COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

U.O. INFRASTRUTTURE NORD

PROGETTO DEFINITIVO

TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3)

Opere di sostegno di linea

RI05: Muro di sostegno in sx MU07

Relazione di calcolo

SCALA:
-

COMMESSA

LOTTO FASE ENTE TIPO DOC.

OPERA/DISCIPLINA

PROGR.

REV.

RS3T

30

D

2 6

MU0700

0 0 1

В

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Gen-2020	M.Salleolini	Gen-2020	A.Barreca	Gen-2020	F.Sacchi
В	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Apr-2020	M.Salleolini	Apr-2020	A.Barreca	Apr-2020	Apr-2020
				70000				UTTURE HORD Sector Respect d Rens
								TOWNER

File: RS3T.3.0.D.26.CL.MU.07.0.0.001.B

n. Elab.: 26 310

OPERE DI SOSTEGNO DI LINEA

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO COMMESSA LOTTO

RS3T 30 D 26

CODIFICA CL

DOCUMENTO MU0700 001

REV. FO

FOGLIO 2 di 116

INDICE

1.	PREMESSA		6
	1.1 I	DESCRIZIONE DELL'OPERA	6
2.	NORMATIV	VA DI RIFERIMENTO	9
3.	DOCUMEN	TI DI RIFERIMENTO	9
4.	UNITÀ DI N	MISURA E SIMBOLOGIA	10
5.	CARATTER	RISTICHE DEI MATERIALI	11
	5.1	CALCESTRUZZO	11
	5.2 A	ACCIAIO IN BARRE AD ADERENZA MIGLIORATA B450 C	14
6.	INQUADRA	AMENTO GEOTECNICO	15
7.	CRITERI D	I VERIFICA	17
	7.1	VERIFICHE GEOTECNICHE (SLU) IN CONDIZIONI STATICHE	17
	7.1.	I VERIFICA A SCORRIMENTO	19
	7.1.2	2 VERIFICA A RIBALTAMENTO	20
	7.1.	3 VERIFICA A CARICO LIMITE DELLA FONDAZIONE	20
	7.1.4	4 VERIFICA A STABILITÀ GLOBALE	20
	7.2	VERIFICHE GEOTECNICHE (SLV) IN CONDIZIONI SISMICHE	21
	7.3 V	VERIFICHE GEOTECNICHE (SLE)	23
	7.3.	SPOSTAMENTI ATTESI IN CAMPO SLE	24
	7.4 V	VERIFICHE STRUTTURALI SLU	2
	7.4.	CRITERI DI VERIFICA DELLE SEZIONI IN C.A	25
	7.4.2	2 VERIFICHE PER GLI STATI LIMITE ULTIMI A FLESSIONE - PRESSOFLESSIONE	25
	7.4.	3 VERIFICA AGLI STATI LIMITE ULTIMI A TAGLIO	25
	7.5	VERIFICHE STRUTTURALI (SLE)	28
	7.5.	VERIFICHE ALLE TENSIONI	28
	7.5.2	2 VERIFICHE A FESSURAZIONE	29
8.	ANALISI D	EI CARICHI	31

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO

RS3T	30 D 26	CODIFICA	MU0700 001	REV.	3 di 116
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

	8.1	PES	SI PROPRI	31
	8.2	CA	RICHI PERMANENTI	33
		8.2.1	SOVRASTRUTTURA FERROVIARIA	33
		8.2.2	PARAPETTO METALLICO	33
		8.2.3	SPINTA DEL TERRENO	33
	8.3	CA	RICHI VARIABILI	35
		8.3.1	CARICHI MOBILI DA TRAFFICO FERROVIARIO	35
		8.3.2	VERIFICA REQUISITI S.T.I. PER OPERE MINORI SOTTOBINARIO: CARICO EQUIVALENTE	36
	8.4	VA	LUTAZIONE DELL'AZIONE SISMICA	39
		8.4.1	VITA NOMINALE	39
		8.4.2	CLASSE D'USO	39
		8.4.3	PERIODO DI RIFERIMENTO	39
		8.4.4	PARAMETRI SISMICI	39
	8.5	CO	MBINAZIONI DI CARICO	44
9.	PROGI	ЕТТО Е	VERIFICA DEL MURO DI SOSTEGNO "TIPO 2"	47
	9.1	DA	TI DI INPUT	47
		9.1.1	FORZE VERTICALI E INERZIALI.	51
		9.1.2	SPINTE IN CONDIZIONE STATICA	53
		9.1.3	SPINTE IN CONDIZIONE SISMICA +	54
		9.1.4	SPINTE IN CONDIZIONE SISMICA	55
	9.2	VE	RIFICHE GEOTECNICHE	56
		9.2.1 DRENA	VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C.	56
		9.2.2 DRENA	VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C.	58
		9.2.3	VERIFICA DI STABILITÀ GLOBALE – COND. DRENATE	62
		9.2.4 NON D	VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE – C.	66

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 4 di 116

		9.2.5 NON D	VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE – C. RENATE	68
		9.2.6	VERIFICA DI STABILITÀ GLOBALE – COND. NON DRENATE	72
	9.3	VEI	RIFICHE STRUTTURALI	76
		9.3.1	CALCOLO DELLE SOLLECITAZIONI	76
		9.3.2	VERIFICHE SLU	78
		9.3.3	VERIFICHE SLE TENSIONE	80
		9.3.4	VERIFICHE SLE FESSURAZIONE	81
10.	PROGI	ETTO E	VERIFICA DEL MURO DI SOSTEGNO "TIPO 3"	82
	10.1	DA	TI DI INPUT	82
	10.1	CAI	COLO DELLE AZIONI	86
		10.1.1	FORZE VERTICALI E INERZIALI	86
		10.1.2	SPINTE IN CONDIZIONE STATICA	88
		10.1.3	SPINTE IN CONDIZIONE SISMICA +	89
		10.1.4	SPINTE IN CONDIZIONE SISMICA	90
	10.1	VEI	RIFICHE GEOTECNICHE	91
		10.1.1 DRENA	VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. TE	91
		10.1.2 DRENA	VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C.	93
		10.1.3	VERIFICA DI STABILITÀ GLOBALE – COND. DRENATE	97
		10.1.4 NON D	VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE – C. RENATE	101
		10.1.5 NON D	VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE – C. RENATE	103
		10.1.6	VERIFICA DI STABILITÀ GLOBALE – COND. NON DRENATE	107
	10.1	VEI	RIFICHE STRUTTURALI	111
		10.1.1	CALCOLO DELLE SOLLECITAZIONI	111
		10.12	VEDICUE CI II	112

CODIFICA

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO

LOTTO DOCUMENTO RS3T 30 D 26 CL MU0700 001 В 5 di 116

REV.

FOGLIO

10.1.3	VERIFICHE SLE TENSIONE	11	15
10.1.4	VERIFICHE SLE FESSURAZIONE	11	16

COMMESSA

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO CO TRATTA LE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR. – CALTANISETTA XIRBI (LOTTO 3) OPERE DI SOSTEGNO DI LINEA						
RI05: MURO DI SOSTEGNO IN SX MU07	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
RELAZIONE DI CALCOLO	RS3T	30 D 26	CL	MU0700 001	В	6 di 116		

1. PREMESSA

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo della direttrice ferroviaria Messina-Catania-Palermo, nuovo collegamento Palermo-Catania tratta Lercara Dir. – Caltanisetta Xirbi (Lotto 3).

1.1 DESCRIZIONE DELL'OPERA

Nella presente relazione sono illustrati i calcoli e le verifiche dei muri di sostegno MU07 che si sviluppano rispettivamente dal km 6+550 al km 6+900 (Figura 1-1, Figura 1-2, Figura 1-3, Figura 1-4).

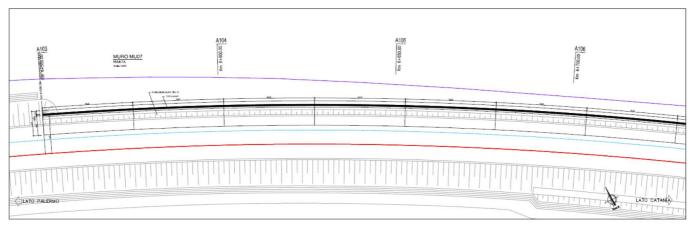


Figura 1-1 – RI05: Muro di sostegno in sx MU07 - Pianta.

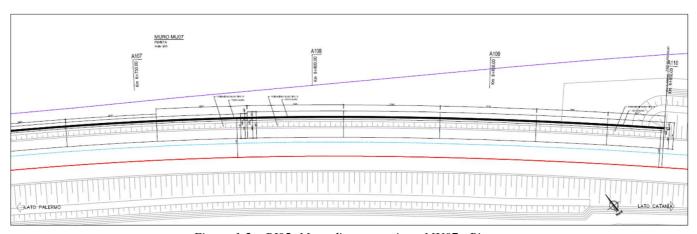


Figura 1-2 – RI05: Muro di sostegno in sx MU07 - Pianta.

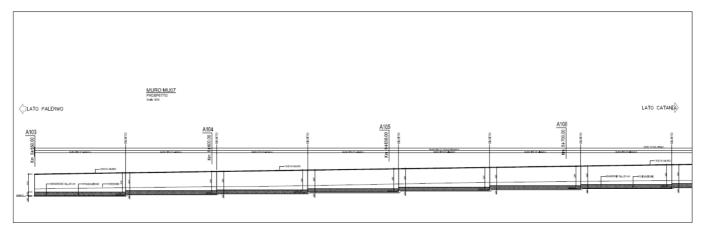


Figura 1-3 – RI05: Muro di sostegno in sx MU07 - Prospetto.

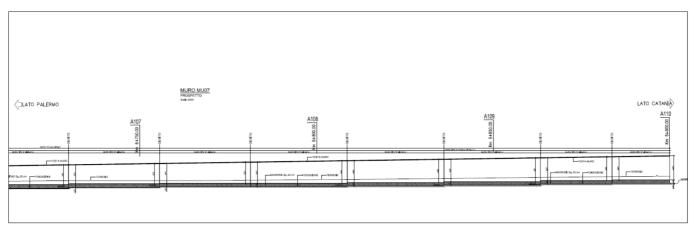


Figura 1-4 – RI05: Muro di sostegno in sx MU07 - Prospetto.

Quanto riportato di seguito consentirà di verificare che il dimensionamento della struttura è stato effettuato nel rispetto dei requisiti di resistenza richiesti all'opera.

L'altezza del muro è variabile da 5.10 m a 6.85 m con lo sviluppo dell'opera stessa, con spessore in testa del paramento di 0.40m, spessore della soletta di fondazione di 1.00m e larghezza della stessa di 7.00m – 7.50m.

Si individuano due tipologie di muri di sostegno le cui caratteristiche sono di seguito riassunte:

• muro "tipo 2": per altezze comprese tra 5.10 e 6.00 metri la fondazione del muro è diretta ed è caratterizzata da una lunghezza di 7.00 m e spessore 1.00 m. Il ricoprimento sopra la zattera di valle è pari ad almeno 60 cm. L'altezza del paramento massima è pari a 6.00 m (Figura 1-5).

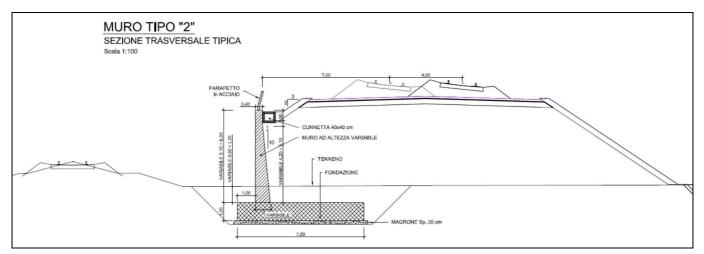


Figura 1-5 – RI05: Muro di sostegno in sx MU07 – Sezione trasversale muro tipo 2.

muro "tipo 3": per altezze di paramento superiori a 6.00 metri la fondazione del muro è diretta ed
è caratterizzata da una lunghezza di 7.50 m e spessore 1.00 m. Il ricoprimento sopra la zattera
di valle è pari ad almeno 60 cm. L'altezza del paramento massima è pari a 6.85 m (Figura 1-6).

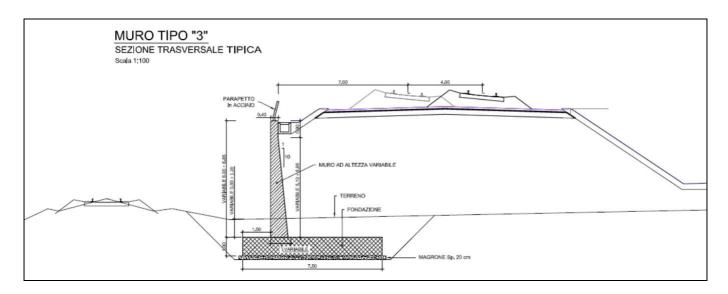


Figura 1-6 – RI05: Muro di sostegno in sx MU07 – Sezione trasversale muro tipo 3.

Di seguito si svolgerà la verifica per ogni tipo di muro precedentemente descritto caratterizzato dall'altezza di paramento massima.

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 9 di 116

2. NORMATIVA DI RIFERIMENTO

L'interpretazione dei risultati e la redazione della presente relazione sono stati effettuati nel rispetto della Normativa in vigore.

I principali riferimenti normativi sono i seguenti:

Norme Tecniche per le Costruzioni - D.M. 17-01-18 (NTC-2018);

Circolare n. 7 del 21 gennaio 2019 - Istruzioni per l'Applicazione dell'aggiornamento delle Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale 17 gennaio 2018;

Regolamento (UE) N.1299/2014 del 18 novembre 2014 della Commissione Europea. Relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.

Eurocodici EN 1991-2: 2003/AC:2010 - Eurocodice 1 - Parte 2

RFI DTC SI MA IFS 001 C del 21-12-18 - Manuale di Progettazione delle Opere Civili

3. DOCUMENTI DI RIFERIMENTO

Vengono presi a riferimento i seguenti elaborati grafici progettuali di pertinenza:

RS3T.3.0.D.26.P9.MU.07.0.0.001: <u>"Opere di sostegno di linea – RI05: Muro di sostegno in sx MU07 – Piante, prospetti e sezioni - Tav. 1 di 2"</u>

RS3T.3.0.D.26.P9.MU.07.0.0.001: "Opere di sostegno di linea – RI05: Muro di sostegno in sx MU07 – Piante, prospetti e sezioni - Tav. 2 di 2"

RS3T.3.0.D.26.TT.OC.00.0.0.006: <u>"Opere civili – Elaborati generali OO. CC. – Tabella incidenze armature Opere Civili – Lotto 3a"</u>

RS3T.3.0.D.26.GE.GE.00.0.0.001: <u>"Geotecnica – Elaborati generali – Relazione geotecnica generale - opere all'aperto – Lotto 3a"</u>

LOTTO 30 D 26

COMMESSA

RS3T

CODIFICA

DOCUMENTO MU0700 001

REV. FO

FOGLIO 10 di 116

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO

4. UNITÀ DI MISURA E SIMBOLOGIA

Si utilizza il Sistema Internazionale (SI):

unità di misura principali

N (Newton) unità di forza

m (metro) unità di lunghezza

kg (kilogrammo-massa) unità di massa

s (secondo) unità di tempo

unità di misura derivate kN

(kiloNewton) 103N

MN (megaNewton) 106N

kgf (kilogrammo-forza) 1 kgf = 9.81 N

cm (centimetro) 10-2 m

mm (millimetro) 10-3 m

Pa (Pascal) 1 N/m2

kPa (kiloPascal) 103 N/m2

MPa (megaPascal) 106 N/m2

N/m3 (peso specifico)

g (accelerazione di gravità) ~9.81 m/s2

corrispondenze notevoli

1 MPa = 1 N/mm2

1 MPa ~ 10 kgf/cm2

Si utilizzano i seguenti principali simboli con le relative unità di misura normalmente adottate:

v (gamma) peso dell'unità di volume (kN/m3)

 σ (sigma) tensione normale (N/mm2)

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA

RS3T 30 D 26 CL

DOCUMENTO
MU0700 001

REV. FOGLIO **B** 11 di 116

tensione tangenziale

(N/mm2)

ε (epsilon)

deformazione

(m/m)

φ (fi)

angolo di resistenza

(° sessagesimali)

5. CARATTERISTICHE DEI MATERIALI

Le caratteristiche dei materiali sono ricavate con riferimento alle indicazioni contenute nei capitoli 4 e 11 del D.M. 17 gennaio 2018. Nelle tabelle che seguono sono indicate le principali caratteristiche e i riferimenti dei paragrafi del D.M. citato.

5.1 CALCESTRUZZO

• Elemento strutturale: fondazione ed elevazione muro di sostegno

Classe di resistenza = C32/40;

Rck = resistenza cubica = 40 N/mm2;

fck = resistenza cilindrica caratteristica = 0.83 Rck = 33.20 N/ mm2;

fcm = resistenza cilindrica media = fck + 8 = 41.20 N/ mm2;

fcd = α cc fck/ γ c = 18,81 N/mm2;

fctm = resistenza a trazione media = 0.30 x fck^2/3 = 3.10 N/ mm2;

fcfm = resistenza a traz. per flessione media = 1.20 x fctm = 3.72 N/ mm2;

fcfk = resistenza a traz. per flessione carati. = 0.70 x fcfm = 2.60 N/ mm2;

Ecm = modulo elast. tra 0 e 0.40fcm = $22000 \text{ x (fcm/10)}^{0.3} = 33642.78 \text{ N/ mm2}$;

Tolleranza di posa del copriferro = 10 mm;

Classe di esposizione XC4

Copriferro minimo cmin= 50 mm

Condizioni ambientali: aggressive

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 12 di 116

CALCOLO COPRIFERRO - § C4.1.6.1.3 ISTRUZIONI NTC 2018

 Elemento strutturale: fondazione ed elevazione muro di sostegno 	<u> </u>	o tipo 2
Diametro (o diametro equivalente) barre longitudinali:	24	[mm]
Diametro staffe:	10	[mm]
Classe Calcestruzzo:	C32/4	0
Condizioni ambientali:	Aggre	ssive
Vita nominale costruzione:	75	[anni]
Incremento di 5 mm rispetto a vita nominale di 50 anni		
Tolleranza di posa:	10	[mm]
Copriferro staffe:		
Copriferro minimo c _{min} :	40	[mm]
Copriferro nominale Netto Staffe:	50	[mm]
Copriferro barre longitudinali:		
Copriferro nominale Netto barre longitudinali:	70	[mm]
Copriferro nominale dal Baricentro della Barra longitudinale:	82	[mm]
Elemento strutturale: fondazione ed elevazione muro di sostegno	<u> </u>	o tipo 3
Diametro (o diametro equivalente) barre longitudinali:	26	[mm]
Diametro staffe:	14	[mm]
Classe Calcestruzzo:	C32/4	0
Condizioni ambientali:	Aggre	ssive
	Aggree	ssive [anni]
Condizioni ambientali: Vita nominale costruzione:		
Condizioni ambientali: Vita nominale costruzione: Incremento di 5 mm rispetto a vita nominale di 50 anni		
Condizioni ambientali:	75	[anni]
Condizioni ambientali: Vita nominale costruzione: Incremento di 5 mm rispetto a vita nominale di 50 anni Tolleranza di posa:	75	[anni]

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 13 di 116

Copriferro nominale Netto Staffe: 50 [mm]

Copriferro barre longitudinali:

Copriferro nominale Netto barre longitudinali: 78 [mm]

Copriferro nominale dal Baricentro della Barra longitudinale: 91 [mm]

5.2 ACCIAIO IN BARRE AD ADERENZA MIGLIORATA B450 C

L'acciaio per cemento armato B450C è caratterizzato dai seguenti valori nominali delle tensioni caratteristiche di snervamento e rottura da utilizzare nei calcoli:

$f_{v \text{ nom}}$	450 N/mm ²
$f_{t \text{ nom}}$	540 N/mm ²

Tabella 5-1 Tensioni caratteristiche acciaio.

E deve rispettare i requisiti indicati nella seguente tabella:

CARATTERISTICHE	REQUISITI	FRATTILE (%)
Tensione caratteristica di snervamento f _{yk}	$\geq f_{_{ m V \; nom}}$	5.0
Tensione caratteristica di rottura f _{tk}	$\geq f_{t \text{ nom}}$	5.0
$(\mathbf{f}_{t}/\mathbf{f}_{y})_{\mathbf{k}}$	≥1,15 <1,35	10.0
$(f_{ m V}/f_{ m vnom})_{ m k}$	≤ 1,25	10.0
Allungamento (Agt)k:	≥ 7,5 %	10.0
Diametro del mandrino per prove di piegamento a 90 ° e successivo raddrizzamento senza cricche: $\phi < 12 \text{ mm}$	4φ	
12≤ φ ≤ 16 mm	5 ф	
per 16 < φ≤25 mm	8 ф	
per 25 < φ ≤ 40 mm	10 ф	

Tabella 5-2 Requisiti acciaio.

Inoltre si ha:

- Es = 210000 N/mm2
- Sovrapposizioni barre ≥ 40φ

Resistenza di calcolo dell'acciaio per la verifica agli SLU (γs=1.15):

Resistenza di calcolo a rottura per trazione e deformazione corrispondente:

- fyd = fyk/ γ s 391.3 N/mm2
- $\epsilon yd = fyd/Es 0.186\%$

COMMESSA LOTTO CODIFICA

RS3T 30 D 26 CL

DOCUMENTO MU0700 001

FOGLIO 15 di 116

REV.

6. INQUADRAMENTO GEOTECNICO

RELAZIONE DI CALCOLO

Il modello geotecnico di calcolo è stato definito sulla base di quanto riportato nella relazione geotecnica: Si riportano di seguito i terreni su cui poggiano i muri di sostegno lungo il tracciato, con i parametri fisici e meccanici ad essi assegnati. Il rilevato a monte avrà superficie orizzontale.

Si evidenzia, inoltre, la presenza di una coltre superficiale di circa 2m le cui caratteristiche non risultano tali da permettervi l'impostazione del piano di posa del muro di sostegno.

Unità litologiche da p.c.	da [m]	a [m]	Y [kN/m³]	c' _k [kPa]	φ' _k [°]	c _u [kPa]	E ₀ [MPa]
Coltre sup.	0	2	19	19.5	20	-	50
a2	2	8	19	0	30	75	100
TRV	8	-	20	22.5	25	150	100

Tabella 6-1 – Valori di calcolo dei parametri geotecnici del terreno

In cui:

y = peso specifico del terreno;

 c'_k = coesione efficace;

 φ'_k = angolo d'attrito efficace;

 c_u = coesione non drenata;

 E_0 = Modulo dinamico del terreno;

La falda è posta a circa 1.50 metri dal piano campagna.

Per le caratteristiche dei rilevati ferroviari si assumono i seguenti parametri:

- peso volume, γ= 20 kN/m³;
- angolo d'attrito, φ ' = 38°;

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR. – CALTANISETTA XIRBI (LOTTO 3) OPERE DI SOSTEGNO DI LINEA							
RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO	COMMESSA RS3T	LOTTO 30 D 26	CODIFICA	DOCUMENTO MU0700 001	REV.	FOGLIO 16 di 116		

⁻ coesione efficace c' = 0 kPa.

Per l'inquadramento geotecnico si rimanda alla "Relazione geotecnica generale" e ai relativi profili geotecnici, di cui si riporta uno stralcio.

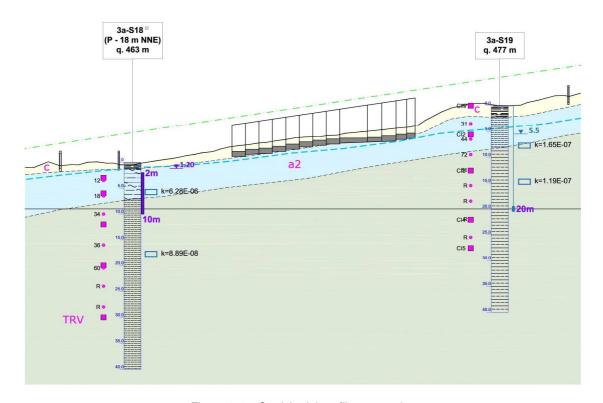


Figura 6-1 – Stralcio del profilo geotecnico.

7. CRITERI DI VERIFICA

7.1 VERIFICHE GEOTECNICHE (SLU) IN CONDIZIONI STATICHE

Nelle verifiche di sicurezza si è preso in considerazione tutti i meccanismi di stato limite ultimo sia a breve termine sia a lungo termine. Gli stati limite ultimi delle opere di sostegno si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno, e al raggiungimento della resistenza degli elementi strutturali che compongono le opere stesse.

Per i muri di sostegno su fondazione diretta si considerano i seguenti Stati Limite Ultimi:

SLU di tipo geotecnico (GEO)

- Scorrimento sul piano di posa;
- Collasso per carico limite del complesso fondazione-terreno;
- Ribaltamento;
- Stabilità globale del complesso opera di sostegno-terreno.

SLU di tipo strutturale (STR)

Raggiungimento della resistenza negli elementi strutturali.

La verifica di stabilità globale del complesso opera di sostegno – terreno deve essere effettuata, analogamente a quanto previsto al §6.8 delle NTC2018, secondo l'Approccio 1 – Combinazione 2 (A2+M2+R2), tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I delle NTC18.

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 2 con la combinazione (A1+M1+R3), tenendo conto dei valori dei coefficienti parziali riportati nelle 6.2.I, 6.2.II, 6.4.II e 6.4.VI delle NTC18.

Il progetto e la verifica dei muri di sostegno sono stati effettuati con l'ausilio di fogli di calcolo nei quali vengono implementate tutte le caratteristiche geometriche dei muri insieme ai parametri di resistenza geotecnica.

Per ogni tipologia di muro di sostegno studiata, si è verificato che le caratteristiche geometriche siano tali che il muro possa essere considerato a mensola con suola lunga (vedere Figura 7-1), così come previsto al §3.10.3.3. del Manuale di Progettazione delle Opere Civili (RFI DTC SI MA IFS 001 C).

Si è considerato, pertanto, che la spinta sull'opera di sostegno agisca sul piano verticale cd, assunto come il paramento virtuale del muro.

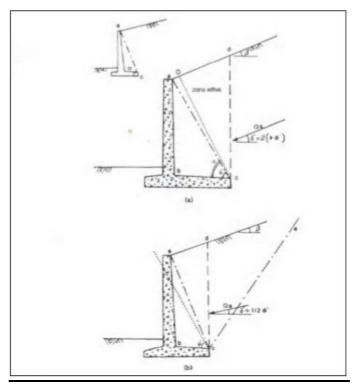
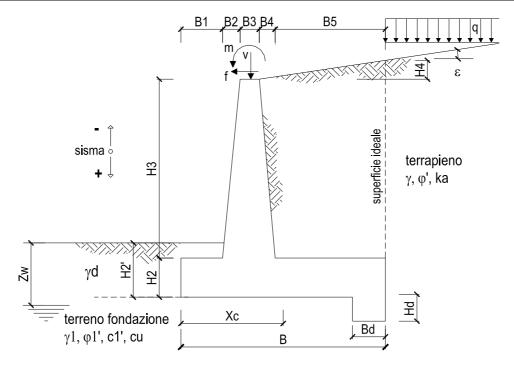


Figura 7-1 – Spinta sui muri di sostegno a mensola con suola lunga (caso a) e con suola corta (caso b).

Su tale paramento l'angolo di inclinazione δ della risultante della spinta (applicata ad 1/3 dell'altezza del paramento virtuale) si potrà assumere uguale all'angolo di inclinazione β del terrapieno, a meno che β non sia superiore all'angolo di resistenza al taglio del terreno ϕ ', nel qual caso si potrà assumere $\delta = \phi$ '.


Il terreno al di sopra della suola (abcd) è stato considerato stabilizzante nelle verifiche, e ad esso sono da applicarsi le forze d'inerzia in fase sismica.

Inoltre nella verifica a scorrimento e a ribaltamento dei muri di sostegno viene trascurata la resistenza passiva antistante il muro.

Nel nostro caso l'angolo di attrito fondazione-terreno nelle verifiche a scorrimento è pari a $\phi'_{cv} = \arctan{(\tan{\phi'})}$

Le caratteristiche geometriche sono riportate sinteticamente nel seguente schema:

7.1.1 VERIFICA A SCORRIMENTO

La verifica dell'equilibrio allo stato limite di scorrimento viene condotta confrontando l'azione resistente R_h, pari al prodotto della risultante delle forze verticali per il coefficiente d'attrito con l'azione instabilizzante, pari alla risultante di tutte le componenti orizzontali delle forze agenti sul muro.

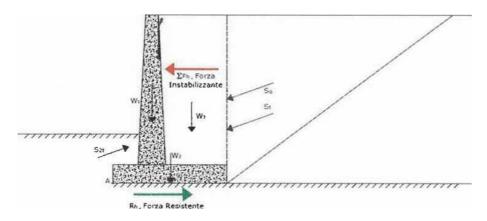


Figura 7-2 – Verifica a scorrimento.

In condizioni sismiche, ai fini del dimensionamento, si fa riferimento ad un sisma agente da monte verso valle del muro, in direzione orizzontale, dal basso verso l'alto e dall'alto verso il basso, in direzione verticale.

7.1.2 VERIFICA A RIBALTAMENTO

L'equilibrio allo stato limite è condotto confrontando il momento delle forze stabilizzanti e quello delle forze ribaltanti, entrambi rispetto all'estremo A di valle della fondazione.

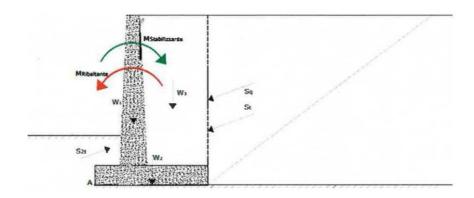


Figura 7-3- Verifica a ribaltamento.

7.1.3 VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Per il calcolo della capacità portante della fondazione si è fatto riferimento alla formula di Brinch-Hansen (1970) integrata dai coefficienti sismici di Paolucci e Pecker (1995), di seguito riportata:

$$q_{lim} = c' N_c s_c d_c i_c b_c g_c z_c + q N_q s_q d_q i_q b_q g_q z_q + 0.5 \gamma B N s_v d_v i_v b_v g_v z_v$$

$$F_s = q_{lim} / q_{es}$$

con $q_{es} = N / (B'*L')$ la pressione dovuta al carico verticale.

7.1.4 VERIFICA A STABILITÀ GLOBALE

Per le verifiche di stabilità dei pendii naturali si ricorre, nell'ambito dei metodi all'equilibrio limite, ai cosiddetti metodi delle strisce, in particolare il metodo di Bishop. Si ipotizza una superficie cilindrica di scorrimento potenziale, S, si suddivide idealmente la porzione di terreno delimitato da questa e dalla superficie topografica in n conci e si analizza l'equilibrio limite di ciascun concio.

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 21 di 116

7.2 VERIFICHE GEOTECNICHE (SLV) IN CONDIZIONI SISMICHE

L'analisi della sicurezza dei muri di sostegno in condizioni sismiche può essere eseguita mediante i metodi pseudo-statici e i metodi degli spostamenti.

L'analisi pseudo-statica si esegue mediante i metodi dell'equilibrio limite. Il modello di calcolo deve comprendere l'opera di sostegno, il volume di terreno a tergo dell'opera, che si suppone in stato di equilibrio limite attivo, e gli eventuali sovraccarichi agenti sul volume suddetto.

Nell'analisi pseudo-statica, l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nelle verifiche, i valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni

$$k_h = \beta_m \frac{a_g}{g}$$

 $k_v = \pm 0.5 \ k_h$

dove:

 β_m = coefficiente di riduzione dell'accelerazione massima attesa al sito;

 a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{max} = S \cdot a_g = (S_S \cdot S_T) \cdot a_g$$

dove:

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) di cui al paragrafo 3.2.3.2 delle NTC18.

Nella precedente espressione, il coefficiente di riduzione dell'accelerazione massima attesa al sito è pari a:

 $\beta_m = 0.38$ nelle verifiche allo stato limite ultimo (SLV)

 β_m = 0.47 nelle verifiche allo stato limite di esercizio (SLD)

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 22 di 116

Per muri non liberi di subire spostamenti relativi rispetto al terreno, il coefficiente β_m assume valore unitario.

Nel caso di muri liberi di traslare o di ruotare intorno al piede, si può assumere che l'incremento di spinta dovuta al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di studi specifici, si deve assumere che tale incremento sia applicato a metà altezza del muro.

Lo stato limite di ribaltamento deve essere trattato impiegando coefficienti parziali unitari sulle azioni e sui parametri geotecnici (paragrafo 7.11.1 delle NTC18) e utilizzando valori di β_m incrementati del 50% rispetto a quelli innanzi indicati e comunque non superiori all'unità.

In condizioni sismiche deve essere soddisfatta la verifica di stabilità del complesso muro – terreno con i criteri indicati al paragrafo 7.11.4 delle NTC2018.

Il calcolo della spinta in condizioni sismiche è stato effettuato impiegando la Teoria di Mononobe – Okabe.

La teoria di Mononobe – Okabe fa uso del metodo dell'equilibrio limite e può essere considerata una estensione della teoria di Coulomb, in cui, alle usuali spinte al contorno del cuneo instabile di terreno, sono sommate anche le azioni inerziali orizzontali e verticali dovute all'accelerazione delle masse.

Le spinte Attiva e Passiva si calcolano come:

$$S_{a,t} = \frac{1}{2} \gamma \cdot k_{as} \cdot h^2 \cdot (1 \mp k_v)$$

Il coefficiente k_{as} è valutato, quindi, secondo tale formulazione, in cui i simboli usati sono:

 ϕ = angolo di attrito interno del terrapieno;

 ψ = angolo di inclinazione rispetto all'orizzontale della parete interessata del muro;

 β = angolo di inclinazione rispetto all'orizzontale del profilo del terrapieno;

 δ = angolo di attrito terrapieno – muro;

 θ = angolo di rotazione addizionale definito come segue.

$$tan\theta = \frac{k_h}{1 \mp k_h}$$

Il coefficiente per stati di spinta attiva si divide in due casi:

$$\beta \leq \phi - \theta \rightarrow k_{\alpha s} = \frac{stn^2(\psi + \phi - \theta)}{cos\theta \cdot stn^2\psi \cdot \sin(\psi - \theta - \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta - \theta)}{\sin(\psi - \theta - \delta) \cdot \sin(\psi + \beta)}}\right]^2}$$

$$\beta > \phi - \theta \rightarrow k_{as} = \frac{\sin^2(\psi + \phi - \theta)}{\cos\theta \cdot \sin^2\psi \cdot \sin(\psi - \theta - \delta)}$$

Il coefficiente per stati di spinta passiva è invece:

$$k_{ps} = \frac{\sin^2(\psi + \phi - \theta)}{\cos\theta \cdot \sin^2\psi \cdot \sin(\psi + \theta) \left[1 - \sqrt{\frac{\sin\phi \cdot \sin(\phi + \beta - \theta)}{\sin(\psi + \beta) \cdot \sin(\psi + \theta)}}\right]^2}$$

7.3 VERIFICHE GEOTECNICHE (SLE)

Per ciascun stato limite di esercizio deve essere rispettata la condizione [6.2.7] delle NTC 2018:

$$E_d \leq C_d$$

essendo E_d e C_d rispettivamente il valore di progetto dell'effetto delle azioni e il prescritto valore limite dell' effetto delle azioni (spostamenti, rotazioni, distorsioni, ecc.).

In particolare, dovranno essere valutati gli spostamenti delle opere di sostegno e del terreno circostante per verificarne la compatibilità con la funzionalità delle opere stesse e con la sicurezza e funzionalità dei manufatti adiacenti, anche a seguito di modifiche indotte sul regime delle pressioni interstiziali.

Per i lavori e le opere da realizzare in prossimità di linee ferroviarie già in esercizio, le verifiche agli SLE dovranno essere condotte assumendo come limite degli spostamenti indotti durante la costruzione sui binari in esercizio i valori limite dei difetti riferiti al secondo livello di qualità descritti nella specifica tecnica RFI TCAR ST AR 01 001 D "Standard di qualità geometrica del binario con velocità fino a 300 km/h" e relativi allegati.

Qualora vengano superati i limiti riferiti al primo livello di qualità, il progetto dovrà prevedere l'esecuzione di un monitoraggio del binario durante la costruzione al fine di controllare l'effettivo andamento delle deformazioni.

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 24 di 116

7.3.1 SPOSTAMENTI ATTESI IN CAMPO SLE

Gli spostamenti attesi in campo SLE dell'opera di sostegno, con le impostazioni di calcolo assunte (spinta attiva) sono di esigua entità, dell'ordine dei millimetri. Lo spostamento necessario per sviluppare lo stato limite di spinta attiva è legato anche al tipo di cinematismo della parete. Per terreni non coesivi con grado di addensamento medio - alto l'EC7 da spostamenti del seguente ordine di grandezza:

- Rotazione intorno alla sommità 0.002H
- Rotazione intorno alla base 0.005H
- Moto di traslazione 0.001H

In cui H è l'altezza del paramento del muro. Altri valori di riferimento sono stati ottenuti da Terzaghi.

Infine, un'altra fonte presa a riferimento è quella del NAFVAC 7.02 (DESIGN MANUAL). La figura riportata nel suddetto manuale mostra anche la curva di sviluppo della spinta in funzione dello spostamento. Anche in questo caso, per sabbia media, risulta ragionevole assumere uno spostamento atteso dell'ordine di 0.001H.

Gli spostamenti dei muri in progetto, quindi, in funzione dell'altezza massima del paramento risultano dell'ordine di pochi cm. Non si riscontrano quindi criticità sulle strutture presenti a monte del muro stesso, in quanto, vista la loro distanza dalla testa del paramento, non subiranno influenze significative.

Per quanto riguarda le distorsioni del muro, l'opera di sostegno risulta lineare in pianta e caricata in modo simmetrico a monte. Non verranno quindi a manifestarsi spinte dissimmetriche che possano generare distorsioni.

7.4 VERIFICHE STRUTTURALI SLU

Le verifiche di resistenza delle sezioni sono eseguite secondo il metodo semiprobabilistico agli stati limite. I coefficienti di sicurezza adottati sono i seguenti:

- coefficiente parziale di sicurezza per il calcestruzzo: 1.50;
- coefficiente parziale di sicurezza per l'acciaio in barre: 1.15;

Il paragrafo in oggetto illustra nel dettaglio i criteri generali adottati per le verifiche strutturali e geotecniche condotte nel progetto. Ulteriori dettagli di carattere specifico, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche.

7.4.1 CRITERI DI VERIFICA DELLE SEZIONI IN C.A.

Per le sezioni in cemento armato si effettuano:

- · verifiche per gli stati limite ultimi a presso-flessione;
- verifiche per gli stati limite ultimi a taglio;
- verifiche per gli stati limite di esercizio.

7.4.2 VERIFICHE PER GLI STATI LIMITE ULTIMI A FLESSIONE - PRESSOFLESSIONE

Allo stato limite ultimo, le verifiche a flessione o presso-flessione sono condotte confrontando (per le sezioni più significative) le resistenze ultime e le sollecitazioni massime agenti, valutando di conseguenza il corrispondente fattore di sicurezza.

7.4.3 VERIFICA AGLI STATI LIMITE ULTIMI A TAGLIO

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dal DM17/01/2018, per elementi con armatura a taglio verticali.

Si fa, pertanto, riferimento ai seguenti valori della resistenza di calcolo:

- resistenza di calcolo dell'elemento privo di armatura a taglio:

$$V_{Rd} = \max \left\{ \left[0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp} \right] b_w \cdot d; \ (v_{\min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d \right\}$$

- valore di progetto dello sforzo di taglio che può essere sopportato dall'armatura a taglio alla tensione di snervamento:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot sin \alpha$$

- valore di progetto del massimo sforzo di taglio che può essere sopportato dall'elemento, limitato dalla rottura delle bielle compresse:

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c v \cdot f_{cd} (ctg\alpha + ctg\theta)/(1 + ctg^2 \theta)$$

Nelle espressioni precedenti, i simboli hanno i seguenti significati:

$$k = 1 + \sqrt{\frac{200}{d}} \le 2 \text{ con d in mm};$$

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO COMMESSA RS3T

LOTTO

30 D 26

CODIFICA

MU0700 001

REV.

FOGLIO 26 di 116

$$\rho_1 = \frac{A_{sl}}{b_{ss} \cdot d} \le 0.02;$$

Asl è l'area dell'armatura tesa;

 \mathbf{b}_{w} è la larghezza minima della sezione in zona tesa;

$$\sigma_{\rm cp} = \frac{N_{\rm Ed}}{A_{\rm c}} < 0.2 \cdot f_{\rm cd};$$

N_{Ed} è la forza assiale nella sezione dovuta ai carichi;

A_c è l'area della sezione di calcestruzzo;

$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{-1/2};$$

 $1 ≤ \cot\theta ≤ 2.5$ è l'inclinazione dei puntoni di calcestruzzo rispetto all'asse della trave;

A_{sw} è l'area della sezione trasversale dell'armatura a taglio;

s è il passo delle staffe;

f_{vwd} è la tensione di snervamento di progetto dell'armatura a taglio;

 $\mathbf{f'}_{cd} = \mathbf{0.5} \cdot \mathbf{f}_{cd}$ è la resistenza ridotta a compressione del calcestruzzo d'anima;

 $\alpha_{\text{CW}} = 1$ è un coefficiente che tiene conto dell'interazione tra la tensione nel corrente compresso e qualsiasi tensione di compressione assiale.

Nel primo caso, si esegue il controllo delle tensioni nei materiali supponendo una legge costitutiva tensioni-deformazioni di tipo lineare. In particolare si controlla la tensione massima di compressione del calcestruzzo e di trazione dell'acciaio, verificando che:

 σ_c < 0.55 f_{ck} per combinazione di carico caratteristica (rara);

 σ_c < 0.40 f_{ck} per combinazione di carico quasi permanente;

 σ_s < 0.75 f _k per combinazione di carico caratteristica (rara).

Nel secondo caso, si assume che le condizioni ambientali del sito in cui sorge l'opera siano ordinarie e aggressive, rispettivamente per la zattera di fondazione e per il paramento verticale, e si verifica che il valore limite di apertura della fessura, calcolato per armature poco sensibili, sia al più pari ai seguenti valori nominali:

 w_1 = 0.2 mm per condizioni ambientali aggressive (comb. Frequente e quasi permanente);

w₂= 0.3 mm per condizioni ambientali ordinarie (comb. Frequente e quasi permanente).

7.5 VERIFICHE STRUTTURALI (SLE)

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

7.5.1 VERIFICHE ALLE TENSIONI

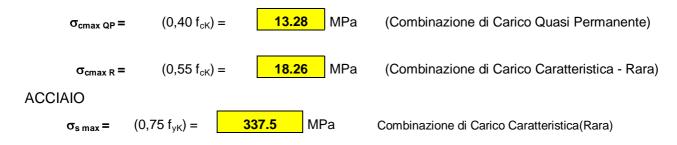
La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Manuale di progettazione opere civili"

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f.,;
- per combinazioni di carico quasi permanente: 0,40 fek;
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.


Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{vk}$.

Per il caso in esame risulta in particolare :

Muro di sostegno:

CALCESTRUZZO

7.5.2 VERIFICHE A FESSURAZIONE

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Gruppi di			Armatura					
	Condizioni ambientali	Combinazione di azione	Sensibile	Poco sensibile				
esigenza			Stato limite	wd	Stato limite	wd		
a Ordinarie		frequente	ap. fessure	≤w ₂	ap. fessure	≤w ₃		
a Ordina	Ordinane	quasi permanente	ap. fessure	≤w ₁	ap. fessure	≤w ₂		
b	Aggrecoive	frequente	ap. fessure	≤w ₁	ap. fessure	≤w ₂		
b Aggressive		quasi permanente	decompressione	-	ap. fessure	≤w ₁		
c Molto Aggressive	Molto Aggressive	frequente	formazione fessure	-	ap. fessure	≤w ₁		
	Widito Aggressive	quasi permanente	decompressione	-	ap. fessure	≤w ₁		

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE				
Ordinarie	X0, XC1, XC2, XC3, XF1				
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3				
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4				

Tabella 7-1 – Criteri di scelta dello stato limite di fessurazione e condizioni ambientali

Risultando:

w1 = 0.2 mm

w2 = 0.3 mm

w3 = 0.4 mm

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dalle specifiche RFI (Manuale di progettazione delle opere civili parte II sezione 2 – Requisiti concernenti la fessurazione per strutture in c.a., c.a.p. e miste acciaio-calcestruzzo) secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

Combinazione Caratteristica (Rara)

 $\delta_f \leq w_1 = 0.2 \, mm$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è è utilizzata la procedura prevista al punto "C4.1.2.2.4.5 Verifica allo stato limite di fessurazione" della Circolare n.7/19.

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR. – CALTANISETTA XIRBI (LOTTO 3) OPERE DI SOSTEGNO DI LINEA							
RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D 26 CL MU0700 001 B 31 di 116							

8. ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono i carichi elementari che agiscono sulla struttura in oggetto. Tali azioni sono definite secondo le normative e sono utilizzate per la generazione delle combinazioni di carico nell'ambito delle verifiche di resistenza, in esercizio ed in presenza dell'evento sismico.

Tutti i carichi elementari si riferiscono all'unità di sviluppo del muro, pertanto sono tutti definiti rispetto all'unità di lunghezza.

8.1 PESI PROPRI

Il peso proprio del muro è calcolato in automatico dal foglio di calcolo elettronico.

I dati di input per i muri su fondazione diretta sono i seguenti:

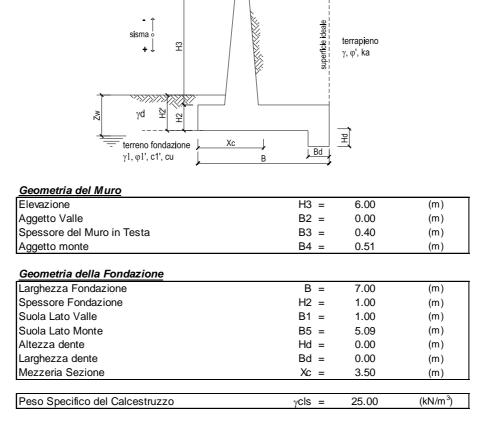


Figura 8-1 – Caratteristiche geometriche muri di sostegno con fondazione diretta – tipo 2.

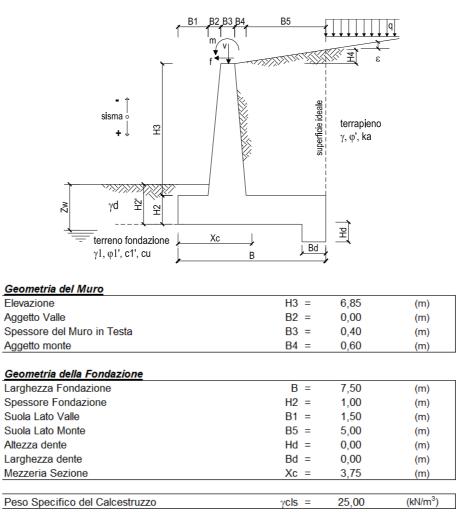


Figura 8-2 – Caratteristiche geometriche muri di sostegno con fondazione diretta – tipo 3.

8.2 CARICHI PERMANENTI

8.2.1 SOVRASTRUTTURA FERROVIARIA

Il manuale di progettazione ove non si eseguano valutazioni più dettagliate prevede per la determinazione dei carichi permanenti portati relativi al peso della massicciata e dell'armamento (sovrastruttura ferroviaria) che potrà effettuarsi assumendo, convenzionalmente, un peso di volume pari a 18,0 kN/m³ applicato sull'impronta del ballast, per una altezza media fra il piano del ferro (P.F.) e l'estradosso del sub-ballast pari a 0,80 m (al carico è stato poi applicato un coefficiente parziale di sicurezza pari a 1,5).

 $p=18.0 \text{ kN/m}^3 \text{ x } 0.80 \text{ m} = 14.40 \text{ kPa}$

8.2.2 PARAPETTO METALLICO

Per il parapetto metallico si considerano le seguenti azioni agenti sul muro:

Vparapetto = 1.00 kN/m

8.2.3 SPINTA DEL TERRENO

A tergo del muro agisce la spinta del terreno del rilevato.

La spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta attiva ka.

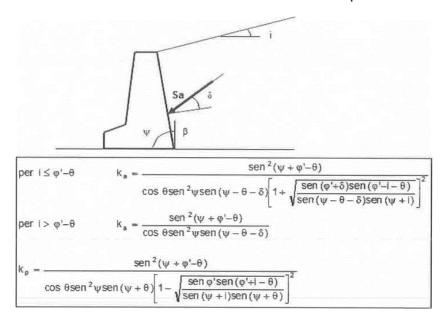


Figura 8-3 – Coefficiente di spinta attiva e passiva.

La spinta sull'opera di sostegno dovrà essere applicata sul piano verticale, assunto come paramento virtuale del muro, definito a partire dall'estremo a monte della scarpa di fondazione.

Su tale paramento l'angolo di inclinazione δ della risultante della spinta (applicata ad 1/3 dell'altezza del paramento virtuale) si potrà assumere uguale all'angolo di inclinazione β del terrapieno, a meno che β non sia superiore all'angolo di resistenza al taglio del terreno ϕ ', nel qual caso si assumerà $\delta = \phi$ '.

		valori caratteristici		valori di progetto		
Dati (Geotecnici			SLE	STR/GEO	EQU
ie ie	Angolo di attrito del terrapieno	(°)	φ'	38,00	38,00	38,00
Dati rrapi o	Peso Unità di Volume del terrapieno	(kN/m³)	γ'	20,00	20,00	20,00
_ ie	Angolo di attrito terreno-superficie ideale	(°)	δ	0,00	0,00	0,00

Figura 8-4 – Dati geotecnici – muri tipo 2 e tipo 3.

8.3 CARICHI VARIABILI

8.3.1 CARICHI MOBILI DA TRAFFICO FERROVIARIO

Le azioni variabili su opere di sostegno sono definite dal par. 3.5.2.3.4 del Manuale di progettazione Parte II – Sezione 3 Corpo Stradale.

Per quanto attiene il sovraccarico ferroviario si applica il carico verticale dovuto al treno di carico SW2 uniformemente distribuito su una larghezza trasversale di calcolo fino a livello del piano campagna. Il treno di carico SW2 schematizza gli effetti statici prodotti dal traffico ferroviario pesante.

Il treno di carico SW2 è schematizzato nella figura seguente.

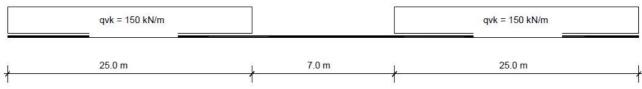


Figura 8-5 – Treno di carico SW2.

Per la ripartizione si considera

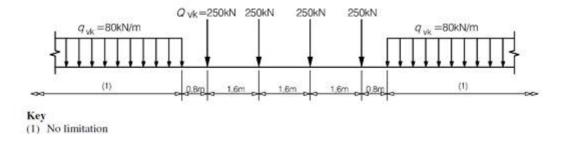
• Bt = 2.40 m + 2 x 0.40 m = 2.60 m

I carichi verticali sono definiti per mezzo dei modelli di carico elencati nella seguente tabella. I valori caratteristici dei carichi attribuiti ai modelli di carico debbono moltiplicarsi per il coefficiente α che deve assumersi come da tabella seguente:

MODELLO DI CARICO	COEFFICIENTE "a"
LM71	1.1
SW/0	1.1
SW/2	1.0

Figura 8-6 – Coefficienti α per modelli di carico.

Il valore considerato di carico distribuito in corrispondenza della zona sopra la soletta, risulta dunque:


Q = 150 kN qvar = (150/2.60)*1.0 = 57.69 kN/m2

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR. – CALTANISETTA XIRBI (LOTTO 3) OPERE DI SOSTEGNO DI LINEA						
RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO	COMMESSA RS3T	LOTTO 30 D 26	CODIFICA CL	DOCUMENTO MU0700 001	REV.	FOGLIO 36 di 116	

Di seguito, si effettua la valutazione del carico equivalente previsto dalle Specifiche Tecniche di Interoperabilità con cui si dà evidenza che le opere appartenenti alla tratta in esame sono idonee a sostenere tale carico.

8.3.2 VERIFICA REQUISITI S.T.I. PER OPERE MINORI SOTTOBINARIO: CARICO EQUIVALENTE

Il modello di carico LM71 citato dalle S.T.I. è definito nella norma EN 1991-2:2003/AC:2010.

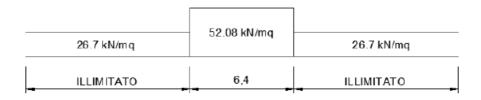
Il carico equivalente si ricava dalla ripartizione trasversale e longitudinale dei carichi per effetto delle traverse e del ballast previsti dalla stessa norma EN 1991-2:2003/AC:2010.

Considerando i 4 carichi assiali da 250 kN e la relativa distribuzione longitudinale, il carico verticale equivalente a metro lineare agente alla quota della piattaforma ferroviaria (convenzionalmente a 70 cm dal piano del ferro) risulta pari a:

$$p = \frac{4 \times 250}{4 \times 1.60} = 156.25 \text{ kPa}$$

$$156.25 \text{ kN/m}$$

$$80 \text{ kN/m}$$

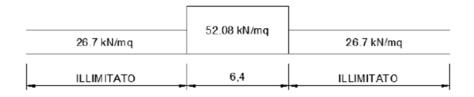

$$156.25 \text{ kN/m}$$

$$156.25 \text{ kN/m}$$

$$156.25 \text{ kN/m}$$

$$156.25 \text{ kN/m}$$

Considerando la distribuzione trasversale dei carichi su una larghezza di 3.0 m secondo quanto previsto da EN 1991 – 2:2003/AC:2010, si ricava il carico equivalente unitario agente alla quota della piattaforma ferroviaria:



A tali carichi si deve applicare il coefficiente α relativo alle categorie S.T.I. come indicato nella tabella 11 di seguito riportata:

Tabella 11 Fattore alfa (α) per la progettazione di strutture nuove				
Tipo di traffico	Valore minimo del fattore alfa (α)			
P1, P2, P3, P4	1,0			
P5	0,91			
P6	0,83			
P1520	Punto in sospeso			
P1600	1,1			
F1, F2, F3	1,0			
F4	0,91			
F1520	Punto in sospeso			
F1600	1,1			

Nel caso in esame, il coefficiente α è pari ad 1.0 perché le categorie di traffico sono P2-P4 per il traffico passeggeri ed F1 per il traffico merci per cui, alle opere si applicano i seguenti carichi equivalenti:

Considerando la ripartizione dei carichi attraverso il sottostante rilevato fino alla quota della testa dell'opera di sostegno con un angolo pari all'angolo di attrito interno del terreno (38°) si ottiene un carico in corrispondenza del piano orizzontale alla quota della testa dell'opera di sostegno pari a:

 $q_{var} = (52.08 \text{ kN/m}^2 \text{ x } 3.0 \text{m}) / (3.0 \text{m} + 2 \text{ x } 0.4 \text{m x } 1/4) = 48.82 \text{ kN/m}^2$

Ai fini delle verifiche del carico equivalente si considera, in tutte le relazioni di calcolo specifiche, a favore di sicurezza, il carico equivalente SW2 pari a 57.7 kN/m2 a vantaggio di sicurezza rispetto ai 52.08 kN/m2 calcolati con riferimento alle STI.

8.4 VALUTAZIONE DELL'AZIONE SISMICA

8.4.1 VITA NOMINALE

La vita nominale di un'opera strutturale V_N è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata. Nel presente caso l'opera viene inserita nella seguente tipologia di costruzione:

2) Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale La cui vita nominale è pari a: 75 anni.

8.4.2 CLASSE D'USO

In presenza di azioni sismiche, con riferimento alle conseguenze di un'interruzione di operatività o di un eventuale collasso, l'opera appartiene alla seguente classe d'uso:

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze dì un loro eventuale collasso.

Il coefficiente d'uso è pari a 1.50.

8.4.3 PERIODO DI RIFERIMENTO

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione al periodo di riferimento V_R ricavato, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_u .

Pertanto $V_R = 75 \times 1.5 = 112.5 \text{ anni.}$

8.4.4 PARAMETRI SISMICI

Fissata la vita di riferimento V_R , i due parametri T_R e P_{VR} sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante l'espressione:

$$T_R = -\frac{V_R}{\ln(1 - P_{VR})} = -\frac{C_{\omega}V_N}{\ln(1 - P_{VR})}$$

Stati Limite	P _{VR} : Probabilità	di superamento nel periodo di riferimento \mathbf{V}_{R}
Stati limite di esercizio	SLO	81%
Stati limite di esercizio	SLD	63%
Cr. r. i i ii i	SLV	10%
Stati limite ultimi	SLC	5%

Tabella 8-1 – Probabilità di superamento al variare dello stato limite considerato.

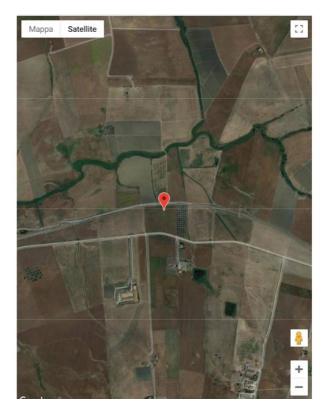


Tabella 8-2 - Localizzazione del sito ove sorgerà l'opera.

Da cui si ottiene la seguente tabella:

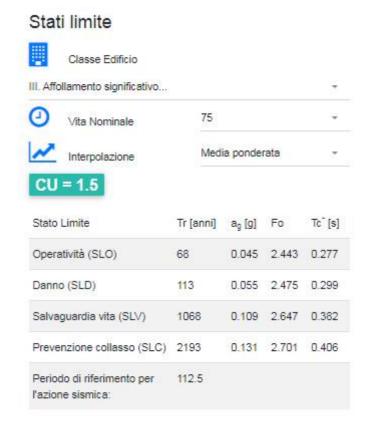


Tabella 8-3 – Parametri relativi all'azione sismica.

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale. Per la definizione dell'azione sismica si può fare riferimento a un approccio semplificato, che si basa sull'individuazione delle categorie di sottosuolo di riferimento in accordo a quanto indicato nel § 3.2.2 delle NTC2018. I terreni di progetto possono essere caratterizzati come appartenenti a terreni di Categoria C. In condizioni topografiche superficiali semplici si può adottare la seguente classificazione.

Categoria	a Caratteristiche della superficie topografica				
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°				
T2	Pendii con inclinazione media i > 15°				
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^{\circ} \le i \le 30^{\circ}$				
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°				

Tabella 8-4 – Categorie topografiche.

L'area interessata risulta classificabile come T1.

In riferimento a quanto indicato nel §3.2.3.2.1 delle NTC2018 per la definizione dello spettro elastico in accelerazione è necessario valutare il valore del coefficiente $S = S_S S_T$ e di C_C in base alla categoria di sottosuolo e alle condizioni topografiche; si fa riferimento nella valutazione dei coefficienti alle tabelle di seguito riportate:

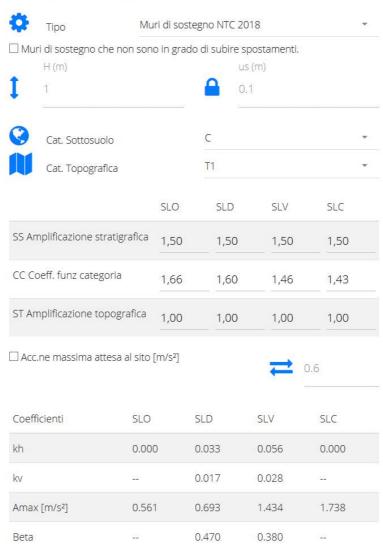
Categoria sottosuolo	S _S	C _c
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10 \cdot (T_C^*)^{-0,20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_{C}^{*})^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	$1,25 \cdot (T_{C}^{*})^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T _C *) ^{-0,40}

Tabella 8-5 – Espressioni di S_S e C_C.

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	1.0	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con pendenza media minore o uguale a 30°	1,2
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore di 30°	1,4

Tabella 8-6 – Valori massimi dei coefficienti di amplificazione topografica S_T.

valori dei coefficienti di amplificazione stratigrafica sono pari a S_s =1.5 e C_c = 1.460 valore del coefficiente di amplificazione topografica è posto pari a ST = 1.0


Dalla sezione dedicata al calcolo dei parametri sismici di base del programma "GeoStru", si ricavano i seguenti parametri dello spettro di risposta relativo al sito più gravoso.

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 43 di 116

Coefficienti sismici

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR. – CALTANISETTA XIRBI (LOTTO 3) OPERE DI SOSTEGNO DI LINEA					0
RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO	COMMESSA RS3T	LOTTO 30 D 26	CODIFICA	DOCUMENTO MU0700 001	REV.	FOGLIO 44 di 116

8.5 COMBINAZIONI DI CARICO

Le combinazioni di carico prese in considerazione nelle verifiche sono state definite in base a quanto prescritto dalle NTC-2018 al par.2.5.3:

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SI III· $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$ [2.5.1]
- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stat¹¹⁻¹¹? di esercizio (SLE) irreversibili:
 - $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$ [2.5.2]
- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio reversibili: $G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$ [2.5.3]
- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a rungo termine: $G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$ [2.5.4]
- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E: $E+G_1+G_2+P+\psi_{21}\cdot Q_{k1}+\psi_{22}\cdot Q_{k2}+\dots$ [2.5.5]
- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A: $G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$ [2.5.6]

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_j \psi_{2j} Q_{kj}$$
 [2.5.7]

Per i muri di sostegno o per altre strutture miste ad essi assimilabili devono essere effettuate le verifiche con riferimento almeno ai seguenti stati limite:

SLU di tipo geotecnico (GEO)

- Scorrimento sul piano di posa;
- Collasso per carico limite del complesso fondazione-terreno;
- Ribaltamento;
- Stabilità globale del complesso opera di sostegno-terreno;

SLU di tipo strutturale (STR)

Raggiungimento della resistenza negli elementi strutturali.

La verifica di stabilità globale del complesso opera di sostegno-terreno deve essere effettuata secondo l'Approccio 1, con la Combinazione 2 (A2+M2+R2).

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 2, con la combinazione (A1+M1+R3).

Per ciascuna verifica si deve tenere conto dei coefficienti parziali per le azioni, dei parametri geotecnici e dei coefficienti di amplificazione per le verifiche di sicurezza, tutti riportati nelle seguenti tabelle.

Nella verifica a ribaltamento i coefficienti R3 si applicano agli effetti delle azioni stabilizzanti.

Coefficiente		EQU ⁽¹⁾	A1	A2	
Azioni permanenti	favorevoli sfavorevoli	YG1	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γG2	0,00 1,50	0,00 1,50	0,00 1,30
Ballast(3)	favorevoli sfavorevoli	ΥВ	0,90 1,50	1,00 1,50	1,00
Azioni variabili da traffi- co ⁽⁴⁾	favorevoli sfavorevoli	ΥQ	0,00 1,45	0,00 1,45	0,00
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00
Precompressione	favorevole sfavorevo- le	ΥP	0,90 1,00 ⁽⁵⁾	1,00 1,00 ⁽⁶⁾	1,00
Ritiro, viscosità e cedi- menti non imposti appo- sitamente	favorevole sfavorevo- le	γCe d	0,00 1,20	0,00 1,20	0,00 1,00

Tabella 8-7 - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU.

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale $\gamma_{ m M}$	(M1)	(M2)	
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	γ _φ ′	1,0	1,25	
Coesione efficace	c′ _k	Υc	1,0	1,25	
Resistenza non drenata	c _{uk}	γ _{cu}	1,0	1,4	
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0	

Tabella 8-8 - Coefficienti parziali per i parametri geotecnici del terreno.

Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.1$
Ribaltamento	$\gamma_{R} = 1.15$
Resistenza del terreno a valle	$\gamma_R = 1.4$

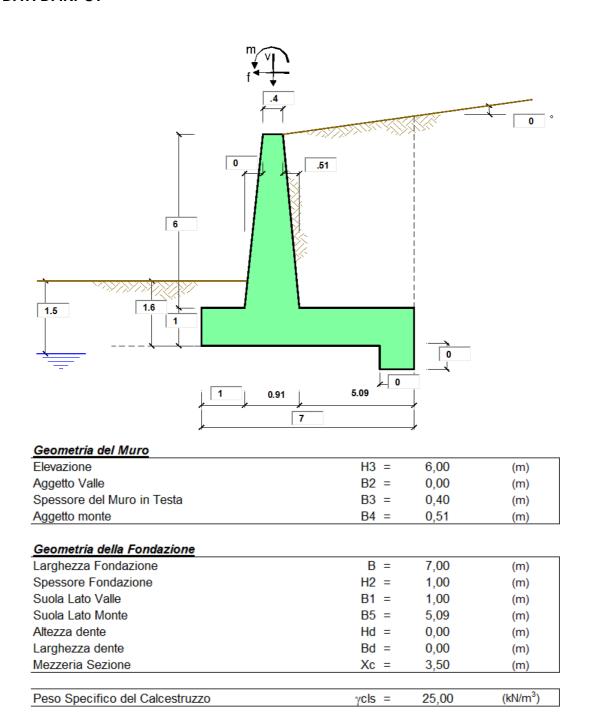
Tabella 8-9 – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi dei muri di sostegno.

COEFFICIENTE	R2
YR	1,1

Tabella 8-10 – Coefficienti parziali per le verifiche do sicurezza di opere di materiali sciolti e fronti di scavo.

Le combinazioni sismiche, in maniera del tutto analoga alle combinazioni statiche, sono effettuate con l'approccio 2, ponendo però pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici e impiegando le resistenze di progetto con i coefficienti parziali γ_R indicati nella seguente tabella.

Verifica	Coefficiente parziale yr
Carico limite	1.2
Scorrimento	1.0
Ribaltamento	1.0
Resistenza del terreno a valle	1.2


Tabella 8-11 – Coefficienti parziali γ_R per le verifiche agli stati limite (SLV) dei muri di sostegno.

Le verifiche pseudo-statiche di sicurezza dei fronti di scavo e dei rilevati in condizioni sismiche si eseguono adottando valori unitari dei coefficienti parziali del gruppo A e M per il calcolo delle azioni e dei parametri geotecnici di progetto e un coefficiente parziale γ_R pari a 1.2.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR. – CALTANISETTA XIRBI (LOTTO 3) OPERE DI SOSTEGNO DI LINEA					
RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO	COMMESSA RS3T	LOTTO 30 D 26	CODIFICA CL	DOCUMENTO MU0700 001	REV.	FOGLIO 47 di 116

9. PROGETTO E VERIFICA DEL MURO DI SOSTEGNO "TIPO 2"

9.1 DATI DI INPUT

Condizioni drenate

						valori caratteristici		valori di	progetto
Dati (Geotecnici					SLE		STR/GEO	EQU
eno	Angolo di attrito del terrapieno		(°)		φ'	38.00	ı	38.00	38.00
Dati Terrapieno	Peso Unità di Volume del terrapieno		(kN/m³)		7	20.00		20.00	20.00
	Angolo di attrito terreno-superficie ideale		(°)		δ	0.00		0.00	0.00
Dati Terreno Fondazione	Condizioni			⊚ dr	renate	Non Dre	enate		
daz	Coesione Terreno di Fondazione		(kPa)		c1'	19.50	ı	19.50	19.50
Fon	Angolo di attrito del Terreno di Fondazione		(°)		φ1'	25.00		25.00	25.00
2	Peso Unità di Volume del Terreno di Fondazione		(kN/m³)		γ1	19.00		19.00	19.00
erre	Peso Unità di Volume del Rinterro della Fondazione		(kN/m³)		γd	20.00		20.00	20.00
Ξ	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)		Hs	12.00			
a	Modulo di deformazione		(kN/m²)		Е	10000)		
								-	
	Accelerazione sismica			а	ı _g /g	0.109	(-)		
	Coefficiente Amplificazione Stratigrafico				S_S	1.5	(-)		
Oati Sismici	Coefficiente Amplificazione Topografico				S_T	1	(-)	RIBALTA	MENTO
<u>is</u>	Coefficiente di riduzione dell'accelerazione massima				β_s	0.38	(-)	βs	0.57
=	Coefficiente sismico orizzontale				kh	0.06213	(-)	kh	0.09320
۵	Coefficiente sismico verticale				kv	0.0311	(-)	kv	0.04660
	Muro libero di traslare o ruotare				•	si 🔾 no			
						STR/GE	:0	- RI	в
-	Coeff. di Spinta Attiva Statico	ka	0.238			0.238		0.238	_
- 5	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.269			0.269		0.285	
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.271			0.271		0.290	
officient Spinta	Coeff. Di Spinta Passiva	kp	2.464			2.464		2.464	
ő	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2.367			2.367		2.319	
_	Coeff. Di Spinta Passiva Sismica sisma -	kps-	2.361			2.361		2.304	

				valori caratteristici	valori di p	rogetto
Carichi	Agenti			SLE - sisma	STR/GEO	EQU
Carichi	Sovraccarico permanente Sovraccarico su zattera di monte 💿 si 🔘 no	(kN/m ²)	qp	16.62	21.60	21.60
Carichi ermanen	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
ÖE	Forza Verticale in Testa permanente	(kN/m)	vp	1.00	1.00	1.00
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q q	57.69	83.65	83.65
io e	Forza Orizzontale in Testa accidentale in condizioni statich	(kN/m)	f	0.00	0.00	0.00
atic	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
Condizioni Statiche	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione frequer	nte Ψ1	1.00	condizione quasi permane	nte Ψ2	0.00
.E @	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	11.54		
ich	Forza Orizzontale in Testa accidentale in condizioni sismicl	(kN/m)	fs	0.00		
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
Ow	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

Condizioni non drenate

		valori caratteristici		valori di	progetto				
Dati (Geotecnici						SLE	STR/GEO	EQU
eno	Angolo di attrito del terrapieno		(°)		φ'	3	38.00	38.00	38.00
Dati Terrapieno	Peso Unità di Volume del terrapieno		(kN/m³)		7	2	20.00	20.00	20.00
e_	Angolo di attrito terreno-superficie ideale		(°)		δ		0.00	0.00	0.00
Dati Terreno Fondazione	Condizioni			0	drenate	• ● N	on Drenate		
daz	Resistenza a Taglio non drenata		(kPa)		cu	7	75.00	75.00	75.00
Fon	Angolo di attrito Terreno-Fondazione		(°)		φ1'	2	25.00	25.00	25.00
2	Peso Unità di Volume del Terreno di Fondazione		(kN/m ³)		γ1	1	19.00	19.00	19.00
9116	Peso Unità di Volume del Rinterro della Fondazione		(kN/m ³)		γd	2	20.00	20.00	20.00
Ē	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)		Hs	1	12.00		
Dai	Modulo di deformazione		(kN/m²)		Е	1	0000		
	Accelerazione sismica				a _g /g	0.109	(-)		
	Coefficiente Amplificazione Stratigrafico				Ss	1.5	(-)		
Dati Sismici	Coefficiente Amplificazione Topografico				S_{T}	1	(-)	RIBALTA	AMENTO
<u></u>	Coefficiente di riduzione dell'accelerazione massima				β_s	0.38	(-)	βs	0.57
at:	Coefficiente sismico orizzontale				kh	0.06213	(-)	kh	0.09320
	Coefficiente sismico verticale			_	kv	0.0311	(-)	kv	0.04660
	Muro libero di traslare o ruotare				•	si	○ no		
						ST	R/GEO		IB
	Coeff. di Spinta Attiva Statico	ka	0.238			0.238		0.238	
. =	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.269			0.269		0.285	
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.271			0.271		0.290	
fficient Spinta	Coeff. Di Spinta Passiva	kp	1.000			1.000		1.000	
90	Coeff. Di Spinta Passiva Sismica sisma +	kps+	1.000			1.000		1.000	
_	Coeff. Di Spinta Passiva Sismica sisma -	kps-	1.000			1.000		1.000	

			Γ	valori caratteristici	valori di p	orogetto
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
Carichi permanenti	Sovraccarico permanente Sovraccarico su zattera di monte	(kN/m ²)	qp	16.62	21.60	21.60
Carichi ermanen	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
Ğ E	Forza Verticale in Testa permanente	(kN/m)	vp	1.00	1.00	1.00
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q	57.69	83.65	83.65
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statich	(kN/m)	f	0.00	0.00	0.00
atio	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
S &	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione frequer	nte Ψ1	1.00	condizione quasi permane	nte Ψ2	0.00
.E @	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	11.54		
Condizioni Sismiche	Forza Orizzontale in Testa accidentale in condizioni sismicl	(kN/m)	fs	0.00		
ond	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
0 0	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REV.

RS3T 30 D 26 CL MU0700 001 B

Interferro tra I e II strato

 $i_{\text{I-II}}$

5.00 (cm)

FOGLIO

50 di 116

CARATTERISTICHE DEI MATERIALI STRUTTURALI

Valore limite di apertura delle fessure

w1

Frequente

Quasi Permanente

Calcestruzzo			<u>Acciaio</u>	
classe cls C32/40 ▼			tipo di acciaio	B450C ▼
Rck	40	(MPa)		
fck	32	(MPa)	fyk =	450 (MPa)
fcm	40	(MPa)		
Ec	33346	(MPa)	γs =	1.15
o,oc	0.85			
γC	1.50		fyd = fyk /γs / γE =	391.30 (MPa)
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma c$	18.13	(MPa)	Es = 210000	(MPa)
$f_{ctm} = 0.30 * f_{ck}^{2/3}$	3.02	(MPa)	ε _{ys} = 0.19%	
			•	
Tensioni limite (tensioni ami	missibili)			
condizioni statiche	<u>,</u>			
σ _c 19.2	Мра		coefficiente omogeneizzaz	ione acciaio n = 15
σ _f 360	Мра			
			<u>Copriferro</u> (distanza ass	e armatura-bordo)
condizioni sismiche			0 = 8 20	()
σ _c 19.2	Mpa		c = 8.20	(cm)
σ _f 360	Мра			
			Copriferro minimo di no	<u>rmativa</u> (ricoprimento armatura)
			c _{min} = 5.00	(cm)

0.2

0.2

mm

mm

CALCOLO DELLE AZIONI

9.1.1 FORZE VERTICALI E INERZIALI

FORZE VERTICALI

- Peso del Mur	o (Pm)		SLE	STR/GEO	EQU/RIB
Pm1 =	(B2*H3*γcls)/2	(kN/m)	0,00	0,00	0,00
Pm2 =	(B3*H3*γcls)	(kN/m)	60,00	60,00	60,00
Pm3 =	(B4*H3*γcls)/2	(kN/m)	38,25	38,25	38,25
Pm4 =	(B*H2*γcls)	(kN/m)	175,00	175,00	175,00
Pm5 =	(Bd*Hd*γcls)	(kN/m)	0,00	0,00	0,00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	273,25	273,25	273,25
- Peso del terre Pt1 = Pt2 = Pt3 = Sovr = Pt =	eno e sovr. perm. sulla scarpa di monte del muro (Pt) (B5*H3*γ') (0,5*(B4+B5)*H4*γ') (B4*H3*γ')/2 (B4*H3*γ')/	(kN/m) (kN/m) (kN/m) (kN/m) (kN/m)	610,80 0,00 30,60 93,05 734,45	610,80 0,00 30,60 120,96 762,36	610,80 0,00 30,60 120,96 762,36
- Sovraccarico Sovr acc. Stat Sovr acc. Sism		. ,	323,076923 64,6153846	468,461538	

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

- Muro (Mm)			SLE	STR/GEO	EQU/RIB
Mm1 =	Pm1*(B1+2/3 B2)	(kNm/m)	0,00	0,00	0,00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	72,00	72,00	72,00
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	60,05	60,05	60,05
Mm4 =	Pm4*(B/2)	(kNm/m)	612,50	612,50	612,50
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0,00	0,00	0,00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	744,55	744,55	744,55
- Terrapieno e	sovr. perm. sulla scarpa di monte del muro				
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	2721,11	2721,11	2721,11
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0,00	0,00	0,00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	53,24	53,24	53,24
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	390,79	508,03	508,03
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	3165,15	3282,39	3282,39
- Sovraccarico	accidentale sulla scarpa di monte del muro				
Sovr acc. Stat	*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	1356,92308	1967,53846	
Sovr acc. Sism	*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	271,384615	•	

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 52 di 116

	MURO E DEL TERRAPIENO ontale e verticale del muro (Ps)			
Ps h =	Pm*kh	(kN/m)	16,98	25,47
Ps v=	Pm*kv	(kN/m)	8,49	12,73
F5 V -	FIII KV	(KIWIII)	0,49	12,73
	ontale e verticale del terrapieno a tergo del muro (Pts			
Ptsh =	Pt*kh	(kN/m)	47,37	71,05
Ptsv =	Pt*kv	(kN/m)	23,68	35,52
- Incremento o	orizzontale di momento dovuto all'inerzia del muro (MF	Ps h)		
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)	0,00	0,00
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)	14,91	22,37
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)	7,13	10,69
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)	5,44	8,15
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)	0,00	0,00
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	27,48	41,22
0	5 52 55 57 55	(21,10	,
		,		
	rerticale di momento dovuto all'inerzia del muro (MPs	•	0.00	0.00
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kNm/m)	0,00	0,00
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)	2,24	3,36
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)	1,87	2,80
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)	19,03	28,54
MPs5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)	0,00	0,00
MPs v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	23,13	34,69
- Incremento d	orizzontale di momento dovuto all'inerzia del terrapieno	(MPts h)		
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)	151,80	227,69
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)	0,00	0,00
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)	9,51	14,26
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)	161,30	241,95
- Incremento v	erticale di momento dovuto all'inerzia del terrapieno (MPts v)		
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)	84,53	126,80
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)	0,00	0,00
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)	2,06	3,09
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)	86,59	129,88

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 53 di 116

9.1.2 SPINTE IN CONDIZIONE STATICA

	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO	EQU/RIB
St =	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	116,56	151,53	151,53
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	27,67	35,97	35,97
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	96,07	139,30	139,30
- Componente	orizzontale condizione statica				
Sth =	St*cosδ	(kN/m)	116,56	151,53	151,53
Sqh perm =	Sq perm*cosδ	(kN/m)	27,67	35,97	35,97
Sqh acc =	Sq acc*cosδ	(kN/m)	96,07	139,30	139,30
- Componente	verticale condizione statica				
Stv =	St*senδ	(kN/m)	0,00	0,00	0,00
Sqv perm=	Sq perm*senδ	(kN/m)	0,00	0,00	0,00
Sqv acc =	Sq acc*senδ	(kN/m)	0,00	0,00	0,00
- Spinta passiv	a sul dente				
Sp=½*g1'*Hd2	* ½*γ ₁ '*Hd ² *kp+(2*c ₁ '*kp ^{0.5} +γ1'*kp*H2')*Hd	(kN/m)	0,00	0,00	0,00

MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRA	CCARICO	SLE	STR/GEO	EQU/RIB
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	271,98	353,57	353,57
MSt2 =	Stv*B	(kNm/m)	0,00	0,00	0,00
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	96,84	125,89	125,89
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	336,24	487,55	487,55
MSq2 perm=	Sqv perm*B	(kNm/m)	0,00	0,00	0,00
MSq2 acc =	Sqv acc*B	(kNm/m)	0,00	0,00	0,00
MSp = γ1'*H	Hd ³ *kp/3+(2*c1'*kp ^{0.5} +γ1'*kp*H2')*Hd ² /2	(kNm/m)	0,00	0,00	0,00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	0,00	0,00	0,00
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0,00	0,00	0,00
Mfext3 =	$(vp+v)^*(B1 +B2 + B3/2)$	(kNm/m)	1,20	1,20	1,20

9.1.3 SPINTE IN CONDIZIONE SISMICA +

	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU/RIB
- Spinta condiz			440.50	110.50	440.50
Sst1 stat =	$0.5*\gamma'*(H2+H3+H4+Hd)^2*ka$	(kN/m)	116,56	116,56	116,56
Sst1 sism =	0,5*γ'*(1+kv)*(H2+H3+H4+Hd)²*kas ⁺ -Sst1 stat	(kN/m)	19,24	19,24	29,46
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	31,26	31,26	33,12
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	21,71	21,71	23,00
- Componente	orizzontale condizione sismica +				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	116,56	116,56	116,56
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	19,24	19,24	29,46
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	31,26	31,26	33,12
Ssq1h acc=	Ssq1 acc*cosδ	(kN/m)	21,71	21,71	23,00
- Componente	verticale condizione sismica +				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	0,00	0,00	0,00
Sst1v sism =	Sst1 sism*senδ	(kN/m)	0,00	0,00	0,00
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	0,00	0,00	0,00
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	0,00	0,00	0,00
- Spinta passiv	a sul dente				
Sp=½*γ ₁ '(1+kv) Hd ² *kps ⁺ +(2*c ₁ '*kps ^{+0.5} +γ1' (1+kv) kps ⁺ *H2')*Hd	(kN/m)	0,00	0,00	0,00
MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARICO) <u> </u>	SLE	STR/GEO	EQU/RIB
- Condizione si	smica +		SLE	3 IR/GEU	EQU/RIB
MCatt atat -	Cat4b atat * //U0:U0:U0:U4:bd\/2:bd\	(IsNima (ma.)	074.00	074.00	074.00

	MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO - Condizione sismica +		SLE	STR/GEO	EQU/RIB
MSst1 stat = MSst1 sism= MSst2 stat = MSst2 sism = MSsq1 = MSsq2 = MSp =	Sst1h stat * ((H2+H3+H4+hd)/3-hd) Sst1h sism* ((H2+H3+H4+Hd)/3-Hd) Sst1v stat* B Sst1v sism* B Ssq1h * ((H2+H3+H4+Hd)/2-Hd) Ssq1v * B γ ₁ '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} +γ1'*kps ^{+*} H2')*Hd ² /2	(kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m)	271,98 44,90 0,00 0,00 185,41 0,00 0,00	271,98 44,90 0,00 0,00 185,41 0,00 0,00	271,98 68,73 0,00 0,00 196,40 0,00 0,00
MOMENTI DO Mfext1 = Mfext2 = Mfext3 =	mp+ms (fp+fs)*(H3 + H2) (vp+vs)*(B1 +B2 + B3/2)	(kNm/m) (kNm/m) (kNm/m)		0,00 0,00 1,20	

9.1.4 SPINTE IN CONDIZIONE SISMICA -

SPINTE DEL - Spinta condiz	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU/RIB
Sst1 stat =	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	116,56	116,56	116,56
Sst1 sism =	0,5*γ'*(1-kv)*(H2+H3+H4+Hd)²*kas⁻-Sst1 stat	(kN/m)	12.05	12.05	18,78
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	31,51	31,51	33,69
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas	(kN/m)	21,88	21,88	23,40
- Componente	orizzontale condizione sismica -				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	116,56	116,56	116,56
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	12,05	12,05	18,78
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	31,51	31,51	33,69
Ssq1h acc=	Ssq1 acc*cosδ	(kN/m)	21,88	21,88	23,40
- Componente	verticale condizione sismica -				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	0,00	0,00	0,00
Sst1v sism =	Sst1 sism*senδ	(kN/m)	0,00	0,00	0,00
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	0,00	0,00	0,00
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	0,00	0,00	0,00
- Spinta passiv	a sul dente				
Sp=½*γ ₁ '(1-kv)	Hd ² *kps¯+(2*c ₁ '*kps¯ ^{0.5} +γ1' (1-kv) kps¯*H2')*Hd	(kN/m)	0,00	0,00	0,00
MOMENTIDE	ULA ADDITA DEL TERRENO E DEL ACURACCA	nico [
- Condizione s	ILLA SPINTA DEL TERRENO E DEL SOVRACCAI ismica -	RICO	SLE	STR/GEO	EQU/RIB
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	271,98	271,98	271,98
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	28,13	28,13	43,81
MSst2 stat =	Sst1v stat* B	(kNm/m)	0,00	0,00	0,00
MSst2 sism =	Sst1v sism* B	(kNm/m)	0,00	0,00	0,00

OUTGIZIONO 3	Siliou				
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	271,98	271,98	271,98
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	28,13	28,13	43,81
MSst2 stat =	Sst1v stat* B	(kNm/m)	0,00	0,00	0,00
MSst2 sism =	Sst1v sism* B	(kNm/m)	0,00	0,00	0,00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	186,86	186,86	199,83
MSsq2 =	Ssq1v * B	(kNm/m)	0,00	0,00	0,00
MSp =	γ_1 '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ 1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0,00	0,00	0,00
MOMENTI DO	OVUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0,00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0,00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		1,20	

9.2 VERIFICHE GEOTECNICHE

Risultante forze orizzontali (T)

 ΣM

Sth + Sqh + f - Sp

Risultante dei momenti rispetto al piede di valle (MM)

Momento rispetto al baricentro della fondazione (M) M = Xc*N - MM

9.2.1 VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. DRENATE

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Risult N	tante forze	e verticali (N) Pm + Pt + v + Stv + Sqv perm + Sqv acc	1036,61	(kN/m)	
	tante forze	e orizzontali (T) Sth + Sqh + f	326,80	(kN/m)	
Coeff f	ficiente di =	attrito alla base (f) tgφ1'	0,47	(-)	
Fs	scorr.	(N*f + Sp) / T	1,48	>	1,1
VER	IFICA AL	RIBALTAMENTO (EQU)			
	ento stabil =	izzante (Ms) Mm + Mt + Mfext3	4028,14	(kNm/m)	
Mom Mr	ento ribalt =	ante (Mr) MSt + MSq + Mfext1+ Mfext2 + MSp	967,01	(kNm/m)	
Fs	ribaltan	nento Ms / Mr	4,17	>	1,15
VER	IFICA C	ARICO LIMITE DELLA FONDAZIONE (STR/GEO)			
Risult N	tante forze =	e verticali (N) Pm + Pt + v + Stv + Sqv (+ Sovr acc)	Nmin 1036,61	Nmax 1505,07	(kN/m)

326,80

3061,14

567,00

326,80

(kN/m)

5028,67 (kNm/m)

239,08 (kNm/m)

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 57 di 116

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		15,00 25,00 13,86		(kPa) (°) (kN/m³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		32,00		(kN/m ²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0,55 5,91	0,16 6,68	(m) (m)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite d	da Vesic (1975))		
Nq = $tg^2(45 + \varphi)$ Nc = (Nq - 1)/ tg N γ = 2*(Nq + 1)	(φ') (2+ π in cond. nd)		10,66 20,72 10,88		(-) (-) (-)
I valori di ic, iq	e iγ sono stati valutati con le espressioni suggerite da \	Vesic (1975)			
iq = (1 - T/(N + ic = iq - (1 - iq)) $i\gamma = (1 - T/(N + ic = iq))$	/(Nq - 1)		0,54 0,49 0,39	0,66 0,49 0,40	(-) (-)
(fondazione na	striforme m = 2)				
qlim	(carico limite unitario)		511,69	555,79	(kN/m ²)
ES corios lis	nito E = alim*D*/ N	Nmin	2,92	>	4.4
FS carico lir	nite F = qlim*B*/ N	Nmax	2,47	>	1,4

9.2.2 VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. DRENATE

Condizione sismica +

VERIFICA ALLO SCORRIMENTO

	tante forze	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	1040,87	(kN/m)	
	tante forze	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	253,13	(kN/m)	
Coef f	ficiente di =	attrito alla base (f) tgφ1'	0,47	(-)	
Fs	=	(N*f + Sp) / T	1,92	>	1

VERIFICA AL RIBALTAMENTO

Fr	=	Ms / Mr	6,14	>	1
	mento ribalta =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	655,70	(kNm/m)	
	mento stabil =	izzante (Ms) Mm + Mt + Mfext3	4028,14	(kNm/m)	

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante	forze verticali (N)	Nmin	Nmax	
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	1040,87	1105,48	(kN/m)
Risultante	forze orizzontali (T)			
T =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	253,13	3	(kN/m)
Risultante	dei momenti rispetto al piede di valle (MM)			
MM =	ΣΜ	3329,55	3600,93	(kNm/m)
Momento r	rispetto al baricentro della fondazione (M)			
M =	Xc*N - MM	313,49	268,26	(kNm/m)

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 59 di 116

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

 $qlim = c'Nc*ic + q_0*Nq*iq + 0,5*\gamma1*B*N\gamma*i\gamma$

c1' ϕ 1' γ_1 $q_0 = \gamma d^*H2'$	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz. sovraccarico stabilizzante		15,00 25,00 13,86 32,00		(kN/mq) (°) (kN/m³) (kN/m²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0,30 6,40	0,24 6,51	(m) (m)
I valori di Nc, No	q e Ng sono stati valutati con le espressioni suggerite d	da Vesic (1975)			
$N\gamma = 2*(Nq + 1)$	 (φ') (2+π in cond. nd) *tg(φ') (0 in cond. nd) ε iγ sono stati valutati con le espressioni suggerite da \(\text{B*c'cotgφ'} \))^m (1 in cond. nd) 	/esic (1975)	10,66 20,72 10,88 0,64 0,60	0,65 0,62	(-) (-) (-)
$i\gamma = (1 - T/(N + 1))$			0,51	0,51	(-)
(fondazione nas	triforme m = 2)				
qlim	(carico limite unitario)		646,41	663,03	(kN/m ²)
FS carico lin	rite F = qlim*B*/ N	Nmin Nmax	3,97 3,91	> >	1,2

Condizione sismica -

Fr =

VERIFICA ALLO SCORRIMENTO

VERIF	ICA AL	LO SCORRIMENTO			
	nte forze =	verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	976,52	(kN/m)	
_	nte forze =	orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	246,35	(kN/m)	
_	iente di =	attrito alla base (f) tgφ1'	0,47	(-)	
Fs	=	(N*f + Sp) / T	1,85	>	1
VERIF	ICA AL	RIBALTAMENTO			
		zzante (Ms) Mm + Mt + Mfext3	4028,14	(kNm/m)	
	ito ribalta =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	963,37	(kNm/m)	

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Ms / Mr

Risult	ante forze	verticali (N)	Nmin	Nmax	
N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	976,52	1041,14	(kN/m)
Risult	ante forze	orizzontali (T)			
Т	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	246,35		(kN/m)
Risult	ante dei n	nomenti rispetto al piede di valle (MM)			
MM	=	Σ M	3125,44	3396,83	(kNm/m)
Mome	ento risnet	to al baricentro della fondazione (M)			
М	=	Xc*N - MM	292.40	247,16	(kNm/m)

4,18 >

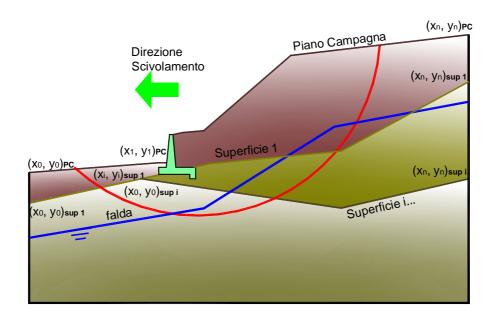
1

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 61 di 116

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

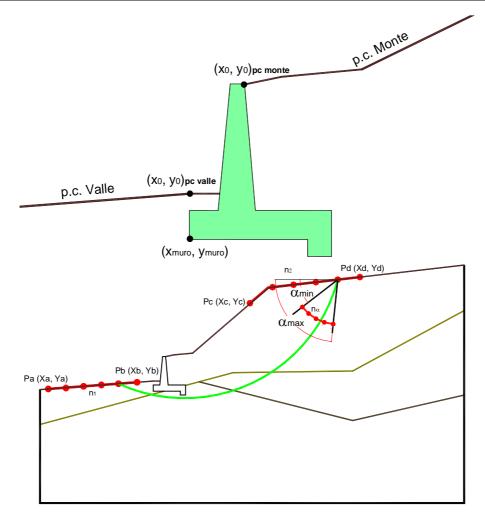

qlim = c'Nc*ic + q_0 *Nq*iq + 0,5* γ 1*B*N γ *i γ

c1' φ 1' γ_1 $q_0 = \gamma d^*H2'$	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz. sovraccarico stabilizzante		15,00 25,00 13,86 32,00		(kN/mq) (°) (kN/m³) (kN/m²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0,30 6,40	0,24 6,53	(m) (m)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite	da Vesic (1975)		
$N\gamma = 2*(Nq + 1)$	(φ') (2+π in cond. nd)	Vesic (1975)	10,66 20,72 10,88		(-) (-) (-)
iq = (1 - T/(N + ic = iq - (1 - iq)) $i\gamma = (1 - T/(N + iq))$	/(Nq - 1)		0,63 0,59 0,50	0,64 0,61 0,50	(-) (-) (-)
(fondazione na	striforme m = 2)				
qlim	(carico limite unitario)		635,95	653,70	(kN/m ²)
FS carico lir	nite F = qlim*B*/ N	Nmin Nmax	4,17 4,10	> >	1,2

GRUPPO FERROVIE DELLO STATO ITALIANE	TO ITALIANE OPERE DI SOSTEGNO DI LINEA IN SX MU07 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGL			0		
RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO	COMMESSA RS3T	LOTTO 30 D 26	CODIFICA	DOCUMENTO MU0700 001	REV.	FOGLIO 62 di 116

9.2.3 VERIFICA DI STABILITÀ GLOBALE - COND. DRENATE

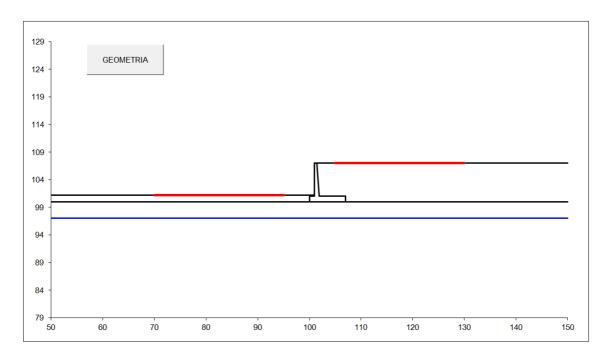
Le analisi di stabilità, di seguito riportate, sono state effettuate limitando la ricerca delle potenziali superfici di scorrimento critiche alla fascia più prossima alla linea ferroviaria.



	γ [kN/m³]	φ [°]	c [kPa]	Descrizione
materiale 1	20.00	38	0	Rilevato - riporto
materiale 2	19.00	25	19.5	Unità geotecnica 1 - a2
materiale 3	20.00	20	22.5	Unità geotecnica 2 - TRV
materiale 4				

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

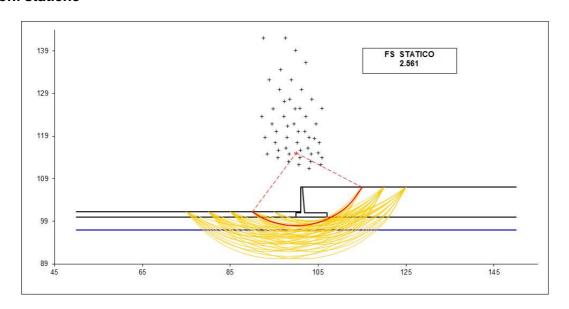
 RS3T
 30 D 26
 CL
 MU0700 001
 B
 63 di 116



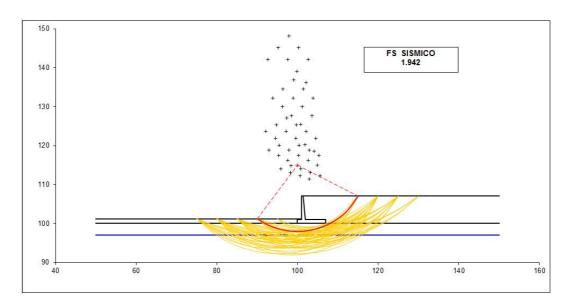
	p.c. val	le		p.c. moi	nte		superfic	ie 1		superfic	ie 2	2):	superfic	cie 3		The same of	
	ı	materiale 1					materi	ale 2		mater	ale 4		mater	riale 2		(p'da	
	X	у		X	у		X	у		X	у		X	у		Х	у
0	100,000	101,200	0	101,400	107,000	0	50,000	100,000	0			0			0	50,000	97,000
1	50,000	101,200	1	150,000	107,000	1	150,000	100,000	1			1			1	150,000	97,000
2		177 (4.41)	2		110000000	2		1777777	2			2			2		
3			3			3			3			3			3		
4			4			4			4			4			4		
5			5			5			5			5			5		
6			6			6			6			6			6		
7			7			7			7			7			7		
8			8			8			8			8			8		
9			9			9			9			9			9		
10			10			10			10			10			10		

Sovraccarichi

		X _{in}	q _{in}	X _{fin}	q _{fin}	% sisma
sovraccarico 1	v	112,800	57,69	115,400	57,69	20%
sovraccarico 2						



#strisce
30


# Superfici Calcolate	F\$ Bish	•
84	STATICO	2.561
04	SISMICO	1.942

Condizioni statiche

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO CO	LLEGAME RCARA D	NTO PALERI IR. – CALTAN	NA – CATANIA – MO – CATANIA IISETTA XIRBI (L		10
RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO	COMMESSA RS3T	LOTTO 30 D 26	CODIFICA	DOCUMENTO	REV.	FOGLIO 65 di 116

Condizioni sismiche

9.2.4 VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE – C. NON DRENATE

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Fs	scorr.	(N*f + Sp) / T	1,48	>	1,1
Coef f	ficiente di =	attrito alla base (f) tgφ1'	0,47	(-)	
_	tante forze =	orizzontali (T) Sth + Sqh + f	326,80	(kN/m)	
Risul N	tante forze =	verticali (N) Pm + Pt + v + Stv + Sqv perm + Sqv acc	1036,61	(kN/m)	

13 30011.	(N 1 · Sp) / ·	1,40		•,•
VERIFICA A	L RIBALTAMENTO (EQU)			
Momento stabi	lizzante (Ms)			
Ms =	Mm + Mt + Mfext3	4028,14	(kNm/m)	
Momento ribalt	ante (Mr)			
Mr =	MSt + MSq + Mfext1+ Mfext2 + MSp	967,01	(kNm/m)	
Fs ribaltar	mento Ms / Mr	4,17	>	1,15

VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)

Risult N	ante forze =	verticali (N) Pm + Pt + v + Stv + Sqv (+ Sovr acc)	Nmin 1036,61	Nmax 1505,07	(kN/m)
Risult	ante forze	orizzontali (T)			
T	=	Sth + Sqh + f - Sp	326,80	326,80	(kN/m)
Risult MM		nomenti rispetto al piede di valle (MM) ΣM	3061,14	5028,67	(kNm/m)
	ento rispet =	to al baricentro della fondazione (M) Xc*N - MM	567,00	239,08	(kNm/m)

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA REV. FOGLIO DOCUMENTO RS3T 30 D 26 CL MU0700 001 В 67 di 116

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico lir	mite F = qlim*B*/ N	Nmin Nmax	1,75 1,42	>	1,4
qlim	(carico limite unitario)		306,95	319,81	(kN/m ²)
(fondazione na	striforme m = 2)				-
ic = $(1 - m T / (N + m))$			0,71	0,75	(-) (-)
I valori di ic, iq $iq = (1 - T/(N +$	e i γ sono stati valutati con le espressioni suggerite da $B^*c'\cot(q\varphi'))^m \qquad \text{(1 in cond. nd)}$	Vesic (1975)	1,00	1,00	(-)
$Nq = tg^{2}(45 + q)$ $Nc = (Nq - 1)/t_{c}$ $N\gamma = 2*(Nq + 1)$			1,00 5,14 0,00		(-) (-)
l valori di Nc, N	lq e Ng sono stati valutati con le espressioni suggerite	da Vesic (1975)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0,55 5,91	0,16 6,68	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		32,00		(kN/m ²)
γ1	peso unità di volume terreno fondaz.		19,00		(kN/m³)
cu	res. al taglio nd terreno di fondaz.		75,00		(kPa)

9.2.5 VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE – C. NON DRENATE

Condizione sismica +

VERIFICA ALLO SCORRIMENTO

		ilizzante (Ms)	4000.44	(Ishles/es)	
VEF	RIFICA A	L RIBALTAMENTO			
Fs	=	(N*f + Sp) / T	1,92	>	1
Coe	fficiente d =	i attrito alla base (f) tgφ1'	0,47	(-)	
	Itante forz =	te orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	253,13	(kN/m)	
	ltante forz =	re verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	1040,87	(kN/m)	

Fr	=	Ms / Mr	6,14	>
	ento ribalta =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	655,70	(kNm/m)
Ms	=	Mm + Mt + Mfext3	4028,14	(kNm/m)
Mom	ento stabil	izzante (Ms)		

1

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forze verticali (N) N = Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	Nmin 1040,87	Nmax 1105,48	(kN/m)
Risultante forze orizzontali (T) T = Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	253,13		(kN/m)
Risultante dei momenti rispetto al piede di valle (MM) ${\sf MM} = \Sigma {\sf M}$	3329,55	3600,93	(kNm/m)
Momento rispetto al baricentro della fondazione (M) M = Xc*N - MM	313,49	268,26	(kNm/m)

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 69 di 116

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0,5* γ 1*B*N γ *i γ

FS carico lin	nite F = qlim*B*/ N	Nmin Nmax	2,08 2,00	> >	1,2		
qlim	(carico limite unitario)		338,49	339,91	(kN/m ²)		
(fondazione nastriforme m = 2)							
iq = (1 - T/(N + ic = (1 - m T / (I + i + ic))) $i\gamma = (1 - T/(N + ic))$	B* cu*Nc))		1,00 0,79 	1,00 0,80	(-) (-)		
I valori di ic, iq e iγ sono stati valutati con le espressioni suggerite da Vesic (1975)							
	$(7/2)^*e^{(\pi^*tg(\phi'))}$ (1 in cond. nd) (ϕ') (2+ π in cond. nd) $(\pi'tg(\phi'))$ (0 in cond. nd)		1,00 5,14 0,00		(-) (-) (-)		
I valori di Nc, No	q e Ng sono stati valutati con le espressioni suggerite	da Vesic (1975)				
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0,30 6,40	0,24 6,51	(m) (m)		
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		32,00		(kN/m ²)		
γ ₁	peso unità di volume terreno fondaz.	19,00		(kN/m³)			
cu	res. al taglio nd terreno di fondaz.		75,00		(kN/mq)		

Condizione sismica -

VERIFICA A	LLO SCORRIMENTO			
Risultante forze	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	976,52	(kN/m)	
Risultante forze	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	246,35	(kN/m)	
Coefficiente di f =	attrito alla base (f) $tg\phi 1 \text{'}$	0,47	(-)	
Fs =	(N*f + Sp) / T	1,85	>	1
VERIFICA A	L RIBALTAMENTO			
Momento stabil Ms =	izzante (Ms) Mm + Mt + Mfext3	4028,14	(kNm/m)	
Momento ribalt Mr =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	963,37	(kNm/m)	
Fr =	Ms / Mr	4,18	>	1

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risult	ante forze	e verticali (N)	Nmin	Nmax	
N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	976,52	1041,14	(kN/m)
Risult	ante forze	e orizzontali (T)			
T	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	246,35		(kN/m)
Dioul	anta dai m	comenti rispetto el piede di velle (MM)			
		nomenti rispetto al piede di valle (MM)	0405.44	0000 00	(1N ()
MM	=	ΣΜ	3125,44	3396,83	(kNm/m)
Mome	ento rispet	tto al baricentro della fondazione (M)			
M	= .	Xc*N - MM	292,40	247,16	(kNm/m)

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

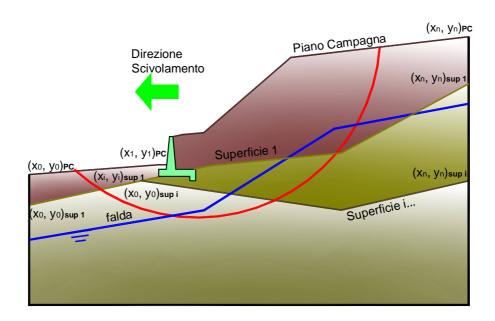
 RS3T
 30 D 26
 CL
 MU0700 001
 B
 71 di 116

2,14

Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

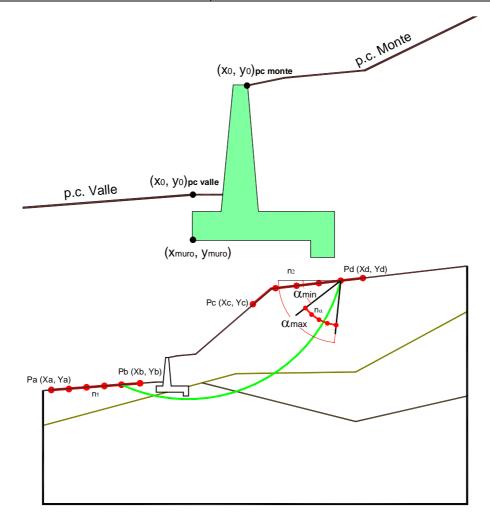

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico li	mite F = qlim*B*/ N	Nmin	2,23	>	1,2	
qlim	(carico limite unitario)		340,65	342,11	(kN/m ²)	
(fondazione na	striforme m = 2)					
ic = (1 - m T /		0,80	0,80	(-) (-)		
iq = (1 - T/(N +		ia vesio (1979)	1,00	1,00	(-)	
$N\gamma = 2*(Nq + 1)*tg(\phi')$ (0 in cond. nd) 0,00 (-) I valori di ic, iq e i γ sono stati valutati con le espressioni suggerite da Vesic (1975)						
$Nq = tg^{2}(45 + c)$ $Nc = (Nq - 1)/t_{0}$	$g(\phi')$ (2+ π in cond. nd)		1,00 5,14		(-) (-)	
	lq e Ng sono stati valutati con le espressioni suggeri	te da Vesic (1975	5)			
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0,30 6,40	0,24 6,53	(m) (m)	
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		32,00		(kN/m ²)	
γ1	peso unità di volume terreno fondaz.	19,00		(kN/m³)		
cu	res. al taglio nd terreno di fondaz.		75,00		(kN/mq)	

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR. – CALTANISETTA XIRBI (LOTTO 3) OPERE DI SOSTEGNO DI LINEA			00		
RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO	COMMESSA RS3T	LOTTO 30 D 26	CODIFICA	DOCUMENTO MU0700 001	REV.	FOGLIO 72 di 116

9.2.6 VERIFICA DI STABILITÀ GLOBALE – COND. NON DRENATE

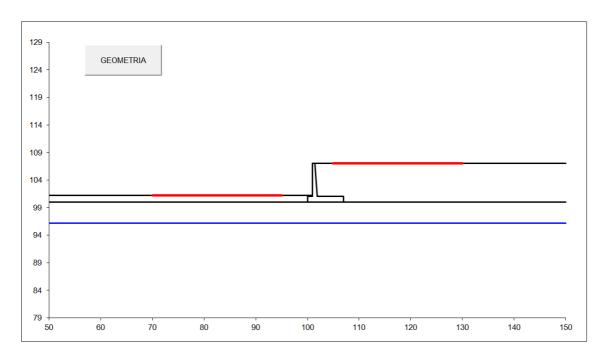
Le analisi di stabilità, di seguito riportate, sono state effettuate limitando la ricerca delle potenziali superfici di scorrimento critiche alla fascia più prossima alla linea ferroviaria.



	γ [kN/m³]	φ [°]	c [kPa]	Descrizione
materiale 1	20,00	38	0	Rilevato - riporto
materiale 2	19,00	25	75	Unità geotecnica 1 - a2
materiale 3	20,00	20	150	Unità geotecnica 2 - TRV
materiale 4				

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

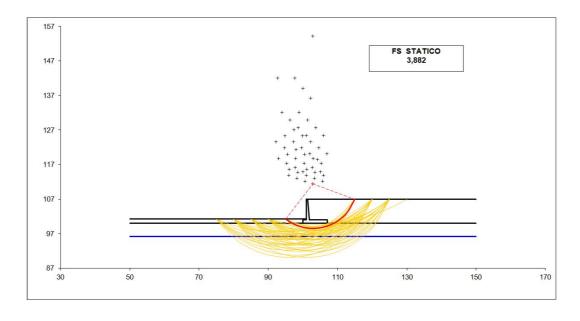
 RS3T
 30 D 26
 CL
 MU0700 001
 B
 73 di 116



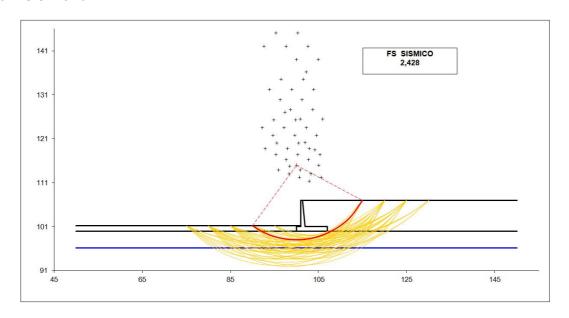
	p.c. val	lle	7	p.c. moi	nte		superfic	ie 1		superfic	ie 2		superfi	cie 3			
		materiale 1		ateriale 1		materiale :		ale 2	▼			materiale 2			[- da		
	X	у		X	у		X	У		х	у		x	У		X	У
0	100,000	101,200	0	101,400	107,000	0	50,000	100,000	0			0			0	50,000	96,200
1	50,000	101,200	1	150,000	107,000	1	150,000	100,000	1			1			1	150,000	96,200
2	7.7.7.7	7.	2			2			2			2			2		
3			3			3			3			3			3		
4			4			4			4			4			4		
5			5			5			5			5			5		
6			6			6			6			6			6		
7			7			7			7			7			7		
8			8			8			8			8			8		
9			9			9			9			9			9		
10			10			10			10			10			10		

Sovraccarichi

		X _{in}	q _{in}	X _{fin}	q fin	% sisma
sovraccarico 1	~	112,800	57,69	115,400	57,69	20%
sovraccarico 2						72



#stri	sce
30)


# Superfici Calcolate	F\$ Bish	
84	STATICO	3,882
04	SISMICO	2,428

Condizioni statiche

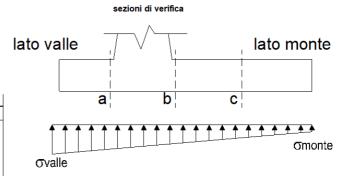
ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LLEGAME RCARA D	NTO PALERI IR. – CALTAN	NA – CATANIA – 10 – CATANIA ISETTA XIRBI (L		10
RIO5: MURO DI SOSTEGNO IN SX MU07	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RELAZIONE DI CALCOLO	RS3T	30 D 26	CL	MU0700 001	В	75 di 116

Condizioni sismiche

9.3 VERIFICHE STRUTTURALI

9.3.1 CALCOLO DELLE SOLLECITAZIONI

Reazione del terreno


ovalle = N / A + M / Wgg

omonte = N / A - M / Wgg

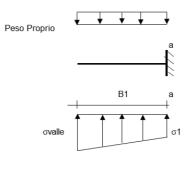
A = 1.0*B(m²)

 $Wgg = 1.0*B^2/6$ 8,17 (m³)

	N	M	ovalle	omonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
statico	1036,61	567,00	217,52	78,66
Statico	1505,07	239,08	244,28	185,74
sisma+	1040,87	313,49	187,08	110,31
Sisilia	1105,48	268,26	190,77	125,08
sisma-	976,52	292,40	175,31	103,70
Sisma-	1041,14	247,16	179,00	118,47

FOGLIO

76 di 116


Mensola Lato Valle

Peso Proprio. PP = (kN/m) 25.00

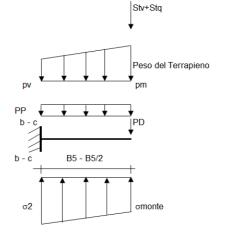
 $Ma = \sigma 1*B1^{2}/2 + (\sigma valle - \sigma 1)*B1^{2}/3 - PP*B1^{2}/2*(1\pm kv)$

 $Va = \sigma 1*B1 + (\sigma valle - \sigma 1)*B1/2 - PP*B1*(1\pm kv)$

	σvalle	σ1	Ma	Va
caso	[kN/m ²]	[kN/m²]	[kNm]	[kN]
atation	217,52	197,68	92,95	182,60
statico	244,28	235,92	108,25	215,10
sisma+	187,08	176,11	78,82	155,82
SiSilia	190,77	181,39	81,32	160,30
	175,31	165,08	73,84	144,42
sisma-	179.00	170.35	75.56	148.90

Mensola Lato Monte

PP	=	25,00	(kN/m^2)	peso proprio soletta fondazione
PD	=	0,00	(kN/m)	peso proprio dente


			•	•	
		Nmin	N max stat	N max sism	
pm	=	141,60	225,25	153,14	(kN/m^2)
pvb	=	141,60	225,25	153,14	(kN/m^2)
pvc	=	141,60	225,25	153,14	(kN/m ²)

 $Mb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5^2/2 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/6$ -(Stv+Sqv)*B5-PD*(1±kv)*(B5-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

 $Mc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2)^2/2 + (\sigma 2c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(1 \pm kv)^*(B5/2)^2/3 + (\sigma 2c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(B5/2)^2/3 + (\sigma 2c - \sigma_{monte})^*(B5/2)^2/3 + (\sigma 2c - \sigma_{monte})^2/3 + (\sigma 2c - \sigma_{mon$ $-(Stv+Sqv)^*(B5/2)-PD^*(1\pm kv)^*(B5/2-Bd/2)-PD^*kh^*(Hd+H2/2)+Msp+Sp^*H2/2$

 $Vb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma 2b - \sigma_{monte})^*B5/2 - (pm-pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

 $Vc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma 2c - \sigma_{monte})^*(B5/2)/2 - (pm-pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30 D 26	CL	MU0700 001	В	77 di 116

	omonte	σ2b	Mb	Vb	σ2c	Мс	Vc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m ²]	[kNm]	[kN]
statico	78,66	179,63	-703,21	-190,66	129,14	-230,30	-159,57
Statico	185,74	228,31	-651,94	-220,05	207,02	-185,96	-137,11
oiomo I	110,31	166,13	-555,19	-170,79	138,22	-168,93	-120,91
sisma+	125,08	172,85	-552,76	-176,67	148,96	-163,97	-118,73
sisma-	103,70	155,77	-522,93	-161,30	129,73	-158,84	-113,78
	118,47	162,48	-511,22	-163,53	140,48	-151,56	-109,77

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

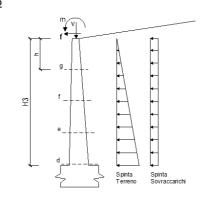
Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}}^* \gamma^* (1 \pm \text{kv})^* h^{2*} h/3$

 $\label{eq:Mt_sism} \text{Mt sism} = \ \ \text{$1\!\!/_2$} * \gamma \ \text{*}(\text{Kas}_{\text{orizz.}} \text{*}(1\pm kv)\text{-}\text{Ka}_{\text{orizz.}}) \text{*}h^2\text{*}h/2 \quad o \ \text{*}h/3$

 $Mq = \frac{1}{2} Ka_{\text{orizz}} *q^*h^2$ $M_{\text{ext}} = m + f^*h$ $M_{\text{inerzia}} = \sum Pm_i *b_i *kh$

 $N_{ext} = v$


N $_{pp+inerzia}$ = $\Sigma Pm_i^*(1\pm kv)$

Vt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²

Vt sism = $\frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv) - Ka_{orizz.}) * h^2$

 $Vq = Ka_{orizz}*q*h$ $V_{ext} = f$

 $V_{inerzia} = \Sigma Pm_i^*kh$

condizione statica

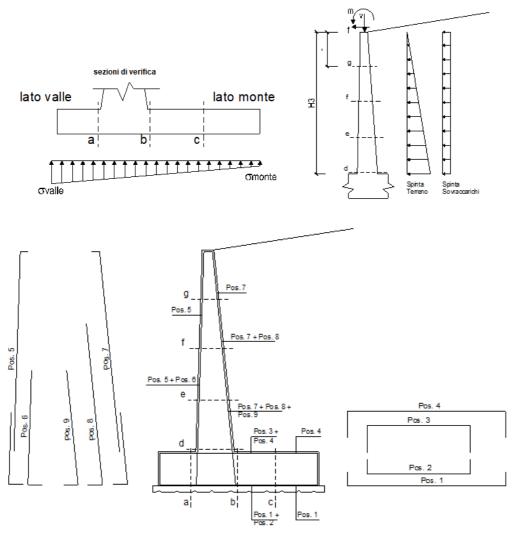
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N_{pp}	N _{tot}
SCZIONE	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6,00	222,66	450,69	0,00	673,34	1,00	98,25	99,25
е-е	4,50	93,93	253,51	0,00	347,44	1,00	66,52	67,52
f-f	3,00	27,83	112,67	0,00	140,50	1,00	39,56	40,56
g-g	1,50	3,48	28,17	0,00	31,65	1,00	17,39	18,39

sezione	h	Vt	Vq	$V_{\rm ext}$	V_{tot}
36210116	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6,00	111,33	150,23	0,00	261,56
e-e	4,50	62,62	112,67	0,00	175,29
f-f	3,00	27,83	75,11	0,00	102,95
g-g	1,50	6,96	37,56	0,00	44,52

condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6,00	171,28	28,28	136,22	0,00	15,94	351,71	1,00	101,30	102,30
e-e	4,50	72,26	11,93	76,63	0,00	8,30	169,11	1,00	68,58	69,58
f-f	3,00	21,41	3,53	34,06	0,00	3,39	62,39	1,00	40,79	41,79
g-g	1,50	2,68	0,44	8,51	0,00	0,77	12,41	1,00	17,93	18,93

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6,00	85,64	14,14	45,41	0,00	6,10	151,29
e-e	4,50	48,17	7,95	34,06	0,00	4,13	94,31
f-f	3,00	21,41	3,53	22,70	0,00	2,46	50,11
g-g	1,50	5,35	0,88	11,35	0,00	1,08	18,67


condizione sismica -

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6,00	171,28	17,71	137,28	0,00	15,94	342,21	1,00	95,20	96,20
e-e	4,50	72,26	7,47	77,22	0,00	8,30	165,25	1,00	64,45	65,45
f-f	3,00	21,41	2,21	34,32	0,00	3,39	61,33	1,00	38,33	39,33
g-g	1,50	2,68	0,28	8,58	0,00	0,77	12,31	1,00	16,85	17,85

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V_{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6,00	85,64	8,86	45,76	0,00	6,10	146,36
e-e	4,50	48,17	4,98	34,32	0,00	4,13	91,61
f-f	3,00	21,41	2,21	22,88	0,00	2,46	48,96
g-g	1,50	5,35	0,55	11,44	0,00	1,08	18,43

9.3.2 VERIFICHE SLU

Armatura minima

L'armatura minima principale in fondazione deve essere in percentuale non inferiore allo 0.20% dell'area di conglomerato.

L'armatura minima principale presente in zona tesa deve essere in percentuale non inferiore allo 0.15% dell'area di conglomerato per l'intera lunghezza.

L'armatura secondaria, ortogonale a quella principale, deve essere pari al massimo delle seguenti percentuali:

- 0.10% dell'area di conglomerato in entrambi i lembi;
- 20% dell'armatura principale.

Muro h = 6.0m su fondazione diretta

ARMATURE

pos	n°/ml	φ	II strato	pos	n°/ml	ф	II strato
1	10,0	20		5	10,0	20	
2	0,0	0		6	0,0	0	
3	0,0	0		7	10,0	24	
4	10,0	24		8	0,0	0	
				9	0,0	0	

Pertanto l'armatura secondaria sarà pari a:

sez a – a: ϕ 10/20cm (ripartitori in fondazione e in elevazione);

sez b – b: ϕ 10/20cm (ripartitori in fondazione);

sez c – c: \$10/20cm (ripartitori in fondazione);

sez d - d: $\phi 10/20$ cm (ripartitori in fondazione);

sez e - e: ϕ 10/20cm (ripartitori in fondazione);

sez f – f: ϕ 10/20cm (ripartitori in fondazione);

sez g - g: $\phi 10/20$ cm (ripartitori in fondazione);

Sez.	M	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm²)	(cm ²)	(kNm)
a - a	108.25	0.00	1.00	31.42	45.24	1077.32
b - b	-703.21	0.00	1.00	45.24	31.42	1530.20
C - C	-230.30	0.00	1.00	45.24	31.42	1530.20
d - d	673.34	99.25	0.91	45.24	31.42	1407.67
е -е	347.44	67.52	0.78	45.24	31.42	1165.92
f-f	140.50	40.56	0.66	45.24	31.42	929.36
g - g	31.65	18.39	0.53	45.24	31.42	697.08

	Sez.	V _{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	_
Ξ	(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- -
	a - a	215.10	1.00	358.81	10	20	20	21.8	1586.97	Armatura a taglio non necessaria
	b - b	220.05	1.00	405.19	10	20	20	21.8	1586.97	Armatura a taglio non necessaria
	C - C	159.57	1.00	405.19	10	20	20	21.8	1586.97	Armatura a taglio non necessaria
	d - d	261.56	0.91	398.17	10	20	20	21.8	1431.39	Armatura a taglio non necessaria
	е -е	175.29	0.78	363.00	10	20	20	21.8	1210.98	Armatura a taglio non necessaria
	f - f	102.95	0.66	326.28	10	20	20	21.8	990.56	Armatura a taglio non necessaria
	g - g	44.52	0.53	287.23	10	20	20	21.8	770.15	Armatura a taglio non necessaria

9.3.3 VERIFICHE SLE TENSIONE

Condizione Statica

Sez.	M	N	h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm^2)
a - a	88.08	0.00	1.00	31.42	45.24	0.69	33.27
b - b	-492.18	0.00	1.00	45.24	31.42	3.57	131.00
C - C	-154.24	0.00	1.00	45.24	31.42	1.12	41.05
d - d	489.45	99.25	0.91	45.24	31.42	4.28	135.24
e -e	251.23	67.52	0.78	45.24	31.42	2.89	82.15
f-f	100.95	40.56	0.66	45.24	31.42	1.62	40.18
g - g	22.56	18.39	0.53	45.24	31.42	0.56	11.10

Condizione Sismica

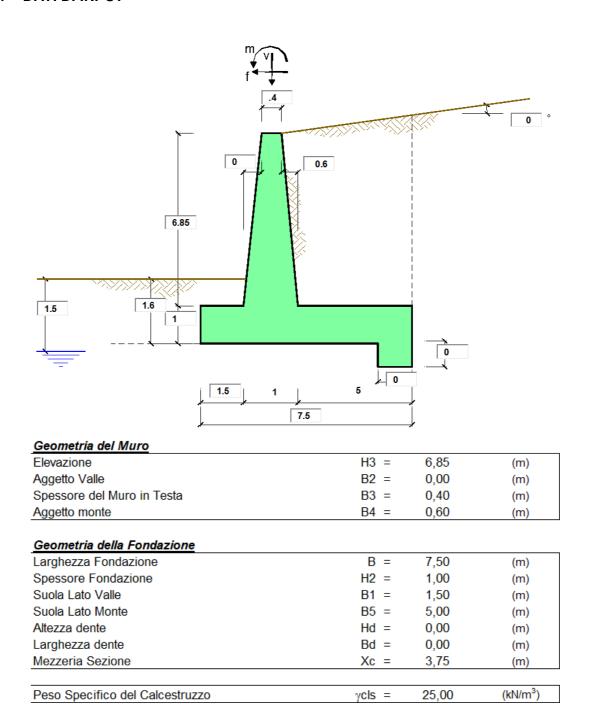
COMMIZION	ic oldillica						
Sez.	M	N	h	Af	A'f	σC	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	80.93	0.00	1.00	31.42	45.24	0.63	30.57
b - b	-488.61	0.00	1.00	45.24	31.42	3.55	130.05
C - C	-152.28	0.00	1.00	45.24	31.42	1.11	40.53
d - d	351.71	96.20	0.91	45.24	31.42	3.10	94.70
е -е	169.11	65.45	0.78	45.24	31.42	1.96	53.30
f-f	62.39	39.33	0.66	45.24	31.42	1.02	23.39
g - g	12.41	17.85	0.53	45.24	31.42	0.31	5.33

9.3.4 VERIFICHE SLE FESSURAZIONE

condizione Frequente

Sez.	M	N	h	Af	A'f	σc	σf	wk	W _{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	88.08	0.00	1.00	31.42	45.24	0.69	33.27	0.044	0.200
b - b	-492.18	0.00	1.00	45.24	31.42	3.57	131.00	0.158	0.200
C - C	-154.24	0.00	1.00	45.24	31.42	1.12	41.05	0.050	0.200
d - d	489.45	99.25	0.91	45.24	31.42	4.28	135.24	0.163	0.200
e -e	251.23	67.52	0.78	45.24	31.42	2.89	82.15	0.094	0.200
f-f	100.95	40.56	0.66	45.24	31.42	1.62	40.18	0.042	0.200
g - g	22.56	18.39	0.53	45.24	31.42	0.56	11.10	0.011	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)


condizione Quasi Permanente

Sez.	M	N	h	Af	A'f	σc	σf	wk	W _{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	58.90	0.00	1.00	31.42	45.24	0.46	22.25	0.030	0.200
b - b	-217.38	0.00	1.00	45.24	31.42	1.58	57.86	0.070	0.200
C - C	-53.23	0.00	1.00	45.24	31.42	0.39	14.17	0.017	0.200
d - d	242.42	99.25	0.91	45.24	31.42	2.16	62.03	0.075	0.200
e -e	112.28	67.52	0.78	45.24	31.42	1.32	33.02	0.037	0.200
f-f	39.20	40.56	0.66	45.24	31.42	0.65	13.14	0.014	0.200
g - g	7.12	18.39	0.53	45.24	31.42	0.19	2.29	0.002	0.200

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LEGAME RCARA D	NTO PALERI IR. – CALTAN	NA – CATANIA – 10 – CATANIA ISETTA XIRBI (L		0
RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO	COMMESSA RS3T	LOTTO 30 D 26	CODIFICA CL	DOCUMENTO MU0700 001	REV.	FOGLIO 82 di 116

10. PROGETTO E VERIFICA DEL MURO DI SOSTEGNO "TIPO 3"

10.1 DATI DI INPUT

Condizioni drenate

				valori caratt	eristici	valori di progetto			
Dati (Geotecnici					SLE		STR/GEO	EQU
eno	Angolo di attrito del terrapieno		(°)		φ'	38.00	ı	38.00	38.00
Dati Terrapieno	Peso Unità di Volume del terrapieno		(kN/m³)		7	20.00		20.00	20.00
	Angolo di attrito terreno-superficie ideale		(°)		δ	0.00		0.00	0.00
Dati Terreno Fondazione	Condizioni			⊚ dr	renate	Non Dre	enate		
daz	Coesione Terreno di Fondazione		(kPa)		c1'	19.50	ı	19.50	19.50
Fon	Angolo di attrito del Terreno di Fondazione		(°)		φ1'	25.00		25.00	25.00
2	Peso Unità di Volume del Terreno di Fondazione		(kN/m³)		γ1	19.00		19.00	19.00
erre	Peso Unità di Volume del Rinterro della Fondazione		(kN/m³)		γd	20.00		20.00	20.00
Ξ	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)		Hs	12.00			
	Modulo di deformazione		(kN/m²)		Е	10000)		
								-	
	Accelerazione sismica			а	ı _g /g	0.109	(-)		
	Coefficiente Amplificazione Stratigrafico				S_S	1.5	(-)		
Oati Sismici	Coefficiente Amplificazione Topografico				S_T	1	(-)	RIBALTA	MENTO
<u>is</u>	Coefficiente di riduzione dell'accelerazione massima				β_s	0.38	(-)	βs	0.57
=	Coefficiente sismico orizzontale				kh	0.06213	(-)	kh	0.09320
۵	Coefficiente sismico verticale				kv	0.0311	(-)	kv	0.04660
	Muro libero di traslare o ruotare				•	si 🔾 no			
						STR/GE	:0	- RI	в
-	Coeff. di Spinta Attiva Statico	ka	0.238			0.238		0.238	_
- 5	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.269			0.269		0.285	
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.271			0.271		0.290	
officient Spinta	Coeff. Di Spinta Passiva	kp	2.464			2.464		2.464	
ő	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2.367			2.367		2.319	
_	Coeff. Di Spinta Passiva Sismica sisma -	kps-	2.361			2.361		2.304	

				valori caratteristici	valori di p	orogetto
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
Carichi	Sovraccarico permanente Sovraccarico su zattera di monte	(kN/m ²)	qp	16.62	21.60	21.60
Carichi ermanen	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
S E	Forza Verticale in Testa permanente	(kN/m)	vp	1.00	1.00	1.00
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q	57.69	83.65	83.65
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statich	(kN/m)	f	0.00	0.00	0.00
ondizior Statiche	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
S &	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione frequer	nte Ψ1	1.00 c	condizione quasi permane	nte Ψ2	0.00
.⊑ ø	Sovraccarico Accidentale in condizioni sismiche	(kN/m²)	qs	11.54		
Condizioni Sismiche	Forza Orizzontale in Testa accidentale in condizioni sismicl	(kN/m)	fs	0.00		
ond	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
0 0	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

Condizioni non drenate

				valori o	caratter	istici	valori di progetto			
Dati (Geotecnici						SLE		STR/GEO	EQU
Dati Terrapieno	Angolo di attrito del terrapieno		(°)		φ'		38.00		38.00	38.00
Dati rapie	Peso Unità di Volume del terrapieno		(kN/m³)		7		20.00		20.00	20.00
	Angolo di attrito terreno-superficie ideale		(°)		δ		0.00		0.00	0.00
Dati Terreno Fondazione	Condizioni			0	drenate	• • •	Non Dren	ate		
ıdaz	Resistenza a Taglio non drenata		(kPa)		cu		75.00		75.00	75.00
F.	Angolo di attrito Terreno-Fondazione		(°)		φ1'		25.00		25.00	25.00
2	Peso Unità di Volume del Terreno di Fondazione		(kN/m ³)		γ1		19.00		19.00	19.00
<u> </u>	Peso Unità di Volume del Rinterro della Fondazione		(kN/m³)		γd		20.00		20.00	20.00
=	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)		Hs		12.00			
a	Modulo di deformazione		(kN/m²)		Е		10000			
	1								7	
	Accelerazione sismica				a _g /g	0.109		(-)		
	Coefficiente Amplificazione Stratigrafico				S_S	1.5		(-)		
Dati Sismici	Coefficiente Amplificazione Topografico				S_T	1		(-)	RIBALTA	MENTO
<u></u>	Coefficiente di riduzione dell'accelerazione massima				β_s	0.38		(-)	βs	0.57
a	Coefficiente sismico orizzontale				kh	0.06213		(-)	kh	0.09320
	Coefficiente sismico verticale				kv	0.0311		(-)	kv	0.04660
	Muro libero di traslare o ruotare				•	si	○ no			
						ST	TR/GEC)	R	В
-	Coeff. di Spinta Attiva Statico	ka	0.238			0.238			0.238	
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.269			0.269			0.285	
officient Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.271			0.271			0.290	
Spi	Coeff. Di Spinta Passiva	kp	1.000			1.000			1.000	
Ö	Coeff. Di Spinta Passiva Sismica sisma +	kps+	1.000			1.000			1.000	
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	1.000			1.000			1.000	

			Γ	valori caratteristici	valori di p	orogetto
<u>Carichi</u>	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
=	Sovraccarico permanente	(kN/m ²)	qp '	16.62	21.60	21.60
프트	Sovraccarico su zattera di monte					
Carichi ermanen	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
Carichi permanenti	Forza Verticale in Testa permanente	(kN/m)	vp	1.00	1.00	1.00
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q q	57.69	83.65	83.65
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statich	(kN/m)	f	0.00	0.00	0.00
atic	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
S &	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione frequer	nte Ψ1	1.00	condizione quasi permane	nte Ψ2	0.00
.⊑ <u>o</u>	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	11.54		
Condizioni Sismiche	Forza Orizzontale in Testa accidentale in condizioni sismicl	(kN/m)	fs	0.00		
ond	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
0 0	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO COMMESSA LOTTO

RS3T 30 D 26

CODIFICA CL

DOCUMENTO MU0700 001

REV. FOGLIO

85 di 116

В

CARATTERISTICHE DEI MATERIALI STRUTTURALI

Calcestruzzo		
classe cls C32/40 ▼		
Rck	40	(MPa)
fck	32	(MPa)
fcm	40	(MPa)
Ec	33346	(MPa)
o _{coc}	0.85	
γс	1.50	
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma c$	18.13	(MPa)
$f_{ctm} = 0.30*f_{ck}^{2/3}$	3.02	(MPa)

Tensioni limite (tensioni ammissibili)

 $\begin{array}{c|cccc} \hline condizioni statiche \\ \hline \sigma_c & 19.2 & Mpa \\ \hline \sigma_f & 360 & Mpa \\ \end{array}$

condizioni sismiche

σ_c 19.2 Mpa σ_f 360 Mpa

Valore limite di apertura delle fessure

<u>Acciaio</u>

B4	150C ▼	
	450	(MPa)
	1.15	
E =	391.30	(MPa)
210000	(MPa)	
	E = 210000	450 1.15 E = 391.30

coefficiente omogeneizzazione acciaio n = 15

Copriferro (distanza asse armatura-bordo)

c = 9.10 (cm)

Copriferro minimo di normativa (ricoprimento armatura)

 $c_{min} = 5.00$ (cm)

<u>Interferro tra I e II strato</u>

i_{I-II} 5.00 (cm)

10.1 CALCOLO DELLE AZIONI

10.1.1 FORZE VERTICALI E INERZIALI

FORZE VERTICALI

- Peso del Mu	ro (Pm)		SLE	STR/GEO	EQU/RIB
Pm1 =	(B2*H3*γcls)/2	(kN/m)	0,00	0,00	0,00
Pm2 =	(B3*H3*γcls)	(kN/m)	68,50	68,50	68,50
Pm3 =	(B4*H3*γcls)/2	(kN/m)	51,38	51,38	51,38
Pm4 =	(B*H2*γcls)	(kN/m)	187,50	187,50	187,50
Pm5 =	(Bd*Hd [*] γcls)	(kN/m)	0,00	0,00	0,00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	307,38	307,38	307,38
- Peso del terr	eno e sovr. perm. sulla scarpa di monte del muro (Pt)				
Pt1 =	(B5*H3*γ')	(kN/m)	685,00	685,00	685,00
Pt2 =	(0,5*(B4+B5)*H4*γ')	(kN/m)	0,00	0,00	0,00
Pt3 =	(B4*H3*γ')/2	(kN/m)	41,10	41,10	41,10
Sovr =	qp * (B4+B5)	(kN/m)	93,05	120,96	120,96
Pt =	Pt1 + Pt2 + Pt3 + Sovr	(kN/m)	819,15	847,06	847,06
- Sovraccarico	accidentale sulla scarpa di monte del muro				
Sovr acc. Stat	q * (B4+B5)	(kN/m)	323,076923	468,461538	
Sovr acc. Sisr	n qs * (B4+B5)	(kN/m)	64,6153846		

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

- Muro (Mm)			SLE	STR/GEO	EQU/RIB
Mm1 = `	Pm1*(B1+2/3 B2)	(kNm/m)	0,00	0,00	0,00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	116,45	116,45	116,45
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	107,89	107,89	107,89
Mm4 =	Pm4*(B/2)	(kNm/m)	703,13	703,13	703,13
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0,00	0,00	0,00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	927,46	927,46	927,46
- Terrapieno e	sovr. perm. sulla scarpa di monte del muro				
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	3425,00	3425,00	3425,00
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0,00	0,00	0,00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	94,53	94,53	94,53
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	437,32	568,51	568,51
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	3956,85	4088,04	4088,04
- Sovraccarico	accidentale sulla scarpa di monte del muro				
Sovr acc. Stat	*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	1518,46154	2201,76923	
Sovr acc. Sism	1 *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	303,692308		

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 87 di 116

INERZIA DEL	. MURO E DEL TERRAPIENO			
- Inerzia orizzo	ontale e verticale del muro (Ps)			
Ps h =	Pm*kh	(kN/m)	19,10	28,65
Ps v=	Pm*kv	(kN/m)	9,55	14,32
- Inerzia orizzo	ontale e verticale del terrapieno a tergo del muro (Pts))		
Ptsh =	Pt*kh	(kN/m)	52,63	78,94
Ptsv =	Pt*kv	(kN/m)	26,31	39,47
- Incremento d	orizzontale di momento dovuto all'inerzia del muro (MP	os h)		
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)	0,00	0,00
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)	18,83	28,25
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)	10,48	15,72
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)	5,82	8,74
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)	0,00	0,00
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	35,14	52,71
	rerticale di momento dovuto all'inerzia del muro (MPs v	•	0.00	0.00
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kNm/m)	0,00	0,00
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)	3,62	5,43
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)	3,35	5,03
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)	21,84	32,76
MPs5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)	0,00	0,00
MPs v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	28,81	43,22
- Incremento d	prizzontale di momento dovuto all'inerzia del terrapieno	(MPts h)		
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)	188,32	282,49
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)	0.00	0,00
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)	14,21	21,32
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)	202,54	303,81
- Incremento v	verticale di momento dovuto all'inerzia del terrapieno (I	MPts v)		
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)	106,40	159,60
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)	0,00	0,00
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)	3,57	5,36
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)	109,97	164,96

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 88 di 116

10.1.2 SPINTE IN CONDIZIONE STATICA

	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO	EQU/RIB
St =	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	146,59	190,57	190,57
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	31,03	40,34	40,34
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	107,73	156,21	156,21
- Componente	orizzontale condizione statica				
Sth =	St*cosδ	(kN/m)	146,59	190,57	190,57
Sqh perm =	Sq perm*cosδ	(kN/m)	31,03	40,34	40,34
Sqh acc =	Sq acc*cosδ	(kN/m)	107,73	156,21	156,21
- Componente	verticale condizione statica				
Stv =	St*senδ	(kN/m)	0,00	0,00	0,00
Sqv perm=	Sq perm*senδ	(kN/m)	0,00	0,00	0,00
Sqv acc =	Sq acc*senδ	(kN/m)	0,00	0,00	0,00
- Spinta passiv	a sul dente				
Sp=1/2*g1'*Hd2	* ½*γ ₁ '*Hd ² *kp+(2*c ₁ '*kp ^{0.5} +γ1'*kp*H2')*Hd	(kN/m)	0,00	0,00	0,00

MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRAC	CARICO	SLE	STR/GEO	EQU/RIB
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	383,58	498,65	498,65
MSt2 =	Stv*B	(kNm/m)	0,00	0,00	0,00
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	121,78	158,32	158,32
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	422,85	613,14	613,14
MSq2 perm=	Sqv perm*B	(kNm/m)	0,00	0,00	0,00
MSq2 acc =	Sqv acc*B	(kNm/m)	0,00	0,00	0,00
MSp = γ1'*h	Hd ³ *kp/3+(2*c1'*kp ^{0.5} +γ1'*kp*H2')*Hd ² /2	(kNm/m)	0,00	0,00	0,00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	0,00	0,00	0,00
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0,00	0,00	0,00
Mfext3 =	(vp+v)*(B1 +B2 + B3/2)	(kNm/m)	1,70	1,70	1,70

10.1.3 SPINTE IN CONDIZIONE SISMICA +

SPINTE DEL	TERRENO E DEL SOVRACCARICO ione sismica +		SLE	STR/GEO	EQU/RIB
Sst1 stat =	0,5*γ'*(H2+H3+H4+Hd) ² *ka	(kN/m)	146,59	146,59	146,59
Sst1 sism =	0,5*γ'*(1+kv)*(H2+H3+H4+Hd)²*kas ⁺ -Sst1 stat	(kN/m)	24,20	24,20	37,04
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	35,06	35,06	37,14
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	24,35	24,35	25,79
- Componente	orizzontale condizione sismica +				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	146,59	146,59	146,59
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	24,20	24,20	37,04
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	35,06	35,06	37,14
Ssq1h acc=	Ssq1 acc*cosδ	(kN/m)	24,35	24,35	25,79
- Componente	verticale condizione sismica +				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	0,00	0,00	0,00
Sst1v sism =	Sst1 sism*senδ	(kN/m)	0,00	0,00	0,00
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	0,00	0,00	0,00
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	0,00	0,00	0,00
- Spinta passiva	a sul dente				
Sp=½*γ ₁ '(1+kv)) Hd ² *kps ⁺ +(2*c ₁ '*kps ^{+0.5} +γ1' (1+kv) kps ⁺ *H2')*Hd	(kN/m)	0,00	0,00	0,00

MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO - Condizione sismica +			SLE	STR/GEO	EQU/RIB		
MSst1 stat = MSst1 sism= MSst2 stat = MSst2 sism = MSsq1 = MSsq2 = MSp =	Sst1h stat * ((H2+H3+H4+hd)/3-hd) Sst1h sism* ((H2+H3+H4+Hd)/3-Hd) Sst1v stat* B Sst1v sism* B Ssq1h * ((H2+H3+H4+Hd)/2-Hd) Ssq1v * B \$\gamma_1'*\text{Hd}^3*\kps^*/3+(2*c1'*\kps^{+0.5}+\gamma1'*\kps^{+*}\text{H2}')*\text{Hd}^2/2	(kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m)	383,58 63,33 0,00 0,00 233,18 0,00 0,00	383,58 63,33 0,00 0,00 233,18 0,00 0,00	383,58 96,93 0,00 0,00 246,99 0,00 0,00		
MOMENTI DOVUTI ALLE FORZE ESTERNE Mfext1 = mp+ms (kNm/m) 0,00 Mfext2 = (fp+fs)*(H3 + H2) (kNm/m) 0,00 Mfext3 = (vp+vs)*(B1 +B2 + B3/2) (kNm/m) 1,70							

10.1.4 SPINTE IN CONDIZIONE SISMICA -

SPINTE DEL	TERRENO E DEL SOVRACCARICO ione sismica -		SLE	STR/GEO	EQU/RIB
Sst1 stat =	0,5*γ'*(H2+H3+H4+Hd) ² *ka	(kN/m)	146,59	146,59	146,59
Sst1 sism =	0,5*γ'*(1-kv)*(H2+H3+H4+Hd)²*kas⁻-Sst1 stat	(kN/m)	15,16	15,16	23,61
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	35,33	35,33	37,79
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	24,54	24,54	26,24
- Componente	orizzontale condizione sismica -				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	146,59	146,59	146,59
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	15,16	15,16	23,61
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	35,33	35,33	37,79
Ssq1h acc=	Ssq1 acc*cosδ	(kN/m)	24,54	24,54	26,24
- Componente	verticale condizione sismica -				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	0,00	0,00	0,00
Sst1v sism =	Sst1 sism*senδ	(kN/m)	0,00	0,00	0,00
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	0,00	0,00	0,00
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	0,00	0,00	0,00
- Spinta passiva	a sul dente				
$Sp=\frac{1}{2}*\gamma_{1}'(1-kv)$	$Hd^{2*}kps^{-}+(2*c_{1}'*kps^{-0.5}+\gamma 1' (1-kv) kps^{-*}H2')*Hd$	(kN/m)	0,00	0,00	0,00
MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO - Condizione sismica -			SLE	STR/GEO	EQU/RIB

MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO - Condizione sismica -			SLE	STR/GEO	EQU/RIB			
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	383,58	383,58	383,58			
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	39,67	39,67	61,79			
MSst2 stat =	Sst1v stat* B	(kNm/m)	0,00	0,00	0,00			
MSst2 sism =	Sst1v sism* B	(kNm/m)	0,00	0,00	0,00			
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	234,99	234,99	251,30			
MSsq2 =	Ssq1v * B	(kNm/m)	0,00	0,00	0,00			
MSp =	γ_1 '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ 1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0,00	0,00	0,00			
MOMENTI DOVUTI ALLE FORZE ESTERNE								
Mfext1 =	mp+ms	(kNm/m)		0,00				
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0,00				
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		1,70				

10.1 VERIFICHE GEOTECNICHE

10.1.1 VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. DRENATE

VERIFICA ALLO SCORRIMENTO (STR/GEO)

VER	CIFICA AI	LO SCORRIMENTO (STR/GEO)			
Risul N	tante forze	e verticali (N) Pm + Pt + v + Stv + Sqv perm + Sqv acc	1155,44	(kN/m)	
	tante forze	e orizzontali (T) Sth + Sqh + f	387,12	(kN/m)	
Coef f	ficiente di =	attrito alla base (f) tgφ1'	0,47	(-)	
Fs	scorr.	(N*f + Sp) / T	1,39	>	1,1
VER	RIFICA AI	RIBALTAMENTO (EQU)			
Mom Ms		izzante (Ms) Mm + Mt + Mfext3	5017,20	(kNm/m)	
Mom Mr	ento ribalt =	ante (Mr) MSt + MSq + Mfext1+ Mfext2 + MSp	1270,10	(kNm/m)	
Fs	ribaltar	nento Ms / Mr	3,95	>	1,15
VER	RIFICA C	ARICO LIMITE DELLA FONDAZIONE (STR/GEO)			
Risul N	tante forze	e verticali (N) Pm + Pt + v + Stv + Sqv (+ Sovr acc)	Nmin 1155,44	Nmax 1623,90	(kN/m)

Risultante forze verticali (N)	Nmin	Nmax`	
N = Pm + Pt + v + Stv + Sqv (+ Sovr acc)	1155,44	1623,90	(kN/m)
Risultante forze orizzontali (T)			
T = Sth + Sqh + f - Sp	387,12	387,12	(kN/m)
Risultante dei momenti rispetto al piede di valle (MM)			
$MM = \sum M$	3747,10	5948,87	(kNm/m)
Momento rispetto al baricentro della fondazione (M)			
M = Xc*N - MM	585,78	140,74	(kNm/m)

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 92 di 116

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		15,00 25,00 13,53		(kPa) (°) (kN/m³)		
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		32,00		(kN/m ²)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0,51 6,49	0,09 7,33	(m) (m)		
I valori di Nc, N	lq e Ng sono stati valutati con le espressioni suggerite da \	/esic (1975)					
$\begin{array}{llllllllllllllllllllllllllllllllllll$							
I valori di ic, iq	e i γ sono stati valutati con le espressioni suggerite da Ves	ic (1975)					
$iq = (1 - T/(N + B*c'cotg\phi'))^m$ (1 in cond. nd) 0,51 0,63 (-ic = iq - (1 - iq)/(Nq - 1) 0,46 0,46 (-i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1} 0,37 0,38 (-i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1}) 0,37 0,37 0,38 (-i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1}) 0,37 0,37 0,38 (-i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1}) 0,37 0,38 (-i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1}) 0,37 0,38 (-i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1}) 0,37 0,38 (-i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1}) 0,37 0,38 (-i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1}) 0,37 0,38 (-i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1}) 0,37 0,38 (-i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1}) 0,37 0,38 (-i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1}) 0,37 0,38 (-i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1}) 0,37 0,38 (-i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1}) 0,37 0,37 0,38 (-i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1							
(fondazione nastriforme m = 2)							
qlim	(carico limite unitario)		494,14	537,14	(kN/m ²)		
FS carico lir		min 2,	77	>	4.4		
ra carico ili		max 2 ,	42	>	1,4		

10.1.2 VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. DRENATE

Condizione sismica +

VERIFICA ALLO SCORRIMENTO

Fs	=	(N*f + Sp) / T	1,80	>	1
f	=	tgφ1'	0,47	(-)	
Coeffi	ciente di	attrito alla base (f)			
T		e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	301,92	(kN/m)	
Dioulto	onto forza	a orizzontoli (T)			
Risulta N	ante forze	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	1163,38	(kN/m)	

VERIFICA AL RIBALTAMENTO

Fr	=	Ms / Mr	5,73	>	1
Mr	=	MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	875,84	(kNm/m)	
Mon	nento ribali	tante (Mr)			
Ms		Mm + Mt + Mfext3	5017,20	(kNm/m)	
Mon	nento stabi	ilizzante (Ms)			

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Rist	ultante forz	ze verticali (N)	Nmin	Nmax`	
N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	1163,38	1228,00	(kN/m)
Rist	ultante forz	ze orizzontali (T)			
Т	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	301,92		(kN/m)
Rist	ultante dei	momenti rispetto al piede di valle (MM)			
MM	=	ΣΜ	4107,04	4410,73	(kNm/m)
Mor	nento risp	etto al baricentro della fondazione (M)			
M	=	Xc*N - MM	255,65	194,27	(kNm/m)

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 94 di 116

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0,5* γ 1*B*N γ *i γ

FS carico lin	nite F = qlim*B*/ N	Nmin Nmax	3,86 3,82	> >	1,2		
qlim	(carico limite unitario)		636,46	652,41	(kN/m ²)		
(fondazione nastriforme m = 2)							
iq = (1 - T/(N + ic = iq - (1 - iq)/iq = (1 - T/(N + iq)/iq = (1 - T/(/(Nq - 1)		0,61 0,57 0,48	0,63 0,59 0,48	(-) (-)		
I valori di ic, iq e i γ sono stati valutati con le espressioni suggerite da Vesic (1975)							
	$('/2)^*e^{(\pi^*tg(\phi'))}$ (1 in cond. nd) (ϕ') (2+ π in cond. nd) $(tg(\phi'))$ (0 in cond. nd)		10,66 20,72 10,88		(-) (-) (-)		
I valori di Nc, No	q e Ng sono stati valutati con le espressioni suggerite	da Vesic (1975))				
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0,22 7,06	0,16 7,18	(m) (m)		
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		32,00		(kN/m ²)		
c1' φ1' γ ₁	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		15,00 25,00 13,53		(kN/mq) (°) (kN/m³)		

Condizione sismica -

VERIFICA ALLO SCORRIMENTO

VERIFIC	A AL PIRALTAMENTO			
Fs =	(N*f + Sp) / T	1,74	>	1
Coefficien f =	0,47	(-)		
Risultante T =	forze orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	293,34	(kN/m)	
Risultante N =	forze verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	1091,66	(kN/m)	

VERIFICA AL RIBALTAMENTO Momento stabilizzante (Ms) Ms = Mm + Mt + Mfext3 5017,20 (kNm/m) Momento ribaltante (Mr) Tenno de la companya del companya de la companya de la companya del companya de la company	Fr	=	Ms / Mr	3,98	>	1
Momento stabilizzante (Ms) Ms = Mm + Mt + Mfext3 5017,20 (kNm/m)			• •	1261,36	(kNm/m)	
Momento stabilizzante (Ms)	Mome	ento ribalta	ante (Mr)			
VERIFICA AL RIBALTAMENTO				5017,20	(kNm/m)	
	VER	IFICA AL	. RIBALTAMENTO			

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risulta	ante forze	e verticali (N)	Nmin Nmax		
N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	1091,66	1156,27	(kN/m)
Risulta	ante forze	e orizzontali (T)			
T	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	293,34		(kN/m)
Risulta MM		nomenti rispetto al piede di valle (MM) ΣM	3851,31	4155,01	(kNm/m)
	ento rispet =	tto al baricentro della fondazione (M) Xc*N - MM	242,41	181,02	(kNm/m)

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

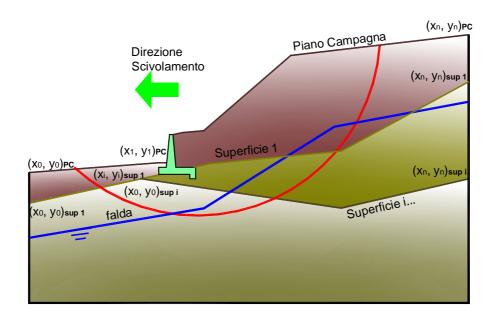
 RS3T
 30 D 26
 CL
 MU0700 001
 B
 96 di 116

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0,5* γ 1*B*N γ *i γ

FS carico lin	nite F = qlim*B*/ N	Nmin	4,04	>	1,2
qlim	(carico limite unitario)		625,56	642,59	(kN/m ²)
(fondazione nas	striforme m = 2)				
$i\gamma = (1 - T/(N + I))$	B*c'cotgφ')) ^{m+1}		0,47	0,47	(-)
iq = (1 - 1/(10 + 1)) ic = iq - (1 - iq)	31,77		0,56	0,62	(-) (-)
I valori di ic, iq e	e iγ sono stati valutati con le espressioni suggerite da B*c'cotgφ')) ^m (1 in cond. nd)	a Vesic (1975)	0.60	0.62	()
Nc = $(Nq - 1)/tg$ N γ = 2* $(Nq + 1)$	(φ') (2+π in cond. nd)		20,72 10,88		(-) (-)
$Nq = tg^2(45 + \varphi)$	'/2)*e ^{(π*tg(φ'))} (1 in cond. nd)		10,66		(-)
I valori di Nc, No	q e Ng sono stati valutati con le espressioni suggerite	e da Vesic (1975)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0,22 7,06	0,16 7,19	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	32,00		(kN/m ²)	
γ1	peso unità di volume terreno fondaz.	13,53	(kN/m ³)		
c1' φ1'	coesione terreno di fondaz. angolo di attrito terreno di fondaz.		15,00 25,00		(kN/mq) (°)

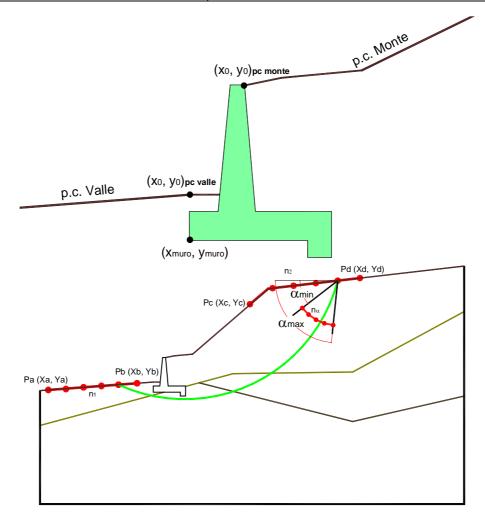

Nmax

3,99

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LLEGAME RCARA D	NTO PALERI IR. – CALTAN	NA – CATANIA – 10 – CATANIA ISETTA XIRBI (L		0
RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO	COMMESSA RS3T	LOTTO 30 D 26	CODIFICA	DOCUMENTO MU0700 001	REV.	FOGLIO 97 di 116

10.1.3 VERIFICA DI STABILITÀ GLOBALE - COND. DRENATE

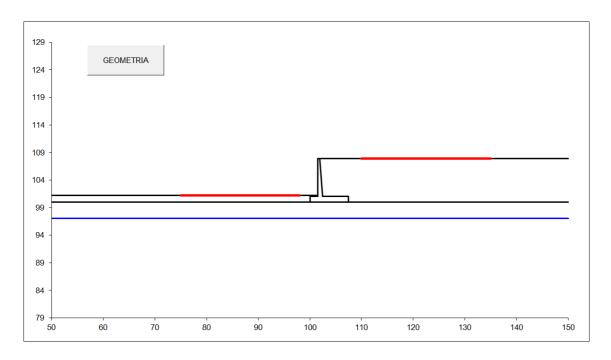
Le analisi di stabilità, di seguito riportate, sono state effettuate limitando la ricerca delle potenziali superfici di scorrimento critiche alla fascia più prossima alla linea ferroviaria.



	γ [kN/m³]	φ [°]	c [kPa]	Descrizione
materiale 1	20.00	38	0	Rilevato - riporto
materiale 2	19.00	25	19.5	Unità geotecnica 1 - a2
materiale 3	20.00	20	22.5	Unità geotecnica 2 - TRV
materiale 4				

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

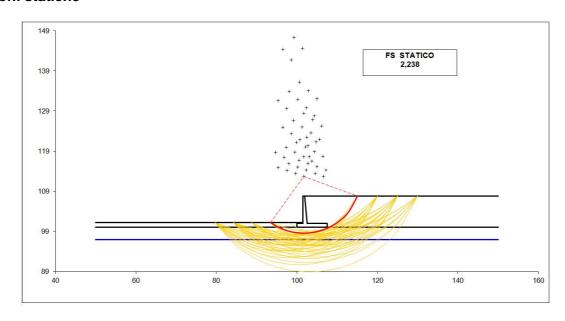
 RS3T
 30 D 26
 CL
 MU0700 001
 B
 98 di 116



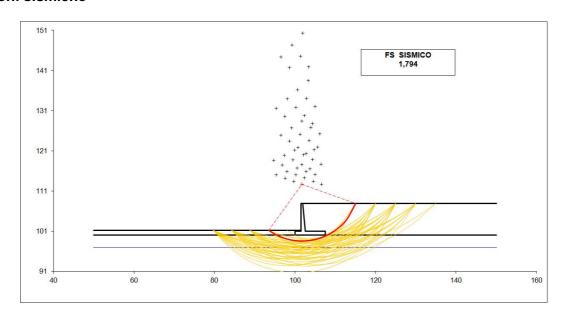
p.c. valle		lle		p.c. moi	nte		superfic	ie 1		superfic	ie 2		superfic	ie 3			
		materiale 1					materi	ale 2		mater	ale 4		materi	ale 2		" da	
	X	у		x	у		x	У		X	у		X	у		X	у
0	100,000	101,200	0	101,900	107,850	0	50,000	100,000	0			0			0	50,000	97,000
1	50,000	101,200	1	150,000	107,850	1	150,000	100,000	1			1			1	150,000	97,000
2			2			2			2			2			2		
3			3			3			3			3			3		
4			4			4			4			4			4		
5			5			5			5			5			5		
6			6			6			6			6			6		
7			7			7			7			7			7		
8			8			8			8			8			8		
9			9			9			9			9			9		
10			10			10			10			10			10		

Sovraccarichi

		Xin	q _{in}	X _{fin}	q _{fin}	% sisma
sovraccarico 1	~	113,650	57,69	116,250	57,69	20%
sovraccarico 2						



#strisce
30


# Superfici Calcolate	F: Bish	
89	STATICO	2,238
09	SISMICO	1,794

Condizioni statiche

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO CO	LLEGAME RCARA D	NTO PALERI IR. – CALTAN	NA – CATANIA – 10 – CATANIA ISETTA XIRBI (L		10
RI05: MURO DI SOSTEGNO IN SX MU07	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RELAZIONE DI CALCOLO	RS3T	30 D 26	CL	MU0700 001	В	100 di 116

Condizioni sismiche

10.1.4 VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE – C. NON DRENATE

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Momento ribaltante (Mr)

Risultante forze verticali (N)									
N	=	Pm + Pt + v + Stv + Sqv perm + Sqv acc	1155,44	(kN/m)					
		orizzontali (T)							
Т	=	Sth + Sqh + f	387,12	(kN/m)					
Coefficiente di attrito alla base (f)									
f	=	tgφ1'	0,47	(-)					
Fs	scorr.	(N*f + Sp) / T	1,39	>	1,1				
VER	VERIFICA AL RIBALTAMENTO (EQU)								
Mome	Momento stabilizzante (Ms)								
Ms	=	Mm + Mt + Mfext3	5017,20	(kNm/m)					

momonto noa	itanto (m)		
Mr =	MSt + MSq + Mfext1+ Mfext2 + MSp	1270,10	(kNm/m)

Fs ribaltamento Ms / Mr 3,95 > 1,15

VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)

Risultante forze verticali (N)	Nmin	Nmax	
N = Pm + Pt + v + Stv + Sqv (+ Sovr acc)	1155,44	1623,90	(kN/m)
Risultante forze orizzontali (T)			
T = Sth + Sqh + f - Sp	387,12	387,12	(kN/m)
Risultante dei momenti rispetto al piede di valle (MM)			
$MM = \Sigma M$	3747,10	5948,87	(kNm/m)
Momento rispetto al baricentro della fondazione (M)			
M = Xc*N - MM	585,78	140,74	(kNm/m)

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 102 di 116

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

ra carico III	inte r = qiiii b / N	Marian	4 44		1,4
FS carico lir	mite F = qlim*B*/ N	Nmin	1,67	>	1.1
qlim	(carico limite unitario)		298,25	311,95	(kN/m^2)
(fondazione na	striforme m = 2)				
$i\gamma = (1 - T/(N +$	B*c'cotgφ')) ^{m+1}				(-)
iq = (1 - T/(N + ic = (1 - m T / (B*c'cotgφ')) ^m (1 in cond. nd) B* cu*Nc))		1,00 0,69	1,00 0,73	(-) (-)
	e iγ sono stati valutati con le espressioni suggerite da	a Vesic (1975)	4.00		
$N\gamma = 2*(Nq + 1)$	*tg(φ') (0 in cond. nd)		0,00		(-)
Nc = (Nq - 1)/tg	$g(\varphi')$ (2+ π in cond. nd)		5,14		(-)
$Nq = tg^2(45 + q)$	$0'/2) * e^{(\pi^* tg(\phi'))}$ (1 in cond. nd)		1,00		(-)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite	e da Vesic (1975	5)		
B*= B - 2e	larghezza equivalente		6,49	7,33	(m)
e = M / N	eccentricità		0,51	0,09	(m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		32,00		(kN/m^2)
γ1	peso unità di volume terreno fondaz.		19,00		(kN/m ³)
cu	res. al taglio nd terreno di fondaz.		75,00		(kPa)

Nmax

1,41 >

10.1.5 VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE – C. NON DRENATE

Condizione sismica +

VERIFICA ALLO SCORRIMENTO

Fr	=	Ms / Mr	5,73	>	1
Mon Mr	nento riba =	ltante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	875,84	(kNm/m)	
	nento stab =	oilizzante (Ms) Mm + Mt + Mfext3	5017,20	(kNm/m)	
VEF	RIFICA A	AL RIBALTAMENTO			
Fs	=	(N*f + Sp) / T	1,80	>	1
Coe f	efficiente d =	di attrito alla base (f) tgφ1'	0,47	(-)	
	ıltante forz =	ze orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	301,92	(kN/m)	
N	=	ze verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	1163,38	(kN/m)	

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forze	verticali (N)	Nmin	Nmax`	
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	1163,38	1228,00	(kN/m)
Risultante forze	orizzontali (T)			
T =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	301,92		(kN/m)
Risultante dei m	omenti rispetto al piede di valle (MM)			
MM =	Σ M	4107,04	4410,73	(kNm/m)
Momento rispett	o al baricentro della fondazione (M)			
M =	Xc*N - MM	255,65	194,27	(kNm/m)

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 104 di 116

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0,5* γ 1*B*N γ *i γ

FS carico lin	nite F = qlim*B*/ N	Nmin Nmax	2,02 1,95	> >	1,2
qlim	(carico limite unitario)		332,09	333,56	(kN/m ²)
(fondazione nas	striforme m = 2)				
iq = (1 - T/(N + ic = (1 - m T / (ic + ic))) $i\gamma = (1 - T/(N + ic + ic))$	B* cu*Nc))		1,00 0,78 	1,00 0,78	(-) (-)
I valori di ic, iq	e iγ sono stati valutati con le espressioni suggerite da	Vesic (1975)			
	$('/2)^*e^{(\pi^*tg(\phi'))}$ (1 in cond. nd) (ϕ') (2+ π in cond. nd) $(t)^*tg(\phi')$ (0 in cond. nd)		1,00 5,14 0,00		(-) (-) (-)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite	da Vesic (1975	i)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0,22 7,06	0,16 7,18	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		32,00		(kN/m ²)
γ1	peso unità di volume terreno fondaz.		19,00		(kN/m³)
cu	res. al taglio nd terreno di fondaz.		75,00		(kN/mq)

Condizione sismica -

VERIFICA ALLO SCORRIMENTO

		Sst1h + Ssq1h + fp + fs +Ps h + Ptsh di attrito alla base (f)	293,34	(kN/m)	
Fs	=	tgφ1' (N*f + Sp) / T	0,47 1,74	(-)	1

Fr	=	Ms / Mr	3,98	>	1
Mr	=	MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	1261,36	(kNm/m)	
Mom	ento ribalta	ante (Mr)			
Ms	=	Mm + Mt + Mfext3	5017,20	(kNm/m)	
Mom	ento stabil	izzante (Ms)			
VER	IFICA AL	RIBALTAMENTO			

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

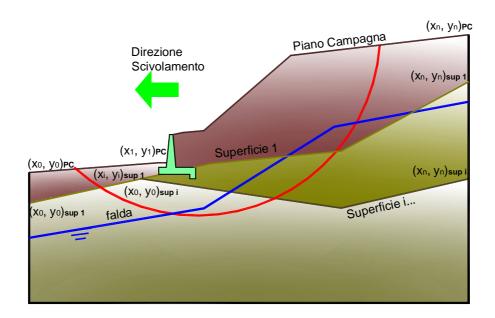
Risult	ante forze	verticali (N)	Nmin	Nmax	
N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	1091,66	1156,27	(kN/m)
Dicult	anto forzo	e orizzontali (T)			
Т	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	293,34		(kN/m)
Rigult	ante dei m	nomenti rispetto al piede di valle (MM)			
		_ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `			
MM	=	Σ M	3851,31	4155,01	(kNm/m)
Mome	ento rispet	to al baricentro della fondazione (M)			
M	=	Xc*N - MM	242,41	181,02	(kNm/m)
141		76 14 18181	272,71	101,02	(10.000/10.7

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 MU0700 001
 B
 106 di 116

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

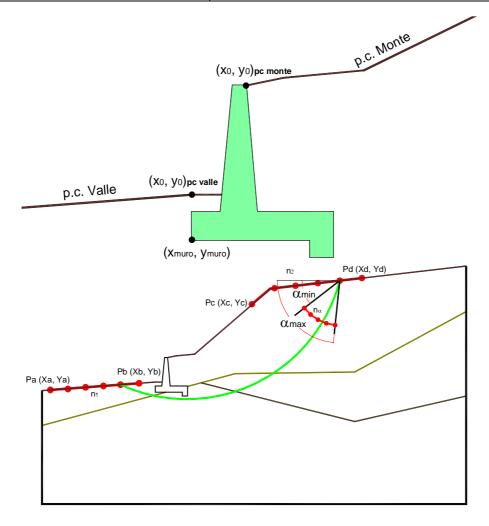

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico li	mite F = qlim*B*/ N	Nmin Nmax	2,16 2,09	>	1,2
qlim	(carico limite unitario)		334,47	335,99	(kN/m ²)
(fondazione na	striforme m = 2)				
•	B*c'cotgφ')) ^{m+1}			5,75	(-)
iq = (1 - T/(N + ic = (1 - m T /	0177		1,00 0,78	1,00 0,79	(-) (-)
l valori di ic, iq	e iγ sono stati valutati con le espressioni suggerite da	a Vesic (1975)			
Nq = $tg^2(45 + q)$ Nc = $(Nq - 1)/t_1$ N γ = $2*(Nq + 1)$	$g(\phi')$ (2+ π in cond. nd)		1,00 5,14 0,00		(-) (-)
ŕ	lq e Ng sono stati valutati con le espressioni suggerit	e da Vesic (1975	5)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0,22 7,06	0,16 7,19	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		32,00		(kN/m ²)
γ1	peso unità di volume terreno fondaz.		19,00		(kN/m ³)
cu	res. al taglio nd terreno di fondaz.		75,00		(kN/mq)

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR. – CALTANISETTA XIRBI (LOTTO 3) OPERE DI SOSTEGNO DI LINEA								
RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO	COMMESSA RS3T	LOTTO 30 D 26	CODIFICA	DOCUMENTO MU0700 001	REV.	FOGLIO 107 di 116			

10.1.6 VERIFICA DI STABILITÀ GLOBALE – COND. NON DRENATE

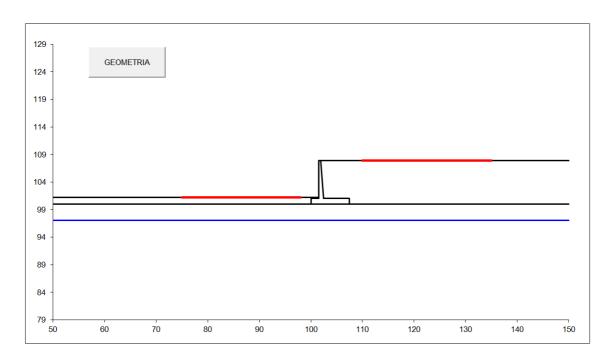
Le analisi di stabilità, di seguito riportate, sono state effettuate limitando la ricerca delle potenziali superfici di scorrimento critiche alla fascia più prossima alla linea ferroviaria.



	γ [kN/m³]	φ [°]	c [kPa]	Descrizione
materiale 1	20,00	35	0	Rilevato - riporto
materiale 2	19,00	25	75	Unità geotecnica 1 - a2
materiale 3	20,00	20	150	Unità geotecnica 2 - TRV
materiale 4				

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

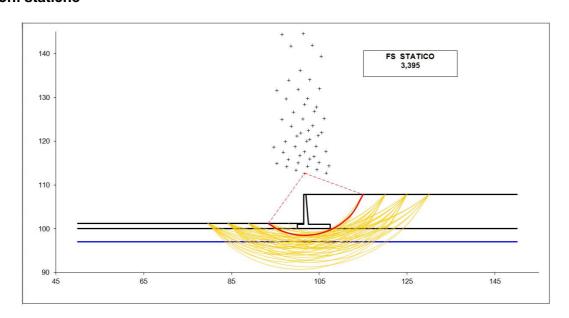
 RS3T
 30 D 26
 CL
 MU0700 001
 B
 108 di 116



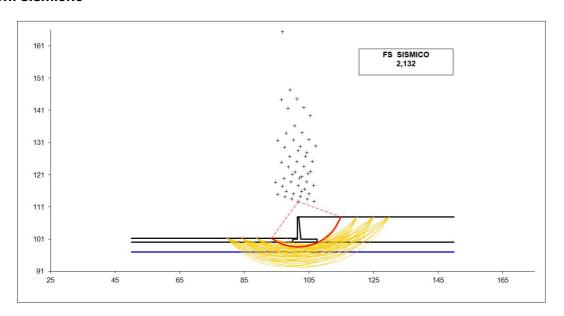
	p.c. va	lle		p.c. moi	nte		superfic	ie 1		superfic	ie 2		superfic	ie 3			
		materiale 1					materi	ale 2		mater	ale 4		materi	iale 2		Ç 'da	
	x	У		x	у		x	у		х	у		X	у		Х	у
0	100,000	101,200	0	101,900	107,850	0	50,000	100,000	0			0			0	50,000	97,000
1	50,000	101,200	1	150,000	107,850	1	150,000	100,000	1			1			1	150,000	97,000
2			2			2			2			2			2		
3			3			3			3			3			3		
4			4			4			4			4			4		
5			5			5			5			5			5		
6			6			6			6			6			6	,	
7			7			7			7			7			7		
8			8			8			8			8			8		
9			9			9			9			9			9		
10			10			10			10			10			10		

Sovraccarichi

		X _{in}	q _{in}	X _{fin}	q _{fin}	% sisma
sovraccarico 1	~	113,650	57,69	116,250	57,69	20%
sovraccarico 2						



#striso	e
30	


# Superfici Calcolate		FS Bishop			
89	STATICO	3,395			
	SISMICO	2,132			

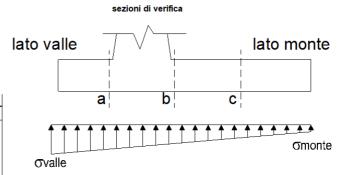
Condizioni statiche

Condizioni sismiche

10.1 VERIFICHE STRUTTURALI

10.1.1 CALCOLO DELLE SOLLECITAZIONI

Reazione del terreno


ovalle = N / A + M / Wgg

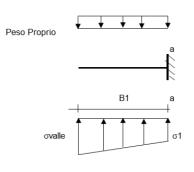
 σ monte = N / A - M / Wgg

 $A = 1.0*B = 7,50 (m^2)$

 $Wgg = 1.0*B^2/6 = 9,38$ (m³)

	N	M	σvalle	omonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
statico	1155,44	585,78	216,54	91,57
Statico	1623,90	140,74	231,53	201,51
sisma+	1163,38	255,65	182,39	127,85
Sisilia	1228,00	194,27	184,46	143,01
	1091,66	242,41	171,41	119,70
sisma-	1156,27	181,02	173,48	134,86

Mensola Lato Valle


Peso Proprio. PP = 25,00 (kN/m)

 $\begin{aligned} \text{Ma} &= \ \sigma 1^* B 1^2 / 2 + (\sigma \text{valle} - \sigma 1)^* B 1^2 / 3 - PP^* B 1^2 / 2^* (1 \pm kv) \\ \text{Va} &= \ \sigma 1^* B 1 + (\sigma \text{valle} - \sigma 1)^* B 1 / 2 - PP^* B 1^* (1 \pm kv) \end{aligned}$

	ovalle	σ1	Ма	Va	╛
caso	[kN/m ²]	[kN/m²]	[kNm]	[kN]	1
statico	216,54	191,55	206,11	268,57	1
	231,53	225,53	230,10	305,29	
sisma+	182,39	171,48	172,10	224,01	
	184,46	176,17	176,28	229,73	

161,07

165,76

Mensola Lato Monte

sisma-

171,41

173,48

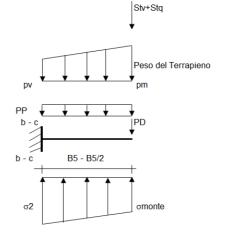
PP	=	25,00	(kN/m^2)	peso proprio soletta fondazione
PD	=	0,00	(kN/m)	peso proprio dente

161,71

164,14

208,11

213,83


			•	•	
		Nmin	N max stat	N max sism	
pm	=	158,60	242,25	170,14	(kN/m^2)
pvb	=	158,60	242,25	170,14	(kN/m^2)
pvc	=	158,60	242,25	170,14	(kN/m ²)

$$\label{eq:monte-decomposition} \begin{split} Mb = & (\sigma_{monte} - (pvb + PP)^*(1\pm kv))^*B5^2/2 + (\sigma_{2b} - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1\pm kv)^*B5^2/3 + \\ - & (SN+Sqv)^*B5 - PD^*(1\pm kv)^*(B5-Bd/2) - PD^*kh^*(Hd+H2/2) + Msp + Sp^*H2/2 \end{split}$$

 $\begin{aligned} &\text{Mc} = &(\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2)^2/2 + (\sigma 2c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(1 \pm kv)^*(B5/2)^2/3 + \\ &- &(Stv + Sqv)^*(B5/2) - PD^*(1 \pm kv)^*(B5/2 - Bd/2) - PD^*kh^*(Hd + H2/2) + Msp + Sp^*H2/2 \end{aligned}$

 $Vb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma 2b - \sigma_{monte})^*B5/2 - (pm-pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

 $Vc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma 2c - \sigma_{monte})^*(B5/2)/2 - (pm-pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

RI05: MURO DI SOSTEGNO IN SX MU07 RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30 D 26	CL	MU0700 001	В	112 di 116

	omonte	σ 2b	Mb	Vb	σ2c	Мс	Vc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m ²]	[kNm]	[kN]
ctotico	91,57	174,89	-803,19	-251,85	133,23	-244,19	-177,99
statico	201,51	221,52	-738,43	-278,69	211,52	-195,03	-151,86
aiama I	127,85	164,21	-616,69	-216,38	146,03	-173,11	-130,91
sisma+	143,01	170,64	-612,24	-221,87	156,83	-167,45	-128,20
o i o m o	119,70	154,17	-583,84	-204,80	136,94	-163,91	-123,95
sisma-	134,86	160,61	-570,42	-206,71	147,73	-156,01	-119,45

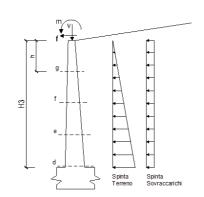
CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2}$ Ka_{orizz.*} γ *(1±kv)*h²*h/3

 $\label{eq:Mt_sism} \text{Mt sism} = \ \ \text{$1\!\!/_2$} * \gamma \ \text{*}(\text{Kas}_{\text{orizz.}} \text{*}(1\pm kv)\text{-}\text{Ka}_{\text{orizz.}}) \text{*}h^2\text{*}h/2 \quad o \ \text{*}h/3$

 $Mq = \frac{1}{2} Ka_{\text{orizz}} *q^*h^2$ $M_{\text{ext}} = m + f^*h$ $M_{\text{inerzia}} = \sum Pm_i *b_i *kh$


 $N_{ext} = v$

N $_{pp+inerzia}$ = $\Sigma Pm_i^*(1\pm kv)$

Vt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²

Vt sism = $\frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv) - Ka_{orizz.}) * h^2$

 $\begin{array}{rcl} Vq & = Ka_{\text{orizz}}*q*h \\ V_{\text{ext}} & = f \\ V_{\text{inerzia}} & = \Sigma Pm_{\text{i}}*kh \end{array}$

condizione statica

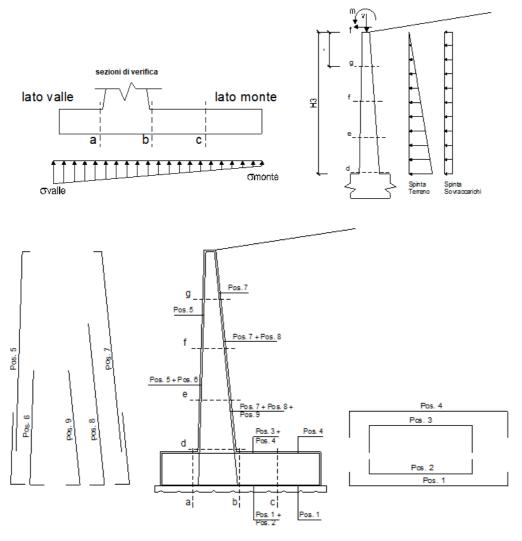
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N_{pp}	N _{tot}
SCZIONE	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6,85	331,33	587,43	0,00	918,75	1,00	119,88	120,88
е-е	5,14	139,78	330,43	0,00	470,21	1,00	80,27	81,27
f-f	3,43	41,42	146,86	0,00	188,27	1,00	47,09	48,09
g-g	1,71	5,18	36,71	0,00	41,89	1,00	20,34	21,34

sezione	h	Vt	Vq	$V_{\rm ext}$	V_{tot}
36210116	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6,85	145,11	171,51	0,00	316,62
е-е	5,14	81,62	128,63	0,00	210,26
f-f	3,43	36,28	85,76	0,00	122,03
g-g	1,71	9,07	42,88	0,00	51,95

condizione sismica +

sezione	h	Mt stat	Mt _{sism}	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N_{tot}	
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]	
d-d	6,85	254,87	42,08	177,55	0,00	21,86	496,36	1,00	123,60	124,60	
e-e	5,14	107,52	17,75	99,87	0,00	11,27	236,42	1,00	82,77	83,77	
f-f	3,43	31,86	5,26	44,39	0,00	4,56	86,06	1,00	48,56	49,56	
g-g	1,71	3,98	0,66	11,10	0,00	1,02	16,76	1,00	20,97	21,97	

sezione	e h Vt _{stat}		Vt sism	Vq	V _{ext}	V _{ext} V _{inerzia}		
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	
d-d	6,85	111,62	18,43	51,84	0,00	7,45	189,34	
e-e	5,14	62,79	10,37	38,88	0,00	4,99	117,02	
f-f	3,43	27,91	4,61	25,92	0,00	2,93	61,36	
g-g	1,71	6,98	1,15	12,96	0,00	1,26	22,35	


condizione sismica -

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6,85	254,87	26,36	178,94	0,00	21,86	482,02	1,00	116,15	117,15
е-е	5,14	107,52	11,12	100,65	0,00	11,27	230,57	1,00	77,78	78,78
f-f	3,43	31,86	3,29	44,73	0,00	4,56	84,44	1,00	45,63	46,63
g-g	1,71	3,98	0,41	11,18	0,00	1,02	16,60	1,00	19,70	20,70

sezione	- stat		Vt sism	Vt _{sism} Vq		V _{inerzia}	V_{tot}	
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	
d-d	6,85	111,62	11,54	52,24	0,00	7,45	182,86	
e-e	5,14	62,79	6,49	39,18	0,00	4,99	113,45	
f-f	3,43	27,91	2,89	26,12	0,00	2,93	59,84	
g-g	1,71	6,98	0,72	13,06	0,00	1,26	22,02	

10.1.2 VERIFICHE SLU

Armatura minima

L'armatura minima principale in fondazione deve essere in percentuale non inferiore allo 0.20% dell'area di conglomerato.

L'armatura minima principale presente in zona tesa deve essere in percentuale non inferiore allo 0.15% dell'area di conglomerato per l'intera lunghezza.

L'armatura secondaria, ortogonale a quella principale, deve essere pari al massimo delle seguenti percentuali:

- 0.10% dell'area di conglomerato in entrambi i lembi;
- 20% dell'armatura principale.

Muro h = 6,85m su fondazione diretta

ARMATURE

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato
1	10,0	20		5	10,0	20	
2	0,0	0		6	0,0	0	
3	0,0	0		7	10,0	26	
4	10,0	26		8	0,0	0	
				9	0.0	0	

Pertanto l'armatura secondaria sarà pari a:

sez a - a: $\phi 14/20$ cm (ripartitori in fondazione e in elevazione);

sez b – b: φ14/20cm (ripartitori in fondazione);

sez c – c: ϕ 14/20cm (ripartitori in fondazione);

sez d - d: $\phi 14/20$ cm (ripartitori in fondazione);

sez e - e: ϕ 14/20cm (ripartitori in fondazione);

sez f – f: ϕ 14/20cm (ripartitori in fondazione);

sez g - g: $\phi 14/20$ cm (ripartitori in fondazione);

Sez.	M	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm²)	(cm ²)	(kNm)
a - a	230.10	0.00	1.00	31.42	53.09	1066.24
b - b	-803.19	0.00	1.00	53.09	31.42	1760.86
C - C	-244.19	0.00	1.00	53.09	31.42	1760.86
d - d	918.75	120.88	1.00	53.09	31.42	1809.64
е -е	470.21	81.27	0.85	53.09	31.42	1475.96
f-f	188.27	48.09	0.70	53.09	31.42	1149.82
g - g	41.89	21.34	0.55	53.09	31.42	829.79

Sez.	V _{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	_
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- -
a - a	305.29	1.00	357.02	14	20	20	21.8	3079.97	Armatura a taglio non necessaria
b - b	278.69	1.00	425.27	14	20	20	21.8	3079.97	Armatura a taglio non necessaria
C - C	177.99	1.00	425.27	14	20	20	21.8	3079.97	Armatura a taglio non necessaria
d - d	316.62	1.00	441.75	14	20	20	21.8	3079.97	Armatura a taglio non necessaria
е -е	210.26	0.85	399.34	14	20	20	21.8	2571.73	Armatura a taglio non necessaria
f - f	122.03	0.70	354.94	14	20	20	21.8	2063.48	Armatura a taglio non necessaria
g - g	51.95	0.55	307.40	14	20	20	21.8	1555.23	Armatura a taglio non necessaria

10.1.3 VERIFICHE SLE TENSIONE

Condizione Statica

Sez.	M	N	h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	185.67	0.00	1.00	31.42	53.09	1.46	71.06
b - b	-553.79	0.00	1.00	53.09	31.42	3.90	128.02
C - C	-158.48	0.00	1.00	53.09	31.42	1.11	36.63
d - d	669.58	120.88	1.00	53.09	31.42	4.81	144.47
e -e	340.80	81.27	0.85	53.09	31.42	3.29	88.39
f-f	135.54	48.09	0.70	53.09	31.42	1.89	43.82
g - g	29.90	21.34	0.55	53.09	31.42	0.68	12.50

Condizione Sismica

COMMIZION	ic olollica						
Sez.	M	N	h	Af	A'f	σC	o f
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	175.41	0.00	1.00	31.42	53.09	1.38	67.13
b - b	-552.45	0.00	1.00	53.09	31.42	3.89	127.71
C - C	-157.05	0.00	1.00	53.09	31.42	1.10	36.30
d - d	496.36	117.15	1.00	53.09	31.42	3.59	104.77
е -е	236.42	78.78	0.85	53.09	31.42	2.30	59.42
f-f	86.06	46.63	0.70	53.09	31.42	1.21	26.45
g - g	16.76	20.70	0.55	53.09	31.42	0.39	6.25

10.1.4 VERIFICHE SLE FESSURAZIONE

condizione Frequente

Sez.	M	N	h	Af	A'f	σc	σf	wk	W _{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	185.67	0.00	1.00	31.42	53.09	1.46	71.06	0.106	0.200
b - b	-553.79	0.00	1.00	53.09	31.42	3.90	128.02	0.166	0.200
C - C	-158.48	0.00	1.00	53.09	31.42	1.11	36.63	0.048	0.200
d - d	669.58	120.88	1.00	53.09	31.42	4.81	144.47	0.188	0.200
e -e	340.80	81.27	0.85	53.09	31.42	3.29	88.39	0.107	0.200
f-f	135.54	48.09	0.70	53.09	31.42	1.89	43.82	0.049	0.200
g - g	29.90	21.34	0.55	53.09	31.42	0.68	12.50	0.013	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

condizione Quasi Permanente

Sez.	M	N	h	Af	A'f	σC	σf	wk	W _{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	125.15	0.00	1.00	31.42	53.09	0.98	47.90	0.071	0.200
b - b	-240.57	0.00	1.00	53.09	31.42	1.69	55.61	0.072	0.200
C - C	-48.85	0.00	1.00	53.09	31.42	0.34	11.29	0.015	0.200
d - d	347.60	120.88	1.00	53.09	31.42	2.54	70.13	0.091	0.200
e -e	159.68	81.27	0.85	53.09	31.42	1.58	37.79	0.045	0.200
f-f	55.04	48.09	0.70	53.09	31.42	0.79	15.39	0.017	0.200
g - g	9.78	21.34	0.55	53.09	31.42	0.23	2.89	0.003	0.200