COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

U.O. INFRASTRUTTURE NORD

PROGETTO DEFINITIVO

TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3)

Opere di sostegno viabilità - Lotto 3a

NV07: Muro ad U MU19A

Relazione di calcolo

SCALA:
-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

RS3T 30 D 26 CL MU19A0 001 B

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Gen-2020	M.Salleolini	Gen-2020	A.Barreca	Gen-2020	F.Sacchi
В	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Apr-2020	M.Salleolini	Apr-2020	A.Barreca	Apr-2020	Apr-2020
				100000				TTURE HOR
								CALPERR - Us
								, E &

File: RS3T.3.0.D.26.CL.MU.19.A.0.001.B

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU190A 001
 B
 2 di 49

INDICE

1	PR	EMESSA	5
2	NC	DRMATIVA DI RIFERIMENTO	6
3	MA	ATERIALI	7
	3.1	Calcestruzzo	7
	3.2	Acciaio B450C	7
4	IN	QUADRAMENTO GEOTECNICO	10
	4.1	Terreno di ricoprimento/rinterro	10
	4.2	Indagini geotecniche eseguite	10
	4.3	Stratigrafia	10
	4.4	Categoria di sottosuolo	10
	4.4	1.1 Interazione terreno-struttura	10
5	CA	RATTERIZZAZIONE SISMICA	12
	5.1	VITA NOMINALE E CLASSE D'USO	12
	5.2	PARAMETRI DI PERICOLOSITÀ SISMICA	12
6	SO	FTWARE DI CALCOLO	15
	6.1	ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO ADOTTATI	15
	6.2	Unità di misura	15
	6.3	GRADO DI AFFIDABILITÀ DEL CODICE	15
	6.4	VALUTAZIONE DELLA CORRETTEZZA DEL MODELLO	15

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU190A 001
 B
 3 di 49

	6.5	CARATTERISTICHE DELL'ELABORAZIONE	16
	6.6	GIUDIZIO FINALE SULLA ACCETTABILITÀ DEI CALCOLI	16
	6.7	PROGRAMMI DI SERVIZIO	16
7	MUI	RO DI SOTEGNO SEZIONE AD "U"	17
	7.1	GEOMETRIA	17
	7.2	Modello di calcolo	18
	7.3	VALUTAZIONE DELLA RIGIDEZZA DELLE MOLLE	19
	7.4	Analisi dei carichi	20
	7.4.1	l Peso proprio della struttura e carichi permanenti portati	20
	7.4.2	2 Spinta sulle pareti dovuta al terreno ed al sovraccarico permanente	20
	7.4.3	3 Carichi mobili verticali	21
	7.4.4	4 Spinta del sovraccarico sul rilevato	21
	7.4.5	5 Variazione termica	22
	7.5	AZIONE SISMICA INERZIALE	23
	7.6	SPINTA SISMICA TERRENO	24
8	CON	MBINAZIONI DI CARICO	25
	8.1	COMBINAZIONE DEI CARICHI	26
9	DIA	GRAMMI DELLE SOLLECITAZIONI	30
10	0 VER	RIFICA DELLE SEZIONI IN C.A.	34
	10.1	Verifica soletta inferiore	35
	10.2	Verifica piedritti	39

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30 D 78	CL	MU190A 001	В	4 di 49

1	10.3	TABELLA RIASSUNTIVA ARMATURE	. 43
1 1	VER	RIFICA GEOTECNICA	44

1 PREMESSA

La presente relazione ha per oggetto il dimensionamento e le verifiche di resistenza secondo il metodo semiprobabilistico agli Stati Limite (S.L.) del muro di sostegno in approccio al viadotto.

La sezione trasversale ha una larghezza interna di L_{int} = 12.68 m ed un'altezza netta di H_{int} = 10.96 m; lo spessore della platea di fondazione è di S_f = 2.00 m, lo spessore dei piedritti è di S_p = 1.51 m.

Nell'immagine seguente si riportano una sezione trasversale dell'opera.

Quanto riportato di seguito consentirà di verificare che il dimensionamento della struttura è stato effettuato nel rispetto dei requisiti di resistenza richiesti all'opera.

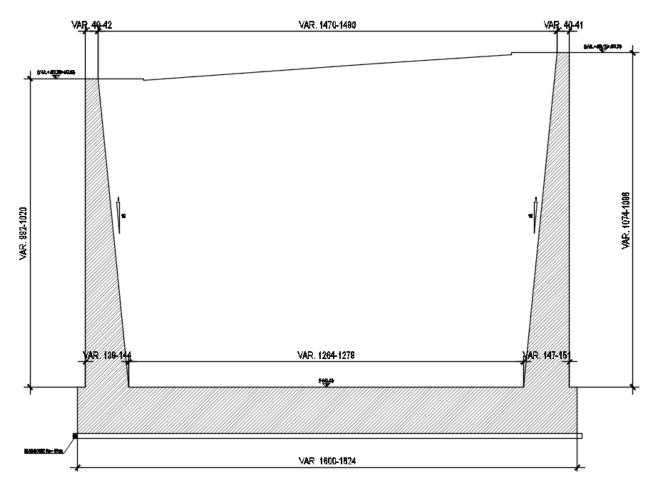


Fig. 1 – Sezione trasversale dell'opera

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU190A 001
 B
 6 di 49

2 NORMATIVA DI RIFERIMENTO

La progettazione è conforme alle normative vigenti nonché alle istruzioni dell'Ente FF.SS.

La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

- L. n. 64 del 2/2/1974"Provvedimento per le costruzioni con particolari prescrizioni per le zone sismiche".
- L. n. 1086 del 5/11/1971"Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica".
- Norme Tecniche per le Costruzioni D.M. 17-01-18;
- Circolare n. 7 del 21 gennaio 2019 Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 17 gennaio 2018;
- Regolamento (UE) N.1299/2014 del 18 novembre 2014 della Commissione Europea. Relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.
- Eurocodici EN 1991-2: 2003/AC:2010.
- RFI DTC SI MA IFS 001 B Manuale di Progettazione delle Opere Civili.
- RFI DTC SI SP IFS 001 B Capitolato generale tecnico di Appalto delle opere civili.
- CNR-DT207/2008 Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni.
- UNI 11104: Calcestruzzo: Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1

OPERE DI SOSTEGNO VIABILITA'

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU190A 001
 B
 7 di 49

3 MATERIALI

RELAZIONE DI CALCOLO

3.1 Calcestruzzo

Per le strutture in elevazione si adotta un calcestruzzo con le caratteristiche riportate di seguito:

Classe d'esposizione: XC4

C32/40: fck \ge 32 MPa Rck \ge 40 MPa

Classe minima di consistenza: S4

Copriferro: 50 mm

In accordo con le norme vigenti, risulta per il materiale in esame:

Classe di resistenza:	C32/40		
Resistenza a compressione cubica caratteristica	$R_{ck} =$	40	N/mm^2
Resistenza a compressione cilindrica caratteristica	$f_{ck} =$	33.2	N/mm^2
Resistenza a compressione cilindrica media	$f_{cm} =$	41.2	N/mm^2
Resistenza a trazione semplice	$f_{ctm} =$	3.10	N/mm^2
Resistenza a trazione per flessione	$f_{ctm} =$	3.72	N/mm^2
Modulo elastico secante medio	$E_{cm} =$	33643	N/mm^2
Resistenza caratteristica a trazione semplice (5%)	$f_{ctk} =$	2.17	N/mm^2
Resistenza caratteristica a trazione semplice (95%)	$f_{ctk} =$	4.03	N/mm^2
Coefficiente di sicurezza SLU:	$\gamma_c =$	1.5	
Resistenza di calcolo a compressione cilindrica SLU:	$f_{cd} =$	18.8	N/mm^2
Resistenza di calcolo a trazione semplice (5%) - SLU:	$f_{ctd} =$	1.45	N/mm^2
Coefficiente di sicurezza SLE:	$\gamma_c =$	1.0	
Resistenza di calcolo a compressione cilindrica SLE:	$f_{cd} =$	33.2	N/mm^2
Resistenza di calcolo a trazione semplice (5%) - SLE:	$f_{ctd} =$	2.17	N/mm^2
Massime tensioni di compressione in esercizio:			
Combinazione rara	$\sigma_{c,ad} =$	19.92	N/mm^2
Combinazione quasi permanente	$\sigma_{c,ad} =$	14.94	N/mm ²

3.2 Acciaio B450C

Tensione caratteristica di snervamento: $f_{vk} = 450 \text{ MPa};$

Tensione di progetto: $f_{yd} = f_{yk} / \gamma_m$

Modulo Elastico $E_s = 210'000 \text{ MPa}.$

3.3 Verifica S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

3.3.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "RFI DTC SI MA IFS 001 B del 2019 - Manuale di Progettazione delle Opere Civili ", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{ck};
- per combinazioni di carico quasi permanente: 0,40 f_{ck};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{vk}$.

3.3.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 – Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

RELAZIONE DI CALCOLO

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA LERCARA DIR. - CALTANISETTA XIRBI (LOTTO 3) **OPERE DI SOSTEGNO VIABILITA'**

COMMESSA LOTTO 30 D 78 CODIFICA

DOCUMENTO

REV. **FOGLIO** В

RS3T

CL

MU190A 001

9 di 49

Gruppi di			Armatura				
esigenza	Condizioni ambientali	Combinazione di azione	Sensibile		Poco sensibile		
esigenza			Stato limite	wd	Stato limite	wd	
a	Ordinarie	frequente	ap. fessure	≤w ₂	ap. fessure	≤w ₃	
u		quasi permanente	ap. fessure	\leq w ₁	ap. fessure	≤w ₂	
b	Aggressive	frequente	ap. fessure	\leq w ₁	ap. fessure	≤w ₂	
		quasi permanente	decompressione	-	ap. fessure	\leq w ₁	
С	Molto Aggressive	frequente	formazione fessure	-	ap. fessure	≤w ₁	
	88	quasi permanente	decompressione	-	ap. fessure	\leq w ₁	

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Risultando:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel par. 4.1.2.2.4.3 del DM 17.1.2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

Combinazione Caratteristica (Rara) $\delta_f \leq w_1 = 0.2 \ mm$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura del D.M. 17.1.2018, in accordo a quanto previsto al punto "C4.1.2.2.4.6 Verifica allo stato limite di fessurazione" della Circolare n.7/19.

4 INQUADRAMENTO GEOTECNICO

4.1 Terreno di ricoprimento/rinterro

Per il terreno di ricoprimento dell'opera sono state assunte le seguenti caratteristiche geotecniche :

 $\gamma = 20 \text{ kN/m}^3$ peso di volume naturale

 $\varphi' = 35^{\circ}$ angolo di resistenza al taglio

c' = 0 kPa coesione drenata

4.2 Indagini geotecniche eseguite

La falda non interferisce con l'opera

4.3 Stratigrafia

La stratigrafia lungo lo sviluppo del muro è indicata nella seguente tabella:

	zi [m]	zf[m]	γ [kN/m3]	c' [kPa]	φ' [°]	Eop[MPa]	cu
TRV			22	30	25	150-300	200

4.4 Categoria di sottosuolo

Dalle indagini condotte si evince una categoria di suolo pari a 'C'.

4.4.1 Interazione terreno-struttura

Di seguito sono trattati gli aspetti di natura geotecnica riguardanti l'interazione terreno-struttura relativamente all'opera in esame.

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo (formula di Vesic)

$$k = \frac{0.65 \, E}{1 - v^2} * \sqrt[12]{\frac{E b^4}{(E_c I)_{fond}}}$$

OPERE DI SOSTEGNO VIABILITA'

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU190A 001
 B
 11 di 49

dove:

- h = altezza della trave;
- b = dimensione trasversale della trave;
- J = inierzia della trave;
- E_c = modulo di elasticità del calcestruzzo
- v = coefficiente di Poisson del terreno;
- E = modulo elastico medio del terreno sottostante.

Cautelativamente si limita1

, ai fini del calcolo, il valore della costante di sottofondo a circa 4000 kN/m³.

5 CARATTERIZZAZIONE SISMICA

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17gennaio 2018.

5.1 Vita nominale e classe d'uso

Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (V_N) , intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (C_U)

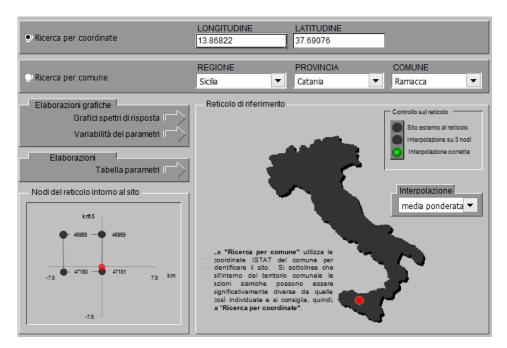
Per l'opera in oggetto si considera una vita nominale: $V_N = 75$ anni (categoria 2: "Altre opere nuove a velocità V < 250 Km/h"). Riguardo invece la Classe d'Uso, all' opera in oggetto corrisponde una Classe II a cui è associato un coefficiente d'uso pari a (NTC – Tabella 2.4.II): $C_U = 1.5$.

I parametri di pericolosità sismica vengono quindi valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_N per il coefficiente d'uso C_U , ovvero:

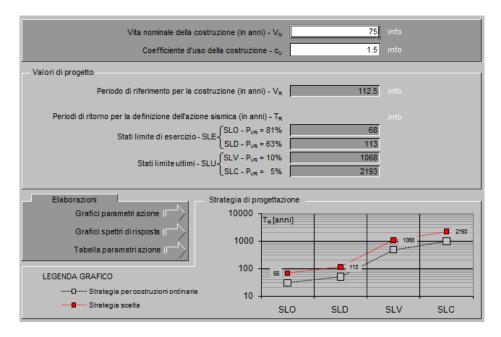
$$V_R = V_N \cdot C_U$$

Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a $V_R = 75x1.5 = 112.5$ anni

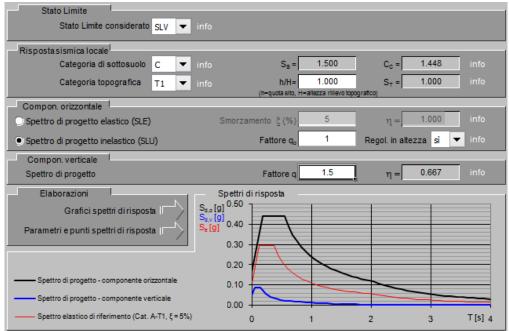
5.2 Parametri di pericolosità sismica

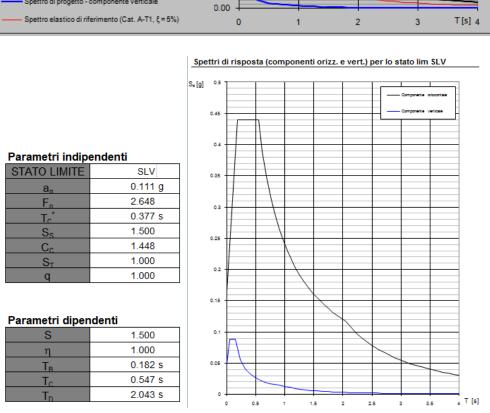

La valutazione dei parametri di pericolosità sismica, che ai sensi del D.M. 17-01-2018, costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali) dipendono, come già in parte anticipato in precedenza, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (Periodo di riferimento per valutazione azione sismica / V_R) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

- Categoria sottosuolo C


In accordo a quanto riportato nelle Norme Tecniche per le costruzioni, si ottiene per il sito in esame:

In accordo a quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 17.01.18, si ottiene per il sito in esame:




La pericolosità sismica di base è stata definita sulla base delle coordinate geografiche del sito di realizzazione dell'opera:

I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.

Il calcolo viene eseguito con il metodo pseudo statico, si eseguirà un calcolo elastico assumendo un fattore di struttura unitario. In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

RELAZIONE DI CALCOLO

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA LERCARA DIR. - CALTANISETTA XIRBI (LOTTO 3)

OPERE DI SOSTEGNO VIABILITA'

COMMESSA RS3T

LOTTO CODIFICA 30 D 78

DOCUMENTO

REV. **FOGLIO**

CL MU190A 001 В 15 di 49

SOFTWARE DI CALCOLO 6

6.1 Origine e caratteristiche dei codici di calcolo adottati

Per le analisi delle strutture è stato utilizzato il Sap 2000 v.14.1 prodotto, distribuito ed assistito da Computers and Structures, Inc.1995 University Ave. Berkeley. Questa procedura è sviluppata in ambiente Windows, permette l'analisi elastica lineare e non di strutture tridimensionali con nodi a sei gradi di libertà utilizzando un solutore ad elementi finiti. Gli elementi considerati sono frame (trave), con eventuali svincoli interni o rotazione attorno al proprio asse. I carichi sono applicati sia ai nodi, come forze o coppie concentrate, sia sulle travi, come forze distribuite, trapezie, concentrate, come coppie e come distorsioni termiche. A supporto del programma è fornito un ampio manuale d'uso contenente fra l'altro una vasta serie di test di validazione sia su esempi classici di Scienza delle Costruzioni, sia su strutture particolarmente impegnative e reperibili nella bibliografia specializzata.

Tale programma fornisce in output, oltre a tutte le caratteristiche geometriche e di carico delle strutture, i risultati relativi alle sollecitazioni indotte nelle sezioni degli elementi presenti.

6.2 Unità di misura

Le unità di misura adottate sono le seguenti:

- lunghezze: m
- forze: kN
- masse: kN massa
- temperature: gradi centigradi
- angoli: gradi sessadecimali o radianti
- si assume l'uguaglianza 1 kN = 100 kg

Grado di affidabilità del codice

L'affidabilità del codice di calcolo e' garantita dall'esistenza di un ampia documentazione di supporto. E' possibile inoltre ottenere rappresentazioni grafiche di deformate e sollecitazioni della struttura.

Valutazione della correttezza del modello

Il modello di calcolo adottato e' da ritenersi appropriato in quanto non sono state riscontrate labilità, le reazioni vincolari equilibrano i carichi applicati, la simmetria di carichi e struttura dà origine a sollecitazioni simmetriche.

OPERE DI SOSTEGNO VIABILITA'

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU190A 001
 B
 16 di 49

6.5 Caratteristiche dell'elaborazione

Tutte le analisi strutturali sono state eseguite su di una workstation dedicata avente le seguenti caratteristiche tecniche:

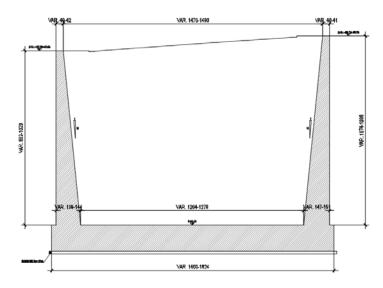
- Tipo Intel i7
- Memoria centrale 8 Gb;
- Lunghezza in bit della parola 64 bit;
- Memoria di massa 1 Hard disk da 500 Gb.

6.6 Giudizio finale sulla accettabilità dei calcoli

Si ritiene che i risultati ottenuti dalla elaborazione siano accettabili e che le ipotesi poste alla base della formulazione del modello matematico siano valide come dimostrato dal comportamento dei materiali.

All'interno del pacchetto Sap 2000 sono inoltre presente una serie di test per il benchmark del solutore, che consentono di comprovare l'affidabilita' del codice di calcolo e paragonare risultati ottenuti con le soluzioni esatte.

6.7 Programmi di servizio


Per le verifiche delle sezioni si adotta il programma: "RC-SEC" – Autore GEOSTRU Software.ANALISI DEI CARICHI E FASI

7 MURO DI SOTEGNO SEZIONE AD "U"

La dimensione interna è di 12.68m e l'altezza interna pari a 10.96m, piedritti di spessore 1.51m e soletta inferiore di spessore 2.00m.

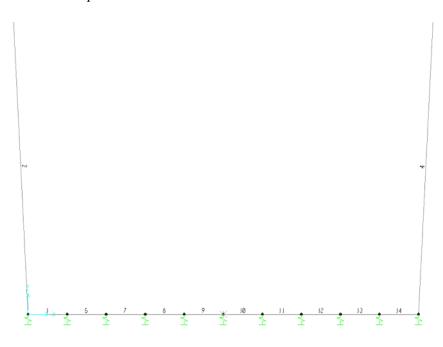
Nel seguito verrà esaminata una striscia di lunghezza di 1.00 m. In figura si riporta schematicamente la geometria dell'opera.

7.1 Geometria

DATI GEOMETRICI							
Grandezza	Simbolo	Valore	U.M.				
larghezza totale scatolare	L_{tot}	15.70	m				
larghezza utile scatolare	L_{int}	12.68	m				
larghezza interasse	L_{a}	14.19	m				
spessore soletta superiore	Ss	0.00	m				
spessore piedritti	S_p	1.51	m				
spessore fondazione	S_{f}	2.00	m				
altezza totale scatolare	\mathbf{H}_{tot}	12.96	m				
altezza libera scatolare	\mathbf{H}_{int}	10.96	m				
spessore pacchetto stradale superiore	H_{Psup}	0.00	m				
spessore ricoprimento superiore	H_{Rsup}	0.00	m				
spessore pacchetto stradale inferiore	H_{Pinf}	0.13	m				
spessore ricoprimento inferiore	H_{Rinf}	10.83	m				

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30 D 78	CL	MU190A 001	В	18 di 49


7.2 Modello di calcolo

Saranno svolti due modelli calcolo, per la verfica della fondazione il modello completo della sezione ad "U", mentre per la verifica del paramento verticale il modello sarà rappresentato da un'asta incastrata alla base. Le differenze di sollecitazioni risultano comunque del tutto trascurabili come risulta dai diagrammi di seguito allegati

Il modello di calcolo attraverso il quale è schematizzata la struttura è quello del telaio su letto di molle alla Winkler. Il modello considerato per l'analisi è quello di sezione di profondità unitaria (1.00m) soggetto alle azioni di norma. In corrispondenza dei vertici sono state inserite delle zone rigide pari a metà spessore degli elementi.

Il terreno di fondazione è stato modellato utilizzando la schematizzazione alla Winkler con un opportuno coefficiente di sottofondo.

Di seguito si riporta lo schema di calcolo del telaio, i diagrammi delle sollecitazione e le verifiche faranno invece riferimento ai due modelli citati in precedenza

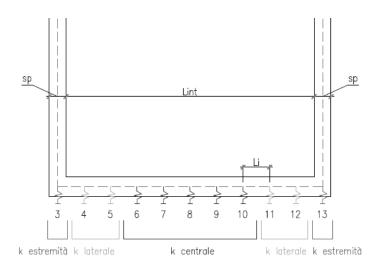
Numerazione aste

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA
TRATTA LERCARA DIR. – CALTANISETTA XIRBI (LOTTO 3)

OPERE DI SOSTEGNO VIABILITA'

RELAZIONE DI CALCOLO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NELFAZIONE DI GALGOLO	RS3T	30 D 78	CL	MU190A 001	В	19 di 49

7.3 Valutazione della rigidezza delle molle

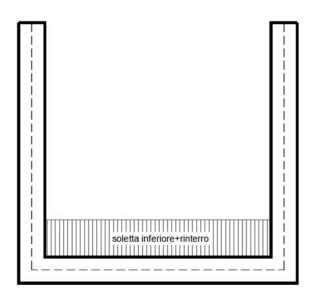

Si considera la fondazione appoggiata su di un letto di molle (schematizzazione alla Winkler) assegnando alle aste di fondazione del modello un valore di "linear spring" pari a K= 15000 kN/mc in funzione dell'interasse delle molle secondo la seguente formulazione:

Interasse molle $i = (S_p/2 + L_{int} + S_p/2)/10$ [m]

Molle centrali $k_1 = k * i$ [kN/m]

Molle intermedie $k_2 = 1.5 * k * i$ [kN/m]

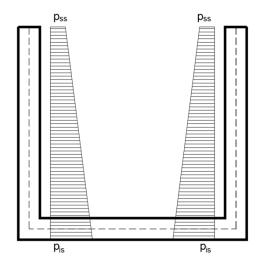
Molle laterali $k_3 = 2 * k * (i/2 + S_p/2)$ [kN/m]



7.4 Analisi dei carichi

7.4.1 Peso proprio della struttura e carichi permanenti portati

Soletta inferiore	- Peso proprio	_	50.00 kN/m
		- Totale	50.00 kN/m
	- Peso pacchetto pavimentazione 13 (cm	3.00 kN/m
	- Peso terreno ricoprimento	_	216.60 kN/m
		- Totale	219.60 kN/m
<u>Piedritti</u>	- Peso proprio	_	37.75 kN/m
		- Totale	37.75 kN/m



7.4.2 Spinta sulle pareti dovuta al terreno ed al sovraccarico permanente

Per il rinterro si prevede un terreno avente angolo di attrito $\varphi = 35^{\circ}$ ed un peso di volume $\gamma = 20 \text{ kN/m}^3$, il coefficiente di spinta viene calcolato, considerando l'elevata rigidezza dell'opera, utilizzando la formula Ko=1-sin φ ', per cui si ottiene un valore di Ko=0.43. Le spinte in asse soletta superiore ed asse soletta inferiore valgono:

Cond. STR

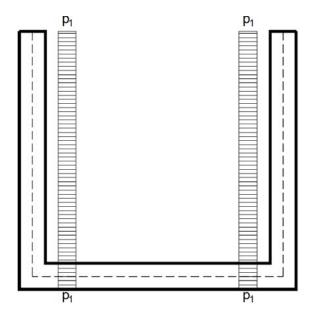
$$\begin{array}{llll} p_{\text{ss}} = & K_{\text{o}} * (H_{\text{f}} + H_{\text{p}} + S_{\text{s}} / 2) * \gamma & = & 0.0 & kN/m \\ p_{\text{is}} = & p_{\text{ss}} + K_{\text{o}} * \gamma * (S_{\text{s}} / 2 + H_{\text{int}} + S_{\text{f}} / 2) = & 102.0 & kN/m \end{array}$$

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto e soletta inferiore con valore pari a 106.26 kN.

7.4.3 Carichi mobili verticali

Le azioni variabili del traffico sono considerate pari a $q_1 = 20 \text{ kN/m}^2$.

7.4.4 Spinta del sovraccarico sul rilevato


Per il calcolo della spinta dovuta al traffico stradale sul rilevato, si considera un carico tandem distibuito sull'intera lunghezza del mezzo autoarticolato (18.0m) e sui 3.0m di corsia.

$$q_1 = 150 \text{ kN* } 4/(18*3) \text{ m}^2 + 9 \text{ kN/m}^2 = 20 \text{ kN/m}^2$$

$$p_1(str) = q_1 * K_0 = 8.53 kN/m^2$$

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR. – CALTANISETTA XIRBI (LOTTO 3) OPERE DI SOSTEGNO VIABILITA'					
NV07: MURO AD U MU19A RELAZIONE DI CALCOLO	COMMESSA RS3T	LOTTO 30 D 78	CODIFICA	DOCUMENTO MU190A 001	REV.	FOGLIO 22 di 49

a) Spinta su entrambi i piedritti

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritti e soletta inferiore con valore pari a 8.53 kN.

7.4.5 Variazione termica

Si applica una variazione termica pari a +/- 15°C.

PERE DI SOSTEGNO VIABILITÀ

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU190A 001
 B
 23 di 49

7.5 Azione sismica inerziale

Per il calcolo dell'azione sismica si utilizza il metodo dell'analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico *k*. Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h * W$

Forza sismica verticale $F_v = k_v * W$

I valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni: k_h = a_{max}/g

$$k_v = \pm 0.5 * k_h$$

Con riferimento alla nuova classificazione sismica del territorio nazionale ai fini del calcolo dell'azione sismica secondo il DM 17/01/2018 viene assegnata all'opera una vita nominale $V_N \ge 75$ anni ed una III classe d'uso $C_u = 1.5$; segue un periodo di riferimento $V_R = V_N * C_u = 112.5$ anni

A seguito di tale assunzione si ottiene allo stato limite ultimo SLV in funzione della Latitudine e Longitudine del sito in esame un valore dell'accelerazione pari a a_g = 0.111 g.

In assenza di analisi specifiche della risposta sismica locale l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S * a = S_s * S_t * a_g$$

dove assumendo un terreno di tipo C ed in base al fattore di amplificazione del sito F_o si ottiene:

S_s= 1.500 Coefficiente di amplificazione stratigrafica

S_T= 1 Coefficiente di amplificazione topografica

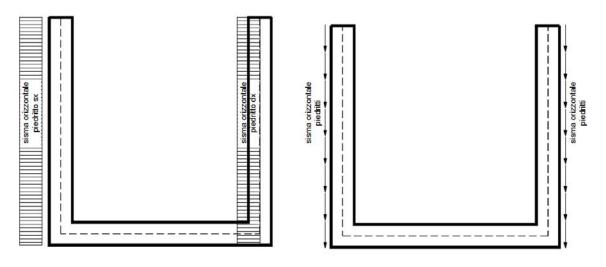
ne deriva che:

$$a_{max}$$
= 1.500 * 1 * 0.111 g = 0.167 g

$$k_h = a_{max}/g = 0.167$$

$$k_v = \pm 0.5 * k_h = 0.083$$

Sisma orizzontale


$$F_{sis} = a_{max} * \gamma * H_{tot}$$
 43.16 kN/m (carico applicato sulla parete)
 $F_{inp} = \alpha * S_p * \gamma * 1m$ = 6.29 kN/m (inerzia piedritti)
Totale = 49.44 kN/m (piederitto sx)

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto destro e soletta inferiore con valore pari a 49.44 kN. Si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta ed inferiore con valore pari a 6.29 kN.

Sisma verticale

$$F_{inp} = 0.5 * \alpha * S_p * \gamma * 1m = 3.14 \text{ kN/m}$$
 (inerzia piedritti)

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali: $G_1 + G_2 + \psi_{2j} \ Q_{kj}$

7.6 Spinta sismica terreno

Le spinte delle terre potranno essere determinate secondo la teoria di Wood. secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinato con la seguente espressione:

$$\Delta S_E = (a_{max}/g) * \gamma * H_{tot}^2$$

Tale risultante applicata ad un'altezza pari ad H_{tot}/2.sarà considerata agente su uno solo dei piedritti dell'opera.

8 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili, utilizzata nella verifica a Fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine;

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 \text{ x } E_{Y} \pm 0.3 \text{ x } E_{Z}$$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica.

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti.

In particolare nel calcolo della struttura si è fatto riferimento alla combinazione A1 STR (Approccio 1 – Combinazione 1) per le verifiche strutturali ed A1 GEO (Approccio 1 – Combinazione 2) per le verifiche geotecniche.

8.1 Combinazione dei carichi

L'opera principale è trattata con le combinazioni tipiche dei ponti ai sensi del DM 17/01/2018 e s.m.i.

Tabella 5.1.IV - Valori caratteristici delle azioni dovute al traffico

	Carichi sulla carreggiata									
	Carichi verticali			Carichi orizz	ontali	Carichi verticali				
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q4	Carico uniformemente distribuito				
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m²				
2 a	Valore frequente			Valore caratteristico						
2 b	Valore frequente				Valore caratteristico					
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²				
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m²			Schema di carico 5 con valore caratteristico 5,0 kN/m²				
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale								

La Tab. 5.1.V fornisce i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi, il significato dei simboli è il seguente:

- γ G1 coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua, quando pertinente;
- γG2 coefficiente parziale dei pesi propri degli elementi non strutturali;
- γ Q coefficiente parziale delle azioni variabili da traffico;
- γ Qi coefficiente parziale delle azioni variabili.

I valori dei coefficienti ψ_{0j} , ψ_{1j} e ψ_{2j} per le diverse categorie di azioni sono riportati nella Tab. 5.1.VI.

Tabella 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γo	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	γε2, γε3, γε4	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Tabella 5.1.VI - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente \(\psi_0\) di combinazione	Coefficiente ψ ₁ (valori frequenti)	Coefficiente ψ ₂ (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
Vento q₅	Vento a ponte scarico SLU e SLE Esecuzione	0,6 0,8	0,2	0,0 0,0
	Vento a ponte carico	0,6		
Mana a	SLU e SLE	0,0	0,0	0,0
Neve q_5	esecuzione	0,8	0,6	0,5
Temperatura	Tk	0,6	0,6	0,5

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

Tabella 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

PARAMETRO	GRANDEZZA ALLA QUALE	COEFFICIENTE	(M1)	(M2)
	APPLICARE IL	PARZIALE		
	COEFFICIENTE PARZIALE	$\gamma_{ m M}$		
Tangente dell'angolo di resistenza al taglio	$tan \phi'_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	$\gamma_{e'}$	1,0	1,25
Resistenza non drenata	c_{uk}	$\gamma_{\rm cu}$	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Le condizioni di carico considerate sono le seguenti:

Tabella 2 - Riepilogo condizioni di carico

Tipo Carico	Abbreviazione
Peso proprio	DEAD
Carichi permanenti	PERM
Falda	FALDA
Spinta terreno sinistra	STS
Spinta terreno destra	STD
Carico Stradale Centrato	TRM
Carico Stradale Laterale	TRV
Sovraccarico accidentale sinistra	SAS
Sovraccarico accidentale destra	SAD
Ritiro	RIT
Variazione termica	ΔΤ
Frenatura	FRE
Azione sismica orizzontale	E _H
Azione sismica verticale	E_{V}

Si riportano di seguito le combinazioni di carico ritenute più significative con i coefficienti di combinazione $\gamma \cdot \psi$. Essendo la struttura simmetrica, si adottano tipologie di combinazione asimmetriche in modo da massimizzare le sollecitazioni. Il dimensionamento delle armature e le verifiche strutturali verranno poi eseguite tenendo conto della simmetria e verificando le condizioni peggiori per ogni lato della struttura.

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU190A 001
 B
 29 di 49

Tabella 3 - Combinazioni di carico

СОМВ	DEAD	STS	STD	RIT	ΔΤ	PERM	FALDA	TRM	TRV	SAS	SAD	FRE	Ен	Ev
n° 1 SLU-STR	1.35	1.35	1.35	1.20	1.50	1.50	-	-	-	-	-		-	-
n° 2 SLU-STR	1.35	1.35	1.00	1.20	1.50	1.50	-							
n° 3 SLU-STR	1.35	1.00	1.35	1.20	1.50	1.50								
n° 04 SLU-STR	1.35	1.35	1.35	1.20	1.50	1.50	1.35	-	-	-	-		-	-
n° 05 SLU-STR	1.35	1.35	1.00	1.20	1.50	1.50	1.35							
n° 06 SLU-STR	1.35	1.00	1.35	1.20	1.50	1.50	1.35							
n° 07 SLU-STR	1.35	1.35	1.35	1.20	0.90	1.50	1.35	1.35	-	1.35	1.35	1.35	-	-
n° 08 SLU-STR	1.35	1.35	1.00	1.20	0.90	1.50	1.35	1.35	-	1.35	1.35	1.35		
n° 09 SLU-STR	1.35	1.00	1.35	1.20	0.90	1.50	1.35	1.35	-	1.35	1.35	1.35		
n° 10 SLU-STR	1.35	1.35	1.35	1.20	0.90	1.50	1.35	-	1.35	1.35	1.35	1.35	-	-
n° 11 SLU-STR	1.35	1.35	1.00	1.20	0.90	1.50	1.35	-	1.35	1.35	1.35	1.35		
n° 12 SLU-STR	1.35	1.00	1.35	1.20	0.90	1.50	1.35	-	1.35	1.35	1.35	1.35		
n° 13 SLU-STR	1.35	1.35	1.35	1.20	0.90	1.50	1.35	1.35	-	1.35	-	1.35	-	-
n° 14 SLU-STR	1.35	1.35	1.00	1.20	0.90	1.50	1.35	1.35	-	1.35	-	1.35	-	-
n° 15 SLU-STR	1.35	1.00	1.35	1.20	0.90	1.50	1.35	1.35	-	1.35	-	1.35	-	-
n° 16 SLU - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.20	-	0.20	-	0.20	1.00	0.30
n° 17 SLU - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.20	-	0.20	-	0.20	1.00	-0.30
n° 18 SLU - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	-	0.20	-	0.20	-	0.20	1.00	0.30
n° 19 SLU - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	-	0.20	-	0.20	-	0.20	1.00	-0.30
GEO	1.00	1.30	1.00	1.00	0.60	1.30	1.00	1.15	-	1.15	-	1.15	-	-
GEO - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.20		0.20		0.20	1.00	0.30
SLE - Q.P.	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.00	-	0.00	-	0.00	-	-
SLE - Frequente	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.75	-	0.75	-	0.75	-	-
SLE - Rara	1.00	1.00	1.00	1.00	0.60	1.00	1.00	1.00	-	1.00	-	1.00	-	-

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COL	LEGAMEN	ITO PALERMO R. – CALTANIS	A – CATANIA – PA – CATANIA ETTA XIRBI (LOT		
NV07: MURO AD U MU19A RELAZIONE DI CALCOLO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
The Elone bio Eloco	RS3T	30 D 78	CL	MU190A 001	В	30 di 49

9 DIAGRAMMI DELLE SOLLECITAZIONI

I diagrammi riportano i parallelo le sollecitazioni dei due modelli

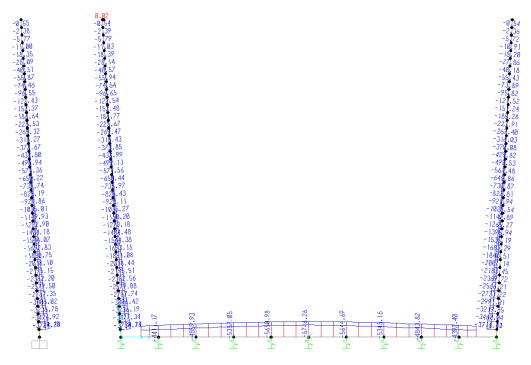


Fig. 2 – Inviluppo momenti flettenti SLU

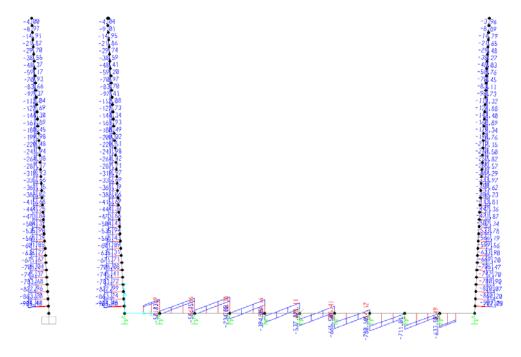


Fig. 3 – Inviluppo sforzi taglianti SLU

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR. – CALTANISETTA XIRBI (LOTTO 3) OPERE DI SOSTEGNO VIABILITA'					
NV07: MURO AD U MU19A RELAZIONE DI CALCOLO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
THE CONCESSION LEGGES	RS3T	30 D 78	CL	MU190A 001	В	31 di 49

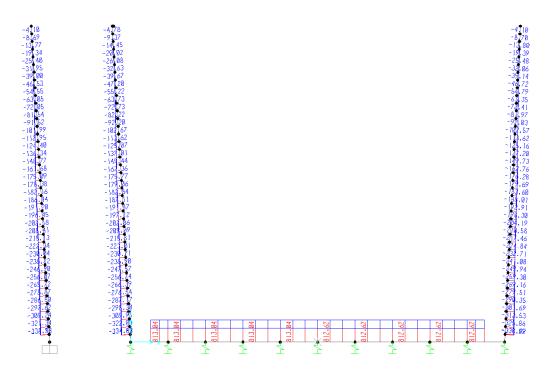


Fig. 4 – Inviluppo azioni assiali SLU

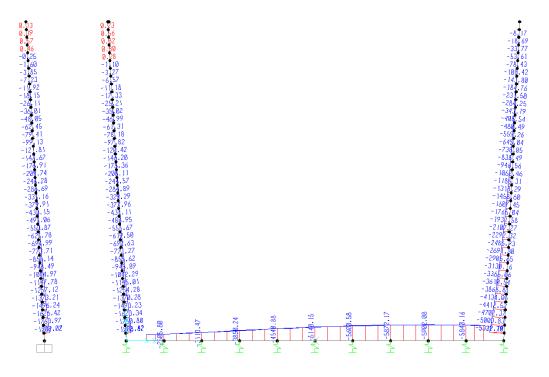


Fig. 5 –Inviluppo momenti flettenti SLV

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR. – CALTANISETTA XIRBI (LOTTO 3) OPERE DI SOSTEGNO VIABILITA'					
NV07: MURO AD U MU19A RELAZIONE DI CALCOLO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
The Lional Di Officoolo	RS3T	30 D 78	CL	MU190A 001	В	32 di 49

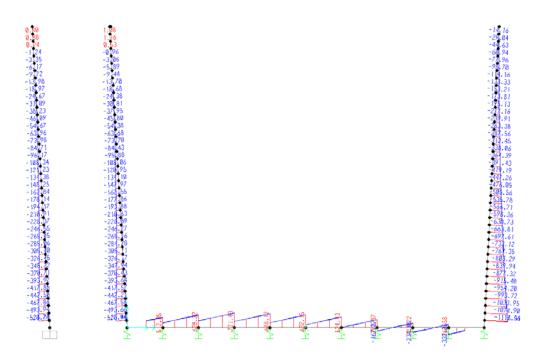


Fig. 6 – Inviluppo sforzi taglianti SLV

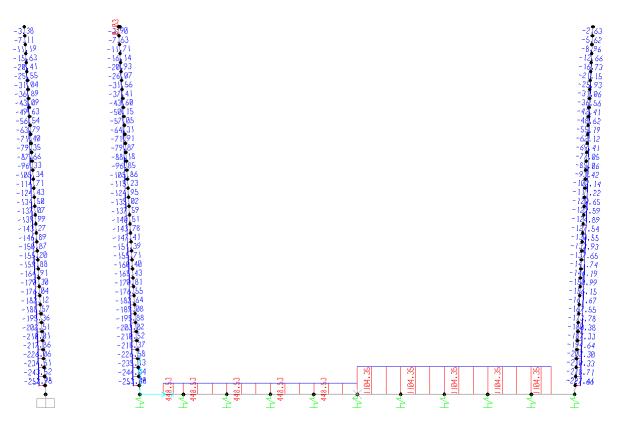
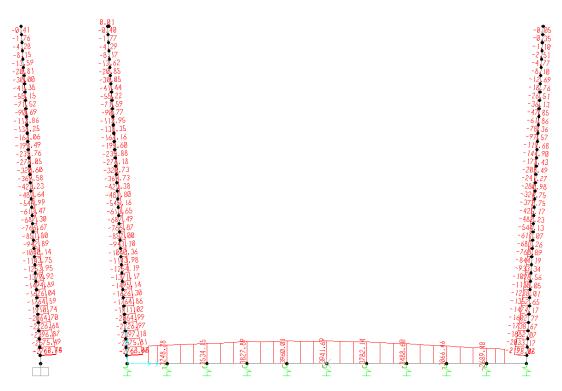



Fig. 7 – Inviluppo azioni assiali SLV

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR. – CALTANISETTA XIRBI (LOTTO 3) OPERE DI SOSTEGNO VIABILITA'					
NV07: MURO AD U MU19A RELAZIONE DI CALCOLO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
THE MOTILE DI OF MODEO	RS3T	30 D 78	CL	MU190A 001	В	33 di 49

 $Fig.\ 8-In viluppo\ momenti\ flettenti\ SLE\ rara$

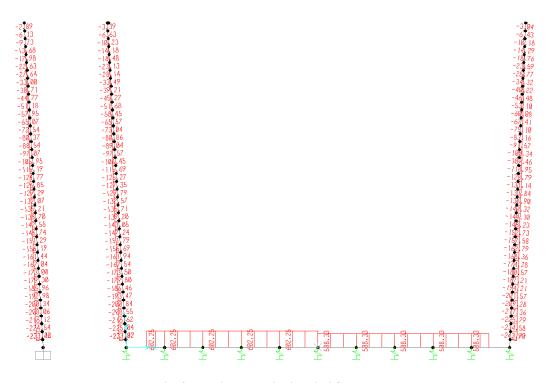


Fig. 9 – Inviluppo azioni assiali SLE rara

10 VERIFICA DELLE SEZIONI IN C.A.

Nelle tabelle seguenti sono indicati i valori delle sollecitazioni massime e i valori delle sollecitazioni per la verifica a fessurazione risultanti dalle combinazioni di cui al capitolo precedente.

Per le verifiche in corrispondenza dei nodi si considerano le sollecitazioni a filo elemento rigido.

	SLU STR-SLV						
Elemento	C.C. M _{max}	N (kN)	M _{max} (kNm)	T _{max}			
soletta	SLU05-STR	-559.60	-2673.45	703.41			
inferiore	SLU07-STR	-818.10	-5648.26	-			
	SLU07-STR	317.81	-3743.96	1497.00			
ni o dnitti	SLU14-STR	24.60	33.89	1497.00			
piedritti	SLU16-SIS	253.50	4790.66	2506.54			
	SLU05-STR	7.49	-0.73	2506.54			

SLE RARA		SLE FREQUENTE			SLE Q	UASI PERMA	NENTE	
Elemento	N (kN)	M _{max} (kNm)	ID Asta	N (kN)	M _{max} (kNm)	ID Asta	N (kN)	M _{max} (kNm)
soletta	-536.00	-2541.36	soletta	-530.00	-2521.08	soletta	-512.00	-2460.21
inferiore	-536.00	-3864.73	inferiore	-530.00	-3790.90	inferiore	-512.00	-3569.40
	230.17	-2672.42		232.82	-2562.77		240.78	-2233.83
i. duissi	9.17	5.32	piedritti	9.47	3.80		2.99	0.74
piedritti	248.79	2285.80	pieditti	-248.79	2260.58	piedritti	248.79	2184.93
	5.29	-0.35		5.29	-0.36		5.29	-0.41

10.1 Verifica soletta inferiore

Descrizione estesa della sezione

Copriferro minimo sulla barra più esterna 50mm. Si adottano spille $10\varnothing 8/m^2$

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Classe Conglomerato:		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	200.0
3	50.0	200.0
4	50.0	0.0

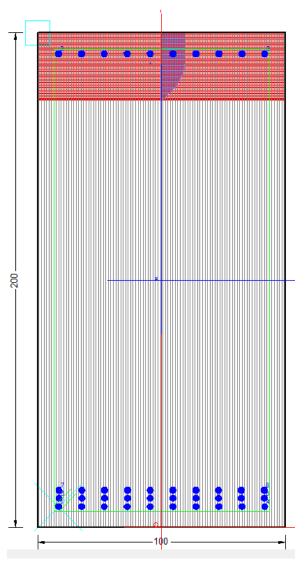
DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.6	8.4	26
2	-41.6	191.6	26
3	41.6	191.6	26
4	41.6	8.4	26
5	-41.4	11.8	26
6	41.4	11.8	26
7	-41.4	15.0	26
8	41.4	15.0	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre
N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin. Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione


Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26
2	2	3	8	26
3	5	6	8	26
4	7	8	8	26

Verfica della sezione

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.800	MPa
	Resis. compr. ridotta fcd':	9.400	MPa
	Def.unit. max resistenza ec2:	0.0020	

OPERE DI SOSTEGNO VIABILITA'

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU190A 001
 B
 36 di 49

0.0035	
Parabola-Rettangolo	
33643.0	MPa
3.100	MPa
15.00	
15.00	
	Parabola-Rettangolo 33643.0 3.100 15.00

Sc limite S.L.E. comb. Frequenti: 182.60 daN/cm²
Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm
Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa
Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.00 MPa
391.30 MPa
391.30 MPa
0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*B2:

Coeff. Aderenza differito ß1*B2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate
con verso positivo se tale da comprimere il lembo sup. della sez.

Vy Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate

 N°Comb.
 N
 Mx
 Vy

 1
 0.00
 2673.45
 703.41

 2
 0.00
 5648.26
 0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 0.00
 2541.36
 0.00

 2
 0.00
 3864.73
 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx
 My

 1
 0.00
 2521.08 (3004.71)
 0.00 (0.00)

 2
 0.00
 3790.90 (3004.71)
 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

OPERE DI SOSTEGNO VIABILITA'

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU190A 001
 B
 37 di 49

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My

 1
 0.00
 2460.21 (3004.71)
 0.00 (0.00)

 2
 0.00
 3569.40 (3004.71)
 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic. As Totale
1	S	0.00	2673.45	0.00	11087.27	4.15 212.4(60.0)
2	S	0.00	5648.26	0.00	11087.27	1.96 212.4(60.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

ecmax	Deform, unit, massima dei congiomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-50.0	200.0	0.00242	-41.6	191.6	-0.02106	-41.6	8.4
2	0.00350	-50.0	200.0	0.00242	-41.6	191.6	-0.02106	-41.6	8.4

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 $\label{eq:comb} N^\circ Comb \qquad \qquad b \qquad \qquad c \qquad \qquad x/d \qquad C.Rid.$

1 0.000000000 0.000128199 -0.022139747 2 0.00000000 0.000128199 -0.022139747

VERIFICHE A TAGLIO

Ys max

Ver S = comb. verificata a taglio / N = comb. non verificata

OPERE DI SOSTEGNO VIABILITA'

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU190A 001
 B
 38 di 49

Ved	l aglio di progetto [kN] = Vy ortogonale all'asse neutro
Vcd	Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]
Vwd	Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]
d z	Altezza utile media pesata sezione ortogonale all'asse neutro Braccio coppia interna [cm]
•	Vengono prese nella media le strisce con almeno un estremo compresso.
	I pesi della media sono costituiti dalle stesse lunghezze delle strisce.
bw	Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro
	E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.
Ctg	Cotangente dell'angolo di inclinazione dei puntoni di conglomerato
Acw	Coefficiente maggiorativo della resistenza a taglio per compressione
Ast	Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff	Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
	Tra parontosi à indicata la quota dell'area relativa alle sele logature

Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	703.41	5856.51	1115.0119	1.6 180.7	100.0	2.500	1.000	4.0	6.3(0.0)
2	S	0.00	8491.93	446.0019	1.6 180.7	100.0	1.000	1.000	0.0	6.3(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)

Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
As eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max `	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.66	-50.0	200.0	-97.7	-23.1	8.4	2950	159.3
2	S	5.56	-50.0	200.0	-148.6	-4.6	8.4	2950	159.3

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.8 per barre ad adeleriza mignorata [eq.(7.11)EC2] kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali

k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali
Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00052	0	0.500	26.0	71	0.00029 (0.00029)	323	0.095 (0.20)	3004.71	0.00
2	S	-0.00079	0	0.500	26.0	71	0.00052 (0.00045)	323	0.167 (0.20)	3004.71	0.00

OPERE DI SOSTEGNO VIABILITA'

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
NELFAZIONE DI CALCOLO	RS3T	30 D 78	CL	MU190A 001	В	39 di 49

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.63	-50.0	200.0	-96.9	-32.4	8.4	2950	159.3
2	S	5.45	-50.0	200.0	-145.8	13.9	8.4	2950	159.3

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max		wk	Mx fess	My fess
1	S	-0.00052	0	0.500	26.0	71	0.00029 (0.00029)	323	0.094 (0.20)	3004.71	0.00
2	S	-0.00078	0	0.500	26.0	71	0.00050 (0.00044)	323	0.162 (0.20)	3004.71	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max `	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.54	-50.0	200.0	-94.6	-41.6	8.4	2950	159.3
2	S	5.13	-50.0	200.0	-137.3	-41.6	8.4	2950	159.3

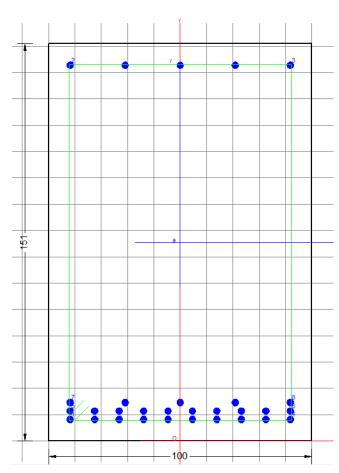
COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	esm-ecms	r max	wk	Mx fess	My fess
1	S	-0.00051	0	0.500	26.0	71	0.00032 (0.00028)	323	0.104 (0.20)	3004.71	0.00
2	S	-0.00073	0	0.500	26.0	71	0.00053 (0.00041)	323	0.173 (0.20)	3004.71	0.00

10.2 Verifica piedritti

Descrizione estesa della sezione

CARATTERISTICHE DOMINIO CONGLOMERATO


Forma del De Classe Congle		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	151.0
3	50.0	151.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-41.8	8.2	26
2	-41.8	142.8	26
3	41.8	142.8	26
4	41.8	8.2	26
5	-41.8	11.4	26
6	41.8	11.4	26
7	-41.8	14.6	26
8	41.8	14.6	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre

OPERE DI SOSTEGNO VIABILITA'

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU190A 001
 B
 40 di 49

N° Barra Ini. Numero della barra iniziale cui si riferisce la generazione N° Barra Fin. Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26
2	2	3	3	26
3	5	6	8	26
4	7	8	3	26

Copriferro minimo sulla barra più esterna 50mm. Si adottano spille 14Ø14/m²

Verifica della sezione

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.800	MPa
	Resis. compr. ridotta fcd':	9.400	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	182.60	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Mpa
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo 61*62:	1.00	
	Coeff. Aderenza differito B1*B2:	0.50	
	Sf limite S.L.E. Comb. Rare:	337.50	MPa

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate
con verso positivo se tale da comprimere il lembo sup. della sez.

Vy Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate

N°Comb. N Mx Vy 1 253.50 4790.66 2506.54

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

OPERE DI SOSTEGNO VIABILITA'

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU190A 001
 B
 41 di 49

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My

1 230.17 2672.24 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My

1 232.82 2562.77 (1742.83) 0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx My

1 240.78 2233.83 (1750.59) 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb Ver N Mx N Res Mx Res Mis.Sic. As Totale

1 S 253.50 4790.66 253.79 6858.93 1.43 159.3(45.3)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

 $N^{\circ}Comb$ ec max Xc max Yc max es min Xs min Ys min es max Xs max Ys max

OPERE DI SOSTEGNO VIABILITA'

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU190A 001
 B
 42 di 49

1 0.00350 -50.0 151.0 0.00251 -41.8 142.8 -0.01375 -41.8 8.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 $N^{\circ}Comb$ a b c x/d C.Rid.

1 0.00000000 0.000120824 -0.014744414 ----

VERIFICHE A TAGLIO

bw

Ver S = comb. verificata a taglio / N = comb. non verificata
Ved Taglio di progetto [kN] = Vy ortogonale all'asse neutro

Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso.

I pesi della media sono costituiti dalle stesse lunghezze delle strisce.

Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro

E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato

Acw Coefficiente maggiorativo della resistenza a taglio per compressione

Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]

A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

 $\label{eq:comb_ver} \mbox{N°Comb} \mbox{ Ver} \mbox{ Ved} \mbox{ Vcd} \mbox{ Vwd} \mbox{ d} \mid \mbox{ z} \mbox{ bw} \mbox{ Ctg} \mbox{ Acw} \mbox{ Ast} \mbox{ A.Eff}$

1 S 2506.54 4291.09 2580.81142.8| 131.2 100.0 2.500 1.009 19.5 20.1(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

As eff.

As eff.

As eff.

As eff.

As eff.

As a christian de la barra corrisp. a Sf min (sistema rif. X,Y,O)

Are a di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 7.19 -50.0 151.0 -161.2 13.9 8.2 2700 132.7

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

OPERE DI SOSTEGNO VIABILITA'

 NV07: MURO AD U MU19A
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RELAZIONE DI CALCOLO
 RS3T
 30 D 78
 CL
 MU190A 001
 B
 43 di 49

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb. Ver e2 k2 Ø Cf My fess е1 e sm - e cm sr max Mx fess wk S -0.00088 0 0.500 26.0 69 0.00056 (0.00048) 325 0.182 (0.20) 1740.69 0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 6.91 -50.0 151.0 -154.2 4.6 8.2 2700 132.7

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max Mx fess My fess S -0.00084 0.500 26.0 69 0.00053 (0.00046) 0.171 (0.20) 1742.83 0.00 325

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1 S 6.05 -50.0 151.0 -133.2 13.9 8.2 2700 132.7

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb. Ver e1 e2 k2 Ø Cf e sm - e cm sr max Mx fess My fess -0.00073 1 S 0.500 26.0 69 0.00050 (0.00040) 325 0.163 (0.20) 1750.59 0.00

10.3 Tabella riassuntiva armature

	Inc. Armature [kg/mc]
Soletta inf.	105
Piedritto	130

(per il quantitativo di armatura secondaria si assume il 20% di quella principale; si aggiunge al quantitativo di armatura principale e secondaria un 15% per sovrapposizioni/legature)

11 VERIFICA GEOTECNICA

Si riporta di seguito la verifica a carico limite per la combinazione più gravosa:

<u>Fondazioni Dirette</u> <u>Verifica in tensioni efficaci</u>

 $\mathsf{qlim} = \mathsf{c'} \cdot \mathsf{Nc} \cdot \mathsf{sc} \cdot \mathsf{dc} \cdot \mathsf{ic} \cdot \mathsf{bc} \cdot \mathsf{gc} + \mathsf{q} \cdot \mathsf{Nq} \cdot \mathsf{sq} \cdot \mathsf{dq} \cdot \mathsf{iq} \cdot \mathsf{bq} \cdot \mathsf{gq} + 0, 5 \cdot \gamma \cdot \mathsf{B} \cdot \mathsf{N} \gamma \cdot \mathsf{s} \gamma \cdot \mathsf{d} \gamma \cdot \mathsf{i} \gamma \cdot \mathsf{b} \gamma \cdot \mathsf{g} \gamma$

D = Profondità del piano di appoggio

[kN]

[kN]

TI [kN]

304.00

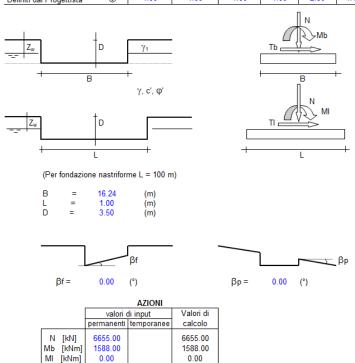
0.00

304.00

0.00

e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)


 B^* = Larghezza fittizia della fondazione (B^* = B - $\mathsf{2}^*\mathsf{e}_\mathsf{B}$)

 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			az	ioni	proprietà d	el terreno	resist	stenze	
Metodo di calcolo		permanenti	temporanee variabili	tan φ'	c'	qlim	scorr		
Stato Limite Ultimo	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	1.00	
	A2+M2+R2	0	1.00	1.30	1.25	1.25	1.80	1.00	
	SISMA	0	1.00	1.00	1.25	1.25	1.80	1.00	
	A1+M1+R3	0	1.30	1.50	1.00	1.00	2.30	1.10	
	SISMA	0	1.00	1.00	1.00	1.00	2.30	1.10	
Tensioni Ammissibili		1.00	1.00	1.00	1.00	3.00	3.00		
Definiti dal Progettista		1.00	1.00	1.00	1.00	2.30	1.10		

304.00

0.00

304.00

OPERE DI SOSTEGNO VIABILITA'

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

RS3T	30 D 78	CL	MU190A 001	В	45 di 49	
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	

Peso unità di volume del terreno

= 19.00 (kN/mc) 19.00 (kN/mc)

Valori caratteristici di resistenza del terreno

10.00 (kN/mq) c' 27 00

Profondità della falda

Zw = 9.00 (m)

e_B = 0.24 (m) e_L = 0.00 (m)

15.76 (m) 1.00 (m)

10.00

27.00

(kN/mq)

(°)

Valori di progetto

=

c'

q : sovraccarico alla profondità D

q = 66.50 (kN/mg)

γ: peso di volume del terreno di fondazione

12.39 (kN/mc) γ =

Nc, Nq, Nγ: coefficienti di capacità portante

 $Nq = tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$

Nq = 13.20

 $Nc = (Nq - 1)/tan\phi'$

23.94 Nc =

 $N\gamma = 2*(Nq + 1)*tan\phi'$

 $N\gamma = 14.47$

sc, sq, s,: fattori di forma

s_c = 1 + B*Nq / (L* Nc)

s_c = 1.03

s_α = 1 + B*tanφ' / L*

 $s_q = 1.03$

 $s_v = 1 - 0.4*B* / L*$

s_v = 0.97

ic, iq, iy: fattori di inclinazione del carico

 $m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$

θ = arctg(Tb/Tl) =

90.00 (°)

 $m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$

1.06

1.94

m =

1.94 (-)

 $i_q = (1 - H/(N + B*L* c' \cot g\phi'))^m$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2\theta + m_l cos^2\theta)$ in tutti gli altri casi)

0.92

 $i_c = i_q - (1 - i_q)/(Nq - 1)$

0.91

 $i_{\gamma} = (1 - H/(N + B*L* c' cotg\phi'))^{(m+1)}$

0.88

OPERE DI SOSTEGNO VIABILITA'

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

LOTTO COMMESSA CODIFICA DOCUMENTO REV. FOGLIO RS3T 30 D 78 CL MU190A 001 В 46 di 49

d_c , d_q , d_γ : fattori di profondità del piano di appoggio

per D/B* \leq 1; d_q = 1 +2 D tan ϕ ' (1 - sen ϕ ')² / B* per D/B*> 1; $d_q = 1 + (2 \tan \varphi' (1 - \sin \varphi')^2) * \arctan (D / B*)$

 $d_q = 1.39$

 $d_c = d_q - (1 - d_q) / (N_c \tan \varphi')$

1.42 d_c =

d.. = 1

1.00 d. =

b_c , b_q , b_{γ} : fattori di inclinazione base della fondazione

 $b_q = (1 - \beta_f tan\phi')^2$

0.00 $\beta_f + \beta_p =$

 $\beta_f + \beta_p < 4$

 $\beta_f + \beta_p < 4$

 $b_0 = 1.00$

 $b_c = b_q - (1 - b_q) / (N_c tan\phi')$

1.00 b_c =

 $b_y = b_q$

 $b_y =$ 1.00

$g_c,\,g_q,\,g_\gamma$: fattori di inclinazione piano di campagna

 $g_q = (1 - tan\beta_p)^2$ $\beta_f + \beta_p =$

0.00

g_q = 1.00

 $g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$

1.00 g_c =

 $g_y = g_q$

1.00 $g_{\gamma} =$

Carico limite unitario

q_{lim} = 1555.21 (kN/m²)

Pressione massima agente

q = N / B* L*

q = 422.20 (kN/m²)

Verifica di sicurezza capacità portante

 $q_{lim}/\gamma_R =$ 676.18 q = 422.20 (kN/m²)

VERIFICA A SCORRIMENTO

Carico agente

Hd = 304.00 (kN)

Azione Resistente

 $Sd = N tan(\phi') + c' B* L*$

Sd = 3548.52 (kN)

Verifica di sicurezza allo scorrimento

Sd/ γ_R = 3225.93 Hd = 304.00 (kN)

OPERE DI SOSTEGNO VIABILITA'

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

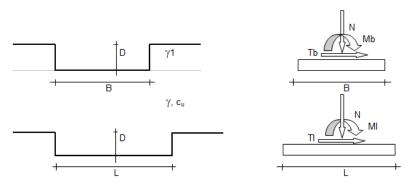
 RS3T
 30 D 78
 CL
 MU190A 001
 B
 47 di 49

<u>Fondazioni Dirette</u> <u>Verifica in tensioni totali</u>

qlim = cu·Nc· sc·dc·ic·bc·gc + q·Nq

D = Profondità del piano di appoggio

e_B = Eccentricità in direzione B (e_B = Mb/N)


 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)

 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)

L* = Lunghezza fittizia della fondazione (L* = L - 2*e_L)

coefficienti parziali

			azioni		proprietà del terreno resister		enze
Metodo di calcolo		permanenti	temporanee variabili	Cu	qlim	scorr	
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00
Stato Limite Ultimo	A2+M2+R2	0	1.00	1.30	1.40	1.80	1.00
	SISMA	0	1.00	1.00	1.40	1.80	1.00
Stat U	A1+M1+R3	0	1.30	1.50	1.00	2.30	1.10
0,	SISMA	0	1.00	1.00	1.00	2.30	1.10
Tensioni Ammissibili		1.00	1.00	1.00	3.00	3.00	
Definiti dal Progettista		1.00	1.00	1.00	2.30	1.10	

(Per fondazioni nastriformi L=100 m)

B = 16.24 (m) L = 1.00 (m)

ΑZI	OI	V
	_	7

		valori	Valori di	
		permanenti	temporanee	calcolo
N	[kN]	6655.00	0.00	6655.00
Mb	[kNm]	1588.00	0.00	1588.00
MI	[kNm]	0.00	0.00	0.00
Tb	[kN]	304.00	0.00	304.00
TI	[kN]	0.00	0.00	0.00
Н	[kN]	304 00	0.00	304 00

OPERE DI SOSTEGNO VIABILITA'

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** RS3T 30 D 78 CL MU190A 001 В 48 di 49

Si considerano i parametri medi rispetto alla profondità B pari alla larghezza della fondazione da piano di posa.

Peso unità di volume del terreno

$$\gamma_1 = 19.00 \text{ (kN/mc)}$$

 $\gamma = 19.00 \text{ (kN/mc)}$

Valore caratteristico di resistenza del terreno

150.00 (kN/mq)

0.24 (m) ев = 0.00 (m)

Valore di progetto

150.00 (kN/mq)

15.76 (m) L* 1.00 (m)

q : sovraccarico alla profondità D

$$q = 66.50$$
 (kN/mq)

γ: peso di volume del terreno di fondazione

$$\gamma = 19.00 \text{ (kN/mc)}$$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5.14

s_c: fattori di forma

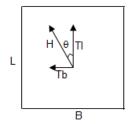
 $s_c = 1 + 0.2 B^* / L^*$

sc = 1.01

ic: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) = 1.94$$

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*) = 1.06$$


$$\theta = \operatorname{arctg}(Tb/TI) = 90.00$$
 (°)

1.94

(m=2 nel caso di fondazione nastriforme e m=(m_bsin²θ+m_lcos²θ) in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

i_c = 0.95

REV.

В

FOGLIO

49 di 49

OPERE DI SOSTEGNO VIABILITA'

NV07: MURO AD U MU19A RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO

RS3T 30 D 78 CL MU190A 001

d_c: fattore di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B* per D/B*> 1; d_c = 1 + 0,4 arctan (D / B*)

b_c : fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_D = 0.00$$

$$\beta_f + \beta_p < 4$$

$$b_c = 1.00$$

gc: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 4$$

$$g_c = 1.00$$

Carico limite unitario

$$q_{lim} = 1193.46 \text{ (kN/m}^2\text{)}$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 422.20 (kN/m2)$$

Verifica di sicurezza capacità portante

$$q_{lim} / \gamma_R = 518.89 \ge q = 422.20 (kN/m^2)$$

VERIFICA A SCORRIMENTO

Carico agente

$$Hd = 304.00$$
 (kN)

Azione Resistente

Verifica di sicurezza allo scorrimento

Sd /
$$\gamma_R$$
 = 2149.47 ≥ Hd = 304.00 (kN)