COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3)

VIADOTTI IN INTERFERENZA IV02 - CAVALCAFERROVIA SU NV51

Relazione geotecnica e di calcolo delle fondazioni

SCALA:
-

REV.

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR.

RS3T 30 D 09 RH IV0200 001 C

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Gen-2020	A.Fem	Gen-2020	A.Barreca	Gen-2020	varianti ia di Rom?
В	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Feb-2020	A.Ferr	Feb-2020	A.Barreca	Feb-2020	A. e delle var ittozzi zgovincia d
С	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	- Mag-2020	A.Fem	Mag-2020	A.Barreca	Mag-2020	RR S.p.A estione deline deline 20783
				7 04				ITALEE Civilie L. Ing. 24 Ogegneri N. A.
								I. U.O. Opere Cit Dott. Ordine degli Ing
								0.0 Ordine

File: RS3T.3.0.D.09.RH.IV.02.0.0.001.C n. Elab.: 09_608

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV02

RELAZIONE GEOTECNICA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09RH
 IV 02 00 001
 C
 2 di 21

INDICE

1	PRE	MESSA	-
•			
	1.1	DESCRIZIONE DELL'OPERA	3
2	RIFE	ERIMENTI NORMATIVI	5
3	CAR	ATTERIZZAZIONE GEOTECNICA	6
	3.1	INDAGINI GEOTECNICHE ESEGUITE	6
	3.2	Stratigrafia	€
	3.3	CATEGORIA DI SOTTOSUOLO	7
4	PAL	IFICATE DI FONDAZIONE	
	4.1	MODULO DI REAZIONE ORIZZONTALE DEL TERRENO	8
	4.2	MOMENTO ADIMENSIONALE LUNGO IL PALO	8
	4.3	VALUTAZIONI DI KO/KA	11
	4.4	CALCOLO CAPACITÀ PORTANTE	11
	4.5	VERIFICA A CARICO LIMITE ORIZZONTALE DEI PALI	
	4.6	VERIFICA A CARICO LIMITE ORIZZONTALE CON PALO SCALZATO	
	- .∪	VERIFICA A CARICO LIVITE UNIZZUNTALE CON FALO SCALZATO	ا ب

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO								
NUOVO COLLEGAMENTO PALERMO – CATANIA								
	TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A) Viadotto IV02							
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			

IV 02 00 001

С

3 di 21

D09RH

30

1 PREMESSA

RELAZIONE GEOTECNICA

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo del corpo stradale ferroviario, delle opere d'arte e delle opere interferite relative al progetto definitivo della direttrice ferroviaria Messina-Catania-Palermo nell'ambito del nuovo collegamento Palermo - Catania

RS3T

In particolare si tratterà il dimensionamento delle fondazioni del viadotto IV02 sulla viabilità NV51.

Le analisi strutturali e le verifiche di sicurezza sono state effettuate secondo il DM 17 gennaio 2018.

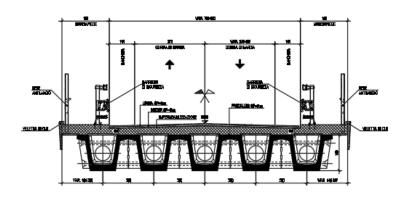
1.1 Descrizione dell'opera

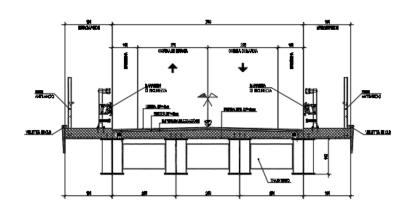
Sulla NV51A - Adeguamento viabilità esistente SP64 (Adeguamento Strada locale a destinazione particolare Corsia 2.75m + Banchina 1.00m b=7.50 m) è prevista la realizzazione di un cavalca ferrovia, in corrispondenza della progressiva ferroviaria 19+350.

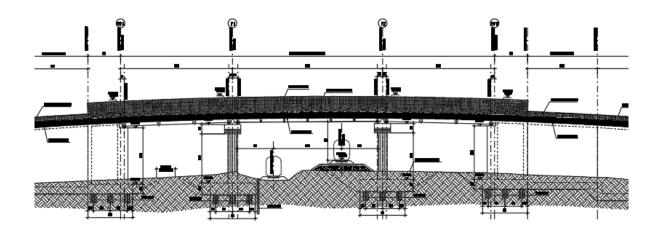
Il cavalca ferrovia, di lunghezza totale di 80.1 m circa, è suddiviso in 3 campate da 24.0, 32.0 e 24.0m di luce; gli impalcati di luce 24.0m saranno costituiti da cinque travi a cassone in calcestruzzo prefabbricato, mentre la campata centrale, di luce 32.0m, da un sistema misto acciaio-calcestruzzo composto da 4 travi in carpenteria metallica e soletta superiore in c.a. collaborante.

Pila e spalle saranno realizzate in c.a. gettato in opera e fondate su pali di grande diametro.

In approccio al cavalca ferrovia sono previsti 2 scatolari in c.a. gettato in opera.


TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)


Viadotto IV02


RELAZIONE GEOTECNICA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09RH IV 02 00 001 C 4 di 21

Sezione trasversale e prospetto

2 RIFERIMENTI NORMATIVI

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Ministero delle Infrastrutture, DM 17 gennaio 2018, Aggiornamento delle «Norme tecniche per le costruzioni».
- Ministero delle Infrastrutture, Circolare n°7 21 gennaio 2019, Istruzioni per l'Applicazione delle «Norme tecniche per le costruzioni».
- Istruzione RFI DTC SI PS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 2
 Ponti e Strutture
- Istruzione RFI DTC SI CS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 3
 Corpo Stradale
- Regolamento (UE) N.1299/2014 del 18 novembre 2014 della Commissione Europea. Relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019.

RELAZIONE GEOTECNICA

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO								
NUOVO COLLEGAMENTO PALERMO – CATANIA								
TRATTA LE		RAMAZIONE	– CALTANISSET	TA (LOTT	O 3A)			
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			

IV 02 00 001

6 di 21

D09RH

3 CARATTERIZZAZIONE GEOTECNICA

Nel presente capitolo si riporta la caratterizzazione geotecnica per il viadotto in esame, valutata sulla base dell'interpretazione delle indagini geotecniche svolte in prossimità dell'opera.

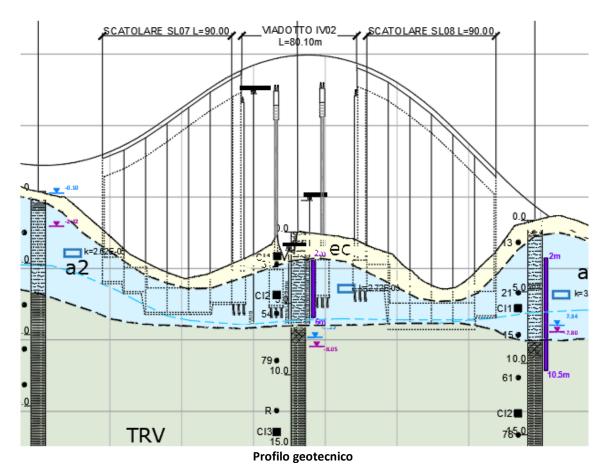
RS3T

La stratigrafia di riferimento finalizzata al dimensionamento delle palificate di fondazione è rappresentata nel profilo stratigrafico longitudinale.

Per maggiori dettagli sulla caratterizzazione geotecnica si rimanda alla Relazione geotecnica generale.

3.1 Indagini geotecniche eseguite

I sondaggi di riferimento sono: 3av10-3av13


La falda viene posta a testa palo.

3.2 Stratigrafia

La stratigrafia lungo lo sviluppo del viadotto è indicata nella seguente tabella:

	zi [m]	zf[m]	γ [kN/m3]	c' [kPa]	φ' [°]	cu
a2	0	6	19	27	27	70
TRV	6	40	20	44	16	200

3.3 Categoria di sottosuolo

Dalle indagini condotte si evince una categoria di suolo pari a 'B'.

PALIFICATE DI FONDAZIONE

Nel presente capitolo si riporta il calcolo della capacità portante dei pali per l'opera in esame.

4.1 Modulo di reazione orizzontale del terreno

Lo studio dell'interazione tra palo soggetto ai carichi orizzontali ed il terreno viene effettuato ricorrendo alla teoria di Matlock e Reese che si basa sul noto modello di suolo alla Winkler (elastico-lineare), caratterizzato da un modulo di reazione orizzontale del terreno (E_{MR}) definito come il rapporto fra la reazione del terreno per unità di lunghezza del palo (p) ed il corrispondente spostamento orizzontale (y): $E_{MR}=p\ /\ y$. Definito il coefficiente di sottofondo alla Winkler (K_W), per un palo di diametro D, si ha questa relazione con il modulo di reazione orizzontale palo-terreno:

FOGLIO

8 di 21

$$E_{MR} = K_W \cdot D$$

In particolare per la valutazione del modulo di reazione orizzontale palo-terreno, si considera:

$$E_{MR} = \xi * cu$$

Nell'analisi delle fondazioni, tale profilo del modulo di reazione orizzontale palo-terreno, è stato cautelativamente fattorizzato con coefficiente pari a 0.8 per tenere conto che la deformabilità dei pali in gruppo è maggiore della deformabilità del singolo palo immerso nello stesso terreno. Si avrà pertanto:

$$E_{MR} = \xi * cu *0.8$$

4.2 Momento adimensionale lungo il palo

Per ricavare il momento adimensionalizzato lungo il fusto del palo si ricorre al metodo di Matlock e Reese (1956) che, utilizzando il metodo delle differenze finite, hanno risolto il problema del palo soggetto ad un carico orizzontale, mediante l'impiego di parametri adimensionali.

Nel caso in esame, considerando l'andamento del modulo di reazione orizzontale palo-terreno (E_{MR}, che verrà definito nel seguente paragrafo), si ricorre al metodo degli elementi finiti, adimensionalizzando la soluzione come segue:

$$M_0 = \alpha_m \cdot H_0$$

$$M(z) = M_0 \cdot M_{ad}(z)$$

essendo:

			NA – CATANIA – 10 – CATANIA	PALERM	0
TRATTA LEI		RAMAZIONE	– CALTANISSET	TA (LOTT	O 3A)
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

9 di 21

RELAZIONE GEOTECNICA

Ho = azione tagliante in testa palo [F];

Mo = azione flettente, conseguente ad Ho, in testa al palo;

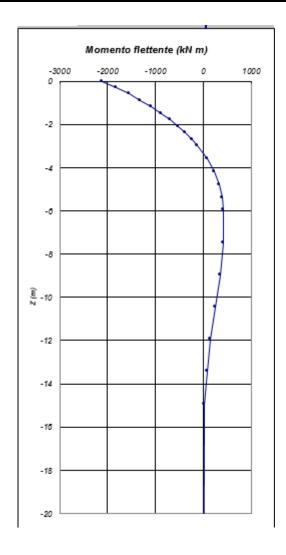
 α_m = rapporto momento taglio in testa palo nell'ipotesi di rotazione impedita [L];

 M_{ad} = momento flettente adimensionale lungo il fusto del palo.

Per le palificate in presenza di scalzamento, il valore del parametro α_m (= Mo/To a testa palo), è stato valutato considerando non reagente il terreno sino alla profondità di scalzamento. Il valore del parametro indicato per lo scalzamento va associato alle sole condizioni di carico statiche con scalzamento, per tutte le altre combinazioni (SLU statica, SLV sismica e SLE) va associato il valore del parametro indicato per i pali in assenza di scalzamento.

Nella seguente tabella si riportano i valori del parametro alfa $\alpha_m = Mo$ / Ho ed a seguire l'andamento del momento adimensionale lungo il palo. La valutazione è stata fatta con riferimento ad una lunghezza palo indicativa di 30m.

Spalla e Pila	$lpha_{_m}$ [m]
D=1200mm	2.2


DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV02

RELAZIONE GEOTECNICA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09RH IV 02 00 001 C 10 di 21

Per le palificate in presenza di scalzamento, il valore del parametro α_m (= Mo/To a testa palo), è stato valutato considerando non reagente il terreno sino alla profondità di scalzamento. Il valore del parametro indicato per lo scalzamento va associato alle sole condizioni di carico statiche con scalzamento, per tutte le altre combinazioni (SLU statica, SLV sismica e SLE) va associato il valore del parametro indicato per i pali in assenza di scalzamento.

4.3 Valutazioni di ko/ka

La spalla è di tipo scatolare e non presenta terrapieno

4.4 Calcolo capacità portante

La capacità portante per le fondazioni del viadotto è stata valutata per pali di grande diametro, considerando l'Approccio 2 (A1+M1+R3) di normativa e quindi con i seguenti coefficienti parziali sulle resistenze di base e laterale:

- N. 1 verticale di indagine, da cui $\xi_3 = 1.70$,
- F_{SL} = fattore di sicurezza per la portata laterale a compressione (= $\xi_3 \cdot \gamma_s = 1.96$).
- $F_{SL,t}=$ fattore di sicurezza per la portata laterale a trazione (= $\xi_3\cdot\gamma_{st}=2.13$).
- $F_{SB} = fattore di sicurezza per la portata di base (= <math>\xi_3 \cdot \gamma_b = 2.3$).

Tabella 1 Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali	Pali	Pali ad elica
		infissi	trivellati	continua
	$\gamma_{\mathbf{R}}$	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	Υs	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	Υst	1,25	1,25	1,25

⁽º) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

$$R_{c,k} = Min \left\{ \frac{\left(R_{c,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{c,cal}\right)_{min}}{\xi_4} \right\}$$

$$R_{\text{t,k}} = Min\left\{ \frac{\left(R_{\text{t,cal}}\right)_{\text{media}}}{\xi_{3}}; \frac{\left(R_{\text{t,cal}}\right)_{\text{min}}}{\xi_{4}} \right\}$$

Tabella 2 Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali d'indagine

							-
Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ_4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Quindi per la verifica di capacità portante del palo si dovranno verificare le seguenti due condizioni:

- \bullet N_{max,SLU} < Q_d, la massima sollecitazione assiale (sia statica, che sismica) allo SLU dovrà essere inferiore alla portata di progetto del palo (riportata nelle seguenti tabelle);
- $N_{max,SLE} < Q_{ll} / 1.25$ la massima sollecitazione assiale allo SLE RARA dovrà essere inferiore alla portata laterale limite del palo (Q_{ll} , riportata nelle seguenti tabelle) con un fattore di sicurezza di 1.25.

Si riporta di seguito la verifica a carico limite:

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV02

RELAZIONE GEOTECNICA

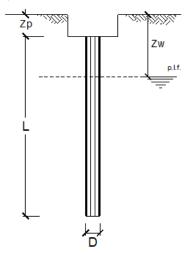
COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09RH IV 02 00 001 C 13 di 21

Spalla Nmax = 4670 kN

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CANTIERE: OPERA:


DATI DI INPUT:

Diametro del Palo (D): 1.20 (m) Area del Palo (Ap): 1.131 (m²)Quota testa Palo dal p.c. (zp): 3.00 (m) Quota falda dal p.c. (zw): 3.00 (m) Carico Assiale Permanente (G): 4670 (kN) Carico Assiale variabile (Q): (kN)

Numero di strati 2 Lpalo = 28.00 (m)

	coefficienti parz	iali	azi	azioni			resistenza laterale e di base			
Metodo di calcolo		permanenti 7g	variabili 7o	γь	γs	Ys traz				
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00			
SLU	A2+M1+R2	0	1.00	1.30	1.70	1.45	1.60			
เร	A1+M1+R3	0	1.30	1.50	1.35	1.15	1.25			
	SISMA	0	1.00	1.00	1.35	1.15	1.25			
DM88		0	1.00	1.00	1.00	1.00	1.00			
definiti dal progettista		•	1.00	1.00	2.30	1.96	2.13			

n	1	2 ()	3	4 O	5	7	≥10 ○	T.A.	prog.
ξs	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

PARAMETRI MEDI

Strato	Spess		P	arametri	del terren	10
Strato	spess	Tipo di terreno	γ	C' med	Φ' med	C _{u med}
(-)	(m)		(kN/m ³)	(kPa)	(°)	(kPa)
1	3.00	a2	19.00			70.0
2	25.00	TRV	20.00			200.0
		and a contract to a secondary dallar accepts of the				

C	Coefficienti di Calcolo								
k	μ	a	α						
(-)	(-)	(-)	(-)						
0.00	0.00		0.60						
0.00	0.00		0.40						

		F	PARAMET	'RI MINI	MI (solo j	per SLU)
Strato	Spess		Parametri del terreno			
Strato	apeaa	Tipo di terreno	γ	C' _{min}	Φ' min	C _{u min}
(-)	(m)		(kN/m ³)	(kPa)	(°)	(kPa)
1	3.00	a2	19.00			70.0
2	25.00	TRV	20.00			200.0

C	oefficient	i di Calcol	0
k	μ	a	α
(-)	(-)	(-)	(-)
0.00	0.00		0.60
0.00	0.00		0.40

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV02

RELAZIONE GEOTECNICA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09RH IV 02 00 001 C 14 di 21

RISULTATI

Strato	Spess				media			minima (solo SLU)				
Strato	Spess	Tipo di terreno		Nq	Nc	ф	Qbm	Qsi	Nq	Nc	qb	Qbm
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)
1	3.00	a2	475.0					475.0				
2	25.00	TRV	7539.8	0.00	9.00	2414.0	2730.2	7539.8	0.00	9.00	6140.0	6944.2

CARICO ASSIALE AGENTE CAPACITA' PORTANTE MEDIA CAPACITA' PORTANTE MINIMA $Nd = Ng \cdot \gamma_g + Nq \cdot \gamma_q$ 2730.2 (kN) 6944.2 (kN) base base R_{b;cal med} = R_{b;cal min} = Nd = 4670.0 (kN)laterale R_{s;cal med} = 8014.8 (kN) laterale R_{s;cal min} = 8014.8 (kN) 10745.0 (kN) 14959.0 (kN) totale $R_{c;cal med} =$ totale R_{c;cal min} =

CAPACITA' PORTANTE CARATTERISTICA

 $R_{b,k} = Min(R_{b,cal\ med}/\xi_3 ; R_{b,cal\ min}/\xi_4) = 2730.2 (kN)$

 $R_{s,k} = Min(R_{s,cal\ med}/\xi_3 ; R_{s,cal\ min}/\xi_4) = 8014.8 (kN)$

 $R_{c,k} = R_{b,k} + R_{s,k}$ = 10745.0 (kN)

CAPACITA' PORTANTE DI PROGETTO

 $R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$

 $R_{c,d} = 5276.2 \text{ (kN)}$ Fs = 1.13

Fs = Rc,d / Nd

Verifica a trazione:

Nmin= -275 kN < 8014 kN/2.13 = 3762 kN

Inoltre si è anche verificato che, per la lunghezza palo di progetto, la massima sollecitazione assiale allo SLE RARA sia inferiore alla portata laterale limite del palo (Qll) con un fattore di sicurezza di 1.25:

Nsle rara = 3269 * 1.25 = 4087 kN < 8014 kN / 1.96 = 4088 kN

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV02

RELAZIONE GEOTECNICA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09RH IV 02 00 001 C 15 di 21

Lpalo =

36.00

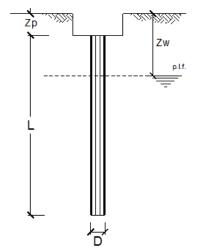
(m)

$\underline{\text{Pila Nmax}} = 6444 \ \underline{\text{kN}}$

CALCOLO DELLA CAPACITA' PORTANTE DI UN PALO TRIVELLATO DI GRANDE DIAMETRO

CANTIERE: OPERA:

2 💠


DATI DI INPUT:

Numero di strati

Diametro del Palo (D): 1.20 (m) Area del Palo (Ap): 1.131 (m²)Quota testa Palo dal p.c. (zp): 3.00 (m) Quota falda dal p.c. (zw): 3.00 (m) Carico Assiale Permanente (G): 6444 (kN) Carico Assiale variabile (Q): (kN)

coefficienti parziali			azioni		resistenz	resistenza laterale e di base		
	Metodo di calco	lo	permanenti 7g	variabili %	γь	γs	7s traz	
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	
⊐	A2+M1+R2	0	1.00	1.30	1.70	1.45	1.60	
SLU	A1+M1+R3	0	1.30	1.50	1.35	1.15	1.25	
	SISMA	0	1.00	1.00	1.35	1.15	1.25	
DM88 O		1.00	1.00	1.00	1.00	1.00		
definiti dal progettista		1.00	1.00	2.30	1.96	2.13		

n	1	2 ()	3	4	5	7 O	≥10 ○	T.A.	prog.
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

PARAMETRI MEDI

Strato	Spess	988	P	arametri	del terren	10
Strato	spess	Tipo di terreno	γ	C' med	Φ' med	C _{u med}
(-)	(m)		(kN/m ³)	(kPa)	(°)	(kPa)
1	3.00	a2	19.00			70.0
2	33.00	TRV	20.00			200.0
		and a contract to a secondary dallar accepts of the				

(n.b.: lo spessore degli strati è	computato dalla quota	a di intradosso del plinto)
-----------------------------------	-----------------------	-----------------------------

Coefficienti di Calcolo k μ a α									
μ	a	α							
(-)	(-)	(-)							
0.00		0.60							
0.00		0.40							
	(-) 0.00	(-) (-) 0.00							

		F	PARAMET	RI MINI	MI (solo	per SLU)	
Strato	Spess		Parametri del terreno				
Strato	apess	Tipo di terreno	γ	C' _{min}	φ' min	C _{u min}	
(-)	(m)		(kN/m ³)	(kPa)	(°)	(kPa)	
1	3.00	a2	19.00			70.0	
2	33.00	TRV	20.00			200.0	
						<u> </u>	

C	oefficient	i di Calcol	0
k	μ	a	۵
(-)	(-)	(-)	(-)
0.00	0.00		0.60
0.00	0.00		0.40

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3A)

FOGLIO

16 di 21

С

Viadotto IV02

LOTTO REV. COMMESSA CODIFICA DOCUMENTO RELAZIONE GEOTECNICA 30 D09RH IV 02 00 001

RISULTATI

Strato	Spess				media				mini	ma (solo	SLU)	
Strato	Spess	Tipo di terreno	Qsi	Nq	Nc	ф	Qbm	Qsi	Nq	Nc	qb	Qbm
(-)	(m)		(kN)	(-)	(-)	(kPa)	(kN)	(kN)	(-)	(-)	(kPa)	(kN)
1	3.00	a2	475.0					475.0				
2	33.00	TRV	9952.6	0.00	9.00	2574.0	2911.1	9952.6	0.00	9.00	7740.0	8753.7

CARICO ASSIALE AGENTE	CAPACIT	A' PORTANTE MED	<u>IA</u>	CAPACIT	A' PORTANTE MINIMA	
$Nd = Ng \cdot \gamma_g + Nq \cdot \gamma_q$	base	$R_{b;cal\ med} =$	2911.1 (kN)	base	R _{b;cal min} =	8753.7 (kN)
Nd = 6444.0 (kN)	laterale	$R_{s;cal\ med} =$	10427.6 (kN)	laterale	R _{s;cal min} =	10427.6 (kN)
	totale	$R_{c;cal\ med} =$	13338.7 (kN)	totale	R _{c;cal min} =	19181.3 (kN)

CAPACITA' PORTANTE CARATTERIS	<u>rica</u>	CAPACITA' PORTANTE DI PROGE	<u>.TTO</u>		
$R_{b,k} = Min(R_{b,cal\ med}/\xi_3; R_{b,cal\ min}/\xi_3)$	ξ ₄)= 2911.1 (kN)	$R_{c,d} = R_{bk}/\gamma b + R_{sk}/\gamma s$		Fs = Ro	c,d / Nd
$R_{s,k} = Min(R_{s,cal\ med}/\xi_3; R_{s,cal\ min}/\xi_3)$	(4)= 10427.6 (kN)	$R_{c,d} = 6585.9 \text{ (kN)}$		Fs =	1.02
$R_{\kappa,\nu} = R_{\kappa,\nu} + R_{\kappa,\nu}$	= 13338.7 (kN)				

Verifica a trazione:

Nmin= -2217 kN <10427 kN/2.13 = 4895 kN

Inoltre si è anche verificato che, per la lunghezza palo di progetto, la massima sollecitazione assiale allo SLE RARA sia inferiore alla portata laterale limite del palo (Qll) con un fattore di sicurezza di 1.25:

Nsle rara = 3285 *1.25 = 4106 kN < 10427 kN/1.96 = 5319 kN

Le lunghezze dei pali di progetto è quella che soddisfa tutte le verifiche di capacità portante, anche in presenza di scalzamento.

RELAZIONE GEOTECNICA

NUOVO COI	LEGAME	NTO PALERN	NA – CATANIA – 10 – CATANIA – CALTANISSET		
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09RH	IV 02 00 001	С	17 di 21

4.5 Verifica a carico limite orizzontale dei pali

Per la verifica del carico limite orizzontale si fa riferimento alla teoria di Broms per il caso di pali con rotazione in testa impedita.

La verifica a carico limite è stata svolta includendo anche un fattore di effetto gruppo orizzontale di 0.8. In particolare il fattore di sicurezza di normativa per la verifica a carico orizzontale è $FS = \gamma_T \cdot \xi_3 = 1.30 \cdot 1.70 = 2.21$ (da normativa vigente per verifica A1+M1+R3), includendo anche il fattore di effetto gruppo si ha: FSg = 2.76. Quindi la resistenza di progetto è valutata a partire dalla resistenza caratteristica (calcolata con Broms), fattorizzata con FSg, da cui: FSg, da cui: FSg = FSg

Il valore caratteristico della resistenza (Hmax) è stato valutato considerando la condizione di carico più gravosa (tenendo conto dello stato di compressione/trazione) con riferimento ai seguenti momenti di plasticizzazione:

- Spalla (D=1200mm, armatura 26φ26): My pari a 2282 kNm
- Pila (D=1200mm, armatura 28+28\psi 26): My pari a 3468 kNm

Nella seguente tabella sono esplicitati i termini della verifica da cui si evince che la verifica è soddisfatta risultando la resistenza laterale di progetto maggiore della sollecitazione orizzontale massima (Hd > Fd).

SPALLA/PILA	Hed	Hrd [kN]	FS [kN]
SPALLA	444	579	1.30
PILA	731	782	1.07

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV02

RELAZIONE GEOTECNICA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09RH IV 02 00 001 C 18 di 21

opera spalla

coefficienti parziali		coefficienti parziali							quota strato 1
Metodo di calcolo		permanenti 7G	variabili γα	γ _φ :	γси	γт	· 3 7/		
1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	=		
2+M1+R2	0	1.00	1.30	1.00	1.00	1.60	quota strato 2		
1+M1+R3	0	1.30	1.50	1.00	1.00	1.30			
ISMA	0	1.00	1.00	1.00	1.00	1.30			
	0	1.00	1.00	1.00	1.00	1.00			
rogettista	•	1.00	1.00	1.00	1.00	2.76	quota strato		
	1+M1+R1 2+M1+R2 1+M1+R3 ISMA	1+M1+R1	76 1+M1+R1	1+M1+R1	76 70 100 1.00 1.00 1.00 1.00 1.00 1.00 1.	γ _G γ _Q γ _Q	1+M1+R1		

ucililli ua	progettist	a	_	1.00	1.00	1.00	1.00	2.10	l	▼ //	41 1125
										· ~	
n	1	2	3	4	5 O	7	≥10 ○	T.A.	prog.	<u> </u>	
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00		
<u>ξ</u> ₄	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00		
									_	•	

						Parametri m	edi	Para	ametri minii	mi
strati terreno	descrizione	quote	γ	γ'	φ	k _p	Cu	φ	k _p	Cu
		(m)	(kN/m ³)	(kN/m ³)	(°)		(kPa)	(°)		(kPa)
p.c.=strato 1	a2	100.00	19	9		1.00	70		1.00	70
✓ strato 2	TRV	93.00	20	10		1.00	200		1.00	200
□ strato 3						1.00			1.00	
□ strato 4						1.00			1.00	
□ strato 5						1.00			1.00	
□ strato 6						1.00			1.00	

Quota falda 100 (m)

Diametro del palo D 120 (m)

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV02

RELAZIONE GEOTECNICA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09RH
 IV 02 00 001
 C
 19 di 21

Momento di plasticizzazione palo My 2282.00 (kNm)
Step di calcolo 0.01 (m)

palo impedito di ruotare

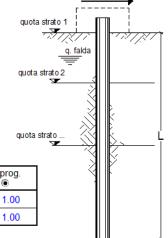
C palo libero

Calcolo (ctrl+r)

	<u>H</u>	l medio			<u>H</u>	minimo		
Palo lungo		1598.9	(kN)			1598.9	(kN)	
Palo intermedio		19123.6	(kN)			19123.6	(kN)	
Palo corto		57938.8	(kN)			57938.8	(kN)	
	H_{med}	1598.9	(kN)	Palo lungo	\mathbf{H}_{\min}	1598.9	(kN)	Palo lungo
	H _k =	Min(H _{med}	/ξ ₃ ; R _m	_{in} /ξ ₄)	1598.	94	(kN)	
	H	$H_d = H_k/\gamma_T$			579.3	3	(kN)	
	Carico Ass	siale Perma	inente (G	G =	444		(kN)	
	Carico Ass	siale variab	ile (Q):	Q =	0		(kN)	
	F _d = G	i∙ γ _G + Q ∙ γ	_{'Q} =		444.0	0	(kN)	
	FS	= Hd / Fd	=		1.30)		

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3A)

Viadotto IV02


RELAZIONE GEOTECNICA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09RH IV 02 00 001 C 20 di 21

opera pila

	coefficienti parziali Metodo di calcolo		Α		l N	1	R	que
			permanenti '/G	variabili %	γφ.	γou	γт	
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	
\supset	A2+M1+R2	0	1.00	1.30	1.00	1.00	1.60	quo
SLU	A1+M1+R3	0	1.30	1.50	1.00	1.00	1.30	
	SISMA	0	1.00	1.00	1.00	1.00	1.30	
DM88	'	0	1.00	1.00	1.00	1.00	1.00	
definiti d	dal progettista	•	1.00	1.00	1.00	1.00	2.76	quo

D

n	1	2	3	4 O	5 O	7	≥10 ○	T.A. O	prog.
ξ ₃	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ ₄	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

					Parametri medi			Parametri minimi		
strati terreno	descrizione	quote	γ	γ'	φ	k _p	Cu	φ	k _p	Cu
		(m)	(kN/m ³)	(kN/m ³)	(°)		(kPa)	(°)		(kPa)
p.c.=strato 1	a2	100.00	19	9		1.00	70		1.00	70
✓ strato 2	TRV	93.00	20	10		1.00	200		1.00	200
□ strato 3						1.00			1.00	
□ strato 4						1.00			1.00	
□ strato 5						1.00			1.00	
□ strato 6						1.00			1.00	

Quota falda 100 (m)

Diametro del palo D 120 (m)

Momento di plasticizzazione palo My			3468.00	(kNm)					
Step di calcolo			0.0	1 (m)					
ତ palo impedito di ruotare ଠ palo libero			(Calcolo (ctrl+r)					
	<u>H</u>	l medio				<u>H</u>	l minimo		
Palo lungo		2158.4	(kN)				2158.4	(kN)	
Palo intermedio		9403.6	(kN)				9403.6	(kN)	
Palo corto		32018.8	(kN)				32018.8	(kN)	
	H_{med}	2158.4	(kN)	Palo lung	0	\mathbf{H}_{\min}	2158.4	(kN)	Palo lungo
$H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4)$						2158.38		(kN)	
$H_d = H_k / \gamma_T$						782.02		(kN)	
Carico Assiale Permane				S):	G =	731		(kN)	
Carico Assiale variabil					Q =	0		(kN)	
$F_d = G \cdot \gamma_G + Q \cdot \gamma_Q =$						731.0	00	(kN)	
FS = Hd / Fd =						1.07	7		

4.6 Verifica a carico limite orizzontale con palo scalzato

Le fondazioni non risultano interessate da scalzamento.