COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3)

VIADOTTI IN INTERFERENZA IV01 - CAVALCAFERROVIA SU NV07

Relazione geotecnica e di calcolo delle fondazioni

SCALA:

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

RS3T 30 D 09 RH IV0100 001 C

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Gen-2020	A.Ferri	Gen-2020	A.Barreca	Gen-2020	varianti ia di Rom?
В	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Feb-2020	A.Ferri	Feb-2020	A.Barreca	Feb-2020	A. e delle var ittozzi Zovincia d
С	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Mag-2020	A.Fem	Mag-2020	A.Barreca	Mag-2020	RR S.p.A estione deline deline 20783
				7 04				ITALEE Chille It. Ing. M ngegneri N' A:
								I. U.O. Opere Ci. Doft. Ordine degli Ing
								Ordine

File: RS3T.3.0.D.09.RH.IV.01.0.0.001.C

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV01

RELAZIONE GEOTECNICA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09RH
 IV 01 00 001
 C
 2 di 30

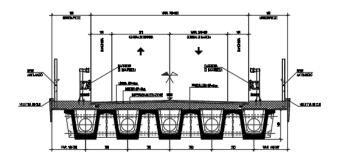
INDICE

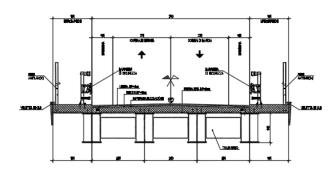
1	PRE	MESSA	3
	1.1	DESCRIZIONE DELL'OPERA	3
2	RIFI	ERIMENTI NORMATIVI	5
3	CAR	RATTERIZZAZIONE GEOTECNICA	6
	3.1	INDAGINI GEOTECNICHE ESEGUITE	6
	3.2	STRATIGRAFIA	6
	3.3	CATEGORIA DI SOTTOSUOLO	7
4	PAL	IFICATE DI FONDAZIONE	8
	4.1	MODULO DI REAZIONE ORIZZONTALE DEL TERRENO	8
	4.2	MOMENTO ADIMENSIONALE LUNGO IL PALO	8
	4.3	VALUTAZIONI DI KO/KA	.12
	4.4	CALCOLO CAPACITÀ PORTANTE	.12
	4.5	VERIFICA A CARICO LIMITE ORIZZONTALE DEI PALI	.22
	4.6	VERIFICA A CARICO LIMITE ORIZZONTALE CON PALO SCALZATO	.30

1 PREMESSA

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo del corpo stradale ferroviario, delle opere d'arte e delle opere interferite relative al progetto definitivo della direttrice ferroviaria Messina-Catania-Palermo nell'ambito del nuovo collegamento Palermo - Catania

In particolare si tratterà il dimensionamento delle fondazioni del viadotto IV01 sulla viabilità NV07.

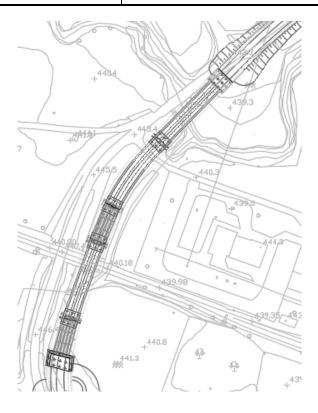

Le analisi strutturali e le verifiche di sicurezza sono state effettuate secondo il DM 17 gennaio 2018.


1.1 Descrizione dell'opera

Sulla NV07- Variante SP64 Continuità provinciale (Strada Extraurbana Princiale F1 Corsia 3.50m + Banchina 1.00m b=9.00m) in corrispondenza della progressiva 0+160 viene previsto un viadotto di lunghezza totale di 196 m circa.

Il viadotto è suddiviso in 5 campate da 24.0, 49.0, 24.0, 49.0 m di luce; gli impalcati di luce 24.0m saranno costituiti da cinque travi a cassone in calcestruzzo prefabbricato, mentre, le campate di luce 49.0m, da un sistema misto acciaio-calcestruzzo composto da 4 travi in carpenteria metallica e soletta superiore in c.a. collaborante.

Pila e spalle saranno realizzate in c.a. gettato in opera e fondate su pali di grande diametro.



DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV01

RELAZIONE GEOTECNICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3T	30	D09RH	IV 01 00 001	С	4 di 30

Sezione trasversale e pianta

2 RIFERIMENTI NORMATIVI

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Ministero delle Infrastrutture, DM 17 gennaio 2018, Aggiornamento delle «Norme tecniche per le costruzioni».
- Ministero delle Infrastrutture, Circolare n°7 21 gennaio 2019, Istruzioni per l'Applicazione delle «Norme tecniche per le costruzioni».
- Istruzione RFI DTC SI PS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 2 Ponti e Strutture
- Istruzione RFI DTC SI CS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 3
 Corpo Stradale
- Regolamento (UE) N.1299/2014 del 18 novembre 2014 della Commissione Europea. Relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019.

Viadotto IV0	1			`	ŕ
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

IV 01 00 001

6 di 30

D09RH

3 CARATTERIZZAZIONE GEOTECNICA

Nel presente capitolo si riporta la caratterizzazione geotecnica per il viadotto in esame, valutata sulla base dell'interpretazione delle indagini geotecniche svolte in prossimità dell'opera.

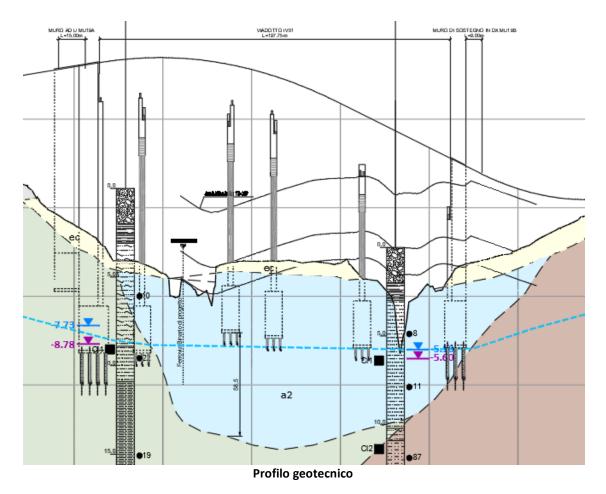
RS3T

La stratigrafia di riferimento finalizzata al dimensionamento delle palificate di fondazione è rappresentata nel profilo stratigrafico longitudinale.

Per maggiori dettagli sulla caratterizzazione geotecnica si rimanda alla Relazione geotecnica generale.

Indagini geotecniche eseguite 3.1

I sondaggi di riferimento sono: 3Av07-3aV09


La falda viene posta a testa palo.

3.2 Stratigrafia

La stratigrafia lungo lo sviluppo del viadotto è indicata nella seguente tabella:

	zi [m]	zf[m]	γ [kN/m3]	c' [kPa]	φ' [°]	cu
a2	0	10.5	19	13	29	50
TRV	10.5	40	21	35	20	250

3.3 Categoria di sottosuolo

Dalle indagini condotte si evince una categoria di suolo pari a C.

PALIFICATE DI FONDAZIONE

Nel presente capitolo si riporta il calcolo della capacità portante dei pali per l'opera in esame.

4.1 Modulo di reazione orizzontale del terreno

Lo studio dell'interazione tra palo soggetto ai carichi orizzontali ed il terreno viene effettuato ricorrendo alla teoria di Matlock e Reese che si basa sul noto modello di suolo alla Winkler (elastico-lineare), caratterizzato da un modulo di reazione orizzontale del terreno (E_{MR}) definito come il rapporto fra la reazione del terreno per unità di lunghezza del palo (p) ed il corrispondente spostamento orizzontale (y): $E_{MR}=p\ /\ y$. Definito il coefficiente di sottofondo alla Winkler (K_W), per un palo di diametro D, si ha questa relazione con il modulo di reazione orizzontale palo-terreno:

8 di 30

$$E_{MR} = K_W \cdot D$$

In particolare per la valutazione del modulo di reazione orizzontale palo-terreno, si considera:

$$E_{MR} = \xi * cu$$

Nell'analisi delle fondazioni, tale profilo del modulo di reazione orizzontale palo-terreno, è stato cautelativamente fattorizzato con coefficiente pari a 0.8 per tenere conto che la deformabilità dei pali in gruppo è maggiore della deformabilità del singolo palo immerso nello stesso terreno. Si avrà pertanto:

$$E_{MR} = \xi * cu *0.8$$

4.2 Momento adimensionale lungo il palo

Per ricavare il momento adimensionalizzato lungo il fusto del palo si ricorre al metodo di Matlock e Reese (1956) che, utilizzando il metodo delle differenze finite, hanno risolto il problema del palo soggetto ad un carico orizzontale, mediante l'impiego di parametri adimensionali.

Nel caso in esame, considerando l'andamento del modulo di reazione orizzontale palo-terreno (E_{MR}, che verrà definito nel seguente paragrafo), si ricorre al metodo degli elementi finiti, adimensionalizzando la soluzione come segue:

$$M_0 = \alpha_m \cdot H_0$$

$$M(z) = M_0 \cdot M_{ad}(z)$$

essendo:

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO								
NUOVO COLLEGAMENTO PALERMO – CATANIA								
TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A) Viadotto IV01								
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			

IV 01 00 001

9 di 30

RELAZIONE GEOTECNICA

Ho = azione tagliante in testa palo [F];

Mo = azione flettente, conseguente ad Ho, in testa al palo;

 α_m = rapporto momento taglio in testa palo nell'ipotesi di rotazione impedita [L];

 M_{ad} = momento flettente adimensionale lungo il fusto del palo.

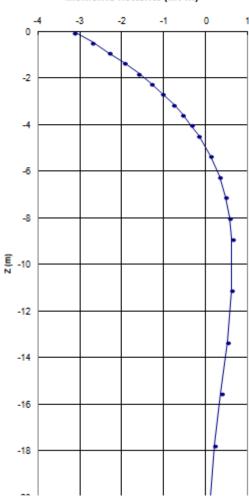
Per le palificate in presenza di scalzamento, il valore del parametro α_m (= Mo/To a testa palo), è stato valutato considerando non reagente il terreno sino alla profondità di scalzamento. Il valore del parametro indicato per lo scalzamento va associato alle sole condizioni di carico statiche con scalzamento, per tutte le altre combinazioni (SLU statica, SLV sismica e SLE) va associato il valore del parametro indicato per i pali in assenza di scalzamento.

RS3T

Nella seguente tabella si riportano i valori del parametro alfa $\alpha_m = Mo$ / Ho ed a seguire l'andamento del momento adimensionale lungo il palo. La valutazione è stata fatta con riferimento ad una lunghezza palo indicativa di 30m.

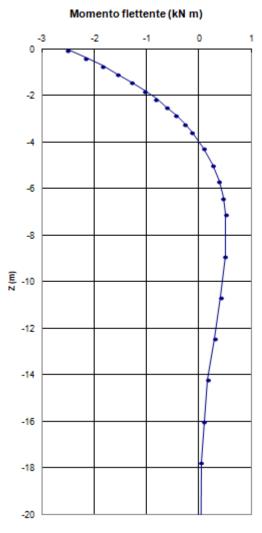
Spalle	$lpha_{_m}$ [m]
D=1500mm	3.1

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)


Viadotto IV01

RELAZIONE GEOTECNICA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO


RS3T 30 D09RH IV 01 00 001 C 10 di 30

Momento flettente (kN m)

Pile	$lpha_{_m}$ [m]
D=1200mm	2.5

Per le palificate in presenza di scalzamento, il valore del parametro α_m (= Mo/To a testa palo), è stato valutato considerando non reagente il terreno sino alla profondità di scalzamento. Il valore del parametro indicato per lo scalzamento va associato alle sole condizioni di carico statiche con scalzamento, per tutte le altre combinazioni (SLU statica, SLV sismica e SLE) va associato il valore del parametro indicato per i pali in assenza di scalzamento.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA						
TO ATTAL EDGA DA DIDAMAZIONE DAL TANICOSTTA (1 OTTO						

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV01

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09RH	IV 01 00 001	С	12 di 30

4.3 Valutazioni di ko/ka

RELAZIONE GEOTECNICA

Spalla A

Dall'analisi svolta preliminarmente sulla spalla, ipotizzando per la fase simica l'attivazione della spinta attiva, si ottiene un taglio sul palo pari ad 1551 kN. Lo spostamento risultante alla testa del palo è pari ad va= 12.3 mm; si ha dunque:

va/h = 0.076% > 0.05% (EC7 – Parte 1 – annesso C)

con h= 16.1m

Spalla B

Dall'analisi svolta preliminarmente sulla spalla, ipotizzando per la fase simica l'attivazione della spinta attiva, si ottiene un taglio sul palo pari ad 1129 kN. Lo spostamento risultante alla testa del palo è pari ad va= 8.98 mm; si ha dunque:

va/h = 0.084% > 0.05% (EC7 - Parte 1 - annesso C)

con h=10.6m

Pertanto l'ipotesi iniziale di spinta attiva risulta verificata, e si procederà ad una analisi simica secondo la Teoria di Monobe-Okabe.

4.4 Calcolo capacità portante

La capacità portante per le fondazioni del viadotto è stata valutata per pali di grande diametro, considerando l'Approccio 2 (A1+M1+R3) di normativa e quindi con i seguenti coefficienti parziali sulle resistenze di base e laterale:

- N. 1 verticale di indagine, da cui $\xi_3 = 1.70$,
- F_{SL} = fattore di sicurezza per la portata laterale a compressione (= $\xi_3 \cdot \gamma_s = 1.96$).
- $F_{SL,t}$ = fattore di sicurezza per la portata laterale a trazione (= $\xi_3 \cdot \gamma_{st} = 2.13$).
- F_{SB} = fattore di sicurezza per la portata di base (= $\xi_3 \cdot \gamma_b = 2.3$).

Tabella 1 Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali	Pali	Pali ad elica
		infissi	trivellati	continua
	γ_{R}	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	Υs	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	Υst	1,25	1,25	1,25

⁽º) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

$$R_{c,k} = Min \left\{ \frac{\left(R_{c,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{c,cal}\right)_{min}}{\xi_4} \right\}$$

$$R_{\text{t,k}} = Min\left\{\frac{\left(R_{\text{t,cal}}\right)_{\text{media}}}{\xi_{3}}; \frac{\left(R_{\text{t,cal}}\right)_{\text{min}}}{\xi_{4}}\right\}$$

Tabella 2 Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali d'indagine

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ ₄	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Quindi per la verifica di capacità portante del palo si dovranno verificare le seguenti due condizioni:

- \bullet N_{max,SLU} < Q_d, la massima sollecitazione assiale (sia statica, che sismica) allo SLU dovrà essere inferiore alla portata di progetto del palo (riportata nelle seguenti tabelle);
- $N_{max,SLE} < Q_{ll} / 1.25$ la massima sollecitazione assiale allo SLE RARA dovrà essere inferiore alla portata laterale limite del palo (Q_{ll} , riportata nelle seguenti tabelle) con un fattore di sicurezza di 1.25.

Si riporta di seguito la verifica a carico limite:

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3A)

Viadotto IV01

RELAZIONE GEOTECNICA

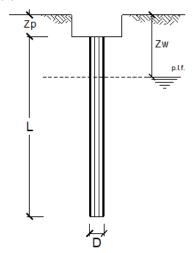
COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09RH IV 01 00 001 C 14 di 30

Spalla A Nmax = 7796 kN

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CANTIERE: OPERA:


DATI DI INPUT:

Diametro del Palo (D): 1.50 (m) Area del Palo (Ap): 1.767 (m²)Quota testa Palo dal p.c. (z_p): 3.50 (m) Quota falda dal p.c. (zw): 3.50 (m) Carico Assiale Permanente (G): 7796 (kN) Carico Assiale variabile (Q): (kN)

Numero di strati 2 Lpalo = 33.00 (m)

	coefficienti parz	iali	azi	oni	resistenz	resistenza laterale e di base		
Metodo di calcolo			permanenti γ _G	variabili %	γь	Υs	Ys traz	
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	
SLU	A2+M1+R2	0	1.00	1.30	1.70	1.45	1.60	
S	A1+M1+R3	0	1.30	1.50	1.35	1.15	1.25	
	SISMA	0	1.00	1.00	1.35	1.15	1.25	
DM88		0	1.00	1.00	1.00	1.00	1.00	
definiti dal progettista		1.00	1.00	2.30	1.96	2.13		

n	1	2	3	4	5	7	≥10 ○	T.A.	prog.
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

PARAMETRI MEDI

Strato	Spess		P		del terren	10
Strato	apeaa	Tipo di terreno	γ	C' med	Φ' med	C _{u med}
(-)	(m)		(kN/m ³)	(kPa)	(°)	(kPa)
1	6.00	a2	19.00			50.0
2	27.00	TRV	21.00			250.0

(n.b.: lo spessore degli strati è computato d	dalla quota di intradosso del plinto)
---	---------------------------------------

C	Coefficienti di Calcolo								
k	μ	a	α						
(-)	(-)	(-)	(-)						
0.00	0.00		0.60						
0.00	0.00		0.40						

		ŀ	PARAMETRI MINIMI (solo per SLU)					
Strato	Spess		P	arametri	del terrer	10		
Strato	apess	Tipo di terreno	γ	C'min	Φ' min	C _{u min}		
(-)	(-) (m)		(kN/m ³)	(°)	(kPa)			
1	6.00	a2	19.00			50.0		
2	27.00	TRV	21.00			250.0		

C	oefficient	i di Calcol	0
k	μ	a	α
(-)	(-)	(-)	(-)
0.00	0.00		0.60
0.00	0.00		0.40

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV01

RELAZIONE GEOTECNICA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09RH IV 01 00 001 C 15 di 30

RISULTATI

Strato	Spess		l	media minima (solo SLU)					SLU)			
Strato	apess	Tipo di terreno	Qsi	Nq	Nc	qb	Qbm	Qsi	Nq	Nc	qb	Qbm
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)
1	6.00	a2	848.2					848.2				
2	27.00	TRV	12723.5	0.00	9.00	2997.5	5297.0	12723.5	0.00	9.00	7475.0	13209.4

CARICO ASSIALE AGENTE CAPACITA' PORTANTE MEDIA CAPACITA' PORTANTE MINIMA $Nd = Ng \cdot \gamma_g + Nq \cdot \gamma_q$ 5297.0 (kN) 13209.4 (kN) base base $R_{b;cal\ med} =$ R_{b;cal min} = Nd = 7796.0 (kN)laterale R_{s;cal med} = 13571.7 (kN) laterale R_{s;cal min} = 13571.7 (kN) totale 18868.7 (kN) 26781.1 (kN) $R_{c;cal med} =$ totale R_{c;cal min} =

CAPACITA' PORTANTE CARATTERISTICA CAPACITA' PORTANTE DI PROGETTO

 $R_{b,k} = Min(R_{b,cal\ med}/\xi_3\;;\; R_{b,cal\ min}/\xi_4) = 5297.0\; (kN) \qquad \qquad R_{c,d} = R_{bk}/\gamma b \; + \; R_{sk}/\gamma s \qquad \qquad \text{Fs = Rc,d / Nd}$

 $R_{s,k} = Min(R_{s,cal\ med}/\xi_3; R_{s,cal\ min}/\xi_4) = 13571.7 \text{ (kN)}$ $R_{c,d} = 9227.4 \text{ (kN)}$ Fs = 1.18

 $R_{ab} = R_{bb} + R_{cb}$ = 18868.7 (kN)

Inoltre si è anche verificato che, per la lunghezza palo di progetto, la massima sollecitazione assiale allo SLE RARA sia inferiore alla portata laterale limite del palo (Qll) con un fattore di sicurezza di 1.25:

Nsle rara = 5522 kN * 1.25 = 6903 kN < 13571 kN/1.96 = 6923 kN

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV01

 RELAZIONE GEOTECNICA
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09RH
 IV 01 00 001
 C
 16 di 30

Spalla B Nmax = 6686 kN

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CANTIERE: OPERA: DATI DI INPUT: Diametro del Palo (D): Area del Palo (Ap): (m²) 1.50 (m) 1.767 Quota testa Palo dal p.c. (Zp): 3.50 (m) Quota falda dal p.c. (z_w): 3.50 (m) Carico Assiale Permanente (G): 6686 (kN) Carico Assiale variabile (Q): 0 (kN) Numero di strati 2 💠 Lpalo = 30.00 (m) coefficienti parziali resistenza laterale e di base permanenti variabili Metodo di calcolo Zw A1+M1+R1 1.30 1.50 1.00 1.00 1.00 0 A2+M1+R2 1.00 1.30 1.70 1.45 1.60 SLU A1+M1+R3 \circ 1.30 1.50 1.25 1.35 1.15 \circ 1.00 1.00 1.35 1.15 1.25 1.00 DM88 1.00 1.00 1.00 1.00 definiti dal progettista 1.00 1.00 2.30 1.96 2.13 1.70 1.65 1.60 1.55 1.50 1.45 1.40 1.00 1.00 1.00

	4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	•
						Р	ARAME	TRI MEDI		
Strato	Spess							del terrer	10	
Strato	Spess		Tipo di	terreno		γ	C' med	Φ' med	C _{u med}	
(-)	(m)					(kN/m ³)	(kPa)	(°)	(kPa)	
1	6.00		а	2		19.00			50.0	
2	24.00		TE	٦V		21.00			250.0	

Strato	apess	Tipo di terreno	γ	C' med	Φ' med	C _{u med}
(-)	(m)		(kN/m ³)	(kPa)	(°)	(kPa)
1	6.00	a2	19.00			50.0
2	24.00	TRV	21.00			250.0
(n.b.: lo	spessor	re degli strati è computato dalla quota di int	radosso de	plinto)		

	ı	PARAMETRI MINIMI (solo per SLU)					
£noon.		Parametri del terreno					
spess	Tipo di terreno	γ	C' min	Φ' min	C _{u min}		
(m)		(kN/m ³)	(kPa)	(°)	(kPa)		
6.00	a2	19.00			50.0		
24.00	TRV	21.00			250.0		
	6.00	Spess (m) Tipo di terreno 6.00 a2	Spess (m) Tipo di terreno Pi γ (κΙν/m²) 6.00 a2 19.00	Spess (m) Tipo di terreno γ cmn (γ kV/m²) (κPa) 6.00 a2 19.00	Spess (m) Tipo di terreno Parametri del terreno γ c'min (NVIMP) φ'min (NVIMP) (kPa) (*) 6.00 a2 19.00 (*)		

Coefficienti di Calcolo k μ a α								
μ	a	α						
(-)	(-)	(-)						
0.00		0.60						
0.00		0.40						
	μ (-) 0.00	μ a (-) (-) 0.00						

C	Coefficienti di Calcolo							
k	μ	a	α					
(-)	(-)	(-)	(-)					
0.00	0.00		0.60					
0.00	0.00		0.40					

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV01

RELAZIONE GEOTECNICA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09RH IV 01 00 001 C 17 di 30

Strato	Spess	media			minima (solo SLU)							
Strato	Spess	Tipo di terreno	Qsi	Nq	Nc	qb	Qbm	Qsi	Nq	Nc	qb	Qbm
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)
1	6.00	a2	848.2					848.2				
2	24.00	TRV	11309.7	0.00	9.00	2934.5	5185.7	11309.7	0.00	9.00	6845.0	12096.1

CARICO ASSIALE AGENTE	CAPACIT	A' PORTANTE MED	<u>IA</u>	CAPACIT	A' PORTANTE MINIMA	
$Nd = Ng \cdot \gamma_g + Nq \cdot \gamma_q$	base	$R_{b;cal med} =$	5185.7 (kN)	base	R _{b;cal min} =	12096.1 (kN)
Nd = 6686.0 (kN)	laterale	$R_{s;cal\ med} =$	12158.0 (kN)	laterale	R _{s;cal min} =	12158.0 (kN)
	totale	$R_{\text{c;cal med}} =$	17343.7 (kN)	totale	R _{c;cal min} =	24254.1 (kN)

CAPACITA' PORTANTE CARATTERISTICA	CAPACITA' PORTANTE DI PROGETTO		
$R_{b,k} = Min(R_{b,cal\ med}/\xi_3 ; R_{b,cal\ min}/\xi_4) = 5185.7 \text{ (kN)}$	$R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$	Fs = R	Rc,d / Nd
$R_{s,k} = Min(R_{s,cal\ med}/\xi_3 ; R_{s,cal\ min}/\xi_4) = 12158.0 (kN)$	$R_{c,d} = 8457.7 (kN)$	Fs =	1.26
$R_{ab} = R_{bb} + R_{cb}$ = 17343.7 (kN)			

Inoltre si è anche verificato che, per la lunghezza palo di progetto, la massima sollecitazione assiale allo SLE RARA sia inferiore alla portata laterale limite del palo (Qll) con un fattore di sicurezza di 1.25:

Nsle rara = 4777 kN *1.25 = 5971 kN < 12158 kN/1.96 = 6203 kN

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV01

 RELAZIONE GEOTECNICA
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09RH
 IV 01 00 001
 C
 18 di 30

Lpalo =

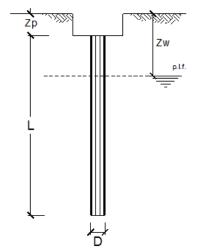
33.00

Pila imp.50+50 Nmax = 6864 kN

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CANTIERE: OPERA:

2 💠


DATI DI INPUT:

Numero di strati

Diametro del Palo (D): 1.20 (m) Area del Palo (Ap): 1.131 (m²)Quota testa Palo dal p.c. (z_p): 3.50 (m) Quota falda dal p.c. (zw): 3.50 (m) Carico Assiale Permanente (G): 6864 (kN) Carico Assiale variabile (Q): (kN)

coefficienti parziali			azi	azioni		resistenza laterale e di base			
	Metodo di calco	olo	permanenti 7g	variabili %	γь	γs	Ys traz		
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00		
SLU	A2+M1+R2	0	1.00	1.30	1.70	1.45	1.60		
S	A1+M1+R3	0	1.30	1.50	1.35	1.15	1.25		
	SISMA	0	1.00	1.00	1.35	1.15	1.25		
DM88		0	1.00	1.00	1.00	1.00	1.00		
definit	ti dal progettista	•	1.00	1.00	2.30	1.96	2.13		

n	1	2 ()	3	4 O	5 O	7	≥10 ○	T.A.	prog.
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

PARAMETRI MEDI

Strato	Spess		P	arametri	del terren	10
Strato	spess	Tipo di terreno	γ	C' med	Φ' med	C _{u med}
(-)	(m)		(kN/m ³)	(kPa)	(°)	(kPa)
1	6.00	a2	19.00			50.0
2	27.00	TRV	21.00			250.0
		- 4E-tEA				

(n.b.: lo spessore degli strati è computato dalla quota di intradosso del p	linto)
---	--------

C	oefficient	i di Calcol	0
k	μ	a	α
(-)	(-)	(-)	(-)
0.00	0.00		0.60
0.00	0.00		0.40

	F	PARAMET	TRI MINI	MI (solo j	per SLU)
Snace		Parametri del terreno			
apeaa	Tipo di terreno	γ	C' _{min}	φ' min	C _{u min}
(m)		(kN/m ³)	(kPa)	(°)	(kPa)
6.00	a2	19.00			50.0
27.00	TRV	21.00			250.0
	(m) 6.00	Spess Tipo di terreno (m) 6.00 a2	Spess Tipo di terreno P (m) γ (kN/m³) 6.00 a2 19.00	Spess Tipo di terreno γ C' min (kN/m³) (kPa) 6.00 a2 19.00	Spess (m) Tipo di terreno γ (kN/m³) (kPa) φ' min (kN/m³) (kPa) 6.00 a2 19.00

C	Coefficienti di Calcolo							
k	μ	a	α					
(-)	(-)	(-)	(-)					
0.00	0.00		0.60					
0.00	0.00		0.40					

CODIFICA

D09RH

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV01

RELAZIONE GEOTECNICA

COMMESSA LOTTO
RS3T 30

DOCUMENTO REV. FOGLIO

IV 01 00 001 C 19 di 30

RISULTATI

Strato	Spess		media						minima (solo SLU)			
Suato	apess	Tipo di terreno	Qsi	Nq	Nc	qb	Qbm	Qsi	Nq	Nc	qb	Qbm
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)
1	6.00	a2	678.6					678.6				
2	27.00	TRV	10178.8	0.00	9.00	2997.5	3390.1	10178.8	0.00	9.00	7475.0	8454.0

CARICO ASSIALE AGENTE

 $Nd = Ng \cdot \gamma_g + Nq \cdot \gamma_q$

Nd = 6864.0 (kN)

CAPACITA' PORTANTE MEDIA

base $R_{b;cal med} = 3390.1 (kN)$

laterale $R_{s;cal med} = 10857.3 (kN)$ totale $R_{c;cal med} = 14247.4 (kN)$ CAPACITA' PORTANTE MINIMA

base $R_{b;cal min} =$ 8454.0 (kN) laterale $R_{s;cal min} =$ 10857.3 (kN)

totale R_{c;cal min} = 19311.4 (kN)

CAPACITA' PORTANTE CARATTERISTICA

 $R_{b,k} = Min(R_{b,cal\ med}/\xi_3 \; ; \; R_{b,cal\ min}/\xi_4) = 3390.1 \; (kN)$

District to South the Style Control of the Style Co

 $R_{s,k} = Min(R_{s,cal\ med}/\xi_3 \; ; \; R_{s,cal\ min}/\xi_4) = \; 10857.3 \; (kN)$

 $R_{ab} = R_{bb} + R_{cb}$ = 14247.4 (kN)

CAPACITA' PORTANTE DI PROGETTO

 $R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$

 $R_{c,d} = 7013.4 (kN)$

Fs = Rc,d / Nd

Fs = 1.02

Verifica a trazione:

Nmin= -2008 kN < 10857 kN/2.13 = 5097 kN

Inoltre si è anche verificato che, per la lunghezza palo di progetto, la massima sollecitazione assiale allo SLE RARA sia inferiore alla portata laterale limite del palo (Qll) con un fattore di sicurezza di 1.25:

Nsle rara = 4087 kN *1.25 = 5108 kN < 10857 kN/1.96 = 5539 kN

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV01

RELAZIONE GEOTECNICA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

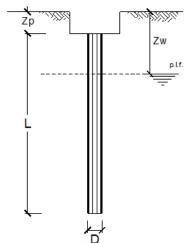
RS3T 30 D09RH IV 01 00 001 C 20 di 30

$\underline{\text{Pila imp.}24+50 \text{ Nmax}} = 8866 \underline{\text{kN}}$

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CANTIERE: OPERA:

DATI DI INPUT:


Diametro del Palo (D): 1.20 (m) Area del Palo (Ap): 1.131 (m²)Quota testa Palo dal p.c. (z_p): 3.50 (m) Quota falda dal p.c. (zw): 3.50 (m) Carico Assiale Permanente (G): 8866 (kN) Carico Assiale variabile (Q): (kN)

Numero di strati 2

Lpalo = 43.00 (m)

	coefficienti parz	iali	azi	ioni	resistenz	resistenza laterale e di base			
Metodo di calcolo			permanenti variabil		γь	γs	γ _{s traz}		
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00		
SLU	A2+M1+R2	0	1.00	1.30	1.70	1.45	1.60		
S	A1+M1+R3	0	1.30	1.50	1.35	1.15	1.25		
	SISMA	0	1.00	1.00	1.35	1.15	1.25		
DM88	DW88		1.00	1.00	1.00	1.00	1.00		
definiti dal progettista		1.00	1.00	2.30	1.96	2.13			

n	- ○	~ ()	mΟ	40	5 ()	7 ()	≥10 ○	T.A.	prog.
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

PARAMETRI MEDI

Strato	Spess		P		del terrer	10
Suato	spess	Tipo di terreno	γ	C' med	Φ' med	C _{u med}
(-)	(m)		(kN/m^3)	(kPa)	(°)	(kPa)
1	6.00	a2	19.00			50.0
2	37.00	TRV	21.00			250.0
Zer In a Le		a de eli eterti à como dete delle conte di int				

C	oefficient	i di Calco	0
k	μ	a	α
(-)	(-)	(-)	(-)
0.00	0.00		0.60
0.00	0.00		0.40

		ı	PARAMET	TRI MINI	MI (solo	per SLU)			
Strato	Spess		Parametri del terreno						
Strato	apess	Tipo di terreno	γ	C'min	Φ' min	C _{u min}			
(-)	(m)		(kN/m ³)	(kPa)	(°)	(kPa)			
1	6.00	a2	19.00			50.0			
2	37.00	TRV	21.00			250.0			

μ (-)	a (-)	α
. ,	(-)	/ /
00		(-)
.00		0.60
.00		0.40
	.00	

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

FOGLIO

21 di 30

Viadotto IV01

RELAZIONE GEOTECNICA

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

RS3T 30 D09RH IV 01 00 001 C

R			

Strato	Spess				media	media minima (solo SLU)						
Strato	Spess	Tipo di terreno	Qsi	Nq	Nc	ф	Qbm	Qsi	Nq	Nc	qb	Qbm
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)
1	6.00	a2	678.6					678.6				
2	37.00	TRV	13948.7	0.00	9.00	3207.5	3627.6	13948.7	0.00	9.00	9575.0	10829.1

CARICO ASSIALE AGENTE	CAPACIT	A' PORTANTE MED	<u>IA</u>	CAPACITA' PORTANTE MINIMA				
$Nd = Ng \cdot \gamma_g + Nq \cdot \gamma_q$	base	$R_{b;cal med} =$	3627.6 (kN)	base	R _{b;cal min} =	10829.1 (kN)		
Nd = 8866.0 (kN)	laterale	$R_{s;cal\ med} =$	14627.3 (kN)	laterale	R _{s;cal min} =	14627.3 (kN)		
	totale	$R_{\text{c;cal med}} =$	18254.9 (kN)	totale	R _{c;cal min} =	25456.3 (kN)		

CAPACITA' PORTANTE DI PROGETTO

CAPACITA' PORTANTE CARATTERISTICA
$R_{b,k} = Min(R_{b,cal\ med}/\xi_3 ; R_{b,cal\ min}/\xi_4) = 3627.6 (kN)$

$$R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$$
 Fs = Rc,d / Nd

$$R_{s,k} = Min(R_{s,cal\ med}/\xi_3\ ;\ R_{s,cal\ min}/\xi_4) =\ 14627.3\ (kN)$$

$$R_{c,d} = 9040.1 \text{ (kN)}$$
 Fs = 1.02

 $R_{hh} = R_{hh} + R_{hh}$ = 18254.9 (kN)

Verifica a trazione:

Nmin=-3757 kN < 14627 kN/2.13 = 6867 kN

Inoltre si è anche verificato che, per la lunghezza palo di progetto, la massima sollecitazione assiale allo SLE RARA sia inferiore alla portata laterale limite del palo (Qll) con un fattore di sicurezza di 1.25:

Nsle rara = 4121 kN *1.25 = 5151 kN < 14627 kN/1.96 = 7462 kN

Le lunghezze dei pali di progetto è quella che soddisfa tutte le verifiche di capacità portante, anche in presenza di scalzamento.

4.5 Verifica a carico limite orizzontale dei pali

Per la verifica del carico limite orizzontale si fa riferimento alla teoria di Broms per il caso di pali con rotazione in testa impedita.

La verifica a carico limite è stata svolta includendo anche un fattore di effetto gruppo orizzontale di 0.8. In particolare il fattore di sicurezza di normativa per la verifica a carico orizzontale è $FS = \gamma_T \cdot \xi_3 = 1.30 \cdot 1.70 = 2.21$ (da normativa vigente per verifica A1+M1+R3), includendo anche il fattore di effetto gruppo si ha: FSg = 2.76. Quindi la resistenza di progetto è valutata a partire dalla resistenza caratteristica (calcolata con Broms), fattorizzata con FSg, da cui: Hd = Hmax / 2.76.

Il valore caratteristico della resistenza (Hmax) è stato valutato considerando la condizione di carico più gravosa (tenendo conto dello stato di compressione/trazione) con riferimento ai seguenti momenti di plasticizzazione:

- Spalla A (D=1500mm, armatura 56+56φ26): My pari a 11685 kNm
- Spalla B (D=1500mm, armatura 36+36φ26): My pari a 7984 kNm
- Pila 50+50 (D=1200mm, armatura 36+36\psi26): My pari a 5574 kNm
- Pila 24+50 (D=1200mm, armatura 42+42\psi 26): My pari a 6384 kNm

Nella seguente tabella sono esplicitati i termini della verifica da cui si evince che la verifica è soddisfatta risultando la resistenza laterale di progetto maggiore della sollecitazione orizzontale massima (Hd > Fd).

SPALLA/PILA	Hed	Hrd [kN]	FS [kN]
SPALLA A	1551	1659	1.07
SPALLA B	1129	1243	1.10
PILA 50+50	950	955	1.01
PILA 24+50	1037	1053	1.02

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV01

RELAZIONE GEOTECNICA

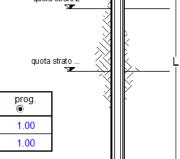
COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09RH IV 01 00 001 C 23 di 30

opera spalla A

1.70

1.70


ξ₃ ξ₄ 1.65

1.55

	coefficienti p	arziali		P	1	M		R	quot	a strato 1
	Metodo di ca	alcolo		permanenti 7G	variabili γο	γ _φ .	γou	γт		**************************************
	A1+M1+R1		0	1.30	1.50	1.00	1.00	1.00		q. 1
SLU	A2+M1+R2		0	1.00	1.30	1.00	1.00	1.60	quota	strato 2
ช	A1+M1+R3		0	1.30	1.50	1.00	1.00	1.30		
	SISMA		0	1.00	1.00	1.00	1.00	1.30		
DM88			0	1.00	1.00	1.00	1.00	1.00		
definiti da	al progettista		•	1.00	1.00	1.00	1.00	2.76	quota	strato
	, , ,								ı	. **
n	1	2	3	4	5	7	≥10	T.A.	prog.	

1.50

1.34

									<u> </u>	
						Parametri m	edi	Para	ametri minii	mi
strati terreno	descrizione	quote	γ	γ'	φ	k _p	Cu	φ	k _p	Cu
		(m)	(kN/m ³)	(kN/m ³)	(°)		(kPa)	(°)		(kPa)
p.c.=strato 1	a2	100.00	19	9		1.00	50		1.00	50
✓ strato 2	TRV	94.00	21	11		1.00	250		1.00	250
□ strato 3						1.00			1.00	
□ strato 4						1.00			1.00	
□ strato 5						1.00			1.00	
□ strato 6						1.00			1.00	

1.45

1.28

1.40

1.21

1.00

1.00

Quota falda 100 (m)

1.60

1.48

1.55

1.42

Diametro del palo D 1.50 (m)

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV01

RELAZIONE GEOTECNICA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09RH
 IV 01 00 001
 C
 24 di 30

Momento di plasticizzazione palo My 11681.00 (kNm)
Step di calcolo 0.01 (m)

palo impedito di ruotare

o palo libero

Calcolo (ctrl+r)

	<u>H</u>	l medio			<u>H</u>	l minimo		
Palo lungo		4579.9	(kN)			4579.9	(kN)	
Palo intermedio		27141.8	(kN)			27141.8	(kN)	
Palo corto		83538.0	(kN)			83538.0	(kN)	
	\mathbf{H}_{med}	4579.9	(kN)	Palo lungo	\mathbf{H}_{\min}	4579.9	(kN)	Palo lungo
	H _k =	Min(H _{med} /	/ξ ₃ ; R _m	_{in} /ξ ₄)	4579.	88	(kN)	
	F	$H_d = H_k/\gamma_T$			1659.	38	(kN)	
	Carico Ass	siale Perma	inente (G	G =	155	1	(kN)	
	Carico Ass	siale variabi	ile (Q):	Q =	0		(kN)	
	F _d = G	· γ _G + Q · γ	_{'Q} =		1551.	.00	(kN)	
	FS	= Hd / Fd	=		1.07	7		

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Н

D

Viadotto IV01

RELAZIONE GEOTECNICA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09RH IV 01 00 001 C 25 di 30

opera spalla b

	coefficier	nti parziali		A	١	N		R	quot	astrato1	П	İ
	Metodo	di calcolo		permanenti γ _G	variabili 70	γφ.	γou	γт		g, falda		13/75//
	A1+M1+R	1	0	1.30	1.50	1.00	1.00	1.00		q. falda		
SLU	A2+M1+R	2	0	1.00	1.30	1.00	1.00	1.60	quota	strato 2		
껈	A1+M1+R	3	0	1.30	1.50	1.00	1.00	1.30		Ż		
	SISMA		0	1.00	1.00	1.00	1.00	1.30		>		
DM88			0	1.00	1.00	1.00	1.00	1.00		<i>></i> >>		
definiti da	al progettista	3	•	1.00	1.00	1.00	1.00	2.76	quota	strato		اا
										. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
n	1	2 O	3	4 O	5 O	7	≥10 ○	T.A. O	prog.			
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00			
<u>ξ</u> ₄	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00			

						Parametri m	edi	Para	ametri minii	mi
strati terreno	descrizione	quote	γ	γ'	φ	k _p	Cu	φ	k _p	Cu
		(m)	(kN/m ³)	(kN/m ³)	(°)		(kPa)	(°)		(kPa)
p.c.=strato 1	a2	100.00	19	9		1.00	50		1.00	50
✓ strato 2	TRV	94.00	21	11		1.00	250		1.00	250
□ strato 3						1.00			1.00	
□ strato 4						1.00			1.00	
□ strato 5						1.00			1.00	
□ strato 6						1.00			1.00	

Quota falda 100 (m)
Diametro del palo D 150 (m)

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV01

RELAZIONE GEOTECNICA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09RH
 IV 01 00 001
 C
 26 di 30

Momento di plasticizzazione palo My 7984.00 (kNm)
Step di calcolo 0.01 (m)

palo impedito di ruotare

o palo libero

Calcolo (ctrl+r)

	Н	l medio			н	l minimo		
Palo lungo		3432.4	(kN)			3432.4	(kN)	
Palo intermedio		26939.3	(kN)			26939.3	(kN)	
Palo corto		83538.0	(kN)			83538.0	(kN)	
	H_{med}	3432.4	(kN)	Palo lungo	\mathbf{H}_{\min}	3432.4	(kN)	Palo lungo
	H _k =	Min(H _{med} /	ξ ₃ ; R _m	_{in} /ξ ₄)	3432.	38	(kN)	
	F	$H_d = H_k/\gamma_T$			1243.	61	(kN)	
	Carico Ass	siale Perma	nente (G	G =	112	9	(kN)	
	Carico Ass	siale variabi	ile (Q):	Q =	0		(kN)	
	F _d = G	· γ _G + Q · γ	_Q =		1129.	00	(kN)	
	FS	= Hd / Fd	=		1.10)		

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Η

D

Viadotto IV01

 RELAZIONE GEOTECNICA
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09RH
 IV 01 00 001
 C
 27 di 30

opera pila 50+50

	coefficier	nti parziali		Δ.	١	IV		R	quot	a strato 1	
	Metodo o	li calcolo		permanenti	variabili	γφ.	γou	γт		1.7 77	1/1/20
				γ̈́G	70		,			q. falda	
	A1+M1+R	1	0	1.30	1.50	1.00	1.00	1.00		=	
SLU	A2+M1+R	2	0	1.00	1.30	1.00	1.00	1.60	quota	a strato 2	
യ	A1+M1+R	3	0	1.30	1.50	1.00	1.00	1.30		₹	
	SISMA		0	1.00	1.00	1.00	1.00	1.30		\geq	
38MC			0	1.00	1.00	1.00	1.00	1.00	1	<i>></i> >>	
lefiniti da	al progettista	a	•	1.00	1.00	1.00	1.00	2.76	quota	strato	
									-	Š	11 [6]
n	1	2	3	4	5 O	7	≥10 ○	T.A. O	prog.]	
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00		11 11
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00	1	11 11

						Parametri m	edi	Para	ametri minii	mi
strati terreno	descrizione	quote	γ	γ'	φ	k _p	Cu	φ	k _p	Cu
		(m)	(kN/m ³)	(kN/m ³)	(°)		(kPa)	(°)		(kPa)
p.c.=strato 1	a2	100.00	19	9		1.00	50		1.00	50
✓ strato 2	TRV	94.00	21	11		1.00	250		1.00	250
□ strato 3						1.00			1.00	
□ strato 4						1.00			1.00	
□ strato 5						1.00			1.00	
□ strato 6						1.00	·		1.00	

Quota falda 100 (m)

Diametro del palo D 1.20 (m)

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV01

RELAZIONE GEOTECNICA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09RH
 IV 01 00 001
 C
 28 di 30

Momento di plasticizzazione palo My 5574.00 (kNm)
Step di calcolo 0.01 (m)

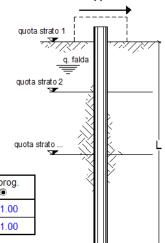
palo impedito di ruotare

C palo libero

Calcolo (ctrl+r)

	<u>H</u>	l medio			Ŀ	ł minimo		
Palo lungo		2637.9	(kN)			2637.9	(kN)	
Palo intermedio		21740.4	(kN)			21740.4	(kN)	
Palo corto		67073.4	(kN)			67073.4	(kN)	
	H_{med}	2637.9	(kN)	Palo lungo	\mathbf{H}_{\min}	2637.9	(kN)	Palo lungo
	H _k =	Min(H _{med} /	/ξ ₃ ; R _m	_{in} /ξ ₄)	2637	.90	(kN)	
	H	$H_d = H_k/\gamma_T$			955.	76	(kN)	
	Carico Ass	siale Perma	inente (G	G =	950)	(kN)	
	Carico Ass	siale variabi	ile (Q):	Q =	0		(kN)	
	F _d = G	· γ _G + Q · γ	_{'Q} =		950.0	00	(kN)	
	FS	= Hd / Fd	=		1.0	1		

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)


Viadotto IV01

 RELAZIONE GEOTECNICA
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09RH
 IV 01 00 001
 C
 29 di 30

opera pila 25+50

	coefficienti parziali		Δ.	١	M		R
	Metodo di calcolo		permanenti	variabili			
	wetodo di calcolo		γG	70	γφ'	γcu	ŶΤ
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.00	1.60
ᇝ	A1+M1+R3	0	1.30	1.50	1.00	1.00	1.30
	SISMA	0	1.00	1.00	1.00	1.00	1.30
DM88		0	1.00	1.00	1.00	1.00	1.00
definiti d	al progettista	•	1.00	1.00	1.00	1.00	2.76

D

n	1	2	3 ()	4	5 ()	7	≥10 ○	T.A.	prog.
ξ ₃	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ ₄	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

					Parametri medi			Parametri minimi		
strati terreno	descrizione	quote	γ	γ'	φ	k _p	Cu	φ	k _p	Cu
		(m)	(kN/m ³)	(kN/m ³)	(°)		(kPa)	(°)		(kPa)
p.c.=strato 1	a2	100.00	19	9		1.00	50		1.00	50
✓ strato 2	TRV	94.00	21	11		1.00	250		1.00	250
□ strato 3						1.00			1.00	
□ strato 4						1.00			1.00	
□ strato 5						1.00			1.00	
□ strato 6						1.00			1.00	

Quota falda 100 (m)
Diametro del palo D 120 (m)

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

FOGLIO

30 di 30

Viadotto IV01

RELAZIONE GEOTECNICA

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

RS3T 30 D09RH IV 01 00 001 C

Momento di plasticizzazione palo My
Step di calcolo

o palo impedito di ruotare
palo libero

o palo libero

o palo libero

o calcolo
(ctrl+r)

	Н	l medio			Н	minimo		
Palo lungo		2907.9	(kN)			2907.9	(kN)	
Palo intermedio		21794.4	(kN)			21794.4	(kN)	
Palo corto		67073.4	(kN)			67073.4	(kN)	
	H_{med}	2907.9	(kN)	Palo lungo	\mathbf{H}_{\min}	2907.9	(kN)	Palo lungo
	H_k = Min(H_{med}/ξ_3 ; R_{min}/ξ_4) H_d = H_k/γ_T Carico Assiale Permanente (G): G = Carico Assiale variabile (Q): Q =					0	(kN)	
						9	(kN)	
							(kN) (kN)	
	$F_d = G \cdot \gamma_G + Q \cdot \gamma_Q =$					0	(kN)	
	FS	= Hd / Fd	=	1.02				

4.6 Verifica a carico limite orizzontale con palo scalzato

Le fondazioni non risultano interessate da scalzamento.