COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

ı	•	\cap	INE	RAS	TDI I	TTIII	DE	NO	DN
L	J.	U.	шиг	RAJ	IRU	LIUI	RE	NU	RU

PROGETTO DEFINITIVO

TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3)

INTERFERENZE IDRAULICHE: VIABILITA' NI25 - Tombino Scatolare 3,5x3 su NV12A

Relazione di calcolo scatolare

SCALA:
-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

RS3T 30 D 26 CL N12500 001 B

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Gen-2020	M.Salleolini	Gen-2020	A.Barreca	Gen-2020	F.Sacchi
В	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Apr-2020	M.Salleolini	Apr-2020	A.Barreca	Apr-2020	Apr-2020
				70000				USTRACE HO
								TOWNERR -

File: RS3T.3.0.D.26.CL.NI.25.0.0.001.B

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T LOTTO 3 0 D 26 CODIFICA CL DOCUMENTO NI.25.0.0.001 REV. B FOGLIO 2 di 125

INDICE

1.	PREMESSA	4
2.	GEOMETRIA DELLA STRUTTURA	5
3.	PROGETTO NUOVO TOMBINO	6
3.1.	NORMATIVA DI RIFERIMENTO	(
3.2.	UNITA' DI MISURA E SIMBOLOGIA	7
3.3.	GEOMETRIA	7
3.4.	MATERIALI	8
3.5.	INQUADRAMENTO GEOTECNICO	9
3.6.	MODELLO DI CALCOLO	11
3.7.	ANALISI DEI CARICHI	13
3.8.	COMBINAZIONI DI CARICO	20
3.9.	CARATTERISTICHE DELLE SOLLECITAZIONI	27
3.9.1	LINVILUPPO SLU-SLV	27
3.9.2	2.INVILUPPO SLE (RARA)	31
3.10.	VERIFICHE	34
3.11.	ARMATURE DI RIPARTIZIONE	4(
3.12.	RIEPILOGO E INCIDENZA ARMATURE	43
3.13.	VERIFICHE GEOTECNICHE	 4 4
3.13.	1. BASE REACTION	 4 4
3.13.	2. VERIFICHE SLU IN CONDIZIONI DRENATE	48
3.13.	3. VERIFICHE SLU IN CONDIZIONI NON DRENATE	56
3.13.	4. VERIFICHE SLV IN CONDIZIONI DRENATE	62
3.13.	5. VERIFICHE SLV IN CONDIZIONI NON DRENATE	70
3.13.	6. TABELLA VERIFICHE GEOTECNICHE GEO	76
3.14.	OPERE DI IMBOCCO E SBOCCO	77

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 3 di 125

3.14.1.	GEOMETRIA	. 77
3.14.2.	ANALISI DEI CARICHI	. 77
3.14.3.	COMBINAZIONI DI CARICO	. 80
3.14.4.	CARATTERISTICHE DELLE SOLLECITAZIONI	. 82
3.14.4.1.	INVILUPPO SLU-SLV	. 82
3.14.4.2.	INVILUPPO SLE (RARA)	. 86
3.14.5.	VERIFICHE	. 89
3.14.5.1.	VERIFICHE DELLE SEZIONI	. 90
3.14.5.2.	VERIFICHE GEOTECNICHE	. 93
3.14.5.2.1.	BASE REACTION	. 93
3.14.6.	VERIFICHE SLU IN CONDIZIONI DRENATE	. 97
3.14.7.	VERIFICHE SLU IN CONDIZIONI NON DRENATE	105
3.14.8.	VERIFICHE SLV IN CONDIZIONI DRENATE	111
3.14.9.	VERIFICHE SLV IN CONDIZIONI NON DRENATE	119
3.14.10.	TABELLA VERIFICHE GEOTECNICHE GEO	125

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	3 0 D 26	CL	NI.25.0.0.001	В	4 di 125

1. PREMESSA

Nella presente relazione di calcolo è sviluppato il progetto, ai sensi delle norme attualmente vigenti NTC18, di un tombino scatolare lungo la linea ferroviaria "Messina-Catania-Palermo", facente parte del nuovo collegamento Palermo-Catania, tratta Lercara –Caltanissetta Xirbi (Lotto 3).

Lo scatolare in oggetto è situato alla progressiva 0+760.00.

Quanto riportato di seguito consentirà di verificare che il dimensionamento della struttura è stato effettuato nel rispetto dei requisiti di resistenza richiesti all'opera.

Si riportano di seguito una sezione longitudinale, una trasversale e uno stralcio planimetrico dello scatolare:

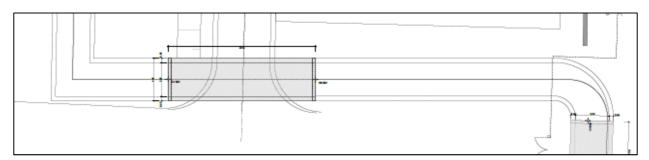


Figura 1a. Stralcio planimetrico dello scatolare

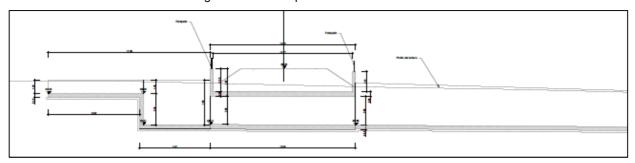


Figura 1b. Sezione longitudinale dello scatolare

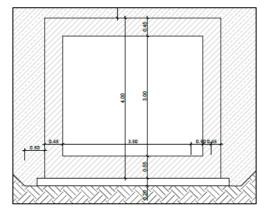
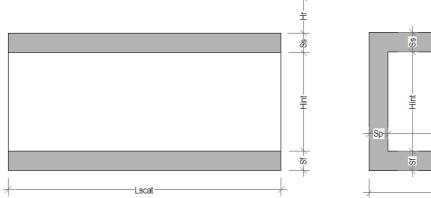


Figura 1c. Sezione trasversale dello scatolare

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	3 0 D 26	CL	NI.25.0.0.001	В	5 di 125

2. GEOMETRIA DELLA STRUTTURA

Il tombino sottopassa la strada adiacente alla linea ferroviaria ad una distanza fra piano rotabile ed estradosso soletta pari ad Hric. Esso ha dimensioni interne Lint \times Hint, con piedritti e soletta superiore di spessore Sp = Ss = Lint/10 +10cm, soletta inferiore di spessore Sf = Ss + 10cm. Nel seguito verrà esaminata una striscia di scatolare avente lunghezza di 1.00 m. Nella figura [Fig. 2] di cui al paragrafo precedente sono riportate schematicamente la geometria dell'opera e la simbologia adottata.

Le caratteristiche geometriche hanno la seguente simbologia (unità di misura metri):

Larghezza utile	Lint
Altezza libera	Hint
Spessore piedritti	Sp
Spessore soletta	Ss
Spessore fondazione	Sf
Altezza pacchetto stradale	Hs
Rinterro (superiore)	Hr
Ricoprimento	Hric
Larghezza totale	Ltot
Altezza totale	Htot

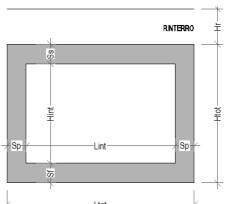


Figura 2. Simbologia adottata

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 6 di 125

3. PROGETTO NUOVO TOMBINO

Nel presente paragrafo si riportano i calcoli volti alla progettazione di un nuovo tombino nel rispetto della norma attualmente vigente NTC18.

3.1. NORMATIVA DI RIFERIMENTO

Tutte le calcolazioni sono state eseguite nel rispetto delle normativa NTC18 attualmente vigente.. In particolare si è fatto riferimento:

-	D.M. 17.01.2018	Nuove Norme Tecniche per le Costruzioni			
-	Circolare 21 Gennaio 2019, n. 7	Istruzione per l'applicazione dell'Aggiornamento delle "Norme Tecniche per le Costruzioni" di cui al DM 17 gennaio 2018			
-	RFI DTC INC PO SP IFS 001 A	Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sottobinario			
-	RFI DTC INC CS SP IFS 001 A	Specifica per la progettazione geotecnica delle opere civili ferroviarie			
-	EN 1992-1-1-1:2004	Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules of building			
-	RFI DTC SI PS MA IFS 001 C	Manuale di progettazione delle opere civili - Parte II - Sezione 2 Ponti e Strutture			
-	RFI DTC SI SP IFS 001 C	Capitolato Generale Tecnico di Appalto delle Opere Civili			
-	EC08	Eurocodice 8.			
-	Regolamento (UE) N.1299/2014 del 18 novembre 2014 della Commissione Europea	Specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.			

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 7 di 125

3.2. <u>UNITA' DI MISURA E SIMBOLOGIA</u>

Si utilizza il Sistema Internazionale (SI):

Unità di misura principali

- N (Newton) unità di forza

- m (metro) unità di lunghezza

- kg (kilogrammo) unità di massa

- s (secondo) unità di tempo

Unità di misura derivate da N

- (kiloNewton) 10^3 N

Si utilizzano i seguenti principali simboli con le relative unità di misura normalmente adottate:

 $\begin{array}{llll} \gamma & (gamma) & peso \ dell'unità \ di \ volume & (kN/m3) \\ \sigma & (sigma) & tensione \ normale & (N/mm2) \\ \tau & (tau) & tensione \ tangenziale & (N / mm2) \\ \epsilon & (epsilon) & deformazione & (m/m) \end{array}$

φ (fi) angolo di resistenza (°)

3.3. GEOMETRIA

Larghezza utile	Lint	3,50 m	luce interna scatolare
Altezza libera	Hint	3,00 m	altezza interna scatolare
Spessore piedritti	Sp	0,45 m	(consigliato: Sp = Ss)
Spessore soletta	Ss	0,45 m	(consigliato: $Ss = Lint/10 + 10cm$.)
Spessore fondazione	Sf	0,55 m	(consigliato: Sf = Ss + 10cm.)
Altezza pacchetto stradale	Hs	0 ,2 0 m	
Rinterro (superiore)	Hr	3,50 m	
Ricoprimento	Hric	3,7 0 m	Hs+Hr
Larghezza totale	Ltot	4,40 m	Lint+2xSPp
Altezza totale	Htot	4,00 m	Hint+SPs+SPf

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

LOTTO 3 0 D 26 CODIFICA DOCUMENTO CL NI.25.0.0.001

REV.

FOGLIO 8 di 125

3.4. <u>MATERIALI</u>

Per le opere in c.a. si adotta:

Calcestruzzo C (30/37) le cui caratteristiche principali sono:

- Resistenza cilindrica caratteristica:

 $f_{ck} = 30N/mm^2$

- Resistenza di calcolo a compressione semplice:

 $f_{cd} = \alpha_{cc} f_{ck} / \gamma_m$, dove:

- α_{cc} = 0.85 e γ_{m} =1.5;

 $- f_{cd} = 17 \text{ N/mm}^2$

- Resistenza di calcolo a trazione semplice:

 $f_{ctd} = f_{ctk} / \gamma_m$, dove :

- $\gamma_m = 1.5$;

- $f_{ctd} = 1,35 \text{ N/mm}^2$.

- Modulo elastico:

 $Ec = 32836 \text{ N/mm}^2$

- Tolleranza di posa del copriferro = 10 mm;

- Classe di esposizione XA1

- Copriferro = 40 mm

- Condizioni ambientali: aggressive

- Apertura fessure limite: w1 = 0.2 mm

Acciaio da cemento armato normale B450C controllato in stabilimento. Le barre sono ad aderenza migliorata. Le caratteristiche meccaniche sono:

- Tensione caratteristica di snervamento: $f_{vk} = 450 \text{ Nmm}^2$

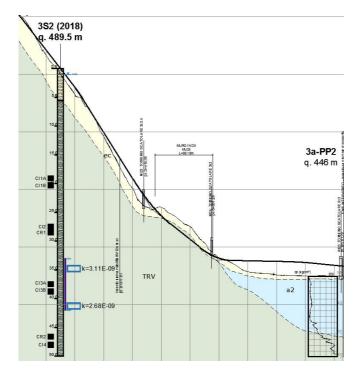
- Resistenza di calcolo dell'acciaio: $f_{yd} = f_{yk} / \gamma_s dove$

 $- \gamma_s = 1.15 = 391 \text{ Nmm}^2$

- Allungamento D1 > 12%

- Modulo di elasticità: Es=206000 Nmm2

- Sovrapposizioni barre $\geq 40\phi$



NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	3 0 D 26	CL	NI.25.0.0.001	B	9 di 125

3.5. INQUADRAMENTO GEOTECNICO

Si riporta di seguito uno stralcio del profilo geotecnico (RS3T30D26F6GE0000001C) della zona di riferimento:

Per l'inquadramento geotecnico si fa riferimento alla relazione geotecnica, della quale si riportano gli stralci significativi del profilo geotecnico e dei parametri geotecnici del terreno di fondazione, del rinterro e del rinfianco.

Lo strato significativo del profilo geotecnico è l'unità 1) a2

la cui descrizione nella relazione geotecnica è: alluvioni (argilla e argilla limosa)

Peso specifico terreno γt rif.geotec. kN/m3 angolo d'attrito terreno ϕ rif.geotec. [°] coesione terreno ϕ c rif.geotec. ϕ rif.ge

I parametri geotecnici del rinterro e del terreno di rinfianco sono i seguenti:

Peso specifico rinterro	γt	19,0 kN/m3	
angolo di attrito rinterro	Ø'	38,0 [°]	0,663 [rad]
coesione rinterro	c	0,0 kN/m2	
Peso specifico terreno di rinfianco	γt	20,0 kN/m3	
angolo di attrito terreno di rinfianco	Ø'	38,0 [°]	0,663 [rad]
coesione terreno di rinfianco	c	0,0 kN/m2	

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 3 0 D 26 CL NI.25.0.0.001 B 10 di 125

Interazione terreno - struttura

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo:

•
$$s = B \cdot ct \cdot (q - \sigma v0) \cdot (1 - v^2) / E$$

dove:

- -s = cedimento elastico totale;
- -B = lato minore della fondazione;
- ct = coefficiente adimensionale di forma ottenuto dalla interpolazione dei valori dei coefficienti proposti dal Bowles, 1960 (L = lato maggiore della fondazione):

ct =
$$0.853 + 0.534 \ln(L / B)$$
 rettangolare con L / B \leq 10 ct = $2 + 0.0089$ (L / B) rettangolare con L / B $>$ 10

- -q = pressione media agente sul terreno;
- $-\sigma v0$ = tensione litostatica verticale alla quota di posa della fondazione;
- -v =coefficiente di Poisson del terreno;
- -E = modulo elastico medio del terreno sottostante.

Il valore della costante di sottofondo kw è valutato attraverso il rapporto tra il carico applicato ed il corrispondente cedimento pertanto, si ottiene:

•
$$kw = E / [(1-v2) \cdot B \cdot ct]$$

Di seguito si riportano in forma tabellare i risultati delle valutazioni effettuate per il caso in esame, avendo considerato per E un valore medio di quello indicato per l'Unità Geotecnica in esame ed una dimensione longitudinale della fondazione ritenuta potenzialmente collaborante nella diffusione dei carichi:

Unità stratigrafica	1) a	a2
Descrizione unità stratigrafica	allu	ivioni (argilla e argilla limosa)
Modulo elastico medio terreno	E	20000 kN/m^2
Coefficiente di Poisson medio terreno	ν	0,3
Lato minore della fondazione	В	1,0 m
Lato maggiore della fondazione	L	4,4 m
Rapporto dei lati	L/B	4,4
Coefficiente adimensionale	ct	1,644
Costante di sottofondo	Kw	13367 kN/m^3

3.6. MODELLO DI CALCOLO

Il modello di calcolo attraverso il quale viene schematizzata la struttura è quello di telaio chiuso su letto di molle alla Winkler. Il programma di calcolo utilizzato è un programma ad elementi finiti, il Sap 2000. Le caratteristiche delle aste modellate con elementi frame sono le seguenti:

asta	base	altezza	descrizione
Asta 1	100 cm	55 cm	(soletta inferiore)
Aste 2, 4	100 cm	45 cm	(Piedritti)
Asta 3	100 cm	45 cm	(soletta superiore)

Le caratteristiche geometriche del modello e le coordinate dei nodi sono le seguenti:

Linterasse	3,95 m
Hinterasse	3,50 m
N.nodi	13
N.nodi sup	2
N.nodi inf	11
N.spazi inf	10

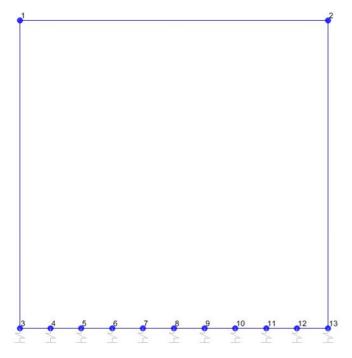


Figura 3. Numerazione nodi modello SAP

Nodo	X	Z
1	0,000	3,500
2	3,950	3,500
3	0,000	0,000
4	0,395	0,000
5	0,790	0,000
6	1,185	0,000
7	1,580	0,000
8	1,975	0,000
9	2,370	0,000
10	2,765	0,000
11	3,160	0,000
12	3,555	0,000
13	3,950	0,000

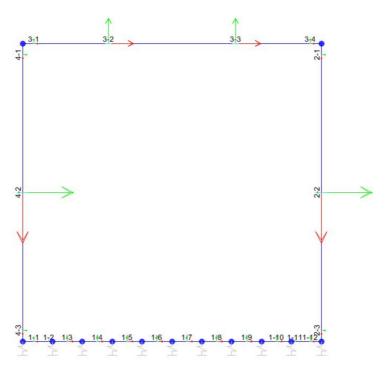


Figura 4: Individuazione elementi modello SAP

L'opera è stata considerata vincolata alla base mediante dei vincoli cedevoli in funzione delle caratteristiche elastiche del terreno di sottofondo.

La soletta inferiore viene divisa in 10 elementi per poter schematizzare, tramite le molle applicate, l'interazione terreno-struttura. Per la rigidezza delle molle, nel il caso in esame, si assume il valore del Modulo di reazione verticale desunto dai parametri della relazione geotecnica:

Rigidezza molle nodali SAP

ks		13367 kN/m^3
nodi centrali (6,7,8,9,10)		
Linfl		0,395 m
Kcentrale	ks x Linfl x 1	5280 kN/m
nodi intermedi (4,5,11,12)		
Linfl		0,395 m
Kintermedio	1,5 x ks x Linfl x 1	7920 kN/m
nodi estremità (3,13)		
Linfl		0,423 m
Kestremità	$2,0 \times ks \times Linfl \times 1$	11295 kN/m

3.7. ANALISI DEI CARICHI

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura in esame.

Peso proprio della struttura (condizione DEAD)

Il peso proprio delle solette e dei piedritti viene calcolato automaticamente dal programma di calcolo utilizzato considerando per il calcestruzzo $\gamma = 25 \text{kN/m3}$.

Peso specifico calcestruzzo armato	γds	25 kN/m^3	
peso singolo piedritto	$P_{\mathbf{p}}$	11,25 kN/m	yels x Sp
peso soletta superiore	Pss	11,25 kN/m	ycls x Ss
peso fondazione	Psf	13,75 kN/m	y cls x Sf

Permanenti portati (condizione PERM-STR)

peso specifico pacchetto stradale	γs	24 kN/m^3	
altezza pacchetto stradale	Hs	0 ,2 0 m	
Permanente totale	Gsp	4,80 kN/m	$\gamma b \times Hb$
peso specifico rinterro	γr	19,0 kN/m^3	
altezza rinterro	Hr	3,50 m	
peso rinterro	Pr	66,50 kN/m	$\gamma r \times Hr$
Permanente totale	G2p	71,30 kN/m	Pb + Pr
Permanente nodi 1 e 2	G2P	16,04 kN	G2p x Sp / 2

I carichi concentrati verticali nei nodi 1 e 2 (i nodi tra la soletta superiore e i piedritti), rappresentano il carico permanente sulla soletta di copertura dovuto al peso della zona sovrastante la metà dello spessore del piedritto (la modellazione dello scatolare è stata fatta in asse piedritto).

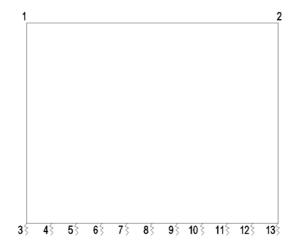


Figura 5. Numerazione dei nodi nel modellostrutturale.

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	3 0 D 26	CL	NI.25.0.0.001	В	14 di 125

Spinta del terreno (condizioni SPTSX e SPTDX)

Peso specifico terreno di rinfianco	γt	20,0 kN/m3	
angolo di attrito terreno di rinfianco	Ø'	38,0 [°]	0,663 [rad]
coefficiente spinta attiva ka	ka	0,238	(1 - senØ) / (1 + senØ)
coefficiente spinta riposo ko	ko	0,384	(1 - senØ)
coefficiente spinta passiva kp	kp	4,204	(1 + senØ) / (1 - senØ)
Pressione estradosso soletta superiore	P1	27,40 kN/m^2	$ko \propto (Gsp + Pr)$
Pressione asse soletta superiore	P2	29,05 kN/m^2	$ko \times (Gsp + Pr + \gamma r \times Ss / 2)$
Pressione asse soletta inferiore	P3	54,60 kN/m^2	$ko \times [Pb + Pr + \gamma r \times (Ss + Hint + Sf / 2)]$
Pressione intradosso soletta inferiore	P4	56,61 kN/m^2	$ko \times (Pb + Pr + \gamma r \times Htot)$
Forza concentrata asse soletta superiore	F1	6,35 kN/m	(P1 + P2) / 2 x Ss / 2
Forza concentrata asse soletta inferiore	F2	15,29 kN/m	(P3+ P4) / 2 × Sf / 2

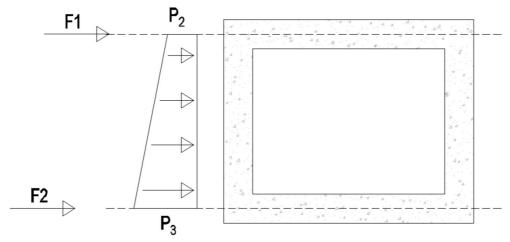


Figura 6. Spinte del terreno

I carichi concentrati nei nodi 1 e 3 (per la SPTSX) oppure 2 e 13 (per la SPTDX) rappresentano la parte di spinta del terreno esercitata su 1/2 spessore della soletta sup. e su 1/2 spessore della soletta inferiore.

Carichi accidentali, ripartizione carichi verticali (condizione ACCM-STR)

Si assume il più gravoso tra i seguenti due schemi di carico:

- a) carico distribuito uniforme stradale
- b) schema di carico 1 § 5.1.3.3.3 Cap.5 NTC2018

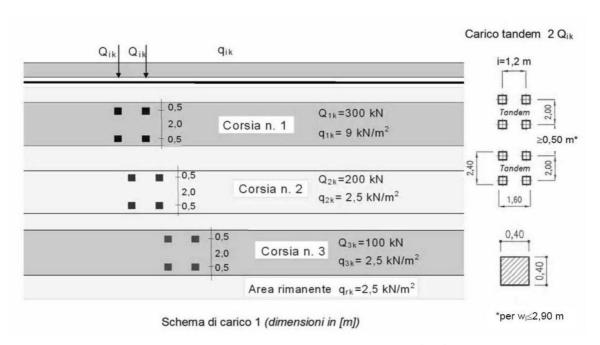


Figura 7 – Schema di Carico 1 del D.M. 17/01/2018

Carico distribuito per traffico stradale	qunif	20 kN/m^2	
Carico distribuito per corsia di carico	q1k	9 kN/m^2	Schema di carico 1 NTC§5.1.3.3.3
Carico concentrato impronta di carico	Q1k	150 kN	Schema di carico 1 NTC§5.1.3.3.3
N° Impronte di carico per asse	N_{i}	2	
N° Assi	N_a	2	
Dimensione trasversale impronta di carico	Bti	0,40 m	
Dimensione longitudinale impronta di carico	Bli	0,40 m	
Interasse trasversale strada impronte carico	iti	2,00 m	
Interasse longitudinale strada impronte carico	ili	1,20 m	
Larghezza corsia di carico	w 1	3,00 m	

Lo schema di carico 1, che prevede anche la presenza di carichi concentrati, viene ragguagliato allo schema di carico a) mediante una diffusione attraverso il pacchetto stradale e il rinterro fino alla linea d'asse della soletta superiore:

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 16 di 125

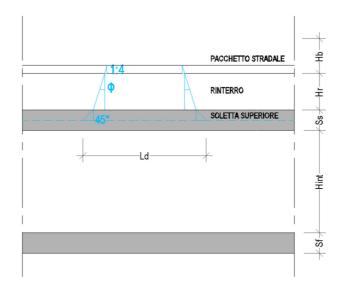


Figura 8. Diffusione dei carichi concentrati dello schema di carico 1

Ripartizione trasversale strada piano rotabile	rtpr	2,40 m	Bti+iti*(Ni-1)
Ripartizione longitudinale strada piano rotabile	rlpr	1,60 m	Bli+ili*(Na-1)
Larghezza di diffusione nel pacchetto stradale	Lds	0,10 m	Diffusione 1:4 nel pacchetto stradale
Larghezza di diffusione nel rinterro	Ldr	5,47 m	Diffusione secondo angolo attrito
Larghezza di diffusione nel cls	Ldc	0,45 m	Diffusione 45° nel cls
Larghezza trasv. di diffusione del carico	Ldt	8,42 m	rtpr + Lds + Ldr + Ldc
Larghezza long. di diffusione del carico	Ldl	7,62 m	rlpr + Lds + Ldr + Ldc
Carico ripartito verticale schema di carico 1	psch1	18,35 kN/m^2	[Q1k*Ni*Na/(Ldl*Ldt)]+q1k
Carico distribuito massimo su soletta superiore	Pq	20,00 kN/m^2	max (psch1 ; qunif)

Spinta sui piedritti prodotta dal sovraccarico STRADALE (condizioni SPACCSX e SPACCDX)

Carico distribuito massimo per traffico stradale	Pq	7,69	kN/m^2	Pq x Ko
Spinta semispessore soletta superiore	Fqsup	1,73	kN/m	Pq x SPs / 2
spinta semispessore soletta inferiore	Fainf	2,11	kN/m	PaxSPi/2

Frenatura e accelerazione (condizione AVV-STR)

La forza di frenamento, agente nella direzione dell'asse della strada ed al livello della superficie stradale, è funzione del carico verticale totale agente sulla corsia convenzionale n. 1 ed è pari a:

$$q3 = 0.6 \cdot (2 * Ni * Q1k) + 0.10 \cdot q1k \cdot w1 \cdot L$$

Lunghezza zona caricata	\mathbf{L}	4,40 m	Lint + 2*Sp
Largh. diffusione sulla soletta superiore	Ldiff	3,95 m	Lint + Sp
Acc. e fren. traffico stradale	Av	371,88 kN	0.6*(2*Ni*Q1k)+0.10*q1k*w1*L
Acc. e fren. traffico stradale distribuiti	q3	30,07 kN/m	Av / [Ldiff + max(Ldt; w1)]

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 17 di 125

Azioni termiche (condizione TERM)

Alla soletta superiore si applica una variazione termica uniforme pari a $\Delta t = \pm 15$ °C ed una variazione nello spessore tra estradosso ed intradosso pari a $\Delta t = \pm 5$ °C.

Variazione termica uniforme Δ Tunif +-15,00 [°] Sulla soletta superiore Variazione termica differenziale Δ Tdiff +-5,00 [°] Sulla soletta superiore -11,11 [°/m] Δ Tdiff / Ss

Ritiro igrometrico (condizione RITIRO)

Gli effetti del ritiro vanno valutati a "lungo termine" attraverso il calcolo dei coefficienti di ritiro finale ϵ cs (t , t0) e di viscosità ϕ (t , t0), come definiti nell'EUROCODICE 2- UNI EN 1992-1-1 Novembre 2005 e D. M. 17-01-2018.

I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura ed applicati nel modello come una variazione termica uniforme equivalente agli effetti del ritiro:

Variazione termica uniforme equivalente ΔTritiro -[11,70°] Sulla soletta superiore

CONDIZIONI DI CARICO SISMICHE

Per il calcolo dell'azione sismica si utilizza il metodo dell' analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k. Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale Fh=kh*W Forza sismica verticale Fv=kv*W

I valori dei coefficienti sismici orizzontale kh e verticale kv

kh = a max /g $kv = \pm 0.5 \times kh$

Con riferimento alla nuova classificazione sismica del territorio nazionale, ai fini del calcolo dell'azione sismica secondo il DM 17/01/2018 viene assegnata all'opera una vita nominale VN ed una classe d'uso Cu; segue un periodo di riferimento VR=VN *CU.

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	3 0 D 26	CL	NI.25.0.0.001	В	18 di 125

A seguito di tale assunzione si ottiene allo stato limite ultimo SLV in funzione della Latitudine e Longitudine del sito in esame un valore dell'accelerazione pari ad ag, il cui valore è di seguito riportato, come desunto anche dalla relazione geotecnica.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima per la determinazione delle forze di inerzia può essere valutata con la relazione:

$$amax = S * ag = Ss *St* ag$$

Le forze di inerzia sullo **scatolare** (masse di peso proprio soletta superiore e piedritti, rinterro e ballast, 20% treno di carico,..) sono pari alle masse moltiplicate per kh e kv ove: $kh = \beta M \times S \times ag/g$ e kv = kh / 2. Essendo lo scatolare non libero di subire spostamenti relativi rispetto al terreno, $\beta M = 1$.

vita nominale	V_{N}	75 anni
classe d'uso	CL	III
coefficiente d'uso	$C_{ m U}$	1,5 0
vita di riferimento = $C_U * V_N$	V_R	112,5 anni
probabilità di superamento nel periodo di riferimento	$\mathrm{P_{VR}}$	10%
periodo di ritorno del sisma	T_{R}	1068 anni

Spettro di risposta in accelerazione della componente orizzontale

Coordinate del sito in oggetto:

Latitudine	37,69428
Longitudine	13,83725

Parametri sismici di progetto

accelerazione massima orizzontale al bedrock	ago	0,110 g
fattore amplificazione massima spettro accelerazione	Fo	2,647 sec
periodo inizio tratto a velocità costante spettro acc. orizz.	T*c	0,381
categoria sottosuolo		С
categoria topografica		T1
amplificazione topografica	S_{T}	1,000
smorzamento viscoso convenzionale	٤	5%
fattore di correzione per $\xi <> 5\%$	η	1,000

Tab.3.2.V	S_S	C_{C}	S_{S}	C_{C}
A	1,00	1,00		
В	1,20	1,33		
С	1,50	1,44	1,50	1,44
D	1,80	2,03		
Е	1,60	1,69		

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	3 0 D 26	CL	NI.25.0.0.001	В	19 di 125

coefficiente amplificazione stratigrafica	$S_{\mathbf{S}}$	1,500
coefficiente di amplificazione	S	1,500
coefficiente categoria sottosuolo	$C_{\mathbf{C}}$	1,444
periodo inizio tratto a accelerazione costante = Tc / 3	$\mathrm{T_{B}}$	0,183 sec
periodo inizio tratto a velocità costante = Cc * T*c	$\mathrm{T}_{\mathbf{C}}$	0,550 sec
periodo inizio tratto a spostamento costante = 4 * ag/g +1,6	$T_{\mathbf{D}}$	2,040 sec
accelerazione massima orizzontale al suolo = $Ss \times St \times ag/g$	ago,max	0,165 g

Accelerazioni per il calcolo delle forze di inerzia agenti sullo scatolare

Coefficiente di riduzione dell'acc max attesa al sito		β	1,000
$ao = kh = ago, max = S \times ag/g$	valore $PGA \times s$ catolare	ao = kh	0,1650 g
av = kv = kh / 2	valore $PGA \times scatolare$	$a\mathbf{v} = \mathbf{k}\mathbf{v}$	0.0825 g

Forze di inerzia (condizione SismaH-STR)

Forza di inerzia treno di carico - (%)	%	0%		
Forza orizzontale sulla soletta di copertura	F'h	13,62	kN/m	$(Pss+Gsp+Pr+\%*Pq) \times kh$
Forza orizzontale su singolo piedritto	F"h	1,86	kN/m^2	$Pp \times kh$

Forze di inerzia (condizione SismaV-STR)

Forza di inerzia treno di carico - (%) % 0% Forza verticale sulla soletta di copertura F''v 6,81 kN/m^2 $(Pss+Gsp+Pr+\%*Pq) \times kv$

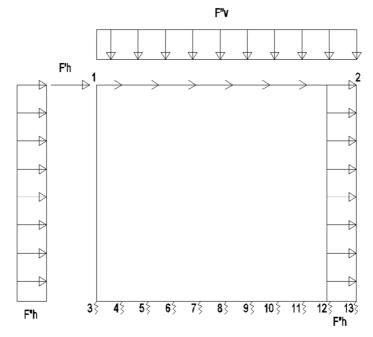


Figura 9. Forze sismiche agenti sulla struttura

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 R\$3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 20 di 125

Spinta sismica terreno - Teoria di WOOD (condizioni SPSDX e SPSSX)

Forza distribuita su uno solo dei piedritti qW 11,76 kN/m^2 (%*Pq+Gsp+Pr) x (ago,max) Forza concentrata nodo superiore piedritto QW sup Forza concentrata nodo inferiore piedritto QW inf $qW \times Ss / 2$ 3,24 kN $qW \times Sf / 2$

3.8. <u>COMBINAZIONI DI CARICO</u>

Secondo le prescrizioni del D.M. 17/01/2018 le azioni di calcolo debbono essere cumulate secondo condizioni di carico tali da risultare più sfavorevoli ai fini delle singole verifiche, tenendo conto della ridotta probabilità di intervento simultaneo di tutte le azioni accidentali con i rispettivi valori più sfavorevoli.

Le combinazioni di carico generiche sono le seguenti:

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU): $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$ [2.5.1]
- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili: $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$ [2.5.2]
- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili: $G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$ [2.5.3]
- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine: $G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots \qquad [2.5.4]$
- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E: $E+G_1+G_2+P+\psi_{21}\cdot Q_{k1}+\psi_{22}\cdot Q_{k2}+\dots$ [2.5.5]

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_{i} \psi_{2j} Q_{kj}$$
 [2.5.7]

Ai fini della determinazione dei valori caratteristici delle azioni dovute al traffico, si considerano le combinazioni riportate in Tabella 5.1.IV:

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

LOTTO 3 0 D 26 CODIFICA CL

DOCUMENTO NI.25.0.0.001

REV. B

FOGLIO

Tabella 5.1.IV - Valori caratteristici delle azioni dovute al traffico

	Carichi sulla carreggiata					Carichi su marciapiedi e piste ciclabili
	Carichi verticali	i verticali Carichi orizzontali		ontali	Carichi verticali	
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q ₄	Carico uniformemente. distribuito
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m ²
2 a	Valore frequente			Valore caratteristico		
2 b	Valore frequente				Valore caratteristico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				

^(*) Ponti di 3^a categoria
(**) Da considerare solo se richiesto dal particolare progetto (ad es. ponti in zona urbana)
(***) Da considerare solo se si considerano veicoli speciali

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 22 di 125

Per quel che riguarda i valori dei coefficienti parziali di sicurezza γ_{Gi} , γ_{Qi} e γ_{si} si considerano i valori riportati in Tabella 5.1.V:

Tabella 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	$\gamma_{ m G2}$	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γ_{Qi}	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2},\gamma_{\epsilon 3},\gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 23 di 125

Per quel che riguarda i valori dei coefficienti di combinazione delle azioni variabili ψ si considerano i valori raccomandati per i ponti stradali:

Tabella 5.1.VI - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente ψ_1 (valori frequenti)	Coefficiente ψ ₂ (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
Vento q ₅	Vento a ponte scarico SLU e SLE Esecuzione	0,6 0,8	0,2	0,0 0,0
	Vento a ponte carico	0,6		
Nava a	SLU e SLE	0,0	0,0	0,0
Neve q ₅	esecuzione	0,8	0,6	0,5
Temperatura	T_k	0,6	0,6	0,5

Le azioni descritte nel paragrafo precedente ed utilizzate nelle combinazioni di carico vengono di seguito riassunte:

Peso proprio	DEAD
Carichi permanenti	PERM-STR
Spinta del terreno sulla parete sinistra	SPTSX
Spinta del terrenno sulla parete destra	SPTDX
Carico Variabile Stradale	ACCM-STR
Spinta del carico stradale Sulla parete Sx	SPACCSX
Spinta del carico stradale Sulla parete Dx	SPACCDX
Accelerazione e frenatura	AVV-STR
Variazione termica sulla soletta superiore	ENV_TERM
Ritiro	RITIRO
Azione sismica orizzontale	Sisma H-STR
Azione sismica verticale	Sisma V-STR
Incremento sismico della spinta	SPSDX/SX

La 4 condizioni di carico:

 Δ Tuniforme = $\pm 15^{\circ}$

 Δ Tdifferenziale = $\pm 5^{\circ}$

e le loro 4 combinazioni sono state preventivamente inviluppate nella condizione ENV_TERM, la quale viene impiegata nelle successive combinazioni di carico per massimizzare gli effetti termici.

Si riportano di seguito le combinazioni allo SLU di carico ritenute più significative in base all'esperienza. Combinazione fondamentale

$$\gamma_{G1}\cdot G_1+\gamma_{G2}\cdot G_2+\gamma_{P}\cdot P+\gamma_{Q1}\cdot Q_{k1}+\gamma_{Q2}\cdot \psi_{02}\cdot Q_{k2}+\gamma_{Q3}\cdot \psi_{03}\cdot Q_{k3}+\dots$$

	Combinazioni di carico SLU (nonsismiche)												
	1slu	2slu	3slu	4slu	5slu	6slu	7slu	8slu	9slu	10slu	11slu	12slu	13slu
DEAD	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1	1.35	1.35	1.35	1.35	1.35
PERM-STR	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1	1.5	1.5	1.5	1.5	1.5
SPTSX	1	1	1	1	1.35	1.35	1	1	1	1.35	1.35	1.35	1.35
SPTDX	1	1	1	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1
ACCM-STR	1.35	1.35	1.35	1.35	1.35	0	1.35	0	1.35	1.35	1.08	1.08	1.015
SPACCSX	0	0	0	0	0	0	0	0	0	1.45	0	0	0
SPACCDX	1.35	0	0	1.35	1.35	1.35	1.35	1.35	1.35	0	1.08	1.08	1.015
AVV	1.35	1.35	1.35	1.35	1.35	0	1.35	0	0	0	0	0	1.35
ENV_TERM	0	-0.9	0	0	0	0	-0.9	0	0.9	-0.9	-1.5	1.5	0.9
RITIRO	0	1.2	0	0	0	0	0	0	1.2	1.2	1.2	1.2	1.2

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 25 di 125

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 \text{ x } E_{Y} \pm 0.30 \text{ x } E_{Z}$$
 oppure $E = \pm 0.30 \text{ x } E_{Y} \pm 1.00 \text{ x } E_{Z}$

	Combinazioni di Carico Sismiche										
	sh1	sh2	sh3	sh4	sv1	sv2	sv3	sv4			
DEAD	1	1	1	1	1	1	1	1			
PERM-STR	1	1	1	1	1	1	1	1			
SPTSX	1	1	1	1	1	1	1	1			
SPTDX	1	1	1	1	1	1	1	1			
ACCM-STR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
SPACCSX	0	0	0	0	0	0	0	0			
SPACCDX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
AVV-STR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
ENV_TERM	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5			
RITIRO	0	0	0	0	0	0	0	0			
SISMA H-STR	1	1	1	1	0.3	0.3	0.3	0.3			
SISMA V-STR	0.3	-0.3	0.3	-0.3	-1	1	-1	1			
SPSDX	0	0	1	1	0	0	0.3	0.3			
SPSSX	1	1	0	0	0.3	0.3	0	0			

Le combinazioni sismiche vanno eseguite in entrambe le direzioni pertanto le combinazioni SH vanno ripetute per Sisma H = -1 e le combinazioni SV per Sisma V=-0.3.

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 26 di 125

Si riportano infine,le combinazioni di carico agli stati limite di esercizio SLE ritenute più significative. Combinazione rara

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazioni di carico SLE								
	1sle	2sle	3sle					
DEAD	1	1	1					
PERM-STR	1	1	1					
SPTSX	1	1	1					
SPTDX	0.8	0.8	0.8					
ACCM-STR	0.75	0.75	0.75					
SPACCSX	0.75	0.75	0					
SPACCDX	0.75	0.75	0.75					
AVV-STR	-0.75	0.75	-0.75					
ENV_TERM	-0.6	0.6	-0.6					
RITIRO	0	0	1					

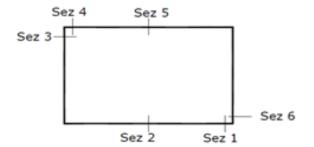
NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T LOTTO C 3 0 D 26

CODIFICA CL DOCUMENTO NI.25.0.0.001 REV. B FOGLIO 27 di 125

3.9. CARATTERISTICHE DELLE SOLLECITAZIONI

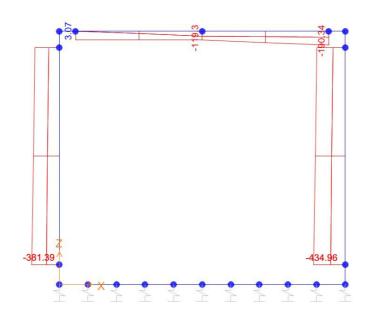
3.9.1.Inviluppo SLU-SLV

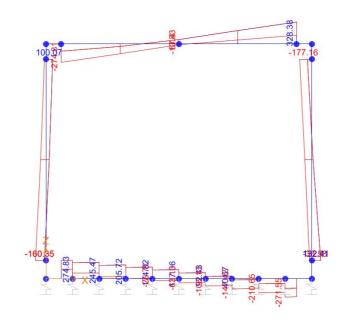

Frame	Station	OutputCase	CaseType	StepType	P	V2	M3
1	0,225	ENVELOPE SLU SLV	Combination	Max	0	,0 271,7	7 204,4
1	0,395	ENVELOPE SLU SLV	Combination	Max	0	,0 274,8	158,0
1	0,395	ENVELOPE SLU SLV	Combination	Max	0	,0 238,1	158,0
1	0,79	ENVELOPE SLU SLV	Combination	Max	0	,0 245,9	62,5
1	0,79	ENVELOPE SLU SLV	Combination	Max	0	,0 198,4	1 62,5
1	1,185	ENVELOPE SLU SLV	Combination	Max	0	,0 205,7	7 0,4
1	1,185	ENVELOPE SLU SLV	Combination	Max	0	,0 167,5	0,4
1	1,58	ENVELOPE SLU SLV	Combination	Max	0	,0 174,8	3 -37,4
1	1,58	ENVELOPE SLU SLV	Combination	Max	0	,0 129,7	7 -37,4
1	1,975	ENVELOPE SLU SLV	Combination	Max	0	,0 137,1	-64,2
1	1,975	ENVELOPE SLU SLV	Combination	Max	0	,0 85,:	1 -64,2
1	2,37	ENVELOPE SLU SLV	Combination	Max	0	,0 92,	4 -52,8
1	2,37	ENVELOPE SLU SLV	Combination	Max	0	,0 33,	3 -52,8
1	2,765	ENVELOPE SLU SLV	Combination	Max	0	,0 40,	7 -23,5
1	2,765	ENVELOPE SLU SLV	Combination	Max	0	,0 -16,6	6 -23,5
1	3,16	ENVELOPE SLU SLV	Combination	Max	0	,0 -11,	2 14,5
1	3,16	ENVELOPE SLU SLV	Combination	Max	0	,0 -75,	4 14,5
1	3,555	ENVELOPE SLU SLV	Combination	Max	0	,0 -70,0	0 74,0
1	3,555	ENVELOPE SLU SLV	Combination	Max	0	,0 -140,8	3 74,0
1	3,725	ENVELOPE SLU SLV	Combination	Max	0	,0 -138,5	119,9
1	0,225	ENVELOPE SLU SLV	Combination	Min	0	,0 142,0	-13,3
1	0,395	ENVELOPE SLU SLV	Combination	Min	0	,0 144,3	-56,0
1	0,395	ENVELOPE SLU SLV	Combination	Min	0	,0 83,	7 -56,0
1	0,79	ENVELOPE SLU SLV	Combination	Min	0	,0 89,3	2 -120,4
1	0,79	ENVELOPE SLU SLV	Combination	Min	0	,0 31,8	-120,4
1	1,185	ENVELOPE SLU SLV	Combination	Min	0	,0 37,	2 -152,5
1	1,185	ENVELOPE SLU SLV	Combination	Min	0	,0 1,4	1 -152,5
1	1,58	ENVELOPE SLU SLV	Combination	Min	0	,0 6,8	-165,1
1	1,58	ENVELOPE SLU SLV	Combination	Min	0	,0 -26,	7 -165,1
1	1,975	ENVELOPE SLU SLV	Combination	Min	0	,0 -21,	-170,8
1	1,975	ENVELOPE SLU SLV	Combination	Min	0	,0 -63,:	1 -170,8
1	2,37	ENVELOPE SLU SLV	Combination	Min	0	,0 -55,	8 -203,5
1	2,37	ENVELOPE SLU SLV	Combination	Min	0	,0 -106,1	-203,5
1	2,765	ENVELOPE SLU SLV	Combination	Min	0	,0 -98,	8 -218,1
1	2,765	ENVELOPE SLU SLV	Combination	Min		,0 -147,	
1	3,16	ENVELOPE SLU SLV	Combination	Min	0	,0 -140,1	-209,2
1	3,16	ENVELOPE SLU SLV	Combination	Min	0	,0 -210,6	-209,2
1	3,555	ENVELOPE SLU SLV	Combination	Min	0	,0 -203,	-158,9
1	3,555	ENVELOPE SLU SLV	Combination	Min	0	,0 -271,5	-158,9

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	3 0 D 26	CL	NI.25.0.0.001	B	28 di 125

1 3,725 ENVELOPE SLU SLV Combination Min 0,0 -268,4 2 0,225 ENVELOPE SLU SLV Combination Max -167,8 -61,8 2 1,725 ENVELOPE SLU SLV Combination Max -184,6 21,4	-116,8 -43,3 7,3 54,7 -249,8
·	7,3 54,7
2 1,725 ENVELOPE SLU SLV Combination Max -184,6 21,4	54,7
·	
2 3,225 ENVELOPE SLU SLV Combination Max -201,5 132,4	-249,8
2 0,225 ENVELOPE SLU SLV Combination Min -389,4 -177,2	
2 1,725 ENVELOPE SLU SLV Combination Min -412,2 -104,3	-53,9
2 3,225 ENVELOPE SLU SLV Combination Min -435,0 -33,6	-140,3
3 0,225 ENVELOPE SLU SLV Combination Max 3,1 -109,1	77,3
3 1,1 ENVELOPE SLU SLV Combination Max -32,5 -38,7	189,6
3 1,975 ENVELOPE SLU SLV Combination Max -68,0 67,4	191,7
3 2,85 ENVELOPE SLU SLV Combination Max -76,2 197,9	137,1
3 3,725 ENVELOPE SLU SLV Combination Max -78,4 328,4	-22,0
3 0,225 ENVELOPE SLU SLV Combination Min -117,4 -274,8	-120,4
3 1,1 ENVELOPE SLU SLV Combination Min -117,4 -144,3	28,2
3 1,975 ENVELOPE SLU SLV Combination Min -119,3 -13,8	55,1
3 2,85 ENVELOPE SLU SLV Combination Min -154,8 58,4	0,0
3 3,725 ENVELOPE SLU SLV Combination Min -190,3 130,6	-208,6
4 0,225 ENVELOPE SLU SLV Combination Max -145,8 100,1	162,8
4 1,725 ENVELOPE SLU SLV Combination Max -162,7 45,8	63,7
4 3,225 ENVELOPE SLU SLV Combination Max -179,5 -24,9	221,8
4 0,225 ENVELOPE SLU SLV Combination Min -335,8 -25,3	-25,0
4 1,725 ENVELOPE SLU SLV Combination Min -358,6 -79,5	-2,0
4 3,225 ENVELOPE SLU SLV Combination Min -381,4 -160,4	10,7

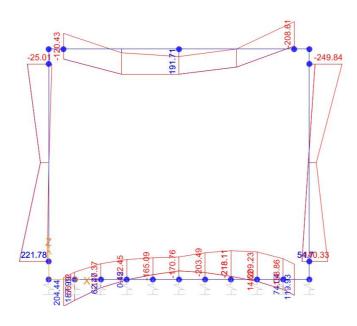

SEZIONE	P	V2	M3
01	0,0	274,8	204,4
02	0,0	0,0	218,1
03	-145,8	177,2	249,8
04	0,0	328,4	208,6
05	0,0	0,0	191,7
06	-179,5	177,2	221,8


NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	3 0 D 26	CL	NI.25.0.0.001	B	29 di 125

Diagrammi di inviluppo delle sollecitazioni: ENVELOPE SLU-SLV

Sforzo normale


Taglio

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 30 di 125

Momento Flettente

I valori V e M dei diagrammi corrispondono a quelli riportati nella tabella, mentre il valore dello sforzo normale P nei diagrammi (valore massimo) differisce da quello di verifica della tabella, pari a quello di compressione minimo.

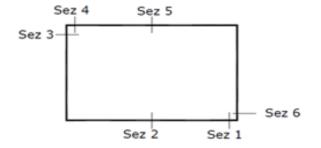
> CODIFICA CL

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T LOTTO 3 0 D 26 DOCUMENTO NI.25.0.0.001 REV. B FOGLIO 31 di 125

3.9.2. Inviluppo SLE (rara)

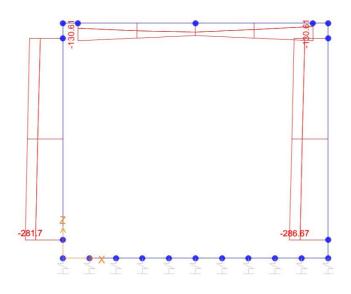
E	Station	OuteutCoo	ConsTuna	- Stan-Tunn	Р	V2	M3
Frame		OutputCase ENVELOPE SLERARA	CaseType Combination	StepType Max		182,5	140,6
1	,		Combination	Max	0,0		
1		ENVELOPE SLERARA			0,0	184,8	109,4
1	-,	ENVELOPE SLERARA	Combination	Max	0,0	158,9	109,4
1		ENVELOPE SLERARA	Combination	Max	0,0	164,3	45,6
1	-	ENVELOPE SLERARA	Combination	Max	0,0	131,6	45,6
1		ENVELOPE SLERARA	Combination	Max	0,0	137,0	-7,5
1	-	ENVELOPE SLERARA	Combination	Max	0,0	110,8	-7,5
1		ENVELOPE SLERARA	Combination	Max	0,0	116,3	-52,3
1		ENVELOPE SLERARA	Com bination	Max	0,0	85,6	-52,3
1	1,975	ENVELOPE SLERARA	Com bination	Max	0,0	91,0	-79,7
1	1,975	ENVELOPE SLERARA	Combination	Max	0,0	56,0	-79,7
1	2,37	ENVELOPE SLERARA	Combination	Max	0,0	61,4	-50,5
1	2,37	ENVELOPE SLERARA	Combination	Max	0,0	21,7	-50,5
1	2,765	ENVELOPE SLERARA	Combination	Max	0,0	27,1	-11,0
1	2,765	ENVELOPE SLERARA	Combination	Max	0,0	-17,5	-11,0
1	3,16	ENVELOPE SLERARA	Combination	Max	0,0	-12,1	37,3
1	3,16	ENVELOPE SLERARA	Combination	Max	0,0	-86,9	37,3
1	3,555	ENVELOPE SLERARA	Com bination	Max	0,0	-81,5	97,9
1	3,555	ENVELOPE SLERARA	Combination	Max	0,0	-164,5	97,9
1	3,725	ENVELOPE SLERARA	Com bination	Max	0,0	-162,2	128,5
1	0,225	ENVELOPE SLERARA	Combination	Min	0,0	166,1	-46,1
1	0,395	ENVELOPE SLERARA	Combination	Min	0,0	168,5	-74,5
1	0,395	ENVELOPE SLERARA	Combination	Min	0,0	90,2	-74,5
1		ENVELOPE SLERARA	Combination	Min	0,0	95,7	-111,2
1		ENVELOPE SLERARA	Combination	Min	0,0	24,3	-111,2
1		ENVELOPE SLERARA	Combination	Min	0,0	29,8	-122,5
1		ENVELOPE SLERARA	Combination	Min	0,0	-13,4	-122,5
1	•	ENVELOPE SLERARA	Combination	Min	0,0	-7,9	-121,6
1		ENVELOPE SLERARA	Combination	Min	0,0	-46,9	-121,6
1	-	ENVELOPE SLERARA	Combination	Min	0,0	-41,5	-107,8
1		ENVELOPE SLERARA	Combination	Min	0,0	-76,6	-107,8
1	-	ENVELOPE SLERARA	Combination	Min	0,0	-71,2	-130,9
1		ENVELOPE SLERARA	Combination	Min	0,0	-102,7	-130,9
1		ENVELOPE SLERARA	Combination	Min	0,0	-97,3	-140,6
1		ENVELOPE SLERARA	Combination	Min			-140,6
					0,0	-125,1	
1		ENVELOPE SLERARA	Combination	Min	0,0	-119,7	-134,7
1		ENVELOPE SLERARA	Combination	Min	0,0	-156,0	-134,7
1		ENVELOPE SLERARA	Combination	Min	0,0	-150,6	-101,5
1	3,555	ENVELOPE SLERARA	Com bination	Min	0,0	-181,3	-101,5

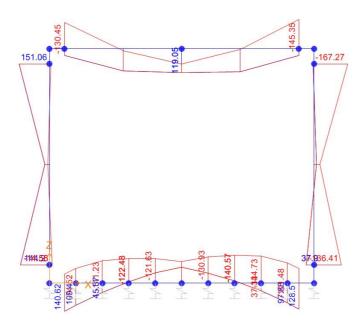


NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 32 di 125


1	3,725	ENVELOPE SLERARA	Combination	Min	0,0	-178,9	-73,7
2	0,225	ENVELOPE SLERARA	Combination	Max	-174,5	-7,5	3,8
2	1,725	ENVELOPE SLERARA	Combination	Max	-191,4	44,5	-12,6
2	3,225	ENVELOPE SLERARA	Combination	Max	-208,2	109,7	37,9
2	0,225	ENVELOPE SLERARA	Combination	Min	-252,9	-122,6	-167,3
2	1,725	ENVELOPE SLERARA	Combination	Min	-269,8	-70,6	-30,5
2	3,225	ENVELOPE SLERARA	Combination	Min	-286,7	-5,4	-136,4
3	0,225	ENVELOPE SLERARA	Combination	Max	-36,1	-129,0	33,9
3	1,1	ENVELOPE SLERARA	Combination	Max	-55,8	-43,7	109,5
3	1,975	ENVELOPE SLERARA	Combination	Max	-65,1	41,7	119,0
3	2,85	ENVELOPE SLERARA	Combination	Max	-45,4	127,1	113,8
3	3,725	ENVELOPE SLERARA	Combination	Max	-25,6	212,4	34,0
3	0,225	ENVELOPE SLERARA	Combination	Min	-130,6	-207,4	-130,5
3	1,1	ENVELOPE SLERARA	Combination	Min	-110,9	-122,1	10,6
3	1,975	ENVELOPE SLERARA	Combination	Min	-91,1	-36,7	77,0
3	2,85	ENVELOPE SLERARA	Combination 5 cm	Min	-110,9	48,6	3,2
3	3,725	ENVELOPE SLERARA	Combination	Min	-130,6	134,0	-145,4
4	0,225	ENVELOPE SLERARA	Combination	Max	-169,5	120,0	151,1
4	1,725	ENVELOPE SLERARA	Combination	Max	-186,4	57,9	23,5
4	3,225	ENVELOPE SLERARA	Combination	Max	-203,3	-12,7	144,2
4	0,225	ENVELOPE SLERARA	Combination	Min	-248,0	15,3	-6,8
4	1,725	ENVELOPE SLERARA	Combination (Min	-264,8	-47,6	7,8
4	3,225	ENVELOPE SLERARA	Combination	Min	-281,7	-126,9	-14,6


SEZIONE	P	M3
01	0,0	140,6
02	0,0	140,6
03	-169,5	167,3
04	0,0	145,4
05	0,0	119,0
06	-203,3	144,2

Diagrammi di inviluppo delle sollecitazioni: ENVELOPE SLE (rara)

Sforzo normale

Momento Flettente

Il valore M dei diagrammi corrisponde a quello riportato nella tabella, mentre il valore dello sforzo normale P nei diagrammi (valore massimo) differisce da quello di verifica della tabella, pari a quello di compressione minimo.

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T LOTTO 3 0 D 26 CODIFICA CL DOCUMENTO NI.25.0.0.001 REV. B FOGLIO 34 di 125

3.10. <u>VERIFICHE</u>

	Sezione nº. 01			
	Dati di Input:			
В	Base sezione rettangolare	1000 mm	Geometria della Sez	rione:
H	Altezza sezione rettangolare	550 mm	H	
c'	Copriferro armatura sup. compressa	70 mm	As'	c'
c	Copriferro armatura inf. Tesa	70 mm		
d	Altezza utile = H-c	480 mm		В
fck	Resistenza caratt. Cilindrica calcestruzzo	30 MPa		
fyk	Resistenza caratt. Snervamento acciaio	450 MPa	As	c
Ned	Sforzo normale di calcolo [(+)Trazione]	0,0 kN		
Med	Momento flettente di calcolo [(+)]	204,4 kNm		
Ved	Taglio di calcolo [(+)]	274,8 kN		
Ted	Torsione di calcolo [(+)]	0 kNm		
Fi1	1° diametro amatura tesa	20		
Fi2	2° diametro amatura tesa			
n1	N°. Barre 1° armatura tesa	10		
n2	N°. Barre 2° armatura tesa			
As'	Armatura superiore compressa	3142 mmq		
As	Armatura inferiore tesa	3142 mmq		
FiStaffe	Diametro staffe	12 mm		
s. Staffe	Passo staffe	150 mm		
bracci	Numero Bracci staffe	2		
cot0	(proiez.orizz.)/(proiez.vert.) puntone ds	2,0 [range: 1,0)-2,5]	
alpha	angolo staffe/piegati rispetto all'orizzontale	90,0°		
Asw	Area a taglio per unità di lunghezza	1508 mmq/m	15,08 cmq/m	
<r-f-p></r-f-p>	Combina z. SLE (rara, frequente, qperm)	R.	•	
Msle	Momento di esercizio [(+)]	140,6 kNm		
Nsle	Sforzo normale di esercizio [(+)Trazione]	0,0 kN		
wk-lim	Stato limite a pertura fessure (Freq.Perm)	0,20 mm		
sigeR-lim	Tensione limite els comb. Rara	0,60 fck		
sigeP-lim	Tensione limite cls comb. Quasi Perm.	0,45 fek		
sigsR-lim	Tensione limite a cc. Comb. Rara	0,80 fyk		
	Dati di Output:			
	SLU - Momento e Taglio resistenti			
Mrd	Momento ultimo resistente	544 kNm	Coeff.Sfrutt.	38%
Vrd	Taglio ultimo resistente	510 kN	Coeff.Sfrutt.	54%
Trd	Momento torcente ultimo resistente	6 kNm	Coeff.Sfrutt.	
	SLE - Tensioni e ampiezza fessure			
Sigs-sup	Tensione barre superiori [(-)Compresso]	-26 Mpa	Coeff.Sfrutt.	7%
Sigs-inf	Tensione barre inferiori [(+)Teso]	105 Mpa	Coeff.Sfrutt.	29%
Sigo-sup	Tensione ds superiore [(-) Compresso]	-3 Mpa	Coeff.Sfrutt.	18%
Sigo-inf	Tensione ds inferiore [non reag.Trazione]	0 Mpa		
Mer	Momento di prima fessurazione	170 kNm		
wk	Ampiezza di fessura	0,12 mm	Coeff.Sfrutt.	58%
			Coeff.Sfrutt.Max	58%

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 35 di 125

	Sezione nº. 02			
	Dati di Input:			
В	Base sezione rettangolare	1000 mm	Geometria della Sez	ione'
Н	Altezza sezione rettangolare	550 mm	H	ione.
c'	_	70 mm	As'	c'
-	Copriferro armatura sup. compressa	70 mm	n,	C
C a	Copriferio armatura inf. Tesa Altezza utile = H-c	480 mm		ъ
d 5-1-				В
fck	Resistenza caratt. Cilindrica calcestruzzo	30 MPa		
fyk	Resistenza caratt. Snervamento acciaio	450 MPa	As	С
Ned	Sforzo normale di calcolo [(+)Trazione]	0,0 kN		
Med	Momento flettente di calcolo [(+)]	218,1 kNm		
Ved	Taglio di calcolo [(+)]	0,0 kN		
Ted	Torsione di calcolo [(+)]	0 kNm		
Fi1	1° diametro amatura tesa	20		
Fi2	2° diametro amatura tesa			
n1	N°. Barre 1° armatura tesa	10		
n2	N°. Barre 2° armatura tesa	0		
As'	Armatura superiore compressa	3142 mmq		
As	Armatura inferiore tesa	3142 mmq		
FiStaffe	Diametro staffe	12 mm		
s. Staffe	Passo staffe	150 mm		
bracci	Numero Bracci staffe	2		
cot 0	(proiez.orizz.)/(proiez.vert.) puntone ds	2,0 [range: 1,0	-2,5]	
alpha	angolo staffe/piegati rispetto all'orizzontale	90,0°	•	
Asw	Area a taglio per unità di lunghezza	1508 mmq/m	15,08 cmq/m	
< R-F-P>	Combinaz. SLE (rara,frequente,qperm)	R	•	
Msle	Momento di esercizio [(+)]	140,6 kNm		
Nsle	Sforzo normale di esercizio [(+)Trazione]	0,0 kN		
wk-lim	Stato limite apertura fessure (Freq.Perm)	0.20 mm		
	Tensione limite cls comb. Rara	0,60 fck		
sigeP-lim	Tensione limite cls comb. Quasi Perm.	0,45 fck		
sigsR-lim	Tensione limite acc. Comb. Rara	0,80 fyk		
-5	Dati di Output:	0,00 1/11		
	SLU - Momento e Taglio resistenti			
Mrd	Momento ultimo resistente	544 kNm	Coeff.Sfrutt.	40%
Vrd	Taglio ultimo resistente	510 kN	Coeff.Sfrutt.	0%
Trd	Momento torcente ultimo resistente	6 kNm	Coeff.Sfrutt.	
	SLE - Tensioni e ampiezza fessure	0 11/111	Coefficient	
Sincerm	Tensione barre superiori [(-)Compress o]	-26 Mpa	Coeff.Sfrutt.	7%
Sigs-sup		_	Coeff.Sfrutt.	29%
Sigs-inf	Tensione barre inferiori [(+)Teso]	105 Mpa	Coeff.Sfrutt.	
Sigo-sup	Tensione ds superiore [(-) Compresso]	-3 Mpa	COEILSIRUIT.	18%
Sigo-inf	Tensione ds inferiore [non reag.Trazione]	0 Mpa		
Mer	Momento di prima fessurazione	170 kNm	0	F00:
wk	Ampiezza di fessura	0,12 mm	Coeff.Sfrutt.	58%
			Coeff.Sfrutt.Max	58%

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 36 di 125

	Serione no. 03			
	Dati di Input:			
ъ	•	1000 mm	Coometrie della See	iana!
B H	Base sezione rettangolare	450 mm	Geometria della Sez H	tone.
	Altezza sezione rettangolare			-1
c'	Copriferro armatura sup. compressa	70 mm	As'	c'
c	Copriferro armatura inf. Tesa	70 mm		
d	Altezza utile = H-c	380 mm		В
fck	Resistenza caratt. Cilindrica calcestruzzo	30 MPa		
fyk	Resistenza caratt. Snervamento acciaio	450 MPa	As	С
Ned	Sforzo normale di calcolo [(+)Trazione]	-145,8 kN		
Med	Momento flettente di calcolo [(+)]	249,8 kNm		
Ved	Taglio di calcolo [(+)]	177,2 kN		
Ted	Torsione di calcolo [(+)]	0 kNm		
Fi1	1° diametro amatura tesa	20		
Fi2	2° diametro amatura tesa			
n1	N°. Barre 1° armatura tesa	10		
n2	N°. Barre 2° armatura tesa	0		
As'	Armatura superiore compressa	3142 mmq		
As	Armatura inferiore tesa	3142 mmq		
FiStaffe	Diametro staffe	mm		
s. Staffe	Passo staffe	150 mm		
bracci	Numero Bracci staffe	2		
cot 0	(proiez.orizz.)/(proiez.vert.) puntone ds	2,0 [range: 1,0	-2,5]	
alpha	angolo staffe/piegati rispetto all'orizzontale	90,0°		
Asw	Area a taglio per unità di lunghezza	0 mmq/m	0,00 cmq/m	
<r-f-p></r-f-p>	Combina z. SLE (rara,frequente,qperm)	R		
Msle	Momento di esercizio [(+)]	167,3 kNm		
Nsle	Sforzo normale di esercizio [(+)Trazione]	-169,5 kN		
wk-lim	Stato limite apertura fessure (Freq.Perm)	0,20 mm		
sigeR-lim	Tensione limite cls comb. Rara	0,60 fck		
sigeP-lim	Tensione limite cls comb. Quasi Perm.	0,45 fck		
sigsR-lim	Tensione limite a cc. Comb. Rara	0,80 fyk		
	Dati di Output:			
	SLU - Momento e Taglio resistenti			
Mrd	Momento ultimo resistente	444 kNm	Coeff.Sfrutt.	56%
Vrd	Taglio ultimo resistente	248 kN	Coeff.Sfrutt.	71%
Trd	Momento torcente ultimo resistente	0 kNm	Coeff.Sfrutt.	
	SLE - Tensioni e ampiezza fessure			
Sigs-sup	Tensione barre superiori [(-)Compresso]	-48 Mpa	Coeff.Sfrutt.	13%
Sigs-inf	Tensione barre inferiori [(+)Teso]	136 Mpa	Coeff.Sfrutt.	38%
Sige-sup	Tensione ds superiore [(-) Compresso]	-6 Mpa	Coeff.Sfrutt.	33%
Sigo-inf	Tensione ds inferiore [non reag.Trazione]	0 Mpa		
Mer	Momento di prima fessurazione	130 kNm		
wk	Ampiezza di fessura	0,15 mm	Coeff.Sfrutt.	75%
	-		Coeff.Sfrutt.Max	75%

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 37 di 125

	Sezione nº. 04			
_	Dati di Input:			
В	Base sezione rettangolare	1000 mm	Geometria della Sez	rione:
H	Altezza sezione rettangolare	450 mm	H	
c'	Copriferro armatura sup. compressa	70 mm	As'	c'
c	Copriferro armatura inf. Tesa	70 mm		
d	Altezza utile = H-c	380 mm		В
fek	Resistenza caratt. Cilindrica calcestruzzo	30 MPa		
fyk	Resistenza caratt. Snervamento acciaio	450 MPa	As	c
Ned	Sforzo normale di calcolo [(+)Trazione]	0,0 kN		
Med	Momento flettente di calcolo [(+)]	208,6 kNm		
Ved	Taglio di calcolo [(+)]	328,4 kN		
Ted	Torsione di calcolo [(+)]	0 kNm		
Fi1	1° diametro amatura tesa	20		
Fi2	2° diametro amatura tesa			
n1	N°. Barre 1° armatura tesa	10		
n2	N°. Barre 2° armatura tesa	0		
As'	Armatura superiore compressa	3142 mmq		
As	Armatura inferiore tesa	3142 mmq		
FiStaffe	Diametro staffe	12 mm		
s. Staffe	Passo staffe	150 mm		
bracci	Numero Bracci staffe	2		
cot€	(proiez.orizz.)/(proiez.vert.) puntone ds	2,0 [range: 1,0	-2,5]	
alpha	angolo staffe/piegati rispetto all'orizzontale	90,0°		
Asw	Area a taglio per unità di lunghezza	1508 mmq/m	15,08 cmq/m	
\leq R-F-P \geq	Combinaz. SLE (rara,frequente,qperm)	R		
Msle	Momento di esercizio [(+)]	145,4 kNm		
Nsle	Sforzo normale di esercizio [(+)Trazione]	0,0 kN		
wk-lim	Stato limite apertura fessure (Freq.Perm)	0,20 mm		
sigcR-lim	Tensione limite cls comb. Rara	0,60 fck		
sigeP-lim	Tensione limite cls comb. Quasi Perm.	0,45 fck		
sigsR-lim	Tensione limite acc. Comb. Rara	0,80 fyk		
-	Dati di Output:			
	SLU - Momento e Taglio resistenti			
Mrd	Momento ultimo resistente	421 kNm	Coeff.Sfrutt.	50%
Vrd	Taglio ultimo resistente	404 kN	Coeff.Sfrutt.	81%
Trd	Momento torcente ultimo resistente	4 kNm	Coeff.Sfrutt.	
	SLE - Tensioni e ampiezza fessure			
Sigs-sup	Tensione barre superiori [(-)Compresso]	-35 Mpa	Coeff.Sfrutt.	10%
Sigs-inf	Tensione barre inferiori [(+)Teso]	140 Mpa	Coeff.Sfrutt.	39%
Sigo-sup	Tensione ds superiore [(-) Compresso]	-5 Mpa	Coeff.Sfrutt.	28%
Sigo-inf	Tensione ds inferiore [non reag.Trazione]	0 Mpa		
Mer	Momento di prima fessurazione	116 kNm		
wk	Ampiezza di fessura	0,16 mm	Coeff.Sfrutt.	79%
		-,	Coeff.Sfrutt.Max	81%

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 38 di 125

	Sezione nº. 05			
_	Dati di Input:			
В	Base sezione rettangolare	1000 mm	Geometria della Sez	ione:
H	Altezza sezione rettangolare	450 mm	Н	
c'	Copriferro armatura sup. compressa	70 mm	As'	c'
С	Copriferro armatura inf. Tesa	70 mm		
d	Altezza utile = H-c	380 mm		В
fck	Resistenza caratt. Cilindrica calcestruzzo	30 MPa		
fyk	Resistenza caratt. Snervamento acciaio	450 MPa	As	c
Ned	Sforzo normale di calcolo [(+)Trazione]	0,0 kN		
Med	Momento flettente di calcolo [(+)]	191,7 kNm		
Ved	Taglio di calcolo [(+)]	0,0 kN		
Ted	Torsione di calcolo [(+)]	0 kNm		
Fi1	1° diametro amatura tesa	20		
Fi2	2° diametro amatura tesa			
n1	N°. Barre 1° armatura tesa	10		
n2	N°. Barre 2° armatura tesa	0		
As'	Armatura superiore compressa	3142 mmq		
As	Armatura inferiore tesa	3142 mmq		
FiStaffe	Diametro staffe	12 mm		
s. Staffe	Passo staffe	150 mm		
bracci	Numero Bracci staffe	2		
cot 0	(proiez.orizz.)/(proiez.vert.) puntone ds	2,0 [range: 1,0	-2,5]	
alpha	angolo staffe/piegati rispetto all'orizzontale	90,0°		
Asw	Area a taglio per unità di lunghezza	1508 mmq/m	15,08 cmq/m	
<R-F-P $>$	Combina z. SLE (rara, frequente, qperm)	R		
Msle	Momento di esercizio [(+)]	119,0 kNm		
Nsle	Sforzo normale di esercizio [(+)Trazione]	0,0 kN		
wk-lim	Stato limite apertura fessure (Freq.Perm)	0,20 mm		
sigeR-lim	Tensione limite cls comb. Rara	0,60 fck		
sigeP-lim	Tensione limite cls comb. Quasi Perm.	0,45 fck		
sigsR-lim	Tensione limite acc. Comb. Rara	0,80 fyk		
	Dati di Output:			
	SLU - Momento e Taglio resistenti			
Mrd	Momento ultimo resistente	421 kNm	Coeff.Sfrutt.	46%
Vrd	Taglio ultimo resistente	404 kN	Coeff.Sfrutt.	0%
Trd	Momento torcente ultimo resistente	4 kNm	Coeff.Sfrutt.	
	SLE - Tensioni e ampiezza fessure			
Sigs-sup	Tensione barre superiori [(-)Compresso]	-29 Mpa	Coeff.Sfrutt.	8%
Sigs-inf	Tensione barre inferiori [(+)Teso]	115 Mpa	Coeff.Sfrutt.	32%
Sigo-sup	Tensione ds superiore [(-) Compresso]	-4 Mpa	Coeff.Sfrutt.	23%
Sigo-inf	Tensione ds inferiore [non reag.Trazione]	0 Mpa		
Mer	Momento di prima fessurazione	116 kNm		
wk	Ampiezza di fessura	0,12 mm	Coeff.Sfrutt.	58%
	-		Coeff.Sfrutt.Max	58%

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 39 di 125

	Sezione nº. 06			
_	Dati di Input:			
В	Base sezione rettangolare	1000 mm	Geometria della Sez	rione:
H	Altezza sezione rettangolare	450 mm	Н	
c'	Copriferro armatura sup. compressa	70 mm	As'	c'
С	Copriferio armatura inf. Tesa	70 mm		
d	Altezza utile = H-c	380 mm		В
fck	Resistenza caratt. Cilindrica calcestruzzo	30 MPa		
fyk	Resistenza caratt. Snervamento acciaio	450 MPa	As	С
Ned	Sforzo normale di calcolo [(+)Trazione]	-179,5 kN		
Med	Momento flettente di calcolo [(+)]	221,8 kNm		
Ved	Taglio di calcolo [(+)]	177,2 kN		
Ted	Torsione di calcolo [(+)]	0 kNm		
Fi1	1° diametro amatura tesa	20		
Fi2	2° diametro amatura tesa	0		
n1	N°. Barre 1° armatura tesa	10		
n2	N°. Barre 2° armatura tesa	0		
As'	Armatura superiore compressa	3142 mmq		
As	Armatura inferiore tesa	3142 mmq		
FiStaffe	Diametro staffe	0 mm		
s. Staffe	Passo staffe	150 mm		
bracci	Numero Bracci staffe	2		
cot0	(proiez.orizz.)/(proiez.vert.) puntone ds	2,0 [range: 1,0	-2,5]	
alpha	angolo staffe/piegati rispetto all'orizzontale	90,0°		
Asw	Area a taglio per unità di lunghezza	0 mmq/m	0,00 cmq/m	
< R-F-P>	Combina z. SLE (rara,frequente,qperm)	R.		
Msle	Momento di esercizio [(+)]	144,2 kNm		
Nsle	Sforzo normale di esercizio [(+)Trazione]	-203,3 kN		
wk-lim	Stato limite apertura fessure (Freq.Perm)	0,20 mm		
sigcR-lim	Tensione limite cls comb. Rara	0,60 fck		
sigeP-lim	Tensione limite cls comb. Quasi Perm	0,45 fck		
sigsR-lim	Tensione limite acc. Comb. Rara	0,80 fyk		
	Dati di Output:			
	SLU - Momento e Taglio resistenti			
Mrd	Momento ultimo resistente	449 kNm	Coeff.Sfrutt.	49%
Vrd	Taglio ultimo resistente	252 kN	Coeff.Sfrutt.	70%
Trd	Momento torcente ultimo resistente	0 kNm	Coeff.Sfrutt.	
	SLE - Tensioni e ampiezza fessure			
Sigs-sup	Tensione barre superiori [(-)Compresso]	-43 Mpa	Coeff.Sfrutt.	12%
Sigs-inf	Tensione barre inferiori [(+)Teso]	108 Mpa	Coeff.Sfrutt.	30%
Sigo-sup	Tensione ds superiore [(-)Compresso]	-5 Mpa	Coeff.Sfrutt.	29%
Sigo-inf	Tensione ds inferiore [non reag.Trazione]	0 Mpa		
Mer	Momento di prima fessurazione	133 kNm		
wk	Ampiezza di fessura	0,11 mm	Coeff.Sfrutt.	55%
	-		Coeff.Sfrutt.Max	70%

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	3 0 D 26	CL	NI.25.0.0.001	В	40 di 125

Si riportano i coefficienti di sfruttamento nelle sezioni notevoli per le verifiche SLU/SLV/SLE:

SINTESI VERIFICHE SEZIONI NOTEVOLI:							
SL	VERIF	SEZ01	SEZ02	SEZ03	SEZ04	SEZ05	SEZ06
SLU	Med/Mrd	38%	40%	56%	50%	46%	49%
SLU	Ved/Vrd	54%	0%	71%	81%	0%	70%
SLE	(sigse/sigsr)s	7%	7%	13%	10%	8%	12%
SLE	(sigse/sigsr)i	29%	29%	38%	39%	32%	30%
SLE	(sigæ/sigæ)s	18%	18%	33%	28%	23%	29%
SLE	wk/wklim	58%	58%	75%	79%	58%	55%
	MAX	58%	58%	75%	81%	58%	70%
	MAX	81%					

I coefficienti di sfruttamento sono tutti inferiori all'unità e pertanto le verifiche risultano soddisfatte.

3.11. <u>ARMATURE DI RIPARTIZIONE</u>

Le armature di ripartizione delle pareti e della soletta vengono dimensionate per sostenere gli effetti del ritiro igrometrico i quali generano una trazione pura per deformazioni impedite a causa della soletta inferiore gettata precedentemente e che può aver dissipato tali effetti.

La **\(\epsilon\)** ritiro induce nel calcestruzzo una tensione di trazione superiore alla sua resistenza a trazione, ne deriva la fessurazione e il trasferimento di tutta la trazione sull'acciaio teso. Per ottenere delle fessure uniformemente distribuite e non concentrate in alcuni punti con ampiezze macroscopiche, si applica un principio di non plasticizzazione delle armature. Per limitare l'ampiezza delle fessure, pur distribuite, che si ottengono applicando tale principio, si applica quanto previsto al § 7.3.2 dell'Eurocodice 2 - UNI EN 1992 1-1: "Aree minime di armatura", in particolare la formula (7.1):

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 41 di 125

 $As, \min \cdot \sigma s = kc \cdot k \cdot fct, eff \cdot Act$

dove:

As,min è l'area minima di armatura nella zona tesa;

Act è l'area di calcestruzzo nella zona tesa. La zona tesa è quella parte della sezione che risulta in trazione subito dopo la formazione della prima fessura; è pari a tutta l'area della sezione per trazione pura, alla metà per flessione;

σs è la massima tensione ammessa nell'armatura subito dopo la formazione della fessura. Tale tensione può essere assunta pari alla tensione di snervamento fyk dell'armatura. Può essere però necessario fissare un valore minore per soddisfare i limiti di apertura delle fessure secondo il massimo diametro o la massima spaziatura tra le barre (vedere punto 7.3.3).

fct,eff è il valore medio della resistenza a trazione efficace del calcestruzzo al momento in cui si suppone insorgano le prime fessure;

fct,eff = fctm se la formazione delle fessure è prevista prima di 28d;

k è il coefficiente che tiene conto degli effetti di tensioni auto-equilibrate non uniformi, k=1

kc è il coefficiente che tiene conto del tipo di distribuzione delle tensioni all'interno della sezione subito prima della fessurazione e della variazione del braccio di leva; kc=1 per trazione, kc=0,4 per flessione, kc = $0.4 \cdot (1-\text{funz}(\sigma c))$ nel caso flessione combinata con sforzo normale.

base della sezione		1000 mm
altezza della sezione		450 mm
area sezione calcestruzzo	Act	450000 mm2
tensione di snervamento acciaio	fyk	450 Mpa
resist. Caratt. Cilindrica cls a compressione	fck	30 Mpa
tensione resistente cls a trazione	$fct,eff=0,3(fck)^{2/3}$	2,90 Mpa
coefficiente kc	kc	1,00
coefficiente k	k	1,00
area minima acciaio teso nella sezione	As,min	2896 mm2

P.to 7.3.3 EC2 1992:1-1): Dove è disposta l'armatura minima indicata al punto 7.3.2, le ampiezze delle fessure non dovrebbero essere eccessive se: per fessurazione causata principalmente da deformazioni impedite, il diametro delle barre non eccede quello dato nel prospetto 7.2N, dove la tensione nell'acciaio è quella che si ha subito dopo la fessurazione [cioè il termine σ s nell'espressione (7.1)];

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 42 di 125

prospetto 7.2N

Diametri massimi delle barre ϕ_s^* per il controllo della fessurazione¹⁾

Tensione nell'acciaio ²⁾ [MPa]		iametro massimo delle barre m $w_k = 0.3 \text{ mm}$	
160	40	32	25
200	32	25	16
240	20	16	12
280	16	12	8
320	12	10	6
360	10	8	5
400	8	6	4
450	6	5	-

I valori nel prospetto sono basati sulle seguenti assunzioni:

Il diametro massimo delle barre si raccomanda sia modificato come segue:

Trazione (la sezione è tutta tesa):

$$\phi_{s} = \phi_{s}^{*}(f_{\text{ct,eff}}/2,9) \ h_{\text{cr}}/(8(h-d))$$
(7.7N)

dove.

 ϕ_s è il diametro massimo "modificato" delle barre;

 ϕ^*_{s} è il diametro massimo dato nel prospetto 7.2N;

h è l'altezza totale della sezione;

h_{cr} è l'altezza della zona tesa subito prima della fessurazione, considerando i valori caratteristici della forza di precompressione e delle forze assiali sotto la combinazione di azioni quasi-permanente;

d è l'altezza utile valutata rispetto al baricentro dello strato più esterno di armatura ordinaria.

Se tutta la sezione è tesa *h-d* è la minima distanza tra il baricentro dello strato di armatura e il lembo esterno della sezione (considerare ciascun lembo se la barra non è disposta simmetricamente).

Verifica armatura trasversale:

diametro barre trasversali	Φtrasv	16 mm	< Fs	Verifica soddisfatta
passo barre trasversali	passo	100 mm		
N.strati barre trasvers. (sup.+inf.+intermedi)	n.strati	2		
Area barre trasversali	As	4021 mm2		
stato tensionale barre dopo fessurazione	σs	324 mm2	< fyk	Verifica soddisfatta
φ barre da tabella 7.2N x σs e wk=0,2mm	φ * s	5 mm		
altezza zona tesa prima della fessurazione	hcr	450 mm		
altezza totale sezione	h	450 mm		
copriferro (asse barre)	c	50 mm		
altezza utile sezione	d	400 mm		
diametro massimo modificato utilizzabile	φs	22 mm	(= Fs)	

c = 25 mm; $f_{\text{ct,eff}} = 2.9 \text{ MPa}$; $h_{\text{cr}} = 0.5$; (h - d) = 0.1 h; $k_1 = 0.8$; $k_2 = 0.5$; $k_c = 0.4$; k = 1.0; $k_t = 0.4 \text{ e } k' = 1.0$.

Sotto la combinazione di carico pertinente.

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 43 di 125

3.12. <u>RIEPILOGO E INCIDENZA ARMATURE</u>

A seguire il riepil	ogo delle armature	del tombino:
---------------------	--------------------	--------------

Pareti di spessore	45 cm	
con armatura principale esterna	F20 /100	3142 mm2
con armatura principale interna	F20 /100	3142 mm2
Soletta superiore di spessore	45 cm	
con armatura principale superiore	F20 /100	3142 mm2
con armatura principale inferiore	F20 /100	3142 mm2
Soletta inferiore di spessore	55 cm	
con armatura principale superiore	F20 /100	3142 mm2
con armatura principale inferiore	F20 /100	3142 mm2
T 1 1	•	

Le pareti non hanno armatura a taglio.

La soletta superiore ha armatura a taglio F12 /150 dir.princ. /500 dir.trasv. La soletta inferiore ha armatura a taglio F12 /150 dir.princ. /500 dir.trasv.

Le armature di ripartizione sono:

	Armature di ripartizi	ione:	Area:	% Arm. p	rincip	ale:
Pareti	F16 /100	2 strati	4021,2 mm2	64%	di	6283 mm2
Soletta superiore	F16 /100	2 strati	4021,2 mm2	64%	di	6283 mm2
Soletta inferiore	F16 /100	2 strati	4021,2 mm2	64%	di	6283 mm2

Incidenza armature:

			Spessore piedritti	Sp	0,45 m
Larghezza utile	Lint	3,50 m	Spessore soletta	Ss	0,45 m
Altezza libera	Hint	3,00 m	Spessore fondazione	Sf	0,55 m
incidenza sovrapp.		20%	copriferro	С	0,07 m

	Ø1	pass1	Ø2 sup/int	pass2	Ø3	pass3	Ø4	pass4	Øleg	Øleg	Øleg
Elem.	sup/int	[mm]	[mm]	[mm]	inf/ext	[mm]	inf/ext	_	[mm]	pass1	pass2
	[mm]	[111111]	[111111]	[111111]	[mm]	[IIIIII]	[mm]	[mm]	[111111]	[mm]	[mm]
piedritto	20	100	0	1000	20	100	0	1000	0	1000	1000
soletta	20	100	0	1000	20	100	0	1000	12	150	500
fondaz.	20	100	0	1000	20	100	0	1000	12	150	500
ripartiz.	16	100	Х	2 strati							
Elem.	LØ [m]	Lleg [mm]	Vol [m3]	Peso	inad	Inc.%					
Liciii.	LO [III]	racg [mm]	voi [m5]	[kg]	[kg/m3]	1110.70					
piedritto	4,48	0,51	1,4	265	196	30%					
soletta	4,88	0,51	2,0	321	162	18%					
fondaz.	5,08	0,61	2,4	339	140	19%					
ripartiz.			7,1	561	79	32%					
	TOTALE		7,1	1750	247	100%					

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 44 di 125

3.13. <u>VERIFICHE GEOTECNICHE</u>

3.13.1. Base Reaction

Le "base reaction" sono la risultante delle reazioni delle molle per ogni singola combinazione di carico:

TABLE: Base	Reactions	TABLE: Base Reactions						
OutputCase	GlobalFZ	GlobalFX	GlobalMY					
Text	KN	KN	KN-m					
SLU01	816,78	43,07	93,79					
SLU01	816,78	43,07	93,79					
SLU02	816,78	10,93	38,26					
SLU02	816,78	10,93	38,26					
SLU03	816,78	10,93	38,26					
SLU03	816,78	10,93	38,26					
SLU04	816,78	101,88	182,10					
SLU04	816,78	101,88	182,10					
SLU05	816,78	43,07	93,79					
SLU05	816,78	43,07	93,79					
SLU06	710,13	32,14	55,53					
SLU06	710,13	32,14	55,53					
SLU07	816,78	101,88	182,10					
SLU07	816,78	101,88	182,10					
SLU08	491,16	90,95	143,84					
SLU08	491,16	90,95	143,84					
SLU09	816,78	90,95	143,84					
SLU09	816,78	90,95	143,84					
SLU10	816,78	-90,95	-143,84					
SLU10	816,78	-90,95	-143,84					
SLU11	790,08	-34,72	-46,68					
SLU11	790,08	-34,72	-46,68					
SLU12	790,08	-34,72	-46,68					
SLU12	790,08	-34,72	-46,68					
SLU13	790,31	-26,43	-17,80					
SLU13	790,31	-26,43	-17,80					
SH1	499,23	-113,87	-292,39					
SH1	499,23	-113,87	-292,39					
SH2	483,09	-113,87	-292,39					
SH2	483,09	-113,87	-292,39					
SH3	499,23	-19,77	-129,78					
SH3	499,23	-19,77	-129,78					
SH4	483,09	-19,77	-129,78					
SH4	483,09	-19,77	-129,78					

SV1	464,26	-34,16	-87,72
SV1	464,26	-34,16	-87,72
SV2	518,06	-34,16	-87,72
SV2	518,06	-34,16	-87,72
SV3	464,26	-5,93	-38,93
SV3	464,26	-5,93	-38,93
SV4	518,06	-5,93	-38,93
SV4	518,06	-5,93	-38,93

Le terne di sollecitazioni N-H-M utilizzate nelle verifiche sono le seguenti, inviluppate per combinazioni SLU e per combinazioni SLV:

SLU	
Nmax	816,78 kN/m
Nmin	491,16 kN/m
Hmax	101,88 kN/m
Mmax	182,10 kNm/m
SLV	
Nmax	518,06 kN/m
Nmin	464,26 kN/m
Hmax	113,87 kN/m
Mmax	292,39 kNm/m

Le terne di sollecitazioni sopra elencate sono utilizzate a seguire per le verifiche geotecniche GEO a carico limite e a scorrimento secondo l'approccio 2 (A1-M1-R3) di cui al punto 6.4.2.1 delle NTC2018.

Le caratteristiche geometriche e i coefficienti utilizzati nelle verifiche geotecniche vengono di seguito riportati:

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

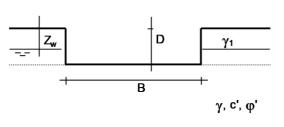
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

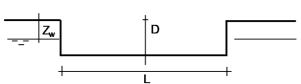
 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 46 di 125

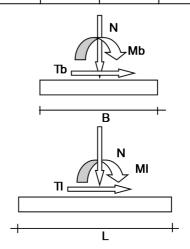
D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)

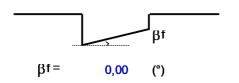

 $B^* = Larghezza$ fittizia della fondazione ($B^* = B - 2^*e_B$)

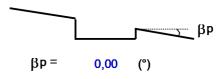

L* = Lunghezza fittizia della fondazione (L* = L - 2*e,)


(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			azioni		proprietà del terreno		resistenze	
Metodo di calcolo		permanenti	temporanee variabili	tan φ'	c'	qlim	scorr	
	A1+M1+R1	0	1,30	1,50	1,00	1,00	1,00	1,00
Stato Limite Ultimo	A2+M2+R2	0	1,00	1,30	1,25	1,25	1,80	1,00
	SISMA	0	1,00	1,00	1,25	1,25	1,80	1,00
g E	A1+M1+R3	0	1,30	1,50	1,00	1,00	2,30	1,10
Sta	SISMA	0	1,00	1,00	1,00	1,00	2,30	1,10
Tensioni Ammissibili		1,00	1,00	1,00	1,00	3,00	3,00	
Definiti dal Progettista		1,00	1,00	1,00	1,00	2,30	1,10	





(Per fondazione nastriforme L = 100 m)

B = 4,40 (m) L = 100,00 (m)

D = 7,50 (m)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 47 di 125

Per il caclolo del carico llimite si è utilizzata la formula trinomia, in termini di tensioni efficaci per le condizioni drenate e in termini di tensioni totali per le condizioni non dreante:

CONDIZIONI DRENATE (TENSIONI EFFICACI):

 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$

CONDIZIONI NON DRENATE (TENSIONI TOTALI):

 $qlim = c_u \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq$

Le seguenti verifiche geotecniche sono distinguibili per:

Verifiche per combinazioni in fase statica e verifiche per combinazione in fase sismica:

Verifiche in condizioni drenate e verifiche in condizioni non drenate (in presenza di falda);

Verifiche per sforzo normale minimo e verifiche per sforzo normale massimo.

3.13.2. Verifiche SLU in condizioni drenate

SLU-Nmin:

AZIONI

		valori d	Valori di	
		permanenti	temporanee	calcolo
N	[kN]	491,16		491,16
Mb	[kNm]	182,10		182,10
MI	[kNm]	0,00		0,00
Tb	[kN]	101,88		101,88
П	[kN]	0,00		0,00
Н	[kN]	101,88	0,00	101,88

Peso unità di volume del terreno

20,00 (kN/mc) 18,00 (kN/mc) γ

Valori caratteristici di resistenza del terreno

Valori di progetto 18,00 (kN/mq) 18,00 (kN/mq) c' 38,00 38,00 (°) (°)

Profondità della falda

Zw = 20,00 (m)

0,37 (m) B* = 3,66 (m) $e_B =$ L* = 1,00 0,00 (m) (m) $e_L =$

q : sovraccarico alla profondità D

150,00 (kN/mq) q =

γ : peso di volume del terreno di fondazione

γ = 18,00 (kN/mc)

Nc, Nq, Nγ : coefficienti di capacità portante

Nq =
$$tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

Nq = 48,93

 $Nc = (Nq - 1)/tan_{\mathcal{O}}'$

Nc = 61,35

 $N\gamma = 2*(Nq + 1)*tan_{\mathcal{O}}'$

 $N\gamma =$ 78,02

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T LOTTO

CODIFICA CL DOCUMENTO NI.25.0.0.001 REV. B FOGLIO 49 di 125

s_c, s_q, s_v: fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1,00$$

$$s_q = 1 + B*tan\phi' / L*$$

$$s_q = 1,00$$

$$s_v = 1 - 0.4*B* / L*$$

$$s_{v} = 1.00$$

i_c, i_q, i_γ : <u>fattori di inclinazione del carico</u>

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

0,00

 θ = arctg(Tb/TI) =

0.00

2,00

(°)

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*)$$

0,00

m =

(-)

 $i_q = (1 - H/(N + B*L* c' cotg_0'))^m$

$$i_{a} = 0,64$$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.64$$

$$i_{\gamma} = (1 - H/(N + B*L*c' \cot g_{\phi}'))^{(m+1)}$$

н ө п

(m=2 nel caso di fondazione nastriforme e

 $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

В

$d_c,\,d_q,\,d_\gamma$: fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan _{ϕ} ' (1 - sen _{ϕ} ')² / B* per D/B*> 1; d_q = 1 +(2 tan _{ϕ} ' (1 - sen _{ϕ} ')²) * arctan (D / B*)

$$d_{q} = 1,33$$

$$d_c = d_q - (1 - d_q) / (N_c tan_{\phi}')$$

$$d_c = 1,34$$

$$d_{\gamma} = 1$$

$$d_{y} = 1,00$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

LOTTO

CODIFICA

DOCUMENTO

REV.

FOGLIO

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_{q} = (1 - \beta_{f} \tan_{\phi}')^{2}$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_{q} = 1,00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \phi')$$

$$b_c = 1,00$$

$$b_{v} = b_{q}$$

$$b_{y} = 1,00$$

g_c, g_q, g_γ : fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1,00$$

$$g_c = g_q - (1 - g_q) / (N_c tan_{\phi}')$$

$$g_c =$$

1,00

$$g_{\gamma} = g_{q}$$

$$g_{v} =$$

 $g_{\gamma} = 1,00$

Carico limite unitario

$$q_{lim} = 7588,15$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 134,25$$
 (kN/m²)

 (kN/m^2)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

LOTTO 3 0 D 26 CODIFICA CL

DOCUMENTO NI.25.0.0.001

FOGLIO

REV. B

Verifica di sicurezza capacità portante

 $q_{lim} / \gamma_R =$

3299,2

 \geq q = 134,25 (kN/m²)

VERIFICA A SCORRIMENTO

Carico agente

Hd = 101,88 (kN)

Azione Resistente

 $Sd = N tan(\phi') + c' B^* L^*$

Sd = 449,59 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R =

408,72

≥

Hd =

101,88

(kN)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 52 di 125

• SLU-Nmax:

AZIONI

		valori d	Valori di	
		permanenti	temporanee	calcolo
N	[kN]	816,78		816,78
Mb	[kNm]	182,10		182,10
MI	[kNm]	0,00		0,00
Tb	[kN]	101,88		101,88
П	[kN]	0,00		0,00
Н	[kN]	101,88	0,00	101,88

Peso unità di volume del terreno

 $\gamma_1 = 20,00 \text{ (kN/mc)}$ $\gamma = 18,00 \text{ (kN/mc)}$

Valori caratteristici di resistenza del terreno

c' = 18,00 (kN/mq) $\phi' = 38,00 (°)$

Valori di progetto c' = 18,00 (kN/mq)

 $\varphi' = 38,00 \text{ (kN/II)}$

Profondità della falda

Zw = 20,00 (m)

 $e_B = 0.22$ (m) $B^* = 3.95$ (m) $e_L = 0.00$ (m) $L^* = 1.00$ (m)

q: sovraccarico alla profondità D

q = 150,00 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma = 18,00 \, (kN/mc)$

Nc, Nq, Ny: coefficienti di capacità portante

Nq =
$$tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

$$Nq = 48,93$$

$$Nc = (Nq - 1)/tan_{0}'$$

$$N\gamma = 2*(Nq + 1)*tan_{\varphi}'$$

$$N_{\gamma} = 78,02$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

LOTTO 3 0 D 26 CODIFICA

DOCUMENTO NI.25.0.0.001

REV

FOGLIO

s_c, s_q, s_γ: fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1,00$$

$$s_q = 1 + B*tan_{\odot}' / L*$$

$$s_q = 1,00$$

$$s_v = 1 - 0.4*B* / L*$$

$$s_{y} = 1,00$$

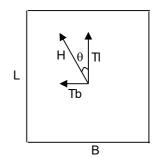
i_c, i_q, i_γ : <u>fattori di inclinazione del carico</u>

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$$

0,00

 $\theta = arctg(Tb/TI) =$

0,00


(°)

 $m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$

0,00

2,00 (-)

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$$

 $i_q = (1 - H/(N + B*L* c' cotg_0'))^m$

$$i_{a} = 0,77$$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.77$$

$$i_{\gamma} = (1 - H/(N + B*L* c' cotg_{\phi}'))^{(m+1)}$$

d_c , d_q , d_γ : fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan _{ϕ} ' (1 - sen _{ϕ} ')² / B*
per D/B*> 1; d_q = 1 +(2 tan _{ϕ} ' (1 - sen _{ϕ} ')²) * arctan (D / B*)

$$d_{q} = 1,33$$

$$d_c = d_q - (1 - d_q) / (N_c tan_{\phi}')$$

$$d_c = 1,34$$

$$d_{\gamma} = 1$$

$$d_{\gamma} = 1,00$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

LOTTO

CODIFICA CL

DOCUMENTO

REV.

FOGLIO

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_{q} = (1 - \beta_{f} \tan_{\phi}')^{2}$$

 $\beta_f + \beta_p = 0.00$

 $\beta_f + \beta_p < 45^\circ$

$$b_{q} = 1,00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan_{\phi})$$

$$b_c = 1,00$$

$$b_{y} = b_{q}$$

$$b_{y} = 1,00$$

$g_c,\,g_q,\,g_\gamma$: fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

 $\beta_f + \beta_p =$

0,00

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1,00$$

$$g_c = g_q - (1 - g_q) / (N_c tan_{\phi}')$$

$$g_c = 1,00$$

$$g_{\gamma} = g_{q}$$

$$g_{\gamma} = 1,00$$

Carico limite unitario

$$q_{lim} = 9159,51 \quad (kN/m^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 206,56$$
 (kN/m²)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 55 di 125

Verifica di sicurezza capacità portante

 $q_{lim} / \gamma_R = 3982,39 \ge q = 206,56 (kN/m^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 101,88 (kN)

Azione Resistente

 $Sd = N tan(\phi') + c' B^* L^*$

Sd = 709,31 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 644,83 **\geq** Hd = 101,88 (kN)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 56 di 125

3.13.3. Verifiche SLU in condizioni non drenate

• SLU-Nmin:

AZIONI

	valori	Valori di	
	permanenti	temporanee	calcolo
N [kN]	491,16		491,16
Mb			
[kNm]	182,10		182,10
MI [kNm]	0,00		0,00
Tb [kN]	101,88		101,88
TI [kN]	0,00		0,00
H [kN]	101,88	0,00	101,88

Peso unità di volume del terreno

 $\gamma_1 = 20,00 \text{ (kN/mc)}$ $\gamma = 18,00 \text{ (kN/mc)}$

50,00

Valore caratteristico di resistenza del terreno

(kN/mq)

Valore di progetto c_u = 50,00 (kN/mq)

 $e_{B} = 0.37$ (m) $B^{*} = 3.66$ (m) $e_{L} = 0.00$ (m) $L^{*} = 1.00$ (m)

q : sovraccarico alla profondità D

q = 150,00 (kN/mq)

γ: peso di volume del terreno di fondazione

 $\gamma = 18,00 \text{ (kN/mc)}$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

 \mathbf{C}_{u}

Nc = 5,14

s_c: fattori di forma

 $s_c = 1 + 0.2 B^* / L^*$

 $s_c = 1,00$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA	LO.
RS3T	3 0

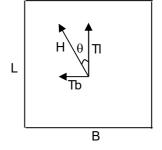
CODIFICA CL DOCUMENTO NI.25.0.0.001 REV. B FOGLIO 57 di 125

i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

0,00

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*) =$$


0,00

$$\theta = arctg(Tb/TI) =$$

0.00

(°)

$$m = 2,00$$

(m=2 nel caso di fondazione nastriforme e m= $(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.82$$

d_c: fattore di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*

per D/B*> 1;
$$d_c = 1 + 0.4 \arctan (D / B^*)$$

$$d_c = 1,58$$

b_c : fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1,00$$

g_c: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c = 1,00$$

Carico limite unitario

$$q_{lim} = 548,09 \text{ (kN/m}^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 134,25 \text{ (kN/m}^2)$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T CODIFICA CL LOTTO 3 0 D 26

DOCUMENTO NI.25.0.0.001

FOGLIO

REV. B

Verifica di sicurezza capacità portante

 $q = 134,25 (kN/m^2)$ $q_{lim}/\gamma_R =$ 238,3 ≥

VERIFICA A SCORRIMENTO

Carico agente

Hd = 101,88 (kN)

Azione Resistente

 $Sd = cu B^* L^*$

Sd = 219,51 (kN)

Verifica di sicurezza allo scorrimento

 $Sd/\gamma_R =$ 199,55 ≥ Hd = 101,88 (kN)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 59 di 125

• SLU-Nmax:

AZIONI

		,	
	valori di input		Valori di
	permanenti	temporanee	calcolo
N [kN]	816,78		816,78
Mb			
[kNm]	182,10		182,10
MI [kNm]	0,00		0,00
Tb [kN]	101,88		101,88
TI [kN]	0,00		0,00
H [kN]	101,88	0,00	101,88

Peso unità di volume del terreno

 $\gamma_1 = 20,00 \text{ (kN/mc)}$ $\gamma = 18,00 \text{ (kN/mc)}$

Valore caratteristico di resistenza del terreno

 $c_u = 50,00 \quad (kN/mq)$

 $e_B = 0.22$ (m)

 $e_L = 0.00$ (m)

Valore di progetto

L*

 $= 50,00 \quad (kN/mq)$

1,00

B* = 3,95

(m) (m)

q : sovraccarico alla profondità D

q = 150,00 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma = 18,00 \text{ (kN/mc)}$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5,14

s_c: fattori di forma

 $s_c = 1 + 0.2 B^* / L^*$

 $s_c = 1,00$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

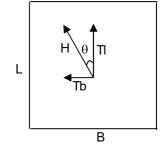
COMMESSA	LOTTO	CODIFICA
RS3T	3 0 D 26	CL

DOCUMENTO NI.25.0.0.001 REV. B FOGLIO 60 di 125

i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

0,00


$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*) =$$

0,00

$$\theta = arctg(Tb/Tl) =$$

0,00 (°)

$$m = 2.00$$

(m=2 nel caso di fondazione nastriforme e m= $(m_b sin^2_\theta + m_l cos^2_\theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.83$$

d_c: fattore di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*

per D/B*> 1;
$$d_c = 1 + 0.4 \arctan (D / B^*)$$

$$d_c = 1,58$$

b_c: fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1,00$$

g_c: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f$$
 + β_p < 45°

$$g_c = 1,00$$

Carico limite unitario

$$q_{lim} = 554,65 \text{ (kN/m}^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 206,56 \text{ (kN/m}^2)$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

CODIFICA CL LOTTO 3 0 D 26

DOCUMENTO NI.25.0.0.001

REV. B

FOGLIO

Verifica di sicurezza capacità portante

 $q_{lim} / \gamma_R =$

241,15

≥ q=

 $206,56 \text{ (kN/m}^2\text{)}$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 101,88 (kN)

Azione Resistente

 $Sd = cu B^* L^*$

Sd = 237,25 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R =

215,68

≥ Hd =

101,88

(kN)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. RS3T 3 0 D 26 NI.25.0.0.001

1,00

(m)

3.13.4. Verifiche SLV in condizioni drenate

SLV-Nmin:

AZIONI

			,		
		valori d	valori di input		
		permanenti	temporanee	calcolo	
N	[kN]	464,26		464,26	
Mb	[kNm]	292,39		292,39	
MI	[kNm]	0,00		0,00	
Tb	[kN]	113,87		113,87	
П	[kN]	0,00		0,00	
Н	[kN]	113,87	0,00	113,87	

Peso unità di volume del terreno

20,00 (kN/mc) = γ1 18,00 (kN/mc)

Valori caratteristici di resistenza del terreno

Valori di progetto 18,00 (kN/mq) c' (kN/mq) c' 18,00 38,00 = (°) 38,00 (°)

Profondità della falda

=

 $e_L =$

20,00 (m) 0,63 (m) B* = 3,14 (m) $e_B =$ L* =

q : sovraccarico alla profondità D

0,00

(kN/mq) 150,00 q =

$\boldsymbol{\gamma}$: peso di volume del terreno di fondazione

(m)

γ = 18,00 (kN/mc)

Nc, Nq, Ny: coefficienti di capacità portante

Nq =
$$\tan^2(45 + \varphi'/2)^* e^{(\pi^* t g_{\varphi'})}$$

$$Nq = 48,93$$

$$Nc = (Nq - 1)/tan_0'$$

$$N\gamma = 2*(Nq + 1)*tan_{\varphi}'$$

$$N_{\gamma} = 78,02$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

LOTTO 3 0 D 26 CODIFICA

DOCUMENTO NI.25.0.0.001

REV

FOGLIO

s_c , s_q , s_γ : fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1,00$$

$$s_q = 1 + B*tan\phi' / L*$$

$$s_q = 1,00$$

$$s_v = 1 - 0.4*B* / L*$$

$$s_{\gamma} = 1.00$$

i_c, i_q, i_γ : <u>fattori di inclinazione del carico</u>

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

0.00

 $\theta = arctg(Tb/TI) =$

0.00 (°)

2,00

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

0,00

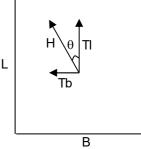
m =

(-)

 $i_a = (1 - H/(N + B*L* c' cotg_0'))^m$

$$i_{g} = 0,59$$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$


$$i_c = 0.58$$

$$i_{\gamma} = (1 - H/(N + B*L* c' \cot g_{\phi}'))^{(m+1)}$$

$$i_{y} = 0.45$$

(m=2 nel caso di fondazione nastriforme e

 $m=(m_b sin^2\theta + m_l cos^2\theta)$ in tutti gli altri casi)

d_c, d_q, d_y : fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan _{ϕ} ' (1 - sen _{ϕ} ')² / B*

per D/B*> 1;
$$d_q = 1 + (2 \tan_{\phi}' (1 - \sin_{\phi}')^2) * \arctan(D / B*)$$

$$d_{q} = 1,33$$

$$d_{c} = d_{q} - (1 - d_{q}) / (N_{c} \tan_{\phi})$$

$$d_c = 1,34$$

$$d_{v} = 1$$

$$d_{\gamma} = 1,00$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

LOTTO

CODIFICA

DOCUMENTO NI.25.0.0.001

FOGLIO

b_c , b_q , b_γ : fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan_{\phi}')^2$$

 $\beta_f + \beta_p =$

0,00

 $\beta_f + \beta_p < 45^\circ$

$$b_{q} = 1,00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan_{\phi})$$

 $b_c = 1,00$

$$b_{\gamma} = b_{q}$$

$$b_{\gamma} = 1,00$$

g_c , g_q , g_y : fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

 $\beta_f + \beta_p =$

0,00

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1,00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi)$$

1,00

$$g_{\gamma} = g_{q}$$

$$g_{\gamma} =$$

 $g_{\gamma} = 1,00$

Carico limite unitario

$$q_{lim} = 6913,02$$

Pressione massima agente

$$q = N / B^* L^*$$

q = 147,83 (kN/m²)

 (kN/m^2)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 65 di 125

Verifica di sicurezza capacità portante

 $q_{lim} / \gamma_R = 3005,66 \ge q = 147,83 (kN/m^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 113,87 (kN)

Azione Resistente

 $Sd = N tan(\phi') + c' B^* L^*$

Sd = 419,25 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 381,14 ≥ Hd = 113,87 (kN)

• SLV-Nmax:

AZIONI

		valori di input		Valori di
		permanenti	temporanee	calcolo
N	[kN]	518,06		518,06
Mb	[kNm]	292,39		292,39
MI	[kNm]	0,00		0,00
Tb	[kN]	113,87		113,87
П	[kN]	0,00		0,00
Н	[kN]	113,87	0,00	113,87

Peso unità di volume del terreno

 $\gamma_1 = 20,00 \text{ (kN/mc)}$ $\gamma = 18,00 \text{ (kN/mc)}$

Valori caratteristici di resistenza del terreno

c' = 18,00 (kN/mq) φ' = 38,00 (°)

Valori di progetto c' = 18,00 (kN/mq)

 $\varphi' = 38,00 \text{ (kN/III)}$

Profondità della falda

Zw = 20,00 (m)

 $e_B = 0,56$ (m) $B^* = 3,27$ (m) $e_L = 0,00$ (m) $L^* = 1,00$ (m)

q : sovraccarico alla profondità D

q = 150,00 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma = 18,00 \, (kN/mc)$

Nc, Nq, Ny: coefficienti di capacità portante

Nq =
$$tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

$$Nq = 48,93$$

$$Nc = (Nq - 1)/tan_0'$$

$$N\gamma = 2*(Nq + 1)*tan_{\varphi}'$$

$$N_{\gamma} = 78,02$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

CODIFICA LOTTO 3 0 D 26

DOCUMENTO NI.25.0.0.001

REV

FOGLIO

s_c , s_q , s_γ : fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1,00$$

$$s_{\alpha} = 1 + B*tan_{\theta}' / L*$$

$$s_q = 1,00$$

$$s_v = 1 - 0.4*B* / L*$$

$$s_{\gamma} = 1,00$$

i_c, i_q, i_γ : <u>fattori di inclinazione del carico</u>

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

 $\theta = arctg(Tb/TI) =$

0.00

2,00

(°)

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*)$$

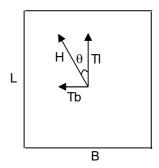
0,00

0.00

m =

(-)

 $i_a = (1 - H/(N + B*L* c' cotg_0'))^m$


$$i_{g} = 0.62$$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.62$$

$$i_{v} = (1 - H/(N + B*L* c' \cot g_{\phi}'))^{(m+1)}$$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2\theta + m_l cos^2\theta)$ in tutti gli altri casi)

d_c, d_q, d_y : fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan _{ϕ} ' (1 - sen _{ϕ} ')² / B*

per D/B*> 1;
$$d_q = 1 + (2 \tan_{\phi}' (1 - \sin_{\phi}')^2) * \arctan(D / B*)$$

$$d_{q} = 1,33$$

$$d_{c} = d_{q} - (1 - d_{q}) / (N_{c} \tan_{\phi})$$

$$d_c = 1,34$$

$$d_{v} = 1$$

$$d_{\gamma} = 1,00$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

LOTTO

CODIFICA

DOCUMENTO NI.25.0.0.001

REV.

FOGLIO

b_c , b_q , b_γ : fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan_{\phi}')^2$$

 $\beta_f + \beta_p =$

0,00

 $\beta_f + \beta_p < 45^\circ$

$$b_{q} = 1,00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \phi')$$

$$b_c =$$

 $b_c = 1,00$

$$b_{\gamma} = b_{q}$$

$$b_{y} = 1,00$$

g_c, g_q, g_y : <u>fattori di inclinazione piano di campagna</u>

$$g_q = (1 - \tan \beta_p)^2$$

 $\beta_f + \beta_p =$

0,00

 $\beta_f + \beta_p < 45^\circ$

 $g_{q} = 1,00$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi)$$

1,00

$$g_{\gamma} = g_{q}$$

 $g_{\gamma} = 1,00$

Carico limite unitario

Pressione massima agente

$$q = N / B^* L^*$$

q = 158,37 (kN/m²)

 (kN/m^2)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

CODIFICA CL

DOCUMENTO NI.25.0.0.001

FOGLIO

REV. B

Verifica di sicurezza capacità portante

 $q_{lim}/\gamma_R =$

3195,92

LOTTO

3 0 D 26

 \geq q = 158,37 (kN/m²)

VERIFICA A SCORRIMENTO

Carico agente

Hd = 113,87 (kN)

Azione Resistente

 $Sd = N tan(\phi') + c' B^* L^*$

Sd = 463,64 (kN)

Verifica di sicurezza allo scorrimento

 $Sd/\gamma_R =$ 421,49

≥

Hd = 113,87

(kN)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 70 di 125

Valore di progetto

=

1,00

(m)

L*

3.13.5. Verifiche SLV in condizioni non drenate

• <u>SLV-Nmin:</u>

AZIONI

	ALIOITI				
	valori di input		Valori di		
	permanenti	temporanee	calcolo		
N [kN]	464,26		464,26		
Mb					
[kNm]	292,39		292,39		
MI [kNm]	0,00		0,00		
Tb [kN]	113,87		113,87		
TI [kN]	0,00		0,00		
H [kN]	113,87	0,00	113,87		

Peso unità di volume del terreno

 $\gamma_1 = 20,00 \text{ (kN/mc)}$ $\gamma = 18,00 \text{ (kN/mc)}$

Valore caratteristico di resistenza del terreno

 $c_u = 50,00$ (kN/mq) $c_u = 50,00$ (kN/mq) $e_B = 0,63$ (m) $B^* = 3,14$ (m)

q : sovraccarico alla profondità D

0,00

=

q = 150,00 (kN/mq)

γ : peso di volume del terreno di fondazione

(m)

 $\gamma = 18,00 \text{ (kN/mc)}$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5,14

s_c : <u>fattori di forma</u>

 $s_c = 1 + 0.2 B^* / L^*$

 $s_c = 1,00$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

MMESSA	
RS3T	

LOTTO

CODIFICA

DOCUMENTO

REV.

FOGLIO

i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

0,00

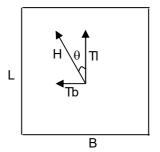
$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

0,00

$$\theta = arctg(Tb/Tl) =$$

0.00

$$m = 200$$


(°)

$$m = 2,00$$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.76$$

d_c: fattore di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*

per D/B*> 1;
$$d_c = 1 + 0.4$$
 arctan (D / B*)

$$d_c = 1,58$$

b_c : fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1,00$$

g_c: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c = 1,00$$

Carico limite unitario

$$q_{lim} = 521,58 \text{ (kN/m}^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 147,83 \quad (kN/m^2)$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

LOTTO 3 0 D 26 CODIFICA CL

DOCUMENTO NI.25.0.0.001

REV. B

FOGLIO

Verifica di sicurezza capacità portante

 $q_{lim}/\gamma_R =$

226,78

≥

 $q = 147,83 (kN/m^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 113,87 (kN)

Azione Resistente

 $Sd = cu B^* L^*$

Sd = 188,43

(kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 171,3

≥ Hd = 113,87

(kN)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 73 di 125

• SLV-Nmax:

AZIONI

	valori	Valori di	
	permanenti	temporanee	calcolo
N [kN]	518,06		518,06
Mb			
[kNm]	292,39		292,39
MI [kNm]	0,00		0,00
Tb [kN]	113,87		113,87
TI [kN]	0,00		0,00
H [kN]	113,87	0,00	113,87

Peso unità di volume del terreno

 $\gamma_1 = 20,00 \text{ (kN/mc)}$ $\gamma = 18,00 \text{ (kN/mc)}$

Valore caratteristico di resistenza del terreno

 $c_u = 50,00 \quad (kN/mq)$

 $e_B = 0.56$ (m)

 $e_L = 0.00$ (m)

Valore di progetto

L*

 $c_u = 50,00 \text{ (kN/mq)}$

 $B^* = 3,27$ (m)

= 1,00 (m)

q : sovraccarico alla profondità D

q = 150,00 (kN/mq)

γ: peso di volume del terreno di fondazione

 $\gamma = 18,00 \text{ (kN/mc)}$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5,14

s_c: fattori di forma

 $s_c = 1 + 0.2 B^* / L^*$

 $s_c = 1,00$

CODIFICA

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

MMESSA	
RS3T	

LOTTO 3 0 D 26 DOCUMENTO NI.25.0.0.001 REV.

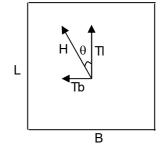
FOGLIO 74 di 125

i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

0,00

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$$


0,00

$$\theta = arctg(Tb/TI) =$$

0.00

(°)

$$m = 2,00$$

(m=2 nel caso di fondazione nastriforme e m= $(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.77$$

d_c: fattore di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*

per D/B*> 1;
$$d_c = 1 + 0.4 \arctan (D / B^*)$$

$$d_c = 1,58$$

b_c: fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1,00$$

g_c: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c = 1,00$$

Carico limite unitario

$$q_{lim} = 526,15 \text{ (kN/m}^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 158,37 \text{ (kN/m}^2)$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA LOTTO 3 0 D 26

CODIFICA CL

DOCUMENTO NI.25.0.0.001 REV. B FOGLIO 75 di 125

Verifica di sicurezza capacità portante

 $q_{lim} / \gamma_R = 228,76 \ge q = 158,37 (kN/m^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 113,87 (kN)

Azione Resistente

 $Sd = cu B^* L^*$

Sd = 196,27 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 178,43 \geq Hd = 113,87 (kN)

3.13.6. Tabella verifiche geotecniche GEO

I coefficienti di sfruttamento che si ottengono per le verifiche geotecniche GEO sono i seguenti:

Coefficienti di sfruttamento					
	Qlim	Scorr	Esito		
SLU-CD_Nmin	4%	25%	OK		
SLU-CD_Nmax	5%	16%	OK		
SLV-CD_Nmin	5%	30%	OK		
SLV-CD_Nmax	5%	27%	OK		
SLU-CND_Nmin	56%	51%	OK		
SLU-CND_Nmax	86%	47%	OK		
SLV-CND_Nmin	65%	66%	OK		
SLV-CND_Nmax	69%	64%	OK		

3.14. OPERE DI IMBOCCO E SBOCCO

Per la verifica delle opere di imbocco e sbocco si riporta un calcolo tipologico per tutti i tombini aventi le stesse caratteristiche geometriche. Il calcolo strutturale verrà effettuato nelle condizioni più sfavorevoli possibile in termini di azione sisimica; le verifiche geotecniche verranno effettuate considerando il terreno di fondazone con le minori caratteristiche di resistenza (TERRENO a2, c'=18 KPa, Cu=50 Kpa) e la quaota della falda alla profondità minore tra quelle considerate.

3.14.1. GEOMETRIA

Larghezza utile	Lint	3.50 m	luce interna scatolare
Altezza libera	Hint	3.45 m	altezza interna scatolare
Spessore piedritti	Sp	0.45 m	(consigliato: Sp = Ss)
Spessore fondazione	Sf	0.55 m	(consigliato: Sf = Ss + 10cm.)
Larghezza totale	Ltot	4.40 m	Lint+2xSPp
Altezza totale	Htot	4.00 m	Hint+SPf

3.14.2. ANALISI DEI CARICHI

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura inesame.

Peso proprio della struttura (condizione DEAD)

Il *peso proprio* delle solette e dei piedritti viene calcolato automaticamente dal programma di calcolo utilizzato considerando per il calcestruzzo *y*=25kN/m³.

Peso specifico calcestruzzo armato	γds	25 kN/m^3	
peso singolo piedritto	Pp	11.25 kN/m	y cls × Sp
peso fondazione	Psf	13.75 kN/m	$\gamma cls \times Sf$

Spinta del terreno (condizioni SPTSX eSPTDX)

Le caratteristiche del rinterro, sono le medesime considerate per lo scatolare:

Ø=38° Angolo di attrito

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 R\$3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 78 di 125

 γ r= 19 kN/m³ Peso specifico rinterro $C_u = 0$ Coesione non drenata

angolo di attrito rinterro	Ø'	35 [°]	0.611 [rad]
coefficiente spinta attiva ka	ka	0.271	(1 - senØ) / (1 + senØ)
coefficiente spinta riposo ko	ko	0.426	(1 - senØ)
coefficiente spinta passiva kp	kp	3.690	(1 + senØ) / (1 - senØ)
Pressione cima piedritti	P2	0.00 kN/m^2	Z=0
Pressione asse soletta inferiore	Р3	28.59 kN/m^2	$ko \times \gamma t \times (Hint + Sf / 2)$
Pressione intradosso soletta inferiore	P4	30.70 kN/m^2	$ko \times \gamma t \times Htot$
Forza concentrata asse soletta inferiore	F2	8.15 kN/m	(P3+ P4) / 2 x Sf / 2

Il carico concentrato nel nodo 3 (per la SPTSX) oppure 13 (per la SPTDX) rappresenta la parte di spinta del terreno esercitata su 1/2 spessore della soletta inferiore.

CONDIZIONI DI CARICO SISMICHE

Per il calcolo dell'azione sismica si utilizza il metodo dell' analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k. Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale Fh=kh*W Forza sismica verticale Fv=kv*W

I valori dei coefficienti sismici orizzontale kh e verticale kv

kh = a max /g $kv = \pm 0.5 \times kh$

Con riferimento alla nuova classificazione sismica del territorio nazionale, ai fini del calcolo dell'azione sismica secondo il DM 17/01/2018 viene assegnata all'opera una vita nominale VN ed una classe d'uso Cu; segue un periodo di riferimento VR=VN *CU.

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 79 di 125

Le forze di inerzia sullo **scatolare** (masse di peso proprio soletta superiore e piedritti, rinterro e ballast, 20% treno di carico,...) sono pari alle masse moltiplicate per \mathbf{kh} e \mathbf{kv} ove: $\mathbf{kh} = \boldsymbol{\beta} \mathbf{m} \times \mathbf{S} \times \mathbf{ag/g}$ e $\mathbf{kv} = \mathbf{kh} / 2$. Essendo lo scatolare non libero di subire spostamenti relativi rispetto al terreno, $\boldsymbol{\beta} \mathbf{M} = 1$.

vita nominale	V_N	75 anni
classe d'uso	CL	III
coefficiente d'uso	C_{U}	1.50
vita di riferimento = $C_{\rm U} * V_{\rm N}$	V_{R}	112.5 anni
probabilità di superamento nel periodo di riferimento	$P_{ m VR}$	10%
periodo di ritorno del sisma	T_R	1068 anni

Spettro di risposta in accelerazione della componente orizzontale

Coordinate del sito in oggetto:

Latitudine	[-]
Longitudine	[-]

Parametri sismici di progetto

accelerazione massima orizzontale al bedrock	ago	0.110 g
fattore amplificazione massima spettro accelerazione	Fo	2.647 sec
periodo inizio tratto a velocità costante spettro acc. orizz.	T*c	0.381
categoria sottosuolo		С
categoria topografica		T1
amplificazione topografica	S_{T}	1.000
smorzamento viscoso convenzionale	ξ	5%
fattore di correzione per \xi <> 5%	η	1.000

$C_{\rm C}$	S_S	C_{C}	S_S	Tab.3.2.V
,		1.00	1.00	A
		1.33	1.20	В
1.44	1.50	1.44	1.50	С
		2.03	1.80	D
		1.69	1.60	Е

coefficiente amplificazione stratigrafica	S_S	1.500
coefficiente di amplificazione	S	1.500
coefficiente categoria sottosuolo	C_{C}	1.444
periodo inizio tratto a accelerazione costante = Tc / 3	T_{B}	0.183 sec
periodo inizio tratto a velocità costante = Cc * T*c	T_{C}	0.550 sec
periodo inizio tratto a spostamento costante = 4 * ag/g +1,6	T_{D}	2.040 sec
accelerazione massima orizzontale al suolo = Ss x St x ag/g	ago,max	0.165 g

Accelerazioni per il calcolo delle forze di inerzia agenti sullo scatolare

Coefficiente di riduzione dell'acc max attesa al sito		β	1.000
$ao = kh = ago, max = S \times ag/g$	valore $PGA \times$ scatolare	ao = kh	0.1650 g
av = kv = kh / 2	valore $PGA \times s$ catolare	av = kv	0.0825 g

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 80 di 125

Forze di inerzia (condizione SismaH)

Forza orizzontale su singolo piedritto F''h 1.86 kN/m^2 $Pp \times kh$

Spinta sismica terreno - Teoria di WOOD (condizioni SPSDX e SPSSX)

Forza distribuita su uno solo dei piedritti qW 11.88 kN/m^2 (\gamma t \times Htot) \times (ago,max)

Forza concentrata nodo inferiore piedritto QWinf 3.27 kN $qW \times Sf / 2$

3.14.3. COMBINAZIONI DI CARICO

Le azioni descritte nel paragrafo precedente ed utilizzate nelle combinazioni di carico vengono di seguito riassunte:

Peso proprio	DEAD
Spinta del terreno sulla parete sinistra	SPTSX
Spinta del terrenno sulla parete destra	SPTDX
Azione sismica orizzontale	Sisma H
Incremento sismico della spinta sul terreno	SPSDX/SX

Si riportano di seguito le combinazioni allo SLU di carico ritenute più significative in base all'esperienza. Combinazione fondamentale

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

	Combinazioni di carico SLU (non sismiche)												
1slu 2slu 3slu 4slu 5slu 6slu 7slu 8slu 9slu 10slu 11slu 12slu 13slu													
DEAD	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1	1.35	1.35	1.35	1.35	1.35
SPTSX	1	1	1	1	1.35	1.35	1	1	1	1.35	1.35	1.35	1.35
SPTDX	1	1	1	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 81 di 125

 $E = \pm 1.00 \text{ x } E_Y \pm 0.30 \text{ x } E_Z$

oppure $E = \pm 0.30 \text{ x } E_{Y} \pm 1.00 \text{ x } E_{Z}$

Combinazioni di Carico Sismiche									
SH1 SH2 SH3 SH4 SV1 SV2 SV3 SV4									
DEAD	1	1	1	1	1	1	1	1	
SPTSX	1	1	1	1	1	1	1	1	
SPTDX	1	1	1	1	1	1	1	1	
Sisma H	1	1	1	1	0.3	0.3	0.3	0.3	
SPSDX	0	0	1	1	0	0	0.3	0.3	
SPSSX	1	1	0	0	0.3	0.3	0	0	

Le combinazioni sismiche vanno eseguite in entrambe le direzioni pertanto le combinazioni SH vanno ripetute per Sisma H = -1 e le combinazioni SV per Sisma V = -0.3.

Si riportano infine,le combinazioni di carico agli stati limite di esercizio SLE ritenute più significative. Combinazione rara

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazioni di caricoSLE							
1sle 2sle 3sle							
DEAD	1	1	1				
SPTSX	1	1	1				
SPTDX	0.8	0.8	0.8				

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T LOTTO 3 0 D 26 CODIFICA CL DOCUMENTO NI.25.0.0.001 REV. B FOGLIO 82 di 125

3.14.4. CARATTERISTICHE DELLE SOLLECITAZIONI

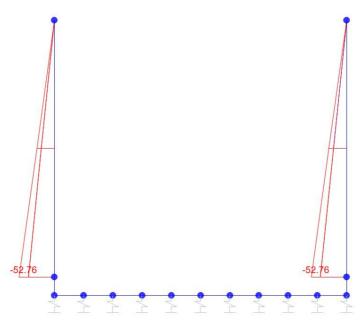
3.14.4.1. <u>Inviluppo SLU-SLV</u>

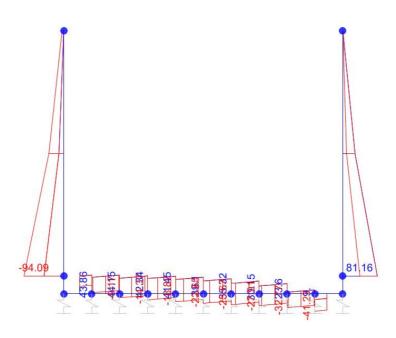
Frame	Station OutputCase	CaseType	StepType	Р	V2	M3
1	0.23 ENVELOPE SLU SLV	Combination	Max	0.00	41.32	152.49
1	0.41 ENVELOPE SLU SLV	Combination	Max	0.00	38.92	144.72
1	0.59 ENVELOPE SLU SLV	Combination	Max	0.00	41.45	137.32
1	0.78 ENVELOPE SLU SLV	Combination	Max	0.00	43.98	129.45
1	0.96 ENVELOPE SLU SLV	Combination	Max	0.00	39.27	122.36
1	1.15 ENVELOPE SLU SLV	Combination	Max	0.00	41.80	114.89
1	1.33 ENVELOPE SLU SLV	Combination	Max	0.00	38.01	107.88
1	1.51 ENVELOPE SLU SLV	Combination	Max	0.00	40.55	100.64
1	1.70 ENVELOPE SLU SLV	Combination	Max	0.00	35.30	93.86
1	1.88 ENVELOPE SLU SLV	Combination	Max	0.00	37.83	87.13
1	2.07 ENVELOPE SLU SLV	Combination	Max	0.00	31.16	85.61
1	2.25 ENVELOPE SLU SLV	Combination	Max	0.00	33.69	89.32
1	2.44 ENVELOPE SLU SLV	Combination	Max	0.00	25.62	93.11
1	2.62 ENVELOPE SLU SLV	Combination	Max	0.00	28.15	97.44
1	2.80 ENVELOPE SLU SLV	Combination	Max	0.00	18.70	101.60
1	2.99 ENVELOPE SLU SLV	Combination	Max	0.00	21.24	106.41
1	3.17 ENVELOPE SLU SLV	Combination	Max	0.00	3.74	110.88
1	3.36 ENVELOPE SLU SLV	Combination	Max	0.00	6.27	116.65
1	3.54 ENVELOPE SLU SLV	Combination	Max	0.00	8.81	121.96
1	3.73 ENVELOPE SLU SLV	Combination	Max	0.00	-10.71	128.33
1	0.23 ENVELOPE SLU SLV	Combination	Min	0.00	18.01	58.76
1	0.41 ENVELOPE SLU SLV	Combination	Min	0.00	2.57	52.30
1	0.59 ENVELOPE SLU SLV	Combination	Min	0.00	5.11	48.31
1	0.78 ENVELOPE SLU SLV	Combination	Min	0.00	7.64	43.69
1	0.96 ENVELOPE SLU SLV	Combination	Min	0.00	-6.81	41.60
1	1.15 ENVELOPE SLU SLV	Combination	Min	0.00	-4.28	39.10
1	1.33 ENVELOPE SLU SLV	Combination	Min	0.00	-12.38	37.75
1	1.51 ENVELOPE SLU SLV	Combination	Min	0.00	-9.84	36.25
1	1.70 ENVELOPE SLU SLV	Combination	Min	0.00	-17.24	35.58
1	1.88 ENVELOPE SLU SLV	Combination	Min	0.00	-14.71	35.08
1	2.07 ENVELOPE SLU SLV	Combination	Min	0.00	-21.38	35.08
1	2.25 ENVELOPE SLU SLV	Combination	Min	0.00	-18.85	35.58
1	2.44 ENVELOPE SLU SLV	Combination	Min	0.00	-24.77	36.25
1	2.62 ENVELOPE SLU SLV	Combination	Min	0.00	-22.24	37.75
1	2.80 ENVELOPE SLU SLV	Combination	Min	0.00	-27.37	39.10
1	2.99 ENVELOPE SLU SLV	Combination	Min	0.00	-24.84	41.60
1	3.17 ENVELOPE SLU SLV	Combination	Min	0.00	-32.60	43.69
1	3.36 ENVELOPE SLU SLV	Combination	Min	0.00	-30.07	48.31
1	3.54 ENVELOPE SLU SLV	Combination	Min	0.00	-27.54	49.26
1	3.73 ENVELOPE SLU SLV	Combination	Min	0.00	-38.11	51.15

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	3 0 D 26	CL	NI.25.0.0.001	B	83 di 125

2	0.00 ENVELOPE SLU SLV	Combination	Max	0.00	0.00	0.00
2	1.74 ENVELOPE SLU SLV			-19.54	29.00	-3.90
2	3.48 ENVELOPE SLU SLV	Combination	Max	-39.08	81.16	-42.45
2	0.00 ENVELOPE SLU SLV	Combination	Min	0.00	0.00	0.00
2	1.74 ENVELOPE SLU SLV	Combination	Min	-26.38	8.35	-21.83
2	3.48 ENVELOPE SLU SLV	Combination	Min	-52.76	39.88	-114.18
4	0.00 ENVELOPE SLU SLV	Combination	Max	0.00	0.00	0.00
4	1.74 ENVELOPE SLU SLV	Combination	Max	-19.54	-11.59	27.45
4	3.48 ENVELOPE SLU SLV	Combination	Max	-39.08	-46.34	136.64
4	0.00 ENVELOPE SLU SLV	Combination	Min	0.00	-4.84	0.00
4	1.74 ENVELOPE SLU SLV	Combination	Min	-26.38	-35.46	6.71
4	3.48 ENVELOPE SLU SLV	Combination	Min	-52.76	-94.09	53.68

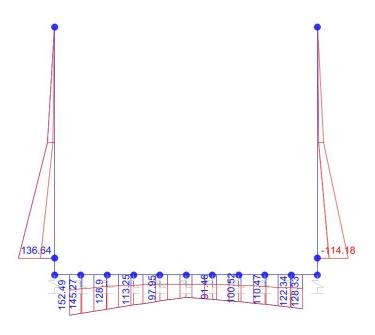

SEZIONE	Р	V2	M3
01	0.0	44.0	152.5
02	0.0	0.0	35.1
06	-39.1	94.1	114.2


NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 3 0 D 26 CL NI.25.0.0.001 B 84 di 125

Diagrammi di inviluppo delle sollecitazioni: ENVELOPE SLU-SLV

Sforzo normale


Taglio

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 85 di 125

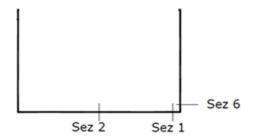
Momento Flettente

I valori V e M dei diagrammi corrispondono a quelli riportati nella tabella, mentre il valore dello sforzo normale P nei diagrammi (valore massimo) differisce da quello di verifica della tabella, pari a quello di compressione minimo.

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T LOTTO 3 0 D 26 CODIFICA CL DOCUMENTO NI.25.0.0.001 REV. B FOGLIO 86 di 125

3.14.4.2. <u>Inviluppo SLE (rara)</u>

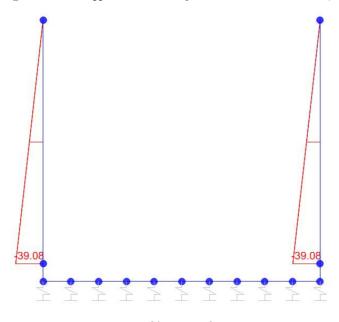

Frame	Station	OutputCase	CaseType	StepType	Р	V2	M3
1	•	ENVELOPE SLERARA			0.00	29.11	69.87
1		ENVELOPE SLERARA			0.00	19.95	64.44
1		ENVELOPE SLERARA			0.00	22.48	60.53
1		ENVELOPE SLERARA			0.00		56.15
1		ENVELOPE SLERARA			0.00	15.32	53.42
1	1.15	ENVELOPE SLERARA	Combination	Max	0.00		50.36
1		ENVELOPE SLERARA			0.00	11.89	48.07
1		ENVELOPE SLERARA			0.00		45.65
1	1.70	ENVELOPE SLERARA	Combination	Max	0.00	8.15	43.80
1	1.88	ENVELOPE SLERARA	Combination	Max	0.00	10.68	42.07
1	2.07	ENVELOPE SLERARA	Combination	Max	0.00	4.09	40.71
1	2.25	ENVELOPE SLERARA	Combination	Max	0.00	6.63	39.72
1	2.44	ENVELOPE SLERARA	Combination	Max	0.00	-0.26	38.88
1	2.62	ENVELOPE SLERARA	Combination	Max	0.00	2.28	38.70
1	2.80	ENVELOPE SLERARA	Combination	Max	0.00	-4.89	38.42
1	2.99	ENVELOPE SLERARA	Combination	Max	0.00	-2.36	39.09
1	3.17	ENVELOPE SLERARA	Combination	Max	0.00	-14.80	39.48
1	3.36	ENVELOPE SLERARA	Combination	Max	0.00	-12.26	41.97
1	3.54	ENVELOPE SLERARA	Combination	Max	0.00	-9.73	44.00
1	3.73	ENVELOPE SLERARA	Combination	Max	0.00	-22.56	48.17
1	0.23	ENVELOPE SLERARA	Combination	Min	0.00	27.69	60.24
1	0.41	ENVELOPE SLERARA	Combination	Min	0.00	17.73	55.08
1	0.59	ENVELOPE SLERARA	Combination	Min	0.00	20.26	51.58
1	0.78	ENVELOPE SLERARA	Combination	Min	0.00	22.80	47.61
1	0.96	ENVELOPE SLERARA	Combination	Min	0.00	12.51	45.38
1	1.15	ENVELOPE SLERARA	Combination	Min	0.00	15.05	42.85
1	1.33	ENVELOPE SLERARA	Combination	Min	0.00	8.84	41.11
1	1.51	ENVELOPE SLERARA	Combination	Min	0.00	11.37	39.25
1	1.70	ENVELOPE SLERARA	Combination	Min	0.00	4.97	37.98
1	1.88	ENVELOPE SLERARA	Combination	Min	0.00	7.50	36.83
1	2.07	ENVELOPE SLERARA	Combination	Min	0.00	0.93	36.06
1	2.25	ENVELOPE SLERARA	Combination	Min	0.00	3.46	35.65
1	2.44	ENVELOPE SLERARA	Combination	Min	0.00	-3.29	35.39
1	2.62	ENVELOPE SLERARA	Combination	Min	0.00	-0.75	35.76
1	2.80	ENVELOPE SLERARA	Combination	Min	0.00	-7.65	36.04
1	2.99	ENVELOPE SLERARA	Combination	Min	0.00	-5.12	37.21
1	3.17	ENVELOPE SLERARA	Combination	Min	0.00	-16.97	38.10
1	3.36	ENVELOPE SLERARA	Combination	Min	0.00	-14.43	40.99
1	3.54	ENVELOPE SLERARA	Combination	Min	0.00	-11.90	43.42
1	2 72	ENVELOPE SLERARA	Combination	Min	0.00	-23.95	47.85

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

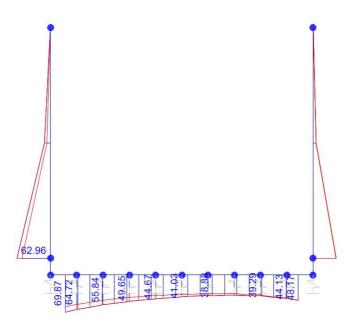
COMMESSA LOTTO CODIFICA DOCUMENTO REV RS3T 3 0 D 26 CL NI.25.0.0.001 B	f. FOGLIO 87 di 125

2	0.00 ENVELOPE SLERARA Combination	Max	0.00	0.00	0.00
2	1.74 ENVELOPE SLERARA Combination	Max	-19.54	9.27	-5.37
2	3.48 ENVELOPE SLERARA Combination	Max	-39.08	37.07	-42.94
2	0.00 ENVELOPE SLERARA Combination	Min	0.00	0.00	0.00
2	1.74 ENVELOPE SLERARA Combination	Min	-19.54	9.27	-5.37
2	3.48 ENVELOPE SLERARA Combination	Min	-39.08	37.07	-42.94
4	0.00 ENVELOPE SLERARA Combination	Max	0.00	0.00	0.00
4	1.74 ENVELOPE SLERARA Combination	Max	-19.54	-11.59	11.35
4	3.48 ENVELOPE SLERARA Combination	Max	-39.08	-46.34	62.96
4	0.00 ENVELOPE SLERARA Combination	Min	0.00	-2.67	0.00
4	1.74 ENVELOPE SLERARA Combination	Min	-19.54	-14.26	6.71
4	3.48 ENVELOPE SLERARA Combination	Min	-39.08	-49.01	53.68

SEZIONE	Р	V2	М3
01	0.0	29.1	69.9
02	0.0	0.0	35.4
06	-39 1	49 N	42 9



NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 88 di 125

Diagrammi di inviluppo delle sollecitazioni: ENVELOPE SLE (rara)

Sforzo normale

Momento flettente

Il valore M dei diagrammi corrisponde a quello riportato nella tabella, mentre il valore dello sforzo normale P nei diagrammi (valore massimo) differisce da quello di verifica della tabella, pari a quello di compressione minimo.

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 89 di 125

3.14.5. <u>VERIFICHE</u>

Si riportano i coefficienti di sfruttamento nelle sezioni notevoli per le verifiche SLU/SLV/SLE:

SINTES	SI VERIFICH	IE SEZIC	NI NOT	EVOLI:
SL	VERIF	SEZ01	SEZ02	SEZ06
SLU	Med/Mrd	28%	6%	27%
SLU	Ved/Vrd	17%	0%	40%
SLE	(sigse/sigsr)s	4%	2%	3%
SLE	(sigse/sigsr)i	15%	7%	10%
SLE	(sigæ/sigar)s	9%	5%	8%
SLE	wk/wklim	29%	15%	18%
	MAX	29%	15%	40%
	MAX	40%		

I coefficienti di sfruttamento sono tutti inferiori all'unità e pertanto le verifiche risultano soddisfatte.

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 3 0 D 26 CL NI.25.0.0.001 B 90 di 125

3.14.5.1. <u>VERIFICHE DELLE SEZIONI</u>

	Sezione n°. 01			
	Dati di Input:			
В	Base sezione rettangolare	1000 mm	Geometria della Sezione:	
Н	Altezza sezione rettangolare	550 mm	Н	
c'	Copriferro armatura sup. compressa	70 mm	As' c'	
c	Copriferro armatura inf. Tesa	70 mm		
d	Altezza utile = H-c	480 mm		В
fck	Resistenza caratt. Cilindrica calcestruzzo	30 MPa		
fyk	Resistenza caratt. Snervamento acciaio	450 MPa	As c	
Ned	Sforzo normale di calcolo [(+)Trazione]	0.0 kN		
Med	Momento flettente di calcolo [(+)]	152.5 kNm		
Ved	Taglio di calcolo [(+)]	44.0 kN		
Ted	Torsione di calcolo [(+)]	0 kNm		
Fi1	1° diametro armatura tesa	20		
Fi2	2° diametro armatura tesa	0		
n1	N°. Barre 1° armatura tesa	10 Armatur	ra tesa filante 3142 mmq	
n2	N°. Barre 2° armatura tesa	0 Armatur	ra di raffittim. 0 mmq	
As'	Armatura superiore compressa	3142 mmq		
As	Armatura inferiore tesa	3142 mmq		
Fi Staffe	Diametro staffe	mm		
s. Staffe	Passo staffe	150 mm		
bracci	Numero Bracci staffe	2		
$\cot\theta$	(proiez.orizz.)/(proiez.vert.) puntone cls	2.0 [range: 1	,0-2,5]	
alpha	angolo staffe/piegati rispetto all'orizzontale	90.0°		
Asw	Area a taglio per unità di lunghezza	0 mmq/n	n 0.00 cmq/m	
<r-f-p></r-f-p>	Combinaz. SLE (rara,frequente,qperm)	R		
Msle	Momento di esercizio [(+)]	69.9 kNm		
Nsle	Sforzo normale di esercizio [(+)Trazione]	0.0 kN		
wk-lim	Stato limite apertura fessure (Freq.Perm)	0.20 mm		
sigcR-lim	Tensione limite cls comb. Rara	0.60 fck		
sigcP-lim	Tensione limite cls comb. Quasi Perm.	0.45 fck		
sigsR-lim	Tensione limite acc. Comb. Rara	0.80 fyk		
	Dati di Output:			
	SLU - Momento e Taglio resistenti			
<s-n></s-n>	Momento Ultimo resistente dissipativo <s n=""></s>	S		
Mrd	Momento ultimo resistente	544 kNm	Coeff.Sfrutt.	28%
Vrd	Taglio ultimo resistente	256 kN	Coeff.Sfrutt.	17%
Trd	Momento torcente ultimo resistente	0 kNm	Coeff.Sfrutt.	
	SLE - Tensioni e ampiezza fessure			
Sigs-sup	Tensione barre superiori [(-)Compresso]	-13 Mpa	Coeff.Sfrutt.	4%
Sigs-inf	Tensione barre inferiori [(+)Teso]	52 Mpa	Coeff.Sfrutt.	15%
Sigc-sup	Tensione cls superiore [(-)Compresso]	-2 Mpa	Coeff.Sfrutt.	9%
Sigc-inf	Tensione cls inferiore [non reag.Trazione]	0 Mpa		
Mcr	Momento di prima fessurazione	170 kNm		
wk	Ampiezza di fessura	0.06 mm	Coeff.Sfrutt.	29%
			Coeff.Sfrutt.Max	29%

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 3 0 D 26 CL NI.25.0.0.001 B 91 di 125

	0.00			
	Sezione n°. 02			
T)	Dati di Input:	4000	0	
В	Base sezione rettangolare	1000 mm	Geometria della Sezio	ne:
H •	Altezza sezione rettangolare	550 mm	Н	
c'	Copriferro armatura sup. compressa	70 mm	As' c'	
c	Copriferro armatura inf. Tesa	70 mm		-
d	Altezza utile = H-c	480 mm		В
fck	Resistenza caratt. Cilindrica calcestruzzo	30 MPa		
fyk	Resistenza caratt. Snervamento acciaio	450 MPa	As c	
Ned	Sforzo normale di calcolo [(+)Trazione]	0.0 kN		
Med	Momento flettente di calcolo [(+)]	35.1 kNm		
Ved	Taglio di calcolo [(+)]	0.0 kN		
Ted	Torsione di calcolo [(+)]	0 kNm		
Fi1	1° diametro armatura tesa	20		
Fi2	2º diametro armatura tesa	0		
n1	N°. Barre 1° armatura tesa	10 Armatura		_
n2	N°. Barre 2° armatura tesa		a di raffittim. 0 mi	mq
As'	Armatura superiore compressa	3142 mmq		
As	Armatura inferiore tesa	3142 mmq		
Fi Staffe	Diametro staffe	mm		
s. Staffe	Passo staffe	150 mm		
bracci	Numero Bracci staffe	2		
$\cot\theta$	(proiez.orizz.)/(proiez.vert.) puntone cls	2.5 [range: 1,	0-2,5]	
alpha	angolo staffe/piegati rispetto all'orizzontale	90.0°		
Asw	Area a taglio per unità di lunghezza	0 mmq/m	$0.00~\mathrm{cmq/m}$	
<r-f-p></r-f-p>	Combinaz. SLE (rara,frequente,qperm)	R		
Msle	Momento di esercizio [(+)]	35.4 kNm		
Nsle	Sforzo normale di esercizio [(+)Trazione]	0.0 kN		
wk-lim	Stato limite apertura fessure (Freq.Perm)	0.20 mm		
sigcR-lim	Tensione limite cls comb. Rara	0.60 fck		
sigcP-lim	Tensione limite cls comb. Quasi Perm.	0.45 fck		
sigsR-lim	Tensione limite acc. Comb. Rara	0.80 fyk		
	Dati di Output:			
	SLU - Momento e Taglio resistenti			
<s-n></s-n>	Momento Ultimo resistente dissipativo <s n<="" td=""><td>S</td><td></td><td></td></s>	S		
Mrd	Momento ultimo resistente	544 kNm	Coeff.Sfrutt.	6%
Vrd	Taglio ultimo resistente	256 kN	Coeff.Sfrutt.	0%
Trd	Momento torcente ultimo resistente	0 kNm	Coeff.Sfrutt.	
	SLE - Tensioni e ampiezza fessure			
Sigs-sup	Tensione barre superiori [(-)Compresso]	-7 Mpa	Coeff.Sfrutt.	2%
Sigs-inf	Tensione barre inferiori [(+)Teso]	27 Mpa	Coeff.Sfrutt.	7%
Sigc-sup	Tensione cls superiore [(-)Compresso]	-1 Mpa	Coeff.Sfrutt.	5%
Sigc-inf	Tensione cls inferiore [non reag.Trazione]	0 Mpa		
Mcr	Momento di prima fessurazione	170 kNm		
wk	Ampiezza di fessura	0.03 mm	Coeff.Sfrutt.	15%
			Coeff.Sfrutt.Max	15%

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 92 di 125

	Sezione n°. 06			
_	Dati di Input:			
В	Base sezione rettangolare	1000 mm	Geometria della Sezio	ne:
Н	Altezza sezione rettangolare	450 mm	Н	
c'	Copriferro armatura sup. compressa	70 mm	As' c'	
С	Copriferro armatura inf. Tesa	70 mm		
d	Altezza utile = H-c	380 mm		В
fck	Resistenza caratt. Cilindrica calcestruzzo	30 MPa		
fyk	Resistenza caratt. Snervamento acciaio	450 MPa	As c	
Ned	Sforzo normale di calcolo [(+)Trazione]	-39.1 kN		
Med	Momento flettente di calcolo [(+)]	114.2 kNm		
Ved	Taglio di calcolo [(+)]	94.1 kN		
Ted	Torsione di calcolo [(+)]	0 kNm		
Fi1	1° diametro armatura tesa	20		
Fi2	2° diametro armatura tesa	0		
n1	N°. Barre 1° armatura tesa	10 Armatur	a tesa filante 3142 m:	mq
n2	N°. Barre 2° armatura tesa	0 Armatur	a di raffittim. 0 m:	mq
As'	Armatura superiore compressa	3142 mmq		
As	Armatura inferiore tesa	3142 mmq		
Fi Staffe	Diametro staffe	mm		
s. Staffe	Passo staffe	150 mm		
bracci	Numero Bracci staffe	2		
$\cot \theta$	(proiez.orizz.)/(proiez.vert.) puntone cls	2.5 [range: 1	,0-2,5]	
alpha	angolo staffe/piegati rispetto all'orizzontale	90.0°		
Asw	Area a taglio per unità di lunghezza	0 mmq/m	$0.00~\mathrm{cmq/m}$	
<r-f-p></r-f-p>	Combinaz. SLE (rara,frequente,qperm)	R		
Msle	Momento di esercizio [(+)]	42.9 kNm		
Nsle	Sforzo normale di esercizio [(+)Trazione]	-39.1 kN		
wk-lim	Stato limite apertura fessure (Freq.Perm)	0.20 mm		
sigcR-lim	Tensione limite cls comb. Rara	0.60 fck		
sigcP-lim	Tensione limite cls comb. Quasi Perm.	0.45 fck		
sigsR-lim	Tensione limite acc. Comb. Rara	0.80 fyk		
	Dati di Output:			
	SLU - Momento e Taglio resistenti			
<s-n></s-n>	Momento Ultimo resistente dissipativo <s n<="" td=""><td>S</td><td></td><td></td></s>	S		
Mrd	Momento ultimo resistente	427 kNm	Coeff.Sfrutt.	27%
Vrd	Taglio ultimo resistente	234 kN	Coeff.Sfrutt.	40%
Trd	Momento torcente ultimo resistente	0 kNm	Coeff.Sfrutt.	
	SLE - Tensioni e ampiezza fessure			
Sigs-sup	Tensione barre superiori [(-)Compresso]	-12 Mpa	Coeff.Sfrutt.	3%
Sigs-inf	Tensione barre inferiori [(+)Teso]	36 Mpa	Coeff.Sfrutt.	10%
Sigc-sup	Tensione cls superiore [(-)Compresso]	-2 Mpa	Coeff.Sfrutt.	8%
Sigc-inf	Tensione cls inferiore [non reag.Trazione]	0 Mpa		
Mcr	Momento di prima fessurazione	119 kNm		
wk	Ampiezza di fessura	0.04 mm	Coeff.Sfrutt.	18%
	-		Coeff.Sfrutt.Max	40%

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 93 di 125

3.14.5.2. <u>VERIFICHE GEOTECNICHE</u>

3.14.5.2.1. Base Reaction

Le "base reaction" sono la risultante delle reazioni delle molle per ogni singola combinazione di carico:

TABLE: Base	TABLE: Base Reactions						
OutputCase	GlobalFZ	GlobalFX	GlobalMY				
Text	KN	KN	KN-m				
SLU01	186.41	0.00	0.00				
SLU01	186.41	0.00	0.00				
SLU02	186.41	0.00	0.00				
SLU02	186.41	0.00	0.00				
SLU03	186.41	0.00	0.00				
SLU03	186.41	0.00	0.00				
SLU04	186.41	21.49	23.14				
SLU04	186.41	21.49	23.14				
SLU05	186.41	0.00	0.00				
SLU05	186.41	0.00	0.00				
SLU06	186.41	0.00	0.00				
SLU06	186.41	0.00	0.00				
SLU07	186.41	21.49	23.14				
SLU07	186.41	21.49	23.14				
SLU08	138.08	21.49	23.14				
SLU08	138.08	21.49	23.14				
SLU09	186.41	21.49	23.14				
SLU09	186.41	21.49	23.14				
SLU10	186.41	-26.33	-41.18				
SLU10	186.41	-26.33	-41.18				
SLU11	186.41	-21.49	-23.14				
SLU11	186.41	-21.49	-23.14				
SLU12	186.41	-21.49	-23.14				
SLU12	186.41	-21.49	-23.14				
SLU13	186.41	-21.49	-23.14				
SLU13	186.41	-21.49	-23.14				
SH1	138.08	-61.38	-108.23				
SH1	138.08	-61.38	-108.23				
SH2	138.08	-61.38	-108.23				
SH2	138.08	-61.38	-108.23				
SH3	138.08	33.67	56.61				
SH3	138.08	33.67	56.61				
SH4	138.08	33.67	56.61				
SH4	138.08	33.67	56.61				

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione
di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	3 0 D 26	CL	NI.25.0.0.001	В	94 di 125

SV1	138.08	-18.41	-32.47
SV1	138.08	-18.41	-32.47
SV2	138.08	-18.41	-32.47
SV2	138.08	-18.41	-32.47
SV3	138.08	10.10	16.98
SV3	138.08	10.10	16.98
SV4	138.08	10.10	16.98
SV4	138.08	10.10	16.98

Le terne di sollecitazioni N-H-M utilizzate nelle verifiche sono le seguenti, inviluppate per combinazioni SLU e per combinazioni SLV:

SLU	
Nmax	186.41 kN/m
Nmin	138.08 kN/m
Hmax	26.33 kN/m
Mmax	41.18 kNm/m
SLV	
Nmax	138.08 kN/m
Nmin	138.08 kN/m
Hmax	61.38 kN/m
Mmax	108.23 kNm/m

Le terne di sollecitazioni sopra elencate sono utilizzate a seguire per le verifiche geotecniche GEO a carico limite e a scorrimento secondo l'approccio 2 (A1-M1-R3) di cui al punto 6.4.2.1 delle NTC2018.

Le seguenti verifiche geotecniche sono distinguibili per:

Verifiche per combinazioni in fase statica e verifiche per combinazione in fase sismica:

Verifiche in condizioni drenate e verifiche in condizioni non drenate (in presenza di falda);

Verifiche per sforzo normale minimo e verifiche per sforzo normale massimo.

Le caratteristiche geometriche e i coefficienti utilizzati nelle verifiche geotecniche vengono di seguito riportati:

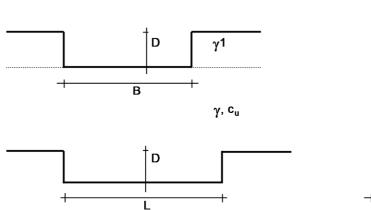
NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

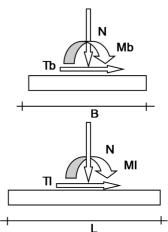
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 95 di 125

D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

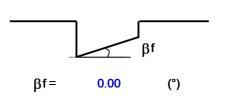

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)

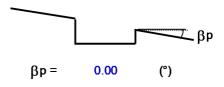

 $B^* = Larghezza$ fittizia della fondazione ($B^* = B - 2^*e_B$)

L* = Lunghezza fittizia della fondazione (L* = L - 2*e,)

coefficienti parziali

			azioni		proprietà del terreno	resistenze	
Metodo di calcolo		permanenti	temporanee variabili	Cu	qlim	scorr	
_	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00
Stato Limite Ultimo	A2+M2+R2	0	1.00	1.30	1.40	1.80	1.00
i Ei	SISMA	0	1.00	1.00	1.40	1.80	1.00
Stat L	A1+M1+R3	0	1.30	1.50	1.00	2.30	1.10
	SISMA	0	1.00	1.00	1.00	2.30	1.10
Tensioni	Ammissibili	0	1.00	1.00	1.00	3.00	3.00
Definiti da	al Progettista	•	1.00	1.00	1.00	2.30	1.10




(Per fondazioni nastriformi L=100 m)

B = 4.40 (m)

L = 100.00 (m)

D = 4.00 (m)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 R\$3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 96 di 125

Per il caclolo del carico llimite si è utilizzata la formula trinomia, in termini di tensioni efficaci per le condizioni drenate e in termini di tensioni totali per le condizioni non dreante:

CONDIZIONI DRENATE (Tensioni EFFICACI):

 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$

CONDIZIONI NON DRENATE (Tensioni TOTALI):

 $qlim = c_u \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq$

Le seguenti verifiche geotecniche sono distinguibili per:

Verifiche per combinazioni in fase statica e verifiche per combinazione in fase sismica:

Verifiche in condizioni drenate e verifiche in condizioni non drenate (in presenza di falda);

Verifiche per sforzo normale minimo e verifiche per sforzo normale massimo.

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3T 3 0 D 26 NI.25.0.0.001

3.14.6. Verifiche SLU in condizioni drenate

SLU-Nmin:

AZIONI

		_	
	valori d	Valori di	
	permanenti	temporanee	calcolo
N [kN]	138.08		138.08
Mb [kNm]	41.18		41.18
MI [kNm]	0.00		0.00
Tb [kN]	26.33		26.33
∏ [kN]	0.00		0.00
H [kN]	26.33	0.00	26.33

Peso unità di volume del terreno

20.00 (kN/mc) = γ1 = 18.00 (kN/mc)

Valori caratteristici di resistenza del terreno

Valori caratteristici di resistenza del terreno			istenza del terreno	Valori d	di proge	tto	
c'	=	18.00	(kN/mq)	c'	=	18.00	(kN/mq)
φ'	=	38.00	(°)	φ'	=	38.00	(°)

Profondità della falda

$$Z_W = 20.00$$
 (m) $B^* = 3.80$ (m) $e_L = 0.00$ (m) $L^* = 1.00$ (m)

q : sovraccarico alla profondità D

$$q = 80.00 (kN/mq)$$

γ: peso di volume del terreno di fondazione

$$\gamma = 18.00 \, (kN/mc)$$

Nc, Nq, Nγ: coefficienti di capacità portante

Nq =
$$\tan^2(45 + \phi'/2)^*e^{(\pi^*tg_{\phi'})}$$

Nq = 48.93
Nc = (Nq - 1)/ $\tan \phi'$
Nc = 61.35

$$N\gamma = 2*(Nq + 1)*tan\phi'$$

$$N_{\gamma} = 78.02$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

LOTTO 3 0 D 26 CODIFICA

DOCUMENTO NI.25.0.0.001

REV.

FOGLIO

s_c, s_q, s_v: fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.00$$

$$s_0 = 1 + B*tan_0' / L*$$

$$s_q = 1.00$$

$$s_v = 1 - 0.4*B* / L*$$

$$s_{v} = 1.00$$

i_c, i_q, i_y : <u>fattori di inclinazione del carico</u>

0.00

 $\theta = arctg(Tb/TI) =$

0.00

(°)

(-)

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*)$$

0.00

m =

2.00

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

 $i_q = (1 - H/(N + B*L* c' cotg_0'))^m$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.69$$

$$i_{\gamma} = (1 - H/(N + B*L* c' cotg_{0}'))^{(m+1)}$$

$$i_{y} = 0.59$$

d_c, d_q, d_y : fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan _{ϕ} ' (1 - sen _{ϕ} ')² / B*
per D/B*> 1; d_q = 1 +(2 tan _{ϕ} ' (1 - sen _{ϕ} ')²) * arctan (D / B*)

$$d_{a} = 1.31$$

$$d_c = d_q - (1 - d_q) / (N_c tan_0)$$

$$d_c = 1.31$$

$$d_{\gamma} = 1$$

$$d_{v} = 1.00$$

CODIFICA

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

LOTTO

DOCUMENTO

REV.

FOGLIO

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_{q} = (1 - \beta_{f} \tan_{\phi}')^{2}$$

 $\beta_f + \beta_p = 0.00$ $\beta_f + \beta_p < 45^\circ$

$$b_{q} = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \phi')$$

$$b_c = 1.00$$

$$b_{y} = b_{q}$$

g_c, g_q, g_{γ} : fattori di inclinazione piano di campagna

$$g_a = (1 - \tan \beta_p)^2$$

 $\beta_f + \beta_p =$

0.00

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$$

$$g_c = 1.00$$

$$g_{\gamma} = g_{q}$$

$$g_{y} = 1.00$$

Carico limite unitario

$$q_{lim} = 4994.39$$
 (kN/m²)

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 36.30 (kN/m2)$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 100 di 125

Verifica di sicurezza capacità portante

 $q_{lim} / \gamma_R = 2171.47 \ge q = 36.30 (kN/m^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 26.33 (kN)

Azione Resistente

Sd = N tan(o') + c' B* L*

Sd = 176.35 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 160.32 \geq Hd = 26.33 (kN)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 101 di 125

• SLU-Nmax:

AZIONI

		valori di input		Valori di
		permanenti	temporanee	calcolo
N	[kN]	186.41		186.41
Mb	[kNm]	41.18		41.18
MI	[kNm]	0.00		0.00
Tb	[kN]	26.33		26.33
TI	[kN]	0.00		0.00
Н	[kN]	26.33	0.00	26.33

Peso unità di volume del terreno

 $\gamma_1 = 20.00 \text{ (kN/mc)}$ $\gamma = 18.00 \text{ (kN/mc)}$

Valori caratteristici di resistenza del terreno

c' = 18.00 (kN/mq) $\phi' = 38.00 (°)$

Valori di progetto

c' = 18.00 (kN/mq) $\phi' = 38.00 \text{ (°)}$

Profondità della falda

Zw = 20.00 (m)

 $e_B = 0.22$ (m) $B^* = 3.96$ (m) $e_L = 0.00$ (m) $L^* = 1.00$ (m)

q : sovraccarico alla profondità D

q = 80.00 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma = 18.00 \, (kN/mc)$

Nc, Nq, Nγ: coefficienti di capacità portante

Nq =
$$tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

Nq = 48.93

 $Nc = (Nq - 1)/tan_{0}'$

Nc = 61.35

 $N\gamma = 2*(Nq + 1)*tan_{\varphi}'$

 $N_{\gamma} = 78.02$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

LOTTO

CODIFICA

DOCUMENTO NI.25.0.0.001

REV.

FOGLIO 102 di 125

s_c, s_q, s_v: fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.00$$

$$s_0 = 1 + B*tan_0' / L*$$

$$s_q = 1.00$$

$$s_v = 1 - 0.4*B* / L*$$

$$s_{v} = 1.00$$

i_c, i_q, i_y : <u>fattori di inclinazione del carico</u>

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$$

0.00

 $\theta = arctg(Tb/TI) =$

0.00

(°)

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*)$$

0.00

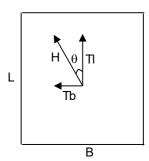
m =

2.00

(-)

$$i_q = (1 - H/(N + B*L* c' cotg_O'))^m$$

$$i_q =$$


0.76

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.76$$

$$i_{\gamma} = (1 - H/(N + B*L*c' \cot g_{\phi}'))^{(m+1)}$$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

d_c, d_q, d_y : fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan _{ϕ} ' (1 - sen _{ϕ} ')² / B*
per D/B*> 1; d_q = 1 +(2 tan _{ϕ} ' (1 - sen _{ϕ} ')²) * arctan (D / B*)

$$d_{q} = 1.31$$

$$d_c = d_q - (1 - d_q) / (N_c tan_0)$$

$$d_c = 1.31$$

$$d_{v} = 1$$

$$d_{y} = 1.00$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

LOTTO

CODIFICA

DOCUMENTO

FOGLIO 103 di 125

b_c , b_q , b_γ : fattori di inclinazione base della fondazione

$$b_{q} = (1 - \beta_{f} \tan_{\phi}')^{2}$$

 $\beta_f + \beta_p = 0.00$ $\beta_f + \beta_p < 45^\circ$

$$b_{q} = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi')$$

$$b_c =$$

1.00

$$b_{y} = b_{q}$$

 $b_{v} = 1.00$

g_c , g_q , g_γ : fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi)$$

$$g_c = 1.00$$

$$g_y = g_q$$

$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = 5477.85$$
 (kN/m²)

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 47.10 (kN/m2)$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 104 di 125

Verifica di sicurezza capacità portante

 $q_{lim} / \gamma_R = 2381.67 \ge q = 47.10 (kN/m^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 26.33 (kN)

Azione Resistente

 $Sd = N tan(\phi') + c' B^* L^*$

Sd = 216.89 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 197.17 ≥ Hd = 26.33 (kN)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 105 di 125

3.14.7. <u>Verifiche SLU in condizioni non drenate</u>

• SLU-Nmin:

AZIONI

		valori di input		Valori di		
		permanenti	temporanee	calcolo		
N	[kN]	138.08		138.08		
Mb	[kNm]	41.18		41.18		
MI	[kNm]	0.00		0.00		
Tb	[kN]	26.33		26.33		
TI	[kN]	0.00		0.00		
Н	[kN]	26.33	0.00	26.33		

Peso unità di volume del terreno

 $\gamma_1 = 20.00 \text{ (kN/mc)}$ $\gamma = 18.00 \text{ (kN/mc)}$

Valore caratteristico di resistenza del terreno

Valore di progetto

50.00 (kN/mq) 50.00 (kN/mq) В* 0.30 (m) 3.80 (m) e_{B} 0.00 (m) L* 1.00 (m) e_L

q : sovraccarico alla profondità D

q = 80.00 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma = 18.00 \, (kN/mc)$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5.14

s_c: fattori di forma

 $s_c = 1 + 0.2 B^* / L^*$

 $s_c = 1.00$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

MMESSA	
RS3T	

CODIFICA CL DOCUMENTO NI.25.0.0.001 REV.

FOGLIO 106 di 125

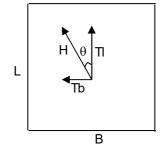
i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

0.00

LOTTO

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*)$$


0.00

$$\theta = arctg(Tb/TI) =$$

0.00

(°)

$$m = 2.00$$

(m=2 nel caso di fondazione nastriforme e m= $(m_h sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.95$$

d_c: fattore di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*

per D/B*> 1; $d_c = 1 + 0.4 \arctan (D / B^*)$

$$d_c = 1.53$$

b_c: fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1.00$$

g_c: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_D = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c =$$

1.00

Carico limite unitario

$$q_{lim} = 452.10 \text{ (kN/m}^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 36.30 (kN/m^2)$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 107 di 125

Verifica di sicurezza capacità portante

 $q_{lim} / \gamma_R = 196.57 \ge q = 36.30 (kN/m^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 26.33 (kN)

Azione Resistente

 $Sd = cu B^* L^*$

Sd = 190.18 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 172.89 \geq Hd = 26.33 (kN)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. RS3T NI.25.0.0.001 108 di 125

SLU-Nmax:

AZIONI

		valori di input		Valori di
		permanenti	temporanee	calcolo
N	[kN]	186.41		186.41
Mb	[kNm]	41.18		41.18
MI	[kNm]	0.00		0.00
Tb	[kN]	26.33		26.33
TI	[kN]	0.00		0.00
Н	[kN]	26.33	0.00	26.33

Peso unità di volume del terreno

20.00 (kN/mc) γ1 (kN/mc) 18.00 γ

Valore caratteristico di resistenza del terreno

50.00 (kN/mq) c_{u}

0.22 (m) e_B 0.00 e_L =

(m)

Valore di progetto

50.00 (kN/mq) \mathbf{c}_{u}

(m)

В* 3.96

L* 1.00 (m)

q : sovraccarico alla profondità D

80.00 (kN/mq) q =

γ : peso di volume del terreno di fondazione

18.00 (kN/mc) $\gamma =$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5.14

s_c: fattori di forma

 $s_c = 1 + 0.2 B^* / L^*$

1.00 s_c =

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

ESSA	LOTTO	CODIFICA	DOCUMENTO	RE'
ЗТ	3 0 D 26	CL	NI.25.0.0.001	В

i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) = 0.00$$

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) = 0.00$$

COMME RS3

$$\theta = \operatorname{arctg}(\mathsf{Tb}/\mathsf{Tl}) = 0.00$$
 (°)

$$m = 2.00$$

(m=2 nel caso di fondazione nastriforme e m= $(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.95$$

d_c: fattore di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*
per D/B*> 1; d_c = 1 + 0,4 arctan (D / B*)

$$d_c = 1.53$$

b_c: fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1.00$$

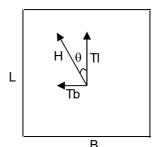
g_c: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_D = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c = 1.00$$


Carico limite unitario

$$\mathbf{q_{lim}} = 452.93 \quad (kN/m^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 47.10 (kN/m^2)$$

FOGLIO 109 di 125

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

LOTTO 3 0 D 26 CODIFICA CL

DOCUMENTO NI.25.0.0.001

REV. B

FOGLIO 110 di 125

Verifica di sicurezza capacità portante

 $q_{lim}/\gamma_R =$

196.93

≥

 $q = 47.10 (kN/m^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd =

26.33

(kN)

Azione Resistente

 $Sd = cu B^* L^*$

Sd = 197.91

(kN)

Verifica di sicurezza allo scorrimento

 $Sd/\gamma_R =$

179.92

≥ Hd =

26.33

(kN)

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. RS3T 3 0 D 26 NI.25.0.0.001 111 di 125

3.14.8. <u>Verifiche SLV in condizioni drenate</u>

SLV-Nmin:

AZIONI

		valori di input		Valori di
		permanenti temporanee		calcolo
N	[kN]	138.08		138.08
Mb	[kNm]	108.23		108.23
MI	[kNm]	0.00		0.00
Tb	[kN]	61.38		61.38
TI	[kN]	0.00		0.00
Н	[kN]	61.38	0.00	61.38

Peso unità di volume del terreno

(kN/mc) 20.00 γ1 18.00 (kN/mc) =

Valori caratteristici di resistenza del terreno

Valori di progetto c' 18.00 (kN/mq) c' 18.00 (kN/mq) = = 38.00 (°) 38.00 (°)

Profondità della falda

Zw = 20.00 (m)

B* = $e_B =$ 0.78 (m) 2.83 (m) 0.00 L* = 1.00 $e_L =$ (m) (m)

q : sovraccarico alla profondità D

80.00 (kN/mq) q =

γ : peso di volume del terreno di fondazione

18.00 (kN/mc) γ =

Nc, Nq, Nγ: coefficienti di capacità portante

Nq =
$$\tan^2(45 + \varphi'/2)^* e^{(\pi^* t g \varphi')}$$

$$Nc = (Nq - 1)/tan_{\phi}'$$

$$N\gamma = 2*(Nq + 1)*tan_{\mathcal{O}}'$$

$$N_{\gamma} = 78.02$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T LOTTO CODIFICA 3 0 D 26 CL DOCUMENTO NI.25.0.0.001 REV.

FOGLIO

s_c, s_q, s_v: fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.00$$

$$s_0 = 1 + B*tan_0' / L*$$

$$s_q = 1.00$$

$$s_v = 1 - 0.4*B* / L*$$

$$s_{v} = 1.00$$

i_c, i_q, i_y : <u>fattori di inclinazione del carico</u>

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$$

0.00

 $\theta = arctg(Tb/TI) =$

0.00

(°)

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*)$$

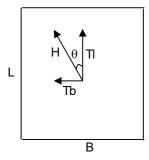
0.00

m =

2.00

(-)

 $i_q = (1 - H/(N + B*L* c' cotg_{Q'}))^m$


$$i_q = 0.38$$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.37$$

$$i_{\gamma} = (1 - H/(N + B*L*c' \cot g_{\phi}'))^{(m+1)}$$

(m=2 nel caso di fondazione nastriforme e m=(m $_b$ sin $^2\theta$ +m $_l$ cos $^2\theta$) in tutti gli altri casi)

d_c, d_q, d_y : fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan _{ϕ} ' (1 - sen _{ϕ} ')² / B*
per D/B*> 1; d_q = 1 +(2 tan _{ϕ} ' (1 - sen _{ϕ} ')²) * arctan (D / B*)

$$d_{q} = 1.31$$

$$d_c = d_q - (1 - d_q) / (N_c tan_0)$$

$$d_c = 1.31$$

$$d_{v} = 1$$

$$d_{y} = 1.00$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

LOTTO

CODIFICA

DOCUMENTO

FOGLIO

b_c , b_q , b_γ : fattori di inclinazione base della fondazione

$$b_{q} = (1 - \beta_{f} \tan_{\phi}')^{2}$$

 $\beta_f + \beta_p = 0.00$ $\beta_f + \beta_p < 45^\circ$

$$b_{q} = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi)$$

$$b_c =$$

1.00

$$b_{y} = b_{q}$$

$$b_{v} = 1.00$$

g_c , g_q , g_γ : fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi)$$

$$g_c = 1.00$$

 $g_y = g_q$

$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = 2662.62 (kN/m^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 48.75$$

 (kN/m^2)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 114 di 125

Verifica di sicurezza capacità portante

 $q_{lim} / \gamma_R = 1157.66 \ge q = 48.75 (kN/m^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 61.38 (kN)

Azione Resistente

 $Sd = N tan(\phi') + c' B^* L^*$

Sd = 158.87 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 144.43 \geq Hd = 61.38 (kN)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. RS3T 3 0 D 26 NI.25.0.0.001

• SLV-Nmax:

AZIONI

		valori di input		Valori di
		permanenti temporanee		calcolo
N [kN]		138.08		138.08
Mb [kNm]		108.23		108.23
MI [kNm]		0.00		0.00
Tb	[kN]	61.38		61.38
П	[kN]	0.00		0.00
Н	[kN]	61.38	0.00	61.38

Peso unità di volume del terreno

= 20.00 (kN/mc) γ1 18.00 (kN/mc)

Valori caratteristici di resistenza del terreno

Valori di progetto c' 18.00 (kN/mq) c' 18.00 (kN/mq) = 38.00 38.00 (°) (°)

Profondità della falda

Zw 20.00 (m)

B* = 2.83 0.78 (m) (m) $e_B =$ L* = $e_L =$ 0.00 (m) 1.00 (m)

q : sovraccarico alla profondità D

80.00 (kN/mq) q =

γ : peso di volume del terreno di fondazione

18.00 (kN/mc) γ =

Nc, Nq, Nγ: coefficienti di capacità portante

Nq =
$$\tan^2(45 + \varphi'/2)^* e^{(\pi^* t g_{\varphi'})}$$

Nq = 48.93

 $Nc = (Nq - 1)/tan_{(f)}'$

Nc = 61.35

 $N\gamma = 2*(Nq + 1)*tan_{\phi}'$

Nγ = 78.02

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

LOTTO 3 0 D 26 CODIFICA CL DOCUMENTO NI.25.0.0.001 REV.

FOGLIO 116 di 125

s_c, s_q, s_v : fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.00$$

$$s_0 = 1 + B*tan_0' / L*$$

$$s_q = 1.00$$

$$s_v = 1 - 0.4*B* / L*$$

$$s_{v} = 1.00$$

i_c, i_q, i_y : <u>fattori di inclinazione del carico</u>

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$$

0.00

 $\theta = arctg(Tb/TI) =$

0.00

(°)

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*)$$

0.00

m =

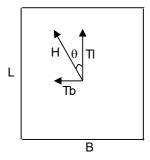
2.00

(-)

 $i_q = (1 - H/(N + B*L* c' cotg_O'))^m$

0.38

i_q =


 $i_c = i_q - (1 - i_q)/(Nq - 1)$

 $i_c = 0.37$

 $i_{\gamma} = (1 - H/(N + B*L*c' \cot g_{\phi}'))^{(m+1)}$

 $i_{y} = 0.24$

(m=2 nel caso di fondazione nastriforme e m=(m_bsin^2_0+m_lcos^2_0) in tutti gli altri casi)

$d_c,\,d_q,\,d_\gamma$: fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan _{ϕ} ' (1 - sen _{ϕ} ')² / B*
per D/B*> 1; d_q = 1 +(2 tan _{ϕ} ' (1 - sen _{ϕ} ')²) * arctan (D / B*)

$$d_{q} = 1.31$$

$$d_c = d_q - (1 - d_q) / (N_c tan_0)$$

$$d_c = 1.31$$

$$d_{v} = 1$$

$$d_{y} = 1.00$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T

LOTTO

CODIFICA

DOCUMENTO

FOGLIO

b_c , b_q , b_γ : fattori di inclinazione base della fondazione

$$b_{q} = (1 - \beta_{f} \tan_{\phi}')^{2}$$

 $\beta_f + \beta_p = 0.00$ $\beta_f + \beta_p < 45^\circ$

$$b_{q} = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi)$$

$$b_c =$$

1.00

$$b_{\gamma} = b_{q}$$

g_c , g_q , g_γ : fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan_{\phi})$$

$$g_c = 1.00$$

$$g_{\gamma} = g_{q}$$

$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = 2662.62 \text{ (kN/m}^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 48.75$$

 (kN/m^2)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 118 di 125

Verifica di sicurezza capacità portante

 $q_{lim} / \gamma_R = 1157.66 \ge q = 48.75 (kN/m^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 61.38 (kN)

Azione Resistente

 $Sd = N tan(\phi') + c' B^* L^*$

Sd = 158.87 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 144.43 \geq Hd = 61.38 (kN)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. RS3T 3 0 D 26 NI.25.0.0.001

3.14.9. <u>Verifiche SLV in condizioni non drenate</u>

• SLV-Nmin:

AZIONI

			, LIO111	
		valori di input		Valori di
		permanenti temporanee		calcolo
N	[kN]	138.08		138.08
Mb	[kNm]	108.23		108.23
MI	[kNm]	0.00		0.00
Tb	[kN]	61.38		61.38
TI	[kN]	0.00		0.00
Н	[kN]	61.38	0.00	61.38

Peso unità di volume del terreno

20.00 (kN/mc) = γ1 18.00 (kN/mc) =

Valore caratteristico di resistenza del terreno

c_{u}

50.00 (kN/mq)

 \mathbf{e}_{B} 0.78 (m) 0.00 (m)

Valore di progetto

50.00 (kN/mq)

В* 2.83 (m) L* 1.00 (m)

q : sovraccarico alla profondità D

80.00 (kN/mq) q =

γ : peso di volume del terreno di fondazione

18.00 (kN/mc) γ =

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5.14

s_c: fattori di forma

$$s_c = 1 + 0.2 B^* / L^*$$

 $s_c = 1.00$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

MMESSA	
RS3T	

LOTTO

CODIFICA

DOCUMENTO

REV.

FOGLIO 120 di 125

i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

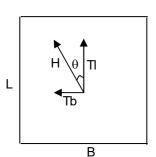
0.00

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

0.00

$$\theta = arctg(Tb/TI) =$$

0.00


(°)

$$m = 2.00$$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.83$$

d_c: fattore di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*

per D/B*> 1;
$$d_c = 1 + 0.4$$
 arctan (D / B*)

$$d_c = 1.53$$

b_c : fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1.00$$

g_c: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c = 1.00$$

Carico limite unitario

$$q_{lim} = 406.97 (kN/m^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 48.75 (kN/m2)$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA RS3T LOTTO 3 0 D 26 CODIFICA CL

DOCUMENTO NI.25.0.0.001 FOGLIO 121 di 125

REV. B

Verifica di sicurezza capacità portante

 $q_{lim}/\gamma_R =$

176.94

≥

q = 48.7

 $48.75 \text{ (kN/m}^2\text{)}$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 61.38

(kN)

Azione Resistente

 $Sd = cu B^* L^*$

Sd = 141.62

(kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R =

128.75

≥ Hd =

61.38

(kN)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001
 B
 122 di 125

• SLV-Nmax:

AZIONI

		valori di input		Valori di
		permanenti temporanee		calcolo
N	[kN]	138.08		138.08
Mb	[kNm]	108.23		108.23
MI	[kNm]	0.00		0.00
Tb	[kN]	61.38		61.38
П	[kN]	0.00		0.00
Н	[kN]	61.38	0.00	61.38

Peso unità di volume del terreno

 $\gamma_1 = 20.00 \text{ (kN/mc)}$ $\gamma = 18.00 \text{ (kN/mc)}$

Valore caratteristico di resistenza del terreno

 $c_u = 50.00 \quad (kN/mq)$

 $e_{B} = 0.78$ (m) $e_{L} = 0.00$ (m) $c_u = 50.00 \text{ (kN/mq)}$

Valore di progetto

 $B^* = 2.83$ (m) $L^* = 1.00$ (m)

q : sovraccarico alla profondità D

q = 80.00 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma = 18.00 \, (kN/mc)$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5.14

s_c: fattori di forma

$$s_c = 1 + 0.2 B^* / L^*$$

 $s_c = 1.00$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

OMMESSA	
RS3T	

LOTTO 3 0 D 26 CODIFICA CL DOCUMENTO NI.25.0.0.001 REV.

FOGLIO 123 di 125

i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

0.00

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*)$$

0.00

$$\theta = arctg(Tb/TI) =$$

0.00

(°)

(m=2 nel caso di fondazione nastriforme e m= $(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.83$$

d_c: fattore di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*

per D/B*> 1; $d_c = 1 + 0.4$ arctan (D / B*)

$$d_c = 1.53$$

b_c: fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1.00$$

g_c: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c =$$

Carico limite unitario

$$q_{lim} = 406.97 (kN/m^2)$$

1.00

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 48.75 (kN/m^2)$$

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 RS3T
 3 0 D 26
 CL
 NI.25.0.0.001

REV. FOGLIO B 124 di 125

Verifica di sicurezza capacità portante

 $q_{lim} / \gamma_R = 176.94 \ge q = 48.75 (kN/m^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 61.38 (kN)

Azione Resistente

 $Sd = cu B^* L^*$

Sd = 141.62 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 128.75 \geq Hd = 61.38 (kN)

NI25 - Tombino Scatolare 3.5x3 (pk 0+760.00): Relazione di calcolo scatolare

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	3 0 D 26	CL	NI.25.0.0.001	B	125 di 125
11001	3 0 D 20	OL	141.23.0.0.001	ь	120 di 120

3.14.10. Tabella verifiche geotecniche GEO

I coefficienti di sfruttamento che si ottengono per le verifiche geotecniche GEO sono i seguenti:

Coefficienti di sfruttamento					
	Qlim	Scorr	Esito		
SLU-CD_Nmin	2%	16%	OK		
SLU-CD_Nmax	2%	13%	OK		
SLV-CD_Nmin	4%	42%	OK		
SLV-CD_Nmax	4%	42%	OK		
SLU-CND_Nmin	18%	15%	OK		
SLU-CND_Nmax	24%	15%	OK		
SLV-CND_Nmin	28%	48%	OK		
SLV-CND_Nmax	28%	48%	OK		