COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3)

VIABILITA' - VIADOTTI NW04 – VIADOTTO STRADALE SU NV62A Relazione di calcolo spalla B

SCALA:
-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

RS3T 30 D 09 CL NW0400 008 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Mag-2020	A.Ferri	Mag-2020	A.Barreca	Mag-2020	anti i Rom
				78				A. i delle varianti Ittozzi Tovincia di Romz
								S.p.A. ione de lo Vitto
								9. West
								ITA Pott. In
								U.O. Opere C Dott Ordine degli In
								U.(

File: RS3T.3.0.D.09.CL.NW.04.0.0.008.A n. Elab.: 09_683_1

TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09CL
 NW 04 00 008
 A
 2 di 63

INDICE

1	PRE	MESSA	4
	1.1	DESCRIZIONE DELL'OPERA	4
2	RIFE	ERIMENTI NORMATIVI	6
3	MAT	TERIALI	7
	3.1	VERIFICA S.L.E.	8
	3.1.1	Verifiche alle tensioni	8
	3.1.2	Verifiche a fessurazione	8
4	ANA	ALISI E VERIFICHE SPALLA	10
	4.1	Generalità	10
	4.2	MODELLI A MENSOLA PER LA VERIFICA DELLE SPALLE	10
	4.3	CONDIZIONI ELEMENTARI E COMBINAZIONI DI CARICO	10
	4.4	SISTEMI DI RIFERIMENTO ED UNITÀ DI MISURA	14
	4.5	GEOMETRIA DELLA SPALLA	15
	4.6	Analisi dei carichi	17
	4.6.1	Peso proprio elementi strutturali	17
	4.6.2		
	4.6.3	Azione del Vento	18
	4.6.4		
	4.6.5		
	4.6.6		
	4.6.7		
	4.6.8		
	4.6.9		
		0 Incremento di spinta del terrapieno	
		1 Inerzie strutturali	
		2 Calcolo delle sollecitazioni in testa pali	
	7.0.1	2 - Carcoro acae somechazioni in resia pari	20

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3B)

Viadotto NW04

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
DCST	30	DOOCI	NW 04 00 008	۸	3 di 63

4.6.1	3 Riepilogo risultati	29
4.7	SOLLECITAZIONI	34
4.7.1	Muro paraghiaia	34
4.7.2	Muro frontale	36
4.7.3	Plinto di fondazione	38
4.8	PALI DI FONDAZIONE	40
4.9	VERIFICHE DEGLI ELEMENTI STRUTTURALI	41
4.9.1	Paraghiaia	42
4.9.2	Muro frontale	49
4.9.3	Zattera di fondazione	57
4.9.4	Palo di fondazione	59

1 PREMESSA

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo del corpo stradale ferroviario, delle opere d'arte e delle opere interferite relative al progetto definitivo della direttrice ferroviaria Messina-Catania-Palermo nell'ambito del nuovo collegamento Palermo - Catania.

La presente relazione ha per oggetto il dimensionamento e le verifiche di resistenza secondo il metodo semiprobabilistico agli Stati Limite (S.L.) di una delle spalle del viadotto NW04 sulla viabilità NV62. In particolare si tratterà la spalla B che presenta appoggi "mobili" dell'impalcato.

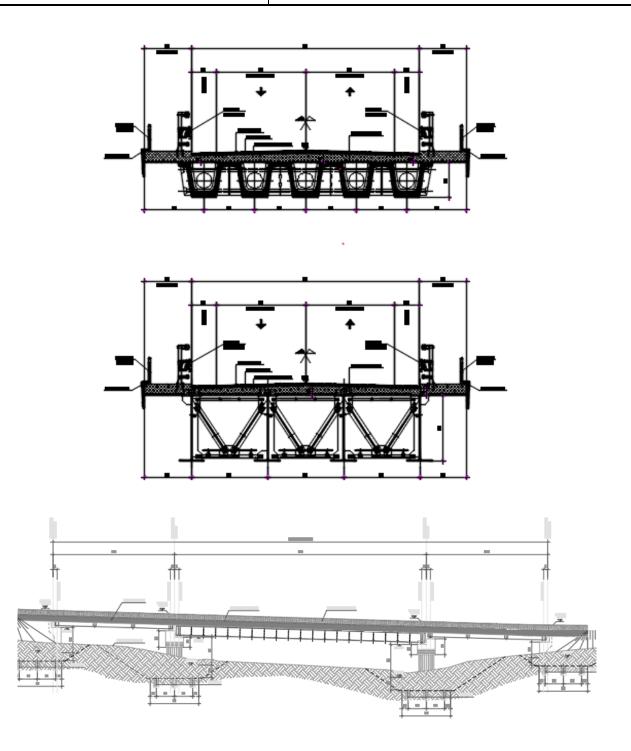
Le analisi strutturali e le verifiche di sicurezza sono state effettuate secondo il DM 17 gennaio 2018.

1.1 Descrizione dell'opera

Per la NV62A - Adeguamento SP145 Continuità provinciale (Strada Extraurbana Principale F1 Corsia 3.50m + Banchina 1.00m b=9.00m) in corrispondenza della progressiva 1+550 viene previsto un viadotto di lunghezza totale di 98 m circa.

Il viadotto è suddiviso in 3 campate da 24.0, 49.0 e 24.0m di luce; gli impalcati di luce 24.0m saranno costituiti da cinque travi a cassone in calcestruzzo prefabbricato, mentre la campata centrale, di luce 49.0m, da un sistema misto acciaio-calcestruzzo composto da 4 travi in carpenteria metallica e soletta superiore in c.a. collaborante.

Pila e spalle saranno realizzate in c.a. gettato in opera e fondate su pali di grande diametro.


TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09CL
 NW 04 00 008
 A
 5 di 63

Sezione trasversale e prospetto

2 RIFERIMENTI NORMATIVI

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Ministero delle Infrastrutture, DM 17 gennaio 2018, Aggiornamento delle «Norme tecniche per le costruzioni».
- Ministero delle Infrastrutture, Circolare n°7 21 gennaio 2019, Istruzioni per l'Applicazione delle «Norme tecniche per le costruzioni».
- Istruzione RFI DTC SI PS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 2 Ponti e Strutture
- Istruzione RFI DTC SI CS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 3
 Corpo Stradale
- Regolamento (UE) N.1299/2014 del 18 novembre 2014 della Commissione Europea. Relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019.

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA LOTTO CODIFICA 30

DOCUMENTO NW 04 00 008

RFV **FOGLIO** 7 di 63

3 **MATERIALI**

Le caratteristiche dei materiali previsti le sottostrutture sono le seguenti:

Calcestruzzo magro e getti di livellamento

CLASSE DI RESISTENZA MINIMA C12/15

TIPO CEMENTO CEM I÷V

CLASSE DI ESPOSIZIONE AMBIENTALE : XO

Calcestruzzo per pali di fondazione

- CLASSE DI RESISTENZA MINIMA C25/30

TIPO CEMENTO CEM III÷V RAPPORTO A/C : ≤ 0.60

- CLASSE MINIMA DI CONSISTENZA : S4
- CLASSE DI ESPOSIZIONE AMBIENTALE : XC2
- COPRIFERRO MINIMO = 60 mm

DIAMETRO MASSIMO INERTI: 32 mm

Calcestruzzo per fondazioni

- CLASSE DI RESISTENZA MINIMA C28/35

- CLASSE DI RESISTENZA MINIMA C20/35
- TIPO CEMENTO CEM III÷V
- RAPPORTO A/C: ≤ 0.60
- CLASSE MINIMA DI CONSISTENZA: S4
- CLASSE DI ESPOSIZIONE AMBIENTALE: XC2
- COPRIFERRO = 40 mm
- DIAMETRO MASSIMO INERTI: 25 mm

Calcestruzzo elevazione

CLASSE DI RESISTENZA MINIMA C32/40 TIPO CEMENTO CEM III÷V RAPPORTO A/C: ≤ 0.50 CLASSE MINIMA DI CONSISTENZA: S4 CLASSE DI ESPOSIZIONE AMBIENTALE: XC4 COPRIFERRO = 40 mm (*) DIAMETRO MASSIMO INERTI: 25 mm

IN BARRE E RETI ELETTROSALDATE

IN BARRE E REII ELETTRUSALDATE
B450C saldabile che presenta le seguenti caratteristiche :

- Tensione di snervamento caratteristica fyk > 450 N/mm²
Tensione caratteristica a rottura ftk > 540 N/mm²

 $1.15 \le ftk/fyk < 1.35$

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	NW 04 00 008	Α	8 di 63

3.1 Verifica S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

3.1.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente a trazione" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario RFI DTC INC PO SP IFS 001 A del 2019 ", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{ok};
- per combinazioni di carico quasi permanente: 0,40 f_{ck};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75 f_{vk}$.

3.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL NW 04 00 008 A 9 di 63

Tabella 1 – Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Gruppi di			Armatura					
Gruppi di esigenza	Condizioni ambientali	Combinazione di azione	Sensibile	Poco sensibile				
esigenza			Stato limite	wd	Stato limite	wd		
a	Ordinarie	frequente	ap. fessure	\leq w ₂	ap. fessure	\leq w ₃		
a		quasi permanente	ap. fessure	\leq w ₁	ap. fessure	\leq w ₂		
b	Aggressive	frequente	ap. fessure	\leq w ₁	ap. fessure	\leq w ₂		
U		quasi permanente	decompressione	-	ap. fessure	\leq w ₁		
С	Molto Aggressive	frequente	formazione fessure	-	ap. fessure	\leq w ₁		
		quasi permanente	decompressione	-	ap. fessure	\leq w ₁		

Tabella 4.1.III – Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE			
Ordinarie	X0, XC1, XC2, XC3, XF1			
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3			
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4			

Risultando:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Data la maggior restrittività, alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel DM 17.1.2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

Combinazione Caratteristica (Rara)

$$\delta_f \leq w_1 = 0.2 \ mm$$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura riportata al C4.1.2.2.4.5 della Circolare n. 7/19.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA
TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
THE REPORT OF THE B	RS3T	30	D09CL	NW 04 00 008	Α	10 di 63

4 ANALISI E VERIFICHE SPALLA

4.1 Generalità

La spalla presentano una configurazione a paramento di spessore 2.40 m e muri di risvolto per il contenimento del rilevato retrostante di spessore 1.30 m. L'altezza della spalla B (escluso paraghiaia) è pari a 3.10 m.

Entrambe le spalle hanno in testa un paraghiaia di spessore 0.5 m ed altezza di circa 2.50 cm dalla testa muro frontale.

Le fondazioni sono realizzate su pali di diametro 1.50m collegate in testa da una platea di spessore 2.50 m.

Per le verifiche dei singoli elementi della spalla (pali, platea di fondazione ed elevazioni) è stata effettuata un'analisi dei carichi agenti sul piano appoggi e allo spiccato della fondazione; l'analisi viene riportata nelle pagine seguenti.

4.2 Modelli a mensola per la verifica delle spalle

Le sollecitazioni di verifica della spalla sono state determinate a partire dai valori delle risultanti delle azioni trasmesse dagli impalcati alla quota degli apparecchi di appoggio alle quali vanno combinate le azioni determinate dalle spinte del terreno di riempimento e del sovraccarico in condizioni sia statiche che sismiche e le azioni date dalle forze di inerzia e dal peso proprio delle sottostrutture.

Tutti i muri sono considerati sconnessi fra loro per la valutazione delle sollecitazioni alla base e quindi le azioni provenienti dall'impalcato sono applicate solamente al muro frontale. Tale schema pur risultando cautelativo, non fornisce sovrastime eccessive nel calcolo dei quantitativi di armatura previsti.

Il modello della struttura è stato implementato in un foglio di calcolo appositamente realizzato per la valutazione delle azioni agenti sulle singole parti della struttura, quali muro paraghiaia e muro frontale che vengono tutti modellati come delle mensole incastrate alla base.

Per il plinto di fondazione, si è utilizzato un modello tirante-puntone per l'analisi e la verifica dello zoccolo anteriore al muro frontale.

Per quanto riguarda invece le sollecitazioni sui pali di fondazione a partire dalle azioni risultanti nel baricentro del plinto alla quota di intradosso, sono stati calcolati, per ciascuna combinazione di carico, gli sforzi assiali e di taglio in testa ai pali di fondazione utilizzando il classico modello a piastra rigida.

4.3 Condizioni elementari e combinazioni di carico

Le verifiche di sicurezza strutturali e geotecniche sono state condotte utilizzando combinazioni di carico definite in ottemperanza alle NTC18, secondo quanto riportato nei paragrafi 2.5.3, 5.1.3.12. Di seguito sono mostrati i coefficienti parziali di sicurezza utilizzati allo SLU ed i coefficienti di combinazione adoperati per i carichi variabili nella progettazione delle strutture da ponte.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	NW 04 00 008	Α	11 di 63

2.5.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots \tag{2.5.1}$$

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

Per le verifiche geotecniche si è fatto riferimento alla combinazione (A1+M1+R3) di coefficienti parziali prevista dall'Approccio 2.

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	NW 04 00 008	Α	12 di 63

Tab. 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1	A2	
Azioni permanenti \mathbf{g}_1 e \mathbf{g}_3	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00	
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	YG2	0,00 1,50	0,00 1,50	0,00 1,30	
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15	
Azioni variabili	favorevoli sfavorevoli	YQI	0,00 1,50	0,00 1,50	0,00 1,30	
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Ye1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00	
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Ye2, Ye3, Ye4	0,00 1,20	0,00 1,20	0,00 1,00	

⁽i) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Tab. 5.1.VI - Coefficienti & per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente \$\psi_0\$ di combi- nazione	Coefficiente Ψ ₁ (valori frequenti)	Coefficiente ψ_2 (valori quasi permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

 $\textbf{Tab. 6.4.I} - \textbf{Coefficienti parziali } \gamma_{R} \ per \ le \ verifiche \ agli \ stati \ limite \ ultimi \ di \ fondazioni \ superficiali$

	1 101 2
Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_{R} = 2,3$
Scorrimento	$\gamma_R = 1,1$

[@]Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti. © 1,30 per instabilità in strutture con precompressione esterna

^{(01,20} per effetti locali

Nel seguito si riportano le azioni considerate ai fini della valutazione delle sollecitazioni agenti sulle sottostrutture e, quindi , alle verifiche strutturali.

	A2-SLU-N max gr.1	A2-SLU-MT max gr.1	A2-SLU-ML max gr.1	A2-SLU-N max gr.3	A2 - SLU - MT max gr.3	A2 - SLU - ML max gr.3	A2 - SLU - Vento ponte scarico	A2 - SLU Gmin - N max gr.1	A2-SLU Gmin-MT max gr.1	A2-SLU Gmin-ML max gr.1	A2 - SLU Gmin - N max gr.3	A2-SLU Gmin-MT max gr.3	A2 - SLU Gmin - ML max gr.3	A2 - SLU Gmin - Vento ponte scarico	A1-SLU - N max gr.1	A1-SLU-MT max gr.1	A1-SLU-ML max gr.1	A1 - SLU - N max gr.3	A1-SLU-MT max gr.3	A1-SLU-ML max gr.3	A1 - SLU - Vento ponte scarico	A1-SLU Gmin-N max gr.1	A1-SLU Gmin-MT max gr.1	A1-SLU Gmin-ML max gr.1	A1-SLU Gmin-N max gr.3	A1 - SLU Gmin - MT max gr.3	A1-SLU Gmin-ML max gr.3	A1 - SLU Gmin - Vento ponte scarico
Peso proprio gl	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.00	1.00	1.00	1.00	1.00	1.00	
Permanenti G2	1.30	1.30	1.30	1.30	1.30	1.30	1.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.50	1.50	1.50	1.50	1.50	1.50	1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Ballast	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Comb. Nmax Qv	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00
Comb. Nmax Q frenatura	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00
Comb. Nmax Q centrifuga	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00
Comb. Nmax Q serpeggio	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00
Comb. MTmax Qv	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00
Comb. MTmax Q frenatura	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00
Comb. MTmax Q centrifuga	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00
Comb. MTmax Q serpeggio	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00
Comb. MLmax Qv	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00
Comb. MLmax Q frenatura	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00
Comb. MLmax Q centrifuga	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00
Comb. MLmax Q serpeggio	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00
Vento Ponte Scarico	0.00	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	1.50	0.00	0.00	0.00	0.00	0.00	0.00	1.50
Vento Ponte Carico	0.78	0.78	0.78	0.78	0.78	0.78	0.00	0.78	0.78	0.78	0.78	0.78	0.78	0.00	0.90	0.90	0.90	0.90	0.90	0.90	0.00	0.90	0.90	0.90	0.90	0.90	0.90	0.00
Attrito permanente	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.00
Attrito carichi mobili	1.25	1.25	1.25	1.25	1.25	1.25	0.00	1.25	1.25	1.25	1.25	1.25	1.25	0.00	1.45	1.45	1.45	1.45	1.45	1.45	0.00	1.45	1.45	1.45	1.45	1.45	1.45	0.00
Sisma longitudinale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma trasversale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma verticale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

SLE rara - N max gr.1	SLE rara - MT max gr.1	SLE rara - ML max gr.1	SLE rara - N max gr.3	SLE rara - MT max gr.3	SLE rara - ML max gr.3	SLE rara - Vento ponte scarico	SLE freq N max gr.1	SLE freq MT max gr.1	SLE freq ML max gr.1	SLE freq N max gr.3	SLE freq MT max gr.3	SLE freq ML max gr.3	SLE freq Vento ponte scarico	SLE quasi permanente	SLV - N max	SLV - MT max	SLV - ML max	SLV - MT max	SLV - ML max	SLV - N min	
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Peso proprio gl
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Permanenti G2
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Ballast
1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Qv
0.50	0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Q frenatura
1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Q centrifuga
1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Q serpeggio
0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Qv
0.00	0.50	0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Q frenatura
0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Q centrifuga
0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00	0.00	Comb. MTmax Q serpeggio
0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Qv
0.00	0.00	0.50	0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q frenatura
0.00	0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00	Comb. MLmax Q centrifuga
0.00	0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00	Comb. MLmax Q serpeggio
0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Vento Ponte Scarico
0.60	0.60	0.60	0.60	0.60	0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Vento Ponte Carico
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.50	0.50	0.50	0.50	0.50	0.50	Attrito permanente
1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.80	0.80	0.80	0.80	0.80	0.80	0.00	0.00	0.20	0.20	0.20	0.20	0.20	0.20	Attrito carichi mobili
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	0.30	1.00	0.30	1.00	0.30	Sisma longitudinale
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	1.00	0.30	1.00	0.30	0.30	Sisma trasversale
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.30	0.30	-0.30	-0.30	-1.00	Sisma verticale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	NW 04 00 008	Α	14 di 63

Gli scarichi agli appoggi, riportati nei paragrafi seguenti, fanno riferimento alla seguente terna di assi:

- asse X coincidente con l'asse longitudinale del ponte;
- asse Y coincidente con l'asse trasversale del ponte;
- asse Z coincidente con l'asse verticale del ponte;

Per quanto riguarda la risposta alle diverse componenti dell'azione sismica, poiché si è adottata un'analisi in campo lineare, essa può essere calcolata separatamente per ciascuna delle componenti. Gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc) sono combinate successivamente applicando l'espressione

$$1.00 \cdot Ex + 0.30 \cdot Ey + 0.30 \cdot Ez$$

con rotazione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

Occorre precisare che con il segno negativo verranno indicate le azioni aventi direzione positiva delle Z (ovvero dirette verso l'alto).

4.4 Sistemi di riferimento ed unità di misura

- Asse X parallelo all'asse longitudinale dell'impalcato
- Asse Y ortogonale all'asse longitudinale dell'impalcato
- Asse Z verticale

- Lunghezze = m

RELAZIONE DI CALCOLO SPALL B

- Forze = kN

4.5 Geometria della spalla

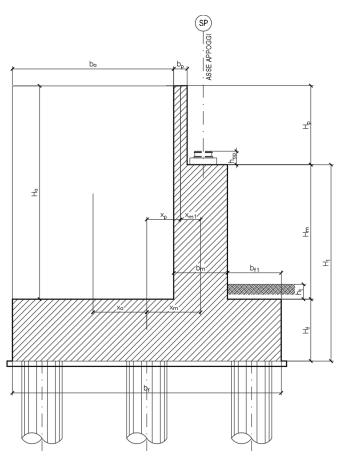


Figura 1 – Significato dei simboli: sezione tipologica

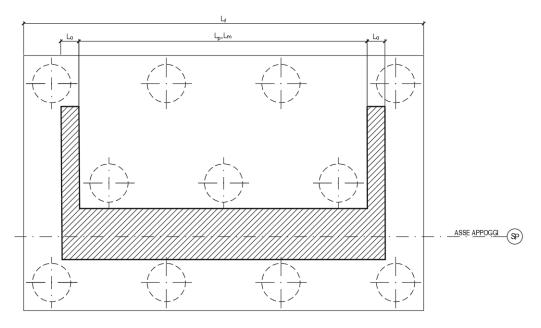


Figura 2 – Significato dei simboli: pianta tipologica

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09CL
 NW 04 00 008
 A
 16 di 63

Generali			
Peso cls	γ_{c1s}	25	kN/m ³
Peso terreno	γt	20	kN/m ³
Sovraccarico accidentale sul rilevato	q _{acc}	20.0	kN/m ²
Altezza appoggio + baggiolo	h _{ap}	0.40	m
Distanza piano appoggi-intradosso plinto	H ₁	6.00	m
Paraghiaia			
Altezza	H_p	2.50	m
Lunghezza lungo asse X	b _p	0.5	m
Lunghezza lungo asse Y	L _p	11.30	m
Distanza tra i muri andatori dir. Y		11.30	m
Coordinata X del baricentro rispetto fondazione	Xp	2.35	m
Muro frontale			
Altezza	H_m	3.10	m
Lunghezza lungo asse X	b _m	2.40	m
Lunghezza lungo asse Y	L_m	10.10	m
Coordinata X del baricentro rispetto fondazione	x _m	3.30	m
Coordinata X del baricentro rispetto paraghiaia	x _{ml}	-0.95	m
Distanza asse baggioli- asse muro frontale		0.40	m
Plinto			
Altezza	$H_{\rm f}$	2.50	m
Lunghezza lungo asse X	$\mathfrak{b}_{\mathrm{f}}$	12.00	m
Lunghezza lungo asse Y	$L_{\rm f}$	16.50	m
Mensola anteriore plinto	$\mathfrak{b}_{\mathrm{fl}}$	1.50	m
Spessore ricoprimento medio	\mathbf{h}_{t}	1.00	m
Distanza asse baggioli - baricentro plinto		3.70	m
Muro andatore			
Altezza	Ha	5.60	m
Lunghezza di un singolo muro lungo asse Y	La	1.30	m
Lunghezza di un singolo muro lungo asse X	b _a	8.10	m
Coordinata X del baricentro rispetto fondazione	Xa	-1.95	m
Terreno			
Angolo d'attrito interno (φ)		35	0
Coefficiente per il calcolo della spinta a riposo	•	Ko= 0.426	
Sisma			
S _s		1.000	
ag		0.150	
Coefficiente riduttivo		1.00	
Coefficiente sismico orizzontale	$\mathbf{k}_{\mathtt{h}}$	0.150	
Mononobe e Okabe	K _{AE}	0.368	
Coefficiente per sisma verticale	\mathbf{k}_{v}	0.075	

Tabella 2 – Dati di input

4.6 Analisi dei carichi

4.6.1 Peso proprio elementi strutturali

> Peso proprio strutture

I pesi degli elementi strutturali sono calcolati utilizzando un peso di volume del calcestruzzo pari a 25 kN/m³.

Impalcato			
Nº Corsie convenzionali		3	
Lunghezza	L	25	m
Peso Proprio	G1	230	kN/m
Permanenti portati	G2	80	kN/m
nº totale appoggi sulla spalla	n	5	
Reazione appoggio i = (G1*L/2)/n	Ri	575.0	kN
Reazione appoggio i = (G2*L/2)/n	Ri	200.0	kN
Reazione appoggio i = (G2*L/2)/n (ballast)	Ri	0	kN

4.6.2 Carichi trasmessi dall'impalcato

I carichi del traffico vengono dedotti dal modello FEM dell'impalcato. Sul singolo appoggio forniscono i risultati in tabella seguente.

Appoggio		A					C			D						
Descrizione carico	FZ	FX	FY	biz												
Descrizione canco	[kN]	[m]														
Peso proprio G1	575			575			575			575			575			0.00
Permanenti G2	200			200			200			200			200			0.00
																0.00
Comb. Nmax Q1	376			288			562			194			277			0.00
Comb. Nmax Q3 frenatura																1.80
Comb. Nmax Q4 centrifuga						0										1.80
Comb. Nmax Q folla	171			38			29			38			171			0.00
Comb. MTmax Q1	566			286			56			25			11			0.00
Comb. MTmax Q3 frenatura																1.80
Comb. MTmax Q4 centrifuga						0										1.80
Comb. MTmax Q folla	202			62			24			14			-31			0.00
Comb. MLmax Q1	0			0												0.00
Comb. MLmax Q3 frenatura																1.80
Comb. MLmax Q4 centrifuga						0										1.80
Comb. MLmax Q folla																0.00
Vento Ponte Scarico						36			36							2.30
Vento Ponte Carico						65			65							3.30
Attrito permanente		23	23		23	23		23	23		23	23		23	23	0.00
Attrito carichi mobili		17	17		9	9		17	17		6	6		8	8	0.00
Sisma longitudinale		0			0			0			0			0		1.80
Sisma trasversale			133			125			133			122			125	1.80
Sisma verticale	67			62			67			61			62			0.00

Forza trasversale al piano appoggi

Vento impalcato a ponte carico Forza statica equivalente

Forza trasversale al piano appoggi

Luce impalcato

RELAZIONE DI CALCOLO SPALL B

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09CL
 NW 04 00 008
 A
 18 di 63

4.6.3 Azione del Vento

Condizione (ponte carico o scarico)		scarico	carico	
Altitudine sul livello del mare	as	430	430	m
Zona	Z	4	4	
Parametri	Vb,0	28	28	m/s
Parametri	a0	500	500	m
Parametri	ks	0.36	0.36	1/s
Velocità di riferimento (Tr=50anni)	vb=vb0 * (1+ ks(as/ao-1)	28	28	m/s
Periodo di ritorno considerato	TR	150	150	anni
	αR	1.06	1.06	
Velocità di riferimento	Vb(TR)	29.71	29.71	m/s
Densità dell'aria	ρ	1.25	1.25	kg/mc
Pressione cinetica di riferimento	qb=0.5*ρ*vb²	0.55	0.55	kN/mc
Classe di rugostità del terreno	4	D	D	
Distanza dalla costa		>10	>10	km
Altitudine sul livello del mare		<750	<750	m
Categoria di esposizione del sito	Cat	II	II	
Vento su impalcato				
Parametri	kr	0.19	0.19	
Parametri	z0	0.05	0.05	m
Parametri	zmin	4	4	m
Altezza di riferimento per l'impalcato (EC punto 8.3.1(6))	z	8	8	m
Coefficiente di topografia	ct	1	1	
Coefficiente di esposizione (z)	ce(z)	2.21	2.21	
Larghezza impalcato	b	12.7	12.7	m
Altezza impalcato	h1	1.9	1.9	m
Altezza veicoli o parapetto	h2	1.5	3	m
Altezza totale impalcato (comprese le barriere o veicoli)	đtot	3.4	4.9	m
Rapporto di forma	b/dtot	3.74	2.59	
Coefficiente di forza (figura 8.3 EC)	cfx	1.38	1.72	
Riepilogo				
Pressione cinetica di riferimento	qb	0.55	0.55	kN/mc
Coefficiente di esposizione	ce	2.21	2.21	
Coefficiente di forza	cfx	1.38	1.72	
Altezza di riferimento (EC punto 8.3.1 (4) e (5))	đ	3.4	4.9	m
Forza statica equivalente a m/l	f=prodotto	5.7	10.3	kN/m
Pressione statica equivalente	p=f/d	1.68	2.10	kN/mo
Pressione statica equivalente (minima considerata)	pmin	1.5	1.5	kN/mo
Forza statica equivalente a m/l considerata	f	5.7	10.3	kN/m
Vento impalcato a ponte scarico				
Forza statica equivalente	f	5.7		kN/m
Luce impalcato	Ĺ	25		m

FT=f*L/2

L

FT=f*L/2

72

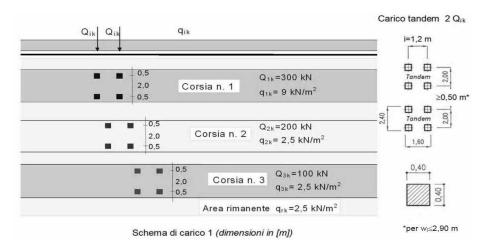
10.3

25

129

kN/m

kN/m


kN/m

4.6.4 Carichi da traffico verticali

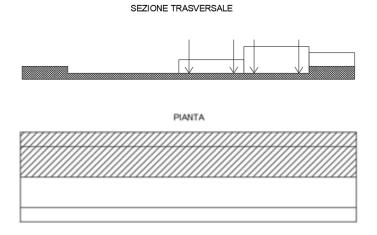
L'opera è stata progettata considerando le sollecitazioni dovute al carico da traffico veicolare.

Le azioni variabili del traffico definite nello Schema di Carico 1 sono costituite da carichi concentrati e da carichi uniformemente distribuiti. Tale schema è da assumere a riferimento sia per le verifiche globali, sia per le verifiche locali.

Il numero delle colonne di carichi mobili e la loro disposizione sono quelli massimi compatibili con la larghezza della carreggiata considerata, per i ponti di 1a Categoria.

Posizione	Carico asse Q _{ik} [kN]	q _{ik} [kN/m²]		
Corsia Numero 1	300	9		
Corsia Numero 2	200	2,5		
Corsia Numero 3	100	2,5		
Altre corsie	0,00	2,50		

Sui marciapiedi si applica lo Schema di Carico 5 (folla) con valore q= 5kN/mq.


Di seguito si farà riferimento alle due condizioni di carico seguenti:

- N max, massimo sforzo normale per la spalla: il carico è presente sull' impalcato con il numero massimo di corsie convenzionali geometricamente consentite. Si riporta di seguito uno schema esemplificativo:

Mt max, massimo momento lungo l'asse x (direzione di marcia): il carico è presente solo da un lato della carreggiata. Si riporta di seguito uno schema esemplificativo:

4.6.5 Carichi da traffico orizzontali

Frenatura						
L	25	m				
q 3	0	kN				
q3 (filtrata)	0	kN				

Centrifuga							
Raggio planimetrico	10000	m					
n° corsie	3						
Qv	1200	kN					
q4	0	kN					

4.6.6 Spinta statica del terrapieno

A tergo della spalla, applicato sulla zattera posteriore, viene considerato un carico pari al peso del rinterro calcolato con un peso di volume pari a $\gamma = 20 \text{ kN/m}^3$

L'espressione della spinta esercitata da un terrapieno di peso specifico γ, su una parete di altezza H, risulta:

$$S_o = 1/2 * \gamma * H^2 * K_o$$
 (spinta per metro lineare di spalla)

l'utilizzo di Ko è determinato dall'impossibilità, da parte della spalla, di subire spostamenti; si assume $K_o=1$ - sen ϕ .

Il punto di applicazione della spinta si trova in corrispondenza del baricentro del diagramma delle pressioni (1/3 H rispetto alla base della parete).

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09CL
 NW 04 00 008
 A
 21 di 63

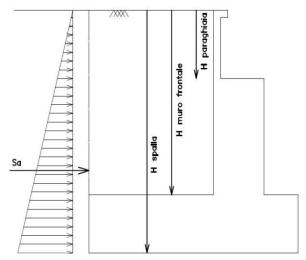


Fig. 1 Spinta statica terreno di rinterro

Per il terreno di riempimento si considera lo standard per rilevati ferroviari e si assegnano le seguenti caratteristiche meccaniche:

$$\gamma = 20 \; kN/m^3$$

$$\varphi'=35^{\circ}$$

$$c' = 0$$

4.6.7 Sovraccarico sul terrapieno

Nell'analisi delle azioni è stato inoltre considerato il contributo, in termini di sovraccarico verticale in fondazione e di spinta, del sovraccarico accidentale eventualmente presente a tergo spalla.

$$q = 20 \text{ kN/m}^2$$

$$S_q = 20 * 0.426 = 8.53 \text{ kN/m}^2$$

4.6.8 Spinta del sovraccarico accidentale condizioni statiche

In aggiunta in condizioni statiche si considera un sovraccarico accidentale pari a $Q = 20 \text{ kN/m}^2$ gravante sulla spalla e sul cuneo di spinta a tergo di essa

La presenza del sovraccarico Q genera una spinta pari a:

$$S_q = Q \cdot H \cdot K_0$$

Tale spinta è applicata ad una altezza pari a H/2.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA
TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09CL NW 04 00 008 A 22 di 63

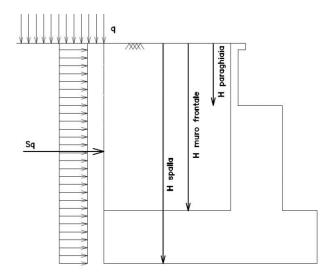


Fig. 2: Spinta statica sovraccarico accidentale

4.6.9 Azione sismica

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17 gennaio 2018 e relativa circolare applicativa.

> Azioni sismiche sulla Spalla

Per la valutazione dell'azione sismica associata ai carichi fissi propri e permanenti /accidentali agenti sulle spalle si utilizza il metodo dell'analisi pseudostatica in cui il sisma è rappresentato da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k_h (coefficiente sismico verticale) secondo quanto di seguito indicato:

Forza sismica orizzontale $F_h = k_h W$

Forza sismica verticale $F_v = k_v W$

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	NW 04 00 008	Α	23 di 63

Nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni

$$k_h = \beta_m \cdot \frac{a_{max}}{g} \tag{7.11.6}$$

$$k_{\rm v} = \pm 0.5 \cdot k_{\rm h}$$
 (7.11.7)

dove

 a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{\text{max}} = S \cdot a_g = S_S \cdot S_T \cdot a_g \tag{7.11.8}$$

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) , di cui al § 3.2.3.2;

 a_{σ} = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nella precedente espressione, il coefficiente β_m assume i valori riportati nella Tab. 7.11-II.

Per muri che non siano in grado di subire spostamenti relativi rispetto al terreno, il coefficiente β_m assume valore unitario.

Con riferimento al valore da assegnare al coefficiente β_m , si è fatto riferimento alle indicazioni di cui alla Tabella 7.1.II riportata nella stessa sezione della norma, tenendo tuttavia conto della specifica che prescrive, nel caso di muri che non siano in grado di subire spostamenti (quale è il caso delle spalle del viadotto in questione che in virtù della elevata rigidezza sia del sistema di fondazione che della parte in elevazione, è interessata da spostamenti trascurabili durante l'evento sismico) un valore del coefficiente β_m pari ad 1.0.

Assumendo tale valore si considera che, cautelativamente, il terreno di riempimento è rigidamente connesso alla spalla e non subisce deformazioni o movimenti relativi rispetto ad essa.

> Sovraspinta sismica del terreno

Per il calcolo della spinta del terreno sulle opere di sostegno, occorre tenere presente che la mobilitazione della spinta attiva avviene per spostamenti di entità contenuta, come si evince dalla seguente tabella desunta dall'EC7 - Parte 1 - Annesso C (C.3 "Movements to mobilise limit earth pressures):

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09CL
 NW 04 00 008
 A
 24 di 63

Table C.1 — Ratios v_s/h

Kind	Lof	v _a /h	v _a /h					
		_	_					
wali	movement	loose soil	dense soil					
		%	%					
a)	V _a	0,4 to 0,5	0,1 to 0,2					
b)	V _a	0,2	0,05 to 0,1					
c)	V _a	0,8 to 1,0	0,2 to 0,5					
d)	Va de	0,4 to 0,5	0,1 to 0,2					
where v _a	· ·							

In condizioni sismiche, l'entità degli spostamenti dipende principalmente dall'intensità dell'azione sismica e dalla rigidezza del sistema pali-terreno; pertanto, la possibilità di ammettere la mobilitazione della spinta attiva è subordinata alla valutazione degli spostamenti dell'opera e potrà essere valutata caso per caso. Cautelativamente, la valutazione degli spostamenti, da effettuarsi calcolando le spinte come somma della spinta attiva in condizioni statiche e dell'incremento di spinta attiva in condizioni sismiche, sarà riferita alla base dell'opera (i.e. alla sommità della palificata) e il confronto con i valori di riferimento per la mobilitazione della spinta attiva sarà effettuato in accordo con lo schema b) della tabella estratta dall'EC7 per terreni addensati (rilevati stradali e ferroviari). L'altezza *h* rispetto alla quale effettuare la verifica corrisponde all'altezza totale dell'opera su cui agisce la spinta del terreno, comprensiva dello spessore della fondazione.

Qualora, a seguito della verifica dell'entità degli spostamenti, non ricorressero le condizioni di spinta attiva, si procederà al calcolo delle spinte considerando la somma della spinta statica a riposo e dell'incremento di spinta sismica valutata con la teoria di Wood, secondo le indicazioni contenute nell'EC8 – Parte 5 – Annesso E (E.9 "Force due to earth pressure for rigid structures"):

$$\Delta S_S = (a_{max}/g) \cdot \gamma \cdot H^2$$

Tale risultante è applicata ad un'altezza pari ad H/2.

Qualora, a seguito della verifica dell'entità degli spostamenti, ricorressero le condizioni di spinta attiva, si confermerà la correttezza dell'ipotesi di calcolo delle spinte come somma della spinta attiva in condizioni statiche e dell'incremento di spinta attiva in condizioni sismiche.

Per la valutazione del coefficiente di spinta attiva in condizioni statiche si farà in generale riferimento alla formulazione di Muller – Breslau:

$$k_a = \frac{\cos^2(\alpha + \phi)}{\cos^2\alpha \cdot \cos(\alpha - \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta)}{\cos(\alpha - \delta) \cdot \cos(\alpha + \beta)}}\right]^2}$$

$$\alpha = \text{inclinazione del paramento di monte rispetto alla verticale}$$

$$\beta = \text{inclinazione del pendio di monte rispetto al piano}$$

- angolo di attrito interno del terreno

- δ = angolo di attrito terra-muro

Per la valutazione del coefficiente di spinta attiva in condizioni sismiche si farà riferimento alla formulazione di Mononobe-Okabe:

$$k_{a} = \frac{\cos^{2}(\phi - \alpha - \theta)}{\cos \theta \cdot \cos^{2} \alpha \cdot \cos(\delta + \alpha + \theta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta - \theta)}{\cos(\delta + \alpha + \theta) \cdot \cos(\beta - \alpha)}}\right]^{2}} \qquad \text{se } \beta \leq \phi - \theta$$

$$k_a = \frac{\cos^2(\phi - \alpha - 9)}{\cos 9 \cdot \cos^2 \alpha \cdot \cos(\delta + \alpha + 9)}$$
 se $\beta > \phi - \theta$

dove θ = angolo sismico, definito secondo la seguente espressione (in assenza di falda) in funzione dei coefficienti sismici k_h e k_v :

$$\tan \theta = k_h / (1 \pm k_v)$$

Nella determinazione dei coefficienti sismici k_h e k_v , per le spalle di ponti e viadotti ferroviari fondate su pali si porrà $\beta_m = 1$ in accordo con l'EC8-5.

Le forze di inerzia agenti sulla massa della struttura e del terreno presente sulla sua fondazione saranno valutate applicando l'accelerazione massima al suolo ag S.

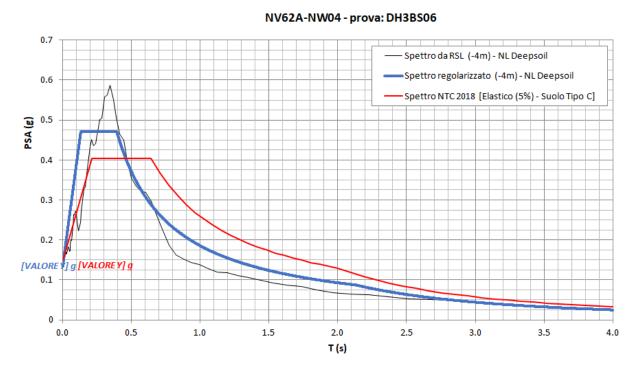
La spinta totale di progetto Ed esercitata dal terrapieno ed agente sull'opera di sostegno in condizioni sismiche è dunque data dalla somma della spinta a riposo, della spinta sismica e della spinta statica data dal sovraccarico accidentale combinata al 20% così come riportato nella Tabella 5.2.V delle NTC2018.


$$E_{\text{d}} = S_{\text{stat}} + 0.2 {\cdot} S_{\text{q}} + \Delta S_{\text{s}}$$

Infine, nel caso specifico non essendo presente la falda a tergo dell'opera, la spinta idrostatica è nulla.

Valori di progetto

La pericolosità sismica di base è stata definita sulla base delle coordinate geografiche del sito di realizzazione dell'opera:



I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.

Per il viadotto in esame è stato effettuato uno specifico studio di Risposta Simica Locale del quale si riportano i risultati:

Poiché per T=0 lo spettro di Normativa risulta maggiore, non verrà usato lo spettro da RSL.

4.6.10 Incremento di spinta del terrapieno

Avendo valutato preliminarmente l'entità dello spostamento della struttura in fase sismica, e ricorrendo le condizioni sovra descritte (EC7 - Parte 1 - Annesso C), l'incremento di spinta del terrapieno viene valutato secondo la teoria di Mononobe-Okabe (vedi relazione geotecnica).

Mononobe e Okabe								
Inclinazione Paramento	α	90.0						
Angolo d'attrito interno	φ	35.0	0					
Coefficiente sismico orizzontale	$\mathbf{k}_{\mathtt{h}}$	0.150						
Coefficiente per sisma verticale	\mathbf{k}_{v}	0.075						
θ (+k _v)		7.9						
θ (- k_v)		9.2						
Mononobe e Okabe (+k _v)	K _{AE}	0.353						
Mononobe e Okabe (-k _v)	K_{AE}	0.368						

4.6.11 Inerzie strutturali

Si valutano le inerzie legate alla massa degli elementi strutturali con la seguente formula:

$$F_i = k_h \cdot W_{str}$$

4.6.12 Calcolo delle sollecitazioni in testa pali

Le sollecitazioni agenti in testa palo vengono calcolate nell'ipotesi di platea di fondazione infinitamente rigida, attraverso la relazione

$$R(x,y) = \frac{N}{n} + \frac{M_l}{J_l} \cdot y + \frac{M_t}{J_t} \cdot x$$

dove

 N, M_1, M_t sono lo sforzo normale e i momenti flettenti longitudinale e trasversale agenti al baricentro della palificata, $n \grave{e}$ il numero di pali e Jl, Jt sono le inerzie longitudinale e trasversale della palificata

$$J_l = \sum y_i^2 \qquad \qquad J_t = \sum x_i^2$$

Per quanto riguarda le sollecitazioni orizzontali in testa palo, si assume che le azioni di taglio di ripartiscano uniformemente tra i pali, risultando

$$T(x,y) = \frac{\sqrt{H_l^2 + H_t^2}}{n}$$

dove H₁, H_t sono le forze orizzontali longitudinale e trasversale agenti al baricentro della palificata.

4.6.13 Riepilogo risultati

Il foglio automatico, sulla base di calcoli sviluppati nei fogli successivi, restituisce, per ciascuna combinazione i risultati del controllo di verifica.

Per ciascuna combinazione vengono riassunti:

- Le sollecitazioni al livello del piano di fondazione in termini di sforzo normale N, forza orizzontale T e momento ribaltante M.
- Per i carichi sui pali in termini di N_{max} , N_{min} , T ed M.

Fase statica

PARAGHIAIA

AZIONI SU SPALLA [kN,m]

cond statica

Descrizione carico		Fz	F_X	F_{Y}	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	353			0.00	0.00	1.25	0	0
Rinterro	g3		301		0.00	0.00	0.83	0	251
Frenatura sul paraghiai	a	300	180		0.00	0.00	2.50	0	450
Sovr. acc. sul rilevato			241		0.00	0.00	1.25	0	301

SPICCATO MURO FRONTALE

AZIONI SU SPALLA [kN,m]

cond statica

Descrizione carico		Fz	F_X	Fv	b _{ix}	b _{iv}	b _{iz}	M_x	M_{v}
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	353	0	0	-0.95		4.35	0	-335
Muro frontale	g1	2362	0	0			1.55	0	0
Totale Permanenti		2715	0	0				0	-335
Rinterro	g3		1698	0			1.87	0	3170
Sovr. acc. sul rilevato			540	0			2.80	0	1511

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

RS3T 30 D09CL NW 04 00 008 A

FOGLIO

30 di 63

FONDAZIONE

AZIONI SU SPALLA [kN,m]

cond statica

Descrizione carico		Fz	F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizion	e canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	353			2.35	0.00	6.85	0	830
Muro frontale	g1	2362			3.30	0.00	4.05	0	7795
Plinto	g ₁	12375			0.00	0.00	1.25	0	0
Muri andatori	g1	2948			-1.95	0.00	5.30	0	-5749
Totale Permanenti		18039						0	2876
Rinterro	g3	9163			-1.95	0.00	5.30	0	-17867
Ricop. Plinto	g3	1293			1.95	0.00	3.00	0	2521
Sovr. acc. sul rilevato		1831			-1.95	0.00	8.10	0	-3570
* Il sovraccarico a	ccidentale a terg	o della spai	lla è da con	siderarsi pı	resente in	tutte 1	e combi	nazioni	
Rinterro	g3		3553		-1.95	0.00	2.70	0	9594
Sovr. acc. sul rileva	ato		781		0.00	0.00	4.05	0	3161

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	NW 04 00 008	Α	31 di 63

Fase sismica Monobe-Okabe

PARAGHIAIA

AZIONI SU SPALLA [kN,m]

cond statica

Descrizione carico		FZ	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	353			0.00	0.00	1.25	0	0
Rinterro	Rinterro g3		191		0.00	0.00	0.83	0	159
Frenatura sul paraghiai	a	300	180		0.00	0.00	2.50	0	450
Sovr. acc. sul rilevato			153		0.00	0.00	1.25	0	191

cond sismica x

Descrizione carico		F_{Z}	F_X	$\mathbf{F}_{\mathbf{Y}}$	b _{ix}	b _{iy}	b _{iz}	\mathbf{M}_{x}	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q6	0	53	0	0.00	0.00	1.25	0	66
Rinterro	Inerzia		686				1.25	0	858
	Sovraspinta		77				0.83	0	64
Rinterro [totale]			764					0	923
Sovr. acc. sul rilevato			153		0.00	0.00	1.25	0	191
Totale generale			970					0	1180

cond sismica y

Descrizione carico		F_Z	F_X	$\mathbf{F}_{\mathbf{Y}}$	b_{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q6	0	0	53	0.00	0.00	1.25	66	0

cond sismica vert

Descrizione carico		Fz	F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia q6		26	0	0	0.00	0.00	1.25	0	0

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09CL NW 04 00 008 A 32 di 63

SPICCATO MURO FRONTALE

AZIONI SU SPALLA [kN,m]

con	a s	sta	T1C	2

Descrizione carico		Fz	F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizioni	e canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	353	0	0	-0.95		4.35	0	-335
Muro frontale	g1	2362	0	0			1.55	0	0
Totale	e Permanenti	2715	0	0				0	-335
Rinterro	g3		1079	0		1.87		0	2015
Sovr. acc. sul rile	ovr. acc. sul rilevato		343	0			2.80	0	960

cond sismica x

Deceminion		F_Z	F_X	F_{Y}	b _{ix}	b _{iy}	b_{iz}	M_x	M_y
Descrizion	Descrizione carico		[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q6		53		-0.95	0.00	4.35	0	230
Muro frontale	q6		354		0.00	0.00	1.55	0	549
Rinterro	Inerzia		1374				2.80	0	3848
	Sovraspinta		388				1.87	0	724
Rinterro [totale]			1762					0	4573
Sovr. acc. sul rilevato			343				2.80	0	960
Totale generale			2513					0	6313

cond sismica y

Descrizione carico		Fz	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizion	e canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q6			53	-0.95	0.00	4.35	230	0
Muro frontale	qб			354	0.00	0.00	1.55	549	0
Rinterro					0.00	0.00	0.00	0	0
Totale generale				407				780	0

cond sismica vert

Descrizione carico		Fz	F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q6	26			-0.95	0.00	4.35	0	-25
Muro frontale q6 177				0.00	0.00	1.55	0	0	
To	tale generale	204						0	-25

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA LOTTO CODIFICA

RS3T 30 D09CL

DOCUMENTO NW 04 00 008 REV. FOGLIO

33 di 63

Α

FONDAZIONE

AZIONI SU SPALLA [kN,m]

cond statica

Descrizion	o comico	Fz	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizioni	e canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	353			2.35	0.00	6.85	0	830
Muro frontale	g1	2362			3.30	0.00	4.05	0	7795
Plinto	g ₁	12375			0.00	0.00	1.25	0	0
Muri andatori	g1	2948			-1.95	0.00	5.30	0	-5749
Tota	ale Permanenti	18039						0	2876
Rinterro	g3	9163			-1.95	0.00	5.30	0	-17867
Ricop. Plinto	g3	1293			1.95	0.00	3.00	0	2521
Sovr. acc. sul rileva	ato	1831			-1.95	0.00	8.10	0	-3570
* Il sovraccarico ac	ccidentale a terg	o della spa	lla è da con	siderarsi pr	resente in	tutte 1	e comb	inazioni	
Rinterro	g3		2258		-1.95	0.00	2.70	0	6097
Sour acc subrileys	ato		406		0.00	0.00	4.05	0	2000

AZIONI SU SPALLA [kN,m]

cond sismica x

Descrizione carico		Fz	FX	Fy	b _{ix}	b _{iv}	b _{iz}	M_x	M_{v}
Descrizion	ne canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q ₆		53		2.35	0.00	6.85	0	363
Muro frontale	q ₆		354		3.30	0.00	4.05	0	1435
Plinto	q ₆		1856		0.00	0.00	1.25	0	2320
Muri andatori	q 6		442		-1.95	0.00	5.30	0	2344
Rinterro	Inerzia		1374		-1.95	0.00	5.30	0	7284
	Sovraspinta		812		-1.95	0.00	2.70	0	2192
Rinterro [totale]			2186				5.30	0	9476
Sovr. acc. sul rilevato		•	496	•	-1.95		5.30	0	2009
Totale generale			5388						17948

cond sismica y

Descrizion	o onico	Fz	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizione canco		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q 6			53	2.35	0.00	6.85	363	0
Muro frontale	q 6			354	3.30	0.00	4.05	1435	0
Plinto	q 6			1856	0.00	0.00	1.25	2320	0
Muri andatori	Q 6			442	-1.95	0.00	5.30	2344	0
Rinterro	Inerzia			1374	0.00		5.30	7284	0
	Sovraspinta			152			2.70	409	0
Rinterro [totale]				1526				7694	0
Sovr. acc. sul rilevato				496	-1.95		8.10	4018	0
Totale generale				4728				18174	0

cond sismica vert

Descrizione carico		Fz	F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	Q6	26			2.35	0.00	6.85	0.00	62
Muro frontale	Q 6	177			3.30	0.00	4.05	0.00	585
Plinto	q ₆	928			0.00	0.00	1.25	0.00	0
Muri andatori	q ₆	221			-1.95	0.00	5.30	0.00	-431
Rinterro	q ₆	687			0.00	0.00	0.00	0.00	0
Ricop. Plinto	Q 6	97			1.95	0.00	3.00	0.00	189
Totale generale		2137						0.00	405

4.7 Sollecitazioni

4.7.1 Muro paraghiaia

In condizioni statiche il muro paraghiaia è sollecitato dalla spinta del rilevato, dalla spinta dei sovraccarichi accidentali, dai sovraccarichi mobili agenti sulla mensola del muro e dall'azione di frenatura. In condizioni sismiche il muro paraghiaia è sollecitato dalla spinta sismica del rilevato, dalle masse del muro. Il modello di calcolo utilizzato è quello di mensola incastrata al muro frontale.

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL NW 04 00 008 A 35 di 63

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA ALLA BASE DEL PARAGHIAIA

	Nz [kN]	Tx [kN]	Ty [kN]	Mx [kN*m]	My [kN*m]
A2 - SLU - N max gr.1	698	876	0	0	1190
A2 - SLU - MT max gr.1	698	876	0	0	1190
A2 - SLU - ML max gr.1	698	876	0	0	1190
A2 - SLU - N max gr.2 A2 - SLU - MT max gr.2	698 698	876 876	0	0	1190 1190
A2 - SLU - ML max gr.2	698	876	0	0	1190
A2 - SLU - N max gr.3	698	876	0	0	1190
A2 - SLU - MT max gr.3	698	876	0	0	1190
A2 - SLU - ML max gr.3	698	876	0	0	1190
A2 - SLU - Vento ponte scarico A2 - SLU - N max gr.1	353 698	392 785	0	0	326 1115
A2 - SLU - MT max gr.1	698	785	0	0	1115
A2 - SLU - ML max gr.1	698	785	0	0	1115
A2 - SLU - N max gr.2	698	785	0	0	1115
A2 - SLU - MT max gr.2	698	785	0	0	1115
A2 - SLU - ML max gr.2 A2 - SLU - N max gr.3	698 698	785 785	0	0	1115 1115
A2 - SLU - MT max gr.3	698	785	0	0	1115
A2 - SLU - ML max gr.3	698	785	0	0	1115
A2 - SLU - Vento ponte scarico	353	301	0	0	251
A1 - SLU - N max gr.1	882	1020	0	0	1391
A1 - SLU - MT max gr.1	882	1020	0	0	1391
A1 - SLU - ML max gr.1	882	1020 1020	0	0	1391
A1 - SLU - N max gr.2 A1 - SLU - MT max gr.2	882 882	1020	0	0	1391 1391
A1 - SLU - ML max gr.2	882	1020	0	0	1391
A1 - SLU - N max gr.3	882	1020	0	0	1391
A1 - SLU - MT max gr.3	882	1020	0	0	1391
A1 - SLU - ML max gr.3	882	1020	0	0	1391
A1 - SLU - Vento ponte scarico	882	1020	0	0	1391
A1 - SLU - N max gr.1 A1 - SLU - MT max gr.1	758 758	869 869	0	0	1265 1265
A1 - SLU - ML max gr.1	758	869	0	0	1265
A1 - SLU - N max gr.2	758	869	0	0	1265
A1 - SLU - MT max gr.2	758	869	0	0	1265
A1 - SLU - ML max gr.2	758	869	0	0	1265
A1 - SLU - N max gr.3	758	869	0	0	1265
A1 - SLU - MT max gr.3	758 758	869 869	0	0	1265 1265
A1 - SLU - ML max gr.3 A1 - SLU - Vento ponte scarico	353	301	0	0	251
SLE Rara - N max gr.1	653	722	0	0	1002
SLE Rara - MT max gr.1	653	722	0	0	1002
SLE Rara - ML max gr.1	653	722	0	0	1002
SLE Rara - N max gr.2	653	722	0	0	1002
SLE Rara - MT max gr.2 SLE Rara - ML max gr.2	653 653	722 722	0	0	1002 1002
SLE Rara - Nil max gr.2 SLE Rara - N max gr.3	653	722	0	0	1002
SLE Rara - MT max gr.3	653	722	0	0	1002
SLE Rara - ML max gr.3	653	722	0	0	1002
SLE Rara - Vento ponte scarico	353	301	0	0	251
SLE Freq N max gr.1	578	617	0	0	814
SLE Freq MT max gr.1	578	617	0	0	814
SLE Freq ML max gr.1 SLE Freq N max gr.2	578 578	617	0	0	814 814
SLE Freq MT max gr.2	578	617	0	0	814
SLE Freq ML max gr.2	578	617	0	0	814
SLE Freq N max gr.3	578	617	0	0	814
SLE Freq MT max gr.3	578	617	0	0	814
SLE Freq ML max gr.3	578	617	0	0	814
SLE Freq Vento ponte scarico	353 653	301	0	0	251
SLE Q.P ML max gr.3 SLV -dir.X_1	653 421	722 1075	0 16	20	1002 1277
SLV -dir.X 2	405	1075	16	20	1277
SLV -dir.Y_1	421	503	53	66	584
SLV -dir.Y_2	405	503	53	66	584
SLV -dir.Z+	440	503	16	20	584
SLV -dir.Z-	387	503	16	20	584

Tabella 3 – Sollecitazioni alla base del muro paraghiaia

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA
TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
THE NEIGHE BY GREGOED OF THE B	RS3T	30	D09CL	NW 04 00 008	Α	36 di 63

4.7.2 Muro frontale

Le sollecitazioni riportate nella seguente tabella sono state ottenute dal modello di calcolo descritto nei paragrafi precedenti.

Per la verifica del muro frontale, a quota spiccato, tali azioni possono essere considerate uniformemente distribuite in quanto l'altezza del muro frontale è tale che nell' ipotesi di ripartizione a 45°, tali scarichi si ripartiscono uniformemente alla base del muro

Ai carichi prima riportati, si aggiungono il peso proprio del muro frontale, del muro paraghiaia e la spinta del terreno e del sovraccarico sul rilevato a tergo.

Si ottengono quindi le seguenti sollecitazioni, con riferimento alle combinazioni maggiormente significative.

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09CL
 NW 04 00 008
 A
 37 di 63

	Nz [kN]	Tx [kN]	Ty [kN]	Mx [kN*m]	My [kN*m]
A2 - SLU - N max gr.1	9099	3045	318	2118	8834
A2 - SLU - MT max gr.1	8132	3045	318	5191	8447
A2 - SLU - ML max gr.1	6890	3045	318	1446	7950
A2 - SLU - N max gr.2	8354	3045	318	1950	8536
A2 - SLU - MT max gr.2	7705	3045	318	3811	8276
A2 - SLU - ML max gr.2 A2 - SLU - N max gr.3	6890 8354	3045 3045	318 318	1446 1950	7950 8536
A2 - SLU - MT max gr.3	7705	3045	318	3811	8276
A2 - SLU - ML max gr.3	6890	3045	318	1446	7950
A2 - SLU - Vento ponte scarico	6890	2359	245	1072	5985
A2 - SLU - N max gr.1	8799	2500	283	1996	7641
A2 - SLU - MT max gr.1	7832	2500	283	5069	7254
A2 - SLU - ML max gr.1	6590	2500	283	1324	6757
A2 - SLU - N max gr.2	8054	2500	283	1828	7343
A2 - SLU - MT max gr.2	7405	2500	283	3689	7083
A2 - SLU - ML max gr.2	6590	2500	283 283	1324 1828	6757
A2 - SLU - N max gr.3 A2 - SLU - MT max gr.3	8054 7405	2500 2500	283	3689	7343 7083
A2 - SLU - ML max gr.3	6590	2500	283	1324	6757
A2 - SLU - Vento ponte scarico	6590	1815	210	950	4792
A1 - SLU - N max gr.1	11640	3527	368	2462	10410
A1 - SLU - MT max gr.1	10504	3527	368	6069	9956
A1 - SLU - ML max gr.1	9047	3527	368	1673	9373
A1 - SLU - N max gr.2	10765	3527	368	2265	10060
A1 - SLU - MT max gr.2	10003	3527	368	4450	9755
A1 - SLU - ML max gr.2	9047	3527	368	1673	9373
A1 - SLU - N max gr.3 A1 - SLU - MT max gr.3	10765 10003	3527 3527	368 368	2265 4450	10060 9755
A1 - SLU - ML max gr.3	9047	3527	368	1673	9373
A1 - SLU - Vento ponte scarico	9047	3527	359	1504	9373
A1 - SLU - N max gr.1	9183	2620	310	2258	8136
A1 - SLU - MT max gr.1	8048	2620	310	5866	7682
A1 - SLU - ML max gr.1	6590	2620	310	1470	7099
A1 - SLU - N max gr.2	8309	2620	310	2061	7786
A1 - SLU - MT max gr.2	8309	2620	310	2061	7786
A1 - SLU - ML max gr.2	7546	2620	310	4246	7481
A1 - SLU - N max gr.3	6590	2620	310	1470	7099
A1 - SLU - MT max gr.3 A1 - SLU - ML max gr.3	8309 7546	2620 2620	310 310	2061 4246	7786 7481
A1 - SLU - Vento ponte scarico	6590	1891	310	1470	5059
SLE Rara - N max gr.1	6590	2354	224	1033	6303
SLE Rara - MT max gr.1	8511	2411	251	1719	7269
SLE Rara - ML max gr.1	7670	2411	251	4391	6933
SLE Rara - N max gr.2	6590	2411	251	1135	6501
SLE Rara - MT max gr.2	7863	2411	251	1573	7010
SLE Rara - ML max gr.2	7298	2411	251	3192	6784
SLE Rara - N max gr.3	6590	2411	251	1135	6501
SLE Rara - MT max gr.3	7863 7298	2411 2411	251 251	1573 3192	7010 6784
SLE Rara - ML max gr.3 SLE Rara - Vento ponte scarico	6590	1871	251	1135	4990
SLE Freq N max gr.1	8031	2262	159	993	6650
SLE Freq MT max gr.1	7400	2262	159	2997	6397
SLE Freq ML max gr.1	6590	2262	159	555	6074
SLE Freq N max gr.2	7545	2262	159	884	6455
SLE Freq MT max gr.2	7121	2262	159	2098	6286
SLE Freq ML max gr.2	6590	2262	159	555	6074
SLE Freq N max gr.3	7545	2262	159	2009	6455
SLE Freq MT max gr.3 SLE Freq ML max gr.3	7121 6590	2262 2262	159 159	2098 555	6286 6074
SLE Freq Vento ponte scarico	6590	1815	131	490	4792
SLE Q.P ML max gr.3	6590	2411	173	605	6501
SLV -dir.X_1	6747	3445	441	1701	9251
SLV -dir.X_2	6434	3445	441	1689	9189
SLV -dir.Y_1	6963	1926	1173	5264	5591
SLV -dir.Y 2	6649	1926	1173	5252	5529
SLV -dir.Z+	7497	1926	441	1832	5729

Tabella 4 – Sollecitazioni alla base del muro frontale

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA
TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3B)
Viadotto NW04

DOCUMENTO

NW 04 00 008

CODIFICA

D09CL

REV.

FOGLIO

38 di 63

RELAZIONE DI CALCOLO SPALL B

Le sollecitazioni in direzione trasversale risultano trascurabili rispetto a quelle in direzione longitudinale, tenuto anche conto della geometria della sezione del muro frontale.

COMMESSA

RS3T

LOTTO

30

4.7.3 Plinto di fondazione

In questo paragrafo si riporta la determinazione delle sollecitazioni in quota testa pali che si ottengono sommando, alle azioni provenienti dall'impalcato, la risultante e il momento risultante dei pesi della struttura, del terreno interno alla spalla e delle spinte dovute al rilevato rispetto al baricentro del plinto. In condizioni sismiche si è tenuto conto dell'incremento di spinta delle inerzie.

Nella tabella che segue sono indicati la risultante e momento risultante rispetto al baricentro del plinto di fondazione.

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09CL
 NW 04 00 008
 A
 39 di 63

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA INTRADOSSO FONDAZIONE

	DLLECITAZIONE INTERNA INTRADOSSO FONDAZION						
	Nz [kN]	Tx [kN]	Ty [kN]	Mx [kN*m]	My [kN*m]		
A2 - SLU - N max gr.1	40120	5733	318	2912	19845		
A2 - SLU - MT max gr.1	39153	5733	318	5985	16266		
A2 - SLU - ML max gr.1 A2 - SLU - N max gr.2	37911 39375	5733	318 318	2240 2744	11673 17089		
A2 - SLU - MT max gr.2	38726	5733 5733	318	4605	14686		
A2 - SLU - ML max gr.2	37911	5733	318	2240	11673		
A2 - SLU - N max gr.3	39375	5733	318	2744	17089		
A2 - SLU - MT max gr.3	38726	5733	318	4605	14686		
A2 - SLU - ML max gr.3	37911	5733	318	2240	11673		
A2 - SLU - Vento ponte scarico	35806	4770	245	1684	11752		
A2 - SLU - N max gr.1	36683	4632	283	2703	20251		
A2 - SLU - MT max gr.1 A2 - SLU - ML max gr.1	35716 34475	4632 4632	283 283	5776 2031	16673 12079		
A2 - SLU - N max gr.2	35938	4632	283	2535	17495		
A2 - SLU - MT max gr.2	35289	4632	283	4396	15092		
A2 - SLU - ML max gr.2	34475	4632	283	2031	12079		
A2 - SLU - N max gr.3	35938	4632	283	2535	17495		
A2 - SLU - MT max gr.3	35289	4632	283	4396	15092		
A2 - SLU - ML max gr.3	34475	4632	283	2031	12079		
A2 - SLU - Vento ponte scarico	32369	3669	210	1474	12158 25711		
A1 - SLU - N max gr.1 A1 - SLU - MT max gr.1	50481 49346	6634 6634	368 368	3381 6988	21510		
A1 - SLU - ML max gr.1	47888	6634	368	2593	16118		
A1 - SLU - N max gr.2	49607	6634	368	3184	22475		
A1 - SLU - MT max gr.2	48844	6634	368	5369	19654		
A1 - SLU - ML max gr.2	47888	6634	368	2593	16118		
A1 - SLU - N max gr.3	49607	6634	368	3184	22475		
A1 - SLU - MT max gr.3	48844	6634	368	5369	19654		
A1 - SLU - ML max gr.3	47888	6634	368	2593	16118		
A1 - SLU - Vento ponte scarico A1 - SLU - N max gr.1	47888 37433	6634 4800	359 310	2401 3033	16118 21659		
A1 - SLU - WI max gr.1	36298	4800	310	6640	17458		
A1 - SLU - ML max gr.1	34841	4800	310	2244	12066		
A1 - SLU - N max gr.2	36559	4800	310	2835	18423		
A1 - SLU - MT max gr.2	36559	4800	310	2835	18423		
A1 - SLU - ML max gr.2	35797	4800	310	5020	15602		
A1 - SLU - N max gr.3	34841	4800	310	2244	12066		
A1 - SLU - MT max gr.3 A1 - SLU - ML max gr.3	36559 35797	4800 4800	310 310	2835 5020	18423 15602		
A1 - SLU - Vento ponte scarico	32369	3746	310	2244	12617		
SLE Rara - N max gr.1	34200	4450	224	1594	11750		
SLE Rara - MT max gr.1	36121	4507	251	2347	19196		
SLE Rara - ML max gr.1	35280	4507	251	5019	16084		
SLE Rara - N max gr.2	34200	4507	251	1763	12090		
SLE Rara - MT max gr.2	35473	4507	251	2201	16799		
SLE Rara - ML max gr.2	34908	4507	251	3819 1763	14709 12090		
SLE Rara - N max gr.3 SLE Rara - MT max gr.3	34200 35473	4507 4507	251 251	2201	16799		
SLE Rara - ML max gr.3	34908	4507	251	3819	14709		
SLE Rara - Vento ponte scarico	32369	3726	251	1763	12498		
SLE Freq N max gr.1	35183	4297	159	1390	17436		
SLE Freq MT max gr.1	34552	4297	159	3394	15103		
SLE Freq ML max gr.1	33742	4297	159	952	12107		
SLE Freq N max gr.2	34697	4297	159	1281	15639		
SLE Freq MT max gr.2	34273 33742	4297	159	2495	14072		
SLE Freq ML max gr.2 SLE Freq N max gr.3	34697	4297 4297	159 159	952 1281	12107 15639		
SLE Freq N max gr.3 SLE Freq MT max gr.3	34097	4297	159	2495	14072		
SLE Freq ML max gr.3	33742	4297	159	952	12107		
SLE Freq Vento ponte scarico	32369	3669	131	817	12158		
SLE Q.P ML max gr.3	34200	4507	173	1037	12090		
SLV -dir.X_1	33472	7377	1618	6752	24831		
SLV -dir.X_2	31999	7377	1618	6740	23880		
SLV -dir.Y_1	33688	3952	5096	21357	14473		
SLV -dir.Y_2 SLV -dir.Z+	32215 35576	3952 3952	5096 1618	21345 6883	13522 16205		
SLV -dir.Z-	30664	3952	1618	6842	13035		
OL v -uii.L-	30004	3532	1010	0042	12027		

Tabella 5 – Sollecitazioni ad intradosso del baricentro fondazione

4.8 Pali di fondazione

Le sollecitazioni risultanti sono riportati nelle seguenti tabelle:

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA								
C.C.	N	T_x	T_{y}	M_x	M_{y}	$N_{max/palo}$	N _{min/palo}	T _{/palo}
n°	kN	kN	kN	kNm	kNm	kN	kN	kN
Al - SLU - N max gr.1	50481	6634	368	3381	25711	4996	3417	554
Al - SLU - MT max gr.1	49346	6634	368	6988	21510	4865	3359	554
Al - SLU - ML max gr.1	47888	6634	368	2593	16118	4496	3485	554
A1 - SLU - N max gr.2	49607	6634	368	3184	22475	4829	3439	554
A1 - SLU - MT max gr.2	48844	6634	368	5369	19654	4736	3405	554
A1 - SLU - ML max gr.2	47888	6634	368	2593	16118	4496	3485	554
A1 - SLU - N max gr.3	49607	6634	368	3184	22475	4829	3439	554
A1 - SLU - MT max gr.3	48844	6634	368	5369	19654	4736	3405	554
A1 - SLU - ML max gr.3	47888	6634	368	2593	16118	4496	3485	554
A1 - SLU - Vento ponte scarico	47888	6634	359	2401	16118	4492	3490	554
Al - SLU - N max gr.1	37433	4800	310	3033	21659	3788	2450	401
Al - SLU - MT max gr.1	36298	4800	310	6640	17458	3657	2392	401
Al - SLU - ML max gr.1	34841	4800	310	2244	12066	3288	2518	401
A1 - SLU - N max gr.2	36559	4800	310	2835	18423	3621	2472	401
A1 - SLU - MT max gr.2	36559	4800	310	2835	18423	3621	2472	401
A1 - SLU - ML max gr.2	35797	4800	310	5020	15602	3528	2438	401
A1 - SLU - N max gr.3	34841	4800	310	2244	12066	3288	2518	401
A1 - SLU - MT max gr.3	36559	4800	310	2835	18423	3621	2472	401
A1 - SLU - ML max gr.3	35797	4800	310	5020	15602	3528	2438	401
A1 - SLU - Vento ponte scarico	32369	3746	310	2244	12617	3098	2297	313
						4996	2297	554

Tabella 6 – Sollecitazioni massime sul singolo palo C.C. SLU

SOLL. TOTALI I						_		
C.C.	N	T_x	T_{y}	$\mathbf{M_x}$	$ m M_y$	N _{max/palo}	N _{min/palo}	$T_{/palo}$
n°	kN	kN	kN	kNm	kNm	kN	kN	kN
SLV -dir.X_1	33472	7377	1618	6752	24831	3629	1950	629
SLV -dir.X_2	31999	7377	1618	6740	23880	3480	1853	629
SLV -dir.Y_1	33688	3952	5096	21357	14473	3684	1931	537
SLV -dir.Y_2	32215	3952	5096	21345	13522	3534	1835	537
SLV -dir.Z+	35576	3952	1618	6883	16205	3568	2362	356
SLV -dir.Z-	30664	3952	1618	6842	13035	3069	2041	356
		•		•	•	3684	1835	629

Tabella 7 – Sollecitazioni massime sul singolo palo C.C. SLV

C.C.	N	T_x	T_y	$\mathbf{M_x}$	M_{y}	N _{max/palo}	N _{min/palo}	$T_{/palo}$
n°	kN	kN	kN	kNm	kNm	kN	kN	kN
SLE Rara - N max gr.1	34200	4450	224	1594	11750	3212	2488	371
SLE Rara - MT max gr.1	36121	4507	251	2347	19196	3595	2425	376
SLE Rara - ML max gr.1	35280	4507	251	5019	16084	3498	2382	376
SLE Rara - N max gr.2	34200	4507	251	1763	12090	3225	2475	376
SLE Rara - MT max gr.2	35473	4507	251	2201	16799	3472	2441	376
SLE Rara - ML max gr.2	34908	4507	251	3819	14709	3402	2416	376
SLE Rara - N max gr.3	34200	4507	251	1763	12090	3225	2475	376
SLE Rara - MT max gr.3	35473	4507	251	2201	16799	3472	2441	376
SLE Rara - ML max gr.3	34908	4507	251	3819	14709	3402	2416	376
SLE Rara - Vento ponte scarico	32369	3726	251	1763	12498	3084	2311	311
<u>-</u>				•		3595	2311	376

Tabella 8 – Sollecitazioni massime sul singolo palo C.C. SLE

4.9 Verifiche degli elementi strutturali

Per tutti gli elementi strutturali della spalla (muro frontale, muro paraghiaia, ...) vengono svolte le seguenti verifiche:

- verifiche a rottura (pressoflessione e taglio) per le combinazioni allo stato limite ultimo (SLU).
- verifiche tensionali per le combinazioni rare, frequenti e quasi permanenti (SLE)
- verifiche a fessurazione per le combinazioni rara (SLE)

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA LOTTO CODIFICA DOCUMENTO RFV RS3T 30 D09CL NW 04 00 008 Α

FOGLIO

42 di 63

4.9.1 Paraghiaia

Viene verificata la sezione di incastro con lo spiccato del muro frontale. Nella determinazione dei momenti flettenti di verifica il muro paraghiaia viene considerato come una mensola incastrata allo spiccato del muro frontale, trascurando a favore di sicurezza gli effetti dovuti alla eventuale presenza dei muri di risvolto.

Caratteristiche della sezione:

Sezione rettangolare 0.5x11.30 m

Armatura verticale

 $A_s = \phi 20/10$ (lato controterra)

 $A'_s = \phi 16/20$ (lato esterno)

Armatura orizzontale

 $A_{\rm s} = \phi 14/20$

 $A'_{s} = \phi 12/20$

La verifica a taglio è soddisfatta come elemento non armato a taglio. Si prevede comunque un minimo di armatura a taglio costituita da spilli 9Ø8/m²

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.800	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	182.60	daN/cm²
	Ap.Fessure limite S.L.E. comb. Frequer	nti: 0.200	mm

Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO -B450C

Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 2000000 Modulo Elastico Ef daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

337.50 MPa Sf limite S.L.E. Comb. Rare:

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Poligonale Classe Conglomerato: C32/40

N°vertice: X [cm] Y [cm]

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RELAZIONE DI OALOGEO DI ALE D	RS3T	30	D09CL	NW 04 00 008	Α	43 di 63

1	0.0	0.0
2	0.0	1130.0
3	50.0	1130.0
4	50.0	0.0

DATI BARRE ISOLATE

Ν

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	8.3	8.3	16
2	8.3	1121.7	16
3	41.7	1121.7	16
4	41 7	8.3	16

DATI GENERAZIONI LINEARI DI BARRE

Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazione N°Gen. N°Barra Ini. N°Barra Fin.

N°Barre

Sforzo normale [kN] applicato nel Baric. (+ se di compressione)

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	2	100	20
2	3	4	50	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

	Momento flette	nte [kNm] intorno all'	asse x princ. d'iner	zia						
	Momento flettente [kNm] intorno all'asse y princ. d'inerzia									
Componente del Taglio [kN] parallela all'asse princ.d'inerzia y										
	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x									
N	Mx	Му	Vy	Vx						
882.00	0.00	1391.00	0.00	1020.00						
882.00	0.00	1391.00	0.00	1020.00						
882.00	0.00	1391.00	0.00	1020.00						
882.00	0.00	1391.00	0.00	1020.00						
882.00	0.00	1391.00	0.00	1020.00						
882.00	0.00	1391.00	0.00	1020.00						
882.00	0.00	1391.00	0.00	1020.00						
882.00	0.00	1391.00	0.00	1020.00						
882.00	0.00	1391.00	0.00	1020.00						
882.00	0.00	1391.00	0.00	1020.00						
758.00	0.00	1265.00	0.00	869.00						
758.00	0.00	1265.00	0.00	869.00						
758.00	0.00	1265.00	0.00	869.00						
758.00		1265.00		869.00						
758.00	0.00	1265.00	0.00	869.00						
758.00		1265.00		869.00						
758.00	0.00	1265.00	0.00	869.00						
758.00		1265.00		869.00						
758.00		1265.00		869.00						
353.00	0.00	251.00	0.00	301.00						
421.00	20.00	1277.00	16.00	1075.00						
405.00	20.00	1277.00	16.00	1075.00						
	882.00 882.00 882.00 882.00 882.00 882.00 882.00 882.00 882.00 758.00 758.00 758.00 758.00 758.00 758.00 758.00 758.00 758.00 758.00 758.00 758.00 758.00	Momento flette con verso positi Momento flette con verso positi Componente di Componen	Momento flettente [kNm] intorno all' con verso positivo se tale da compr Momento flettente [kNm] intorno all' con verso positivo se tale da compr Componente del Taglio [kN] paralle Componente del Taglio [kN] paralle Componente del Taglio [kN] paralle N Mx My My 882.00 0.00 1391.00 882.00 0.00 1265.00 758.	con verso positivo se tale da comprimere il lembo dest Componente del Taglio [kN] parallela all'asse princ.d'ir Componente del Taglio [kN] parallela all'asse princ.d'ir N Mx My Vy 882.00 0.00 1391.00 0.00 882.00 0.00 1391.00 0.00 882.00 0.00 1391.00 0.00 882.00 0.00 1391.00 0.00 882.00 0.00 1391.00 0.00 882.00 0.00 1391.00 0.00 882.00 0.00 1391.00 0.00 882.00 0.00 1391.00 0.00 882.00 0.00 1391.00 0.00 882.00 0.00 1391.00 0.00 882.00 0.00 1391.00 0.00 882.00 0.00 1391.00 0.00 882.00 0.00 1391.00 0.00 882.00 0.00 1391.00 0.00 758.00 0.00 1265.00 0.00						

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
THE NEIGHE BY GREGOED OF THE B	RS3T	30	D09CL	NW 04 00 008	Α	44 di 63

23	421.00	66.00	584.00	53.00	503.00
24	405.00	66.00	584.00	53.00	503.00
25	440.00	20.00	584.00	16.00	503.00
26	387.00	20.00	584.00	16.00	503.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	653.00	0.00	1002.00
2	653.00	0.00	1002.00
3	653.00	0.00	1002.00
4	653.00	0.00	1002.00
5	653.00	0.00	1002.00
6	653.00	0.00	1002.00
7	653.00	0.00	1002.00
8	653.00	0.00	1002.00
9	653.00	0.00	1002.00
10	353 00	0.00	251.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	578.00	0.00 (0.00)	814.00 (1837.11)
2 3	578.00 578.00	0.00 (0.00) 0.00 (0.00)	814.00 (1837.11) 814.00 (1837.11)
4	578.00	0.00 (0.00)	814.00 (1837.11)
5	578.00	0.00 (0.00)	814.00 (1837.11)
6	578.00	0.00 (0.00)	814.00 (1837.11)
7	578.00	0.00 (0.00)	814.00 (1837.11)
8	578.00	0.00 (0.00)	814.00 (1837.11)
9	578.00	0.00 (0.00)	814.00 (1837.11)
10	353.00	0.00 (0.00)	251.00 (1953.07)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 653.00 0.00 (0.00) 1002.00 (1828.01)

RISULTATI DEL CALCOLO

My

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D09CL NW 04 00 008 A 45 di 63

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.3 cm Interferro netto minimo barre longitudinali: 9.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.

My Res Sorzo normale resistente [kNm] riferito all'asse y princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic. As Tesa
1	S	882.00	0.00	1391.00	881.96	0.03	4987.89	3.57318.2(101.2)
2	S	882.00	0.00	1391.00	881.96	0.03	4987.89	3.57318.2(101.2)
3	S	882.00	0.00	1391.00	881.96	0.03	4987.89	3.57318.2(101.2)
4	S	882.00	0.00	1391.00	881.96	0.03	4987.89	3.57318.2(101.2)
5	S	882.00	0.00	1391.00	881.96	0.03	4987.89	3.57318.2(101.2)
6	S	882.00	0.00	1391.00	881.96	0.03	4987.89	3.57318.2(101.2)
7	S	882.00	0.00	1391.00	881.96	0.03	4987.89	3.57318.2(101.2)
8	S	882.00	0.00	1391.00	881.96	0.03	4987.89	3.57318.2(101.2)
9	S	882.00	0.00	1391.00	881.96	0.03	4987.89	3.57318.2(101.2)
10	S	882.00	0.00	1391.00	881.96	0.03	4987.89	3.57318.2(101.2)
11	S	758.00	0.00	1265.00	758.01	0.03	4965.85	3.91318.2(101.2)
12	S	758.00	0.00	1265.00	758.01	0.03	4965.85	3.91318.2(101.2)
13	S	758.00	0.00	1265.00	758.01	0.03	4965.85	3.91318.2(101.2)
14	S	758.00	0.00	1265.00	758.01	0.03	4965.85	3.91318.2(101.2)
15	S	758.00	0.00	1265.00	758.01	0.03	4965.85	3.91318.2(101.2)
16	S	758.00	0.00	1265.00	758.01	0.03	4965.85	3.91318.2(101.2)
17	S	758.00	0.00	1265.00	758.01	0.03	4965.85	3.91318.2(101.2)
18	S	758.00	0.00	1265.00	758.01	0.03	4965.85	3.91318.2(101.2)
19	S	758.00	0.00	1265.00	758.01	0.03	4965.85	3.91318.2(101.2)
20	S	353.00	0.00	251.00	353.24	0.16	4893.83	19.21318.2(101.2)
21	S	421.00	20.00	1277.00	420.98	70.98	4911.63	3.84318.2(101.2)
22	S	405.00	20.00	1277.00	405.20	73.26	4909.00	3.83318.2(101.2)
23	S	421.00	66.00	584.00	421.28	550.62	4921.02	8.37318.2(101.2)
24	S	405.00	66.00	584.00	405.16	565.57	4918.00	8.37318.2(101.2)
25	S	440.00	20.00	584.00	439.89	157.53	4922.08	8.36318.2(101.2)
26	S	387.00	20.00	584.00	387.01	154.27	4912.35	8.36318.2(101.2)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.190	50.0	1130.0	-0.00016	41.7	1121.7	-0.01488	8.3	8.3
2	0.00350	0.190	50.0	1130.0	-0.00016	41.7	1121.7	-0.01488	8.3	8.3

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA
TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3B)
Viadotto NW04

RELAZIONE DI CALCOLO SPALL B					COMMESSA RS3T	LOTTO 30	CODIFICA D09CL	DOCUMENTO NW 04 00 008	REV. A	FOGLIO 46 di 63	
3	0.00350	0.190	50.0	1130.0	-0.00016	41.7	1121.7	-0.01488	8.3	8.3	
4	0.00350	0.190	50.0	1130.0	-0.00016		1121.7	-0.01488	8.3	8.3	
5	0.00350	0.190	50.0	1130.0	-0.00016		1121.7	-0.01488	8.3	8.3	
6	0.00350	0.190	50.0	1130.0	-0.00016	41.7	1121.7	-0.01488	8.3	8.3	
7	0.00350	0.190	50.0	1130.0	-0.00016	41.7	1121.7	-0.01488	8.3	8.3	
8	0.00350	0.190	50.0	1130.0	-0.00016	41.7	1121.7	-0.01488	8.3	8.3	
9	0.00350	0.190	50.0	1130.0	-0.00016	41.7	1121.7	-0.01488	8.3	8.3	
10	0.00350	0.190	50.0	1130.0	-0.00016	41.7	1121.7	-0.01488	8.3	8.3	
11	0.00350	0.189	50.0	1130.0	-0.00018	41.7	1121.7	-0.01498	8.3	8.3	
12	0.00350	0.189	50.0	1130.0	-0.00018	41.7	1121.7	-0.01498	8.3	8.3	
13	0.00350	0.189	50.0	1130.0	-0.00018	41.7	1121.7	-0.01498	8.3	8.3	
14	0.00350	0.189	50.0	1130.0	-0.00018	41.7	1121.7	-0.01498	8.3	8.3	
15	0.00350	0.189	50.0	1130.0	-0.00018	41.7	1121.7	-0.01498	8.3	8.3	
16	0.00350	0.189	50.0	1130.0	-0.00018	41.7	1121.7	-0.01498	8.3	8.3	
17	0.00350	0.189	50.0	1130.0	-0.00018	41.7	1121.7	-0.01498	8.3	8.3	
18	0.00350	0.189	50.0	1130.0	-0.00018	41.7	1121.7	-0.01498	8.3	8.3	
19	0.00350	0.189	50.0	1130.0	-0.00018	41.7	1121.7	-0.01498	8.3	8.3	
20	0.00350	0.186	50.0	1130.0	-0.00025	41.7	1121.7	-0.01532	8.3	8.3	
21	0.00350	0.186	50.0	1130.0	-0.00023	41.7	1121.7	-0.01527	8.3	8.3	
22	0.00350	0.186	50.0	1130.0	-0.00023	41.7	1121.7	-0.01528	8.3	8.3	
23	0.00350	0.187	50.0	1130.0	-0.00020	41.7	1121.7	-0.01523	8.3	8.3	
24	0.00350	0.187	50.0	1130.0	-0.00021	41.7	1121.7	-0.01524	8.3	8.3	
25	0.00350	0.187	50.0	1130.0	-0.00022	41.7	1121.7	-0.01525	8.3	8.3	
26	0.00350	0.186	50.0	1130.0	-0.00023	41.7	1121.7	-0.01530	8.3	8.3	

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c x/d C.Rid.	Rapp. o	a, b, c nell'eq. dell'asse neut di duttilità (travi e solette)[§ 4 di riduz. momenti per sola fle	.1.2.1.2.1 NTC]: deve	essere < 0.45	
N°Comb	а	b	С	x/d	C.Rid.
1	0.000440779	0.000000000	-0.018538943	0.190	0.700
2	0.000440779	0.00000000	-0.018538943	0.190	0.700
3	0.000440779	0.00000000	-0.018538943	0.190	0.700
4	0.000440779	0.00000000	-0.018538943	0.190	0.700
5	0.000440779	0.00000000	-0.018538943	0.190	0.700
6	0.000440779	0.00000000	-0.018538943	0.190	0.700
7	0.000440779	0.00000000	-0.018538943	0.190	0.700
8	0.000440779	0.00000000	-0.018538943	0.190	0.700
9	0.000440779	0.00000000	-0.018538943	0.190	0.700
10	0.000440779	0.00000000	-0.018538943	0.190	0.700
11	0.000443282	0.00000000	-0.018664126	0.189	0.700
12	0.000443282	0.000000000	-0.018664126	0.189	0.700
13	0.000443282	0.000000000	-0.018664126	0.189	0.700
14	0.000443282	0.00000000	-0.018664126	0.189	0.700
15	0.000443282	0.000000000	-0.018664126	0.189	0.700
16	0.000443282	0.000000000	-0.018664126	0.189	0.700
17	0.000443282	0.000000000	-0.018664126	0.189	0.700
18	0.000443282	0.000000000	-0.018664126	0.189	0.700
19	0.000443282	0.000000000	-0.018664126	0.189	0.700
20	0.000451315	0.000000000	-0.019065822	0.186	0.700
21	0.000449199	0.00000032	-0.018995701	0.186	0.700
22	0.000449484	0.00000033	-0.019011078	0.186	0.700
23	0.000446216	0.00000105	-0.018929496	0.187	0.700
24	0.000446468	0.00000105	-0.018942505	0.187	0.700
25	0.000447871	0.00000070	-0.018972835	0.187	0.700
26	0.000448943	0.000000069	-0.019024797	0.186	0.700

METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (\$ 4.1.2.1.3.1 NTC)

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09CL
 NW 04 00 008
 A
 47 di 63

 Ver
 S = comb.verificata a taglio/ N = comb. non verificata

 Ved
 Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)

 Vwct
 Taglio trazione resistente [kN] in assenza di staffe [formula (4.1.23)NTC]

d Altezza utile sezione [cm] bw Larghezza minima sezione [cm]

Ro Rapporto geometrico di armatura longitudinale [<0.02] Scp Tensione media di compressione nella sezione [Mpa]

N°Comb	Ver	Ved	Vwct	d	bw	Ro	Scp
1	S	1020.00	3076.98	41.7	1130.0	0.0090	0.16
2	S	1020.00	3076.98	41.7	1130.0	0.0090	0.16
3	S	1020.00	3076.98	41.7	1130.0	0.0090	0.16
4	S	1020.00	3076.98	41.7	1130.0	0.0090	0.16
5	S	1020.00	3076.98	41.7	1130.0	0.0090	0.16
6	S	1020.00	3076.98	41.7	1130.0	0.0090	0.16
7	S	1020.00	3076.98	41.7	1130.0	0.0090	0.16
8	S	1020.00	3076.98	41.7	1130.0	0.0090	0.16
9	S	1020.00	3076.98	41.7	1130.0	0.0090	0.16
10	S	1020.00	3076.98	41.7	1130.0	0.0090	0.16
11	S	869.00	3061.47	41.7	1130.0	0.0090	0.13
12	S	869.00	3061.47	41.7	1130.0	0.0090	0.13
13	S	869.00	3061.47	41.7	1130.0	0.0090	0.13
14	S	869.00	3061.47	41.7	1130.0	0.0090	0.13
15	S	869.00	3061.47	41.7	1130.0	0.0090	0.13
16	S	869.00	3061.47	41.7	1130.0	0.0090	0.13
17	S	869.00	3061.47	41.7	1130.0	0.0090	0.13
18	S	869.00	3061.47	41.7	1130.0	0.0090	0.13
19	S	869.00	3061.47	41.7	1130.0	0.0090	0.13
20	S	301.00	3010.80	41.7	1130.0	0.0090	0.06
21	S	1075.00	3019.32	41.7	1130.0	0.0090	0.07
22	S	1075.00	3017.32	41.7	1130.0	0.0090	0.07
23	S	503.01	3019.33	41.7	1130.0	0.0090	0.07
24	S	503.01	3017.33	41.7	1130.0	0.0090	0.07
25	S	503.00	3021.70	41.7	1130.0	0.0090	0.08
26	S	503.00	3015.07	41.7	1130.0	0.0090	0.07

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min

Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min

Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.15	50.0 1130.0	-76.1	8.3	41.4	12995	318.2
2	S	3.15	50.0 1130.0	-76.1	8.3	41.4	12995	318.2
3	S	3.15	50.0 1130.0	-76.1	8.3	41.4	12995	318.2
4	S	3.15	50.0 1130.0	-76.1	8.3	41.4	12995	318.2
5	S	3.15	50.0 1130.0	-76.1	8.3	41.4	12995	318.2
6	S	3.15	50.0 1130.0	-76.1	8.3	41.4	12995	318.2
7	S	3.15	50.0 1130.0	-76.1	8.3	41.4	12995	318.2
8	S	3.15	50.0 1130.0	-76.1	8.3	41.4	12995	318.2
9	S	3.15	50.0 1130.0	-76.1	8.3	41.4	12995	318.2
10	S	0.80	50.0 1130.0	-16.3	8.3	52.4	12430	318.2

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Esito della verifica

Ver.

CODIFICA

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

DOCUMENTO

NW 04 00 008

RFV

Α

FOGLIO

48 di 63

Viadotto NW04

COMMESSA

RS3T

RELAZIONE DI CALCOLO SPALL B

e1

Massima deformazione unitaria di trazione nel calcestruzzo	(trazione -) valutata in sezione fessurata

LOTTO

30

e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt k2

= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

= 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali k4

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Copriferro [mm] netto calcolato con riferimento alla barra più tesa Cf

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess.

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00050	0	0.500	19.9	73	0.00023 (0.00023)	387	0.088 (0.20)	0.00	1828.01
2	S	-0.00050	0	0.500	19.9	73	0.00023 (0.00023)	387	0.088 (0.20)	0.00	1828.01
3	S	-0.00050	0	0.500	19.9	73	0.00023 (0.00023)	387	0.088 (0.20)	0.00	1828.01
4	S	-0.00050	0	0.500	19.9	73	0.00023 (0.00023)	387	0.088 (0.20)	0.00	1828.01
5	S	-0.00050	0	0.500	19.9	73	0.00023 (0.00023)	387	0.088 (0.20)	0.00	1828.01
6	S	-0.00050	0	0.500	19.9	73	0.00023 (0.00023)	387	0.088 (0.20)	0.00	1828.01
7	S	-0.00050	0	0.500	19.9	73	0.00023 (0.00023)	387	0.088 (0.20)	0.00	1828.01
8	S	-0.00050	0	0.500	19.9	73	0.00023 (0.00023)	387	0.088 (0.20)	0.00	1828.01
9	S	-0.00050	0	0.500	19.9	73	0.00023 (0.00023)	387	0.088 (0.20)	0.00	1828.01
10	S	-0.00011	0	0.500	19.9	73	0.00005 (0.00005)	381	0.019 (0.20)	0.00	1953.07

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.56	50.0	1130.0	-61.1	8.3	74.4	12995	318.2
2	S	2.56	50.0	1130.0	-61.1	8.3	74.4	12995	318.2
3	S	2.56	50.0	1130.0	-61.1	8.3	74.4	12995	318.2
4	S	2.56	50.0	1130.0	-61.1	8.3	74.4	12995	318.2
5	S	2.56	50.0	1130.0	-61.1	8.3	74.4	12995	318.2
6	S	2.56	50.0	1130.0	-61.1	8.3	74.4	12995	318.2
7	S	2.56	50.0	1130.0	-61.1	8.3	74.4	12995	318.2
8	S	2.56	50.0	1130.0	-61.1	8.3	74.4	12995	318.2
9	S	2.56	50.0	1130.0	-61.1	8.3	74.4	12995	318.2
10	S	0.80	50.0	1130.0	-16.3	8.3	52.4	12430	318.2

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00040	0	0.500	19.9	73	0.00018 (0.00018)	387	0.071 (0.20)	0.00	1837.11
2	S	-0.00040	0	0.500	19.9	73	0.00018 (0.00018)	387	0.071 (0.20)	0.00	1837.11
3	S	-0.00040	0	0.500	19.9	73	0.00018 (0.00018)	387	0.071 (0.20)	0.00	1837.11
4	S	-0.00040	0	0.500	19.9	73	0.00018 (0.00018)	387	0.071 (0.20)	0.00	1837.11
5	S	-0.00040	0	0.500	19.9	73	0.00018 (0.00018)	387	0.071 (0.20)	0.00	1837.11
6	S	-0.00040	0	0.500	19.9	73	0.00018 (0.00018)	387	0.071 (0.20)	0.00	1837.11
7	S	-0.00040	0	0.500	19.9	73	0.00018 (0.00018)	387	0.071 (0.20)	0.00	1837.11
8	S	-0.00040	0	0.500	19.9	73	0.00018 (0.00018)	387	0.071 (0.20)	0.00	1837.11
9	S	-0.00040	0	0.500	19.9	73	0.00018 (0.00018)	387	0.071 (0.20)	0.00	1837.11
10	S	-0.00011	0	0.500	19.9	73	0.00005 (0.00005)	381	0.019 (0.20)	0.00	1953.07

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.15	50.0 1130.0	-76.1	8.3	41.4	12995	318.2

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09CL NW 04 00 008 A 49 di 63

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr	max	wk	Mx fess	My fess
1	S	-0.00050	0	0.500	19.9	73	0.00023 (0.00023)	387	0.088 (0.20)	0.00	1828.01

4.9.2 Muro frontale

Viene verificata la sezione di incastro con la platea di fondazione. Nella determinazione dei momenti flettenti di verifica il muro frontale viene considerato come una mensola incastrata nella platea di fondazione, trascurando a favore di sicurezza gli effetti dovuti alla eventuale presenza dei muri di risvolto.

Caratteristiche della sezione:

Sezione rettangolare 2.40 x10.10 m

Armatura verticale

 $A_s = \phi 26/10$ (lato controterra)

 $A'_s = \phi 26/10$ (lato esterno)

Armatura orizzontale

 $A_s = \phi 20/20$ (lato controterra)

 $A'_s = \phi 20/20$ (lato esterno)

Per la verifica a taglio della sezione si considera l'area di ferro necessaria, come indicata dal codice di calcolo,e si assegna una armatura equivalente; in particolare si utilizzeranno:

Spille $9\phi 10/mq$.

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.800	MPa
	Resis. compr. ridotta fcd':	9.400	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	182.60	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D09CL NW 04 00 008 A 50 di 63

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	0.0	0.0
2	0.0	1010.0
3	240.0	1010.0
4	240.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	9.0	9.0	26
2	9.0	1001.0	26
3	231.0	1001.0	26
4	231.0	9.0	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.
Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.
Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.
Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	2	98	26
2	3	4	98	26

ARMATURE A TAGLIO

Diametro staffe: 8 mm Passo staffe: 6.2 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	11639.61	2461.79	10409.79	367.80	3526.86
2	10504.26	6068.99	9955.65	367.80	3526.86
3	9046.94	1673.39	9372.72	367.80	3526.86

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZI	IONE DI CALCO	LO SPALL B		COMMESSA RS3T	LOTTO 30	CODIFICA D09CL	DOCUMENTO NW 04 00 008	REV. A	FOGLIO 51 di 63
4	10765.15	2264.69	10060.01	367.80	3526.86				
5	10002.74	4449.67	9755.04	367.80	3526.86				
	9046.94	1673.39	9372.72	367.80	3526.86				
6 7	10765.15	2264.69	10060.01	367.80	3526.86				
8	10002.74	4449.67	9755.04	367.80	3526.86				
9	9046.94	1673.39	9372.72	367.80	3526.86				
10	9046.94	1504.19	9372.72	358.80	3526.86				
11	9183.00	2258.36	8136.16	309.67	2619.57				
12	8047.65	5865.56	7682.02	309.67	2619.57				
13	6590.33	1469.96	7099.09	309.67	2619.57				
14	8308.54	2061.26	7786.38	309.67	2619.57				
15	8308.54	2061.26	7786.38	309.67	2619.57				
16	7546.13	4246.23	7481.41	309.67	2619.57				
17	6590.33	1469.96	7099.09	309.67	2619.57				
18	8308.54	2061.26	7786.38	309.67	2619.57				
19	7546.13	4246.23	7481.41	309.67	2619.57				
20	6590.33	1469.96	5059.10	309.67	1891.00				
21	6747.10	1700.64	9250.81	441.12	3445.21				
22	6433.55	1688.54	9189.36	441.12	3445.21				
23	6963.00	5264.03	5590.53	1172.73	1926.37				
24	6649.45	5251.94	5529.08	1172.73	1926.37				
25	7497.00	1831.55	5729.50	441.12	1926.37				
26	6451.85	1791.23	5524.68	441.12	1926.37				

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

A.I.	06 1 1 1 1 1 1 1 1 1	
N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)	

Mx

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	6590.33	1033.28	6302.72
2	8510.83	1719.41	7269.06
3	7669.83	4391.41	6932.66
4	6590.33	1135.41	6500.86
5	7863.08	1573.41	7009.96
6	7298.33	3191.91	6784.06
7	6590.33	1135.41	6500.86
8	7863.08	1573.41	7009.96
9	7298.33	3191.91	6784.06
10	6590.33	1135.41	4989.75

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

1	N	Sforzo	norn	nale	[kN] ap	plicato	nel Baricentro	(+ se	di com _l	pressione	:)	

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione Му

N°Comb.	N	Mx	Му
1	8030.70	993.48 (10305.96)	6649.70 (68981.50)
2	7399.95	2997.48 (26769.70)	6397.40 (57133.54)
3	6590.33	555.48 (5863.75)	6073.55 (64113.95)
4	7544.89	883.98 (9196.63)	6455.37 (67159.77)
5	7121.33	2097.85 (19866.18)	6285.95 (59526.50)
6	6590.33	555.48 (5863.75)	6073.55 (64113.95)

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09CL NW 04 00 008 A 52 di 63

7	7544.89	883.98 (9196.63)	6455.37 (67159.77)
8	7121.33	2097.85 (19866.18)	6285.95 (59526.50)
9	6590.33	555.48 (5863.75)	6073.55 (64113.95)
10	6590.33	490.40 (8491.20)	4791.61 (82966.86)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 6590.33 605.01 (5640.44) 6500.86 (60606.75)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.7 cm Interferro netto minimo barre longitudinali: 7.4 cm Copriferro netto minimo staffe: 6.9 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)
Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	11639.61	2461.79	10409.79	11639.36	14307.19	59716.05	5.741061.9(727.2)
2	S	10504.26	6068.99	9955.65	10504.40	35777.82	58337.73	5.871061.9(727.2)
3	S	9046.94	1673.39	9372.72	9046.91	10144.81	56880.08	6.071061.9(727.2)
4	S	10765.15	2264.69	10060.01	10765.09	13098.03	58764.20	5.841061.9(727.2)
5	S	10002.74	4449.67	9755.04	10002.95	26542.23	57858.67	5.941061.9(727.2)
6	S	9046.94	1673.39	9372.72	9046.91	10144.81	56880.08	6.071061.9(727.2)
7	S	10765.15	2264.69	10060.01	10765.09	13098.03	58764.20	5.841061.9(727.2)
8	S	10002.74	4449.67	9755.04	10002.95	26542.23	57858.67	5.941061.9(727.2)
9	S	9046.94	1673.39	9372.72	9046.91	10144.81	56880.08	6.071061.9(727.2)
10	S	9046.94	1504.19	9372.72	9047.01	9025.17	56883.51	6.071061.9(727.2)
11	S	9183.00	2258.36	8136.16	9182.87	16014.59	57014.01	7.011061.9(727.2)
12	S	8047.65	5865.56	7682.02	8047.92	42669.88	55576.53	7.251061.9(727.2)
13	S	6590.33	1469.96	7099.09	6590.34	10967.62	54164.01	7.621061.9(727.2)
14	S	8308.54	2061.26	7786.38	8308.68	14931.08	56048.54	7.201061.9(727.2)
15	S	8308.54	2061.26	7786.38	8308.68	14931.08	56048.54	7.201061.9(727.2)
16	S	7546.13	4246.23	7481.41	7545.86	31143.92	55128.60	7.361061.9(727.2)
17	S	6590.33	1469.96	7099.09	6590.34	10967.62	54164.01	7.621061.9(727.2)
18	S	8308.54	2061.26	7786.38	8308.68	14931.08	56048.54	7.201061.9(727.2)
19	S	7546.13	4246.23	7481.41	7545.86	31143.92	55128.60	7.361061.9(727.2)
20	S	6590.33	1469.96	5059.10	6590.47	15824.84	54151.07	10.711061.9(727.2)
21	S	6747.10	1700.64	9250.81	6746.94	9985.26	54343.85	5.871061.9(727.2)
22	S	6433.55	1688.54	9189.36	6433.46	9981.79	53997.82	5.881061.9(727.2)
23	S	6963.00	5264.03	5590.53	6962.94	51209.32	54280.55	9.721061.9(727.2)

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
THE NEIGHE BY ONEGOES OF THE B	RS3T	30	D09CL	NW 04 00 008	Α	53 di 63

24	S	6649.45	5251.94	5529.08	6649.56	51472.85	53934.06	9.781061.9(727.2)
25	S	7497.00	1831.55	5729.50	7497.08	17498.43	55145.68	9.621061.9(727.2)
26	S	6451.85	1791.23	5524.68	6451.71	17640.97	53990.85	9.781061.9(727.2)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	240.0	1010.0	0.00152	231.0	1001.0	-0.04790	9.0	9.0
2	0.00350	240.0	1010.0	0.00196	231.0	1001.0	-0.03760	9.0	9.0
3	0.00350	240.0	1010.0	0.00129	231.0	1001.0	-0.05364	9.0	9.0
4	0.00350	240.0	1010.0	0.00146	231.0	1001.0	-0.04955	9.0	9.0
5	0.00350	240.0	1010.0	0.00175	231.0	1001.0	-0.04261	9.0	9.0
6	0.00350	240.0	1010.0	0.00129	231.0	1001.0	-0.05364	9.0	9.0
7	0.00350	240.0	1010.0	0.00146	231.0	1001.0	-0.04955	9.0	9.0
8	0.00350	240.0	1010.0	0.00175	231.0	1001.0	-0.04261	9.0	9.0
9	0.00350	240.0	1010.0	0.00129	231.0	1001.0	-0.05364	9.0	9.0
10	0.00350	240.0	1010.0	0.00126	231.0	1001.0	-0.05439	9.0	9.0
11	0.00350	240.0	1010.0	0.00147	231.0	1001.0	-0.04947	9.0	9.0
12	0.00350	240.0	1010.0	0.00201	231.0	1001.0	-0.03655	9.0	9.0
13	0.00350	240.0	1010.0	0.00119	231.0	1001.0	-0.05623	9.0	9.0
14	0.00350	240.0	1010.0	0.00139	231.0	1001.0	-0.05136	9.0	9.0
15	0.00350	240.0	1010.0	0.00139	231.0	1001.0	-0.05136	9.0	9.0
16	0.00350	240.0	1010.0	0.00176	231.0	1001.0	-0.04253	9.0	9.0
17	0.00350	240.0	1010.0	0.00119	231.0	1001.0	-0.05623	9.0	9.0
18	0.00350	240.0	1010.0	0.00139	231.0	1001.0	-0.05136	9.0	9.0
19	0.00350	240.0	1010.0	0.00176	231.0	1001.0	-0.04253	9.0	9.0
20	0.00350	240.0	1010.0	0.00134	231.0	1001.0	-0.05278	9.0	9.0
21	0.00350	240.0	1010.0	0.00118	231.0	1001.0	-0.05661	9.0	9.0
22	0.00350	240.0	1010.0	0.00116	231.0	1001.0	-0.05701	9.0	9.0
23	0.00350	240.0	1010.0	0.00213	231.0	1001.0	-0.03365	9.0	9.0
24	0.00350	240.0	1010.0	0.00213	231.0	1001.0	-0.03378	9.0	9.0
25	0.00350	240.0	1010.0	0.00142	231.0	1001.0	-0.05062	9.0	9.0
26	0.00350	240.0	1010.0	0.00138	231.0	1001.0	-0.05177	9.0	9.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c

8

9

0.000192959

0.000244567

x/d C.Rid.	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue								
N°Comb	а	b	С	x/d	C.Rid.				
1	0.000218757	0.000000868	-0.049877905						
2	0.000169488	0.000001945	-0.039142034						
3	0.000244567	0.000000647	-0.055849845						
4	0.000226110	0.000000814	-0.051589001						
5	0.000192959	0.000001533	-0.044358412						
6	0.000244567	0.000000647	-0.055849845						
7	0.000226110	0.000000814	-0.051589001						

0.000001533

0.000000647

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.

-0.044358412

-0.055849845

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3T	30	D09CL	NW 04 00 008	Α	54 di 63

 	-0.056630092	0.000000585	0.000248082	10
 	-0.051499838	0.000001002	0.000224948	11
 	-0.038040362	0.000002285	0.000163469	12
 	-0.058539197	0.00000707	0.000255523	13
 	-0.053472482	0.000000933	0.000233460	14
 	-0.053472482	0.000000933	0.000233460	15
 	-0.044266972	0.000001801	0.000191451	16
 	-0.058539197	0.00000707	0.000255523	17
 	-0.053472482	0.000000933	0.000233460	18
 	-0.044266972	0.000001801	0.000191451	19
 	-0.054938645	0.00001005	0.000239265	20
 	-0.058934094	0.00000659	0.000257369	21
 	-0.059344659	0.00000661	0.000259069	22
 	-0.035018713	0.000002657	0.000149315	23
 	-0.035147069	0.000002676	0.000149769	24
 	-0.052692638	0.000001091	0.000229543	25
 	-0.053894995	0.000001111	0.000234470	26

VERIFICHE A TAGLIO

bw

Diam. Staffe: 8 mm

Passo staffe: 6.2 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro
Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di conglomerato

Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato
Acw Coefficiente maggiorativo della resistenza a taglio per compressione
Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	3528.29	75635.06	3574.4623	4.3 225.3	1009.7	2.500	1.026	16.0	16.2(0.0)
2	S	3530.85	75251.45	3568.5723	4.0 225.0	1008.7	2.500	1.023	16.0	16.2(0.0)
3	S	3527.82	75349.20	3581.2023	4.8 225.8	1009.6	2.500	1.020	16.0	16.2(0.0)
4	S	3528.16	75536.37	3576.6023	4.5 225.5	1009.7	2.500	1.024	16.0	16.2(0.0)
5	S	3529.67	75311.78	3573.4123	4.3 225.3	1009.2	2.500	1.022	16.0	16.2(0.0)
6	S	3527.82	75349.20	3581.2023	4.8 225.8	1009.6	2.500	1.020	16.0	16.2(0.0)
7	S	3528.16	75536.37	3576.6023	4.5 225.5	1009.7	2.500	1.024	16.0	16.2(0.0)
8	S	3529.67	75311.78	3573.4123	4.3 225.3	1009.2	2.500	1.022	16.0	16.2(0.0)
9	S	3527.82	75349.20	3581.2023	4.8 225.8	1009.6	2.500	1.020	16.0	16.2(0.0)
10	S	3527.69	75359.17	3581.7923	4.8 225.8	1009.5	2.500	1.020	16.0	16.2(0.0)
11	S	2620.92	75333.49	3578.8523	4.6 225.6	1009.7	2.500	1.020	11.9	16.2(0.0)
12	S	2623.64	74942.79	3571.6023	4.2 225.2	1009.0	2.500	1.018	11.9	16.2(0.0)
13	S	2620.42	75039.80	3585.4123	5.0 226.0	1009.6	2.500	1.014	11.9	16.2(0.0)
14	S	2620.79	75232.55	3580.9523	4.8 225.8	1009.7	2.500	1.018	11.9	16.2(0.0)
15	S	2620.79	75232.55	3580.9523	4.8 225.8	1009.7	2.500	1.018	11.9	16.2(0.0)
16	S	2622.37	75006.72	3577.1323	4.5 225.5	1009.4	2.500	1.017	11.9	16.2(0.0)
17	S	2620.42	75039.80	3585.4123	5.0 226.0	1009.6	2.500	1.014	11.9	16.2(0.0)
18	S	2620.79	75232.55	3580.9523	4.8 225.8	1009.7	2.500	1.018	11.9	16.2(0.0)
19	S	2622.37	75006.72	3577.1323	4.5 225.5	1009.4	2.500	1.017	11.9	16.2(0.0)
20	S	1892.28	75017.67	3583.9223	4.9 225.9	1009.7	2.500	1.014	8.6	16.2(0.0)
21	S	3446.32	75065.66	3585.5023	5.0 226.0	1009.6	2.500	1.015	15.6	16.2(0.0)
22	S	3446.32	75026.16	3586.0523	5.1 226.1	1009.6	2.500	1.014	15.6	16.2(0.0)

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
THE REPORT OF THE BUILDING	RS3T	30	D09CL	NW 04 00 008	Α	55 di 63

23	S	1946.93	74710.96	3570.68234.1 225.1	1008.5	2.500	1.015	8.8	16.2(0.0)
24	S	1947.01	74675.42	3571.36234.2 225.2	1008.5	2.500	1.015	8.8	16.2(0.0)
25	S	1928.45	75124.87	3581.81234.8 225.8	1009.8	2.500	1.016	8.7	16.2(0.0)
26	S	1928.44	74996.68	3583.78234.9 225.9	1009.8	2.500	1.014	8.7	16.2(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.00	240.0	1010.0	-11.3	9.0	9.0	27144	530.9
2	S	1.16	240.0	1010.0	-10.3	9.0	9.0	24289	530.9
3	S	1.22	240.0	1010.0	-13.0	9.0	9.0	16286	387.6
4	S	1.04	240.0	1010.0	-12.5	9.0	9.0	27177	530.9
5	S	1.12	240.0	1010.0	-11.0	9.0	9.0	25590	530.9
6	S	1.16	240.0	1010.0	-12.7	9.0	9.0	21211	509.7
7	S	1.04	240.0	1010.0	-12.5	9.0	9.0	27177	530.9
8	S	1.12	240.0	1010.0	-11.0	9.0	9.0	25590	530.9
9	S	1.16	240.0	1010.0	-12.7	9.0	9.0	21211	509.7
10	S	0.79	240 0	1010 0	-5.2	9.0	90	20075	530.9

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4

= 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess.

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm si	r max	wk	Mx fess	My fess
1	S	-0.00006	0	0.500	26.0	77	0.00003 (0.00003)	488	0.017 (0.20)	9859.26	60139.05
2	S	-0.00006	0	0.500	26.0	77	0.00003 (0.00003)	464	0.014 (0.20)	15158.99	64086.87
3	S	-0.00007	0	0.500	26.0	77	0.00004 (0.00004)	448	0.017 (0.20)	32725.07	51662.62
4	S	-0.00007	0	0.500	26.0	77	0.00004 (0.00004)	488	0.018 (0.20)	10210.39	58460.22
5	S	-0.00006	0	0.500	26.0	77	0.00003 (0.00003)	475	0.016 (0.20)	13917.39	62005.64
6	S	-0.00007	0	0.500	26.0	77	0.00004 (0.00004)	446	0.017 (0.20)	25394.52	53973.28
7	S	-0.00007	0	0.500	26.0	77	0.00004 (0.00004)	488	0.018 (0.20)	10210.39	58460.22
8	S	-0.00006	0	0.500	26.0	77	0.00003 (0.00003)	475	0.016 (0.20)	13917.39	62005.64
9	S	-0.00007	0	0.500	26.0	77	0.00004 (0.00004)	446	0.017 (0.20)	25394.52	53973.28
10	S	-0.00003	0	0.500	26.0	77	0.00002 (0.00002)	429	0.007 (0.20)	16652.31	73181.35

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Sf min Xs min Ys min N°Comb Ver Sc max Xc max Yc max Ac eff. As eff.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
THE REPORT OF THE B	RS3T	30	D09CL	NW 04 00 008	Α	56 di 63

1	S	1.04	240.0	1010.0	-8.4	9.0	9.0	25377	530.9
2	S	1.08	240.0	1010.0	-10.3	9.0	9.0	18503	456.6
3	S	0.94	240.0	1010.0	-9.8	9.0	9.0	26592	530.9
4	S	1.01	240.0	1010.0	-8.8	9.0	9.0	26414	530.9
5	S	1.03	240.0	1010.0	-10.0	9.0	9.0	23045	530.9
6	S	0.94	240.0	1010.0	-9.8	9.0	9.0	26592	530.9
7	S	1.01	240.0	1010.0	-8.8	9.0	9.0	26414	530.9
8	S	1.03	240.0	1010.0	-10.0	9.0	9.0	23045	530.9
9	S	0.94	240.0	1010.0	-9.8	9.0	9.0	26592	530.9
10	S	0.74	240.0	1010.0	-4 1	90	9.0	21048	530.9

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm si	r max	wk	Mx fess	My fess
	_										
1	S	-0.00005	0	0.500	26.0	77	0.00003 (0.00003)	473	0.012 (0.20)	10305.96	68981.50
2	S	-0.00006	0	0.500	26.0	77	0.00003 (0.00003)	441	0.014 (0.20)	26769.70	57133.54
3	S	-0.00005	0	0.500	26.0	77	0.00003 (0.00003)	483	0.014 (0.20)	5863.75	64113.95
4	S	-0.00005	0	0.500	26.0	77	0.00003 (0.00003)	482	0.013 (0.20)	9196.63	67159.77
5	S	-0.00005	0	0.500	26.0	77	0.00003 (0.00003)	454	0.014 (0.20)	19866.18	59526.50
6	S	-0.00005	0	0.500	26.0	77	0.00003 (0.00003)	483	0.014 (0.20)	5863.75	64113.95
7	S	-0.00005	0	0.500	26.0	77	0.00003 (0.00003)	482	0.013 (0.20)	9196.63	67159.77
8	S	-0.00005	0	0.500	26.0	77	0.00003 (0.00003)	454	0.014 (0.20)	19866.18	59526.50
9	S	-0.00005	0	0.500	26.0	77	0.00003 (0.00003)	483	0.014 (0.20)	5863.75	64113.95
10	S	-0.00002	0	0.500	26.0	77	0.00001 (0.00001)	437	0.005 (0.20)	8491.20	82966.86

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

 N°Comb
 Ver
 Sc max
 Xc max
 Yc max
 Sf min
 Xs min
 Ys min
 Ac eff.
 As eff.

 1
 S
 1.02
 240.0
 1010.0
 -12.2
 9.0
 9.0
 26598
 530.9

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00007	0	0.500	26.0	77	0.00004 (0.00004)	483	0.018 (0.20)	5640.44	60606.75

4.9.3 Zattera di fondazione

Per la valutazione delle sollecitazioni nel plinto di fondazione, è necessario valutare preventivamente le sollecitazioni agenti nei pali di fondazione. Tali sollecitazioni sono state valutate mediate una ripartizione rigida delle sollecitazioni agenti a base plinto.

Si vedano i paragrafi precedenti da cui risulta:

 $N_{max} = 4996 \text{ kN (CC. SLU)}$

 $T_{max} = 554 \text{ kN (CC. SLV)}$

 $N_{max} = 3684 \text{ kN (CC. SLV)}$

 $T_{max} = 629 \text{ kN (CC. SLV)}$

4.9.3.1 <u>Unghia anteriore platea fondazione</u>

Il tacco anteriore del plinto di fondazione è stato verificato ipotizzando un meccanismo di tirante puntone. Si riporta di seguito la verifica. La larghezza di diffusione è stata valutata in corrispondenza del filo anteriore del muro frontale, mediante una diffusione a 45° a partire dal piano medio del palo (vedi figura seguente), mentre l'altezza della biella compressa è stata valutata pari a 0.2 d_p (con d_paltezza utile della sezione del plinto).

La verifica è stata eseguita in corrispondenza del palo più sollecitato.

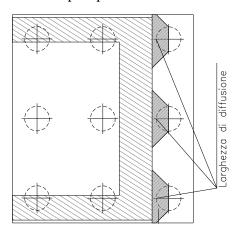


Figura 3 – Diffusione delle azioni dal palo al muro frontale

Di seguito si riportano i risultati delle verifiche strutturali del plinto di fondazione, condotte con riferimento al metodo usualmente utilizzato per la verifica delle mensole tozze, ovvero il metodo del tirante-puntone, di cui nel seguito si riporta lo schema e di verifica generale e relative formulazioni proposte a riguardo al C4.1.2.1.5 dalla Circolare Ministeriale n° 7/19.

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	NW 04 00 008	Α	58 di 63

VERIFICA - MECCANISMO TIRANTE PUNTONE.

P,H: Carichi Esterni di Progetto (P_{ED},H_{ED})

Pr : Portanza mensola in termini di resistenza dell'armatura metallica

$$P_{\text{R}} = P_{\text{Rs}} = \Big(A_{\text{s}}f_{yd} - H_{\text{Ed}}\Big)\frac{1}{\lambda} \qquad \lambda = ctg\psi \cong l/(0.9d).$$

Pr: Portanza mensola in termini di resistenza della Biella compressa

$$P_{\text{Rc}} = 0,4bdf_{\text{cd}}\,\frac{c}{1+\lambda^2} \geq P_{\text{Rs}}$$

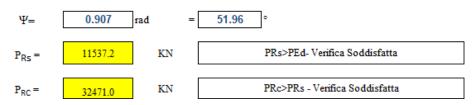
CONDIZIONI DI VERIFICA

- $_{\text{1}}\quad P_{\text{R}}\geq P_{Ed}$
- 2 P. > P.

Dati di progetto

b(m)=	3.90	m	dimensione trasversale verifica
P_{Ed} (KN) =	4996.00	KN	Carico complessivo VERTICALE sulla fascia di dimensione b
H_{Ed} (KN) =	554.00	KN	Carico complessivo ORIZZONTALE sulla fascia di dimensione b
a(m) =	1.20	m	distanza P da incastro
h(m) =	2.50	m	spessore mensola
$\delta(m) =$	0.12	m	copriferro riferito al baricentro delle armature complessive in trazione
d(m) =	2.38	m	altezza utile
1(m) =	1.68	m	a+0,2d
λ =	0.78		λ=ctgψ≘l/(0,9d).

Tipo di mensola (Valutazione coefficiente c)


Caratteristiche Materiali

fcd=	14.1	MPa	Calcestruzzo
fvd =	301.0	MPa	Acciaio

Caratteristiche Armature di Progetto

Registro tipo	R1				
n° R1=	1	φ1(mm) =	20.0	p1(cm) = 10.0	$\theta 1^{\circ} = 0.0$
Αφ i (mm²) =	314.16	nb tot 1=	39.0	$A\phi TOT (mm^2) = 12252.20$	$A\phi CAL(mm^2) = 12252.20$
Registro tipo	R2				
n° R2=	1	φ2(mm) =	20.0	p2(cm) = 10.0	$\theta 2^{\circ} = 0.0$
Αφ i (mm²) =	314.16	nb tot 2 =	39.0	$A\phi$ TOT (mm ²) = 12252.20	$A\phi CAL(mm^2) = 12252.20$
Registro tipo	R3				
n° R3=	0	φ3(mm) =	24.0	p3(cm) = 10.0	θ3° = 0.0
Αφ i (mm²) =	452.39	nb tot 3 =	0.0	$A\phi TOT (mm^2) = 0.00$	$A\phi CAL(mm^2) = 0.00$

Verifiche di resistenza

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D09CL
 NW 04 00 008
 A
 59 di 63

4.9.4 Palo di fondazione

Viene verificata la sezione di incastro con la platea di fondazione.

Il momento flettente agente in testa palo viene derivato dal taglio in testa palo nell'ipotesi di elasticità lineare sia per il palo che per il terreno. Risulta

 $M = T * \alpha$

 $\alpha = 3.10$ (vedi relazione geotecnica)

Nz,A [kN]	Mxx [kNm]	Myy [kNm]	Ty,A [kN]
4996	1717		554
2297	1717		554
3684	1951		629
1835	1951		629

Caratteristiche della sezione:

Sezione circolare Ø 150 cm

 $A_s = 20 + 20 \phi 26$

staffe \(\phi 14/20 \)

La lunghezza del palo è pari a L = 25.00m

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30	
	Resis. compr. di progetto fcd:	14.160	MPa
	Resis. compr. ridotta fcd':	7.080	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	31475.0	MPa
	Resis. media a trazione fctm:	2.560	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	

Sc limite S.L.E. comb. Frequenti: 137.50 daN/cm²
Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.00

MPa
391.30

MPa
391.30

MPa
0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C25/30

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09CL NW 04 00 008 A 60 di 63

Raggio circ.: 75.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre generate Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

N°Gen. Ø Xcentro Ycentro Raggio **N°Barre** 0.0 0.0 66.0 20 26 0.0 20 2 0.0 61.0 26

ARMATURE A TAGLIO

Diametro staffe: 14 mm Passo staffe: 20.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Momento flettente [kNm] intorno all'asse y princ. d'inerzia
-	con verso positivo se tale da comprimere il lembo destro della sez
Vy	Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx	Componente del Taglio [kN] parallela all'asse princ d'inerzia x

N°Comb.	N	Mx	My	Vy	Vx
1	4996.00	1717.00	0.00	554.00	0.00
2	2297.00	1717.00	0.00	554.00	0.00
3	3684.00	1951.00	0.00	629.00	0.00
4	1835.00	1951.00	0.00	629.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

 N°Comb.
 N
 Mx
 My

 1
 3595.00
 1166.00
 0.00

 2
 2311.00
 1166.00
 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09CL NW 04 00 008 A 61 di 63

N°Comb.	N	Mx	Му
1	3447.00	1111.00 (2813.46)	0.00 (0.00)
2	2342.00	1111.00 (1846.01)	0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.7 cm Interferro netto minimo barre longitudinali: 2.4 cm Copriferro netto minimo staffe: 6.3 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r.Mx Res,My Res) e (N,Mx,My)
Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	4996.00	1717.00	0.00	4995.94	6142.17	0.00	3.58 212.4(53.0)
2	S	2297.00	1717.00	0.00	2296.95	5412.47	0.00	3.15 212.4(53.0)
3	S	3684.00	1951.00	0.00	3684.02	5815.00	0.00	2.98 212.4(53.0)
4	S	1835.00	1951.00	0.00	1835.18	5250.38	0.00	2.69 212.4(53.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp, a es max (sistema rif, X.Y.O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.0	75.0	0.00295	0.0	66.0	-0.00515	0.0	-66.0
2	0.00350	0.0	75.0	0.00282	0.0	66.0	-0.00717	0.0	-66.0
3	0.00350	0.0	75.0	0.00289	0.0	66.0	-0.00603	0.0	-66.0
4	0.00350	0.0	75.0	0.00279	0.0	66.0	-0.00765	0.0	-66.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

C.Rid.	x/d	С	b	а	N°Comb
		-0.001100979	0.000061346	0.000000000	1
		-0.002177430	0.000075699	0.000000000	2

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D09CL NW 04 00 008 A 62 di 63

VERIFICHE A TAGLIO

bw

Ctg

Acw Ast

A.Eff

Diam. Staffe: 14 mm

Passo staffe: 20.0 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro
Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]

Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	554.00	4041.25	2914.39118	3.9 100.6	137.2	2.500	1.200	5.6	29.6(0.0)
2	S	554.00	3759.38	3074.40120	0.6 106.1	132.9	2.500	1.092	5.3	29.6(0.0)
3	S	629.00	3913.33	2991.08119	9.7 103.2	135.4	2.500	1.147	6.2	29.6(0.0)
4	S	629.00	3697.13	3108.22121	l.1i 107.3	131.5	2.500	1.073	6.0	29.6(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	4.69	0.0 1010.0	-15.8	0.0	-66.0	385	5.3
2	S	4.57	0.0 1010.0	-42.0	0.0	-66.0	1344	31.9

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali

k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO SPALL B

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D09CL	NW 04 00 008	Α	63 di 63

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max		wk	Mx fess	My fess
1 2	S S	-0.00011 -0.00025	0 0	0.500 0.500		77 77	0.00005 (0.00005) 0.00013 (0.00013)		` ,		0.00 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	4.48	0.0 1010.0	-14.8	0.0	-66.0	385	5.3
2	S	4.35	0.0 1010.0	-36.1	0.0	-66.0	1270	31.9

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	wk	Mx fess	My fess	
1	S	-0.00010	0	0.500	26.0	77	0.00004 (0.00004)	582	0.026 (0.20)	2813.46	0.00
2	S	-0.00021	0	0.500	26.0	77	0.00011 (0.00011)	438	0.047 (0.20)	1846.01	0.00