono disposte nel rispetto della norma vigente.

8. FUSTO PILA

Secondo quanto riportano al paragrafo 7.3 e 7.3.6.1 delle Norme Tecniche delle Costruzioni 2018, adottando un fattore di comportamento pari a 1.5, la struttura può essere progettata come non dissipativa:

Tab. 7.3.I – Limiti su q e modalità di modellazione dell'azione sismica

CT A TI	LIMITE	Lineare (Dinamica e Statica)		Non Lineare	
SIAII	LIMITE	Dissipativo	Non Dissipativo	Dinamica	Statica
CLE	SLO	q = 1.0 § 3.2.3.4	q = 1.0 § 3.2.3.4		
SLE	SLD	q≤1,5 § 3.2.3.5	q ≤ 1,5 § 3.2.3.5	§ 7.3.4.1	§ 7.3.4.2
SLU	SLV	q≥1,5 § 3.2.3.5	q ≤ 1,5 § 3.2.3.5		
	SLC				

[&]quot;Nel caso di analisi lineare la verifica di duttilità si può ritenere soddisfatta, rispettando per tutti gli elementi strutturali, sia primari sia secondari, le regole specifiche per i dettagli costruttivi precisate nel presente capitolo per le

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	73 di 114

diverse tipologie costruttive; tali regole sono da considerarsi aggiuntive rispetto a quanto previsto nel Cap. 4 e a quanto imposto dalle regole della progettazione in capacità, il cui rispetto è comunque obbligatorio per gli elementi strutturali primari delle strutture a comportamento dissipativo.

Per strutture a comportamento dissipativo, qualora non siano rispettate le regole specifiche dei dettagli costruttivi, quali precisate nel presente capitolo, occorrerà procedere a verifiche di duttilità. diversamente specificato nei paragrafi successivi relativi alle diverse tipologie costruttive, accertando che la capacità in duttilità della costruzione sia almeno pari:

- a 1,2 volte la domanda in duttilità locale, valutata in corrispondenza dello SLV, nel caso si utilizzino modelli lineari,
- alla domanda in duttilità locale e globale allo SLC, nel caso si utilizzino modelli non lineari.

Le verifiche di duttilità non sono dovute nel caso di progettazione con $q \leq 1,5$.

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2 COMMESSA LOTTO CODIFICA DOCUMENTO
RS3T 30 D09CL VI1505003

REV.

В

FOGLIO

74 di 114

8.1 Modellazione

La geometria della sezione della pila è stata implementata all'interno del software di calcolo RC-SEC con i relativi ferri di armatura longitudinale.

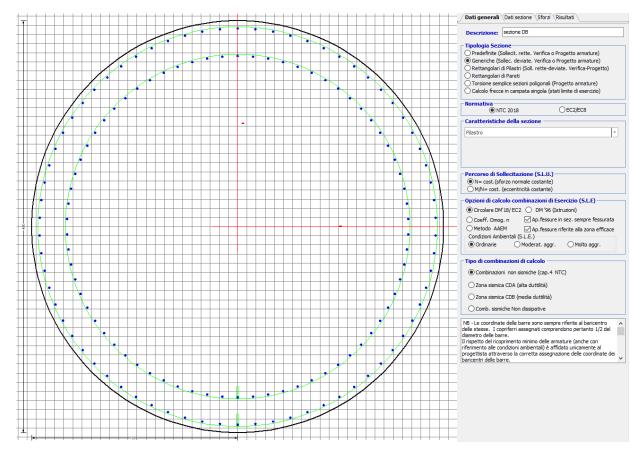


Figura 11 - Sezione implementata in RC-SEC

Per un totale di ferri 204 di diametro Φ 30 che corrispondono ad un passo di 20cm lungo il bordo esterno e speculari internamente alla sezione.

8.2 Verifica a presso flessione

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: Circolare 4.5m

Descrizione Sezione: sezione DB

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO

NUOVO COLLEGAMENTO PALERMO - CATANIA

PROGETTO DEFINITIVO

VI15 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 650 m

18.130

MPa

LOTTO CODIFICA DOCUMENTO COMMESSA REV. FOGLIO Progetto definitivo RS3T 30 D09CL VI1505003 В 75 di 114 Relazione di calcolo Pile – P2

Assi baric. X',Y' // assi coordinate. Riferimento Sforzi assegnati:

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -Classe: C32/40

> Resis. compr. di progetto fcd: Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035

Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 3334.6 MPa Resis. media a trazione fctm: 3.000 MPa

Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Frequenti: 176.00 daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO -B450C Tipo:

> Resist, caratt, snervam, fvk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa

Deform. ultima di progetto Epu: 0.068

2000000 Modulo Elastico Ef daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C32/40

Raggio circ.: 225.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

Ν

Mx

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Ycentro Raggio [cm] della circonferenza lungo cui sono disposte le barre generate Raggio Numero di barre generate equidist. disposte lungo la circonferenza N°Barre

Diametro [mm] della singola barra generata

N°Gen. N°Barre Ø Xcentro Ycentro Raggio 0.0 0.0 216.5 136 30 2 0.0 0.0 186.5 68 30

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse X' // asse X coordinate

con verso positivo se tale da comprimere il lembo sup. della sez.

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Progetto definitivo VI1505003 RS3T 30 D09CL В 76 di 114 Relazione di calcolo Pile – P2

Му	Momento flettente [kNm] intorno all'asse Y' // asse Y coord.					
Vy Vx		con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse Y delle coord. Componente del Taglio [kN] parallela all'asse X delle coord.				
N°Comb.	N	MX	MY	VY	VX	
1	34731.55	20609.17	8743.74	0.00	0.00	
2	34731.55	40537.85	36077.70	0.00	0.00	
3	33356.30	32828.70	53013.06	0.00	0.00	
4	34731.55	40537.85	36077.70	0.00	0.00	
5	33356.30	32828.70	53013.06	0.00	0.00	
6	20650.38	68153.11	20201.54	0.00	0.00	
7	20650.38	20445.93	64977.38	0.00	0.00	
8	21901.37	20445.93	20201.54	0.00	0.00	
9	31815.75	24221.47	6011.64	0.00	0.00	
10	31815.75	44150.15	33345.59	0.00	0.00	
11	31023.67	35718.54	50827.38	0.00	0.00	
12	31815.75	44150.15	33345.59	0.00	0.00	
13	31023.67	35718.54	50827.38	0.00	0.00	
14	20650.38	68153.11	20201.54	0.00	0.00	
15	20650.38	20445.93	64977.38	0.00	0.00	
16	21901.37	20445.93	20201.54	0.00	0.00	
17	34731.55	20609.17	8743.74	0.00	0.00	
18	34731.55	40537.85	36077.70	0.00	0.00	
19	33356.30	32828.70	53013.06	0.00	0.00	
20	34731.55	40537.85	36077.70	0.00	0.00	
21	33356.30	32828.70	53013.06	0.00	0.00	
22	20650.38	68153.11	20201.54	0.00	0.00	
23	20650.38	20445.93	64977.38	0.00	0.00	
24	21901.37	20445.93	20201.54	0.00	0.00	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

,	A)	Storma normala [[k]] annicata nal Daricantra (, ao di a	
- 1	V	Sforzo normale [kN] applicato nel Baricentro (+ se di c	ombressione)

Momento flettente [kNm] intorno all'asse X delle coordinate (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione Mx

Momento flettente [kNm] intorno all'asse Y delle coordinate (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	MX	MY
1	24856.46	14213.22	4654.24
2	24856.46	27946.57	22876.86
3	23908.02	22622.87	34402.11
4	24856.46	27946.57	22876.86
5	23908.02	22622.87	34402.11
6	22845.57	14213.22	4654.24
7	22845.57	30437.81	21553.69
8	22299.30	24615.86	33343.57
9	22845.57	30437.81	21553.69
10	22299.30	24615.86	33343.57
11	24856.46	14213.22	4654.24
12	24856.46	27946.57	22876.86
13	23908.02	22622.87	34402.11
14	24856.46	27946.57	22876.86
15	23908.02	22622.87	34402.11
16	20292.96	37960.02	11745.29
17	20292.96	11388.01	36789.88
18	20709.96	11388.01	11745.29
19	20728.10	42327.62	12656.46

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	77 di 114

20	20728.10	12698.29	39827.12
21	22160.44	12698.29	12656.46
22	20728.10	42327.62	12656.46
23	20728.10	12698.29	39827.12
24	22160.44	12698.29	12656.46

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X delle coordinate (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse Y delle coordinate (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	MX	MY
1	23908.02	22112.08 (92260.17)	4029.88 (16814.22)
2	23908.02	22622.87 (28068.50)	34402.11 (42683.16)
3	23908.02	22622.87 (28068.50)	34402.11 (42683.16)
4	23908.02	22622.87 (28068.50)	34402.11 (42683.16)
5	23908.02	22622.87 (28068.50)	34402.11 (42683.16)
6	22299.30	24105.07 (74350.37)	2971.34 (9164.89)
7	22299.30	24615.86 (29169.42)	33343.57 (39511.63)
8	22299.30	24615.86 (29169.42)	33343.57 (39511.63)
9	22299.30	24615.86 (29169.42)	33343.57 (39511.63)
10	22299.30	24615.86 (29169.42)	33343.57 (39511.63)
11	23908.02	22112.08 (92260.17)	4029.88 (16814.22)
12	23908.02	22622.87 (28068.50)	34402.11 (42683.16)
13	23908.02	22622.87 (28068.50)	34402.11 (42683.16)
14	23908.02	22622.87 (28068.50)	34402.11 (42683.16)
15	23908.02	22622.87 (28068.50)	34402.11 (42683.16)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo norr	male [kN] applicato nel Baricentro (+ se di compressione)
---------------	---

Mx Momento flettente [kNm] intorno all'asse X delle coordinate (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse Y delle coordinate (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	MX	MY
1	20114.24	0.00 (0.00)	1277.01 (0.00)
2	20114.24	102.16 (0.00)	7351.46 (0.00)
3	20114.24	102.16 (0.00)	7351.46 (0.00)
4	20114.24	102.16 (0.00)	7351.46 (0.00)
5	20114.24	102.16 (0.00)	7351.46 (0.00)
6	20114.24	0.00 (0.00)	1277.01 (0.00)
7	20114.24	102.16 (0.00)	7351.46 (0.00)
8	20114.24	102.16 (0.00)	7351.46 (0.00)
9	20114.24	102.16 (0.00)	7351.46 (0.00)
10	20114.24	102.16 (0.00)	7351.46 (0.00)
11	20114.24	0.00 (0.00)	1277.01 (0.00)
12	20114.24	102.16 (0.00)	7351.46 (0.00)
13	20114.24	102.16 (0.00)	7351.46 (0.00)
14	20114.24	102.16 (0.00)	7351.46 (0.00)
15	20114.24	278.05 (0.00)	7351.46 (0.00)

RISULTATI DEL CALCOLO

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Progetto definitivo RS3T 30 D09CL VI1505003 В 78 di 114 Relazione di calcolo Pile – P2

Copriferro netto minimo barre longitudinali: 7.0 cm Interferro netto minimo barre longitudinali: 7.0

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls. (positivo se di compressione) MXComponente X del momento assegnato [kNm] rifer. assi X,Y con origine nel baric. B del cls. MYComponente Y del momento assegnato [kNm] rifer. assi X,Y con origine nel baric. B del cls. Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compressione) N Res Momento flettente resistente [kNm] rif. X,Y,B (tra parentesi rif. assi princ. inerzia) MX Res Momento flettente resistente [kNm] rif. X,Y,B (tra parentesi rif. assi princ. inerzia) MY Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000 Mis.Sic.

Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa] As Totale

N°Comb	Ver	N	MX	MY	N Res	MX Res	MY Res	Mis.Sic.	As Totale
1	S	34731.55	20609.17	8743.74	34731.31	135651.31(135651.31) 57544.7	73(57544.73)	6.581	442.0(477.1)
2	S	34731.55	40537.85	36077.70	34731.41	110071.47(110071.47) 97974.0	08(97974.08)	2.721	442.0(477.1)
3	S	33356.30	32828.70	53013.06	33356.01	76796.91(76796.91)124014.	.69(124014.69)	2.341	442.0(477.1)
4	S	34731.55	40537.85	36077.70	34731.41	110071.47(110071.47) 97974.0	08(97974.08)	2.721	442.0(477.1)
5	S	33356.30	32828.70	53013.06	33356.01	76796.91(76796.91)124014.	.69(124014.69)	2.341	442.0(477.1)
6	S	20650.38	68153.11	20201.54	20650.64	125706.82(125706.82) 37273.7	74(37273.74)	1.841	442.0(477.1)
7	S	20650.38	20445.93	64977.38	20650.38	39357.68(39357.68)125063.	.70(125063.70)	1.921	442.0(477.1)
8	S	21901.37	20445.93	20201.54	21901.44	94360.17(94360.17) 93228.8	83(93228.83)	4.621	442.0(477.1)
9	S	31815.75	24221.47	6011.64	31815.66	139939.08(139939.08) 34736.5	54(34736.54)	5.781	442.0(477.1)
10	S	31815.75	44150.15	33345.59	31815.58	115047.50(115047.50) 86892.8	81(86892.81)	2.611	442.0(477.1)
11	S	31023.67	35718.54	50827.38	31023.52	82393.70(82393.70)117253.	.87(117253.87)	2.311	442.0(477.1)
12	S	31815.75	44150.15	33345.59	31815.58	115047.50(115047.50) 86892.8	81(86892.81)	2.611	442.0(477.1)
13	S	31023.67	35718.54	50827.38	31023.52	82393.70(82393.70)117253.	.87(117253.87)	2.311	442.0(477.1)
14	S	20650.38	68153.11	20201.54	20650.64	125706.82(125706.82) 37273.7	74(37273.74)	1.841	442.0(477.1)
15	S	20650.38	20445.93	64977.38	20650.38	39357.68(39357.68)125063	.70(125063.70)	1.921	442.0(477.1)
16	S	21901.37	20445.93	20201.54	21901.44	94360.17(94360.17) 93228.8	83(93228.83)	4.621	442.0(477.1)
17	S	34731.55	20609.17	8743.74	34731.31	135651.31(135651.31) 57544.7	73(57544.73)	6.581	442.0(477.1)
18	S	34731.55	40537.85	36077.70	34731.41	110071.47(110071.47) 97974.0	08(97974.08)	2.721	442.0(477.1)
19	S	33356.30	32828.70	53013.06	33356.01	76796.91(76796.91)124014.	.69(124014.69)	2.341	442.0(477.1)
20	S	34731.55	40537.85	36077.70	34731.41	110071.47(110071.47) 97974.0	08(97974.08)	2.721	442.0(477.1)
21	S	33356.30	32828.70	53013.06	33356.01	76796.91(76796.91)124014.	.69(124014.69)	2.341	442.0(477.1)
22	S	20650.38	68153.11	20201.54	20650.64	125706.82(125706.82) 37273.7	74(37273.74)	1.841	442.0(477.1)

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B79 di 114

23 S 20650.38 20445.93 64977.38 20650.38 39357.68(39357.68)125063.70(125063.70) 1.921442.0(477.1) 24 S 21901.37 20445.93 20201.54 21901.44 94360.17(94360.17) 93228.83(93228.83) 4.621442.0(477.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	87.9	0.0	0.00327	87.4	198.1	-0.00827	-87.4	-198.1
2	0.00350	149.6	3.1	0.00327	145.9	160.0	-0.00828	-145.9	-160.0
3	0.00350	191.3	3.1	0.00327	184.1	114.0	-0.00844	-184.1	-114.0
4	0.00350	149.6	3.1	0.00327	145.9	160.0	-0.00828	-145.9	-160.0
5	0.00350	191.3	3.1	0.00327	184.1	114.0	-0.00844	-184.1	-114.0
6	0.00350	63.9	0.0	0.00324	59.2	208.2	-0.01023	-59.2	-208.2
7	0.00350	214.6	3.1	0.00323	205.3	68.8	-0.01023	-205.3	-68.8
8	0.00350	158.1	3.1	0.00324	153.1	153.1	-0.01003	-153.1	-153.1
9	0.00350	54.2	3.1	0.00327	49.6	210.7	-0.00863	-49.6	-210.7
10	0.00350	135.6	3.1	0.00327	130.5	172.8	-0.00863	-130.5	-172.8
11	0.00350	184.1	0.0	0.00326	178.6	122.4	-0.00873	-178.6	-122.4
12	0.00350	135.6	3.1	0.00327	130.5	172.8	-0.00863	-130.5	-172.8
13	0.00350	184.1	3.1	0.00326	178.6	122.4	-0.00873	-178.6	-122.4
14	0.00350	63.9	3.1	0.00324	59.2	208.2	-0.01023	-59.2	-208.2
15	0.00350	214.6	8.5	0.00323	205.3	68.8	-0.01023	-205.3	-68.8
16	0.00350	158.1	214.9	0.00324	153.1	153.1	-0.01003	-153.1	-153.1
17	0.00350	87.9	66.5	0.00327	87.4	198.1	-0.00827	-87.4	-198.1
18	0.00350	149.6	156.6	0.00327	145.9	160.0	-0.00828	-145.9	-160.0
19	0.00350	191.3	215.6	0.00327	184.1	114.0	-0.00844	-184.1	-114.0
20	0.00350	149.6	68.3	0.00327	145.9	160.0	-0.00828	-145.9	-160.0
21	0.00350	191.3	159.4	0.00327	184.1	114.0	-0.00844	-184.1	-114.0
22	0.00350	63.9	215.6	0.00324	59.2	208.2	-0.01023	-59.2	-208.2
23	0.00350	214.6	68.3	0.00323	205.3	68.8	-0.01023	-205.3	-68.8
24	0.00350	158.1	159.4	0.00324	153.1	153.1	-0.01003	-153.1	-153.1

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Rapp. di duttilità	ell'eq. dell'asse neutro aX+b a (travi e solette)[§ 4.1.2.1.2 nomenti per sola flessione i	.1 NTC]: deve ess	, 0
N°Comb	а	b	С	x/d

N°Comb	а	b	С	x/d	C.Rid.
1	0.000010417	0.000024553	-0.002501119		
2	0.000017732	0.000019924	-0.002501076		
3	0.000022994	0.000014239	-0.002585248		
4	0.000017732	0.000019924	-0.002501076		
5	0.000022994	0.000014239	-0.002585248		
6	0.000008836	0.000029808	-0.003495295		
7	0.000029661	0.000009333	-0.003496418		
8	0.000021532	0.000021793	-0.003393119		

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	80 di 114

 	-0.002681275	0.000026663	0.000006618	9
 	-0.002681891	0.000021924	0.000016559	10
 	-0.002732266	0.000015926	0.000022663	11
 	-0.002681891	0.000021924	0.000016559	12
 	-0.002732266	0.000015926	0.000022663	13
 	-0.003495295	0.000029808	0.000008836	14
 	-0.003496418	0.000009333	0.000029661	15
 	-0.003393119	0.000021793	0.000021532	16
 	-0.002501119	0.000024553	0.000010417	17
 	-0.002501076	0.000019924	0.000017732	18
 	-0.002585248	0.000014239	0.000022994	19
 	-0.002501076	0.000019924	0.000017732	20
 	-0.002585248	0.000014239	0.000022994	21
 	-0.003495295	0.000029808	0.000008836	22
 	-0.003496418	0.000009333	0.000029661	23
 	-0.003393119	0.000021793	0.000021532	24

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff.

As eff.

As eff.

As eff.

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2 73	70.0	0.0	1.0	-68.8	-205 3		
2	S	5.41				-138.3			289.8
3	Š	6.24				-178.6			332.2
4	Š	5.41					-166.6		
5	Š	6.24				-178.6			
6	S	2.62	70.0		-0.7				
7	S	5.63	130.0			-122.4			
8	S	6.32	181.0				-130.5	15528	332.2
9	S	5.63	130.0	0.0	-65.6	-122.4	-178.6	14274	
10	S	6.32			-87.1	-172.8	-130.5	15528	332.2
11		2.73	70.0	0.0	1.0	-68.8	-205.3		
12	S	5.41	142.5	0.0	-52.8	-138.3	-166.6	12734	289.8
13	S	6.24	188.0	0.0	-78.2	-178.6	-122.4	14841	332.2
14	S	5.41	142.5	0.0	-52.8	-138.3	-166.6	12734	289.8
15	S	6.24	188.0	0.0	-78.2	-178.6	-122.4	14841	332.2
16	S	6.09	66.5	0.0	-89.0	-59.2	-208.2	15969	346.4
17	S	5.89	214.9	0.0	-83.1	-208.2	-59.2	15722	339.3
18	S	2.66	161.5	0.0	-4.9	-153.1	-153.1	2283	99.0
19	S	6.82	64.5	0.0	-108.8	-59.2	-208.2	16584	360.5
20	S	6.42	214.4	0.0	-96.9	-205.3	-68.8	16187	346.4
21	S	2.89	158.8	0.0	-6.0	-153.1	-153.1	2607	106.0
22	S	6.82	64.5	0.0	-108.8	-59.2	-208.2	16584	360.5
23	S	6.42	214.4		-96.9			16187	346.4
24	S	2.89	158.8	0.0	-6.0	-153.1	-153.1	2607	106.0

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata

e2 Minima deformazione di trazione del cls. (in sezione fessurata), valutata nella fibra più interna dell'area Ac eff

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]

PROGETTO DEFINITIVO

VI15 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 650 m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Progetto definitivo RS3T 30 D09CL VI1505003 В 81 di 114 Relazione di calcolo Pile – P2

k2

= (e1 + e2)/(2*e1) [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	MX fess	MY fess
1	S	0.00000	0.00000						0.000 (990.00)	0.00	0.00
2	S	-0.00028	0	0.833	30.0	70	0.00016 (0.00016)	611	0.097 (990.00)	43990.21	36010.07
3	S	-0.00041	0	0.833	30.0	70	0.00023 (0.00023)	618	0.145 (990.00)	28068.50	42683.16
4	S	-0.00028	0	0.833	30.0	70	0.00016 (0.00016)	611	0.097 (990.00)	43990.21	36010.07
5	S	-0.00041	0	0.833	30.0	70	0.00023 (0.00023)	618	0.145 (990.00)	28068.50	42683.16
6	S	-0.00001	0	0.694	30.0	70	0.00000 (0.00000)	377	0.001 (990.00)	451311.35	147785.75
7	S	-0.00034	0	0.833	30.0	70	0.00020 (0.00020)	628	0.124 (990.00)	42982.49	30436.85
8	S	-0.00045	0	0.833	30.0	70	0.00026 (0.00026)	635	0.166 (990.00)	29169.42	39511.63
9	S	-0.00034	0	0.833	30.0	70	0.00020 (0.00020)	628	0.124 (990.00)	42982.49	30436.85
10	S	-0.00045	0	0.833	30.0	70	0.00026 (0.00026)	635	0.166 (990.00)	29169.42	39511.63
11	S	0.00000	0.00000						0.000 (990.00)	0.00	0.00
12	S	-0.00028	0	0.833	30.0	70	0.00016 (0.00016)	611	0.097 (990.00)	43990.21	36010.07
13	S	-0.00041	0	0.833	30.0	70	0.00023 (0.00023)	618	0.145 (990.00)	28068.50	42683.16
14	S	-0.00028	0	0.833	30.0	70	0.00016 (0.00016)	611	0.097 (990.00)	43990.21	36010.07
15	S	-0.00041	0	0.833	30.0	70	0.00023 (0.00023)	618	0.145 (990.00)	28068.50	42683.16
16	S	-0.00046	0	0.833	30.0	70	0.00027 (0.00027)	630	0.168 (990.00)	45783.71	14166.04
17	S	-0.00043	0	0.833	30.0	70	0.00025 (0.00025)	632	0.157 (990.00)	14377.71	46448.35
18	S	-0.00003	0	0.833	30.0	70	0.00001 (0.00001)	434	0.006 (990.00)	100412.02	103562.28
19	S	-0.00056	0	0.833	30.0	70	0.00033 (0.00033)	629	0.205 (990.00)	44290.53	13243.39
20	S	-0.00050	0	0.833	30.0	70	0.00029 (0.00029)	635	0.185 (990.00)	14369.61	45069.08
21	S	-0.00003	0	0.833	30.0	70	0.00002 (0.00002)	447	0.008 (990.00)	94643.08	94331.31
22	S	-0.00056	0	0.833	30.0	70	0.00033 (0.00033)	629	0.205 (990.00)	44290.53	13243.39
23	S	-0.00050	0	0.833	30.0	70	0.00029 (0.00029)	635	0.185 (990.00)	14369.61	45069.08
24	S	-0.00003	0	0.833	30.0	70	0.00002 (0.00002)	447	0.008 (990.00)	94643.08	94331.31

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.47	40.3	0.0	-12.6	-39.8	-212.8	4809	141.4
2	S	6.24	188.0	0.0	-78.2	-178.6	-122.4	14841	332.2
3	S	6.24	188.0	0.0	-78.2	-178.6	-122.4	14841	332.2
4	S	6.24	188.0	0.0	-78.2	-178.6	-122.4	14841	332.2
5	S	6.24	188.0	0.0	-78.2	-178.6	-122.4	14841	332.2
6	S	3.66	27.5	0.0	-20.0	-29.9	-214.4	7327	197.9
7	S	6.32	181.0	0.0	-87.1	-172.8	-130.5	15528	332.2
8	S	6.32	181.0	0.0	-87.1	-172.8	-130.5	15528	332.2
9	S	6.32	181.0	0.0	-87.1	-172.8	-130.5	15528	332.2
10	S	6.32	181.0	0.0	-87.1	-172.8	-130.5	15528	332.2
11	S	3.47	40.3	0.0	-12.6	-39.8	-212.8	4809	141.4
12	S	6.24	188.0	0.0	-78.2	-178.6	-122.4	14841	332.2
13	S	6.24	188.0	0.0	-78.2	-178.6	-122.4	14841	332.2
14	S	6.24	188.0	0.0	-78.2	-178.6	-122.4	14841	332.2
15	S	6.24	188.0	0.0	-78.2	-178.6	-122.4	14841	332.2

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

						<u> </u>								
Progetto	definitiv	0			CON	MESSA		LOTTO	CODIFICA		DOCUMENTO	REV.	. FOGLIO	
Relazion			ile – P2		I	RS3T		30	D09CL		VI1505003	В	82 di 114	
	1	S	-0.00007	0	0.833	30.0	70	0.0	0004 (0.00004)	527	0.020 (0.20)	92260.17	16814.22	
	2	S	-0.00041	0	0.833	30.0	70	0.0	0023 (0.00023)	618	0.145 (0.20)	28068.50	42683.16	
	3	S	-0.00041	0	0.833	30.0	70	0.0	0023 (0.00023)	618	0.145 (0.20)	28068.50	42683.16	
	4	S	-0.00041	0	0.833	30.0	70	0.0	0023 (0.00023)	618	0.145 (0.20)	28068.50	42683.16	
	5	S	-0.00041	0	0.833	30.0	70	0.0	0023 (0.00023)	618	0.145 (0.20)	28068.50	42683.16	
	6	S	-0.00011	0	0.833	30.0	70	0.0	(0.0006)	553	0.033 (0.20)	74350.37	9164.89	
	7	S	-0.00045	0	0.833	30.0	70		0026 (0.00026)	635	0.166 (0.20)	29169.42	39511.63	
	8	S	-0.00045	0	0.833	30.0	70	0.0	0026 (0.00026)	635	0.166 (0.20)	29169.42	39511.63	
	9	S	-0.00045	0	0.833	30.0	70	0.0	0026 (0.00026)	635	0.166 (0.20)	29169.42	39511.63	
1	10	S	-0.00045	0	0.833	30.0	70	0.0	0026 (0.00026)	635	0.166 (0.20)	29169.42	39511.63	
1	11	S	-0.00007	0	0.833	30.0	70	0.0	0004 (0.00004)	527	0.020 (0.20)	92260.17	16814.22	
1	12	S	-0.00041	0	0.833	30.0	70	0.0	0023 (0.00023)	618	0.145 (0.20)	28068.50	42683.16	
1	13	S	-0.00041	0	0.833	30.0	70	0.0	0023 (0.00023)	618	0.145 (0.20)	28068.50	42683.16	
1	14	S	-0.00041	0	0.833	30.0	70	0.0	0023 (0.00023)	618	0.145 (0.20)	28068.50	42683.16	
1	15	S	-0.00041	0	0.833	30.0	70	0.0	0023 (0.00023)	618	0.145 (0.20)	28068.50	42683.16	

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.23	225.0	0.0	15.0	-216.5	0.0		
2	S	1.78	225.0	0.0	7.1	-216.5	0.0		
3	S	1.78	225.0	0.0	7.1	-216.5	0.0		
4	S	1.78	225.0	0.0	7.1	-216.5	0.0		
5	S	1.78	225.0	0.0	7.1	-216.5	0.0		
6	S	1.23	225.0	0.0	15.0	-216.5	0.0		
7	S	1.78	225.0	0.0	7.1	-216.5	0.0		
8	S	1.78	225.0	0.0	7.1	-216.5	0.0		
9	S	1.78	225.0	0.0	7.1	-216.5	0.0		
10	S	1.78	225.0	0.0	7.1	-216.5	0.0		
11	S	1.23	225.0	0.0	15.0	-216.5	0.0		
12	S	1.78	225.0	0.0	7.1	-216.5	0.0		
13	S	1.78	225.0	0.0	7.1	-216.5	0.0		
14	S	1.78	225.0	0.0	7.1	-216.5	0.0		
15	S	1.78	224.8	0.0	7.1	-216.3	-10.0		

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	MX fess	MY fess
1	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
2	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
3	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
4	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
5	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
6	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
7	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
8	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
9	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
10	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
11	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
12	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
13	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
14	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
15	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	83 di 114

8.3 Verifica a taglio

diametro armature tras	sversale	φ	12	mm
bracci staffe		bs	4	
area armature trasvers	ale	Asw	5	cm2
passo staffe		S	20	cm
copriferro netto + staf	fa + fi/2	c'	9	cm
spessore anima sezion	e rettrangolar	sb	0	cm
sezione		tipo	circolare	
tipologia di varifica ta	glio	secondo	statica q=	1
Direzione Longidina	le			
resistenza ridotta		f'c	9	Mpa
braccio delle forze inte	erne	z=0.9d	327	cm
larghezza biella		bw	379	cm
inclinazione staffe		α	90	gradi
inclinazione biella		θ	22	gradi
resistenza puntoni		Vc	38660	kN
resistenza staffe		Vs	7221	kN
taglio resisitente		Vr	7221	kN
taglio massimo agente		Ved	5174	kN
		Ved/Vrd	0.72	
Direzione Trasversa	le			
braccio delle forze inte	erne	z=0.9d	327	cm
larghezza biella		bw	379	cm
inclinazione biella		θ	22	gradi
resistenza puntoni		Vc	38660	kN
resistenza staffe		Vs	7221	kN
taglio resisitente		Vr	7221	kN
taglio massimo agente		Ved	4740	kN
		Ved/Vrd	0.66	

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	84 di 114

8.4 Verifica minimi di armatura

Secondo quanto prescritto dalle NTC2018 e dal "Manuale di Progettazione delle Opere Civili" i quantitativi minimi di armatura da rispettare sono:

- L'area dell'armatura longitudinale dovrà essere non inferiore allo 0,6% dell'area della sezione effettiva del calcestruzzo. Questa prescrizione non si applica ai tratti di pile che, per motivi idraulici, sono realizzati a sezione piena; per queste, fatte salve le esigenze di calcolo, si manterrà l'armatura corrispondente alla sezione del tratto cavo immediatamente superiore;
- Le barre di armatura longitudinale non dovranno distare fra loro più di 300 mm compatibilmente con i limiti forniti nella Tab. 2.5.2.2.6-1;

Diametro delle barre	Massimo interasse delle barre
[mm]	[mm]
32	300
24	250
20	200

Tab. 2.5.2.2.6-1 - Diametri e relativi interassi massimi delle barre

- Non è ammesso l'impiego di staffe elicoidali (spirali);
- Non è consentito congiungere tra loro i bracci delle staffe per sovrapposizione. Le staffe devono essere chiuse risvoltando i bracci nel nucleo di calcestruzzo mediante la piegatura dei ferri di 135° verso l'interno e per una lunghezza non inferiore a 10 volte il diametro della staffa;
- Nella zona di spiccato delle pile e in quella di sommità delle pile a telaio, per un tratto di lunghezza non inferiore a 3 metri non è consentito operare alcun tipo di giunzione delle armature verticali; al di fuori di tale tratto è consentito congiungere, in modo graduale, le barre verticali mediante sovrapposizione o altro. In particolare, le giunzioni devono essere effettuate in modo da interessare non più di 1/3 delle barre longitudinali presenti nella generica sezione, sfalsando due riprese di armatura successive di almeno 40 diametri in senso verticale;

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1505003	В	85 di 114

- L'interasse delle armature trasversali s non deve essere superiore a 10 volte il diametro delle barre longitudinali, né a 1/5 del diametro del nucleo della sezione interna alle stesse;
- Nelle pile a sezione cava dovranno prevedersi spille di collegamento fra le armature longitudinali in numero di almeno 6 a metro quadro;
- Nel caso in cui il fattore di struttura "q" sia minore o uguale ad 1,5 l'armatura di confinamento delle pile si devono rispettare le limitazioni sulla percentuale meccanica:

minimi per armatura fl	essionale			
numero di ferri longitudi	nali	n	2041	
diametro del ferro longit	udinale	fi	30	mm
diametro minimo armati	ıra a taglio	fi	8	mm
passo massimo longitudi	nale	p	30	am
area dell'armatura longitu	ıdinale	As	1442698	mm2
area di calcestruzzo (non	riempito)	Ac	15900000.00	mm3
			9.07%	>0.6%
minimi per confinamen	nto se q≤1.5	5		
accelerazione al suolo per	r SLV	ag	0.14	g
coefficiente di verifica		ζ	0.03	
interasse staffe		S	200	mm
diametro armature trasve	ersale	φ	12	mm
Area della singola staffa		Asw	1.131	mm2
Area totale staffe		Asw	2.26	mm2
area totale legature	Asl	16.08	mm2	
percentuale meccanica ar	m. Trasv	wwd,r	0.0424	

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	86 di 114

8.5 Verifica spostamenti

Per l'identificazione dell'escursione dei giunti tra le testate di due travi adiacenti si richiama il "Manuale di Progettazione delle Opere Civili" al capitolo 2.5.2.1.5.3 il quale fa riferimento allo spostamento longitudinale E_L identificabile come il contributo di una dilatazione termica, più un contributo indotto dall'azione sismica sulle fondazioni e sulle pile:

$$E_L = k_1 \cdot (E_1 + E_2 + E_3) = k_1 \cdot (2 \cdot D_t + 4 \cdot d_{Ed} \cdot k_2 + 2 \cdot d_{eg})$$

dove:

E₁= spostamento dovuto alla variazione termica uniforme;

E₂= spostamento dovuto alla risposta della struttura all'azione sismica;

E₃= spostamento dovuto all'azione sismica fra le fondazioni di strutture non collegate;

k₁= 0,45 coefficiente che tiene conto della non contemporaneità dei valori massimi

corrispondenti a ciascun evento singolo;

k₂= 0,55 coefficiente legato alla probabilità di moto in controfase di due pile adiacenti;

spostamento longitudinale indotto dal moto rel	ativo delle pile	:	
categoria di terreno		С	
periodo inizio tratto velocità costante	TC	0.613	s
periodo tratto a spostamento costante	TD	1.970	s
coef. categoria e topografia terreno	S	1.5	
accelerazione orizzontale max al sito	ag	0.139	g
periodo di vibrare longitudinale	T1	0.87	sec
fattore di struttura	q	1.5	
fattore di duttilità in spostamento	μ	1.5	
accelerazione di riferimento pila dir. long	ag (T)	0.19	g
	W	0.14	sec
		0.04	m
spostamento SLV relativo all'analisi spettrale	dEe	0.0000	m
spostamento totale relativo	d Ed	0.0533	m

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B87 di 114

spostamento longitudinale indotto dal moto rela	ativo del terren	10	
spostamento massimo orizz. del terreno	dg	0.0617	m
spostamenti massimi terreno punto i	dji	0.062	m
spostamenti massimi terreno punto j	dgi	0.062	m
velocità prop. onde di taglio nel terreno	Vs	270	m/s
distanza tra i-esima tra punto i j (dist. Pile)	X	40	m
per suoli differenti o distanza <20m	dij0	0.0000	m
su stesso suolo	dij0	0.0012	m
formulazione adottata		(3.2.16)	
	dij, max	0.1091	m
spost. relativo tra due punti dipendenti	di(x)	0.031	m

spostamento longitudinale relativo alla termica			
variazione termica uniforme	DT	20	°C
coefficiente di dilatazione termica	α	1.20E-05	1/°C
dilatazione termica	Dt	0.010	m
dilatazione termica incrementata del 50%	Dt	0.014	m
spostamento longitudinale finale			
coefficiente non contemporaneità del moto	K1	0.45	
coefficiente controfase pile	k2	0.55	
spostamento longitudinale minimo	EL min	0.17	m
spostamento long di calcolo	EL	0.16	m
spostamento longitudinale	EL	16.500	m
altri spostamenti longitudinali			
escursione longitudinale giunto	Eg	± 9.3	cm
corsa appoggi mobili	Cap	± 10.3	cm
ampiezza dei varchi	v	10.3	cm

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	88 di 114

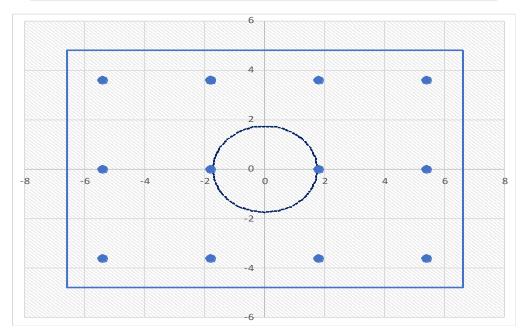
Di seguito si riporta una tabella riassuntiva delle escursioni longitudinali per tutte le tipologie di luce presenti lungo la linea:

$$E_L \ge 2.30 \cdot \frac{L}{1000} + 0.073 \in E_L \ge 0.10m$$

L imp (m)	EL (cm)	Corsa appoggi (cm)	Escursione giunti (cm)	Varco (cm)
17.9	12.0	7.5	7.0	8.0
25	14.0	8.8	8.0	9.0
40	17.0	10.6	9.5	10.5
50	19.0	11.9	10.5	11.5
60	22.0	13.8	12.0	13.0

Relazione di calcolo Pile – P2

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO


VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1505003	В	89 di 114

9. PLINTO DI FONDAZIONE

Per la progettazione e verifica del plinto di fondazione è necessario valutare preventivamente le sollecitazioni agenti sui singoli pali. Tali sollecitazioni sono state identificate mediante una ripartizione rigida dal baricentro della fondazione.

numero di pali	n.	12	
diametro pali	D	1.2	m
interasse pali	i	3.6	m
altezza plinto di fondazione	h	3	m
Check verifica			
sbalzo direzione trasversale	at	3.15	m
sbalzo direzione longitudinale	al	1.35	m
direzione trasversale	a/h	1.05	Plinto basso
direzione longitudinale	a/h	0.45	Plinto basso

Dalle sollecitazioni ottenute precedentemente nel baricentro in corrispondenza dell'intradosso della fondazione si sono ottenute le seguenti sollecitazioni in testa palo:

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1505003 B 90 di 114

Scarichi q	=1.5/1.1	se plinto s	nello		
n. palo	X	Y	Ncombo1	Ncombo2	Ncombo3
1	0	4.5	7448.1	5168.1	8209.7
2	0	-4.5	4068.7	2266.8	-774.8
3	4.5	4.5	8934.4	9303.1	9528.8
4	4.5	-4.5	5554.9	6401.7	544.4
5	-4.5	-4.5	2582.4	-1868.2	-2093.9
6	-4.5	4.5	5961.9	1033.2	6890.5
7	4.5	0	7244.7	7852.4	5036.6
8	-4.5	0	4272.1	-417.5	2398.3
9	0	0	5758.4	3717.5	3717.5
	0	0	5758.4	3717.5	3717.5
	0	0	5758.4	3717.5	3717.5
	0	0	5758.4	3717.5	3717.5
	taglio con	nbinato in	180.5972	470.3276	546.005
Scarichi q	=1 se plin	to tozzo e	verifica a t	aglio	
n. palo	X	Y	Ncombo1	Ncombo2	Ncombo3
1	0	4.5	5344.6	5168.1	8209.7
2	0	-4.5	2443.2	2266.8	-774.8
3	4.5	4.5	6663.7	9303.1	9528.8
4	4.5	-4.5	3762.4	6401.7	544.4
5	-4.5	-4.5	1124.1	-1868.2	-2093.9
6	-4.5	4.5	4025.4	1033.2	6890.5
7	4.5	0	5213.0	7852.4	5036.6
8	-4.5	0	2574.8	-417.5	2398.3
9	0	0	3893.9	3717.5	3717.5
	0	0	3893.9	3717.5	3717.5
	0	0	3893.9	3717.5	3717.5
	0	0	3893.9	3717.5	3717.5
	taglio con	nbinato in	284.222	470.3276	546.005

Il plinto di fondazione è stato verificato ipotizzando un meccanismo di tirante puntone ricadendo nella categoria di elementi tozzi. La larghezza collaborante è stata valutata tramite una diffusione a 45° rispetto al dimetro del palo più sollecitato, quindi fermata in corrispondenza della pila o della linea media dell'interasse del palo successivo.

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	91 di 114

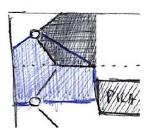


Figura 12 - mensola di riferimento

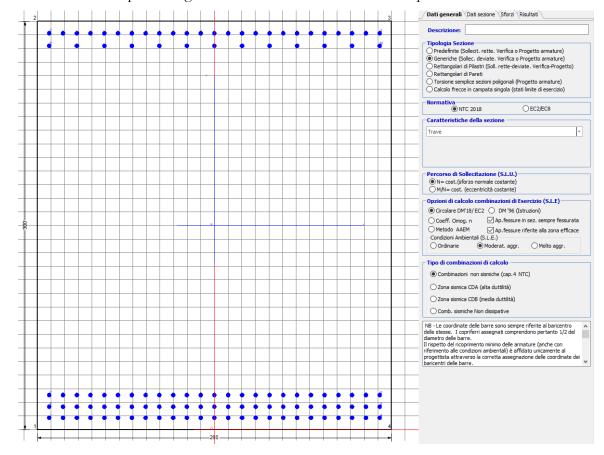
9.1 Dimensionamento armature

posizione del palo più sollecitato			
coortinata in direzione trasvesale	X	4.5	m
coortinata in direzione longitudinale	Y	4.5	m
angolo di deviazione risultate rispetto alle ascisse	α	45	gradi
ipotenusa poiezione orizzontale puntone	L	6.36396	m
altezza della fondazione	h	3	m
inclinazione rispetto all'orizzontale puntone	θ	25.2394	gradi
reazione in testa palo più sollecitato	Rmax	9156.45	KN
forza di trazione risultante	Т	19423.8	KN
proiezione forza di trazione in trasversale	Tt	13734.7	KN
proiezione forza di trazione in longitudinale	T1	13734.7	KN
lunghezza collaborante		media 45°	

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B92 di 114

dimensionamento armature				
area dell'armatura inferiore richiesta in tra	S	At	35100.1	mm2
diametro armatura		Φ	30	mm
passo armatura trasversale		р	10	cm
numero di strati		ns	2.5	
lunghezza di collaborazione		L	2.6302	m
numero di ferri per strato		n	26	
area complessiva sulla lunghezza collabora	ante	Ares	45945.8	mm2
		coef. Sicui	0.76395	
area dell'armatura inferiore richiesta in lor	ıg	Al	35100.1	mm2
diametro armatura		Φ	30	
passo armatura longitudinale		р	10	cm
numero di strati		ns	2.5	
lunghezza di collaborazione		L	2.625	m
numero di ferri per strato		n	26	
area complessiva sulla lunghezza collabor	ante	Ares	45945.8	mm2
		coef. Sicui	0.76395	
tasso di lavoro armatura allo SLU		σt	298.932	MPa
tasso di lavoro armatura allo SLU		σl	298.932	MPa


VI15 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B93 di 114

9.2 Verifica a presso-flessione

9.2.1 Direzione trasversale

Armatura disposta lungo la direzione trasversale all'asse del ponte

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: fondazione X 260x300

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione:

Condizioni Ambientali:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

A Sforzo Norm. costante

Moderat. aggressive

Assi x,y principali d'inerzia

Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C25/30

Resis. compr. di progetto fcd: 14.160 MPa Def.unit. max resistenza ec2: 0.0020

VI15 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 650 m

MPa

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B94 di 114

Def.unit. ultima ecu:

Diagramma tensione-deformaz.:

Modulo Elastico Normale Ec:

Resis. media a trazione fctm:

Coeff. Omogen. S.L.E.:

Solimita S.L.E. comb. Fraquenti:

D.0035

Parabola-Rettangolo

MPa

2.560

MPa

15.00

Coeff. Omogen. S.L.E.:

15.00

Coeff. Omogen. S.L.E.:

137.50 deN//

Sc limite S.L.E. comb. Frequenti: 137.50 daN/cm²
Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm
Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa
Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:450.00MPaResist. caratt. rottura ftk:450.00MPaResist. snerv. di progetto fyd:391.30MPaResist. ultima di progetto ftd:391.30MPa

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito
1.00
1.00
337.50

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C25/30	
N°vertice:	X [cm]	Y [cm]
1 2 2	-130.0 -130.0	0.0 300.0
3 4	130.0 130.0	300.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-121.3	8.7	30
2	-121.3	291.3	30
3	121.3	291.3	30
4	121.3	8.7	30
5	121.3	16.7	30
6	-121.3	16.7	30
7	-121.3	25.4	30
8	121.3	25.4	30
9	-121.3	282.0	30
10	121.3	282.0	30

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	2	3	23	30

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	95 di 114

2	6	5	23	30
2	1	4	23	30 30 30 30
4 5	7	8	23	30
5	9	10	11	30

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez.						
Му		Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.						
Vy		Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x						
Vx		Componente dei	ragilo [kin] parallela	all asse princ.d iner	zia x			
N°Comb.	N	Mx	Му	Vy	Vx			

in Comb.	IN	IVIX	iviy	vy	VX
1	0.00	23731.00	0.00	0.00	0.00
2	0.00	21154.00	0.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 16447.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 16447.00 (14186.07) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 9254.00 (14186.07) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B96 di 114

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 5.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	23731.00	0.00	0.00	55964.68	0.00	2.3653	30.1(112.0)
2	S	0.00	21154.00	0.00	0.00	55964.68	0.00	2.6553	30.1(112.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.123	-130.0	300.0	0.00265	-121.3	291.3	-0.02506	-121.3	8.7
2	0.00350	0.123	-130.0	300.0	0.00265	-121.3	291.3	-0.02506	-121.3	8.7

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1 2	0.00000000	0.000098034	-0.025910093	0.123	0.700
	0.000000000	0.000098034	-0.025910093	0.123	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

S

-0.00066

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

PROGETTO DEFINITIVO

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

0.00042 (0.00038) 436 0.184 (990.00) 14186.07

My fess

0.00

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	97 di 114

1 S 4.06 -130.0 300.0 -126.4 70.8 8.7 11050 530.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Ver.		Esito della ve		sempre les	Suiala a	niche nei ca	so in cui la trazione minima del calcestruzzo sia inferi	ore a ic	ZUII
e1		Massima def	ormazione di f	trazione de	el calces	truzzo, valut	ata in sezione fessurata		
e2		Minima defor	mazione di tra	zione del	cls. (in s	ezione fessi	urata), valutata nella fibra più interna dell'area Ac eff		
k1		= 0.8 per ba	rre ad aderen:	za migliora	ıta [eq.(7	[.11)EC2]			
kt		= 0.4 per co	mb. quasi per	manenti /	= 0.6 pe	r comb.frequ	uenti [cfr. eq.(7.9)EC2]		
k2		= (e1 + e2)/(2	2*e1) [eq.(7.1	3)EC2]					
k3		= 3.400 Coef	f. in eq.(7.11)	come da a	annessi r	nazionali			
k4		= 0.425 Coef	f. in eq.(7.11)	come da a	annessi r	nazionali			
Ø		Diametro [mr	n] equivalente	delle barr	e tese c	omprese ne	ll'area efficace Ac eff [eq.(7.11)EC2]		
Cf		Copriferro [m	m] netto calco	olato con ri	feriment	o alla barra	più tesa		
e sm	n - e cm	Differenza tra	a le deformazi	oni medie	di acciai	o e calcestru	uzzo [(7.8)EC2 e (C4.1.7)NTC]		
sr m	ax	Massima dist	anza tra le fes	ssure [mm]	. ,	? e (C4.1.8)NTC]		
wk) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentes	d	
Mx f			momento di p						
My f	ess.	Componente	momento di p	orima tessi	urazione	intorno all'a	sse y [kinm]		
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

0.897 30.0 72

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	4.06	-130.0 300.0	-126.4	70.8	8.7	11050	530.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

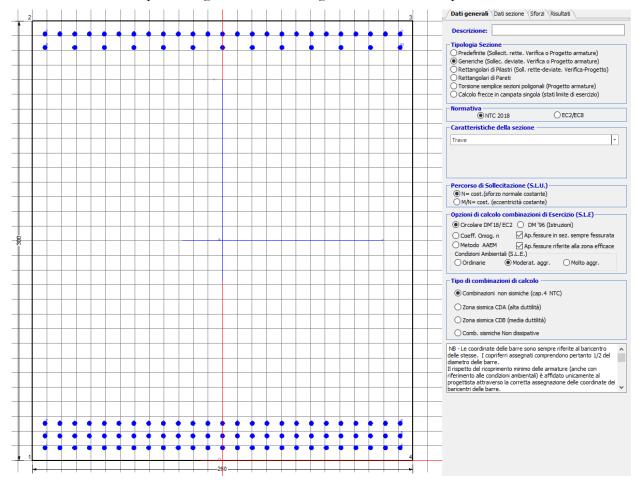
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr	max	wk	Mx fess	My fess
1	S	-0.00066	0	0.897	30.0	72	0.00042 (0.00038)	436	0.184 (0.20)	14186.07	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.28	-130.0 300.0	-71.1	70.8	8.7	11050	530.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00037	0	0.897	30.0	72	0.00022 (0.00021)	436	0.094 (0.20)	14186.07	0.00



VI15 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B98 di 114

9.2.2 Direzione longitudinale

Armatura disposta lungo la direzione longitudinale all'asse del ponte

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: fondazione Y 260x300

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione:

Condizioni Ambientali:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

A Sforzo Norm. costante

Moderat. aggressive

Assi x,y principali d'inerzia

Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C25/30

Resis. compr. di progetto fcd: 14.160 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 31475.0 MPa Resis. media a trazione fctm: 2.560 MPa Coeff. Omogen. S.L.E.: 15.00

ACCIAIO -

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI15 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 650 m

337.50 MPa

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B99 di 114

Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Frequenti: 137.50 daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Мра Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm B450C Tipo: Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 2000000 Modulo Elastico Ef daN/cm² Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

CARATTERISTICHE DOMINIO CONGLOMERATO

Sf limite S.L.E. Comb. Rare:

Forma del Do Classe Conglo	Poligonale C25/30	
N°vertice:	X [cm]	Y [cm]
1	-130.0	0.0
2	-130.0	300.0
3	130.0	300.0
4	130.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-121.3	8.7	30
2	-121.3	291.3	30
3	121.3	291.3	30
4	121.3	8.7	30
5	121.3	16.7	30
6	-121.3	16.7	30
7	-121.3	25.4	30
8	121.3	25.4	30
9	-121.3	282.0	30
10	121.3	282.0	30

DATI GENERAZIONI LINEARI DI BARRE

 N°Gen.
 Numero assegnato alla singola generazione lineare di barre

 N°Barra Ini.
 Numero della barra iniziale cui si riferisce la generazione

 N°Barra Fin.
 Numero della barra finale cui si riferisce la generazione

 N°Barra
 Numero di barra generata equidistanti cui si riferisce la generatione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	2	3	23	30
2	6	5	23	30
3	1	4	23	30
4	7	8	23	30
5	9	10	11	30

2

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI15 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 650 m

0.00

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	100 di 114

0.00

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Momento flettent	e [kNm] intorno all'a	aric. (+ se di compre asse x princ. d'inerzi	a ′
Му		Momento flettent	e [kNm] intorno all'a	mere il lembo sup. d asse y princ. d'inerzi mere il lembo destro	а
Vy Vx		Componente del	Taglio [kN] parallel	a all'asse princ.d'ine a all'asse princ.d'ine	erzia y
N°Comb.	N	Mx	Му	Vy	Vx
1	0.00	23731.00	0.00	0.00	0.00

21154.00 COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

0.00

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

0.00

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx My 1 0.00 16447.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Mx 1 0.00 16447.00 (14186.07) 0.00(0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Μv

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν My

1 0.00 9254.00 (14186.07) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 5.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

VI15 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 650 m

LOTTO COMMESSA CODIFICA DOCUMENTO REV. FOGLIO Progetto definitivo RS3T 30 D09CL VI1505003 В 101 di 114 Relazione di calcolo Pile - P2

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Му N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Mx Res My Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	23731.00	0.00	0.00	55964.68	0.00	2.3653	30.1(112.0)
2	S	0.00	21154.00	0.00	0.00	55964.68	0.00	2.6553	30.1(112.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.123	-130.0	300.0	0.00265	-121.3	291.3	-0.02506	-121.3	8.7
2	0.00350	0.123	-130.0	300.0	0.00265	-121 3	291.3	-0.02506	-121.3	8.7

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d C.Rid.

Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000098034	-0.025910093	0.123	0.700
2	0.000000000	0.000098034	-0.025910093	0.123	0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb Xc max Yc max Sf min Xs min Ys min Ver Sc max Ac eff. As eff. 11050 S 4.06 -130.0 300.0 -126.470.8 8.7 530.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

PROGETTO DEFINITIVO

VI15 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B102 di 114

Ver. Esito della verifica

e1 Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata

e2 Minima deformazione di trazione del cls. (in sezione fessurata), valutata nella fibra più interna dell'area Ac eff

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]

k2 = (e1 + e2)/(2*e1) [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Cf Comb. Ver e1 e2 Mx fess My fess e sm - e cm sr max 1 S -0.00066 0 0.897 30.0 72 0.00042 (0.00038) 436 0.184 (990.00) 14186.07 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

 N°Comb
 Ver
 Sc max
 Xc max
 Yc max
 Sf min
 Xs min
 Ys min
 Ac eff.
 As eff.

 1
 S
 4.06
 -130.0
 300.0
 -126.4
 70.8
 8.7
 11050
 530.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e2 k2 Ø Cf e1 e sm - e cm sr max Mx fess My fess S -0.00066 0.897 30.0 72 0.00042 (0.00038) 0.00 0 436 0.184 (0.20) 14186.07

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

 N°Comb
 Ver
 Sc max
 Xc max
 Yc max
 Sf min
 Xs min
 Ys min
 Ac eff.
 As eff.

 1
 S
 2.28
 -130.0
 300.0
 -71.1
 70.8
 8.7
 11050
 530.1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Ct	e sm - e cm s	r max	WK	Mx tess	My tess
1	S	-0.00037	0	0.897	30.0	72	0.00022 (0.00021)	436	0.094 (0.20)	14186.07	0.00

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B103 di 114

9.3 Verifica a punzonamento

			I
perimetro del palo	uo	4.71239	m
diffuzione dello sforzo	secondo	NS 3483E	
angolo d'inclinazione superficie	θ	45	gradi
perimetro zona critica	u1	21.1115	m
altezza della sezione utile	d	2.61	m
raggio interno	r	0.75	m
raggio esterno	R	3.36	m
ipotenusa triangolo interno del cono	a	3.6911	m
angolo massimo di sviluppo	α1	25	gradi
angolo minimo di sviluppo	α2	-120	gradi
sviluppo della superficie resistente	α	1.26536	rad
superficie totale del tronco cono	S1	19.1961	m2
coefficiente carico		1.4	1112
resistenza caratterisitica del calcestruzzo	β fck	25	MPa
	fcd		MPa MPa
resistenza di calcolo del calcestruzzo		14.1667	
valore di progetto del taglio	Ved	9156.45	kN
valore massimo della resistenza unitaria	in adiacenza palo)	
tensione di progetto di verifica su perimetro	uo ved	1.04225	MPa
resistenza associata	vRd,max	5	MPa
		0.20845	
valore di progetto di una piastra priva di a	armature a punzo	onamento	
coefficiente di dato dai carichi	CRd,c	0.12	
fattore di scala	k	1.97358	
percenturale geometrica armatura fless. trasv	ely ely	0.00669	
percenturale geometrica armatura fless. long	ρlz	0.00671	
percentuale meccanica complessiva	Ql	0.00947	
coefficiente	k1	0.1	
tensione di progetto di verifica su perimetro	u1 ved	0.66779	MPa
	vRd,c	0.6891	MPa
		0.96908	

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1505003	В	104 di 114

10. PALI DI FONDAZIONE

10.1 Ridistribuzione sollecitazioni testa palo

Le sollecitazioni agenti in testa palo vengono calcolate nell'ipotesi di platea di fondazione infinitamente rigida, attraverso la relazione

$$R(x,y) = \frac{N}{n} + \frac{M_l}{J_l} \cdot y + \frac{M_t}{J_t} \cdot x$$

dove N, M_I , M_t sono lo sforzo normale e i momenti flettenti longitudinale e trasversale agenti al baricentro della palificata, n è il numero di pali e J_I , J_t sono le inerzie longitudinale e trasversale della palificata

$$J_l = \sum y_i^2 \qquad \qquad J_t = \sum x_i^2$$

Per quanto riguarda le sollecitazioni orizzontali in testa palo, si assume che le azioni di taglio di ripartiscano uniformemente tra i pali, risultando

$$T(x,y) = \frac{\sqrt{H_i^2 + H_t^2}}{n}$$

dove H₁, H₁ sono le forze orizzontali longitudinale e trasversale agenti al baricentro della palificata.

10.2 Verifica strutturale

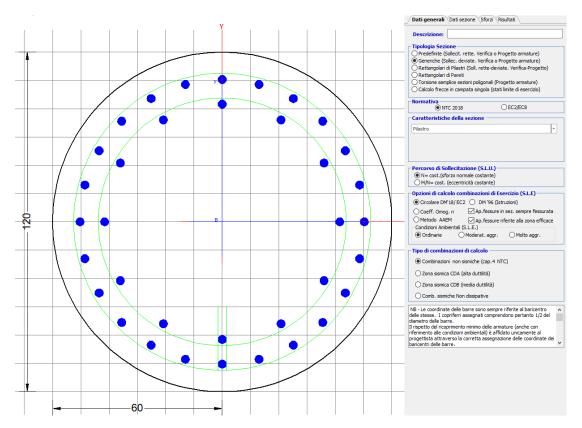
A seconda della verifica di riferimento le sollecitazioni identificate sono riferite ad un fattore di comportamento differente, ottenendo per cui le seguenti ridistribuzioni in testa palo:

Sollecitazioni nel baricentro della fondazione per analisi di presso-flessione

TABELLA PER FLESSIONE					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr3+vento_7	51826	1695	1351	45623	40129
E_103x_SLV_q=1.36_63	33457	4937	1605	89778	26935
E_103y_SLV_q=1.36_64	33457	2408	3777	29714	82706
E_103x_SLV_q=1.36_63	33457	4937	1605	89778	26935
E_103y_SLV_q=1.36_64	33457	2408	3777	29714	82706

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	105 di 114


Ridistribuzione

				1	
n. palo	X	Y	combo1	combo2	combo3
1	1.8	3.6	6274.48	6154.79	4585.64
2	1.8	-3.6	3106.25	-79.808	2522.13
3	5.4	3.6	7017.62	6653.6	6117.22
4	5.4	-3.6	3849.38	418.995	4053.72
5	-5.4	-3.6	1619.98	-1077.4	-541.04
6	-5.4	3.6	4788.22	5157.19	1522.47
7	5.4	0	5433.5	3536.3	5085.47
8	-5.4	0	3204.1	2039.88	490.713
9	-1.8	0	3947.23	2538.69	2022.3
10	1.8	0	4690.37	3037.49	3553.88
11	-1.8	-3.6	2363.11	-578.61	990.545
12	-1.8	3.6	5531.35	5655.99	3054.05
taglio equiva	lente		180.597	432.58	373.291
alfa derivante	e dall'analisi geot	ecnica		α	2.18
	N	T1	Tt	ML	Mt
combo1	7018	141	113	424	338
combo2	6654	411	134	1234	401
combo3	6117	201	315	602	944
combo4	-1077	411	134	1234	401
	•				

VI15 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 650 m

Progetto definitivo Relazione di calcolo Pile – P2 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL VI1505003 B 106 di 114

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: palo 1.2

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C

Percorso sollecitazione:
Condizioni Ambientali:
Riferimento Sforzi assegnati:
Riferimento alla sismicità:
A Sforzo Norm. costante
Poco aggressive
Assi x,y principali d'inerzia
Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C25/30 Resis. compr. di progetto fcd: 14.160 MPa

Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 31475.0 MPa Resis. media a trazione fctm: 2.560 MPa Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00 137.50

Sc limite S.L.E. comb. Frequenti: 137.50 daN/cm²

Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm

Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa

Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO - Tipo: B450C

VI15 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B107 di 114

450.00 MPa Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef 2000000 daN/cm² Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 60.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

N°Gen. Xcentro Ycentro Raggio N°Barre Ø 0.0 0.0 50.3 30 24 1 2 0.0 41.6 30 0.0

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	9156.45	369.29	529.82	0.00	0.00
2	1778.80	225.16	93.17	0.00	0.00
3	8934.39	455.74	363.14	0.00	0.00
4	9156.45	369.29	529.82	0.00	0.00
5	8934.39	455.74	363.14	0.00	0.00
6	9156.45	369.29	529.82	0.00	0.00
7	8040.18	1327.40	431.56	0.00	0.00
8	-605.27	1327.40	431.56	0.00	0.00
9	8040.18	1327.40	431.56	0.00	0.00
10	7881.16	647.48	1015.65	0.00	0.00
11	8040.18	1327.40	431.56	0.00	0.00
12	7881.16	647.48	1015.65	0.00	0.00

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	108 di 114

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	6421.96	254.48	342.20
2	1495.70	254.48	331.81
3	6275.27	314.18	228.32
4	6421.96	254.48	342.20
5	6275.27	314.18	228.32
6	6421.96	254.48	342.20
7	6154.45	674.41	257.02
8	1324.30	674.41	257.02
9	5916.85	674.41	257.02
10	5841.28	327.49	557.96
11	5916.85	674.41	257.02
12	5841.28	327.49	557.96

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	6421.96	254.48 (0.00)	342.20 (0.00)
2	1495.70	254.48 (878.37)	331.81 (1145.28)
3	6421.96	254.48 (0.00)	342.20 (0.00)
4	6421.96	254.48 (0.00)	342.20 (0.00)
5	6421.96	254.48 (0.00)	342.20 (0.00)
6	6421.96	254.48 (0.00)	342.20 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	3949.28	1.20 (0.00)	74.76 (0.00)
2	3334.38	1.20 (0.00)	74.76 (0.00)
3	3949.28	1.20 (0.00)	74.76 (0.00)
4	3949.28	1.20 (0.00)	74.76 (0.00)
5	3949.28	1.20 (0.00)	74.76 (0.00)
6	3949.28	1.20 (0.00)	74.76 (0.00)

RISULTATI DEL CALCOLO

Му

Sezione verificata per tutte le combinazioni assegnate

VI15 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B109 di 114

Copriferro netto minimo barre longitudinali: 8.2 cm Interferro netto minimo barre longitudinali: 5.7 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	9156.45	369.29	529.82	9156.53	2535.47	3630.43	6.86 254.5(33.9)
2	S	1778.80	225.16	93.17	1778.80	3883.76	1602.13	17.24 254.5(33.9)
3	S	8934.39	455.74	363.14	8934.67	3485.75	2776.50	7.65 254.5(33.9)
4	S	9156.45	369.29	529.82	9156.53	2535.47	3630.43	6.86 254.5(33.9)
5	S	8934.39	455.74	363.14	8934.67	3485.75	2776.50	7.65 254.5(33.9)
6	S	9156.45	369.29	529.82	9156.53	2535.47	3630.43	6.86 254.5(33.9)
7	S	8040.18	1327.40	431.56	8040.34	4317.73	1405.51	3.25 254.5(33.9)
8	S	-605.27	1327.40	431.56	-605.10	3500.67	1135.75	2.64 254.5(33.9)
9	S	8040.18	1327.40	431.56	8040.34	4317.73	1405.51	3.25 254.5(33.9)
10	S	7881.16	647.48	1015.65	7881.06	2443.15	3834.45	3.77 254.5(33.9)
11	S	8040.18	1327.40	431.56	8040.34	4317.73	1405.51	3.25 254.5(33.9)
12	S	7881.16	647.48	1015.65	7881.06	2443.15	3834.45	3.77 254.5(33.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	49.2	1.0	0.00301	43.6	25.2	-0.00199	-43.6	-25.2
2	0.00350	22.9	1.0	0.00270	13.0	48.6	-0.00515	-13.0	-48.6
3	0.00350	37.4	1.0	0.00299	35.6	35.6	-0.00205	-35.6	-35.6
4	0.00350	49.2	1.0	0.00301	43.6	25.2	-0.00199	-43.6	-25.2
5	0.00350	37.4	1.0	0.00299	35.6	35.6	-0.00205	-35.6	-35.6
6	0.00350	49.2	1.0	0.00301	43.6	25.2	-0.00199	-43.6	-25.2
7	0.00350	18.6	56.1	0.00299	13.0	48.6	-0.00230	-13.0	-48.6
8	0.00350	18.6	56.1	0.00255	13.0	48.6	-0.00722	-13.0	-48.6
9	0.00350	18.6	56.1	0.00299	13.0	48.6	-0.00230	-13.0	-48.6
10	0.00350	50.6	30.4	0.00298	43.6	25.2	-0.00234	-43.6	-25.2
11	0.00350	18.6	56.1	0.00299	13.0	48.6	-0.00230	-13.0	-48.6
12	0.00350	50.6	30.4	0.00298	43.6	25.2	-0.00234	-43.6	-25.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

VI15 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 650 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P2RS3T30D09CLVI1505003B110 di 114

C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue								
N°Comb	a	b	С	x/d	C.Rid.				
1	0.000040937	0.000028534	0.000506003						
2	0.000030109	0.000072764	-0.001224851						
3	0.000031425	0.000039439	0.000474336						
4	0.000040937	0.000028534	0.000506003						
5	0.000031425	0.000039439	0.000474336						
6	0.000040937	0.000028534	0.000506003						
7	0.000016266	0.000050031	0.000343505						
8	0.000030075	0.000092504	-0.002336197						
9	0.000016266	0.000050031	0.000343505						
10	0.000044663	0.000028473	0.000321972						
11	0.000016266	0.000050031	0.000343505						
12	0.000044663	0.000028473	0.000321972						

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
As eff.
As eff.
As eff.
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	6.01	48.1	0.0	41.6	-43.6	-25.2		
2	S	2.84	47.6	0.0	-9.9	-43.6	-25.2	448	14.1
3	S	5.76	35.3	0.0	42.1	-25.2	-43.6		
4	S	6.01	48.1	0.0	41.6	-43.6	-25.2		
5	S	5.76	35.3	0.0	42.1	-25.2	-43.6		
6	S	6.01	48.1	0.0	41.6	-43.6	-25.2		
7	S	7.06	21.4	0.0	23.7	-13.0	-48.6		
8	S	4.63	21.4	0.0	-49.8	-13.0	-48.6	1107	28.3
9	S	6.90	21.4	0.0	21.3	-13.0	-48.6		
10	S	6.54	51.7	0.0	24.3	-43.6	-25.2		
11	S	6.90	21.4	0.0	21.3	-13.0	-48.6		
12	S	6.54	51.7	0.0	24.3	-43.6	-25.2		

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata

e2 Minima deformazione di trazione del cls. (in sezione fessurata), valutata nella fibra più interna dell'area Ac eff

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]

k2 = (e1 + e2)/(2*e1) [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max wk Mx fess My fess

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definit	ivo			CON	MMESSA		LOTTO	CODIFICA		DOCUMENTO	REV.	FOGLIO
Relazione di ca		le — P2		RS3T		30	D09CL		VI1505003	В	111 di 114	
												_
1	S	0.00000	0.00000							0.000 (990.00)	0.00	0.00
2	S	-0.00007	0	0.833	30.0	82	0.0	0.0003 (0.00003)	548	0.016 (990.00)	878.37	1145.28
3	S	0.00000	0.00000							0.000 (990.00)	0.00	0.00
4	S	0.00000	0.00000							0.000 (990.00)	0.00	0.00
5	S	0.00000	0.00000							0.000 (990.00)	0.00	0.00
6	S	0.00000	0.00000							0.000 (990.00)	0.00	0.00
7	S	-0.00009	0							0.000 (990.00)	2104.29	706.54
8	S	-0.00030	0	0.833	30.0	82	0.0	0015 (0.00015)	612	0.091 (990.00)	817.77	311.65
9	S	-0.00012	0							0.000 (990.00)	1733.85	582.16
10	S	-0.00009	0							0.000 (990.00)	1015.30	1898.89
11	S	-0.00002	0							0.000 (990.00)	11699.07	3353.66
12	S	-0.00016	0							0.000 (990.00)	624.95	1432.90

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

As eff.	Ac eff.	Ys min	Xs min	Sf min	Yc max	Xc max `	Sc max	Ver	N°Comb
		-25.2	-43.6	41.6	0.0	48.1	6.01	S	1
14.1	448	-25.2	-43.6	-9.9	0.0	47.6	2.84	S	2
		-25.2	-43.6	41.6	0.0	48.1	6.01	S	3
		-25.2	-43.6	41.6	0.0	48.1	6.01	S	4
		-25.2	-43.6	41.6	0.0	48.1	6.01	S	5
		-25.2	13.6	116	0.0	10 1	6.01	c	6

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
2	S	-0.00007	0	0.833	30.0	82	0.00003 (0.00003)	548	0.016 (0.20)	878.37	1145.28
3	S	0.00000	0.00000				`		0.000 (0.20)	0.00	0.00
4	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
5	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
6	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

As eff.	Ac eff.	Ys min	Xs min	Sf min	Yc max	Xc max Y	Sc max	Ver	N°Comb
		0.0	-50.3	35.3	0.0	60.0	2.92	S	1
		0.0	-50.3	29.2	0.0	60.0	2.51	S	2
		0.0	-50.3	35.3	0.0	60.0	2.92	S	3
		0.0	-50.3	35.3	0.0	60.0	2.92	S	4
		0.0	-50.3	35.3	0.0	60.0	2.92	S	5
		0.0	-50.3	35.3	0.0	60.0	2 92	S	6

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
1	c	0.00000	0.00000					0.000 (0.20)	0.00	0.00
2	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00 0.00
3	Š	0.00000	0.00000					0.000 (0.20)	0.00	0.00
4	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00
5	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00
6	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1505003	В	112 di 114

Relazione di calcolo Pile – P2

10.3 Verifica a taglio

A seconda della verifica di riferimento le sollecitazioni identificate sono riferite ad un fattore di comportamento differente,

TABELLA PER TAGLIO					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr3+vento_7	51826	1695	1351	45623	40129
E_103x_SLV_q=1_66	33457	6258	1941	121290	35617
E_103y_SLV_q=1_67	33457	2804	4898	39168	111644
E_103x_SLV_q=1_66	33457	6258	1941	121290	35617
E_103y_SLV_q=1_67	33457	2804	4898	39168	111644

Ottenendo per cui le seguenti azioni in testa palo

		combo1	combo2
sollecitazione massima direzione x	Tx	6258	2804
sollecitazione massima direzione y	Ту	1941	4898
vettore complessivo, singolo palo	Т	728	627

Progetto armature

diametro armature trasversale	φ	12	mm
bracci staffe	bs	2	
diametro pali	R	0.8	m
area armature trasversale	Asw	2.3	cm2
passo staffe	S	20.0	cm
copriferro netto + staffa + fi/2	c'	9.7	cm
resistenza di calcolo armatura	f yd	391.0	Mpa
resistenza caratteristica res cls	f ck	25.0	
resistenza di calcolo res. Calc	f cd	18.5	Mpa
resistenza ridotta	f'c	9.2	Mpa
braccio delle forze interne	z=0.9d	110.4	cm
larghezza biella	bw	126.1	cm
inclinazione staffe	α	90	gradi
inclinazione biella	β	22	gradi
resistenza puntoni	Vc	4436	kN
resistenza staffe	Vs	1221	kN
taglio resisitente	Vr	1221	kN
taglio massimo agente	Ved	728	kN
	Ved/Vrd	0.60	

VI15 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 650 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P2	RS3T	30	D09CL	VI1505003	В	113 di 114

11. INCIDENZE

Baggioli/Ritegni 350 kg/mc

Pulvino 180 kg/mc

Fusto Pila 100 kg/mc

Plinto di fondazione 190 kg/mc

Pali di fondazione primo tratto 195 kg/mc