COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

II A INEDACTOUTTUDE CUD		
U.O. INFRASTRUTTURE SUD		

PROGETTO DEFINITIVO

TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3)

VIABILITA	۹'
-----------	----

Elaborati Generali

Relazione di calcolo sovrastruttura stradale tipo 2

SCALA:
_

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

RS3T 30 D 78 RH NV0000 004 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Gen-2020	G.Ficorella	Gen-2020	A.Barreca	Gen-2020	D.Tiberti Gen-2020
								A THEORY
			_					Ordina

File: RS3T.3.0.D.78.RH.NV.00.0.0.004.A n. Elab.: 78_179

Relazione di calcolo sovrastruttura stradale – tipo 2

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA PROGETTO DEFINITIVO

TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3)

COMMESSA RS3T LOTTO 30 CODIFICA D 78 RH DOCUMENTO NV0000 004

REV. Δ FOGLIO 2 di 20

SOMMARIO

1	PRE	MESSA	3
2	NOR	RMATIVA E DOCUMENTAZIONE DI RIFERIMENTO	4
	2.1	NORMATIVA DI RIFERIMENTO	4
	2.2	DOCUMENTI DI RIFERIMENTO	4
3	SOV	RASTRUTTURA STRADALE DI PROGETTO	5
	3.1	PORTANZA DEL SOTTOFONDO	8
	3.2	MIX DESIGN	8
4	VER	IFICA DELLA SOVRASTRUTTURA STRADALE	9
	4.1	PAVIMENTAZIONE TIPO 2 (VIABILITÀ DI ACCESSO AI PIAZZALI E DESTINAZIONI PARTICOLARI)	9
	4.1.1	Sovrastruttura stradale di progetto	9
	4.1.2	? Traffico di progetto	9
	4.1.3	B Descrizione della verifica attraverso l'AASHTO	10
	4.1.4	Caratteristiche strutturali: calcolo dello "Structural Number"	11
	4.1.5	Calcolo del traffico in assi standard equivalenti (N _{8.2ton})	15
	4.1.6	S Calcolo del traffico sopportabile (W ₁₈)	17
	4.1.7	Verifica della sovrastruttura	19
5	CON	ICLUSIONI	20

TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3)

Relazione di calcolo sovrastruttura stradale - tipo 2

COMMESSA RS3T CODIFICA

LOTTO 30 DOCUMENTO

REV.

FOGLIO 3 di 20

1 PREMESSA

Nell'ambito del Progetto Definitivo della tratta Lercara Diramazione – Caltanissetta Xirbi di cui il Nuovo Collegamento Palermo-Catania, sono previsti interventi riferiti alle viabilità riguardanti:

- 1. adeguamento delle viabilità esistenti interferite dalla nuova linea ferroviaria di progetto;
- 2. realizzazione di nuove viabilità per il collegamento della rete stradale esistente /di progetto alle fermate della linea ferroviaria di progetto;
- 3. realizzazione di nuove viabilità per il collegamento della rete stradale esistente/di progetto con i fabbricati tecnologici e SSE previsti in progetto;
- 4. viabilità di ricucitura con adeguamento e ripristino dei collegamenti stradali esistenti.

Oggetto della presente relazione è la descrizione e la verifica delle **pavimentazioni** adottate per le viabilità previste in progetto; nello specifico, è riportato il calcolo delle sovrastrutture denominate di "tipo 2" (vedi Tabella 2, §3).

Per la verifica della pavimentazione stradale si è adottato il metodo empirico/probabilistico proposto all'interno del manuale di progettazione dell'AASTHO (AASTHO Guide for Design of Pavement Structures).

PROGETTO DEFINITIVO

TRATTA LERCARA DIR. – CALTANISSETTA XIRBI (LOTTO 3)

Relazione di calcolo sovrastruttura stradale – tipo 2

COMMESSA RS3T LOTTO

CODIFICA D 78 RH DOCUMENTO NV0000 004

REV.

FOGLIO 4 di 20

2 NORMATIVA E DOCUMENTAZIONE DI RIFERIMENTO

2.1 NORMATIVA DI RIFERIMENTO

Per il progetto delle viabilità sono state considerate le principali normative di riferimento riportate nel seguito:

- [N.1]. D.M. 5 novembre 2001 "Norme funzionali e geometriche per la costruzione delle strade";
- [N.2]. D.M. 22 aprile 2004 "Modifica del decreto 5 novembre 2001, n. 6792, recante "Norme funzionali e geometriche per la costruzione delle strade"";
- [N.3]. Linee guida per gli interventi di adeguamento delle strade esistenti 21 marzo 2006;
- [N.4]. Decreto Legislativo 30 aprile 1992 n. 285 Nuovo codice della strada e s.m.i.;
- [N.5]. D.P.R. 16 dicembre 1992 n. 495 Regolamento di esecuzione e di attuazione del nuovo codice della strada;
- [N.6]. Decreto 19/04/2006 "Norme funzionali e geometriche per la costruzione delle intersezioni stradali";
- [N.7]. D.M. 18/02/1992: "Regolamento recante istruzioni tecniche per la progettazione l'omologazione e l'impiego delle barriere stradali di sicurezza";
- [N.8]. D.M. 03/06/1998: "Istruzioni tecniche sulla progettazione, omologazione ed impiego delle barriere di sicurezza stradale";
- [N.9]. D.M. 21/06/2004: "Aggiornamento delle istruzioni tecniche per la progettazione, l'omologazione e l'impiego delle barriere stradali di sicurezza e le prescrizioni tecniche per le prove delle barriere di sicurezza stradale".
- [N.10]. CNR n.178 settembre 1995 Catalogo delle pavimentazioni stradali

2.2 DOCUMENTI DI RIFERIMENTO

La presente relazione è stata redatta con riferimento ai seguenti documenti.

- [D.1]. AASHTO Guide for design of pavement structures
- [D.2]. Portanza dei sottofondi Fondazione politecnica per il mezzogiorno d'Italia P. Giannatasio, C. Caliendo, L. Esposito, B. Festa, W. Pellecchia – Napoli, dicembre 1989

TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3)

Relazione di calcolo sovrastruttura stradale – tipo 2

COMMESSA RS3T LOTTO CODIFICA 30 D 78 RH DOCUMENTO NV0000 004 REV.

FOGLIO 5 di 20

3 SOVRASTRUTTURA STRADALE DI PROGETTO

Il Nuovo Codice della Strada classifica le strade in sei diverse tipologie, ognuna delle quali è individuata da una lettera che va da A a F. Tra queste strade e quelle previste attualmente dalle Nonne CNR si può stabilire - per quanto riguarda le caratteristiche tecniche, costruttive e funzionali - la corrispondenza riportata in Tabella 1.

Tabella 1 – Classificazione delle strade secondo il Nuovo Codice della Strada e le Norme CNR

NUOVO CODICE DELLA STRADA	NORME CNR
A) Autostrade extraurbane	Strade tipo I e II
Autostrade urbane	Strade primarie
B) Strade extraurbane principali	Strada tipo III
C) Strade extraurbane secondarie	Strada tipo IV, A, V, VI e B
D) Strade urbane di scorrimento	Strade urbane di scorrimento
E) Strade di quartiere	Strade urbane di quartiere
F) Strade extraurbane locali	Strada tipo C
Strade urbane locali	Strade urbane locali

In base alla funzione che svolgono all'interno del reticolo stradale le viabilità previste in progetto sono state inquadrate nelle seguenti famiglie:

- di <u>uso esclusivo</u> FS: qualora la viabilità in essere è esclusivamente ed occasionalmente impegnata da traffico selezionato, non civile, appositamente regolamentato a mezzo di idonea cartellonistica stradale e/o vincolato dall'impiego di cancelli di accesso alle aree (ad es. rampe di accesso a piazzali tecnici, viabilità di accesso ai piazzali di emergenza, ecc.). Rientrano tra queste viabilità le seguenti: NV11A, NV11B, NV12A, NV12B, NV57, NV58, NV59A, NV59B, NV63, NV64, NV65.
- di <u>ricucitura</u>: se la viabilità assolve funzione di ricucitura alla viabilità locale; rientrano tra queste viabilità le seguenti: NV02, NV03A, NV03BNV04B, NV09, NV56, NV60.
- per <u>accesso a fondi</u>: se la viabilità assolve funzione di ricucitura del territorio per l'accesso esclusivo alla servitù di fondi privati altrimenti interclusi. Rientrano tra queste viabilità le seguenti: NV52, NV66, NV67.
- di accesso alle stazioni: rientrano tra queste viabilità le seguenti: NV08, NV53B.
- adeguamento di strade esistenti: ai sensi del DM 22/04/2004. Rientrano tra queste viabilità le seguenti: NV01, NV06B, NV07, NV08A, NV10, NV51, NV53A, NV54A, NV54B, NV55, NV61, NV62A, NV62B, NV62C.

In funzione della categoria stradale, sono state adottate le seguenti tipologie di pavimentazioni, riportate in tabella 2 la cui attribuzione alle singole viabilità è riportata nella successiva tabella 3

TRATTA LERCARA DIR. – CALTANISSETTA XIRBI (LOTTO 3)

Relazione di calcolo sovrastruttura stradale - tipo 2

COMMESSA RS3T LOTTO 30 CODIFICA D 78 RH DOCUMENTO NV0000 004 REV.

FOGLIO 6 di 20

Tabella 2 – Scelta della tipologia di pavimentazione in funzione della categoria stradale

	CAT	TEGORIA DI STRADA		
Spessori strato [cm]	C2	F1	Destinazione	
(em)	Extraurbana	Extraurbana	particolare	
Usura	4	4	4	
Binder	6	6	5	
Base (1)	10	10	8	
Fondazione ⁽²⁾	30	30	20	
Supercompattato	30	30	30	

Id Pavimentazione	1	1	2
-------------------	---	---	---

¹ In misto bitumato

Tabella 3 – Tipologia di pavimentazione associata ad ogni viabilità

Lotto 3: tratta Lercara Dir. – Caltanissetta Xirbi Tipologia di pavimentazione associata ad ogni viabilità				
WBS	Descrizione	Inquadramento funzionale	Sezione Tipo Piattaforma	Pavimentazione
NI01	Adeguamento SP41	F1	F extraurbana L = 9,0 m	1
NV02	Ricucitura viabilità locale	Strada a destinazione particolare	L = 4.0m	2
NV03A	Ricucitura viabilità locale	Strada a destinazione particolare	L = 4.0m	2
NV03B	Ricucitura viabilità locale	Strada a destinazione particolare	L = 4.0m	2
NV04B	Ricucitura viabilità locale	Strada a destinazione particolare	L = 6.5m	2
NV06B	Variante innesto SP41	F1	F extraurbana L = 9,0 m	1
NV07	Variante SP64	F1	F extraurbana L = 9,0 m	1
NV08	Viabilità accesso Stazione Vallelunga	F1	F extraurbana L = 9,0 m	1
NV08A	Variante innesto SP64 su rotatoria di progetto	F1	F extraurbana L = 9,0 m	1
NV09	Ricucitura viabilità locale Vallelunga	Strada a destinazione particolare	L = 6.5m	2
NV10	Variante SP228	F1	F extraurbana L = 9,0 m	1
NV11A	Viabilità di accesso Area Sicurezza BD Santa Catena Ovest	Strada a destinazione particolare	L = 8.0m	2
NV11B	Viabilità di accesso Area Sicurezza BP Santa Catena Ovest	Strada a destinazione particolare	L = 8.0m	2
NV12A	Viabilità di accesso Area Sicurezza BD Santa Catena Est	Strada a destinazione particolare	L = 6.5m	2
NV12B	Viabilità di accesso Area Sicurezza BP Santa Catena Est	Strada a destinazione particolare	L = 4.0m	2
NV51	Adeguamento viabilità esistente	Strada a destinazione particolare	L = 7.5m	2

² Miscela di inerti stabilizzati per granulometria e compattati

TRATTA LERCARA DIR. – CALTANISSETTA XIRBI (LOTTO 3)

Relazione di calcolo sovrastruttura stradale - tipo 2

COMMESSA RS3T LOTTO CODIFICA 30 D 78 RH DOCUMENTO NV0000 004

REV. Δ FOGLIO 7 di 20

Lotto 3: tratta Lercara Dir. – Caltanissetta Xirbi Tipologia di pavimentazione associata ad ogni viabilità				
WBS	Descrizione	Inquadramento funzionale	Sezione Tipo Piattaforma	Pavimentazione
NV53A	Variante SS121	F1	F extraurbana L = 9,0 m	1
NV53B	Viabilità di accesso alla stazione di Villalba	Strada a destinazione particolare	L = 7.5m	2
NV54A	Adeguamento ex SS121	Strada a destinazione particolare	L = 7.5m	2
NV54B	Adeguamento intersezione tra SS121 e SP112	Strada a destinazione particolare	L = 7.5m	2
NV55	SP112: adeguamento viabilità esistente	F1	F extraurbana L = 9,0 m	1
NV57	Viabilità di accesso alla SSE Marianopoli	Strada a destinazione particolare	L = 6.5m	2
NV58	Viabilità di accesso al piazzale PTSS del cunicolo della GN Marianopoli /imbocco Est)	Strada a destinazione particolare	L = 4.0m	2
NV59A	Viabilità accesso al piazzale PT57 (imbocco Trabona Ovest)	Strada a destinazione particolare	L = 4.0m	2
NV59B	Viabilità accesso al piazzale PT56 (finestra Trabona)	Strada a destinazione particolare	L = 4.0m	2
NV60	Viabilità di ricucitura per cantierizzazione galleria di imbocco GA13	Strada a destinazione particolare	L = 4.0m	2
NV61	Adeguamento viabilità esistente SP42	C2	L = 9.5m	1
NV62A	Variante SP145	F1	F extraurbana L = 9,0 m	1
NV62B	Adeguamento intersezione e riprofilatura ramo di innesto	C2	L = 9.5m	1
NV62C	Adeguamento SP44	F1	F extraurbana L = 9,0 m	1
NV63	Viabilità di accesso al piazzale PT60 della Galleria Masareddu (imbocco Ovest)	Strada a destinazione particolare	L = 4.0m	2
NV64	Viabilità di accesso al piazzale PT61 della finestra Masareddu	Strada a destinazione particolare	L = 6.5m	2
NV65	Viabilità di accesso al piazzale PT62 della Galleria Xirbi (imbocco Ovest)	Strada a destinazione particolare	L = 4.0m	2
NV66	Viabilità di ricucitura fondi per tombino	Strada a destinazione particolare	L = 4.0m	2

TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3)

Relazione di calcolo sovrastruttura stradale - tipo 2

COMMESSA RS3T CODIFICA D 78 RH

LOTTO 30 DOCUMENTO NV0000 004 V.

FOGLIO 8 di 20

3.1 PORTANZA DEL SOTTOFONDO

La portanza del sottofondo è espressa attraverso il Modulo Resiliente Mr.

Tale modulo può trovarsi, in mancanza di misure dirette, mediante le seguenti correlazioni di natura empirica:

$$Mr = 10 * CBR (\%)$$

dove:

CBR (% Californian Bearing Ratio) = Indice di portanza del sottofondo, tale che sia

CBR (%) =
$$0.2*M_d$$

Il valore del modulo di deformazione del sottofondo deve risultare pari \geq 50MPa come da Capitolato. A favore di sicurezza nei calcoli si assumerà un valore di M_d =45MPa. Pertanto, si ha che:

CBR (%) =
$$0.2*M_d = 0.2*45MPa = 9$$

$$Mr = 10 * CBR (\%) = 10*9 = 90MPa$$

Tale valore sarà il riferimento per la scelta della pavimentazione da adottare nella consultazione del catalogo delle pavimentazioni.

3.2 MIX DESIGN

Si rimanda alla tabella materiali presenti nelle sezioni tipo delle viabilità in progetto.

TRATTA LERCARA DIR. – CALTANISSETTA XIRBI (LOTTO 3)

Relazione di calcolo sovrastruttura stradale – tipo 2

COMMESSA LOTTO CODIFICA RS3T 30 D 78 RH DOCUMENTO NV0000 004 REV.

FOGLIO 9 di 20

4 VERIFICA DELLA SOVRASTRUTTURA STRADALE

La verifica della pavimentazione stradale è stata condotta utilizzando il metodo empirico/probabilistico proposto all'interno del manuale di progettazione dell'AASTHO (AASTHO Guide for Design of Pavement Structures) [D.1]

Il procedimento consiste nel determinare il numero di assi standard (assi da 8,2ton) che la pavimentazione può sopportare, raggiungendo un fissato grado di ammaloramento finale (PSI $_f$) che è funzione di vari parametri, quali: le caratteristiche meccaniche dei materiali, gli spessori dei vari strati della pavimentazione, la portanza del sottofondo etc.

I veicoli realmente transitanti sull'infrastruttura si differenziano per il numero, carico e tipologia degli assi, pertanto sarà necessario determinare il numero di assi standard equivalenti, ovvero il numero di assi standard che determinano lo stesso danno dei veicoli realmente transitanti.

Per determinare il numero di assi standard che transiteranno, è necessario stabilire preliminarmente i coefficienti di equivalenza tra ciascun asse reale e quello standard, tali coefficienti sono funzione di alcuni parametri, come le caratteristiche meccaniche dei materiali, gli spessori dei vari strati della pavimentazione e la portanza del sottofondo.

La verifica consiste nel controllare che il numero di assi standard che la pavimentazione può sopportare sia maggiore del numero di assi equivalenti che transitano durante la vita utile della stessa.

4.1 PAVIMENTAZIONE TIPO 2 (VIABILITÀ DI ACCESSO AI PIAZZALI E DESTINAZIONI PARTICOLARI)

4.1.1 Sovrastruttura stradale di progetto

Per la scelta della sovrastruttura stradale di progetto, si è proceduto dapprima fissando il Traffico Commerciale, secondo quanto indicato dal Catalogo delle Pavimentazioni Stradali, rispettivamente a:

• 400.000 di veicoli corrispondenti al 1° livello per le viabilità di accesso ai piazzali e destinazioni particolari.

e successivamente calcolando il Traffico Giornaliero Medio (TGM). Si segnala che sono stati ipotizzati la percentuale di veicoli pesanti (assunta pari al 5%) ed il tasso di incremento annuo del traffico (pari al 2.5%).

Successivamente, sulla base della categoria di traffico assegnata e del valore del modulo resiliente del sottofondo (Mr = 90MPa), è stato definito il pacchetto stradale (tabella 2 e tabella 3).

4.1.2 Traffico di progetto

Non avendo a disposizione i dati di traffico nell'area oggetto di intervento si è assunto un traffico commerciale previsto pari a 400.000 di veicoli (corrispondente al 1° livello di traffico richiamato nel catalogo [N.10]).

Pertanto, assunto un traffico commerciale e definiti i seguenti parametri:

• Vita Utile della pavimentazione

N = 20 anni

• percentuale dei veicoli commerciali

 $p_c = 5\%$

tasso incremento annuo traffico commerciale

R = 2.5%

FOGLIO 10 di 20

si determina il valore del Traffico Giornaliero Medio.

DETERMINAZIONE DEL TGM DAL NUMERO DI PASSAGGI DI VEICOLI COMMERCIALI AL "N" ANNO $n_{vca} = TGM_{TOT} \cdot p_{sm} \cdot p_c \cdot p_{corsia} \cdot 365$ Tipologia di Strada Viabilità di accesso ai piazzali Vita Utile della Pavimentazione [anni] Ν 20 Traffico Giornaliero Medio **TGM** 858 [veic./gg] Percentuale traffico nel senso di marcia 100 [%] p_{sm} Percentuale veicoli commerciali 5,0 [%] p_c Percentuale veicoli commerciali sulla corsia 1,0 p_{corsia} Tasso incremento annuo traffico commerciale R 2,5 [%] Traffico annuo 15.659 n_{vca} $T^N = n_{vca} \cdot \left[\frac{(1+R)^N - 1}{R} \right]$ T^N Traffico commerciale previsto 400.000

Step 1 – Determinazione del TGM dal numero di passaggi di veicoli commerciali al "N" anno

Si osserva che la percentuale di traffico del senso di marcia assunta pari a 100% (p_{sm}) si riferisce al fatto di avere il TGM per senso di marcia; inoltre la percentuale di veicoli commerciali sulla corsia (p_{corsia}) assunta pari ad 1 vuole indicare la presenza di una corsia per senso di marcia.

4.1.3 Descrizione della verifica attraverso l'AASHTO

Nella metodologia dell'"AASHTO Guide for Design of Pavement Structures" si tiene conto della "resistenza strutturale" della pavimentazione attraverso un parametro che va sotto il nome di "structural number" SN.

Esso è funzione degli spessori degli strati s_i , della "resistenza" dei materiali impiegati rappresentata attraverso i "coefficienti strutturali di strato" a_i e della loro sensibilità all'acqua rappresentata attraverso i "coefficienti di drenaggio" m_i .

L'espressione analitica dello *structural number* è: $SN = \sum_{i} a_i \cdot m_i \cdot S_i$

dove:

- *i* è il numero degli strati costituenti la sovrastruttura stradale;
- a_i è un coefficiente che esprime la capacità relativa dei materiali impiegati nei vari strati della pavimentazione a contribuire come componenti strutturali alla funzionalità della sovrastruttura. Tali coefficienti sono funzione del tipo e proprietà del materiale.

TRATTA LERCARA DIR. – CALTANISSETTA XIRBI (LOTTO 3)

Relazione di calcolo sovrastruttura stradale – tipo 2

COMMESSA RS3T LOTTO 30 CODIFICA D 78 RH DOCUMENTO

REV.

FOGLIO

- S_i è lo spessore dello strato;
- m_i è un coefficiente funzione della qualità del drenaggio e della percentuale di tempo durante il quale la pavimentazione è esposta a livelli di umidità prossimi alla saturazione. Per il minor effetto che l'acqua ha sui materiali legati quali i conglomerati bituminosi rispetto a quelli non legati il coefficiente di drenaggio viene considerato solo per il misto granulare sciolto dello strato di fondazione. Tale coefficiente varia tra 0.4 e 1.4; facendo riferimento ad una percentuale di tempo durante il quale si è in presenza di livelli di umidità prossimi alla saturazione compresi tra il 5 % e il 25% ed una qualità del drenaggio media si assume uguale ad 0.9.

Nello specifico i coefficienti strutturali relativi agli strati di usura (a_1) e di base (a_3) si ricavano direttamente dai monogrammi presenti sull'AASHTO GUIDE in funzione della stabilità Marshall scelta per i rispettivi strati. Il valore del coefficiente relativo allo strato di collegamento (a_2) si ricava per interpolazione lineare dei parametri a_1 e a_3 , ricavati sempre dall'ASSHTO GUIDE però con il valore della stabilità Marshall relativa allo strato di collegamento, con le rispettive quote. Infine, il coefficiente relativo allo strato di fondazione (a_4) si ricava sempre dall'ASSHTO GUIDE in funzione del CBR.

Si osserva che poiché in Italia si utilizza lo strato superficiale in usura e binder, con conseguente minore rigidezza a parità degli altri fattori (quali ad esempio spessori degli strati, materiali), i valori ottenuti da tali monogrammi per tali strati sono stati ridotti nella misura del 10%.

4.1.4 Caratteristiche strutturali: calcolo dello "Structural Number"

I coefficienti strutturali a_i sono stati calcolati tramite gli abachi proposti della stessa normativa.

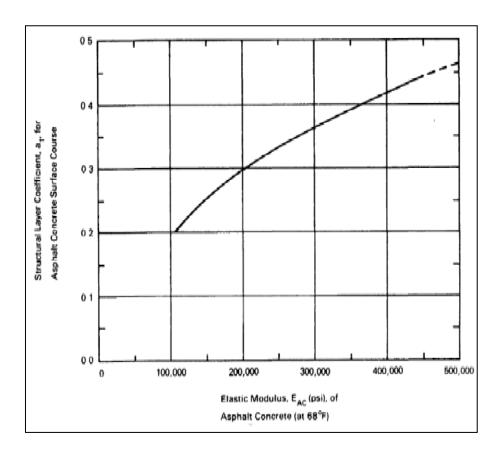
Per il coefficiente dello strato di usura l'AASHTO prevede come dato di input il Modulo Resiliente a 68°F (20°C). il modulo resiliente verrà calcolato tramite la formulazione del modulo complesso:

$$Mr = \beta \cdot |E^*|_{previsionale-medio}$$

Essendo $\beta = 1$ ci basterà calcolare il modulo complesso previsionale.

Per il calcolo del modulo complesso previsionale è stato utilizzato il metodo proposto dalla Shell francese facendo riferimento ai valori di un bitume di classe 50/70:

Sb [Pa] t.c. E[20°C]		
°C	20	
2,1	5E+07	
α		
9,50E+00		
E [Pa]		
3,13E+09		
E [PSI]		
454.491		



TRATTA LERCARA DIR. – CALTANISSETTA XIRBI (LOTTO 3)

Relazione di calcolo sovrastruttura stradale - tipo 2

COMMESSA RS3T LOTTO 30 CODIFICA D 78 RH DOCUMENTO NV0000 004

REV. A FOGLIO 12 di 20

E*= 455 [PSI]	$a_1 = 0.45$
---------------	--------------

Tale valore viene poi ridotto del 10% nei calcoli, risultando pari a 0.405.

Per il coefficiente dello strato di base il dato di input per entrare nell'abaco è la Stabilità Marshall. Per questa sono stati utilizzati i valori medi tra quelli di Autostrade Spa

Stabilità		Autostrade									
Marshall	S ₇₅ [kg]	S ₅₀ [kg]	S ₅₀ (lb)								
Usura	1.100	917	2.017								
Collegam.	1.000	833	1.833								
Base	800	667	1.467								

S _{M50} =1467 [lb]	a ₃ =0.28

TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3)

Relazione di calcolo sovrastruttura stradale - tipo 2

COMMESSA RS3T LOTTO 30 CODIFICA D 78 RH DOCUMENTO NV0000 004

REV.

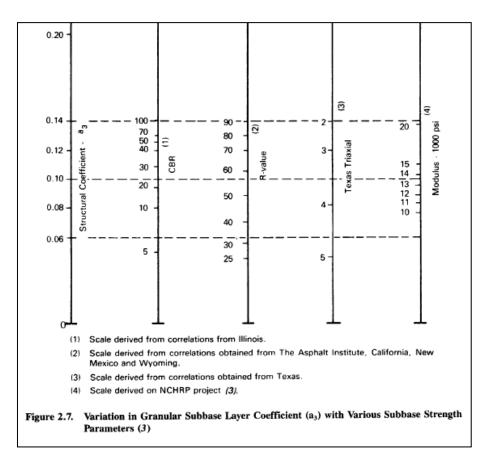
FOGLIO 13 di 20

Poiché lo strato di collegamento non è previsto nella configurazione standard impiegata nell'esperimento AASHTO Guide il coefficiente a₂ verrà calcolato interpolando linearmente i coefficienti dell'usura e della base.

$$a_2 := a_{1c} - \frac{a_{1c} - a_{3c}}{\frac{h_1}{2} + h_2 + \frac{h_3}{2}} \cdot \left(h_1 + \frac{h_2}{2}\right)$$

$$a_2 = 0.32$$

Per il coefficiente relativo allo strato di fondazione in misto granulare è stato utilizzato il seguente abaco proposto dall'AASHTO Guide:


TRATTA LERCARA DIR. – CALTANISSETTA XIRBI (LOTTO 3)

Relazione di calcolo sovrastruttura stradale - tipo 2

COMMESSA RS3T LOTTO 30 CODIFICA D 78 RH DOCUMENTO NV0000 004

REV.

FOGLIO 14 di 20

 $a_4 = 0.12$

DA CAPITOLATO ANAS

Indice di portanza C.B.R. (CNR UNI 10009) dopo quattro giorni di imbibizione in acqua (eseguito sul materiale passante al crivello UNI 25 mm) non minore di 50, per un intervallo di + 2% rispetto all'umidità ottima di costipamento.

Si riporta nel seguito il calcolo dello Structural Number

PROGETTO DEFINITIVO

TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3)

Relazione di calcolo sovrastruttura stradale – tipo 2

COMMESSA LOTTO CODIFICA RS3T 30 D 78 RH

DOCUMENTO

'. FOGLIO 15 di 20

	CA	LCOLO E	ELLO ST	TRUCTURAL	NUMBEI	R "SN"
	$SN = \sum_{i} a_{i}$	$a_i \cdot m_i \cdot S_i$				
		Structu	ral Number	SN	7,61	[cm]
	z i [cm]	ai		m _i		
Usura	4	0,41	a ₁			
Collegam.	5	0,32	a_2			
Base	8	0,28	a_3	1 m ₁		
Fondazione MG	20	0,12	a ₄	0,9 m ₂		

Step 2 – Calcolo dello Structural Number SN

4.1.5 Calcolo del traffico in assi standard equivalenti ($N_{8.2ton}$)

Il parametro caratterizzante il traffico è il numero totale di assi singoli da 18 chilo-pounds W_{18} (8.2 tonnellate) equivalenti, agli effetti del deterioramento, a quelli reali caratterizzati da carichi diversi "applicati" alla sovrastruttura nel periodo di esercizio previsto in sede di progetto.

Il valore del termine $N_{8.2t}$ deriva dall'analisi del traffico e dipende dalla categoria della strada e dallo "spettro di traffico dei veicoli commerciali", costituito dalla distribuzione percentuale delle diverse tipologie di veicoli commerciali che si prevede vi possano transitare.

Per il suddetto spettro, in mancanza di una migliore determinazione, si impiega quello proposto dalle norme CNR 178/1995 [N.10]. Nel presente caso si associa alla viabilità oggetto di verifica lo spettro di traffico corrispondente al n.7: "strade urbane di quartiere e locali".

Utilizzando quindi il criterio definito dall'AASHTO, il traffico è stato convertito in un numero di passaggi di assi standard (8.2 tonnellate) equivalenti tramite la relazione:

$$N_{8,2} = T^N \cdot C_{SN}$$

dove:

- T^N rappresenta il numero di veicoli commerciali transitante durante la vita utile dell'opera;
- C_{SN} è un coefficiente di equivalenza tra il generico asse reale, caratterizzato da un peso P_i e tipologia T_i, e l'asse singolo standard da 8.2 ton.

TRATTA LERCARA DIR. – CALTANISSETTA XIRBI (LOTTO 3)

Relazione di calcolo sovrastruttura stradale - tipo 2

COMMESSA RS3T LOTTO 30 CODIFICA D 78 RH DOCUMENTO NV0000 004 REV.

FOGLIO 16 di 20

CALCOLO DEL NUMERO DI PASSAGGI DI ASSI STANDARD EQUIVALENTI

Numero di passaggi di assi standar equivalenti

$$C_{SNi} = C_{SN}(P_i, T_i, PSI_f) = 10^{-A}$$

$$A = \left\{ 4,79 \cdot [log(18+1) - log(0,225 \cdot P_i \cdot T_i)] + 4,33 \cdot log(T_i) + \frac{G}{B_i} - \frac{G}{B^*} \right\}$$

$$G = \log \left(\frac{PSI_{in} - PSI_{fin}}{2.7} \right)$$

$$B_{i} = 0.4 + \left(\frac{0.081 \cdot (0.225 \cdot P_{i} + T_{i})^{3.23}}{\left(\frac{SN}{2.54} + 1\right)^{5.19} \cdot T_{i}^{3.23}}\right)$$

Structural Number SN 7,61 [cm] Peso dell'asse i-esimo P_i [kN]

T_i 1 asse singolo

2 asse tandem3 asse tridem

 $N_{8,2} = T^N \cdot C_{SN}$ 88.257

Step 3 – Calcolo del numero di passaggi di assi standard equivalenti

A seguire si riassumono i calcoli svolti:

TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3)

Relazione di calcolo sovrastruttura stradale - tipo 2

COMMESSA RS3T

CODIFICA D 78 RH

LOTTO 30

DOCUMENTO NV0000 004

FOGLIO 17 di 20

Tipologia d	iveicoli
1	Autocarri leggeri
2	Autocarri leggeri
3	Autocarri medi e pesanti
4	Autocarri medi e pesanti
5	Autocarri pesanti
6	Autocarri pesanti
7	Autotreni ed autoarticolati
8	Autotreni ed autoarticolati
9	Autotreni ed autoarticolati
10	Autotreni ed autoarticolati
11	Autotreni ed autoarticolati
12	Autotreni ed autoarticolati
13	mezzi d'opera
14	autobus
15	autobus
16	autobus

Assi singoli [kN]												Ass	si Tande	m [kN]	Assi Ttridem [kN]					
10	15	20	30	40	50	60	80	90	100	110	120	80+80	90+90	100+100	80+80+80	90+90+90	130+130+130			
1		1																		
	1		1																	
				1			1													
					1					1										
				1								1								
						1								1						
				1			2	1												
						1			3											
				1								2								
						1							1	1						
				1					1						1					
						1				1						1				
					1						1						1			
				1			1								,					
						1			1						,					
					1		1													

400.000

F					4	ssi singo	li [kN]						Ass	i Tandem	[kN]	Assi Ttridem [kN]						
[%]	10	15	20	30	40	50	60	80	90	100	110	120	80+80	90+90	100+100	80+80+80	90+90+90	130+130+130				
0,8000	0,800	0,000	0,800	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
0,0000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
0,0000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
0,0000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
0,0000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
0,0000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
0,0000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
0,0000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
0,0000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
0,0000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
0,0000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
0,0000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
0,0000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
0,2000	0,000	0,000	0,000	0,000	0,200	0,000	0,000	0,200	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
0,0000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
0,0000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000				
Σ	0,8000	0,0000	0,8000	0,0000	0,2000	0,0000	0,0000	0,2000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000				

	Assi singoli [kN]												Ass	Tandem	[kN]	Assi Ttridem [kN]			
	10	15	20	30	40	50	60	80	90	100	110	120	160	180	200	240	270	390	í
В	0,40275	0,40718	0,41503	0,44549	0,50363	0,59960	0,74411	1,22386	1,58263	2,03693	2,59934	3,28271	1,22386	1,58263	2,03693	1,22386	1,58263	4,10019	i
B _{8,2}	1,22386	1,22386	1,22386	1,22386	1,22386	1,22386	1,22386	1,22386	1,22386	1,22386	1,22386	1,22386	1,22386	1,22386	1,22386	1,22386	1,22386	1,22386	ı
Α	3,33861	2,72567	2,25896	1,57864	1,10046	0,74214	0,45644	0,00000	-0,19560	-0,37666	-0,54552	-0,70370	-0,13847	-0,33408	-0,51513	-0,21948	-0,41508	-1,07176	
C_{SNi}	0,00046	0,00188	0,00551	0,02639	0,07935	0,18108	0,34959	1,00000	1,56893	2,38044	3,51175	5,05472	1,37554	2,15813	3,27439	1,65758	2,60064	11,79662	
n*C _{SNi}	0,000367	0,000000	0,004407	0,000000	0,015870	0,000000	0,000000	0,200000	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,
G	-0,200914843																		

4.1.6 Calcolo del traffico sopportabile (W_{18})

L'equazione per la verifica delle pavimentazioni flessibili è la seguente:

$$LogW_{18} = Z_r \cdot S_0 + 9.36 \cdot (\log SN + 1) - 0.20 + \frac{\log \frac{\left(PSI_{in} - PSI_{fin}\right)}{4.2 - 1.5}}{0.40 + \frac{1094}{\left(SN + 1\right)^{5.19}}} + 2.32 \cdot \log M_r - 8.07$$

in cui:

W₁₈ è il numero di passaggi di assi singoli equivalenti da 18 kpounds (8.2 t o 80 kN) sopportabile;

TRATTA LERCARA DIR. – CALTANISSETTA XIRBI (LOTTO 3)

Relazione di calcolo sovrastruttura stradale – tipo 2

COMMESSA RS3T LOTTO 30 CODIFICA D 78 RH DOCUMENTO NV0000 004 REV.

FOGLIO 18 di 20

- Z_r è il valore della variabile standardizzata legata all'affidabilità R (che è la probabilità che il numero di ripetizioni di carico N_t (max) che portano il valore $PSI = PSI_{fin}$ sia maggiore o uguale al numero di ripetizioni N_T realmente applicati alla sovrastruttura);
- S₀ è la deviazione standard che tiene conto dell'errore che si commette nelle previsioni dei volumi di traffico e delle prestazioni della pavimentazione;
- PSI_{ini} è il grado di efficienza iniziale;
- PSI_{fin} è il grado di efficienza finale;
- M_r è il modulo resiliente del sottofondo [psi] (oss.:1 MPa = 145 psi);
- SN è lo structural number [inch].

Per quanto riguarda il valore dell'affidabilità R è possibile ricavare il valore della variabile Z_r dalla tabella dell'ASSHTO GUIDE; mentre la variabile S_0 assume un valore medio compreso tra 0.40 e 0.50. Nel caso in esame si è assunto:

CALCOLO DEL NUMERO MASSIMO DI ASSI STANDARD SOPPORTABILI DALLA PAVIMENTAZIONE Affidabilità R 80 [%] -0,841 Z_{R} 0,45 So Grado efficienza iniziale 4,2 PSI iniz Grado efficienza finale PSI fin 2,5 Structural Number SN 3,00 [poll] Modulo resiliente del sottofondo Mr (psi) 13050 [psi] $Log W_{18} = Z_r \cdot S_0 + 9.36 \cdot \log(SN + 1) - 0.20 +$ $+(2.32 \cdot \log M_r) - 8.07$ $(SN+1)^{5.19}$ logW₁₈ 6,36788 W 8,2 2.332.787 PAVIMENTAZIONE VERIFICATA

Step 4 – Calcolo del numero massimo di assi standard sopportabili dalla pavimentazione

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

PROGETTO DEFINITIVO

TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3)

Relazione di calcolo sovrastruttura stradale - tipo 2

COMMESSA RS3T

CODIFICA D 78 RH

DOCUMENTO NV0000 004

FOGLIO 19 di 20

4.1.7 Verifica della sovrastruttura

Con riferimento all'asse standard da 8.2 ton impiegato nei calcoli ed una vita utile della sovrastruttura stimata in 20 anni si ha che:

n. di passaggi sopportabili

 $W_{8.2t} = 2.332.787$

n. di passaggi previsti

 $N_{8.2t} = 88.257$

Pertanto, poiché $W_{8.2t} > N_{8.2t}$ la sovrastruttura risulta verificata.

TRATTA LERCARA DIR. – CALTANISSETTA XIRBI (LOTTO 3)

Relazione di calcolo sovrastruttura stradale - tipo 2

COMMESSA RS3T LOTTO 0

CODIFICA D 78 RH DOCUMENTO

REV.

FOGLIO 20 di 20

5 CONCLUSIONI

Il progetto della sovrastruttura stradale è stato condotto dapprima fissando il Traffico Commerciale (pari a 400.000 veicoli corrispondenti al 1° livello per le viabilità di accesso ai piazzali e per le destinazioni particolari) e successivamente calcolando il Traffico Giornaliero Medio (TGM), secondo quanto indicato dal Catalogo delle Pavimentazioni Stradali. Ai fini del calcolo del TGM sono stati ipotizzati la percentuale di veicoli pesanti e la percentuale del tasso di incremento annuo del traffico.

Successivamente, sulla base della categoria di traffico assegnata e del valore del modulo resiliente del sottofondo (Mr=90MPa), è stato definito un pacchetto stradale.

Si è quindi svolta la verifica della sovrastruttura attraverso il metodo empirico/probabilistico proposto all'interno del manuale di progettazione dell'AASTHO (AASTHO Guide for Design of Pavement Structures); verificando quindi che il numero di passaggi sopportabili $W_{8,2}$ ton risulti maggiore del numero di passaggi previsti $N_{8,2}$ ton.

Infine, si vuole osservare che la verifica della pavimentazione con il metodo empirico dell'AASHTO vuole rappresentare la indicazione di una prestazione offerta della sovrastruttura sulla base delle assunzioni fatte. Sarà l'Ente gestore della strada che sulla base dei dati di flusso in suo possesso potrà programmare al meglio i cicli di manutenzione al fine di garantire all'utente una sempre corretta fruibilità della sovrastruttura.