COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

П	\cap	INFR	ASTR	IITTI	IRF	NORE	١
u	.U.	IINLL	AJIK	uıı	JKE	NURL	J

PROGETTO DEFINITIVO

TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3)

FABBRICATI

Fabbricato E5 - Tipologico F

Relazione di calcolo

SCALA:
-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

RS3T 30 D 26 CL FA00F0 001 C

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Dic-2019	M.Salleolini	Dic-2019	A.Barreca	Dic-2019	F.Sacchi
В	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	- Gen-2020	M.Salleolini	Gen-2020	A.Barreca	Gen-2020	Apr-2020
С	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	- Apr-2020	M.Salleolini	Apr-2020	A.Barreca	Apr-2020	
				/ 00000				35
								į13°

File: RS3T.3.0.D.26.CL.FA.00.F.0.001.C

Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA LOTTO CODIFICA DE RS3T 30 D 26 CL

DOCUMENTO REV.

FA00F0 001 B

fOGLIO1 di 103

INDICE

1	PREMESSA	3
2	SCOPO DEL DOCUMENTO	4
3	DOCUMENTI DI RIFERIMENTO	7
3.1	DOCUMENTI REFERENZIATI	7
3.2	DOCUMENTI CORRELATI	7
4	CARATTERISTICHE DEI MATERIALI	8
4.1	CEMENTO ARMATO	8
4.1.	1 CALCESTRUZZO	8
4.1.2	2 ACCIAIO D'ARMATURA IN BARRE TONDE AD ADERENZA MIGLIORATA	9
4.1.3	3 COPRIFERRO	. 10
5	TERRENO DI FONDAZIONE	. 11
6	ANALISI DEI CARICHI	. 11
6.1	PESO PROPRIO STRUTTURE	. 12
6.1.	1 SOLAIO DI COPERTURA	. 12
6.1.2	2 STRUTTURA PRINCIPALE IN C.A	. 12
6.2	CARICHI PERMANENTI NON STRUTTURALI	. 12
6.3	SOVRACCARICO ACCIDENTALE	. 13
6.4	AZIONE DELLA NEVE	. 13
6.5	AZIONE DEL VENTO	. 14
6.6	VARIAZIONI TERMICHE	. 19
6.7	EFFETTI AERODINAMICI ASSOCIATI AL PASSAGGIO DEI CONVOGLI	. 20
6.8	AZIONE SISMICA	. 20
7	MODELLO STRUTTURALE E COMBINAZIONI DI CARICO	. 32
7.1	CONSIDERAZIONI GENERALI SUL MODELLO DI CALCOLO	. 32
7.2	COMBINAZIONI DELLE AZIONI	. 40

Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D 26 CL FA00F0 001 B 2 di 103

7.3	ANALISI MODALE	43
8	VERIFICHE STRUTTURALI	45
8.1	SOLAIO DI COPERTURA	45
8.2	VERIFICHE DEGLI ELEMENTI NON STRUTTURALI E DEGLI IMPIANTI	53
8.3	TRAVI DI BORDO 30X40	57
8.3.	I VERIFICA A FLESSIONE	60
8.3.	2 VERIFICA A TAGLIO E TORSIONE	64
8.3.	3 VERIFICA LIMITAZIONI ARMATURA	67
8.4	TRAVI 30X50	69
8.4.	I VERIFICA A FLESSIONE	71
8.4.	2 VERIFICA A TAGLIO E TORSIONE	75
8.4.	3 VERIFICA LIMITAZIONI ARMATURA	78
8.5	PILASTRI D'ANGOLO (30X50)	80
8.5.	I VERIFICA A FLESSIONE	82
8.5.	2 VERIFICA LIMITAZIONI ARMATURA	88
8.6	PILASTRI INTERNI (30X50)	91
8.6.	1 VERIFICA A FLESSIONE	92
8.6.	2 VERIFICA LIMITAZIONI ARMATURA	98
	VERIFICA DEGLI ELEMENTI STRUTTURALI IN TERMINI DI CONTENIMENTO DEL DANNO AGLI MENTI NON STRUTTURALI (SLO)	101
9	REAZIONI VINCOLARI	102
10	CONCLUSIONI	103

1 PREMESSA

Il presente documento è emesso nell'ambito dello sviluppo della Progettazione Definitiva della Direttrice Ferroviaria Messina-Catania-Palermo, nuovo collegamento Palermo-Catania, tratta Lercara DIR - Caltanissetta Xirbi (Lotto 3).

Nel progetto sono presenti i fabbricati tipologici riportati schematicamente nella seguente tabella:

Fabbricati	Tipologico
Fabbricato PGEP	Α
Locali e Vasca antincendio	В
Fabbricato E1	С
Fabbricato E1	D
Fabbricato E5	F
Fabbricato E3	G
Fabbricato IS-PP/ACC	Н
Fabbricato IS-PPT	M
Fabbricato FSA-UFFICI	N
Fabbricato FSA-MAGAZZINO	0
Fabbricato E3	Р
Fabbricato IS-PP/ACC	Q

La posizione effettiva piazzale per piazzale di ogni tipologico è riportata nella seguente tabella:

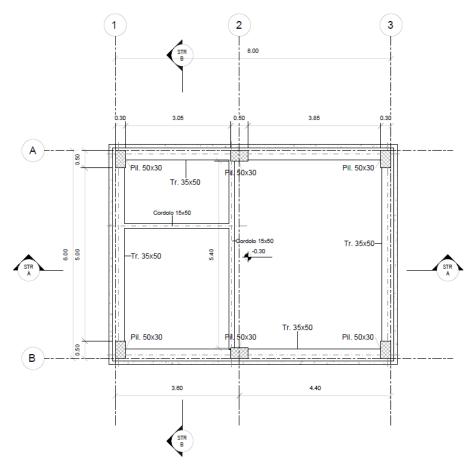
Piazzali		progr. (km)	Α	В	С	D	F	G	Н	M	N	0	Р	Q
PT01	PMZ Marcatobianco	5+400						Х	Χ		Χ	Х		
PT02	Emergenza - Imbocco lato PA galleria Santa Catena	7+985	Χ	Х	Х									
PT03	Emergenza - Imbocco lato CT galleria Santa Catena	16+150	Χ	Х		Х								
PT04	Stazione Vallelunga	17+259											Х	Х
PT51	Stazione Villalba	22+270								Χ				
PT52	PM Marianopoli	25+825						Х	Χ					
PT54	Emergenza - Imbocco lato PA galleria Marianopoli	28+060	Χ	Х	Х									
PT56	Fabbricato Galleria Trabona	36+000					Х							
PT57	Imbocco lato Ovest galleria Trabona lato PA	35+222								Χ				
PT58	Emergenza - Imbocco lato CT galleria Salito 2	38+150	Χ	Х		Х								
PT59	Fabbricato PM San Cataldo	40+363						Х	Х					
PT60	Emergenza - Imbocco lato PA galleria Masareddu	42+500	Χ	Х	Х									
PT61	Fabbricato Galleria Masareddu	43+200					Х							
PT62	Fabbricati Emergenza - Imbocco lato PA galleria Xirbi	44+166	Χ	Х		Х	Х							
PT63	Fabbricato Galleria Xirbi	45+700					Χ							

Nel presente elaborato viene calcolato il "Fabbricato E5 – Tipologico F" di dimensioni pari a 8,11 x 6,11 m verrà realizzato nelle seguenti ubicazioni lungo la tratta in progetto:

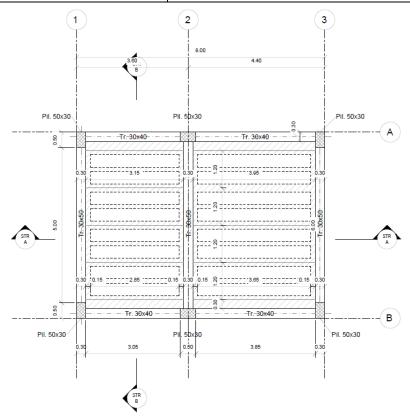
PT56 - Fabbricato Galleria Trabona

PT61 - Fabbricato Galleria Masareddu

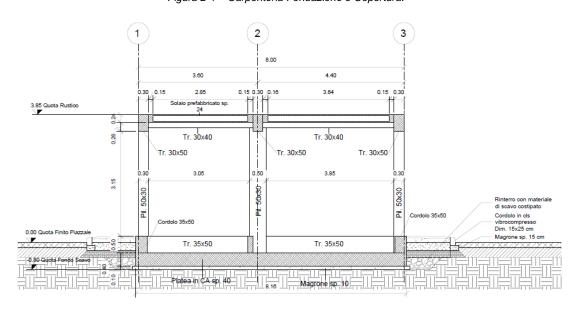
PT62 - Fabbricati Emergenza - Imbocco lato PA galleria Xirbi

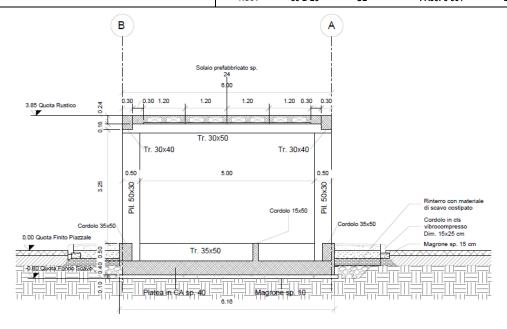

PT63 - Fabbricato Galleria Xirbi

Il calcolo individua il sito peggiore in termini di parametri geotecnici, sismici, vento e neve.


2 SCOPO DEL DOCUMENTO

Lo scopo del presente documento è quello di calcolare e verificare le strutture in elevazione e di fondazione del "Fabbricato E5 – Tipologico F".


Carpenteria Fondazione 1:50



Carpenteria Copertura

Figura 2-1 – Carpenteria Fondazione e Copertura.

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO CO	LLEGAME RCARA D	NTO PALER	NA – CATANIA – MO – CATANIA ISSETTA XIRBI (I		
Fabbricato E5 - Tipologico F - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3T	30 D 26	CL	FA00F0 001	В	6 di 103

Sezione STR B-B'

Figura 2-2 – Sezione longitudinale e trasversale.

La struttura in pianta del fabbricato ha forma rettangolare avente le seguenti dimensioni 8.11 m x 6.11 m, comprensiva del rivestimento. Il sistema strutturale è caratterizzato da un telaio spaziale monolivello avente copertura piana costituito da una campata in direzione trasversale di luce 5.40 m circa mentre, parallelamente al lato lungo, è suddiviso in 2 campate di luce massima pari a 4.25 m.

La struttura relativa alla parte in elevazione è costituita da travi e pilastri in cemento armato. Il solaio di copertura è del tipo semiprefabbricato a prédalles, con getto in opera dei travetti e della caldana superiore. Lo spessore totale del solaio di copertura è di 24 cm e comprende 4 cm di prédalles, 16 cm di nervature e 4 cm di caldana superiore. Le lastre in c.a. sono larghe 120 cm e presentano tre tralicci metallici di irrigidimento ed elementi di alleggerimento delimitanti le nervature intermedie. Il solaio è ordito secondo la direzione longitudinale del fabbricato in modo da essere poggiato direttamente sui telai trasversali disposti ad interasse che vanno da 3.15 m a 3.95 m. I pilastri hanno dimensione in pianta di 30x50 cm, le travi longitudinali hanno dimensioni 30x40 cm, le travi trasversali invece sono 30x50. Il sistema di fondazione è realizzato in opera mediante una platea di fondazione di spessore di 40 cm.

Le fondazioni dell'edificio sono di tipo diretto, costituite da una platea in c.a. di spessore 40 cm. Al di sotto delle fondazioni è previsto uno strato di magrone di spessore 0.10 m debordante l'impronta delle fondazioni di 0.10 m.

Fabbricato E5 - Tipologico F - Relazione di calcolo COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGL		NUOVO COI	LEGAME RCARA D	NTO PALERI	NA – CATANIA – 10 – CATANIA SSETTA XIRBI (L	
	Fabbricato E5 - Tipologico F - Relazione di calcolo					 FOGLIO 7 di 103

3 DOCUMENTI DI RIFERIMENTO

3.1 DOCUMENTI REFERENZIATI

La progettazione è conforme alle normative vigenti nonché ai manuali di progettazione societari.

La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

- Rif. [1] Approvazione delle nuove norme tecniche per le costruzioni D.M. 17/01/2018
- Rif. [2] Circolare n. 7 del 21 febbraio 2019 Istruzioni per l'Applicazione Nuove Norme Tecniche Costruzioni di cui al Decreto Ministeriale 17 gennaio 2018;
- Rif. [3] Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20/03/2003. Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica;
- Rif. [4] Decreto del Presidente del Consiglio dei Ministri del 21/10/2003;
- Rif. [5] Eurocodice 2: Progettazione delle strutture in calcestruzzo Parte 1.1: Regole generali e regole per gli edifici.
- Rif. [6] UNI ENV 1992-1-1 Parte 1-1: Regole generali e regole per gli edifici;
- Rif. [7] UNI EN 206-1/2014 Calcestruzzo. Specificazioni, prestazioni, produzione e conformità;
- Rif. [8] UNI 11104: Calcestruzzo: Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1.
- Rif. [9] UNI EN 1998-5 Fondazioni ed opere di sostegno.
- Rif. [10] REGOLAMENTO (UE) N. 1299/2014 DELLA COMMISSIONE del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea
- Rif. [11] Manuale di Progettazione delle Opere Civili RFIDTCSIPSMAIFS001C

3.2 DOCUMENTI CORRELATI

I documenti correlati sono:

Rif. [12] Fabbricato E5 - Tipologico F - Carpenterie: piante e sezioni

RS3T.3.0.D.26.BB.FA.00.F.0.001.B

4 CARATTERISTICHE DEI MATERIALI

4.1 CEMENTO ARMATO

4.1.1 Calcestruzzo

Si riportano di seguito due tabelle riepilogative del tipo e delle caratteristiche del calcestruzzo adottato per i diversi elementi strutturali:

	Solaio in lastre predalles	Struttura in elevazione	Fondazioni
Classe di resistenza	C30/37	C30/37	C25/30
Classe di esposizione	XC3	XC3	XC2
Condizioni ambientali	ordinarie	ordinarie	ordinarie
Rapporto acqua/cemento		0,55	0,60

		Solaio in lastre predalles	Struttura in elevazione	Fondazioni
Rck	(N/mm2)	37	37	30
fck	(N/mm2)	30	30	25
fcm	(N/mm2)	36	36	33
αcc	(-)	0,85	0,85	0,85
γс	(-)	1,5	1,5	1,5
fcd	(N/mm2)	17,4	17,4	14.17
fctm	(N/mm2)	2,94	2,94	2,56
fctk	(N/mm2)	3,82	3,82	1,79
fctd	(N/mm2)	1,40	1,40	1.19
fcfm	(N/mm2)	3,52	3,52	3,07
fcfk	(N/mm2)	2,46	2,46	2,15
Ec	(N/mm2)	33019	33019	31476

Dove:

R_{ck} = Resistenza cubica caratteristica a compressione

Fabbricato E5 - Tipologico F - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 FA00F0 001
 B
 9 di 103

f_{ck} = 0.83·R_{ck} = Resistenza cilindrica caratteristica

 $f_{cm} = f_{ck} + 8 \text{ (N/mm}^2) = \text{Resistenza cilindrica media a compressione}$

 α_{cc} = Coefficiente per effetti a lungo termine e sfavorevoli: α_{cc} (t > 28gg) = 0.85

 γ_c = 1.5; viene ridotto a 1.4 per produzioni continuative di elementi o strutture soggette a controllo continuativo del calcestruzzo dal quale risulti un coefficiente di variazione (rapporto tra scarto quadratico

medio e valore medio della resistenza) non superiore al 10%. $f_{cd} = \frac{\alpha_{cc} \cdot f_{ck}}{\gamma_c}$ = Resistenza di calcolo a

compressione

 $f_{ctm} = 0.3 \cdot (f_{ck})^{2/3}$ [per classi $\leq C50/60$] = Resistenza cilindrica media a trazione

f_{ctk} = 0.7 · f_{ctm} = Resistenza cilindrica caratteristica a trazione

$$f_{ctd} = \frac{f_{ctk}}{\gamma_c}$$
 = Resistenza di calcolo a trazione

f_{cfm} = 1.2 · f_{ctm} = Resistenza media a trazione per flessione

f_{cfk} = 0.7 · f_{cfm} = Resistenza cilindrica caratteristica a trazione

$$E_{cm}$$
 = 22000 $\cdot \left(\frac{f_{cm}}{10}\right)^{0.3}$ = Modulo Elastico

Coefficiente di Poisson:

Secondo quanto prescritto al punto 11.2.10.4 della NTC2018, per il coefficiente di Poisson può adottarsi, a seconda dello stato di sollecitazione, un valore compreso tra 0 (calcestruzzo fessurato) e 0.2 (calcestruzzo non fessurato).

Coefficiente di dilatazione termica:

In sede di progettazione, o in mancanza di una determinazione sperimentale diretta, per il coefficiente di dilatazione termica del calcestruzzo può assumersi un valore medio pari a 10×10^{-6} °C-1 (NTC2018 – 11.2.10.5).

4.1.2 Acciaio d'armatura in barre tonde ad aderenza migliorata

Si adotta acciaio tipo B450C come previsto al punto 11.3.2.1 delle NTC2018, per il quale si possono assumere le seguenti caratteristiche:

Resistenza a trazione - compressione:

f_{tk} = 540 N/mm² = Resistenza caratteristica di rottura

f_{vk} = 450 N/mm² = Resistenza caratteristica a snervamento

$$f_{yd} = \frac{f_{yk}}{\gamma_s} = 391.3 \text{ N/mm}^2 = \text{Resistenza di calcolo}$$

dove:

 $y_s = 1.15 = \text{Coefficiente parziale di sicurezza relativo all'acciaio.}$

Modulo Elastico:

 $Es = 210000 \text{ N/mm}^2$

Tensione tangenziale di aderenza acciaio-calcestruzzo:

		Solaio in lastre predalles	Struttura in elevazione	Fondazioni
f _{bk}	(N/mm ²)	4.36	4,36	4,36
f _{bd}	(N/mm ²)	2.90	2,90	2,90

dove:

f_{bk} = 2.25·η·f_{ctk} = Resistenza tangenziale caratteristica di aderenza

 $f_{bd} = \frac{f_{bk}}{\gamma_c} = Resistenza$ tangenziale di aderenza di calcolo

 $\eta = 1.0$ – per barre di diametro $\Phi \le 32$ mm;

 $\gamma_c = 1.5$ – Coefficiente parziale di sicurezza relativo al calcestruzzo.

4.1.3 Copriferro

Con riferimento al punto 4.1.6.1.3 delle NTC, al fine della protezione delle armature dalla corrosione il valore minimo dello strato di ricoprimento di calcestruzzo (copriferro) deve rispettare quanto indicato nella tabella C4.1.IV della Circolare 21.01.2019, n. 7 C.S.LL.PP, riportata di seguito, nella quale sono distinte le tre condizioni ambientali di Tabella 4.1.III delle NTC.

			barre da c.a.		barre da c.a.		cavi da c.a.p		cavi da c.a.p	
			elementi a piastra altri elementi elementi a piastr		nti a piastra	altri elementi				
C _{min}	Co	ambiente	C≥C₀	C _{min} ≤C <c<sub>o</c<sub>	C≥C₀	C _{min} ≤C <c<sub>o</c<sub>	C≥C₀	C _{min} ≤C <c<sub>o</c<sub>	C≥C₀	C _{min} ≤C <c<sub>o</c<sub>
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C28/35	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

Ai valori riportati nella tabella vanno aggiunte le tolleranze di posa, pari a 10 mm. Si riportano di seguito i copriferri adottati, determinati in funzione della classe del cls e delle condizioni ambientali.

	Ambiente	Copriferro minimo	Tolleranza di posa	Copriferro nominale
Struttura in elevazione	Ordinario	25	10	35
Lastre predalles	Ordinario	20	0	20
Fondazioni	Ordinario	25	10	35

In definitiva si prescrive che in fondazione e in elevazione tranne che per le lastre predalles il copriferro netto non deve essere inferiore a 40mm.

5 TERRENO DI FONDAZIONE

Tutti i piazzali in cui ricade il fabbricato tecnologico E5 (denominato F), dettagliatamente riportati in premessa, sono in rilevato, di conseguenza le fondazioni poggiano su terreno da rilevato, ai fini delle verifiche a favore di sicurezza sono stati assunti per il tale terreno i seguenti valori dei parametri geotecnici fisici e meccanici di resistenza e deformabilità:

Terreno di fondazione	Peso specifico (kN/m3)	Coesione efficace c' (kPa)	Angolo di attrito interno phi' (°)	Modulo di Young E (MPa)
Rilevato	20.0	0.0	33.0	50

6 ANALISI DEI CARICHI

Come prescritto dalle NTC2018, sono state considerate agenti sulla struttura le seguenti condizioni di carico elementari, combinate tra loro in modo da determinare gli effetti più sfavorevoli ai fini delle verifiche dei singoli elementi strutturali:

- · peso proprio strutture;
- carichi permanenti non strutturali;
- sovraccarico variabile;
- azione sismica;
- azione del vento;
- azione della neve;
- variazioni termiche;

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR – CALTANISSETTA XIRBI (LOTTO 3) FABBRICATI					
Fabbricato E5 - Tipologico F - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3T	30 D 26	CL	FA00F0 001	В	12 di 103

effetti aerodinamici associati al passaggio dei convogli.

Nel progetto strutturale in esame, le azioni esterne, quali vento e neve, sono state valutate considerando la località di Caltanissetta - Enna.

6.1 PESO PROPRIO STRUTTURE

6.1.1 Solaio di copertura

E' realizzato con lastre predalles in cemento armato di altezza 24 cm alleggerite con polistirene espanso.

Solaio in lastre Predalles

(H =4+16+4=24cm) lastra larga 1,20 m.

Predalles (s = 4cm) 25x0,04x1,20=1,2 kN;

Nervatura centrale (h=16 cm, s=14 cm) 25x0,16x0,14= 0,56 kN;

Nervature laterali (h=16 cm, s=12 cm) 2x25x0,16x0,12= 0,96 kN;

Soletta superiore (s=4 cm) 25x0,04x1,20= 1,2 kN;

Alleggerimento in polistirene espanso (h=16 cm, s=40 cm) 2x0,15x0,4x0,16=0,0192 kN.

Peso totale di una lastra larga 1,20 m: G=1,2+0,56+0,96+1,2+0,019 = 3,94 kN

Peso totale a metro quadrato = 3,94/1,20 =3,28 kN/m²

6.1.2 Struttura principale in c.a.

Il peso proprio delle travi e dei pilastri, viene calcolato automaticamente dal programma considerando il peso specifico del cemento armato pari a:

 $\gamma_{c.a.} = 25 \text{ kN/m}^3$

6.2 CARICHI PERMANENTI NON STRUTTURALI

• <u>Tamponamenti esterni</u>

Il rivestimento esterno è costituito da blocchi cavi prefabbricati in cls vibrocompresso tipo Poroton (sp.25cm) con idonei rinforzi verticali e orizzontali per murature in zona sismica + lastre in pietra sp 5,0 cm, il cui peso è pari a **3,60 kN/m²**.

Il peso per unità di superficie moltiplicato per l'altezza totale del singolo pannello h=3,60 m, trascurando le eventuali aperture, è pari a **13 kN/m**, che è il peso a metro lineare della tamponatura da applicare alla platea di fondazione.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR – CALTANISSETTA XIRBI (LOTTO 3) FABBRICATI					
Fabbricato E5 - Tipologico F - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3T	30 D 26	CL	FA00F0 001	В	13 di 103

0,20

kN/m²

•	Carichi	permanenti ı	non struttu	ırali agenti	in copertura
---	---------	--------------	-------------	--------------	--------------

Massetto delle pendenze	0,60	kN/m²
Strato coibente	0,10	kN/m²
Guaina di impermeabilizzazione	0,10	kN/m²
Malta di allettamento (2 cm)	0,40	kN/m²
Pavimento	0,50	kN/m²
Intonaco intradosso	0,30	kN/m²
Incidenza impianti	0,30	kN/m²
Controsoffitto	0,10	kN/m²
Totale carico:	2.60	kN/m²

Incidenza muretti perimetrali e scala su travi di bordo 2,00 kN/m

6.3 SOVRACCARICO ACCIDENTALE

Il sovraccarico assunto per la copertura è pari a 0,50 kN/m².

6.4 AZIONE DELLA NEVE

Incidenza zone piene solaio

Le azioni della neve sono definite al capitolo 3.4 delle NTC2018. Il carico provocato dalla neve sulle coperture è definito dall'espressione seguente:

$$q_s = \mu_i C_e C_t q_{sk}$$

dove:

μ_i - Coefficiente di forma della copertura;

Ce - Coefficiente di esposizione;

Ct - Coefficiente termico;

q_{sk} - Valore di riferimento del carico neve al suolo.

Per la valutazione di q_{sk} si è fatto riferimento ad un sito posto in zona I - Mediterranea, con altezza sul livello del mare pari a 400 m:

$$q_{sk} = 1.17 \text{ kN/m}^2$$

Il coefficiente di esposizione C_e può essere utilizzato per modificare il valore del carico neve in copertura in funzione delle caratteristiche specifiche dell'area in cui sorge l'opera. Valori del coefficiente di esposizione per diverse classi di topografia sono forniti in tabella 3.4.I. NTC2018. Per il caso in esame, si assume $C_e = 1.0$.

Il coefficiente termico C_t può essere utilizzato per tener conto della riduzione del carico neve a causa dello scioglimento della stessa, causata dalla perdita di calore della costruzione. Tale coefficiente tiene conto delle proprietà di isolamento termico del materiale utilizzato in copertura. In assenza di uno specifico e documentato studio, deve essere utilizzato $C_t = 1.0 \ (3.4.4 - NTC2018)$.

Il coefficiente di forma della copertura dipende dall'angolo di inclinazione della falda, i valori proposti dalla normativa vigente vengono riportati nella Tab.3.4.II (DM 14 Gennaio 2018):

Coefficiente di forma	0° ≤ α ≤ 30°	30° < α < 60°	α≥60°
μ_1	0,8	$0.8 \cdot \frac{(60 - \alpha)}{30}$	0,0

Nel caso in esame si ha $\alpha = 0^{\circ}$ pertanto:

$$\mu_1$$
 (0°) = 0,8

Si assume una distribuzione uniforme del carico da neve per la copertura piana, quindi si ha:

$$q_s = 0.8 \cdot 1.00 \cdot 1.00 \cdot 1.17 = 0.95 \text{ kN/m}^2$$
.

6.5 AZIONE DEL VENTO

Il vento, la cui direzione si considera generalmente orizzontale, esercita sulle costruzioni azioni che variano nel tempo e nello spazio provocando, in generale, effetti dinamici. Per le costruzioni usuali tali azioni sono convenzionalmente ricondotte alle azioni statiche equivalenti definite al punto 3.3.3 – NTC2018. Per il calcolo dell'azione statica equivalente dovuta al vento, si è fatto riferimento ad un sito posto in zona 4, con altezza sul livello del mare pari a 400 m.

Tra tutte le ubicazioni degli edifici si è preso a riferimento per il calcolo, quello in cui risulta la maggiore azione del vento.

Pressione del vento:

La pressione del vento, considerata come azione statica agente normalmente alle superfici, è data dall'espressione:

$$p = q_b \cdot c_e \cdot c_p \cdot c_d$$

dove

q_b - Pressione cinetica di riferimento

- c_e Coefficiente di esposizione
- c_p Coefficiente di forma (o coefficiente aerodinamico)
- c_d Coefficiente dinamico che si assume unitario.

Pressione cinetica di riferimento:

La pressione cinetica di riferimento q_b in (N/m²) è data dall'espressione:

$$q_b = \frac{1}{2} \cdot \rho \cdot v_b^2$$

dove:

- v_b Velocità di riferimento del vento;
- ρ Densità dell'aria assunta convenzionalmente costante e pari a 1.25 kg/m³.

In mancanza di indagini statistiche adeguate, la velocità di riferimento del vento $v_b(T_R)$ riferita ad un generico periodo di ritorno T_R può essere valutata, nel campo compreso tra 10 e 500 anni, con l'espressione:

$$V_b(T_R) = \alpha \cdot v_b$$

dove:

v_b – Velocità di riferimento del vento associata ad un periodo di ritorno di 50 anni;

 α_R – Coefficiente posto in un diagramma in funzione di T_R espresso in anni;

Il periodo di ritorno T_R al quale si è fatto affidamento per la valutazione della velocità di riferimento del vento risulta pari a 100 anni.

Coefficiente di esposizione:

Il coefficiente d'esposizione c_e dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno, e dalla categoria di esposizione del sito ove sorge la costruzione. Per il caso in esame considerando zona 4, classe di rugosità del terreno C e categoria d'esposizione del sito III, il coefficiente di esposizione, per un'altezza massima del fabbricato di 5.10 m, risulta pari ad 1.72.

Coefficiente dinamico:

Il coefficiente dinamico tiene conto degli effetti riduttivi associati alla non contemporaneità delle massime pressioni locali e degli effetti amplificativi dovuti alla risposta dinamica della struttura. Esso è assunto cautelativamente pari ad 1.

Coefficiente di forma (o aerodinamico):

Per la determinazione del coefficiente di forma si fa riferimento a quanto riportato nel paragrafo 3.3.8 della Circolare del 21/01/2019.

Pareti verticali

Si riporta l'estratto del par. C3.3.8.1.1 della Circolare 21/01/2019 n. 7 C.S.LL.PP.

Negli edifici tipologici del presente progetto h/d è sempre vicino a 1 e nel calcolo quindi, a favore di sicurezza, si utilizzano i seguenti coefficienti:

Per il carico sopravento $c_{pe10} = +0.8$

Per il carico sottovento $c_{pe10} = -0.5$

Copertura piana

I coefficienti globali c_{pe} da assumere sulle coperture di un edificio a pianta rettangolare sono riportati in Figura C3.3.5 e in Tabella C3.3.III della Circolare 21/01/2019 n. 7 C.S.LL.PP:

Considerando che in tutte le tipologie degli edifici si può considerare che h è il minimo tra h stesso e b/2, avremo che la Fascia A ha una profondità pari ad h, e quindi si avrà:

Per la fascia sopravento $c_{pe,A} = -0.8$

Per le restanti zone $c_{pe,B} = \pm 0.2$

• Pressioni interne

Per quanto riguarda le pressioni interne si riporta il par. C3.3.8.5 della Circolare 21/01/2019 n. 7 C.S.LL.PP.

Per l'edificio in esame si prende in considerazione il caso 3 per cui $c_{pi} = +0.2$ o $c_{pi} = -0.3$ a seconda della situazione maggiormente gravosa.

Azioni del vento

Si riporta di seguito il prospetto delle caratteristiche assunte e i relativi risultati per la determinazione della pressione normale del vento secondo normativa.

I valori considerati nel calcolo degli edifici, sono quelli che hanno valore massimo rispetto a tutte le tipologie di edifici in progetto.

Questo in virtù del fatto che il carico vento incide in maniera non significativa ai fini del dimensionamento dei vari elementi strutturali costituenti l'edificio, viste le geometrie delle tipologie strutturali e le masse in gioco e per i quali l'azione sismica risulta preponderante.

Azione Normale Vento					
Zona	4				
a_s	400	m			
a ₀	500	m			
V _{b,0}	28	m/s			
Ka	0.02	1/s			
$V_b(T_R)$	29.1	m/s			
q _b	0.53	kN/m²			
Categoria di esposizione sito	III				
k _r	0.20				
z_0	0.10	m			

Fabbricato E5 - Tipologico F - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3T	30 D 26	CL	FA00F0 001	В	19 di 103

Z _{min}	5	m
$C_e(Z_{min})$	1.71	
z (altezza costruzione sul suolo)	5.10	m
c_d	1	
C _e (Z)	1.72	
α (Inclinazione copertura)	0	0
c _{p1,A} (Copertura Fascia A)	- 0.80	
c _{p1,B} (Copertura Fascia B)	± 0,2	
c _{p2} (Elementi Verticali - Sopravento)	+ 0.80	
c _{p3} (Elementi Verticali – Sottovento)	- 0.50	
c _{pi} (Pressioni interne)	+ 0.80	
c _{pi} (Pressioni interne)	- 0,30	
p ₁ (Pressione vento in copertura Fascia A)	-1,00	kN/m²
n. (Prossione vente in conorture Fassia P)	-0,46	kN/m²
p ₂ (Pressione vento in copertura Fascia B)	+0,36	KIN/III
p ₂ (Pressione vento elementi verticali - Sopravento)	- 0,91	kN/m²
p ₃ (Pressione vento elementi verticali - Sottovento)	- 0,73	kN/m²

6.6 VARIAZIONI TERMICHE

Nel caso in cui la temperatura non costituisca azione fondamentale per la sicurezza o per la efficienza funzionale della struttura è consentito tener conto, per gli edifici, della sola componente ΔTu , ricavandola direttamente dalla Tab. 3.5.Il delle NTC 2018 che viene riportata nel seguito.

Nel caso in cui la temperatura costituisca, invece, azione fondamentale per la sicurezza o per la efficienza funzionale della struttura, l'andamento della temperatura T nelle sezioni degli elementi strutturali deve essere valutato più approfonditamente studiando il problema della trasmissione del calore.

Nel caso in esame, si tiene conto della sola componente ΔT_u e in particolare si assume ΔT_u = ±15 °C per tutta la struttura.

6.7 EFFETTI AERODINAMICI ASSOCIATI AL PASSAGGIO DEI CONVOGLI

Considerata la notevole distanza dai convogli ferroviari, il presente carico non è applicabile. Pertanto nelle combinazioni saranno assunti nulli i carichi elementari **AerodA**) e **AerodB**).

6.8 AZIONE SISMICA

Per la definizione dell'azione sismica sono necessarie delle valutazioni preliminari relative alle seguenti caratteristiche proprie della costruzione (2.4 – NTC2018):

- Vita Nominale (VN);
- Classe d'uso (Cu);
- Periodo di Riferimento (V_R).

Si attribuisce una vita nominale $V_N = 75$ anni e la classe d'uso II con coefficiente d'uso $C_u=1,5$, in conformità ai seguenti riferimenti normativi:

- DM 17/01/2018 par. 2.4;
- Circ. 21/01/2019, n. 617 par. C2.4.1 e C2.4.2;
- Decreto 21/10/2003 P.C.M. Dipartimento della Prot. Civile (all.1);
- Manuale di Progettazione delle Opere Civili RFIDTCSIPSMAIFS001C

Il periodo di riferimento da considerare per il calcolo dell'azione sismica sarà quindi $V_R = C_u \times V_N = 112,5$ anni.

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione, ai sensi dell'Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003. La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa $a_{\rm g}$, nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente, con riferimento a prefissata probabilità di eccedenza $P_{\rm VR}$ nel periodo di riferimento $V_{\rm R}$ (3.2 – NTC2018).

La normativa NTC2018 definisce le forme spettrali, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR}, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

- ag Accelerazione orizzontale massima al sito;
- F0 Valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- TC* Periodo d'inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Nei confronti delle azioni sismiche si definiscono due stati limite di esercizio e due ultimi, che sono individuati riferendosi alle prestazioni della costruzione nel suo complesso (3.2.1 – NTC2018), ai quali corrispondono i valori dei parametri precedentemente definiti.

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale mediante specifiche analisi. In assenza di tali analisi, per la definizione dell'azione sismica si può far riferimento a un approccio semplificato, che si basa sull'individuazione di categorie di sottosuolo di riferimento (Tab. 3.2.II e 3.2.III – NTC2018).

II fabbricato E5 – Tipologico F, viene realizzato su 4 diversi piazzali.

Dalla <u>"Relazione geotecnica generale delle opere all'aperto – Lotto 3"</u> si è individuata la categoria sismica del sottosuolo della WBS in cui ricade il piazzale con fabbricato E5:

Piazzali	progr. (km)	F	Cat. Sottosuolo
PT01	5+400		
PT02	7+985		
PT03	16+150		
PT04	17+259		
PT51	22+270		
PT52	25+825		
PT54	28+060		
PT56	36+000	Χ	С
PT57	35+222		
PT58	38+150		
PT59	40+363		
PT60	42+500		
PT61	43+200	Χ	С
PT62	44+166	Χ	С
PT63	45+700	Χ	С

Per il fabbricato di tipo F, si riscontra che il terreno su cui insiste la costruzione è stato assimilato ad un sottosuolo di *categoria C*.

Nel caso in esame si può assumere una categoria topografica T_1 (Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i $\leq 15^{\circ}$).

Lo spettro di risposta elastico in accelerazione è espresso da una forma spettrale (spettro normalizzato) riferita ad uno smorzamento convenzionale del 5%, moltiplicata per il valore dell'accelerazione orizzontale massima a_g su sito di riferimento rigido orizzontale. Sia la forma spettrale che il valore di a_g variano al variare della probabilità di superamento nel periodo di riferimento P_{VR} .

Lo spettro di risposta elastico orizzontale è descritto dalle seguenti espressioni, riportate al punto 3.2.3.2.1 – NTC2018:

$$\begin{aligned} 0 &\leq T \leq T_B \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \cdot \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_0 \\ T_C &\leq T < T_D \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_c}{T} \right) \\ T_D &\leq T \end{aligned}$$

Poiché il fabbricato è dotato di solai che presentano luce inferiore a 8 m, non è stata considerata la componente verticale dell'azione sismica, come stabilito al punto 7.2.2 e al punto 3.2.3.1 delle NTC2018, considerato anche che ag < 0,15g.

Agli stati limite ultimi le capacità dissipative delle strutture possono essere considerate attraverso una riduzione delle forze elastiche, tenendo conto in modo semplificato della capacità dissipativa anelastica della struttura, della sua sovraresistenza, dell'incremento del suo periodo proprio a seguito delle plasticizzazioni.

In tal caso lo spettro di progetto da utilizzare, sia per le componenti orizzontali, sia per la componente verticale, è lo spettro elastico corrispondente riferito alla probabilità di superamento nel periodo di riferimento P_{VR} considerata con le ordinate ridotte sostituendo nelle formule 3.2.4 - NTC2018 η con 1/q, dove q è il fattore di comportamento.

Il valore del fattore di comportamento q da utilizzare per ciascuna direzione dell'azione sismica, dipende dalla tipologia strutturale, dal suo grado di iperstaticità e dai criteri di progettazione adottati e prende in conto le non linearità di materiale. Esso può essere calcolato mediante la seguente espressione:

$$q = q_0 \cdot K_R$$

dove:

qo è il valore massimo del fattore di comportamento

K_R è un fattore che dipende dalle caratteristiche di regolarità in altezza della costruzione.

Un problema importante è la scelta del valore base del coefficiente di comportamento q_0 , che risulta legato alla tipologia strutturale ed al livello di duttilità attesa. Osservando le tipologie strutturali riportate al punto 7.4.3.1 – NTC2018 si evince che l'edificio in esame può essere riconducibile ad un sistema a telaio.

Per quanto riguarda il livello di duttilità attesa, si stabilisce di progettare il fabbricato in accordo con un comportamento strutturale dissipativo caratterizzato da Classe di Duttilità bassa (CD"B").

Visto il carattere rilevante che assumono i fabbricati, si decide di progettare le opere inquadrandole come Strutture NON Dissipative e il fattore di comportamento al quale si farà riferimento per la

definizione dello spettro di progetto è $\mathbf{q} = 1,50$ in accordo con quanto prescritto all Par. 7.3 delle NTC 2018 e successiva Tab. 7.3.I

Per gli stati limite di esercizio lo spettro di progetto da utilizzare, sia per le componenti orizzontali che per la componente verticale, è lo spettro elastico corrispondente, riferito alla probabilità di superamento nel periodo di riferimento P_{VR} .

Per una costruzione di Classe III, devono essere effettuate le verifiche riportate nella seguente tabella, estrapolata dalla tabella C7.1.I contenuta nella Circolare 2019:

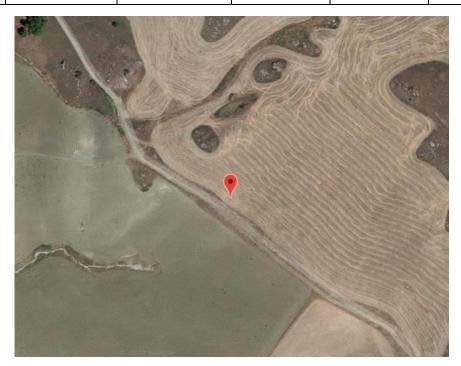
Stato limite	Descrizione della prestazione	Riferimento norme D.M.17/01/2018	η
SLO	Contenimento del danno degli elementi non strutturali (spostamenti di interpiano)	§7.3.7.2	1
SLD	Resistenza degli elementi strutturali	§7.3.7.1	2/3
	Resistenza delle strutture	§7.3.6.1	
SLV	Duttilità delle strutture	§7.3.6.2	1/q
	Assenza di collasso fragile ed espulsione di elementi non strutturali	§7.3.6.3	174

Gli spettri di risposta di progetto agli stati limite SLD, SLV sono stati determinati facendo riferimento alle condizioni più gravose in cui l'edificio in esame si trova ubicato lungo la tratta in progetto. Si riporta l'elenco dei piazzali e le corrispondenti coordinate geografiche in cui sono ubicati gli edifici di questa tipologia lungo il tracciato di progetto.

FOGLIO

24 di 103

REV.


Fabbricato E5 - Tipologico F - Relazione di calcolo

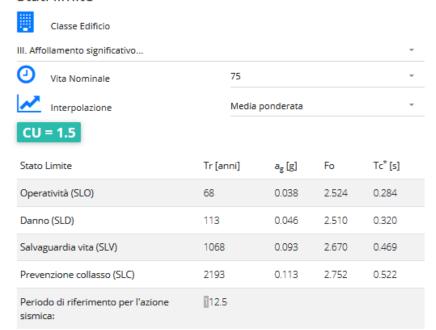
COMMESSA LOTTO CODIFICA DOCUMENTO

RS3T 30 D 26 CL FA00F0 001

PT56 - Fabbricato Galleria Trabona

PROGRESSIVA	LATITUDINE	LONGITUDINE	$\mathbf{a}_{ ext{g}}$	F ₀	T _c *
[km]	[-]	[-]	[g]	[-]	[s]
36+000	37.559208	13.947688	0.094	2.670	0.442

Fabbricato E5 - Tipologico F - Relazione di calcolo


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 FA00F0 001
 B
 25 di 103

PT61 - Fabbricato Galleria Masareddu

PROGRESSIVA	LATITUDINE	LONGITUDINE	$\mathbf{a}_{ ext{g}}$	F ₀	T _c *
[km]	[-]	[-]	[g]	[-]	[s]
43+200	37.530722	14.012675	0.093	2.670	0.469

Fabbricato E5 - Tipologico F - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 FA00F0 001
 B
 26 di 103

PT62 - Fabbricati Emergenza - Imbocco lato PA galleria Xirbi

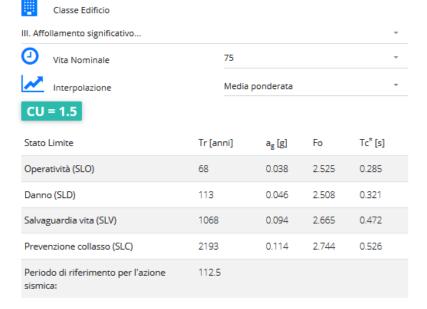
PROGRESSIVA	LATITUDINE	LONGITUDINE	$\mathbf{a}_{ ext{g}}$	F ₀	T _c *
[km]	[-]	[-]	[g]	[-]	[s]
44+166	37.533191	14.024534	0.096	2.662	0.455

Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA LOTTO CODIFICA

RS3T 30 D 26 CL

DOCUMENTO REV.


FA00F0 001 B

FOGLIO 27 di 103

PT63 - Fabbricato Galleria Xirbi

PROGRESSIVA	LATITUDINE	LONGITUDINE	\mathbf{a}_{g}	F ₀	T _c *
[km]	[-]	[-]	[g]	[-]	[s]
45+700	37.529942	14.041800	0.094	2.665	0.472

Pertanto sono stati assunti i seguenti parametri sismici:

Cat. Sottosuolo	a _g /g	F _o [-]	T _c * [s]	
С	0,096	2,662	0,455	

Gli effetti dell'azione sismica vengono valutati tenendo conto delle masse associate ai carichi gravitazionali dovuti al peso proprio (G_1) , ai sovraccarichi permanenti (G_2) e a un'aliquota (ψ_{2j}) dei sovraccarichi accidentali (Q_{kj}) :

$$G_1+G_2+\sum\nolimits_j \psi_{2j}\cdot Q_{kj}$$

I valori dei coefficienti ψ_{2j} sono riportati nella Tabella 2.5.I – NTC2018. Nel caso in esame i sovraccarichi accidentali che possono essere sottoposti ad eccitazione sismica sono:

- per il solaio di copertura, la neve ed il vento per copertura presentano $\psi_{2i} = 0$;
- per il solaio di copertura, il sovraccarico variabile agente presenta $\psi_{2j} = 0$.

Per tener conto della variabilità spaziale del moto sismico, nonché di eventuali incertezze nella localizzazione delle masse, al centro di massa deve essere attribuita un'eccentricità accidentale rispetto alla sua posizione quale deriva dal calcolo. Per gli edifici, gli effetti dell'eccentricità accidentale del centro di massa possono essere determinati mediante l'applicazione di carichi statici costituiti da momenti torcenti di valore pari alla risultante orizzontale della forza agente al piano, moltiplicata per l'eccentricità accidentale del baricentro delle masse rispetto alla sua posizione di calcolo. In assenza di più accurate determinazioni l'eccentricità accidentale in ogni direzione non può essere considerata inferiore a 0.05 volte la dimensione dell'edificio misurata perpendicolarmente alla direzione di applicazione dell'azione sismica.

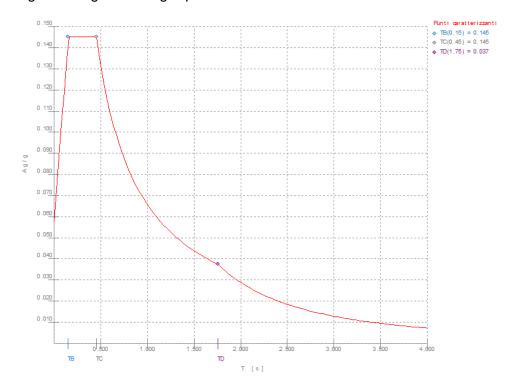
Gli effetti delle forze equivalenti dovute all'eccentricità accidentale, vengono portati in conto nella combinazione sismica, sommandoli al contributo delle sollecitazioni che si ottengono a valle dell'analisi dinamica lineare con spettro di risposta.

Come metodo di analisi per determinare gli effetti dell'azione sismica si è scelto di utilizzare l'analisi dinamica lineare o analisi modale con spettro di risposta, nella quale l'equilibrio è trattato dinamicamente e l'azione sismica è modellata direttamente attraverso lo spettro di progetto.

L'analisi dinamica lineare consiste:

- nella determinazione dei modi di vibrare della costruzione (analisi modale);
- nel calcolo degli effetti dell'azione sismica, rappresentata dallo spettro di risposta di progetto, per ciascuno dei modi di vibrare individuati;
- nella combinazione di questi effetti.

Come prescritto dalle NTC 2018 al paragrafo 7.3.3.1, devono essere considerati tutti i modi di vibrare con massa partecipante significativa. E' opportuno a tal riguardo considerare tutti i modi con massa partecipante superiore al 5% e comunque un numero di modi la cui massa partecipante totale sia

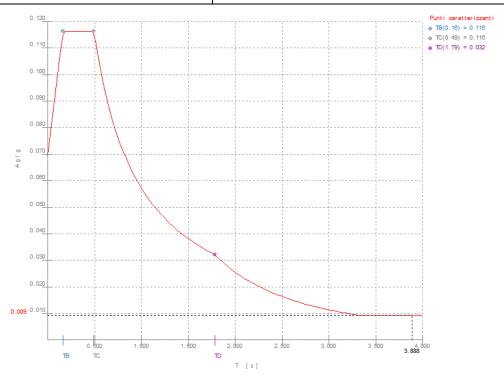

superiore all'85%. Per la combinazione degli effetti relativi ai singoli modi, deve essere utilizzata una combinazione quadratica completa (CQC) degli effetti relativi a ciascun modo, secondo quanto definito al punto 7.3.3.1 delle NTC2018.

La risposta della struttura viene calcolata separatamente per ciascuna delle due componenti dell'azione sismica orizzontale; gli effetti sulla struttura, in termini di sollecitazioni e spostamenti, sono poi combinati applicando le seguenti espressioni:

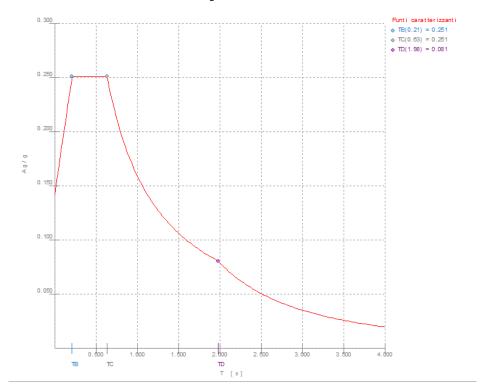
$$1.00 \cdot E_y + 0.30 \cdot E_x$$

Si è infine provveduto a combinare gli effetti dell'analisi spettrale ai differenti stati limite con quelli provocati dalle forze equivalenti all'eccentricità accidentale.

Si riportano di seguito i diagrammi degli spettri:



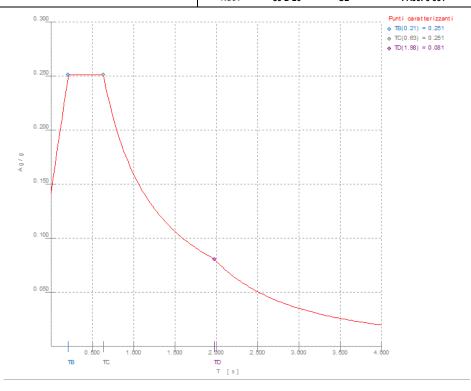
Spettro SLO



Fabbricato E5 - Tipologico F - Relazione di calcolo COMMESSA LOTTO CODIFICA DOCUM

RS3T	30 D 26	CL	FA00F0 001	В	30 di 103
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

Spettro SLD


Spettro SLV

Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D 26 CL FA00F0 001 B 31 di 103

Spettro SND

Fabbricato E5 - Tipologico F - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 FA00F0 001
 B
 32 di 103

7 MODELLO STRUTTURALE E COMBINAZIONI DI CARICO

7.1 CONSIDERAZIONI GENERALI SUL MODELLO DI CALCOLO

Il sistema costruttivo che caratterizza il fabbricato tecnologico in c.a. è costituito, in elevazione, da un telaio spaziale realizzato mediante la rigida connessione di travi e pilastri, e in fondazione, da una platea.

Lo step del lavoro relativo al calcolo computazionale e alla definizione dell'output, in termini di caratteristiche di sollecitazione e deformazioni per i vari elementi strutturali, prevede un approccio preliminare basato sulla modellazione della struttura attraverso un processo di discretizzazione agli elementi finiti facendo riferimento ad un modello elastico.

La modellazione della struttura e la rielaborazione dei risultati del calcolo sono stati effettuati con il programma ModeSt versione 8.18 prodotto dalla Tecnisoft s.a.s. di Prato.

La struttura è stata calcolata utilizzando come solutore agli elementi finiti il programma Xfinest versione 2016 prodotto dalla Ce.A.S. S.r.I. di Milano.

Il programma ModeSt viene utilizzato per definire la geometria della struttura da analizzare, i carichi cui è sottoposta e le combinazioni di queste. A valle dell'elaborazione agli Elementi Finiti (sviluppata dall'X-Finest) il programma opera le verifiche sui singoli elementi analizzati, utilizzando dei criteri di verifica preventivamente impostati dal progettista, e comunque in linea con il dettato delle NTC 2018.

L'affidabilità del codice utilizzato è stata verificata sia effettuando il raffronto tra casi prova di cui si conoscono i risultati esatti sia esaminando le indicazioni, la documentazione ed i test forniti dal produttore stesso.

Gli elementi strutturali, travi e pilastri in elevazione e platea in fondazione, sono stati schematizzati mediante elementi monodimensionali tipo *frame*.

Essi presentano caratteristiche geometriche e meccaniche in accordo con le proprietà reali dei materiali e delle sezioni che li rappresentano.

Ciascuna asta è stata posizionata in corrispondenza dell'asse baricentrico degli elementi strutturali. L'interazione tra terreno e struttura è stata studiata ipotizzando un comportamento elastico del terreno.

Per la modellazione del terreno si considera quindi la trave su suolo elastico, modellata con l'utilizzo di molle alla Winkler, aventi la seguente rigidezza (Vesic, 1965):

Fabbricato E5 - Tipologico F - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 FA00F0 001
 B
 33 di 103

$$K = \frac{0.65E}{1-v^2} \sqrt[12]{\frac{Eb^4}{(EJ)_{fond}}}$$

$$E = 30000 \text{ kN/mq} \quad \text{modulo elastico del terreno}$$

$$v = 0,25 \quad \text{coeff. di Poisson}$$

$$Platea di fondazione$$

$$b = 6 \text{ m} \quad \text{dimensione trasversale platea}$$

$$h = 0,4 \text{ m} \quad \text{altezza platea}$$

$$J = 0,032 \text{ m/4} \quad \text{inerzia platea}$$

$$Rck = 30 \text{ Mpa}$$

$$Ec = 31220186 \text{ kN/mq} \quad \text{modulo di elasticità cls}$$

$$K = 28221 \text{ kN/mc} \quad \text{modulo di reazione lineare sulla trave}$$

Tenendo conto del fatto che tutti gli edifici hanno una larghezza di circa 6 m, il calcolo riportato precedentemente risulta essere la condizione peggiore per tutti i tipologici degli edifici.

A favore di sicurezza si utilizza K=25000 kN/m³.

L'analisi degli effetti dovuti all'azione sismica prevede la definizione delle masse strutturali partecipanti all'eccitazione dinamica dovuta al terremoto. Pertanto nel modello le masse strutturali coincidono con i carichi caratteristici permanenti strutturali e non strutturali e con il 30% dei carichi di esercizio.

La presenza del solaio di copertura è stata modellata mediante un vincolo di diaframma al livello di copertura, oltre che con l'assegnazione dei carichi alle travi. L'assegnazione dei carichi alle travi è stata effettuata sulla base della tessitura dei solai secondo il criterio della larghezza d'influenza. Agli elementi in elevazione è stato assegnato un carico termico, pari a quello riportato nell'analisi dei carichi.

Seguono alcune immagini rappresentative del modello di calcolo.

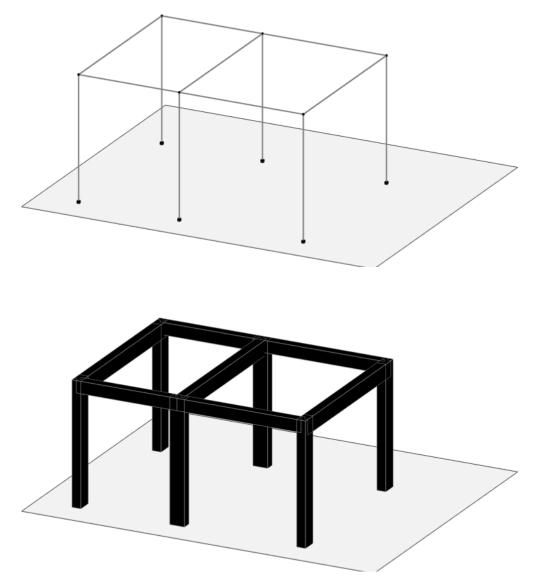


Figura 7.1-1 - Vista estrusa del modello.

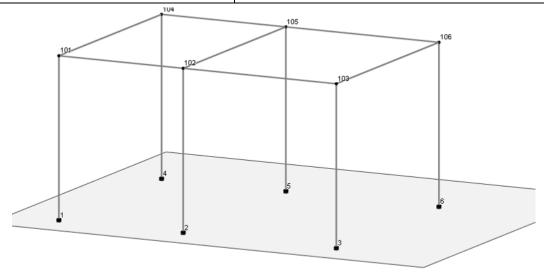


Figura 7.1-2 Numerazione nodi.

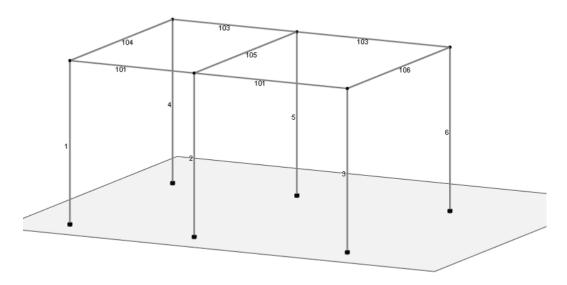


Figura 7.1-3 Modello di calcolo – Numerazione aste.

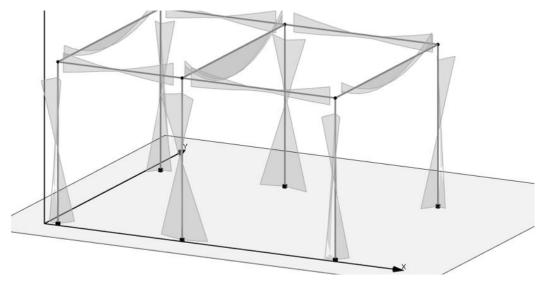


Figura 7.1-4 Diagramma dei momenti M3 – COMB_INV_SLV_CC1

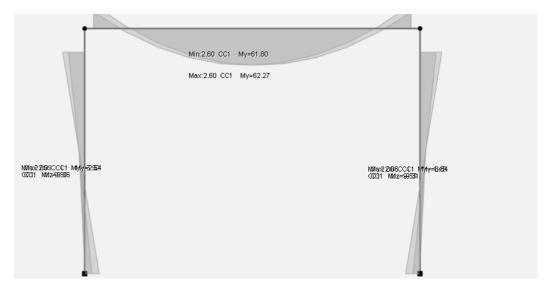


Figura 7.1-5 Diagramma dei momenti M3 - COMB_INV_SLV_CC1 - Telaio interno

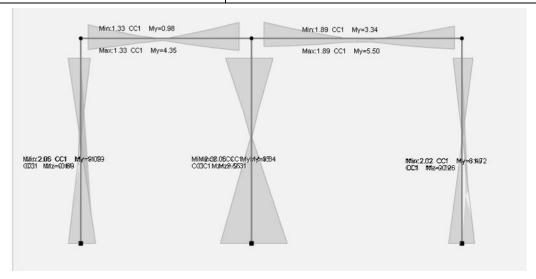


Figura 7.1-6 Diagramma dei momenti M3 – COMB_INV_SLV_CC1 – Telaio longitudinale.

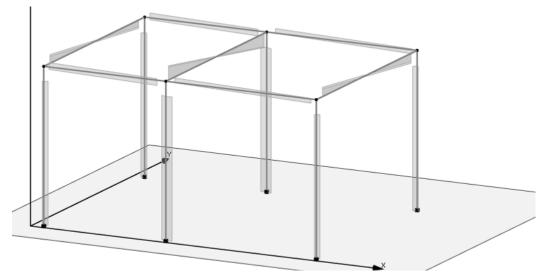


Figura 7.1-7 Diagramma del taglio V2 – COMB_INV_SLV_CC1

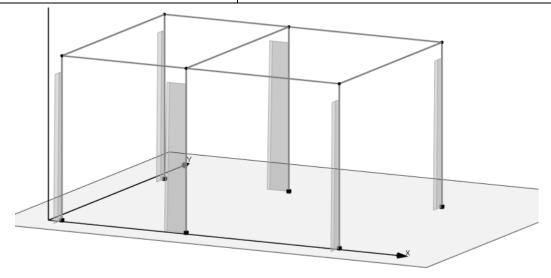


Figura 7.1-8 Diagramma dello sforzo assiale P – COMB_INV_SLV_CC1.

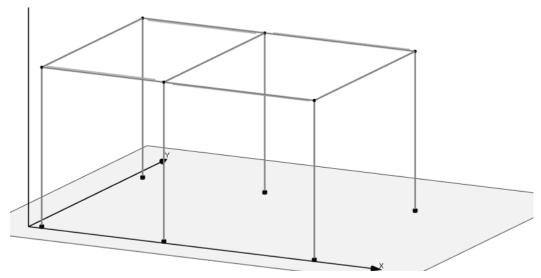


Figura 7.1-9 Diagramma della torsione T- COMB_INV_SLU.

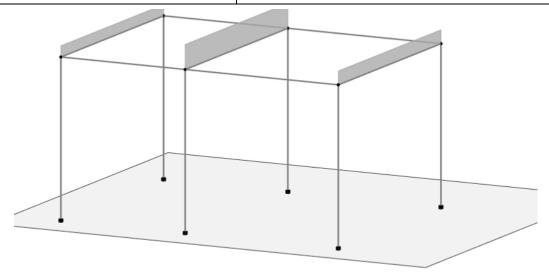


Figura 7.1-10 Schemi di carico – Pesi propri solai

Figura 7.1-11 Schemi di carico – Permanenti portati solai

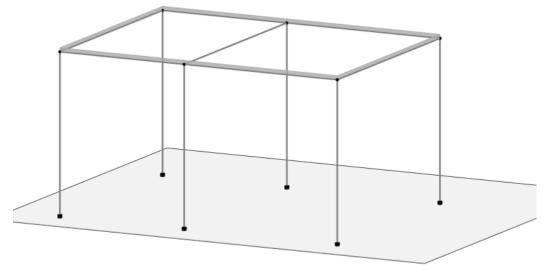


Figura 7.1-12 Schemi di carico - Tamponature

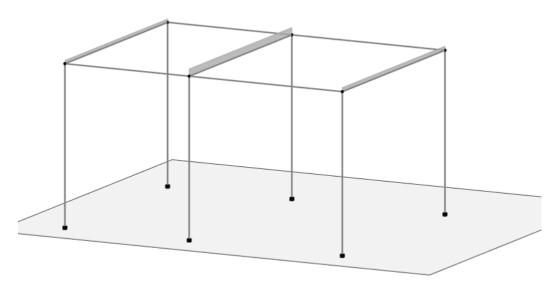


Figura 7.1-13 Schemi di carico – Accidentali solai

7.2 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni (2.5.3 – NTC2018).

• Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

 Combinazione caratteristica (frequente), generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

 Combinazione caratteristica (quasi permanente), generalmente impiegata per gli effetti a lungo termine (SLE):

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

• Combinazione sismica impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_{_1} + G_{_2} + P + \psi_{_{21}} \cdot Q_{_{k1}} + \psi_{_{22}} \cdot Q_{_{k2}} +$$

Dove:

- a) Azioni Permanenti (G);
- b) Azioni Variabili (Q);
- c) Azioni di Precompressione (P);
- d) Azioni Eccezionali (A);
- e) Azioni Sismiche (E);

Le combinazioni delle azioni che sono state adottate per lo SLU sono riportate nelle tabelle seguenti, indicando nella casella, corrispondente all'azione coinvolta, il moltiplicatore dei carichi in funzione della combinazione considerata. Per quanto riguarda le azioni aerodinamiche generate dal transito dei convogli, sono stati utilizzati coefficienti di combinazione Ψ riportati nella tabella 5.2.VI delle NTC2018.

Si precisa che, data la simmetria della struttura, si sono individuate le combinazioni delle azioni tali da risultare maggiormente gravose e sbilancianti per la costruzione in esame.

Per quanto concerne la combinazione delle altre azioni con l'azione sismica è necessario garantire il rispetto degli stati limite, quali definiti al punto 3.2.1 – NTC2018, effettuando opportune verifiche di sicurezza. Ciascuna di esse garantisce, per ogni stato limite, quindi per il corrispettivo livello di azione sismica, il raggiungimento di una data prestazione da parte della costruzione nel suo complesso. Le verifiche di sicurezza da effettuare sono riepilogate in funzione della classe d'uso nella tabella C7.1.I – Circolare2019. A riguardo, si evidenzia che le verifiche allo stato limite di collasso (SLC) devono essere eseguite necessariamente sulle sole costruzioni provviste di isolamento sismico.

FOGLIO

42 di 103

• Combinazioni di carico sismiche SLV SND SLO

CC	Commento	TCC		An.	Bk	1	2	3	4	5	6	7	8	Mt	±S X	±S Y
1	Amb. 1 (SLU S) S M	SLV+SND	~	L 🗸		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.30
2	Amb. 1 (SLE) S Mt+	SLD	~	L 🔍		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.30
3	Amb. 1 (SLE) S Mt+		V			1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.30
4	Amb. 1 (SLU S) S M	SLV+SND	~	L 🗸		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	-0.30
5	Amb. 1 (SLE) S Mt+	SLD	V	L 🗸		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	-0.30
6	Amb. 1 (SLE) S Mt+		V			1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	-0.30
7	Amb. 1 (SLU S) S M	SLV+SND	~	L V		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	0.30	1.00
8	Amb. 1 (SLE) S Mt+	SLD	V	L \vee		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	0.30	1.00
9	Amb. 1 (SLE) S Mt+	SL0	V	L V		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	0.30	1.00
10	Amb. 1 (SLU S) S M	SLV+SND	V	L 🗸		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	-0.30	1.00
11	Amb. 1 (SLE) S Mt-	SLD	v	L \vee		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	-0.30	1.00
12	Amb. 1 (SLE) S Mt-	SL0	V	L 🗸		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	-0.30	1.00
13	Amb. 1 (SLU S) S -	SLV+SND	V	L 🗸		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	1.00	0.30
14	Amb. 1 (SLE) S -Mt	SLD	V	L V		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	1.00	0.30
15	Amb. 1 (SLE) S -Mt	SL0	V	L V		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	1.00	0.30
16	Amb. 1 (SLU S) S -	SLV+SND	~	L 🗸		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	1.00	-0.30
17	Amb. 1 (SLE) S -Mt	SLD	V	L 🗸		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	1.00	-0.30
18	Amb. 1 (SLE) S -Mt	SL0	V	L V		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	1.00	-0.30
19	Amb. 1 (SLU S) S -	SLV+SND	~	L 🗸		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	0.30	1.00
20	Amb. 1 (SLE) S -Mt	SLD	~	L 🔍		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	0.30	1.00
21	Amb. 1 (SLE) S -Mt		~			1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	0.30	1.00
22	Amb. 1 (SLU S) S -	SLV+SND	~	L v		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	-0.30	1.00
23	Amb. 1 (SLE) S -Mt-		V			1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	-0.30	1.00
24	Amb. 1 (SLE) S -Mt-	SL0	~	L v		1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	-0.30	1.00

• Combinazioni di carico SLU SLE

			_		_	 										
25	Amb. 2 (SLU)	SLU	V	L	\sim	1.30	1.30	1.50	1.50	1.50	0.00	1.50	0.00	0.00	0.00	0.00
26	Amb. 2 (SLE R)	SLE R	V	L	\vee	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00		0.00	0.00
27	Amb. 2 (SLE F)	SLE F	V	L	\vee	1.00	1.00	1.00	0.20	1.00	0.00	0.50	0.00	0.00	0.00	0.00
28	Amb. 2 (SLE Q)	SLE Q	V	L	\vee	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
29	Amb. 3 (SLU)	SLU	V	L	\vee	1.30	1.30	1.50	1.50	1.50	1.50	1.50	0.00	0.00	0.00	0.00
30	Amb. 3 (SLU)	SLU	~	L	\vee	1.30	1.30	1.50	1.50	1.50	0.90	1.50	0.00	0.00	0.00	0.00
31	Amb. 3 (SLE R)	SLE R	V	L	\vee	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00
32	Amb. 3 (SLE R)	SLE R	V	L	\vee	1.00	1.00	1.00	1.00	1.00	0.60	1.00	0.00	0.00	0.00	0.00
33	Amb. 3 (SLE F)	SLE F	V	L	\vee	1.00	1.00	1.00	0.20	1.00	0.20	0.50	0.00		0.00	0.00
34	Amb. 3 (SLE F)	SLE F	V	L	\vee	1.00	1.00	1.00	0.20	1.00	0.00	0.50	0.00	0.00	0.00	0.00
35	Amb. 3 (SLE Q)	SLE Q	V	L	\vee	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
36	Amb. 4 (SLU)	SLU	V	L	\vee	1.30	1.30	1.50	1.50	1.50	0.00	1.50	1.50	0.00	0.00	0.00
37	Amb. 4 (SLU)	SLU	~	L	\vee	1.30	1.30	1.50	1.50	1.50	0.00	1.50	0.90	0.00	0.00	0.00
38	Amb. 4 (SLE R)	SLE R	V	L	\vee	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	0.00
39	Amb. 4 (SLE R)			L	\vee	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.60	0.00	0.00	0.00
40	Amb. 4 (SLE F)	SLE F	~	L	\vee	1.00	1.00	1.00	0.20	1.00	0.00	0.50	0.20	0.00	0.00	0.00
41	Amb. 4 (SLE F)	SLE F	~		\vee	1.00	1.00	1.00	0.20	1.00	0.00	0.50	0.00	0.00	0.00	0.00
42	Amb. 4 (SLE Q)	SLE Q	~	L	\vee	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00

Condizioni di carico elementari

CCE	Commento	Tipo CCE	Sic.	Var.	Peso	C. A.	Dir.	Tipo	s	Mx	Му	Mz	Jpx	Jpy	Jpz
1	Peso proprio	1 D.M. 18 Permanenti	a sfavore		~	Р			1.00	1.0	1.0	0.0	0.0	0.0	1.0
2	Peso proprio solai	1 D.M. 18 Permanenti	a sfavore			QPS			1.00	1.0	1.0	0.0	0.0	0.0	1.0
3	Permanente solai	2 D.M. 18 Permanenti	a sfavore			QPN			1.00	1.0	1.0	0.0	0.0	0.0	1.0
4	Accidentali copertura	12 D.M. 18 Variabili N	a sfavore	di base		QA			1.00	1.0	1.0	0.0	0.0	0.0	1.0
5	Tamponature e macchin	2 D.M. 18 Permanenti	a sfavore						1.00	1.0	1.0	0.0	0.0	0.0	1.0
6	Vento X	11 D.M. 18 Variabili	a sfavore	ambigua			0	Massimizzata	1.00						
7	Variazione termica	10 D.M. 18 Variabili	a sfavore	di base					1.00	1.0	1.0	0.0	0.0	0.0	1.0
8	Vento Y	11 D.M. 18 Variabili	a sfavore	ambigua			90	Massimizzata	1.00						

7.3 ANALISI MODALE

L'analisi a spettro di risposta cerca la risposta più probabile alle equazioni di equilibrio dinamico associate alla risposta della struttura al moto del suolo. L'accelerazione del suolo dovuta ad un terremoto in ogni direzione viene espressa come una curva di spettro di risposta della pseudo-accelerazione spettrale in funzione del periodo della struttura.

Anche se le accelerazioni possono essere specificate in 3 direzioni, viene prodotto un unico risultato positivo per ciascuna quantità in risposta; le quantità in risposta comprendono spostamenti, forze e tensioni. Ciascun risultato calcolato rappresenta una misura statistica della grandezza più probabile di quella particolare quantità in risposta. È da attendersi che la vera risposta sia compresa in un intervallo che va dal valore positivo a quello negativo del valore trovato.

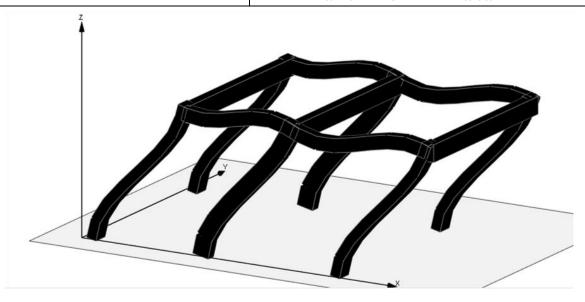
L'analisi a spettro di risposta viene eseguita usando la sovrapposizione dei modi, ricavati usando l'analisi agli autovettori. Per una data direzione di accelerazione, la risposta modale è calcolata su tutta la struttura per ciascuno dei modi di vibrazione: questi valori modali, per una data quantità in risposta, vengono combinati per produrre un unico risultato positivo per quella data direzione di accelerazione, usando il metodo CQC.

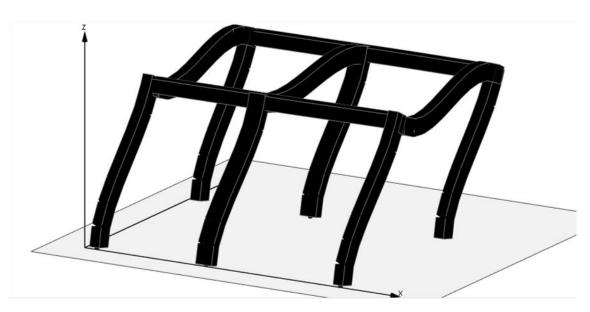
Si riportano nella tabella e nelle immagini seguenti i risultati dell'analisi modale condotta sulla struttura.

Elenco modi di vibrare, masse partecipanti e coefficienti di partecipazione

Simbologia

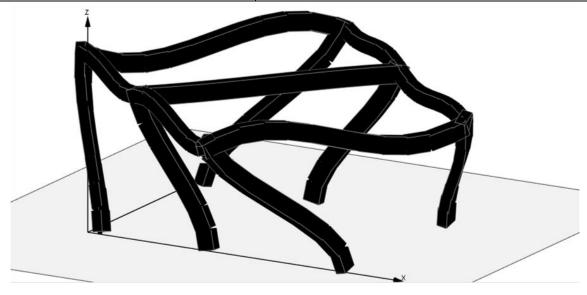
```
Modo =Numero del modo di vibrare 
C =* indica che il modo è stato considerato 
T = Periodo 
Diff. =Minima differenza percentuale dagli altri periodi 
\Phi_{\rm X} = Coefficiente di partecipazione in dir. X 
\Phi_{\rm Y} = Coefficiente di partecipazione in dir. Y 
\Phi_{\rm Z} = Coefficiente di partecipazione in dir. Z 
%Mx = Percentuale massa partecipante in dir. X 
%My = Percentuale massa partecipante in dir. Y 
%Mz = Percentuale massa partecipante in dir. Z 
%My = Percentuale massa partecipante in dir. Z 
%Jpz = Percentuale momento d'inerzia polare partecipante intorno all'asse Z
```


	_									
Modo	С	T	Diff.	Фх	Фу	Φz	%Mx	%My	%Mz	%Jpz
1	*	0.19	10.87	69.19	0.00	0.00	100.00	0.00	0.00	0.00
2	*	0.17	10.87	-0.00	69.18	0.00	0.00	99.98	0.00	0.02
3	*	0.13	36.93	-0.00	1.08	0.00	0.00	0.02	0.00	99.98
Tot.cons.							100.00	100.00	0.00	100.00


Fabbricato E5 - Tipologico F - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 FA00F0 001
 B
 44 di 103



Modo 1

Modo 2

Modo 3

8 VERIFICHE STRUTTURALI

Di seguito si riportano le verifiche relative agli elementi strutturali principali della struttura.

8.1 SOLAIO DI COPERTURA

Il solaio si considera, a vantaggio di sicurezza, come une trave semplicemente appoggiata, con campata di luce pari a L = 4.25 m.

Con riferimento all'analisi dei carichi, di seguito si riportano le caratteristiche di sollecitazioni significative. La verifica viene condotta in riferimento al singolo travetto (interasse i = 0.54 m).

Si considera agente il peso proprio dell'intero solaio, il carico della neve, il carico del vento ed il sovraccarico variabile. Lo schema è quello di trave semplicemente appoggiata per il dimensionamento della sezione in campata e di trave doppiamente incastrata per le sezioni di appoggio.

Verifica di SLU a flessione

Geometria

Misure in centimetri

Tipo di solaio

Con blocchi in POLISTIROLO

Controllo limiti geometrici

Luce massima consigliata (snellezza 25) (m) Larghezza dei blocchi calcolata (cm) Larghezza max dei blocchi in laterizio (cm) Larghezza min. nervature per blocchi in laterizio (cm) Interasse max nervature per blocchi in laterizio (cm)

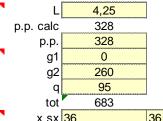
Luci e carichi

Luci (m)

Peso proprio solaio calcolato (daN/mq.)


Peso proprio solaio adottato (daN/mq.)

Sovr. perm. compiutamente definiti (daN/mq.)


Sovr. perm. non-compiutamente definiti (daN/mq.)

Sovr. variabili (daN/mq.) Carichi totali (daN/m)

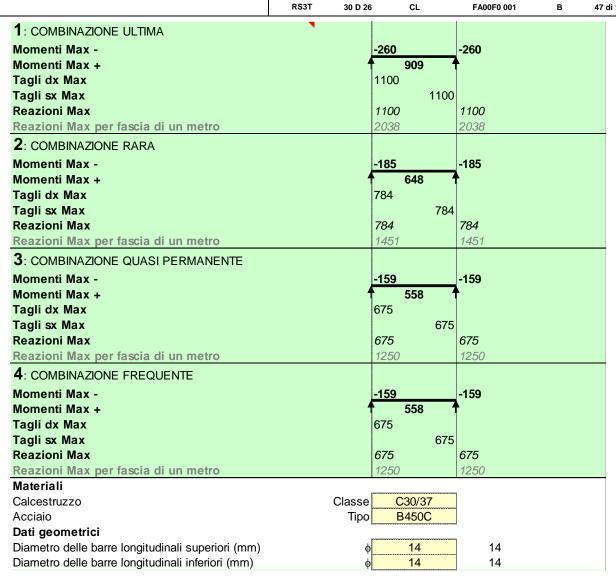
Momento d'incastro negativo alle due estremità

	L max	4,25
	Largh.	40
	Largh.	
	b min	
	i max	
_	1	<u> </u>
4	L	4,25
	nn calc	328

X 5X 30	30	x ux
Mg1 sx -89	-89	Mg1 dx
Mg2 sx -70	-70	Mg2 dx
Mq sx -26	-26	Mq dx
Mtot sx -185	-185	Mtot dx

Categoria del carico variabile

Cat. H	Coperture	 	


ψ0	0,0
ψ1	0,0
11/2	0.0

Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D 26 CL FA00F0 001 B 47 di 103

Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

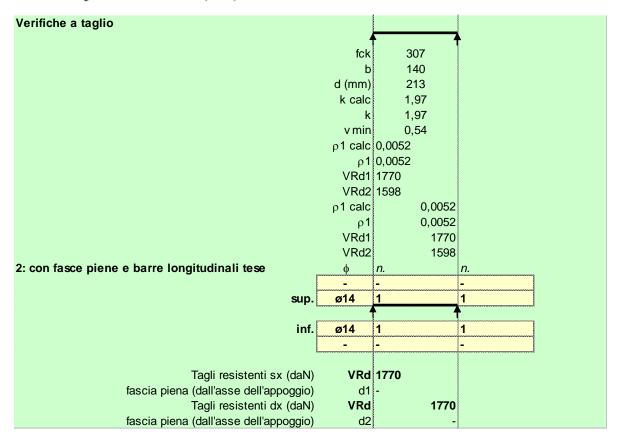
RS3T 30 D 26 CL FA00F0 001 B 48 di 103

	RS3T	30 D 26	CL CL	FA00F0 001	В	48 di
Armatura appoggi		ф	n.	n.	С	
35		-	-	-	2,0	
	sup.	ø14	1	1	2,0	
				†	ç	
	inf.	ø14	1	1	2,0	
		-	-	-	2,0	
1: VERIFICHE IN COMBINAZIONE ULTIMA						
	mm	В	140	140		
	mm	Н	240	240		
	mm		27	27		
		As compr		154		
	mm²		8	154		
	MPa		17,40	17,40		
	MPa	•	391,3	391,3		
Momento sollecitante	(daN/m)	Ned Med	š	0 260		
Momento resistente			1194	1194		
fattore di s	-		4,60	4,60		
Asse nei		хc		3		
Sforzo acciaio (da			3913	3913		
Sforzo calcestruzzo (da			-172,4	-172,4		
Deformazione			1,000%	1,000%		
Deformazione calc			-0,181%	-0,181%		
	di rottura	n.	8	2		
Ridistribuzione massima co			0%	0%		
	Controllo	1-δ	8	sì		
2: VERIFICHE IN COMBINAZIONE RARA						
Z. VERIFICHE IN COMBINAZIONE RARA		D	14	14		
			21,30	21,30		
			2,7	2,7		
			185	185		
		As tesa	8	1,54		
		As compr		1,54		
		у	6,19	6,19		
		Jci	6657	6657		
		os limite		3600		
			630	630		
fattore di sicurezza late	o acciaio		5,71	5,71		
		σc limite	8	184,3		
fattore di sicurezza	a lata ala		17,2 10,71	17,2 10,71		
			10,71	10,71		
3: VERIFICHE IN COMBINAZIONE QUASI PERI	MANENT					
			14	14		
			21,30	21,30		
			2,7 159	2,7 159		
		As tesa	š	1,54		
		As compr	X .	1,54		
			6,19	6,19		
			6657	6657		
		σc limite	8	138,2		
			14,8	14,8		
fattore di sicurezza	a lato cls		9,33	9,33		

Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D 26 CL FA00F0 001 B 49 di 103

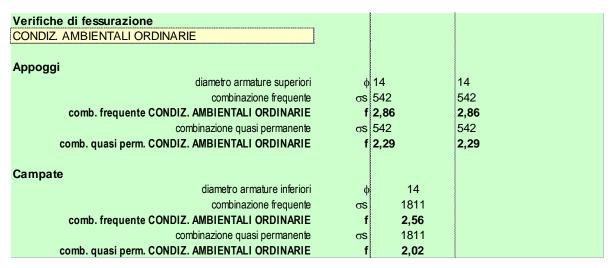

	K531	30 D 26	CL	FA00F0 001	В	49 di
Armatura campate		ф	n.		С	
		-	-		2,0	
	sup.	ø14	=		2,0	
	inf.	ø14	1 1		2,0	
		-	-		2,0	
1: VERIFICHE IN COMBINAZIONE ULTIMA						
I. VERNITORIE IIV GOMBII VILIONE GENIUV	mm	В	540			
	mm	H	240			
	mm	С	27			
		As compr	0			
	mm²		154			
	MPa	fcd	13,92			
	MPa	fyd	391,3			
	N	Ned	0			
Momento sollecitante	(daN*m)	Med	909			
Momento resistente		Mrd	1241			
fattore di s		f	1,36			
Asse ne	utro (cm)	хс	2			
Sforzo acciaio (da		σ. s	3913			
Sforzo calcestruzzo (d		σ.с	-104,0			
Deformazion		ε. s	1,000%			
Deformazione calc		ε.c	-0,099%			
	di rottura	n.	2			
2: VERIFICHE IN COMBINAZIONE RARA						
Z. VERNI ICHE IN COMBINAZIONE NANA		В	54			
		d	21,3			
		h'	0,0			
		M	648			
		As tesa	1,54			
		As compr	0,00			
		у	3,86			
		Jci	8055			
		os limite	3600			
		σs	2103			
fattore di sicurezza lat	o acciaio	f	1,71			
		oc limite	147,4			
		σc	31,0			
fattore di sicurezza		f	4,75			
3: VERIFICHE IN COMBINAZIONE QUASI PER	MANENT					
		В	54			
		d	21,3			
		h'	0,0			
		M A a taba	558			
		As tesa	1,54			
		As compr	0,00			
		y Jci	3,86 8055			
		σc limite	110,6			
		σc iiiiiie	26,7			
fattore di sicurezza	a lato cls	f	4,14			
		თs	1811			
4: VERIFICHE IN COMBINAZIONE FREQUENT	F	നട	1811			
T. VEINI IOITE IN COMBINAZIONE FREQUENT	_	03	1011			

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LEGAME RCARA D	NTO PALERI	NA – CATANIA – 10 – CATANIA SSETTA XIRBI (I		-
Fabbricato E5 - Tipologico F - Relazione di calcolo	COMMESSA RS3T	LOTTO 30 D 26	CODIFICA	DOCUMENTO	REV.	FOGLIO

Verifica di SLU a taglio

La verifica a taglio si effettua considerando la larghezza effettiva del travetto centrale b_w=13cm.

```
La verifica di resistenza (SLU) si pone con V_{Rd} \! \geq \! V_{Ed} \qquad (4.1.13) dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente. Con riferimento all'elemento fessurato da momento flettente, la resistenza al taglio si valuta con V_{Rd} = \! \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq (v_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d \quad (4.1.14) con k = 1 + (200/d)^{1/2} \leq 2 v_{min} = 0.03 \, 5k^{3/2} f_{ck}^{-1/2} e dove d \qquad \qquad \dot{e} \quad l'altezza \, utile \, della \, sezione \, (in \, mm); \rho_1 = A_{sl} / (b_w \cdot d) \quad \dot{e} \quad il \, rapporto \, geometrico \, di \, armatura \, longitudinale \, (\leq 0.02); \sigma_{cp} = N_{Ed} / A_c \qquad \dot{e} \, la \, tensione \, media \, di \, compressione \, nella \, sezione \, (\leq 0.2 \, f_{od}); b_w \qquad \dot{e} \, la \, larghezza \, minima \, della \, sezione \, (in \, mm).
```



Verifica delle tensioni in esercizio

Si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si deve verificare che tali tensioni siano inferiori ai massimi valori consentiti di seguito riportati.

La massima tensione di compressione del calcestruzzo σ_c , deve rispettare la limitazione seguente:

 σ_c < 0,60 f_{ck} = 16,80 N/mm² per combinazione caratteristica (rara);

Verifica di deformabilità

Il calcolo della deformazione flessionale di solai e travi si effettua in genere mediante integrazione delle curvature tenendo conto della viscosità del calcestruzzo e, se del caso, degli effetti del ritiro.

Per il calcolo delle deformazioni flessionali si considera lo stato non fessurato (sezione interamente reagente) per tutte le parti della struttura per le quali, nelle condizioni di carico considerate, le tensioni di trazione nel calcestruzzo non superano la sua resistenza media fctm a trazione. Per le altre parti si fa riferimento allo stato fessurato, potendosi considerare l'effetto irrigidente del calcestruzzo teso fra le fessure.

Al riguardo detto pf il valore assunto dal parametro di deformazione nella membratura interamente fessurata e p il valore assunto da detto parametro nella membratura interamente reagente, il valore di calcolo p* del parametro è dato da

$$p^* = \zeta * p_f + (1 - \zeta) * p$$

in cui:

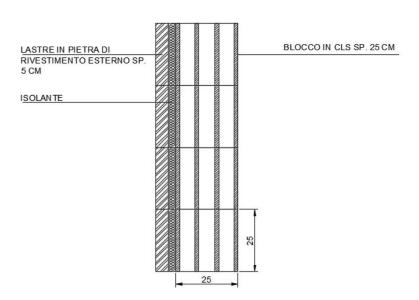
$$\zeta$$
 =1- c β ².

Nell'equazione precedente il fattore β è il rapporto tra il momento di fessurazione M_f e il momento flettente effettivo, $\beta = M_f$ /M, o il rapporto tra la forza normale di fessurazione N_f e la forza normale effettiva, $\beta = N_f$ / N , a seconda che la membratura sia soggetta a flessione o a trazione, e il coefficiente c assume il valore 1, nel caso di applicazione di un singolo carico di breve durata, o il valore 0,50 nel caso di carichi permanenti o per cicli di carico ripetuti.

Per quanto riguarda la salvaguardia dell'aspetto e della funzionalità dell'opera, le frecce a lungo termine di travi e solai, calcolate sotto la condizione quasi permanente dei carichi, non dovrebbero superare il limite di 1/250 della luce.

Si procede al calcolo considerando in favore di sicurezza il travetto centrale della predalle tipo, la cui rappresentazione grafica è riportata qui di seguito:

8.2 VERIFICHE DEGLI ELEMENTI NON STRUTTURALI E DEGLI IMPIANTI


Al § 7.3.6 in Tab. 7.3.III le NTC 2018 specificano come per le costruzioni ricadenti in Classe d'Uso III sia necessario operare una verifica di stabilità per gli elementi NON Strutturali soggetti all'azione sismica valutata per lo *SLV*.

In particolare, secondo quanto riportato al § 7.3.6.2 della stessa norma, per gli elementi costruttivi senza funzione strutturale devono essere adottati magisteri atti ad evitare collassi fragili e prematuri e la possibile espulsione sotto l'azione della Fa (v. § 7.2.3) corrispondente allo *SLV*.

Considerando la stratigrafia della muratura esterna riportata in Figura 17.1, si assume che la funzione portante della parete sia svolta dal blocco in calcestruzzo prefabbricato interno, di spessore pari a 25 cm, il cui peso è pari a 350 Kg/m², desunto da schede tecniche di alcuni prefabbricatori.

A questo si aggiunge il peso del rivestimento esterno in pietra di spessore 5 cm, dunque $P = 2000x0.05 = 100 \text{ Kg/m}^2$, dell'intonaco interno, pari a 30 Kg/m² e dell'isolante, valutato in p'=20 Kg/m². Ai fini del calcolo il peso complessivo della tamponatura è pari a $W = 500 \text{ Kg/m}^2$.

Per garantire la resistenza dell'intero tamponamento alle azioni orizzontali, si prevede di inserire all'interno di questa muratura, ogni due corsi di forati, dei tralicci in acciaio inglobati nei letti di malta. Per solidarizzare la lastra di rivestimento esterna di spessore pari a 5 cm allo strato portante interno della parete, si prevede la disposizione di collegamenti puntuali diffusi.

La forza orizzontale Fa applicata sulla tamponatura può essere valutata con la seguente formula, riportata al § 7.2.3 della norma:

Fa = (Sa·Wa) / qa

in cui:

Fa = forza sismica orizzontale distribuita o agente nel centro di massa dell'elemento non strutturale, nella direzione più sfavorevole, risultante delle forze distribuite proporzionali alla massa;

Wa = peso dell'elemento;

Sa = accelerazione massima, adimensionalizzata rispetto a quella di gravità, che l'elemento strutturale subisce durante il sisma e corrisponde allo stato limite in esame (v. § 3.2.1 NTC 2018)

qa = fattore di comportamento dell'elemento non strutturale.

In assenza di specifiche determinazioni, per Sa e qa si può fare utile riferimento a quanto riportato nella Circolare n.7/2019; in particolare, per il fattore di struttura qa si può assumere un valore pari a 2, valido per tramezzature e facciate (vedi Tabella C7.2.I), mentre per la definizione dell'accelerazione massima Sa si può ricorrere alle formulazioni semplificate valide per costruzioni con struttura a telai di seguito riportate.

$$\begin{split} S_{a} &= \begin{cases} \alpha \cdot S \cdot \left(1 + \frac{z}{H}\right) \cdot \left[\frac{a_{p}}{1 + \left(a_{p} - 1\right) \cdot \left(1 - \frac{T_{a}}{a \cdot T_{1}}\right)^{2}}\right] \geq \alpha \cdot S & \text{per } T_{a} < a \cdot T_{1} \\ \alpha \cdot S \cdot \left(1 + \frac{z}{H}\right) \cdot a_{p} & \text{per } a \cdot T_{1} < T_{a} < b \cdot T_{1} \\ \alpha \cdot S \cdot \left(1 + \frac{z}{H}\right) \cdot \left[\frac{a_{p}}{1 + \left(a_{p} - 1\right) \cdot \left(1 - \frac{T_{a}}{b \cdot T_{1}}\right)^{2}}\right] \geq \alpha \cdot S & \text{per } T_{a} \geq b \cdot T_{1} \end{cases} \end{split}$$

In cui:

 α = rapporto tra accelerazione massima del terreno ag su sottosuolo di tipo A da considerare per lo stato limite in esame e l'accelerazione di gravità g;

S = coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche secondo quanto riportato nel § 3.2.3.2.1 delle NTC 2018;

Ta = periodo fondamentale di vibrazione dell'elemento non strutturale;

 T_1 = periodo fondamentale di vibrazione dell'edificio nella direzione considerata;

Z = quota del baricentro dell'elemento non strutturale misurata a partire dal piano di fondazione;

H = altezza della costruzione misurata a partire dal piano di fondazione.

a, b, ap = parametri definiti in accordo con il primo periodo di vibrazione della costruzione T1, vedi Tab. C7.2.II della circolare.

Di seguito si riportano i calcoli effettuati per la tamponatura esterna più estesa dell'edificio, che rappresenta il caso più gravoso, essendo la parete in esame caratterizzata da specchiatura e massa

maggiori. Si assume pertanto di poter estendere le considerazioni seguenti anche alle restanti tipologie di pareti presenti all'interno dell'edificio.

	PROGETTO TAMPONATURA							
DATI TAMPONATUR	A		_					
H=	3,25	m	altezza tamponature					
z=	1,625	m	quota baricentro					
s=	25	cm	spessore blocco					
L=	6,5	m	interasse tra due pilastri					
W=	500	kg/m ²	peso specifico blocco muratura, intonaco interno e rivestimento esterno					
W _{tamponatura} =	10562,5	kg	peso complessivo tamponatura (al netto delle aperture)					
E=	20000	N/mm²	modulo elastico muratura					
J=Ls^3/12=	8463541667	mm ⁴	momento d'inerzia muratura					
K=3EJ/H^3=	14792,899	N/mm	rigidezza					
Ta=2 ⟨Ž(ᢙ /k)=	0,1679	s	periodo d'oscillazione della tamponatura T = 2P (m/K) ^{^0.5}					

DATI SISMICI

0,112
2,645
1,50
1,00
1,50
0,375
2
0,8
1,4
5
0,3
0,525

accelerazione su suolo di tipo A

suolo C

categoria topografica T1

Periodo fondamentale struttura nella direzione considerata

Fattore di comportamento per tamponature

Parametro a da tab. C7.2.II - Circ. n. 7 del 21/01/2019 Parametro a da tab. C7.2.II - Circ. n. 7 del 21/01/2019

Parametro a da tab. C7.2.II - Circ. n. 7 del 21/01/2019

Fabbricato E5 - Tipologico F - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 FA00F0 001
 B
 56 di 103

PROGETTO (C7.2.II Circolare 7 NTC 2018)

Sa=	0,222		Accelerazione elemento non strutturale
Fh=W*Sa/q=	11,70	KN	Forza sismica complessiva agente sulla tamponatura
interasse armature	0,38	m	interasse armature orizzontali
FHi	4,45	KN	Forza sismica orizzontale agente sul traliccio i-esimo
MED = FhxH/8	3,61	KNxm	Momento flettente orizzontale
Interasse i=	6,5	m	Interasse tra i pilastri
Z	1,625	m	Altezza baricentro tamponatura dal piano di fondaz.
Н	5,1	m	Altezza complessiva costruzione

MOMENTO RESISTENTE TRALICCIO

fyk	450 N/mm²
9 s	1,15
fyd	391,30 N/mm ²
a orizz	250 mm
Ø orizz	8 mm
Ares	50,27 mm ²
M_{RD}	4,92 KNxm
$F.S.\ M_{RD}/M_{ED}$	1,361 >

CALCOLO INCIDENZA ARMATURA TRALICCI A METRO QUADRO DI PARETE

C	ALCOLO INCIDENZA	A ARIVIATORA TRALIC	CI A WEIRO QUADRO DI PARETE
Ø		8 mm	Diametro armatura traliccio
а		250 mm	Larghezza traliccio orizzontale
р		150 mm	Passo armatura diagonale traliccio
I		261 mm	Lunghezza diagonale traliccio
L	TOT_1m	5480 mm	Lunghezza diagonale barre di acciaio in un metro di traliccio
Α	s_TOT_1m	275,46 mm ²	Area di acciaio componente un metro di singolo traliccio
W	$I_{\rm s_TOT_1m}$	2,16 kg/m	Peso di acciaio componente un metro di singolo traliccio
W	I_{s_TOT}	5,69 kg/m²	Peso di acciaio presente in un metro quadrato di parete
			(inotizzando di disporre un traliccio ogni due corsi di muratura)

1,00

Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA LOTTO CODIFICA

RS3T 30 D 26 CL

DOCUMENTO REV. FO FA00F0 001 B 57

FOGLIO **57 di 103**

8.3 TRAVI DI BORDO 30X40

Si riportano di seguito le verifiche strutturali della trave di bordo avente sezione rettangolare di dimensioni 30x40 cm. Le verifiche saranno condotte per i differenti stati limite ed in corrispondenza delle sezioni maggiormente sollecitate dell'elemento per effetto della combinazioni di carico più gravose.

Di seguito si riportano le tabelle delle sollecitazioni più gravose ottenute allo SLU (statico e sismico) e agli SLE (Rara, Frequente e Quasi Permanente):

СС	тсс	X <m></m>	N <kn></kn>	Ty <kn></kn>	Mz <knm></knm>	Tz <kn></kn>	My <knm></knm>	Mx <knm></knm>
25	SLU	0.15	-1485870	0.000	0.000	8.725	-1.712	-6.966
25	SLU	1.41	-1485870	0.000	0.000	0.034	3.805	-6.966
25	SLU	3.20	-1485870	0.000	0.000	-12.320	-7.193	-6.966
29	SLU	0.15	-1485870	0.000	0.000	9.270	-2.487	-7.597
29	SLU	1.49	-1485870	0.000	0.000	0.043	3.740	-7.597
29	SLU	3.20	-1485870	0.000	0.000	-11.775	-6.307	-7.597
30	SLU	0.15	-1485870	0.000	0.000	9.052	-2.177	-7.345
30	SLU	1.46	-1485870	0.000	0.000	0.014	3.761	-7.345
30	SLU	3.20	-1485870	0.000	0.000	-11.993	-6.661	-7.345
36	SLU	0.15	-1485870	0.000	0.000	8.573	-1.503	-7.823
36	SLU	1.37	-1485870	0.000	0.000	0.133	3.821	-7.823
36	SLU	3.20	-1485870	0.000 0.000 -12.472 -7.		-7.450	-7.823	
37	SLU	0.15	-1485870	0.000	0.000	8.634	-1.586	-7.480
37	SLU	1.40	-1485870	0.000	0.000	.000 0.023 3.8		-7.480
37	SLU	3.20	-1485870	0.000	0.000 -12.411 -7		-7.347	-7.480
25	SLU	0.25	-1485870	0.000	0.000	14.704	-9.243	5.146
25	SLU	2.38	-1485870	0.000	0.000	0.000	6.424	5.146
25	SLU	4.10	-1485870	0.000	0.000	-11.861	-3.771	5.146
29	SLU	0.25	-1485870	0.000	0.000	15.129	-10.102	5.771
29	SLU	2.44	-1485870	0.000	0.000	0.000	6.484	5.771
29	SLU	4.10	-1485870	0.000	0.000	-11.436	-2.994	5.771
30	SLU	0.25	-1485870	0.000	0.000	14.959	-9.758	5.521
30	SLU	2.42	-1485870	0.000	0.000	-0.000	6.457	5.521
30	SLU	4.10	-1485870	0.000	0.000	-11.606	-3.304	5.521
36	SLU	0.25	-1485870	0.000	0.000	14.649	-9.140	5.784
36	SLU	2.37	-1485870	0.000	0.000	-0.000	6.409	5.784
36	SLU	4.10	-1485870	0.000	0.000	-11.916	-3.881	5.784
37	SLU	0.25	-1485870	0.000	0.000	14.671	-9.182	5.529
37	SLU	2.38	-1485870	0.000	0.000	-0.000	6.415	5.529

Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D 26 CL FA00F0 001 B 58 di 103

37 SLU 4.10 -1485870 0.000 0.000 -11.894 -3.837 5.529

сс	тсс	X <m></m>	N <kn></kn>	Ty <kn></kn>	Mz <knm></knm>	Tz <kn></kn>	My <knm></knm>	Mx <knm></knm>
26	SLE R	0.15	-990582	0.000	0.000	6.322	-1.239	-5.011
26	SLE R	1.41	-990582	0.000	0.000	0.024	2.757	-5.011
26	SLE R	3.20	-990582	0.000	0.000	-8.928	-5.214	-5.011
31	SLE R	0.15	-990582	0.000	0.000	6.685	-1.756	-5.432
31	SLE R	1.48	-990582	0.000	0.000	0.028	2.712	-5.432
31	SLE R	3.20	-990582	0.000	0.000	-8.565	-4.624	-5.432
32	SLE R	0.15	-990582	0.000	0.000	6.539	-1.549	-5.264
32	SLE R	1.45	-990582	0.000	0.000	0.021	2.727	-5.264
32	SLE R	3.20	-990582	0.000	0.000	-8.711	-4.860	-5.264
38	SLE R	0.15	-990582	0.000	0.000	6.220	-1.100	-5.583
38	SLE R	1.39	-990582	0.000	0.000	0.014	2.769	-5.583
38	SLE R	3.20	-990582	0.000	0.000	-9.030	-5.386	-5.583
39	SLE R	0.15	-990582	0.000	0.000 0.000 6.260	6.260	-1.156	-5.354
39	SLE R	1.40	-990582	0.000	0.000	-0.008	2.764	-5.354
39	SLE R	3.20	-990582	0.000	0.000	-8.990	-5.317	-5.354
26	SLE R	0.25	-990582	0.000	0.000	10.656	-6.700	3.705
26	SLE R	2.38	-990582	0.000	0.000	-0.000	4.655	3.705
26	SLE R	4.10	-990582	0.000	0.000	-8.594	-2.732	3.705
31	SLE R	0.25	-990582	0.000	0.000	10.939	-7.272	4.122
31	SLE R	2.44	-990582	0.000	0.000	-0.000	4.694	4.122
31	SLE R	4.10	-990582	0.000	0.000	-8.311	-2.213	4.122
32	SLE R	0.25	-990582	0.000	0.000	10.826	-7.043	3.955
32	SLE R	2.42	-990582	0.000	0.000	-0.000	4.676	3.955
32	SLE R	4.10	-990582	0.000	0.000	-8.424	-2.421	3.955
38	SLE R	0.25	-990582	0.000	0.000	10.619	-6.631	4.131
38	SLE R	2.37	-990582	0.000	0.000	-0.000	4.645	4.131
38	SLE R	4.10	-990582	0.000	0.000	-8.631	-2.805	4.131
39	SLE R	0.25	-990582	0.000	0.000	10.634	-6.659	3.960
39	SLE R	2.38	-990582	0.000	0.000	-0.000	4.649	3.960
39	SLE R	4.10	-990582	0.000	0.000	-8.616	-2.775	3.960

сс	тсс	X <m></m>	N <kn></kn>	Ty <kn></kn>	Mz <knm></knm>	Tz <kn></kn>	My <knm></knm>	Mx <knm></knm>
27	SLE F	0.15	-495291	0.000	0.000	6.292	-1.205	-4.474
27	SLE F	1.40	-495291	0.000	0.000	0.057	2.753	-4.474

Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D 26 CL FA00F0 001 B 59 di 103

27	SLE F	3.20	-495291	0.000	0.000	-8.958	-5.272	-4.474
33	SLE F	0.15	-495291	0.000	0.000	6.364	-1.309	-4.559
33	SLE F	1.42	-495291	0.000	0.000	0.020	2.742	-4.559
33	SLE F	3.20	-495291	0.000	0.000	-8.886	-5.154	-4.559
34	SLE F	0.15	-495291	0.000	0.000	6.292	-1.205	-4.474
34	SLE F	1.40	-495291	0.000	0.000	0.057	2.753	-4.474
34	SLE F	3.20	-495291	0.000	0.000	-8.958	-5.272	-4.474
40	SLE F	0.15	-495291	0.000	0.000	6.271	-1.178	-4.589
40	SLE F	1.39	-495291	0.000	0.000	0.052	2.755	-4.589
40	SLE F	3.20	-495291	0.000	0.000	-8.979	-5.306	-4.589
41	SLE F	0.15	-495291	0.000	0.000	6.292	-1.205	-4.474
41	SLE F	1.40	-495291	0.000	0.000	0.057	2.753	-4.474
41	SLE F	3.20	-495291	0.000	0.000	-8.958	-5.272	-4.474
27	SLE F	0.25	-495291	0.000	0.000	10.678	-6.752	3.309
27	SLE F	2.39	-495291	0.000	0.000	-0.000	4.649	3.309
27	SLE F	4.10	-495291	0.000	0.000	-8.572	-2.700	3.309
33	SLE F	0.25	-495291	0.000	0.000	10.734	-6.867	3.393
33	SLE F	2.40	-495291	0.000	0.000	-0.000	4.656	3.393
33	SLE F	4.10	-495291	0.000	0.000	-8.516	-2.596	3.393
34	SLE F	0.25	-495291	0.000	0.000	10.678	-6.752	3.309
34	SLE F	2.39	-495291	0.000	0.000	-0.000	4.649	3.309
34	SLE F	4.10	-495291	0.000	0.000	-8.572	-2.700	3.309
40	SLE F	0.25	-495291	0.000	0.000	10.670	-6.739	3.394
40	SLE F	2.38	-495291	0.000	0.000	0.000	4.647	3.394
40	SLE F	4.10	-495291	0.000	0.000	-8.580	-2.714	3.394
41	SLE F	0.25	-495291	0.000	0.000	10.678	-6.752	3.309
41	SLE F	2.39	-495291	0.000	0.000	-0.000	4.649	3.309
41	SLE F	4.10	-495291	0.000	0.000	-8.572	-2.700	3.309

сс	тсс	X <m></m>	N <kn></kn>	Ty <kn></kn>	<kn></kn>		My <knm></knm>	Mx <knm></knm>
28	SLE Q	0.15	0.000	0.000	0.000	6.284	-1.197	-4.340
28	SLE Q	1.39	0.000	0.000	0.000	0.060	2.752	-4.340
28	SLE Q	3.20	0.000	0.000	0.000	-8.966	-5.286	-4.340
35	SLE Q	0.15	0.000	0.000	0.000	6.284	-1.197	-4.340
35	SLE Q	1.39	0.000	0.000	0.000	0.060	2.752	-4.340
35	SLE Q	3.20	0.000	0.000	0.000	-8.966	-5.286	-4.340
42	SLE Q	0.15	0.000	0.000	0.000	6.284	-1.197	-4.340
42	SLE Q	1.39	0.000	0.000	0.000	0.060	2.752	-4.340

Fabbricato E5 - Tipologico F - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3T	30 D 26	CL	FA00F0 001	В	60 di 103

42	SLE Q	3.20	0.000	0.000	0.000	-8.966	-5.286	-4.340
28	SLE Q	0.25	0.000	0.000	0.000	10.683	-6.765	3.210
28	SLE Q	2.39	0.000	0.000	0.000	-0.000	4.648	3.210
28	SLE Q	4.10	0.000	0.000	0.000	-8.567	-2.692	3.210
35	SLE Q	0.25	0.000	0.000	0.000	10.683	-6.765	3.210
35	SLE Q	2.39	0.000	0.000	0.000	-0.000	4.648	3.210
35	SLE Q	4.10	0.000	0.000	0.000	-8.567	-2.692	3.210
42	SLE Q	0.25	0.000	0.000	0.000	10.683	-6.765	3.210
42	SLE Q	2.39	0.000	0.000	0.000	-0.000	4.648	3.210
42	SLE Q	4.10	0.000	0.000	0.000	-8.567	-2.692	3.210

8.3.1 Verifica a flessione

Si riportano di seguito le verifiche a flessione, in corrispondenza della sezione d'appoggio e della sezione di campata (convenzione sui segni: compressione negativa (-), momento flettente che tende le fibre superiori negativo (-).

In funzione delle sollecitazioni si è dimensionata opportunamente l'armatura longitudinale delle travi:

1) Zone d'appoggio:

Armatura superiore 4 Φ 20

Armatura inferiore 3 Φ 16

2) Campata:

Armatura superiore 3 Φ 16

Armatura inferiore 4 Φ 20

In aggiunta, fuori calcolo, andranno disposti 2 Φ 12 come ferri di parete.

Le verifiche di resistenza a flessione allo SLU ed agli SLE (NTC2018 – 4.1.2.1.2.4) per le sezioni di appoggio e di campata sono state condotte con il supporto del MODEST considerando le sollecitazioni riportate nel prospetto precedente.

Essendo la sezione armata in maniera simmetrica in campata ed in appoggio si esegue la verifica di una sola sezione in cui le sollecitazioni calcolate in appoggio sono invertite di segno.

Travata n. 101

Nodi: 101 102 103

= Diametro della barra

= Area complessiva dei ferri nell'area di calcestruzzo efficace

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR – CALTANISSETTA XIRBI (LOTTO 3) FABBRICATI

Fabbricato E5 - Tipologico F - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.

 RS3T
 30 D 26
 CL
 FA00F0 001
 B

FOGL IO

61 di 103

Simbologia Caso = Caso di verifica Χq = Coordinata progressiva (dal primo nodo) in cui viene effettuato il progetto/verifica CC = Combinazione delle condizioni di carico elementari c = momento fittizio in campata a = momento fittizio agli appoggi TG = taglio da gerarchia delle resistenze TGND = taglio non dissipativo limitante la gerarchia T = momento traslato per taglio e = eccentricità aggiuntiva in caso di compressione o pressoflessione TCC = Tipo di combinazione di carico SLU = Stato limite ultimo SLU S = Stato limite ultimo (azione sismica) SLE R = Stato limite d'esercizio, combinazione rara SLE F = Stato limite d'esercizio, combinazione frequente SLE Q = Stato limite d'esercizio, combinazione quasi permanente SLD = Stato limite di danno SLV = Stato limite di salvaguardia della vita SLC = Stato limite di prevenzione del collasso SLO = Stato limite di operatività SLU I = Stato limite di resistenza al fuoco SND = Stato limite di salvaguardia della vita (non dissipativo) El = Elemento (asta) in cui viene effettuato il progetto/verifica (progressivo sul numero di aste) = Numero della sezione Sez. Crit. = Numero del criterio di progetto = Coordinata progressiva rispetto al nodo iniziale AfE S = Area di ferro effettiva totale presente nel punto di verifica, superiore AfE I = Area di ferro effettiva totale presente nel punto di verifica, inferiore AFEP S = Area di ferro effettiva parziale presente nella CC considerata, per la sollecitazione indicata, superiore AfEP I = Area di ferro effettiva parziale presente nella CC considerata, per la sollecitazione indicata, inferiore = Momento flettente intorno all'asse Y My = Momento resistente allo stato limite ultimo intorno all'asse Y = Tensione di distacco della fibra di estremità (modo 1) σ_{fdd} = Incremento percentuale sicurezza Λ% σ_{f} sup = Tensione nel ferro - superiore σ_{f} inf $\,$ =Tensione nel ferro - inferiore = Tensione nel calcestruzzo σ_c = Coordinata progressiva (dal nodo iniziale) dell'inizio del tratto X0 Х1 = Coordinata progressiva (dal nodo iniziale) della fine del tratto Lung. = Lunghezza del tratto di progettazione Staff. = Staffatura adottata AfE St. = Area di ferro effettiva della staffatura (d'anima per travi a T o L) bw = Larghezza membratura resistente al taglio = Taglio agente nella direzione del momento ultimo = Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo $ctq\theta$ VRsd = Taglio ultimo lato armatura = Taglio ultimo lato calcestruzzo = Taglio ultimo assorbibile dal solo calcestruzzo Vrdu Sic.T = Sicurezza a rottura per taglio = Ricoprimento dell'armatura = Distanza minima tra le barre = Coefficiente di forma del diagramma delle tensioni prima della fessurazione = Distanza media tra le fessure Srm

Fabbricato E5 - Tipologico F - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 FA00F0 001
 B
 62 di 103

A_{c eff} = Area di calcestruzzo efficace

 σ_{s} = Tensione nell'acciaio nella sezione fessurata

 σ_{sr} = Tensione nell'acciaio corrispondente al raggiungimento della resistenza a trazione nel calcestruzzo

 ϵ_{sm} = Deformazione unitaria media dell'armatura (*1000)

Wk = Apertura delle fessure

Tipo = Tipologia

2C = Doppia C lato labbri

2Cdx = Doppia C lato costola

2I = Doppia I

2L = Doppia L lato labbri

2Ldx = Doppia L lato costole

C = Sezione a C

Cdx = C destra

Cir. = Circolare

Cir.c = Circolare cava

I = Sezione a I

L = Sezione a L

Ldx = L destra

Om. = Omega

Pg = Pi greco

Pr = Poligono regolare

Prc = Poligono regolare cavo

Pc = Per coordinate

Ia = Inerzie assegnate

R = Rettangolare

Rc = Rettangolare cava

T = Sezione a T

U = Sezione a U

Ur = U rovescia

V = Sezione a V

Vr = V rovescia Z = Sezione a Z

Zdx = Z destra

_ _ _

Ts = T stondata
Ls = L stondata

Cs = C stondata

Is = I stondata

Dis. = Disegnata

B = Base

H = Altezza

Cf sup = Copriferro superiore

Cf inf = Copriferro inferiore
Cls = Tipo di calcestruzzo

Fck = Resistenza caratteristica cilindrica a compressione del calcestruzzo

Fctk = Resistenza caratteristica a trazione del calcestruzzo

Fcd = Resistenza di calcolo a compressione del calcestruzzo

Fctd = Resistenza di calcolo a trazione del calcestruzzo

 ${\tt Tp} \qquad = {\tt Tipo \ di \ acciaio}$

Fyk — = Tensione caratteristica di snervamento dell'acciaio

Fyd = Resistenza di calcolo dell'acciaio

Caratteristiche delle sezioni e dei materiali utilizzati

Sez.	Tipo	B <cm></cm>	H <cm></cm>	Cf sup <cm></cm>	Cf inf <cm></cm>		Fck <dan cmq=""></dan>	Fctk <dan cmq=""></dan>	Fcd <dan cmq=""></dan>	Fctd <dan cmq=""></dan>	Тp	Fyk <dan cmq=""></dan>	Fyd <dan cmq=""></dan>
2	R	30.00	40.00	5.50	5.50	C30/37	307.10	20.59	174.02	13.73	B450C	4500.00	3913.04

Fabbricato E5 - Tipologico F - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 FA00F0 001
 B
 63 di 103

Stato limite ultimo - Verifiche a flessione/pressoflessione

Xg <m></m>	CC	TCC	El		_			AfEP I <cmq></cmq>	_	MRdy <danm></danm>	Sic.
0.15	13	SLV	1	15.00	6.03	12.57	6.03	12.57	-2759.20	-7591.48	2.751
3.20	1	SLV	1	320.00	6.03	12.57	6.03	12.57	-3520.52	-7591.48	2.156
3.70	13	SLV	2	25.00	6.03	12.57	6.03	12.57	-3254.38	-7591.48	2.333
7.23	1	SLV	2	377.92	6.03	12.57	6.03	12.57	-2713.68	-7591.48	2.797
7.55	1	SLV	2	410.00	6.03	12.57	6.03	12.57	-2713.68	-7591.48	2.797

Stato limite d'esercizio - Verifiche tensionali

Xg <m></m>	CC	TCC	E1	X <cm></cm>		AfE I	_	$\sigma_{\rm f}$ sup <dan cmq=""></dan>	$\sigma_{\rm f}$ inf <dan cmq=""></dan>	$\sigma_{\rm c}$ <dan cmq=""></dan>
0.15	31	SLE R	1	15.00	6.03	12.57	-175.61	95.66	-16.52	2.52
0.15	28	SLE Q	1	15.00	6.03	12.57	-119.71	65.21	-11.26	1.72
3.20	38	SLE R	1	320.00	6.03	12.57	-538.59	293.38	-50.68	7.73
3.20	28	SLE Q	1	320.00	6.03	12.57	-528.63	287.95	-49.74	7.59
3.70	31	SLE R	2	25.00	6.03	12.57	-727.23	396.13	-68.43	10.44
3.70	28	SLE Q	2	25.00	6.03	12.57	-676.54	368.52	-63.66	9.71
7.23	38	SLE R	2	377.92	6.03	12.57	-280.48	152.78	-26.39	4.02
7.23	28	SLE Q	2	377.92	6.03	12.57	-269.16	146.61	-25.32	3.86
7.55	38	SLE R	2	410.00	6.03	12.57	-280.48	152.78	-26.39	4.02
7.55	28	SLE Q	2	410.00	6.03	12.57	-269.16	146.61	-25.32	3.86

Stato limite d'esercizio - Verifiche a fessurazione

Caso	Xg <m></m>	CC	TCC	El	Sez.	Crit.	X <cm></cm>	My <danm></danm>	c <mm></mm>	s <mm></mm>	к3	s _{rm}	Φ	A _s	A _{c eff} <cmq></cmq>	σ_s < daN/cmq>	$\sigma_{\rm sr}$ <dan cmq=""></dan>	€ _{sm}	Wk <mm></mm>
38	0.15	28	SLE Q	1	. 2	1	15.00	-119.71	47.00	95.00	0.15	190.70	16.00	6.03	486.13	65.21	1993.48	0.01	0.00
46	0.15	33	SLE F	1	. 2	1	15.00	-130.89	47.00	95.00	0.15	190.70	16.00	6.03	486.13	71.30	1993.48	0.01	0.00
79	3.20	28	SLE Q	1	. 2	1	320.00	-528.63	47.00	95.00	0.15	190.70	16.00	6.03	486.13	287.95	1993.48	0.06	0.02
85	3.20	40	SLE F	1	. 2	1	320.00	-530.62	47.00	95.00	0.15	190.70	16.00	6.03	486.13	289.03	1993.48	0.06	0.02
115	3.70	28	SLE Q	2	2	1	25.00	-676.54	47.00	95.00	0.15	190.70	16.00	6.03	486.13	368.52	1993.48	0.07	0.02
119	3.70	33	SLE F	2	2	1	25.00	-686.68	47.00	95.00	0.15	190.70	16.00	6.03	486.13	374.04	1993.48	0.07	0.02
159	7.23	28	SLE Q	2	2	1	377.92	-269.16	47.00	95.00	0.15	190.70	16.00	6.03	486.13	146.61	1993.48	0.03	0.01
171	7.23	40	SLE F	2	2	1	377.92	-271.42	47.00	95.00	0.15	190.70	16.00	6.03	486.13	147.84	1993.48	0.03	0.01
211	7.55	28	SLE Q	2	2	1	410.00	-269.16	47.00	95.00	0.15	190.70	16.00	6.03	486.13	146.61	1993.48	0.03	0.01
223	7.55	40	SLE F	2	2	1	410.00	-271.42	47.00	95.00	0.15	190.70	16.00	6.03	486.13	147.84	1993.48	0.03	0.01

Stato limite d'esercizio - Verifiche a fessurazione con combinazione rara Le verifiche sono condotte in ottemperanza a quanto prescritto dal Manuale di Progettazione delle Opere Civili RFIDTCSIPSMAIFS001C al §2.5.1.8.3.2.4

VERIFICA A	SLE FESSURAZIO	ONE, TENSIONI DI	ESERCIZIO - RARA
В	30 cm	Mmax	7,27 KNm
Н	40 cm	Rck	37
С	5 cm	fck	30,71
d	35 cm	1,2xfctm	3,60 N/mm ²
nbarre	5	fsd	374 N/mm ²
dmedio	2,00 cm	fyk	430 N/mm ²
C'	4,00 cm		
deff1	19,0 cm		
deff2	12,22 cm		
deff	12,2 cm		

		deter	minazione ε _{sm}		
β1	1			С	4 cm
β2	0,5			S	5,00 cm
Es	206000 N	/mm²		k2	0,4
				k3	0,125
$\varepsilon_{\!\!\!\!sm}=$	-0,134%			ф	2 cm
				n	5
s _{rm} =	11,334656			As	15,70796 cm2
				b	30 cm
				Ac,eff	366,73 cm2
				ρ_r	0,042833
		deter	minazione w _k		
,	w _k =	0,258 mm	w _{lim} =	0,3 mm	ок

8.3.2 Verifica a taglio e torsione

Al fine di escludere la formazione di meccanismi inelastici dovuti al taglio, le sollecitazioni di taglio di calcolo V_{Ed} si ottengono sommando il contributo dovuto ai carichi gravitazionali agenti sulla trave, considerata incernierata agli estremi, alle sollecitazioni di taglio corrispondenti alla formazione di cerniere plastiche nella trave e prodotte dai momenti resistenti (ultimi) delle due sezioni di plasticizzazione (generalmente quelle di estremità) amplificati del fattore di sovra resistenza γ_{Rd} assunto pari a 1.0 per CDB.

Deve risultare (NTC2018 – 4.1.2.1.3.2):

 $V_{Rd} > V_{d}$

dove:

V_d = Valore di calcolo del taglio agente;

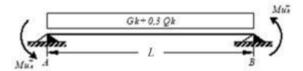
DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR – CALTANISSETTA XIRBI (LOTTO 3) FABBRICATI					
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
_		COMMESSA LOTTO	COMMESSA LOTTO CODIFICA	COMMESSA LOTTO CODIFICA DOCUMENTO	COMMESSA LOTTO CODIFICA DOCUMENTO REV.

 $V_{Rd} = min (V_{Rsd}, V_{Rcd})$

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" si calcola con:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot sin \alpha$$

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" si calcola con:

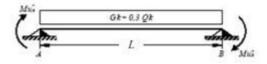

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^{2}\theta)$$

dove:

α: Angolo d'inclinazione dell'armatura trasversale rispetto all'asse dell'elemento;

 θ : Angolo d'inclinazione dei puntoni in calcestruzzo rispetto all'asse dell'elemento.

1° Schema:



Il taglio è variabile linearmente lungo la trave ed è pari a:

$$V_{A} = \gamma_{Rd} \frac{Mu_{A}^{+} + Mu_{B}^{+}}{l_{trave}} + \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

$$V_{B} = \gamma_{Rd} \frac{Mu_{A}^{+} + Mu_{B}^{+}}{l_{trave}} - \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

• 2° Schema:

Il taglio è variabile linearmente lungo la trave ed è pari a:

$$V_{A} = \gamma_{Rd} \frac{Mu_{A}^{-} + Mu_{B}^{-}}{l_{trave}} + \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

Fabbricato E5 - Tipologico F - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 FA00F0 001
 B
 66 di 103

$$V_{\scriptscriptstyle B} = \gamma_{\scriptscriptstyle Rd} \frac{Mu^{\scriptscriptstyle -}_{\scriptscriptstyle A} + Mu^{\scriptscriptstyle -}_{\scriptscriptstyle B}}{l_{\scriptscriptstyle trave}} - \frac{(G_{\scriptscriptstyle k} + 0.3Q_{\scriptscriptstyle k}) \cdot l_{\scriptscriptstyle trave}}{2}$$

La verifica di resistenza nei confronti della torsione (SLU) (NTC2018 – 4.1.2.1.4) consiste nel controllare che:

$$T_{Rd} \ge T_{Ed}$$

dove T_{Ed} è il valore di calcolo del momento torcente.

Per elementi prismatici sottoposti a torsione semplice o combinata con altre sollecitazioni, che abbiano sezione piena o cava, lo schema resistente è costituito da un traliccio periferico in cui gli sforzi di trazione sono affidati alle armature longitudinali e trasversali ivi contenute e gli sforzi di compressione sono affidati alle bielle di calcestruzzo.

Con riferimento al calcestruzzo la resistenza si calcola con:

$$T_{Rcd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta / (1 + ctg \theta)$$

dove t è lo spessore della sezione cava; per sezioni piene $t = A_c/u$ dove A_c è l'area della sezione ed u è il suo perimetro; t deve essere assunta comunque ≥ 2 volte la distanza fra il bordo e il centro dell'armatura longitudinale.

Le armature longitudinali e trasversali del traliccio resistente devono essere poste entro lo spessore t del profilo periferico. Le barre longitudinali possono essere distribuite lungo detto profilo, ma comunque una barra deve essere presente su tutti i suoi spigoli.

Con riferimento alle staffe trasversali la resistenza si calcola con:

$$T_{Rsd} = 2 \cdot A \cdot (A_s/s) \cdot f_{vd} \cdot ctg\theta$$

Con riferimento all'armatura longitudinale la resistenza si calcola con:

$$T_{Rsd} = 2 \cdot A \cdot (\Sigma A_I / u_m) \cdot f_{vd} / ctg\theta$$

dove si è posto:

A area racchiusa dalla fibra media del profilo periferico;

As area delle staffe;

u_m perimetro medio del nucleo resistente;

s passo delle staffe;

ΣA_I area complessiva delle barre longitudinali.

L'inclinazione θ delle bielle compresse di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

 $0.4 \le \text{ctg } \theta \le 2.5$

Entro questi limiti, nel caso di torsione pura, può porsi ctg θ = $(a_1/a_s)^{1/2}$

con: $a_1 = \sum A_1 / u_m$

 $a_s = A_s / s$

La resistenza alla torsione della trave è la minore delle tre sopra definite.

Si riporta di seguito un prospetto riepilogativo con i valori delle sollecitazioni taglianti e torcenti ottenute seguendo la metodologia descritta e riportata negli schemi precedenti:

Poiché il valore del taglio determinato mediante la procedura sopra riportata non è maggiore del taglio di calcolo ottenuto a valle dell'analisi strutturale mediante il MODEST (V₂=27.42 kN) si procede alla verifica di resistenza considerando il seguente valore del taglio massimo:

 $V_{Ed-max} = 27.42 \text{ kN}$

Staffe - Verifiche armatura

CC	X0 <m></m>	X1 <m></m>	Lung.	Staff.	AfE St. <cmq m=""></cmq>	_	Vsdu <dan></dan>	ctg	VRsd <dan></dan>	VRcd <dan></dan>	Vrdu <dan></dan>	Sic.T
13 SLV	0.15	0.55	0.40	ø8/ 5 2 br.	20.11	0.30	2474.78	1.52	37191.80	37191.80	37191.80	15.03
1 SLV	0.55	2.80	2.25	ø8/20 2 br.	5.03	0.30	2542.92	2.50	15268.10	27948.80	15268.10	6.00
1 SLV	2.80	3.20	0.40	ø8/ 5 2 br.	20.11	0.30	2742.93	1.52	37191.80	37191.80	37191.80	13.56
13 SLV	3.70	4.10	0.40	ø8/ 5 2 br.	20.11	0.30	2372.82	1.52	37191.80	37191.80	37191.80	15.67
13 SLV	4.10	7.15	3.05	ø8/20 2 br.	5.03	0.30	2172.82	2.50	15268.10	27948.80	15268.10	7.03
1 SLV	7.15	7.55	0.40	ø8/ 5 2 br.	20.11	0.30	2161.19	1.52	37191.80	37191.80	37191.80	17.21

Si adotteranno nelle zone d'appoggio, per un tratto pari ad 55 cm dal filo esterno del pilastro, staffe $\Phi 8/5$ cm, per il rispetto dei limiti normativi, mentre nelle zone centrali di campata staffe $\Phi 8/20$ cm.

8.3.3 Verifica limitazioni armatura

In ogni sezione della trave, il rapporto geometrico ρ relativo all'armatura tesa, indipendentemente dal fatto che l'armatura tesa sia quella al lembo superiore della sezione A_s o quella al lembo inferiore della sezione A_i , deve essere compreso entro i seguenti limiti:

$$\frac{1,4}{f_{yk}} < \rho < \rho_{comp} + \frac{3,5}{f_{yk}}$$

dove:

ρ=A_s/(bh) Rapporto geometrico relativo all'armatura tesa

ok

 $\rho_{comp} = A_s'/(bh)$

Rapporto geometrico relativo all'armatura compressa

Dati Geometrici

Trave:

Base	b=	30cm
altezza	h=	40cm
allargamento	dsx =	0cm
allargamento	ddx =	0cm

copriferro c= 5cm

Valori max	Limit. ged	ometrich	e 7.4.6.1.1
30cm	b F	1 20cm	b Ø lp
120cm	b/h ŀ	р ,25	
20cm	dsx 6 /2		•
20cm	ddx≤h/2		

N/mm²

Dati di armatura

Tipo CLS	C30/37	(min C20/25)	D.M.(7.4.2.1)
Tipo Acciaio	B450C	(B450C)	D.M.(7.4.2.2)

		•			
fcd=	17,40	D.M.(4.1.2.1.1.1)	fctm=	2,94	D.M.(11.2.10.2)

ICK=	30,71	icu=	17,40	D.M.(4.1.2.1.1.1)
fyk=	450	fyd=	391,30	D.M.(4.1.2.1.1.3)

Diametro min. armatura long.

20

IP14

P6

D.M.(7.4.6.2.1)

Diametro staffe
N° braccia staffe

2

D.M.(7.4.6.2.1)

Armatura longitudinale

In campata	n°ferri_tesi n°ferri_comp.	3	As= A's=	12,56cm ² 9,42cm ²	As= A's=	12,56cm ² 9,42cm ²
zona critica	n°ferri_tesi n°ferri_comp.	3 4	As= A's=	9,42cm ² 12,56cm ²	As= A's=	9,42cm² 12,56cm²

Limitazioni Armatura longitudinale 7.4.6.2.1

In campata:	ρ ; ρ_{comp}	Arm. min.	Arm. max.	limitazioni	
	0,00718	5,4cm ²	23,0cm ²	.4/fyk< ρ D ↔ ω (3.5/fyk)	ОК
	0,00538	3,1cm ²		ρ _{comp} Η ὶ Ψρῖ ñ	OK
zona critica:	0,00538	5,4cm²	26,2cm ²	1.4/fyk< ρ D ∞ω ω ξ=+(3.5/f _y	ОК
	0,00718	4,7cm ²		ρ _{comp} ΗìρΝñ	ОК

In ogni caso almeno il 50% dell'armatura necessaria per il taglio deve essere costituita da staffe. Per gli elementi in esame l'armatura trasversale è costituita solo da staffe.

Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA LOTTO CODIFICA

RS3T 30 D 26 CL

DOCUMENTO REV.

FA00F0 001 B

FOGLIO **69 di 103**

8.4 TRAVI 30X50

Si riportano di seguito le verifiche strutturali delle travi interne aventi sezione rettangolare di dimensioni 30x50 cm. Le verifiche saranno condotte per i differenti stati limite ed in corrispondenza delle sezioni maggiormente sollecitate dell'elemento per effetto della combinazioni di carico più gravose.

Di seguito si riportano le tabelle delle sollecitazioni più gravose ottenute allo SLU (statico e sismico) e agli SLE (Rara, Frequente e Quasi Permanente).

сс	тсс	X <m></m>	N <kn></kn>	Ty <kn></kn>	Mz <knm></knm>	Tz <kn></kn>	My <knm></knm>	Mx <knm></knm>
25	SLU	0.15	-1857340	-0.000	-0.000	113.110	-54.348	0.000
25	SLU	2.84	-1857340	-0.000	-0.000	0.271	98.350	0.000
25	SLU	5.55	-1857340	-0.000	-0.000	-113.110	-54.348	0.000
29	SLU	0.15	-1857340	-0.000	-0.000	114.407	-57.848	0.165
29	SLU	2.88	-1857340	-0.000	-0.000	0.000	98.371	0.165
29	SLU	5.55	-1857340	-0.000	-0.000	-111.814	-50.849	0.165
30	SLU	0.15	-1857340	-0.000	-0.000	113.888	-56.448	0.099
30	SLU	2.87	-1857340	-0.000	-0.000	-0.000	98.358	0.099
30	SLU	5.55	-1857340	-0.000	-0.000	-112.333	-52.248	0.099
36	SLU	0.15	-1857340	-0.000	-0.000	113.288	-54.829	-0.030
36	SLU	2.85	-1857340	-0.000	-0.000	0.000	98.351	-0.030
36	SLU	5.55	-1857340	-0.000	-0.000	-112.932	-53.868	-0.030
37	SLU	0.15	-1857340	-0.000	-0.000	113.217	-54.637	-0.018
37	SLU	2.85	-1857340	-0.000	-0.000	-0.000	98.351	-0.018
37	SLU	5.55	-1857340	-0.000	-0.000	-113.004	-54.060	-0.018

СС	тсс	X <m></m>	N <kn></kn>	Ty <kn></kn>	Mz <knm></knm>	Tz <kn></kn>	My <knm></knm>	Mx <knm></knm>
26	SLE R	0.15	-1238230	-0.000	-0.000	81.331	-39.082	0.000
26	SLE R	2.84	-1238230	-0.000	-0.000	0.195	70.714	0.000
26	SLE R	5.55	-1238230	-0.000	-0.000	-81.331	-39.082	0.000
31	SLE R	0.15	-1238230	-0.000	-0.000	82.195	-41.415	0.110
31	SLE R	2.88	-1238230	-0.000	-0.000	0.000	70.727	0.110
31	SLE R	5.55	-1238230	-0.000	-0.000	-80.467	-36.749	0.110
32	SLE R	0.15	-1238230	-0.000	-0.000	81.849	-40.482	0.066
32	SLE R	2.87	-1238230	-0.000	-0.000	0.000	70.719	0.066
32	SLE R	5.55	-1238230	-0.000	-0.000	-80.812	-37.682	0.066
38	SLE R	0.15	-1238230	-0.000	-0.000	81.449	-39.402	-0.020
38	SLE R	2.85	-1238230	-0.000	-0.000	0.000	70.715	-0.020

Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D 26 CL FA00F0 001 B 70 di 103

38	SLE R	5.55	-1238230	-0.000	-0.000	-81.212	-38.761	-0.020
39	SLE R	0.15	-1238230	-0.000	-0.000	81.402	-39.274	-0.012
39	SLE R	2.85	-1238230	-0.000	-0.000	0.000	70.715	-0.012
39	SLE R	5.55	-1238230	-0.000	-0.000	-81.260	-38.890	-0.012

сс	тсс	X <m></m>	N <kn></kn>	Ty <kn></kn>	Mz <knm></knm>	Tz <kn></kn>	My <knm></knm>	Mx <knm></knm>
27	SLE F	0.15	-619114	-0.000	-0.000	73.430	-35.248	0.000
27	SLE F	2.84	-619114	-0.000	-0.000	0.176	63.883	0.000
27	SLE F	5.55	-619114	-0.000	-0.000	-73.431	-35.248	0.000
33	SLE F	0.15	-619114	-0.000	-0.000	73.603	-35.715	0.022
33	SLE F	2.86	-619114	-0.000	-0.000	0.000	63.884	0.022
33	SLE F	5.55	-619114	-0.000	-0.000	-73.258	-34.781	0.022
34	SLE F	0.15	-619114	-0.000	-0.000	73.430	-35.248	0.000
34	SLE F	2.84	-619114	-0.000	-0.000	0.176	63.883	0.000
34	SLE F	5.55	-619114	-0.000	-0.000	-73.431	-35.248	0.000
40	SLE F	0.15	-619114	-0.000	-0.000	73.454	-35.312	-0.004
40	SLE F	2.85	-619114	-0.000	-0.000	0.000	63.883	-0.004
40	SLE F	5.55	-619114	-0.000	-0.000	-73.407	-35.184	-0.004
41	SLE F	0.15	-619114	-0.000	-0.000	73.430	-35.248	0.000
41	SLE F	2.84	-619114	-0.000	-0.000	0.176	63.883	0.000
41	SLE F	5.55	-619114	-0.000	-0.000	-73.431	-35.248	0.000

сс	тсс	X <m></m>	N <kn></kn>	Ty <kn></kn>	Mz <knm></knm>	Tz <kn></kn>	My <knm></knm>	Mx <knm></knm>
28	SLE Q	0.15	0.000	-0.000	-0.000	71.456	-34.290	0.000
28	SLE Q	2.84	0.000	-0.000	-0.000	0.171	62.175	0.000
28	SLE Q	5.55	0.000	-0.000	-0.000	-71.456	-34.290	0.000
35	SLE Q	0.15	0.000	-0.000	-0.000	71.456	-34.290	0.000
35	SLE Q	2.84	0.000	-0.000	-0.000	0.171	62.175	0.000
35	SLE Q	5.55	0.000	-0.000	-0.000	-71.456	-34.290	0.000
42	SLE Q	0.15	0.000	-0.000	-0.000	71.456	-34.290	0.000
42	SLE Q	2.84	0.000	-0.000	-0.000	0.171	62.175	0.000
42	SLE Q	5.55	0.000	-0.000	-0.000	-71.456	-34.290	0.000

8.4.1 Verifica a flessione

Si riportano di seguito le verifiche a flessione, in corrispondenza della sezione d'appoggio e della sezione di campata (convenzione sui segni: compressione negativa (-), momento flettente che tende le fibre superiori negativo (-).

In funzione delle sollecitazioni si è dimensionata opportunamente l'armatura longitudinale delle travi:

1) Zone d'appoggio:

Armatura superiore 3 Φ 16

Armatura inferiore 4 Φ 16

2) Campata:

Armatura superiore 3 Φ 16

Armatura inferiore 4 Φ 16

In aggiunta, fuori calcolo, andranno disposti 2 Φ 12 come ferri di parete.

Le verifiche di resistenza a flessione allo SLU ed agli SLE (NTC2018 – 4.1.2.1.2.4) per le sezioni di appoggio e di campata sono state condotte con il supporto del MODEST considerando le sollecitazioni riportate nel prospetto precedente.

Essendo la sezione armata in maniera simmetrica in campata ed in appoggio si esegue la verifica di una sola sezione in cui le sollecitazioni calcolate in appoggio sono invertite di segno.

Travata n. 105

Nodi: 102 105

Simbologia

Cir.c = Circolare cava

Fabbricato E5 - Tipologico F - Relazione di calcolo

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR – CALTANISSETTA XIRBI (LOTTO 3) FABBRICATI

DOCUMENTO

FA00F0 001

RFV

В

FOGL IO

72 di 103

CODIFICA

CL

COMMESSA

LOTTO

30 D 26

RS3T

SLE O = Stato limite d'esercizio, combinazione quasi permanente SLD = Stato limite di danno SLV = Stato limite di salvaguardia della vita SLC = Stato limite di prevenzione del collasso SLO = Stato limite di operatività SLU I = Stato limite di resistenza al fuoco SND = Stato limite di salvaguardia della vita (non dissipativo) E1 = Elemento (asta) in cui viene effettuato il progetto/verifica (progressivo sul numero di aste) = Numero della sezione Crit. = Numero del criterio di progetto = Coordinata progressiva rispetto al nodo iniziale AfE S = Area di ferro effettiva totale presente nel punto di verifica, superiore AfE I = Area di ferro effettiva totale presente nel punto di verifica, inferiore AFEP S = Area di ferro effettiva parziale presente nella CC considerata, per la sollecitazione indicata, superiore AfEP I = Area di ferro effettiva parziale presente nella CC considerata, per la sollecitazione indicata, inferiore = Momento flettente intorno all'asse Y = Momento resistente allo stato limite ultimo intorno all'asse Y Sic. = Sicurezza a rottura = Tensione di distacco della fibra di estremità (modo 1) = Incremento percentuale sicurezza $\sigma_{\rm f}$ sup = Tensione nel ferro - superiore σ_{f} inf =Tensione nel ferro - inferiore = Tensione nel calcestruzzo X0 = Coordinata progressiva (dal nodo iniziale) dell'inizio del tratto X1 = Coordinata progressiva (dal nodo iniziale) della fine del tratto Lung. = Lunghezza del tratto di progettazione Staff. = Staffatura adottata AfE St. = Area di ferro effettiva della staffatura (d'anima per travi a T o L) = Larghezza membratura resistente al taglio = Taglio agente nella direzione del momento ultimo = Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo $ctq\theta$ = Taglio ultimo lato armatura VRcd = Taglio ultimo lato calcestruzzo Vrdu = Taglio ultimo assorbibile dal solo calcestruzzo Sic.T = Sicurezza a rottura per taglio = Ricoprimento dell'armatura С = Distanza minima tra le barre = Coefficiente di forma del diagramma delle tensioni prima della fessurazione = Distanza media tra le fessure = Diametro della barra Ф = Area complessiva dei ferri nell'area di calcestruzzo efficace = Area di calcestruzzo efficace $A_{c\ eff}$ = Tensione nell'acciaio nella sezione fessurata = Tensione nell'acciaio corrispondente al raggiungimento della resistenza a trazione nel calcestruzzo σ_{sr} = Deformazione unitaria media dell'armatura (*1000) £_{sm} = Apertura delle fessure = Tipologia 2C = Doppia C lato labbri 2Cdx = Doppia C lato costola 2I = Doppia I 2L = Doppia L lato labbri 2Ldx = Doppia L lato costole C = Sezione a C Cdx = C destra Cir. = Circolare

Fabbricato E5 - Tipologico F - Relazione di calcolo

LOTTO CODIFICA FOGLIO COMMESSA DOCUMENTO REV. 30 D 26 CL FA00F0 001 В 73 di 103

I = Sezione a I

L = Sezione a L

Ldx = L destra

Om. = Omega

Pg = Pi greco

Pr = Poligono regolare

Prc = Poligono regolare cavo

Pc = Per coordinate

Ia = Inerzie assegnate

R = Rettangolare

Rc = Rettangolare cava

T = Sezione a T

U = Sezione a U

Ur = U rovescia

V = Sezione a V

Vr = V rovescia

Zdx = Z destra

Ts = T stondata

Ls = L stondata

Cs = C stondata

Is = I stondata

Dis. = Disegnata

= Base

Н = Altezza

Cf sup = Copriferro superiore

Cf inf = Copriferro inferiore

Cls = Tipo di calcestruzzo

Fck = Resistenza caratteristica cilindrica a compressione del calcestruzzo

= Resistenza caratteristica a trazione del calcestruzzo

= Resistenza di calcolo a compressione del calcestruzzo

= Resistenza di calcolo a trazione del calcestruzzo Fctd

= Tipo di acciaio Тр

= Tensione caratteristica di snervamento dell'acciaio Fyk

= Resistenza di calcolo dell'acciaio Fyd

Caratteristiche delle sezioni e dei materiali utilizzati

Se	z. Ti	ipo	B <cm></cm>	H <cm></cm>	-	Cf inf <cm></cm>	Cls	Fck <dan cmq=""></dan>	Fctk <dan cmq=""></dan>	Fcd <dan cmq=""></dan>	Fctd <dan cmq=""></dan>	Тр	Fyk <dan cmq=""></dan>	Fyd <dan cmq=""></dan>
	1 R		30.00	50.00	5.50	5.50	C30/37	307.10	20.59	174.02	13.73	B450C	4500.00	3913.04

Stato limite ultimo - Verifiche a flessione/pressoflessione

Xg <m></m>		TCC	El					AfEP I	My <danm></danm>	MRdy <danm></danm>	Sic.
0.15	29	SLU	1	15.00	6.03	8.04	6.03	8.04	-5784.82	-9952.07	1.720
2.55	29	SLU	1	255.00	6.03	8.04	6.03	8.04	10820.50	13039.40	1.205
5.55	19	SLV	1	555.00	6.03	8.04	6.03	8.04	-5532.68	-9952.07	1.799

Stato limite d'esercizio - Verifiche tensionali

Xg <m></m>		TCC	El						$\sigma_{\rm f}$ inf <dan cmq=""></dan>	σ _c <dan cmq=""></dan>
0.15	31	SLE R	1	15.00	6.03	8.04	-4141.51	1712.15	-342.03	42.11
0.15	28	SLE Q	1	15.00	6.03	8.04	-3428.96	1417.57	-283.18	34.87

Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D 26 CL FA00F0 001 B 74 di 103

2.5	5 3 1	SLE	R	1	255.00	6.03	8.04	7779.66	-674.71	2438.25	74.25
2.5	528	SLE	Q	1	255.00	6.03	8.04	6839.29	-593.16	2143.52	65.27
5.5	526	SLE	R	1	555.00	6.03	8.04	-3908.19	1615.69	-322.76	39.74
5.5	528	SLE	Q	1	555.00	6.03	8.04	-3428.96	1417.57	-283.18	34.87

Stato limite d'esercizio - Verifiche a fessurazione

Caso	Xg <m></m>	CC	TCC	El	Sez.	Crit.	X <cm></cm>	My <danm></danm>	c <mm></mm>	s <mm></mm>	кз	s _{rm} <mm></mm>	Φ	A _s <cmq></cmq>	A _{c eff} < cmq>	σ _s <dan cmq=""></dan>	$\sigma_{\tt sr} \\ < \tt daN/cmq>$	E _{sm}	Wk <mm></mm>
35	0.15	28	SLE Q	1	1	1	15.00	-3428.96	47.00	95.00	0.17	199.56	16.00	6.03	486.13	1417.57	2260.77	0.28	0.09
39	0.15	33	SLE F	1	1	1	15.00	-3571.47	47.00	95.00	0.17	199.56	16.00	6.03	486.13	1476.49	2260.77	0.29	0.10
69	2.55	28	SLE Q	1	1	1	255.00	6839.29	47.00	63.33	0.17	171.19	16.00	8.04	489.88	2143.52	1761.71	0.69	0.20
73	2.55	33	SLE F	1	1	1	255.00	7027.20	47.00	63.33	0.17	171.19	16.00	8.04	489.88	2202.42	1761.71	0.73	0.21
111	5.55	28	SLE Q	1	1	1	555.00	-3428.96	47.00	95.00	0.17	199.56	16.00	6.03	486.13	1417.57	2260.77	0.28	0.09
114	5.55	27	SLE F	1	1	1	555.00	-3524.80	47.00	95.00	0.17	199.56	16.00	6.03	486.13	1457.19	2260.77	0.28	0.10

Stato limite d'esercizio - Verifiche a fessurazione con combinazione rara

Le verifiche sono condotte in ottemperanza a quanto prescritto dal Manuale di Progettazione delle Opere Civili RFIDTCSIPSMAIFS001C al $\S 2.5.1.8.3.2.4$

VERIFICA A	SLE FESSURAZ	ONE, TENSIONI DI I	ESERCIZIO - RARA	
В	30 cm	Mmax	77,79 KNm	
Н	50 cm	Rck	37	
С	5 cm	fck	30,71	
d	45 cm	1,2xfctm	3,60 N/mm ²	
nbarre	4	fsd	374 N/mm ²	
dmedio	1,60 cm	fyk	430 N/mm ²	
c'	4,20 cm			
deff1	16,2 cm			
deff2	18,01 cm			
deff	16,2 cm			

		deteri	minazione ε _{sm}		
β1	1			С	4,2 cm
β2	0,5			S	6,67 cm
Es	206000 N/r	mm²		k2	0,4
				k3	0,125
$\varepsilon_{\rm sm}$ =	0,084%			ф	1,6 cm
				n	4
s _{rm} =	14,567665			As	8,042477 cm2
				b	30 cm
				Ac,eff	486,00 cm2
				ρ_r	0,016548
		deter	minazione w _k		
V	w _k =	0,209 mm	w _{lim} =	0,3 mm	ОК

8.4.2 Verifica a taglio e torsione

Al fine di escludere la formazione di meccanismi inelastici dovuti al taglio, le sollecitazioni di taglio di calcolo V_{Ed} si ottengono sommando il contributo dovuto ai carichi gravitazionali agenti sulla trave, considerata incernierata agli estremi, alle sollecitazioni di taglio corrispondenti alla formazione di cerniere plastiche nella trave e prodotte dai momenti resistenti (ultimi) delle due sezioni di plasticizzazione (generalmente quelle di estremità) amplificati del fattore di sovra resistenza γ_{Rd} assunto pari a 1.0 per CDB.

Deve risultare (NTC2018 – 4.1.2.1.3.2):

$$V_{Rd} > V_{d}$$

dove:

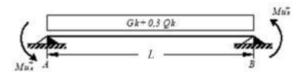
V_d = Valore di calcolo del taglio agente;

 $V_{Rd} = min (V_{Rsd}, V_{Rcd})$

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" si calcola con:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$$

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" si calcola con:

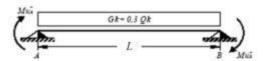

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^{2}\theta)$$

dove:

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LEGAME RCARA D	NTO PALERI	NA – CATANIA – 10 – CATANIA SSETTA XIRBI (I		-
Fabbricato E5 - Tipologico F - Relazione di calcolo	COMMESSA RS3T	LOTTO 30 D 26	CODIFICA CL	DOCUMENTO FA00F0 001	REV.	FOGLIO 76 di 103

- α: Angolo d'inclinazione dell'armatura trasversale rispetto all'asse dell'elemento;
- θ : Angolo d'inclinazione dei puntoni in calcestruzzo rispetto all'asse dell'elemento.

• <u>1° Schema</u>:



Il taglio è variabile linearmente lungo la trave ed è pari a:

$$V_{A} = \gamma_{Rd} \frac{Mu^{+}_{A} + Mu^{+}_{B}}{l_{trave}} + \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

$$V_{B} = \gamma_{Rd} \frac{Mu^{+}_{A} + Mu^{+}_{B}}{l_{trave}} - \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

2° Schema:

Il taglio è variabile linearmente lungo la trave ed è pari a:

$$V_{A} = \gamma_{Rd} \frac{Mu_{A}^{-} + Mu_{B}^{-}}{l_{trave}} + \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

$$V_{B} = \gamma_{Rd} \frac{Mu_{A}^{-} + Mu_{B}^{-}}{l_{trave}} - \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

La verifica di resistenza nei confronti della torsione (SLU) (NTC2018 – 4.1.2.1.4) consiste nel controllare che:

$$T_{Rd} \ge T_{Ed}$$

dove T_{Ed} è il valore di calcolo del momento torcente.

Per elementi prismatici sottoposti a torsione semplice o combinata con altre sollecitazioni, che abbiano sezione piena o cava, lo schema resistente è costituito da un traliccio periferico in cui gli sforzi di

trazione sono affidati alle armature longitudinali e trasversali ivi contenute e gli sforzi di compressione sono affidati alle bielle di calcestruzzo.

Con riferimento al calcestruzzo la resistenza si calcola con:

$$T_{Rcd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta / (1 + ctg \theta)$$

dove t è lo spessore della sezione cava; per sezioni piene $t = A_c/u$ dove A_c è l'area della sezione ed u è il suo perimetro; t deve essere assunta comunque ≥ 2 volte la distanza fra il bordo e il centro dell'armatura longitudinale.

Le armature longitudinali e trasversali del traliccio resistente devono essere poste entro lo spessore t del profilo periferico. Le barre longitudinali possono essere distribuite lungo detto profilo, ma comunque una barra deve essere presente su tutti i suoi spigoli.

Con riferimento alle staffe trasversali la resistenza si calcola con:

$$T_{Rsd} = 2 \cdot A \cdot (A_s/s) \cdot f_{vd} \cdot ctg\theta$$

Con riferimento all'armatura longitudinale la resistenza si calcola con:

$$T_{Rsd} = 2 \cdot A \cdot (\Sigma A_I / u_m) \cdot f_{vd} / ctg\theta$$

dove si è posto:

A area racchiusa dalla fibra media del profilo periferico;

As area delle staffe;

u_m perimetro medio del nucleo resistente;

s passo delle staffe;

ΣA_I area complessiva delle barre longitudinali.

L'inclinazione θ delle bielle compresse di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

 $0.4 \le \text{ctg } \theta \le 2.5$

Entro questi limiti, nel caso di torsione pura, può porsi ctg $\theta = (a_1/a_s)^{1/2}$

con: $a_1 = \sum A_1 / u_m$

 $a_s = A_s / s$

La resistenza alla torsione della trave è la minore delle tre sopra definite.

Si riporta di seguito un prospetto riepilogativo con i valori delle sollecitazioni taglianti e torcenti ottenute seguendo la metodologia descritta e riportata negli schemi precedenti:

Poiché il valore del taglio determinato mediante la procedura sopra riportata è maggiore del taglio di calcolo ottenuto a valle dell'analisi strutturale mediante il MODEST (V₂=114.40 kN) si procede alla verifica di resistenza considerando il seguente valore del taglio massimo:

V_{Ed-max}= 114.40 kN

Staffe - Verifiche armatura

	CC	X0 <m></m>		Lung.	Staff.	AfE St. <cmq m=""></cmq>	_		ctg	VRsd <dan></dan>	VRcd <dan></dan>	Vrdu <dan></dan>	Sic.T
29	SLU	0.15	0.65	0.50	ø8/10 2 br.	10.05	0.30	11440.70	2.37	37401.50	37401.50	37401.50	3.27
29	SLU	0.65	5.05	4.40	ø8/20 2 br.	5.03	0.30	9346.01	2.50	19693.70	36049.80	19693.70	2.11
25	SLU	5.05	5.55	0.50	ø8/10 2 br.	10.05	0.30	11311.00	2.37	37401.50	37401.50	37401.50	3.31

Si adotteranno nelle zone d'appoggio, per un tratto pari ad 65 cm dal filo esterno del pilastro, staffe Φ8/10 cm, per il rispetto dei limiti normativi, mentre nelle zone centrali di campata staffe Φ8/20 cm.

8.4.3 Verifica limitazioni armatura

In ogni sezione della trave, il rapporto geometrico ρ relativo all'armatura tesa, indipendentemente dal fatto che l'armatura tesa sia quella al lembo superiore della sezione A_s o quella al lembo inferiore della sezione A_i , deve essere compreso entro i sequenti limiti:

ok

$$\frac{1,4}{f_{yk}} < \rho < \rho_{comp} + \frac{3,5}{f_{yk}}$$

dove:

ρ=A_s/(bh) Rapporto geometrico relativo all'armatura tesa

ρ_{comp}=A_s'/(bh) Rapporto geometrico relativo all'armatura compressa

Dati Geometrici

Trave:

Base	b=	30cm		
altezza	h=	50cm		
allargamento	dsx =	0cm		
allargamento	ddx =	0cm		
- '				

copriferro	C=	5cm

Valori max	Limit. ge	ometrich	metriche 7.4.6.1.1				
30cm	ьŀ	⊉ 0cm	b Ølp				
120cm	b/h ŀ	D,25					
25cm	dsx 6 /2		•				
25cm	ddx≤h/2						

Dati di armatura

Tipo CLS	C30/37	(min C20/25)	D.M.(7.4.2.1)		$R_{ck} =$	37	N/mm ²
Tipo Acciaio	B450C	(B450C)	D.M.(7.4.2.2)				
fck=	30,71	fcd=	17,40	D.M.(4.1.2.1.1.1)	fctm=	2,94	D.M.(11.2.10.2)
fyk=	450	fyd=	391,30	D.M.(4.1.2.1.1.3)			
Diametro mir	n. armatura long.	16	IP 14	D.M.(7.4.6.2.1)			
	etro staffe ccia staffe	8 2	IP 6	D.M.(7.4.6.2.1)			

Armatura longitudinale

In campata	n°ferri_tesi n°ferri_comp.	3	As= A's=	8,04cm ² 6,03cm ²	As= A's=	8,04cm² 6,03cm²
zona critica	n°ferri_tesi n°ferri_comp.	3 4	As= A's=	6,03cm ² 8,04cm ²	As= A's=	6,03cm² 8,04cm²

Limitazioni Armatura longitudinale 7.4.6.2.1

In campata:	ρ ; ρ_{comp}	Arm. min.	Arm. max.	limitazioni	
	0,00536	4,7cm ²	17,7cm ²	.4/fyk< ρ D το 65+(3.5/fyk)	ОК
	0,00402	2,0cm ²		ρ _{comp} Η ὶ ψρῖ ñ	ОК
zona critica:	0,00402	4,7cm²	19,7cm²	1.4/fyk< ρ D ∞ ω ω (3.5/f _y	ОК
	0,00536	3,0cm ²		ρ _{comp} Ηì ρ ñ	ОК

In ogni caso almeno il 50% dell'armatura necessaria per il taglio deve essere costituita da staffe.

Per gli elementi in esame l'armatura trasversale è costituita solo da staffe.

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LEGAME RCARA D	NTO PALERI	NA – CATANIA – 10 – CATANIA SSETTA XIRBI (I		
Fabbricato E5 - Tipologico F - Relazione di calcolo	COMMESSA RS3T	LOTTO 30 D 26	CODIFICA CL	DOCUMENTO FA00F0 001	REV.	FOGLIO 80 di 103

8.5 PILASTRI D'ANGOLO (30X50)

Si riportano di seguito le verifiche strutturali dei pilastri d'angolo aventi sezione rettangolare di dimensioni 30x50 cm. Le verifiche saranno condotte per i differenti stati limite ed in corrispondenza delle sezioni maggiormente sollecitate dell'elemento per effetto delle combinazioni di carico più gravose.

Preliminarmente alla verifica di resistenza dei pilastri allo SLU è necessario valutare la stabilità degli elementi snelli. Tali verifiche devono essere condotte attraverso un'analisi del secondo ordine che tenga conto degli effetti flessionali delle azioni assiali sulla configurazione deformata degli elementi stessi. In via approssimativa gli effetti del secondo ordine in pilastri singoli possono essere trascurati se la snellezza λ non supera il valore limite (4.1.2.1.7-NTC2018):

$$\lambda_{\text{lim}} = 15.4 \cdot \frac{C}{\sqrt{\nu}}$$

dove:

 $v = N_{Ed} / (A_c \cdot f_{cd})$ è l'azione assiale adimensionale;

C = 1,7 - r_m dipende dalla distribuzione dei momenti del primo ordine;

 $r_m = M_{01} / M_{02}$ rapporto tra i momenti flettenti del primo ordine alle due estremità del pilastro (con

 $M_{02} \ge M_{01}$).

E' stata valutata la snellezza λ del pilastro:

SNELLEZZA LIMITE PILASTRI

NED =	93350	N
B=	300	mm
H=	500	mm
fcd=	17,40	N/mm ²
n	0,0358	
С	2,017	
Mtesta	15685000	Nxmm
Mpiede	49506000	Nxmm
rm	0,3168	
l limite	164,215	
SNELLEZZA	A PILASTRO	
J min	1,125E+09	mm^4
r min	86,603	mm
b	1	
LO	4000	mm
I pilastro	46,188	

La verifica risulta soddisfatta.

Per quanto concerne le non linearità geometriche sono prese in conto, quando necessario, attraverso il fattore θ di seguito definito. In particolare, per le costruzioni civili ed industriali esse possono essere trascurate nel caso in cui risulti:

$$\theta = \frac{P \cdot d_{_{\rm r}}}{V \cdot h} \le 0.1$$

dove:

P è il carico verticale totale agente;

d_r è lo spostamento orizzontale medio d'interpiano;

V è la forza orizzontale totale agente;

h è l'altezza dell'elemento.

Si riporta di seguito la verifica delle non linearità geometriche facendo riferimento alle combinazioni di carico che producono lo spostamento orizzontale maggiore SLD_Y.

Elenco spostamenti e rigidezze teoriche di impalcato

```
Simbologia
```

```
= Numero dell'impalcato
        = Spostamento impalcato in dir. X
Rig X = Rigidezza teorica in direzione X
Dif X % = Differenza percentuale della rigidezza X rispetto all'impalcato precedente
        = Coefficiente \Theta in dir. X
        = Coordinata X della posizione baricentro rigidezze teorico
        = Spostamento impalcato in dir. Y
Rig Y = Rigidezza teorica in direzione Y
Dif Y % = Differenza percentuale della rigidezza Y rispetto all'impalcato precedente
       = Coefficiente \Theta in dir. Y
     = Coordinata Y della posizione baricentro rigidezze teorico
Br Y
                         Rig X Dif X % \Theta_{\text{x}}
                                                                      Rig Y Dif Y % \Theta_{\text{y}}
                                                                                        Br Y
Imp.
                                           Br X
                4.14E-03 41203.40 0.00 2.99E-03 4.04
                                                             4.13E-03 41305.80 0.00 2.98E-03 3.00
```


Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA LOTTO CODIFICA

RS3T 30 D 26 CL

FA00F0 001

REV. FOGLIO **B** 82 di 103

8.5.1 Verifica a flessione

Nelle tabelle seguenti sono riportate le sollecitazioni ottenute agli SLU statico e simico ed agli SLE (rara, frequente e quasi permanente).

сс	тсс	X <m></m>	N <kn></kn>	Ty <kn></kn>	Mz <knm></knm>	Tz <kn></kn>	My <knm></knm>	Mx <knm></knm>
25	SLU	0.00	-99705	-1102	1477	-21699	29151	-0.000
25	SLU	3.75	-81424	-1102	-2657	-21699	-52219	-0.000
29	SLU	0.00	-105251	-1569	2439	-36808	54366	-0.291
29	SLU	3.75	-86970	-1569	-3444	-26964	-65208	-0.291
30	SLU	0.00	-103033	-1382	2054	-30764	44280	-0.175
30	SLU	3.75	-84752	-1382	-3129	-24858	-60012	-0.175
36	SLU	0.00	-104475	-0.994	1264	-31615	48958	0.057
36	SLU	3.75	-86194	-0.994	-2462	-28803	-64326	0.057
37	SLU	0.00	-102567	-1037	1349	-27649	41035	0.034
37	SLU	3.75	-84286	-1037	-2540	-25961	-59483	0.034

СС	тсс	X <m></m>	N <kn></kn>	Ty <kn></kn>	Mz <knm></knm>	Tz <kn></kn>	My <knm></knm>	Mx <knm></knm>
26	SLE R	0.00	-72698	-0.798	1070	-15585	20938	-0.000
26	SLE R	3.75	-58635	-0.798	-1924	-15585	-37506	-0.000
31	SLE R	0.00	-76395	-1109	1711	-25658	37748	-0.194
31	SLE R	3.75	-62333	-1109	-2449	-19096	-46165	-0.194
32	SLE R	0.00	-74916	-0.985	1455	-21629	31024	-0.116
32	SLE R	3.75	-60854	-0.985	-2239	-17691	-42702	-0.116
38	SLE R	0.00	-75878	-0.726	0.928	-22196	34142	0.038
38	SLE R	3.75	-61816	-0.726	-1794	-20321	-45577	0.038
39	SLE R	0.00	-74606	-0.755	0.985	-19552	28861	0.023
39	SLE R	3.75	-60544	-0.755	-1846	-18427	-42349	0.023

СС	тсс	X <m></m>	N <kn></kn>	Ty <kn></kn>	Mz <knm></knm>	Tz <kn></kn>	My <knm></knm>	Mx <knm></knm>
27	SLE F	0.00	-68932	-0.785	1054	-14377	19315	-0.000
27	SLE F	3.75	-54869	-0.785	-1891	-14377	-34600	-0.000
33	SLE F	0.00	-69671	-0.848	1183	-16392	22677	-0.039
33	SLE F	3.75	-55609	-0.848	-1996	-15079	-36332	-0.039
34	SLE F	0.00	-68932	-0.785	1054	-14377	19315	-0.000
34	SLE F	3.75	-54869	-0.785	-1891	-14377	-34600	-0.000
40	SLE F	0.00	-69568	-0.771	1026	-15700	21956	0.008

Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30 D 26	CL	FA00F0 001	В	83 di 103

40	SLE F	3.75	-55505	-0.771	-1865	-15325	-36214	0.008
41	SLE F	0.00	-68932	-0.785	1054	-14377	19315	-0.000
41	SLE F	3.75	-54869	-0.785	-1891	-14377	-34600	-0.000

СС	тсс	X <m></m>	N <kn></kn>	Ty <kn></kn>	Mz <knm></knm>	Tz <kn></kn>	My <knm></knm>	Mx <knm></knm>
28	SLE Q	0.00	-67990	-0.782	1050	-14075	18910	-0.000
28	SLE Q	3.75	-53928	-0.782	-1883	-14075	-33873	-0.000
35	SLE Q	0.00	-67990	-0.782	1050	-14075	18910	-0.000
35	SLE Q	3.75	-53928	-0.782	-1883	-14075	-33873	-0.000
42	SLE Q	0.00	-67990	-0.782	1050	-14075	18910	-0.000
42	SLE Q	3.75	-53928	-0.782	-1883	-14075	-33873	-0.000

Pilastri d'angolo

In funzione delle sollecitazioni si è dimensionata opportunamente l'armatura longitudinale del pilastro:

Armatura lati corti
 2 Φ 20

Armatura lato lungo
 2 Φ 20 + 1 Φ 16

Le verifiche di resistenza a flessione allo SLU ed agli SLE (NTC2018 – 4.1.2.1.2.4) per le sezioni di incastro e di campata sono state condotte con il supporto del MODEST considerando le sollecitazioni riportate nel prospetto precedente.

Essendo i pilastri orientati in maniera diversa sono state eseguite le verifiche coerentemente con l'orientamento degli assi locali definiti nel modello di calcolo.

Pilastrata n. 1

Nodi: 1 101

Simbologia

Br.,

Br.

= Numero bracci in dir. Y locale = Numero bracci in dir. Z locale DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR – CALTANISSETTA XIRBI (LOTTO 3) FABBRICATI

Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA LOTTO CODIFICA

RS3T 30 D 26 CL

DOCUMENTO

REV. FOGLIO

FA00F0 001 B 84 di 103

```
SLD = Stato limite di danno
          SLV = Stato limite di salvaguardia della vita
          SLC = Stato limite di prevenzione del collasso
          SLO = Stato limite di operatività
          SLU I = Stato limite di resistenza al fuoco
          SND = Stato limite di salvaguardia della vita (non dissipativo)
        = Elemento (asta) in cui viene effettuato il progetto/verifica (progressivo sul numero di aste)
        = Numero della sezione
Sez.
Χ
        = Coordinata progressiva rispetto al nodo iniziale
Ν
        = Sforzo normale
Mz.
        = Momento flettente intorno all'asse Z
        = Momento flettente intorno all'asse Y
Mν
My ver. = Momento flettente di verifica intorno all'asse Y
         = Ricoprimento dell'armatura
        = Distanza minima tra le barre
K3
        = Coefficiente di forma del diagramma delle tensioni prima della fessurazione
        = Distanza media tra le fessure
srm
        = Diametro della barra
Φ
        = Area complessiva dei ferri nell'area di calcestruzzo efficace
A.
         = Area di calcestruzzo efficace
         = Tensione nell'acciaio nella sezione fessurata
\sigma_s
        = Tensione nell'acciaio corrispondente al raggiungimento della resistenza a trazione nel calcestruzzo
\sigma_{\text{sr}}
        = Deformazione unitaria media dell'armatura (*1000)
         = Apertura delle fessure
        = Momento flettente
Μ
MRd
        = Momento resistente allo stato limite ultimo
μΦ
        = Valore di progetto della duttilità di curvatura
        = Capacità della duttilità di curvatura
\mu\Phi_c
         = Coefficiente di efficacia del confinamento
αo
        = Rapporto meccanico dell'armatura trasversale di confinamento all'interno della zona dissipativa
\omega_{\text{Wd}}
        = Domanda della duttilità di curvatura
\mu\Phi_d
         = Forza assiale adimensionalizzata di progetto
        = Deformazione di snervamento dell'acciaio
E_{\text{sy},\text{d}}
        = Rapporto tra la larghezza minima della sezione trasversale lorda e la larghezza del nucleo confinato
Mz ver. = Momento flettente di verifica intorno all'asse Z
        = Sforzo normale ultimo
Nu
MRdy
         = Momento resistente allo stato limite ultimo intorno all'asse Y
MRdz
         = Momento resistente allo stato limite ultimo intorno all'asse Z
        = Angolo asse neutro a rottura
α
        = Deformazione nell'acciaio (*1000)
Ev.
        = Sicurezza a rottura
Sic
        = Area di ferro tesa
AfT
AfC
        = Area di ferro compressa
        = Tensione nel calcestruzzo
\sigma_{c}
        = Tensione nel ferro
\sigma_{\epsilon}
        = Coordinata progressiva (dal nodo iniziale) dell'inizio del tratto
X0
Х1
         = Coordinata progressiva (dal nodo iniziale) della fine del tratto
Staff. = Staffatura adottata
```


Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D 26 CL FA00F0 001 B 85 di 103

```
= Larghezza membratura resistente al taglio in dir. Y
        = Taglio agente in dir. Y
Vsdu,
        = Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo in dir. Y
ctq0,v
VRsd, v
        = Taglio ultimo lato armatura in dir. Y
VRcd,
        = Taglio ultimo lato calcestruzzo in dir. Y
        = Larghezza membratura resistente al taglio in dir. Z
bw,,
Vsdu, z = Taglio agente in dir. Z
        = Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo in dir. Z
ctg\theta_{rz}
        = Taglio ultimo lato armatura in dir. Z
VRsd.
        = Taglio ultimo lato calcestruzzo in dir. Z
VRcd.
Sic.T
        = Sicurezza a rottura per taglio
Nodo
        = Numero del nodo
Conf.
        = Nodo confinato
         S = Sì
         N = No
        = Identificativo faccia del nodo
F.
          Y+ = Faccia sul lato positivo Y locale pilastro
          Z+ = Faccia sul lato positivo Z locale pilastro
          Y- = Faccia sul lato negativo Y locale pilastro
          Z- = Faccia sul lato negativo Z locale pilastro
        = Modalità di verifica faccia
Mod
         I = Interna
         E = Esterna
Br.
        = Numero bracci
        = Area di ferro superiore delle travi incidenti sulla faccia
As1
        = Area di ferro inferiore delle travi incidenti sulla faccia
        = Larghezza effettiva utile del nodo
Βi
        = Distanza tra armature pilastro
Ніс
Ηiw
        = Distanza tra armature trave
Ash
        = Area totale della sezione della staffa
        = Taglio nel pilastro al di sopra del nodo
Vc
        = Taglio agente nel nucleo di calcestruzzo [7.4.6/7]
Vibd
        = Sforzo normale normalizzato del pilastro superiore (%)
\nu d_s
        = Sforzo normale normalizzato del pilastro inferiore (%)
\nu \text{d}_{\text{i}}
        = Resistenza a compressione del nucleo di calcestruzzo [7.4.8]
VjbR
        = Azione di fessurazione sul nodo integro [7.4.10]
Afni
Rfni
        = Resistenza a fessurazione nodo integro [7.4.10]
Viwd
        = Azione agente di trazione diagonale [7.4.11/12]
ViwR
        = Resistenza a trazione diagonale [7.4.11/12]
Tipo
        = Tipologia
          2C = Doppia C lato labbri
          2Cdx = Doppia C lato costola
          2I = Doppia I
          2L = Doppia L lato labbri
          2Ldx = Doppia L lato costole
          C = Sezione a C
          Cdx = C destra
          Cir. = Circolare
          Cir.c = Circolare cava
          I = Sezione a I
          L = Sezione a L
```

Fabbricato E5 - Tipologico F - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 FA00F0 001
 B
 86 di 103

Ldx = L destra

Om. = Omega

Pg = Pi greco

Pr = Poligono regolare

Prc = Poligono regolare cavo

Pc = Per coordinate

Ia = Inerzie assegnate

R = Rettangolare

Rc = Rettangolare cava

T = Sezione a T

U = Sezione a U

Ur = U rovescia

V = Sezione a V

Vr = V rovescia

Z = Sezione a Z

Zdx = Z destra

Ts = T stondata

Ls = L stondata

Cs = C stondata

Is = I stondata

Dis. = Disegnata

B = Base

H = Altezza

Cf = Copriferro

Cls = Tipo di calcestruzzo

Fck = Resistenza caratteristica cilindrica a compressione del calcestruzzo

Fctk = Resistenza caratteristica a trazione del calcestruzzo
Fcd = Resistenza di calcolo a compressione del calcestruzzo

Fctd = Resistenza di calcolo a trazione del calcestruzzo

Tp = Tipo di acciaio

Fyk = Tensione caratteristica di snervamento dell'acciaio

Fyd = Resistenza di calcolo dell'acciaio

Caratteristiche delle sezioni e dei materiali utilizzati

Sez.	Tipo	B <cm></cm>	H	Cf <cm></cm>	Cls	Fck	Fctk	Fcd	Fctd <dan cmg=""></dan>	Тp	Fyk <dan cmg=""></dan>	Fyd
		\CIII>	<cm></cm>	\CIII>		Cdan/chiq/	Can/chiq/	Cdan/chiq/	Can/chiq/		Can/chiq/	Can/chiq/
3	R	30.00	50.00	6.00	C30/37	307.10	20.59	174.02	13.73	B450C	4500.00	3913.04

Stato limite ultimo - Verifiche a flessione/pressoflessione

Xg <m></m>	CC	TCC	El	Sez.	X <cm></cm>	N <dan></dan>	My <danm></danm>	My ver. <danm></danm>	Mz <danm></danm>	Mz ver. <danm></danm>	Nu <dan></dan>	MRdy <danm></danm>	MRdz <danm></danm>	α <grad></grad>	εγ	Sic.
0.00	7	SLV	1	3	0.00	-4898.85	7268.90		-901.87		-4898.85	14040.70	-1709.39	345.94	10.27	1.931
0.00	7	SLV	1	3	0.00	-4898.85	7268.90		-901.87		-4898.85	14040.70	-1709.39	345.94	10.27	1.931
3.65	7	SLV	1	3	365.00	-3530.10	-6543.93		-711.46		-3530.10	-13835.90	-1433.06	191.25	11.27	2.113

Stato limite d'esercizio - Verifiche tensionali

Xg <m></m>	СС	TCC	El	Sez.	X <cm></cm>	N <dan></dan>	Mz <danm></danm>	My <danm></danm>		AfC <cmq></cmq>	σ _c <dan cmq=""></dan>	$\sigma_{\rm f}$ <dan cmq=""></dan>
0.00	31	SLE R	1	3	0.00	-7639.53	171.14	3774.76	10.30	6.28	46.32	937.12
0.00	28	SLE Q	1	3	0.00	-6799.02	105.05	1890.98	10.30	6.28	23.25	311.86

Fabbricato E5 - Tipologico F - Relazione di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3T	30 D 26	CL	FA00F0 001	В	87 di 103

0.00	31	SLE	R	1	3	0.00	-7639.53	171.14	3774.76	10.30	6.28	46.32	937.12
0.00	28	SLE	Q	1	3	0.00	-6799.02	105.05	1890.98	10.30	6.28	23.25	311.86
3.65	31	SLE	R	1	3	365.00	-6270.78	-233.79	-4424.70	10.30	6.28	55.19	1266.89
3.65	28	SLE	Q	1	3	365.00	-5430.27	-180.49	-3246.58	10.30	6.28	40.70	881.62

Stato limite d'esercizio - Verifiche a fessurazione

Xg <m></m>		TCC	El	Sez.	X <cm></cm>	N <dan></dan>	My <danm></danm>	Mz <danm></danm>	c <mm></mm>	s <mm></mm>	кз	s _{rm} <mm></mm>	Ф	A _s <cmq></cmq>	A _{c eff}	σ _s <dan cmq=""></dan>		E _{sm}	Wk <mm></mm>
0.00	28	SLE Q	1	. 3	0.00	-6799.02	1890.98	105.05	49.00	182.00	0.13	233.54	20.00	8.29	822.22	311.86	1135.81	0.06	0.02
0.00	28	SLE Q	1	. 3	0.00	-6799.02	1890.98	105.05	49.00	182.00	0.13	233.54	20.00	8.29	822.22	311.86	1135.81	0.06	0.02
3.65	28	SLE Q	1	. 3	365.00	-5430.27	-3246.58	-180.49	49.00	182.00	0.13	235.94	20.00	10.30	1046.30	881.62	1539.77	0.17	0.07

Staffe - Verifiche armatura

x0 <m></m>	X1 <m></m>	Staff.	Bry	Brz	СС	TCC	bw,y <m></m>	Vsdu,y <dan></dan>	ctgθ,y	VRsd,y <dan></dan>	VRcd,y <dan></dan>	bw,z <m></m>	Vsdu,z <dan></dan>	ctgθ,z	VRsd,z <dan></dan>	VRcd,z <dan></dan>	Sic.T
0.00	0.61	ø10/ 8	2	2	29	SLU	0.50	156.90	2.21	36854.60	36854.60	0.30	3680.82	1.59	48547.50	48547.50	13.19
0.00	0.61	ø10/ 8	2	2	22 (TG)	SLV	0.50	1197.11	2.19	36506.00	36506.00	0.30	8643.10	1.57	48015.50	48015.50	5.56
0.00	0.61	ø10/ 8	2	2	13(TG)	SLV	0.50	4507.96	2.20	36615.20	36615.20	0.30	4548.11	1.58	48182.30	48182.30	8.12
0.61	3.04	ø8/18	2	2	29	SLU	0.50	156.90	2.50	11850.60	33814.40	0.30	3521.13	2.50	21685.20	37125.70	6.16
0.61	3.04	ø8/18	2	2	22 (TG)	SLV	0.50	1197.11	2.50	11850.60	33322.20	0.30	8643.10	2.50	21685.20	36585.30	2.51
0.61	3.04	ø8/18	2	2	19(TG)	SLV	0.50	1525.93	2.50	11850.60	33453.10	0.30	8662.02	2.50	21685.20	36729.10	2.50
0.61	3.04	ø8/18	2	2	13(TG)	SLV	0.50	4507.96	2.50	11850.60	33487.50	0.30	4548.11	2.50	21685.20	36766.70	2.63
3.04	3.65	ø8/10	2	2	36	SLU	0.50	99.36	2.50	21331.10	33656.90	0.30	2933.40	2.42	37807.30	37807.30	12.89
3.04	3.65	ø8/10	2	2	29	SLU	0.50	156.90	2.50	21331.10	33666.50	0.30	2882.38	2.42	37813.70	37813.70	13.12
3.04	3.65	ø8/10	2	2	22(TG)	SLV	0.50	1197.11	2.50	21331.10	33322.20	0.30	8643.10	2.41	37586.70	37586.70	4.35
3.04	3.65	ø8/10	2	2	13(TG)	SLV	0.50	4507.96	2.50	21331.10	33487.50	0.30	4548.11	2.41	37695.80	37695.80	4.73

Dettagli costruttivi per la duttilità

Caratteristiche nodi trave-pilastro

Nodo	Conf.	Staff.	F.	Mod.			As2 <cmq></cmq>	_	_	_	
101	N	ø10/ 8	Y-	E	2	4.02	4.02	0.45	0.18	0.29	7.85
			Z-	E	2	6.03	6.03	0.30	0.38	0.39	9.42

Verifiche nodi trave-pilastro

Nodo	F.	CC		Vc <dan></dan>	Vjbd <dan></dan>	vd_s	vd_i	VjbR <dan></dan>	Afni <dan mq=""></dan>	Rfni <dan mq=""></dan>	Vjwd <dan></dan>	_
101	Y-	1	SLV	0.00	17308.80	0.00	1.26	59348.90	195303.00	235502.00		
	z-	1	SLV	0.00	25963.20	0.00	1.26	83528.10	240506.00	315210.00		

8.5.2 Verifica limitazioni armatura

Resta da verificare che l'armatura determinata in funzione delle sollecitazioni agenti rispetti le limitazioni riportate nel punto 7.4.6.2.2 delle NTC2018:

- Per tutta la lunghezza del pilastro l'interasse tra le barre non deve essere superiore a 25 cm;
- Nella sezione corrente del pilastro, la percentuale geometrica ρ di armatura longitudinale, con ρ rapporto tra l'area dell'armatura longitudinale e l'area della sezione del pilastro, deve essere compresa entro i seguenti limiti:

$$1\% < \rho < 4\%$$

- Nelle zone critiche devono essere rispettate le condizioni seguenti: le barre disposte sugli angoli
 della sezione devono essere contenute dalle staffe; almeno una barra ogni due, di quelle disposte
 sui lati, deve essere trattenuta da staffe interne o legature; le barre non fissate si devono trovare a
 meno di 20 cm da una barra fissata per CDB.
- Il diametro delle staffe di contenimento e legature deve essere non inferiore a 6 mm ed il loro passo deve essere non superiore alla più piccola delle quantità seguenti:
 - 1/2 del lato minore della sezione trasversale per CDB;
 - 175 mm (per CD"B");
 - 8 volte il diametro minimo delle barre longitudinali che collegano (per CD"B")
- li devono disporre staffe in un quantitativo minimo non inferiore a:

$$\frac{A_{st}}{s} = 0.08 \frac{f_{cd}.b_{st}}{f_{vd}}$$

Nel caso specifico risulta:

Le staffe orizzontali presenti lungo l'altezza del nodo devono verificare la seguente condizione

Nella quale n_{st} e A_{st} sono rispettivamente il numero di bracci e l'area della sezione trasversale della barra della singola staffa orizzontale, i è l'interasse, e b_j è la larghezza utile del nodo determinata come segue:

se la trave ha una larghezza b_w superiore a quella del pilastro b_c, allora b_j è il valore minimo
 fra

b_w e b_c + h_c/2, essendo h_c la dimensione della sezione della colonna parallela alla trave;

- se la trave ha una larghezza b_w inferiore a quella del pilastro b_c , allora b_j è il valore minimo fra

 $b_c e b_w + h_c/2$.

Devono inoltre essere rispettati i limiti riportati al punto 4.1.6.1.2 delle NTC2018:

 Nel caso di elementi sottoposti a prevalente sforzo normale, le barre parallele all'asse devono avere diametro maggiore od uguale a 12 mm. Inoltre la loro area non deve essere inferiore a :

$$A_{s,\min} = (0.10 \cdot \frac{N_{Ed}}{f_{vd}})$$

e comunque non minore di 0.003 Ac;

dove:

N_{Ed} rappresenta lo sforzo di compressione assiale di calcolo;

Ac è l'area di calcestruzzo;

f_{yd} è il valore della resistenza di calcolo dell'armatura.

Nel caso in esame risulta:

Dati Geometrici

Pilastro:

Base	b=	30,0cm
ltezza sez.	h=	50,0cm
Copriferro	C=	5,0cm
Altezza pil.	hp=	400,0cm
Altezza libera	hl=	400,0cm

ОК

Lim. Geom	. 7.4.6.1.2
ьΗ	25cm

Dati di armatura

Tipo CLS	C30/37	(min C20/25)	D.M.(7.4.2.1)	R _{ck} =	37	N/mm ²
Tipo Acciaio	B450C	(B450C)	D.M.(7.4.2.2)			

fck=	30,71	fcd=	17,40	D.M.(4.1.2.1.1.1)	fctm=	2,94	D.M.(11.2.10.2)
fyk=	450	fyd=	391,30	D.M.(4.1.2.1.1.3)			

Diametro armatura long.	20	P 12		
Diametro staffe	8	19 6	OK	H∼í Фò ng

Armatura longitudinale

n°ferri "b"	n°ferri "h"			
4	8	n°ferri_tot =	8	
tot sui due lati	tot sui due lati	As+A's=	47.90cm ²	

Limitazioni Armatura longitudinale7.4.6.2.2

ρ	Arm. min.	Arm. max.	limitazioni	
3.19%	15.0cm ²	60.00cm ²	í 9 & G ð 9	ОК

Limitazioni Armatura longitudinale 4.1.6.1.2

		Arm. min.	Arm. max.			
		4,5	60			ОК
Inter. Ferri"b"	20,0cm	ОК	Gîñ	ОК	G	- O R Q 4J
Inter. Ferri"h"	13,3cm	ОК	Gîñ	ОК	G	- O R Q 4J

Si riscontra, pertanto, che l'armatura dei pilastri rispetta i limiti prescritti dalle NTC2018.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA LERCARA DIR – CALTANISSETTA XIRBI (LOTTO 3) FABBRICATI						
Fabbricato E5 - Tipologico F - Relazione di calcolo	COMMESSA RS3T	LOTTO 30 D 26	CODIFICA CL	DOCUMENTO FA00F0 001	REV.	FOGLIO 91 di 103	

8.6 PILASTRI INTERNI (30X50)

Si riportano di seguito le verifiche strutturali dei pilastri interni aventi sezione rettangolare di dimensioni 30x50 cm. Le verifiche saranno condotte per i differenti stati limite ed in corrispondenza delle sezioni maggiormente sollecitate dell'elemento per effetto delle combinazioni di carico più gravose.

Preliminarmente alla verifica di resistenza dei pilastri allo SLU è necessario valutare la stabilità degli elementi snelli. Tali verifiche devono essere condotte attraverso un'analisi del secondo ordine che tenga conto degli effetti flessionali delle azioni assiali sulla configurazione deformata degli elementi stessi. In via approssimativa gli effetti del secondo ordine in pilastri singoli possono essere trascurati se la snellezza λ non supera il valore limite (4.1.2.1.7-NTC2018):

$$\lambda_{\text{lim}} = 15.4 \cdot \frac{C}{\sqrt{\nu}}$$

dove:

 $v = N_{Ed} / (A_c \cdot f_{cd})$ è l'azione assiale adimensionale;

C = 1,7 - r_m dipende dalla distribuzione dei momenti del primo ordine;

 $r_m = M_{01} / M_{02}$ rapporto tra i momenti flettenti del primo ordine alle due estremità del pilastro (con

 $M_{02} \ge M_{01}$).

E' stata valutata la snellezza λ del pilastro:

SNELLEZZA LIMITE PILASTRI

NED =	181894	N				
B=	300	mm				
H=	500	mm				
fcd=	17,40	N/mm ²				
n	0,0697					
С	1,870					
Mtesta	7320000	Nxmm				
Mpiede	43167000 Nxmm					
rm	0,1696					
I limite	109,052					
SNELLEZZA	A PILASTRO					
J min	1,125E+09	$\rm mm^4$				
r min	86,603	mm				
b	1					
LO	4800	mm				
I pilastro	55,426					

La verifica risulta soddisfatta.

Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA LOTTO CODIFICA

RS3T 30 D 26 CL

DOCUMENTO FA00F0 001

REV. FOGLIO **B** 92 di 103

8.6.1 Verifica a flessione

Nelle tabelle seguenti sono riportate le sollecitazioni ottenute agli SLU statico e simico ed agli SLE (rara, frequente e quasi permanente).

	1	1						
сс	тсс	X <m></m>	N <kn></kn>	Ty <kn></kn>	Mz <knm></knm>	Tz <kn></kn>	My <knm></knm>	Mx <knm></knm>
25	SLU	0.00	-170099	-21383	29063	-0.922	1179	-0.000
25	SLU	3.75	-151818	-21383	-51121	-0.922	-2278	-0.000
29	SLU	0.00	-168923	-5673	11514	0.170	-1199	-0.291
29	SLU	3.75	-150641	-25360	-46672	0.170	-0.563	-0.291
30	SLU	0.00	-169393	-11957	18534	-0.267	-0.248	-0.175
30	SLU	3.75	-151112	-23769	-48452	-0.267	-1249	-0.175
36	SLU	0.00	-169824	-5252	12801	-1144	1657	0.057
36	SLU	3.75	-151542	-27752	-49082	-1144	-2632	0.057
37	SLU	0.00	-169934	-11704	19306	-1055	1466	0.034
37	SLU	3.75	-151653	-25204	-49898	-1055	-2490	0.034

сс	тсс	X <m></m>	N <kn></kn>	Ty <kn></kn>	Mz <knm></knm>	Tz <kn></kn>	My <knm></knm>	Mx <knm></knm>
26	SLE R	0.00	-123496	-15373	20895	-0.668	0.855	-0.000
26	SLE R	3.75	-109433	-15373	-36755	-0.668	-1650	-0.000
31	SLE R	0.00	-122711	-4900	9196	0.060	-0.731	-0.194
31	SLE R	3.75	-108649	-18025	-33788	0.060	-0.507	-0.194
32	SLE R	0.00	-123025	-9089	13876	-0.231	-0.097	-0.116
32	SLE R	3.75	-108963	-16964	-34975	-0.231	-0.964	-0.116
38	SLE R	0.00	-123312	-4620	10054	-0.816	1173	0.038
38	SLE R	3.75	-109250	-19620	-35395	-0.816	-1886	0.038
39	SLE R	0.00	-123386	-8921	14390	-0.757	1046	0.023
39	SLE R	3.75	-109323	-17921	-35939	-0.757	-1792	0.023

сс	тсс	X <m></m>	N <kn></kn>	Ty <kn></kn>	Mz <knm></knm>	Tz <kn></kn>	My <knm></knm>	Mx <knm></knm>
27	SLE F	0.00	-115208	-13897	18889	-0.667	0.860	-0.000
27	SLE F	3.75	-101146	-13897	-33226	-0.667	-1643	-0.000
33	SLE F	0.00	-115052	-11803	16549	-0.522	0.543	-0.039
33	SLE F	3.75	-100989	-14428	-32633	-0.522	-1415	-0.039
34	SLE F	0.00	-115208	-13897	18889	-0.667	0.860	-0.000
34	SLE F	3.75	-101146	-13897	-33226	-0.667	-1643	-0.000

Fabbricato E5 - Tipologico F - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30 D 26	CL	FA00F0 001	В	93 di 103

40	SLE F	0.00	-115172	-11747	16721	-0.697	0.923	0.008
	SLE F			-14747	-32954			
40		3.75	-101109			-0.697	-1690	0.008
41	SLE F	0.00	-115208	-13897	18889	-0.667	0.860	-0.000
41	SLE F	3.75	-101146	-13897	-33226	-0.667	-1643	-0.000

сс	тсс	X <m></m>	N <kn></kn>	Ty <kn></kn>	Mz <knm></knm>	Tz <kn></kn>	My <knm></knm>	Mx <knm></knm>
28	SLE Q	0.00	-113137	-13528	18388	-0.667	0.861	-0.000
28	SLE Q	3.75	-99074	-13528	-32343	-0.667	-1642	-0.000
35	SLE Q	0.00	-113137	-13528	18388	-0.667	0.861	-0.000
35	SLE Q	3.75	-99074	-13528	-32343	-0.667	-1642	-0.000
42	SLE Q	0.00	-113137	-13528	18388	-0.667	0.861	-0.000
42	SLE Q	3.75	-99074	-13528	-32343	-0.667	-1642	-0.000

Pilastri interni

In funzione delle sollecitazioni si è dimensionata opportunamente l'armatura longitudinale del pilastro:

Armatura lato corto
 2 Φ 20

Armatura lato lungo
 2 Φ 20 + 1 Φ 16

Le verifiche di resistenza a flessione allo SLU ed agli SLE (NTC2018 – 4.1.2.1.2.4) per le sezioni di incastro e di campata sono state condotte con il supporto del MODEST considerando le sollecitazioni riportate nel prospetto precedente.

Essendo i pilastri orientati in maniera diversa sono state eseguite le verifiche coerentemente con l'orientamento degli assi locali definiti nel modello di calcolo.

Pilastrata n. 5

Nodi: 5 105

Simbologia

Fabbricato E5 - Tipologico F - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 FA00F0 001
 B
 94 di 103

SLE R = Stato limite d'esercizio, combinazione rara SLE F = Stato limite d'esercizio, combinazione frequente SLE Q = Stato limite d'esercizio, combinazione quasi permanente SLD = Stato limite di danno SLV = Stato limite di salvaguardia della vita SLC = Stato limite di prevenzione del collasso SLO = Stato limite di operatività SLU I = Stato limite di resistenza al fuoco SND = Stato limite di salvaguardia della vita (non dissipativo) = Elemento (asta) in cui viene effettuato il progetto/verifica (progressivo sul numero di aste) El Sez. = Numero della sezione = Coordinata progressiva rispetto al nodo iniziale = Sforzo normale = Momento flettente intorno all'asse Z = Momento flettente intorno all'asse Y My My ver. = Momento flettente di verifica intorno all'asse Y = Ricoprimento dell'armatura С = Distanza minima tra le barre кз = Coefficiente di forma del diagramma delle tensioni prima della fessurazione = Distanza media tra le fessure = Diametro della barra = Area complessiva dei ferri nell'area di calcestruzzo efficace A_s = Area di calcestruzzo efficace Ac eff = Tensione nell'acciaio nella sezione fessurata σ_s = Tensione nell'acciaio corrispondente al raggiungimento della resistenza a trazione nel calcestruzzo = Deformazione unitaria media dell'armatura (*1000) Eem Wk = Apertura delle fessure = Momento flettente Μ MRd = Momento resistente allo stato limite ultimo = Valore di progetto della duttilità di curvatura μΦ = Capacità della duttilità di curvatura μΦ. = Coefficiente di efficacia del confinamento α_{e} = Rapporto meccanico dell'armatura trasversale di confinamento all'interno della zona dissipativa = Domanda della duttilità di curvatura $\mu\Phi_{A}$ = Forza assiale adimensionalizzata di progetto v_d = Deformazione di snervamento dell'acciaio b_c/b_n = Rapporto tra la larghezza minima della sezione trasversale lorda e la larghezza del nucleo confinato Mz ver. = Momento flettente di verifica intorno all'asse Z Nu = Sforzo normale ultimo = Momento resistente allo stato limite ultimo intorno all'asse Y MRdv MRdz = Momento resistente allo stato limite ultimo intorno all'asse Z = Angolo asse neutro a rottura α = Deformazione nell'acciaio (*1000) = Sicurezza a rottura AfT = Area di ferro tesa AfC = Area di ferro compressa = Tensione nel calcestruzzo σ_{c} = Tensione nel ferro ΧO = Coordinata progressiva (dal nodo iniziale) dell'inizio del tratto

= Coordinata progressiva (dal nodo iniziale) della fine del tratto

X1

Fabbricato E5 - Tipologico F - Relazione di calcolo

 DMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 FA00F0 001
 B
 95 di 103

```
Staff. = Staffatura adottata
        = Numero bracci in dir. Y locale
Br.
        = Numero bracci in dir. Z locale
        = Larghezza membratura resistente al taglio in dir. Y
bw, v
Vsdu, v
        = Taglio agente in dir. Y
        = Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo in dir. Y
cta\theta,
        = Taglio ultimo lato armatura in dir. Y
VRsd, v
       = Taglio ultimo lato calcestruzzo in dir. Y
VRcd,
bw..
        = Larghezza membratura resistente al taglio in dir. Z
Vsdu, = Taglio agente in dir. Z
        = Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo in dir. {\tt Z}
cta0.
        = Taglio ultimo lato armatura in dir. Z
VRsd,
VRcd,z
        = Taglio ultimo lato calcestruzzo in dir. Z
Sic.T = Sicurezza a rottura per taglio
Nodo
        = Numero del nodo
Conf. = Nodo confinato
         S = Si
         N = No
        = Identificativo faccia del nodo
          Y+ = Faccia sul lato positivo Y locale pilastro
          Z+ = Faccia sul lato positivo Z locale pilastro
          Y- = Faccia sul lato negativo Y locale pilastro
          Z- = Faccia sul lato negativo Z locale pilastro
Mod.
        = Modalità di verifica faccia
         T = Interna
          E = Esterna
Br.
        = Numero bracci
        = Area di ferro superiore delle travi incidenti sulla faccia
As1
As2
        = Area di ferro inferiore delle travi incidenti sulla faccia
        = Larghezza effettiva utile del nodo
Ніс
        = Distanza tra armature pilastro
        = Distanza tra armature trave
Ηiw
        = Area totale della sezione della staffa
Ash
        = Taglio nel pilastro al di sopra del nodo
Vjbd
        = Taglio agente nel nucleo di calcestruzzo [7.4.6/7]
        = Sforzo normale normalizzato del pilastro superiore (%)
vd_s
        = Sforzo normale normalizzato del pilastro inferiore (%)
vd:
VibR
        = Resistenza a compressione del nucleo di calcestruzzo [7.4.8]
        = Azione di fessurazione sul nodo integro [7.4.10]
        = Resistenza a fessurazione nodo integro [7.4.10]
Rfni
Vjwd
        = Azione agente di trazione diagonale [7.4.11/12]
VjwR
        = Resistenza a trazione diagonale [7.4.11/12]
Tipo
        = Tipologia
         2C = Doppia C lato labbri
          2Cdx = Doppia C lato costola
          2I = Doppia I
          2L = Doppia L lato labbri
          2Ldx = Doppia L lato costole
          C = Sezione a C
          Cdx = C destra
          Cir. = Circolare
```


Fabbricato E5 - Tipologico F - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 FA00F0 001
 B
 96 di 103

Cir.c = Circolare cava

I = Sezione a I

L = Sezione a L

Ldx = L destra

Om. = Omega

Pg = Pi greco

Pr = Poligono regolare

Prc = Poligono regolare cavo

Pc = Per coordinate

Ia = Inerzie assegnate

R = Rettangolare

Rc = Rettangolare cava

T = Sezione a T

U = Sezione a U

Ur = U rovescia

V = Sezione a V

Vr = V rovescia

Z = Sezione a Z

Zdx = Z destra

Ts = T stondata

Ls = L stondata

Cs = C stondata

Is = I stondata

Dis. = Disegnata

B = Base

H = Altezza

Cf = Copriferro

Cls = Tipo di calcestruzzo

Fck = Resistenza caratteristica cilindrica a compressione del calcestruzzo

Fctk = Resistenza caratteristica a trazione del calcestruzzo
Fcd = Resistenza di calcolo a compressione del calcestruzzo

Fctd = Resistenza di calcolo a trazione del calcestruzzo

 ${\tt Tp} \qquad \qquad {\tt = Tipo \ di \ acciaio}$

Fyk = Tensione caratteristica di snervamento dell'acciaio

Fyd = Resistenza di calcolo dell'acciaio

Caratteristiche delle sezioni e dei materiali utilizzati

Sez	. Tipo	B <cm></cm>	H <cm></cm>	Cf <cm></cm>	Cls	Fck <dan cmq=""></dan>	Fctk <dan cmq=""></dan>	Fcd <dan cmq=""></dan>	Fctd <dan cmq=""></dan>	Тр	Fyk <dan cmq=""></dan>	Fyd <dan cmq=""></dan>
	3 R	30.00	50.00	6.20	C30/37	307.10	20.59	174.02	13.73	B450C	4500.00	3913.04

Stato limite ultimo - Verifiche a flessione/pressoflessione

Xg <m></m>	CC	TCC	El	Sez.	X <cm></cm>	N <dan></dan>	My <danm></danm>	My ver. <danm></danm>	Mz <danm></danm>	Mz ver. <danm></danm>	Nu <dan></dan>	MRdy <danm></danm>	MRdz <danm></danm>	α <grad></grad>	ε _Y	Sic.
0.00	1	SLV	1	3	0.00	-10532.10	7216.21		2445.57		-10532.10	13473.90	4340.11	39.38	6.22	1.858
0.00	1	SLV	1	3	0.00	-10532.10	7216.21		2445.57		-10532.10	13473.90	4340.11	39.38	6.22	1.858
3.65	19	SLV	1	3	365.00	-9047.87	1496.06		-4653.07		-9047.87	2508.04	-8109.48	273.52	8.86	1.737

Stato limite d'esercizio - Verifiche tensionali

Хg	CC	TCC	El	Sez.	х	N	Mz	My	AfT	AfC	$\sigma_{\rm c}$	$\sigma_{\mathtt{f}}$

Fabbricato E5 - Tipologico F - Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 26
 CL
 FA00F0 001
 B
 97 di 103

<m></m>						<cm></cm>	<dan></dan>	<danm></danm>	<danm></danm>	<cmq></cmq>	<cmq></cmq>	<dan cmq=""></dan>	<dan cmq=""></dan>
0.00	26	SLE	R	1	3	0.00	-12349.60	2089.55	85.47	8.29	8.29	42.17	514.01
0.00	28	SLE	Q	1	3	0.00	-11313.70	1838.78	86.10	8.29	8.29	37.16	432.30
0.00	26	SLE	R	1	3	0.00	-12349.60	2089.55	85.47	8.29	8.29	42.17	514.01
0.00	28	SLE	Q	1	3	0.00	-11313.70	1838.78	86.10	8.29	8.29	37.16	432.30
3.65	26	SLE	R	1	3	365.00	-10980.80	-3521.72	-158.34	8.29	8.29	72.62	1393.07
3.65	28	SLE	Q	1	3	365.00	-9944.91	-3099.07	-157.48	8.29	8.29	64.14	1212.76

Stato limite d'esercizio - Verifiche a fessurazione

Xg <m></m>		TCC	E1	Sez.	X <cm></cm>	N <dan></dan>	My <danm></danm>	Mz <danm></danm>	c <mm></mm>	s <mm></mm>	к3	s _{rm} <mm></mm>	Φ	A _s <cmq></cmq>	A _{c eff} <cmq></cmq>	σ _s <dan cmq=""></dan>	$\sigma_{\rm sr}$ <dan cmq=""></dan>	€ _{sm}	Wk <mm></mm>
0.00	28	SLE Q	1	3	0.00	-11313.70	86.10	1838.78	49.00	191.01	0.13	242.59	20.00	8.29	882.35	432.30	1032.43	0.08	0.03
0.00	28	SLE Q	1	3	0.00	-11313.70	86.10	1838.78	49.00	191.01	0.13	242.59	20.00	8.29	882.35	432.30	1032.43	0.08	0.03
3.65	28	SLE Q	1	3	365.00	-9944.91	-157.48	-3099.07	49.00	191.01	0.13	242.56	20.00	8.29	882.11	1212.76	1417.14	0.24	0.10

Staffe - Verifiche armatura

X0 <m></m>	X1 <m></m>	Staff.	Bry	Brz	cc	TCC	bw,y <m></m>	Vsdu, _y <dan></dan>	ctgθ, _y	VRsd,y <dan></dan>	VRcd,y <dan></dan>	bw,z <m></m>	Vsdu,z <dan></dan>	ctgθ,z	VRsd,z <dan></dan>	VRcd,z <dan></dan>	Sic.T
0.00	0.61	ø12/ 7	2	2	36	SLU	0.50	890.19	1.63	44768.40	44768.40	0.30	114.36	1.09	54946.70	54946.70	50.29
0.00	0.61	ø12/ 7	2	2	25	SLU	0.50	2138.25	1.63	44771.40	44771.40	0.30	92.18	1.09	54951.70	54951.70	20.94
0.00	0.61	ø12/ 7	2	2	1 (TG)	SLV	0.50	3006.47	1.61	44062.60	44062.60	0.30	7481.60	1.07	53788.30	53788.30	7.19
0.00	0.61	ø12/ 7	2	2	10 (TG)	SLV	0.50	4900.87	1.61	44048.50	44048.50	0.30	2935.32	1.07	53765.10	53765.10	8.99
0.61	3.04	ø8/18	2	2	36	SLU	0.50	2350.19	2.50	11850.60	34619.30	0.30	114.36	2.50	21685.20	38009.40	5.04
0.61	3.04	ø8/18	2	2	1 (TG)	SLV	0.50	3006.47	2.50	11850.60	33868.00	0.30	7481.60	2.50	21685.20	37184.50	2.90
0.61	3.04	ø8/18	2	2	10 (TG)	SLV	0.50	4900.87	2.50	11850.60	33852.40	0.30	2935.32	2.50	21685.20	37167.40	2.42
3.04	3.65	ø8/10	2	2	36	SLU	0.50	2715.19	2.50	21331.10	34471.50	0.30	114.36	2.46	38339.10	38339.10	7.86
3.04	3.65	ø8/10	2	2	1 (TG)	SLV	0.50	3006.47	2.50	21331.10	33868.00	0.30	7481.60	2.43	37945.90	37945.90	5.07
3.04	3.65	ø8/10	2	2	10(TG)	SLV	0.50	4900.87	2.50	21331.10	33852.40	0.30	2935.32	2.43	37935.60	37935.60	4.35

Dettagli costruttivi per la duttilità

- α_e =0.17729 ω_{Md} =0.52741 $\mu\Phi_d$ =29.306 v_d =0.047038 CC=19 $E_{\text{sy,d}}$ =0.0018995 b_c/b_0 =1.22549 $\mu\Phi_c$ =39.1188 0.0935 >= 0.06127 [7.4.29]
- α_e =0.17729 ω_{Wd} =0.52741 $\mu\Phi_d$ =32.3354 v_d =0.047038 CC=19 $E_{\text{sy,d}}$ =0.0018995 b_c/b_0 =1.44231 $\mu\Phi_c$ =33.2382 0.0935 >= 0.09001 [7.4.29]

Caratteristiche nodi trave-pilastro

Nodo	Conf.	Staff.	F.	Mod.			As2 <cmq></cmq>	_	_	_	
105	N	ø12/10	Ζ+	I	2	4.02	4.02	0.30	0.38	0.29	9.05
			Y –	E	2	6.03	8.04	0.45	0.18	0.39	11.31
			Z-	I	2	4.02	4.02	0.30	0.38	0.29	9.05

Verifiche nodi trave-pilastro

Nodo	F.	CC		Vc <dan></dan>	Vjbd <dan></dan>	νds	vd_i	VjbR <dan></dan>	Afni <dan mq=""></dan>	Rfni <dan mq=""></dan>	Vjwd <dan></dan>	VjwR <dan></dan>
105	Ζ+	1	SLV	0.00	34617.60	0.00	3.51	103311.00	548714.00	406947.00	34617.60	35404.40
	Υ-	1	SLV	0.00	25963.20	0.00	3.51	58030.10	645448.00	252168.00	33645.50	44255.50
		7	SLV	0.00	25963.20	0.00	3.44	58030.10	645448.00	252168.00	33664.90	44255.50

8.6.2 Verifica limitazioni armatura

Resta da verificare che l'armatura determinata in funzione delle sollecitazioni agenti rispetti le limitazioni riportate nel punto 7.4.6.2.2 delle NTC2018:

- Per tutta la lunghezza del pilastro l'interasse tra le barre non deve essere superiore a 25 cm;
- Nella sezione corrente del pilastro, la percentuale geometrica ρ di armatura longitudinale, con ρ rapporto tra l'area dell'armatura longitudinale e l'area della sezione del pilastro, deve essere compresa entro i seguenti limiti:

$$1\% < \rho < 4\%$$

- Nelle zone critiche devono essere rispettate le condizioni seguenti: le barre disposte sugli angoli
 della sezione devono essere contenute dalle staffe; almeno una barra ogni due, di quelle disposte
 sui lati, deve essere trattenuta da staffe interne o legature; le barre non fissate si devono trovare a
 meno di 20 cm da una barra fissata per CDB.
- Il diametro delle staffe di contenimento e legature deve essere non inferiore a 6 mm ed il loro passo deve essere non superiore alla più piccola delle quantità seguenti:
 - 1/2 del lato minore della sezione trasversale per CDB;
 - 175 mm (per CD"B");
 - 8 volte il diametro minimo delle barre longitudinali che collegano (per CD"B")
- li devono disporre staffe in un quantitativo minimo non inferiore a:

$$\frac{A_{st}}{s} = 0.08 \frac{f_{cd} \cdot b_{st}}{f_{yd}}$$

Nel caso specifico risulta:

Le staffe orizzontali presenti lungo l'altezza del nodo devono verificare la seguente condizione

Nella quale n_{st} e A_{st} sono rispettivamente il numero di bracci e l'area della sezione trasversale della barra della singola staffa orizzontale, i è l'interasse, e b_j è la larghezza utile del nodo determinata come segue:

se la trave ha una larghezza b_w superiore a quella del pilastro b_c , allora b_j è il valore minimo fra

b_w e b_c + h_c/2, essendo h_c la dimensione della sezione della colonna parallela alla trave;

- se la trave ha una larghezza b_w inferiore a quella del pilastro b_c , allora b_j è il valore minimo fra

 $b_c e b_w + h_c/2$.

Devono inoltre essere rispettati i limiti riportati al punto 4.1.6.1.2 delle NTC2018:

 Nel caso di elementi sottoposti a prevalente sforzo normale, le barre parallele all'asse devono avere diametro maggiore od uguale a 12 mm. Inoltre la loro area non deve essere inferiore a :

$$A_{s,\min} = (0.10 \cdot \frac{N_{Ed}}{f_{vd}})$$

e comunque non minore di 0.003 Ac;

dove:

N_{Ed} rappresenta lo sforzo di compressione assiale di calcolo;

Ac è l'area di calcestruzzo;

f_{yd} è il valore della resistenza di calcolo dell'armatura.

Nel caso in esame risulta:

Dati Geometrici

Pilastro:

Base	b=	30,0cm
Altezza sez.	h=	50,0cm
Copriferro	C=	5,0cm
Altezza pil.	hp=	400,0cm
Altezza libera	hl=	400,0cm

OK

Lim. Geom	. 7.4.6.1.2
Η	25cm

Dati di armatura

Tipo CLS	C30/37	(min C20/25)	D.M.(7.4.2.1)	R _{ck} =	37	N/mm ²
Tipo Acciaio	B450C	(B450C)	D.M.(7.4.2.2)			

fck=	30,71	fcd=	17,40	D.M.(4.1.2.1.1.1)	fctm=	2,94	D.M.(11.2.10.2)
fyk=	450	fyd=	391,30	D.M.(4.1.2.1.1.3)	1	-	-

Diametro armatura long.	20	IP 12		
Diametro staffe	8	IP 6	OK	H∼í Фòòn g

Armatura longitudinale

n°ferri "b"	n°ferri "h"		
4	8	n°ferri_tot =	8
tot sui due lati	tot sui due lati	As+A's=	47,90cm ²

Limitazioni Armatura longitudinale 7.4.6.2.2

ρ	Arm. min.	Arm. max.	limitazioni				
3 19%	15 0cm ²	60 00cm ²	í 9 G G ð 9	ОК			

Limitazioni Armatura longitudinale 4.1.6.1.2

		Arm. min.	Arm. max.		
		4,5	60		ОК
Inter. Ferri"b"	20,0cm	ОК	Gîñ	ОК	G - O R Q 4J
Inter. Ferri"h"	13,3cm	ОК	Gîñ	ОК	G - OR Q 4J

Si riscontra, pertanto, che l'armatura dei pilastri rispetta i limiti prescritti dalle NTC2018.

8.7 VERIFICA DEGLI ELEMENTI STRUTTURALI IN TERMINI DI CONTENIMENTO DEL DANNO AGLI ELEMENTI NON STRUTTURALI (SLO)

Per le costruzioni ricadenti in classe d'uso I e II si deve verificare che l'azione sismica di progetto non produca agli elementi costruttivi senza funzione strutturale danni tali da rendere la costruzione temporaneamente inagibile.

Nel caso delle costruzioni civili e industriali, qualora la temporanea inagibilità sia dovuta a spostamenti eccessivi d'interpiano, questa condizione si può ritenere soddisfatta quando gli spostamenti d'interpiano ottenuti dall'analisi in presenza di dell'azione sismica di progetto relativa allo SLD siano inferiori a:

$$d_r \leq 0.01h$$

per tamponamenti progettati in modo da non subire danni a seguito di spostamenti d'interpiano, per effetto della loro deformabilità intrinseca ovvero dei collegamenti alla struttura.

Considerando h altezza d'interpiano che vale 4,00 m si ottiene che deve essere:

$$d_r < 0.04 \text{ m}.$$

Per le costruzioni ricadenti in classe d'uso III e IV si deve verificare che l'azione sismica di progetto non produca danni agli elementi costruttivi senza funzione strutturale tali da rendere temporaneamente non operativa la costruzione.

Nel caso delle costruzioni civili e industriali questa condizione si può ritenere soddisfatta quando gli spostamenti interpiano ottenuti dall'analisi in presenza dell'azione sismica di progetto relativa allo SLO siano inferiori ai 2/3 dei limiti in precedenza indicati.

$$U1 = d_r = 0.0058 \text{ m} < 2*0.01*h /3=0.04*2/3=0.0266 \text{ m}.$$

Si riporta di seguito la tabella degli spostamenti calcolati in testa ai pilastri nella combinazione più gravosa SLD_Uy.

	N1	N2	h	δ	δ/h	CC	N1	N2	h	δ	δ/h	CC	N:	L N2	h	δ	δ/h	CC	N1	N2	h	δ	δ/h	CC
			<m></m>	<cm></cm>					<m></m>	<cm></cm>					<m></m>	<cm></cm>					<m></m>	<cm></cm>		
Ī	1	101	4.15	0.14	0.35	6	2	102	4.15	0.14	0.34	3		3 103	4.15	0.14	0.35	3	4	104	4.15	0.14	0.35	15
	5	105	4.15	0.14	0.34	15	6	106	4.15	0.14	0.35	18	-						-					

Come si vede in tabella lo spostamento massimo 0.0035 m è inferiore di quello ammissibile.

9 REAZIONI VINCOLARI

Di seguito si riportano le reazioni vincolari alla base dei pilastri scaturite dalle analisi della struttura.

REAZIONI VINCOLARI APPLICATE IN CORRISPONDENZA DEI NODI DELLA SOVRASTRUTTURA CC1 - SND e SLV (coincidenti in quanto q = 1.5)

Nodo	СС	тсс	Fx <kn></kn>	Fy <kn></kn>	Fz <kn></kn>	Mx <knm></knm>	My <knm></knm>	Mz <knm></knm>
2	1	SLV	29,772	16,582	120,953	-12,320	64,639	-0,430
2	1	SLV	-31,898	10,632	106,000	-24,787	-70,440	-0,488
5	1	SLV	33,233	-10,475	120,273	24,456	72,162	-0,430
5	1	SLV	-28,437	-16,425	105,321	11,988	-62,917	-0,488
6	1	SLV	11,640	-11,116	94,421	41,218	25,727	-0,430
6	1	SLV	-13,112	-24,588	61,051	10,707	-26,719	-0,488
3	1	SLV	10,213	20,237	92,946	-0,903	22,752	-0,430
3	1	SLV	-14,540	6,765	59,577	-31,414	-29,694	-0,488
4	1	SLV	14,850	-5,477	89,337	28,908	30,090	-0,430
4	1	SLV	-11,773	-18,480	45,837	-0,528	-24,899	-0,488
1	1	SLV	13,338	22,674	90,144	-8,911	27,000	-0,430
1	1	SLV	-13,286	9,671	46,644	-38,347	-27,989	-0,488

REAZIONI VINCOLARI APPLICATE IN CORRISPONDENZA DEI NODI DELLA SOVRASTRUTTURA CC25 - SLU

Nodo	СС	тсс	Fx <kn></kn>	Fy <kn></kn>	Fz <kn></kn>	Mx <knm></knm>	My <knm></knm>	Mz <knm></knm>
2	25	SLU	0,922	21,383	170,099	-29,063	1,179	0,000
5	25	SLU	0,922	21,383	170,099	29,063	1,179	0,000
6	25	SLU	2,024	-24,314	113,802	32,664	-2,773	0,000
3	25	SLU	-2,024	24,314	113,802	-32,664	-2,773	0,000
4	25	SLU	1,102	21,699	99,705	29,151	1,477	0,000
1	25	SLU	1,102	21,699	99,705	-29,151	1,477	0,000

10 CONCLUSIONI

Con la presente relazione si è proceduto al progetto e alla verifica delle strutture in elevazione allo stato limite ultimo e allo stato limite di esercizio del "Fabbricato E5 – Tipologico F" da realizzare nelle seguenti ubicazioni lungo la tratta in progetto:

PT56 - Fabbricato Galleria Trabona

PT61 - Fabbricato Galleria Masareddu

PT62 - Fabbricati Emergenza - Imbocco lato PA galleria Xirbi

PT63 - Fabbricato Galleria Xirbi

Si riportano di seguito le incidenze di armatura dei principali elementi strutturali:

Fondazione Fabbricato 80 kg/m³

Pilastri Fabbricato 190 kg/m³

Travi Fabbricato 130 kg/m³

Sommario

Introduzione	2
Sistemi di riferimento	2
Rotazioni e momenti	2
Normativa di riferimento	2
Unità di misura	3
Geometria.	3
Elenco vincoli nodi	3
Elenco nodi	
Elenco materiali	3
Elenco sezioni aste	3
Elenco vincoli aste	4
Elenco aste	5
Elenco tipi solai	5
Elenco solai	5
Carichi	5
Condizioni di carico elementari	5
Elenco carichi aste Condizione di carico n. 1: Peso proprio Elenco peso proprio aste	6
Elenco carichi aste Condizione di carico n. 2: Peso proprio solai Carichi distribuiti	
Elenco carichi aste Condizione di carico n. 3: Permanente solai Carichi distribuiti	
Elenco carichi aste Condizione di carico n. 4: Accidentali copertura Carichi distribuiti	
Elenco carichi aste Condizione di carico n. 5: Tamponature e macchinari Carichi distribuiti	7
Elenco carichi aste Condizione di carico n. 6: Vento X Carichi distribuiti	
Elenco carichi aste Condizione di carico n. 7: Variazione termica Carichi distribuiti	7
Elenco carichi aste Condizione di carico n. 8: Vento Y Carichi distribuiti	7
Risultati del calcolo	
Parametri di calcolo	7
Figura numero 1: Spettro SLO	9
Figura numero 2: Spettro SLD	
Figura numero 3: Spettro SLV	10
Figura numero 4: Spettro SND	
Spostamenti relativi massimi allo stato limite di operatività	
Reazioni vincolari	15
Sollecitazioni aste	
Criteri di progetto utilizzati	23
Pilastri in c.a.	
Travi in c.a.	26
Verifiche e armature travi	31
Travata n. 101	32
Travata n. 103	33
Travata n. 104	33
Travata n. 105	34
Travata n. 106	34
Verifiche e armature pilastri	
Pilastrata n. 1	
Pilastrata n. 2.	
Pilastrata n. 3.	
Pilastrata n. 4.	
Pilastrata n. 5.	
Pilating C	

Introduzione

Sistemi di riferimento

Le coordinate, i carichi concentrati, i cedimenti, le reazioni vincolari e gli spostamenti dei NODI sono riferiti ad una terna destra cartesiana globale con l'asse Z verticale rivolto verso l'alto.

I carichi in coordinate locali e le sollecitazioni delle ASTE sono riferite ad una terna destra cartesiana locale così definita:

- origine nel nodo iniziale dell'asta;
- asse X coincidente con l'asse dell'asta e con verso dal nodo iniziale al nodo finale;
- immaginando la trave a sezione rettangolare l'asse Y è parallelo alla base e l'asse Z è parallelo all'altezza. La rotazione dell'asta comporta quindi una rotazione di tutta la terna locale.

Si può immaginare la terna locale di un'asta comunque disposta nello spazio come derivante da quella globale dopo una serie di trasformazioni:

- una rotazione intorno all'asse Z che porti l'asse X a coincidere con la proiezione dell'asse dell'asta sul piano orizzontale;
- una traslazione lungo il nuovo asse X così definito in modo da portare l'origine a coincidere con la proiezione del nodo iniziale dell'asta sul piano orizzontale;
- una traslazione lungo l'asse Z che porti l'origine a coincidere con il nodo iniziale dell'asta;
- una rotazione intorno all'asse Y così definito che porti l'asse X a coincidere con l'asse dell'asta;
- una rotazione intorno all'asse X così definito pari alla rotazione dell'asta.

In pratica le travi prive di rotazione avranno sempre l'asse Z rivolto verso l'alto e l'asse Y nel piano del solaio, mentre i pilastri privi di rotazione avranno l'asse Y parallelo all'asse Y globale e l'asse Z parallelo ma controverso all'asse X globale. Da notare quindi che per i pilastri la "base" è il lato parallelo a Y.

Le sollecitazioni ed i carichi in coordinate locali negli ELEMENTI BIDIMENSIONALI e nei MURI sono riferiti ad una terna destra cartesiana locale così definita:

- origine nel primo nodo dell'elemento;
- asse X coincidente con la congiungente il primo ed il secondo nodo dell'elemento;
- asse Y definito come prodotto vettoriale fra il versore dell'asse X e il versore della congiungente il primo e il quarto nodo. Asse Z a formare con gli altri due una terna destrorsa.

Praticamente un elemento verticale con l'asse X locale coincidente con l'asse X globale ha anche gli altri assi locali coincidenti con quelli globali.

Rotazioni e momenti

Seguendo il principio adottato per tutti i carichi che sono positivi se CONTROVERSI agli assi, anche i momenti concentrati e le rotazioni impresse in coordinate globali risultano positivi se CONTROVERSI al segno positivo delle rotazioni. Il segno positivo dei momenti e delle rotazioni è quello orario per l'osservatore posto nell'origine: X ruota su Y, Y ruota su Z, Z ruota su X. In pratica è sufficiente adottare la regola della mano destra: col pollice rivolto nella direzione dell'asse, la rotazione che porta a chiudere il palmo della mano corrisponde al segno positivo.

Normativa di riferimento

La normativa di riferimento è la seguente:

- Legge n. 64 del 2/2/1974 Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.
- D.M. del 24/1/1986 Norme tecniche relative alle costruzioni sismiche.
- Legge n. 1086 del 5/11/1971 Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica.
- D.M. del 14/2/1992 Norme tecniche per l'esecuzione delle opere in c.a. normale e precompresso e per le strutture metalliche.
- D.M. del 9/1/1996 Norme tecniche per l'esecuzione delle opere in c.a. normale e precompresso e per le strutture metalliche.
- D.M. del 16/1/1996 Norme tecniche per le costruzioni in zone sismiche.
- Circolare n. 21745 del 30/7/1981 Legge n. 219 del 14/5/1981 Art. 10 Istruzioni relative al rafforzamento degli edifici in muratura danneggiati dal sisma.
- Regione Autonoma Friuli Venezia Giulia Legge Regionale n. 30 del 20/6/1977 Documentazione tecnica per la progettazione e direzione delle opere di riparazione degli edifici Documento Tecnico n. 2 Raccomandazioni per la riparazione strutturale degli edifici in muratura.
- D.M. del 20/11/1987 Norme Tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento.
- Norme Tecniche C.N.R. n. 10011-85 del 18/4/1985 Costruzioni di acciaio Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione.
- Norme Tecniche C.N.R. n. 10025-84 del 14/12/1984 Istruzioni per il progetto, l'esecuzione ed il controllo

delle strutture prefabbricate in conglomerato cementizio e per le strutture costruite con sistemi industrializzati di acciaio - Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione.

- Circolare n. 65 del 10/4/1997 Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni in zone sismiche" di cui al D.M. del 16/1/1996.
- Eurocodice 5 Progettazione delle strutture di legno.
- DIN 1052 Metodi di verifica per il legno.
- D.M. del 17/1/2018 Norme tecniche per le costruzioni.
- Documento Tecnico CNR-DT 200 R1/2012 Istruzioni per la Progettazione, l'Esecuzione ed il Controllo di Interventi di Consolidamento Statico mediante l'utilizzo di Compositi Fibrorinforzati.
- Eurocodice 3 Progettazione delle strutture in acciaio.

Unità di misura

Le unità di misura adottate sono le seguenti: - lunghezze : m - forze : daN - masse : ka - temperature : gradi centigradi : gradi sessadecimali o radianti - angoli

Geometria

Elenco vincoli nodi

Simbologia

Vn = Numero del vincolo nodo Comm. = Commento = Spostamento in dir. X (L=libero, B=bloccato, E=elastico) =Spostamento in dir. Y (L=libero, B=bloccato, E=elastico) Sv Sz = Spostamento in dir. Z (L=libero, B=bloccato, E=elastico) =Rotazione intorno all'asse X (L=libera, B=bloccata, E=elastica) =Rotazione intorno all'asse Y (L=libera, B=bloccata, E=elastica) Ry =Rotazione intorno all'asse Z (L=libera, B=bloccata, E=elastica) Rz =Rotazione libera RT. Ly = Lunghezza (dir. Y locale) =Larghezza (dir. Z locale) =Coeff. di sottofondo su suolo elastico alla Winkler Κt.

Vn	Comm.	Sx	Sy	Sz	Rx	Ry	Rz	Ly <m></m>	Kt <dan cmc=""></dan>
1	Libero	L	L	L	L	L	L		

۷n	Comm.	Sx	Sy	Sz	Rx	Ry	Rz	RL	Ly	Lz	Kt
									<m></m>	<m></m>	<dan cmc=""></dan>
2	Incastro	В	В	В	В	В	В				

Elenco nodi

Simbologia

Nodo = Numero del nodo = Coordinata X del nodo =Coordinata Y del nodo Ζ =Coordinata Z del nodo Imp. = Numero dell'impalcato = Numero del vincolo nodo

Nodo	Х	Y	Z	Imp.	۷n
	<m></m>	<m></m>	<m></m>		
1	0.30	0.15	0.00	0	2
5	3.75	5.85	0.00	0	2
103	8.00	0.15	4.15	1	1

	Nodo	X	Y	Z	Imp.	۷n
		<m></m>	<m></m>	<m></m>		
	2	3.75	0.15	0.00	0	2
	6	8.00	5.85	0.00	0	2
	104	0.30	5.85	4.15	1	1
•						

	Nodo	X	Y	Z	Imp.	۷n
		<m></m>	<m></m>	<m></m>		
1	3	8.00	0.15	0.00	0	2
	101	0.30	0.15	4.15	1	1
1	105	3.75	5.85	4.15	1	1

	Nodo	х	Y	Z	Imp.	Vn
		<m></m>	<m></m>	<m></m>		
	4	0.30	5.85	0.00	0	2
	102	3.75	0.15	4.15	1	1
1	106	8.00	5.85	4.15	1	1

Elenco materiali

Simbologia

Mat. = Numero del materiale

Comm. = Commento

= Peso specifico

E =Modulo elastico

G =Modulo elastico tangenziale

=Coeff. di Poisson ν

=Coeff. di dilatazione termica

Mat.	Comm.	P <dan mc=""></dan>	E <dan cmq=""></dan>	G <dan cmq=""></dan>	ν	α	
5	Calcestruzzo classe C25/30	2500	314472.00	142942.00	0.1	1.000000E-05	
7	Calcestruzzo classe C30/37	2500	330194.00	150088.00	0.1	1.000000E-05	

Elenco sezioni aste

```
Simbologia
```

```
= Numero della sezione
Sez.
Comm.
           = Commento
Tipo
           = Tipologia
            2C = Doppia C lato labbri
            2Cdx = Doppia C lato costola
            2I = Doppia I
            2L = Doppia L lato labbri
            2Ldx = Doppia L lato costole
            C = Sezione a C
            Cdx = C dest.ra
            Cir. = Circolare
            Cir.c = Circolare cava
            I = Sezione a I
            L = Sezione a L
            Ldx = L destra
            Om. = Omega
            Pg = Pi greco
            Pr = Poligono regolare
            Prc = Poligono regolare cavo
            Pc = Per coordinate
            Ia = Inerzie assegnate
            R = Rettangolare
            Rc = Rettangolare cava
            T = Sezione a T
            U = Sezione a U
            Ur = U rovescia
            V = Sezione a V
            Vr = V rovescia
            Z = Sezione a Z
            Zdx = Z destra
            Ts = T stondata
            Ls = L stondata
            Cs = C stondata
            Is = I stondata
            Dis. = Disegnata
           = Membratura
Mem.
            G = Generica
            T = Trave
            P = Pilastro
Ver.
           = Verifica prevista
            N = Nessuna
            C = Cemento armato
            A = Acciaio
            L = Legno
           =Base
Н
           = Altezza
           = Numero del materiale
Ма
           = Numero del criterio di progetto
Crit. C.I. = Criterio di progetto collegamento iniziale
Crit. C.F. = Criterio di progetto collegamento finale
```

Sez.	Comm.	Tipo	Mem.	Ver.	В	H	Ma	C	Crit.	C.I.	Crit.	C.F.
					<cm></cm>	<cm></cm>						
1	Trave 30x50	R	Т	С	30.00	50.00	7	1				
2	Trave 30x40	R	Т	С	30.00	40.00	7	1				
3	pilastro 30x50	R	Р	С	30.00	50.00	7	1				

Elenco vincoli aste

```
Simbologia
   = Numero del vincolo asta
Comm. = Commento
Tipo = Tipologia
      SVI = Definizione di vincolamenti interni
      ELA = Vincolo su suolo elastico alla Winkler
      BIE-RTC = Biella resistente a trazione e a compressione
      BIE-RC = Biella resistente solo a compressione
      BIE-RT = Biella resistente solo a trazione
Νi
     =Sforzo normale nodo iniziale (0=sbloccato, 1=bloccato)
     =Taglio in dir. Y locale nodo iniziale (0=sbloccato, 1=bloccato)
     = Taglio in dir. Z locale nodo iniziale (0=sbloccato, 1=bloccato)
Tzi
     =Momento intorno all'asse X locale nodo iniziale (0=sbloccato, 1=bloccato)
Mxi
     =Momento intorno all'asse Y locale nodo iniziale (0=sbloccato, 1=bloccato)
Myi
Mzi
     =Momento intorno all'asse Z locale nodo iniziale (0=sbloccato, 1=bloccato)
Νf
     =Sforzo normale nodo finale (0=sbloccato, 1=bloccato)
     =Taglio in dir. Y locale nodo finale (0=sbloccato, 1=bloccato)
Tvf
    = Taglio in dir. Z locale nodo finale (0=sbloccato, 1=bloccato)
```

```
Mxf = Momento intorno all'asse X locale nodo finale (0=sbloccato, 1=bloccato)
Myf = Momento intorno all'asse Y locale nodo finale (0=sbloccato, 1=bloccato)
Mzf = Momento intorno all'asse Z locale nodo finale (0=sbloccato, 1=bloccato)
Kt = Coeff. di sottofondo su suolo elastico alla Winkler
```

٧a	Comm.	Tipo	Νi	Tyi	Tzi	Mxi	Myi	Mzi	Νf	Tyf	Tzf	Mxf	Myf	Mzf	Kt
															<dan cmc=""></dan>
1	Inc+Inc	SVI	1	1	1	1	1	1	1	1	1	1	1	1	

Elenco aste

Simbologia

Asta = Numero dell'asta
N1 = Nodo iniziale
N2 = Nodo finale
Sez. = Numero della sezione
Va = Numero del vincolo asta
Par. = Numero dei parametri aggiuntivi
Rot. = Rotazione
FF = Filo fisso
Dy1 = Scost. filo fisso Y1
Dy2 = Scost. filo fisso Y2
Dz1 = Scost. filo fisso Z1
Dz2 = Scost. filo fisso Z2

Kt = Coeff. di sottofondo su suolo elastico alla Winkler

Asta	N1	N2	Sez.	٧a	Par.	Rot.	FF	Dy1	Dy2	Dz1	Dz2	Kt
						<grad></grad>		<cm></cm>	<cm></cm>	<cm></cm>	<cm></cm>	<dan cmc=""></dan>
1	1	101	3	1		90.00	55	0.00	0.00	-10.00	-10.00	
2	2	102	3	1		0.00	55	0.00	0.00	0.00	0.00	
3	3	103	3	1		90.00	55	0.00	0.00	-10.00	-10.00	
4	4	104	3	1		90.00	55	0.00	0.00	10.00	10.00	
5	5	105	3	1		0.00	55	0.00	0.00	0.00	0.00	
6	6	106	3	1		90.00	55	0.00	0.00	10.00	10.00	
101	101	102	2	1		0.00	22	0.00	0.00	0.00	0.00	
101	102	103	2	1		0.00	22	0.00	0.00	0.00	0.00	
103	104	105	2	1		0.00	22	0.00	0.00	0.00	0.00	
103	105	106	2	1		0.00	22	0.00	0.00	0.00	0.00	
104	101	104	1	1		0.00	22	0.00	0.00	0.00	0.00	
105	102	105	1	1		0.00	22	0.00	0.00	0.00	0.00	
106	103	106	1	1		0.00	22	0.00	0.00	0.00	0.00	

Elenco tipi solai

Simbologia

Ts =Numero del tipo solaio Comm. = Commento = Ripartizione carichi Rc UN = Unidirezionale PP = A piastra perimetrale PB = A piastra bisettrice =Carico permanente strutturale Ops = Carico permanente non strutturale Qpn ΟA = Primo carico accidentale QA2 = Secondo carico accidentale =Terzo carico accidentale Rip. ter. = Ripartizione su aste terminali Rip. int. = Ripartizione su aste interne Lfl =Larghezza fascia laterale Zcv =Quota di riferimento del piano di campagna = Coeff. di riduzione s =Altezza solaio Hs Sc =Spessore cappa Crit. = Numero del criterio di progetto

Ts	Comm.	Rc	Qps	Qpn	QA	QA2	QA3	Rip. ter.	Rip.	int.	Lfl	Zcv	s	Hs	Sc	Crit.
			<dan mq=""></dan>				<m></m>	<m></m>		<cm></cm>	<cm></cm>					
	Solaio copertura	UN	330.00	260.00	95.00	0.00	0.00	50.0) !	50.00	0.00	0.00	0.33	24.00	4.00	1

Elenco solai

Simbologia

100 1

Sol. = Numero del solaio Ts = Numero del tipo solaio Ord. = Orditura Nodi = Nodi del solaio

Sol. Ts Ord. Nodi

0.00 101 102 105 104

101 1 0.00 102 103 106 105

Carichi

Condizioni di carico elementari

Simbologia

CCE =Numero della condizione di carico elementare Comm. =Commento Tipo CCE = Tipo di CCE per calcolo agli stati limite =Contributo alla sicurezza Sic. F = a favore S = a sfavore A = ambigua Var. = Tipo di variabilità B = di base I = indipendente A = ambigua Dir. =Direzione del vento =Tipologia di pressione vento Tipo M = Massimizzata E = Esterna I = Interna =Moltiplicatore della massa in dir. X Mx My =Moltiplicatore della massa in dir. Y Mz =Moltiplicatore della massa in dir. ${\bf Z}$ =Moltiplicatore del momento d'inerzia intorno all'asse X Јрх =Moltiplicatore del momento d'inerzia intorno all'asse Y Јру =Moltiplicatore del momento d'inerzia intorno all'asse Z Jpz

CCE	Comm.	Tipo CCE	Sic.	Var.	Dir.	Tipo	Mx	My	Mz	Јрх	Jpy	Jpz
					<grad></grad>							
1	Peso proprio	1 D.M. 18 Permanenti strutturali	S									1.00
2	Peso proprio solai	1 D.M. 18 Permanenti strutturali	S									1.00
3	Permanente solai	2 D.M. 18 Permanenti non strutturali	S									1.00
		12 D.M. 18 Variabili Neve (a quota <= 1000 m s.l.m.)	S	В								1.00
5	Tamponature e macchinari	2 D.M. 18 Permanenti non strutturali	S									1.00
6	Vento X	11 D.M. 18 Variabili Vento	S	A	0.00	M	0.00	0.00	0.00	0.00	0.00	0.00
7	Variazione termica	10 D.M. 18 Variabili Variazioni termiche	S	В			1.00	1.00	0.00	0.00	0.00	1.00
8	Vento Y	11 D.M. 18 Variabili Vento	S	A	90.00	M	0.00	0.00	0.00	0.00	0.00	0.00

Elenco carichi aste Condizione di carico n. 1: Peso proprio Elenco peso proprio aste

Simbologia

Sez. = Numero della sezione
Comm. = Commento

Comm. = Commento
A = Area
Mat. = Materiale
P = Peso specifico

PL = Peso specifico a metro lineare

Sez.	Comm.	A	Mat.	P	PL
		<cmq></cmq>		<dan mc=""></dan>	< daN/m >
1	Trave 30x50	1500.000000	Calcestruzzo classe C30/37	2500.00	375.00
2	Trave 30x40	1200.000000	Calcestruzzo classe C30/37	2500.00	300.00
3	pilastro 30x50	1500.000000	Calcestruzzo classe C30/37	2500.00	375.00

Elenco carichi aste Condizione di carico n. 2: Peso proprio solai Carichi distribuiti

Simbologia

Asta = Numero dell'asta N1 =Nodo iniziale N2 =Nodo finale =Elemento provenienza del carico S = Solaio T = Tamponatura ΝE = Numero elemento di provenienza del carico = Tipo di carico QA = Primo carico accidentale QA2 = Secondo carico accidentale QA3 = Terzo carico accidentale ${\tt QPS} \; = \; {\tt Carico} \; \; {\tt permanente} \; \; {\tt strutturale} \; \;$ QPN = Carico permanente non strutturale VE = Vento M = Manuale = Direzione del carico XG, YG, ZG = secondo gli assi globali

XL,YL,ZL = secondo gli assi locali

= Distanza iniziale Qi = Carico iniziale

Xf = Distanza finale
Qf = Carico finale

Asta	N1	N2	E	NE	T	DC	Xi	Qi	Xf	Qf
							<m></m>	<dan m=""></dan>	<m></m>	<dan m=""></dan>
104	101	104	S	100	QPS	ZG	0.00	569.25	5.70	569.25
105	102	105	S	101	QPS	ZG	0.00	701.25	5.70	701.25

Asta	N1	N2	E	NE	T	DC	Xi	Qi	Xf	Qf
							<m></m>	<dan m=""></dan>	<m></m>	<dan m=""></dan>
105	102	105	S	100	QPS	ZG	0.00	569.25	5.70	569.25
106	103	106	S	101	QPS	ZG	0.00	701.25	5.70	701.25

Elenco carichi aste

Condizione di carico n. 3: Permanente solai

Carichi distribuiti

Asta	N1	N2	E	NE	T	DC	Xi	Qi	Xf	Qf
							<m></m>	<dan m=""></dan>	<m></m>	<dan m=""></dan>
104	101	104	S	100	QPN	ZG	0.00	448.50	5.70	448.50
105	102	105	S	101	QPN	ZG	0.00	552.50	5.70	552.50

Asta	N1	N2	E	NE	T	DC	Xi	Qi	Xf	Qf
							<m></m>	<dan m=""></dan>	<m></m>	<dan m=""></dan>
105	102	105	S	100	QPN	ZG	0.00	448.50	5.70	448.50
106	103	106	S	101	QPN	ZG	0.00	552.50	5.70	552.50

Elenco carichi aste

Condizione di carico n. 4: Accidentali copertura

Carichi distribuiti

Asta	N1	N2	E	NE	Т	DC	Xi	Qi	Xf	Qf
							<m></m>	<dan m=""></dan>	<m></m>	<dan m=""></dan>
104	101	104	S	100	QΑ	ZG	0.00	163.88	5.70	163.88
105	102	105	S	101	QΑ	ZG	0.00	201.88	5.70	201.88

Asta	N1	N2	E	NE	T	DC	Xı	Q1	Xf	Q±
							<m></m>	<dan m=""></dan>	<m></m>	<dan m=""></dan>
105	102	105	S	100	QΑ	ZG	0.00	163.88	5.70	163.88
106	103	106	S	101	QΑ	ZG	0.00	201.88	5.70	201.88

Elenco carichi aste

Condizione di carico n. 5: Tamponature e macchinari

Carichi distribuiti

Asta	N1	N2	E	ΝE	Т	DC	Xi	Qi	Xf	Qf
							<m></m>	<dan m=""></dan>	<m></m>	< daN/m>
101	101	102	S		М	ZG	0.00	200.00	3.45	200.00
103	104	105	S		М	ZG	0.00	200.00	3.45	200.00
104	101	104	S		Μ	ZG	0.00	200.00	5.70	200.00

Asta	N1	N2	Е	ΝE	т	DC	Xi	Qi	Xf	Qf
							<m></m>	<dan m=""></dan>	<m></m>	<dan m=""></dan>
101	102	103	S		М	ZG	0.00	200.00	4.25	200.00
										200.00
106	103	106	S		М	ZG	0.00	200.00	5.70	200.00

Elenco carichi aste

Condizione di carico n. 6: Vento X

Carichi distribuiti

Asta	N1	N2	E	ΝE	Т	DC		~	Xf	Qf
							<m></m>	<dan m=""></dan>	<m></m>	< daN/m>
1	1	101	S		Μ	ΥG	0.00	175.00	4.15	175.00
3	3	103	S		Μ	ΥG	0.00	350.00	4.15	350.00
5	5	105	S		М	ΥG	0.00	350.00	4.15	350.00

Asta	N1	N2	E	ΝE	Т	DC	Xi	Qi	Xf	Qf
							<m></m>	<dan m=""></dan>	<m></m>	<dan m=""></dan>
2	2	102	S		М	ΥG	0.00	350.00	4.15	350.00
4	4	104	S		М	ΥG	0.00	175.00	4.15	175.00
(6	106	S		Μ	ΥG	0.00	350.00	4.15	350.00

Elenco carichi aste

Condizione di carico n. 7: Variazione termica

Carichi distribuiti

Simbologia

Asta = Numero dell'asta

N1 = Nodo iniziale N2 = Nodo finale

DT = Incremento di temperatura

Gy = Gradiente termico in dir. Y
Gz = Gradiente termico in dir. Z

Asta	N1	N2	DT <°C>	Gy <°C/m>	Gz <°C/m>
1	1	101	25.00		,
4	4	104	25.00		
101	101	102	25.00		
103	105	106	25.00		
106	103	106	25.00		

Asta	N1	N2	DT	Gy	Gz
			<°C>	<°C/m>	< C/m>
2	2	102	25.00		
5	5	105	25.00		
101	102	103	25.00		
104	101	104	25.00		

Asta	N1	N2	C> C>	Gy <°C/m>	Gz <°C/m>
3	3	103	25.00		
6	6	106	25.00		
103	104	105	25.00		
105	102	105	25.00		

Elenco carichi aste

Condizione di carico n. 8: Vento Y

Carichi distribuiti

Asta	N1	N2	E	ΝE	TDC	Xi	Qi	Xf	Qf
						<m></m>	<dan m=""></dan>	<m></m>	<dan m=""></dan>
1						0.00		4.15	50.00
3	3	103	s-		МХС	0.00	50.00	4.15	50.00

Asta	N1	N2	E	ΝE	т	DC	Xi	Qi	Xf	Q£
							<m></m>	<dan m=""></dan>	<m></m>	< daN/m>
2									4.15	400.00
4	4	104	S		М	ΥG	0.00	50.00	4.15	50.00

5 5 105 S MYG 0.00	400.00 4.15	400.00	6 6 106 S MYG 0.00 50.00 4.15 50.
104 101 104 S MYG 0.00	50.00 5.70	50.00	106 103 106 S M YG 0.00 50.00 5.70 50.

Risultati del calcolo

Parametri di calcolo

La modellazione della struttura e la rielaborazione dei risultati del calcolo sono stati effettuati con: ModeSt ver. 8.18, prodotto da Tecnisoft s.a.s. - Prato

La struttura è stata calcolata utilizzando come solutore agli elementi finiti:

Xfinest ver. 2013, prodotto da Ce.A.S. S.r.l. - Milano

Tipo di normativa: stati limite D.M. 18 Tipo di calcolo: analisi sismica dinamica

Vincoli esterni: Considera sempre vincoli assegnati in modellazione

Schematizzazione piani rigidi: metodo Master-Slave

Modalità di recupero masse secondarie: trasferire le masse

- All'impalcato più vicino in assoluto: No
- Anche sui nodi degli impalcati non rigidi: No
- Modificare coordinate baricentro impalcati rigidi: XY

Generazione combinazioni

- Lineari: Sì
- Valuta spostamenti e non sollecitazioni: No
- Buckling: No

Opzioni di calcolo

- Sono state considerate infinitamente rigide le zone di connessione fra travi, pilastri ed elementi bidimensionali con una riduzione del 20%
- Calcolo con offset rigidi dai nodi: No
- ta'Camana' ana'ab' ana'ab'l' Ma
- Uniformare i carichi variabili: NoMassimizzare i carichi variabili: No
- Minimo carico da considerare: 0.00 <daN/m>
- Recupero carichi zone rigide: taglio e momento flettente
- Modalità di combinazione momento torcente: disaccoppiare le azioni

Opzioni del solutore

- Tipo di elemento bidimensionale: QF46
- Calcolo sforzo nei nodi: No
- Trascura deformabilità a taglio delle aste: No
- Analisi dinamica con metodo di Lanczos: Sì
- Check sequenza di Sturm: Sì
- Soluzione matrice con metodo ver. 5.1: No
- Analisi non lineare con Newton modificato: No
- Usa formulazione secante per buckling: No
- Trascura buckling torsionale: No

Dati struttura

- Sito di costruzione: LON. 14.04183 LAT. 37.52995 Contenuto tra ID reticolo: 47850 47849 48072 48071

Simbologia

TCC = Tipo di combinazione di carico

SLU = Stato limite ultimo

 ${ t SLU S} = { t Stato limite ultimo (azione sismica)}$

SLE R = Stato limite d'esercizio, combinazione rara

SLE F = Stato limite d'esercizio, combinazione frequente

SLE Q = Stato limite d'esercizio, combinazione quasi permanente

SLD = Stato limite di danno

SLV = Stato limite di salvaguardia della vita

SLC = Stato limite di prevenzione del collasso

SLO = Stato limite di operatività

 ${\tt SLU}$ I = ${\tt Stato}$ limite di resistenza al fuoco

 ${\tt SND}$ = Stato limite di salvaguardia della vita (non dissipativo)

T_R = Periodo di ritorno <anni>

Ag =Accelerazione orizzontale massima al sito

Fo =Valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale

Tc*=Periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale <sec>

 \mathbf{S}_{S} =Coefficiente di amplificazione stratigrafica

 C_{c} =Coefficiente funzione della categoria del suolo

TCC	T_R	Ag	Fo	Tc*	Ss	Cc
		<g></g>				
SLO	68	0.0383	2.53	0.29	1.50	1.59
SLD	113	0.0464	2.51	0.32	1.50	1.53
SLV	1068	0.0942	2.66	0.47	1.50	1.35

- Edificio esistente: No
- Tipo di opera: Opera ordinaria
- Vita nominale V_N : 75.00
- Classe d'uso: Classe III
- SL Esercizio: SLOPvr 81.00, SLDPvr 63.00
- SL Ultimi: SLVPvr 10.00, SLCPvr No
- Struttura dissipativa: Sì
- Classe di duttilità: Classe B
- Quota di riferimento: 0.00 <m>
- Altezza della struttura: 4.15 <m>
- Numero piani edificio: 1
- Coefficiente θ : 0.00
- Edificio regolare in altezza: Sì
- Edificio regolare in pianta: Sì
- Forze orizzontali convenzionali per stati limite non sismici: No
- Genera stati limite per verifiche di resistenza al fuoco: No

Dati di piano

Simbologia

- Imp. = Numero dell'impalcato
- Lx = Dimensione del piano in dir. X
- Ly = Dimensione del piano in dir. Y
- Ex = Eccentricità in dir. X
- Ey = Eccentricità in dir. Y
- Ea = Eccentricità complessiva

Imp.					
1	7.70	5.70	0.39	0.28	0.48

Dati di calcolo

- Categoria del suolo di fondazione: C
- Tipologia strutturale: c.a. o prefabbricata a telaio a più piani e più campate

Periodo T ₁	0.1903
Coeff. λ SLO	1.00
Coeff. λ SLD	1.00
Coeff. λ SLV	1.00
Rapporto di sovraresistenza $(lpha_{\scriptscriptstyle \mathrm{u}}/lpha_{\scriptscriptstyle \mathrm{l}})$	1.30
Valore di riferimento del fattore di struttura (q ₀)	3.90
Fattore riduttivo (Kw)	1.00
Fattore riduttivo regolarità in altezza (KR)	1.00
Fattore di comportamento dissipativo (q)	1.50
Fattore di comportamento non dissipativo (qND)	1.50
Fattore di comportamento per SLD (qD)	1.50

- Categoria topografica: T1 Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i<=15 $^{\circ}$
- Coeff. amplificazione topografica $S_{\text{\tiny T}}$: 1.00
- Fattore di comportamento per sisma verticale (qv): 1.50
- Modalità di calcolo modi di vibrare: Autovalori
- Numero modi: 3
- Modi da considerare: Tali da movimentare una percentuale di massa pari a 85.00%
- Trascura modi con massa movimentata minore di: 5.00%
- Smorzamento spettro: 5.00%

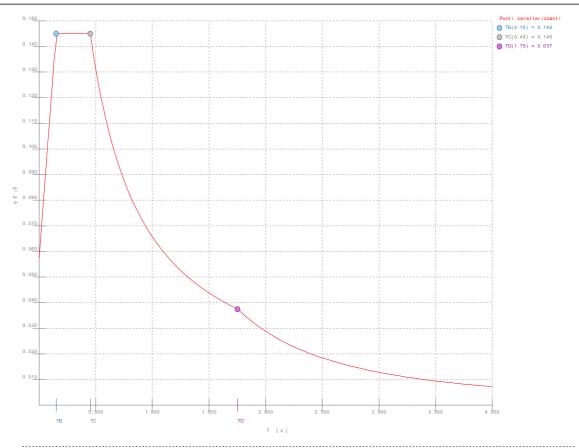


Figura numero 1: Spettro SLO

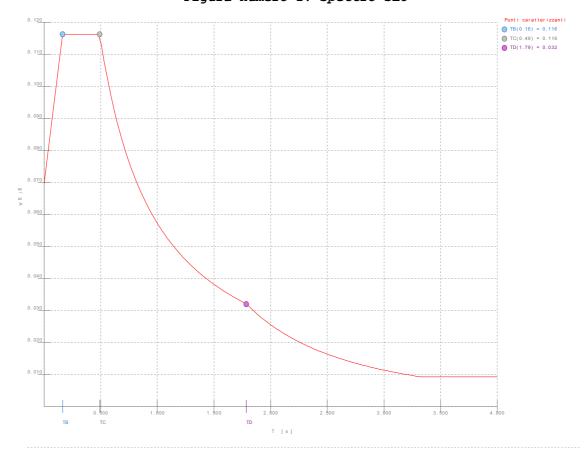


Figura numero 2: Spettro SLD

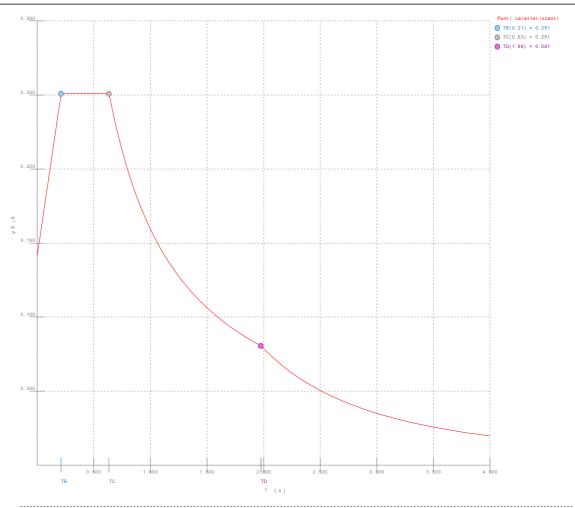


Figura numero 3: Spettro SLV

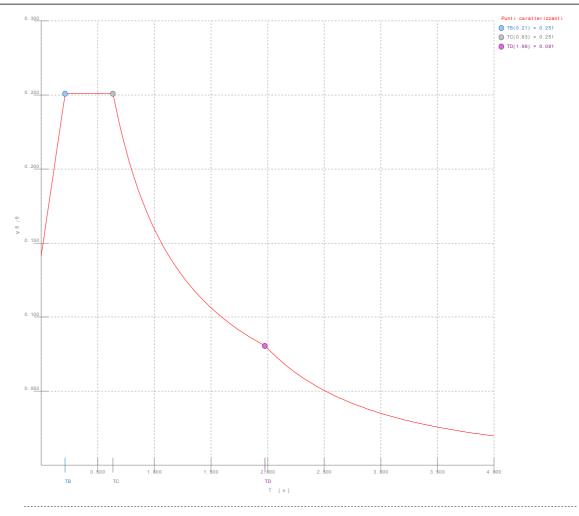


Figura numero 4: Spettro SND

- Angolo di ingresso del sisma: 0.00 <grad>

Condizioni di carico elementari

```
CCE
         =Numero della condizione di carico elementare
Comm.
         =Commento
Tipo CCE = Tipo di CCE per calcolo agli stati limite
         =Contributo alla sicurezza
Sic.
          F = a favore
          S = a sfavore
          A = ambigua
         =Tipo di variabilità
Var.
          B = di base
I = indipendente
          A = ambigua
         =Direzione del vento
Dir.
Tipo
         =Tipologia di pressione vento
          M = Massimizzata
E = Esterna
          I = Interna
Mx
         =Moltiplicatore della massa in dir. {\tt X}
Му
         =Moltiplicatore della massa in dir. Y
Mz
         =Moltiplicatore della massa in dir. Z
         =Moltiplicatore del momento d'inerzia intorno all'asse X
Jpx
         =Moltiplicatore del momento d'inerzia intorno all'asse Y
Jpy
         =Moltiplicatore del momento d'inerzia intorno all'asse Z
Jpz
```

CCE	Comm.	Tipo CCE	Sic.	Var.	Dir.	Tipo	Mx	Му	Mz	Jpx	Jpy	Jpz
					<grad></grad>							
1	Peso proprio	1	S									1.00
2	Peso proprio solai	1	S				1.00	1.00	0.00	0.00	0.00	1.00
3	Permanente solai	2	S				1.00	1.00	0.00	0.00	0.00	1.00
4	Accidentali copertura	12	S	В			1.00	1.00	0.00	0.00	0.00	1.00
5	Tamponature e macchinari	2	S				1.00	1.00	0.00	0.00	0.00	1.00
6	Vento X	11	S	A	0.00	M	0.00	0.00	0.00	0.00	0.00	0.00
7	Variazione termica	10	S	В			1.00	1.00	0.00	0.00	0.00	1.00
8	Vento Y	11	S	A	90.00	M	0.00	0.00	0.00	0.00	0.00	0.00

Elenco tipi CCE definiti

```
Simbologia
```

```
Tipo CCE = Tipo condizione di carico elementare
Comm.
         = Commento
Tipo
          = Tipologia
           G = Permanente
           Qv = Variabile vento
           Q = Variabile
           I = Da ignorare
           A = Azione eccezionale
           P = Precompressione
Durata
          = Durata del carico
           N = Non definita
           P = Permanente
           L = Lunga
           M = Media
           B = Breve
           I = Istantanea
          = Coeff. \gamma min.
γ min.
         = Coeff. \gamma_{max}
γ max
          =Coeff. \psi_0
Ψ٥
          =Coeff. \psi_1
\psi_1
          = Coeff. \psi_2
\Psi_2
         = Coeff. \psi_0 sismico (D.M. 96)
Ψ0,s
```

Tipo CC	Comm.	Tipo	Durata	γ min.	γ max	Ψο	Ψ1	Ψ2	Ψ0,s
1	D.M. 18 Permanenti strutturali	G	P	1.00	1.30				
2	D.M. 18 Permanenti non strutturali	G	L	0.80	1.50				
12	D.M. 18 Variabili Neve (a quota <= 1000 m s.l.m.)	Q	М	0.00	1.50	0.50	0.20	0.00	0.00
11	D.M. 18 Variabili Vento	Qv	В	0.00	1.50	0.60	0.20	0.00	0.00
10	D.M. 18 Variabili Variazioni termiche	Q	M	0.00	1.50	0.60	0.50	0.00	0.00

Ambienti di carico Simbologia

```
= Numero
Ν
Comm. = Commento
    1=Peso proprio
    2 = Peso proprio solai
    3 = Permanente solai
    4 = Accidentali copertura
    5 = Tamponature e macchinari
    6 = Vento X
    7 = Variazione termica
    8 = Vento Y
     =azioni orizzontali convenzionali
SLU = Stato limite ultimo
    =Stato limite per combinazioni rare
     =Stato limite per combinazioni frequenti
SLQ/D = Stato limite per combinazioni quasi permanenti o di danno
      S = Sì
N = No
```

N	Comm.	1	2	3	4	5	6	7	8	s	SLU	SLR	SLF	SLQ
1	Calcolo sismico	S	S	S	S	S	Ν	S	Ν	S	S	N	N	N
2	Calcolo statico	S	S	S	S	S	N	S	Ν	Ν	S	S	S	S
3	Vento da 0°	S	S	S	S	S	S	S	Ν	Ν	S	S	S	S
4	Vento da 90°	S	S	S	S	S	Ν	S	S	Ν	S	S	S	S

Elenco combinazioni di carico simboliche

```
CC = Numero della combinazione delle condizioni di carico elementari Comm. = Commento

TCC = Tipo di combinazione di carico

SLU = Stato limite ultimo

SLU S = Stato limite ultimo (azione sismica)

SLE R = Stato limite d'esercizio, combinazione rara

SLE F = Stato limite d'esercizio, combinazione frequente

SLE Q = Stato limite d'esercizio, combinazione quasi permanente

SLD = Stato limite di danno

SLV = Stato limite di salvaguardia della vita

SLC = Stato limite di prevenzione del collasso

SLO = Stato limite di operatività

SLU I = Stato limite di resistenza al fuoco

SND = Stato limite di salvaguardia della vita (non dissipativo)
```

CC	Comm.	TCC	1	2	3	4	5	6	7	8	S

				_		_								1	
1	Amb.	1	(Sisma))	SLU	S	1	1	1	ψ_2	1		ψ_2		1
2	Amb.	2	(SLU)		SLU		γ max	γ max	γ max	γ max	γ max		γ max		
3	Amb.	2	(SLE R)	SLE	R	1	1	1	1	1		1		
4	Amb.	2	(SLE F)	SLE	F	1	1	1	ψ_1	1		ψ_1		
5	Amb.	2	(SLE Q)	SLE	Q	1	1	1	ψ_2	1		ψ_2		
6	Amb.	3	(SLU)		SLU		γ max	γ max	γ max	γ max	γ max	γ max	γ max		
7	Amb.	3	(SLU)		SLU		γ max	γ max	γ max	γ max	γ max	ψ ₀ *γ max	γ max		
8	Amb.	3	(SLE R)	SLE	R	1	1	1	1	1	1	1		
9	Amb.	3	(SLE R)	SLE	R	1	1	1	1	1	ψ ₀	1		
10	Amb.	3	(SLE F)	SLE	F	1	1	1	ψ_1	1	ψ_1	ψ_1		
11	Amb.	3	(SLE F)	SLE	F	1	1	1	ψ_1	1	ψ2	ψ_1		
12	Amb.	3	(SLE Q)	SLE	Q	1	1	1	ψ_2	1	ψ_2	ψ_2		
13	Amb.	4	(SLU)		SLU		γ max	γ max	γ max	γ max	γ max		γ max	γ max	
14	Amb.	4	(SLU)		SLU		γ max	γ max	γ max	γ max	γ max		γ max	$\psi_0*\gamma$ max	
15	Amb.	4	(SLE R)	SLE	R	1	1	1	1	1		1	1	
16	Amb.	4	(SLE R)	SLE	R	1	1	1	1	1		1	Ψο	
17	Amb.	4	(SLE F)	SLE	F	1	1	1	ψ_1	1		ψ_1	ψ_1	
18	Amb.	4	(SLE F)	SLE	F	1	1	1	ψ_1	1		ψ_1	ψ_2	
19	Amb.	4	(SLE Q)	SLE	Q	1	1	1	ψ_2	1		ψ_2	ψ_2	

Genera le combinazioni con un solo carico di tipo variabile come di base: No

Considera sollecitazioni dinamiche con segno dei modi principali: No

Combinazioni delle CCE

```
= Numero della combinazione delle condizioni di carico elementari
Comm. = Commento
TCC = Tipo di combinazione di carico
       SLU = Stato limite ultimo
        SLU S = Stato limite ultimo (azione sismica)
        SLE R = Stato limite d'esercizio, combinazione rara
        SLE F = Stato limite d'esercizio, combinazione frequente
        SLE Q = Stato limite d'esercizio, combinazione quasi permanente
        {\tt SLD} = Stato limite di danno
        SLV = Stato limite di salvaguardia della vita
       SLC = Stato limite di prevenzione del collasso
SLO = Stato limite di operatività
        {	t SLU} \ {	t I} = {	t Stato} \ {	t limite} \ {	t di} \ {	t resistenza} \ {	t al} \ {	t fuoco}
        SND = Stato limite di salvaguardia della vita (non dissipativo)
An.
     =Tipo di analisi
       L = Lineare
       NL = Non lineare
Вk
      =Buckling
       S = Sì
N = No
```

CC	Com	m.	TCC	An.	Bk	1	2	3	4	5	6	7	8	Mt	±s x	±s Y
1 Amb. 1	(SLU S)	S Mt+X+0.3Y	SLV+SND	L	N	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.30
2 Amb. 1	(SLE) S	Mt+X+0.3Y	SLD	L	N	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.30
3 Amb. 1	(SLE) S	Mt+X+0.3Y	SLO	L	Ν	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.30
4 Amb. 1	(SLU S)	S Mt+X-0.3Y	SLV+SND	L	Ν	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	-0.30
5 Amb. 1	(SLE) S	Mt+X-0.3Y	SLD	L	Ν	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	-0.30
6 Amb. 1	(SLE) S	Mt+X-0.3Y	SLO	L	Ν	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	1.00	-0.30
7 Amb. 1	(SLU S)	S Mt+0.3X+Y	SLV+SND	L	Ν	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	0.30	1.00
8 Amb. 1	(SLE) S	Mt+0.3X+Y	SLD	L	Ν	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	0.30	1.00
9 Amb. 1	(SLE) S	Mt+0.3X+Y	SLO	L	Ν	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	0.30	1.00
10 Amb. 1	(SLU S)	S Mt-0.3X+Y	SLV+SND	L	N	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	-0.30	1.00
11 Amb. 1	(SLE) S	Mt-0.3X+Y	SLD	L	Ν	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	-0.30	1.00
12 Amb. 1	(SLE) S	Mt-0.3X+Y	SLO	L	Ν	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	1.00	-0.30	1.00
13 Amb. 1	(SLU S)	S - Mt + X + 0.3Y	SLV+SND	L	Ν	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	1.00	0.30
14 Amb. 1	(SLE) S	-Mt+X+0.3Y	SLD	L	N	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	1.00	0.30
15 Amb. 1	(SLE) S	-Mt+X+0.3Y	SLO	L	Ν	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	1.00	0.30
16 Amb. 1	(SLU S)	S -Mt+X-0.3Y	SLV+SND	L	Ν	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	1.00	-0.30
17 Amb. 1	(SLE) S	-Mt+X-0.3Y	SLD	L	Ν	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	1.00	-0.30
18 Amb. 1	(SLE) S	-Mt+X-0.3Y	SLO	L	Ν	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	1.00	-0.30
19 Amb. 1	(SLU S)	S -Mt+0.3X+Y	SLV+SND	L	Ν	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	0.30	1.00
20 Amb. 1	(SLE) S	-Mt+0.3X+Y	SLD	L	Ν	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	0.30	1.00
21 Amb. 1	(SLE) S	-Mt+0.3X+Y	SLO	L	Ν	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	0.30	1.00
22 Amb. 1	(SLU S)	S -Mt-0.3X+Y	SLV+SND	L	N	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	-0.30	1.00
23 Amb. 1	(SLE) S	-Mt-0.3X+Y	SLD	L	N	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	-0.30	1.00
24 Amb. 1	(SLE) S	-Mt-0.3X+Y	SLO	L	Ν	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	-1.00	-0.30	1.00
25 Amb. 2	(SLU)		SLU	L	Ν	1.30	1.30	1.50	1.50	1.50	0.00	1.50	0.00	0.00	0.00	0.00
26 Amb. 2	(SLE R)		SLE R	L	N	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00
27 Amb. 2	(SLE F)		SLE F	L	N	1.00	1.00	1.00	0.20	1.00	0.00	0.50	0.00	0.00	0.00	0.00
28 Amb. 2	(SLE Q)		SLE Q	L	N	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
29 Amb. 3	(SLU)		SLU	L	N	1.30	1.30	1.50	1.50	1.50	1.50	1.50	0.00	0.00	0.00	0.00

30 Amb. 3	(SLU)	SLU	L	Ν	1.30	1.30	1.50	1.50	1.50	0.90	1.50	0.00	0.00	0.00	0.00
31 Amb. 3	(SLE R)	SLE R	L	N	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00
32 Amb. 3	(SLE R)	SLE R	L	N	1.00	1.00	1.00	1.00	1.00	0.60	1.00	0.00	0.00	0.00	0.00
33 Amb. 3	(SLE F)	SLE F	L	N	1.00	1.00	1.00	0.20	1.00	0.20	0.50	0.00	0.00	0.00	0.00
34 Amb. 3	(SLE F)	SLE F	L	N	1.00	1.00	1.00	0.20	1.00	0.00	0.50	0.00	0.00	0.00	0.00
35 Amb. 3	(SLE Q)	SLE Q	L	N	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
36 Amb. 4	(SLU)	SLU	L	N	1.30	1.30	1.50	1.50	1.50	0.00	1.50	1.50	0.00	0.00	0.00
37 Amb. 4	(SLU)	SLU	L	N	1.30	1.30	1.50	1.50	1.50	0.00	1.50	0.90	0.00	0.00	0.00
38 Amb. 4	(SLE R)	SLE R	L	N	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	0.00	0.00
39 Amb. 4	(SLE R)	SLE R	L	N	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.60	0.00	0.00	0.00
40 Amb. 4	(SLE F)	SLE F	L	N	1.00	1.00	1.00	0.20	1.00	0.00	0.50	0.20	0.00	0.00	0.00
41 Amb. 4	(SLE F)	SLE F	L	N	1.00	1.00	1.00	0.20	1.00	0.00	0.50	0.00	0.00	0.00	0.00
42 Amb. 4	(SLE Q)	SLE Q	L	N	1.00	1.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00

Elenco baricentri e masse impalcati

Simbologia

Imp. = Numero dell'impalcato

Χ =Coordinata X

=Coordinata Y

Z = Coordinata Z Mo = Massa orizzontale

Jpz =Massa rotazionale intorno all'asse Z

Imp.		Y <m></m>	Z <m></m>	Mo <kg></kg>	Jpz <kg*mg></kg*mg>
1	4.12	3.00	4.15	47865.80	513700.00

Totali masse impalcati

Mo	Jpz
<kg></kg>	<kg*mq></kg*mq>
47865.80	513700.00

Elenco forze sismiche di impalcato allo SLO

Simbologia

Imp. = Numero dell'impalcato cx = Coeff. c in dir. X
cy = Coeff. c in dir. Y
Mz = Momento intorno all'asse Z

Imp. cx cy Mz <daNm>

1 1.00 1.00 3263.05

Totali forze sismiche

Mz <daNm> 3263.05

Elenco forze sismiche di impalcato allo SLD

Imp.	СХ	су	Mz <danm></danm>
			\Qanıı.
1	1.00	1.00	2616.38

Totali forze sismiche

Mz <daNm> 2616.38

Elenco forze sismiche di impalcato allo SLV

Imp.	СХ	су	Mz
			<danm></danm>
1	1.00	1.00	5395.80

Totali forze sismiche

Mz <daNm> 5395.80

Elenco forze sismiche di impalcato allo SND

	Imp.	СХ	су	Mz
ı				<danm></danm>
	1	1.00	1.00	5395.80

Totali forze sismiche

Mz <daNm> 5395.80

Elenco modi di vibrare, masse partecipanti e coefficienti di partecipazione

Simbologia

```
Modo = Numero del modo di vibrare C =* indica che il modo è stato considerato T = Periodo Diff. = Minima differenza percentuale dagli altri periodi \Phi_{\rm X} = Coefficiente di partecipazione in dir. X \Phi_{\rm Y} = Coefficiente di partecipazione in dir. Y \Phi_{\rm Z} = Coefficiente di partecipazione in dir. Z = Percentuale massa partecipante in dir. X % = Percentuale massa partecipante in dir. Y % = Percentuale massa partecipante in dir. Z = Percentuale massa partecipante in dir. Z
```

%Jpz =Percentuale momento d'inerzia polare partecipante intorno all'asse Z

Modo	С	Т	Diff.	Фх	Фу	Φz	%Mx	%Мy	%Mz	%Jpz
1	*	0.19	10.87	69.19	0.00	0.00	100.00	0.00	0.00	0.00
2	*	0.17	10.87	-0.00	69.18	0.00	0.00	99.98	0.00	0.02
3	*	0.13	36.93	-0.00	1.08	0.00	0.00	0.02	0.00	99.98
Tot.cons.							100.00	100.00	0.00	100.00

Elenco coefficienti di risposta

Simbologia

Stato limite di operatività

Modo	Sx	Sy
1	14.51	14.51
2	14.51	14.51
3	13.02	13.02

Stato limite di danno

Modo	Sx	Sy
1	11.63	11.63
2	11.63	11.63
3	10.53	10.53

Stato limite di salvaguardia della vita

Modo	Sx	Sy
1	23.99	23.99
2	23.02	23.02
3	20.63	20.63

Domanda in duttilità di curvatura

```
Direzione X \mu_{\text{EdX}}{=}24.42 Direzione Y \mu_{\text{EdY}}{=}26.95
```

Spostamenti relativi massimi allo stato limite di operatività

Simbologia

```
N1 = Nodo1
N2 = Nodo2
```

h = Altezza teorica

 δ = Spostamento relativo

 δ/h = Rapporto (moltiplicato per 1000) tra lo spostamento relativo e l'altezza

CC = Numero della combinazione delle condizioni di carico elementari

I valori degli spostamenti relativi per CC di tipo sismico sono amplificati come da normativa

N1	N2	h <m></m>	δ <cm></cm>	δ/h	CC	N1	N2	h <m></m>	δ <cm></cm>	δ/h	CC	N1	N2	h <m></m>	δ <cm></cm>	δ/h	CC	N1	N2	h <m></m>	δ <cm></cm>	δ/h	CC
1 5	101 105	4.15	0.14	0.35	6 15	2	102 106	4.15 4.15	0.14	0.34		3	103	4.15	0.14	0.35	3	4	104	4.15	0.14	0.35	15

Min = 0.34Max = 0.35

Reazioni vincolari

```
Nodo = Numero del nodo
CC = Numero della combinazione delle condizioni di carico elementari
TCC = Tipo di combinazione di carico
      SLU = Stato limite ultimo
      SLU S = Stato limite ultimo (azione sismica)
      SLE R = Stato limite d'esercizio, combinazione rara
SLE F = Stato limite d'esercizio, combinazione frequente
SLE Q = Stato limite d'esercizio, combinazione quasi permanente
      SLD = Stato limite di danno
      SLV = Stato limite di salvaguardia della vita
      SLC = Stato limite di prevenzione del collasso
      SLO = Stato limite di operatività
      SLU I = Stato limite di resistenza al fuoco
      SND = Stato limite di salvaguardia della vita (non dissipativo)
     =Reazione vincolare (forza) in dir. X
    = Reazione vincolare (forza) in dir. Y
Fν
    =Reazione vincolare (forza) in dir. Z
Fz
    =Reazione vincolare (momento) intorno all'asse X
Mx
    =Reazione vincolare (momento) intorno all'asse Y
    = Reazione vincolare (momento) intorno all'asse Z
```

Nodo		CC	TCC	Fx		CC	TCC	Fy	(CC	TCC	Fz		CC	TCC	Mx	CC	TCC	My	CC	TCC	Mz
				<dan< th=""><th>> </th><th></th><th></th><th><dan></dan></th><th>. </th><th></th><th></th><th><dan></dan></th><th>. </th><th></th><th></th><th><danm></danm></th><th></th><th></th><th><danm></danm></th><th></th><th></th><th><danm></danm></th></dan<>	>			<dan></dan>	.			<dan></dan>	.			<danm></danm>			<danm></danm>			<danm></danm>
1 N	Лах	13	SLV	1485.	.03	7	SLV	3784.	342	29	SLV	10525.	101	L 9	SLV	3486.94	13	SLV	3009.03	19	SLV	55.58
1 N	1in	1	SLV	-1328.	. 57	19	SLV	-969.	23	13	SLV	4583.	657	7	SLV	-7268.90	7	SLV	-2798.92	1	SLV	-55.58
2 N	Лах	13	SLV	3323.	.27	36	SLV	3751.	31/2	29	SLV	17127.	601	L 9	SLV	255.69	13	SLV	7216.23	19	SLV	55.58
2 N	1in	1	SLV	-3189.	.80	19	SLV	353.	26	19	SLV	10348.	702	29	SLV	-4661.20	7	SLV	-7044.03	. 1	SLV	-55.58
3 N	1ax	13	SLV	1164.	.05	29	SLV	4796.	292	29	SLV	11923.	807	7	SLV	3469.34	13	SLV	2572.74	19	SLV	55.58
3 N	1in	1	SLV	-1453.	. 98	7	SLV	-895.	32	7	SLV	5813.	021	L 9	SLV	-7681.46	7	SLV	-2969.3	1	SLV	-55.58
4 N	Лах	1	SLV	1485.	.03	7	SLV	969.	232	25	SLV	9970.	511	L 9	SLV	7268.90	1	SLV	3009.01	. 19	SLV	55.58
4 N	1in	13	SLV	-1328.	. 57	19	SLV	-3784.	34	1	SLV	4583.	657	7	SLV	-3486.94	13	SLV	-2798.92	1	SLV	-55.58
5 M	1ax	1	SLV	3323.	.27	7	SLV	-353.	262	25	SLV	17009.	901	L 9	SLV	3933.24	1	SLV	7216.23	19	SLV	55.58
5 M	1in	13	SLV	-3189.	.80	19	SLV	-2352.	41	7	SLV	10348.	707	7	SLV	-255.69	13	SLV	-7044.01	. 1	SLV	-55.58
6 N	Лах	1	SLV	1164.	05	19	SLV	895.	32 2	25	SLV	11380.	207	7	SLV	7681.46	1	SLV	2572.74	19	SLV	55.58
6 M	1in	13	SLV	-1453.	. 98	7	SLV	-4030.	62	19	SLV	5813.	021	L 9	SLV	-3469.34	13	SLV	-2969.3	1	SLV	-55.58

Sollecitazioni aste

Simbologia

Asta = Numero dell'asta

N1 = Nodo1

N2 = Nodo2

X = Coordinata progressiva rispetto al nodo iniziale

 ${\tt N} \qquad = {\tt Sforzo \ normale}$

CC = Numero della combinazione delle condizioni di carico elementari

Ty = Taglio in dir. Y

Mz = Momento flettente intorno all'asse Z

Tz = Taglio in dir. Z

My = Momento flettente intorno all'asse Y

Mx = Momento torcente intorno all'asse X

Tipo di combinazione di carico: SLV

Asta	371	N2		х	N	CC	m	СС	Mz	CC	Tz	CC	My	CC	Мх	CC
ASLA	NI	NZ		<cm></cm>	<dan></dan>	CC	Ty <dan></dan>	CC	<danm></danm>	CC	<dan></dan>	CC	My <danm></danm>	CC	<danm></danm>	CC
1	1	1 0 1	Max	0.00	-4583.65	1 2	1328.57	1	3009.01	1 2	969.23	1 0	7268.90	7	55.58	7
1			Max	375.00	-3177.40	$\overline{}$	1328.57	1	2183.24	_	969.23	-	147.68		55.58	_
1		-	Min.	0.00	-9014.38	1			-2798.92	1	-3784.34	7	-3486.94		-55.58	
1			Min.	375.00	-7608.13	1	-1485.03	_	-2559.85		-3784.34	7	-6922.36	_	-55.58	_
2		-	Max	0.00			2352.41	7	255.69	_		1	7216.21			-
2	_	-	Max	375.00	-8942.41		2352.41	7	4888.31	7	3189.80		4917.73	-	55.58	_
2		-	Min.	0.00		7	353.26			7	-3323.27	13	-7044.01	1	-55.58	
2		-	Min.	375.00	-10872.40	7	353.26		1580.40		-3323.27	13	-5246.05		-55.58	_
3			Max	0.00	-5813.02	7	1453.98	_	2572.74	_		7	7681.46	_	55.58	-
3	-		Max	375.00	-4406.77	7	1453.98	_	2483.06	1	895.32	7	-111.88	-	55.58	_
3			Min.	0.00	-9586.73			_		1	-4030.62	10			-55.58	_
3	-		Min.	375.00	-8180.48			_	-1792.46	ᅳ	-4030.62		-7433.35	$\overline{}$	-55.58	_
4	-		Max	0.00	-4583.65	1	1328.57	_	3009.01	1	3784.34	-	3486.94		55.58	_
4		-	Max	375.00	-3177.40	1	1328.57	_	2183.24		3784.34	-	6922.36	_	55.58	-
4			Min.	0.00	-9014.38			1	-2798.92	-	-969.23		-7268.90	-	-55.58	_
4		-	Min.	375.00	-7608.13					_	-969.23		-147.68	_	-55.58	_
5			Max	0.00		7	-353.26	7	3933.24	-	3189.80		7216.21	1	55.58	
5			Max	375.00	-8942.41	7	-353.26	7			3189.80		4917.73			
5			Min.	0.00				_	-255.69	7	-3323.27	1	-7044.01	_	-55.58	_
5	-		Min.	375.00				_		1 0	-3323.27	1	-5246.05	-	-55.58	_
6	-		Max	0.00	-5813.02		1453.98	-	2572.74	1	4030.62	7	3469.34		55.58	-
6			Max	375.00	-4406.77		1453.98	_	2483.06		4030.62	7	7433.35			
6			Min.	0.00	-9586.73	7		_		_	-895.32	10	-7681.46		-55.58	_
6			Min.	375.00	-8180.48	7			-1792.46	-	-895.32		111.88		-55.58	_
101	-		Max.	15.00	0.00	7	0.00	_	0.00	-	2474.78	-	2519.78		-323.96	-
	101			20.29	0.00	/	0.00	<u> </u>	0.00	-	24/4./8	113	739.84		-323.96	1 3
101	TOT	102	мах	20.29									/39.84	ΤU		Ш

4 0 4 4 0 4 4 0 0 4	000 00		_		_	2 22	_	0.40 =0.44		000 0040
101 101 102 Max	320.00				7	0.00				
101 101 102 Min.	15.00		7	0.00	7	0.00	1/	-1217.93	-2759.2013	
101 101 102 Min.	20.29								-665.23 10	
101 101 102 Min.	320.00		-		7	0.00	-	-2742.93 1		
101 102 103 Max	25.00	0.00	13	0.00	1	0.00	1	2372.82 13		419.69 19
101 102 103 Max	328.89								738.15 19	
101 102 103 Max	410.00			0.00	1	0.00		447.82 13		
101 102 103 Min.	25.00	0.00	1	0.00	1	0.00	1	-236.19 1	-3254.38 13	222.40 7
101 102 103 Min.	328.89								-83.77 19	
101 102 103 Min.	410.00	0.00	1	0.00	1	0.00	1	-2161.19	-2713.68 1	222.40 7
103 104 105 Max	15.00	0.00	19	0.00	7	0.00	7	2474.78	2519.7813	544.10 19
103 104 105 Max	20.29								739.8422	
103 104 105 Max	320.00	0.00	19	0.00	7	0.00	7	949.78 1	2463.27 1	544.1019
103 104 105 Min.	15.00	0.00	7	0.00	7	0.00	7	-1217.9313	-2759.20 1	323.96 7
103 104 105 Min.	20.29								-665.2322	
103 104 105 Min.	320.00	0.00	7	0.00	7	0.00	7	-2742.9313	-3520.5213	323.96 7
103 105 106 Max	25.00	0.00	1	0.00	1	0.00	1	2372.82 1	1901.2913	-222.4019
103 105 106 Max	328.89								738.15 7	
103 105 106 Max	410.00	0.00	1	0.00	1	0.00	1	447.82 1	2175.37 1	-222.4019
103 105 106 Min.	25.00	0.00	13	0.00	1	0.00	1	-236.1913	-3254.38 1	-419.69 7
103 105 106 Min.	328.89								-83.77 7	
103 105 106 Min.	410.00	0.00	13	0.00	1	0.00	1	-2161.1913	-2713.6813	-419.69 7
104 101 104 Max	35.00	0.00	1	0.00	1	0.00	1	5517.20	1813.1919	21.5219
104 101 104 Max	188.61								3692.2119	
104 101 104 Max	535.00	0.00	1	0.00	1	0.00	1	-2446.55	1813.19 7	21.5219
104 101 104 Min.	35.00	0.00	1	0.00	1	0.00	1	2446.5519	-5863.43 7	-21.52 7
104 101 104 Min.	188.61								986.5619	
104 101 104 Min.	535.00	0.00	1	0.00	1	0.00	1	-5517.2019	-5863.4319	-21.52 7
105 102 105 Max	15.00	0.00	1	0.00	1	0.00	1	7924.71	-1325.2319	31.2019
105 102 105 Max	255.56								6332.2319	
105 102 105 Max	555.00	0.00	1	0.00	1	0.00	1	-6366.39	-1325.23 7	31.2019
105 102 105 Min.	15.00	0.00	1	0.00	1	0.00	1	6366.3919	-5532.68 7	-31.20 7
105 102 105 Min.	314.49								5876.31 7	
105 102 105 Min.	555.00	0.00	1	0.00	1	0.00	1	-7924.7119	-5532.6819	-31.20 7
106 103 106 Max	35.00	0.00	1	0.00	1	0.00	_	6167.4219		23.3319
106 103 106 Max	197.75								4044.42 7	
106 103 106 Max	535.00	0.00	1	0.00	1	0.00	1	-2976.3319		23.3319
106 103 106 Min.	35.00	0.00			1	0.00		2976.33		
106 103 106 Min.					_				1500.13 7	
106 103 106 Min.	535.00	0.00	1	0.00	1	0.00	1	-6167.42	-6355.32 7	-23.33 7
						0.00			1 2000.02 7	20.00

Tipo di combinazione di carico: SND

Asta	N1	N2		х	N	CC	Ty	CC	Mz	CC	Tz	CC	My	CC	Mx	CC
				<cm></cm>	<dan></dan>		<dan></dan>		<danm></danm>		<dan></dan>		<danm></danm>		<danm></danm>	
1	1	101	Max	0.00	-4583.65	13	1328.57	1	3009.01	13	969.23	19	7268.90	7	55.58	3 7
1	1	101	Max	375.00	-3177.40			1	2183.24	1	969.23			19	55.58	3 7
1	1	101	Min.	0.00	-9014.38	1	-1485.03	13	-2798.92	1	-3784.34	7	-3486.94	19	-55.58	19
1	1	101	Min.	375.00	-7608.13	1	-1485.03	13	-2559.85	13	-3784.34	7	-6922.36	7	-55.58	19
2	2	102	Max	0.00	-10348.70	19	2352.41	7	255.69	19	3189.80	1	7216.21	13	55.58	3 7
2	2	102	Max	375.00	-8942.41	19	2352.41	7	4888.31	7	3189.80	1	4917.73	1	55.58	3 7
2	2	102	Min.	0.00	-12278.70	7	353.26	19	-3933.24	7	-3323.27	13	-7044.01	1	-55.58	19
2	2	102	Min.	375.00	-10872.40	7	353.26	19	1580.40	19	-3323.27	13	-5246.05	13	-55.58	19
3	3	103	Max	0.00	-5813.02	7	1453.98	1	2572.74	13	895.32	7	7681.46	19	55.58	3 7
3	3	103	Max	375.00	-4406.77	7	1453.98	1	2483.06	1	895.32	7	-111.88	7	55.58	3 7
3	3	103	Min.	0.00	-9586.73	19			-2969.37	1	-4030.62	19	-3469.34	7	-55.58	19
3	3	103	Min.	375.00	-8180.48	19	-1164.05	13	-1792.46	13	-4030.62	19	-7433.35	19	-55.58	19
4			Max	0.00	-4583.65	1	1328.57		3009.01	1	3784.34			7	55.58	
4			Max	375.00	-3177.40	1	1328.57	13	2183.24	13	3784.34	19	6922.36	19	55.58	
4	4	104	Min.	0.00	-9014.38	13	-1485.03	1	-2798.92	13	-969.23	7	-7268.90	19	-55.58	19
4			Min.	375.00	-7608.13	13	-1485.03	1	-2559.85	1	-969.23	7	-147.68	7	-55.58	19
5	5	105	Max	0.00	-10348.70	7	-353.26	7	3933.24		3189.80	13	7216.21	1	55.58	3 7
5	5	105	Max	375.00	-8942.41	7	-353.26	7	-1580.40		3189.80	13	4917.73	13	55.58	3 7
5			Min.	0.00	-12278.70	19			-255.69		-3323.27	1	-7044.01	13	-55.58	
5	5	105	Min.	375.00	-10872.40	19	-2352.41	19	-4888.31	19	-3323.27	1	-5246.05	1	-55.58	19
6	6	106	Max	0.00	-5813.02	_		-	2572.74		4030.62	7		-	55.58	_
6	6	106	Max	375.00	-4406.77	19	1453.98	13	2483.06	13	4030.62	7	7433.35	7	55.58	3 7
6			Min.	0.00	-9586.73	7		_	-2969.37		-895.32			-	-55.58	_
6			Min.	375.00	-8180.48	7	-1164.05	1	-1792.46	1	-895.32	19	111.88	19	-55.58	
		-	Max	15.00	0.00	7	0.00	7	0.00	7	2474.78	13			-323.96	19
			Max	20.29									739.84	$\overline{}$		
			Max	320.00	0.00	7	0.00	7	0.00	_	949.78		2463.27	-		1 -
101	101	102	Min.	15.00	0.00	7	0.00	7	0.00	7	-1217.93	1	-2759.20	13	-544.10	7
			Min.	20.29									-665.23			
101	101	102	Min.	320.00	0.00	7	0.00	7	0.00	7	-2742.93	1	-3520.52	1	-544.10	7
-			Max	25.00	0.00	13	0.00	1	0.00	1	2372.82	13			419.69	19
			Max	328.89									738.15	19		
			Max	410.00	0.00	13			0.00	1	447.82	13			419.69	
			Min.	25.00	0.00	1	0.00	1	0.00	1	-236.19	1			222.40	7
101	102	103	Min.	328.89									-83.77	19		

101 102 103 Min. 410.00														
103 104 105 Max 20.29	101 102 103 Min.	410.00	0.00	1	0.00	1	0.00	1	-2161.19	1	-2713.68	1	222.40	7
103 104 105 Max 320.00 0.00 19 0.00 7 0.00 7 949.78 1 2463.27 1 544.10 19 103 104 105 Min. 15.00 0.00 7 0.00 7 0.00 7 -1217.93 13 -2759.20 1 323.96 7 103 104 105 Min. 320.00 0.00 7 0.00 7 0.00 7 -2742.93 13 -3520.52 13 323.96 7 103 105 106 Max 25.00 0.00 1 0.00 1 0.00 1 2372.82 1 1901.29 13 -222.40 19 103 105 106 Max 25.00 0.00 1 0.00 1 0.00 1 2372.82 1 1901.29 13 -222.40 19 103 105 106 Max 410.00 0.00 1 0.00 1 0.00 1 447.82 1 2175.37 1 -222.40 19 103 105 106 Min. 25.00 0.00 1 0.00 1 0.00 1 -236.19 13 -3254.38 1 -419.69 7 103 105 106 Min. 328.89	103 104 105 Max	15.00	0.00	19	0.00	7	0.00	7	2474.78	1	2519.78	13	544.10	19
103 104 105 Min. 15.00 0.00 7 0.00 7 0.00 7 -1217.93 13 -2759.20 1 323.96 7 103 104 105 Min. 20.29	103 104 105 Max	20.29									739.842	22		
103 104 105 Min. 20.29	103 104 105 Max	320.00	0.00	19	0.00	7	0.00	7	949.78	1	2463.27	1	544.10	19
103 104 105 Min. 320.00	103 104 105 Min.	15.00	0.00	7	0.00	7	0.00	7	-1217.93	13	-2759.20	1	323.96	7
103 105 106 Max 25.00 0.00 1 0.00 1 0.00 1 2372.82 1 1901.29 13 -222.40 19 103 105 106 Max 328.89 0.00 1 0.00 1 0.00 1 447.82 1 2175.37 1 -222.40 19 103 105 106 Max 410.00 0.00 1 0.00 1 0.00 1 0.00 1 447.82 1 2175.37 1 -222.40 19 103 105 106 Min. 25.00 0.00 13 0.00 1 0.00 1 -236.19 13 -3254.38 1 -419.69 7 103 105 106 Min. 328.89	103 104 105 Min.	20.29									-665.232	22		
103 105 106 Max 328 89	103 104 105 Min.	320.00	0.00	7	0.00	7	0.00	7	-2742.93	13	-3520.521	13	323.96	7
103 105 106 Max 410 00 0 0 0 1 0 0 1 0 0	103 105 106 Max	25.00	0.00	1	0.00	1	0.00	1	2372.82	1	1901.291	13	-222.40	19
103 105 106 Min. 25.00 0.00 13 0.00 1 0.00 1 -236.19 13 -3254.38 1 -419.69 7 103 105 106 Min. 328.89 0.00 1 0.00 1 -2161.19 13 -2713.68 13 -419.69 7 104 101 104 Max 35.00 0.00 1 0.00 1 0.00 1 5517.20 7 1813.19 19 21.52 19 104 101 104 Max 188.61 0.00 1	103 105 106 Max	328.89									738.15	7		
103 105 106 Min. 328.89	103 105 106 Max	410.00	0.00	1	0.00	1	0.00	1	447.82	1	2175.37	1	-222.40	19
103 105 106 Min. 410.00 0.00 13 0.00 1 0.00 1 -2161.19 13 -2713.68 13 -419.69 7 104 101 104 Max 35.00 0.00 1 0.00 1 0.00 1 5517.20 7 1813.19 19 21.52 19 104 101 104 Max 188.61	103 105 106 Min.	25.00	0.00	13	0.00	1	0.00	1	-236.19	13	-3254.38	1	-419.69	7
104 101 104 Max 35.00 0.00 1 0.00 1 0.00 1 5517.20 7 1813.19 19 21.52 19 104 101 104 Max 188.61	103 105 106 Min.	328.89									-83.77	7		
104 101 104 Max 188.61	103 105 106 Min.	410.00	0.00	13	0.00	1	0.00	1	-2161.19	13	-2713.681	13	-419.69	7
104 101 104 Max 535.00 0.00 1 0.00 1 0.00 1 -2446.55 7 1813.19 7 21.52 19 104 101 104 Min. 35.00 0.00 1 0.00 1 0.00 1 2446.55 19 -5863.43 7 -21.52 7 104 101 104 Min. 188.61	104 101 104 Max	35.00	0.00	1	0.00	1	0.00	1	5517.20	7	1813.191	19	21.52	19
104 101 104 Min. 35.00 0.00 1 0.00 1 0.00 1 2446.55 19 -5863.43 7 -21.52 7 104 101 104 Min. 188.61	104 101 104 Max	188.61									3692.21	19		
104 101 104 Min. 188.61	104 101 104 Max	535.00	0.00	1	0.00	1	0.00	1	-2446.55	7	1813.19	7	21.52	19
104 101 104 Min. 535.00 0.00 1 0.00 1 0.00 1 -5517.20 19 -5863.43 19 -21.52 7 105 102 105 Max 15.00 0.00 1 0.00 1 0.00 1 7924.71 7 -1325.23 19 31.20 19 105 102 105 Max 255.56	104 101 104 Min.	35.00	0.00	1	0.00	1	0.00	1	2446.55	19	-5863.43	7	-21.52	7
105 102 105 Max 15.00 0.00 1 0.00 1 0.00 1 7924.71 7 -1325.23 19 31.20 19 105 102 105 Max 255.56	104 101 104 Min.	188.61									986.561	19		
105 102 105 Max 255.56	104 101 104 Min.	535.00	0.00	1	0.00	1	0.00	1	-5517.20	19	-5863.43	19	-21.52	7
105 102 105 Max 555.00 0.00 1 0.00 1 0.00 1 -6366.39 7 -1325.23 7 31.20 19 105 102 105 Min. 15.00 0.00 1 0.00 1 0.00 1 6366.39 19 -5532.68 7 -31.20 7 105 102 105 Min. 314.49	105 102 105 Max	15.00	0.00	1	0.00	1	0.00	1	7924.71	7	-1325.23	19	31.20	19
105 102 105 Min. 15.00 0.00 1 0.00 1 0.00 1 6366.39 19 -5532.68 7 -31.20 7 105 102 105 Min. 314.49 5876.31 7 105 102 105 Min. 555.00 0.00 1 0.00 1 0.00 1 -7924.71 19 -5532.68 19 -31.20 7 106 103 106 Max 35.00 0.00 1 0.00 1 0.00 1 6167.42 19 1622.39 7 23.33 19 106 103 106 Max 197.75 4044.42 7 106 103 106 Max 535.00 0.00 1 0.00 1 0.00 1 -2976.33 19 1622.39 19 23.33 19 106 103 106 Min. 35.00 0.00 1 0.00 1 0.00 1 2976.33 7 -6355.32 19 -23.33 7 106 103 106 Min. 197.75 1500.13 7	105 102 105 Max	255.56									6332.23	19		
105 102 105 Min. 314.49	105 102 105 Max		0.00	1	0.00	1	0.00	1	-6366.39	7	-1325.23	7	31.20	19
105 102 105 Min. 555.00 0.00 1 0.00 1 0.00 1 -7924.71 19 -5532.68 19 -31.20 7 106 103 106 Max 35.00 0.00 1 0.00 1 0.00 1 6167.42 19 1622.39 7 23.33 19 106 103 106 Max 197.75	105 102 105 Min.	15.00	0.00	1	0.00	1	0.00	1	6366.39	19	-5532.68	7	-31.20	7
106 103 106 Max 35.00 0.00 1 0.00 1 0.00 1 6167.42 19 1622.39 7 23.33 19 106 103 106 Max 197.75 4044.42 7 106 103 106 Max 535.00 0.00 1 0.00 1 -2976.33 19 1622.39 19 23.33 19 106 103 106 Min. 35.00 0.00 1 0.00 1 2976.33 7 -6355.32 19 -23.33 7 106 103 106 Min. 197.75 1500.13 7	105 102 105 Min.	314.49												
106 103 106 Max 197.75 106 103 106 Max 535.00 0.00 1 0.00 1 -2976.33 19 1622.39 19 23.33 19 106 103 106 Min. 35.00 0.00 1 0.00 1 2976.33 7 -6355.32 19 -23.33 7 106 103 106 Min. 197.75 1500.13 7	105 102 105 Min.	555.00	0.00	1	0.00	1	0.00	1	-7924.71	19	-5532.68	19	-31.20	7
106 103 106 Max 535.00 0.00 1 0.00 1 0.00 1 -2976.33 19 1622.39 19 23.33 19 106 103 106 Min. 35.00 0.00 1 0.00 1 0.00 1 2976.33 7 -6355.32 19 -23.33 7 106 103 106 Min. 197.75 1500.13 7	106 103 106 Max	35.00	0.00	1	0.00	1	0.00	1	6167.42	19	1622.39	7	23.33	19
106 103 106 Min. 35.00 0.00 1 0.00 1 2976.33 7 -6355.32 19 -23.33 7 106 103 106 Min. 197.75 1500.13 7		197.75									4044.42	7		
106 103 106 Min. 197.75 1500.13 7		535.00	0.00	1	0.00	1	0.00	1	-2976.33	19	1622.391	19	23.33	19
		35.00	0.00	1	0.00	1	0.00	1	2976.33	7	-6355.32	19	-23.33	7
106 103 106 Min. 535.00 0.00 1 0.00 1 -6167.42 7 -6355.32 7 -23.33 7	106 103 106 Min.	197.75									1500.13	7		
	106 103 106 Min.	535.00	0.00	1	0.00	1	0.00	1	-6167.42	7	-6355.32	7	-23.33	7

Tipo di combinazione di carico: SLD

Asta	N1	N2	Х		N	CC	Ту		cc	Mz		CC	Tz	CC	My		CC	Мx		CC
			<c< th=""><th>:m></th><th><dan></dan></th><th></th><th><dan></dan></th><th></th><th></th><th><danm< th=""><th>></th><th></th><th><dan></dan></th><th></th><th><danm< th=""><th>> </th><th></th><th><dann< th=""><th>n></th><th></th></dann<></th></danm<></th></danm<></th></c<>	:m>	<dan></dan>		<dan></dan>			<danm< th=""><th>></th><th></th><th><dan></dan></th><th></th><th><danm< th=""><th>> </th><th></th><th><dann< th=""><th>n></th><th></th></dann<></th></danm<></th></danm<>	>		<dan></dan>		<danm< th=""><th>> </th><th></th><th><dann< th=""><th>n></th><th></th></dann<></th></danm<>	>		<dann< th=""><th>n></th><th></th></dann<>	n>	
1	1	101 Ma	x C	00.0	-5716.16	14	604.0	01	2	1513.	36	14	-210.9	5 20	4598.	57	8	27.	16	8
1	1	101 Ma	x 375	5.00	-4309.91	14	604.0	01	2	961.	79	2	-210.9	5 20	-1607.	67	20	27.	16	8
1	1	101 Mi		00.0	-7881.88	2	-760.4	47	14	-1303.	26	2	-2604.1	5 8	-816.	61	20	-27.	16	20
1	1	101Mi	n. 375	5.00	-6475.63	2	-760.4	47	14	-1338.			-2604.1		-5167.	01	8	-27.		
2		102 Ma		00.0	-10829.90		1857.	71	8	-780.			1512.5		3543.	94	_	27.		
2	2	102 Ma	x 375	5.00	-9423.68	_	1857.		8	4069.			1512.5	_		_	2	27.		
2		102Mi		00.0			847.9					-	-1646.0			-	2	-27.		
2		102Mi		5.00			847.9						-1646.0					-27.		
3		103 Ma		00.0	-6755.59	-	779.8		2	1145.			-327.6				_	27.		8
3		103 Ma		5.00	-5349.34	_	779.8		2	1382.			-327.6		-1929.	_	8	27.	_	8
3		103Mi		00.0	-8644.16	_	-489.8	-	_	-1542.	_	-	-2807.6	_		_	8	-27.	_	
3	_	103Mi		5.00	-7237.91		-489.8			-691.			-2807.6			-	-	-27.		_
4		104 Ma		00.0	-5716.16		604.0			1513.		$\overline{}$	2604.1		816.		8	27.		
4		104 Ma		.00	-4309.91	2	604.0		_	961.			2604.1					27.		
4		104Mi		00.0	-7881.88		-760.4		2	-1303.			210.9	_		_	_	-27.	16	20
4		104Mi		.00	-6475.63	_	-760.4	-	2	-1338.		-	210.9		1607.	_	8	-27.	_	
5	-	105 Ma		00.0		-	-847.9	_	8	2896.		-	1512.5		3543.		2	27.		8
5		105 Ma		5.00	-9423.68		-847.9		8	-2398.			1512.5					27.		8
5		105Mi		00.0	-11797.40					780.			-1646.0				$\overline{}$	-27.		
5		105Mi		.00	-10391.10					-4069.			-1646.0			_	2	-27.		
6		106Ma		0.00	-6755.59	_	779.8	-	_	1145.			2807.6			_	_	27.		
6		106Ma		5.00	-5349.34		779.8	_		1382.		-	2807.6				8	27.		
6		106Mi		0.00	-8644.16				2	-1542.					-4913.		8	-27.		
6		106Mi		5.00	-7237.91	_	-489.8	_	2	-691.		2	327.6				_	-27.		
		102 Ma		.00	0.00	8	0.0	00	8	0.	00	8	1523.8	1 1 4	1160.	$\overline{}$	2	-378.	87	20
		102 Ma		3.37											421.	_	8			
	-	102 Ma		0.00	0.00	-	0.0	$\overline{}$	8		00	-	-1.1					-378.	_	
		102Mi		.00	0.00	8	0.0	00	8	0.	00	8	-266.9	5 2				-489.	19	8
		102 Mi		3.37												65	8		_	
		102 Mi	_	00.0	0.00		0.0		8		00		-1791.9	_	-1979.		2	-489.	_	
		103 Ma		.00	0.00	14	0.0	00	2	0.	00	2	1700.9	/ 14	573.		2	370.	46	20
	-	103 Ma		1.67				_							966.	_	_		_	
		103Ma		0.00	0.00		0.0		2		00		-224.0					370.	_	
		103Mi		.00	0.00	2	0.0	00	2	0.	00	2	435.6	0 2	-1926.	_	_	271.	63	8
		103Mi		1.67	2 22						0.0		4.00		-744.	_	_	0.54		_
		103Mi		00.0	0.00	-	0.0	\rightarrow	2		00	$\overline{}$	-1489.3	_	-1454.		2	271.	\rightarrow	8
		105 Ma		5.00	0.00	20	0.0	00	8	0.	00	8	1523.8	1 2		_	_	489.	19	20
		105 Ma		3.37	2 22	0.0					0.0				421.		_		1.0	
		105 Ma		00.0	0.00		0.0	_	8		00	$\overline{}$	-1.1				2	489.	_	
		105 Mi		5.00	0.00	8	0.0	JU	8	0.	00	8	-266.9	9 <u>1 4</u>			2	378.	8./	8
		105 Mi		3.37	2 2 2			2.0			0.0		1001			65		252		_
		105 Mi		00.0	0.00	_	0.0	-	8		00		-1791.9					378.	_	8
		106Ma		5.00	0.00	2	0.0	00	2	0.	00	2	1700.9	7 2	573.	_	$\overline{}$	-271.	63	20
103	105	106 Ma	x 364	1.67											966.	55	2			

10210E10CM	410 00	0 00	2	0 00	2	0 00	2	224 02	2	016 26	2	271 (2	20
103 105 106 Max	410.00		2	0.00	2	0.00					2	-271.63	$\overline{}$
103 105 106 Min.	25.00	0.00	14	0.00	2	0.00	2	435.66	14		2	-370.46	8
103 105 106 Min.	364.67									-744.79	2		
103 105 106 Min.	410.00	0.00	14	0.00	2	0.00	2	-1489.34	14	-1454.67	14	-370.46	8
104 101 104 Max	35.00	0.00	2	0.00	2	0.00	2	4754.91	8	-92.52	20	10.54	20
104 101 104 Max	333.54									3139.82	11		
104 101 104 Max	535.00	0.00	2	0.00	2	0.00	2	-3208.84	8	-92.53	8	10.54	20
104 101 104 Min.	35.00	0.00	2	0.00	2	0.00	2	3208.84	20	-3957.72	8	-10.54	8
104 101 104 Min.	235.47									2437.26	20		
104 101 104 Min.	535.00	0.00	2	0.00	2	0.00	2	-4754.91	20	-3957.72	20	-10.54	8
105 102 105 Max	15.00	0.00	2	0.00	2	0.00	2	7539.09	8	-2366.39	20	15.25	20
105 102 105 Max	270.11									6246.80	20		
105 102 105 Max	555.00	0.00	2	0.00	2	0.00	2	-6752.01	8	-2366.39	8	15.25	20
105 102 105 Min.	15.00	0.00	2	0.00	2	0.00	2	6752.01	20	-4491.52	8	-15.25	8
105 102 105 Min.	270.11									6130.46	20		
105 102 105 Min.	555.00	0.00	2	0.00	2	0.00	2	-7539.09	20	-4491.52	20	-15.25	8
106 103 106 Max	35.00	0.00	2	0.00	2	0.00	2	5375.22	20	-358.10	8	11.38	20
106 103 106 Max	328.93									3524.83	20		
106 103 106 Max	535.00	0.00	2	0.00	2	0.00	2	-3768.53	20	-358.10	20	11.38	20
106103106Min.	35.00	0.00	2	0.00	2	0.00	2	3768.53	8	-4374.83	20	-11.38	8
106103106Min.	240.56									2870.09	8		
106 103 106 Min.	535.00	0.00	2	0.00	2	0.00	2	-5375.22	8	-4374.83	8	-11.38	8

Tipo di combinazione di carico: SLO

Asta	พ1	N2		Х	N	CC	Ty	CC	Mz	CC	Tz	CC	Му	CC	Mx	CC
ns ca	141	142		<cm></cm>	<dan></dan>		-y <dan></dan>	-	<danm></danm>		<dan></dan>	CC	<danm></danm>		<danm></danm>	
1	1	1 0 1	Max	0.00	-5448.52	15	772.63	3		15		21		a	33.86	-
1			Max	375.00	-4042.27	_						$\overline{}$	-1167.81	$\overline{}$	33.86	
1		_	Min.	0.00	-8149.52	_					-2899.91					_
1			Min.	375.00		-		_		-	-2899.91	-		$\overline{}$	-33.86	_
2		_	Max		-10710.40	_	1982.50	_							33.86	_
2			Max	375.00		_	1982.50					$\overline{}$			33.86	
2			Min.		-11917.00	-					-2036.37				-33.86	
2					-10510.70			_			-2036.37					
3		_	Max	0.00				_		_			5606.83		33.86	
3		_	Max	375.00		_				_		-	-1474.15		33.86	
3			Min.		-8877.55	_					-3114.11					_
3			Min.				-646.78				-3114.11	$\overline{}$			-33.86	
4			Max	0.00								-		$\overline{}$	33.86	_
4		-	Max	375.00							2899.91	-			33.86	_
4		_	Min.	0.00	-8149.52								-5267.77		-33.86	_
4		_	Min.	375.00		_						-		-	-33.86	_
5		_	Max	0.00		_									33.86	
5			Max	375.00		_			-2192.48			-		$\overline{}$		
5		_	Min.		-11917.00					-	-2036.37	-		-		
5					-10510.70											
6			Max	0.00			936.71								33.86	_
6			Max	375.00			936.71		1638.30						33.86	
6			Min.	0.00					-1874.34				-5606.83			
6		_	Min.			_								\rightarrow		
101	101	102	Max	15.00	0.00	9		_		_				3	-365.24	21
101	101	102	Max	64.25									486.97	9		
101	101	102	Max	320.00	0.00	9	0.00	9	0.00	9	220.11	15	1280.87	15	-365.24	21
101	101	102	Min.	15.00	0.00	9	0.00	9	0.00	9	-488.25	3	-1716.08	15	-502.82	Š
101	101	102	Min.	64.25									-126.77			
				320.00	0.00	9	0.00	9	0.00	9	-2013.25	3	-2338.12	3	-502.82	9
101	102	103	Max	25.00	0.00	15	0.00	3	0.00	3	1857.33	15	882.64	3	382.67	21
			Max	396.47									1213.95			
		_	Max	410.00			0.00	_		_					382.67	21
			Min.	25.00	0.00	3	0.00	3	0.00	3	279.30	3	-2235.72		259.42	9
	_	_	Min.										-1397.64			L
		_	Min.	410.00		_	0.00	_				-	-1747.68			_
			Max	15.00		21	0.00	9	0.00	9	1745.11	3			502.82	21
		_	Max	64.25									486.97			L
	_	_	Max	320.00		_	0.00						1280.87			-
			Min.	15.00		9	0.00	9	0.00	9	-488.25	15	-1716.08	-	365.24	9
			Min.	64.25									-126.77			L
		_	_	320.00				_			-2013.25	$\overline{}$				
		_	Max	25.00		3	0.00	3	0.00	3	1857.33	3			-259.42	21
		_	Max	396.47		L		_				L	1213.95		0.5.6	-
			Max	410.00												
			Min.	25.00	0.00	15	0.00	3	0.00	3	279.30	15	-2235.72		-382.67	9
			Min.	396.47	2 22	1 -	0.00	_	0.00		1645 50	1 -	-1397.64		200 65	L
			Min.	410.00							-1645.70					
			Max	35.00	0.00	3	0.00	3	0.00	3	4945.98	9			13.15	21
			Max	224.47	2 22		0.00	-	0.00		2017 77		3244.01		10 15	0.5
			Max	535.00		_	0.00		0.00		-3017.77				13.15	
			Min.	35.00	0.00	3	0.00	3	0.00	3	3017.77	21	-4435.37		-13.15	F 9
1 () 4	ıΙUΙ	⊥∪4	Min.	224.47									2173.42	ZT		1

104 101 104 Min.	535.00	0.00	3	0.00	3	0.00	3	-4945.982	1	-4435.382	1	-13.15	9
105 102 105 Max	15.00	0.00	3	0.00	3	0.00	3	7636.36	9	-2103.762	1	19.01	21
105 102 105 Max	266.45									6263.052	1		
105 102 105 Max	555.00	0.00	3	0.00	3	0.00	3	-6654.74	9	-2103.76	9	19.01	21
105 102 105 Min.	15.00	0.00	3	0.00	3	0.00	3	6654.742	21	-4754.15	9	-19.01	9
105 102 105 Min.	266.45									6082.382	1		
105 102 105 Min.	555.00	0.00	3	0.00	3	0.00	3	-7636.362	1	-4754.152	1	-19.01	9
106 103 106 Max	35.00	0.00	3	0.00	3	0.00	3	5573.782	21	138.30	9	14.19	21
106 103 106 Max	230.21									3622.83	9		
106 103 106 Max	535.00	0.00	3	0.00	3	0.00	3	-3569.972	21	138.302	1	14.19	21
106 103 106 Min.	35.00	0.00	3	0.00	3	0.00	3	3569.97	9	-4871.232	1	-14.19	9
106 103 106 Min.	230.21									2616.11	9		
106 103 106 Min.	535.00	0.00	3	0.00	3	0.00	3	-5573.78	9	-4871.23	9	-14.19	9

Tipo di combinazione di carico: SLU

Asta	N1	N2		х	N	CC	_	CC	Mz	CC	Tz	CC	_	CC		CC
				<cm></cm>	<dan></dan>		<dan></dan>		<danm></danm>		<dan></dan>		<danm></danm>		<danm></danm>	
1	_		Max	0.00	-9970.51				243.94	_	-2169.88	_		_		_
1	_		Max	375.00	-8142.39	-		36	-246.18			_	-5221.92	_		_
1			Min.	0.00	-10525.10				126.43		-3680.82	_		_		_
1			Min.	375.00	-8697.00	_			-344.42			_		-		_
2	_		Max	0.00	-17009.90				-2906.32		-70.00	_				
2	\rightarrow		Max	375.00	-15181.80				5557.09							_
2			Min.	0.00	-17127.60	_			-4661.20		-201.32					-
2				375.00	-15299.40	_			5112.13			_	-399.25	_		_
3	_		Max	0.00	-11380.20				-181.63			_		-		_
3	_		Max	375.00	-9552.07				494.07				-5851.17			
3			Min.	0.00	-11923.80				-294.41							_
3	3	103	Min.	375.00	-10095.70	29		29	404.14	-		36	-7467.58	29		
4	4	104	Max	0.00	-9415.90	29	-63.59	29	168.97	36	2169.88	25	-393.66	29	5.75	36
4	4	104	Max	375.00	-7587.78				-187.00	29	2169.88	25	5221.92	25	5.75	36
4	4	104	Min.	0.00	-9970.51	25	-121.12	36	51.46	29			-2915.13			29
4	4	104	Min.	375.00	-8142.39	25	-121.12	36	-285.25	36	1459.48	36	3923.07			29
5	5	105	Max	0.00	-16892.30						16.96	29	165.69	36	5.75	36
5	5	105	Max	375.00	-15064.10	29	-2138.25	25	-4667.17	29	16.96					
5	5	105	Min.	0.00	-17009.90	25	-2138.25	25	1151.44	29	-114.36	36	-119.94	29	-29.12	29
5	5	105	Min.	375.00	-15181.80	25	-2775.19	36	-5112.13	25	-114.36	36	-263.18	36	-29.12	29
6	6	106	Max	0.00	-10836.60	29	248.64	29	-260.14	36	2431.35	25	294.30	29	5.75	36
6	6	106	Max	375.00	-9008.47	29	248.64	29	559.48	29	2431.35	25	5851.17	25	5.75	36
6	6	106	Min.	0.00	-11380.20	25			-372.93	29	66.42	29	-3266.41	25	-29.12	29
6	6	106	Min.	375.00								36	4234.76	29	-29.12	29
	_		Max		-148587.00				0.00	_	927.01					
	_		Max	137.31									382.11			T
	_		Max		-148587.00	25	0.00	25	0.00	25	-1177.49	29				25
	_				-148587.00				0.00			_	-248.74	-		_
	_			148.72									373.97	_		<u> </u>
					-148587.00	25	0.00	25	0.00	25	-1247.24	36		_		36
	_		Max		-148587.00				0.00		1512.88	_				
	_		Max	244.26									648.37			+
	\rightarrow		Max		-148587.00	25	0.00	25	0.00	25	-1143.62	29				36
	_				-148587.00	_			0.00	_	1464.86	_		_		-
				237.30	110007.00	20	0.00	20	0.00	20	1101.00	00	640.90	_		120
					-148587.00	25	0.00	25	0.00	25	-1191.64	36				25
	_		Max		-148587.00	_			0.00	-	887.82					_
	\rightarrow		Max	133.56	140307.00	23	0.00	2.5	0.00	123	007.02	30	391.36	_		123
	$\overline{}$				-148587.00	25	0.00	25	0.00	25	-1216.68	36		_		25
	_				-148587.00	_		_	0.00		818.07	_		-		_
	_			137.00	-140307.00	23	0.00	23	0.00	123	010.07	23	378.50			30
	_				-148587.00	25	0.00	25	0.00	125	-1286.43	20				36
			Max.		-148587.00				0.00							
	_				-14028/.00	23	0.00	23	0.00	123	1475.92	٥در	-838.48 643.87	_		130
			Max	238.90	1/0507 00	2 =	0.00	2 =	0.00	2 -	1100 50	20				27
				410.00	-148587.00	25	0.00				-1180.58		-366.11	36	-450./4	36
			Min.		-148587.00	25	0.00	25	0.00	125	1427.89	129		36	-514.58	125
				231.94	140507 00	0.5	0 00	0.5	0 00	10-	1000 61	0.0	638.97			12-
	\rightarrow				-148587.00				0.00		-1228.61					
			Max		-185734.00	25	0.00	25	0.00	25	6615.36	29	-3103.11			29
			Max	305.45									4592.05			ļ.,
104					-185547.00				0.00				-1852.76			
			Min.		-185922.00	36	0.00	25	0.00	25	6115.22	25	-4353.46			36
				284.40									4540.87			1
					-185734.00				0.00				-3103.11			
105					-185734.00	25	0.00	25	0.00	25	11440.70	29	-5434.83			29
105				288.09									9837.08			\perp
105					-185734.00						-11181.40					
			Min.		-185734.00	25	0.00	25	0.00	25	11311.00	25	-5784.82	29	-3.04	36
105	102	105	Min.	284.35									9834.99			
105	102	105	Min.	555.00	-185734.00	25	0.00	25	0.00	25	-11311.00	25	-5434.83	25	-3.04	36
T 0 0 1					105704 00	ΔЕ										120
106	103	106	Max	35.00	-185734.00	25	0.00	251	0.00	ηΖϽI	/662.82	29	-3658.90	25	12.04	45

106	103	106	Max	535.00	-185547.00	36	0.00	25	0.00	25	-6490.62	29	-2193.65	29	12.0429
106	103	106	Min.	35.00	-185922.00	36	0.00	25	0.00	25	7076.72	25	-5124.14	29	-3.58 36
106	103	106	Min.	284.40									5186.95	25	
106	103	106	Min.	535.00	-185734.00	25	0.00	25	0.00	25	-7076.72	25	-3658.90	25	-3.58 36

Tipo di combinazione di carico: SLE R

Asta	N1	N2		Х	N CC	_	CC		CC	Tz CC	_		CC
		4.04		<cm></cm>	<dan></dan>	<dan></dan>	0.0	<danm></danm>	0.4	<dan></dan>	<danm></danm>	<danm></danm>	00
1			Max	0.00					_	-1558.51 26			$\overline{}$
1			Max	375.00	-5863.54 26					-1558.51 26			_
1			Min.	0.00						-2565.80 31	2093.78 26		$\overline{}$
1			Min.	375.00						-2032.11 38			$\overline{}$
2		_	Max	0.00			$\overline{}$		_				$\overline{}$
2	_	_	Max	375.00				3972.09					-
2			Min.	0.00			_				53.60 38		_
2			Min.	375.00			38	3675.45					
3			Max	0.00						-1744.53 26			
3	_		Max	375.00						-1744.53 26			$\overline{}$
3	_	_	Min.	0.00						-3321.1631	2343.70 26		$\overline{}$
3			Min.	375.00					_	-2180.5638			_
4			Max	0.00				121.16					
4			Max	375.00									
4		_	Min.	0.00				42.82					_
4	_	_	Min.	375.00					_				
5		_	Max	0.00				2089.55		5.9731	117.34 38		_
5	_	_	Max	375.00						5.9731	-50.7031		_
5			Min.	0.00				919.63		-81.5938			
5			Min.	375.00		-1961.96	38			-81.5938			_
6		_	Max	0.00				-189.42		1744.53 26			_
6		_	Max	375.00				400.82		1744.53 26	4198.30 26		
6	_	106	Min.	0.00						167.91 31			$\overline{}$
6			Min.	375.00				340.86		1308.50 38			$\overline{}$
			Max	15.00	-99058.20 26	0.00	26	0.00	26	668.47 31	-109.98 38		26
101	101	102	Max	139.12							276.8638		
101	101	102	Max	320.00	-99058.20 26	0.00	26	0.00	26	-856.53 31	-462.3931	-501.14	26
101	101	102	Min.	15.00	-99058.20 26	0.00	26	0.00	26	621.97 38	-175.61 31	-558.27	38
101	101	102	Min.	148.13							271.24 31		
101	101	102	Min.	320.00	-99058.20 26	0.00	26	0.00	26		-538.59 38	-558.27	38
101	102	103	Max	25.00	-99058.20 26	0.00	26	0.00	26	1093.91 31	-663.13 38		38
101	102	103	Max	243.78							469.40 31		
101	102	103	Max	410.00	-99058.20 26	0.00	26	0.00	26	-831.0931	-221.32 31	413.06	38
101	102	103	Min.	25.00	-99058.20 26	0.00	26	0.00	26	1061.8938	-727.23 31	370.51	26
101	102	103	Min.	237.38							464.48 38		
101	102	103	Min.	410.00	-99058.2026	0.00	26	0.00	26		-280.48 38	370.51	26
103	104	105	Max	15.00	-99058.2026	0.00	26	0.00	26	642.34 38	-72.1931	501.14	26
103	104	105	Max	134.17							282.84 31		
103	104	105	Max	320.00	-99058.2026			0.00	26	-882.66 38	-504.2938	501.14	26
103	104	105	Min.	15.00	-99058.2026	0.00	26	0.00	26	595.84 31	-137.81 38	444.01	38
103	104	105	Min.	137.37							273.86 38		
103	104	105	Min.	320.00	-99058.2026	0.00	26	0.00	26	-929.1631	-580.4931	444.01	38
103	105	106	Max	25.00	-99058.2026	0.00	26	0.00	26	1069.2638	-612.75 31	-327.95	38
103	105	106	Max	238.85							466.4638		
			Max	410.00				0.00					
103	105	106	Min.	25.00	-99058.2026	0.00	26	0.00	26	1037.25 31	-676.8638	-370.51	26
				232.45							463.12 31		
103	105	106	Min.	410.00	-99058.20 26					-887.75 31	-324.98 31	-370.51	26
			Max		-123823.00 26	0.00	26	0.00	26	4724.9931	-2228.25 26		31
			Max	303.98							3292.85 31		
			Max		-123698.0038			0.00	26	-4058.1431			
			Min.		-123948.0038	0.00	26	0.00	26	4391.5626	-3061.82 31		38
104	101	104	Min.	284.40							3261.17 26		
			Min.	535.00	-123823.00 26			0.00	26	-4391.5626			38
			Max	15.00	-123823.00 26	0.00	26	0.00	26	8219.4931	-3908.1826		31
			Max	287.87							7072.71 31		
			Max		-123823.00 26		26	0.00	26	-8046.6631			
			Min.		-123823.00 26	0.00	26	0.00	26	8133.0726	-4141.51 31		38
			Min.								7071.41 26		
105	102	105	Min.	555.00	-123823.0026			0.00	26	-8133.0826	-3908.1926	-2.02	38
			Max	35.00	-123823.00 26			0.00	26	5467.30 31	-2624.43 26	8.02	
106	103	106	Max	304.24							3758.86 31		
			Max	535.00	-123698.0038		26	0.00	26	-4685.8331	-1647.60 31	8.02	31
106	103	106	Min.	35.00	-123948.0038			0.00			-3601.2631	-2.39	
106	103	106	Min.	284.40							3721.2426		
					-123823.0026	0.00	26	0.00	26	-5076.5626			38
													_

Tipo di combinazione di carico: SLE F

Asta N1 N2	х	N	CC	Ty	CC	Mz	CC	Tz	CC	My	CC	Mx	CC
	<cm></cm>	<dan></dan>		<dan></dan>		<danm></danm>		<dan></dan>		<danm></danm>		<danm></danm>	

1	1	1 0 1	N. C.	0 00	6000 17	07	77 10	4.0	110 07	2.2	1407 7405	1 0067 7400	0 77 40
1			Max	0.00						_		2267.7433	
1			Max	375.00						_		-3460.0027	0.7740
1	_		Min.	0.00				_			-1639.20 33		-3.88 33
1	_		Min.	375.00				_		_		-3633.18 33	
2	_		Max		-11520.80	_		40	-1888.93			117.68 33	
2	2	102	Max		-10114.60			27					0.77 40
2	2	102	Min.		-11536.50			27	-2122.91	33	-81.30 33	79.60 40	-3.88 33
2	2	102	Min.	375.00	-10130.30	33	1304.81	40	3322.572	27	-81.30 33	-187.1933	-3.88 33
3	3	103	Max	0.00	-7815.49	27	146.34	40	-186.07	33	-1603.022	2628.3533	0.7740
3	3	103	Max	375.00	-6409.24	27	146.34	40	347.68	40	-1603.022	-3857.75 27	0.7740
3	3	103	Min.	0.00	-7887.97	33	139.13	33	-201.104	40	-1918.35 33	2153.5927	-3.8833
3	_		Min.	375.00								-4073.2833	
4	_		Max	0.00						_		7 -1595.3433	0.7740
4			Max	375.00									0.7740
4	_		Min.	0.00								3 -1931.54 27	
4			Min.							_			
5			Max.		-11505.20	_				_			0.7740
	_												
5			Max		-10098.90			_		_			0.7740
5	_		Min.		-11520.80			_		_			
5	_		Min.		-10114.60	_							
6	-		Max	0.00						_		-1678.83 33	0.7740
6	_		Max	375.00							1603.02 2		0.7740
6	6	106	Min.	0.00		27	144.25	40	-211.57	33	1287.7033	-2153.5927	-3.88 33
6	6	106	Min.	375.00	-6409.24	27	144.25	40	344.41	40	1515.82 40	3642.2333	-3.8833
1011	01	102	Max	15.00	-49529.10	27	0.00	27	0.002	27	636.4433	3 -117.7740	-447.4527
1011	_			139.38								275.5140	
1011	_				-49529.10	27	0.00	27	0.002	27	-888.5633	-515.3833	-447.4527
1011	_				-49529.10		0.00		0.002	_	627.1440		
				141.88			0.00		0.002	_ '	027.111	274.1633	
	_				-49529.10	27	0.00	27	0.002	27	-897.8640		
1011	_				-49529.10		0.00		0.002	_			
						21	0.00	21	0.002	2 /	10/3.433.		
1011	_			239.69		07	0 00	0.7	0 00	2.7	051 57 21	465.58 33	
1011					-49529.10					_			
	_		Min.		-49529.10	27	0.00	27	0.002	27	1067.0340		
	_			238.41								464.6940	
					-49529.10	_				_	-857.9740		
1031					-49529.10	27	0.00	27	0.002	27	631.21 40		
103 1	04	105	Max	139.12								276.57 33	
103 1	04	105	Max	320.00	-49529.10	27	0.00	27	0.00	27	-893.79 40	-523.76 40	447.45 27
103 1	04	105	Min.	15.00	-49529.10	27	0.00	27	0.002	27	621.91 33	-123.33 40	436.02 40
1031	04	105	Min.	141.35								275.10 40	
1031	04	105	Min.	320.00	-49529.10	27	0.00	27	0.002	27	-903.0933	-539.0033	436.0240
1031	0.5	106	Max	25.00	-49529.10	27	0.00	27	0.002	27	1068.5040	-663.7833	-322.43 40
1031	0.5	106	Max	238.70								465.1040	
1031	_			410.00	-49529.10	2.7	0.00	2.7	0.002	2.7	-856.5040	-268.4940	-322.4340
1031	_				-49529.10				0.002				
				237.42			0.00		0.00		1002.1000	464.2733	
					-49529.10	27	0.00	27	0 00 2	27	-862 90 33	3 -280.3233	
			Max	35 00	-61911.40	27	0.00					3 -2065.75 27	1.55 33
104 1				289.10		<i>∠ 1</i>	0.00	۷ /	0.002	۷ /	4130.303		
						4.0	0 00	2 7	0 00		2007 122	3015.3933	
1041					-61886.40							-1899.0333	
1041					-61936.40	40	0.00	2.1	0.00	27	4063.812	-2232.4633	-0.10 40
				284.40								3013.9927	
					-61911.40							-2065.75 27	-0.1040
105 1					-61911.40	27	0.00	27	0.00	27	7360.34 33	3 -3524.80 27	2.1933
105 1				285.63								6388.38 33	
					-61911.40							3 -3478.14 33	
1051					-61911.40	27	0.00	27	0.002	27	7343.052	7 -3571.47 33	-0.4040
				284.35								6388.27 27	
					-61911.40	27	0.00	27	0.002	27	-7343.062	-3524.80 27	-0.4040
1061	03	106	Max	35.00	-61911.40	27	0.00		0.002	27	4750.9633	3 -2418.0627	1.6033
1061				289.18								3424.5933	
1061					-61886.40	40	0.00	27	0.002	27	-4594.6731	3 -2222.6933	1.6033
					-61936.40							7 -2613.4233	-0.4840
	_			284.40				- '	3.002	- '	11.2.012	3422.9327	3.1010
					-61911.40	27	0.00	27	0 00	27	-4672 81 2	7 -2418.0627	-0.4840
1 1 1 6 1 1				1 2 2 2 2 0 0 0	U + J + + + U	41	0.00	_ /	0.00	<i>△ 1</i>	JU12.012	1 2310.002/	0.40140

Tipo di combinazione di carico: SLE Q

Asta	N1	N2		Х	N	CC	Ty	CC	Mz	CC	Tz	CC	My	CC	Mx	CC
				<cm></cm>	<dan></dan>		<dan></dan>		<danm></danm>		<dan></dan>		<danm></danm>		<danm></danm>	
1	1	101	Max	0.00	-6799.02	28	-78.23	28	105.05	28	-1407.55	28	1890.98	28	0.00	28
1	1	101	Max	375.00	-5392.77	28	-78.23	28	-188.31	28	-1407.55	28	-3387.34	28	0.00	28
1	1	101	Min.	0.00	-6799.02	28	-78.23	28	105.05	28	-1407.55	28	1890.98	28	0.00	28
1	1	101	Min.	375.00	-5392.77	28	-78.23	28	-188.31	28	-1407.55	28	-3387.34	28	0.00	28
2	2	102	Max	0.00	-11313.70	28	1352.83	28	-1838.78	28	-66.74	28	86.10	28	0.00	28
2	2	102	Max	375.00	-9907.41	28	1352.83	28	3234.35	28	-66.74	28	-164.16	28	0.00	28
2	2	102	Min.	0.00	-11313.70	28	1352.83	28	-1838.78	28	-66.74	28	86.10	28	0.00	28
2	2	102	Min.	375.00	-9907.41	28	1352.83	28	3234.35	28	-66.74	28	-164.16	28	0.00	28
3	3	103	Max	0.00	-7699.87	28	144.96	28	-198.31	28	-1567.65	28	2106.06	28	0.00	28

													_
3	3 103 Max	375.00			44.96	_		_			-3772.62 28		
3	3 103 Min.	0.00				_		_			2106.0628		
3	3103Min.	375.00			44.96						-3772.62 28		
4	4 104 Max	0.00			78.23	_		_		_	-1890.9828		
4	4 104 Max	375.00			78.23							0.002	
4	4 104 Min.	0.00			78.23						-1890.9828		_
4	4 104 Min.	375.00			78.23	_		_					
5	5 105 Max	0.00				-		_		-	86.10 28	0.002	
5	5 105 Max	375.00	-9907.412			_	-3234.35	_		_			
5	5105Min.	0.00			52.83								
5	5 105 Min.	375.00		_		_	-3234.35	_					
6	6 106 Max	0.00			44.96	_					-2106.0628		
6	6106Max	375.00		_	44.96					_			
6	6106Min.	0.00				_	-198.31	_		_	-2106.0628		
6	6 106 Min.	375.00			44.96	_		_					
)1 102 Max	15.00	0.002	8	0.00	28	0.00	28	628.43	28			28
	1102 Max	139.48				1		_			275.18 28		_
	1102 Max	320.00		_	0.00			_					
)1 102 Min.	15.00	0.002	8	0.00	28	0.00	28	628.43	28	-119.71 28		28
)1 102 Min.	139.48				1					275.18 28		_
)1 102 Min.	320.00		_	0.00			_					
)2 103 Max	25.00		8	0.00	28	0.00	28	1068.31	28			28
)2 103 Max	238.66				<u> </u>		_			464.75 28		_
)2 103 Max	410.00			0.00	-		_		-	-269.1628		_
)2 103 Min.	25.00		8	0.00	28	0.00	28	1068.31	28	-676.54 28		28
)2 103 Min.	238.66									464.75 28		
)2 103 Min.	410.00			0.00								
)4 105 Max	15.00	0.002	8	0.00	28	0.00	28	628.43	28	-119.71 28		28
)4 105 Max	139.48									275.18 28		
)4 105 Max	320.00			0.00	_		_		_	-528.63 28		
)4 105 Min.	15.00		8	0.00	28	0.00	28	628.43	28			28
)4 105 Min.	139.48									275.18 28		
	04 105 Min.				0.00	_		_	-896.57				
)5 106 Max	25.00		8	0.00	28	0.00	28	1068.31	28	-676.5428		28
)5 106 Max	238.66									464.75 28		
)5 106 Max	410.00			0.00	_		_					
)5 106 Min.	25.00	0.002	8	0.00	28	0.00	28	1068.31	28			28
	05 106 Min.	238.66				1		_			464.75 28		_
)5 106 Min.	410.00		_	0.00	-		_					
	1104 Max	35.00		8	0.00	28	0.00	28	3981.88	28	-2025.12 28		28
	1104 Max	284.40				1					2952.20 28		_
	1104 Max	535.00			0.00	_		_			-2025.12 28		
	01 104 Min.	35.00		8	0.00	28	0.00	28	3981.88	28	-2025.12 28		28
		284.40				1		_			2952.20 28		_
)1 104 Min.	535.00			0.00	-		_			-2025.1228		
	02 105 Max	15.00	0.002	8	0.00	28	0.00	28	7145.55	28	-3428.9628	0.002	28
)2 105 Max	284.35									6217.48 28		
	2 105 Max				0.00						-3428.9628		
	02 105 Min.	15.00		8	0.00	128	0.00	28	7145.55	28	-3428.9628	0.002	28
	2 105 Min.	284.35				1					6217.4828		_
	02 105 Min.	555.00			0.00						-3428.9628		
	3106Max	35.00		8	0.00	28	0.00	28	4571.88	28	-2366.4628	0.002	28
	3106Max	284.40				1		_			3348.35 28		_
106 10	3106Max	535.00			0.00						-2366.4628		
	3106Min.	35.00		8	0.00	28	0.00	28	4571.88	28	-2366.4628	0.002	28
		284.40				1					3348.35 28		_
106 10)3 106 Min.	535.00	0.002	8	0.00	28	0.00	28	-4571.88	28	-2366.4628	0.002	28

Criteri di progetto utilizzati Pilastri in c.a.

Generali	
Parametri di progetto	
Pilastro prefabbricato	No
Progettazione dell'armatura con sollecitazioni più gravose	Si
Disaccoppia sovraresistenza	No
Limita fattore di sovraresistenza al massimo valore di struttura	No
Tipo verifica di stabilità	
-Per N*Ω-M e per N-c*M (standard)	Si
-Per N* Ω -c*M (doppia)	No
-Per N* Ω (sforzo normale e momento nullo)	No
-Per c*M (momento e sforzo normale nullo)	No
Max angolo di piegatura ferri <grad></grad>	20.00
Progettazione armatura di ripresa	Si
Minimizzazione armatura di ripresa	No
Minimizzazione area di ferro totale nella sezione	No
Non progettare riprese ma estendi solo i ferri	Si
Verifiche in relazione	Minimizzate

Ancoraggi	
Lunghezza ancoraggi	
-Lunghezza minima come multiplo del diametro	40.00
Ancoraggi tutti uguali	Si
Piegatura ancoraggi per discontinuità	Si
Piegatura ancoraggi ferri di ripresa	Si
Armatura a taglio	
Staffatura a spirale pilastri circolari	Si
Cambiare le staffe nei nodi appartenenti all'impalcato 0 se sul nodo	Si
incidono elementi	
Considera solo la zona critica alla base della pilastrata (strutture	No
pendolari)	
Progetta a taglio con traliccio ad inclinazione variabile	Si
-Classe A	
-In zona critica limita ctg $ heta$ a	1.00
-In zona non critica limita ctg $ heta$ a	2.50
-Classe B	
-In zona critica limita ctg $ heta$ a	2.50
-In zona non critica limita ctg $ heta$ a	2.50
Verifiche a taglio per elementi esistenti come per elementi nuovi	Si
Estendi nel nodo staffe sottostanti anche se non richiesto dalla normativa	No
Parametri di disegno	
Scala disegno sezioni pilastri	25.00
Scala disegno viste pilastri	50.00
Creazione tabelle pilastri	Si
-Tipo di tabella	Armature disposte dal basso verso
	l'alto
-Max lunghezza tavole <cm></cm>	70.00
-Max altezza tavole <cm></cm>	50.00
Creazione viste pilastri	
-Disegno ferri dentro pilastro in vista	Si
-Disegno staffe dentro pilastro in vista	Si
-Modalità di individuazione ferri	
-Modalità di indicazione ferri	Mediante una tabella
-Minimizzazione riferimenti	Si
-Modalità di individuazione ferri	Per posizione
-Modalità di indicazione ferri	Mediante una tabella
ilodalica di ilidicazione icili	

Specifici	1
Specifici	
Materiali	
-Considera come elemento esistente	No
-Calcestruzzo	
-Livello di conoscenza	LC2
-Fattore di confidenza	1.20
-Tipo di calcestruzzo	C30/37
-Rck calcestruzzo	370.00
-Modulo elastico <dan cmq=""></dan>	330194.00
-Resistenza caratteristica cilindrica (Fck)	307.10
-Resistenza caratteristica a trazione (Fctk)	20.59
-Resistenza media (Fcm) <dan cmq=""></dan>	387.10
-Resistenza media a trazione (Fctm) <dan cmq=""></dan>	29.42
-σ amm. calcestruzzo <dan cmq=""></dan>	115.00
-τc0 <dan cmq=""></dan>	6.90
-τc1 <dan cmg=""></dan>	20.30
-Riduci Fcd per tutte le verifiche secondo il D.M. 18	Si
-γ _c per stati limite ultimi	
-Automatico	Σ
-Pari a	
-Acciaio	
-Livello di conoscenza	LC2
-Fattore di confidenza	1.20
-Tipo di acciaio	B4500
-Modulo elastico <dan cmq=""></dan>	2060000.00
-Tensione caratteristica di snervamento (Fyk) <dan cmq=""></dan>	4500.00
-Tensione media di snervamento (Fym) <dan cmq=""></dan>	4500.00
-Sigma amm. acciaio <dan cmq=""></dan>	2600.00
-Sigma amm. reti e tralicci <dan cmq=""></dan>	2600.00
-Allungamento per verifiche di duttilità (Agt) <%>	4.00
$-\gamma_{ extsf{s}}$ per stati limite ultimi	
-Automatico	Σ
-Pari a	
-Coeff. di omogeneizzazione	15.00

Fattore di confinamento nucleo interno	200.0
	1.0
Fattore di incrudimento acciaio <%>	0.1
Parametri per verifiche di duttilità	
Considera formulazione per pareti	N
Considera rotazione massima di esercizio per determinare SLO e SLD	N
Modalità di calcolo luce di taglio Lv	
-Lv=L/2	
-Lv=M/V	
-Lv=Punto di nullo del momento flettente	
Capacità di rotazione alla corda al collasso	
-Formula C8A.6.1 con fattore di riduzione pari a	
-Formula C8A.6.5	
Sforzo normale di verifica per analisi pushover -Gravitazionale	
-Gravitazionare -Dal calcolo	
Dai Caicolo	
Parametri di calcolo	
Strategia di progetto	RETTAN
Copriferro reale al bordo staffa <cm></cm>	4.0
Diametro staffa teorica <mm></mm>	9.0
Continuità dei ferri nei nodi appartenenti all'impalcato 0	3.0 S
	1.0
Coeff. β in direzione Z locale	
Coeff. β in direzione Y locale	1.0
Armatura secondo Circ. 65 del 10/04/97	N
-Raffittimento staffe in testa e al piede del pilastro	N
-Passo <cm></cm>	
Parametri di progetto secondo il D.M. 18	
Elemento dissipativo	S
Trascura gerarchia	N
Limita verifica a pressoflessione ad elemento non dissipativo	S
Limita verifica a taglio ad elemento non dissipativo	S
Elemento secondario	N
Incremento percentuale per piano debole	N
Non effettuare verifiche dei nodi fra trave e pilastro	N
Verifiche a pressoflessione deviata	S
Per calcoli secondo il D.M. 18 usa espressione 4.1.19	N
Verifiche a taglio Verifiche a taglio per sezioni circolari -Usa formulazione sezioni generiche	
-Considera rettangolo inscritto con B/H pari a	1.0
Verifiche a taglio per sezioni generiche	
-Considera Vrdu minimo	
-Considera Vrdu calcolato in corrispondenza di bw minimo	
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio	
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo	
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio	
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio	
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Armatura a pressoflessione	S
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Armatura a pressoflessione Elenco diametri ferri longitudinali 1 <mm></mm>	S 1
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Armatura a pressoflessione -Elenco diametri ferri longitudinali 1 <mm> -Elenco diametri ferri longitudinali 2 <mm></mm></mm>	S 1
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Armatura a pressoflessione Elenco diametri ferri longitudinali 1 <mm></mm>	S 1
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Armatura a pressoflessione -Elenco diametri ferri longitudinali 1 <mm> -Elenco diametri ferri longitudinali 2 <mm> -Elenco diametri ferri longitudinali 3 <mm></mm></mm></mm>	S 1
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Armatura a pressoflessione -Elenco diametri ferri longitudinali 1 <mm> -Elenco diametri ferri longitudinali 2 <mm> -Elenco diametri ferri longitudinali 3 <mm> -Elenco diametri ferri longitudinali 4 <mm> -Elenco diametri ferri longitudinali 5 <mm></mm></mm></mm></mm></mm>	S 1
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Armatura a pressoflessione -Elenco diametri ferri longitudinali 1 <mm> -Elenco diametri ferri longitudinali 2 <mm> -Elenco diametri ferri longitudinali 3 <mm> -Elenco diametri ferri longitudinali 4 <mm></mm></mm></mm></mm>	S 1
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Armatura a pressoflessione	1 2
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Armatura a pressoflessione -Elenco diametri ferri longitudinali 1 <mm> -Elenco diametri ferri longitudinali 2 <mm> -Elenco diametri ferri longitudinali 3 <mm> -Elenco diametri ferri longitudinali 4 <mm> -Elenco diametri ferri longitudinali 5 <mm> -Elenco diametri ferri longitudinali 6 <mm> -Elenco diametri ferri longitudinali 6 <mm> -Elenco diametri ferri longitudinali 6 <mm></mm></mm></mm></mm></mm></mm></mm></mm>	1 2 25.0
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Considera sempre Af Staffe non proiettata in direzione del taglio -Considera sempre Af Staffe non proiettata in direzione del taglio -Considera sempre Af Staffe non proiettata in direzione del taglio -Considera sempre Af Staffe non proiettata in direzione del taglio -Considera vrdu in corrispondenza di bw massimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera Vrdu in directore di bw massimo -Considera Vrdu in directore del taglio -Considera Vrdu in directore	25.0 7.0
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Considera sempre Af Staffe non proiettata in direzione del taglio -Considera sempre Af Staffe non proiettata in direzione del taglio -Considera sempre Af Staffe non proiettata in direzione del taglio -Considera sempre Af Staffe non proiettata in direzione del taglio -Considera Vrdu in corrispondenza di bw massimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera Vrdu in directore del taglio -Considera Vrdu in directore del t	25.0 7.0 3.0
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Considera sempre Af Staffe non proiettata in direzione del taglio -Considera sempre Af Staffe non proiettata in direzione del taglio -Considera sempre Af Staffe non proiettata in direzione del taglio -Considera sempre Af Staffe non proiettata in direzione del taglio -Considera vrdu in corrispondenza di bw massimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera Vrdu in directore di bw massimo -Considera Vrdu in directore del taglio -Considera Vrdu in directore	25.0 7.0 3.0 8.0
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Armatura a pressoflessione	25.0 7.0 3.0 8.0
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio Armatura a pressoflessione Elenco diametri ferri longitudinali 1 <mm> Elenco diametri ferri longitudinali 2 <mm> Elenco diametri ferri longitudinali 3 <mm> Elenco diametri ferri longitudinali 3 <mm> Elenco diametri ferri longitudinali 3 <mm> Elenco diametri ferri longitudinali 4 <mm> Elenco diametri ferri longitudinali 5 <mm> Elenco diametri ferri longitudinali 6 <mm> Elenco diametri ferri longitudinali 7 <mm> Max distanza fra i ferri su un lato <cm> Min. interferro ammissibile <cm> Distanza fra i ferri di spigolo <cm> Min. numero ferri per pilastri circolari</cm></cm></cm></mm></mm></mm></mm></mm></mm></mm></mm></mm>	25.0 7.0 3.0 8.0
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Armatura a pressoflessione -Considera sempre Af Staffe non proiettata in direzione del taglio	25.0 7.0 3.0 8.0
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Armatura a pressoflessione -Elenco diametri ferri longitudinali 1 <mm> -Elenco diametri ferri longitudinali 2 <mm> -Elenco diametri ferri longitudinali 3 <mm> -Elenco diametri ferri longitudinali 3 <mm> -Elenco diametri ferri longitudinali 4 <mm> -Elenco diametri ferri longitudinali 5 <mm> -Elenco diametri ferri longitudinali 7 <mm> -Elenco diametri ferri longitudinali 6 <mm> -Elenco diametri ferri longitudinali 7 <mm> -Elenco diametri ferri su un lato <m> -Elenco diametri ferri su un lato <m> -Elenco diametri ferri di spigolo <m< td=""><td>25.0 7.0 3.0 8.0</td></m<></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></mm></mm></mm></mm></mm></mm></mm></mm></mm>	25.0 7.0 3.0 8.0
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Armatura a pressoflessione -Considera sempre Af Staffe non proiettata in direzione del taglio	25.0 7.0 3.0 8.0
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Armatura a pressoflessione -Considera sempre Af Staffe non proiettata in direzione del taglio	25.0 7.0 3.0 8.0
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Armatura a pressoflessione	25.0 7.0 3.0 8.0
-Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Armatura a pressoflessione -Elenco diametri ferri longitudinali 1 <mm> -Elenco diametri ferri longitudinali 2 <mm> -Elenco diametri ferri longitudinali 3 <mm> -Elenco diametri ferri longitudinali 3 <mm> -Elenco diametri ferri longitudinali 4 <mm> -Elenco diametri ferri longitudinali 5 <mm> -Elenco diametri ferri longitudinali 6 <mm> -Elenco diametri ferri longitudinali 7 <mm> -Elenco diametri ferri longitudinali 7 <mm> -Elenco diametri ferri longitudinali 7 <mm> -Elenco diametri ferri su un lato <cm> -Elenco diametri serri di spigolo <cm> -Elenco diametri serri per pilastri circolari -Elenco diametri staffe 1 <mm> -Elenco diametri staffe 1 <mm> -Elenco diametri staffe 3 <mm> -Elenco diametri staffe 3 <mm> -Elenco diametri staffe 4 <</mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></cm></cm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm>	25.0 7.0 3.0 8.0
Considera Vrdu calcolato in corrispondenza di bw minimo Considera Vrdu in corrispondenza di bw medio Considera Vrdu in corrispondenza di bw massimo Considera sempre Af Staffe non proiettata in direzione del taglio Armatura a pressoflessione Elenco diametri ferri longitudinali 1 <mm> Elenco diametri ferri longitudinali 2 <mm> Elenco diametri ferri longitudinali 3 <mm> Elenco diametri ferri longitudinali 3 <mm> Elenco diametri ferri longitudinali 3 <mm> Elenco diametri ferri longitudinali 4 <mm> Elenco diametri ferri longitudinali 6 <mm> Elenco diametri ferri longitudinali 7 <mm> Elenco diametri ferri longitudinali 7 <mm> Elenco diametri ferri longitudinali 7 <mm> Elenco diametri ferri gu un lato <m> Elenco diametri ferri di spigolo <m> Elenco diametri ferri di spigolo <m> Elenco diametri ferri per pilastri circolari Elenco diametri staffe 1 <mm> Elenco diametri staffe 1 <mm> Elenco diametri staffe 2 <mm> Elenco diametri staffe 3 <mm> Elenco diametri staffe 4 <mm> Elenco diametri staffe 5 <mm> Elenco diametri staffe 6 <mm> Elenco diametri staffe 6 <mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></m></m></m></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm>	25.0 7.0 3.0 8.0 8.1.0
Considera Vrdu calcolato in corrispondenza di bw minimo Considera Vrdu in corrispondenza di bw medio Considera Vrdu in corrispondenza di bw massimo Considera Sempre Af Staffe non proiettata in direzione del taglio Armatura a pressoflessione Elenco diametri ferri longitudinali 1 <mm> Elenco diametri ferri longitudinali 2 <mm> Elenco diametri ferri longitudinali 3 <mm> Elenco diametri ferri longitudinali 4 <mm> Elenco diametri ferri longitudinali 5 <mm> Elenco diametri ferri longitudinali 6 <mm> Elenco diametri ferri longitudinali 7 <mm> Elenco diametri ferri su un lato <m> Elenco diametri ferri di spigolo <m> Elenco diametri per pilastri circolari registaffe aggiuntivi sezioni non rettangolari Elenco diametri staffe 1 <mm> Elenco diametri staffe 2 <mm> Elenco diametri staffe 3 <mm> Elenco diametri staffe 4 <mm> Elenco diametri staffe 5 <mm> Elenco diametri staffe 6 <mm> Elenco diametri staffe 7 <mm> Elenco diametri staffe 6 <mm> Elenco diametri staffe 6 <mm> Elenco diametri staffe 7 <mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></m></m></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm>	25.0 7.0 3.0 8.0 8.1.0
Considera Vrdu calcolato in corrispondenza di bw minimo Considera Vrdu in corrispondenza di bw medio Considera Vrdu in corrispondenza di bw massimo Considera Sempre Af Staffe non proiettata in direzione del taglio Armatura a pressoflessione Elenco diametri ferri longitudinali 1 <mm> Elenco diametri ferri longitudinali 2 <mm> Elenco diametri ferri longitudinali 3 <mm> Elenco diametri ferri longitudinali 3 <mm> Elenco diametri ferri longitudinali 3 <mm> Elenco diametri ferri longitudinali 4 <mm> Elenco diametri ferri longitudinali 5 <mm> Elenco diametri ferri longitudinali 6 <mm> Elenco diametri ferri longitudinali 7 <mm> Max distanza fra i ferri su un lato <mp> Min. interferro ammissibile <mp> Distanza fra i ferri di spigolo <mp> Min. numero ferri per pilastri circolari Reggistaffe aggiuntivi sezioni non rettangolari Fattore di riduzione tc0 per ancoraggio ferri Armatura a taglio Elenco diametri staffe 1 <mm> Elenco diametri staffe 3 <mm> Elenco diametri staffe 4 <mm> Elenco diametri staffe 5 <mm> Elenco diametri staffe 6 <mm> Elenco diametri staffe 6 <mm> Elenco diametri staffe 7 <mm> Mantieni diametro costante nell'interpiano</mm></mm></mm></mm></mm></mm></mm></mp></mp></mp></mm></mm></mm></mm></mm></mm></mm></mm></mm>	25.0 7.0 3.0 8.0 5
Considera Vrdu calcolato in corrispondenza di bw minimo Considera Vrdu in corrispondenza di bw medio Considera Vrdu in corrispondenza di bw massimo Considera Sempre Af Staffe non proiettata in direzione del taglio Armatura a pressoflessione Elenco diametri ferri longitudinali 1 <mm> Elenco diametri ferri longitudinali 2 <mm> Elenco diametri ferri longitudinali 3 <mm> Elenco diametri ferri longitudinali 4 <mm> Elenco diametri ferri longitudinali 5 <mm> Elenco diametri ferri longitudinali 6 <mm> Elenco diametri ferri longitudinali 7 <mm> Elenco diametri ferri su un lato <m> Elenco diametri ferri di spigolo <m> Elenco diametri per pilastri circolari registaffe aggiuntivi sezioni non rettangolari Elenco diametri staffe 1 <mm> Elenco diametri staffe 2 <mm> Elenco diametri staffe 3 <mm> Elenco diametri staffe 4 <mm> Elenco diametri staffe 5 <mm> Elenco diametri staffe 6 <mm> Elenco diametri staffe 7 <mm> Elenco diametri staffe 6 <mm> Elenco diametri staffe 6 <mm> Elenco diametri staffe 7 <mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></m></m></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm>	25.0 7.0 3.0 8.0 5 1.0
Considera Vrdu calcolato in corrispondenza di bw minimo -Considera Vrdu in corrispondenza di bw medio -Considera Vrdu in corrispondenza di bw massimo -Considera sempre Af Staffe non proiettata in direzione del taglio -Armatura a pressoflessione	25.0 7.0 3.0 8.0 5 1.0
Considera Vrdu calcolato in corrispondenza di bw minimo Considera Vrdu in corrispondenza di bw medio Considera Vrdu in corrispondenza di bw massimo Considera Sempre Af Staffe non proiettata in direzione del taglio Armatura a pressoflessione Elenco diametri ferri longitudinali 1 <mp> Elenco diametri ferri longitudinali 3 <mm> Elenco diametri ferri longitudinali 3 <mm> Elenco diametri ferri longitudinali 3 <mm> Elenco diametri ferri longitudinali 4 <mm> Elenco diametri ferri longitudinali 5 <mm> Elenco diametri ferri longitudinali 6 <mm> Elenco diametri ferri longitudinali 6 <mm> Elenco diametri ferri longitudinali 7 <mm> Max distanza fra i ferri su un lato <cm> Min. interferro ammissibile <cm> Distanza fra i ferri di spigolo <cm> Min. numero ferri per pilastri circolari Reggistaffe aggiuntivi sezioni non rettangolari Fattore di riduzione TcO per ancoraggio ferri Armatura a taglio Elenco diametri staffe 1 <mm> Elenco diametri staffe 3 <mm> Elenco diametri staffe 5 <mm> Elenco diametri staffe 5 <mm> Elenco diametri staffe 6 <mm> Elenco diametri staffe 7 <mm> Mantieni diametro costante nell'interpiano Passi staffe</mm></mm></mm></mm></mm></mm></cm></cm></cm></mm></mm></mm></mm></mm></mm></mm></mm></mp>	25.0 7.0 3.0 8.0 5 1.0

Minimizza il noco dollo etaffo	
-Minimizza il peso delle staffe Max distanza fra ferri non collegati <cm></cm>	20.0
Max numero ferri non collegati	2.0
Max distanza fra ferri nei nodi non collegati <cm></cm>	7.0
Max numero ferri nei nodi non collegati	1.0
Collegamenti ferri	
Con spilli	
Con staffe rettangolari	
Con staffe poligonali	
Ferri orizzontali pareti realizzati con staffe	N
Quote di alleggerimento armature pilastri prefabbricati	
Quota di alleggerimento n. 1 <m></m>	0.0
Quota di alleggerimento n. 2 <m></m>	0.0
Quota di alleggerimento n. 3 <m></m>	0.0
Quota di alleggerimento n. 4 <m></m>	0.0
Quota di alleggerimento n. 5 <m></m>	0.0
Quota di alleggerimento n. 6 <m></m>	0.0
Quota di alleggerimento n. 7 <m></m>	0.0
Dati per progettazione interattiva sezioni	1.0
Distanza fra ferri su più strati <cm></cm>	1.0
Integrare lo scorrimento lungo il tratto	S
-Lunghezza del tratto <m></m>	1.0
Dati non progettarione acli atati limita	
Dati per progettazione agli stati limite Gruppo di esigenza	
-Ambiente poco aggressivo	
<u> </u>	
-Ambiente moderatamente aggressivo -Ambiente molto aggressivo	
-Ambiente moito aggressivo Usa dominio N-M per flessioni rette	N
-Ricerca della sicurezza con sforzo normale costante	IV.
-Ricerca della sicurezza con eccentricità costante	
	N
Controllo rapporto X/D Barre da considerare tese per verifiche a taglio	IN
-Solo le barre con deformazione percentuale rispetto	
	20.0
alla barra più tesa non inferiore al <%> -Tutte le barre in trazione	30.0
- Tutte le balle in trazione	
Dati nan manifisha di masiatana al fuera	
Dati per verifiche di resistenza al fuoco -Tempo di verifica (REI) <minuti></minuti>	
- Tempo di velilica (REI) \millidil	120 0
-	120.0
Dimensione MESH <cm></cm>	2.0
Dimensione MESH <cm> -Passo di calcolo <secondi></secondi></cm>	2.0
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°></c°></secondi></cm>	2.0 10.0 20.0
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""></w></c°></secondi></cm>	2.0 10.0 20.0
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo</w></c°></secondi></cm>	2.0 10.0 20.0 9.0
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati</w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità</dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP</dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale</dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina</dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica</dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica</dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica</dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica Carbonio/Epossidica Resistenza caratteristica(ffk) <dan cmq=""></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica(ffk) <dan cmq=""> Modulo elastico(Ec) <dan cmq=""></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica(f_{fk}) <dan cmq=""> Modulo elastico(E_c) <dan cmq=""> Deformazione caratteristica a rottura per trazione(E_{fk}) <%></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica(f_{fk}) <dan cmq=""> Modulo elastico(E_c) <dan cmq=""> Deformazione caratteristica a rottura per trazione(E_{fk}) <%> Spessore equivalente(t_f) <mm></mm></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica(f_{fk}) <dan cmq=""> Modulo elastico(E_c) <dan cmq=""> Deformazione caratteristica a rottura per trazione(E_{fk}) <%></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica(f_{fk}) <dan cmq=""> Modulo elastico(E_c) <dan cmq=""> Deformazione caratteristica a rottura per trazione(E_{fk}) <%> Spessore equivalente(t_f) <mm> Sistemi di rinforzo -Preformati</mm></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <\%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica(f_{fk}) <dan cmq=""> Modulo elastico(E_c) <dan cmq=""> Deformazione caratteristica a rottura per trazione(E_{fk}) <\%> Spessore equivalente(t_f) <mm> Sistemi di rinforzo</mm></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica(ffk) <dan cmq=""> Modulo elastico(Ec) <dan cmq=""> Deformazione caratteristica a rottura per trazione(Efk) <%> Spessore equivalente(tf) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale</mm></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica(f_{fk}) <dan cmq=""> Modulo elastico(E_c) <dan cmq=""> Deformazione caratteristica a rottura per trazione(E_{fk}) <%> Spessore equivalente(E_f) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ</mm></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <\%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica(f_{fk}) <dan cmq=""> Modulo elastico(E_c) <dan cmq=""> Deformazione caratteristica a rottura per trazione(E_{fk}) <\%> Spessore equivalente(E_f) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Vetro/Epossidica</mm></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica Resistenza caratteristica (ffk) <dan cmq=""> Modulo elastico (Ec) <dan cmq=""> Deformazione caratteristica a rottura per trazione (Efk) <%> Spessore equivalente (tf) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica</mm></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <\%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica(f_{fk}) <dan cmq=""> Modulo elastico(E_c) <dan cmq=""> Deformazione caratteristica a rottura per trazione(E_{fk}) <\%> Spessore equivalente(E_f) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Vetro/Epossidica</mm></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica Resistenza caratteristica (ffk) <dan cmq=""> Modulo elastico (Ec) <dan cmq=""> Deformazione caratteristica a rottura per trazione (Efk) <%> Spessore equivalente (tf) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica</mm></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica (ffk) <dan cmq=""> Modulo elastico (Ec) <dan cmq=""> Deformazione caratteristica a rottura per trazione (Efk) <%> Spessore equivalente (t;) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica</mm></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica(ffk) <dan cmq=""> Modulo elastico(Ec) <dan cmq=""> Deformazione caratteristica a rottura per trazione(Efk) <%> Spessore equivalente(tf) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica Resistenza caratteristica(ffk) <dan cmq=""></dan></mm></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 0.5 49000.0 2500000.0 0.1
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica ($f_{\rm fk}$) <dan cmq=""> Modulo elastico ($E_{\rm c}$) <dan cmq=""> Deformazione caratteristica a rottura per trazione ($E_{\rm fk}$) <%> Spessore equivalente ($t_{\rm f}$) <m> Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica ($f_{\rm fk}$) <dan cmq=""> Modulo elastico ($E_{\rm c}$) <dan cmq=""> Deformazione caratteristica a rottura per trazione ($E_{\rm fk}$) <%></dan></dan></m></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5 49000.0 2500000.0 0.1
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica Resistenza caratteristica($f_{\epsilon k}$) <dan cmq=""> Modulo elastico(E_{ϵ}) <dan cmq=""> Spessore equivalente($f_{\epsilon k}$) <m> Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Carbonio/Epossidica Resistenza caratteristica a rottura per trazione($E_{\epsilon k}$) <%> Spessore equivalente($f_{\epsilon k}$) <m> Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica Resistenza caratteristica($f_{\epsilon k}$) <dan cmq=""> Modulo elastico(E_{ϵ}) <dan cmq=""> Deformazione caratteristica a rottura per trazione($E_{\epsilon k}$) <%> Spessore equivalente($f_{\epsilon k}$) <dan cmq=""> Deformazione caratteristica a rottura per trazione($E_{\epsilon k}$) <%> Spessore equivalente($f_{\epsilon k}$) <dan cmq=""> Deformazione caratteristica a rottura per trazione($E_{\epsilon k}$) <%> Spessore equivalente($f_{\epsilon k}$) <m>></m></dan></dan></dan></dan></m></m></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5 49000.0 2500000.0 0.1
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica Resistenza caratteristica(f_{f,k}) <dan cmq=""> Modulo elastico(E_c) <dan cmq=""> Deformazione caratteristica a rottura per trazione(€_{f,k}) <%> Spessore equivalente(t_f) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica Resistenza caratteristica(f_{f,k}) <dan cmq=""> Modulo elastico(E_c) <dan cmq=""> Deformazione caratteristica a rottura per trazione(€_{f,k}) <%> Spessore equivalente(t_f) <mm> Spessore equivalente(t_f) <mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></mm></dan></dan></mm></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5 49000.0 2500000.0 0.1
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica(f_{fk}) <dan cmq=""> Deformazione caratteristica a rottura per trazione(E_{fk}) <%> Spessore equivalente(t_f) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Carbonio/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Resistenza caratteristica (f_{fk}) <dan cmq=""> Modulo elastico(E_o) <dan cmq=""> Deformazione caratteristica a rottura per trazione(E_{fk}) <%> Spessore equivalente(t_f) <mm> -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica (f_{fk}) <dan cmq=""> Modulo elastico(E_o) <dan cmq=""> Deformazione caratteristica a rottura per trazione(E_{fk}) <%> Spessore equivalente(t_f) <mm> Spessore equivalente(t_f) <mm> Spessore equivalente(t_f) <mm> -Preformati</mm></mm></mm></dan></dan></mm></dan></dan></mm></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 0.5 49000.0 2500000.0 0.1 49000.0 2.0 0.1
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica (ffik) <dan cmq=""> Modulo elastico(Ec) <dan cmq=""> Deformazione caratteristica a rottura per trazione(Efik) <%> Spessore equivalente(tfik) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Carbonio/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Carboni</mm></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5 49000.0 2500000.0 0.1
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica (frk) <dan cmq=""> Modulo elastico(Ec) <dan cmq=""> Deformazione caratteristica a rottura per trazione (Ek) <%> Spessore equivalente(tr) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Carbonio/Ep</mm></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0
Dimensione MESH <cm> -Passo di calcolo <secondi> -Temperatura ambiente <c°> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Umidità iniziale <%> -Fattore di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica (frk) <dan cmq=""> Modulo elastico(Ec) <dan cmq=""> Deformazione caratteristica a rottura per trazione(Erk) <%> Spessore equivalente(tt) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ Resistenza caratteristica (frk) <dan cmq=""> Deformazione caratteristica a rottura per trazione(Erk) <%> Spessore equivalente(trk) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ Resistenza caratteristica (frk) <dan cmq=""> Modulo elastico(Ec) <dan cmq=""> Deformazione caratteristica a rottura per trazione(Erk) <%> Spessore equivalente(trk) <mm> -Vetro/Epossidica -Arammidica/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Car</mm></dan></dan></mm></dan></mm></dan></dan></dan></w></c°></secondi></cm>	2.0 10.0 20.0 9.0 SILICE 2300.0 3.0 0.5 49000.0 2500000.0 2500000.0 2500000.0

-Ciclico						
Coeff. parziale di sicurezza per SLU di distacco (γ_{fd})	1.50					
Fattore di conversione ambientale(η _a)						
Raggio di arrotondamento spigoli(r _c) <cm></cm>						
Coeff. condizione di carico(K _q)						
Dati per verifiche incamiciature in acciaio non CAM						
Resistenza di progetto strisce di collegamento (Fyd) <dan cmq=""></dan>	2350.00					

Travi in c.a.

Travi in c.a.	
Generali	
Parametri di progetto	
Passo di progettazione <m></m>	0.30
Tipo di sollecitazioni zone rigide	Costanti
Min. angolo per spinte a vuoto <grad></grad>	10.00 Si
Invertire i ferri anche in presenza di pilastro sottostante Max differenza larghezza travi continue <cm></cm>	5.00
Progetta a taglio con traliccio ad inclinazione variabile	5.00 Si
-Classe A	
-In zona critica limita ctg $ heta$ a	1.00
-In zona non critica limita ctg θ a	2.50
-Classe B	
-In zona critica limita ctg $ heta$ a	2.50
-In zona non critica limita ctq θ a	2.50
Verifiche a taglio per elementi esistenti come per elementi	Si
nuovi	
Lunghezze e arrotondamenti	
Max lunghezza barre <m></m>	12.00
Arrotondamento lunghezza ferri <cm></cm>	50.00
Lunghezza ferri nei muri d'estremità <m></m>	1.20
Min. interferro ammissibile <cm></cm>	2.00
Elenco diametri minimizzazione interferri <mm></mm>	14 16 18 20 24
Riduzione ancoraggi	77
-Nella zona compressa per flessione	No a :
-Nei punti inferiori della travata	Si
Considerare nel calcolo degli ancoraggi i risvolti specificati nei criteri generali di disegno	No
Risvoltare i ferri per garantire l'ancoraggio agli estremi	No
della trave	INO
40114 01410	
Reggistaffe	
Interruzione reggistaffe in campata	No
Modalità di sovrapposizione reggistaffe	Per garantire la copertura del momento negativo
	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza
Modalità di sovrapposizione reggistaffe	Per garantire la copertura del momento negativo
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di elevazione -Per le travi di fondazione -Per le travi di elevazione	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No No
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di fondazione -Per le travi di fondazione -Pin le travi di elevazione Tipo di armatura per taglio (T.A.)	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No No Mista
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di fondazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di fondazione -Per le travi di fondazione -Pin le travi di elevazione Tipo di armatura per taglio (T.A.)	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No No Mista Si
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di elevazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi Min. di regolamento a torsione nell'ala	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No Mista Si No
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di elevazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi Min. di regolamento a torsione nell'ala	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No Mista Si No
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di elevazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi Min. di regolamento a torsione nell'ala Min. di regolamento nell'ala	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No Mista Si No
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di elevazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi Min. di regolamento a torsione nell'ala Min. di regolamento nell'ala	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No No Mista Si No No
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di fondazione -Per le travi di elevazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi Min. di regolamento a torsione nell'ala Min. di regolamento nell'ala Stampe Verifiche a flessione in relazione Verifiche a taglio in relazione	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No No Mista Si No No No Mistate
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di fondazione -Per le travi di elevazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi Min. di regolamento a torsione nell'ala Min. di regolamento nell'ala Stampe Verifiche a flessione in relazione Verifiche a taglio in relazione Parametri di disegno	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No No Mista Si No No Mo Mo Mo No
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di elevazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi Min. di regolamento a torsione nell'ala Min. di regolamento nell'ala Stampe Verifiche a flessione in relazione Verifiche a taglio in relazione Parametri di disegno Scala disegno travi	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No No Mista Si No No No Mo No
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di fondazione -Per le travi di elevazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi Min. di regolamento a torsione nell'ala Min. di regolamento nell'ala Stampe Verifiche a flessione in relazione Verifiche a taglio in relazione Parametri di disegno Scala disegno travi Scala disegno sezioni	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No No Mista Si No No No Mo No
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di fondazione -Per le travi di elevazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi Min. di regolamento a torsione nell'ala Min. di regolamento nell'ala Stampe Verifiche a flessione in relazione Verifiche a taglio in relazione Parametri di disegno Scala disegno travi Scala disegno sezioni Campitura sezioni	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No Mista Si No No Mista Si No No No No Fitta
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di fondazione -Per le travi di elevazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi Min. di regolamento a torsione nell'ala Min. di regolamento nell'ala Stampe Verifiche a flessione in relazione Verifiche a taglio in relazione Parametri di disegno Scala disegno travi Scala disegno sezioni Campitura sezioni Disegno sezione travi in falso	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No Mista Si No No Mista Si No
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di elevazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi Min. di regolamento a torsione nell'ala Min. di regolamento nell'ala Stampe Verifiche a flessione in relazione Verifiche a taglio in relazione Parametri di disegno Scala disegno travi Scala disegno sezioni Campitura sezioni Disegno sezione travi in falso Disegna sezioni	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No No Mista Si No No No Mista Si No No No Fitta Si Si Si
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di fondazione -Per le travi di elevazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi Min. di regolamento a torsione nell'ala Min. di regolamento nell'ala Stampe Verifiche a flessione in relazione Verifiche a taglio in relazione Parametri di disegno Scala disegno travi Scala disegno sezioni Campitura sezioni Disegno sezione travi in falso Disegna sezioni Campitura travi in falso	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No No Mista Si No No No Mista Si Edita Si Si Si Fitta
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di elevazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi Min. di regolamento a torsione nell'ala Min. di regolamento nell'ala Stampe Verifiche a flessione in relazione Verifiche a taglio in relazione Parametri di disegno Scala disegno travi Scala disegno sezioni Campitura sezioni Disegno sezione travi in falso Disegna sezioni Campitura travi in falso Campitura muri	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No No Mista Si No No Mista Si No
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di fondazione -Per le travi di elevazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi Min. di regolamento a torsione nell'ala Min. di regolamento nell'ala Stampe Verifiche a flessione in relazione Verifiche a taglio in relazione Parametri di disegno Scala disegno travi Scala disegno sezioni Campitura sezioni Disegna sezioni Campitura travi in falso Campitura travi in falso Campitura muri Tipo di quotatura luci nette trave	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No No Mista Si No No No Mo No No Si Si No
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di elevazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi Min. di regolamento a torsione nell'ala Min. di regolamento nell'ala Stampe Verifiche a flessione in relazione Verifiche a taglio in relazione Parametri di disegno Scala disegno travi Scala disegno sezioni Campitura sezioni Disegna sezioni Campitura travi in falso Disegna sezioni Campitura travi in falso Campitura muri Tipo di quotatura luci nette trave Lunghezza monconi di pilastro	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No No Mista Si No No Mo No No No Si Si No
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di fondazione -Per le travi di elevazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi Min. di regolamento a torsione nell'ala Min. di regolamento nell'ala Stampe Verifiche a flessione in relazione Verifiche a taglio in relazione Parametri di disegno Scala disegno travi Scala disegno sezioni Campitura sezioni Disegno sezione travi in falso Disegna sezioni Campitura travi in falso Campitura muri Tipo di quotatura luci nette trave Lunghezza monconi di pilastro Linee di riferimento quote	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No No No No Mista Si No No No No No No No Si Si No
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di elevazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi Min. di regolamento a torsione nell'ala Min. di regolamento nell'ala Stampe Verifiche a flessione in relazione Verifiche a taglio in relazione Parametri di disegno Scala disegno travi Scala disegno sezioni Campitura sezioni Disegno sezione travi in falso Disegna sezioni Campitura travi in falso Campitura travi in falso Campitura muri Tipo di quotatura luci nette trave Lunghezza monconi di pilastro Linee di riferimento quote Quotatura zone di staffatura	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No No No No Mista Si No No No No No No No Si Si No
Modalità di sovrapposizione reggistaffe Modalità di unificazione reggistaffe Minimi di regolamento Min. percentuale di regolamento -Per le travi di fondazione -Per le travi di elevazione Min. di armatura a taglio -Per le travi di fondazione -Per le travi di fondazione -Per le travi di elevazione Tipo di armatura per taglio (T.A.) Controllo passo e 12Fi Min. di regolamento a torsione nell'ala Min. di regolamento nell'ala Stampe Verifiche a flessione in relazione Verifiche a taglio in relazione Parametri di disegno Scala disegno travi Scala disegno sezioni Campitura sezioni Disegno sezione travi in falso Disegna sezioni Campitura travi in falso Campitura muri Tipo di quotatura luci nette trave Lunghezza monconi di pilastro Linee di riferimento quote	Per garantire la copertura del momento negativo Solo se la geometria della travata e la lunghezza totale delle barre lo consentono No Si No No Mista Si No No No Mista Si No

Disegno ferri longitudinali	
Disegno ferri dentro la trave	Si
Disegno esploso ferri di parete	No
Distanza fra ferri esplosi <cm></cm>	0.10
Disegno reggistaffe aggiuntivi per travi a T e L	Reggistaffe aggiuntivi tipo 3
Disegno staffe	
Posizione staffe esterne	In automatico
Disegno staffe dentro la sezione	Si

	1
Specifici	
 Materiali	
-Considera come elemento esistente	No
-Calcestruzzo	
-Livello di conoscenza	LC2
-Fattore di confidenza	1.20
-Tipo di calcestruzzo -Rck calcestruzzo	C30/37 370.00
-Modulo elastico <dan cmg=""></dan>	330194.00
-Resistenza caratteristica cilindrica (Fck)	307.10
-Resistenza caratteristica a trazione (Fctk)	20.59
-Resistenza media (Fcm) <dan cmq=""></dan>	387.10
-Resistenza media a trazione (Fctm) <dan cmq=""></dan>	29.42
-σ amm. calcestruzzo <dan cmq=""></dan>	115.00
-τc0 <dan cmg=""></dan>	6.90
-τc1 <dan cmg=""></dan>	20.30
-Riduci Fcd per tutte le verifiche secondo il D.M. 18	Si
-γ _c per stati limite ultimi	
-Automatico	X
-Pari a	
-Acciaio	
-Livello di conoscenza	LC2
-Fattore di confidenza	1.20
-Tipo di acciaio	B450C
-Modulo elastico <dan cmq=""></dan>	2060000.00
-Tensione caratteristica di snervamento (Fyk) <dan cmq=""> -Tensione media di snervamento (Fym) <dan cmq=""></dan></dan>	4500.00 4500.00
-rensione media di shervamento (rym) <dan cmq=""> -sigma amm. acciaio <dan cmg=""></dan></dan>	2600.00
-Sigma amm. reti e tralicci <dan cmq=""></dan>	2600.00
-Allungamento per verifiche di duttilità (Agt) <%>	4.00
-γ _s per stati limite ultimi	
-Automatico	X
-Pari a	
-Coeff. di omogeneizzazione	15.00
Parametri per analisi pushover	
Numero fibre	200.00
Fattore di confinamento nucleo interno	1.00
Fattore di incrudimento acciaio <%>	0.10
Parametri per verifiche di duttilità Considera rotazione massima di esercizio per determinare SLO e SLD	No
Modalità di calcolo luce di taglio Lv	1.0
-Lv=L/2	х
$-L_{V}=M/V$	
-Lv=Punto di nullo del momento flettente	
Capacità di rotazione alla corda al collasso	
-Formula C8A.6.1 con fattore di riduzione pari a	
-Formula C8A.6.5	X
Sforzo normale di verifica per analisi pushover -Gravitazionale	
-Dal calcolo	X
Parametri di calcolo Progetto a pressoflessione	Si
-Per tutte le travi	51
-Solo per travi inclinate	X
-Min. angolo per pressoflessione <grad></grad>	10.00
-Compressione massima senza progetto a pressoflessione <%>	10.00
Progetto a torsione	No
-Trazione senza progetto a torsione<%>	
Armatura secondo Circ. 65 del 10/04/97	No
Parametri di progetto secondo il D.M. 18	
Elemento dissipativo	Si
Trascura gerarchia	No C:
Limita verifica a taglio ad elemento non dissipativo	Si

Elemento secondario	No
Sollecitazioni dissipative amplificate per elementi di fondazione	Si
Escludi dal calcolo sovraresistenza per pilastri incidenti	No
Sollecitazioni complanari ad eventuali elementi bidimensionali	No
Copriferro teorico superiore <cm></cm>	5.50
Copriferro teorico inferiore <cm></cm>	5.50
Min. momento fittizio agli appoggi -Denominatore	No
Min. momento fittizio in campata	No
-Denominatore	INO.
Incremento percentuale momento in campata <%>	10.00
Usa taglio max per traslazione momento (S.L.)	Si
Limitare momento traslato al valore max di appoggio (S.L.)	No
Limitare momento traslato al valore max di campata (S.L.)	No
Taglio da momento resistente in fondazione (S.L.)	No
Tipo di progetto in doppia armatura (T.A.)	
-Tensioni pari ai valori ammTensioni pari ai valori amm. con AfComp/AfTesa minore o pari a	1.00
-Con AfComp/AfTesa pari a	1.00
Parametri di progettazione armatura	
Max differenza fra diametri per unificazioni	2.00
Max distanza fra barre per unificazioni <m></m>	1.00
Denominatore per individuazione zona di campata	32.00
Fattore di copertura appoggi (0÷1) Fattore di riduzione per ancoraggio ferri	1.00
Minimizzazione momenti resistenti di appoggio (stati limite D.M. 18)	1.00 Si
-Tolleranza di copertura da sovrapposizione <%>	10.00
Tipo di distribuzione armatura eccedente in fase di verifica	10.00
-Ripartita proporzionalmente per flessione, torsione e taglio	X
-Tutta agente per flessione	
-Tutta agente per taglio	
Armatura a flessione	1.0
Elenco diametri ferri longitudinali 1 <mm> Elenco diametri ferri longitudinali 2 <mm></mm></mm>	16
Elenco diametri ferri longitudinali 3 <mm></mm>	
Elenco diametri ferri longitudinali 4 <mm></mm>	
Elenco diametri ferri longitudinali 5 <mm></mm>	
Elenco diametri ferri longitudinali 6 <mm></mm>	
Elenco diametri ferri longitudinali 7 <mm></mm>	
Max differenza fra diametri nella trave	8.00
Max differenza fra diametri ferri accoppiati	4.00
Reggistaffe superiori -Numero	
-Numero -Automatico	
-Pari a	2.00
-Max mutua distanza <cm></cm>	
-Diametro	
-Automatico	X
-Pari a <mm></mm>	
-Minimo <mm></mm>	
Reggistaffe inferiori	
-Numero	
-Automatico -Pari a	2.00
-Max mutua distanza <cm></cm>	2.00
-Diametro	
-Automatico	Х
-Pari a <mm></mm>	
-Minimo <mm></mm>	
Armatura a taglio	
Scorrimento (T.A.) -Percentuale assorbita dalle staffe <%>	100.00
-Percentuale assorbita dai ferri piegati <%>	0.00
-Percentuale assorbita dai ferri di parete <%>	0.00
-Considerare il valore relativo alle staffe come minimo percentuale da adottare	No
Variabilità staffe	
-Staffe uguali a passo costante	
-Staffe diverse in tre parti della trave in funzione delle zone critiche	X
-Staffe diverse in tre parti della trave in	
funzione di un multiplo dell'altezza pari a	
Variabilità staffe ala	
-Passi uguali a passi anima -Passi multipli di passi anima	X
-Passi indipendenti da passi anima	_
Min. lunghezza tratto centrale come multiplo dell'altezza della trave	1.10
Elenco diametri staffe 1 <mm></mm>	8
Elenco diametri staffe 2 <mm></mm>	

Elenco diametri staffe 3 <mm> Elenco diametri staffe 4 <mm></mm></mm>	
Elenco diametri staffe 5 <mm></mm>	
Elenco diametri staffe 6 <mm></mm>	
Elenco diametri staffe 7 <mm></mm>	
Elenco numero bracci staffe 1	2
Elenco numero bracci staffe 2	
Elenco numero bracci staffe 3 Elenco numero bracci staffe 4	
Elenco numero bracci staffe 5	
Passi staffe	
-Minimo <cm></cm>	5.00
-Massimo <cm></cm>	25.00
-Incremento <cm></cm>	5.00
Elementi costanti	9.1
-Diametro -Passo	Si No
-Bracci	Si
Tipo di minimizzazione staffatura	
-Minimizza il numero delle staffe	Х
-Minimizza il peso delle staffe	
Raffittimento staffe all'estremità della trave	No
-Passo non superiore a	
Lunghezza max del tratto di calcolo scorrimento	
-Pari al tratto in cui τ > τc0	Х
-Parı a <cm> -Come multiplo dell'altezza pari a</cm>	
-come murcipro dell'altezza pari a	
Armatura a taglio e torsione	
Elenco diametri ferri piegati 1 <mm></mm>	12
Elenco diametri ferri piegati 2 <mm></mm>	14
Elenco diametri ferri piegati 3 <mm></mm>	16
Elenco diametri ferri piegati 4 <mm></mm>	18
Elenco diametri ferri piegati 5 <mm> Elenco diametri ferri piegati 6 <mm></mm></mm>	20
Elenco diametri ferri piegati 7 <mm></mm>	
Angolo di piegatura <grad></grad>	45.00
Posizione primo punto di piegatura	
-Pari al multiplo dell'altezza	
-Distanza <cm></cm>	5.00
Interasse punti di piegatura	
-Pari al multiplo dell'altezza -Distanza <cm></cm>	25.00
Tipo di ferri piegati	25.00
-Solo sagomati	
-Solo cavallotti	
-Sia sagomati che cavallotti	Х
Ferri di parete	Si
-Max distanza fra le barre <cm></cm>	30.00
Elenco diametri ferri di parete 1 <mm></mm>	12 14
Elenco diametri ferri di parete 2 <mm> Elenco diametri ferri di parete 3 <mm></mm></mm>	16
Elenco diametri ferri di parete 4 <mm></mm>	18
Elenco diametri ferri di parete 5 <mm></mm>	20
Elenco diametri ferri di parete 6 <mm></mm>	
Elenco diametri ferri di parete 7 <mm></mm>	
Elenco diametri staffe orizzontali 1 <mm></mm>	6
Elenco diametri staffe orizzontali 2 <mm> Elenco diametri staffe orizzontali 3 <mm></mm></mm>	8
Elenco diametri staffe orizzontali 4 <mm></mm>	
Elenco diametri staffe orizzontali 5 <mm></mm>	
Elenco diametri staffe orizzontali 6 <mm></mm>	
Elenco diametri staffe orizzontali 7 <mm></mm>	
Parametri di disegno	
Risvolto ferri superiori	Si
Risvolto ferri superiori -Pari a <cm></cm>	
Risvolto ferri superiori	Si x
Risvolto ferri superiori -Pari a <cm> -Pari all'altezza della trave</cm>	
Risvolto ferri superiori -Pari a <cm> -Pari all'altezza della trave -Pari alla minima altezza delle travi incidenti Risvolto ferri inferiori -Pari a <cm></cm></cm>	Х
Risvolto ferri superiori -Pari a <cm> -Pari all'altezza della trave -Pari alla minima altezza delle travi incidenti Risvolto ferri inferiori -Pari a <cm> -Pari all'altezza della trave</cm></cm>	Х
Risvolto ferri superiori -Pari a <cm> -Pari all'altezza della trave -Pari alla minima altezza delle travi incidenti Risvolto ferri inferiori -Pari a <cm> -Pari all'altezza della trave -Pari alla minima altezza delle travi incidenti</cm></cm>	x Si x
Risvolto ferri superiori -Pari a <cm> -Pari all'altezza della trave -Pari alla minima altezza delle travi incidenti Risvolto ferri inferiori -Pari a <cm> -Pari all'altezza della trave -Pari alla minima altezza delle travi incidenti Risvolto ferri laterali</cm></cm>	x Si x
Risvolto ferri superiori -Pari a <cm> -Pari all'altezza della trave -Pari alla minima altezza delle travi incidenti Risvolto ferri inferiori -Pari a <cm> -Pari all'altezza della trave -Pari alla minima altezza delle travi incidenti Risvolto ferri laterali -Pari a <cm></cm></cm></cm>	x Si x
Risvolto ferri superiori -Pari a <cm> -Pari all'altezza della trave -Pari alla minima altezza delle travi incidenti Risvolto ferri inferiori -Pari a <cm> -Pari all'altezza della trave -Pari alla minima altezza delle travi incidenti Risvolto ferri laterali</cm></cm>	x Si x
Risvolto ferri superiori -Pari a <cm> -Pari all'altezza della trave -Pari alla minima altezza delle travi incidenti Risvolto ferri inferiori -Pari a <cm> -Pari alla minima altezza delle travi incidenti Risvolto ferri inferiori -Pari all'altezza della trave -Pari alla minima altezza delle travi incidenti Risvolto ferri laterali -Pari a <cm> -Pari alla larghezza della trave</cm></cm></cm>	x Si x Si 25.00
Risvolto ferri superiori -Pari a <cm> -Pari all'altezza della trave -Pari alla minima altezza delle travi incidenti Risvolto ferri inferiori -Pari a <cm> -Pari all'altezza della trave -Pari alla minima altezza delle travi incidenti Risvolto ferri laterali -Pari a <cm> -Pari alla minima altezza della trave -Pari alla larghezza della trave Magrone</cm></cm></cm>	x Si x Si 25.00

2.50	Dati per progettazione interattiva sezioni	
Bisanza fra feorica xmm> B.0		2.50
Distanza fra ferri su più strati <m> 1.0 Integrara lo scorrimento lungo il tratto 8 -Tungheza del tratto <m> 1.0 Dati per progettazione agli stati limite Gruppo di esigenza -Ambiente molto aggressivo -Ambiente aggressivo -Ambiente molto aggressivo -Ambiente aggressivo -Ambiente molto aggressivo -Ambiente molto aggressivo -Ambiente molto aggressivo -Ambiente molto aggressivo -Ambi</m></m>		8.00
Integrare O scorrimento Unique 1 tratto S 5 1.0		1.00
Dati per progettarione agli stati limite Gruppo di esigenza -Ambiente poco aggressivo -Ambiente moderatamente aggressivo -Ambiente molto -Ambient		Si
Ambiente poce aggressivo	-Lunghezza del tratto <m></m>	1.00
Ambiente poce aggressivo	Dati per progettazione agli stati limite	
-Ambiente poco aggressivo -Ambiente molto aggressivo -Ambiente molto aggressivo -Ambiente molto aggressivo -Ambiente molto aggressivo -Ricerca della sicurezza con sforzo normale costante -Ricerca della sicurezza con eccentricità costante -Rontrollo rapporto X/D -Rontrollo rapporto X/		
*Ambiente moderatamente aggressivo **Ambiente molto aggressivo **Imbiente molto *		X
Usa dominio N-M per flessioni rette Ricerca della sicurezza con soro normale costante Ricerca della sicurezza con eccentricità costante Controllo rapporto X/D Barne da considerare tese per verifiche a taglio -Scol e le barre con deformazione percentuale rispetto alla barra più tesa non inferiore al <%> -Tutte le barre in trazione Dati per verifiche di resistanza al fuoco -Pempo di verifica (EEI) <minuti> Dimensione MESH <cm> 2.0.0 -Passo di calcolo <secondi> -Passo di calcolo <secondi> -Passo di calcolo <secondi> -Coeff. di convezione a temperatura ambiente <w k="" mq=""> 2.0.0 -Coeff. di convezione a temperatura ambiente <w k="" mq=""> 2.0.0 -Colestruzzo -Coeff. di convezione a temperatura ambiente <w k="" mq=""> 2.0.0 -Coeff. di convezione a temperatura della di calcolo <secondi> -Pattore di interpolazione conducibilità 3.10 -Pattore di interpolazione conducibilità 0.5 -Pattore di interpolazione conducibilità 0.5 -Pattore di fibra/resina -Vetro/Epposidica -Carbonio/Epossidica -Carbonio/Eposs</secondi></w></w></w></secondi></secondi></secondi></cm></minuti>		
#Ricerca della sicurezza con sforzo normale costante #Ricerca della sicurezza con eccentricità costante Controllo rapporto X/D Barre da considerare tese per verifiche a taglio -Solo le barre con deformazione percentuale rispetto alla barra più tesa non inferiore al <%> "Unite le barre in trazione Dati per verifiche di resistenza al fucco "Umpo di verifica (REI) <minui> 22.0 Dimensione MESH <m> 22.0 Dimensione MESH <m> 22.0 Passo di calcolo <secondi> 23.0 "Coeff. di convezione a temperatura ambiente <w mg="" r=""> Calcestruzzo "Lipo di aggregati SILICE Massa volumica a secco <dan mc=""> -Umidità iniziale <%> "Elipo di interpolazione conducibilità Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica -Performati -Performati -Performati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Performati -Performati -Carbonio/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica -Performati -Performati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Carbonio/Epossi</dan></w></secondi></m></m></minui>	-Ambiente molto aggressivo	
Finish	Usa dominio N-M per flessioni rette	Si
Searce da considerare tese per verifiche a taglio	-Ricerca della sicurezza con sforzo normale costante	
Barne da considerare tese per verifiche a taglio -solo le barne con deformazione percentuale rispetto alla barna più tesa non inferiore al <\$> Tutte le barne in trazione -Tempo di verifica (REI) <minuti> -Tempo di convezione a temperatura ambiente <n k="" mq=""> -Tempo di convezione a temperatura ambiente <n k="" mq=""> -Tempo di aggregati -Tipo di interpolazione conducibilità -Tempo di fibra/resina -Vetro/Epossidica -Vetro/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica -Temperaturi situ -Tipo di fibra/resina -Vetro/Epossidica -Temperaturi situ -Tipo di di fibra/resina -Vetro/Epossidica -Temperaturi situ -Tipo di di di di carico -Tipo di di</n></n></minuti></minuti></minuti></minuti></minuti></minuti>	-Ricerca della sicurezza con eccentricità costante	X
### Solo le barre con deformazione percentuale rispetto ### alla barra più tesa non inferiore al <%> ### 30.0 ### Tutte le barre in trazione ### Dati per verifiche di resistenza al fuoco ### Dimensione MESH <cm> ### 2.0 ### Passo di calcolo <secondi> ### 2.0 ### 2.0</secondi></cm>		Si
30.0		
Dati per verifiche di resistenza al fuoco		
Dati per verifiche di resistenza al fuoco -Tempo di verifica (REI) <minuti> 120.0 Dimensione MESH <m> 2.0 Peasso di calcolo <secondi> 10.0 Temperatura ambiente <c'> 20.0 Temperatura ambiente <c'> 20.0 Coeff. di convezione a temperatura ambiente <w k="" mq=""> 9.0 Calcestruzzo Tipo di aggregati SILICE Massa volumica a secco <dan mc=""> 2300.0 Umidità iniziale <% 3.0 Temtore di Interpolazione conducibilità 0.5 Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina Vetro/Epossidica -Tarponio/Epossidica -Tarponio/Epossidica -Tarponio/Epossidica -Tarponio/Epossidica -Tarponio/Epossidica -Tarponio/Epossidica -Tarponio/Epossidica -Tarponio di interpolazione caratteristica a rottura per trazione (€r,) <% 2.0 Spessore quivalente(t;) <mm> 0.1 Sistemi di rinforzo -Terpormati -Tempregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica -Tempergnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica -Tempergnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Carbonio/Epossidica -Carbonio/Epossid</mm></dan></w></c'></c'></secondi></m></minuti>		30.00
Tempo di verifica (REI) xminuti> 120.0 Dimensione MESH <cm> 2.0 Passo di Calcolo <secondi> 10.0 Temperatura ambiente ⟨C'> 20.0 Coeff. di convezione a temperatura ambiente ⟨W/mq K⟩ 20.0 Coeff. di convezione a temperatura ambiente ⟨W/mq K⟩ 9.0 Calcestruzzo </secondi></cm>	-Tutte le barre in trazione	
Dimensione MESH < Cm) - Prasso di calcolo <secondi> 10.0 </secondi>	Dati per verifiche di resistenza al fuoco	
-Passo di calcolo <secondi> 10.0 -Presentativa ambiente < C¹ 20.0 -Coeff. di convezione a temperatura ambiente <w k="" mq=""> 20.0 -Coeff. di convezione a temperatura ambiente <w k="" mq=""> 9.0 -Calcestruzzo </w></w></secondi>	<u> </u>	
-Temperatura ambiente $\langle \mathbb{C}^* \rangle$ 20.0 Coeff, di convezione a temperatura ambiente $\langle \mathbb{W}/mq \mathbb{K} \rangle$ 9.0 Calcestruzzo 3.0 Patro di aggregati 3.0 SILICE 3.0 Massa volunica a secco $\langle \operatorname{daN}/\operatorname{mc} \rangle$ 2300.0 -Umidità iniziale $\langle \mathbb{K} \rangle$ 2300.0 -Umidità iniziale $\langle \mathbb{K} \rangle$ 3.0 O.5 Fattore di interpolazione conducibilità 0.5 Dati per verifiche FRP 8.1 Finforzo longitudinale 7.1 Tipo di fibra/resina 7.2 Tipo di fibra/resina 7.2 Tipo di fibra/resina 7.2 Tipo di fibra/resina 7.3 Tipo di fibra/resina 7.4 Tipo di fibra/resina 7.5 Tipo di fibra/re		2.00
-Coeff. di convezione a temperatura ambiente <w k="" mq=""> Calcestruzzo -Tipo di aggregati Massa volumica a secco <dan mc=""> -Tmidicità iniziale <%> -Fattore di interpolazione conducibilità .50.5 Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Resistenza caratteristica a rottura per trazione (ε_{tk}) <%> 2500000.0 Spessore equivalente (t_t) <mm> Tipo di fibra/resina -Vetro/Fpossidica -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Preformati -Tipo di fibra/resina -Vetro/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica -Tipo di fibra/resina -Vetro/Epossidica -Carbonio/Epossidica -Carbonio/</mm></dan></w>		
Tipo di aggregati		
-Tipo di aggregati SILICE Massa volumica a secco $\langle \text{daN/mc} \rangle$ 2300.0 Assa volumica a secco $\langle \text{daN/mc} \rangle$ 2300.0 -Fattore di interpolazione conducibilità 0.5 Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Carbonio/E		9.00
Massa volumica a secco $\langle \text{daN/mc} \rangle$ 2300.0 -Umidità iniziale $\langle * \rangle$ 3.0 -Fattore di interpolazione conducibilità 0.5 Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica(f_{r_k}) $\langle \text{daN/cmq} \rangle$ 4900.0 Modulo elastico(E_c) $\langle \text{daN/cmq} \rangle$ 2500000.0 Deformazione caratteristica a rottura per trazione(E_{r_k}) $\langle \text{**} \rangle$ 2.0 Spessore equivalente(E_c) $\langle \text{mm} \rangle$ 0.1 Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Resistenza caratteristica(f_{r_k}) $\langle \text{daN/cmq} \rangle$ 4900.0 Modulo elastico(E_c) $\langle \text{daN/cmq} \rangle$ 2500000.0 Deformazione caratteristica a rottura per trazione(E_{r_k}) $\langle \text{**} \rangle$ 2.0 Spessore equivalente(E_c) $\langle \text{mm} \rangle$ 2500000.0 Spessore equivalente(E_c) $\langle \text{mm} \rangle$ 2500000.0 Spessore equivalente(E_c) $\langle \text{mm} \rangle$ 2.0 Spessore equivalente(E_c) $\langle \text{mm} \rangle$ 2.1 Sistemi di rinforzo -Preformati -Impregnati in situ Modalità di carico -Preformati -Impregnati in situ Modalità di carico -Preformati -Impregnati in situ Modalità di carico -Uungo termine -Ciclico Coeff. parziale SLU di distacco(E_{r_k}) $\langle \text{mm} \rangle$ 3.5 Fattore di conversione ambientale(E_c) $\langle \text{mm} \rangle$ 3.9 Raggio di arrotondamento spigoli(E_c) $\langle \text{cm} \rangle$ 2.0		CTITCET
-Umidità iniziale <%> -Fattore di interpolazione conducibilità	1 33 3	
$ \begin{array}{c} \textbf{Pattore di interpolazione conducibilità} & 0.5 \\ \textbf{Dati per verifiche FRP} \\ \textbf{Rinforzo longitudinale} \\ \textbf{Tipo di fibra/resina} \\ \textbf{-Vetro/Epossidica} \\ \textbf{-Arammidica/Epossidica} \\ \textbf{-Carbonio/Epossidica} \\ \textbf{-Carbonio/Epossidica} \\ \textbf{-Resistenza caratteristica(f_{fR}) < daN/cmq>} & 4900.0 \\ \textbf{Modulo elastico(E_{e}) < daN/cmq>} & 2500000.0 \\ \textbf{Deformazione caratteristica a rottura per trazione(E_{fR}) < %> & 2.0 \\ \textbf{Spessore equivalente(t_{f}) < mm>} & 0.1 \\ \textbf{Sistemi di rinforzo} \\ \textbf{-Preformati} \\ \textbf{-Impregnati in situ} \\ \textbf{Rinforzo trasversale} \\ \textbf{Tipo di fibra/resina} \\ \textbf{-Vetro/Epossidica} \\ \textbf{-Arammidica/Epossidica} \\ \textbf{-Carbonio/Epossidica} \\ \textbf{-Resistenza caratteristica(f_{fR}) < daN/cmq>} & 49000.0 \\ \textbf{Modulo elastico(E_{e}) < daN/cmq>} & 49000.0 \\ \textbf{Modulo elastico(E_{e}) < daN/cmq>} & 2200000.0 \\ \textbf{Deformazione caratteristica a rottura per trazione(E_{fR}) < %> & 2.0 \\ \textbf{Spessore equivalente(t_{e}) < mm>} & 0.1 \\ \textbf{Sistemi di rinforzo} & -Preformati \\ \textbf{-Impregnati in situ} \\ \textbf{Modalità di carico} & -Preformati \\ \textbf{-Impregnati in situ} \\ \textbf{Modalità di carico} & -Preformati \\ \textbf{-Impregnati in situ} \\ \textbf{Modalità di carico} & -Dungo termine \\ \textbf{-Ciclico} \\ \textbf{Coeff, parziale SLU di distacco(y_{fin})} & 1.5 \\ \textbf{Fattore di conversione ambientale(y_a)} & 0.9 \\ \textbf{Raggio di arrotondamento spigoli(r_e) < cm>} & 2.0 \\ \textbf{Raggio di arrotondamento spigoli(r_e)} < cm>} & 2.0 \\ \textbf{Raggio di arrotondamento spigoli(r_e)} < cm>} & 2.0 \\ \textbf{Raggio di arrotondamento spigoli(r_e)} < cm>} & 2.0 \\ \textbf{Raggio di arrotondamento spigoli(r_e)} < cm>} & 2.0 \\ \textbf{Raggio di arrotondamento spigoli(r_e)} < cm>} & 2.0 \\ \textbf{Raggio di arrotondamento spigoli(r_e)} < cm>} & 2.0 \\ \textbf{Raggio di arrotondamento spigoli(r_e)} < cm>} & 2.0 \\ \textbf{Ragio di arrotondamento spigoli(r_e)} < cm>} & 2.0 \\ \textbf{Ragio di arrotondamento spigoli(r_e)} < cm>} & 2.0 \\ \textbf{Ragio di arrotondamento spigoli(r_e)} < cm}$	·	3.00
Dati per verifiche FRP Rinforzo longitudinale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica Resistenza caratteristica (f_{ϵ_k}) <dan cmq=""> Deformazione caratteristica a rottura per trazione $(\mathbf{E}_{\epsilon_k})$ <%> 2.00 Spessore equivalente (t_f) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Carbonio/Epossidica -Carbo</mm></dan>		0.50
Rinforzo longitudinale Tipo di fibra/resina -Vetro/Eppossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica (f_{tk}) $<$ daN/cmq> Modulo elastico(E_c) $<$ daN/cmq> 2500000.0 Modulo elastico(E_c) $<$ daN/cmq> 2500000.0 Deformazione caratteristica a rottura per trazione (E_{tk}) $<$ %> 2.0 Spessore equivalente(t_t) $<$ mm> Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Carbonio/Epossidica -Carbonio/Epossidi		
Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica Resistenza caratteristica($f_{\epsilon k}$) <dan cmq=""></dan>	Dati per verifiche FRP	
$- \sqrt{\text{etro}/\text{Epossidica}} \\ - Arammidica/\text{Epossidica} \\ - (- \text{Carbonio/Epossidica}) \\ - (- \text{Carbonio/Epossidica}) \\ - (- \text{Carbonio/Epossidica}) \\ - (- \text{Carbonio/Epossidica}) \\ - (- \text{Epossidica}) \\ - (- Epossid$	Rinforzo longitudinale	
$-\operatorname{Arammidica/Epossidica} \\ -\operatorname{Carbonio/Epossidica} \\ \operatorname{Resistenza caratteristica(f_{fk})} < \operatorname{daN/cmq}^{>} \\ 2500000.0 \\ \operatorname{Modulo elastico(E_c)} < \operatorname{daN/cmq}^{>} \\ 2500000.0 \\ \operatorname{Deformazione caratteristica a rottura per trazione(ϵ_{fk})} < \$ > \\ 2.0 \\ \operatorname{Spessore equivalente($t_{t'}$)} < \operatorname{mm}^{>} \\ \operatorname{Sistemi di rinforzo} \\ -\operatorname{Preformati} \\ -\operatorname{Impregnati in situ} \\ \operatorname{Rinforzo trasversale} \\ \operatorname{Tipo di fibra/resina} \\ -\operatorname{Vetro/Epossidica} \\ -\operatorname{Arammidica/Epossidica} \\ -\operatorname{Carbonio/Epossidica} \\ -\operatorname{Resistenza caratteristica(f_{fk})} < \operatorname{daN/cmq}^{>} \\ \operatorname{Modulo elastico(E_c)} < \operatorname{daN/cmq}^{>} \\ \operatorname{Spessore equivalente($t_{t'}$)} < \operatorname{mm}^{>} \\ \operatorname{Sistemi di rinforzo} \\ -\operatorname{Preformati} \\ -\operatorname{Impregnati in situ} \\ \operatorname{Modalità di carico} \\ -\operatorname{Lungo termine} \\ -\operatorname{Ciclico} \\ \operatorname{Coeff. parziale SLU di distacco(γ_{fcd})} \\ \operatorname{Raggio di arrotondamento spigoli(r_c)} < \operatorname{cm}^{>} \\ \operatorname{2.0} \\ \operatorname{Raggio di arrotondamento spigoli(r_c)} < \operatorname{cm}^{>} \\ \operatorname{2.0} \\ \operatorname{Spessore equivalentente} \\ -\operatorname{1.5} \\ \operatorname{Fattore di conversione ambientale(η_a)} \\ \operatorname{0.9} \\ \operatorname{Raggio di arrotondamento spigoli(r_c)} < \operatorname{cm}^{>} \\ \operatorname{2.0} \\ \operatorname{2.0} \\ \operatorname{2.0} \\ \operatorname{2.0} \\ \operatorname{2.0} \\ \operatorname{3.0} \\ \operatorname$	Tipo di fibra/resina	
$-Carbonio/Epossidica \\ Resistenza caratteristica (f_{fk}) < daN/cmq> 49000.0 \\ Modulo elastico (E_{c}) < daN/cmq> 2500000.0 \\ Deformazione caratteristica a rottura per trazione (\mathbf{e}_{fk}) < \mathbf{e}_{fk} < 0.1 \\ Spessore equivalente (\mathbf{t}_{f}) 0.1 \\ Sistemi di rinforzo $. 1	
Resistenza caratteristica ($f_{\rm fk}$) <dan cmq=""> Modulo elastico($E_{\rm c}$) <dan cmq=""> 2500000.0 Deformazione caratteristica a rottura per trazione ($\epsilon_{\rm fk}$) <%> 2.00 Spessore equivalente($t_{\rm f}$) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica Resistenza caratteristica ($f_{\rm fk}$) <dan cmq=""> Modulo elastico($E_{\rm c}$) <dan cmq=""> 2500000.0 Deformazione caratteristica a rottura per trazione ($\epsilon_{\rm rk}$) <%> 2.00 Spessore equivalente($t_{\rm f}$) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ Modalità di carico -Lungo termine -Ciclico Coeff. parziale SLU di distacco ($\gamma_{\rm fd}$) Fattore di conversione ambientale ($\eta_{\rm k}$) Raggio di arrotondamento spigoli($r_{\rm c}$) <cm> 2.00 Raggio di arrotondamento spigoli($r_{\rm c}$) <cm> 2.0</cm></cm></mm></dan></dan></mm></dan></dan>		
Modulo elastico(E_c) $< daN/cmq>$ Deformazione caratteristica a rottura per trazione(E_{tk}) $< %>$ Spessore equivalente(t_f) $< mm>$ Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Carbonio/Epossidica Besistenza caratteristica(f_{fk}) $< daN/cmq>$ Modulo elastico(E_c) $< daN/cmq>$ Deformazione caratteristica a rottura per trazione(E_{tk}) $< %>$ 2.0 Spessore equivalente(t_f) $< mm>$ Sistemi di rinforzo -Preformati -Impregnati in situ Modalità di carico -Lungo termine -Ciclico Coeff. parziale SLU di distacco(γ_{fd}) Fattore di conversione ambientale(η_a) Raggio di arrotondamento spigoli(r_c) $< cm>$ 2.0		X
Deformazione caratteristica a rottura per trazione $(\mathbf{E}_{\mathrm{fk}})$ <%> 2.0 Spessore equivalente (t_{f}) <mm> 0.1 Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica -Car</mm>	-	
Spessore equivalente(t_r) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica(f_{f_r}) <dan cmq=""> Modulo elastico(E_c) <dan cmq=""> 2500000.0 Deformazione caratteristica a rottura per trazione(E_{f_r}) <%> Spessore equivalente(t_r) <mm> Sistemi di rinforzo -Preformati -Impregnati in situ Modalità di carico -Lungo termine -Ciclico Coeff. parziale SLU di distacco(γ_{f_d}) Fattore di conversione ambientale(η_a) Raggio di arrotondamento spigoli(r_c) <cm> 2.0 Raggio di arrotondamento spigoli(r_c) <cm> 2.0 Preformati -1.5 -1.5 -2.0 -</cm></cm></mm></dan></dan></mm>		
Sistemi di rinforzo Preformati Impregnati in situ Rinforzo trasversale Tipo di fibra/resina Vetro/Epossidica Arammidica/Epossidica Carbonio/Epossidica Carbonio/Epos	<u> </u>	
-Preformati -Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica(f_{fk}) $<$ daN/cmq $>$ Deformazione caratteristica a rottura per trazione(ϵ_{fk}) $<$ % $>$ 2.0 Spessore equivalente(ϵ_{fk}) $<$ mm $>$ 0.1 Sistemi di rinforzo -Preformati -Impregnati in situ Modalità di carico -Lungo termine -Ciclico Coeff. parziale SLU di distacco(γ_{fd}) Fattore di conversione ambientale(η_{n}) Raggio di arrotondamento spigoli(ϵ_{fk}) $<$ cm> 2.0 Raggio di arrotondamento spigoli(ϵ_{fk}) $<$ cm> 2.0		0.17
-Impregnati in situ Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica (f_{fk}) $<$ daN/cmq> Modulo elastico(E_{c}) $<$ daN/cmq> 250000.0 Deformazione caratteristica a rottura per trazione (E_{fk}) $<$ %> 2.0 Spessore equivalente(t_{f}) $<$ mm> 0.1 Sistemi di rinforzo -Preformati -Impregnati in situ Modalità di carico -Lungo termine -Ciclico Coeff. parziale SLU di distacco(γ_{fd}) Fattore di conversione ambientale(η_{a}) Raggio di arrotondamento spigoli(r_{c}) $<$ cm> 2.0		
Rinforzo trasversale Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica(f_{fk}) $<$ daN/cmq> Modulo elastico(E_c) $<$ daN/cmq> 250000.0 Deformazione caratteristica a rottura per trazione(E_{fk}) $<$ %> 2.0 Spessore equivalente(E_c) $<$ mm> 0.1 Sistemi di rinforzo -Preformati -Impregnati in situ Modalità di carico -Lungo termine -Ciclico Coeff. parziale SLU di distacco(γ_{fd}) Fattore di conversione ambientale(η_a) Raggio di arrotondamento spigoli(r_c) $<$ cm> 2.0		x
Tipo di fibra/resina -Vetro/Epossidica -Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica(f_{fk}) $<$ daN/cmq> Modulo elastico(E_c) $<$ daN/cmq> Deformazione caratteristica a rottura per trazione(E_{fk}) $<$ %> Spessore equivalente(E_f) $<$ mm> 0.1 Sistemi di rinforzo -Preformati -Impregnati in situ Modalità di carico -Lungo termine -Ciclico Coeff. parziale SLU di distacco(Y_{fd}) Fattore di conversione ambientale((F_a)) Raggio di arrotondamento spigoli((F_c)) $<$ cm> 2.0		
$-\text{Vetro/Epossidica} \\ -\text{Arammidica/Epossidica} \\ -\text{Carbonio/Epossidica} \\ \text{Resistenza caratteristica}(f_{fk}) < \text{daN/cmq} > 49000.0 \\ \text{Modulo elastico}(E_c) < \text{daN/cmq} > 2500000.0 \\ \text{Deformazione caratteristica a rottura per trazione}(E_{fk}) < > 2.0 \\ \text{Spessore equivalente}(t_f) < \text{mm} > 0.1 \\ \text{Sistemi di rinforzo} \\ -\text{Preformati} \\ -\text{Impregnati in situ} \\ \text{Modalità di carico} \\ -\text{Lungo termine} \\ -\text{Ciclico} \\ \text{Coeff. parziale SLU di distacco}(\gamma_{fd}) \\ \text{Fattore di conversione ambientale}(\eta_a) \\ \text{Raggio di arrotondamento spigoli}(r_c) < \text{cm}} > 2.0 \\ \text{Combations} \\ \text{Combations} \\ \text{Combations} \\ \text{Coeff. parziale SLU di distacco}(\gamma_{fd}) \\ \text{Coeff. parziale} \\ \text{Coeff. parziale}(\gamma_{fd}) \\ Coeff. pa$		
-Arammidica/Epossidica -Carbonio/Epossidica Resistenza caratteristica(f_{fk}) $<$ daN/cmq> Modulo elastico(E_c) $<$ daN/cmq> Deformazione caratteristica a rottura per trazione(E_{fk}) $<$ %> 2.0 Spessore equivalente(t_f) $<$ mm> 0.1 Sistemi di rinforzo -Preformati -Impregnati in situ Modalità di carico -Lungo termine -Ciclico Coeff. parziale SLU di distacco(γ_{fd}) Fattore di conversione ambientale(η_a) Raggio di arrotondamento spigoli(r_c) $<$ cm> 2.0 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	_ -	
-Carbonio/Epossidica Resistenza caratteristica(f_{fk}) $<$ daN/cmq> Modulo elastico(E_c) $<$ daN/cmq> Deformazione caratteristica a rottura per trazione(E_{fk}) $<$ %> Spessore equivalente(t_f) $<$ mm> Sistemi di rinforzo -Preformati -Impregnati in situ Modalità di carico -Lungo termine -Ciclico Coeff. parziale SLU di distacco(γ_{fd}) Fattore di conversione ambientale(η_a) Raggio di arrotondamento spigoli(r_c) $<$ cm> 200000.0 49000.0 49000.0 2500000.0 0.1 1.5		
Resistenza caratteristica ($f_{\rm fk}$) <dan cmq=""> Modulo elastico ($E_{\rm c}$) <dan cmq=""> Deformazione caratteristica a rottura per trazione ($E_{\rm fk}$) <%> Spessore equivalente ($t_{\rm f}$) <mm> 0.1 Sistemi di rinforzo -Preformati -Impregnati in situ Modalità di carico -Lungo termine -Ciclico Coeff. parziale SLU di distacco ($\gamma_{\rm fd}$) Fattore di conversione ambientale ($\eta_{\rm a}$) Raggio di arrotondamento spigoli ($r_{\rm c}$) <cm> 2500000.0 49000.0 2500000.0 20.0 21.0 22.0 23.0 24.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 26.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0</cm></mm></dan></dan>		X
Deformazione caratteristica a rottura per trazione $(\epsilon_{rk}) < \$ >$ 2.0 Spessore equivalente $(t_f) < mm >$ 0.1 Sistemi di rinforzo -Preformati -Impregnati in situ Modalità di carico -Lungo termine -Ciclico Coeff. parziale SLU di distacco (γ_{fd}) 1.5 Fattore di conversione ambientale (η_a) 0.9 Raggio di arrotondamento spigoli $(r_c) < cm >$ 2.0	Resistenza caratteristica(ffk) <dan cmq=""></dan>	49000.00
Spessore equivalente(t _f) $\langle \text{mm} \rangle$ 0.1 Sistemi di rinforzo — Preformati — Impregnati in situ — Modalità di carico — Lungo termine — Ciclico — Coeff. parziale SLU di distacco(γ_{fd}) — 1.5 Fattore di conversione ambientale(η_a) — 0.9 Raggio di arrotondamento spigoli(r_c) $\langle \text{cm} \rangle$ — 2.0	Modulo elastico(E _c) <dan cmq=""></dan>	2500000.00
Spessore equivalente(t_f) <mm> 0.1 Sistemi di rinforzo -Preformati -Impregnati in situ Modalità di carico -Lungo termine -Ciclico Coeff. parziale SLU di distacco(γ_{fd}) Fattore di conversione ambientale(η_a) Raggio di arrotondamento spigoli(r_c) <cm> 0.9</cm></mm>	Deformazione caratteristica a rottura per trazione ($\varepsilon_{\rm fk}$) <%>	2.00
-Preformati -Impregnati in situ Modalità di carico -Lungo termine -Ciclico Coeff. parziale SLU di distacco (γ_{fd}) Fattore di conversione ambientale (η_a) Raggio di arrotondamento spigoli (r_c) <cm> 2.0</cm>	Spessore equivalente(tf) <mm></mm>	0.17
-Impregnati in situ Modalità di carico -Lungo termine -Ciclico Coeff. parziale SLU di distacco(γ_{fd}) Fattore di conversione ambientale(η_a) Raggio di arrotondamento spigoli(r_c) <cm> 2.0</cm>	Sistemi di rinforzo	
Modalità di carico -Lungo termine -Ciclico Coeff. parziale SLU di distacco(γ_{fd})		
-Lungo termine -Ciclico Coeff. parziale SLU di distacco(γ_{fd}) Fattore di conversione ambientale(η_a) Raggio di arrotondamento spigoli(r_c) <cm> 2.0</cm>		X
-Ciclico Coeff. parziale SLU di distacco(γ_{fd}) 1.5 Fattore di conversione ambientale(η_a) 0.9 Raggio di arrotondamento spigoli(r_c) <cm> 2.0</cm>	Modalità di carico	
Coeff. parziale SLU di distacco (γ_{fd}) 1.5 Fattore di conversione ambientale (η_a) 0.9 Raggio di arrotondamento spigoli (r_c) $<$ cm $>$ 2.0	3	X
Fattore di conversione ambientale (η_a) 0.9 Raggio di arrotondamento spigoli(r_c) $<$ cm $>$ 2.0		
Raggio di arrotondamento spigoli(r_c) <cm> 2.0</cm>	Coeff. parziale SLU di distacco($\gamma_{ ext{fd}}$)	1.50
	Fattore di conversione ambientale (η_a)	0.95
Coeff. condizione di carico(K_q) 1.2	Raggio di arrotondamento spigoli(r _c) <cm></cm>	2.00
	Coeff. condizione di carico(K _q)	1.25

Verifiche e armature travi

```
Simbologia
 Caso
Xg
CC
TCC
```

```
SLE F = Stato limite d'esercizio, combinazione frequente
            SLE Q = Stato limite d'esercizio, combinazione quasi permanente SLD = Stato limite di danno
            SLV = Stato limite di salvaguardia della vita
SLC = Stato limite di prevenzione del collasso
            SLO = Stato limite di operatività
SLU I = Stato limite di resistenza al fuoco
SND = Stato limite di salvaguardia della vita (non dissipativo)
E1
           = Elemento (asta) in cui viene effettuato il progetto/verifica (progressivo sul numero di aste)
Sez.
           = Numero della sezione
          = Numero del criterio di progetto
= Coordinata progressiva rispetto al nodo iniziale
Crit
X
AfE S
          = Area di ferro effettiva totale presente nel punto di verifica, superiore
= Area di ferro effettiva totale presente nel punto di verifica, inferiore
= Area di ferro effettiva parziale presente nella CC considerata, per la sollecitazione indicata, superiore
AfE T
AfEP S
          = Area di ferro effettiva parziale presente nella CC considerata, per la sollecitazione indicata, inferiore = Momento flettente intorno all'asse Y
AfEP I
Му
MRdy
          = Momento resistente allo stato limite ultimo intorno all'asse Y
          = Sicurezza a rottura
= Tensione nel ferro - superiore
Sic.
\sigma_{\scriptscriptstyle \mathrm{f}} sup
          = Tensione nel ferro - inferiore
\sigma_{\text{f}} inf
          = Tensione nel calcestruzzo
\sigma_{-}
          =Coordinata progressiva (dal nodo iniziale) dell'inizio del tratto =Coordinata progressiva (dal nodo iniziale) della fine del tratto
χn
Х1
Luna
           = Lunghezza del tratto di progettazione
          = Staffatura adottata
AfE St. = Area di ferro effettiva della staffatura (d'anima per travi a T o L)
           = Larghezza membratura resistente al taglio
          = Taglio agente nella direzione del momento ultimo
Vsdu
          = Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo
ctg\theta
          = Taglio ultimo lato armatura
= Taglio ultimo lato calcestruzzo
VRsd
VRcd
Vrdu
           = Taglio ultimo assorbibile dal solo calcestruzzo
          = Sicurezza a rottura per taglio
= Ricoprimento dell'armatura
Sic.T
          = Distanza minima tra le barre
= Coefficiente di forma del diagramma delle tensioni prima della fessurazione
s
K3
           = Distanza media tra le fessure
          = Diametro della barra
Φ
A<sub>s</sub>
A<sub>c eff</sub>
          =Area complessiva dei ferri nell'area di calcestruzzo efficace
           = Area di calcestruzzo efficace
          = Tensione nell'acciaio nella sezione fessurata
σ.
          = Tensione nell'acciaio corrispondente al raggiungimento della resistenza a trazione nel calcestruzzo
\sigma_{\rm sr}
           = Deformazione unitaria media dell'armatura (*1000)
           = Apertura delle fessure
Tipo
          = Tipologia
            2C = Doppia C lato labbri
2Cdx = Doppia C lato costola
            2I = Doppia I
2L = Doppia L lato labbri
            2Ldx = Doppia L lato costole
C = Sezione a C
            Cdx = C destra
            Cir. = Circolare
            Cir.c
                      = Circolare cava
            I = Sezione a I
             L = Sezione a L
            Ldx = L destra
             Om. = Omega
            Pg = Pi greco
Pr = Poligono regolare
             Prc = Poligono regolare cavo
            Pc = Per coordinate
             Ia = Inerzie assegnate
            R = Rettangolare
            Rc = Rettangolare cava
             T = Sezione a T
            U = Sezione a U
                  U rovescia
            V = Sezione a V
            Vr = V rovescia
Z = Sezione a Z
            Z = Sezione a Z
Zdx = Z destra
Ts = T stondata
Ls = L stondata
Cs = C stondata
Is = I stondata
            Dis. = Disegnata
           =Base
           = Altezza
Cf sup
          = Copriferro superiore
Cf inf
          = Copriferro inferiore
           = Tipo di calcestruzzo
Fck
           = Resistenza caratteristica cilindrica a compressione del calcestruzzo
          = Resistenza caratteristica a trazione del calcestruzzo

= Resistenza di calcolo a compressione del calcestruzzo
Fcd
Fctd
          = Resistenza di calcolo a trazione del calcestruzzo
           = Tipo di acciaio
Tp
          = Tensione caratteristica di snervamento dell'acciaio
= Resistenza di calcolo dell'acciaio
Fyk
```

Travata n. 101

Nodi: 101 102 103

Caratteristiche delle sezioni e dei materiali utilizzati

Sez.	Tipo	B <cm></cm>	H <cm></cm>	Cf sup	Cf inf		Fck <dan cmq=""></dan>	Fctk <dan cmq=""></dan>	Fcd <dan cmq=""></dan>	Fctd <dan cmq=""></dan>	Tp	Fyk <dan cmq=""></dan>	Fyd <dan cmq=""></dan>
				<cm></cm>	<cm></cm>								
2	2R	30.00	40.00	5.50	5.50	C30/37	307.10	20.59	174.02	13.73	B450C	4500.00	3913.04

Stato limite ultimo - Verifiche a flessione/pressoflessione

Xg	CCTC	CEL	Х	AfE	SA	AfE I	AfEP	SAfep	I	My	MRdy	Sic.
<m></m>			<cm></cm>							<danm></danm>	<danm></danm>	

					<cmq></cmq>	<cmq></cmq>	<cmq></cmq>	<cmq></cmq>			
0.15	13	SLV	1	15.00	6.03	12.57	6.03	12.57	-2759.20	-7591.48	2.751
3.20	1	SLV	1	320.00	6.03	12.57	6.03	12.57	-3520.52	-7591.48	2.156
3.70	13	SLV	2	25.00	6.03	12.57	6.03	12.57	-3254.38	-7591.48	2.333
7.23	1	SLV	2	377.92	6.03	12.57	6.03	12.57	-2713.68	-7591.48	2.797
7.55	1	SLV	2	410.00	6.03	12.57	6.03	12.57	-2713.68	-7591.48	2.797

Stato limite d'esercizio - Verifiche tensionali

Хg	CC	TCC	El	Х	AfE S	AfE I	My	σ _f sup	$\sigma_{\scriptscriptstyle \mathrm{f}}$ inf	σ。
<m></m>				<cm></cm>			<danm></danm>	<dan cmq=""></dan>	<dan cmq=""></dan>	<dan cmq=""></dan>
					<cmq></cmq>	<cmq></cmq>				
0.15	31	SLE R	1	15.00	6.03	12.57	-175.61	95.66	-16.52	2.52
0.15	28	SLE Q	1	15.00	6.03	12.57	-119.71	65.21	-11.26	1.72
3.20	38	SLE R	1	320.00	6.03	12.57	-538.59	293.38	-50.68	7.73
3.20	28	SLE Q	1	320.00	6.03	12.57	-528.63	287.95	-49.74	7.59
3.70	31	SLE R	2	25.00	6.03	12.57	-727.23	396.13	-68.43	10.44
3.70	28	SLE Q	2	25.00	6.03	12.57	-676.54	368.52	-63.66	9.71
7.23	38	SLE R	2	377.92	6.03	12.57	-280.48	152.78	-26.39	4.02
7.23	28	SLE Q	2	377.92	6.03	12.57	-269.16	146.61	-25.32	3.86
7.55	38	SLE R	2	410.00	6.03	12.57	-280.48	152.78	-26.39	4.02
7.55	28	SLE Q	2	410.00	6.03	12.57	-269.16	146.61	-25.32	3.86

Stato limite d'esercizio - Verifiche a fessurazione

Stat	·		· · ·		CIZI	, , ,		a ress	<u> </u>										
Caso	Xg	CC	TCC	El	Sez.	Crit.	Х	My	С	s	K3	Srm	Φ	As	A _{c eff}	σs	σ _{sr}	$\epsilon_{\tt sm}$	Wk
	<m></m>						<cm></cm>	<danm></danm>	<mm></mm>	<mm></mm>		<mm></mm>		<cmq></cmq>	<cmq></cmq>	<dan cmq=""></dan>	<dan cmq=""></dan>		<mm></mm>
38	0.15	28	SLE Q	1	2	1	15.00	-119.71	47.00	95.00	0.15	190.70	16.00	6.03	486.13	65.21	1993.48	0.01	0.00
46	0.15	33	SLE F	1	2	1	15.00	-130.89	47.00	95.00	0.15	190.70	16.00	6.03	486.13	71.30	1993.48	0.01	0.00
7.9	3.20	28	SLE Q	1	2	1	320.00	-528.63	47.00	95.00	0.15	190.70	16.00	6.03	486.13	287.95	1993.48	0.06	0.02
85	3.20	40	SLE F	1	2	1	320.00	-530.62	47.00	95.00	0.15	190.70	16.00	6.03	486.13	289.03	1993.48	0.06	0.02
115	3.70	28	SLE Q	2	2	1	25.00	-676.54	47.00	95.00	0.15	190.70	16.00	6.03	486.13	368.52	1993.48	0.07	0.02
119	3.70	33	SLE F	2	2	1	25.00	-686.68	47.00	95.00	0.15	190.70	16.00	6.03	486.13	374.04	1993.48	0.07	0.02
159	7.23	3 2 8	SLE Q	2	2	1	377.92	-269.16	47.00	95.00	0.15	190.70	16.00	6.03	486.13	146.61	1993.48	0.03	0.01
171	7.23	3 4 0	SLE F	2	2	1	377.92	-271.42	47.00	95.00	0.15	190.70	16.00	6.03	486.13	147.84	1993.48	0.03	0.01
211	7.55	28	SLE Q	2	2	1	410.00	-269.16	47.00	95.00	0.15	190.70	16.00	6.03	486.13	146.61	1993.48	0.03	0.01
223	7.55	40	SLE F	2	2	1	410.00	-271.42	47.00	95.00	0.15	190.70	16.00	6.03	486.13	147.84	1993.48	0.03	0.01

Staffe - Verifiche armatura

CC	X0	Х1	Lung.	Sta	ff.	AfE St.	bw	Vsdu	ctgθ	VRsd	VRcd	Vrdu	Sic.T
	<m></m>	<m></m>					<m></m>	<dan></dan>		<dan></dan>	<dan></dan>	<dan></dan>	
			<m></m>			<cmq m=""></cmq>							
13 SLV	0.15	0.55	0.40	ø8/ 5 :	2 br.	20.11	0.30	2474.78	1.52	37191.80	37191.80	37191.80	15.03
1 SLV	0.55	2.80	2.25	ø8/20 :	2 br.	5.03	0.30	2542.92	2.50	15268.10	27948.80	15268.10	6.00
1 SLV	2.80	3.20	0.40	ø8/ 5 :	2 br.	20.11	0.30	2742.93	1.52	37191.80	37191.80	37191.80	13.56
13 SLV	3.70	4.10	0.40	ø8/ 5 :	2 br.	20.11	0.30	2372.82	1.52	37191.80	37191.80	37191.80	15.67
13 SLV	4.10	7.15	3.05	ø8/20 :	2 br.	5.03	0.30	2172.82	2.50	15268.10	27948.80	15268.10	7.03
1 SLV	7.15	7.55	0.40	ø8/ 5 :	2 br.	20.11	0.30	2161.19	1.52	37191.80	37191.80	37191.80	17.21

Travata n. 103

Nodi: 104 105 106

Caratteristiche delle sezioni e dei materiali utilizzati

:	Sez.	Tipo	B <cm></cm>	H <cm></cm>	Cf sup	Cf inf		Fck <dan cmq=""></dan>	Fctk <dan cmq=""></dan>	Fcd <dan cmq=""></dan>	Fctd <dan cmq=""></dan>	Tp	Fyk <dan cmq=""></dan>	Fyd <dan cmq=""></dan>
					<cm></cm>	<cm></cm>								
	2	R	30.00	40.00	5.50	5.50	C30/37	307.10	20.59	174.02	13.73	B450C	4500.00	3913.04

Stato limite ultimo - Verifiche a flessione/pressoflessione

Xg	CC	TCC	El	Х	AfE S	AfE I	AfEP S	AfEP I	My	MRdy	Sic.
<m></m>				<cm></cm>					<danm></danm>	<danm></danm>	
					<cmq></cmq>	<cmq></cmq>	<cmq></cmq>	<cmq></cmq>			
0.15	13	SLV	1	15.00	4.02	4.02	4.02	4.02	2771.76	5271.40	1.902
3.20	13	SLV	1	320.00	4.02	4.02	4.02	4.02	-3520.52	-5271.40	1.497
3.70	1	SLV	2	25.00	4.02	4.02	4.02	4.02	-3254.38	-5271.40	1.620
7.23	13	SLV	2	377.92	4.02	4.02	4.02	4.02	-2713.68	-5271.40	1.943
7.55	13	SLV	2	410.00	4.02	4.02	4.02	4.02	-2713.68	-5271.40	1.943

Stato limite d'esercizio - Verifiche tensionali

cac			u	esercr.	210	ACTIT.	cone cen	STOMATT		
Xg <m></m>	CC	TCC	El	X <cm></cm>	AfE S	AfE I	My <danm></danm>	$\sigma_{\rm f}$ sup <dan cmq=""></dan>	$\sigma_{\rm f}$ inf <dan cmq=""></dan>	σ _c <dan cmq=""></dan>
					<cmq></cmq>	<cmq></cmq>			_	_
0.15	38	SLE R	1	15.00	4.02	4.02	-137.81	110.39	-16.56	2.71
0.15	28	SLE Q	1	15.00	4.02	4.02	-119.71	95.89	-14.39	2.35
3.20	31	SLE R	1	320.00	4.02	4.02	-580.49	465.00	-69.77	11.41
3.20	28	SLE Q	1	320.00	4.02	4.02	-528.63	423.45	-63.54	10.39
3.70	38	SLE R	2	25.00	4.02	4.02	-676.86	542.19	-81.35	13.31
3.70	28	SLE Q	2	25.00	4.02	4.02	-676.54	541.94	-81.32	13.30
7.23	31	SLE R	2	377.92	4.02	4.02	-324.98	260.32	-39.06	6.39
7.23	28	SLE Q	2	377.92	4.02	4.02	-269.15	215.60	-32.35	5.29

7.55	31	SLE F	2	410.00	4.02	4.02	-324.98	260.32	-39.06	6.39
7.55	28	SLE Ç	2	410.00	4.02	4.02	-269.15	215.60	-32.35	5.29

Stato limite d'esercizio - Verifiche a fessurazione

Caso	Xg	CC	TCC	El	Sez.	Crit.	Х	My	С	s	K3	Srm	Φ	As	A _{c eff}	σs	$\sigma_{\rm sr}$	€ _{sm}	Wk
	<m></m>						<cm></cm>	<danm></danm>	<mm></mm>	<mm></mm>		<mm></mm>		<cmq></cmq>	<cmq></cmq>	<dan cmq=""></dan>	<dan cmq=""></dan>		<mm></mm>
38	0.15	28	SLE Q	1	2	1	15.00	-119.71	47.00	190.00	0.15	239.47	16.00	4.02	462.92	95.89	2621.04	0.02	0.01
		1 -	SLE F		2	1	15.00	-123.33	47.00	190.00	0.15	239.47	16.00	4.02	462.92	98.79	2621.04	0.02	0.01
79	3.20	28	SLE Q	1	2	1	320.00	-528.63	47.00	190.00	0.15	239.47	16.00	4.02	462.92	423.45	2621.04	0.08	0.03
			SLE F		2	1	320.00	-539.00	47.00	190.00	0.15	239.47	16.00	4.02	462.92	431.76	2621.04	0.08	0.03
115	3.70	28	SLE Q	2	2	1	25.00	-676.54	47.00	190.00	0.15	239.47	16.00	4.02	462.92	541.94	2621.04	0.11	0.04
121	3.70	40	SLE F	2	2	1	25.00	-676.61	47.00	190.00	0.15	239.47	16.00	4.02	462.92	541.99	2621.04	0.11	0.04
159	7.23	28	SLE Q	2	2	1	377.92	-269.15	47.00	190.00	0.15	239.47	16.00	4.02	462.92	215.60	2621.04	0.04	0.02
167	7.23	33	SLE F	2	2	1	377.92	-280.32	47.00	190.00	0.15	239.47	16.00	4.02	462.92	224.55	2621.04	0.04	0.02
207	7.55	28	SLE Q	2	2	1	410.00	-269.15	47.00	190.00	0.15	239.47	16.00	4.02	462.92	215.60	2621.04	0.04	0.02
215	7.55	33	SLE F	2	2	1	410.00	-280.32	47.00	190.00	0.15	239.47	16.00	4.02	462.92	224.55	2621.04	0.04	0.02

Staffe - Verifiche armatura

CC	X0	X1	Lung.	Staff.	AfE St.	bw	Vsdu	ctgθ	VRsd	VRcd	Vrdu	Sic.T
	<m></m>	<m></m>				<m></m>	<dan></dan>	-	<dan></dan>	<dan></dan>	<dan></dan>	
			<m></m>		<cmq m=""></cmq>							
1 SLV	0.15	0.55	0.40	ø8/ 5 2 br.	20.11	0.30	2474.78	1.52	37191.80	37191.80	37191.80	15.03
13 SLV	0.55	2.80	2.25	ø8/20 2 br.	5.03	0.30	2542.92	2.50	15268.10	27948.80	15268.10	6.00
13 SLV	2.80	3.20	0.40	ø8/ 5 2 br.	20.11	0.30	2742.93	1.52	37191.80	37191.80	37191.80	13.56
1 SLV	3.70	4.10	0.40	ø8/ 5 2 br.	20.11	0.30	2372.82	1.52	37191.80	37191.80	37191.80	15.67
1 SLV	4.10	7.15	3.05	ø8/20 2 br.	5.03	0.30	2172.82	2.50	15268.10	27948.80	15268.10	7.03
13 SLV	7.15	7.55	0.40	ø8/ 5 2 br.	20.11	0.30	2161.19	1.52	37191.80	37191.80	37191.80	17.21

Travata n. 104

Nodi: 101 104

Caratteristiche delle sezioni e dei materiali utilizzati

Se	z.	Tipo	В	H	Cf sup	Cf inf	Cls	Fck	Fctk	Fcd	Fctd	Tp	Fyk	Fyd
			<cm></cm>	<cm></cm>				<dan cmq=""></dan>	<dan cmq=""></dan>	<dan cmq=""></dan>	<dan cmq=""></dan>		<dan cmq=""></dan>	<dan cmq=""></dan>
					<cm></cm>	<cm></cm>								
	11	2	30.00	50 00	5.50	5 50	C30/37	307.10	20.59	174 02	13 73	B450C	4500.00	3913.04

Stato limite ultimo - Verifiche a flessione/pressoflessione

Xg <m></m>	CC	TCC	El	X <cm></cm>	AfE S	AfE I	AfEP S	AfEP I	My <danm></danm>	MRdy <danm></danm>	Sic.
					<cmq></cmq>	<cmq></cmq>	<cmq></cmq>	<cmq></cmq>			
0.35	7	SLV	1	35.00	6.03	6.03	6.03	6.03	-5863.43	-9952.24	1.697
2.63	29	SLU	1	262.79	6.03	6.03	6.03	6.03	5051.25	9952.24	1.970
5.35	19	SLV	1	535.00	6.03	6.03	6.03	6.03	-5863.43	-9952.24	1.697

Stato limite d'esercizio - Verifiche tensionali

	-		-		-	-				
Xg <m></m>	CC	TCC	El	X <cm></cm>	AfE S	AfE I	My <danm></danm>	σ _f sup <dan cmq=""></dan>	σ _f inf <dan cmq=""></dan>	σ _c <dan cmq=""></dan>
					<cmq></cmq>	<cmq></cmq>		_	_	_
0.35	31	SLE R	1	35.00	6.03	6.03	-3061.82	1266.24	-269.90	32.44
0.35	28	SLE Q	1	35.00	6.03	6.03	-2025.12	837.50	-178.51	21.45
2.63	31	SLE R	1	262.79	6.03	6.03	3622.13	-319.29	1497.96	38.37
2.63	28	SLE Q	1	262.79	6.03	6.03	3247.45	-286.26	1343.01	34.40
5.35	26	SLE R	1	535.00	6.03	6.03	-2228.25	921.51	-196.42	23.61
5.35	28	SLE Q	1	535.00	6.03	6.03	-2025.12	837.50	-178.51	21.45

Stato limite d'esercizio - Verifiche a fessurazione

Caso	Хg	CC	TCC	El	Sez.	Crit.	Х	My	С	s	K3	S _{rm}	Φ	As	A _{c eff}	σs	$\sigma_{\rm sr}$	€ _{sm}	Wk
	<m></m>						<cm></cm>	<danm></danm>	<mm></mm>	<mm></mm>		<mm></mm>		<cmq></cmq>	<cmq></cmq>	<dan cmq=""></dan>	<dan cmq=""></dan>		<mm></mm>
31	0.35	28	SLE Q	1	1	1	35.00	-2025.12	47.00	95.00	0.17	198.98	16.00	6.03	486.13	837.50	2226.87	0.16	0.06
35	0.35	33	SLE F	1	1	1	35.00	-2232.46	47.00	95.00	0.17	198.98	16.00	6.03	486.13	923.25	2226.87	0.18	0.06
65	2.63	28	SLE Q	1	1	1	262.79	3247.45	47.00	95.00	0.17	198.98	16.00	6.03	486.13	1343.01	2226.87	0.26	0.09
69	2.63	33	SLE F	1	1	1	262.79	3316.93	47.00	95.00	0.17	198.98	16.00	6.03	486.13	1371.74	2226.87	0.27	0.09
			SLE Q		1	1	535.00								486.13	837.50			
114	5.35	27	SLE F	1	1	1	535.00	-2065.75	47.00	95.00	0.17	198.98	16.00	6.03	486.13	854.30	2226.87	0.17	0.06

Staffe - Verifiche armatura

~ ~	u	• • •		J	ma cara								
	CC	X0 <m></m>	X1 <m></m>	Lung.	Staff.	AfE St.	bw <m></m>	Vsdu <dan></dan>	ctgθ	VRsd <dan></dan>	VRcd <dan></dan>	Vrdu <dan></dan>	Sic.T
				<m></m>		<mq m=""></mq>							
29	SLU	0.35	0.85	0.50	ø8/10 2 br.	10.05	0.30	6615.36	2.37	37401.50	37401.50	37401.50	5.65
29	SLU	0.85	4.85	4.00	ø8/20 2 br.	5.03	0.30	5392.30	2.50	19693.70	36049.80	19693.70	3.65
25	SLU	4.85	5.35	0.50	ø8/10 2 br.	10.05	0.30	6115.22	2.37	37401.50	37401.50	37401.50	6.12

Travata n. 105

Nodi: 102 105

Caratteristiche delle sezioni e dei materiali utilizzati

a. m	ш	00	ac	~1.	1	Fo+k		m - 1 - 3	m .	- 1	- 1
Sez. Tipo B	н	Cf sup	Cf inf	Cls	Fck	FCTK	Fcd	rcta	Tro	Fvk	Fvd

		<cm></cm>	<cm></cm>				<dan cmq=""></dan>	<dan cmq=""></dan>	<dan cmq=""></dan>	<dan cmq=""></dan>		<dan cmq=""></dan>	<dan cmq=""></dan>
				<cm></cm>	<cm></cm>								
1	R	30.00	50.00	5.50	5.50	C30/37	307.10	20.59		13.73	B450C	4500.00	3913.04

Stato limite ultimo - Verifiche a flessione/pressoflessione

	Xg <m></m>	CC	TCC	El	X <cm></cm>	AfE S	AfE I	AfEP S	AfEP I	My <danm></danm>	MRdy <danm></danm>	Sic.
						<cmq></cmq>	<cmq></cmq>	<cmq></cmq>	<cmq></cmq>			
ĺ	0.15	29	SLU	1	15.00	6.03	8.04	6.03	8.04	-5784.82	-9952.07	1.720
	2.55	29	SLU	1	255.00	6.03	8.04	6.03	8.04	10820.50	13039.40	1.205
	5.55	19	SLV	1	555.00	6.03	8.04	6.03	8.04	-5532.68	-9952.07	1.799

Stato limite d'esercizio - Verifiche tensionali

Xg <m></m>	CC	TCC	El	X <cm></cm>	AfE S	AfE I	My <danm></danm>	σ _f sup	σ _f inf <dan cmg=""></dan>	σ _c <dan cmσ=""></dan>
					<cmq></cmq>	<cmq></cmq>				
0.15	31	SLE F	1	15.00	6.03	8.04	-4141.51	1712.15	-342.03	42.11
0.15	28	SLE Ç) 1	15.00	6.03	8.04	-3428.96	1417.57	-283.18	34.87
2.55	31	SLE F	1	255.00	6.03	8.04	7779.66	-674.71	2438.25	74.25
2.55	28	SLE Ç) 1	255.00	6.03	8.04	6839.29	-593.16	2143.52	65.27
5.55	26	SLE F	1	555.00	6.03	8.04	-3908.19	1615.69	-322.76	39.74
5.55	28	SLE Ç	2 1	555.00	6.03	8.04	-3428.96	1417.57	-283.18	34.87

Stato limite d'esercizio - Verifiche a fessurazione

Caso	Xg	CC	TCC	El	Sez.	Crit.	х	My	С	s	K3	Srm	Φ	As	A _{c eff}	σ,	σ _{sr}	€ _{sm}	Wk
	<m></m>						<cm></cm>	<danm></danm>	<mm></mm>	<mm></mm>		<mm></mm>		<cmq></cmq>	<cmq></cmq>	<dan cmq=""></dan>	<dan cmq=""></dan>		<mm></mm>
			SLE Q		1	1	15.00	-3428.96	47.00	95.00	0.17	199.56	16.00	6.03	486.13	1417.57	2260.77	0.28	0.09
39	0.15	33	SLE F	1	1	1	15.00	-3571.47	47.00	95.00	0.17	199.56	16.00	6.03	486.13	1476.49	2260.77	0.29	0.10
69	2.55	28	SLE Q	1	1	1	255.00	6839.29	47.00	63.33	0.17	171.19	16.00	8.04	489.88	2143.52	1761.71	0.69	0.20
73	2.55	33	SLE F	1	1	1	255.00	7027.20	47.00	63.33	0.17	171.19	16.00	8.04	489.88	2202.42	1761.71	0.73	0.21
111	5.55	28	SLE Q	1	1	1	555.00	-3428.96	47.00	95.00	0.17	199.56	16.00	6.03	486.13	1417.57	2260.77	0.28	0.09
114	5.55	27	SLE F	1	1	1	555.00	-3524.80	47.00	95.00	0.17	199.56	16.00	6.03	486.13	1457.19	2260.77	0.28	0.10

Staffe - Verifiche armatura

С	:C	X0 <m></m>	X1 <m></m>	Lung.	Sta	ff.	AfE St.	<m></m>	Vsdu <dan></dan>	ctg0	VRsd <dan></dan>	VRcd <dan></dan>	Vrdu <dan></dan>	Sic.T
				<m></m>			<cmq m=""></cmq>							
29	SLU	0.15	0.65	0.50	ø8/10	2 br.	10.05	0.30	11440.70	2.37	37401.50	37401.50	37401.50	3.27
29	SLU	0.65	5.05	4.40	ø8/20	2 br.	5.03	0.30	9346.01	2.50	19693.70	36049.80	19693.70	2.11
25	SLU	5.05	5.55	0.50	ø8/10	2 br.	10.05	0.30	11311.00	2.37	37401.50	37401.50	37401.50	3.31

Travata n. 106

Nodi: 103 106

Caratteristiche delle sezioni e dei materiali utilizzati

Sez	. Tipo	B <cm></cm>	H <cm></cm>	Cf sup	Cf inf		Fck <dan cmq=""></dan>	Fctk <dan cmq=""></dan>	Fcd <dan cmq=""></dan>	Fctd <dan cmq=""></dan>	Tp	Fyk <dan cmq=""></dan>	Fyd <dan cmq=""></dan>
				<cm></cm>	<cm></cm>								
	1 R	30.00	50.00	5.50	5.50	C30/37	307.10	20.59	174.02	13.73	B450C	4500.00	3913.04

Stato limite ultimo - Verifiche a flessione/pressoflessione

	CC	TCC	El		AfE S	AfE I	AfEP S	AfEP I	_	MRdy	Sic.
<m></m>				<cm></cm>	<cmq></cmq>	<cmq></cmq>	<cmq></cmq>	<cmq></cmq>	<danm></danm>	<danm></danm>	
0.35	19	SLV	1	35.00	8.04	6.03	8.04	6.03	-6355.32	-13039.40	2.052
2.65	29	SLU	1	265.42	6.03	6.03	6.03	6.03	5772.45	9952.24	1.724
5.35	7	SLV	1	535.00	6.03	6.03	6.03	6.03	-6355.32	-9952.24	1.566

Stato limite d'esercizio - Verifiche tensionali

Xg <m></m>	CC	TCC	El	X <cm></cm>	AfE S	AfE I	My <danm></danm>	σ _f sup	σ _f inf <dan cmq=""></dan>	σ _c <dan cmσ=""></dan>
					<cmq></cmq>	<cmq></cmq>		,		
0.35	31	SLE R	1	35.00	8.04	6.03	-3601.26	1128.68	-312.33	34.37
0.35	28	SLE Q	1	35.00	8.04	6.03	-2366.46	741.68	-205.24	22.59
2.65	31	SLE R	1	265.42	6.03	6.03	4134.75	-364.48	1709.96	43.80
2.65	28	SLE Q	1	265.42	6.03	6.03	3683.22	-324.67	1523.22	39.02
5.35	26	SLE R	1	535.00	6.03	6.03	-2624.43	1085.35	-231.34	27.80
5.35	28	SLE Q	1	535.00	6.03	6.03	-2366.46	978.67	-208.60	25.07

Stato limite d'esercizio - Verifiche a fessurazione

Caso	Xg	CC	TCC	El	Sez.	Crit.	x	My	С	s	к3	Srm	Φ	As	A _{c eff}	σ,	σ _{sr}	€ _{sm}	Wk
	<m></m>						<cm></cm>	<danm></danm>	<mm></mm>	<mm></mm>		<mm></mm>		<cmq></cmq>	<cmq></cmq>	<dan cmq=""></dan>	<dan cmq=""></dan>		<mm></mm>
			SLE Q		1	1		-2366.46							489.88		1761.71	0.14	0.04
35	0.35	33	SLE F	1	1	1	35.00	-2613.42	47.00	63.33	0.17	171.19	16.00	8.04	489.88	819.08	1761.71	0.16	0.05
			SLE Q		1	1	265.42								486.13	1523.22			
			SLE F		1	1	265.42	3767.04	47.00	95.00	0.17	198.98	16.00	6.03	486.13	1557.89	2226.87	0.30	0.10
111	5.35	28	SLE Q	1	1	1	535.00	-2366.46	47.00	95.00	0.17	198.98	16.00	6.03	486.13	978.67	2226.87	0.19	0.06
114	5.35	27	SLE F	1	1	1	535.00	-2418.06	47.00	95.00	0.17	198.98	16.00	6.03	486.13	1000.01	2226.87	0.19	0.07

Staffe - Verifiche armatura

	CC	X0 <m></m>	X1 <m></m>	Lung.	Sta		AfE St.	<m></m>	Vsdu <dan></dan>	ctgθ	VRsd <dan></dan>	VRcd <dan></dan>	Vrdu <dan></dan>	Sic.T
				<m></m>			<cmq m=""></cmq>							
29	SLU	0.35	0.85	0.50	ø8/10	2 br.	10.05	0.30	7662.82	2.37	37401.50	37401.50	37401.50	4.88
29	SLU	0.85	4.85	4.00	ø8/20	2 br.	5.03	0.30	6247.46	2.50	19693.70	36049.80	19693.70	3.15
25	SLU	4.85	5.35	0.50	ø8/10	2 br.	10.05	0.30	7076.72	2.37	37401.50	37401.50	37401.50	5.29

Verifiche e armature pilastri

```
=Coordinata progressiva (dal primo nodo) in cui viene effettuato il progetto/verifica
CC
         = Combinazione delle condizioni di carico elementari
          e = eccentricità aggiuntiva in caso di compressione o pressoflessione
          \alpha = amplificazione per gerarchia delle resistenze
          TG = taglio da gerarchia delle resistenze
         = Tipo di combinazione di carico
TCC
          SLU = Stato limite ultimo
           SLU S = Stato limite ultimo (azione sismica)
           SLE R = Stato limite d'esercizio, combinazione rara
          SLE F = Stato limite d'esercizio, combinazione frequente
          SLE Q = Stato limite d'esercizio, combinazione quasi permanente
          SLD = Stato limite di danno
           SLV = Stato limite di salvaguardia della vita
           SLC = Stato limite di prevenzione del collasso
          SLO = Stato limite di operatività
           SLU\ I = Stato\ limite\ di\ resistenza\ al\ fuoco
          SND = Stato limite di salvaguardia della vita (non dissipativo)
El
         = Elemento (asta) in cui viene effettuato il progetto/verifica (progressivo sul numero di aste)
Sez.
         = Numero della sezione
         = Coordinata progressiva rispetto al nodo iniziale
Ν
         = Sforzo normale
         = Momento flettente intorno all'asse Z
Mz
My = Momento flettente intorno all'asse Y
My ver. = Momento flettente di verifica intorno all'asse Y
         = Ricoprimento dell'armatura
С
         = Distanza minima tra le barre
K3
         = Coefficiente di forma del diagramma delle tensioni prima della fessurazione
         = Distanza media tra le fessure
Φ
         = Diametro della barra
         = Area complessiva dei ferri nell'area di calcestruzzo efficace
A_s
A_{c\ eff}
         = Area di calcestruzzo efficace
         = Tensione nell'acciaio nella sezione fessurata
\sigma_{\rm s}
         = Tensione nell'acciaio corrispondente al raggiungimento della resistenza a trazione nel calcestruzzo
\sigma_{\rm sr}
         = Deformazione unitaria media dell'armatura (*1000)
ε...
         = Apertura delle fessure
Wk
         = Momento flettente
         = Momento resistente allo stato limite ultimo
MRd
         = Valore di progetto della duttilità di curvatura
μФ
         = Capacità della duttilità di curvatura
\mu\Phi_{c}
         = Coefficiente di efficacia del confinamento
\alpha_{\rm e}
         = Rapporto meccanico dell'armatura trasversale di confinamento all'interno della zona dissipativa
\omega_{\text{wd}}
         = Domanda della duttilità di curvatura
\mu\Phi_{d}
         = Forza assiale adimensionalizzata di progetto
V_d
E_{\text{sy},\text{d}}
         = Deformazione di snervamento dell'acciaio
         = Rapporto tra la larghezza minima della sezione trasversale lorda e la larghezza del nucleo confinato
b<sub>c</sub>/b<sub>0</sub>
         = Momento flettente di verifica intorno all'asse Z
Mz ver.
         = Sforzo normale ultimo
MRdv
         = Momento resistente allo stato limite ultimo intorno all'asse Y
MRdz
         = Momento resistente allo stato limite ultimo intorno all'asse Z
α
         = Angolo asse neutro a rottura
         = Deformazione nell'acciaio (*1000)
\varepsilon_{v}
Sic.
         = Sicurezza a rottura
         = Area di ferro tesa
AfT
AfC
         = Area di ferro compressa
         = Tensione nel calcestruzzo
\sigma_{\rm c}
         = Tensione nel ferro
σf
         = Coordinata progressiva (dal nodo iniziale) dell'inizio del tratto
X1
         = Coordinata progressiva (dal nodo iniziale) della fine del tratto
Staff.
         = Staffatura adottata
\mathtt{Br}_{\mathtt{y}}
         = Numero bracci in dir. Y locale
Br,
         = Numero bracci in dir. Z locale
         = Larghezza membratura resistente al taglio in dir. Y
bw,
Vsdu,y
         = Taglio agente in dir. Y
{\tt ctg} \theta, y
         = Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo in dir. Y
VRsd,y
         = Taglio ultimo lato armatura in dir. Y
VRcd,y
         = Taglio ultimo lato calcestruzzo in dir. Y
         = Larghezza membratura resistente al taglio in dir. Z
bw,z
Vsdu, z
         = Taglio agente in dir. {\tt Z}
         = Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo in dir. Z
ctg\theta, z
VRsd,z
         = Taglio ultimo lato armatura in dir. {\bf Z}
VRcd, z
         = Taglio ultimo lato calcestruzzo in dir. Z
Sic.T
         = Sicurezza a rottura per taglio
         = Numero del nodo
Nodo
Conf.
         = Nodo confinato
          S = Sì
          N = No
F
         = Identificativo faccia del nodo
```

```
Y+ = Faccia sul lato positivo Y locale pilastro
          Z+ = Faccia sul lato positivo Z locale pilastro
          Y- = Faccia sul lato negativo Y locale pilastro
          Z- = Faccia sul lato negativo Z locale pilastro
Mod.
         = Modalità di verifica faccia
          I = Interna
          E = Esterna
Br.
        = Numero bracci
        = Area di ferro superiore delle travi incidenti sulla faccia
As1
        = Area di ferro inferiore delle travi incidenti sulla faccia
As2
         = Larghezza effettiva utile del nodo
Hic
        = Distanza tra armature pilastro
Ηjw
        = Distanza tra armature trave
        = Area totale della sezione della staffa
Ash
        = Taglio nel pilastro al di sopra del nodo
Vс
         = Taglio agente nel nucleo di calcestruzzo [7.4.6/7]
Vjbd
         = Sforzo normale normalizzato del pilastro superiore (%)
νds
        = Sforzo normale normalizzato del pilastro inferiore (%)
vd:
        = Resistenza a compressione del nucleo di calcestruzzo [7.4.8]
VibR
        = Azione di fessurazione sul nodo integro [7.4.10]
Afni
Rfni
        = Resistenza a fessurazione nodo integro [7.4.10]
         = Azione agente di trazione diagonale [7.4.11/12]
Vjwd
VjwR
         = Resistenza a trazione diagonale [7.4.11/12]
Tipo
         = Tipologia
          2C = Doppia C lato labbri
          2Cdx = Doppia C lato costola
          2I = Doppia I
          2L = Doppia L lato labbri
          2Ldx = Doppia L lato costole
C = Sezione a C
          Cdx = C destra
          Cir. = Circolare
          Cir.c = Circolare cava
          I = Sezione a I
          L = Sezione a L
          Ldx = L destra
          Om. = Omega
          Pg = Pi greco
          Pr = Poligono regolare
          Prc = Poligono regolare cavo
          Pc = Per coordinate
          Ia = Inerzie assegnate
          R = Rettangolare
          Rc = Rettangolare cava
          T = Sezione a T
          U = Sezione a U
          Ur = U rovescia
          V = Sezione a V
          Vr = V rovescia
          Z = Sezione a Z
          Zdx = Z destra
          Ts = T stondata
          Ls = L stondata
          Cs = C stondata
          Is = I stondata
          Dis. = Disegnata
         = Base
        = Altezza
Cf
         = Copriferro
Cls
        = Tipo di calcestruzzo
        = Resistenza caratteristica cilindrica a compressione del calcestruzzo
Fck
         = Resistenza caratteristica a trazione del calcestruzzo
Fctk
         = Resistenza di calcolo a compressione del calcestruzzo
Fcd
Fctd
         = Resistenza di calcolo a trazione del calcestruzzo
         = Tipo di acciaio
Тp
        = Tensione caratteristica di snervamento dell'acciaio
= Resistenza di calcolo dell'acciaio
Fyk
Fyd
```

Pilastrata n. 1

Nodi: 1 101

Caratteristiche delle sezioni e dei materiali utilizzati

:	Sez.	Tipo	В	H	Cf	Cls	Fck	Fctk	Fcd	Fctd	Тp	Fyk	Fyd
			<cm></cm>	<cm></cm>	<cm></cm>		<dan cmq=""></dan>	<dan cmq=""></dan>	<dan cmq=""></dan>	<dan cmq=""></dan>		<dan cmq=""></dan>	<dan cmq=""></dan>
	3	R	30.00	50.00	6.00	C30/37	307.10	20.59	174.02	13.73	B450C	4500.00	3913.04

Stato limite ultimo - Verifiche a flessione/pressoflessione

Xg <m></m>	CC	TCC	El	Sez.	X <cm></cm>	N <dan></dan>	My <danm></danm>	My ver.	Mz <danm></danm>	Mz ver.	Nu <dan></dan>	MRdy <danm></danm>	MRdz <danm></danm>	α <grad></grad>	Ey	Sic.
0.00	7	SLV	1	3	0.00	-4898.85	7268.90		-901.87		-4898.85	14040.70	-1709.39	345.94	10.27	1.931
0.00	7	SLV	1	3	0.00	-4898.85	7268.90		-901.87		-4898.85	14040.70	-1709.39	345.94	10.27	1.931
3.65	7	SLV	1	3	365.00	-3530.10	-6543.93		-711.46		-3530.10	-13835.90	-1433.06	191.25	11.27	2.113

Stato limite d'esercizio - Verifiche tensionali

Хg	CC	TCC	El	Sez.	Х	N	Mz	My	AfT	AfC	σ。	$\sigma_{\scriptscriptstyle \mathrm{f}}$
<m></m>					<cm></cm>	<dan></dan>	<danm></danm>	<danm></danm>	<cmq></cmq>	<cmq></cmq>	<dan cmq=""></dan>	<dan cmq=""></dan>
0.0	031	SLE R	. 1	3	0.00	-7639.53	171.14	3774.76	10.30	6.28	46.32	937.12
0.0	0 28	SLE Ç	1	3	0.00	-6799.02	105.05	1890.98	10.30	6.28	23.25	311.86

0.	00	31	SLE	R	1	3	0.00	-7639.53	171.14	3774.76	10.30	6.28	46.32	937.12
0.	00	28	SLE	Q	1	3	0.00	-6799.02	105.05	1890.98	10.30	6.28	23.25	311.86
3.	65	31	SLE	R	1	3	365.00	-6270.78	-233.79	-4424.70	10.30	6.28	55.19	1266.89
3.	65	28	SLE	Q	1	3	365.00	-5430.27	-180.49	-3246.58	10.30	6.28	40.70	881.62

Stato limite d'esercizio - Verifiche a fessurazione

Xg	CC	TCC	El	Sez.	х	N	My	Mz	С	s	K3	Srm	Φ	As	Ac eff	σ,	σ _{sr}	€ _{sm}	Wk
<m></m>					<cm></cm>	<dan></dan>	<danm></danm>	<danm></danm>	<mm></mm>	<mm></mm>		<mm></mm>		<cmq></cmq>	<cmq></cmq>	<dan cmq=""></dan>	<dan cmq=""></dan>		<mm></mm>
0.0	28	SLE Ç	1	. 3	0.00	-6799.02	1890.98	105.05	49.00	182.00	0.13	233.54	20.00	8.29	822.22	311.86	1135.81	0.06	0.02
0.0	28	SLE Ç	1	. 3	0.00	-6799.02	1890.98	105.05	49.00	182.00	0.13	233.54	20.00	8.29	822.22	311.86	1135.81	0.06	0.02
3.6	5 28	SLE C	1	. 3	365.00	-5430.27	-3246.58	-180.49	49.00	182.00	0.13	235.94	20.00	10.30	1046.30	881.62	1539.77	0.17	0.07

Staffe - Verifiche armatura

X0	X1	Staff.	Bry	Brz	CC	TCC	bw,y	Vsdu, _y	ctq0,,	VRsd,y	VRcd,y	bw,z	Vsdu,z	ctg0,z	VRsd,z	VRcd,z	Sic.T
<m></m>	<m></m>							<dan></dan>		<dan></dan>	<dan></dan>		<dan></dan>		<dan></dan>	<dan></dan>	
							<m></m>					<m></m>					
0.00	0.61	ø10/8	2	2	29	SLU	0.50	156.90	2.21	36854.60	36854.60	0.30	3680.82	1.59	48547.50	48547.50	13.19
0.00	0.61	ø10/ 8	2	2	22(TG)	SLV	0.50	1197.11	2.19	36506.00	36506.00	0.30	8643.10	1.57	48015.50	48015.50	5.56
0.00	0.61	ø10/ 8	2	2	13(TG)	SLV	0.50	4507.96	2.20	36615.20	36615.20	0.30	4548.11	1.58	48182.30	48182.30	8.12
0.61	3.04	ø8/18	2	2	29	SLU	0.50	156.90	2.50	11850.60	33814.40	0.30	3521.13	2.50	21685.20	37125.70	6.16
0.61	3.04	ø8/18	2	2	22(TG)	SLV	0.50	1197.11	2.50	11850.60	33322.20	0.30	8643.10	2.50	21685.20	36585.30	2.51
0.61	3.04	ø8/18	2	2	19(TG)	SLV	0.50	1525.93	2.50	11850.60	33453.10	0.30	8662.02	2.50	21685.20	36729.10	2.50
0.61	3.04	ø8/18	2	2	13(TG)	SLV	0.50	4507.96	2.50	11850.60	33487.50	0.30	4548.11	2.50	21685.20	36766.70	2.63
3.04	3.65	ø8/10	2	2	36	SLU	0.50	99.36	2.50	21331.10	33656.90	0.30	2933.40	2.42	37807.30	37807.30	12.89
3.04	3.65	ø8/10	2	2	29	SLU	0.50	156.90	2.50	21331.10	33666.50	0.30	2882.38	2.42	37813.70	37813.70	13.12
3.04	3.65	ø8/10	2	2	22(TG)	SLV	0.50	1197.11	2.50	21331.10	33322.20	0.30	8643.10	2.41	37586.70	37586.70	4.35
3.04	3.65	ø8/10	2	2	13(TG)	SLV	0.50	4507.96	2.50	21331.10	33487.50	0.30	4548.11	2.41	37695.80	37695.80	4.73

Dettagli costruttivi per la duttilità

- $\alpha_{\rm e}$ =0.16489 $\omega_{\rm nd}$ =0.31793 $\mu\Phi_{\rm d}$ =32.3354 $v_{\rm d}$ =0.034533 CC=1 $E_{\rm sy,rd}$ =0.0018995 $b_{\rm e}/b_0$ =1.21951 $\mu\Phi_{\rm e}$ =36.4276 0.05242 >= 0.0426 [7.4.29]
- $\alpha_{\rm e}$ =0.16489 $\omega_{\rm wd}$ =0.31793 $\mu\Phi_{\rm d}$ =29.306 $v_{\rm d}$ =0.034533 CC=1 $E_{\rm sy}$, $_{\rm d}$ =0.0018995 $b_{\rm c}/b_{\rm 0}$ =1.42857 $\mu\Phi_{\rm c}$ =31.0967 0.05242 >= 0.04739 [7.4.29]

Caratteristiche nodi trave-pilastro

Nodo	Conf.	Staff.	F.	Mod.	Br.	As1	As2	Вj	Нjс	Нjw	Ash
						<cmq></cmq>	<cmq></cmq>	<m></m>	<m></m>	<m></m>	<cmq></cmq>
101	N	ø10/8	Y-	E	2	4.02	4.02	0.45	0.18	0.29	7.85
			z-	E	2	6.03	6.03	0.30	0.38	0.39	9.42

Verifiche nodi trave-pilastro

1	Nodo	F.	CC	TCC	Vc	Vjbd	٧ds	٧di	VjbR	Afni	Rfni	Vjwd	VjwR
					<dan></dan>	<dan></dan>			<dan></dan>	<dan mq=""></dan>	<dan mq=""></dan>	<dan></dan>	<dan></dan>
ſ	101	Y-	1	SLV	0.00	17308.80	0.00	1.26	59348.90	195303.00	235502.00		
ſ		Z-	1	SLV	0.00	25963.20	0.00	1.26	83528.10	240506.00	315210.00		

Pilastrata n. 2

Nodi: 2 102

Caratteristiche delle sezioni e dei materiali utilizzati

Sez.	Tipo	В	H	Cf	Cls	Fck	Fctk	Fcd	Fctd	Тp	Fyk	Fyd
		<cm></cm>	<cm></cm>	<cm></cm>		<dan cmq=""></dan>	<dan cmq=""></dan>	<dan cmq=""></dan>	<dan cmq=""></dan>		<dan cmq=""></dan>	<dan cmq=""></dan>
3	R R	30.00	50.00	6.00	C30/37	307.10	20.59	174.02	13.73	B450C	4500.00	3913.04

Stato limite ultimo - Verifiche a flessione/pressoflessione

Xg	C	TCC	El	Sez.	X	N	My	My ver.	Mz	Mz ver.	Nu	MRdy	MRdz	α	$\mathbf{\epsilon}_{\scriptscriptstyle \mathrm{Y}}$	Sic.
<m></m>					<cm></cm>	<dan></dan>	<danm></danm>		<danm></danm>		<dan></dan>	<danm></danm>	<danm></danm>	<grad></grad>		
								<danm></danm>		<danm></danm>						
0.00	13	3 SLV	1	3	0.00	-10532.10	7216.21		-2445.57		-10532.10	13473.90	-4340.11	320.63	6.22	1.858
0.00	13	3 SLV	1	3	0.00	-10532.10	7216.21		-2445.57		-10532.10	13473.90	-4340.11	320.63	6.22	1.858
3.65	29	9 SLU	1	3	365.00	-15348.20	-379.12		5380.41		-15348.20	-627.78	8708.08	90.70	9.46	1.619

Stato limite d'esercizio - Verifiche tensionali

Xg	CC	TCC	El	Sez.	х	N	Mz	My	AfT	AfC	σ。	$\sigma_{\scriptscriptstyle \mathrm{f}}$
<m></m>					<cm></cm>	<dan></dan>	<danm></danm>	<danm></danm>	<cmq></cmq>	<cmq></cmq>	<dan cmq=""></dan>	<dan cmq=""></dan>
0.00	31	SLE R	. 1	3	0.00	-12428.00	-3259.47	244.02	8.29	8.29	68.32	1177.21
0.00	28	SLE Ç	1	3	0.00	-11313.70	-1838.78	86.10	8.29	8.29	37.16	432.30
0.00	31	SLE R	. 1	3	0.00	-12428.00	-3259.47	244.02	8.29	8.29	68.32	1177.21
0.00	28	SLE Ç	1	3	0.00	-11313.70	-1838.78	86.10	8.29	8.29	37.16	432.30
3.65	31	SLE R	. 1	3	365.00	-11059.30	3843.12	-265.37	8.29	8.29	80.61	1588.58
3.65	28	SLE Q	1	3	365.00	-9944.91	3099.07	-157.48	8.29	8.29	64.14	1212.76

Stato limite d'esercizio - Verifiche a fessurazione

Xg	CC	TCC	El	Sez.	х	N	My	Mz	С	s	K3	Srm	Φ	A _s	A _{c eff}	σ,	σ _{sr}	€ _{sm}	Wk
<m></m>					<cm></cm>	<dan></dan>	<danm></danm>	<danm></danm>	<mm></mm>	<mm></mm>		<mm></mm>		<cmq></cmq>	<cmq></cmq>	<dan cmq=""></dan>	<dan cmq=""></dan>		<mm></mm>
0.00	28	SLE Q	1	. 3	0.00	-11313.70	86.10	-1838.78	49.00	191.01	0.13	242.56	20.00	8.29	882.11	432.30	1032.43	0.08	0.03
0.00	28	SLE Q	1	. 3	0.00	-11313.70	86.10	-1838.78	49.00	191.01	0.13	242.56	20.00	8.29	882.11	432.30	1032.43	0.08	0.03
3.65	28	SLE Q	1	. 3	365.00	-9944.91	-157.48	3099.07	49.00	191.01	0.13	242.59	20.00	8.29	882.35	1212.76	1417.14	0.24	0.10

Staffe - Verifiche armatura

X0	х1	Staff.	Bry	Brz	CC	TCC	bw,y	Vsdu,y	ctqθ,,	VRsd,y	VRcd,y	bw,z	Vsdu,z	ctq0,z	VRsd,z	VRcd,z	Sic.T
<m></m>	<m></m>							<dan></dan>		<dan></dan>	<dan></dan>		<dan></dan>	_ , -	<dan></dan>	<dan></dan>	
							<m></m>					<m></m>					
0.00	0.61	ø10/ 5	2	2	29	SLU	0.50	3709.25	1.66	44387.50	44387.50	0.30	201.32	1.12	54828.00	54828.00	11.97
0.00	0.61	ø10/ 5	2	2	36	SLU	0.50	3751.31	1.66	44377.70	44377.70	0.30	70.00	1.12	54812.10	54812.00	11.83
0.00	0.61	ø10/ 5	2	2	13(TG)	SLV	0.50	3006.47	1.64	43679.40	43679.40	0.30	7481.60	1.10	53673.40	53673.40	7.17
0.00	0.61	ø10/ 5	2	2	22(TG)	SLV	0.50	4900.87	1.64	43665.60	43665.60	0.30	2935.32	1.10	53650.80	53650.80	8.91
0.61	3.04	ø8/18	2	2	29	SLU	0.50	3389.88	2.50	11850.60	34637.40	0.30	201.32	2.50	21685.20	38029.30	3.50
0.61	3.04	ø8/18	2	2	13(TG)	SLV	0.50	3006.47	2.50	11850.60	33868.00	0.30	7481.60	2.50	21685.20	37184.50	2.90
0.61	3.04	ø8/18	2	2	22(TG)	SLV	0.50	4900.87	2.50	11850.60	33852.40	0.30	2935.32	2.50	21685.20	37167.40	2.42
3.04	3.65	ø8/10	2	2	29	SLU	0.50	2112.38	2.50	21331.10	34489.60	0.30	201.32	2.46	38350.90	38350.90	10.10
3.04	3.65	ø8/10	2	2	25	SLU	0.50	2138.25	2.50	21331.10	34474.90	0.30	92.18	2.46	38341.40	38341.40	9.98
3.04	3.65	ø8/10	2	2	13(TG)	SLV	0.50	3006.47	2.50	21331.10	33868.00	0.30	7481.60	2.43	37945.90	37945.90	5.07
3.04	3.65	ø8/10	2	2	22 (TG)	SLV	0.50	4900.87	2.50	21331.10	33852.40	0.30	2935.32	2.43	37935.60	37935.60	4.35

Dettagli costruttivi per la duttilità

- $\alpha_{\rm e}$ =0.18671 $\omega_{\rm Nd}$ =0.50868 $\mu\Phi_{\rm d}$ =29.306 $v_{\rm d}$ =0.047038 CC=1 $E_{\rm sy,d}$ =0.0018995 $b_{\rm e}/b_0$ =1.21951 $\mu\Phi_{\rm e}$ =39.7612 0.09498 >= 0.0608 [7.4.29]
- $\alpha_{\rm e}$ =0.18671 $\omega_{\rm wd}$ =0.50868 $\mu\Phi_{\rm d}$ =32.3354 $v_{\rm d}$ =0.047038 CC=1 $E_{\rm sy,d}$ =0.0018995 $b_{\rm c}/b_{\rm 0}$ =1.42857 $\mu\Phi_{\rm c}$ =33.9425 0.09498 >= 0.08882 [7.4.29]

Caratteristiche nodi trave-pilastro

Nodo	Conf.	Staff.	F.	Mod.	Br.	As1	As2	Вj	Нjс	Нjw	Ash
						<cmq></cmq>	<cmq></cmq>	<m></m>	<m></m>	<m></m>	<cmq></cmq>
102	N	ø12/10	Y+	E	2	6.03	8.04	0.45	0.18	0.39	11.31
			Z+	I	2	4.02	4.02	0.30	0.38	0.29	9.05
			z-	I	2	4.02	4.02	0.30	0.38	0.29	9.05

Verifiche nodi trave-pilastro

Nodo	F.	CC	TCC	Vc	Vjbd	νd_s	vd_i	VjbR	Afni	Rfni	Vjwd	VjwR
				<dan></dan>	<dan></dan>			<dan></dan>	<dan mq=""></dan>	<dan mq=""></dan>	<dan></dan>	<dan></dan>
102	Y+	1	SLV	0.00	25963.20	0.00	3.54	58030.00	645450.00	252168.00	33638.30	44255.50
		19	SLV	0.00	25963.20	0.00	3.44	58030.00	645450.00	252168.00	33664.90	44255.50
	Z+	1	SLV	0.00	34617.60	0.00	3.54	103311.00	548715.00	406947.00	34617.60	35404.40
	z-	1	SLV	0.00	34617.60	0.00	3.54	103311.00	548715.00	406947.00	34617.60	35404.40

Pilastrata n. 3

Nodi: 3 103

Caratteristiche delle sezioni e dei materiali utilizzati

	Sez.	Tipo	В	H	Cf	Cls	Fck	Fctk	Fcd	Fctd	Tp	Fyk	Fyd
			<cm></cm>	<cm></cm>	<cm></cm>		<dan cmq=""></dan>	<dan cmq=""></dan>	<dan cmq=""></dan>	<dan cmq=""></dan>		<dan cmq=""></dan>	<dan cmq=""></dan>
Ī	3	R	30.00	50.00	6.00	C30/37	307.10	20.59	174.02	13.73	B450C	4500.00	3913.04

Stato limite ultimo - Verifiche a flessione/pressoflessione

Xg <m></m>	CC	TCC	E1	Sez.	X <cm></cm>	N <dan></dan>	My <danm></danm>	My ver.	Mz <danm></danm>	Mz ver.	Nu <dan></dan>	MRdy <danm></danm>	MRdz <danm></danm>	α <grad></grad>	Ey	Sic.
0.00	19	SLV	1	3	0.00	-5960.48	7681.46		-866.68		-5960.48	14284.10	-1415.95	348.75	10.87	1.857
0.00	19	SLV	1	3	0.00	-5960.48	7681.46		-866.68		-5960.48	14284.10	-1415.95	348.75	10.87	1.857
3.65	19	SLV	1	3	365.00	-4591.73	-7030.29		812.03		-4591.73	-14035.30	1425.40	168.75	11.09	1.993

Stato limite d'esercizio - Verifiche tensionali

Хg	CC	TCC	El	Sez.	Х	N	Mz	My	AfT	AfC	σ。	$\sigma_{\scriptscriptstyle \mathrm{f}}$
<m></m>					<cm></cm>	<dan></dan>	<danm></danm>	<danm></danm>	<cmq></cmq>	<cmq></cmq>	<dan cmq=""></dan>	<dan cmq=""></dan>
0.00	31	SLE R	1	3	0.00	-8640.36	-137.07	4717.50	10.30	6.28	56.05	1206.36
0.00	28	SLE Q	1	3	0.00	-7699.87	-198.31	2106.06	8.29	8.29	27.55	358.59
0.00	31	SLE R	1	3	0.00	-8640.36	-137.07	4717.50	10.30	6.28	56.05	1206.36
0.00	28	SLE Q	1	3	0.00	-7699.87	-198.31	2106.06	8.29	8.29	27.55	358.59
3.65	31	SLE R	1	3	365.00	-7271.61	285.67	-5073.29	10.30	6.28	63.72	1452.03
3.65	28	SLE Q	1	3	365.00	-6331.12	330.80	-3615.85	10.30	6.28	48.48	997.47

Stato limite d'esercizio - Verifiche a fessurazione

Xg	C	CC	TCC	E	L Sez.	X	N	My	Mz	С	s	K3	Srm	Φ	A _s	A _{c eff}	σ,	σ _{sr}	€sm	Wk
<m></m>	>					<cm></cm>	<dan></dan>	<danm></danm>	<danm></danm>	<mm></mm>	<mm></mm>		<mm></mm>		<cmq></cmq>	<cmq></cmq>	<dan cmq=""></dan>	<dan cmq=""></dan>		<mm></mm>
0.0	0 2	28	SLE Q	1	1 3	0.00	-7699.87	2106.06	-198.31	49.00	182.00	0.13	233.54	20.00	8.29	822.21	358.59	1087.79	0.07	0.03
0.0	0 2	28	SLE Q	1	1 3	0.00	-7699.87	2106.06	-198.31	49.00	182.00	0.13	233.54	20.00	8.29	822.21	358.59	1087.79	0.07	0.03
3.€	55 2	28	SLE Q		1 3	365.00	-6331.12	-3615.85	330.80	49.00	182.00	0.13	235.94	20.00	10.30	1046.30	997.47	1478.92	0.19	0.08

Staffe - Verifiche armatura

X0	X1	Staff.	Bry	Brz	CC	TCC	bw,y	Vsdu,	ctgθ,,	VRsd,y	VRcd,y	bw,z	Vsdu,z	ctq0,z	VRsd,z	VRcd,z	Sic.T
<m></m>	<m></m>							<dan></dan>		<dan></dan>	<dan></dan>		<dan></dan>		<dan></dan>	<dan></dan>	
							<m></m>					<m></m>					
0.00	0.61	ø10/ 7	2	2	29	SLU	0.50	156.20	2.04	38943.40	38943.40	0.30	4796.29	1.45	50607.10	50607.10	10.55
0.00	0.61	ø10/ 7	2	2	36	SLU	0.50	210.26	2.04	38936.60	38936.60	0.30	3366.65	1.45	50596.70	50596.70	15.03
0.00	0.61	ø10/ 7	2	2	10 (TG)	SLV	0.50	1104.13	2.02	38535.10	38535.10	0.30	8781.54	1.43	49975.20	49975.20	5.69
0.00	0.61	ø10/ 7	2	2	1 (TG)	SLV	0.50	4390.81	2.03	38588.30	38588.30	0.30	5268.78	1.44	50057.80	50057.80	8.79
0.61	3.04	ø8/18	2	2	29	SLU	0.50	156.20	2.50	11850.60	33988.80	0.30	4476.92	2.50	21685.20	37317.10	4.84

0.61 3.04	ø8/18	2	2	36	SLU	0.50	210.26	2.50	11850.60	33979.20	0.30	3321.02	2.50	21685.20	37306.60	6.53
0.61 3.04	ø8/18	2	2	10(TG)	SLV	0.50	1104.13	2.50	11850.60	33453.00	0.30	8781.54	2.50	21685.20	36728.90	2.47
0.61 3.04	ø8/18	2	2	7 (TG)	SLV	0.50	1355.54	2.50	11850.60	33545.40	0.30	8791.40	2.50	21685.20	36830.30	2.47
0.61 3.04	ø8/18	2	2	1 (TG)	SLV	0.50	4390.81	2.50	11850.60	33527.40	0.30	5268.78	2.50	21685.20	36810.50	2.70
3.04 3.65	ø8/10	2	2	29	SLU	0.50	156.20	2.50	21331.10	33840.90	0.30	3199.42	2.43	37928.10	37928.10	11.85
3.04 3.65	ø8/10	2	2				210.26		21331.10	33831.40	0.30	3138.52	2.43	37921.90	37921.90	12.08
3.04 3.65		2		. ,			1104.13		21331.10	33453.00	0.30	8781.54	2.41	37673.00	37673.00	4.29
3.04 3.65	ø8/10	2	2	1 (TG)	SLV	0.50	4390.81	2.50	21331.10	33527.40	0.30	5268.78	2.42	37722.10	37722.10	4.86

Dettagli costruttivi per la duttilità

- $\alpha_{\rm e}$ =0.17203 $\omega_{\rm ad}$ =0.36334 $\mu\Phi_{\rm d}$ =32.3354 $v_{\rm d}$ =0.036726 CC=19 $E_{\rm sy,d}$ =0.0018995 $b_{\rm c}/b_0$ =1.21951 $\mu\Phi_{\rm c}$ =38.204 0.06251 >= 0.04753 [7.4.29]
- $\alpha_{\rm e}$ =0.17203 $\omega_{\rm ad}$ =0.36334 $\mu\Phi_{\rm d}$ =29.306 $v_{\rm d}$ =0.036726 CC=19 $E_{\rm sy,d}$ =0.0018995 $b_{\rm c}/b_{\rm 0}$ =1.42857 $\mu\Phi_{\rm c}$ =32.6132 0.06251 >= 0.05262 [7.4.29]

Caratteristiche nodi trave-pilastro

Nodo	Conf.	Staff.	F.	Mod.	Br.	As1	As2	Вj	Нjc	Нjw	Ash
						<cmq></cmq>	<cmq></cmq>	<m></m>	<m></m>	<m></m>	<cmq></cmq>
103	N	ø12/10	Y+	E	2	4.02	4.02	0.45	0.18	0.29	9.05
			z-	E	2	8.04	6.03	0.30	0.38	0.39	11.31

Verifiche nodi trave-pilastro

				F							
Nodo	F.	CC TCC	Vc	Vjbd	νds	Vd.	VjbR	Afni	Rfni	Vjwd	VjwR
			<dan></dan>	<dan></dan>	_	_	<dan></dan>	<dan mq=""></dan>	<dan mq=""></dan>	<dan></dan>	<dan></dan>
103	Y+	1 SLV	0.00	17308.80	0.00	1.76	58030.10	210592.00	271298.00		
	Z-	1 SLV	0.00	34617.60	0.00	1.76	82648.90	548714.00	378252.00	25598.10	44255.50
		7 SLV	0.00	34617.60	0.00	1.70	82648.90	548714.00	378252.00	25609.60	44255.50

Pilastrata n. 4

Nodi: 4 104

Caratteristiche delle sezioni e dei materiali utilizzati

:	Sez.	Tipo	В	H	Cf	Cls	Fck	Fctk	Fcd	Fctd	Tp	Fyk	Fyd
			<cm></cm>	<cm></cm>	<cm></cm>		<dan cmq=""></dan>	<dan cmq=""></dan>	<dan cmq=""></dan>	<dan cmq=""></dan>		<dan cmq=""></dan>	<dan cmq=""></dan>
	3	R	30.00	50.00	6.00	C30/37	307.10	20.59	174.02	13.73	B450C	4500.00	3913.04

Stato limite ultimo - Verifiche a flessione/pressoflessione

Xg <m></m>	1 -	CT	rcc i	El	Sez.	X <cm></cm>	N <dan></dan>	My <danm></danm>	My ver.	Mz <danm></danm>	Mz ver.	Nu <dan></dan>	MRdy <danm></danm>	MRdz <danm></danm>	α <grad></grad>	Ey	Sic.
0.00	0 1	9 S	SLV	1	3	0.00	-4898.85	-7268.90		-901.87		-4898.85	-14040.70	-1709.39	194.06	10.27	1.931
0.00	0 1	9 S	SLV	1	3	0.00	-4898.85	-7268.90		-901.87		-4898.85	-14040.70	-1709.39	194.06	10.27	1.931
3.6	5 1	9 S	SLV	1	3	365.00	-3530.10	6543.93		-711.46		-3530.10	13835.90	-1433.06	348.75	11.27	2.113

Stato limite d'esercizio - Verifiche tensionali

Χg	CC	TCC	El	Sez.	х	N	Mz	My		AfC	σ。	$\sigma_{\scriptscriptstyle \mathrm{f}}$
<m></m>					<cm></cm>	<dan></dan>	<danm></danm>	<danm></danm>	<cmq></cmq>	<cmq></cmq>	<dan cmq=""></dan>	<dan cmq=""></dan>
0.00	26	SLE R	1	3	0.00	-7269.79	106.98	-2093.78	10.30	6.28	25.60	356.30
0.00	28	SLE Q	1	3	0.00	-6799.02	105.05	-1890.98	10.30	6.28	23.25	311.86
0.00	26	SLE R	1	3	0.00	-7269.79	106.98	-2093.78	10.30	6.28	25.60	356.30
0.00	28	SLE Q	1	3	0.00	-6799.02	105.05	-1890.98	10.30	6.28	23.25	311.86
3.65	26	SLE R	1	3	365.00	-5901.04	-184.43	3594.78	10.30	6.28	44.69	979.09
3.65	28	SLE Q	1	3	365.00	-5430.27	-180.49	3246.58	10.30	6.28	40.70	881.62

Stato limite d'esercizio - Verifiche a fessurazione

Xg	C	C T	CC	El	Sez.	х	N	My	Mz	С	s	кз	Srm	Φ	A,	A _{c eff}	σ,	σ _{sr}	ε _{sm}	Wk
<m></m>						<cm></cm>	<dan></dan>	<danm></danm>	<danm></danm>	<mm></mm>	<mm></mm>		<mm></mm>		<cmq></cmq>	<cmq></cmq>	<dan cmq=""></dan>	<dan cmq=""></dan>		<mm></mm>
0.0	0 2	8 SLI	ΕQ	1	3	0.00	-6799.02	-1890.98	105.05	49.00	182.00	0.13	233.54	20.00	8.29	822.22	311.86	1135.81	0.06	0.02
0.0	0 2	8 SLI	ΕQ	1	3	0.00	-6799.02	-1890.98	105.05	49.00	182.00	0.13	233.54	20.00	8.29	822.22	311.86	1135.81	0.06	0.02
3.6	5 2	8 SLI	ΕQ	1	3	365.00	-5430.27	3246.58	-180.49	49.00	182.00	0.13	235.94	20.00	10.30	1046.30	881.62	1539.77	0.17	0.07

Staffe - Verifiche armatura

X0	Х1	Staff.	Bry	Br_z	CC	TCC	bw,y	Vsdu, _y	ctgθ,,	VRsd,y	VRcd,y	bw,z	Vsdu,z	ctgθ,z	VRsd,z	VRcd,z	Sic.T
<m></m>	<m></m>							<dan></dan>		<dan></dan>	<dan></dan>		<dan></dan>		<dan></dan>	<dan></dan>	
							<m></m>					<m></m>					
0.00	0.61	ø10/ 7	2	2	25	SLU	0.50	110.24	2.04	38770.30	38770.30	0.30	2169.88	1.44	50339.50	50339.50	23.20
0.00	0.61	ø10/ 7	2	2	36	SLU	0.50	121.12	2.03	38727.90	38727.90	0.30	1223.86	1.44	50273.90	50273.90	41.08
0.00	0.61	ø10/ 7	2	2	10 (TG)	SLV	0.50	1197.11	2.02	38441.30	38441.30	0.30	8643.10	1.43	49829.90	49829.90	5.77
0.00	0.61	ø10/ 7	2	2	1 (TG)	SLV	0.50	4507.96	2.02	38559.80	38559.80	0.30	4548.11	1.44	50013.50	50013.50	8.55
0.61	3.04	ø8/18	2	2	25	SLU	0.50	110.24	2.50	11850.60	33745.30	0.30	2169.88	2.50	21685.20	37049.80	9.99
0.61	3.04	ø8/18	2	2	36	SLU	0.50	121.12	2.50	11850.60	33685.80	0.30	1406.36	2.50	21685.20	36984.50	15.42
0.61	3.04	ø8/18	2	2	10(TG)	SLV	0.50	1197.11	2.50	11850.60	33322.20	0.30	8643.10	2.50	21685.20	36585.30	2.51
0.61	3.04	ø8/18	2	2	7 (TG)	SLV	0.50	1525.93	2.50	11850.60	33453.10	0.30	8662.02	2.50	21685.20	36729.00	2.50
0.61	3.04	ø8/18	2	2	1 (TG)	SLV	0.50	4507.96	2.50	11850.60	33487.50	0.30	4548.11	2.50	21685.20	36766.70	2.63
3.04	3.65	ø8/10	2	2	25	SLU	0.50	110.24	2.50	21331.10	33597.40	0.30	2169.88	2.42	37768.20	37768.20	17.41
3.04	3.65	ø8/10	2	2	36	SLU	0.50	121.12	2.50	21331.10	33537.90	0.30	1451.98	2.42	37729.10	37729.10	25.98
3.04	3.65	ø8/10	2	2	10(TG)	SLV	0.50	1197.11	2.50	21331.10	33322.20	0.30	8643.10	2.41	37586.70	37586.70	4.35
3.04	3.65	ø8/10	2	2	1 (TG)	SLV	0.50	4507.96	2.50	21331.10	33487.50	0.30	4548.11	2.41	37695.80	37695.80	4.73

Dettagli costruttivi per la duttilità

- $\alpha_{\rm e}$ =0.17203 $\omega_{\rm wd}$ =0.36334 $\mu\Phi_{\rm d}$ =32.3354 $v_{\rm d}$ =0.034533 CC=13 $E_{\rm sy}$, $_{\rm d}$ =0.0018995 $b_{\rm e}/b_{\rm 0}$ =1.21951 $\mu\Phi_{\rm e}$ =40.6297 0.06251 >= 0.0426 [7.4.29]
- $\alpha_{\rm e}$ =0.17203 $\omega_{\rm ad}$ =0.36334 $\mu\Phi_{\rm d}$ =29.306 $v_{\rm d}$ =0.034533 CC=13 $E_{\rm sy,d}$ =0.0018995 $b_{\rm c}/b_{\rm 0}$ =1.42857 $\mu\Phi_{\rm c}$ =34.6838 0.06251 >= 0.04739 [7.4.29]

Caratteristiche nodi trave-pilastro

N	lodo	Conf.	Staff.	F.	Mod.			As2 <cmq></cmq>	_	_	_	
Г	104	N	ø12/10	Z+	E	2	6.03	6.03	0.30	0.38	0.39	11.31
Г				Y-	E	2	4.02	4.02	0.45	0.18	0.29	9.05

Verifiche nodi trave-pilastro

Nodo	F.	CC		Vc <dan></dan>	Vjbd <dan></dan>	νd_s	٧di	VjbR <dan></dan>	Afni <dan mq=""></dan>	Rfni <dan mq=""></dan>	Vjwd <dan></dan>	
104	Z+	1	SLV	0.00	25963.20	0.00	1.23	82648.80	248587.00	378252.00		
	Y-	1	SLV	0.00	17308.80	0.00	1.23	58030.10	210593.00	271298.00		

Pilastrata n. 5

Nodi: 5 105

Caratteristiche delle sezioni e dei materiali utilizzati

Sez	. Tipo	В	H	Cf	Cls	Fck	Fctk	Fcd	Fctd	Тp	Fyk	Fyd
		<cm></cm>	<cm></cm>	<cm></cm>		<dan cmq=""></dan>	<dan cmq=""></dan>	<dan cmq=""></dan>	<dan cmq=""></dan>		<dan cmq=""></dan>	<dan cmq=""></dan>
	3 R	30.00	50.00	6.20	C30/37	307.10	20.59	174.02	13.73	B450C	4500.00	3913.04

Stato limite ultimo - Verifiche a flessione/pressoflessione

Xg <m></m>	1 -	CTCC	El	Sez.	X <cm></cm>	N <dan></dan>	My <danm></danm>	My ver.	Mz <danm></danm>	Mz ver.	Nu <dan></dan>	MRdy <danm></danm>	MRdz <danm></danm>	α <grad></grad>	ε _y	Sic.
0.0	0 1	SLV	1	3	0.00	-10532.10	7216.21		2445.57		-10532.10	13473.90	4340.11	39.38	6.22	1.858
0.0	01	SLV	1	3	0.00	-10532.10	7216.21		2445.57		-10532.10	13473.90	4340.11	39.38	6.22	1.858
3.6	5 1	9 SLV	1	3	365.00	-9047.87	1496.06		-4653.07		-9047.87	2508.04	-8109.48	273.52	8.86	1.737

Stato limite d'esercizio - Verifiche tensionali

Хg	CC	TCC	El	Sez.	Х	N	Mz	My	AfT	AfC	σ。	$\sigma_{\scriptscriptstyle \mathrm{f}}$
<m></m>					<cm></cm>	<dan></dan>	<danm></danm>	<danm></danm>	<cmq></cmq>	<cmq></cmq>	<dan cmq=""></dan>	<dan cmq=""></dan>
0.00	26	SLE R	1	3	0.00	-12349.60	2089.55	85.47	8.29	8.29	42.17	514.01
0.00	28	SLE Q	1	3	0.00	-11313.70	1838.78	86.10	8.29	8.29	37.16	432.30
0.00	26	SLE R	1	3	0.00	-12349.60	2089.55	85.47	8.29	8.29	42.17	514.01
0.00	28	SLE Q	1	3	0.00	-11313.70	1838.78	86.10	8.29	8.29	37.16	432.30
3.65	26	SLE R	1	3	365.00	-10980.80	-3521.72	-158.34	8.29	8.29	72.62	1393.07
3.65	28	SLE Q	1	3	365.00	-9944.91	-3099.07	-157.48	8.29	8.29	64.14	1212.76

Stato limite d'esercizio - Verifiche a fessurazione

Xg	CC	TCC	El	Sez.	Х	N	My	Mz	С	s	K3	Srm	Φ	A,	A _{c eff}	σ,	σ _{sr}	ε _{sm}	Wk
<m></m>					<cm></cm>	<dan></dan>	<danm></danm>	<danm></danm>	<mm></mm>	<mm></mm>		<mm></mm>		<cmq></cmq>	<cmq></cmq>	<dan cmq=""></dan>	<dan cmq=""></dan>		<mm></mm>
0.00	28	SLE Q	1	3	0.00	-11313.70	86.10	1838.78	49.00	191.01	0.13	242.59	20.00	8.29	882.35	432.30	1032.43	0.08	0.03
0.00	28	SLE Q	1	3	0.00	-11313.70	86.10	1838.78	49.00	191.01	0.13	242.59	20.00	8.29	882.35	432.30	1032.43	0.08	0.03
3.65	28	SLE Q	1	3	365.00	-9944.91	-157.48	-3099.07	49.00	191.01	0.13	242.56	20.00	8.29	882.11	1212.76	1417.14	0.24	0.10

Staffe - Verifiche armatura

Star		AGLITIC	-11-	атии	acura												
X0	X1	Staff.	Bry	Brz	CC	TCC	bw,y	Vsdu, _y	ctgθ,,	VRsd,y	VRcd,y	bw,z	Vsdu,z	ctg0,z	VRsd,z	VRcd,z	Sic.T
<m></m>	<m></m>							<dan></dan>		<dan></dan>	<dan></dan>		<dan></dan>		<dan></dan>	<dan></dan>	
							<m></m>					<m></m>					
0.00	0.61	ø12/ 7	2	2	36	SLU	0.50	890.19	1.63	44768.40	44768.40	0.30	114.36	1.09	54946.70	54946.70	50.29
0.00	0.61	ø12/ 7	2	2	25	SLU	0.50	2138.25	1.63	44771.40	44771.40	0.30	92.18	1.09	54951.70	54951.70	20.94
0.00	0.61	ø12/ 7	2	2	1 (TG)	SLV	0.50	3006.47	1.61	44062.60	44062.60	0.30	7481.60	1.07	53788.30	53788.30	7.19
0.00	0.61	ø12/ 7	2	2	10(TG)	SLV	0.50	4900.87	1.61	44048.50	44048.50	0.30	2935.32	1.07	53765.10	53765.10	8.99
0.61	3.04	ø8/18	2	2	36	SLU	0.50	2350.19	2.50	11850.60	34619.30	0.30	114.36	2.50	21685.20	38009.40	5.04
0.61	3.04	ø8/18	2	2	1 (TG)	SLV	0.50	3006.47	2.50	11850.60	33868.00	0.30	7481.60	2.50	21685.20	37184.50	2.90
0.61	3.04	ø8/18	2	2	10(TG)	SLV	0.50	4900.87	2.50	11850.60	33852.40	0.30	2935.32	2.50	21685.20	37167.40	2.42
3.04	3.65	ø8/10	2	2	36	SLU	0.50	2715.19	2.50	21331.10	34471.50	0.30	114.36	2.46	38339.10	38339.10	7.86
3.04	3.65	ø8/10	2	2	1 (TG)	SLV	0.50	3006.47	2.50	21331.10	33868.00	0.30	7481.60	2.43	37945.90	37945.90	5.07
3.04	3.65	ø8/10	2	2	10(TG)	SLV	0.50	4900.87	2.50	21331.10	33852.40	0.30	2935.32	2.43	37935.60	37935.60	4.35

Dettagli costruttivi per la duttilità

- $\alpha_{\rm e}$ =0.17729 $\omega_{\rm wd}$ =0.52741 $\mu\Phi_{\rm d}$ =29.306 $v_{\rm d}$ =0.047038 CC=19 $E_{\rm sy,d}$ =0.0018995 $b_{\rm c}/b_0$ =1.22549 $\mu\Phi_{\rm c}$ =39.1188 0.0935 >= 0.06127 [7.4.29]
- $\alpha_{\rm e}$ =0.17729 $\omega_{\rm Nd}$ =0.52741 $\mu\Phi_{\rm d}$ =32.3354 $v_{\rm d}$ =0.047038 CC=19 $E_{\rm sy,d}$ =0.0018995 $b_{\rm c}/b_0$ =1.44231 $\mu\Phi_{\rm c}$ =33.2382 0.0935 >= 0.09001 [7.4.29]

Caratteristiche nodi trave-pilastro

Nodo	Conf.	Staff.	F.	Mod.	Br.	As1	As2	Вj	Hjc	Hjw	Ash
						<cmq></cmq>	<cmq></cmq>	<m></m>	<m></m>	<m></m>	<cmq></cmq>
105	N	ø12/10	Z+	I	2	4.02	4.02	0.30	0.38	0.29	9.05
			Y-	E	2	6.03	8.04	0.45	0.18	0.39	11.31
			z-	I	2	4.02	4.02	0.30	0.38	0.29	9.05

Verifiche nodi trave-pilastro

Node	F.	CC	TCC	Vс	Vjbd	νds	νdi	VjbR	Afni	Rfni	Vjwd	VjwR
				<dan></dan>	<dan></dan>			<dan></dan>	<dan mq=""></dan>	<dan mq=""></dan>	<dan></dan>	<dan></dan>
10	5 Z+	1	SLV	0.00	34617.60	0.00	3.51	103311.00	548714.00	406947.00	34617.60	35404.40
	Y-	1	SLV	0.00	25963.20	0.00	3.51	58030.10	645448.00	252168.00	33645.50	44255.50
		7	SLV	0.00	25963.20	0.00	3.44	58030.10	645448.00	252168.00	33664.90	44255.50
	Z-	1	SLV	0.00	34617.60	0.00	3.51	103311.00	548714.00	406947.00	34617.60	35404.40

Pilastrata n. 6

Nodi: 6 106

Caratteristiche delle sezioni e dei materiali utilizzati

Sez.	Tipo	В	H	Cf	Cls	Fck	Fctk	Fcd	Fctd	Тp	Fyk	Fyd
		<cm></cm>	<cm></cm>	<cm></cm>		<dan cmq=""></dan>	<dan cmq=""></dan>	<dan cmq=""></dan>	<dan cmq=""></dan>		<dan cmq=""></dan>	<dan cmq=""></dan>
3	R	30.00	50.00	6.00	C30/37	307.10	20.59	174.02	13.73	B450C	4500.00	3913.04

Stato limite ultimo - Verifiche a flessione/pressoflessione

D CG C	-			4-01				c, prese	CTTCDDTC							
Xg	CC	TCC	El	Sez.	Х	N	My	My ver.	Mz	Mz ver.	Nu	MRdy	MRdz	α	ε _y	Sic.
<m></m>					<cm></cm>	<dan></dan>	<danm></danm>		<danm></danm>		<dan></dan>	<danm></danm>	<danm></danm>	<grad></grad>		
								<danm></danm>		<danm></danm>						
0.00	7	SLV	1	3	0.00	-5960.48	-7681.46		-866.68		-5960.48	-14284.10	-1415.95	191.25	10.87	1.857
0.00	7	SLV	1	3	0.00	-5960.48	-7681.46		-866.68		-5960.48	-14284.10	-1415.95	191.25	10.87	1.857
3.65	7	SLV	1	3	365.00	-4591.73	7030.29		812.03		-4591.73	14035.30	1425.40	11.25	11.09	1.993

Stato limite d'esercizio - Verifiche tensionali

Χg	CC	TCC	El	Sez.	Х	N	Mz	My	AfT	AfC	σ。	$\sigma_{\scriptscriptstyle \mathrm{f}}$
<m></m>					<cm></cm>	<dan></dan>	<danm></danm>	<danm></danm>	<cmq></cmq>	<cmq></cmq>	<dan cmq=""></dan>	<dan cmq=""></dan>
0.00	26	SLE R	1	3	0.00	-8277.96	-200.84	-2343.70	10.30	6.28	30.32	409.26
0.00	28	SLE Q	1	3	0.00	-7699.87	-198.31	-2106.06	8.29	8.29	27.55	358.59
0.00	26	SLE R	1	3	0.00	-8277.96	-200.84	-2343.70	10.30	6.28	30.32	409.26
0.00	28	SLE Q	1	3	0.00	-7699.87	-198.31	-2106.06	8.29	8.29	27.55	358.59
3.65	26	SLE R	1	3	365.00	-6909.21	334.37	4023.85	10.30	6.28	53.15	1109.62
3.65	28	SLE Q	1	3	365.00	-6331.12	330.80	3615.85	10.30	6.28	48.48	997.47

Stato limite d'esercizio - Verifiche a fessurazione

Xg	C	СТ	'CC	El	Sez.	х	N	My	Mz	С	s	K3	Srm	Φ	As	Ac eff	σ,	σ _{sr}	€sm	Wk
<m></m>						<cm></cm>	<dan></dan>	<danm></danm>	<danm></danm>	<mm></mm>	<mm></mm>		<mm></mm>		<cmq></cmq>	<cmq></cmq>	<dan cmq=""></dan>	<dan cmq=""></dan>		<mm></mm>
0.0	0 2	B SL	ΕQ	1	3	0.00	-7699.87	-2106.06	-198.31	49.00	182.00	0.13	233.54	20.00	8.29	822.21	358.59	1087.79	0.07	0.03
0.0	0 2	BSL	ΕQ	1	3	0.00	-7699.87	-2106.06	-198.31	49.00	182.00	0.13	233.54	20.00	8.29	822.21	358.59	1087.79	0.07	0.03
3.6	5 2	BSL	ΕQ	1	3	365.00	-6331.12	3615.85	330.80	49.00	182.00	0.13	235.94	20.00	10.30	1046.30	997.47	1478.92	0.19	0.08

Staffe - Verifiche armatura

X0	X1	Staff.	Bry	Brz	CC	TCC	bw,y	Vsdu, _y	ctq0,	VRsd,y	VRcd,y	bw,z	Vsdu,z	ctg0,z	VRsd,z	VRcd,z	Sic.T
<m></m>	<m></m>							<dan></dan>	,	<dan></dan>	<dan></dan>		<dan></dan>		<dan></dan>	<dan></dan>	
							<m></m>					<m></m>					
0.00	0.61	ø10/ 7	2	2	25	SLU	0.50	202.42	2.04	38895.30	38895.30	0.30	2431.35	1.45	50532.80	50532.80	20.78
0.00	0.61	ø10/ 7	2	2	29	SLU	0.50	248.64	2.04	38847.10	38847.10	0.30	385.79	1.45	50458.30	50458.30	>100
0.00	0.61	ø10/ 7	2	2	22(TG)	SLV	0.50	1104.13	2.02	38535.10	38535.10	0.30	8781.54	1.43	49975.20	49975.20	5.69
0.00	0.61	ø10/ 7	2	2	13(TG)	SLV	0.50	4390.81	2.03	38588.30	38588.30	0.30	5268.78	1.44	50057.80	50057.80	8.79
0.61	3.04	ø8/18	2	2	25	SLU	0.50	202.42	2.50	11850.60	33921.00	0.30	2431.35	2.50	21685.20	37242.70	8.92
0.61	3.04	ø8/18	2	2	29	SLU	0.50	248.64	2.50	11850.60	33853.20	0.30	1663.29	2.50	21685.20	37168.30	13.04
0.61	3.04	ø8/18	2	2	22(TG)	SLV	0.50	1104.13	2.50	11850.60	33453.00	0.30	8781.54	2.50	21685.20	36728.90	2.47
0.61	3.04	ø8/18	2		- (- /	1		1355.54		11850.60	33545.40	0.30	8791.40	2.50	21685.20	36830.30	2.47
0.61	3.04	ø8/18	2	2	13(TG)	SLV	0.50	4390.81	2.50	11850.60	33527.40	0.30	5268.78	2.50	21685.20	36810.50	2.70
3.04	3.65	ø8/10	2	2	25	SLU	0.50	202.42	2.50	21331.10	33773.10	0.30	2431.35	2.43	37883.70	37883.70	15.58
3.04	3.65	ø8/10	2	2	29	SLU	0.50	248.64	2.50	21331.10	33705.40	0.30	1982.66	2.42	37839.20	37839.20	19.09
3.04	3.65	ø8/10	2	2	22(TG)	SLV	0.50	1104.13	2.50	21331.10	33453.00	0.30	8781.54	2.41	37673.00	37673.00	4.29
3.04	3.65	ø8/10	2	2	13(TG)	SLV	0.50	4390.81	2.50	21331.10	33527.40	0.30	5268.78	2.42	37722.10	37722.10	4.86
3.04	3.65	ø8/10	2	2	13(TG)	SLV	0.50	4390.81	2.50	21331.10	33527.40	0.30	5268.78	2.42	37722.10	37722.	10

Dettagli costruttivi per la duttilità

- $\alpha_{\rm e}$ =0.17203 $\omega_{\rm Nd}$ =0.36334 $\mu\Phi_{\rm d}$ =32.3354 $v_{\rm d}$ =0.036726 CC=7 $E_{\rm sy,d}$ =0.0018995 $b_{\rm c}/b_{\rm 0}$ =1.21951 $\mu\Phi_{\rm c}$ =38.204 0.06251 >= 0.04753 [7.4.29]
- $\alpha_{\rm e}$ =0.17203 $\omega_{\rm wd}$ =0.36334 $\mu\Phi_{\rm d}$ =29.306 $v_{\rm d}$ =0.036726 CC=7 $E_{\rm sy}$, $_{\rm d}$ =0.0018995 $b_{\rm c}/b_{\rm 0}$ =1.42857 $\mu\Phi_{\rm c}$ =32.6132 0.06251 >= 0.05262 [7.4.29]

Caratteristiche nodi trave-pilastro

Nodo	Conf.	Staff.	F.	Mod.	Br.	As1	As2	Вj	Нjс	Нjw	Ash
						<cmq></cmq>	<cmq></cmq>	<m></m>	<m></m>	<m></m>	<cmq></cmq>
106	N	ø12/10	Y+	E	2	4.02	4.02	0.45	0.18	0.29	9.05
			Z+	E	2	6.03	6.03	0.30	0.38	0.39	11.31

Verifiche nodi trave-pilastro

Nodo	F.	CC		Vc <dan></dan>	Vjbd <dan></dan>	٧ds	۷di	VjbR <dan></dan>	Afni <dan mq=""></dan>	Rfni <dan mq=""></dan>	Vjwd <dan></dan>	
106	Y+	1	SLV	0.00	17308.80	0.00	1.81	58030.10	210592.00	271298.00		
	Z+	1	SLV	0.00	25963.20	0.00	1.81	82648.90	248586.00	378252.00		