COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3)

VIABILITA' - VIADOTTI NW04 – VIADOTTO STRADALE SU NV62A Relazione di calcolo pila

SCALA:
_

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

RS3T 30 D 09 CL NW0400 004 C

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Gen-2020	A.Ferri	Gen-2020	A.Barreca	Gen-2020	varianti ia di Rom?
В	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Feb-2020	A.Ferri	Feb-2020	A.Barreca	Feb-2020	A. e delle var ittozzi Zovincia d
С	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Mag-2020	A.Fem	Mag-2020	A.Barreca	Mag-2020	RR S.p.A estione deline deline 20783
				7 04				ITALEE Chille It. Ing. M ngegneri N' A:
								I. U.O. Opere Ci. Doft. Ordine degli Ing
								Ordine

File: RS3T.3.0.D.09.CL.NW.04.0.0.004.C

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 2 di 60

INDICE

1	PRE	MESSA	4
	1.1	DESCRIZIONE DELL'OPERA	4
2	RIFE	ERIMENTI NORMATIVI	6
3	МАТ	TERIALI	7
	3.1	VERIFICA S.L.E.	8
	3.1.1	Verifiche alle tensioni	8
	3.1.2	Verifiche a fessurazione	8
4	ANA	ILISI E VERIFICHE PILA	10
	4.1	Generalità	10
	4.2	MODELLI A MENSOLA PER LA VERIFICA DELLE PILE	10
	4.3	CONDIZIONI ELEMENTARI E COMBINAZIONI DI CARICO	10
	4.4	SISTEMI DI RIFERIMENTO ED UNITÀ DI MISURA	14
	4.5	GEOMETRIA DELLA PILA	15
	4.6	Analisi dei carichi	16
	4.6.1	Peso proprio elementi strutturali	16
	4.6.2	Carichi trasmessi dall'impalcato	16
	4.6.3	Azione del Vento	18
	4.6.4	Carichi da traffico verticali	20
	4.6.5	Carichi da traffico orizzontali	22
	4.6.6	Azione sismica	22
	4.6.7	' Analisi Dinamica Lineare	26
	4.6.8	Calcolo delle sollecitazioni in testa pali	27
	4.6.9		
	4.7	SOLLECITAZIONI	29
	4.7.1	Plinto di fondazione	30

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	DC2T	20	D 00 CI	NIW04 00 004	_	2 4: 60

4.8	PALI DI FONDAZIONE	32
4.9	VERIFICHE DEGLI ELEMENTI STRUTTURALI.	35
4.9.1	l Pila	36
4.9.2	2 Zattera di fondazione	45
4.9.3	Palo di fondazione	47
4.10	ESCURSIONE LONGITUDIANLE, GIUNTI E VARCHI	52
4.11	RITEGNI	56

1 PREMESSA

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo del corpo stradale ferroviario, delle opere d'arte e delle opere interferite relative al progetto definitivo della direttrice ferroviaria Messina-Catania-Palermo nell'ambito del nuovo collegamento Palermo - Catania.

La presente relazione ha per oggetto il dimensionamento e le verifiche di resistenza secondo il metodo semiprobabilistico agli Stati Limite (S.L.) di una delle pile del viadotto NW04 sulla viabilità NV62. In particolare si tratterà la pila di altezza maggiore per la tipologia di impalcati afferenti.

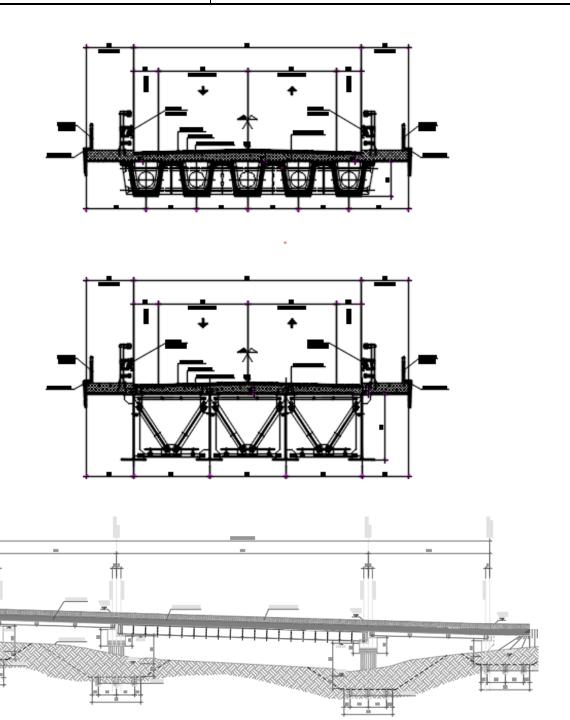
Le analisi strutturali e le verifiche di sicurezza sono state effettuate secondo il DM 17 gennaio 2018.

1.1 Descrizione dell'opera

Per la NV62A - Adeguamento SP145 Continuità provinciale (Strada Extraurbana Principale F1 Corsia 3.50m + Banchina 1.00m b=9.00m) in corrispondenza della progressiva 1+550 viene previsto un viadotto di lunghezza totale di 98 m circa.

Il viadotto è suddiviso in 3 campate da 24.0, 49.0 e 24.0m di luce; gli impalcati di luce 24.0m saranno costituiti da cinque travi a cassone in calcestruzzo prefabbricato, mentre la campata centrale, di luce 49.0m, da un sistema misto acciaio-calcestruzzo composto da 4 travi in carpenteria metallica e soletta superiore in c.a. collaborante.

Pila e spalle saranno realizzate in c.a. gettato in opera e fondate su pali di grande diametro.


TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 5 di 60

Sezione trasversale e prospetto

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA
TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3B)
Viadotto NW04

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D 09 CL	NW04 00 004	С	6 di 60

2 RIFERIMENTI NORMATIVI

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Ministero delle Infrastrutture, DM 17 gennaio 2018, Aggiornamento delle «Norme tecniche per le costruzioni».
- Ministero delle Infrastrutture, Circolare n°7 21 gennaio 2019, Istruzioni per l'Applicazione delle «Norme tecniche per le costruzioni».
- Istruzione RFI DTC SI PS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 2 Ponti e Strutture
- Istruzione RFI DTC SI CS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 3
 Corpo Stradale
- Regolamento (UE) N.1299/2014 del 18 novembre 2014 della Commissione Europea. Relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019.

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** RS3T 30 D 09 CL NW04 00 004 С 7 di 60

3 **MATERIALI**

Le caratteristiche dei materiali previsti le sottostrutture sono le seguenti:

Calcestruzzo magro e getti di livellamento

CLASSE DI RESISTENZA MINIMA C12/15

TIPO CEMENTO CEM I÷V

CLASSE DI ESPOSIZIONE AMBIENTALE : XO

Calcestruzzo per pali di fondazione

- CLASSE DI RESISTENZA MINIMA C25/30

- CLASSE DI RESISTENZA MINIMA CZ5750
- TIPO CEMENTO CEM III÷V
- RAPPORTO A/C : ≤ 0.60
- CLASSE MINIMA DI CONSISTENZA : S4
- CLASSE DI ESPOSIZIONE AMBIENTALE : XC2
- COPRIFERRO MINIMO = 60 mm

- DIAMETRO MASSIMO INERTI: 32 mm

Calcestruzzo per fondazioni

- CLASSE DI RESISTENZA MINIMA C28/35 - TIPO CEMENTO CEM III÷V - RAPPORTO A/C : ≤ 0.60 - CLASSE MINIMA DI CONSISTENZA : S4 - CLASSE DI ESPOSIZIONE AMBIENTALE : XC2 - COPRIFERRO = 40 mm - DIAMETRO MASSIMO INERTI : 25 mm

Calcestruzzo elevazione

- CLASSE DI RESISTENZA MINIMA C32/40
- TIPO CEMENTO CEM III÷V
- RAPPORTO A/C : ≤ 0.50
- CLASSE MINIMA DI CONSISTENZA : S4
- CLASSE DI ESPOSIZIONE AMBIENTALE : XC4
- COPRIFERRO = 40 mm (*)
- DIAMETRO MASSIMO INERTI : 25 mm

IN BARRE E RETI ELETTROSALDATE

B450C saldabile che presenta le seguenti caratteristiche

— Tensione di snervamento caratteristica - Tensione caratteristica a rottura

 $fyk > 450 \text{ N/mm}^2$ $ftk > 540 \text{ N/mm}^2$ $1.15 \le ftk/fyk < 1.35$

3.1 Verifica S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

3.1.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente a trazione" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario RFI DTC INC PO SP IFS 001 A del 2019 ", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{ek};
- per combinazioni di carico quasi permanente: 0,40 f_{ek};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{vk}$.

3.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 – Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Gruppi di			Armatura				
esigenza	Condizioni ambientali	Combinazione di azione	Sensibile		Poco sensibile		
CsigCiiZa			Stato limite	wd	Stato limite	wd	
a	Ordinarie	frequente	ap. fessure	\leq w ₂	ap. fessure	\leq w ₃	
a	Ordinarie	quasi permanente	ap. fessure	\leq w ₁	ap. fessure	\leq w ₂	
b	Aggressive	frequente	ap. fessure	\leq w ₁	ap. fessure	\leq w ₂	

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D 09 CL	NW04 00 004	С	9 di 60

		quasi permanente	decompressione	-	ap. fessure	\leq w ₁
C	Molto Aggressive	frequente	formazione fessure	-	ap. fessure	$\leq w_1$
	Wiolto Agglessive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Risultando:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Data la maggior restrittività, alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel DM 17.1.2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

Combinazione Caratteristica (Rara)

$$\delta_f \leq w_1 = 0.2 \ mm$$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura riportata al C4.1.2.2.4.5 della Circolare n. 7/19.

4 ANALISI E VERIFICHE PILA

4.1 Generalità

La pila presenta una sezione circolare di diametro 3.00m, una altezza complessiva di 4.50m.

Il pulvino è costituito da una sezione piena di dimensione 3.5x 12.00m ed altezza 3.00m.

Le fondazioni sono realizzate su pali di diametro 1.50 m collegate in testa da una platea di spessore 2.50m.

Per le verifiche dei singoli elementi della pila (pali, platea di fondazione ed elevazioni) è stata effettuata un'analisi dei carichi agenti sul piano appoggi e allo spiccato della fondazione; l'analisi viene riportata nelle pagine seguenti.

4.2 Modelli a mensola per la verifica delle pile

Le sollecitazioni di verifica della pila sono state determinate a partire dai valori delle risultanti delle azioni trasmesse dagli impalcati alla quota degli apparecchi di appoggio alle quali vanno combinate le azioni determinate dalle azioni date dalle forze di inerzia e dal peso proprio delle sottostrutture.

Il modello della struttura è stato implementato in un foglio di calcolo appositamente realizzato per la valutazione delle azioni agenti sulle singole parti della struttura, quali fusto pila e plinto.

Per l'analisi e la verifica del plinto di fondazione, si è utilizzato un modello, a seconda della geometria, di tirantepuntone o trave inflessa.

Per quanto riguarda invece le sollecitazioni sui pali di fondazione a partire dalle azioni risultanti nel baricentro del plinto alla quota di intradosso, sono stati calcolati, per ciascuna combinazione di carico, gli sforzi assiali e di taglio in testa ai pali di fondazione utilizzando il classico modello a piastra rigida.

4.3 Condizioni elementari e combinazioni di carico

Le verifiche di sicurezza strutturali e geotecniche sono state condotte utilizzando combinazioni di carico definite in ottemperanza alle NTC18, secondo quanto riportato nei paragrafi 2.5.3, 5.1.3.12. Di seguito sono mostrati i coefficienti parziali di sicurezza utilizzati allo SLU ed i coefficienti di combinazione adoperati per i carichi variabili nella progettazione delle strutture da ponte.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D 09 CL	NW04 00 004	С	11 di 60

2.5.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots \tag{2.5.1}$$

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ... \tag{2.5.6}$$

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

Per le verifiche geotecniche si è fatto riferimento alla combinazione (A1+M1+R3) di coefficienti parziali prevista dall'Approccio 2.

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D 09 CL	NW04 00 004	С	12 di 60

Tab. 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

,				
	Coefficiente	EQU	A1	A2
favorevoli	γ _{G1} e γ _{G3}	0,90	1,00	1,00
sfavorevoli		1,10	1,35	1,00
favorevoli	YG2	0,00	0,00	0,00
sfavorevoli		1,50	1,50	1,30
favorevoli	ΥQ	0,00	0,00	0,00
sfavorevoli		1,35	1,35	1,15
favorevoli	You	0,00	0,00	0,00
sfavorevoli		1,50	1,50	1,30
favorevoli	Ye1	0,90	1,00	1,00
sfavorevoli		1,00 ⁽³⁾	1,00 ⁽⁴⁾	1,00
favorevoli	Ye2 Ye3 Ye4	0,00	0,00	0,00
sfavorevoli		1,20	1,20	1,00
	favorevoli sfavorevoli favorevoli favorevoli sfavorevoli favorevoli sfavorevoli sfavorevoli	Coefficiente	favorevoli γG1 e γG3 0,90 1,10 favorevoli γG2 0,00 1,50 favorevoli γQ 0,00 1,35 favorevoli γQ 0,00 1,35 favorevoli γQ 0,00 1,50 favorevoli γQ1 0,90 1,00 favorevoli γQ1 0,00 1,00 favorevoli γQ1 0,00 0,00 favorevoli γQ1 0,00 0,00 favorevoli γQ1 0,00 0,00	favorevoli γ _{G1} e γ _{G3} 0,90 1,00 1,35 favorevoli γ _{G2} 0,00 0,00 1,50 1,50 favorevoli sfavorevoli γ _{Q2} 0,00 0,00 1,50 1,50 favorevoli sfavorevoli sfavorevoli γ _{Q1} 0,00 0,00 1,35 1,35 favorevoli sfavorevoli sfavorevoli γ _{Q1} 0,00 0,00 1,50 1,50 favorevoli sfavorevoli sfavorevoli γ _{Q1} 0,90 1,00 1,00 1,00 1,00 1,00 1,00 1,00

⁽i) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

Tab. 5.1.VI - Coefficienti & per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente \$\psi_0\$ di combi- nazione	Coefficiente \$\psi_1\$ (valori frequenti)	Coefficiente ψ_2 (valori quasi permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

 $\textbf{Tab. 6.4.I} - \textit{Coefficienti parziali } \gamma_{\textit{R}} \textit{ per le verifiche agli stati limite ultimi di fondazioni superficiali}$

Verifica	Coefficiente parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	γ _R = 1,1

[&]quot;Del caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi per la parte di essi nota si potraruno adottare gli stessi coefficienti validi per le azioni permanenti.

"1,30 per instabilità in strutture con precompressione esterna

"1,20 per effetti locali

Nel seguito si riportano le azioni considerate ai fini della valutazione delle sollecitazioni agenti sulle sottostrutture e, quindi, alle verifiche strutturali.

	A2 · Sl.U · N max gr.1	A2 - SLU - MT mox gr.1	A2 - SLU - ML max gr.1	A2 - SLU - N max gr 2	A2 - SLU - MT max gr.2	A2 - SLU - ML max gr.2	A2 - SUU - N max gr3	A2 - SLU - MT max gr.3	A2 · SI.U · MI. mm gr3	A2 - SLU - Vento ponte semico	A2 - SI.U - N max gr.1	A2 - SLU - MT mox gr.1	A2 - SLU - ML max gr.1	A2 - SLU - N max gr.2	A2 - SLU - MT max gr 2	A2 - SLU - ML mm gr2	A2 - SLU - N max gr.3	A2 - SLU - MT max gr.3	A2 - SLU - ML max gr.3	A2 - SLU - Vento ponte scarico	Al - SLU - N max gr.l	Al - SLU - MT max gr.1	Al - SLU - ML max gr.1	Al - SLU - N max gr2	Al - SLU - MT max gr.2	Al - SLU - ML max gr.2	Al - SLU - N max gr3	Al - SLU - MT max gr.3	Al - SLU - ML max gr.3	Al - SLU - Vento ponte scarico	Al - SLU - N max gr.1	Al - SLU - MT max gr.1	Al - SLU - ML mox gr.1	Al - SLU - N max gr 2	AI - SLU - MT max gr.2	AI - SLU - ML max gr.2	Al - SLU - N max gr.3	Al - SLU - MT max gr.3	Al - SLU - ML max gr.3	Al - SLU - V ento ponte sonico
Peso proprio G1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Permanenti G2	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Comb. Nmax Q1	1.15	0.00	0.00	0.86	0.00	0.00	0.86	0.00	0.00	0.00	1.15	0.00	0.00	0.86	0.00	0.00	0.86	0.00	0.00	0.00	1.35	0.00	0.00	1.01	0.00	0.00	1.01	0.00	0.00	0.00	1.35	0.00	0.00	1.01	0.00	0.00	1.01	0.00	0.00	0.00
Comb. Nmax Q3 frenatura	0.00	0.00	0.00	1.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.35	0.00	0.00	0.00	0.00	0.00	0.00
Comb. Nmax Q4 centrifuga Comb. Nmax O folla	0.00	0.00	0.00	0.00	0.00	0.00	1.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.35	0.00	0.00	0.00
	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Comb. MTmax Q1	0.00	1.15	0.00	0.00	0.86	0.00	0.00	0.86	0.00	0.00	0.00	1.15	0.00	0.00	0.86	0.00	0.00	0.86	0.00	0.00	0.00	1.35	0.00	0.00	1.01	0.00	0.00	1.01	0.00	0.00	0.00	1.35	0.00	0.00	1.01	0.00	0.00	1.01	0.00	0.00
Comb. MTmax Q3 frenatura	0.00	0.00	0.00	0.00	1.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.35	0.00	0.00	0.00	0.00	0.00
Comb. MTmax Q4 centrifuga	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.35	0.00	0.00
Comb. MTmax Q folla	0.00	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Comb. MLmax Q1	0.00	0.00	1.15	0.00	0.00	0.86	0.00	0.00	0.86	0.00	0.00	0.00	1.15	0.00	0.00	0.86	0.00	0.00	0.86	0.00	0.00	0.00	1.35	0.00	0.00	1.01	0.00	0.00	1.01	0.00	0.00	0.00	1.35	0.00	0.00	1.01	0.00	0.00	1.01	0.00
Comb. MLmax Q3 frenatura	0.00	0.00	0.00	0.00	0.00	1.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.35	0.00	0.00	0.00	0.00
Comb. MLmax Q4 centrifuga	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.35	0.00
Comb. MLmax Q folla	0.00	0.00	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.68	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Vento Ponte Scarico	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.50
Vento Ponte Carico	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.00	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.00	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.00	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.00
Attrito permanente	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Attrito carichi mobili	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	0.00	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	0.00	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	0.00
Sisma longitudinale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma trasversale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma verticale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

SLE Rara - N max gr.1	SLE Rara - MT max gr.1	SLE Rara - ML max gr.1	SLE Rara - N max gr.2	SLE Rara - MT max gr.2	SLE Rara - ML max gr.2	SLE Rara - N max gr.3	SLE Rara - MT max gr.3	SLE Rara - ML max gr.3	SLE Rara - V ento ponte scarico	SLE Freq N max gr.1	SLE Freq MT max gr.1	SLE Freq ML max gr.1	SLE Freq N max gr.2	SLE Freq MT max gr.2	SLE Freq ML max gr.2	SLE Freq N max gr.3	SLE Freq MT max gr.3	SLE Freq ML max gr.3	SLE Freq V ento ponte scarico	SLE Q.P ML max gr.3	SLV -dirX_1	SLV -dirX_2	SLV -dirY_1	SLV -dirY_2	SLV -dir.Z+	SLV -dir.Z-	
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	Peso proprio G1
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	Permanenti G2
1.00	0.00	0.00	0.75	0.00	0.00	0.75	0.00	0.00	0.00	0.75	0.00	0.00	0.56	0.00	0.00	0.56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.20	Comb. Nmax Q1
0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.20	Comb. Nmax Q3 frenatura
0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.20	Comb. Nmax Q4 centrifuga
0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.10	Comb. Nmax Q folla
0.00	1.00	0.00	0.00	0.75	0.00	0.00	0.75	0.00	0.00	0.00	0.75	0.00	0.00	0.56	0.00	0.00	0.56	0.00	0.00	0.00	0.00	0.00	0.20	0.20	0.00	0.00	Comb. MTmax Q1
0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.20	0.00	0.00	Comb. MTmax Q3 frenatura
0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.20	0.20	0.00	0.00	Comb. MTmax Q4 centrifuga
0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.10	0.00	0.00	Comb. MTmax Q folla
0.00	0.00	1.00	0.00	0.00	0.75	0.00	0.00	0.75	0.00	0.00	0.00	0.75	0.00	0.00	0.56	0.00	0.00	0.56	0.00	0.00	0.20	0.20	0.00	0.00	0.00	0.00	Comb. MLmax Q1
0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.00	0.20	0.20	0.00	0.00	0.00	0.00	Comb. MLmax Q3 frenatura
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.75	0.00	0.00	0.20	0.20	0.00	0.00	0.00	0.00	Comb. MLmax Q4 centrifuga
0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.10	0.00	0.00	0.00	0.00	Comb. MLmax Q folla
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Vento Ponte Scarico
0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Vento Ponte Carico
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	Attrito permanente
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.00	1.00	0.20	0.20	0.20	0.20	0.20	0.20	Attrito carichi mobili
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00	0.30	0.30	0.30	0.30	Sisma longitudinale
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	0.30	1.00	1.00	0.30	0.30	Sisma trasversale
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	-0.30	0.30	-0.30	1.00	-1.00	Sisma verticale

Gli scarichi agli appoggi, riportati nei paragrafi seguenti, fanno riferimento alla seguente terna di assi:

- asse X coincidente con l'asse longitudinale del ponte;
- asse Y coincidente con l'asse trasversale del ponte;
- asse Z coincidente con l'asse verticale del ponte;

Per quanto riguarda la risposta alle diverse componenti dell'azione sismica, poiché si è adottata un'analisi in campo lineare, essa può essere calcolata separatamente per ciascuna delle componenti. Gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc) sono combinate successivamente applicando l'espressione

$$1.00 \cdot Ex + 0.30 \cdot Ey + 0.30 \cdot Ez$$

con rotazione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

Occorre precisare che con il segno negativo verranno indicate le azioni aventi direzione positiva delle Z (ovvero dirette verso l'alto).

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 14 di 60

4.4 Sistemi di riferimento ed unità di misura

- Asse X parallelo all'asse longitudinale dell'impalcato
- Asse Y ortogonale all'asse longitudinale dell'impalcato
- Asse Z verticale

- Lunghezze = m

- Forze = kN

4.5 Geometria della Pila

Generali			
Peso cls	γ_{c1s}	25	kN/m ³
Peso terreno	$\gamma_{\rm t}$	20	kN/m ³
Altezza appoggio + baggiolo	h _{ap}	0.45	m
Pulvino			
Altezza	Hp	3.00	m
Lunghezza lungo asse X	b _p	3.5	m
Lunghezza lungo asse Y	Lp	12.00	m
Area Sezione		42.00	m ²
% Vuoti sezione		0%	
Coordinata X del baricentro rispetto fondazione	X _p	0.00	m
Pila			
Altezza	H_{m}	4.50	m
Lunghezza lungo asse X	b _m	3.00	m
Lunghezza lungo asse Y	L _m	3.00	m
Area Sezione		7.07	m ²
% Vuoti sezione		0%	
Coordinata X del baricentro rispetto fondazione	x _m	0.00	m
Distanza asse baggioli- asse pila (sx)	x _{ml}	-1.00	m
Distanza asse baggioli- asse asse pila (dx)	x _{m2}	1.00	m
Plinto			
Altezza	H_{f}	2.50	m
Lunghezza lungo asse X	$\mathfrak{b}_{\mathrm{f}}$	12.00	m
Lunghezza lungo asse Y	$L_{\rm f}$	12.00	m
Spessore ricoprimento medio	h _t	1.00	m
Distanza asse baggioli - baricentro plinto (sx)		-1.00	m
Distanza asse baggioli - baricentro plinto (dx)		1.00	m
Terreno	<u> </u>		
Angolo d'attrito interno (φ)		35	•
Coefficiente per il calcolo della spinta a riposo	V	Ko= 0.426	V
Sisma			
S _s	_	1.000	1
<u>a_g</u>		0.150	
Coefficiente sismico orizzontale	$\mathbf{k}_{\mathtt{h}}$	0.150	

Tabella 2 – Dati di input

4.6 Analisi dei carichi

4.6.1 Peso proprio elementi strutturali

Peso proprio strutture

I pesi degli elementi strutturali sono calcolati utilizzando un peso di volume del calcestruzzo pari a 25 kN/m³.

Impalcato (sx	:)		
N° Corsie convenzionali		3	
Lunghezza	L	25	m
Peso Proprio	G_1	230	kN/m
Permanenti portati	G ₂	80	kN/m
n° totale appoggi sulla pila	n	5	
Reazione appoggio $i = (G_1*L/2)/n$	R _i	575.0	kN
Reazione appoggio $i = (G_2*L/2)/n$	R _i	200.0	kN

Impalcato	(dx)		
N° Corsie convenzionali		3	
Lunghezza	L	50	m
Peso Proprio	G1	140	kN/m
Permanenti portati	G2	50	kN/m
n° totale appoggi sulla pila	n	4	
Reazione appoggio $i = (G_1*L/2)/n$	Ri	875.0	kN
Reazione appoggio $i = (G_2*L/2)/n$	Ri	312.5	kN

4.6.2 Carichi trasmessi dall'impalcato

I carichi del traffico vengono dedotti dal modello FEM dell'impalcato. Sul singolo appoggio forniscono i risultati in tabella seguente.

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 17 di 60

$\underline{\textbf{REAZIONI VINCOLARI}} \ [kN,m]$

SX

Appoggio		A			В			C			D			E		
Di-ii	FZ	FX	FY	biz												
Descrizione carico	[kN]	[m]														
Peso proprio G1	575			575			575			575			575			0.00
Permanenti G2	200			200			200			200			200			0.00
																0.00
Comb. Nmax Q1	272			332			167			121			222			0.00
Comb. Nmax Q3 frenatura																1.80
Comb. Nmax Q4 centrifuga																1.80
Comb. Nmax Q folla	175			39			28			39			175			0.00
Comb. MTmax Q1	458			137			54			41			10			0.00
Comb. MTmax Q3 frenatura																1.80
Comb. MTmax Q4 centrifuga																1.80
Comb. MTmax Q folla	207			63			25			14			-32			0.00
Comb. MLmax Q1																0.00
Comb. MLmax Q3 frenatura																1.80
Comb. MLmax Q4 centrifuga																1.80
Comb. MLmax Q folla																0.00
Vento Ponte Scarico						63			63							2.30
Vento Ponte Carico						95			95							3.30
Attrito permanente		23	23		23	23		23	23		23	23		23	23	0.00
Attrito carichi mobili		14	14		10	10		5	5		4	4		7	7	0.00
Sisma longitudinale																1.80
Sisma trasversale						962			962							1.80
Sisma verticale	119			119			119			119			119			0.00
Sisma longitudinale		0			0			0			0			0		1.80
Sisma trasversale			0			1061			1061			0			0	1.80
Sisma verticale	119			119			119			119			119			0.00
Sisma longitudinale		0			0			0			0			0		1.80
Sisma trasversale			0			1443			1443			0			0	1.80
Sisma verticale	119			119			119			119			119			0.00

$\underline{\textbf{REAZIONI VINCOLARI}} \; [kN,m]$

dx

Appoggio		A			В			C			D		
Descrizione carico	FZ	FX	FY	biz									
Descrizione canco	[kN]	[m]											
Peso proprio G1	875			875			875			875			0.00
Permanenti G2	320			320			320			320			0.00
													0.00
Comb. Nmax Q1	415			461			400			369			0.00
Comb. Nmax Q3 frenatura					248			248					3.00
Comb. Nmax Q4 centrifuga													3.00
Comb. Nmax Q folla	205			32			32			205			0.00
Comb. MTmax Q1	684			223			169			9			0.00
Comb. MTmax Q3 frenatura					248			248					3.00
Comb. MTmax Q4 centrifuga													3.00
Comb. MTmax Q folla	265			72			40			-60			0.00
Comb. MLmax Q1	500			724			605			408			0.00
Comb. MLmax Q3 frenatura					248			248					3.00
Comb. MLmax Q4 centrifuga													3.00
Comb. MLmax Q folia	205			32			32			205			0.00
Vento Ponte Scarico						126			126				3.80
Vento Ponte Carico						189			189				4.50
Attrito permanente		36	36		36	36		36	36		36	36	0.00
Attrito carichi mobili		21	21		22	22		18	18		12	12	0.00
Sisma longitudinale		0			2174			2174					2.80
Sisma trasversale			0			962			962			0	2.80
Sisma verticale	119			119			119			119			0.00
Sisma longitudinale		0			2398			2398			0		2.80
Sisma trasversale			0			1061			1061			0	2.80
Sisma verticale	119			119			119			119			0.00
Sisma longitudinale		0			3261			3261			0		2.80
Sisma trasversale			0			1443			1443			0	2.80
Sisma verticale	119			119			119			119			0.00

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 18 di 60

4.6.3 Azione del Vento

Condizione (ponte carico o scarico)		scarico	carico	
Altitudine sul livello del mare	as	415	415	m
Zona	Z	4	4	
Parametri	Vb.0	28	28	m/s
Parametri	a0	500	500	m
Parametri	ks	0.36	0.36	1/s
Velocità di riferimento (Tr=50anni)	vb=vb0 * (1+ ks(as/ao-1)	28	28	m/s
Periodo di ritorno considerato	TR	150	150	anni
	αR	1.06	1.06	
Velocità di riferimento	Vb(TR)	29.71	29.71	m/s
Densità dell'aria	ρ	1.25	1.25	kg/mc
Pressione cinetica di riferimento	qb=0.5*ρ*vb²	0.55	0.55	kN/mq
Classe di rugostità del terreno	1 ,	D	D	•
Distanza dalla costa		>10	>10	km
Altitudine sul livello del mare		<750	<750	m
Categoria di esposizione del sito	Cat	II	II	
Vento su impalcato				
Parametri	kr	0.19	0.19	
Parametri	z0	0.05	0.05	m
Parametri	zmin	4	4	m
Altezza di riferimento per l'impalcato (EC punto 8.3.1(6))	Z	11	11	m
Coefficiente di topografia	ct	1	1	
Coefficiente di esposizione (z)	ce(z)	2.41	2.41	
Larghezza impalcato	b	12.7	12.7	m
Altezza impalcato	h1	3	3	m
Altezza veicolo o parapetto	h2	1.5	3	m
Altezza totale impalcato (comprese le barriere o veicolo)	dtot	4.5	6	m
Rapporto di forma	b/dtot	2.82	2.12	
Coefficiente di forza (figura 8.3 EC)	cfx	1.65	1.87	
Riepilogo				
Pressione cinetica di riferimento	qb	0.55	0.55	kN/mq
Coefficiente di esposizione	ce	2.41	2.41	
Coefficiente di forza	cfx	1.65	1.87	
Altezza di riferimento (EC punto 8.3.1 (4) e (5))	d	4.5	6	m
Forza statica equivalente a m/l	f=prodotto	9.9	14.9	kN/m
Pressione statica equivalente	p=f/d	2.20	2.48	kN/mq
Pressione statica equivalente (minima considerata)	pmin	1.5	1.5	kN/mo
Forza statica equivalente a m/l considerata	f	9.9	14.9	kN/m
Vento impalcato a ponte scarico		sx	dx	
Forza statica equivalente	f	9.9	9.9	kN/m
Luce impalcato	L	25	50	m
Forza trasversale al piano appoggi	FT=f*L/2	124	248	kN/m
Vento impalcato a ponte carico				
Forza statica equivalente	f	14.9	14.9	kN/m
Luce impalcato	L	25	50	m
Forza trasversale al piano appoggi	FT=f*L/2	186	372	kN/m

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

FOGLIO

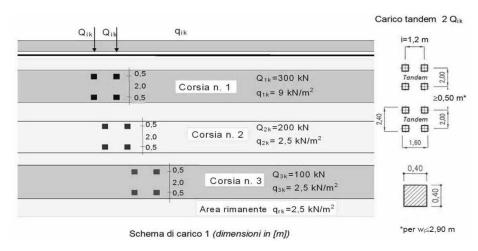
19 di 60

Viadotto NW04

RELAZIONE DI CALCOLO PILA

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

RS3T 30 D 09 CL NW04 00 004 C


Vento su Pila e Pulvino				
Parametri	kr	0.19	0.19	
Parametri	z0	0.05	0.05	m
Parametri	zmin	4	4	m
Altezza di riferimento per pila e pulvino (EC punto 7.6(2))	Z	7.50	7.5	m
Coefficiente di topografia	ct	1	1	
Coefficiente di esposizione (z)	ce(z)	2.17	2.17	
· · · · · · · · · · · · · · · · · · ·		dir.x	dir.x	
Altezza (dir.z)	h	3.00	4.50	m
Larghezza in direz. Ortogonale al vento	b	12.00	3.00	m
Larghezza in direz. Parallela al vento	đ	3.5	3	m
Rapporto di forma	₫/b	0.29	1.00	
Coefficiente di forza (figura 7.23 EC)	cfx	2.12	2.15	
Raggio di arrotondamento (figura 7.24 EC)	r	1.5	1.5	m
Rapporto di forma II	r/b	0.13	0.50	
Fattore di riduzione (figura 7.24 EC)	Ψ	0.69	0.50	
Pressione di riferimento	q=Ψ*cfx*ce*qb	1.75	1.29	kN/mq
Area investita dal vento	A=b*h	36	13.5	mq
Forza statica equivalente	F=q*A	63	17	kN
•	_	dir.y	dir.y	
Altezza (dir.z)	h	3.00	4.50	m
Larghezza in direz. Ortogonale al vento	b	3.5	3	m
Larghezza in direz. Parallela al vento	đ	12	3	m
Rapporto di forma	₫/b	3.43	1.00	
Coefficiente di forza (figura 7.23 EC)	cfx	1.27	2.15	
Raggio di arrotondamento (figura 7.24 EC)	r	1.5	1.5	m
Rapporto di forma II	r/b	0.43	0.50	
Fattore di riduzione (figura 7.24 EC)	Ψ	0.50	0.50	
Pressione di riferimento	q=Ψ*cfx*ce*qb	0.76	1.29	kN/mq
Area investita dal vento	A=b*h	10.5	13.5	mq
Forza statica equivalente	F=q*A	8	17	kN
Riepilogo				
Vento x				
Pulvino	F	63	kN	
Pila	F	17	kN	
Distanza tra spiccato fusto e testa pulvino	bz	7.50	m	
Forza totale	F Tot	80	kN	
Vento y				
Pulvino	F	8	kN	
Pila	F	17	kN	
Distanza tra spiccato fusto e testa pulvino	bz	7.50	m	
Forza totale	F Tot	25	kN	

4.6.4 Carichi da traffico verticali

L'opera è stata progettata considerando le sollecitazioni dovute al carico da traffico veicolare.

Le azioni variabili del traffico definite nello Schema di Carico 1 sono costituite da carichi concentrati e da carichi uniformemente distribuiti. Tale schema è da assumere a riferimento sia per le verifiche globali, sia per le verifiche locali.

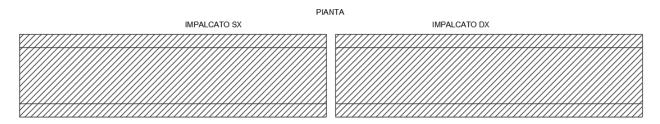
Il numero delle colonne di carichi mobili e la loro disposizione sono quelli massimi compatibili con la larghezza della carreggiata considerata, per i ponti di 1a Categoria.

Posizione	Carico asse Q _{ik} [kN]	q _{ik} [kN/m²]
Corsia Numero 1	300	9
Corsia Numero 2	200	2,5
Corsia Numero 3	100	2,5
Altre corsie	0,00	2,50

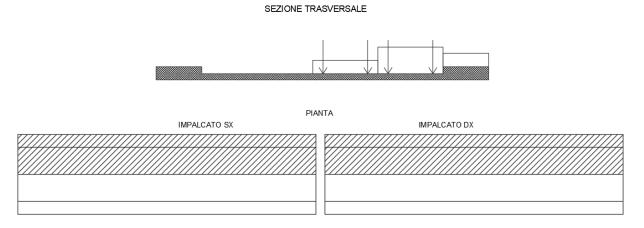
Sui marciapiedi si applica lo Schema di Carico 5 (folla) con valore q= 5kN/mq.

Di seguito si farà riferimento alle tre condizioni di carico seguenti:

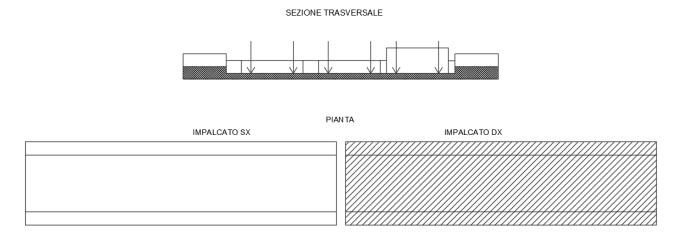
- N max, massimo sforzo normale per la pila: il carico è presente su entrambi gli impalcati, con il numero massimo di corsie convenzionali geometricamente consentite. Si riporta di seguito uno schema esemplificativo:



DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA
TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3B)
Viadotto NW04


RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 21 di 60

- Mt max, massimo momento lungo l'asse x (direzione di marcia): il carico è presente su entrambi gli impalcati, ma solo da un lato della carreggiata. Si riporta di seguito uno schema esemplificativo:

- ML max, massimo momento lungo l'asse y: il carico è presente su un solo impalcato, con il numero massimo di corsie convenzionali geometricamente consentite. Si riporta di seguito uno schema esemplificativo:

4.6.5 Carichi da traffico orizzontali

Frenatura							
L	50	m					
q3	495	kN					
q3 (filtrata)	495	kN					

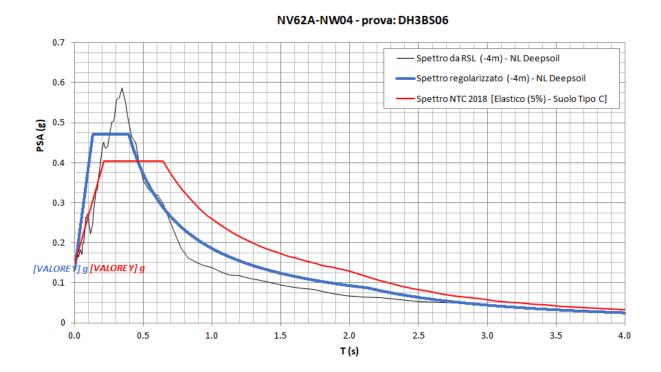
Centrifuga								
Raggio planimetrico	10000	m						
n° corsie	3							
Qv	1200	kN						
q4	0	kN						

4.6.6 Azione sismica

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17 gennaio 2018 e relativa circolare applicativa.

Valori di progetto

La pericolosità sismica di base è stata definita sulla base delle coordinate geografiche del sito di realizzazione dell'opera:



I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.

Per il viadotto in esame è stato effettuato uno specifico studio di Risposta Simica Locale del quale si riportano i risultati:

Viadotto NW	/04					
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RS3T	30	D 09 CL	NW04 00 004	С	24 di 60	

➤ <u>Calcolo dell'azione Sismica</u>

RELAZIONE DI CALCOLO PILA

Per il calcolo delle azioni sismiche si utilizza una Analisi Statica Lineare, come riportata nel cap. 7.9.4.1 delle Normative. Qualora le ipotesi non siano soddisfate, si è fatto riferimento ad una Analisi Dinamica Modale, attraverso la costruzione di un modello tridimensionale agli Elementi Finiti semplificato.

I Fattori di struttura utilizzati sono:

- q= 1.5 per la verifica a presso flessione della pila
- q= 1.5/1.1 per la verifica a capacità portante verticale dei pali e verifica del plinto
- q= 1 per le verifiche a taglio degli elementi strutturali (vedi anche punto successivo), verifiche a capacità portante orizzontale dei pali.
- Solo per la verifica a taglio dello spiccato della pila, il criterio adottato è quello della gerarchia delle resistenze, così come indicato al punto 7.9.5 delle NTC
- Per l'azione sismica verticale si adotta q=1

Il baricentro delle masse viene considerato coincidente con quello dell'impalcato; nel caso particolare risulta L= 9.30 m.

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 25 di 60

Condizione Sis	mica		
Massa sismica impalcato dir x	mix	10158	kN
Massa efficace pila dir x	mpx	3415	kN
Massa complessiva dir x	mix + mpx	13573	kN
1/5 Massa sismica impalcato dir x	mix/5	2032	kN
Verifica requisito dir x		no	
Massa sismica impalcato dir. y	mi _y	9177	kN
Massa efficate pila dir. Y	mpy	3415	kN
Massa complessiva dir. Y	miy + mpy	12592	kN
1/5 Massa sismica impalcato dir. Y	miy/5	1835	kN
Verifica requisito dir. Y		no	127
Massa sismica impalcato dir. z	miz	9177	kN
Massa efficate pila dir. Z	mpz	3415	kN 1-N
Massa complessiva dir. Z 1/5 Massa sismica impalcato dir. Z	miz + mpz miz/5	12592 1835	kN kN
Verifica requisito dir. Z	11112/3	no	KIN
v crinca requisito un. 2		110	
Inerzia Pila asse y	J_{yy}	3.98	m ⁴
Inerzia Pila asse x	J _{xx}	3.98	m ⁴
Area Pila	Ap	7.07	m ²
Rigidezza Pila asse y	K _y	489374422.1	N/m
Rigidezza Pila asse x	K _x	489374422.1	N/m
rigidezza Pila asse z	K ₂	31101767271	N/m
Periodo x	T _x	0.33	s
Periodo y	T_{v}	0.32	s
Periodo z	T _z	0.04	S
Accelerazione orizzontale Se(Tx) direzione x	a _g x	0.47	
Accelerazione orizzontale Se(Ty) direzione y	a _g y	0.47	
Accelerazione Verticale Se(Tz) direzione z	a _g z	0.08	
q=1.5			
Accelerazione orizzontale Sd(Tx) direzione x	a _g x	0.31	
Accelerazione orizzontale Sd(Ty) direzione y	a _g y	0.31	
Accelerazione Verticale Sd(Tz) direzione z	a _g z	0.08	
q=1.36	<u> </u>		
Accelerazione orizzontale Sd(Tx) direzione x	a _g x	0.35	
Accelerazione orizzontale Sd(Ty) direzione y	a _g y	0.35	
Accelerazione Verticale Sd(Tz) direzione z	a _g z	0.08	
q=1	ug 2	0.00	
Accelerazione orizzontale Sd(Tx) direzione x	a _g x	0.47	
Accelerazione orizzontale Sd(Ty) direzione y	a _g y	0.47	
Accelerazione Verticale Sd(Tz) direzione z		0.08	
Condizione Sismica - Ta	a _g z glianti Tota		
q=1.5	Smill Iou		
Tagliante direzione x	F x	4262	kN
Tagliante direzione y	F y	3954	kN
Tagliante direzione z	Fz	944	kN
q=1.36			
Tagliante direzione x	F x	4701	kN
Tagliante direzione y	F y	4361	kN
Tagliante direzione z	F z	944	kN
q=1			4.
Tagliante direzione x	Fx	6393	kN
Tagliante direzione y	F y	5931	kN
Tagliante direzione z	Fz	944	kN

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO CO	LLEGAME RCARA D	NTO PALERN	NA – CATANIA – 10 – CATANIA – CALTANISSET		
RELAZIONE DI CALCOLO PILA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3T	30	D 09 CL	NW04 00 004	С	26 di 60

4.6.7 Analisi Dinamica Lineare

Non essendo soddisfatti i criteri per l'analisi statica si svolge una Analisi Dinamica Lineare. L'analisi viene svolta considerando per la pila una rigidezza non fessurata e fessurata con riduzione della rigidezza pari ad al 50%.

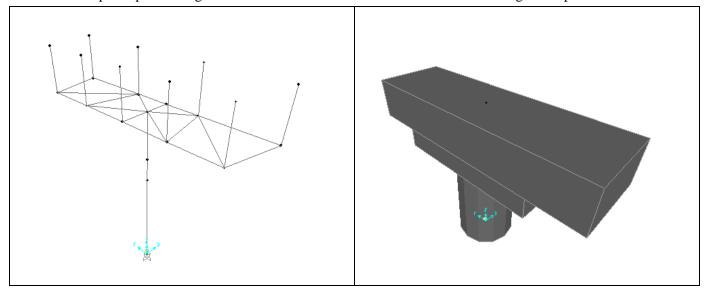


Figura 1: Modello FEM

Si riportano di seguito i risultati della analisi modale:

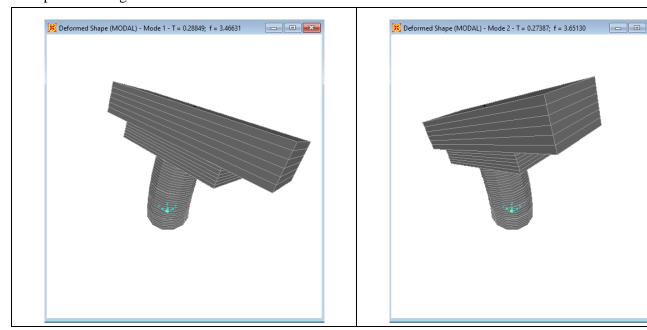
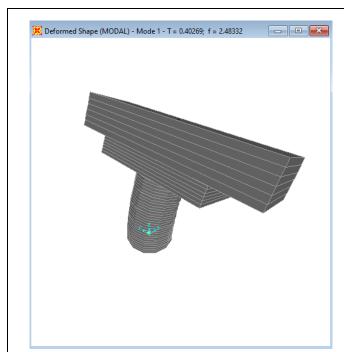



Figura 2: Modello FEM – Analisi Modale (100% rigidezza)

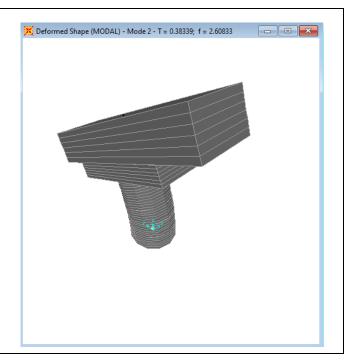


Figura 3: Modello FEM - Analisi Modale (50% rigidezza)

4.6.8 Calcolo delle sollecitazioni in testa pali

Le sollecitazioni agenti in testa palo vengono calcolate nell'ipotesi di platea di fondazione infinitamente rigida, attraverso la relazione

$$R(x,y) = \frac{N}{n} + \frac{M_l}{J_l} \cdot y + \frac{M_t}{J_t} \cdot x$$

dove

 N, M_1, M_t sono lo sforzo normale e i momenti flettenti longitudinale e trasversale agenti al baricentro della palificata, $n \in I$ numero di pali e II, II sono le inerzie longitudinale e trasversale della palificata

$$J_{l} = \sum y_{i}^{2} \qquad \qquad J_{t} = \sum x_{i}^{2}$$

Per quanto riguarda le sollecitazioni orizzontali in testa palo, si assume che le azioni di taglio di ripartiscano uniformemente tra i pali, risultando

$$T(x,y) = \frac{\sqrt{H_l^2 + H_t^2}}{n}$$

dove H₁, H_t sono le forze orizzontali longitudinale e trasversale agenti al baricentro della palificata.

4.6.9 Riepilogo risultati

Il foglio automatico, sulla base di calcoli sviluppati nei fogli successivi, restituisce, per ciascuna combinazione i risultati del controllo di verifica.

Per ciascuna combinazione vengono riassunti:

- Le sollecitazioni al livello del piano di fondazione in termini di sforzo normale N, forza orizzontale T e momento ribaltante M.
- Per i carichi sui pali in termini di N_{max} , N_{min} , T ed M.

	SP	ICCATO PIL	A: condizione st	atica				
Descrizione carico	Fz	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	Mx	My
Descrizione canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Pila	3945			0.00	0.00	0	0	0
Vento su pila đir. x		80		0.00	0.00	7.50	0	602
Vento su pila dir.y			25.4	0.00	0.00	7.50	190	0
	INTRADO	OSSO FONDA	AZIONE: condiz	ione stat	ica			
December and a	Fz	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	M _x	My
Descrizione carico	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Pila	3945			0.00	0.00	0	0	0
Plinto	9000			0.00	0.00	1.25	0.00	0
Rinterro	2700			0.00	0.00	0.00	0.00	0
Vento su pila dir. x		80		0.00	0.00	10.00	0	803
Vento su pila dir.y			25.39902018	0.00	0.00	10.00	254	0
	INTRADO	SSO FONDA	ZIONE: condizi	one sism	iica	•		
	Fz	FX	Fy	b _{ix}	b _{iy}	b _{iz}	M _x	My
Descrizione carico	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Plinto sisma x		1350		0.00	0.00	1.25	0.00	1688
Plinto sisma y			1350	0.00	0.00	1.25	1688	0
Plinto sisma z	675			0.00	0.00	1.25	0	0
Rinterro sisma z	203			0.00	0.00	0.00	0	0

4.7 Sollecitazioni

	Nz [kN]	Tx [kN]	Ty [kN]	Mx [kN*m]	My [kN*m]
A2 - SLU - N max gr.1	16992	466	929	10249	5314
A2 - SLU - MT max gr.1	15679	466	929	16533	5159
A2 - SLU - ML max gr.1	16129	529	909	9723	8008
A2 - SLU - N max gr.2 A2 - SLU - MT max gr.2	15664 14824	1036 1036	929 929	9985	11397 11271
A2 - SLU - ML max gr.2	15214	1099	909	9553	13338
A2 - SLU - N max gr.3	15664	466	929	9985	5151
A2 - SLU - MT max gr.3	14824	466	929	13592	5025
A2 - SLU - ML max gr.3	15214	529	909	9553	7092
A2 - SLU - Vento ponte scarico	13284	442	862	8459	4455
A2 - SLU - N max gr.1	16308	388	851	9630	4611
A2 - SLU - MT max gr.1	14995	388	851	15914	4456
A2 - SLU - ML max gr.1 A2 - SLU - N max gr.2	15445 14980	451 958	831 851	9104 9365	7304 10694
A2 - SLU - MT max gr.2 A2 - SLU - MT max gr.2	14140	958	851	12972	10568
A2 - SLU - ML max gr.2	14530	1021	831	8934	12635
A2 - SLU - N max gr.3	14980	388	851	9365	4448
A2 - SLU - MT max gr.3	14140	388	851	12972	4322
A2 - SLU - ML max gr.3	14530	451	831	8934	6389
A2 - SLU - Vento ponte scarico	12600	364	784	7840	3752
A1 - SLU - N max gr.1	21705	540	1074	11868	6287 6105
A1 - SLU - MT max gr.1 A1 - SLU - ML max gr.1	20163 20692	540 612	1074	19244	6105 9440
A1 - SLU - NIL max gr.1 A1 - SLU - N max gr.2	20092	1210	1074	11254	13428
A1 - SLU - MT max gr.2	19160	1210	1074	15791	13280
A1 - SLU - ML max gr.2	19617	1282	1051	11054	15697
A1 - SLU - N max gr.3	20146	540	1074	11557	6096
A1 - SLU - MT max gr.3	19160	540	1074	15791	5948
A1 - SLU - ML max gr.3	19617	612	1051	11054	8365
A1 - SLU - Vento ponte scarico	17352	661	1145 944	10959	6461 4896
A1 - SLU - N max gr.1 A1 - SLU - MT max gr.1	16953 15411	410	944	10836 18212	4896 4714
A1 - SLU - ML max gr.1	15940	483	922	10221	8049
A1 - SLU - N max gr.2	15394	1080	944	10525	12037
A1 - SLU - MT max gr.2	15394	1080	944	10525	12037
A1 - SLU - ML max gr.2	14408	1152	922	14588	12431
A1 - SLU - N max gr.3	14865	1080	944	10193	13764
A1 - SLU - MT max gr.3	15394	410	944	10525	4705
A1 - SLU - ML max gr.3	14408	483	922	14588	5099
A1 - SLU - Vento ponte scarico	14865	531 260	960 842	10307 8557	7335 2969
SLE Rara - N max gr.1 SLE Rara - MT max gr.1	12600 15824	371	727	8093	4397
SLE Rara - ML max gr.1	14682	419	712	13443	4623
SLE Rara - N max gr.2	15074	371	727	7765	6331
SLE Rara - MT max gr.2	14669	867	727	7863	9686
SLE Rara - ML max gr.2	13939	915	712	10885	9938
SLE Rara - N max gr.3	14278	867	727	7617	10966
SLE Rara - MT max gr.3	14669	371	727	7863	4255
SLE Rara - ML max gr.3	13939	419	712	10885	4507
SLE Rara - Vento ponte scarico	14278	452	737	7693	6136 4040
SLE Freq N max gr.1 SLE Freq MT max gr.1	15018 14162	343 343	343 343	3420 7518	3939
SLE Freq ML max gr.1	14162	343	343	3174	5490
SLE Freq N max gr.2	14152	715	343	3248	8007
SLE Freq MT max gr.2	13604	715	343	5600	7925
SLE Freq ML max gr.2	13859	715	343	3063	8967
SLE Freq N max gr.3	14152	343	343	3248	3933
SLE Freq MT max gr.3	13604	343	343	5600	3851
SLE Freq ML max gr.3	13859 12600	343	343 340	3063	4893
SLE Freq Vento ponte scarico SLE Q.P ML max gr.3	12600	276 371	340	2953 2952	3090 3857
SLV -dir.X_1	13416	4729	1436	14193	51433
SLV -dir.X_2	12774	4729	1436	14193	51504
SLV -dir.Y_1	13338	1686	4130	42961	18301
SLV -dir.Y_2	12695	1686	4130	42961	18372
SLV -dir.Z+	14316	1686	1436	14258	18244
SLV -dir.Z-	12174	1686	1436	14258	18482
SLV -dir.X_1	13416	5177	1555	15411	56245
SLV -dir.X_2 SLV -dir.Y 1	12774	5177	1555	15411	56316 19744
SLV -dir.Y_1 SLV -dir.Y 2	13338 12695	1820 1820	4526 4526	47021 47021	19744
SLV -dir.1_2 SLV -dir.Z+	14316	1820	1555	15476	19688
SLV -dir.Z-	12174	1820	1555	15476	19926
SLV -dir.X_1	13416	6903	2014	20109	74804
SLV -dir.X_2	12774	6903	2014	20109	74875
SLV -dir.Y_1	13338	2338	6054	62682	25312
SLV -dir.Y 2	12695	2338	6054	62682	25383
SLV -dir.Z+			2014	20175	25255

Tabella 3 – Sollecitazioni della base della pila

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 30 di 60

BLE: Base Reaction	ons						
OutputCase	CaseType	StepType	GlobalFX	GlobalFY	GlobalFZ	GlobalMX	GlobalMY
Text	Text	Text	KN	KN	KN	KN-m	KN-m
EX_1	Combination	Max	5783	1638	12816	14462	51089
EX_1	Combination	Min	-5783	-1638	12816	-14462	-51471
EY_1	Combination	Max	1735	5461	12816	48198	15195
EY_1	Combination	Min	-1735	-5461	12816	-48198	-15577
EX_2	Combination	Max	5783	1638	12665	14462	51089
EX_2	Combination	Min	-5783	-1638	12665	-14462	-51471
EY_2	Combination	Max	1735	5461	12665	48198	15195
EY_2	Combination	Min	-1735	-5461	12665	-48198	-15577
EZ_1	Combination	Max	1735	1638	12993	14460	15193
EZ_1	Combination	Min	-1735	-1638	12993	-14460	-15576
EZ_2	Combination	Max	1735	1638	12489	14460	15193
EZ_2	Combination	Min	-1735	-1638	12489	-14460	-15576
			5783	5461		48198	51471

Tabella 4 – Sollecitazioni della base della pila Dinamica 50%(EI)

OutputCase	CaseType	StepType	GlobalFX	GlobalFY	GlobalFZ	GlobalMX	GlobalMY
Text	Text	Text	KN	KN	KN	KN-m	KN-m
EX_1	Combination	Max	5924	1641	12816	14471	52320
EX_1	Combination	Min	-5924	-1641	12816	-14471	-52703
EY_1	Combination	Max	1777	5468	12816	48233	15563
EY_1	Combination	Min	-1777	-5468	12816	-48233	-15946
EX_2	Combination	Max	5924	1641	12665	14471	52320
EX_2	Combination	Min	-5924	-1641	12665	-14471	-52703
EY_2	Combination	Max	1777	5468	12665	48233	15563
EY_2	Combination	Min	-1777	-5468	12665	-48233	-15946
EZ_1	Combination	Max	1777	1641	12993	14470	15563
EZ_1	Combination	Min	-1777	-1641	12993	-14470	-15945
EZ_2	Combination	Max	1777	1641	12489	14470	15563
EZ_2	Combination	Min	-1777	-1641	12489	-14470	-15945
			5924	5468		48233	52703

Tabella 5 – Sollecitazioni della base della pila Dinamica 100%(EI)

Come si può vedere dai valori massimi indicati in grassetto (per q=1), le sollecitazioni della Analisi Lineare Statica sono superiori rispetto a quelli ottenuti dall'analisi Dinamica; pertanto in favore di sicurezza si adotteranno quelli ricavate dalla Analisi Lineare Statica.

4.7.1 Plinto di fondazione

Nella tabella che segue sono indicati la risultante e momento risultante rispetto al baricentro del plinto di fondazione.

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 31 di 60

	1 1	т	T	3.5	3.5
	Nz [kN]	Tx [kN]	Ty [kN]	Mx [kN*m]	My [kN*m]
A2 - SLU - N max gr.1	29502	466	929	12571	6479
A2 - SLU - MT max gr.1	28189	466	929	18855	6324
A2 - SLU - ML max gr.1	28639	529	909	11996	9329
A2 - SLU - N max gr.2	28174	1036	929	12307	13988
A2 - SLU - MT max gr.2	27334	1036	929	15913	13862
A2 - SLU - ML max gr.2	27724	1099	909	11825	16085
A2 - SLU - N max gr.3	28174	466	929	12307	6316
A2 - SLU - MT max gr.3	27334	466	929	15913	6190
A2 - SLU - ML max gr.3	27724	529	909	11825	8413
A2 - SLU - Vento ponte scarico	25794	442	862	10614	5560
A2 - SLU - N max gr.1	28008	388	851	11757	5581
A2 - SLU - MT max gr.1	26695	388	851	18041	5426 8431
A2 - SLU - ML max gr.1 A2 - SLU - N max gr.2	27145	451	831	11182	13090
A2 - SLU - N max gr.2 A2 - SLU - MT max gr.2	26680 25840	958 958	851 851	11493 15099	12964
A2 - SLU - ML max gr.2	26230	1021	831	11011	15187
A2 - SLU - N max gr.3	26680	388	851	11493	5418
A2 - SLU - MT max gr.3	25840	388	851	15099	5292
A2 - SLU - ML max gr.3	26230	451	831	11011	7515
A2 - SLU - Vento ponte scarico	24300	364	784	9800	4662
A1 - SLU - Vento ponte scanco	37905	540	1074	14553	7638
A1 - SLU - MT max gr.1	36363	540	1074	21930	7455
A1 - SLU - ML max gr.1	36892	612	1074	13882	10971
A1 - SLU - N max gr.2	36346	1210	1074	14243	16452
A1 - SLU - MT max gr.2	35360	1210	1074	18477	16305
A1 - SLU - ML max gr.2	35817	1282	1051	13682	18902
A1 - SLU - N max gr.3	36346	540	1074	14243	7446
A1 - SLU - MT max gr.3	35360	540	1074	18477	7298
A1 - SLU - ML max gr.3	35817	612	1051	13682	9896
A1 - SLU - Vento ponte scarico	33552	661	1145	13822	8112
A1 - SLU - N max gr.1	28653	410	944	13197	5922
A1 - SLU - MT max gr.1	27111	410	944	20573	5740
A1 - SLU - ML max gr.1	27640	483	922	12525	9255
A1 - SLU - N max gr.2	27094	1080	944	12886	14737
A1 - SLU - MT max gr.2	27094	1080	944	12886	14737
A1 - SLU - ML max gr.2	26108	1152	922	16892	15311
A1 - SLU - N max gr.3	26565	1080	944	12554	16464
A1 - SLU - MT max gr.3	27094	410	944	12886	5731
A1 - SLU - ML max gr.3	26108	483	922	16892	6305
A1 - SLU - Vento ponte scarico	26565	531	960	12706	8662
SLE Rara - N max gr.1	24300	260	842	10662	3618
SLE Rara - MT max gr.1	27524	371	727	9911	5325
SLE Rara - ML max gr.1	26382	419	712	15223	5671
SLE Rara - N max gr.2	26774	371	727	9583	7259
SLE Rara - MT max gr.2	26369	867	727	9681	11854
SLE Rara - ML max gr.2	25639	915	712	12665	12226
SLE Rara - N max gr.3	25978	867	727	9435	13134
SLE Rara - MT max gr.3	26369	371	727	9681	5183
SLE Rara - ML max gr.3	25639	419	712	12665	5555
SLE Rara - Vento ponte scarico	25978	452	737	9536	7265
SLE Freq N max gr.1	26718	343	343	4279	4898
SLE Freq MT max gr.1	25862	343	343	8377	4797
SLE Freq ML max gr.1	26156	343	343	4033 4106	6349 9795
SLE Freq N max gr.2	25852	715	343		
SLE Freq MT max gr.2	25304 25559	715 715	343 343	6458 3922	9713 10755
SLE Freq ML max gr.2 SLE Freq N max gr.3	25852	343	343	3922 4106	10/55 4792
	25304	343	343	6458	4792
SLE Freq MT max gr.3 SLE Freq ML max gr.3	25559	343	343	3922	5752
SLE Freq Vento ponte scarico	24300	276	340	3804	3779
SLE Q.P ML max gr.3	24300	371	371	3880	4785
SLV -dir.X 1	25380	6079	1841	18290	64943
SLV -dir.X_2	24210	6079	1841	18290	65015
SLV -dir.Y_1	25301	2091	5480	54973	23021
SLV -dir.Y_2	24132	2091	5480	54973	23092
SLV -dir.Z+	26894	2091	1841	18356	22964
SLV -dir.Z-	22997	2091	1841	18356	23202
SLV -dir.X 1	25380	6527	1960	19805	70874
SLV -dir.X_2	24210	6527	1960	19805	70945
SLV -dir.Y 1	25301	2225	5876	60024	24800
SLV -dir.Y_2	24132	2225	5876	60024	24871
SLV -dir.Z+	26894	2225	1960	19871	24744
SLV -dir.Z-	22997	2225	1960	19871	24982
SLV -dir.X_1	25380	8253	2419	25649	93749
SLV -dir.X 2	24210	8253	2419	25649	93820
SLV -dir.Y_1	25301	2743	7404	79504	31662
SLV -dir.Y 2	24132	2743	7404	79504	31734
			2419	25715	
SLV -dir.Z+	26894	2743			31606

Tabella 6 – Sollecitazioni ad intradosso del baricentro fondazione

4.8 Pali di fondazione

Le sollecitazioni risultanti sono riportati nelle seguenti tabelle:

SOLL. TOTALI NEL BARIC	ENTRO DE	LLA PAL	IFICATA					
C.C.	N	T _x	T _y	M_x	M_{y}	$N_{max/palo}$	N _{min/palo}	T _{/palo}
n°	kN	kN	kN	kNm	kNm	kN	kN	kN
Al - SLU - N max gr.1	37905	540	1074	14553	7638	5034	3390	134
Al - SLU - MT max gr.1	36363	540	1074	21930	7455	5129	2952	134
Al - SLU - ML max gr.1	36892	612	1051	13882	10971	5020	3179	135
A1 - SLU - N max gr.2	36346	1210	1074	14243	16452	5175	2902	180
A1 - SLU - MT max gr.2	35360	1210	1074	18477	16305	5217	2641	180
A1 - SLU - ML max gr.2	35817	1282	1051	13682	18902	5187	2773	184
A1 - SLU - N max gr.3	36346	540	1074	14243	7446	4842	3235	134
A1 - SLU - MT max gr.3	35360	540	1074	18477	7298	4883	2974	134
A1 - SLU - ML max gr.3	35817	612	1051	13682	9896	4853	3106	135
A1 - SLU - Vento ponte scarico	33552	661	1145	13822	8112	4540	2916	147
Al - SLU - N max gr.1	28653	410	944	13197	5922	3892	2476	114
Al - SLU - MT max gr.1	27111	410	944	20573	5740	3987	2038	114
Al - SLU - ML max gr.1	27640	483	922	12525	9255	3878	2264	116
A1 - SLU - N max gr.2	27094	1080	944	12886	14737	4033	1987	159
A1 - SLU - MT max gr.2	27094	1080	944	12886	14737	4033	1987	159
A1 - SLU - ML max gr.2	26108	1152	922	16892	15311	4094	1708	164
A1 - SLU - N max gr.3	26565	1080	944	12554	16464	4026	1877	159
A1 - SLU - MT max gr.3	27094	410	944	12886	5731	3700	2321	114
A1 - SLU - ML max gr.3	26108	483	922	16892	6305	3760	2042	116
A1 - SLU - Vento ponte scarico	26565	531	960	12706	8662	3743	2160	122
-						5217	1708	184

Tabella 7 – Sollecitazioni massime sul singolo palo C.C. SLU

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA								
C.C.	N	T _x	T _y	M_x	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}
n°	kN	kN	kN	kNm	kNm	kN	kN	kN
SLV -dir.X_1	25380	6527	1960	19805	70874	6178	-539	757
SLV -dir.X_2	24210	6527	1960	19805	70945	6051	-671	757
SLV -dir.Y_1	25301	2225	5876	60024	24800	5953	-330	698
SLV -dir.Y_2	24132	2225	5876	60024	24871	5826	-463	698
SLV -dir.Z+	26894	2225	1960	19871	24744	4641	1336	329
SLV -dir.Z-	22997	2225	1960	19871	24982	4216	894	329
						6178	-671	757

Tabella 8 – Sollecitazioni massime sul singolo palo C.C. SLV q=1.36

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA								
C.C.	N	T _x	T _y	M_x	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}
n°	kN	kN	kN	kNm	kNm	kN	kN	kN
SLV -dir.X_1	25380	8253	2419	25649	93749	7242	-1602	956
SLV -dir.X_2	24210	8253	2419	25649	93820	7115	-1735	956
SLV -dir.Y_1	25301	2743	7404	79504	31662	6929	-1306	877
SLV -dir.Y_2	24132	2743	7404	79504	31734	6801	-1439	877
SLV -dir.Z+	26894	2743	2419	25715	31606	5111	865	406
SLV -dir.Z-	22997	2743	2419	25715	31844	4687	423	406
						7242	-1735	956

Tabella 9 - Sollecitazioni massime sul singolo palo C.C. SLV q=1

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 33 di 60

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA								
C.C.	N	T _x	T _y	M _x	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}
n°	kN	kN	kN	kNm	kNm	kN	kN	kN
SLE Rara - N max gr.1	24300	260	842	10662	3618	3229	2171	98
SLE Rara - MT max gr.1	27524	371	727	9911	5325	3623	2494	91
SLE Rara - ML max gr.1	26382	419	712	15223	5671	3705	2157	92
SLE Rara - N max gr.2	26774	371	727	9583	7259	3599	2351	91
SLE Rara - MT max gr.2	26369	867	727	9681	11854	3728	2132	126
SLE Rara - ML max gr.2	25639	915	712	12665	12226	3771	1927	129
SLE Rara - N max gr.3	25978	867	727	9435	13134	3722	2051	126
SLE Rara - MT max gr.3	26369	371	727	9681	5183	3480	2379	91
SLE Rara - ML max gr.3	25639	419	712	12665	5555	3524	2174	92
SLE Rara - Vento ponte scarico	25978	452	737	9536	7265	3509	2264	96
				•		3771	1927	129

Tabella 10 – Sollecitazioni massime sul singolo palo C.C. SLE

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA								
C.C.	N	T _x	T _y	M_x	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}
n°	kN	kN	kN	kNm	kNm	kN	kN	kN
SLE Freq N max gr.1	26718	343	343	4279	4898	3309	2629	54
SLE Freq MT max gr.1	25862	343	343	8377	4797	3361	2386	54
SLE Freq ML max gr.1	26156	343	343	4033	6349	3291	2522	54
SLE Freq N max gr.2	25852	715	343	4106	9795	3387	2358	88
SLE Freq MT max gr.2	25304	715	343	6458	9713	3411	2213	88
SLE Freq ML max gr.2	25559	715	343	3922	10755	3383	2296	88
SLE Freq N max gr.3	25852	343	343	4106	4792	3202	2543	54
SLE Freq MT max gr.3	25304	343	343	6458	4710	3225	2398	54
SLE Freq ML max gr.3	25559	343	343	3922	5752	3198	2482	54
SLE Freq Vento ponte scarico	24300	276	340	3804	3779	2981	2419	49
						3411	2213	88

Tabella 11 – Sollecitazioni massime sul singolo palo C.C. SLE freq

La condizione di scalzamento viene valutata secondo cap. 5.1.2.3" Compatibilità idraulica":

Lo scalzamento e le azioni idrodinamiche associati all'evento di piena di progetto devono essere combinate esclusivamente con le altre azioni variabili da traffico, adottando per queste ultime i coefficienti di combinazione ψ_1 .

L'azione idrodinamica viene valutata secondo:

$$q_{idr} = \frac{1}{2} \rho v^2$$

Con:

ρ=1000 kg/m3 densità dell'acqua

v= m/s velocità della corrente

da cui, considerando una distribuzione di pressione triangolare ed un certo angolo di incidenza della corrente rispetto alle pile, la risultante della spinta è pari a:

$$F_{idr} = \int \left(q_{idr} \! / h \right) \, z \; Cr \; sin(\alpha) \; b \; dz \label{eq:Fidra}$$

Con:

h = altezza investita dalla corrente = altezza corrente + altezza scalzamento

 α = angolo di incidenza

b = larghezza investita dalla corrente

Cr=1.44 coefficiente di forma per pila di forma rettangolare/ 0.7 per pila di forma circolare

D 4.		
Dati	corrent	te

h corrente	1.97	m
h scalzamento	8.37	m
angolo corrente (rispetto asse x)	70.0	0
velocità corrente	2.54	m/s
densità acqua	1000	kg/m3

Dati plinto

ricoprimento plinto	1	m
altezza plinto	2.5	m
Lunghezza lungo asse x	12	m
Lunghezza lungo asse v	12	m

Dati pila Tipo pila

F pila x

F pila y

Mx pila

My pila

F fondazione x

F fondazione y

Mx fondazione

Lunghezza lungo asse x	3	m
Lunghezza lungo asse y	3	m
coefficiente di forma pila	0.7	
coefficiente di forma plinto	1.44	
qidr	3.23	kPa
h tot investita	10.34	m
h pila investita	2.97	m
h plinto investita	2.5	m
h pali investita	4.87	m
h fondazione investita	7.37	m
q max	3.23	kPa
q spiccato pila	2.30	kPa
Sollecitazioni		

5.89

16.19

25.39

9.24

55.97

153.77

820.68

kN

kN

kN

kN

kN*m

kN*m

kN*m

My fondazione	298.70	kN*m
n pali	9	
V palo	18	kN
N palo	32	kN

Tali azioni andrebbero sommate alle azioni agenti sulla pila e sulla fondazione nella condizione Frequente, ma risultano di due ordini di grandezza inferiori. Verranno pertanto trascurate.

4.9 Verifiche degli elementi strutturali

Per tutti gli elementi strutturali della pila (fusto, pali, ...) vengono svolte le seguenti verifiche:

- verifiche a rottura (pressoflessione e taglio) per le combinazioni allo stato limite ultimo (SLU).
- verifiche tensionali per le combinazioni rare, frequenti e quasi permanenti (SLE)
- verifiche a fessurazione per le combinazioni rara (SLE)

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 36 di 60

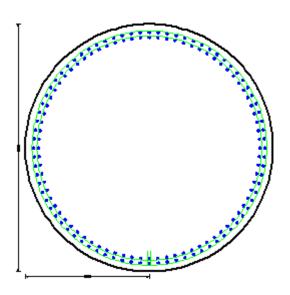
4.9.1 Pila

Taglio di progetto:

Direzione		Long.(Myy,Tx)	Trasv(Mxx,Ty)	
Altezza pila	H	9.8	9.8	m
Fattore di struttura		1.5	1.5	
Fattore di sovraresistenza (eq. 7.9.7)	γRd	1	1	
Fattore di sovraresistenza filtrato (eq. 7.9.7)	γRđ	1	1	
Taglio agente (q=1)	V	6903	6054	kN
Momento agente (q=1)	M	74804	62682	kN*m
Taglio agente (con q)	VEd	4729	4130	kN
Momento agente (con q)	MEd	51433	42961	kN*m
Momento Resistente	MRd	58300	55967	kN*m
Rapporto di sovraresistenza	MRd/MEd	1.13	1.30	
Tipo sezione (EC8-2; eq. 6.11)		CRITICA	NON CRITICA	
Angolo inclinazione bielle compresse	Teta	45	da calc.	
Limite superiore Vgr	Vgr.max= V	6903	6054	kN
Taglio di progetto per la gerarchia della resistenza (eq. 7.9.12)	Vgr	5361	5380	kN
Taglio di progetto per la gerarchia della resistenza filtrato (eq. 7.9.12)	Vgr	5361	5380	kN
fattore di sicurezza aggiuntivo per la resistenza a taglio (eq. 7.9.10)	γBd	1	1.10	
fattore di sicurezza aggiuntivo per la resistenza a taglio filtrato (eq. 7.9.10)	γBđ	1	1.10	
Riassumendo				
Taglio di calcolo	Vgr	5361	5380	kN
fattore di sicurezza aggiuntivo filtrato (eq. 7.9.10)	γBd	1.00	1.10	
Angolo inclinazione bielle compresse	Teta	45	da calc.	

Nota: nella successiva fase progettuale si dovranno predisporre opportune armature trasversali all'interno delle zone dissipative atte a confinare adeguatamente il nucleo di calcestruzzo della sezione e contrastare l'instabilità delle barre verticali compresse al fine di garantire la necessaria duttilità strutturale come richiesto dal punto 7.9.6.1 della NTC 2018.

 $A_s = \frac{\phi 30}{10} + \frac{\phi 30}{10}$ spirale $\frac{\phi 16}{10}$


TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 37 di 60

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C32/40 Resis. compr. di proqetto fcd: 18.800

Resis. compr. di progetto fcd: MPa Resis. compr. ridotta fcd': 9.400 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33643.0 MPa Resis. media a trazione fctm: 3.100 MPa Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Frequenti: 182.60 daN/cm²

Ap.Fessure limite S.L.E. comb. Frequenti:

Sc limite S.L.E. comb. Frequenti:

Sc limite S.L.E. comb. Q.Permanenti:

O.200 mm

Ap.Fess.limite S.L.E. comb. Q.Perm.:

0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

450.00 MPa

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.00 MPa

391.30 MPa

0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C32/40

Raggio circ.: 150.0 cm X centro circ.: 0.0 cm

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D 09 CL NW04 00 004 C 38 di 60

Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate
Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate
Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate
N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	0.0	0.0	140.0	80	30
2	0.0	0.0	134 0	80	30

ARMATURE A TAGLIO

Diametro staffe: 16 mm Passo staffe: 10.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	My	Vy	Vx
1	21705.00	6287.00	11868.00	540.00	1074.00
2	20163.00	6105.00	19244.00	540.00	1074.00
3	20692.00	9440.00	11254.00	612.00	1051.00
4	20146.00	13428.00	11557.00	1210.00	1074.00
5	19160.00	13280.00	15791.00	1210.00	1074.00
6	19617.00	15697.00	11054.00	1282.00	1051.00
7	20146.00	6096.00	11557.00	540.00	1074.00
8	19160.00	5948.00	15791.00	540.00	1074.00
9	19617.00	8365.00	11054.00	612.00	1051.00
10	17352.00	6461.00	10959.00	661.00	1145.00
11	16953.00	4896.00	10836.00	410.00	944.00
12	15411.00	4714.00	18212.00	410.00	944.00
13	15940.00	8049.00	10221.00	483.00	922.00
14	15394.00	12037.00	10525.00	1080.00	944.00
15	15394.00	12037.00	10525.00	1080.00	944.00
16	14408.00	12431.00	14588.00	1152.00	922.00
17	14865.00	13764.00	10193.00	1080.00	944.00
18	15394.00	4705.00	10525.00	410.00	944.00
19	14408.00	5099.00	14588.00	483.00	922.00
20	14865.00	7335.00	10307.00	531.00	960.00
21	13416.00	51433.00	14193.00	4729.00	1436.00
22	12774.00	51504.00	14193.00	5361.00	1436.00
23	13338.00	18301.00	42961.00	1686.00	5380.00
24	12695.00	18372.00	42961.00	1686.00	4130.00
25	14316.00	18244.00	14258.00	1686.00	1436.00
26	12174.00	18482.00	14258.00	1686.00	1436.00

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 39 di 60

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	12600.00	2969.00	8557.00
2	15824.00	4397.00	8093.00
3	14682.00	4623.00	13443.00
4	15074.00	6331.00	7765.00
5	14669.00	9686.00	7863.00
6	13939.00	9938.00	10885.00
7	14278.00	10966.00	7617.00
8	14669.00	4255.00	7863.00
9	13939.00	4507.00	10885.00
10	14278.00	6136.00	7693.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	15018.00	4040.00 (2813.46)	3420.00 (0.00)
2	14162.00	3939.00 (18214.95)	7518.00 (34765.16)
3	14456.00	5490.00 (289326.08)	3174.00 (167271.58)
4	14152.00	8007.00 (34822.46)	3248.00 (14125.56)
5	13604.00	7925.00 (23139.63)	5600.00 (16351.03)
6	13859.00	8967.00 (28623.47)	3063.00 (9777.37)
7	14152.00	3933.00 (9196.63)	3248.00 (67159.77)
8	13604.00	3851.00 (42858.85)	5600.00 (62323.95)
9	13859.00	4893.00 (5863.75)	3063.00 (64113.95)
10	12600.00	3090.00 (8491.20)	2953.00 (82966.86)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 12600.00 3857.00 (5640.44) 2952.00 (60606.75)

RISULTATI DEL CALCOLO

My

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali:

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 40 di 60

Interferro netto minimo barre longitudinali: 3.0 cm Copriferro netto minimo staffe: 6.9 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kNm] nel baricentro B sezione cls. (positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	21705.00	6287.00	11868.00	21704.92	30790.58	58102.47	4.901131.0(212.1)
2	S	20163.00	6105.00	19244.00	20163.22	19635.02	61892.80	3.221131.0(212.1)
3	S	20692.00	9440.00	11254.00	20692.22	41905.75	49975.18	4.441131.0(212.1)
4	S	20146.00	13428.00	11557.00	20146.02	49209.32	42352.69	3.661131.0(212.1)
5	S	19160.00	13280.00	15791.00	19159.89	41437.68	49257.80	3.121131.0(212.1)
6	S	19617.00	15697.00	11054.00	19617.28	52832.63	37221.97	3.371131.0(212.1)
7	S	20146.00	6096.00	11557.00	20146.28	30286.68	57421.92	4.971131.0(212.1)
8	S	19160.00	5948.00	15791.00	19160.02	22695.46	60234.33	3.811131.0(212.1)
9	S	19617.00	8365.00	11054.00	19617.13	38988.14	51540.36	4.661131.0(212.1)
10	S	17352.00	6461.00	10959.00	17351.87	32154.76	54553.81	4.981131.0(212.1)
11	S	16953.00	4896.00	10836.00	16953.28	25982.62	57489.75	5.311131.0(212.1)
12	S	15411.00	4714.00	18212.00	15410.72	15569.40	60172.37	3.301131.0(212.1)
13	S	15940.00	8049.00	10221.00	15940.04	38650.13	49079.65	4.801131.0(212.1)
14	S	15394.00	12037.00	10525.00	15394.14	46790.98	40901.84	3.891131.0(212.1)
15	S	15394.00	12037.00	10525.00	15394.14	46790.98	40901.84	3.891131.0(212.1)
16	S	14408.00	12431.00	14588.00	14407.97	39904.64	46828.40	3.211131.0(212.1)
17	S	14865.00	13764.00	10193.00	14865.16	49682.49	36781.42	3.611131.0(212.1)
18	S	15394.00	4705.00	10525.00	15394.05	25356.36	56729.39	5.391131.0(212.1)
19	S	14408.00	5099.00	14588.00	14407.82	20290.56	58086.40	3.981131.0(212.1)
20	S	14865.00	7335.00	10307.00	14864.99	35849.80	50358.82	4.891131.0(212.1)
21	S	13416.00	51433.00	14193.00	13416.09	58702.94	16208.15	1.141131.0(212.1)
22	S	12774.00	51504.00	14193.00	12774.20	58300.42	16075.44	1.131131.0(212.1)
23	S	13338.00	18301.00	42961.00	13338.15	23848.19	55967.88	1.301131.0(212.1)
24	S	12695.00	18372.00	42961.00	12695.27	23768.42	55548.32	1.291131.0(212.1)
25	S	14316.00	18244.00	14258.00	14315.99	48435.87	37847.67	2.651131.0(212.1)
26	S	12174.00	18482.00	14258.00	12173.72	47561.19	36701.76	2.571131.0(212.1)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	132.5	119.1	0.00317	124.7	63.6	-0.00611	-124.7	-63.6
2	0.00350	143.0	69.6	0.00316	133.1	43.3	-0.00634	-133.1	-43.3
3	0.00350	114.9	129.9	0.00316	106.5	90.9	-0.00626	-106.5	-90.9

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELA	AZIONE DI CA	LCOLO PILA			COMMESSA RS3T	LOTTO 30	CODIFICA D 09 CL	DOCUMENTO NW04 00 004		FOGLIO 41 di 60
4	0.00350	97.8	139.0	0.00316	90.9	106.5	-0.00634	-90.9	-106.5	
5	0.00350	114.8	122.5	0.00316		90.9	-0.00649	-106.5	-90.9	
6	0.00350	86.4	141.9	0.00316		113.3	-0.00642	-82.3	-113.3	
7	0.00350	132.7	115.7	0.00316		63.6	-0.00634	-124.7	-63.6	
8	0.00350	140.4	85.0	0.00315		53.6	-0.00649	-129.3	-53.6	
9	0.00350	119.6	127.1	0.00316		82.3	-0.00642	-113.3	-82.3	
10	0.00350	129.2	108.4	0.00314		73.1	-0.00678	-119.4	-73.1	
11	0.00350	136.7	61.8	0.00314		53.6	-0.00685	-129.3	-53.6	
12	0.00350	145.2	37.6	0.00313		32.7	-0.00712	-136.1	-32.7	
13	0.00350	117.8	92.8	0.00313		82.3	-0.00702	-113.3	-82.3	
14	0.00350	98.7	112.9	0.00313		106.5	-0.00712	-90.9	-106.5	
15	0.00350	98.7	112.9	0.00313		106.5	-0.00712	-90.9	-106.5	
16	0.00350	114.2	97.3	0.00313		90.9	-0.00730	-106.5	-90.9	
17	0.00350	89.3	120.5	0.00313		113.3	-0.00721	-82.3	-113.3	
18	0.00350	136.9	61.2	0.00313		53.6	-0.00712	-129.3	-53.6	
19	0.00350	141.6	49.5	0.00313		43.3	-0.00730	-133.1	-43.3	
20	0.00350	122.2	87.0	0.00313		82.3	-0.00721	-113.3	-82.3	
21	0.00350	39.9	144.6	0.00312	32.7	136.1	-0.00748	-32.7	-136.1	
22	0.00350	39.9	144.6	0.00311	32.7	136.1	-0.00760	-32.7	-136.1	
23	0.00350	138.0	58.8	0.00312		53.6	-0.00750	-129.3	-53.6	
24	0.00350	137.9	59.0	0.00312	129.3	53.6	-0.00762	-129.3	-53.6	
25	0.00350	92.4	118.2	0.00312	82.3	113.3	-0.00731	-82.3	-113.3	
26	0.00350	91.6	118.8	0.00311	82.3	113.3	-0.00772	-82.3	-113.3	

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000029297	0.000015520	-0.001473098		
2	0.000032340	0.000010260	-0.001589304		
3	0.000025787	0.000021630	-0.001548637		
4	0.000022137	0.000025721	-0.001590342		
5	0.000026377	0.000022182	-0.001669629		
6	0.000019702	0.000027978	-0.001632877		
7	0.000030022	0.000015836	-0.001591300		
8	0.000032255	0.000012149	-0.001670026		
9	0.000027289	0.000020650	-0.001633215		
10	0.000030552	0.000018012	-0.001819935		
11	0.000032527	0.000014697	-0.001853942		
12	0.000035443	0.000009174	-0.001991607		
13	0.000028513	0.000022454	-0.001943987		
14	0.000024104	0.000027567	-0.001992773		
15	0.000024104	0.000027567	-0.001992773		
16	0.000028343	0.000024152	-0.002085704		
17	0.000021988	0.000029691	-0.002041889		
18	0.000033434	0.000014946	-0.001993339		
19	0.000035145	0.000012285	-0.002084576		
20	0.000030101	0.000021422	-0.002041868		
21	0.000010072	0.000036499	-0.002179420		
22	0.000010174	0.000036919	-0.002244321		
23	0.000034891	0.000014863	-0.002188800		
24	0.000035259	0.000015078	-0.002252138		
25	0.000022960	0.000029379	-0.002092970		
26	0.000023642	0.000030647	-0.002305956		

VERIFICHE A TAGLIO

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

bw

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 42 di 60

Diam. Staffe: 16 mm

Passo staffe: 10.0 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato
Acw Coefficiente maggiorativo della resistenza a taglio per compressione
Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	1201.84	31763.04	6557.7524	6.9 212.9	272.8	1.000	1.163	14.4	78.7(0.0)
2	S	1187.01	31504.90	6596.8724		271.7	1.000	1.152	14.2	78.7(0.0)
3	S	1198.53	31653.06	6575.7024	6.9 213.5	272.9	1.000	1.156	14.3	78.7(0.0)
4	S	1617.70	31502.69	6597.0124		271.7	1.000	1.152	19.3	78.7(0.0)
5	S	1600.77	31396.35	6615.7624	7.4 214.8	271.8	1.000	1.144	19.0	78.7(0.0)
6	S	1653.31	31446.16	6607.7324	7.4 214.5	271.7	1.000	1.148	19.7	78.7(0.0)
7	S	1201.88	31503.88	6597.8524	7.4 214.2	271.7	1.000	1.152	14.3	78.7(0.0)
8	S	1195.41	31396.83	6619.1424	7.4 214.8	271.8	1.000	1.144	14.2	78.7(0.0)
9	S	1207.38	31446.58	6608.3424	7.4 214.5	271.7	1.000	1.148	14.4	78.7(0.0)
10	S	1322.04	31100.40	6662.2324	7.8 216.3	270.6	1.000	1.131	15.6	78.7(0.0)
11	S	1029.08	31055.27	6672.0024	7.8 216.5	270.6	1.000	1.128	12.1	78.7(0.0)
12	S	1016.62	30780.62	6710.9524		269.3	1.000	1.116	11.9	78.7(0.0)
13	S	1023.18	30841.11	6705.0524		269.3	1.000	1.120	12.0	78.8(0.0)
14	S	1434.41	30778.28	6710.6024	8.3 217.9	269.3	1.000	1.116	16.8	78.7(0.0)
15	S	1434.41	30778.28	6710.6024		269.3	1.000	1.116	16.8	78.7(0.0)
16	S	1448.95	30561.57	6741.4224	8.7 218.9	268.0	1.000	1.108	16.9	78.7(0.0)
17	S	1429.72	30613.21	6732.8824		268.0	1.000	1.112	16.7	78.7(0.0)
18	S	1029.13	30778.86	6712.8324	8.3 217.9	269.3	1.000	1.116	12.1	78.7(0.0)
19	S	1029.73	30560.47	6742.8324		268.0	1.000	1.108	12.0	78.7(0.0)
20	S	1090.04	30613.19	6732.9224	8.7 218.6	268.0	1.000	1.112	12.7	78.7(0.0)
21	S	4940.61	30444.99	6763.6324		268.0	1.000	1.101	57.5	78.7(0.0)
22	S	5549.85	30262.42	6788.6124	9.2 220.3	266.6	1.000	1.096	64.4	78.7(0.0)
23	S	5610.38	30328.66	6774.5924	9.2 220.0	266.6	1.000	1.100	65.2	78.7(0.0)
24	S	4460.28	30253.06	6786.7724		266.6	1.000	1.096	51.7	78.7(0.0)
25	S	2212.69	30549.55	6747.0124		268.0	1.000	1.108	25.8	78.7(0.0)
26	S	2212.06	30192.72	6799.2024	9.2 220.7	266.7	1.000	1.092	25.6	78.7(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
As eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA						COMMES RS3T		LOTTO 30	CODIFICA D 09 CL	DOCUMENTO NW04 00 004	REV. C	FOGLIO 43 di 60	
1 2 3 4 5	S S S S S	4.03 4.34 6.07 4.54 5.40	131.8 141.8 116.3	1010.0 1010.0 1010.0 1010.0 1010.0	-17.1 -9.0 -47.7 -15.4 -33.6	-133.1 -124.7 -133.1 -106.5 -90.9	-43.3 -63.6 -43.3 -90.9 -106.5	2754 1268 4910 2176 3981	212.1	5 			
6 7 8 9 10	3 5 5 5 5 5	5.40 6.26 5.72 4.15 5.10 4.42	110.8 85.6 131.9 138.6	1010.0 1010.0 1010.0 1010.0 1010.0	-56.2 -42.4 -10.5 -31.4 -16.7	-90.9 -106.5 -82.3 -124.7 -129.3 -106.5	-90.9 -113.3 -63.6 -53.6 -90.9	5416 4672 1568 3944 2436	233.3 212.1 84.8 197.9	3 3			

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1

e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] k2

= 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] sr max Massima distanza tra le fessure [mm]

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Componente momento di prima fessurazione intorno all'asse X [kNm] Mx fess. My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
S	-0.00010	0	0.500	30 O	85	0.00005 (0.00005)	38/	0 020 (0 20)	018/137	26470.40
S	-0.00006	0	0.500	30.0	85	0.00003 (0.00003)	420	0.011 (0.20)	20179.13	37141.17
S	-0.00026	0	0.500	30.0	85	0.00014 (0.00014)	407	0.058 (0.20)	6653.37	19347.01
S	-0.00009	0	0.500	30.0	85	0.00005 (0.00005)	381	0.018 (0.20)	20050.75	24592.34
S	-0.00019	0	0.500	30.0	85	0.00010 (0.00010)	399	0.040 (0.20)	17800.70	14450.43
S	-0.00031	0	0.500	30.0	85	0.00017 (0.00017)	407	0.069 (0.20)	12945.58	14179.18
S	-0.00023	0	0.500	30.0	85	0.00013 (0.00013)	401	0.051 (0.20)	17278.95	12001.98
S	-0.00006	0	0.500	30.0	85	0.00003 (0.00003)	383	0.012 (0.20)	17956.86	33183.26
S	-0.00018	0	0.500	30.0	85	0.00009 (0.00009)	391	0.037 (0.20)	8826.03	21316.02
S	-0.00010	0	0.500	30.0	85	0.00005 (0.00005)	381	0.019 (0.20)	18620.00	23344.80
	5 5 5 5 5 5 5	S -0.00010 S -0.00006 S -0.00026 S -0.00009 S -0.00019 S -0.00031 S -0.00023 S -0.00006 S -0.00018	S -0.00010 0 S -0.00006 0 S -0.00026 0 S -0.0009 0 S -0.00019 0 S -0.00031 0 S -0.00023 0 S -0.0006 0 S -0.00018 0	\$ -0.00010 0 0.500 \$ -0.00006 0 0.500 \$ -0.00026 0 0.500 \$ -0.00009 0 0.500 \$ -0.00019 0 0.500 \$ -0.00031 0 0.500 \$ -0.00023 0 0.500 \$ -0.00023 0 0.500 \$ -0.00006 0 0.500 \$ -0.00018 0 0.500	S -0.00010 0 0.500 30.0 S -0.00006 0 0.500 30.0 S -0.00026 0 0.500 30.0 S -0.00009 0 0.500 30.0 S -0.00019 0 0.500 30.0 S -0.00031 0 0.500 30.0 S -0.00023 0 0.500 30.0 S -0.00018 0 0.500 30.0	S -0.00010 0 0.500 30.0 85 S -0.00006 0 0.500 30.0 85 S -0.00026 0 0.500 30.0 85 S -0.00009 0 0.500 30.0 85 S -0.00019 0 0.500 30.0 85 S -0.00031 0 0.500 30.0 85 S -0.00023 0 0.500 30.0 85 S -0.00018 0 0.500 30.0 85	S -0.00010 0 0.500 30.0 85 0.00005 (0.00005) S -0.00006 0 0.500 30.0 85 0.00003 (0.00003) S -0.00026 0 0.500 30.0 85 0.00014 (0.00014) S -0.00009 0 0.500 30.0 85 0.00005 (0.00005) S -0.00019 0 0.500 30.0 85 0.00010 (0.00010) S -0.00031 0 0.500 30.0 85 0.00017 (0.00017) S -0.00023 0 0.500 30.0 85 0.00013 (0.00013) S -0.00006 0 0.500 30.0 85 0.00003 (0.00003) S -0.00018 0 0.500 30.0 85 0.00009 (0.00009)	S -0.00010 0 0.500 30.0 85 0.00005 (0.00005) 384 S -0.00006 0 0.500 30.0 85 0.00003 (0.00003) 420 S -0.00026 0 0.500 30.0 85 0.00014 (0.00014) 407 S -0.00009 0 0.500 30.0 85 0.00005 (0.00005) 381 S -0.00019 0 0.500 30.0 85 0.00010 (0.00010) 399 S -0.00031 0 0.500 30.0 85 0.00017 (0.00017) 407 S -0.00023 0 0.500 30.0 85 0.00013 (0.00013) 401 S -0.00006 0 0.500 30.0 85 0.00003 (0.00003) 383 S -0.00018 0 0.500 30.0 85 0.00009 (0.00009) 391	S -0.00010 0 0.500 30.0 85 0.00005 (0.00005) 384 0.020 (0.20) S -0.00006 0 0.500 30.0 85 0.00003 (0.00003) 420 0.011 (0.20) S -0.00026 0 0.500 30.0 85 0.00014 (0.00014) 407 0.058 (0.20) S -0.00009 0 0.500 30.0 85 0.00005 (0.00005) 381 0.018 (0.20) S -0.00019 0 0.500 30.0 85 0.00010 (0.00010) 399 0.040 (0.20) S -0.00031 0 0.500 30.0 85 0.00017 (0.00017) 407 0.069 (0.20) S -0.00023 0 0.500 30.0 85 0.00013 (0.00013) 401 0.051 (0.20) S -0.00006 0 0.500 30.0 85 0.00003 (0.00003) 383 0.012 (0.20) S -0.00018 0 0.500 30.0 85 0.00009 (0.00009)	S -0.00010 0 0.500 30.0 85 0.00005 (0.00005) 384 0.020 (0.20) 9184.37 S -0.00006 0 0.500 30.0 85 0.00003 (0.00003) 420 0.011 (0.20) 20179.13 S -0.00026 0 0.500 30.0 85 0.00014 (0.00014) 407 0.058 (0.20) 6653.37 S -0.00009 0 0.500 30.0 85 0.00005 (0.00005) 381 0.018 (0.20) 20050.75 S -0.00019 0 0.500 30.0 85 0.00010 (0.00010) 399 0.040 (0.20) 17800.70 S -0.00031 0 0.500 30.0 85 0.00017 (0.00017) 407 0.069 (0.20) 12945.58 S -0.00023 0 0.500 30.0 85 0.00013 (0.00013) 401 0.051 (0.20) 17278.95 S -0.00018 0 0.500 30.0 85 0.00003 (0.00003) 383 0.012 (0.20) 17956.86 S -0.00018 0 0.500 30.0 <t< td=""></t<>

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.14	96.9	1010.0	5.7	-90.9	-106.5		
2	S	3.96	132.9	1010.0	-9.4	-124.7	-63.6	1473	70.7
3	S	3.36	75.1	1010.0	0.8	-73.1	-119.4	0	0.0
4	S	4.01	56.4	1010.0	-10.2	-53.6	-129.3	1624	84.8
5	S	4.32	86.6	1010.0	-18.0	-82.3	-113.3	2672	141.4
6	S	4.26	48.5	1010.0	-15.8	-43.3	-133.1	2394	134.3
7	S	2.99	95.5	1010.0	5.0	-90.9	-106.5		
8	S	3.39	123.6	1010.0	-2.6	-113.3	-82.3	495	14.1
9	S	3.14	79.6	1010.0	2.0	-73.1	-119.4		
10	S	2.59	103.6	1010.0	5.4	-99.0	-99.0		

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e2 Cf e sm - e cm sr max wk Mx fess My fess

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA

CODIFICA

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

DOCUMENTO

REV.

FOGLIO

Viadotto NW04

COMMESSA LOTTO

RELAZIONE DI CALCOLO PILA							COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV	/. FOGLIO
							RS3T	30	D 09 CL	NW04 00 004	С	44 di 60
1	S	-0.00010	0							0.000 (0.20) 28	13.46	0.00
2	S	-0.00006	0	0.500	30.0	85	0.0	0003 (0.000	003) 395	0.011 (0.20) 182	14.95	34765.16
3	S	0.00000	0	0.500	30.0	85	0.0	0003 (0.000	003) 0	0.003 (0.20) 2893	26.08 1	167271.58
4	S	-0.00006	0	0.500	30.0	85	0.0	0003 (0.000	003) 387	0.012 (0.20) 348	22.46	14125.56
5	S	-0.00010	0	0.500	30.0	85	0.0	0005 (0.000	005) 385	0.021 (0.20) 231	39.63	16351.03
6	S	-0.00009	0	0.500	30.0	85	0.0	0005 (0.000)05) 380	0.018 (0.20) 286	23.47	9777.37

7 S -0.00005 0.000 (0.20) 9196.63 67159.77 8 S -0.00002 0 0.500 30.0 85 0.00001 (0.00001) 468 0.004 (0.20) 42858.85 62323.95 S -0.00005 0.000 (0.20) 5863.75 64113.95 9 0 -0.00002 0.000 (0.20) 8491.20 82966.86

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. 1 S 2.75 91.2 1010.0 3.3 -82.3 -113.3

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
1	S	-0.00007	0					0.000 (0.20)	5640.44	60606.75

4.9.2 Zattera di fondazione

Per la valutazione delle sollecitazioni nel plinto di fondazione, è necessario valutare preventivamente le sollecitazioni agenti nei pali di fondazione. Tali sollecitazioni sono state valutate mediate una ripartizione rigida delle sollecitazioni agenti a base plinto.

Si vedano i paragrafi precedenti da cui risulta:

 $N_{\text{max}} = 5217 \text{ kN (CC. SLU)}$

 $N_{max} = 6178 \text{ kN (CC. SLV q=1.36)}$

 $T_{max} = 757 \text{ kN (CC. SLV q=1.36)}$

Il plinto fondazione è stato verificato ipotizzando un meccanismo di tirante puntone. Si riporta di seguito la verifica. La larghezza di diffusione è stata valutata in corrispondenza del filo esterno della pila, mediante una diffusione a 45° a partire dal piano medio del palo (vedi figura seguente), mentre l'altezza della biella compressa è stata valutata pari a $0.2 d_p$ (con d_p altezza utile della sezione del plinto).

La verifica è stata eseguita in corrispondenza del palo più sollecitato.

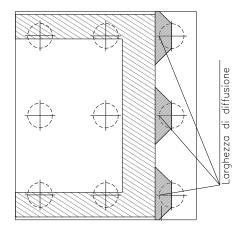


Figura 1 – Diffusione delle azioni dal palo alla pila

Di seguito si riportano i risultati delle verifiche strutturali del plinto di fondazione, condotte con riferimento al metodo usualmente utilizzato per la verifica delle mensole tozze, ovvero il metodo del tirante-puntone, di cui nel seguito si riporta lo schema e di verifica generale e relative formulazioni proposte a riguardo al C4.1.2.1.5 dalla Circolare Ministeriale n° 7/19.

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D 09 CL	NW04 00 004	С	46 di 60

VERIFICA - MECCANISMO TIRANTE PUNTONE.

P,H: Carichi Esterni di Progetto (PFD,HFD)

Pr : Portanza mensola in termini di resistenza dell'armatura metallica

$$P_{_{R}} = P_{_{Rs}} = \left(A_{_{s}}f_{_{yd}} - H_{_{Ed}}\right)\frac{1}{\lambda} \\ \lambda = ctg\psi \cong l/(0.9d). \label{eq:equation:equation:equation}$$

Pr : Portanza mensola in termini di resistenza della Biella compressa

$$P_{\text{Re}} = 0,4bdf_{\text{ed}} \frac{c}{1+\lambda^2} \ge P_{\text{Rs}}$$

CONDIZIONI DI VERIFICA

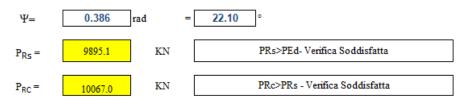
 $1 \quad P_R \geq P_{Ed}$

$\geq P_{Rs}$

Dati di progetto

b(m)=	5.30	m	dimensione trasversale verifica
P_{Ed} (KN) =	6178.00	KN	Carico complessivo VERTICALE sulla fascia di dimensione b
H_{Ed} (KN) =	757.00	KN	Carico complessivo ORIZZONTALE sulla fascia di dimensione b
a(m) =	4.80	m	distanza P da incastro
h(m) =	2.50	m	spessore mensola
$\delta(m) =$	0.12	m	copriferro riferito al baricentro delle armature complessive in trazione
d(m) =	2.38	m	altezza utile
1(m) =	5.28	m	a+0,2d
λ =	2.46		$\lambda = \operatorname{ctgw} = 1/(0.9d)$.

Tipo di mensola (Valutazione coefficiente c)



Caratteristiche Materiali

fcd=	14.1	MPa	Calcestruzzo
fvd =	391.0	MPa	Acciaio

Caratteristiche Armature di Progetto

Registro tipo	R1				
n° R1=	1	φ1(mm) =	22.0	p1(cm) = 10.0	θ1°= 0.0
Αφ i (mm²) =	380.13	nb tot 1=	53.0	$A\phi TOT (mm^2) = 20147.02$	$A\phi CAL(mm^2) = 20147.02$
Registro tipo	R2				
n° R2=	1	φ2(mm) =	22.0	p2(cm) = 10.0	$\theta 2^{\circ} = 0.0$
Αφ i (mm²) =	380.13	nb tot 2 =	53.0	$A\phi$ TOT (mm ²) = 20147.02	$A\phi CAL(mm^2) = 20147.02$
Registro tipo	R3				
n° R3=	1	φ3(mm) =	24.0	p3(cm) = 10.0	θ3° = 0.0
Αφ i (mm²) =	452.39	nb tot 3 =	53.0	$A\phi$ TOT (mm ²) = 23976.61	Aφ CAL(mm²) = 23976.61

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA

Viadotto NW04

RELAZIONE DI CALCOLO PILA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3T 30 D 09 CL NW04 00 004 C 47 di 60

4.9.3 Palo di fondazione

Viene verificata la sezione di incastro con la platea di fondazione; le sollecitazione sono ricavate dall'analisi elastica con q=1.

Il momento flettente agente in testa palo viene derivato dal taglio in testa palo nell'ipotesi di elasticità lineare sia per il palo che per il terreno. Risulta

C2E/20

 $M = T * \alpha$

 $\alpha = 3.1$ (vedi relazione geotecnica)

	N	M	V
SLU	5217	571	184
SLU	1708	571	184
SLV q=1	7242	2962	956
SLV q=1	-1735	2962	956

In fase di scalzamento $\alpha = 6.1$

Caratteristiche della sezione:

CALCECT DI 1770

Sezione circolare Ø 150 cm

 $A_s = 26 + 26 \ \phi 26$ staffe $\phi 14/20$

La lunghezza del palo è pari a L = 28.00m

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

Classo

(CALCESTRUZZO -	Classe:	C25/30	
		Resis. compr. di progetto fcd:	14.160	MPa
		Resis. compr. ridotta fcd':	7.080	MPa
		Def.unit. max resistenza ec2:	0.0020	
		Def.unit. ultima ecu:	0.0035	
		Diagramma tensione-deformaz.:	Parabola-Rettangolo	
		Modulo Elastico Normale Ec:	31475.0	MPa
		Resis. media a trazione fctm:	2.560	MPa
		Coeff. Omogen. S.L.E.:	15.00	
		Coeff. Omogen. S.L.E.:	15.00	
		Sc limite S.L.E. comb. Frequenti:	137.50	daN/cm ²
		Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
Α	CCIAIO -	Tipo:	B450C	
		Resist. caratt. snervam. fyk:	450.00	MPa
		Resist. caratt. rottura ftk:	450.00	MPa
		Resist. snerv. di progetto fyd:	391.30	MPa
		Resist. ultima di progetto ftd:	391.30	MPa
		Deform. ultima di progetto Epu:	0.068	
		Modulo Elastico Ef	2000000	daN/cm²
		Diagramma tensione-deformaz.:	Bilineare finito	
		Coeff. Aderenza istantaneo ß1*ß2:	1.00	
		Coeff. Aderenza differito ß1*ß2:	0.50	
		Sf limite S.L.E. Comb. Rare:	337.50	MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

COMMESSA DOCUMENTO LOTTO CODIFICA RFV **FOGLIO** RS3T 48 di 60 30 D 09 CL NW04 00 004 С

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 75.0 cm 0.0 cm X centro circ.: 0.0 cm Y centro circ.:

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen.

Numero assegnato alla singola generazione circolare di barre Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Xcentro Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Raggio [cm] della circonferenza lungo cui sono disposte le barre generate Raggio Numero di barre generate equidist. disposte lungo la circonferenza N°Barre

Diametro [mm] della singola barra generata

Ø N°Gen. Xcentro Ycentro **N°Barre** Raggio 0.0 0.0 66.0 26 26 0.0 0.0 26 2 61.0 26

ARMATURE A TAGLIO

Diametro staffe: 14 mm Passo staffe: 20.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Mx Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez.

Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate Vy

N°Comb. Ν Mx 1 5217.00 571.00 184.00 2 1708.00 184.00 571.00 3 7242.00 2962.00 956.00 -1735.00 2962.00 956.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom. Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx My 0.00 3771.00 399.00 2 1927.00 399.00 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Ν

Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx My

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** RELAZIONE DI CALCOLO PILA RS3T D 09 CL NW04 00 004 С 49 di 60

648.00 (2813.46) 0.00 (0.00) 3411.00 1 2 2213.00 648.00 (3696.67) 0.00(0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.7 cm Interferro netto minimo barre longitudinali: 2.4 cm Copriferro netto minimo staffe: 6.3 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Mx Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.) N Res

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mis.Sic.

Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Verifica positiva se tale rapporto risulta >=1.000

Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa] As Totale

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic. As Totale
1	S	5217.00	571.00	5217.07	7198.16	12.61 276.1(53.0)
2	S	1708.00	571.00	1707.80	6316.30	11.06 276.1(53.0)
3	S	7242.00	2962.00	7242.13	7509.69	2.54 276.1(53.0)
4	S	-1735.00	2962.00	-1735.17	5057.97	1.71 276.1(53.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del conglomerato a compressione
Deform. unit. massima del conglomerato a compressione
Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Deform. unit. minima nell'acciaio (negativa se di trazione)
Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Deform. unit. massima nell'acciaio (positiva se di compress.)
Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.0	75.0	0.00297	0.0	66.0	-0.00478	0.0	-66.0
2	0.00350	0.0	75.0	0.00283	0.0	66.0	-0.00704	0.0	-66.0
3	0.00350	0.0	75.0	0.00303	0.0	66.0	-0.00388	0.0	-66.0
4	0.00350	0.0	75.0	0.00259	0.0	66.0	-0.01080	0.0	-66.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

C.Rid.	x/d	С	b	а	N°Comb
		-0.000903825	0.000058718	0.000000000	1
		-0.002105163	0.000074736	0.000000000	2
		-0.000425433	0.000052339	0.000000000	3
		-0.004104462	0.000101393	0.000000000	4

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** RS3T D 09 CL NW04 00 004 С 50 di 60

VERIFICHE A TAGLIO

hw

Diam. Staffe: 14 mm

Passo staffe: 20.0 cm [Passo massimo di normativa = 25.0 cm]

S = comb. verificata a taglio / N = comb. non verificata Ver Ved Taglio di progetto [kN] = Vy ortogonale all'asse neutro

Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] Vwd

d|z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro

E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Ctg Coefficiente maggiorativo della resistenza a taglio per compressione Acw Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Ast A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Tra parentesi è indicata la guota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	184.00	4026.99	2886.71118	3.9 99.6	137.0	2.500	1.208	1.9	29.6(0.0)
2	S	184.00	3694.46	3056.42120	0.1 105.5	134.3	2.500	1.068	1.8	29.6(0.0)
3	S	956.00	4051.85	2798.84118	3.3 96.6	137.5	2.500	1.250	10.1	29.6(0.0)
4	S	956.00	3414.01	3278.83123	3.6 113.2	123.6	2.500	1.000	8.6	29.6(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	2.63	0.0 1010.0	14.0	0.0	-66.0		
2	S	1.78	0.0 1010.0	1.4	0.0	-66.0	0	0.0

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] k2

= 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali k4

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] Componente momento di prima fessurazione intorno all'asse Y [kNm] My fess.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA

Viadotto NW04

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D 09 CL	NW04 00 004	С	51 di 60

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr n	wk	Mx fess	My fess	
1	S	-0.00010	0						0.000 (0.20)	9184.37	26470.40
2	S	0.00000	0		.0	77	0.00000 (0.00000)	0	0.001 (0.20)	58100.28	0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.03	0.0 1010.0	4.1	0.0	-66.0		
2	S	2.52	0.0 1010.0	-5.3	0.0	-66.0	312	5.3

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	wk	Mx fess	My fess	
1	S	-0.00010	0						0.000 (0.20)	2813.46	0.00
2	S	-0.00004	0	0.500	26.0	77	0.00002 (0.00002)	522	0.008 (0.20)	3696.67	0.00

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA

Viadotto NW04

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D 09 CL	NW04 00 004	С	52 di 60

4.10 Escursione Longitudianle, giunti e varchi

Le escursioni longitudinali che i vincoli mobili devono consentire, sono state determinate in accordo con quanto indicato nel §2.1.5 della specifica RFI per i ponti [3].

Per i ponti e viadotti costituiti da una serie di travi semplicemente appoggiate l'entità dell'escursione totale dei giunti e degli apparecchi d'appoggio viene valutato mediante la seguente relazione:

$$EL = k1 \cdot (E1 + E2 + E3) = k1 \cdot (2 \cdot Dt + 4 \cdot dEd \cdot k2 + 2 \cdot deg)$$

dove:

E1 = spostamento dovuto alla variazione termica uniforme;

E2 = spostamento dovuto alla risposta della struttura all'azione sismica;

E3 = spostamento dovuto all'azione sismica fra le fondazioni di strutture non collegate;

k1 = 0,45 coefficiente che tiene conto della non contemporaneità dei valori massimi corrispondenti a ciascun evento singolo;

k2 = 0.55 coefficiente legato alla probabilità di moto in controfase di due pile adiacenti;

dEd = è lo spostamento relativo totale tra le parti, pari allo spostamento dE prodotto dall'azione sismica di progetto, calcolato come indicato nel §7.3.3.3 delle NTC [1];

 $deg = \grave{e}$ lo spostamento relativo tra le parti dovuto agli spostamenti relativi del terreno, da valutare secondo il $\S 3.2.3.3$ e $\S 3.2.4.2$ delle NTC [1];

In favore di sicurezza deg = dij max =

$$d_{ij\,max}\,=1{,}25\,\sqrt{d_{gi}^{\,2}\,+d_{gj}^{\,2}}$$

Dove dgi e dgi sono gli spostamenti massimi del suolo nei punti i e j, calcolati con riferimento alle caratteristiche locali del sottosuolo:

$$d_g = 0.025 \cdot a_g \cdot S \cdot T_C \cdot T_D$$

In ogni caso, dovrà risultare:

$$EL \ge E0$$
 e $EL \ge Ei$ con $i = 1, 2,3$

dove:

E0 = escursione valutata secondo i criteri validi nelle zone non sismiche;

Ei = il maggiore dei due termini indicati nella espressione precedente.

Nei casi in cui anche una sola delle due precedenti disuguaglianze non risultasse verificata, dovrà assumersi

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO	
NUOVO COLLEGAMENTO PALERMO – CATANIA	

Viadotto NW04

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 53 di 60

EL = max(E0; Ei).

Per garantire un valore minimo di escursione, in funzione della sismicità del sito, il valore EL dovrà essere assunto non minore di:

$$EL \ge 3.3 \cdot L/1000 + 0.1 \text{ m}$$
 e $EL \ge 0.15 \text{ m}$ per ag(SLV) $\ge 0.25 \text{ g}$

$$EL \ge 2.3 \cdot L/1000 + 0.073 \text{ m}$$
 e $EL \ge 0.10 \text{ m}$ per ag(SLV) $< 0.25 \text{ g}$

dove:

L = la lunghezza del ponte (m).

a) La corsa degli apparecchi d'appoggio mobili deve essere non inferiore a

 $ECmin = \pm(EL/2 + EL/8)$ con un minimo di $\pm(EL/2 + 15 \text{ mm})$.

b) Il giunto fra le testate di due travi adiacenti dovrà consentire una escursione totale pari a:

 $EGmin = \pm (EL/2 + 10 mm)$

c) Il varco da prevedere fra le testate degli impalcati adiacenti, a temperatura media ambiente, dovrà essere non inferiore a:

EVmin = EL/2 + 20 mm

d) Il ritegno sismico dovrà essere disposto ad una distanza, dal bordo della trave supportata dal vincolo mobile, pari a:

ERmin = V - 10 mm

Di seguito vengono valutati preliminarmente i diversi contributi relativi alle diverse azioni (termica, sismica e moto delle fondazioni) e successivamente vengono riportati i calcoli delle diverse grandezze.

ag		0.134	g
Fo .		3.5	
S _s		1	
S _t		1	
T _C		0.39	S
T_D		2.14	S
Accel. massima al suolo	S*a _{gmax}	0.13	g
Accel. massima spettro (plateau)	Fo*S*a _{gmax}	0.47	g

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA	COMMESSA LOTTO RS3T 30	CODIFICA D 09 CL	DOCUMENTO NW04 00 004	REV. FOGLIO C 54 di 60
Inerzia Pila asse y	J _{yy}	3.98	m ⁴	
Altezza pila	h1	7.5	m	
Altezza baricentro impalcato	h2	1.8	m	
Altezza totale	h=h1+h2	9.3		
Rigidezza Pila asse y	К	244928558	N/m	
Forza agente in fase sismica in dir.x per q=1	F	6393	kN	
Fattore di struttura	q	1		
Spostamento testa pila	dEe = F/K	0.026	m	
μd (par.7.3.3.3 NTC)		1		
Spostamento testa pila (par.7.3.3.3 NTC)	$de = dee*\mu d$	0.026	m	
k1		0.45		
k2		0.55		
d _g (par.3.2.3.2.1 NTC)		0.03	m	
d _{ij} max (par.3.2.4.2)		0.05		
Lunghezza impalcato		50	m	
Dilatazione termica impalcato	D_{t}	0.016	m	
E1	2*D _t	0.032	m	
E2	4* de *k2	0.057	m	
E3	2*d _{ij} max	0.098	m	
EL	k1*(E1+E2+E3)	0.058	m	Spalla - Spalla
EL	k1*(E1+E2+E3)	0.084	m	Spalla - Pila
EL	k1*(E1+E2+E3)	0.110	m	Pila - Pila
EL min 1		0.188	m	
EL min 2		0.100	m	
EL min	max(ELmin1;Elmin2)	0.188	m	
EL progetto	max(EL;Elmin;Ei)	0.188	m	Spalla - Spalla
EL progetto	max(EL;Elmin;Ei)	0.188	m	Spalla - Pila
EL progetto	max(EL;Elmin;Ei)	0.188	m	Pila - Pila
Corsa apparecchi di appoggio mobili	par 2.5.2.1.5.2	0.118	+/- m	Spalla - Spalla

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIRAMAZIONE – CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3T	30	D 09 CL	NW04 00 004	С	55 di 60
Corsa apparecchi di appoggio mobili	par 2.5.2.1	L.5.5	0.118	+/- m	Spalla -	Pila
Corsa apparecchi di appoggio mobili	par 2.5.2.1	L.5.5	0.118	+/- m	Pila - Pil	la
Escursione dei giunti	par 2.5.2.1	1 5 2	0.104	+/- m	Spalla -	Spalla
•	•		0.20	•	•	•
Escursione dei giunti	par 2.5.2.1	L.5.3	0.104	+/- m	Spalla -	Pila
Escursione dei giunti	par 2.5.2.1	L.5.3	0.104	+/- m	Pila - Pil	la
Ampiezza dei varchi 'V'	par 2.5.2.1	15/	0.114	m	Pila - Pil	la
Ampiezza dei varciii v	pai 2.3.2.1	1.3.4	0.114	""	riia - rii	ia
Ritegni sismici	par 2.5.2.1	L.5.5	0.104	m	Pila - Pil	la

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA

Viadotto NW04

RELAZIONE DI CALCOLO PILA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30	D 09 CL	NW04 00 004	С	56 di 60

4.11 Ritegni

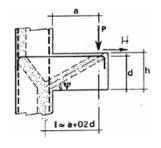
Le massime forze sismiche afferenti ai differenti impalcati sono le seguenti:

Imp 50,00 m: Pmax = [(G1+G2)*L+0.2*Q)]*amax = 4784 kN

Imp 25,00 m: Pmax = [(G1+G2)*L+0.2*Q)]*amax = 3960 kN

La battuta dell'impalcato da 50m ricade all'interno del pulvino, per cui la verifica risulta non necessaria.

Il ritegno longitudinale è dunque soggetto ad una forza orizzontale pari a:


Imp 25,00 m: Pmax = 3960 kN

Le sollecitazioni vengono applicate ad una sezione avente le seguenti caratteristiche:

B = 6,00 m

H = 0.30 m

VERIFICA - MECCANISMO TIRANTE PUNTONE.

P,H: Carichi Esterni di Progetto (PFD,HFD)

Pr: Portanza mensola in termini di resistenza dell'armatura metallica

$$P_{\text{R}} = P_{\text{Rs}} = \left(A_{\text{s}} f_{\text{yd}} - H_{\text{Ed}}\right) \frac{1}{\lambda} \\ \lambda = \text{ctg} \psi \cong l/(0.9d). \label{eq:problem}$$

Pr: Portanza mensola in termini di resistenza della Biella compressa

$$P_{Rc} = 0,4bdf_{cd} \frac{c}{1+\lambda^2} \ge P_{Rs}$$

CONDIZIONI DI VERIFICA

- $1 \qquad P_R \geq P_{Ed}$
- $\geq P_{Rs}$

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

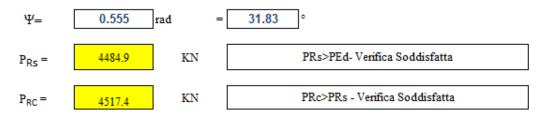
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 57 di 60

Dati di progetto

b(m)=	6.00	m	dimensione trasversale verifica
$P_{Ed}(KN) =$	3960	KN	Carico complessivo VERTICALE sulla fascia di dimensione b
$H_{Ed}(KN) =$	0.00	KN	Carico complessivo ORIZZONTALE sulla fascia di dimensione b
a(m) =	0.30	m	distanza P da incastro
h(m) =	0.30	m	spessore mensola
$\delta(m) =$	0.06	m	copriferro riferito al baricentro delle armature complessive in trazione
d(m) =	0.24	m	altezza utile
1(m) =	0.35	m	a+0,2d
λ=	1.61		$\lambda = \operatorname{ctgw} = 1/(0.9d)$.

Tipo di mensola (Valutazione coefficiente c)



Caratteristiche Materiali

fcd=	18.8	MPa	Calcestruzzo
fvd=	391.0	MPa	Acciaio

Caratteristiche Armature di Progetto

Registro tipo	R1				
n° R1=	1	φ1(mm) =	20.0	p1(cm) = 10	θ1° = 0.0
Αφ i (mm²) =	314.16	nb tot 1=	58.8	Aþ TOT (mm²) = 18479.94	$A\phi CAL(mm^2) = 18479.94$
Registro tipo	R2				
n° R2=	0	φ2(mm) =	26.0	p2(cm) = 10.0	θ2° = 0.0
Αφ i (mm²) =	530.93	nb tot 2 =	0.0	$A\phi TOT (mm^2) = 0.00$	$A\phi$ CAL(mm ²) = 0.00
Registro tipo	R3				
n° R3=	0	φ3(mm) =	26.0	p3(cm) = 10.0	θ3° = 0.0
Αφ i (mm²) =	530.93	nb tot 3 =	0.0	$A\phi TOT (mm^2) = 0.00$	$A\phi CAL(mm^2) = 0.00$

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 58 di 60

Il ritegno trasversale è dunque soggetto ad una forza orizzontale pari a:

(Imp 50,00 m)/2: Pmax = 2392 kN lato imp. 50m

(Imp 25,00 m)/2: Pmax = 1980 kN lato imp. 25m

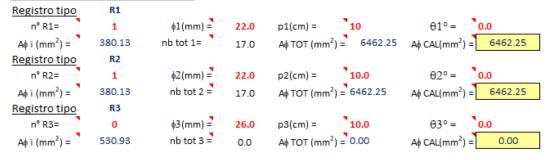
Le sollecitazioni vengono applicate ad una sezione avente le seguenti caratteristiche (lato imp.50m):

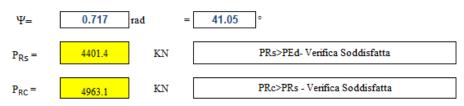
B = 1,70 m

H = 0.70 m

Dati di progetto

b(m)=	1.70	m	dimensione trasversale verifica
P_{Ed} (KN) =	2392	KN	Carico complessivo VERTICALE sulla fascia di dimensione b
H_{Ed} (KN) =	0.00	KN	Carico complessivo ORIZZONTALE sulla fascia di dimensione b
a(m) =	0.50	m	distanza P da incastro
h(m) =	0.70	m	spessore mensola
$\delta(m) =$	0.10	m	copriferro riferito al baricentro delle armature complessive in trazione
d(m) =	0.60	m	altezza utile
1(m) =	0.62	m	a+0,2d
λ=	1.15		$\lambda = \operatorname{ctgw} = 1/(0.9d)$.


Tipo di mensola (Valutazione coefficiente c)



Caratteristiche Materiali

fcd=	18.8	MPa	Calcestruzzo
fvd=	391.0	MPa	Acciaio

Caratteristiche Armature di Progetto

TRATTA LERCARA DIRAMAZIONE - CALTANISSETTA (LOTTO 3B)

Viadotto NW04

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 59 di 60

Le sollecitazioni vengono applicate ad una sezione avente le seguenti caratteristiche (lato imp.25m):

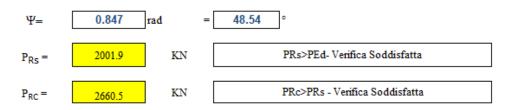
B = 0.50 m

H = 0.90 m

Dati di progetto

b(m)=	0.50	m	dimensione trasversale verifica
$P_{Ed}(KN) =$	1980	KN	Carico complessivo VERTICALE sulla fascia di dimensione b
$H_{Ed}(KN) =$	0.00	KN	Carico complessivo ORIZZONTALE sulla fascia di dimensione b
a(m) =	0.50	m	distanza P da incastro
h(m) =	0.90	m	spessore mensola
$\delta(m) =$	0.06	m	copriferro riferito al baricentro delle armature complessive in trazione
d(m) =	0.84	m	altezza utile
1(m) =	0.67	m	a+0,2d
λ =	0.88		$\lambda = \operatorname{ctg} \psi \cong 1/(0,9d)$.

Tipo di mensola (Valutazione coefficiente c)



Caratteristiche Materiali

fcd =	18.8	MPa	Calcestruzzo
fvd=	391.0	MPa	Acciaio

Caratteristiche Armature di Progetto

Registro tipo	R1				
n° R1=	1	φ1(mm) =	24.0	p1(cm) = 10.0	θ1°= 0.0
Αφ i (mm²) =	452.39	nb tot 1=	5.0	$A\phi TOT (mm^2) = 2261.94$	$A\phi CAL(mm^2) = 2261.94$
Registro tipo	R2				
n° R2=	1	φ2(mm) =	24.0	p2(cm) = 10.0	θ2° = 0.0
Αφ i (mm²) =	452.39	nb tot 2 =	5.0	$A\phi$ TOT (mm ²) = 2261.94	$A\phi CAL(mm^2) = 2261.94$
Registro tipo	R3				
n° R3=	0	φ3(mm) =	26.0	p3(cm) = 10.0	θ3° = 0.0
Αφ i (mm²) =	530.93	nb tot 3 =	0.0	$A\phi TOT (mm^2) = 0.00$	$A\phi$ CAL(mm ²) = 0.00

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO	
NUOVO COLLEGAMENTO PALERMO – CATANIA	

Viadotto NW04

RELAZIONE DI CALCOLO PILA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30
 D 09 CL
 NW04 00 004
 C
 60 di 60

Il pulvino è soggetto ad una forza verticale pari a:

Pmax = 4601 kN (scarico massimo SLU appoggi)

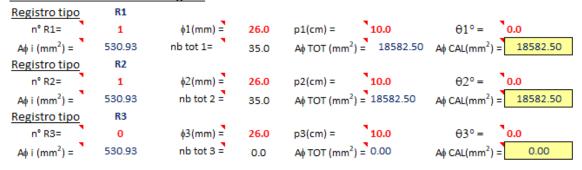
Le sollecitazioni vengono applicate ad una sezione avente le seguenti caratteristiche:

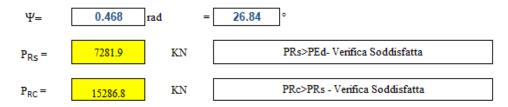
B = 3,50 m

H = 2,00 m

Dati di progetto

b(m)=	3.50	m	dimensione trasversale verifica
$P_{Ed}(KN) =$	4601	KN	Carico complessivo VERTICALE sulla fascia di dimensione b
$H_{Ed}(KN) =$	138.02	KN	Carico complessivo ORIZZONTALE sulla fascia di dimensione b
a(m) =	3.00	m	distanza P da incastro
h(m) =	2.00	m	spessore mensola
$\delta(m) =$	0.10	m	copriferro riferito al baricentro delle armature complessive in trazione
d(m) =	1.90	m	altezza utile
1(m) =	3.38	m	a+0,2d
λ=	1.98		$\lambda = \operatorname{ctg} \psi \cong 1/(0,9d)$.


Tipo di mensola (Valutazione coefficiente c)



Caratteristiche Materiali

fcd=	18.8	MPa	Calcestruzzo
fvd=	391.0	MPa	Acciaio

Caratteristiche Armature di Progetto

