COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO

NUOVO COLLEGAMENTO PALERMO - CATANIA U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

TRATTA LERCARA DIR. – CALTANISSETTA XIRBI (LOTTO 3)

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250m

Relazione di calcolo Pile – P5

						SCALA:	
						0 01 1111 11	
							_
						_	
					1 L		
601 B E566 1	TOWNS DAGE	ENTER TIPO DOG	ODED A /DISCIPL DIA	DD O OD	D 1377		
COMMESSA	LOTTO FASE	ENTE TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV.		

OPERA/DISCIPLINA $R \mid S \mid 3 \mid$ 3 0 D 0 9 1 0 1 В

Rev. Descrizione Redatto Data Verificato Data Approvato	Data	Autorizzato Data
A Emissione Esecutiva G. Grimaldi Gen. 2020 A. Fri Gen. 2020 A. Barjec Gen. 2020 A. Ferri Mag. 2020 A. Barjec A. Barjec A. Barjec	Gen. 2020	A. Vittozzi Gen. 2020 Gene Chili e Gen. 2020 Gene Chili e Gen. 2020 Gene Chili e Gene Gene Gene Gene Gene Gene Gene G

File: RS3T30D09CLVI1805001B n. Elab.: 09_473

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5

LOTTO COMMESSA RS3T 30

CODIFICA D09CL

DOCUMENTO VI1805001

REV. В

FOGLIO 1 di 112

INDICE

1. PR	REMESSA	3
1.1	Descrizione dell'opera	3
2. DC	OCUMENTI DI RIFERIMENTO	7
3. M/	ATERIALI	7
3.1	Verifiche SLE	8
3.1	1.1 Verifiche tensionali	8
3.1	1.2 Verifiche a fessurazione	9
4. DA	ATI DI BASE	10
4.1	Geometrie di base	10
4.2	Modelli di analisi e verifica	12
4.3	Condizioni elementari e combinazioni di carico	12
4.4	Sistemi di riferimento ed unità di misura	16
5. AN	NALISI DEI CARICHI	17
5.1	Peso proprio elementi strutturali	17
5.2	Carichi strutturali trasmessi dall'impalcato	18
5.3	Carichi da traffico verticali	18
5.4	Effetti dinamici	20
5.5	Disposizione treni di carico	20
5.6	Carichi da traffico orizzontali	24
5.6	5.1 Forza centrifuga	24
5.6	5.2 Serpeggio	26
5.6	5.3 Frenatura ed avviamento	27
5.6	5.4 Forza d'attrito	28
5.6	5.5 Azione del Vento	28
5.7	Azione Sismica	31
<i>5.7</i>	7.1 Inquadramento Sismico	32
<i>5.7</i>	7.2 Definizione della domanda sismica	33
<i>5.7</i>	7.3 Calcolo dell'azione Sismica	38
<i>5.7</i>	7.4 Risposta sismica locale	39
5.7	7.5 Check analisi statica	40
<i>5.7</i>	7.6 Analisi statica equivalente	41
5.7	7.7 Analisi dinamica modale	42
6. SO	OLLECITAZIONI	43
6.1	Combinazioni di carico	43
6.1	1.1 Configurazione 1	43

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1805001	В	2 di 112

6.1.2 Configurazione 2	49
6.1.3 Configurazione 3	
6.2 Tabelle riassuntive, massime sollecitazioni	
6.2.1 Stati limiti di esercizio	
6.2.2 Stati limiti utlimi	
7. VERIFICHE STRUTTURALI	70
8. FUSTO PILA	70
8.1 Modellazione	72
8.2 Verifica a presso flessione	73
8.3 Verifica a taglio	84
8.4 Verifica minimi di armatura	85
8.5 Verifica spostamenti	87
9. PLINTO DI FONDAZIONE	88
9.1 Dimensionamento armature	90
9.2 Verifica a prsso-flessione	91
9.2.1 Direzione trasversale	91
9.2.2 Direzione longitudinale	96
9.3 Verifica a punzonamento	101
10. PALI DI FONDAZIONE	102
10.1 Ridistribuzione sollecitazioni testa palo	102
10.2 Verifica strutturale	102
10.3 Verifica a taglio	110
11. INCIDENZE	111

VI18 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	3 di 112

1. PREMESSA

La presente relazione ha per oggetto il dimensionamento e le verifiche di resistenza secondo il metodo semiprobabilistico agli Stati Limite (S.L.) di una delle Pile del viadotto ferroviario VI18 della tratta ferroviaria Palomba-Catenanuova, viadotto ferroviario previsto nell'ambito del progetto definitivo lungo la direttrice ferroviaria Messina-Catania-Palermo del nuovo collegamento Palermo-Catania. In particolare, si tratterà la Pila 5 che rappresenta la tipologica per tutte le pile di altezza minore o uguale a 11.00m, e impalcato 25m.

Le analisi strutturali e le verifiche di sicurezza sono state effettuate secondo il DM 17 gennaio 2018.

1.1 Descrizione dell'opera

Il viadotto VI18 attraversa un corso d'acqua maggiore e corre parallelamente alla linea torica. Il viadotto è a doppio binario, ha uno sviluppo complessivo di 250m, ed è costituito da 9 campate isostatiche di luce 25m e 50m (asse pila-asse pila/ asse pila-asse giunto spalla). Le campate da 25 m sono realizzate con un impalcato in cap a due travi mentre, la campata da 50m è realizzata con una sezione mista a due travi.

Le pile sono realizzate in c.a. gettato in opera, sono di forma rettangolare di dimensioni pari a 7x3.3m. Il pulvino ha una altezza pari a 2m. Su esso disposti gli apparecchi di appoggio dell'impalcato secondo lo schema sotto riportato

Il plinto presenta uno spessore di 2.5metri e una pianta rettangolare di 9.6x9.6, mentre le fondazioni previste sono su pali in c.a. di grande diametro F1200 sia per le pile che per le spalle. Il numero di pali pari a 9 e disposti ad interessa minimi di m. Si è assunta una distanza dal bordo degli stessi di 1.20 m.

Per l'implementazione delle geometrie, vista la vastità delle casistiche, sono state adottate delle schematizzazioni in special modo per plinto di fondazione e pulvino.

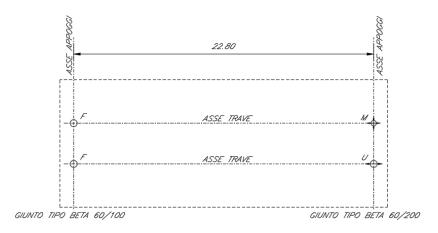
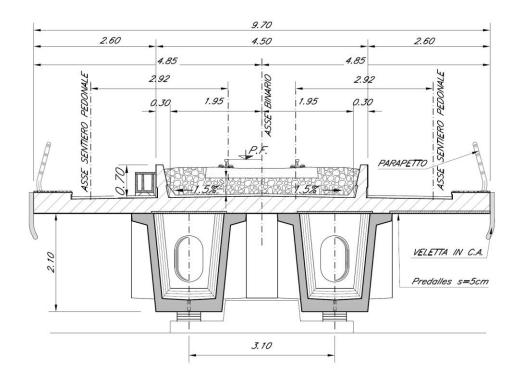



Figura 1: schema appoggi impalcati sx e dx

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	5 di 112

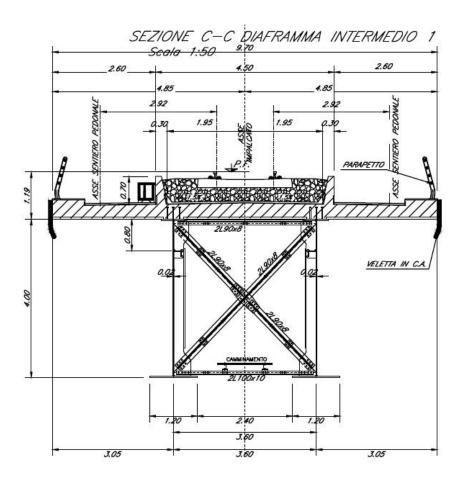


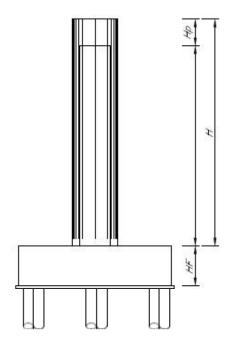
Figura 2: sezione trasversale impalcato

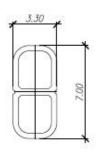
30

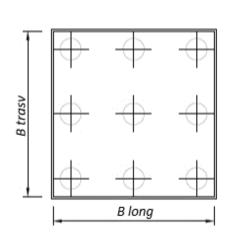
VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5

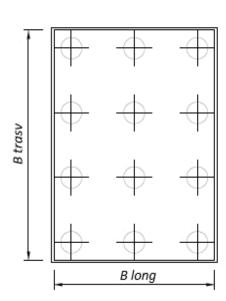
LOTTO COMMESSA RS3T


CODIFICA D09CL


DOCUMENTO VI1805001


FOGLIO 6 di 112

REV.


В

B long

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	7 di 112

2. DOCUMENTI DI RIFERIMENTO

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Ministero delle Infrastrutture, DM 17 gennaio 2018, Aggiornamento delle «Norme tecniche per le costruzioni».
- Ministero delle Infrastrutture e Trasporti, Circolare 21 gennaio 2019, n. 7/C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 17 gennaio 2018»
- Istruzione RFI DTC SI PS MA IFS 001 Manuale di Progettazione delle Opere Civili Parte II Sezione 2 Ponti e Strutture
- Istruzione RFI DTC SI CS MA IFS 001 Manuale di Progettazione delle Opere Civili Parte II Sezione 3 Corpo Stradale
- Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;

3. MATERIALI

Le caratteristiche dei materiali previsti le sottostrutture sono le seguenti:

Calcestruzzo pali di fondazione, cordoli, opere provvisionali, calcestruzzo fondazioni

classe di resistenza conglomerato	dasse	C25/30	
resistenza caratteristica cubica a comp.	Rdk	30	МРа
modulo elastico	Ec	31476	МРа
resistenza media cilindrica a comp.	fam	33	МРа
resistenza cilindrica caratteristica a comp.	fdk	25	МРа

Calcestruzzo fondazioni armate

classe di resistenza conglomerato	dasse	C28/35	
resistenza caratteristica cubica a comp.	Rdk	34	МРа
modulo elastico	Ec	32308	МРа
resistenza media cilindrica a comp.	fam	36	МРа
resistenza cilindrica caratteristica a comp.	fdk	28	MPa

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	8 di 112

Calcestruzzo elevazione pile (compresi pulvini, baggioli e ritegni), spalle

classe di resistenza conglomerato	dasse	C32/40	
resistenza caratteristica cubica a comp.	Rck	40	МРа
modulo elastico	Ec	33346	МРа
resistenza media cilindrica a comp.	fam	40	МРа
resistenza cilindrica caratteristica a comp.	fck	32	МРа

Acciaio ordinario per calcestruzzo armato

denominazione tipo d'acciaio	nome	B450	
modulo elastico	Es	210000	МРа
tensione media di snevamento	fym	480	МРа
tensione caratteristica di snevamento	fyk	450	МРа
tensione di snevamento di calcolo	fyd	391.30	МРа
tensione caratteristica a rottura	ftk	540	МРа

Le verifiche del plinto di fondazione vengono condotte, a favore di sicurezza, con una classe di calcestruzzo C25/30.

3.1 Verifiche SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato.

3.1.1 Verifiche tensionali

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario", ovvero:

tensione massima di compressione del calcestruzzo

• per combinazione caratteristica (rara) : 0.55 fck

• per combinazione quasi permanente : 0.40 fck

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	9 di 112

• per spessori minori di 5cm tali valori devono essere decrementati del 30%.

tensione massima di trazione dell'acciaio

• per combinazione caratteristica (rara) : $0.75 f_{yk}$

Per il caso in esame risulta in particolare per l'elevazione:

 $\sigma_{c \ max \ QP} = (0,40 \ f_{cK}) = 12.8$ MPa (Combinazione di Carico Quasi Permanente) $\sigma_{c \ max \ R} = (0,55 \ f_{cK}) = 17.6$ MPa (Combinazione di Carico Caratteristica - Rara) $\sigma_{s \ max \ R} = (0,75 \ f_{yK}) = 337.5$ MPa (Combinazione di Carico Caratteristica - Rara)

3.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]. In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 - Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Canani di			A	rmatur	a	
Gruppi di esigenza	Condizioni ambientali	Combinazione di azione	Sensibile	Poco sensibile		
esigeliza			Stato limite	wk	Stato limite	wk
A	Ordinarie	frequente	ap. fessure	\leq_{W_2}	ap. fessure	\leq_{W_3}
Λ	Ordinarie	quasi permanente	ap. fessure	\leq_{W_1}	ap. fessure	\leq_{W_2}
В	A gramagaixra	frequente	ap. fessure	\leq_{W_1}	ap. fessure	\leq_{W_2}
Б	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq_{\mathbf{W}_1}$
C Molto Aggressive		frequente	formazione fessure	-	ap. fessure	$\leq_{\mathbf{W}_1}$
	Molto Aggressive	quasi permanente	decompressione	-	ap. fessure	\leq_{W_1}

Tabella 2 - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1. XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Risultando:

- $w_1 = 0.2 \text{ mm}$
- $w_2 = 0.3 \text{ mm}$
- $w_3 = 0.4 \text{ mm}$

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1805001	В	10 di 112

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel par. 4.1.2.2.4.2 del DM 17.1.2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

• Combinazione Caratteristica (Rara)
$$\delta_f \leq w_1 = 0.2 \ mm$$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura del D.M. 9 gennaio 1996, in accordo a quanto previsto al punto "C4.1.2.2.4.5 Verifica allo stato limite di fessurazione" della Circolare 21 gennaio 2019 n.7/C.S.L.L:PP..

Considerando quanto sopra riportato, per una semplice implementazione nel programma di calcolo RC-SEC, la combinazione RARA riferita al gruppo 4 è stata implementata fittiziamente come "frequente" in modo da separarla ed applicare la restrizione dei 0.2mm. Tutte le combinazioni RARE restanti sono state verificate per le sole verifiche tensionali.

4. DATI DI BASE

4.1 Geometrie di base

La pila presenta una sezione pseudo-rettangolare cava di dimensioni 7x3.3m, una altezza complessiva di 11.00m. Il pulvino è costituito da una sezione piena medesima alla pila ed altezza variabile in funzione del tipo d'impalcato. Nei calcoli si è incrementato del 10% la massa del pulvino per tener conto di velette, baggioli e ritegni. Le fondazioni sono realizzate su pali di diametro 1200mm collegate in testa da una platea di spessore 2.5m.

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B11 di 112

PILA			
altezza pila- estradosso fond/estradosso pulvino	Нр	11	m
tipolgoia di sezione		 rettangola	re
larghezza trasversale pila	b	7.000	m
larghezza longitudinale pila	d	3.300	m
raggio angolo esterno	r	1	m
area della sezione	A	10.073	m2
inerzia sezione direzione trasversale	I11	43.440	m4
inerzia sezione direzione longitudinale	I22	13.420	m4
calcestruzzo	fck	32	MPa
massa pulvino	mp	1839	kN
PULVINO			
larghezza in direzione trasversale	b	7	m
larghezza in direzione trasversale	d	3.3	m
altezza pulvino	u h	2	m
anczza purvino			111
massa pulvino compresa del +10%	mp	1271	kN
FONDAZIONE			
larghezza in direzione trasversale	b	9.6	m
larghezza in direzione longitudinale	d	9.6	m
altezza della fondazione	h	2.5	m
altezza terreno di ricoprimento	ht	1.5	m
area netta per calcolo ricoprimento	A	69.1	m3
peso di vulume del terreno	у	19	kN/3
Ulteriori distanze e bracci			
distanza asse pila e appoggi per momento longitud.	il	1.2	
interasse tra i binari (se singolo 0)	ib	4	m
dist. tra interasse del singolo binario e asse pila	a	2	m

VI18 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	12 di 112

4.2 Modelli di analisi e verifica

Le sollecitazioni di verifica della pila sono state determinate a partire dai valori delle risultanti delle azioni trasmesse dagli impalcati alla quota degli apparecchi di appoggio alle quali sono state combinate le azioni determinate dalle azioni date dalle forze di inerzia e dal peso proprio delle sottostrutture. Il modello della struttura è stato implementato in un foglio di calcolo appositamente realizzato per la valutazione delle azioni agenti sulle singole parti della struttura, quali fusto pila e plinto. Per l'analisi e la verifica del plinto di fondazione, si è utilizzato un modello, a seconda della geometria, di tirante-puntone o trave inflessa.

Per quanto riguarda invece le sollecitazioni sui pali di fondazione a partire dalle azioni risultanti nel baricentro del plinto alla quota di intradosso, sono stati calcolati, per ciascuna combinazione di carico, gli sforzi assiali e di taglio in testa ai pali di fondazione utilizzando il classico modello a piastra rigida.

4.3 Condizioni elementari e combinazioni di carico

Le verifiche di sicurezza strutturali e geotecniche sono state condotte utilizzando combinazioni di carico definite in ottemperanza alle NTC18, secondo quanto riportato nei paragrafi 2.5.3, 5.1.3.12. Di seguito sono mostrati i coefficienti parziali di sicurezza utilizzati allo SLU ed i coefficienti di combinazione adoperati per i carichi variabili nella progettazione delle strutture da ponte.

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1805001	В	13 di 112

2.5.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B14 di 112

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	$\gamma_{\rm P}$	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

(7) 1,20 per effetti locali

Azioni		Ψo	V 1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B15 di 112

	Azioni	Ψο	Ψ1	Ψ2
	Treno di carico LM 71	0,80 ⁽³⁾	(1)	0,0
Azioni	Treno di carico SW /0	0,80(3)	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)	-	-
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

- (1) 0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.
- (2) Si usano gli stessi coefficienti ψ adottati per i carichi che provocano dette azioni.
- (3) Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

Nel seguito si riportano le azioni considerate ai fini della valutazione delle sollecitazioni agenti sulle sottostrutture e quindi, alle verifiche strutturali.

Nome Combinazione	G1	G2	Treno	Scarico	F fre	F cent	F serp	F att	Vento	E long	E tra	E ver
A1 SLU gr1 Treno	1.35	1.5	1.45	0	0.725	1.45	1.45	0.9	0	0	0	0
A1 SLU gr2 Scarico	1.35	1.5	0	1.45	0	1.45	1.45	0.9	0	0	0	0
A1 SLU gr3 Fre/avv	1.35	1.5	1.45	0	1.45	0.725	0.725	0.9	0	0	0	0
A1 SLU gr4 centrif	1.35	1.5	0.87	0	0.87	0.87	0.87	0.9	0	0	0	0
A1 SLU gr1+vento	1.35	1.5	1.45	0	0.725	1.45	1.45	0.9	0.9	0	0	0
A1 SLU gr2+vento	1.35	1.5	0	1.45	0	1.45	1.45	0.9	0.9	0	0	0
A1 SLU gr3+vento	1.35	1.5	1.45	0	1.45	0.725	0.725	0.9	0.9	0	0	0
A1 SLU gr4+vento	1.35	1.5	0.87	0	0.87	0.87	0.87	0.9	0.9	0	0	0
A1 SLU vento gr1	1.35	1.5	1.16	0	0.58	1.16	1.16	0.72	1.5	0	0	0
A1_SLU_vento_gr2_	1.35	1.5	0	1.16	0	1.16	1.16	0.72	1.5	0	0	0
A1_SLU_vento_gr3_	1.35	1.5	1.16	0	1.16	0.58	0.58	0.72	1.5	0	0	0
A1_SLU_vento_gr4_	1.35	1.5	0.87	0	0.87	0.87	0.87	0.9	1.5	0	0	0
SLE_rar_gr1_Treno_	1	1	1	0	0.5	1	1	0.6	0	0	0	0
SLE_rar_gr2_Scarico_	1	1	0	1	0	1	1	0.6	0	0	0	0
SLE_rar_gr3_Fre/avv_	1	1	1	0	1	0.5	0.5	0.6	0	0	0	0
SLE_rar_gr4_centrif_	1	1	0.6	0	0.6	0.6	0.6	0.6	0	0	0	0
SLE_rar_gr1+vento_	1	1	1	0	0.5	1	1	0.6	0.6	0	0	0
SLE_rar_gr2+vento_	1	1	0	1	0	1	1	0.6	0.6	0	0	0
SLE_rar_gr3+vento_	1	1	1	0	1	0.5	0.5	0.6	0.6	0	0	0
SLE_rar_gr4+vento_	1	1	0.6	0	0.6	0.6	0.6	0.6	0.6	0	0	0
SLE_rar_vento_gr1_	1	1	0.8	0	0.4	0.8	0.8	0.48	1	0	0	0
SLE_rar_vento_gr2_	1	1	0	0.8	0	0.8	0.8	0.48	1	0	0	0
SLE_rar_vento_gr3_	1	1	0.8	0	0.8	0.4	0.4	0.48	1	0	0	0
SLE_rar_vento_gr4_	1	1	0.6	0	0.6	0.6	0.6	0.6	1	0	0	0
SLE_fre_gr1_Treno_	1	1	0.8	0	0.4	0.8	0.8	0.4	0	0	0	0
SLE_fre_gr2_Scarico_	1	1	0	0.8	0	0.8	0.8	0.4	0	0	0	0
SLE_fre_gr3_Fre/avv_	1	1	0.8	0	0.8	0.4	0.4	0.4	0	0	0	0
SLE_fre_gr4_centrif_	1	1	0.6	0	0.6	0.6	0.6	0.5	0	0	0	0
SLE_fre_gr1+vento_	1	1	0.8	0	0.4	0.8	0.8	0.4	0.2	0	0	0
SLE_fre_gr2+vento_	1	1	0	0.8	0	0.8	0.8	0.4	0.2	0	0	0
SLE_fre_gr3+vento_	1	1	0.8	0	0.8	0.4	0.4	0.4	0.2	0	0	0
SLE_fre_gr4+vento_	1	1	0.6	0	0.6	0.6	0.6	0.5	0.2	0	0	0
SLE_fre_vento_gr1_	1	1	0	0	0	0	0	0.5	0.5	0	0	0
SLE_fre_vento_gr2_	1	1	0	0	0	0	0	0.5	0.5	0	0	0
SLE_fre_vento_gr3_	1	1	0	0	0	0	0	0.5	0.5	0	0	0
SLE_fre_vento_gr4_	1	1	0	0	0	0	0	0.5	0.5	0	0	0
SLE_fre_gr1_temp	1	1	0	0	0	0	0	0.6	0.2	0	0	0
SLE_fre_gr2_temp	1	1	0	0	0	0	0	0.6	0.2	0	0	0
SLE_fre_gr3_temp	1	1	0	0	0	0	0	0.6	0.2	0	0	0
SLE_fre_gr3_temp	1	1	0	0	0	0	0	0.6	0.2	0	0	0

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B16 di 112

Nome Combinazione	G1	G2	Treno	Treno scarico	F_fre	F_cent	F_serp	F_att	Vento	E_long	E_tra	E_ver
SLE_qp_gr1_Treno_	1	1	0	0	0	0	0	0.5	0	0	0	0
SLE_qp_gr2_Scarico_	1	1	0	0	0	0	0	0.5	0	0	0	0
SLE_qp_gr3_Fre/avv_	1	1	0	0	0	0	0	0.5	0	0	0	0
SLE_qp_gr4_centrif_	1	1	0	0	0	0	0	0.5	0	0	0	0
SLE_qp_gr1+vento_	1	1	0	0	0	0	0	0.5	0.2	0	0	0
SLE_qp_gr2+vento_	1	1	0	0	0	0	0	0.5	0.2	0	0	0
SLE_qp_gr3+vento_	1	1	0	0	0	0	0	0.5	0.2	0	0	0
SLE_qp_gr4+vento_	1	1	0	0	0	0	0	0.5	0.2	0	0	0
SLE_qp_vento_gr1_	1	1	0	0	0	0	0	0.5	0.2	0	0	0
SLE_qp_vento_gr2_	1	1	0	0	0	0	0	0.5	0.2	0	0	0
SLE_qp_vento_gr3_	1	1	0	0	0	0	0	0.5	0.2	0	0	0
SLE_qp_vento_gr4_	1	1	0	0	0	0	0	0.5	0.2	0	0	0
SLE_qp_gr1_temp	1	1	0	0	0	0	0	0.5	0	0	0	0
SLE_qp_gr2_temp	1	1	0	0	0	0	0	0.5	0	0	0	0
SLE_qp_gr3_temp	1	1	0	0	0	0	0	0.5	0	0	0	0
SLE_qp_gr3_temp	1	1	0	0	0	0	0	0.5	0	0	0	0
E_103x_	1	1	0.2	0	0	0	0	0.5	0.2	1	0.3	0.3
E_103y_	1	1	0.2	0	0	0	0	0.5	0.2	0.3	1	0.3
E_103z_	1	1	0.2	0	0	0	0	0.5	0.2	0.3	0.3	1

Le combinazioni di carico sismiche che tengo conto della componente verticale negativa non vengono ripotate in quanto poco significative.

Gli scarichi agli appoggi, riportati nei paragrafi seguenti, fanno riferimento alla seguente terna di assi:

- asse X coincidente con l'asse trasversale del ponte;
- asse Y coincidente con l'asse longitudinale del ponte;
- asse Z coincidente con l'asse verticale del ponte;

Per quanto riguarda la risposta alle diverse componenti dell'azione sismica, poiché si è adottata un'analisi in campo lineare, essa può essere calcolata separatamente per ciascuna delle componenti. Gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc) sono combinate successivamente applicando l'espressione

$$1.00 \cdot Ex + 0.30 \cdot Ey + 0.30 \cdot Ez$$

con rotazione ed inversione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

4.4 Sistemi di riferimento ed unità di misura

- Asse X parallelo all'asse trasversale dell'impalcato
- Asse Y ortogonale all'asse longitudinale dell'impalcato
- Asse Z verticale
- [Lunghezze] m
- [Forze] KN

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	17 di 112

5. ANALISI DEI CARICHI

5.1 Peso proprio elementi strutturali

I pesi degli elementi strutturali sono calcolati utilizzando un peso di volume del calcestruzzo pari a $25 \ kN/m^3$.

viadotto a binario			Singolo			
lato impalcato			SX		DX	
tipologia di impalcato			2TR		2TR	
luce impalcato			25	m	25	m
DATI DI INPUT FOGLIO VER	IFICHE					
altezza cassoncino		h	2.1	m	2.1	m
spessore medio soletta		S	0.41	m	0.41	m
estradosso impalcato		Н	2.51	m	2.51	m
spessore ballast + rotaia		hb	0.88	m	0.88	m
altezza PF da estradosso trave		h2	1.19	m	1.19	m
lunghezza travata		L	24.3	m	24.3	m
luce appoggi travata		La	22.8	m	22.8	m
larghezza totale impalcato		В	9.7	m		
peso permanente strutturale		G1	4050	kN	4050	kN
peso permanenti non strutt		G2	3084	kN	3084	kN
Altezze da intradosso del casson	cino					
baricentro del cassoncito		gc	0.89	m	0.89	m
area cassoncino		Ac	1.14	m2	1.14	m2
baricentro della soletta		gs	2.32	m	2.32	m
area soletta		As	1.00	m2	1.00	m2
baricentro sezione trave+soletta	(da intradosso trave)	Gb1	1.56	m	1.56	m
baricentro del ballast	(da intradosso trave)	Gb2	2.95	m	2.95	m
altezza piano del ferro	(da intradosso trave)	Н	3.29	m	3.29	m
baricentro treno	(da intradosso trave)	Gb3	5.09	m	5.09	m

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	18 di 112

5.2 Carichi strutturali trasmessi dall'impalcato

Si riportano di seguito gli scarichi agli appoggi dedotti dall'analisi dell'impalcato, per la campata sinistra e destra:


		N	Mlong
		KN	kN m
scarichi estradosso Pila - G1		4050	0
scarichi estradosso Pila - G2		3084	0
scarichi estradosso Fondazione	- G1	7044	0
scarichi estradotto Fondazione	- G2	3084	0
scarichi sui Pali - G1		14772	0
scarichi sui Pali - G2		3084	0

5.3 Carichi da traffico verticali

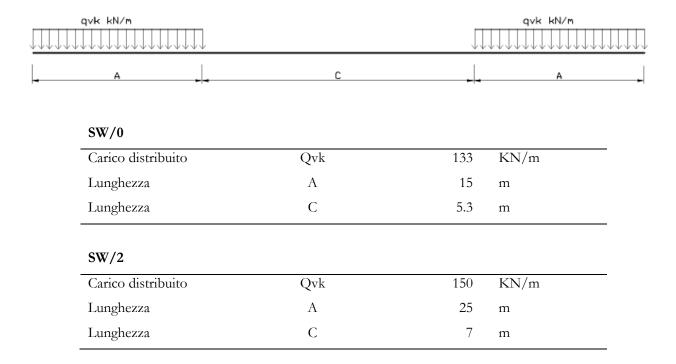
L'opera è stata progettata considerando le sollecitazioni dovute al carico da traffico ferroviario, considerando i modelli LM71 e/o SW/2. Si riportano di seguito le caratteristiche dei modelli di traffico presi in esame.

➤ Modello di carico LM71

Sia le istruzioni RFI che le NTC 2018 (par. 5.2.2.2.1.1), definiscono questo modello di carico tramite carichi concentrati e carichi distribuiti, riferiti all'asse dei binari.

Carichi concentrati: quattro assi da 250 kN disposti ad interasse di 1,60 m;

<u>Carico distribuito:</u> 80 kN/m in entrambe le direzioni, a partire da 0,8 m dagli assi d'estremità e per una lunghezza illimitata.


VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	19 di 112

Per questo modello di carico è prevista un'eccentricità del carico rispetto all'asse del binario.

➤ Modello di carico SW/2

Sia le istruzioni RFI che le NTC 2018 (par. 5.2.2.2.1.2), definiscono questo modello di carico tramite solo carichi distribuiti.

In questo modello di carico non è prevista alcuna eccentricità del carico ferroviario. Le azioni di entrambi i modelli dovranno essere moltiplicate per un coefficiente di adattamento definito dalla

seguente tabella (tab. 2.5.1.4.1.1 - RFI DTC SI PS MA IFS 001).

COEFFICIENTE " α "
1.10
1.10
1.00

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	20 di 112

5.4 Effetti dinamici

Per la definizione del coefficiente dinamico si segue quanto contenuto nel par.5.2.2.2.3 del DM 17.1.2018 che per l'opera in esame riporta:

$$\Phi_3 = \frac{2.16}{\sqrt{L_\Phi} - 0.2} + 0.73 \quad \textit{con limitazione} \quad 1.00 \leq \Phi_3 \leq 2.00$$

5.5 Disposizione treni di carico

La disposizione dei treni di carico è stata individuata per ottenere le seguenti massime sollecitazioni:

- <u>Sforzo Assiale</u>: il convoglio è localizzato sostanzialmente al di sopra della pila in esame
- Momento Longitudinale: il convoglio è localizzato sulla campata di luce maggiore, più o meno centrato a seconda dei rapporti di lunghezza del treno di carico e della campata.
- Momento Trasversale: è fornito dallo stesso schema di posizionamento del massimo sforzo

Da questi schemi si sono ottenute le seguenti caratteristiche di sollecitazione:

	N	Mlong	Mtrasv
	[kN]	[kN/m]	[kN/m]
COMBO N	3350	238	335
COMBO ML	2055	2467	206
СОМВО МТ	3350	238	335

Si riportano i medesimi schemi graficamente per un caso rappresentativo:

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	21 di 112

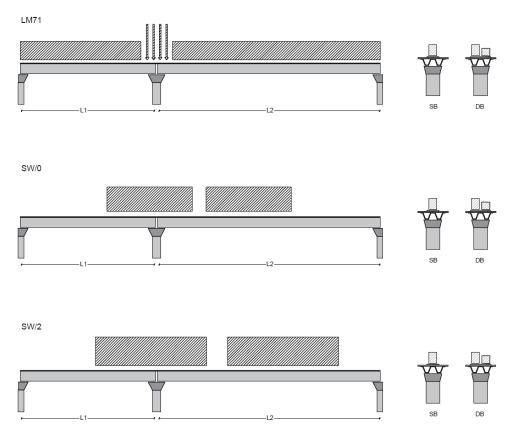


Figura 1- Posizione treni di carico - massimo sforzo assiale

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

REV.

В

FOGLIO

22 di 112

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTORelazione di calcolo Pile – P5RS3T30D09CLVI1805001

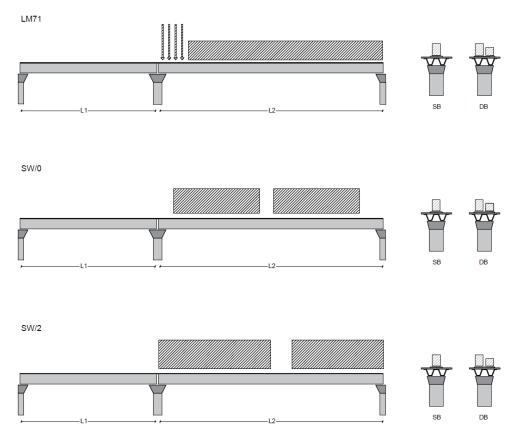


Figura 2- Posizione treni di carico – massimo momento longitudinale

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1805001 B 23 di 112

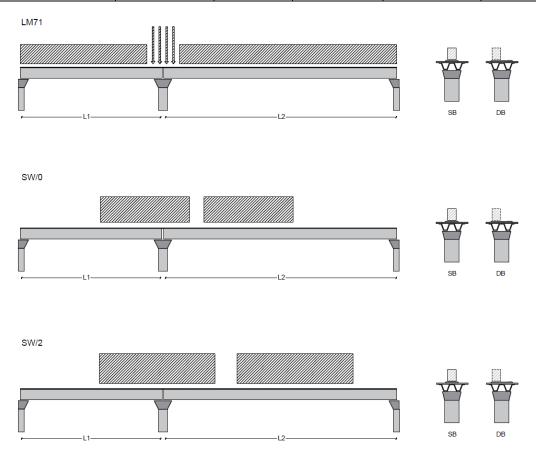


Figura 3- Posizione treni di carico — massimo momento trasversale

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	24 di 112

5.6 Carichi da traffico orizzontali

5.6.1 Forza centrifuga

raggio di cur	rvatura				R	10000000	m
velocità mas	ssima compatibile	con il trac	ciato della lir	nea	Vmax	160	km/h
						SX	
lunghezza di	i influenza della p	arte curva	del binario		Lf	22.8	m
fattore di rid	duzione funzione d	lella Lf e d	della V		f	0.823704	
LM71 e SW	//0						
Per i modell	i di carico LM71 e	SW l'azio	one centrifuga	ı si dovrà determin	are partendo dall	'espressione	generale a
valori di V,	α, e f in base al co	ntenuto d	ella tabella 1.	4.3.1-1 seguente.			Ĭ
L	M71 caso a					SX	
ve	elocità massima				Vmax	120	
fa	ttore di riduzione	funzione (della Lf e dell	a V	f	1.00	
co	pefficiente di adatt	amento			a	1.10	
va	alore caratteristico	dei caricl	ni verticali		Qvk	330.6	kN x asso
va	alore caratteristico	dei caricl	ni verticali		qvk	105.8	kN/m
va	alore caratteristico	della forz	a centrifuga		Qtk	0.0	kN x ass
va	alore caratteristico	della forz	a centrifuga		qtk	0.0	kN/m
L	M71 caso b						
ve	elocità massima co	mpatibile	con il traccia	to della linea	Vmax	160	
fa	ttore di riduzione	funzione (della Lf e dell	a V	f	0.82	
co	pefficiente di adatt	amento			a	1.0	

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B25 di 112

	valore caratteristico dei carichi verticali	Qvk	300.5	kN x asse
	valore caratteristico dei carichi verticali	qvk	96.2	kN/m
	valore caratteristico della forza centrifuga	Qtk	0.0	kN x asse
	valore caratteristico della forza centrifuga	qtk	0.0	kN/m
SW/2				
Per quar	nto riguarda il modello di carico SW/2 si deve assumere: una vel	ocità V non supe	riore a 100	km/h,
un valor	e di f pari ad 1 ed il valore di α pari a 1,			
	velocità massima compatibile con il tracciato della linea	Vmax	100	
	fattore di riduzione funzione della Lf e della V	f	1.00	
	coefficiente di adattamento	a	1.00	
	valore caratteristico dei carichi verticali	qvk	180.32	kN/m
	valore caratteristico della forza centrifuga	qtk	0.00	kN/m

	Massima Azione centrifuga basata su:				traffico verticale	
Valore di α	linea [Km/h]	v	α	f		associato
orm/o	≥ 100	100	1	1	1 x 1 x SW/2	
SW/2	< 100	v	1	1	1 x 1 x SW/2	Φ x 1 x SW/2
		v	1	f	1 x f x (LM71"+"SW/0)	Φ x 1 x 1 x (LM71"+"SW/0
LM71 e SW/0	> 120	120	α	1	α x 1 x (LM71"+"SW/0)	
	≤ 120	v	α	1	α x 1 x (LM71"+"SW/0)	Φxαx1x (LM71"+"SW/0

Tab. 2.5.1.4.3.1-1 - Parametri per determinazione della forza centrifuga

Riassumendo:

	Qtk sx	qtk sx	Qtk dx	qtk dx	F testa Pila	Mom Tras
	KN	KN/m	KN	KN/m	KN	KN/m
Fcen_SW/2_1	0	0.0014198	0	0.00142	0.034502	0.19459

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	26 di 112

5.6.2 Serpeggio

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario. Tale azione si applicherà sia in rettifilo che in curva.

viadotto a binario	Singolo		
combinazione treni	SW/2		
valore caratterstico della forza	Qsk	100	kN
coefficiente di adattamento	a	1	
coefficiente di adattamento			
Questa forza laterale deve essere sempre	combinata c	on i carich	ni verticali
altezza baggioli e apparecchi d'appoggio		0.45	m
altezza impalcato + soletta		2.51	m
armamento		0.88	m
incremento altezza rotaia + alta		0.1	m
valore caratterstico della Forza	Fsk	100	kN
valore caratterstico Momento Tra	Msk	394	kN/m

Tale forza rappresenta l'azione complessiva in testa alla pila.

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	27 di 112

5.6.3 Frenatura ed avviamento

numero di binari		Singolo	
combinazione treni		SW/2	
posizionamento vincolo fissi	caso peggiore		
estradosso pulvino sommità binario	Н	0.45 m	
lunghezza del binario	L	24.3 m	

Le forze di frenatura e di avviamento agiscono sulla sommità del binario, nella direzione longitudinale dello stesso. Dette forze sono da considerarsi uniformemente distribuite su una lunghezza di binario L determinata per ottenere l'effetto più gravoso sull'elemento strutturale considerato.

FENATURA

LM/71					
coefficiente di adattamento			a	1.1	
lunghezza	a del binari	О	L	24.3	m
valore car	ratteristico	da della forza	Qla,k	534.6	kN
SW/0					
coefficier	nte di adatt	amento	a	1.1	
lunghezza	a del binari	О	L	19	m
valore car	ratteristico	da della forza	Qla,k	418	kN
SW/2					
coefficiente di adattamento			a	1	
lunghezza del binario			L	24.3	
valore car	ratteristico	da della forza	Qla,k	850.5	

AVVIAMENTO

LM/71				
valore caratteristico da della	forza	Qla,k	882.09	kN
SW/0				
valore caratteristico da della	forza	Qla,k	689.7	kN
SW/2				
valore caratteristico da della	forza	Qla,k	801.9	kN

Relazione di calcolo Pile – P5

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1805001	В	28 di 112

5.6.4 Forza d'attrito

Le forze parassitarie dei vincoli si esplicano in corrispondenza degli apparecchi d'appoggio mobili per traslazione relativa impalcato-apparecchi d'appoggio. Essendo funzione del carico verticale, la sua definizione è associata ai coefficienti moltiplicativi delle combinazioni γ e ψ dei carichi da peso proprio strutturali e non, e dei carichi verticali da traffico. Si riporta per questo motivo un esempio di forza d'attrito "caratteristica" solo come esempio di calcolo, in quanto il calcolo è stato eseguito a valle della combinazione di carico.

altezza baggioli e apparecchi d'appoggio	h	0.45	m
lunghezza del binario	L	24.3	m
reazione verticale massima associata ai carichi permanenti	Vg1	4050	kN
reazione verticale massima associata ai carichi permanenti	Vg2	3084	KN
reazione verticale massima associata ai carichi mobili	Vq	4382	kN
coefficiente d'attrito (da assum. In relazione alle cart. App.)	f	0.04	
forza d'attrito trasmessa alla pila	Fa	232.3	kN
momento longitudinale in testa pila	M	104.6	kN/m

5.6.5 Azione del Vento

Ricadendo nella classificazione ordinaria di ponti l'azione del vento è valutata come agente su una superficie continua, convenzionalmente alta 4m dal paino del ferro. Nel caso di ponte scarico si considera la superficie relativa alle barriere antirumore.

velocità di base di riferimento slm	Vbo	28	m/s
parametro di quota	ao	500	m
altitudine sul livello del mare	as	355	m
parametro adimensionale	ks	0.36	
coefficiente di altitudine	ca	1	
velocità di base di riferimento	Vb	28	m/s

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B29 di 112

termpo di ritorno azione del vento	Tr	112.5	anni
coefficiente di ritorno	cr	1.04562	
velocità di riferimento	Vr	29.2775	m/s
tab. 3.3.I	Zona	4	
tab.3.3.II	Categoria	II	
tab. 3.3.III	Classe rug	D	
fattore di terreno	Kr	0.19	
lunghezza di rugosità	zo	0.05	m
altezza minima	zmin	4	m
VENTO SULL'IMPALCATO			
ponte carico			
altezza pila	z 1	11	m
altezza baggioli e app. appoggio	z2	0.45	m
altezza all'intradosso	zintradosso	11.45	m
altezza di riferimento	Z	15.205	m
coefficiente di topografia	ct	1	
coefficienfe di esposizione	ce	2.62	
<u> </u>			
densità dell'aria convenzionale	ro	1.25	kg/m3
pressione statica di riferimento	qr	535.732	n/m2
pressione statica di picco	qpicco	1406.2	n/m2
larghezza impalcato	d	9.7	m
altezza impalcato+soletta	z 3	2.51	m
armamento	z4	0.88	m
altezza treno	z5a	4	m
altezza barriere	z5b	5	m
altezza di impatto treno o barriere	htot	7.51	m
	d/h	1.29161	
	-		
coefficiente di forza trasversale	cfx	2.04481	
forza trasversale	fx	21.6	
forza equivalente in testa pila	Fx	524.7	kN
momento trasv equivalente in testa pila	Mx	2206.5	kn/m

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B30 di 112

ponte scarico			
altezza di impatto treno o barriere	htot	7.39	m
rapporto geometrico	d/h	1.31258	
coefficiente di forza trasversale	cfx	2.03904	
forza trasversale	fx	21.2	
forza equivalente in testa pila	Fx	514.9	kN
momento trasv equivalente in testa pila	Mx	2134.3	kn/m
VENTO SULLA PILA			
direzione trasversale			
altezza di riferimento	z	11	m
coefficiente di topografia	ct	1	
coefficienfe di esposizione	ce	2.41316	
densità dell'aria convenzionale	ro	1.25	kg/m3
pressione statica di riferimento	qr	535.732	n/m2
pressione statica di picco	qpicco	1406.2	n/m2
		1.4062	Kpa
tipolgoia di sezione		 rettangolar	e
larghezza trasversale pila	ь	7	m
larghezza longitudinale pila	d	3.3	m
raggio della sezione	R	1	m
rapporto geometrico	b/d	2.12121	
rapporto geometrico	r/b	0.14286	
coefficiente di forza trasversale sez. ret.	cf,0	1.61058	
end-effect factor	ψλ	0.64286	
viscosità cinematica dell'aria	ν	1.5E-05	m/s
numero di Reynolds	Re	5123206	111/ 5
materiale pila	IXC	cls ruvido	
rugosità equivalente	k	1	mm
rapporto	k/b	0.001	

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B31 di 112

coefficiente di forza trasversale sez. circ	c. cf,0	0.91959	
rapporto geometrico	l/b	1.57143	
snellezza effettiva	λ	1.57143	
rapporto di solidità	ф	1	
end-effect factor	ψλ	0.61867	
forza trasversale	f tras	1.5	
forza equivalente in testa pila	F tras	16.0	kN
alteza di applicatione sulla pila	h tra	6.6	m
irezione longitudinale			
tipolgoia di sezione		rettangolar	e
larghezza trasversale pila	b	7	m
larghezza longitudinale pila	d	3.3	m
raggio della sezione	R	1	m
rapporto geometrico	b/d	2.12121	
rapporto geometrico	r/b	0.14286	
coefficiente di forza longitu sez.ret	cf, 0	1.61058	
end-effect factor	ψλ	0.64286	
coefficiente di forza trasversale sez.circ	c. cf,0	0.91959	
rapporto geometrico	l/b	3.33333	
snellezza effettiva	λ	3.33333	
rapporto di solidità	ф	1	
end-effect factor	ψλ	0.64972	
forza longitudinale	flon	1.45594	
forza equivalente in testa pila	Flon	16.0154	kN
alteza di applicatione sulla pila	h lon	6.6	m

5.7 Azione Sismica

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17 gennaio 2018 e relativa circolare applicativa.

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	32 di 112

5.7.1 Inquadramento Sismico

La determinazione della pericolosità sismica di base è definita a partire dall'ubicazione dell'opera e dalle sue caratteristiche progettuali come la vita nominale V_N e la classe d'uso C_u . Sulla base del MDP [4]. I parametri indentificativi dell'opera sono:

Vita Nominale	Classe d'Uso	Coeff. D'uso
75	III	1.5

La geo-localizzazione permette di ottenere le coordinate geografiche delle singole opere e individuare puntualmente la domanda sismica secondo gli spettri normativi rappresentativi delle due componenti (orizzontale e verticale), ovvero determinare i singoli parametri indipendenti di riferimento.

Figura 4 - Individuazione geografica della linea ferroviaria

I parametri indipendenti per le forme spettrali di riferimento hanno una variazione spaziale lungo la linea poco influente tuttavia, per le seguenti analisi si è fatto riferimento alle coordinate dei singoli viadotti.

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1805001	В	33 di 112

Tabella 3 - Sezione tipo esistente in viadotto (rifare la tabella N,E, ag Tc* ..tutti i parametri sismici)

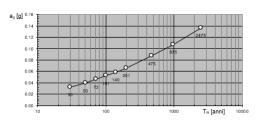
LOTTO 3A-B							
Viadotto Fer.	Binario	n° camp	L tot [m]	Rcurv. [m]	altitudine [m]	N [se]	E [se]
VI01	D	20	605	1188	416	37°43'18.70	13°40'18.19
VI02	D	8	215	1060	418	37°43'9.38	13°40'31.63
VI03	D	1	17	1300	434	37°43'3.15	13°41'14.35
VI04	D	32	800	inf	445	37°43'1.42	13°42'17.20
VI05-06	S	12	440	725	422	37°41'25.58	13°51'40.40
VI07	S	5	210	inf	410	37°41'14.75	13°52'13.14
VI08	S	26	780	725	385	37°40'20.84	13°52'59.62
VI09	S	6	150	733	382	37°40'0.09	13°53'10.68
VI10	S	19	575	1000	373	37°39'52.17	13°53'27.88
VI11	S	32	885	1000	367	37°39'29.61	13°53'47.03
VI12	S	39	1500	2950	343	37°37'42.58	13°54'0.85
VI13	S	3	100	inf	342	37°34'6.35	13°56'27.65
VI14	S	3	100	inf	340	37°33'57.11	13°56'38.61
VI15	S	16	650	inf	282	37°32'54.77	13°57'45.53
VI16	D	16	425	2500	300	37°32'12.39	13°58'38.40
VI17	S	46	1390	1050	317	37°32'8.62	13°59'56.29
VI18	S	9	250	inf	355	37°31'58.58	14° 1'21.91

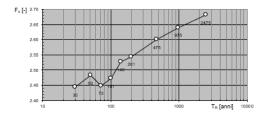
5.7.2 Definizione della domanda sismica

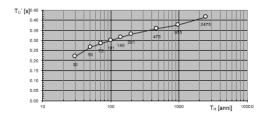
Secondo le NTC2018 l'azione sismica viene considerata mediante spettri di risposta elastici in accelerazione. Sulla base dello studio geologico del 2019, i terreni in esame sono prevalentemente di tipo C e B, pianeggianti o leggermente acclivi, tali da ricadere nella categoria topografica T1. Risulta quindi possibile tracciare lo spettro di riferimento normativo.

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

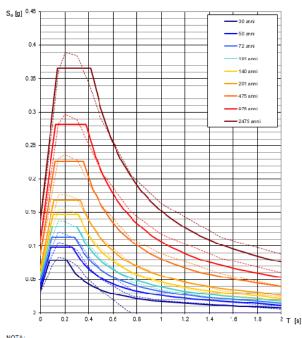
Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B34 di 112


Figura 5 - Sito di riferimento secondo "Spettri_NTC"




VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B35 di 112



La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

Spettri di risposta elastici per i periodi di ritorno T_R di riferimento

NOTA:

Cor linea continua si rappresentano gli spetri di Normativa, con linea trateggiata gli spettri dei progetto
S1-INGV da cui sono derivati.

La verifica dell'idoreità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso

Figura 6 - Parametri di riferimento del sito secondo "Spettri_NTC"

Valori dei parametri $\mathbf{a_g},\,\mathbf{F_o},\,\mathbf{T_C}^{\star}$ per i periodi di ritorno $\mathbf{T_R}$ di riferimento

T _R	a _g	F _o	T _c *
[anni]	[g]	[-]	[s]
30	0.032	2.422	0.215
50	0.040	2.459	0.261
72	0.047	2.437	0.280
101	0.053	2.461	0.293
140	0.059	2.499	0.310
201	0.067	2.527	0.324
475	0.087	2.603	0.352
975	0.107	2.644	0.375
2475	0.136	2.710	0.409

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

Figura 7 - Tabella riassuntiva degli stati limite di riferimento del sito in esame

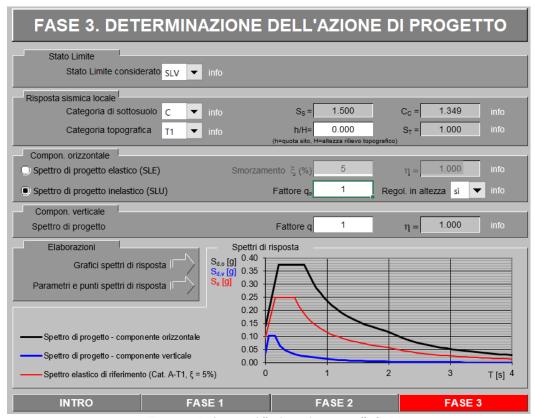
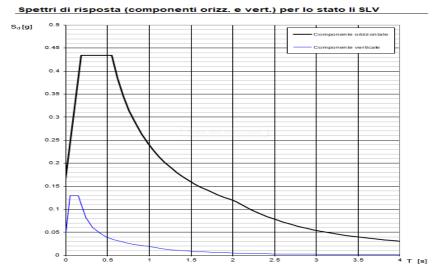



Figura 8 - Definizione della domanda sismica allo SLV

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

Figura 9 - Spettro in accelerazione SLV orizzontale e verticale

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	37 di 112

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Parametri indipendenti					
STATO LIMITE	SLV				
a _o	0.094 g				
F _o	2.668				
T _c '	0.468 s				
Ss	1.500				
Co	1.349				
S⊤	1.000				
q	1.000				

Parametri dipendenti

S	1.500
η	1.000
T _B	0.210 s
T _C	0.631 s
T _D	1.974 s

Espressioni dei parametri dipendenti

$S = S_S \cdot S_T$ (NTC-08 Eq. 3.2.5)		
$\eta = \sqrt{10/(5+\xi)} \ge 0.55; \ \eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)	
$T_B = T_C / 3$	(NTC-07 Eq. 3.2.8)	
$\mathbf{T}_{\!\scriptscriptstyle C} = \mathbf{C}_{\scriptscriptstyle C} \cdot \mathbf{T}_{\!\scriptscriptstyle C}^{\!\scriptscriptstyle f}$	(NTC-07 Eq. 3.2.7)	
$T_D = 4,0 \cdot a_{\chi} / g + 1,6$	(NTC-07 Eq. 3.2.9)	

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_c}{T} \right) \\ T_D &\leq T \\ \end{split}$$

Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

	T [s]	Se [g]
	0.000	0.140
Tø ∢ Tℯ ∢	0.210	0.374
T. ≪	0.631	0.374
	0.695	0.340
	0.759	0.311
	0.823	0.287
	0.887	0.266
	0.951	0.248
	1.015	0.233
	1.079	0.219
	1.143	0.207
	1.207	0.196
	1.271	0.186
	1.335	0.177
	1.399	0.169
	1.462	0.162

Punti dello spettro di risposta

	0.887	0.266		
	0.951	0.248		
	1.015	0.233		
	1.079	0.219		
	1.143	0.207		
	1.207	0.196		
	1.271	0.186		
	1.335	0.177		
	1.399	0.169		
	1.462	0.162		
	1.526	0.155		
	1.590	0.149		
	1.654	0.143		
	1.718	0.137		
	1.782	0.133		
	1.846	0.128		
	1.910	0.124		
T₀◀	1.974	0.120		
	2.071	0.109		
	2.167	0.099		
	2.263	0.091		
	2.360	0.084		
	2.456	0.077		
	2.553	0.072		
	2.649	0.066		
	2.746	0.062		
	2.842	0.058		
		0.058 0.054		
	2.842			
	2.842 2.939	0.054		
	2.842 2.939 3.035	0.054 0.051		
	2.842 2.939 3.035 3.132	0.054 0.051 0.048		
	2.842 2.939 3.035 3.132 3.228	0.054 0.051 0.048 0.045		
	2.842 2.939 3.035 3.132 3.228 3.325	0.054 0.051 0.048 0.045 0.042		
	2.842 2.939 3.035 3.132 3.228 3.325 3.421	0.054 0.051 0.048 0.045 0.042 0.040		
	2.842 2.939 3.035 3.132 3.228 3.325 3.421 3.518	0.054 0.051 0.048 0.045 0.042 0.040 0.038		
	2.842 2.939 3.035 3.132 3.228 3.325 3.421 3.518 3.614	0.054 0.051 0.048 0.045 0.042 0.040 0.038 0.036		

3.904

4.000

0.031

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dell

VI18 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1805001	В	38 di 112

5.7.3 Calcolo dell'azione Sismica

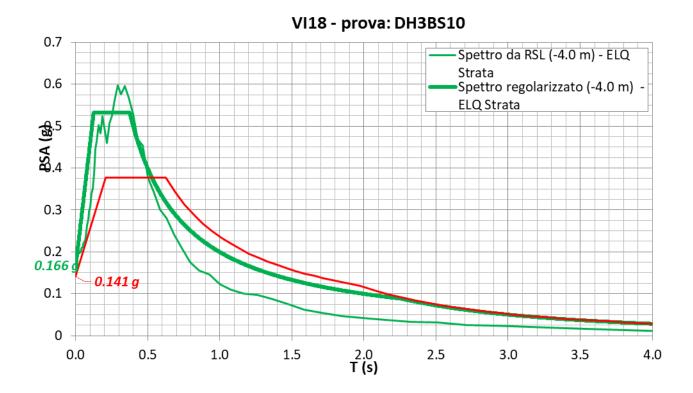
Per il calcolo delle azioni sismiche si utilizza una Analisi Statica Lineare, come riportata nel cap. 7.9.4.1 delle NTC 2018. Qualora le ipotesi non siano soddisfate, per il calcolo dei periodi propri della pila e quindi delle sollecitazioni sismiche, si è fatto riferimento ad una Analisi Dinamica Modale, attraverso la costruzione di un modello agli Elementi Finiti monodimensionali (Beam/Frame) mediante il software di calcolo Midas Civil. I Fattori di comportamento utilizzati sono:

- q= 1.5 per la verifica a presso flessione della pila;
- q= 1.5/1.1 per la verifica a capacità portante verticale dei pali, la presso-flessione e la verifica del plinto se non tozzo;
- q= 1 per le verifiche a taglio degli elementi strutturali e le verifiche a capacità portante orizzontale dei pali.

Nella scrittura delle combinazioni di carico si è distinta la posizione del convoglio per massimizzare le singole sollecitazioni (N,Mx,My,Tx,Ty), identificando tre configurazioni, ovvero tre masse statiche.

Nell'analisi sismica la massa partecipante riferita ai carichi da traffico è stata valutata in maniera distinta per le tre componenti del moto e successivamente messa in combinazione per le tre configurazioni statiche.

Relazione di calcolo Pile – P5


DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1805001	В	39 di 112

5.7.4 Risposta sismica locale

Si riporta graficamente quanto desunto da apposite analisi di Risposta Sismica Locale, volte alla quantificazione degli effetti locali di sito e alle possibili criticità emergenti in termini di fenomeni di risonanza delle strutture.

In tale caso la RSL risulta essere più gravosa dell'analisi semplificata di Norma.

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B40 di 112

5.7.5 Check analisi statica

gitudinale		
direzione long Com Nmax	4111	kN
reno per direzione long treno	822	kN
	0	
o (G1 + G2) Mimp	7133	kN
ortata sopra pila Mimp t	7956	kN
sismica sopra la pila 1/5 Mimp t	1591	kN
Mpul	1155	kN
Mpila	2266	kN
oila Mpe	1910	kN
otale da utilizzare dir. Long Mtot long	9866	kN
o di norma Mep<1/5Mimp	NO per -3	219.3 KN
sversale	2250	1.3.7
direzione long Com Mmax		kN
reno per direzione long treno	670	kN
o (G1 + G2) Mimp	7133	kN
ortata sopra pila Mimp t	7804	kN
Mpul	1155	kN
Mpila	2266	kN
ila Mpe	1910	kN
otale da utilizzare dir. Trasv Mtot tras	9714	kN
o di norma Mep<1/5Mimp	NO per -3	49.8 KN
icale		
direzione long Com Mmax	3350	kN
reno per direzione long treno	670	kN
o (G1 + G2) Mimp	7133	kN
ortata sopra pila Mimp t	7804	kN
		1
Mpul	1155	kN
Mpila	2266	kN
ila Mpe	1910	kN
otale da utilizzare dir. Vert Mtot vert	9714	kN
	NO per -3	_
sito di norma Mep<1/5Mimp		

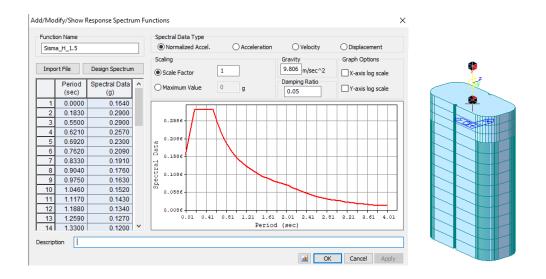
VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	41 di 112

5.7.6 Analisi statica equivalente

area della sezione	A	10.07	m2
inerzia sezione direzione trasversale	I11	43.44	m4
inerzia sezione direzione longitudinale	I22	13.42	m4
modulo elastico cls pila	Ec	33346	MPa
eventuale abbattimento del modulo	%	45.00	
modulo di calcolo	Е	18340	MPa
calcestruzzo	fck	32.0	MPa
altezza pila est. fondazione - estr. pulvino	Н	11.00	m
altezza plinto di fondazione	hf	0.00	m
altrezza baggioli ed app. appoggio	hap	0.45	m
altezza equovalente sdof	Не	11.45	m
rigidezza flessionale sdof in dir. Trasv	Ktra	8.6E+08	N/m
rigidezza flessionale sdof in dir. Long	Klong	4.9E+08	-
rigidezza assiale sdof in dir. Vert	Kvert	2.4E+10	
periodo di vibrare sdof dir. Trasversale	Ttra	0.21	sec
periodo di vibrare sdof dir. Longitudinale	Tlong	0.28	sec
periodo di vibrare sdof dir. Verticale	Tvert	0.04	sec

	SLV			SLD	
Tabella Riassuntiva	q=1.5	q=1.36	q=1	q=1	
accelerazione componente trasversale	0.36	0.36	0.53	0.25	g
accelerazione componente longitudinal	e 0.36	0.36	0.53	0.25	g
accelerazione componente verticale	0.09	0.09	0.09	0.03	g
Sforzo assiale	844	844	844	278	kN
Taglio Sism testa pila direz. trasversale	3451	3796	5176	2392	kN
Taglio Sism testa pila direz. longitudina	3505	3855	5257	2429	kN
Momento flessionale trasversale	48460	53306	72690	33586	kN m
Momento flessionale longitudinale	40196	44209	60261	27879	kN m



VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	42 di 112

5.7.7 Analisi dinamica modale

Nel caso specifico i periodi e quindi le forze alla base della pila sono stati valutati tramite una analisi spettrale. Le caratteristiche geometriche e meccaniche sono state definite coerentemente nei paragrafi precedenti. Le masse a diverse altezze sono associate alla tipologia di appoggio impalcato-pila, quindi differenti nelle due direzioni.

I risultati ottenuti sono i seguenti:

Load	N (kN)	Vtras (kN)	Vlong (kN)	Mtras (kN*m)	Mlong (kN*m)
SISMA q=1.5	1038.22	3393.45	3513.33	43788.7	37305.13
SISMA q=1	1038.22	5088.42	5268.9	65682.51	55957.26
SISMA sld	342.72	2351.2	2434.54	30348.31	25854.81

si procede con quest'ultime.

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	43 di 112

6. SOLLECITAZIONI

Come precedentemente descritto si è valutata la posizione del singolo convoglio per massimizzare la sollecitazione d'interesse. Questo ha portato alla definizione di tre configurazioni per la progettazione e verifica del pulvino, del fusto pila, della fondazione e dei pali. Di seguito si riportano le tabelle di tutte le combinazioni di carico, funzione delle suddette configurazioni.

6.1 Combinazioni di carico

6.1.1 Configurazione 1

CARATTERISTICE	HE SOLLE	CITAZIO	ONI IN T	ESTA PI	LA
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_1	14950.6	616.613	247.6	622.402	597.464
A1_SLU_gr2_Scarico_2	10423.3	0	84.6193	0	38.3383
A1_SLU_gr3_Fre/avv_3	14950.6	1233.23	247.575	899.878	597.323
A1_SLU_gr4_centrif_4	13979	986.58	212.614	719.902	484.512
A1_SLU_gr1+vento_5	14950.6	631.026	725.424	622.402	2518.3
A1_SLU_gr2+vento_6	10423.3	14.4139	562.443	0	1959.17
A1_SLU_gr3+vento_7	14950.6	1247.64	725.399	899.878	2518.16
A1_SLU_gr4+vento_8	13979	1000.99	690.438	719.902	2405.35
A1_SLU_vento_gr1_9	13979	517.313	966.472	497.922	3666.77
A1_SLU_vento_gr2_10	10357.2	24.0231	862.165	0	3231.21
A1_SLU_vento_gr3_11	13979	1010.6	966.452	719.902	3666.66
A1_SLU_vento_gr4_12	13979	1010.6	1008.99	719.902	3685.9
SLE_rar_gr1_Treno_14	10483.7	425.25	128.885	429.243	393.201
SLE_rar_gr2_Scarico_15	7361.47	0	53.9516	0	24.4573
SLE_rar_gr3_Fre/avv_16	10483.7	850.5	128.868	620.605	393.104
SLE_rar_gr4_centrif_17	9813.66	680.4	112.797	496.484	318.921
SLE_rar_gr1+vento_18	10483.7	434.859	447.435	429.243	1673.76
SLE_rar_gr2+vento_19	7361.47	9.60924	372.501	0	1305.01
SLE_rar_gr3+vento_20	10483.7	860.109	447.418	620.605	1673.66
SLE_rar_gr4+vento_21	9813.66	690.009	431.347	496.484	1599.48
SLE_rar_vento_gr1_22	9813.66	356.215	621.159	343.394	2443.03
SLE_rar_vento_gr2_23	7315.87	16.0154	573.201	0	2153.43
SLE_rar_vento_gr3_24	9813.66	696.415	621.145	496.484	2442.96
SLE_rar_vento_gr4_25	9813.66	696.415	643.713	496.484	2453.18

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

FOGLIO

44 di 112

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.Relazione di calcolo Pile – P5RS3T30D09CLVI1805001B

SLE_fre_gr1_Treno_27	9813.66	340.2	75.2074	343.394	302.006
SLE_fre_gr2_Scarico_28	7315.87	0	35.2428	0	16.0025
SLE_fre_gr3_Fre/avv_29	9813.66	680.4	75.1936	496.484	301.928
SLE_fre_gr4_centrif_30	9813.66	680.4	94.0024	496.484	310.463
SLE_fre_gr1+vento_31	9813.66	343.403	181.391	343.394	728.858
SLE_fre_gr2+vento_32	7315.87	3.20308	141.426	0	442.855
SLE_fre_gr3+vento_33	9813.66	683.603	181.377	496.484	728.78
SLE_fre_gr4+vento_34	9813.66	683.603	200.186	496.484	737.316
SLE_fre_vento_gr1_35	7133.47	8.0077	305.829	0	1085.3
SLE_fre_vento_gr2_36	7133.47	8.0077	305.829	0	1085.3
SLE_fre_vento_gr3_37	7133.47	8.0077	305.829	0	1085.3
SLE_fre_vento_gr4_38	7133.47	8.0077	305.829	0	1085.3
SLE_fre_gr1_temp39	7133.47	3.20308	154.628	0	448.653
SLE_fre_gr2_temp40	7133.47	3.20308	154.628	0	448.653
SLE_fre_gr3_temp41	7133.47	3.20308	154.628	0	448.653
SLE_fre_gr3_temp42	7133.47	3.20308	154.628	0	448.653
SLE_qp_gr1_Treno_44	7133.47	0	40.3709	0	18.1669
SLE_qp_gr2_Scarico_45	7133.47	0	40.3709	0	18.1669
SLE_qp_gr3_Fre/avv_46	7133.47	0	40.3709	0	18.1669
SLE_qp_gr4_centrif_47	7133.47	0	40.3709	0	18.1669
SLE_qp_gr1+vento_48	7133.47	3.20308	146.554	0	445.019
SLE_qp_gr2+vento_49	7133.47	3.20308	146.554	0	445.019
SLE_qp_gr3+vento_50	7133.47	3.20308	146.554	0	445.019
SLE_qp_gr4+vento_51	7133.47	3.20308	146.554	0	445.019
SLE_qp_vento_gr1_52	7133.47	3.20308	146.554	0	445.019
SLE_qp_vento_gr2_53	7133.47	3.20308	146.554	0	445.019
SLE_qp_vento_gr3_54	7133.47	3.20308	146.554	0	445.019
SLE_qp_vento_gr4_55	7133.47	3.20308	146.554	0	445.019
SLE_qp_gr1_temp56	7133.47	0	40.3709	0	18.1669
SLE_qp_gr2_temp57	7133.47	0	40.3709	0	18.1669
SLE_qp_gr3_temp58	7133.47	0	40.3709	0	18.1669
SLE_qp_gr3_temp59	7133.47	0	40.3709	0	18.1669
SIII_qp_grs_temps	7133.17		10.3702		10.1007
E_103x_SLV_q=1.5_60	7444.94	3516.53	1164.59	0	0
E_103y_SLV_q=1.5_61	7444.94	1057.2	3540	0	0
E_103y_SLV_q=1.5_61 E_103z_SLV_q=1.5_62	8171.69	1057.2	1164.59	0	0
E_103Z_5Ev_q=1.3_02	0171.02	1037.2	1104.57		0
E_103x_SLV_q=1.36_63	7444.94	3867.87	1266.39	0	0
E_103x_SLV_q=1.36_64 E_103y_SLV_q=1.36_64	7444.94	1162.6	3879.35	0	0
E_103y_SLV_q=1.36_65 E_103z_SLV_q=1.36_65	8171.69	1162.6	1266.39	0	0
E_103Z_3Ev_q=1.30_03	8171.02	1102.0	1200.37	U	0
E_103x_SLV_q=1_66	7444.94	5272.1	1673.08	0	0
E_103y_SLV_q=1_67	7444.94	1583.87	5234.97	0	0
E_103z_SLV_q=1_68	8171.69	1583.87	1673.08	0	U
E 102 SID1 40	7226.20	2427.74	051 014		0
E_103x_SLD_q=1_69	7236.29	2437.74	851.914	0	0
E_103y_SLD_q=1_70	7236.29	733.565	2497.75	0	0
E_103z_SLD_q=1_71	7476.19	733.565	851.914	0	0

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5 COMMESSA LOTTO
RS3T 30

CODIFICA **D09CL**

DOCUMENTO VI1805001

REV. FO

FOGLIO **45 di 112**

CARATTERISTICHE SOLLECITAZIONI BASE PILA								
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv			
A1_SLU_gr1_Treno_1	19569.5	616.613	247.6	7405.14	3321.07			
A1_SLU_gr2_Scarico_2	15042.3	0	84.6193	0	969.151			
A1_SLU_gr3_Fre/avv_3	19569.5	1233.23	247.575	14465.4	3320.65			
A1_SLU_gr4_centrif_4	18597.9	986.58	212.614	11572.3	2823.26			
A1_SLU_gr1+vento_5	19569.5	631.026	725.424	7563.69	10498			
A1_SLU_gr2+vento_6	15042.3	14.4139	562.443	158.552	8146.05			
A1_SLU_gr3+vento_7	19569.5	1247.64	725.399	14623.9	10497.6			
A1_SLU_gr4+vento_8	18597.9	1000.99	690.438	11730.8	10000.2			
A1_SLU_vento_gr1_9	18597.9	517.313	966.472	6188.37	14298			
A1_SLU_vento_gr2_10	14976.1	24.0231	862.165	264.254	12715			
A1_SLU_vento_gr3_11	18597.9	1010.6	966.452	11836.5	14297.6			
A1_SLU_vento_gr4_12	18597.9	1010.6	1008.99	11836.5	14784.8			
SLE_rar_gr1_Treno_14	13905.1	425.25	128.885	5106.99	1810.94			
SLE_rar_gr2_Scarico_15	10782.9	0	53.9516	0	617.925			
SLE_rar_gr3_Fre/avv_16	13905.1	850.5	128.868	9976.11	1810.65			
SLE_rar_gr4_centrif_17	13235.1	680.4	112.797	7980.88	1559.69			
SLE_rar_gr1+vento_18	13905.1	434.859	447.435	5212.69	6595.54			
SLE_rar_gr2+vento_19	10782.9	9.60924	372.501	105.702	5402.53			
SLE_rar_gr3+vento_20	13905.1	860.109	447.418	10081.8	6595.25			
SLE_rar_gr4+vento_21	13235.1	690.009	431.347	8086.59	6344.29			
SLE_rar_vento_gr1_22	13235.1	356.215	621.159	4261.76	9275.78			
SLE_rar_vento_gr2_23	10737.3	16.0154	573.201	176.169	8458.65			
SLE_rar_vento_gr3_24	13235.1	696.415	621.145	8157.05	9275.55			
SLE_rar_vento_gr4_25	13235.1	696.415	643.713	8157.05	9534.03			
SLE_fre_gr1_Treno_27	13235.1	340.2	75.2074	4085.59	1129.29			
SLE_fre_gr2_Scarico_28	10737.3	0	35.2428	0	403.673			
SLE_fre_gr3_Fre/avv_29	13235.1	680.4	75.1936	7980.88	1129.06			
SLE_fre_gr4_centrif_30	13235.1	680.4	94.0024	7980.88	1344.49			
SLE_fre_gr1+vento_31	13235.1	343.403	181.391	4120.83	2724.15			
SLE_fre_gr2+vento_32	10737.3	3.20308	141.426	35.2339	1998.54			
SLE_fre_gr3+vento_33	13235.1	683.603	181.377	8016.12	2723.92			
SLE_fre_gr4+vento_34	13235.1	683.603	200.186	8016.12	2939.36			
SLE_fre_vento_gr1_35	10554.9	8.0077	305.829	88.0847	4449.41			

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1805001 B 46 di 112

SLE_fre_vento_gr2_36	10554.9	8.0077	305.829	88.0847	4449.41
SLE_fre_vento_gr3_37	10554.9	8.0077	305.829	88.0847	4449.41
SLE_fre_vento_gr4_38	10554.9	8.0077	305.829	88.0847	4449.41
SLE_fre_gr1_temp39	10554.9	3.20308	154.628	35.2339	2149.56
SLE_fre_gr2_temp40	10554.9	3.20308	154.628	35.2339	2149.56
SLE_fre_gr3_temp41	10554.9	3.20308	154.628	35.2339	2149.56
SLE_fre_gr3_temp42	10554.9	3.20308	154.628	35.2339	2149.56
SLE_qp_gr1_Treno_44	10554.9	0	40.3709	0	462.247
SLE_qp_gr2_Scarico_45	10554.9	0	40.3709	0	462.247
SLE_qp_gr3_Fre/avv_46	10554.9	0	40.3709	0	462.247
SLE_qp_gr4_centrif_47	10554.9	0	40.3709	0	462.247
SLE_qp_gr1+vento_48	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_gr2+vento_49	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_gr3+vento_50	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_gr4+vento_51	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_vento_gr1_52	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_vento_gr2_53	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_vento_gr3_54	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_vento_gr4_55	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_gr1_temp56	10554.9	0	40.3709	0	462.247
SLE_qp_gr2_temp57	10554.9	0	40.3709	0	462.247
SLE_qp_gr3_temp58	10554.9	0	40.3709	0	462.247
SLE_qp_gr3_temp59	10554.9	0	40.3709	0	462.247
E_103x_SLV_q=1.5_60	10866.4	3516.53	1164.59	37305.1	13581.6
E_103y_SLV_q=1.5_61	10866.4	1057.2	3540	11191.5	44233.7
E_103z_SLV_q=1.5_62	11593.1	1057.2	1164.59	11191.5	13581.6
E_103x_SLV_q=1.36_63	10866 4	3867.87	1266 39	41035.6	14895.3
E_103y_SLV_q=1.36_64	10866.4	1162.6	3879.35	12310.7	48612.6
E_103z_SLV_q=1.36_65	11593.1	1162.6	1266.39	12310.7	14895.3
L_1032_5Lv_q=1.50_03	11373.1	1102.0	1200.33	12310.7	17073.3
E_103x_SLV_q=1_66	10866.4	5272.1	1673.08	55957.3	20149.8
E_103y_SLV_q=1_67	10866.4	1583.87	5234.97	16787.2	66127.5
E_103z_SLV_q=1_68	11593.1	1583.87	1673.08	16787.2	20149.8
	., ., .				. ,,,,
E_103x_SLD_q=1_69	10657.7	2437.74	851.914	25854.8	9549.51
E_103y_SLD_q=1_70	10657.7	733.565	2497.75	7756.44	30793.3
E_103z_SLD_q=1_71	10897.6	733.565	851.914	7756.44	9549.51
	10077.0	122.203	30 1.7 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5 COMMESSA LOTTO CODIFICA DOCUMENTO REV.

RS3T 30 D09CL V11805001 B

FOGLIO

47 di 112

CARATTERISTICHE SOLLECITAZIONI BASE FONDAZIONE

				I	
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_1	30002.6	616.613	247.6	8946.67	3940.07
A1_SLU_gr2_Scarico_2	25475.3	0	84.6193	0	1180.7
A1_SLU_gr3_Fre/avv_3	30002.6	1233.23	247.575	17548.4	3939.59
A1_SLU_gr4_centrif_4	29031	986.58	212.614	14038.7	3354.8
A1_SLU_gr1+vento_5	30002.6	631.026	725.424	9141.26	12311.5
A1_SLU_gr2+vento_6	25475.3	14.4139	562.443	194.587	9552.16
A1_SLU_gr3+vento_7	30002.6	1247.64	725.399	17743	12311
A1_SLU_gr4+vento_8	29031	1000.99	690.438	14233.3	11726.3
A1_SLU_vento_gr1_9	29031	517.313	966.472	7481.65	16714.2
A1_SLU_vento_gr2_10	25409.2	24.0231	862.165	324.312	14870.4
A1_SLU_vento_gr3_11	29031	1010.6	966.452	14363	16713.8
A1_SLU_vento_gr4_12	29031	1010.6	1008.99	14363	17307.2
SLE_rar_gr1_Treno_14	21633.3	425.25	128.885	6170.12	2133.15
SLE_rar_gr2_Scarico_15	18511.1	0	53.9516	0	752.804
SLE_rar_gr3_Fre/avv_16	21633.3	850.5	128.868	12102.4	2132.82
SLE_rar_gr4_centrif_17	20963.3	680.4	112.797	9681.88	1841.69
SLE_rar_gr1+vento_18	21633.3	434.859	447.435	6299.84	7714.13
SLE_rar_gr2+vento_19	18511.1	9.60924	372.501	129.725	6333.78
SLE_rar_gr3+vento_20	21633.3	860.109	447.418	12232.1	7713.8
SLE_rar_gr4+vento_21	20963.3	690.009	431.347	9811.61	7422.66
SLE_rar_vento_gr1_22	20963.3	356.215	621.159	5152.3	10828.7
SLE_rar_vento_gr2_23	18465.5	16.0154	573.201	216.208	9891.65
SLE_rar_vento_gr3_24	20963.3	696.415	621.145	9898.09	10828.4
SLE_rar_vento_gr4_25	20963.3	696.415	643.713	9898.09	11143.3
SLE_fre_gr1_Treno_27	20963.3	340.2	75.2074	4936.09	1317.31
SLE_fre_gr2_Scarico_28	18465.5	0	35.2428	0	491.78
SLE_fre_gr3_Fre/avv_29	20963.3	680.4	75.1936	9681.88	1317.04
SLE_fre_gr4_centrif_30	20963.3	680.4	94.0024	9681.88	1579.5
SLE_fre_gr1+vento_31	20963.3	343.403	181.391	4979.34	3177.63
SLE_fre_gr2+vento_32	18465.5	3.20308	141.426	43.2416	2352.1
SLE_fre_gr3+vento_33	20963.3	683.603	181.377	9725.13	3177.37
SLE_fre_gr4+vento_34	20963.3	683.603	200.186	9725.13	3439.82
SLE_fre_vento_gr1_35	18283.1	8.0077	305.829	108.104	5213.99
SLE_fre_vento_gr2_36	18283.1	8.0077	305.829	108.104	5213.99

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B48 di 112

SLE_fre_vento_gr3_37	18283.1	8.0077	305.829	108.104	5213.99
SLE_fre_vento_gr4_38	18283.1	8.0077	305.829	108.104	5213.99
SLE_fre_gr1_temp39	18283.1	3.20308	154.628	43.2416	2536.13
SLE_fre_gr2_temp40	18283.1	3.20308	154.628	43.2416	2536.13
SLE_fre_gr3_temp41	18283.1	3.20308	154.628	43.2416	2536.13
SLE_fre_gr3_temp42	18283.1	3.20308	154.628	43.2416	2536.13
SLE_qp_gr1_Treno_44	18283.1	0	40.3709	0	563.175
SLE_qp_gr2_Scarico_45	18283.1	0	40.3709	0	563.175
SLE_qp_gr3_Fre/avv_46	18283.1	0	40.3709	0	563.175
SLE_qp_gr4_centrif_47	18283.1	0	40.3709	0	563.175
SLE_qp_gr1+vento_48	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr2+vento_49	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr3+vento_50	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr4+vento_51	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_vento_gr1_52	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_vento_gr2_53	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_vento_gr3_54	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_vento_gr4_55	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr1_temp56	18283.1	0	40.3709	0	563.175
SLE_qp_gr2_temp57	18283.1	0	40.3709	0	563.175
SLE_qp_gr3_temp58	18283.1	0	40.3709	0	563.175
SLE_qp_gr3_temp59	18283.1	0	40.3709	0	563.175
E_103x_SLV_q=1.5_60	18684.1	4470.66	1450.83	48481.8	17208.7
E_103y_SLV_q=1.5_61	18684.1	2011.33	3826.24	16219.9	53799.3
E_103z_SLV_q=1.5_62	19619.7	2011.33	1450.83	16219.9	17208.7
E_103x_SLV_q=1.36_63	18684.1	4821.99	1552.63	53090.6	18776.9
E_103y_SLV_q=1.36_64	18684.1	2116.73	4165.59	17602.5	59026.6
E_103z_SLV_q=1.36_65	19619.7	2116.73	1552.63	17602.5	18776.9
E_103x_SLV_q=1_66	18684.1	6226.23	1959.32	71522.8	25048.1
E_103y_SLV_q=1_67	18684.1	2538	5521.21	23132.2	79930.6
E_103z_SLV_q=1_68	19619.7	2538	1959.32	23132.2	25048.1
E_103x_SLD_q=1_69		2006 5	002 542	33121.1	12030.9
E_103x_3LD_q=1_09	18417	2906.5	992.542	33121.1	12030.7
E_103y_SLD_q=1_70	18417 18417	1202.32	2638.38	10762.3	37389.3

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1805001 B 49 di 112

6.1.2 Configurazione 2

CARATTERISTICHE SOLLECITAZIONI IN TESTA PILA								
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv			
A1_SLU_gr1_Treno_72	13073.1	616.613	180.012	3853.96	379.305			
A1_SLU_gr2_Scarico_73	10423.3	0	84.6193	0	38.3383			
A1_SLU_gr3_Fre/avv_74	13073.1	1233.23	179.987	4131.43	379.164			
A1_SLU_gr4_centrif_75	12477.1	986.58	158.543	3305.15	309.984			
A1_SLU_gr1+vento_76	13073.1	631.026	657.836	3853.96	2300.14			
A1_SLU_gr2+vento_77	10423.3	14.4139	562.443	0	1959.17			
A1_SLU_gr3+vento_78	13073.1	1247.64	657.811	4131.43	2300			
A1_SLU_gr4+vento_79	12477.1	1000.99	636.367	3305.15	2230.82			
A1_SLU_vento_gr1_80	12477.1	517.313	923.216	3083.17	3497.11			
A1_SLU_vento_gr2_81	10357.2	24.0231	862.165	0	3231.21			
A1_SLU_vento_gr3_82	12477.1	1010.6	923.196	3305.15	3497			
A1_SLU_vento_gr4_83	12477.1	1010.6	954.917	3305.15	3511.38			
SLE_rar_gr1_Treno_85	9188.92	425.25	97.8104	2657.9	249.739			
SLE_rar_gr2_Scarico_86	7361.47	0	53.9516	0	24.4573			
SLE_rar_gr3_Fre/avv_87	9188.92	850.5	97.7932	2849.27	249.641			
SLE_rar_gr4_centrif_88	8777.83	680.4	87.9374	2279.41	204.151			
SLE_rar_gr1+vento_89	9188.92	434.859	416.36	2657.9	1530.3			
SLE_rar_gr2+vento_90	7361.47	9.60924	372.501	0	1305.01			
SLE_rar_gr3+vento_91	9188.92	860.109	416.343	2849.27	1530.2			
SLE_rar_gr4+vento_92	8777.83	690.009	406.487	2279.41	1484.71			
SLE_rar_vento_gr1_93	8777.83	356.215	601.271	2126.32	2330.5			
SLE_rar_vento_gr2_94	7315.87	16.0154	573.201	0	2153.43			
SLE_rar_vento_gr3_95	8777.83	696.415	601.257	2279.41	2330.42			
SLE_rar_vento_gr4_96	8777.83	696.415	618.853	2279.41	2338.41			
SLE_fre_gr1_Treno_98	8777.83	340.2	58.6341	2126.32	190.965			
SLE_fre_gr2_Scarico_99	7315.87	0	35.2428	0	16.0025			
SLE_fre_gr3_Fre/avv_100	8777.83	680.4	58.6203	2279.41	190.887			
SLE_fre_gr4_centrif_101	8777.83	680.4	73.2857	2279.41	197.558			
SLE_fre_gr1+vento_102	8777.83	343.403	164.817	2126.32	617.817			
SLE_fre_gr2+vento_103	7315.87	3.20308	141.426	0	442.855			
SLE_fre_gr3+vento_104	8777.83	683.603	164.803	2279.41	617.739			
SLE_fre_gr4+vento_105	8777.83	683.603	179.469	2279.41	624.41			

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1805001 B 50 di 112

SLE_fre_vento_gr1_106	7133.47	8.0077	305.829	0	1085.3
SLE_fre_vento_gr2_107	7133.47	8.0077	305.829	0	1085.3
SLE_fre_vento_gr3_108	7133.47	8.0077	305.829	0	1085.3
SLE_fre_vento_gr4_109	7133.47	8.0077	305.829	0	1085.3
SLE_fre_gr1_temp110	7133.47	3.20308	154.628	0	448.653
SLE_fre_gr2_temp111	7133.47	3.20308	154.628	0	448.653
SLE_fre_gr3_temp112	7133.47	3.20308	154.628	0	448.653
SLE_fre_gr3_temp113	7133.47	3.20308	154.628	0	448.653
SLE_qp_gr1_Treno_115	7133.47	0	40.3709	0	18.1669
SLE_qp_gr2_Scarico_116	7133.47	0	40.3709	0	18.1669
SLE_qp_gr3_Fre/avv_117	7133.47	0	40.3709	0	18.1669
SLE_qp_gr4_centrif_118	7133.47	0	40.3709	0	18.1669
SLE_qp_gr1+vento_119	7133.47	3.20308	146.554	0	445.019
SLE_qp_gr2+vento_120	7133.47	3.20308	146.554	0	445.019
SLE_qp_gr3+vento_121	7133.47	3.20308	146.554	0	445.019
SLE_qp_gr4+vento_122	7133.47	3.20308	146.554	0	445.019
SLE_qp_vento_gr1_123	7133.47	3.20308	146.554	0	445.019
SLE_qp_vento_gr2_124	7133.47	3.20308	146.554	0	445.019
SLE_qp_vento_gr3_125	7133.47	3.20308	146.554	0	445.019
SLE_qp_vento_gr4_126	7133.47	3.20308	146.554	0	445.019
SLE_qp_gr1_temp127	7133.47	0	40.3709	0	18.1669
SLE_qp_gr2_temp128	7133.47	0	40.3709	0	18.1669
SLE_qp_gr3_temp129	7133.47	0	40.3709	0	18.1669
SLE_qp_gr3_temp130	7133.47	0	40.3709	0	18.1669
E_103x_SLV_q=1.5_131	7444.94	3516.53	1164.59	0	0
E_103y_SLV_q=1.5_132	7444.94	1057.2	3540	0	0
E_103z_SLV_q=1.5_133	8171.69	1057.2	1164.59	0	0
E_103x_SLV_q=1.36_134	7444.94	3867.87	1266.39	0	0
E_103y_SLV_q=1.36_135	7444.94	1162.6	3879.35	0	0
E_103z_SLV_q=1.36_136	8171.69	1162.6	1266.39	0	0
E_103x_SLV_q=1_137	7444.94	5272.1	1673.08	0	0
E_103y_SLV_q=1_138	7444.94	1583.87	5234.97	0	0
E_103z_SLV_q=1_139	8171.69	1583.87	1673.08	0	0
E_103x_SLD_q=1_140		2422.22	864.027	0	0
L_103A_5LLD_4 1_110	7216.83	2432.23	004.027		U
E_103y_SLD_q=1_141	7216.83 7216.83	731.912	2538.13	0	0

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL VI1805001 B 51 di 112

CARATTERISTICHE SOLLECITAZIONI BASE PILA								
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv			
A1_SLU_gr1_Treno_72	17692.1	616.613	180.012	10636.7	2359.44			
A1_SLU_gr2_Scarico_73	15042.3	0	84.6193	0	969.151			
A1_SLU_gr3_Fre/avv_74	17692.1	1233.23	179.987	17696.9	2359.02			
A1_SLU_gr4_centrif_75	17096	986.58	158.543	14157.5	2053.96			
A1_SLU_gr1+vento_76	17692.1	631.026	657.836	10795.2	9536.34			
A1_SLU_gr2+vento_77	15042.3	14.4139	562.443	158.552	8146.05			
A1_SLU_gr3+vento_78	17692.1	1247.64	657.811	17855.5	9535.92			
A1_SLU_gr4+vento_79	17096	1000.99	636.367	14316.1	9230.86			
A1_SLU_vento_gr1_80	17096	517.313	923.216	8773.61	13652.5			
A1_SLU_vento_gr2_81	14976.1	24.0231	862.165	264.254	12715			
A1_SLU_vento_gr3_82	17096	1010.6	923.196	14421.8	13652.2			
A1_SLU_vento_gr4_83	17096	1010.6	954.917	14421.8	14015.5			
SLE_rar_gr1_Treno_85	12610.3	425.25	97.8104	7335.65	1325.65			
SLE_rar_gr2_Scarico_86	10782.9	0	53.9516	0	617.925			
SLE_rar_gr3_Fre/avv_87	12610.3	850.5	97.7932	12204.8	1325.37			
SLE_rar_gr4_centrif_88	12199.3	680.4	87.9374	9763.81	1171.46			
SLE_rar_gr1+vento_89	12610.3	434.859	416.36	7441.35	6110.25			
SLE_rar_gr2+vento_90	10782.9	9.60924	372.501	105.702	5402.53			
SLE_rar_gr3+vento_91	12610.3	860.109	416.343	12310.5	6109.97			
SLE_rar_gr4+vento_92	12199.3	690.009	406.487	9869.51	5956.06			
SLE_rar_vento_gr1_93	12199.3	356.215	601.271	6044.69	8944.48			
SLE_rar_vento_gr2_94	10737.3	16.0154	573.201	176.169	8458.65			
SLE_rar_vento_gr3_95	12199.3	696.415	601.257	9939.98	8944.25			
SLE_rar_vento_gr4_96	12199.3	696.415	618.853	9939.98	9145.8			
SLE_fre_gr1_Treno_98	12199.3	340.2	58.6341	5868.52	835.94			
SLE_fre_gr2_Scarico_99	10737.3	0	35.2428	0	403.673			
SLE_fre_gr3_Fre/avv_100	12199.3	680.4	58.6203	9763.81	835.71			
SLE_fre_gr4_centrif_101	12199.3	680.4	73.2857	9763.81	1003.7			
SLE_fre_gr1+vento_102	12199.3	343.403	164.817	5903.76	2430.81			
SLE_fre_gr2+vento_103	10737.3	3.20308	141.426	35.2339	1998.54			
SLE_fre_gr3+vento_104	12199.3	683.603	164.803	9799.05	2430.58			
SLE_fre_gr4+vento_105	12199.3	683.603	179.469	9799.05	2598.57			
SLE_fre_vento_gr1_106	10554.9	8.0077	305.829	88.0847	4449.41			

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B52 di 112

SLE_fre_vento_gr2_107	10554.9	8.0077	305.829	88.0847	4449.41
SLE_fre_vento_gr3_108	10554.9	8.0077	305.829	88.0847	4449.41
SLE_fre_vento_gr4_109	10554.9	8.0077	305.829	88.0847	4449.41
SLE_fre_gr1_temp110	10554.9	3.20308	154.628	35.2339	2149.56
SLE_fre_gr2_temp111	10554.9	3.20308	154.628	35.2339	2149.56
SLE_fre_gr3_temp112	10554.9	3.20308	154.628	35.2339	2149.56
SLE_fre_gr3_temp113	10554.9	3.20308	154.628	35.2339	2149.56
SLE_qp_gr1_Treno_115	10554.9	0	40.3709	0	462.247
SLE_qp_gr2_Scarico_116	10554.9	0	40.3709	0	462.247
SLE_qp_gr3_Fre/avv_117	10554.9	0	40.3709	0	462.247
SLE_qp_gr4_centrif_118	10554.9	0	40.3709	0	462.247
SLE_qp_gr1+vento_119	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_gr2+vento_120	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_gr3+vento_121	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_gr4+vento_122	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_vento_gr1_123	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_vento_gr2_124	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_vento_gr3_125	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_vento_gr4_126	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_gr1_temp127	10554.9	0	40.3709	0	462.247
SLE_qp_gr2_temp128	10554.9	0	40.3709	0	462.247
SLE_qp_gr3_temp129	10554.9	0	40.3709	0	462.247
SLE_qp_gr3_temp130	10554.9	0	40.3709	0	462.247
E_103x_SLV_q=1.5_131	10866.4	3516.53	1164.59	37305.1	13581.6
E_103y_SLV_q=1.5_132	10866.4	1057.2	3540	11191.5	44233.7
E_103z_SLV_q=1.5_133	11593.1	1057.2	1164.59	11191.5	13581.6
E_103x_SLV_q=1.36_134	10866.4	3867.87	1266.39	41035.6	14895.3
E_103y_SLV_q=1.36_135	10866.4	1162.6	3879.35	12310.7	48612.6
E_103z_SLV_q=1.36_136	11593.1	1162.6	1266.39	12310.7	14895.3
E_103x_SLV_q=1_137	10866.4	5272.1	1673.08	55957.3	20149.8
E_103y_SLV_q=1_138	10866.4	1583.87	5234.97	16787.2	66127.5
E_103z_SLV_q=1_139	11593.1	1583.87	1673.08	16787.2	20149.8
E_103x_SLD_q=1_140	10638.3	2432.23	864.027	27879.4	10520.8
E_103y_SLD_q=1_141	10638.3	731.912	2538.13	8363.82	34031.1
E_103z_SLD_q=1_142	10832.8	731.912	864.027	8363.82	10520.8

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B53 di 112

CARATTERISTICHE S	OLLECI	ΓΑΖΙΟΝ	BASE F	ONDAZ	IONE
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_72	28125.1	616.613	180.012	12178.2	2809.47
A1_SLU_gr2_Scarico_73	25475.3	0	84.6193	0	1180.7
A1_SLU_gr3_Fre/avv_74	28125.1	1233.23	179.987	20780	2808.99
A1_SLU_gr4_centrif_75	27529.1	986.58	158.543	16624	2450.32
A1_SLU_gr1+vento_76	28125.1	631.026	657.836	12372.8	11180.9
A1_SLU_gr2+vento_77	25475.3	14.4139	562.443	194.587	9552.16
A1_SLU_gr3+vento_78	28125.1	1247.64	657.811	20974.6	11180.5
A1_SLU_gr4+vento_79	27529.1	1000.99	636.367	16818.6	10821.8
A1_SLU_vento_gr1_80	27529.1	517.313	923.216	10066.9	15960.5
A1_SLU_vento_gr2_81	25409.2	24.0231	862.165	324.312	14870.4
A1_SLU_vento_gr3_82	27529.1	1010.6	923.196	16948.3	15960.1
A1_SLU_vento_gr4_83	27529.1	1010.6	954.917	16948.3	16402.8
SLE_rar_gr1_Treno_85	20338.6	425.25	97.8104	8398.78	1570.18
SLE_rar_gr2_Scarico_86	18511.1	0	53.9516	0	752.804
SLE_rar_gr3_Fre/avv_87	20338.6	850.5	97.7932	14331	1569.85
SLE_rar_gr4_centrif_88	19927.5	680.4	87.9374	11464.8	1391.31
SLE_rar_gr1+vento_89	20338.6	434.859	416.36	8528.5	7151.15
SLE_rar_gr2+vento_90	18511.1	9.60924	372.501	129.725	6333.78
SLE_rar_gr3+vento_91	20338.6	860.109	416.343	14460.7	7150.82
SLE_rar_gr4+vento_92	19927.5	690.009	406.487	11594.5	6972.28
SLE_rar_vento_gr1_93	19927.5	356.215	601.271	6935.23	10447.7
SLE_rar_vento_gr2_94	18465.5	16.0154	573.201	216.208	9891.65
SLE_rar_vento_gr3_95	19927.5	696.415	601.257	11681	10447.4
SLE_rar_vento_gr4_96	19927.5	696.415	618.853	11681	10692.9
SLE_fre_gr1_Treno_98	19927.5	340.2	58.6341	6719.02	982.525
SLE_fre_gr2_Scarico_99	18465.5	0	35.2428	0	491.78
SLE_fre_gr3_Fre/avv_100	19927.5	680.4	58.6203	11464.8	982.261
SLE_fre_gr4_centrif_101	19927.5	680.4	73.2857	11464.8	1186.92
SLE_fre_gr1+vento_102	19927.5	343.403	164.817	6762.26	2842.85
SLE_fre_gr2+vento_103	18465.5	3.20308	141.426	43.2416	2352.1
SLE_fre_gr3+vento_104	19927.5	683.603	164.803	11508.1	2842.59
SLE_fre_gr4+vento_105	19927.5	683.603	179.469	11508.1	3047.24
SLE_fre_vento_gr1_106	18283.1	8.0077	305.829	108.104	5213.99

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B54 di 112

			l		
SLE_fre_vento_gr2_107	18283.1	8.0077	305.829	108.104	5213.99
SLE_fre_vento_gr3_108	18283.1	8.0077	305.829	108.104	5213.99
SLE_fre_vento_gr4_109	18283.1	8.0077	305.829	108.104	5213.99
SLE_fre_gr1_temp110	18283.1	3.20308	154.628	43.2416	2536.13
SLE_fre_gr2_temp111	18283.1	3.20308	154.628	43.2416	2536.13
SLE_fre_gr3_temp112	18283.1	3.20308	154.628	43.2416	2536.13
SLE_fre_gr3_temp113	18283.1	3.20308	154.628	43.2416	2536.13
SLE_qp_gr1_Treno_115	18283.1	0	40.3709	0	563.175
SLE_qp_gr2_Scarico_116	18283.1	0	40.3709	0	563.175
SLE_qp_gr3_Fre/avv_117	18283.1	0	40.3709	0	563.175
SLE_qp_gr4_centrif_118	18283.1	0	40.3709	0	563.175
SLE_qp_gr1+vento_119	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr2+vento_120	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr3+vento_121	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr4+vento_122	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_vento_gr1_123	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_vento_gr2_124	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_vento_gr3_125	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_vento_gr4_126	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr1_temp127	18283.1	0	40.3709	0	563.175
SLE_qp_gr2_temp128	18283.1	0	40.3709	0	563.175
SLE_qp_gr3_temp129	18283.1	0	40.3709	0	563.175
SLE_qp_gr3_temp130	18283.1	0	40.3709	0	563.175
E_103x_SLV_q=1.5_131	18684.1	4470.66	1450.83	48481.8	17208.7
E_103y_SLV_q=1.5_132	18684.1	2011.33	3826.24	16219.9	53799.3
E_103z_SLV_q=1.5_133	19619.7	2011.33	1450.83	16219.9	17208.7
E_103x_SLV_q=1.36_134	18684.1	4821.99	1552.63	53090.6	18776.9
E_103y_SLV_q=1.36_135	18684.1	2116.73	4165.59	17602.5	59026.6
E_103z_SLV_q=1.36_136	19619.7	2116.73	1552.63	17602.5	18776.9
E_103x_SLV_q=1_137	18684.1	6226.23	1959.32	71522.8	25048.1
E_103y_SLV_q=1_138	18684.1	2538	5521.21	23132.2	79930.6
E_103z_SLV_q=1_139	19619.7	2538	1959.32	23132.2	25048.1
E_103x_SLD_q=1_140	18397.6	2900.99	1004.65	35131.9	13032.5
E_103y_SLD_q=1_141	18397.6	1200.67	2678.76	11365.5	40728
E_103z_SLD_q=1_142	18664.7	1200.67	1004.65	11365.5	13032.5
1				- 55.5	

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1805001	В	55 di 112

6.1.3 Configurazione 3

CARATTERISTICHE SOLLECITAZIONI IN TESTA PILA									
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv				
A1_SLU_gr1_Treno_143	14950.6	616.613	247.6	622.402	597.464				
A1_SLU_gr2_Scarico_144	10423.3	0	84.6193	0	38.3383				
A1_SLU_gr3_Fre/avv_145	14950.6	1233.23	247.575	899.878	597.323				
A1_SLU_gr4_centrif_146	13979	986.58	212.614	719.902	484.512				
A1_SLU_gr1+vento_147	14950.6	631.026	725.424	622.402	2518.3				
A1_SLU_gr2+vento_148	10423.3	14.4139	562.443	0	1959.17				
A1_SLU_gr3+vento_149	14950.6	1247.64	725.399	899.878	2518.16				
A1_SLU_gr4+vento_150	13979	1000.99	690.438	719.902	2405.35				
A1_SLU_vento_gr1_151	13979	517.313	966.472	497.922	3666.77				
A1_SLU_vento_gr2_152	10357.2	24.0231	862.165	0	3231.21				
A1_SLU_vento_gr3_153	13979	1010.6	966.452	719.902	3666.66				
A1_SLU_vento_gr4_154	13979	1010.6	1008.99	719.902	3685.9				
SLE_rar_gr1_Treno_156	10483.7	425.25	128.885	429.243	393.201				
SLE_rar_gr2_Scarico_157	7361.47	0	53.9516	0	24.4573				
SLE_rar_gr3_Fre/avv_158	10483.7	850.5	128.868	620.605	393.104				
SLE_rar_gr4_centrif_159	9813.66	680.4	112.797	496.484	318.921				
SLE_rar_gr1+vento_160	10483.7	434.859	447.435	429.243	1673.76				
SLE_rar_gr2+vento_161	7361.47	9.60924	372.501	0	1305.01				
SLE_rar_gr3+vento_162	10483.7	860.109	447.418	620.605	1673.66				
SLE_rar_gr4+vento_163	9813.66	690.009	431.347	496.484	1599.48				
SLE_rar_vento_gr1_164	9813.66	356.215	621.159	343.394	2443.03				
SLE_rar_vento_gr2_165	7315.87	16.0154	573.201	0	2153.43				
SLE_rar_vento_gr3_166	9813.66	696.415	621.145	496.484	2442.96				
SLE_rar_vento_gr4_167	9813.66	696.415	643.713	496.484	2453.18				
SLE_fre_gr1_Treno_169	9813.66	340.2	75.2074	343.394	302.006				
SLE_fre_gr2_Scarico_170	7315.87	0	35.2428	0	16.0025				
SLE_fre_gr3_Fre/avv_171	9813.66	680.4	75.1936	496.484	301.928				
SLE_fre_gr4_centrif_172	9813.66	680.4	94.0024	496.484	310.463				
SLE_fre_gr1+vento_173	9813.66	343.403	181.391	343.394	728.858				
SLE_fre_gr2+vento_174	7315.87	3.20308	141.426	0	442.855				
SLE_fre_gr3+vento_175	9813.66	683.603	181.377	496.484	728.78				
SLE_fre_gr4+vento_176	9813.66	683.603	200.186	496.484	737.316				
SLE_fre_vento_gr1_177	7133.47	8.0077	305.829	0	1085.3				

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL VI1805001 B 56 di 112

SLE_fre_vento_gr2_178	7133.47	8.0077	305.829	0	1085.3
SLE_fre_vento_gr3_179	7133.47	8.0077	305.829	0	1085.3
SLE_fre_vento_gr4_180	7133.47	8.0077	305.829	0	1085.3
SLE_fre_gr1_temp181	7133.47	3.20308	154.628	0	448.653
SLE_fre_gr2_temp182	7133.47	3.20308	154.628	0	448.653
SLE_fre_gr3_temp183	7133.47	3.20308	154.628	0	448.653
SLE_fre_gr3_temp184	7133.47	3.20308	154.628	0	448.653
SLE_qp_gr1_Treno_186	7133.47	0	40.3709	0	18.1669
SLE_qp_gr2_Scarico_187	7133.47	0	40.3709	0	18.1669
SLE_qp_gr3_Fre/avv_188	7133.47	0	40.3709	0	18.1669
SLE_qp_gr4_centrif_189	7133.47	0	40.3709	0	18.1669
SLE_qp_gr1+vento_190	7133.47	3.20308	146.554	0	445.019
SLE_qp_gr2+vento_191	7133.47	3.20308	146.554	0	445.019
SLE_qp_gr3+vento_192	7133.47	3.20308	146.554	0	445.019
SLE_qp_gr4+vento_193	7133.47	3.20308	146.554	0	445.019
SLE_qp_vento_gr1_194	7133.47	3.20308	146.554	0	445.019
SLE_qp_vento_gr2_195	7133.47	3.20308	146.554	0	445.019
SLE_qp_vento_gr3_196	7133.47	3.20308	146.554	0	445.019
SLE_qp_vento_gr4_197	7133.47	3.20308	146.554	0	445.019
SLE_qp_gr1_temp198	7133.47	0	40.3709	0	18.1669
SLE_qp_gr2_temp199	7133.47	0	40.3709	0	18.1669
SLE_qp_gr3_temp200	7133.47	0	40.3709	0	18.1669
SLE_qp_gr3_temp201	7133.47	0	40.3709	0	18.1669
E_103x_SLV_q=1.5_202	7444.94	3516.53	1164.59	0	0
E_103y_SLV_q=1.5_203	7444.94	1057.2	3540	0	0
E_103z_SLV_q=1.5_204	8171.69	1057.2	1164.59	0	0
E_103x_SLV_q=1.36_205	7444.94	3867.87	1266.39	0	0
E_103y_SLV_q=1.36_206	7444.94	1162.6	3879.35	0	0
E_103z_SLV_q=1.36_207	8171.69	1162.6	1266.39	0	0
E_103x_SLV_q=1_208	7444.94	5272.1	1673.08	0	0
E_103y_SLV_q=1_209	7444.94	1583.87	5234.97	0	0
E_103z_SLV_q=1_210	8171.69	1583.87	1673.08	0	0
E_103x_SLD_q=1_211	7216.83	2432.23	864.027	0	0
E_103x_SLD_q=1_211 E_103y_SLD_q=1_212	7216.83 7216.83	2432.23 731.912	864.027 2538.13	0	0

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1805001 B 57 di 112

CARATTERISTICHE SOLLECITAZIONI BASE PILA									
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv				
A1_SLU_gr1_Treno_143	19569.5	616.613	247.6	7405.14	3321.07				
A1_SLU_gr2_Scarico_144	15042.3	0	84.6193	0	969.151				
A1_SLU_gr3_Fre/avv_145	19569.5	1233.23	247.575	14465.4	3320.65				
A1_SLU_gr4_centrif_146	18597.9	986.58	212.614	11572.3	2823.26				
A1_SLU_gr1+vento_147	19569.5	631.026	725.424	7563.69	10498				
A1_SLU_gr2+vento_148	15042.3	14.4139	562.443	158.552	8146.05				
A1_SLU_gr3+vento_149	19569.5	1247.64	725.399	14623.9	10497.6				
A1_SLU_gr4+vento_150	18597.9	1000.99	690.438	11730.8	10000.2				
A1_SLU_vento_gr1_151	18597.9	517.313	966.472	6188.37	14298				
A1_SLU_vento_gr2_152	14976.1	24.0231	862.165	264.254	12715				
A1_SLU_vento_gr3_153	18597.9	1010.6	966.452	11836.5	14297.6				
A1_SLU_vento_gr4_154	18597.9	1010.6	1008.99	11836.5	14784.8				
SLE_rar_gr1_Treno_156	13905.1	425.25	128.885	5106.99	1810.94				
SLE_rar_gr2_Scarico_157	10782.9	0	53.9516	0	617.925				
SLE_rar_gr3_Fre/avv_158	13905.1	850.5	128.868	9976.11	1810.65				
SLE_rar_gr4_centrif_159	13235.1	680.4	112.797	7980.88	1559.69				
SLE_rar_gr1+vento_160	13905.1	434.859	447.435	5212.69	6595.54				
SLE_rar_gr2+vento_161	10782.9	9.60924	372.501	105.702	5402.53				
SLE_rar_gr3+vento_162	13905.1	860.109	447.418	10081.8	6595.25				
SLE_rar_gr4+vento_163	13235.1	690.009	431.347	8086.59	6344.29				
SLE_rar_vento_gr1_164	13235.1	356.215	621.159	4261.76	9275.78				
SLE_rar_vento_gr2_165	10737.3	16.0154	573.201	176.169	8458.65				
SLE_rar_vento_gr3_166	13235.1	696.415	621.145	8157.05	9275.55				
SLE_rar_vento_gr4_167	13235.1	696.415	643.713	8157.05	9534.03				
SLE_fre_gr1_Treno_169	13235.1	340.2	75.2074	4085.59	1129.29				
SLE_fre_gr2_Scarico_170	10737.3	0	35.2428	0	403.673				
SLE_fre_gr3_Fre/avv_171	13235.1	680.4	75.1936	7980.88	1129.06				
SLE_fre_gr4_centrif_172	13235.1	680.4	94.0024	7980.88	1344.49				
SLE_fre_gr1+vento_173	13235.1	343.403	181.391	4120.83	2724.15				
SLE_fre_gr2+vento_174	10737.3	3.20308	141.426	35.2339	1998.54				
SLE_fre_gr3+vento_175	13235.1	683.603	181.377	8016.12	2723.92				
SLE_fre_gr4+vento_176	13235.1	683.603	200.186	8016.12	2939.36				
SLE_fre_vento_gr1_177	10554.9	8.0077	305.829	88.0847	4449.41				

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1805001 B 58 di 112

SLE_fre_vento_gr2_178	10554.9	8.0077	305.829	88.0847	4449.41
SLE_fre_vento_gr3_179	10554.9	8.0077	305.829	88.0847	4449.41
SLE_fre_vento_gr4_180	10554.9	8.0077	305.829	88.0847	4449.41
SLE_fre_gr1_temp181	10554.9	3.20308	154.628	35.2339	2149.56
SLE_fre_gr2_temp182	10554.9	3.20308	154.628	35.2339	2149.56
SLE_fre_gr3_temp183	10554.9	3.20308	154.628	35.2339	2149.56
SLE_fre_gr3_temp184	10554.9	3.20308	154.628	35.2339	2149.56
SLE_qp_gr1_Treno_186	10554.9	0	40.3709	0	462.247
SLE_qp_gr2_Scarico_187	10554.9	0	40.3709	0	462.247
SLE_qp_gr3_Fre/avv_188	10554.9	0	40.3709	0	462.247
SLE_qp_gr4_centrif_189	10554.9	0	40.3709	0	462.247
SLE_qp_gr1+vento_190	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_gr2+vento_191	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_gr3+vento_192	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_gr4+vento_193	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_vento_gr1_194	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_vento_gr2_195	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_vento_gr3_196	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_vento_gr4_197	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_gr1_temp198	10554.9	0	40.3709	0	462.247
SLE_qp_gr2_temp199	10554.9	0	40.3709	0	462.247
SLE_qp_gr3_temp200	10554.9	0	40.3709	0	462.247
SLE_qp_gr3_temp201	10554.9	0	40.3709	0	462.247
E_103x_SLV_q=1.5_202	10866.4	3516.53	1164.59	37305.1	13581.6
E_103y_SLV_q=1.5_203	10866.4	1057.2	3540	11191.5	44233.7
E_103z_SLV_q=1.5_204	11593.1	1057.2	1164.59	11191.5	13581.6
E_103x_SLV_q=1.36_205	10866.4	3867.87	1266.39	41035.6	14895.3
E_103y_SLV_q=1.36_206	10866.4	1162.6	3879.35	12310.7	48612.6
E_103z_SLV_q=1.36_207	11593.1	1162.6	1266.39	12310.7	14895.3
E_103x_SLV_q=1_208	10866.4	5272.1	1673.08	55957.3	20149.8
E_103y_SLV_q=1_209	10866.4	1583.87	5234.97	16787.2	66127.5
E_103z_SLV_q=1_210	11593.1	1583.87	1673.08	16787.2	20149.8
E_103x_SLD_q=1_211	10638.3	2432.23	864.027	27879.4	10520.8
E_103x_SLD_q=1_211 E_103y_SLD_q=1_212	10638.3 10638.3	2432.23 731.912	864.027 2538.13	27879.4 8363.82	10520.8 34031.1

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1805001 B 59 di 112

CARATTERISTICHE S	OLLECI	razion:	I BASE F	ONDAZI	ONE
combinazione	N	Tlong	Ttrasv	Mlong	Mtrasv
A1_SLU_gr1_Treno_143	30002.6	616.613	247.6	8946.67	3940.07
A1_SLU_gr2_Scarico_144	25475.3	0	84.6193	0	1180.7
A1_SLU_gr3_Fre/avv_145	30002.6	1233.23	247.575	17548.4	3939.59
A1_SLU_gr4_centrif_146	29031	986.58	212.614	14038.7	3354.8
A1_SLU_gr1+vento_147	30002.6	631.026	725.424	9141.26	12311.5
A1_SLU_gr2+vento_148	25475.3	14.4139	562.443	194.587	9552.16
A1_SLU_gr3+vento_149	30002.6	1247.64	725.399	17743	12311
A1_SLU_gr4+vento_150	29031	1000.99	690.438	14233.3	11726.3
A1_SLU_vento_gr1_151	29031	517.313	966.472	7481.65	16714.2
A1_SLU_vento_gr2_152	25409.2	24.0231	862.165	324.312	14870.4
A1_SLU_vento_gr3_153	29031	1010.6	966.452	14363	16713.8
A1_SLU_vento_gr4_154	29031	1010.6	1008.99	14363	17307.2
SLE_rar_gr1_Treno_156	21633.3	425.25	128.885	6170.12	2133.15
SLE_rar_gr2_Scarico_157	18511.1	0	53.9516	0	752.804
SLE_rar_gr3_Fre/avv_158	21633.3	850.5	128.868	12102.4	2132.82
SLE_rar_gr4_centrif_159	20963.3	680.4	112.797	9681.88	1841.69
SLE_rar_gr1+vento_160	21633.3	434.859	447.435	6299.84	7714.13
SLE_rar_gr2+vento_161	18511.1	9.60924	372.501	129.725	6333.78
SLE_rar_gr3+vento_162	21633.3	860.109	447.418	12232.1	7713.8
SLE_rar_gr4+vento_163	20963.3	690.009	431.347	9811.61	7422.66
SLE_rar_vento_gr1_164	20963.3	356.215	621.159	5152.3	10828.7
SLE_rar_vento_gr2_165	18465.5	16.0154	573.201	216.208	9891.65
SLE_rar_vento_gr3_166	20963.3	696.415	621.145	9898.09	10828.4
SLE_rar_vento_gr4_167	20963.3	696.415	643.713	9898.09	11143.3
SLE_fre_gr1_Treno_169	20963.3	340.2	75.2074	4936.09	1317.31
SLE_fre_gr2_Scarico_170	18465.5	0	35.2428	0	491.78
SLE_fre_gr3_Fre/avv_171	20963.3	680.4	75.1936	9681.88	1317.04
SLE_fre_gr4_centrif_172	20963.3	680.4	94.0024	9681.88	1579.5
SLE_fre_gr1+vento_173	20963.3	343.403	181.391	4979.34	3177.63
SLE_fre_gr2+vento_174	18465.5	3.20308	141.426	43.2416	2352.1
SLE_fre_gr3+vento_175	20963.3	683.603	181.377	9725.13	3177.37
SLE_fre_gr4+vento_176	20963.3	683.603	200.186	9725.13	3439.82
SLE_fre_vento_gr1_177	18283.1	8.0077	305.829	108.104	5213.99

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B60 di 112

SLE_fre_vento_gr2_178	18283.1	8.0077	305.829	108.104	5213.99
SLE_fre_vento_gr3_179	18283.1	8.0077	305.829	108.104	5213.99
SLE_fre_vento_gr4_180	18283.1	8.0077	305.829	108.104	5213.99
SLE_fre_gr1_temp181	18283.1	3.20308	154.628	43.2416	2536.13
SLE_fre_gr2_temp182	18283.1	3.20308	154.628	43.2416	2536.13
SLE_fre_gr3_temp183	18283.1	3.20308	154.628	43.2416	2536.13
SLE_fre_gr3_temp184	18283.1	3.20308	154.628	43.2416	2536.13
SLE_qp_gr1_Treno_186	18283.1	0	40.3709	0	563.175
SLE_qp_gr2_Scarico_187	18283.1	0	40.3709	0	563.175
SLE_qp_gr3_Fre/avv_188	18283.1	0	40.3709	0	563.175
SLE_qp_gr4_centrif_189	18283.1	0	40.3709	0	563.175
SLE_qp_gr1+vento_190	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr2+vento_191	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr3+vento_192	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr4+vento_193	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_vento_gr1_194	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_vento_gr2_195	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_vento_gr3_196	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_vento_gr4_197	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr1_temp198	18283.1	0	40.3709	0	563.175
SLE_qp_gr2_temp199	18283.1	0	40.3709	0	563.175
SLE_qp_gr3_temp200	18283.1	0	40.3709	0	563.175
SLE_qp_gr3_temp201	18283.1	0	40.3709	0	563.175
E_103x_SLV_q=1.5_202	18684.1	4470.66	1450.83	48481.8	17208.7
E_103y_SLV_q=1.5_203	18684.1	2011.33	3826.24	16219.9	53799.3
E_103z_SLV_q=1.5_204	19619.7	2011.33	1450.83	16219.9	17208.7
E_103x_SLV_q=1.36_205	18684.1	4821.99	1552.63	53090.6	18776.9
E_103y_SLV_q=1.36_206	18684.1	2116.73	4165.59	17602.5	59026.6
E_103z_SLV_q=1.36_207	19619.7	2116.73	1552.63	17602.5	18776.9
E_103x_SLV_q=1_208	18684.1	6226.23	1959.32	71522.8	25048.1
E_103y_SLV_q=1_209	18684.1	2538	5521.21	23132.2	79930.6
E_103z_SLV_q=1_210	19619.7	2538	1959.32	23132.2	25048.1
E_103x_SLD_q=1_211	18397.6	2900.99	1004.65	35131.9	13032.5
E_103y_SLD_q=1_212	18397.6	1200.67	2678.76	11365.5	40728
E_103z_SLD_q=1_213					

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	61 di 112

6.2 Tabelle riassuntive, massime sollecitazioni

6.2.1 Stati limiti di esercizio

TESTA PILA					
combo	N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno_14	10483.7	425.25	128.885	429.243	393.201
SLE_rar_gr3+vento_20	10483.7	860.109	447.418	620.605	1673.66
SLE_rar_vento_gr4_25	9813.66	696.415	643.713	496.484	2453.18
SLE_rar_gr3_Fre/avv_16	10483.7	850.5	128.868	620.605	393.104
SLE_rar_vento_gr4_25	9813.66	696.415	643.713	496.484	2453.18
SLE_rar_gr4_centrif_17	9813.66	680.4	112.797	496.484	318.921
SLE_rar_vento_gr4_25	9813.66	696.415	112.797	496.484	2453.18
SLE_rar_vento_gr4_25	9813.66	696.415	643.713	496.484	2453.18
SLE_rar_gr4_centrif_17	9813.66	680.4	112.797	496.484	318.921
SLE_rar_vento_gr4_25	9813.66	696.415	643.713	496.484	2453.18
SLE_qp_gr1_Treno_44	7133.47	0	40.3709	0	18.1669
SLE_qp_gr1+vento_48	7133.47	3.20308	146.554	0	445.019
SLE_qp_gr1+vento_48	7133.47	3.20308	146.554	0	445.019
SLE_qp_gr1_Treno_44	7133.47	0	40.3709	0	18.1669
SLE_qp_gr1+vento_48	7133.47	3.20308	146.554	0	445.019
E_103x_SLD_q=1_69	7236.29	2437.74	851.914	0	0
E_103y_SLD_q=1_70	7236.29	733.565	2497.75	0	0
E_103z_SLD_q=1_71	7476.19	733.565	851.914	0	0

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL VI1805001 B 62 di 112

BASE PILA						
combo		N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno_	_14	13905.1	425.25	128.885	5106.99	1810.94
SLE_rar_gr3+vento	_20	13905.1	860.109	447.418	10081.8	6595.25
SLE_rar_vento_gr4_	_25	13235.1	696.415	643.713	8157.05	9534.03
SLE_rar_gr3+vento	_20	13905.1	860.109	447.418	10081.8	6595.25
SLE_rar_vento_gr4_	_25	13235.1	696.415	643.713	8157.05	9534.03
SLE_rar_gr4_centrif	_17	13235.1	680.4	112.797	7980.88	1559.69
SLE_rar_vento_gr4_	_25	13235.1	696.415	643.713	8157.05	9534.03
SLE_rar_vento_gr4_	_25	13235.1	696.415	643.713	8157.05	9534.03
SLE_rar_vento_gr4_	_25	13235.1	696.415	643.713	8157.05	9534.03
SLE_rar_vento_gr4_	_25	13235.1	696.415	643.713	8157.05	9534.03
SLE_qp_gr1_Treno_	_44	10554.9	0	40.3709	0	462.247
SLE_qp_gr1+vento_	_48	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_gr1+vento_	_48	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_gr1+vento_	_48	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_gr1+vento_	_48	10554.9	3.20308	146.554	35.2339	2057.11
E_103x_SLD_q=1_	69	10657.7	2437.74	851.914	25854.8	9549.51
E_103y_SLD_q=1_	70	10657.7	733.565	2497.75	7756.44	30793.3
E_103z_SLD_q=1_	71	10897.6	733.565	851.914	7756.44	9549.51

BASE FONDAZIONE					
combo	N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno_14	21633.3	425.25	128.885	6170.12	2133.15
SLE_rar_gr3+vento_20	21633.3	860.109	447.418	12232.1	7713.8
SLE_rar_vento_gr4_25	20963.3	696.415	643.713	9898.09	11143.3
SLE_rar_gr3+vento_20	21633.3	860.109	447.418	12232.1	7713.8
SLE_rar_vento_gr4_25	20963.3	696.415	643.713	9898.09	11143.3
SLE_rar_gr4_centrif_17	20963.3	680.4	112.797	9681.88	1841.69
SLE_rar_vento_gr4_25	20963.3	696.415	643.713	9898.09	11143.3
SLE_rar_vento_gr4_25	20963.3	696.415	643.713	9898.09	11143.3
SLE_rar_vento_gr4_25	20963.3	696.415	643.713	9898.09	11143.3
SLE_rar_vento_gr4_25	20963.3	696.415	643.713	9898.09	11143.3
SLE_qp_gr1_Treno_44	18283.1	0	40.3709	0	563.175
SLE_qp_gr1+vento_48	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr1+vento_48	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr1+vento_48	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr1+vento_48	18283.1	3.20308	146.554	43.2416	2423.5
E_103x_SLD_q=1_69	18417	2906.5	992.542	33121.1	12030.9
E_103y_SLD_q=1_70	18417	1202.32	2638.38	10762.3	37389.3
E_103z_SLD_q=1_71	18729.5	1202.32	992.542	10762.3	12030.9

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	63 di 112

TESTA I	PILA						
combo			N	Tlong	Ttras	Mlong	Mtras
SLE_rar_	gr1_Trenc	_85	9188.92	425.25	97.8104	2657.9	249.739
SLE_rar_	gr3+vento	_91	9188.92	860.109	416.343	2849.27	1530.2
SLE_rar_	_vento_gr4	_96	8777.83	696.415	618.853	2279.41	2338.41
SLE_rar_	_gr3_Fre/a	vv_87	9188.92	850.5	97.7932	2849.27	249.641
SLE_rar_	_vento_gr4	_96	8777.83	696.415	618.853	2279.41	2338.41
SLE_rar_	_gr4centri	f_88	8777.83	680.4	87.9374	2279.41	204.151
SLE_rar_	_vento_gr4	_96	8777.83	696.415	618.853	2279.41	2338.41
SLE_rar_	_vento_gr4	_96	8777.83	696.415	618.853	2279.41	2338.41
SLE_rar_	_gr4centri	f_88	8777.83	680.4	87.9374	2279.41	204.151
SLE_rar_	_vento_gr4	_96	8777.83	696.415	618.853	2279.41	2338.41
SLE_qp_	gr1_Treno	_115	7133.47	0	40.3709	0	18.1669
SLE_qp_	gr1+vento	_119	7133.47	3.20308	146.554	0	445.019
SLE_qp_	gr1+vento	_119	7133.47	3.20308	146.554	0	445.019
SLE_qp_	gr1_Treno	_115	7133.47	0	40.3709	0	18.1669
SLE_qp_	gr1+vento	_119	7133.47	3.20308	146.554	0	445.019
E_103x_	SLD_q=1	_140	7216.83	2432.23	864.027	0	0
E_103y_	SLD_q=1_	_141	7216.83	731.912	2538.13	0	0
E_103z_	SLD_q=1_	_142	7411.35	731.912	864.027	0	0

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B64 di 112

BASE PILA					
combo	N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno_85	12610.3	425.25	128.885	5106.99	1810.94
SLE_rar_gr3+vento_91	12610.3	860.109	416.343	12310.5	6109.97
SLE_rar_vento_gr4_96	12199.3	696.415	618.853	9939.98	9145.8
SLE_rar_gr3+vento_91	12610.3	860.109	416.343	12310.5	6109.97
SLE_rar_vento_gr4_96	12199.3	696.415	618.853	9939.98	9145.8
SLE_rar_gr4_centrif_88	12199.3	680.4	87.9374	9763.81	1171.46
SLE_rar_vento_gr4_96	12199.3	696.415	618.853	9939.98	9145.8
SLE_rar_vento_gr4_96	12199.3	696.415	618.853	9939.98	9145.8
SLE_rar_vento_gr4_96	12199.3	696.415	618.853	9939.98	9145.8
SLE_rar_vento_gr4_96	12199.3	696.415	618.853	9939.98	9145.8
SLE_qp_gr1_Treno_115	10554.9	0	40.3709	0	462.247
SLE_qp_gr1+vento_119	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_gr1+vento_119	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_gr1+vento_119	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_gr1+vento_119	10554.9	3.20308	146.554	35.2339	2057.11
E_103x_SLD_q=1_140	10638.3	2432.23	864.027	27879.4	10520.8
E_103y_SLD_q=1_141	10638.3	731.912	2538.13	8363.82	34031.1
E_103z_SLD_q=1_142	10832.8	731.912	864.027	8363.82	10520.8

BASE FONDAZIO	ONE					
combo		N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Trend	0_85	20338.6	425.25	128.885	6170.12	2133.15
SLE_rar_gr3+vento	o_91	20338.6	860.109	416.343	14460.7	7150.82
SLE_rar_vento_gr4	1_ 96	19927.5	696.415	618.853	11681	10692.9
SLE_rar_gr3+vente	o_91	20338.6	860.109	416.343	14460.7	7150.82
SLE_rar_vento_gr4	1_ 96	19927.5	696.415	618.853	11681	10692.9
SLE_rar_gr4_centr	if_88	19927.5	680.4	87.9374	11464.8	1391.31
SLE_rar_vento_gr4	1_ 96	19927.5	696.415	618.853	11681	10692.9
SLE_rar_vento_gr4	1_ 96	19927.5	696.415	618.853	11681	10692.9
SLE_rar_vento_gr4	1_ 96	19927.5	696.415	618.853	11681	10692.9
SLE_rar_vento_gr4	1_ 96	19927.5	696.415	618.853	11681	10692.9
SLE_qp_gr1_Trend	_115	18283.1	0	40.3709	0	563.175
SLE_qp_gr1+vento	o_119	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr1+vento	o_119	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr1+vento	o_119	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr1+vento	o_119	18283.1	3.20308	146.554	43.2416	2423.5
E_103x_SLD_q=1	_140	18397.6	2900.99	1004.65	35131.9	13032.5
E_103y_SLD_q=1	_141	18397.6	1200.67	2678.76	11365.5	40728
E_103z_SLD_q=1	_142	18664.7	1200.67	1004.65	11365.5	13032.5

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1805001	В	65 di 112

TESTA PILA						
combo		N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Trend	0_156	10483.7	425.25	128.885	429.243	393.201
SLE_rar_gr3+vente	0_162	10483.7	860.109	447.418	620.605	1673.66
SLE_rar_vento_gr4	1 _167	9813.66	696.415	643.713	496.484	2453.18
SLE_rar_gr3_Fre/a	avv_158	10483.7	850.5	128.868	620.605	393.104
SLE_rar_vento_gr4	1 _167	9813.66	696.415	643.713	496.484	2453.18
SLE_rar_gr4_centr	if_159	9813.66	680.4	112.797	496.484	318.921
SLE_rar_vento_gr4_167		9813.66	696.415	643.713	496.484	2453.18
SLE_rar_vento_gr4	SLE_rar_vento_gr4_167		696.415	643.713	496.484	2453.18
SLE_rar_gr4_centr	if_159	9813.66	680.4	112.797	496.484	318.921
SLE_rar_vento_gr4	- 167	9813.66	696.415	643.713	496.484	2453.18
SLE_qp_gr1_Trend	o_186	7133.47	0	40.3709	0	18.1669
SLE_qp_gr1+vento	o_190	7133.47	3.20308	146.554	0	445.019
SLE_qp_gr1+vento	o_190	7133.47	3.20308	146.554	0	445.019
SLE_qp_gr1_Trend	_186	7133.47	0	40.3709	0	18.1669
SLE_qp_gr1+vento	o_190	7133.47	3.20308	146.554	146.554	445.019
E_103x_SLD_q=1	_211	7216.83	2432.23	864.027	0	0
E_103y_SLD_q=1	_212	7216.83	731.912	2538.13	0	0
E_103z_SLD_q=1	_213	7411.35	731.912	864.027	0	0

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL VI1805001 B 66 di 112

BASE PII	ĹA						
combo			N	Tlong	Ttras	Mlong	Mtras
SLE_rar_{	gr1_Treno	_156	13905.1	425.25	128.885	5106.99	1810.94
SLE_rar_{	gr3+vento	_162	13905.1	860.109	447.418	10081.8	6595.25
SLE_rar_v	vento_gr4	_167	13235.1	696.415	643.713	8157.05	9534.03
SLE_rar_{	gr3+vento	_162	13905.1	860.109	447.418	10081.8	6595.25
SLE_rar_v	vento_gr4	_167	13235.1	696.415	643.713	8157.05	9534.03
SLE_rar_s	gr4_centri	f_159	13235.1	680.4	112.797	7980.88	1559.69
SLE_rar_v	vento_gr4	_167	13235.1	696.415	643.713	8157.05	9534.03
SLE_rar_v	vento_gr4	_167	13235.1	696.415	643.713	8157.05	9534.03
SLE_rar_v	vento_gr4	_167	13235.1	696.415	643.713	8157.05	9534.03
SLE_rar_v	vento_gr4	_167	13235.1	696.415	643.713	8157.05	9534.03
SLE_qp_g	gr1_Treno	_186	10554.9	0	40.3709	0	462.247
SLE_qp_g	gr1+vento	_190	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_g	gr1+vento	_190	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_g	gr1+vento	_190	10554.9	3.20308	146.554	35.2339	2057.11
SLE_qp_g	gr1+vento	_190	10554.9	3.20308	146.554	146.554	2057.11
E_103x_S	SLD_q=1_	_211	10638.3	2432.23	864.027	27879.4	10520.8
E_103y_S	SLD_q=1_	_212	10638.3	731.912	2538.13	8363.82	34031.1
E_103z_S	SLD_q=1_	_213	10832.8	731.912	864.027	8363.82	10520.8

BASE FONDAZIONE					
combo	N	Tlong	Ttras	Mlong	Mtras
SLE_rar_gr1_Treno_156	21633.3	425.25	128.885	6170.12	2133.15
SLE_rar_gr3+vento_162	21633.3	860.109	447.418	12232.1	7713.8
SLE_rar_vento_gr4_167	20963.3	696.415	643.713	9898.09	11143.3
SLE_rar_gr3+vento_162	21633.3	860.109	447.418	12232.1	7713.8
SLE_rar_vento_gr4_167	20963.3	696.415	643.713	9898.09	11143.3
SLE_rar_gr4_centrif_159	20963.3	680.4	112.797	9681.88	1841.69
SLE_rar_vento_gr4_167	20963.3	696.415	643.713	9898.09	11143.3
SLE_rar_vento_gr4_167	20963.3	696.415	643.713	9898.09	11143.3
SLE_rar_vento_gr4_167	20963.3	696.415	643.713	9898.09	11143.3
SLE_rar_vento_gr4_167	20963.3	696.415	643.713	9898.09	11143.3
SLE_qp_gr1_Treno_186	18283.1	0	40.3709	0	563.175
SLE_qp_gr1+vento_190	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr1+vento_190	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr1+vento_190	18283.1	3.20308	146.554	43.2416	2423.5
SLE_qp_gr1+vento_190	18283.1	3.20308	146.554	146.554	2423.5
E_103x_SLD_q=1_211	18397.6	2900.99	1004.65	35131.9	13032.5
E_103y_SLD_q=1_212	18397.6	1200.67	2678.76	11365.5	40728
E_103z_SLD_q=1_213	18664.7	1200.67	1004.65	11365.5	13032.5

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	67 di 112

6.2.2 Stati limiti utlimi

TESTA PILA					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_1	14950.6	616.613	247.6	622.402	597.464
A1_SLU_gr3+vento_7	14950.6	1247.64	725.399	899.878	2518.16
A1_SLU_vento_gr4_12	13979	1010.6	1008.99	719.902	3685.9
A1_SLU_gr3_Fre/avv_3	14950.6	1233.23	247.575	899.878	597.323
A1_SLU_vento_gr4_12	13979	1010.6	1008.99	719.902	3685.9
E_103x_SLV_q=1.5_60	7444.94	3516.53	1164.59	0	0
E_103y_SLV_q=1.5_61	7444.94	1057.2	3540	0	0
E_103z_SLV_q=1.5_62	8171.69	1057.2	1164.59	0	0
E_103x_SLV_q=1_66	7444.94	5272.1	1673.08	0	0
E_103y_SLV_q=1_67	7444.94	1583.87	5234.97	0	0
E_103z_SLV_q=1_68	8171.69	1583.87	1673.08	0	0
BASE PILA					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_1	19569.5	616.613	247.6	7405.14	3321.07
A1_SLU_gr3+vento_7	19569.5	1247.64	725.399	14623.9	10497.6
A1_SLU_vento_gr4_12	18597.9	1010.6	1008.99	11836.5	14784.8
A1_SLU_gr3+vento_7	19569.5	1247.64	725.399	14623.9	10497.6
A1_SLU_vento_gr4_12	18597.9	1010.6	1008.99	11836.5	14784.8
E_103x_SLV_q=1.5_60	10866.4	3516.53	1164.59	37305.1	13581.6
E_103y_SLV_q=1.5_61	10866.4	1057.2	3540	11191.5	44233.7
E_103z_SLV_q=1.5_62	11593.1	1057.2	1164.59	11191.5	13581.6
E_103x_SLV_q=1_66	10866.4	5272.1	1673.08	55957.3	20149.8
E_103y_SLV_q=1_67	10866.4	1583.87	5234.97	16787.2	66127.5
E_103z_SLV_q=1_68	11593.1	1583.87	1673.08	16787.2	20149.8
BASE FONDAZIONE					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_1		616.613	247.6	8946.67	
A1_SLU_gr3+vento_7	30002.6	1247.64	725.399	17743	12311
A1_SLU_vento_gr4_12	29031	1010.6	1008.99	14363	17307.2
A1_SLU_gr3+vento_7	30002.6	1247.64	725.399	17743	12311
A1_SLU_vento_gr4_12	29031	1010.6	1008.99	14363	17307.2
E_103x_SLV_q=1.36_63	18684.1	4821.99	1552.63	53090.6	18776.9
E_103y_SLV_q=1.36_64	18684.1	2116.73	4165.59	17602.5	59026.6
E_103z_SLV_q=1.36_65	19619.7	2116.73	1552.63	17602.5	18776.9
E_103x_SLV_q=1_66	18684.1	6226.23	1959.32	71522.8	25048.1
E_103y_SLV_q=1_67	18684.1	2538	5521.21	23132.2	79930.6
E_103z_SLV_q=1_68	19619.7	2538	1959.32	23132.2	25048.1

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

REV.

В

FOGLIO

68 di 112

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTORelazione di calcolo Pile – P5RS3T30D09CLVI1805001

Somigarazionez	ı											
TESTA PILA												
	N	Tlong	Ttras	Mlong	Mtras							
A1_SLU_gr1_Treno_72	13073.1	616.613	180.012	3853.96	379.305							
A1_SLU_gr3+vento_78	13073.1	1247.64	657.811	4131.43	2300							
A1_SLU_vento_gr4_83	12477.1	1010.6	954.917	3305.15	3511.38							
A1_SLU_gr3_Fre/avv_74	13073.1	1233.23	179.987	4131.43	379.164							
A1_SLU_vento_gr4_83	12477.1	1010.6	954.917	3305.15	3511.38							
E_103x_SLV_q=1.5_131	7444.94	3516.53	1164.59	0	0							
E_103y_SLV_q=1.5_132	7444.94	1057.2	3540	0	0							
E_103z_SLV_q=1.5_133	8171.69	1057.2	1164.59	0	0							
E_103x_SLV_q=1_137	7444.94	5272.1	1673.08	0	0							
E_103y_SLV_q=1_138	7444.94	1583.87	5234.97	0	0							
E_103z_SLV_q=1_139	8171.69	1583.87	1673.08	0	0							
BASE PILA	BASE PILA											
	N	Tlong	Ttras	Mlong	Mtras							
A1_SLU_gr1_Treno_72	17692.1	616.613	180.012	10636.7	2359.44							
A1_SLU_gr3+vento_78	17692.1	1247.64	657.811	17855.5	9535.92							
A1_SLU_vento_gr4_83	17096	1010.6	954.917	14421.8	14015.5							
A1_SLU_gr3+vento_78	17692.1	1247.64	657.811	17855.5	9535.92							
A1_SLU_vento_gr4_83	17096	1010.6	954.917	14421.8	14015.5							
E_103x_SLV_q=1.5_131	10866.4	3516.53	1164.59	37305.1	13581.6							
E_103y_SLV_q=1.5_132	10866.4	1057.2	3540	11191.5	44233.7							
E_103z_SLV_q=1.5_133	11593.1	1057.2	1164.59	11191.5	13581.6							
E_103x_SLV_q=1_137	10866.4	5272.1	1673.08	55957.3	20149.8							
E_103y_SLV_q=1_138	10866.4	1583.87	5234.97	16787.2	66127.5							
E_103z_SLV_q=1_139	11593.1	1583.87	1673.08	16787.2	20149.8							
BASE FONDAZIONE												
	N	Tlong	Ttras	Mlong	Mtras							
A1_SLU_gr1_Treno_72	28125.1	616.613	180.012	12178.2	2809.47							
A1_SLU_gr3+vento_78	28125.1	1247.64	657.811	20974.6	11180.5							
A1_SLU_vento_gr4_83	27529.1	1010.6	954.917	16948.3	16402.8							
A1_SLU_gr3+vento_78	28125.1	1247.64	657.811	20974.6	11180.5							
A1_SLU_vento_gr4_83	27529.1	1010.6	954.917	16948.3	16402.8							
E_103x_SLV_q=1.36_134	18684.1	4821.99	1552.63	53090.6	18776.9							
E_103y_SLV_q=1.36_135	18684.1	2116.73	4165.59	17602.5	59026.6							
E_103z_SLV_q=1.36_136	19619.7	2116.73	1552.63	17602.5	18776.9							
E_103x_SLV_q=1_137	18684.1	6226.23	1959.32	71522.8	25048.1							
E_103y_SLV_q=1_138	18684.1	2538	5521.21	23132.2	79930.6							
E_103z_SLV_q=1_139	19619.7	2538	1959.32	23132.2	25048.1							

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	69 di 112

TESTA PILA					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_143	14950.6	616.613	247.6	622.402	597.464
A1_SLU_gr3+vento_149	14950.6	1247.64	725.399	899.878	2518.16
A1_SLU_vento_gr4_154	13979	1010.6	1008.99	719.902	3685.9
A1_SLU_gr3_Fre/avv_145	14950.6	1233.23	247.575	899.878	597.323
A1_SLU_vento_gr4_154	13979	1010.6	1008.99	719.902	3685.9
E_103x_SLV_q=1.5_202	7444.94	3516.53	1164.59	0	0
E_103y_SLV_q=1.5_203	7444.94	1057.2	3540	0	0
E_103z_SLV_q=1.5_204	8171.69	1057.2	1164.59	0	0
E_103x_SLV_q=1_208	7444.94	5272.1	1673.08	0	0
E_103y_SLV_q=1_209	7444.94	1583.87	5234.97	0	0
E_103z_SLV_q=1_210	8171.69	1583.87	1673.08	0	0
BASE PILA					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_143	19569.5	616.613	247.6	7405.14	3321.07
A1_SLU_gr3+vento_149	19569.5	1247.64	725.399	14623.9	10497.6
A1_SLU_vento_gr4_154	18597.9	1010.6	1008.99	11836.5	14784.8
A1_SLU_gr3+vento_149	19569.5	1247.64	725.399	14623.9	10497.6
A1_SLU_vento_gr4_154	18597.9	1010.6	1008.99	11836.5	14784.8
E_103x_SLV_q=1.5_202	10866.4	3516.53	1164.59	37305.1	13581.6
E_103y_SLV_q=1.5_203	10866.4	1057.2	3540	11191.5	44233.7
E_103z_SLV_q=1.5_204	11593.1	1057.2	1164.59	11191.5	13581.6
E_103x_SLV_q=1_208	10866.4	5272.1	1673.08	55957.3	20149.8
E_103y_SLV_q=1_209	10866.4	1583.87	5234.97	16787.2	66127.5
E_103z_SLV_q=1_210	11593.1	1583.87	1673.08	16787.2	20149.8
BASE FONDAZIONE					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr1_Treno_143	30002.6	616.613	247.6	8946.67	3940.07
A1_SLU_gr3+vento_149	30002.6	1247.64	725.399	17743	12311
A1_SLU_vento_gr4_154	29031	1010.6	1008.99	14363	17307.2
A1_SLU_gr3+vento_149	30002.6	1247.64	725.399	17743	12311
A1_SLU_vento_gr4_154	29031	1010.6	1008.99	14363	17307.2
E_103x_SLV_q=1.36_205	18684.1	4821.99	1552.63	53090.6	18776.9
E_103y_SLV_q=1.36_206	18684.1	2116.73	4165.59	17602.5	59026.6
E_103z_SLV_q=1.36_207	19619.7	2116.73	1552.63	17602.5	18776.9
E_103x_SLV_q=1_208	18684.1	6226.23	1959.32	71522.8	25048.1
E_103y_SLV_q=1_209	18684.1	2538	5521.21	23132.2	79930.6
E_103z_SLV_q=1_210	19619.7	2538	1959.32	23132.2	25048.1

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	70 di 112

7. VERIFICHE STRUTTURALI

Le armature di calcolo derivanti dalle verifiche di resistenza e di esercizio soddisfano le quantità minime indicate dalla normativa, si riepilogano i quantitativi di ciascun elemento.

elemento	arm. flessionale	staffe	c.f
fusto	206 Φ20 interasse 20 cm*	Ф14/10	8.7 cm
plinto	Trasv: 2.5 strati Φ 30/10 Long 2.5 strati Φ 30/10	-	8.7 cm
pali	56 Ф30 interasse 20 cm*	Ф12/20	9.7 cm

Le spille adottate sono disposte nel rispetto della norma vigente.

8. FUSTO PILA

Secondo quanto riportano al paragrafo 7.3 e 7.3.6.1 delle Norme Tecniche delle Costruzioni 2018, adottando un fattore di comportamento pari a 1.5, la struttura può essere progettata come non dissipativa:

Tab. 7.3.I – Limiti su q e modalità di modellazione dell'azione sismica

STATI LIMITE —		Lineare (Di	namica e Statica)	Non Lineare		
		Dissipativo	Dissipativo Non Dissipativo		Statica	
CLE	SLO	q = 1.0 § 3.2.3.4	q = 1.0 § 3.2.3.4			
SLE	SLD	q≤1,5 § 3.2.3.5	q ≤ 1,5 § 3.2.3.5	§ 7.3.4.1	§ 7.3.4.2	
I SLV I	q≥1,5 § 3.2.3.5	q ≤ 1,5 § 3.2.3.5				
	SLC					

"Nel caso di analisi lineare la verifica di duttilità si può ritenere soddisfatta, rispettando per tutti gli elementi strutturali, sia primari sia secondari, le regole specifiche per i dettagli costruttivi precisate nel presente capitolo per le diverse tipologie costruttive; tali regole sono da considerarsi aggiuntive rispetto a quanto previsto nel Cap. 4 e a quanto imposto dalle regole della progettazione in capacità, il cui rispetto è comunque obbligatorio per gli elementi strutturali primari delle strutture a comportamento dissipativo.

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	71 di 112

Per strutture a comportamento dissipativo, qualora non siano rispettate le regole specifiche dei dettagli costruttivi, quali precisate nel presente capitolo, occorrerà procedere a verifiche di duttilità. diversamente specificato nei paragrafi successivi relativi alle diverse tipologie costruttive, accertando che la capacità in duttilità della costruzione sia almeno pari:

- a 1,2 volte la domanda in duttilità locale, valutata in corrispondenza dello SLV, nel caso si utilizzino modelli lineari,
- alla domanda in duttilità locale e globale allo SLC, nel caso si utilizzino modelli non lineari.

Le verifiche di duttilità non sono dovute nel caso di progettazione con $q \leq 1,5$.

8.1 Modellazione

La geometria della sezione della pila è stata implementata all'interno del software di calcolo RC-SEC con i relativi ferri di armatura longitudinale.

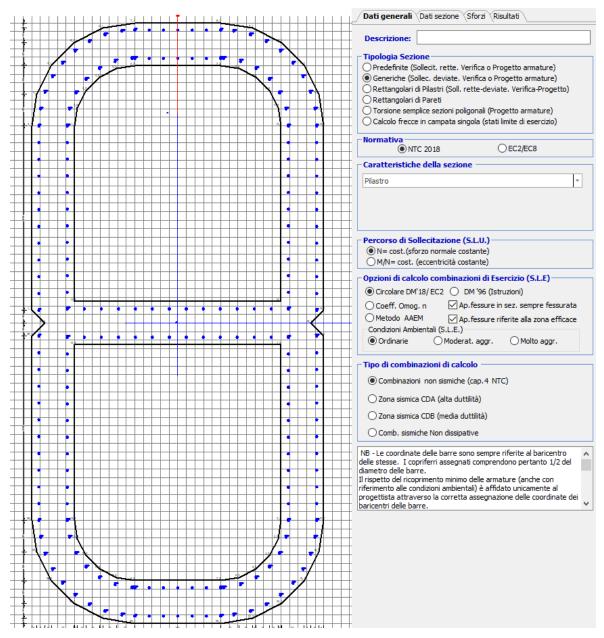


Figura 11 - Sezione implementata in RC-SEC

Per un totale di ferri 206 di diametro Φ 20 che corrispondono ad un passo di 20cm lungo il bordo esterno ed interno della sezione.

VI18 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 250 m

mm

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Progetto definitivo RS3T 30 D09CL VI1805001 В 73 di 112 Relazione di calcolo Pile – P5

8.2 Verifica a presso flessione

DATI GENERALI SEZIONE GENERICA IN C.A. **NOME SEZIONE:** sezione s50

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Sezione generica di Pilastro Tipologia sezione:

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Assi x,y principali d'inerzia Riferimento Sforzi assegnati:

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

C32/40 CALCESTRUZZO -Classe:

Resis. compr. di progetto fcd: 18.130 MPa 0.0020 Def.unit. max resistenza ec2: Def.unit. ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensione-deformaz.: Modulo Elastico Normale Ec: 3334.6 MPa Resis. media a trazione fctm: 3.000 MPa Coeff. Omogen. S.L.E.: 15.00 15.00

Coeff. Omogen. S.L.E.: Sc limite S.L.E. comb. Frequenti: 176.00 daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.300

ACCIAIO -B450C Tipo:

> Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO N° 1

Forma del Dominio: Classe Conglomerato:		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-170.0	15.0
2	-170.0	230.0
3	-164.1	267.1
4	-147.1	300.5
5	-120.5	327.1
6	-87.1	344.1
7	-50.0	350.0
8	50.0	350.0
9	87.1	344.1
10	120.5	327.1
11	147.1	300.5

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	74 di 112

12	164.1	267.1
13	170.0	230.0
14	170.0	15.0
15	155.0	0.0
16	170.0	-15.0
17	170.0	-230.0
18	164.1	-267.1
19	147.1	-300.5
20	120.5	-327.1
21	87.1	-344.1
22	50.0	-350.0
23	-50.0	-350.0
24	-87.1	-344.1
25	-120.5	-327.1
26	-147.1	-300.5
27	-164.1	-267.1
28	-170.0	-230.0
29	-170.0	-15.0
30	-155.0	0.0

DOMINIO N° 2 Forma del Dominio:

Forma del Dominio: Classe Conglomerato:		Poligonale vuoto C32/40
N°vertice:	X [cm]	Y [cm]
1 2 3 4 5 6 7 8 9 10 11 12 13	-120.0 -116.6 -106.6 -91.1 -71.6 -50.0 50.0 71.6 91.1 106.6 116.6 120.0	230.0 251.6 271.1 286.6 296.6 300.0 300.0 296.6 286.6 271.1 251.6 230.0
14	-120.0	25.0

DOMINIO N° 3

Forma del Dominio: Classe Conglomerato:		Poligonale vuoto C32/40
N°vertice:	X [cm]	Y [cm]
1 2 3 4 5 6 7 8 9 10 11 12	120.0 120.0 116.6 106.6 91.1 71.6 50.0 -50.0 -71.6 -91.1 -106.6 -116.6 -120.0	-25.0 -230.0 -251.6 -271.1 -286.6 -296.6 -300.0 -300.0 -296.6 -286.6 -271.1 -251.6 -230.0
14	-120.0	-25.0

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	75 di 112

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	-162.0 -162.0 -50.0 50.0 162.0 -162.0 -162.0 -162.0 -50.0 50.0 162.0 -128.0 -128.0 -50.0 128.0 -128.0	15.0 230.0 342.0 342.0 230.0 15.0 -15.0 -230.0 -342.0 -342.0 -230.0 17.0 230.0 308.0 230.0 17.0 -17.0 -230.0 -17.0 -230.0 -17.0 -230.0 -17.0 -230.0 -17.0 -230.0 -17.0 -230.0 -17.0 -230.0 -17.0 -230.0 -17.0 -230.0 -17.0	20 20 20 20 20 20 20 20 20 20 20 20 20 2
22 23 24	50.0 128.0 128.0	-308.0 -230.0 -17.0	20 20 20
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	134.6 120.2 103.6 85.3 65.9 125.4 118.0 106.0 90.4 72.2 52.5 -160.2 -154.9 -146.3 -134.6	303.4 317.2 328.3 336.3 340.9 249.8 268.3 284.3 296.7 304.8 308.0 -249.9 -269.2 -287.2 -303.4	20 20 20 20 20 20 20 20 20 20 20 20 20 2

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	76 di 112

57	-120.2	-317.2	20
58	-103.6	-328.3	20
59	-85.3	-336.3	20
60	-65.9	-340.9	20
61	-125.4	-249.8	20
62	-118.0	-268.3	20
63	-106.0	-284.3	20
64	-90.4	-296.7	20
65	-72.2	-304.8	20
66	-52.5	-308.0	20
67	160.2	-249.9	20
68	154.9	-269.2	20
69	146.3	-287.2	20
70	134.6	-303.4	20
71	120.2	-317.2	20
72	103.6	-328.3	20
73	85.3	-336.3	20
74	65.9	-340.9	20
75	125.4	-249.8	20
76	118.0	-268.3	20
77	106.0	-284.3	20
78	90.4	-296.7	20
79	72.2	-304.8	20
80	52.5	-308.0	20

DATI GENERAZIONI LINEARI DI BARRE

Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione N°Gen. N°Barra Ini. N°Barra Fin. Numero della barra finale cui si riferisce la generazione

Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Barre

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	2	10	20
2	5	6	10	20
3	7	8	10	20
4	11	12	10	20
5	13	14	10	20
6	17	18	10	20
7	19	20	10	20
8	23	24	10	20
9	3	4	5	20
10	9	10	5	20
11	15	16	5	20
12	18	13	12	20
13	21	22	5	20
14	24	19	12	20

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	77 di 112

N°Comb.	N	Mx	My	Vy	Vx
1	19569.51	7405.14	3321.07	0.00	0.00
2	19569.51	14623.91	10497.55	0.00	0.00
3	18597.94	11836.54	14784.76	0.00	0.00
4	19569.51	14623.91	10497.55	0.00	0.00
5	18597.94	11836.54	14784.76	0.00	0.00
6	10866.36	37305.13	13581.63	0.00	0.00
7	10866.36	11191.54	44233.72	0.00	0.00
8	11593.12	11191.54	13581.63	0.00	0.00
9	17692.06	10636.70	2359.44	0.00	0.00
10	17692.06	17855.46	9535.92	0.00	0.00
11	17095.98	14421.78	14015.46	0.00	0.00
12	17692.06	17855.46	9535.92	0.00	0.00
13	17095.98	14421.78	14015.46	0.00	0.00
14	10866.36	37305.13	13581.63	0.00	0.00
15	10866.36	11191.54	44233.72	0.00	0.00
16	11593.12	11191.54	13581.63	0.00	0.00
17	19569.51	7405.14	3321.07	0.00	0.00
18	19569.51	14623.91	10497.55	0.00	0.00
19	18597.94	11836.54	14784.76	0.00	0.00
20	19569.51	14623.91	10497.55	0.00	0.00
21	18597.94	11836.54	14784.76	0.00	0.00
22	10866.36	37305.13	13581.63	0.00	0.00
23	10866.36	11191.54	44233.72	0.00	0.00
24	11593.12	11191.54	13581.63	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro	(+ se di compressione)
IN	SIGIZO HOTHIAIE IKINI APPIICALO HEI DANCENIIL	T ac al complessione

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione Mx

Му

N°Comb.	N	Mx	Му
1	13905.13	5106.99	1810.94
2	13905.13	10081.81	6595.25
3	13235.09	8157.05	9534.03
4	13905.13	10081.81	6595.25
5	13235.09	8157.05	9534.03
6	12610.35	5106.99	1810.94
7	12610.35	12310.47	6109.97
8	12199.26	9939.98	9145.80
9	12610.35	12310.47	6109.97
10	12199.26	9939.98	9145.80
11	13905.13	5106.99	1810.94
12	13905.13	10081.81	6595.25
13	13235.09	8157.05	9534.03
14	13905.13	10081.81	6595.25
15	13235.09	8157.05	9534.03
16	10657.71	25854.81	9549.51
17	10657.71	7756.44	30793.33
18	10897.62	7756.44	9549.51
19	10638.26	27879.40	10520.84
20	10638.26	8363.82	34031.10
21	10832.77	8363.82	10520.84
22	10638.26	27879.40	10520.84
23	10638.26	8363.82	34031.10
24	10832.77	8363.82	10520.84

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	78 di 112

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	13235.09	7980.88 (0.00)	1559.69 (0.00)
2	13235.09	8157.05 (117253.33)	9534.03 (137046.70)
3	13235.09	8157.05 (117253.33)	9534.03 (137046.70)
4	13235.09	8157.05 (117253.33)	9534.03 (137046.70)
5	13235.09	8157.05 (117253.33)	9534.03 (137046.70)
6	12199.26	9763.81 (0.00)	1171.46 (0.00)
7	12199.26	9939.98 (82102.90)	9145.80 (75543.08)
8	12199.26	9939.98 (82102.90)	9145.80 (75543.08)
9	12199.26	9939.98 (82102.90)	9145.80 (75543.08)
10	12199.26	9939.98 (82102.90)	9145.80 (75543.08)
11	13235.09	7980.88 (0.00)	1559.69 (0.00)
12	13235.09	8157.05 (117253.33)	9534.03 (137046.70)
13	13235.09	8157.05 (117253.33)	9534.03 (137046.70)
14	13235.09	8157.05 (117253.33)	9534.03 (137046.70)
15	13235.09	8157.05 (117253.33)	9534.03 (137046.70)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	10554.90	0.00 (0.00)	462.25 (0.00)
2	10554.90	35.23 (0.00)	2057.11 (0.00)
3	10554.90	35.23 (0.00)	2057.11 (0.00)
4	10554.90	35.23 (0.00)	2057.11 (0.00)
5	10554.90	35.23 (0.00)	2057.11 (0.00)
6	10554.90	0.00 (0.00)	462.25 (0.00)
7	10554.90	35.23 (0.00)	2057.11 (0.00)
8	10554.90	35.23 (0.00)	2057.11 (0.00)
9	10554.90	35.23 (0.00)	2057.11 (0.00)
10	10554.90	35.23 (0.00)	2057.11 (0.00)
11	10554.90	0.00 (0.00)	462.25 (0.00)
12	10554.90	35.23 (0.00)	2057.11 (0.00)
13	10554.90	35.23 (0.00)	2057.11 (0.00)
14	10554.90	35.23 (0.00)	2057.11 (0.00)
15	10554.90	146.55 (0.00)	2057.11 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 4.7 cm Interferro netto minimo barre longitudinali: 0.5 cm

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B79 di 112

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'assex x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'assex y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	19569.51	7405.14	3321.07	19569.47	104524.01	46799.80	14.11640.9(290.7)
2	Š	19569.51	14623.91	10497.55	19569.46	80903.86	57530.30	5.51640.9(290.7)
3	Š	18597.94	11836.54	14784.76	18598.18	50302.58	62858.60	4.25640.9(290.7)
4	Š	19569.51	14623.91	10497.55	19569.46	80903.86	57530.30	5.51640.9(290.7)
5	Š	18597.94	11836.54	14784.76	18598.18	50302.58	62858.60	4.25640.9(290.7)
6	Š	10866.36	37305.13	13581.63	10866.12	95904.30	34757.50	2.57640.9(290.7)
7	Š	10866.36	11191.54	44233.72	10866.10	13791.91	55350.84	1.25640.9(290.7)
8	Š	11593.12	11191.54	13581.63	11592.98	44264.69	53939.26	3.96640.9(290.7)
9	Š	17692.06	10636.70	2359.44	17692.28	121154.88	26841.11	11.39640.9(290.7)
10	Š	17692.06	17855.46	9535.92	17692.07	93797.05	49688.42	5.24640.9(290.7)
11	Š	17095.98	14421.78	14015.46	17096.10	61217.42	59064.88	4.23640.9(290.7)
12	Š	17692.06	17855.46	9535.92	17692.07	93797.05	49688.42	5.24640.9(290.7)
13	Š	17095.98	14421.78	14015.46	17096.10	61217.42	59064.88	4.23640.9(290.7)
14	Š	10866.36	37305.13	13581.63	10866.12	95904.30	34757.50	2.57640.9(290.7)
15	Š	10866.36	11191.54	44233.72	10866.10	13791.91	55350.84	1.25640.9(290.7)
16	Š	11593.12	11191.54	13581.63	11592.98	44264.69	53939.26	3.96640.9(290.7)
17	Š	19569.51	7405.14	3321.07	19569.47	104524.01	46799.80	14.11640.9(290.7)
18	S	19569.51	14623.91	10497.55	19569.46	80903.86	57530.30	5.51640.9(290.7)
19	Š	18597.94	11836.54	14784.76	18598.18	50302.58	62858.60	4.25640.9(290.7)
20	Š	19569.51	14623.91	10497.55	19569.46	80903.86	57530.30	5.51640.9(290.7)
21	S	18597.94	11836.54	14784.76	18598.18	50302.58	62858.60	4.25640.9(290.7)
22	Š	10866.36	37305.13	13581.63	10866.12	95904.30	34757.50	2.57640.9(290.7)
23	Š	10866.36	11191.54	44233.72	10866.10	13791.91	55350.84	1.25640.9(290.7)
24	S	11593.12	11191.54	13581.63	11592.98	44264.69	53939.26	3.96640.9(290.7)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	147.1	300.5	0.00332	146.3	287.2	-0.00966	-146.3	-287.2
2	0.00350	164.1	267.1	0.00326	154.9	269.2	-0.01040	-154.9	-269.2
3	0.00350	170.0	230.0	0.00318	160.2	249.9	-0.01468	-160.2	-249.9
4	0.00350	164.1	267.1	0.00326	154.9	269.2	-0.01040	-154.9	-269.2
5	0.00350	170.0	230.0	0.00318	160.2	249.9	-0.01468	-160.2	-249.9
6	0.00350	147.1	300.5	0.00330	134.6	303.4	-0.01340	-134.6	-303.4
7	0.00350	170.0	230.0	0.00283	162.0	230.0	-0.02556	-162.0	-230.0
8	0.00350	170.0	230.0	0.00309	160.2	249.9	-0.01788	-160.2	-249.9
9	0.00350	120.5	327.1	0.00331	103.6	328.3	-0.01202	-103.6	-328.3

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

		\longrightarrow	COMPERC	· ·	LOTTO	CODIET	24	DOCHMENTE	DEX	FOCLIC
Progetto defini	tivo		COMMESS	5/A	LOTTO	CODIFIC		DOCUMENTO	REV.	FOGLIO
Relazione di c	ralcolo Pile — P5		RS3T		30	D09C1	L	VI1805001	В	80 di 112
-					•					
10	0.00350	147.1	300.5	0.00332	146.3	287.2	-0.01034	-146.3	-287.2	
11	0.00350	164.1	267.1	0.00321	160.2	249.9	-0.01331	-160.2	-249.9	
12	0.00350	147.1	300.5	0.00332	146.3	287.2	-0.01034	-146.3	-287.2	
13	0.00350	164.1	267.1	0.00321	160.2	249.9	-0.01331	-160.2	-249.9	
14	0.00350	147.1	300.5	0.00330	134.6	303.4	-0.01340	-134.6	-303.4	
15	0.00350	170.0	230.0	0.00283	162.0	230.0	-0.02556	-162.0	-230.0	
16	0.00350	170.0	230.0	0.00309	160.2	249.9	-0.01788	-160.2	-249.9	
17	0.00350	147.1	300.5	0.00332	146.3	287.2	-0.00966	-146.3	-287.2	
18	0.00350	164.1	267.1	0.00326	154.9	269.2	-0.01040	-154.9	-269.2	
19	0.00350	170.0	230.0	0.00318	160.2	249.9	-0.01468	-160.2	-249.9	
20	0.00350	164.1	267.1	0.00326	154.9	269.2	-0.01040	-154.9	-269.2	
21	0.00350	170.0	230.0	0.00318	160.2	249.9	-0.01468	-160.2	-249.9	
22	0.00350	147.1	300.5	0.00330	134.6	303.4	-0.01340	-134.6	-303.4	
23	0.00350	170.0	230.0	0.00283	162.0	230.0	-0.02556	-162.0	-230.0	
24	0.00350	170.0	230.0	0.00309	160.2	249.9	-0.01788	-160.2	-249.9	

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C D:4	Coeff all status assessment and solo florest and to travel and the state of

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000019401	0.000012705	-0.003172016		
2	0.000027982	0.000009269	-0.003568183		
3	0.000045839	0.000006347	-0.005752531		
4	0.000027982	0.000009269	-0.003568183		
5	0.000045839	0.000006347	-0.005752531		
6	0.000020537	0.000018407	-0.005052607		
7	0.000083692	0.000002767	-0.011364100		
8	0.000055094	0.000006632	-0.007391337		
9	0.000012491	0.000019414	-0.004355440		
10	0.000023343	0.000011904	-0.003511022		
11	0.000039614	0.000007660	-0.005047510		
12	0.000023343	0.000011904	-0.003511022		
13	0.000039614	0.000007660	-0.005047510		
14	0.000020537	0.000018407	-0.005052607		
15	0.000083692	0.000002767	-0.011364100		
16	0.000055094	0.000006632	-0.007391337		
17	0.000019401	0.000012705	-0.003172016		
18	0.000027982	0.000009269	-0.003568183		
19	0.000045839	0.000006347	-0.005752531		
20	0.000027982	0.000009269	-0.003568183		
21	0.000045839	0.000006347	-0.005752531		
22	0.000020537	0.000018407	-0.005052607		
23	0.000083692	0.000002767	-0.011364100		
24	0.000055094	0.000006632	-0.007391337		

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
As eff.
As eff.
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

VI18 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	81 di 112

1 S 1.79 147.1 300.5 12.5 -134.6 -303.4		
2 S 2.55 164.1 267.1 1.4 -146.3 -287.2		
3 S 2.70 164.1 267.1 -2.6 -154.9 -269.2	475	6.3
4 S 2.55 164.1 267.1 1.4 -146.3 -287.2		
5 S 2.70 164.1 267.1 -2.6 -154.9 -269.2	475	6.3
6 S 1.67 147.1 300.5 10.6 -134.6 -303.4		
7 S 2.53 147.1 300.5 -1.9 -146.3 -287.2	619	9.4
8 S 2.69 164.1 267.1 -5.9 -154.9 -269.2	2022 1	8.8
9 S 2.53 147.1 300.5 -1.9 -146.3 -287.2	619	9.4
10 S 2.69 164.1 267.1 -5.9 -154.9 -269.2	2022 1	8.8
11 S 1.79 147.1 300.5 12.5 -134.6 -303.4		
12 S 2.55 164.1 267.1 1.4 -146.3 -287.2		
13 S 2.70 164.1 267.1 -2.6 -154.9 -269.2	475	6.3
14 S 2.55 164.1 267.1 1.4 -146.3 -287.2		
15 S 2.70 164.1 267.1 -2.6 -154.9 -269.2	475	6.3
	1234 9	4.2
	27247 21	3.6
18 S 2.52 164.1 267.1 -7.3 -160.2 -249.9	2545 2	2.0
19 S 5.00 147.1 300.5 -76.0 -134.6 -303.4 1	2062 10	0.5
20 S 8.16 170.0 230.0 -292.4 -162.0 -230.0 2	27499 21	3.6
21 S 2.72 164.1 267.1 -11.7 -154.9 -269.2	3666 3	1.4
	2062 10	0.5
23 S 8.16 170.0 230.0 -292.4 -162.0 -230.0 2	27499 21	3.6
24 S 2.72 164.1 267.1 -11.7 -154.9 -269.2	3666 3	1.4

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata

e2 Minima deformazione di trazione del cls. (in sezione fessurata), valutata nella fibra più interna dell'area Ac eff

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]

k2 = (e1 + e2)/(2*e1) [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm	sr max	wk	Mx fess	My fess
1	S	0.00000	0.00000						0.000 (990.00)	0.00	0.00
2	S	0.00000	0.00000						0.000 (990.00)	0.00	0.00
3	S	-0.00002	0	0.833	20.0	63	0.00001 (0.00001)	641	0.005 (990.00)		
4	S	0.00000	0.00000				`		0.000 (990.00)	0.00	0.00
5	S	-0.00002	0	0.833	20.0	63	0.00001 (0.00001)	641	0.005 (990.00)	117253.33	137046.70
6	S	0.00000	0.00000				·		0.000 (990.00)	0.00	0.00
7	S	-0.00001	0	0.833	20.0	58	0.00001 (0.00001)	568	0.003 (990.00)	239981.24	119108.22
8	S	-0.00003	0	0.833	20.0	63	0.00002 (0.00002)	820	0.015 (990.00)	82102.90	75543.08
9	S	-0.00001	0	0.833	20.0	58	0.00001 (0.00001)	568	0.003 (990.00)	239981.24	119108.22
10	S	-0.00003	0	0.833	20.0	63	0.00002 (0.00002)	820	0.015 (990.00)	82102.90	75543.08
11	S	0.00000	0.00000				·		0.000 (990.00)	0.00	0.00
12	S	0.00000	0.00000						0.000 (990.00)	0.00	0.00
13	S	-0.00002	0	0.833	20.0	63	0.00001 (0.00001)	641	0.005 (990.00)	117253.33	137046.70
14	S	0.00000	0.00000				`		0.000 (990.00)	0.00	0.00
15	S	-0.00002	0	0.833	20.0	63	0.00001 (0.00001)	641	0.005 (990.00)	117253.33	137046.70
16	S	-0.00031	0	0.833	20.0	58	0.00018 (0.00018)	873	0.158 (990.00)	51720.25	19102.94

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5				COMMESSA RS3T			10TTO 30	CODIFICA D09CL		DOCUMENTO VI1805001	REV B		FOGLIO 82 di 112
17	S	-0.00127	0	0.833	20.0	69	0.0	0074 (0.00074)	957	0.708 (990.00)	8552.91	33955	5.34
18	S	-0.00004	0	0.833	20.0	55		0002 (0.00002)	844	0.018 (990.00)	57069.94	70262	2.90
19	S	-0.00039	0	0.833	20.0	58	0.0	00023 (0.00023)	877	0.200 (990.00)	48673.12	18367	7.76
20	S	-0.00151	0	0.833	20.0	69	0.0	(88000.0) 8800	964	0.846 (990.00)	8083.95	32892	2.37
21	S	-0.00006	0	0.833	20.0	63	0.0	0.0003 (0.00003)	874	0.031 (990.00)	45673.42	57452	2.54
22	S	-0.00039	0	0.833	20.0	58	0.0	00023 (0.00023)	877	0.200 (990.00)	48673.12	18367	7.76
23	S	-0.00151	0	0.833	20.0	69	0.0	(88000.0) 8800	964	0.846 (990.00)	8083.95	32892	2.37
24	S	-0.00006	0	0.833	20.0	63	0.0	0.0003 (0.00003)	874	0.031 (990.00)	45673.42	57452	2.54

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.90	120.5	327.1	9.0	-103.6	-328.3		
2	S	2.70	164.1	267.1	-2.6	-154.9	-269.2	475	6.3
3	S	2.70	164.1	267.1	-2.6	-154.9	-269.2	475	6.3
4	S	2.70	164.1	267.1	-2.6	-154.9	-269.2	475	6.3
5	S	2.70	164.1	267.1	-2.6	-154.9	-269.2	475	6.3
6	S	1.90	87.1	344.1	6.1	-85.3	-336.3		
7	S	2.69	164.1	267.1	-5.9	-154.9	-269.2	2022	18.8
8	S	2.69	164.1	267.1	-5.9	-154.9	-269.2	2022	18.8
9	S	2.69	164.1	267.1	-5.9	-154.9	-269.2	2022	18.8
10	S	2.69	164.1	267.1	-5.9	-154.9	-269.2	2022	18.8
11	S	1.90	120.5	327.1	9.0	-103.6	-328.3		
12	S	2.70	164.1	267.1	-2.6	-154.9	-269.2	475	6.3
13	S	2.70	164.1	267.1	-2.6	-154.9	-269.2	475	6.3
14	S	2.70	164.1	267.1	-2.6	-154.9	-269.2	475	6.3
15	S	2.70	164.1	267.1	-2.6	-154.9	-269.2	475	6.3

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr r	max	wk	Mx fess	My fess
1	S	0.00000	0.00000						0.000 (0.40)	0.00	0.00
2	S	-0.00002	0	0.833	20.0	63	0.00001 (0.00001)	641	0.005 (0.40)	117253.33	137046.70
3	S	-0.00002	0	0.833	20.0	63	0.00001 (0.00001)	641	0.005 (0.40)	117253.33	137046.70
4	S	-0.00002	0	0.833	20.0	63	0.00001 (0.00001)	641	0.005 (0.40)	117253.33	137046.70
5	S	-0.00002	0	0.833	20.0	63	0.00001 (0.00001)	641	0.005 (0.40)	117253.33	137046.70
6	S	0.00000	0.00000				·		0.000 (0.40)	0.00	0.00
7	S	-0.00003	0	0.833	20.0	63	0.00002 (0.00002)	820	0.015 (0.40)	82102.90	75543.08
8	S	-0.00003	0	0.833	20.0	63	0.00002 (0.00002)	820	0.015 (0.40)	82102.90	75543.08
9	S	-0.00003	0	0.833	20.0	63	0.00002 (0.00002)	820	0.015 (0.40)	82102.90	75543.08
10	S	-0.00003	0	0.833	20.0	63	0.00002 (0.00002)	820	0.015 (0.40)	82102.90	75543.08
11	S	0.00000	0.00000				·		0.000 (0.40)	0.00	0.00
12	S	-0.00002	0	0.833	20.0	63	0.00001 (0.00001)	641	0.005 (0.40)	117253.33	137046.70
13	S	-0.00002	0	0.833	20.0	63	0.00001 (0.00001)	641	0.005 (0.40)	117253.33	137046.70
14	S	-0.00002	0	0.833	20.0	63	0.00001 (0.00001)	641	0.005 (0.40)	117253.33	137046.70
15	S	-0.00002	0	0.833	20.0	63	0.00001 (0.00001)	641	0.005 (0.40)	117253.33	137046.70

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
	_		4-0.0				040 =		
1	S	1.04	170.0	230.0	14.1	-162.0	-210.5		
2	S	1.22	170.0	230.0	11.6	-162.0	-230.0		
3	S	1.22	170.0	230.0	11.6	-162.0	-230.0		
4	S	1.22	170.0	230.0	11.6	-162.0	-230.0		
5	S	1.22	170.0	230.0	11.6	-162.0	-230.0		
6	S	1.04	170.0	230.0	14.1	-162.0	-210.5		
7	S	1.22	170.0	230.0	11.6	-162.0	-230.0		
8	S	1.22	170.0	230.0	11.6	-162.0	-230.0		

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Pr	ogetto defini	tivo				COMMESS	SA	LOTTO		CODIFICA	DOCUMENTO	REV.	FOGLIO
	lazione di c		– P5			RS3T		30		D09CL	VI1805001	В	83 di 112
	· ·						•		•			•	
	9	S	1.22	170.0	230.0	11.6	-162.0	-230.0					
	10	S	1.22	170.0	230.0	11.6	-162.0	-230.0					
	11	S	1.04	170.0	230.0	14.1	-162.0	-210.5					
	12	S	1.22	170.0	230.0	11.6	-162.0	-230.0					
	13	S	1.22	170.0	230.0	11.6	-162.0	-230.0					
	14	S	1.22	170.0	230.0	11.6	-162.0	-230.0					
	15	S	1 22	170.0	230.0	11 6	-162 0	-230.0					

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr m	nax	wk	Mx fess	My fess
1	S	0.00000	0.00000						0.000 (0.30)	0.00	0.00
2	S	0.00000	0.00000						0.000 (0.30)	0.00	0.00
3	S	0.00000	0.00000						0.000 (0.30)	0.00	0.00
4	S	0.00000	0.00000						0.000 (0.30)	0.00	0.00
5	S	0.00000	0.00000						0.000 (0.30)	0.00	0.00
6	S	0.00000	0.00000						0.000 (0.30)	0.00	0.00
7	S	0.00000	0.00000						0.000 (0.30)	0.00	0.00
8	S	0.00000	0.00000						0.000 (0.30)	0.00	0.00
9	S	0.00000	0.00000						0.000 (0.30)	0.00	0.00
10	S	0.00000	0.00000						0.000 (0.30)	0.00	0.00
11	S	0.00000	0.00000						0.000 (0.30)	0.00	0.00
12	S	0.00000	0.00000						0.000 (0.30)	0.00	0.00
13	S	0.00000	0.00000						0.000 (0.30)	0.00	0.00
14	S	0.00000	0.00000						0.000 (0.30)	0.00	0.00
15	S	0.00000	0.00000						0.000 (0.30)	0.00	0.00

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	84 di 112

8.3 Verifica a taglio

diametro armature trasversale	φ	14	mm
bracci staffe	bs	6	
area armature trasversale	Asw	9	cm2
passo staffe	S	10	cm
copriferro netto + staffa + fi/2	c'	9	cm
spessore anima sezione rettrangolar	sb	50	cm
sezione	tipo	ettangolar	e
tipologia di varifica taglio	secondo	statica q=	-1
Direzione Longidinale			
resistenza ridotta	f'c	9	Мра
braccio delle forze interne	z1=0.9d	289	cm
braccio delle forze interne	z2=0.9d	90	cm
larghezza biella	bw1	66	gradi
larghezza biella	bw2	33	gradi
inclinazione staffe	α	90	kN
inclinazione biella	θ	39	kN
resistenza puntoni laterali	Vc1	2641	kN
resistenza puntone interno	Vc1	4245	kN
resistenza puntoni	Vc	6886	kN
resistenza staffe	Vs	6886	kN
taglio resisitente	Vr	6886	kN
taglio massimo agente	Ved	5531	kN
	Ved/Vrd	0.80	
Direzione Trasversale			
braccio delle forze interne	z=0.9d	622.35	cm
larghezza biella	bw	66.00	cm
inclinazione biella	θ	39.37	gradi
resistenza puntoni	Vc	18262	kN
resistenza staffe	Vs	18262	kN
taglio resisitente	Vr	18262	kN
taglio massimo agente	Ved	5469.33	kN
	Ved/Vrd	0.30	

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	85 di 112

8.4 Verifica minimi di armatura

Secondo quanto prescritto dalle NTC2018 e dal "Manuale di Progettazione delle Opere Civili" i quantitativi minimi di armatura da rispettare sono:

- L'area dell'armatura longitudinale dovrà essere non inferiore allo 0,6% dell'area della sezione effettiva del calcestruzzo. Questa prescrizione non si applica ai tratti di pile che, per motivi idraulici, sono realizzati a sezione piena; per queste, fatte salve le esigenze di calcolo, si manterrà l'armatura corrispondente alla sezione del tratto cavo immediatamente superiore;
- Le barre di armatura longitudinale non dovranno distare fra loro più di 300 mm compatibilmente con i limiti forniti nella Tab. 2.5.2.2.6-1;

Diametro delle barre	Massimo interasse delle barre
[mm]	[mm]
32	300
24	250
20	200

Tab. 2.5.2.2.6-1 - Diametri e relativi interassi massimi delle barre

- Non è ammesso l'impiego di staffe elicoidali (spirali);
- Non è consentito congiungere tra loro i bracci delle staffe per sovrapposizione. Le staffe devono essere chiuse risvoltando i bracci nel nucleo di calcestruzzo mediante la piegatura dei ferri di 135° verso l'interno e per una lunghezza non inferiore a 10 volte il diametro della staffa;
- Nella zona di spiccato delle pile e in quella di sommità delle pile a telaio, per un tratto di lunghezza non inferiore a 3 metri non è consentito operare alcun tipo di giunzione delle armature verticali; al di fuori di tale tratto è consentito congiungere, in modo graduale, le barre verticali mediante sovrapposizione o altro. In particolare, le giunzioni devono essere effettuate in modo da interessare non più di 1/3 delle barre longitudinali presenti nella generica sezione, sfalsando due riprese di armatura successive di almeno 40 diametri in senso verticale;

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1805001	В	86 di 112

- L'interasse delle armature trasversali s non deve essere superiore a 10 volte il diametro delle barre longitudinali, né a 1/5 del diametro del nucleo della sezione interna alle stesse;
- Nelle pile a sezione cava dovranno prevedersi spille di collegamento fra le armature longitudinali in numero di almeno 6 a metro quadro;
- Nel caso in cui il fattore di struttura "q" sia minore o uguale ad 1,5 l'armatura di confinamento delle pile si devono rispettare le limitazioni sulla percentuale meccanica:

minimi per armatura fle	essionale			
numero di ferri longitudinali		n	206	
diametro del ferro longit	udinale	fi	20	mm
diametro minimo armatu	ıra a taglio	fi	8	mm
passo massimo longitudii	nale	p	30	am
area dell'armatura longitu	dinale	As	64717	mm2
area di calcestruzzo (non riempito)		Ac	10000000.00	mm3
			0.65%	>0.6%
minimi per confinamen	ito se q≤1.	5		
accelerazione al suolo per	: SLV	ag	0.12	g
coefficiente di verifica		ζ	0.03	
interasse staffe		S	100	mm
diametro armature trasve	rsale	φ	14	mm
Area della singola staffa		Asw	1.539	mm2
Area totale staffe		Asw	3.08	mm2
area totale legature		Asl	3.60	mm2
percentuale meccanica arr	m. Trasv	wwd,r	0.2779	

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	87 di 112

8.5 Verifica spostamenti

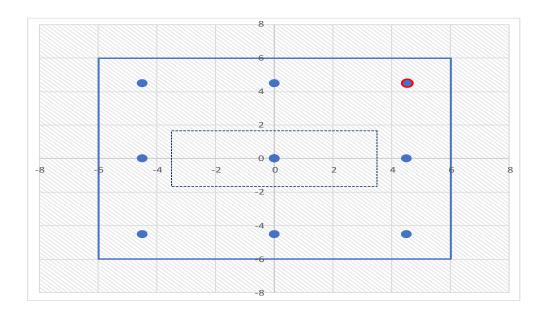
Di seguito si riporta una tabella riassuntiva delle escursioni longitudinali per tutte le tipologie di luce presenti lungo la linea:

$$E_L \ge 2.30 \cdot \frac{L}{1000} + 0.073 \in E_L \ge 0.10m$$

L imp (m)	EL (cm)	Corsa appoggi (cm)	Escursione giunti (cm)	Varco (cm)
17.9	12.0	7.5	7.0	8.0
25	14.0	8.8	8.0	9.0
40	17.0	10.6	9.5	10.5
50	19.0	11.9	10.5	11.5
60	22.0	13.8	12.0	13.0

Relazione di calcolo Pile – P5

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO


VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1805001	В	88 di 112

9. PLINTO DI FONDAZIONE

Per la progettazione e verifica del plinto di fondazione è necessario valutare preventivamente le sollecitazioni agenti sui singoli pali. Tali sollecitazioni sono state identificate mediante una ripartizione rigida dal baricentro della fondazione.

numero di pali	n.	9	
diametro pali	D	1.2	m
interasse pali	i	3.6	m
altezza plinto di fondazione	h	2.5	m
Check verifica			
sbalzo direzione trasversale	at	0.1	m
sbalzo direzione longitudina	le al	1.95	m
direzione trasversale	a/h	0.04	Plinto basso
direzione longitudinale	a/h	0.78	Plinto basso

Dalle sollecitazioni ottenute precedentemente nel baricentro in corrispondenza dell'intradosso della fondazione si sono ottenute le seguenti sollecitazioni in testa palo:

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL VI1805001 B 89 di 112

Scarichi q	=1.5/1.1				
n. palo	X	Y	Ncombo1	Ncombo2	Ncombo3
1	0	3.6	4155.1	3146.9	5387.3
2	0	-3.6	2512.2	1005.1	-1235.2
3	3.6	3.6	4725.0	6847.4	6546.9
4	3.6	-3.6	3082.1	4705.6	-75.6
5	-3.6	-3.6	1942.2	-2695.4	-2394.9
6	-3.6	3.6	3585.1	-553.5	4227.6
7	3.6	0	3903.6	5776.5	3235.6
8	-3.6	0	2763.7	-1624.5	916.4
9	0	0	3333.6	2076.0	2076.0
	0	0	3333.6	2076.0	2076.0
	0	0	3333.6	2076.0	2076.0
	0	0	3333.6	2076.0	2076.0
	taglio con	nbinato in	120.2661	506.3845	543.937
Scarichi q	=1 se plin	to tozzo e	verifica a t	aglio	
n. palo	X	Y	Ncombo1	Ncombo2	Ncombo3
1	0	3.6	3250.9	3146.9	5387.3
2	0	-3.6	1109.0	1005.1	-1235.2
3	3.6	3.6	4410.5	6847.4	6546.9
4	3.6	-3.6	2268.7	4705.6	-75.6
5	-3.6	-3.6	-50.6	-2695.4	-2394.9
6	-3.6	3.6	2091.3	-553.5	4227.6
7	3.6	0	3339.6	5776.5	3235.6
8	-3.6	0	1020.3	-1624.5	916.4
9	0	0	2180.0	2076.0	2076.0
	0	0	2180.0	2076.0	2076.0
	0	0	2180.0	2076.0	2076.0
	0	0	2180.0	2076.0	2076.0
	taglio con	nbinato in	267.1919	506.3845	543.937

Il plinto di fondazione è stato verificato ipotizzando un meccanismo di tirante puntone ricadendo nella categoria di elementi tozzi. La larghezza collaborante è stata valutata tramite una diffusione a 45° rispetto al dimetro del palo più sollecitato, quindi fermata in corrispondenza della pila o della linea media dell'interasse del palo successivo.

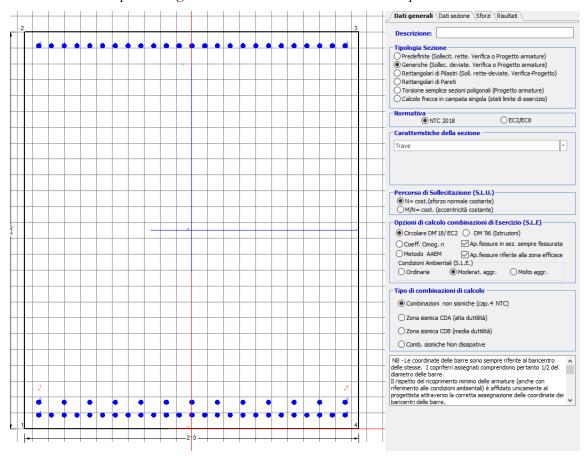
VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B90 di 112

9.1 Dimensionamento armature

posizione del palo più sollecitato			
coortinata in direzione trasvesale	X	3.6	m
coortinata in direzione longitudinale	Y	3.6	m
angolo di deviazione risultate rispetto alle ascisse	α	45	gradi
ipotenusa poiezione orizzontale puntone	L	5.09117	m
altezza della fondazione	h	2.5	m
inclinazione rispetto all'orizzontale puntone	θ	26.1532	gradi
reazione in testa palo più sollecitato	Rmax	5623.65	KN
forza di trazione risultante	Т	11452.4	KN
proiezione forza di trazione in trasversale	Tt	8098.06	KN
proiezione forza di trazione in longitudinale	Tl	8098.06	KN
lunghezza collaborante		media 45°	

dimensionamento armature				
area dell'armatura inferiore richiesta in tr	as	At	20695.3	mm2
diametro armatura		Φ	30	mm
passo armatura trasversale		р	10	cm
numero di strati		ns	1.5	
lunghezza di collaborazione		L	2.10609	m
numero di ferri per strato		n	21	
area complessiva sulla lunghezza collabo	rante	Ares	22266	mm2
		coef. Sicui	0.92945	
area dell'armatura inferiore richiesta in lo	ng	Al	20695.3	mm2
diametro armatura		Φ	30	
passo armatura longitudinale		р	10	cm
numero di strati		ns	1.5	
lunghezza di collaborazione		L	2.09996	m
numero di ferri per strato		n	21	
area complessiva sulla lunghezza collabo	rante	Ares	22266	mm2
		coef. Sicui	0.92945	
tasso di lavoro armatura allo SLU		σt	363.696	MPa
tasso di lavoro armatura allo SLU		σl	363.696	MPa


VI18 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B91 di 112

9.2 Verifica a prsso-flessione

9.2.1 Direzione trasversale

Armatura disposta lungo la direzione trasversale all'asse del ponte

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: fondazione X 210x300

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi

Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante
Condizioni Ambientali: Moderat. aggressive
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C25/30

Resis. compr. di progetto fcd: 14.160 MPa
Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035
Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 31475.0 MPa
Resis. media a trazione fctm: 2.560 MPa

ACCIAIO

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Progetto definitivo VI1805001 В Relazione di calcolo Pile – P5 RS3T 30 D09CL 92 di 112

	Coeff. Omogen. S.L.E.: Coeff. Omogen. S.L.E.: Sc limite S.L.E. comb. Frequenti: Ap.Fessure limite S.L.E. comb. Frequenti: Sc limite S.L.E. comb. Q.Permanenti: Ap.Fess.limite S.L.E. comb. Q.Perm.:	15.00 15.00 137.50 0.200 0.00 0.200	daN/cm² mm Mpa mm
-	Tipo: Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: Resist. snerv. di progetto fyd: Resist. ultima di progetto ftd: Deform. ultima di progetto Epu:	B450C 450.00 450.00 391.30 391.30 0.068	MPa
	Modulo Elastico Ef Diagramma tensione-deformaz.: Coeff. Aderenza istantaneo ß1*ß2 : Coeff. Aderenza differito ß1*ß2 : Sf limite S.L.E. Comb. Rare:	2000000 Bilineare finito 1.00 0.50 337.50	daN/cm² MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Classe Conglomerato:		Poligonale C25/30
N°vertice:	X [cm]	Y [cm]
1	-105.0	0.0
2 3	-105.0 105.0	250.0 250.0
4	105.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-96.3	8.7	30
2	-96.3	241.3	30
3	96.3	241.3	30
4	96.3	8.7	30
5	96.3	16.7	30
6	-96.3	16.7	30
7	-96.3	24.7	1
8	96.3	24.7	1
9	96.3	283.3	1
10	-96.3	283.3	1

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione

Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Barre

Ø

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	2	3	23	30
2	6	5	11	30
3	1	4	23	30

2

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

0.00

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	93 di 112

0.00

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x						
N°Comb.	N	Mx	Му	Vy	Vx			
1	0.00	6062.00	0.00	0.00	0.00			

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

7410.00

0.00

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo superiore della sezione
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)
con verso positivo se tale da comprimere il lembo destro della sezione

0.00

N°Comb. N Mx My 1 0.00 5797.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 4206.00 (7544.31) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 2608.00 (7544.31) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 5.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

VI18 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 250 m

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Progetto definitivo RS3T D09CL VI1805001 В 94 di 112 30 Relazione di calcolo Pile – P5

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Му Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mx Res My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000 Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

Mis.Sic. N°Comb Ver Ν N Res Mx Res My Res As Tesa S 0.00 6062.00 0.00 0.00 24219.59 0.00 4.00 268.6(75.0) 1 2 S 0.00 7410.00 0.00 0.00 3.27 268.6(75.0) 0.00 24219.59

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del conglomerato a compressione ec max Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45 x/d Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Deform. unit. minima nell'acciaio (negativa se di trazione) es min Xs min Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Deform. unit. massima nell'acciaio (positiva se di compress.) es max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Xs max Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max x/d Xc max Yc max es min Xs min Ys min es max Xs max Ys max 0.01011 283.3 -0.04440 0.00350 0.073 -105.0250.0 -96.3 8.7 96.3 1 2 0.00350 0.073 -105.0250.0 0.01011 96.3 283.3 -0.04440 -96.3 8.7

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a. b. c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X.Y.O gen. a b c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb C.Rid. x/d 0.000000000 0.073 0.700 0.000198506 -0.046126463 2 0.000000000 0.000198506 -0.046126463 0.073 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

Xc max Yc max Sf min Xs min Ys min N°Comb As eff. Ver Sc max Ac eff. S 5985 1 2.74 105.0 250.0 -100.2 -72.2 8.7 268.6

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver Esito della verifica

VI18 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	95 di 112

e1	Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata
----	--

e2 Minima deformazione del cls. (in sezione fessurata), valutata nella fibra più interna dell'area Ac eff

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]

k2 = (e1 + e2)/(2*e1) [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq. (7.11) come da annessi nazionali k4 = 0.425 Coeff in eq. (7.11) come da annessi nazionali

k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali
Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max Mx fess My fess S -0.00053 0.921 29.9 72 454 0.136 (990.00) 1 0.00030 (0.00030) 7544.31 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 1.99 105.0 250.0 -72.7 0.0 8.7 5985 268.6

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

k2 Cf Comb. Ver e sm - e cm sr max Mx fess My fess S -0.00038 0 0.921 29.9 72 0.00022 (0.00022) 454 0.099 (0.20) 7544.31 0.00 1

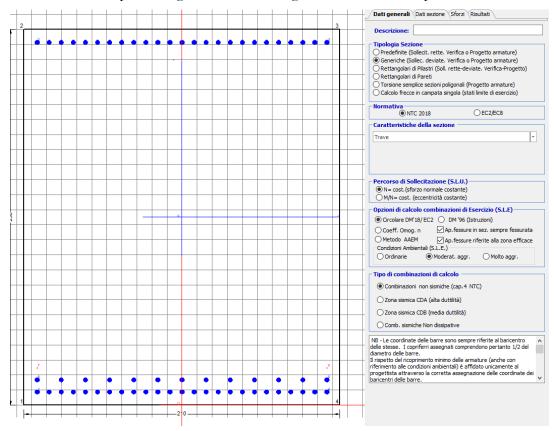
COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

 N°Comb
 Ver
 Sc max
 Xc max
 Yc max
 Sf min
 Xs min
 Ys min
 Ac eff.
 As eff.

 1
 S
 1.23
 105.0
 250.0
 -45.1
 -48.2
 8.7
 5985
 268.6

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00024	0	0.921	29.9	72	0.00014 (0.00014)	454	0.061 (0.20)	7544.31	0.00



VI18 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 250 m

Progetto definitivoCOMMESSA
Relazione di calcolo Pile – P5LOTTO
RS3TCODIFICA
30DOCUMENTO
D09CLREV.
VI1805001FOGLIO
B96 di 112

9.2.2 Direzione longitudinale

Armatura disposta lungo la direzione longitudinale all'asse del ponte

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: fondazione Y 210x300

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Trave

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante
Condizioni Ambientali: Moderat. aggressive
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30	
	Resis. compr. di progetto fcd:	14.160	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	31475.0	MPa
	Resis. media a trazione fctm:	2.560	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	137.50	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Frequer	nti: 0.200	mm

VI18 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B97 di 112

Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm ACCIAIO -B450C Tipo: Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef 2000000 daN/cm² Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 337.50 MPa Sf limite S.L.E. Comb. Rare:

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C25/30	
N°vertice:	X [cm]	Y [cm]
1 2	-105.0 -105.0	0.0 250.0
3	105.0	250.0
4	105.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-96.3	8.7	30
2	-96.3	241.3	30
3	96.3	241.3	30
4	96.3	8.7	30
5	96.3	16.7	30
6	-96.3	16.7	30
7	-96.3	24.7	1
8	96.3	24.7	1
9	96.3	283.3	1
10	-96.3	283.3	1

DATI GENERAZIONI LINEARI DI BARRE

 N°Gen.
 Numero assegnato alla singola generazione lineare di barre

 N°Barra Ini.
 Numero della barra iniziale cui si riferisce la generazione

 N°Barra Fin.
 Numero della barra finale cui si riferisce la generazione

 N°Barre
 Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	2	3	23	30
2	6	5	11	30
3	1	4	23	30

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

PROGETTO DEFINITIVO

VI18 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B98 di 112

Mx

Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez.

My

Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.

Vy

Componente del Taglio [kN] parallela all'asse princ.d'inerzia y

Vx

Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb. N Mχ My Vy ٧٧ 0.00 0.00 6062.00 0.00 0.00 2 7410.00 0.00 0.00 0.00 0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 5797.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 0.00 4206.00 (7544.31) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 0.00 2608.00 (7544.31) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 5.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

PROGETTO DEFINITIVO

VI18 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 250 m

LOTTO COMMESSA CODIFICA DOCUMENTO REV. FOGLIO Progetto definitivo RS3T D09CL VI1805001 В 99 di 112 Relazione di calcolo Pile – P5

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC] As Tesa

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	0.00	6062.00	0.00	0.00	24219.59	0.00	4.00 2	68.6(75.0)
2	S	0.00	7410.00	0.00	0.00	24219.59	0.00	3.27 2	68.6(75.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.073	-105.0	250.0	0.01011	96.3	283.3	-0.04440	-96.3	8.7
2	0.00350	0.073	-105.0	250.0	0.01011	96.3	283.3	-0.04440	-96.3	8.7

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue N°Comb x/d C.Rid.

0.000000000 0.700 0.000198506 -0.046126463 0.073 2 0.000000000 0.000198506 -0.046126463 0.073 0.700

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barré As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. 1 S 2.74 105.0 250.0 -100.2 -72.2 8.7 5985 268.6

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata e1

e2 Minima deformazione di trazione del cls. (in sezione fessurata), valutata nella fibra più interna dell'area Ac eff

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]

k2 = (e1 + e2)/(2*e1) [eq.(7.13)EC2]

VI18 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 250 m

Progetto definitivoCOMMESSA
Relazione di calcolo Pile – P5LOTTO
RS3TCODIFICA
30DOCUMENTO
D09CLREV.
VI1805001FOGLIO
B100 di 112

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Ø Cf Comb. Ver e1 e2 k2 My fess e sm - e cm sr max wk Mx fess S -0.00053 72 1 0 0.921 29.9 0.00030 (0.00030) 454 0.136 (990.00) 7544.31 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 1.99 105.0 250.0 -72.7 0.0 8.7 5985 268.6

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max Mx fess My fess S -0.00038 0 0.921 29.9 72 0.00022 (0.00022) 454 0.099 (0.20) 0.00 7544.31

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 1.23 105.0 250.0 -45.1 -48.2 8.7 5985 268.6

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e2 k2 Ø Cf e sm - e cm sr max Mx fess My fess S -0.00024 0 0.921 29.9 72 0.00014 (0.00014) 454 0.061 (0.20) 0.00 1 7544.31

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	101 di 112

9.3 Verifica a punzonamento

perimetro del palo				uo	3.76991	m
diffuzione dello sfo	rzo				EC (1999)	
angolo d'inclinazion		ie		θ	33.6901	gradi
perimetro zona criti	•			u1	24.1274	m
altezza della sezion				d	2.16	m
raggio interno				r	0.6	m
raggio esterno				R	3.84	m
ipotenusa triangolo	interno de	l cono		a	3.894	m
angolo massimo di	sviluppo			α1	25	gradi
angolo minimo di s				α2	-115	gradi
sviluppo della supe		ente		α	1.22173	rad
superficie totale del	l tronco co	no		S1	21.1229	m2
coefficiente carico				β	1.4	
resistenza caratterisitica del calcestruzzo				fck	25	MPa
resistenza di calcolo del calcestruzzo				fcd	14.1667	MPa
valore di progetto d	lel taglio			Ved	5623.65	kN
valore massimo d	ella resiste	enza unitai	ia in adia	cenza pale)	
tensione di progetto	o di verifica	a su perime	tro uo	ved	0.96686	MPa
resistenza associata				vRd,max	5	MPa
					0.19337	
valore di progetto	di una pia	astra priva	di armatu	re a punz	onamento	
coefficiente di dato	dai carich	Ĺ		CRd,c	0.12	
fattore di scala				k	2	
percenturale geome	trica armai	tura fless. tr	asv	Qly	0.00489	
percenturale geome	trica armai	tura fless. lo	ong	وlz	0.00491	
percentuale meccar	nica comple	essiva		وl	0.00693	
coefficiente				k1	0.1	
tensione di progetto	di verifica	a su perime	tro u1	ved	0.37273	MPa
				vRd,c	0.58601	MPa
					0.63604	

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1805001	В	102 di 112

10. PALI DI FONDAZIONE

10.1 Ridistribuzione sollecitazioni testa palo

Le sollecitazioni agenti in testa palo vengono calcolate nell'ipotesi di platea di fondazione infinitamente rigida, attraverso la relazione

$$R(x,y) = \frac{N}{n} + \frac{M_l}{J_l} \cdot y + \frac{M_t}{J_t} \cdot x$$

dove N, M_I , M_t sono lo sforzo normale e i momenti flettenti longitudinale e trasversale agenti al baricentro della palificata, n è il numero di pali e J_I , J_t sono le inerzie longitudinale e trasversale della palificata

$$J_l = \sum y_i^2 \qquad \qquad J_t = \sum x_i^2$$

Per quanto riguarda le sollecitazioni orizzontali in testa palo, si assume che le azioni di taglio di ripartiscano uniformemente tra i pali, risultando

$$T(x,y) = \frac{\sqrt{H_i^2 + H_t^2}}{n}$$

dove Hı, Hı sono le forze orizzontali longitudinale e trasversale agenti al baricentro della palificata.

10.2 Verifica strutturale

A seconda della verifica di riferimento le sollecitazioni identificate sono riferite ad un fattore di comportamento differente, ottenendo per cui le seguenti ridistribuzioni in testa palo:

Sollecitazioni nel baricentro della fondazione per analisi di presso-flessione

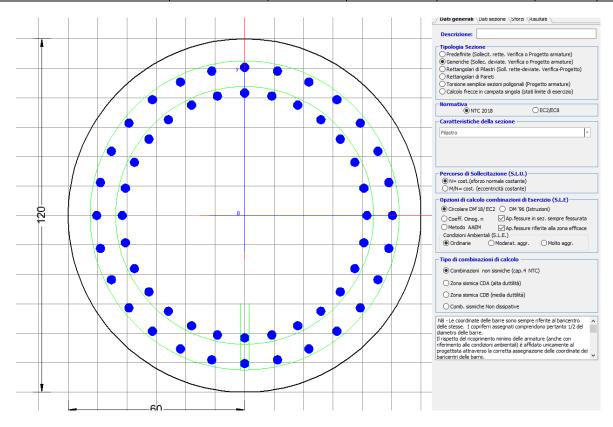
TABELLA PER FLESSIONE					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr3+vento_7	30003	1248	725	17743	12311
E_103x_SLV_q=1.36_63	18684	4822	1553	53091	18777
E_103y_SLV_q=1.36_64	18684	2117	4166	17603	59027
E_103x_SLV_q=1.36_63	18684	4822	1553	53091	18777
E_103y_SLV_q=1.36_64	18684	2117	4166	17603	59027

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	103 di 112

Ridistribuzione

n. palo	X	Y	combo1	combo2	combo3
1	0	3.6	4155.06	4533.91	2890.94
2	0	-3.6	2512.19	-381.89	1261.08
3	3.6	3.6	4725.01	5403.21	5623.65
4	3.6	-3.6	3082.14	487.409	3993.79
5	-3.6	-3.6	1942.23	-1251.2	-1471.6
6	-3.6	3.6	3585.1	3664.61	158.229
7	3.6	0	3903.58	2945.31	4808.72
8	-3.6	0	2763.67	1206.71	-656.7
9	0	0	3333.62	2076.01	2076.01
taglio equiva	lente		160.355	562.866	519.172
alfa derivant	e dall'analisi geot	ecnica		α	2.22
	N	Tl	Tt	ML	Mt
combo1	4725	139	81	416	242
combo2	5403	536	173	1607	518
combo3	5624	235	463	706	1389
combo4	-1472	235	463	706	1389


VI18 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 250 m

Progetto definitivo Relazione di calcolo Pile – P5 COMMESSA LOTTO
RS3T 30

CODIFICA

D09CL

DOCUMENTO VI1805001 REV. FOGLIO **B** 104 di 112

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: palo 1.2

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Def.unit. max resistenza ec2:	C25/30 14.160 0.0020 0.0035	MPa
	Def.unit. ultima ecu: Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	31475.0	MPa
	Resis. media a trazione fctm:	2.560	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	137.50	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa

VI18 - Viadotto ferroviario a Singolo binario - sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B105 di 112

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

Modulo Elastico Ef

2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 60.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate
Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate
Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate
N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	0.0	0.0	50.3	28	30
2	0.0	0.0	41.6	28	30

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	4725.01	259.23	150.72	0.00	0.00
2	1514.76	128.12	51.45	0.00	0.00
3	4725.01	259.23	150.72	0.00	0.00
4	4691.89	209.98	209.65	0.00	0.00
5	4725.01	259.23	150.72	0.00	0.00
6	4691.89	209.98	209.65	0.00	0.00
7	5623.65	439.81	865.52	0.00	0.00
8	-1471.63	439.81	865.52	0.00	0.00
9	5403.21	1001.90	322.60	0.00	0.00
10	5623.65	439.81	865.52	0.00	0.00
11	5403.21	1001.90	322.60	0.00	0.00
12	5623.65	439.81	865.52	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	106 di 112

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	3327.13	178.71	92.96
2	1178.33	144.70	128.58
3	3327.13	178.71	92.96
4	3303.39	144.70	133.75
5	3327.13	178.71	92.96
6	3303.39	144.70	133.75
7	4455.91	249.82	548.20
8	-367.56	249.82	548.20
9	4136.70	603.91	206.23
10	4275.57	249.82	548.20
11	4136.70	603.91	206.23
12	4275.57	249.82	556.59

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	3303.39	144.70 (0.00)	133.75 (0.00)
2	1178.33	144.70 (18007.82)	128.58 (16001.69)
3	3303.39	144.70 (0.00)	133.75 (0.00)
4	3303.39	144.70 (0.00)	133.75 (0.00)
5	3303.39	144.70 (0.00)	133.75 (0.00)
6	3303.39	144.70 (0.00)	133.75 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	2145.66	0.67 (0.00)	30.45 (0.00)
2	1917.26	0.67 (0.00)	30.45 (0.00)
3	2145.66	0.67 (0.00)	30.45 (0.00)
4	2145.66	0.67 (0.00)	30.45 (0.00)
5	2145.66	0.67 (0.00)	30.45 (0.00)
6	2145.66	0.67 (0.00)	30.45 (0.00)

RISULTATI DEL CALCOLO

Му

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.2 cm Interferro netto minimo barre longitudinali: 5.7 cm

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivoCOMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo Pile – P5RS3T30D09CLVI1805001B107 di 112

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	4725.01	259.23	150.72	4725.12	5139.40	2988.55	19.83 395.8(33.9)
2	S	1514.76	128.12	51.45	1514.91	5268.60	2110.67	41.11 395.8(33.9)
3	S	4725.01	259.23	150.72	4725.12	5139.40	2988.55	19.83 395.8(33.9)
4	S	4691.89	209.98	209.65	4691.89	4208.96	4202.44	20.04 395.8(33.9)
5	S	4725.01	259.23	150.72	4725.12	5139.40	2988.55	19.83 395.8(33.9)
6	S	4691.89	209.98	209.65	4691.89	4208.96	4202.44	20.04 395.8(33.9)
7	S	5623.65	439.81	865.52	5623.58	2701.68	5314.47	6.14 395.8(33.9)
8	S	-1471.63	439.81	865.52	-1471.89	2340.65	4589.89	5.31 395.8(33.9)
9	S	5403.21	1001.90	322.60	5403.13	5671.90	1827.54	5.66 395.8(33.9)
10	S	5623.65	439.81	865.52	5623.58	2701.68	5314.47	6.14 395.8(33.9)
11	S	5403.21	1001.90	322.60	5403.13	5671.90	1827.54	5.66 395.8(33.9)
12	S	5623.65	439.81	865.52	5623.58	2701.68	5314.47	6.14 395.8(33.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys may	Ordinata in cm della harra corrispi a es max (sistema rif X Y O sez)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	30.2	1.3	0.00289	21.8	45.3	-0.00334	-21.8	-45.3
2	0.00350	22.4	1.3	0.00278	21.8	45.3	-0.00460	-21.8	-45.3
3	0.00350	30.2	1.3	0.00289	21.8	45.3	-0.00334	-21.8	-45.3
4	0.00350	42.4	1.3	0.00288	31.4	39.3	-0.00335	-31.4	-39.3
5	0.00350	30.2	1.3	0.00289	21.8	45.3	-0.00334	-21.8	-45.3
6	0.00350	42.4	1.3	0.00288	31.4	39.3	-0.00335	-31.4	-39.3
7	0.00350	53.5	24.9	0.00292	45.3	21.8	-0.00307	-45.3	-21.8
8	0.00350	53.5	24.9	0.00264	45.3	21.8	-0.00622	-45.3	-21.8
9	0.00350	18.4	56.8	0.00290	11.2	49.0	-0.00313	-11.2	-49.0
10	0.00350	53.5	24.9	0.00292	45.3	21.8	-0.00307	-45.3	-21.8
11	0.00350	18.4	56.8	0.00290	11.2	49.0	-0.00313	-11.2	-49.0
12	0.00350	53.5	24.6	0.00292	45.3	21.8	-0.00307	-45.3	-21.8

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	108 di 112

1	0.000031226	0.000053707	-0.000227520	
2	0.000027380	0.000068181	-0.000908415	
3	0.000031226	0.000053707	-0.000227520	
4	0.000043987	0.000044057	-0.000235391	
5	0.000031226	0.000053707	-0.000227520	
6	0.000043987	0.000044057	-0.000235391	
7	0.000053088	0.000026977	-0.000072950	
8	0.000078573	0.000039927	-0.001788147	
9	0.000018453	0.000057309	-0.000112414	
10	0.000053088	0.000026977	-0.000072950	
11	0.000018453	0.000057309	-0.000112414	
12	0.000053088	0.000026977	-0.000072950	

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Ver

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.66	27.7	0.0	19.7	-21.8	-45.3		
2	S	1.39	39.9	0.0	1.4	-31.4	-39.3	0	0.0
3	S	2.66	27.7	0.0	19.7	-21.8	-45.3		
4	S	2.63	40.7	0.0	19.7	-31.4	-39.3		
5	S	2.66	27.7	0.0	19.7	-21.8	-45.3		
6	S	2.63	40.7	0.0	19.7	-31.4	-39.3		
7	S	4.77	54.6	0.0	11.2	-45.3	-21.8		
8	S	2.81	54.6	0.0	-70.8	-45.3	-21.8	1835	84.8
9	S	4.72	19.4	0.0	7.0	-11.2	-49.0		
10	S	4.67	54.6	0.0	9.6	-45.3	-21.8		
11	S	4.72	19.4	0.0	7.0	-11.2	-49.0		
12	S	4.70	54.7	0.0	9.3	-45.3	-21.8		

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

0

2

S

0.00000

\				sempre fe	ssurata	anche nel c	aso in cui la trazione r	minima del ca	Icestruzzo	sia inferiore a fo	ctm	
Ver. e1		Esito della		trazione d	al calca	etruzzo val	utata in saziona fassu	rata				
e2			Massima deformazione di trazione del calcestruzzo, valutata in sezione fessurata Minima deformazione di trazione del cls. (in sezione fessurata), valutata nella fibra più interna dell'area Ac eff									
k1			barre ad aderer				,,	р. с. п. с.				
kt		= 0.4 pe	r comb. quasi pe	rmanenti /	= 0.6 pc	er comb.fre	quenti [cfr. eq.(7.9)EC	[2]				
k2		= (e1 + e2	2)/(2*e1) [eq.(7.	13)EC2]								
k3			oeff. in eq.(7.11)									
k4			oeff. in eq.(7.11)									
Ø							ell'area efficace Ac eff	f [eq.(7.11)EC	2]			
Cf			[mm] netto calc									
e sm	- e cm						truzzo [(7.8)EC2 e (C4	1.1.7)NTC]				
						s [(7.9)EC	C2 e (C4.1.8)NTC]					
sr ma	ax		distanza tra le fe									
wk							m) [(7.8)EC2 e (C4.1.7	7)NTC]. Valore	e limite tra	parentesi		
Mx fe			nte momento di									
My fe	ess.	Compone	nte momento di	prima fess	urazione	e intorno all	'asse Y [kNm]					
Comb.	Ver	e1	e2	k2	Ø	Cf	e s	sm - e cm sr	max	wk	Mx fess	My fess
												,
1	S	0.00000	0.00000						0.0	00 (990.00)	0.00	0.00

.0

82

0.00000 (0.00000)

0 0.001 (990.00) 18007.82 16001.69

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

				1								
Progetto definii	tivo			CON	MMESSA		LOTTO	CODIFICA		DOCUMENTO	REV.	FOGLIO
Relazione di ca		le — P5		F	RS3T		30	D09CL		VI1805001	В	109 di 112
												_
3	S	0.00000	0.00000							0.000 (990.00)	0.00	0.00
4	S	0.00000	0.00000							0.000 (990.00)	0.00	0.00
5	S	0.00000	0.00000							0.000 (990.00)	0.00	0.00
6	S	0.00000	0.00000							0.000 (990.00)	0.00	0.00
7	S	0.00000	0.00000							0.000 (990.00)	0.00	0.00
8	S	-0.00040	0	0.833	30.0	82	0.0	00021 (0.00021)	463	0.098 (990.00)	266.10	583.93
9	S	0.00000	0.00000					·		0.000 (990.00)	0.00	0.00
10	S	0.00000	0.00000							0.000 (990.00)	0.00	0.00
11	S	0.00000	0.00000							0.000 (990.00)	0.00	0.00
12	S	0.00000	0.00000							0.000 (990.00)	0.00	0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

As eff.	Ac eff.	Ys min	Xs min	Sf min	rc max	Xc max Y	Sc max	Ver	N°Comb
		-39.3	-31.4	19.7	0.0	40.7	2.63	S	1
0.0	0	-39.3	-31.4	1.4	0.0	39.9	1.39	S	2
		-39.3	-31.4	19.7	0.0	40.7	2.63	S	3
		-39.3	-31.4	19.7	0.0	40.7	2.63	S	4
		-39.3	-31.4	19.7	0.0	40.7	2.63	S	5
		20.2	24.4	10.7	0.0	40.7	2 62	C	6

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	c	0.00000	0.00000						0.000 (0.20)	0.00	0.00
ı	3		0.00000						` '		
2	S	0.00000	0	0.833	30.0	82	0.00021 (0.00021)	0	0.001 (0.20)	18007.82	16001.69
3	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
4	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
5	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00
6	S	0.00000	0.00000						0.000 (0.20)	0.00	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

As eff.	Ac eff.	Ys min	Xs min	Sf min	c max	Xc max Y	Sc max	Ver	N°Comb
		0.0	-50.3	17.3	0.0	60.0	1.35	S	1
		0.0	-50.3	15.3	0.0	60.0	1.22	S	2
		0.0	-50.3	17.3	0.0	60.0	1.35	S	3
		0.0	-50.3	17.3	0.0	60.0	1.35	S	4
		0.0	-50.3	17.3	0.0	60.0	1.35	S	5
		0.0	-50.3	17.3	0.0	60.0	1.35	S	6

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
1	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00
2	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00
3	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00
4	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00
5	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00
6	S	0.00000	0.00000					0.000 (0.20)	0.00	0.00

Progetto definitivo

Relazione di calcolo Pile – P5

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	VI1805001	В	110 di 112

10.3 Verifica a taglio

A seconda della verifica di riferimento le sollecitazioni identificate sono riferite ad un fattore di comportamento differente,

TABELLA PER TAGLIO					
	N	Tlong	Ttras	Mlong	Mtras
A1_SLU_gr3+vento_7	30003	1248	725	17743	12311
E_103x_SLV_q=1_66	18684	6226	1959	71523	25048
E_103y_SLV_q=1_67	18684	2538	5521	23132	79931
E_103x_SLV_q=1_66	18684	6226	1959	71523	25048
E_103y_SLV_q=1_67	18684	2538	5521	23132	79931

Ottenendo per cui le seguenti azioni in testa palo

		combo1	combo2
sollecitazione massima direzione x	Tx	6226	2538
sollecitazione massima direzione y	Ту	1959	5521
vettore complessivo, singolo palo	Т	725	675

Progetto armature

diametro armature trasversale	φ	12	mm	
bracci staffe	bs	2		
diametro pali	R	0.6	m	
area armature trasversale	Asw	2.3	cm2	
passo staffe	S	20.0	cm	
copriferro netto + staffa + fi/2	c'	9.7	cm	
resistenza di calcolo armatura	f yd	391.0	Mpa	
resistenza caratteristica res cls	f ck	25.0		
resistenza di calcolo res. Calc	f cd	ck 25.0 cd 18.5 Mpa 'c 9.2 Mpa		
resistenza ridotta	f'c	9.2	Mpa	
braccio delle forze interne	z=0.9d	88.3	cm	
larghezza biella	bw	100.9	cm	
inclinazione staffe	α	90	gradi	
inclinazione biella	β	22	gradi	
resistenza puntoni	Vc	2839	kN	
resistenza staffe	Vs	977	kN	
taglio resisitente	Vr	977	kN	
taglio massimo agente	Ved	725	kN	
	Ved/Vrd	0.74		

VI18 - Viadotto ferroviario a Singolo binario – sviluppo complessivo 250 m

Progetto definitivo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo Pile – P5	RS3T	30	D09CL	VI1805001	В	111 di 112

11. INCIDENZE

Baggioli/Ritegni 350 kg/mc

Pulvino 180 kg/mc

Fusto Pila 130 kg/mc

Plinto di fondazione 120 kg/mc

Pali di fondazione primo tratto 290 kg/mc