COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

		INIED	A QTDI	ITTIID	E SUD
U	J.U.	IINER	ADIRI	JIIUR	C SUL

PROGETTO DEFINITIVO

TRATTA LERCARA DIR. - CALTANISSETTA XIRBI (LOTTO 3)

Opere di sostegno viabilità - Lotto 3b

NV62C: Muro di sostegno MU85

Relazione di calcolo

SCALA:
-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

RS3T 30 D 78 CL MU8500 001 B

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Feb-2020	A.Di Costanzo	Feb-2020	A.Barreca	Feb-2020	D.Tiberti
В	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Apr-2020	A.Di Costanzo	Apr-2020	A.Barreca	Apr-2020	Apr-2020
			,	The state of the s				A. 1.35 E
								Prov. dl.N.
								A SOLO SOLO SOLO SOLO SOLO SOLO SOLO SOL
								ordine deg

File: RS3T.3.0.D.78.CL.MU.85.0.0.001.B

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA VALLELUNGA – CALTANISETTA XIRBI (LOTTO 3b)

OPERE DI SOSTEGNO VIABILITA' – LOTTO 3B

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO COMMESSA LOTTO

RS3T 30 D 78

CODIFICA CL

DOCUMENTO MU8500 001

REV. FO

FOGLIO 2 di 78

INDICE

1.	PREM	ESSA		5
	1.1	DE	SCRIZIONE DELL'OPERA	
2.	NORM	ATIVA	DI RIFERIMENTO	7
3.	DOCU	MENTI	DI RIFERIMENTO	7
4.	UNITÀ	DI MIS	SURA E SIMBOLOGIA	8
5.	CARA'	TTERIS	TICHE DEI MATERIALI	9
	5.1	CA	LCESTRUZZO	9
	5.2	AC	CIAIO IN BARRE AD ADERENZA MIGLIORATA B450 C	11
6.	INQUA	ADRAM	ENTO GEOTECNICO	12
7.	CRITE	RI DI V	ERIFICA	14
	7.1	VE	RIFICHE GEOTECNICHE (SLU) IN CONDIZIONI STATICHE	14
		7.1.1	VERIFICA A SCORRIMENTO	16
		7.1.2	VERIFICA A RIBALTAMENTO	17
		7.1.3	VERIFICA A CARICO LIMITE DELLA FONDAZIONE	17
		7.1.4	VERIFICA A STABILITÀ GLOBALE	17
	7.2	VE	RIFICHE GEOTECNICHE (SLV) IN CONDIZIONI SISMICHE	18
	7.3	VE	RIFICHE GEOTECNICHE (SLE)	20
	7.4	VE	RIFICHE GEOTECNICHE - URTO	21
	7.5	VE	RIFICHE STRUTTURALI SLU	22
		7.5.1	CRITERI DI VERIFICA DELLE SEZIONI IN C.A.	22
		7.5.2	VERIFICHE PER GLI STATI LIMITE ULTIMI A FLESSIONE - PRESSOFLESSIONE	22
		7.5.3	VERIFICA AGLI STATI LIMITE ULTIMI A TAGLIO	22
	7.6	VE	RIFICHE STRUTTURALI SLE	24
		7.6.1	VERIFICHE ALLE TENSIONI	24
		7.6.2	VERIFICHE A FESSURAZIONE	25
	7.7	VE	RIFICHE STRUTTURALI - URTO	27

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.

 RS3T
 30 D 78
 CL
 MU8500 001
 B

FOGLIO

3 di 78

8.	ANAL	ISI DEI	CARICHI	28
	8.1	PES	SI PROPRI	28
	8.2	CA	RICHI PERMANENTI	29
		8.2.1	PARAPETTO METALLICO	29
		8.2.2	BARRIERA DI SICUREZZA	29
		8.2.3	SPINTA DEL TERRENO	29
	8.3	CA	RICHI VARIABILI	31
		8.3.1	CARICHI MOBILI DA TRAFFICO	31
	8.4	CA	RICHI ECCEZIONALI – URTO DA TRAFFICO VEICOLARE	32
	8.5	VA	LUTAZIONE DELL'AZIONE SISMICA	33
		8.5.1	VITA NOMINALE	33
		8.5.2	CLASSE D'USO	33
		8.5.3	PERIODO DI RIFERIMENTO	33
		8.5.4	PARAMETRI SISMICI	33
9.	COMB	INAZIO	ONI DI CARICO	38
10.	PROGI	ЕТТО Е	VERIFICA DEL MURO DI SOSTEGNO "TIPO 1"	42
	10.1	DA	TI DI INPUT	42
	10.2	CA	LCOLO DELLE AZIONI	46
		10.2.1	FORZE VERTICALI E INERZIALI	46
		10.2.2	SPINTE IN CONDIZIONE STATICA	48
		10.2.3	SPINTE IN CONDIZIONE SISMICA +	49
		10.2.4	SPINTE IN CONDIZIONE SISMICA -	50
		10.2.5	SPINTE IN PRESENZA DI URTO	51
	10.3	VE	RIFICHE GEOTECNICHE	52
		10.3.1 DRENA	VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C.	52
		10.3.2 DRENA	VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C.	54

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 4 di 78

		VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. RENATE	58
		VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. RENATE	60
	10.3.5	VERIFICA DI STABILITÀ GLOBALE – COND. DRENATE	64
	10.3.6	VERIFICA DI STABILITÀ GLOBALE – COND. NON DRENATE	68
0.4	VER	RIFICHE STRUTTURALI	72
	10.4.1	CALCOLO DELLE SOLLECITAZIONI	72
	10.4.2	VERIFICHE SLU	74
	10.4.3	VERIFICHE SLE TENSIONE	76
	10.4.4	VERIFICHE SLE FESSURAZIONE	77
	10.4.5	VERIFICHE STRUTTURALI IN PRESENZA DI URTO	78

1. PREMESSA

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo della direttrice ferroviaria Messina-Catania-Palermo, nuovo collegamento Palermo-Catania tratta Vallelunga – Caltanisetta Xirbi (Lotto 3b).

1.1 DESCRIZIONE DELL'OPERA

Nella presente relazione sono illustrati i calcoli e le verifiche del muro di sostegno MU85 che si sviluppa in pianta dal 0+086,92 km al km 0+110,74 km (Figura 1-1, Figura 1-2).

Figura 1-1 – NV62C: Muro di sostegno MU85 - Pianta.

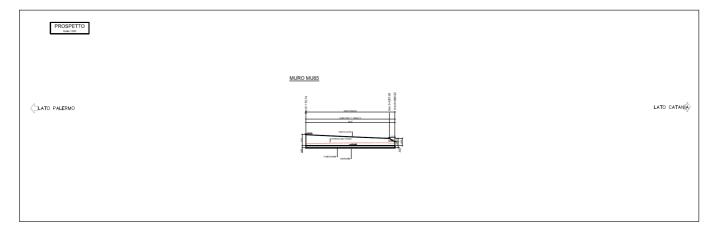


Figura 1-2 – NV62C: Muro di sostegno MU85- Prospetto.

Quanto riportato di seguito consentirà di verificare che il dimensionamento della struttura è stato effettuato nel rispetto dei requisiti di resistenza richiesti all'opera.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA VALLELUNGA – CALTANISETTA XIRBI (LOTTO 3b) OPERE DI SOSTEGNO VIABILITA' – LOTTO 3B						
NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO	COMMESSA RS3T	LOTTO 30 D 78	CODIFICA	DOCUMENTO MU8500 001	REV.	FOGLIO 6 di 78	

L'altezza del muro è variabile con lo sviluppo dell'opera stessa fino ad un massimo di 4.50m, con spessore del paramento in testa di 0.4m, spessore della soletta di fondazione pari a 0.60m e larghezza della stessa pari a 4.20m.

E' stata individuata la tipologia di <u>"muro di sostegno"</u> le cui caratteristiche sono di seguito riassunte:

• muro "tipo 1" per altezze fino a 4,50 metri la fondazione del muro è diretta ed è caratterizzata da una lunghezza di 4.20 m e spessore 0.60 m. Il ricoprimento sopra la zattera di valle è pari ad almeno 20 cm. L'altezza del paramento massima è pari a 4.50 m (Figura 1-3).

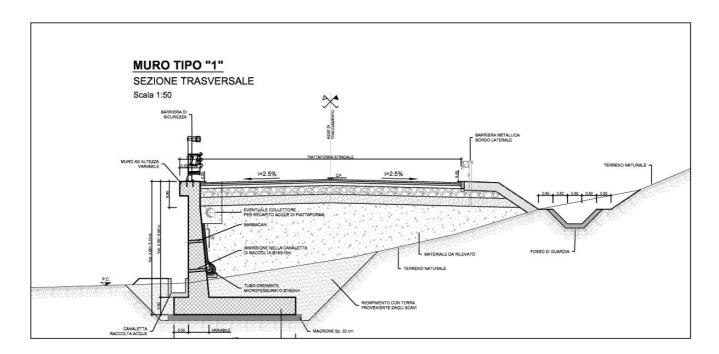


Figura 1-3 – NV62C: Muro di sostegno MU85- Sezione.

Di seguito si svolgerà la verifica per ogni tipo di muro precedentemente descritto caratterizzato dall'altezza di paramento massima.

2. NORMATIVA DI RIFERIMENTO

L'interpretazione dei risultati e la redazione della presente relazione sono stati effettuati nel rispetto della Normativa in vigore.

I principali riferimenti normativi sono i seguenti:

Norme Tecniche per le Costruzioni - D.M. 17-01-18 (NTC-2018);

Circolare n. 7 del 21 gennaio 2019 - Istruzioni per l'Applicazione dell'aggiornamento delle Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale 17 gennaio 2018;

Regolamento (UE) N.1299/2014 del 18 novembre 2014 della Commissione Europea. Relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.

Eurocodici EN 1991-2: 2003/AC:2010 - Eurocodice 1 - Parte 2

RFI DTC SI MA IFS 001 C del 21-12-18 - Manuale di Progettazione delle Opere Civili

3. DOCUMENTI DI RIFERIMENTO

Vengono presi a riferimento i seguenti elaborati grafici progettuali di pertinenza:

RS3T.3.0.D.78.P9.MU.85.0.0.001: <u>"Opere di sostegno viabilità – Lotto 3b – NV62C: Muro di sostegno MU85 – Pianta, prospetto e sezioni"</u>

RS3T.3.0.D.78.TT.OC.00.0.0.007.A: <u>"Opere civili – Elaborati generali OO. CC. – Tabella incidenze armature Opere Civili Viabilità – Lotto 3b"</u>

RS3T.3.0.D.78.GE.GE.00.0.0.002.B: <u>"Geotecnica – Elaborati generali – Relazione geotecnica generale – Lotto 3b"</u>

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO COMMESSA RS3T LOTTO

30 D 78

CODIFICA

DOCUMENTO MU8500 001

REV. FOGLIO

8 di 78

4. UNITÀ DI MISURA E SIMBOLOGIA

Si utilizza il Sistema Internazionale (SI):

unità di misura principali

N (Newton) unità di forza

m (metro) unità di lunghezza

kg (kilogrammo-massa) unità di massa

s (secondo) unità di tempo

unità di misura derivate kN

(kiloNewton) 103N

MN (megaNewton) 106N

kgf (kilogrammo-forza) 1 kgf = 9.81 N

cm (centimetro) 10-2 m

mm (millimetro) 10-3 m

Pa (Pascal) 1 N/m2

kPa (kiloPascal) 103 N/m2

MPa (megaPascal) 106 N/m2

N/m3 (peso specifico)

g (accelerazione di gravità) ~9.81 m/s2

corrispondenze notevoli

1 MPa = 1 N/mm2

1 MPa ~ 10 kgf/cm2

Si utilizzano i seguenti principali simboli con le relative unità di misura normalmente adottate:

v (gamma) peso dell'unità di volume (kN/m3)

 σ (sigma) tensione normale (N/mm2)

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 9 di 78

tensione tangenziale (N / mm2)

 ϵ (epsilon) deformazione (m/m) -

5. CARATTERISTICHE DEI MATERIALI

Le caratteristiche dei materiali sono ricavate con riferimento alle indicazioni contenute nei capitoli 4 e 11 del D.M. 17 gennaio 2018. Nelle tabelle che seguono sono indicate le principali caratteristiche e i riferimenti dei paragrafi del D.M. citato.

5.1 CALCESTRUZZO

• Elemento strutturale: fondazione ed elevazione muro di sostegno

Classe di resistenza = C32/40;

Rck = resistenza cubica = 40 N/mm2;

fck = resistenza cilindrica caratteristica = 0.83 Rck = 33.20 N/ mm2;

fcm = resistenza cilindrica media = fck + 8 = 41.20 N/ mm2;

fcd = α cc fck/ γ c = 18,81 N/mm2;

fctm = resistenza a trazione media = $0.30 \times \text{fck}^2/3 = 3.10 \text{ N/ mm2}$;

fcfm = resistenza a traz. per flessione media = 1.20 x fctm = 3.72 N/ mm2;

fcfk = resistenza a traz. per flessione carati. = 0.70 x fcfm = 2.60 N/ mm2;

Ecm = modulo elast. tra 0 e 0.40fcm = $22000 \text{ x (fcm/10)}^{0.3} = 33642.78 \text{ N/ mm2}$;

Tolleranza di posa del copriferro = 10 mm;

Classe di esposizione XC4

Copriferro minimo c_{min}= 45 mm

Condizioni ambientali: aggressive

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 10 di 78

CALCOLO COPRIFERRO - § C4.1.6.1.3 ISTRUZIONI NTC 2018

Elemento strutturale: fondazione ed elevazione muro di sostegno	<u> – mur</u>	o tipo 1
Diametro (o diametro equivalente) barre longitudinali:	20	[mm]
Diametro staffe:	10	[mm]
Classe Calcestruzzo:	C32/4	0
Condizioni ambientali:	Aggre	ssive
Vita nominale costruzione:	50	[anni]
Tolleranza di posa:	10	[mm]
Copriferro staffe:		
Copriferro minimo c _{min} :	35	[mm]
Copriferro nominale Netto Staffe:	45	[mm]
Copriferro barre longitudinali:		
Copriferro nominale Netto barre longitudinali:	65	[mm]
Copriferro nominale dal Baricentro della Barra longitudinale:	75	[mm]

5.2 ACCIAIO IN BARRE AD ADERENZA MIGLIORATA B450 C

L'acciaio per cemento armato B450C è caratterizzato dai seguenti valori nominali delle tensioni caratteristiche di snervamento e rottura da utilizzare nei calcoli:

$f_{v \text{ nom}}$	450 N/mm ²
$f_{t \text{ nom}}$	540 N/mm ²

Tabella 5-1 Tensioni caratteristiche acciaio.

E deve rispettare i requisiti indicati nella seguente tabella:

CARATTERISTICHE	REQUISITI	FRATTILE (%)
Tensione caratteristica di snervamento f _{yk}	$\geq f_{ m v \ nom}$	5.0
Tensione caratteristica di rottura f _{tk}	$\geq f_{\rm t\ nom}$	5.0
$(f_t/f_y)_k$	≥1,15 <1,35	10.0
$(\mathbf{f}_{\mathrm{v}}/\mathbf{f}_{\mathrm{vnom}})_{\mathrm{k}}$	≤ 1,25	10.0
Allungamento (Agt)k:	≥ 7,5 %	10.0
Diametro del mandrino per prove di piegamento a 90 ° e successivo raddrizzamento senza cricche: $\phi < 12 \text{ mm}$	4φ	
12≤ φ ≤ 16 mm	5 ф	
per 16 < φ≤25 mm	8 ф	
per 25 < φ ≤ 40 mm	10 ф	

Tabella 5-2 Requisiti acciaio.

Inoltre si ha:

- Es = 210000 N/mm2
- Sovrapposizioni barre ≥ 40φ

Resistenza di calcolo dell'acciaio per la verifica agli SLU (γs=1.15):

Resistenza di calcolo a rottura per trazione e deformazione corrispondente:

- fyd = fyk/ γ s 391.3 N/mm2
- $\epsilon yd = fyd/Es 0.186\%$

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 12 di 78

6. INQUADRAMENTO GEOTECNICO

Il modello geotecnico di calcolo è stato definito sulla base di quanto riportato nella relazione geotecnica: Si riportano di seguito i terreni su cui poggiano i muri di sostegno lungo il tracciato, con i parametri fisici e meccanici ad essi assegnati. Da un'analisi dei dati a disposizione emerge che lo strato di terreno sul quale verrà impostato il piano di posa della fondazione dei muri di sostegno è caratterizzato dai valori dei parametri di calcolo riportati in Tabella 6-1. Per quanto riguarda i parametri meccanici assunti nel calcolo si sono considerati i valori medi dell'intervallo di variabilità riportato nel profilo geotecnico.

Si evidenzia, inoltre, la presenza di una coltre superficiale di circa 2m le cui caratteristiche non risultano tali da permettervi l'impostazione del piano di posa del muro di sostegno.

Unità litologiche da p.c.	da [m]	a [m]	γ [kN/m³]	c' _k [kPa]	φ' _k [°]	c _u [kPa]	E [MPa]
a2	2.00	12.00	19	15.0	25	75	100
FYN4	12.00	-	20	20.0	21	175	-

Tabella 6-1 – Valori di calcolo dei parametri geotecnici del terreno

In cui:

 γ = peso specifico del terreno;

 c'_k = coesione efficace;

 φ'_k = angolo d'attrito efficace;

 c_u = coesione non drenata;

E = Modulo di Young;

Il rilevato a monte avrà superficie orizzontale.

La falda è posta ad una profondità superiore a 5.0 metri dal piano campagna.

Per le caratteristiche dei rilevati stradali si assumono i seguenti parametri:

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI TRATTA VA	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA VALLELUNGA – CALTANISETTA XIRBI (LOTTO 3b) OPERE DI SOSTEGNO VIABILITA' – LOTTO 3B						
NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO	COMMESSA RS3T	LOTTO 30 D 78	CODIFICA	DOCUMENTO MU8500 001	REV.	FOGLIO		

- peso volume, γ = 19 kN/m³;
- angolo d'attrito, ϕ ' = 35°;
- coesione efficace c' = 0 kPa.

Per l'inquadramento geotecnico si rimanda alla "Relazione geotecnica generale" e ai relativi profili geotecnici.

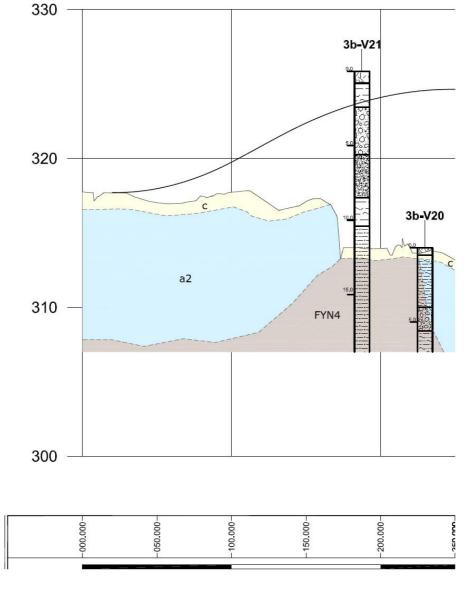


Figura 6-1 – Stralcio del profilo geotecnico.

7. CRITERI DI VERIFICA

7.1 VERIFICHE GEOTECNICHE (SLU) IN CONDIZIONI STATICHE

Nelle verifiche di sicurezza si è preso in considerazione tutti i meccanismi di stato limite ultimo sia a breve termine sia a lungo termine. Gli stati limite ultimi delle opere di sostegno si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno, e al raggiungimento della resistenza degli elementi strutturali che compongono le opere stesse.

Per i muri di sostegno su fondazione diretta si considerano i seguenti Stati Limite Ultimi:

SLU di tipo geotecnico (GEO)

- Scorrimento sul piano di posa;
- Collasso per carico limite del complesso fondazione-terreno;
- Ribaltamento;
- Stabilità globale del complesso opera di sostegno-terreno.

SLU di tipo strutturale (STR)

Raggiungimento della resistenza negli elementi strutturali.

La verifica di stabilità globale del complesso opera di sostegno – terreno deve essere effettuata, analogamente a quanto previsto al §6.8 delle NTC2018, secondo l'Approccio 1 – Combinazione 2 (A2+M2+R2), tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I delle NTC18.

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 2 con la combinazione (A1+M1+R3), tenendo conto dei valori dei coefficienti parziali riportati nelle 6.2.I, 6.2.II, 6.4.II e 6.4.VI delle NTC18.

Il progetto e la verifica dei muri di sostegno sono stati effettuati con l'ausilio di fogli di calcolo nei quali vengono implementate tutte le caratteristiche geometriche dei muri insieme ai parametri di resistenza geotecnica.

Per ogni tipologia di muro di sostegno studiata, si è verificato che le caratteristiche geometriche siano tali che il muro possa essere considerato a mensola con suola lunga (vedere Figura 7-1), così come previsto al §3.10.3.3. del Manuale di Progettazione delle Opere Civili (RFI DTC SI MA IFS 001 C).

Si è considerato, pertanto, che la spinta sull'opera di sostegno agisca sul piano verticale cd, assunto come il paramento virtuale del muro.

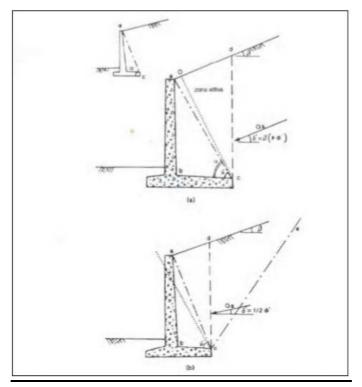
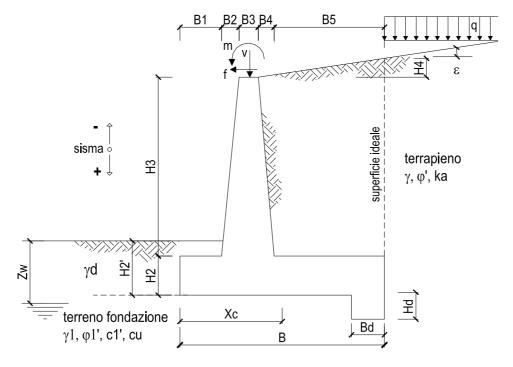


Figura 7-1 – Spinta sui muri di sostegno a mensola con suola lunga (caso a) e con suola corta (caso b).

Su tale paramento l'angolo di inclinazione δ della risultante della spinta (applicata ad 1/3 dell'altezza del paramento virtuale) si potrà assumere uguale all'angolo di inclinazione β del terrapieno, a meno che β non sia superiore all'angolo di resistenza al taglio del terreno ϕ ', nel qual caso si potrà assumere $\delta = \phi$ '.


Il terreno al di sopra della suola (abcd) è stato considerato stabilizzante nelle verifiche, e ad esso sono da applicarsi le forze d'inerzia in fase sismica.

Inoltre nella verifica a scorrimento e a ribaltamento dei muri di sostegno viene trascurata la resistenza passiva antistante il muro.

Nel nostro caso l'angolo di attrito fondazione-terreno nelle verifiche a scorrimento è pari a $\phi'_{cv} = \arctan{(tan \; \phi')}$

Le caratteristiche geometriche sono riportate sinteticamente nel seguente schema:

7.1.1 VERIFICA A SCORRIMENTO

La verifica dell'equilibrio allo stato limite di scorrimento viene condotta confrontando l'azione resistente R_h, pari al prodotto della risultante delle forze verticali per il coefficiente d'attrito con l'azione instabilizzante, pari alla risultante di tutte le componenti orizzontali delle forze agenti sul muro.

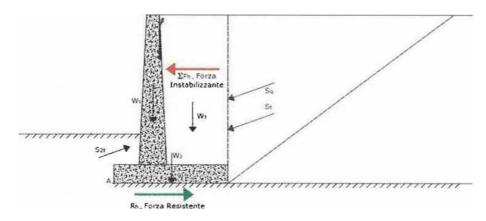


Figura 7-2 – Verifica a scorrimento.

In condizioni sismiche, ai fini del dimensionamento, si fa riferimento ad un sisma agente da monte verso valle del muro, in direzione orizzontale, dal basso verso l'alto e dall'alto verso il basso, in direzione verticale.

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COL TRATTA VA	LEGAME	NTO PALERI	NA – CATANIA – MO – CATANIA SETTA XIRBI (LO – LOTTO 3B		o
NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO	COMMESSA RS3T	LOTTO 30 D 78	CODIFICA	DOCUMENTO MU8500 001	REV.	FOGLIO 17 di 78

7.1.2 VERIFICA A RIBALTAMENTO

L'equilibrio allo stato limite è condotto confrontando il momento delle forze stabilizzanti e quello delle forze ribaltanti, entrambi rispetto all'estremo A di valle della fondazione.

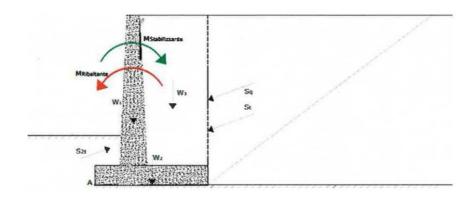


Figura 7-3- Verifica a ribaltamento.

7.1.3 VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Per il calcolo della capacità portante della fondazione si è fatto riferimento alla formula di Brinch-Hansen (1970) integrata dai coefficienti sismici di Paolucci e Pecker (1995), di seguito riportata:

$$q_{lim} = c' \; N_c \; s_c \; d_c \; i_c \; b_c \; g_c \; z_c + q \; N_q \; s_q \; d_q \; i_q \; b_q \; g_q \; z_q \; + 0.5 \; \gamma \; B \; N \; s_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; z_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; z_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; z_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; z_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; z_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; z_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; z_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; z_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; z_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; z_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; z_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; z_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; z_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; z_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; z_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; d_\gamma \; i_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; d_\gamma \; d_\gamma \; i_\gamma \; b_\gamma \; g_\gamma \; d_\gamma \; d$$

$$F_s = q_{lim} / q_{es}$$

con $q_{es} = N / (B'*L')$ la pressione dovuta al carico verticale.

7.1.4 VERIFICA A STABILITÀ GLOBALE

Per le verifiche di stabilità dei pendii naturali si ricorre, nell'ambito dei metodi all'equilibrio limite, ai cosiddetti metodi delle strisce, in particolare il metodo di Bishop. Si ipotizza una superficie cilindrica di scorrimento potenziale, S, si suddivide idealmente la porzione di terreno delimitato da questa e dalla superficie topografica in n conci e si analizza l'equilibrio limite di ciascun concio.

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 18 di 78

7.2 VERIFICHE GEOTECNICHE (SLV) IN CONDIZIONI SISMICHE

L'analisi della sicurezza dei muri di sostegno in condizioni sismiche può essere eseguita mediante i metodi pseudo-statici e i metodi degli spostamenti.

L'analisi pseudo-statica si esegue mediante i metodi dell'equilibrio limite. Il modello di calcolo deve comprendere l'opera di sostegno, il volume di terreno a tergo dell'opera, che si suppone in stato di equilibrio limite attivo, e gli eventuali sovraccarichi agenti sul volume suddetto.

Nell'analisi pseudo-statica, l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nelle verifiche, i valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni

$$k_h = \beta_m \frac{a_g}{g}$$

 $k_v = \pm 0.5 \ k_h$

dove:

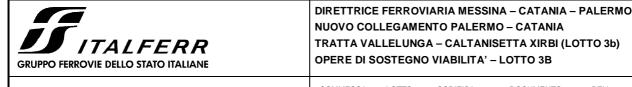
 β_m = coefficiente di riduzione dell'accelerazione massima attesa al sito;

 a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{max} = S \cdot a_g = (S_S \cdot S_T) \cdot a_g$$


dove:

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) di cui al paragrafo 3.2.3.2 delle NTC18.

Nella precedente espressione, il coefficiente di riduzione dell'accelerazione massima attesa al sito è pari a:

 $\beta_m = 0.38$ nelle verifiche allo stato limite ultimo (SLV)

 β_m = 0.47 nelle verifiche allo stato limite di esercizio (SLD)

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3T 30 D 78 CL MU8500 001 B 19 di 78

Per muri non liberi di subire spostamenti relativi rispetto al terreno, il coefficiente β_m assume valore unitario.

Nel caso di muri liberi di traslare o di ruotare intorno al piede, si può assumere che l'incremento di spinta dovuta al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di studi specifici, si deve assumere che tale incremento sia applicato a metà altezza del muro.

Lo stato limite di ribaltamento deve essere trattato impiegando coefficienti parziali unitari sulle azioni e sui parametri geotecnici (paragrafo 7.11.1 delle NTC18) e utilizzando valori di β_m incrementati del 50% rispetto a quelli innanzi indicati e comunque non superiori all'unità.

In condizioni sismiche deve essere soddisfatta la verifica di stabilità del complesso muro – terreno con i criteri indicati al paragrafo 7.11.4 delle NTC2018.

Il calcolo della spinta in condizioni sismiche è stato effettuato impiegando la Teoria di Mononobe – Okabe.

La teoria di Mononobe – Okabe fa uso del metodo dell'equilibrio limite e può essere considerata una estensione della teoria di Coulomb, in cui, alle usuali spinte al contorno del cuneo instabile di terreno, sono sommate anche le azioni inerziali orizzontali e verticali dovute all'accelerazione delle masse.

Le spinte Attiva e Passiva si calcolano come:

$$S_{a,t} = \frac{1}{2} \gamma \cdot k_{as} \cdot h^2 \cdot (1 \mp k_v)$$

Il coefficiente k_{as} è valutato, quindi, secondo tale formulazione, in cui i simboli usati sono:

 ϕ = angolo di attrito interno del terrapieno;

 ψ = angolo di inclinazione rispetto all'orizzontale della parete interessata del muro;

 β = angolo di inclinazione rispetto all'orizzontale del profilo del terrapieno;

 δ = angolo di attrito terrapieno – muro;

 θ = angolo di rotazione addizionale definito come segue.

$$tan\theta = \frac{k_h}{1 \mp k_h}$$

Il coefficiente per stati di spinta attiva si divide in due casi:

$$\beta \leq \phi - \theta \rightarrow k_{as} = \frac{\sin^2(\psi + \phi - \theta)}{\cos\theta \cdot \sin^2\psi \cdot \sin(\psi - \theta - \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta - \theta)}{\sin(\psi - \theta - \delta) \cdot \sin(\psi + \beta)}}\right]^2}$$

$$\beta > \phi - \theta \rightarrow k_{as} = \frac{\sin^2(\psi + \phi - \theta)}{\cos\theta \cdot \sin^2\psi \cdot \sin(\psi - \theta - \delta)}$$

Il coefficiente per stati di spinta passiva è invece:

$$k_{ps} = \frac{\sin^2(\psi + \phi - \theta)}{\cos\theta \cdot \sin^2\psi \cdot \sin(\psi + \theta) \left[1 - \sqrt{\frac{\sin\phi \cdot \sin(\phi + \beta - \theta)}{\sin(\psi + \beta) \cdot \sin(\psi + \theta)}}\right]^2}$$

7.3 VERIFICHE GEOTECNICHE (SLE)

Per ciascun stato limite di esercizio deve essere rispettata la condizione [6.2.7] delle NTC 2018:

$$E_d \leq C_d$$

essendo E_d e C_d rispettivamente il valore di progetto dell'effetto delle azioni e il prescritto valore limite dell' effetto delle azioni (spostamenti, rotazioni, distorsioni, ecc.).

In particolare, dovranno essere valutati gli spostamenti delle opere di sostegno e del terreno circostante per verificarne la compatibilità con la funzionalità delle opere stesse e con la sicurezza e funzionalità dei manufatti adiacenti, anche a seguito di modifiche indotte sul regime delle pressioni interstiziali.

Per i lavori e le opere da realizzare in prossimità di linee ferroviarie già in esercizio, le verifiche agli SLE dovranno essere condotte assumendo come limite degli spostamenti indotti durante la costruzione sui binari in esercizio i valori limite dei difetti riferiti al secondo livello di qualità descritti nella specifica tecnica RFI TCAR ST AR 01 001 D "Standard di qualità geometrica del binario con velocità fino a 300 km/h" e relativi allegati.

Qualora vengano superati i limiti riferiti al primo livello di qualità, il progetto dovrà prevedere l'esecuzione di un monitoraggio del binario durante la costruzione al fine di controllare l'effettivo andamento delle deformazioni.

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 21 di 78

7.4 VERIFICHE GEOTECNICHE - URTO

L'urto rappresenta un carico eccezionale quindi la combinazione di riferimento vede i coefficienti parziali delle azioni e dei materiali pari all'unità.

Si eseguirà la verifica a scorrimento e a ribaltamento per le quali si applica un carico di 100 kN diffuso sulla lunghezza del muro, che a favore di sicurezza si considera pari a 10 m da cui:

f = 100/10 = 10 kN/m forza in testa

m = f 1 = 10 kNm/m momento in testa al muro

7.5 VERIFICHE STRUTTURALI SLU

Le verifiche di resistenza delle sezioni sono eseguite secondo il metodo semiprobabilistico agli stati limite. I coefficienti di sicurezza adottati sono i sequenti:

- coefficiente parziale di sicurezza per il calcestruzzo: 1.50;
- coefficiente parziale di sicurezza per l'acciaio in barre: 1.15;

Il paragrafo in oggetto illustra nel dettaglio i criteri generali adottati per le verifiche strutturali e geotecniche condotte nel progetto. Ulteriori dettagli di carattere specifico, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche.

7.5.1 CRITERI DI VERIFICA DELLE SEZIONI IN C.A.

Per le sezioni in cemento armato si effettuano:

- verifiche per gli stati limite ultimi a presso-flessione;
- · verifiche per gli stati limite ultimi a taglio;
- verifiche per gli stati limite di esercizio.

7.5.2 VERIFICHE PER GLI STATI LIMITE ULTIMI A FLESSIONE - PRESSOFLESSIONE

Allo stato limite ultimo, le verifiche a flessione o presso-flessione sono condotte confrontando (per le sezioni più significative) le resistenze ultime e le sollecitazioni massime agenti, valutando di conseguenza il corrispondente fattore di sicurezza.

7.5.3 VERIFICA AGLI STATI LIMITE ULTIMI A TAGLIO

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dal DM17/01/2018, per elementi con armatura a taglio verticali.

Si fa, pertanto, riferimento ai seguenti valori della resistenza di calcolo:

- resistenza di calcolo dell'elemento privo di armatura a taglio:

$$V_{Rd} = \max \left\{ \left[0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp} \right] b_w \cdot d; \ (v_{\min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d \right\}$$

- valore di progetto dello sforzo di taglio che può essere sopportato dall'armatura a taglio alla tensione di snervamento:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot sin \alpha$$

- valore di progetto del massimo sforzo di taglio che può essere sopportato dall'elemento, limitato dalla rottura delle bielle compresse:

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c v \cdot f_{cd} (ctg\alpha + ctg\theta)/(1 + ctg^2 \theta)$$

Nelle espressioni precedenti, i simboli hanno i seguenti significati:

$$k=1+\sqrt{\frac{200}{d}}\leq 2 \text{ con d in mm};$$

$$\rho_1 = \frac{A_{sl}}{b_w \cdot d} \leq 0.02;$$

A_{sl} è l'area dell'armatura tesa;

 \mathbf{b}_{w} è la larghezza minima della sezione in zona tesa;

$$\sigma_{cp} = \frac{N_{Ed}}{A_c} < 0.2 \cdot f_{cd};$$

N_{Ed} è la forza assiale nella sezione dovuta ai carichi;

A_c è l'area della sezione di calcestruzzo;

$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$

 $1 \le \cot\theta \le 2.5$ è l'inclinazione dei puntoni di calcestruzzo rispetto all'asse della trave;

A_{sw} è l'area della sezione trasversale dell'armatura a taglio;

s è il passo delle staffe;

 \mathbf{f}_{ywd} è la tensione di snervamento di progetto dell'armatura a taglio;

 $\mathbf{f'}_{cd} = \mathbf{0.5} \cdot \mathbf{f}_{cd}$ è la resistenza ridotta a compressione del calcestruzzo d'anima;

 $\alpha_{cw} = 1$ è un coefficiente che tiene conto dell'interazione tra la tensione nel corrente compresso e qualsiasi tensione di compressione assiale.

7.6 VERIFICHE STRUTTURALI SLE

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

7.6.1 VERIFICHE ALLE TENSIONI

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Manuale di progettazione opere civili".

La verifica consiste nel controllo delle tensioni nei materiali supponendo una legge costitutiva tensionideformazioni di tipo lineare. In particolare si controlla la tensione massima di compressione del calcestruzzo e di trazione dell'acciaio, verificando che:

- σ_c < 0.55 f_{ck} per combinazione di carico caratteristica (rara);
- σ_c < 0.40 f_{ck} per combinazione di carico quasi permanente;
- $\sigma_s < 0.75$ f k per combinazione di carico caratteristica (rara).

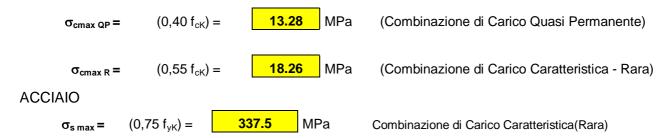
Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 fek;
- per combinazioni di carico quasi permanente: 0,40 fek;
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio


Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{vk}$.

Per il caso in esame risulta in particolare :

Muro di sostegno:

CALCESTRUZZO

7.6.2 VERIFICHE A FESSURAZIONE

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Cruppi di			Armatura			
Gruppi di	Condizioni ambientali	Combinazione di azione	Sensibile		Poco sensib	ile
esigenza			Stato limite	wd	Stato limite	wd
	Ordinarie	frequente	ap. fessure	≤w ₂	ap. fessure	≤w ₃
а	Ordinane	quasi permanente	ap. fessure	≤w ₁	ap. fessure	≤w ₂
h	Aggressive	frequente	ap. fessure	≤w ₁	ap. fessure	≤w ₂
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	≤w ₁
	Molto Aggressive	frequente	formazione fessure	-	ap. fessure	≤w ₁
С	Molto Aggressive	quasi permanente	decompressione	-	ap. fessure	≤w ₁

Tabella 4.1.III – Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 7-1 – Criteri di scelta dello stato limite di fessurazione e condizioni ambientali

Risultando:

w1 = 0.2 mm

w2 = 0.3 mm

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 26 di 78

w3 = 0.4 mm

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dalle specifiche RFI (Manuale di progettazione delle opere civili parte II sezione 2 – Requisiti concernenti la fessurazione per strutture in c.a., c.a.p. e miste acciaio-calcestruzzo) secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

Combinazione Caratteristica (Rara)

$$\delta_f \leq w_1 = 0.2 \, mm$$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è è utilizzata la procedura prevista al punto "C4.1.2.2.4.5 Verifica allo stato limite di fessurazione" della Circolare n.7/19.

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 27 di 78

7.7 VERIFICHE STRUTTURALI - URTO

L'urto rappresenta un carico eccezionale quindi la combinazione di riferimento vede i coefficienti parziali delle azioni e dei materiali pari all'unità.

Per le verifiche strutturali si considera la verifica a pressoflessione della sezione di spiccato del paramento per la quale:

M = [100 * (Hp+1)]/Lc= momento allo spiccato

T = 100 / Lc taglio allo spiccato

in cui:

Lc = 0.5 m +2 Hp larghezza di ripartizione come descritto al successivo par. 8.4.

Hp altezza del paramento

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI TRATTA VA	LLEGAME LLELUNG	NTO PALERI	NA – CATANIA – 10 – CATANIA SETTA XIRBI (LO – LOTTO 3B		0
NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO	COMMESSA RS3T	LOTTO 30 D 78	CODIFICA	DOCUMENTO MU8500 001	REV.	FOGLIO 28 di 78

8. ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono i carichi elementari che agiscono sulla struttura in oggetto. Tali azioni sono definite secondo le normative e sono utilizzate per la generazione delle combinazioni di carico nell'ambito delle verifiche di resistenza, in esercizio ed in presenza dell'evento sismico.

Tutti i carichi elementari si riferiscono all'unità di sviluppo del muro, pertanto sono tutti definiti rispetto all'unità di lunghezza.

8.1 PESI PROPRI

Il peso proprio del muro è calcolato in automatico dal foglio di calcolo elettronico.

I dati di input per i muri su fondazione diretta sono i seguenti:

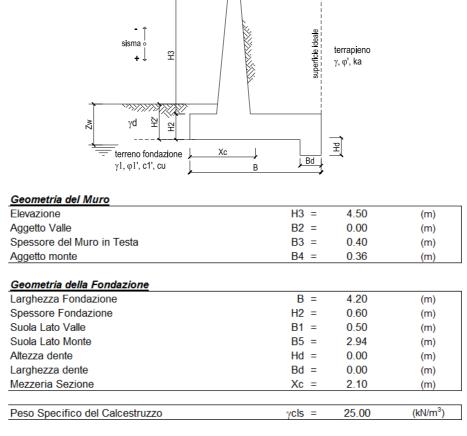


Figura 8-1 – Caratteristiche geometriche muri di sostegno con fondazione diretta – tipo 1.

8.2 CARICHI PERMANENTI

8.2.1 PARAPETTO METALLICO

Per il parapetto metallico si considerano le seguenti azioni agenti sul muro:

$$V_{parapetto} = 1.00 \text{ kN/m}$$

8.2.2 BARRIERA DI SICUREZZA

Per la barriera di sicurezza si considerano le seguenti azioni agenti sul muro:

8.2.3 SPINTA DEL TERRENO

A tergo del muro agisce la spinta del terreno del rilevato.

La spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta attiva ka.

Figura 8-2 – Coefficiente di spinta attiva e passiva.

La spinta sull'opera di sostegno dovrà essere applicata sul piano verticale, assunto come paramento virtuale del muro, definito a partire dall'estremo a monte della scarpa di fondazione.

Su tale paramento l'angolo di inclinazione δ della risultante della spinta (applicata ad 1/3 dell'altezza del paramento virtuale) si potrà assumere uguale all'angolo di inclinazione β del terrapieno, a meno che β non sia superiore all'angolo di resistenza al taglio del terreno ϕ ', nel qual caso si assumerà $\delta = \phi$ '.

			valori caratteristici	valori di p	rogetto
Dati G	Geotecnici e		SLE	STR/GEO	EQU
ie -	Angolo di attrito del terrapieno	(°) φ'	35,00	35,00	35,00
Dati rrapie o	Peso Unità di Volume del terrapieno	(kN/m³) γ'	19,00	19,00	19,00
<u> </u>	Angolo di attrito terreno-superficie ideale	(°) δ	0,00	0,00	0,00

Figura 8-3 – Dati geotecnici

8.3 CARICHI VARIABILI

8.3.1 CARICHI MOBILI DA TRAFFICO

Per quanto attiene il sovraccarico variabile dovuto al carico stradale si applica il carico verticale statico di 20 kPa che, in condizioni sismiche, è stato ridotto al 20% (4 kPa).

				valori caratteristici	valori di p	rogetto
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
=	Sovraccarico permanente	(kN/m ²)	qp	0,00	0,00	0,00
를 끌	Sovraccarico su zattera di monte ● si ○ no	` 1				
Carichi ermaner	Forza Orizzontale in Testa permanente	(kN/m)	fp	0,00	0,00	0,00
Carichi oermanenti	Forza Verticale in Testa permanente	(kN/m)	vp	3,50	3,50	3,50
	Momento in Testa permanente	(kNm/m)	mp	0,00	0,00	0,00
	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q	20,00	29,00	29,00
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statiche	(kN/m)	f	0,00	0,00	0,00
atic	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0,00	0,00	0,00
ું જ	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0,00	0,00	0,00
	Coefficienti di combinazione condizione frequer	nte Ψ1	1,00	condizione quasi permane	ente Ψ2	0,00
Ē ē	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	4,00		
lizio Pich	Forza Orizzontale in Testa accidentale in condizioni sismiche	(kN/m)	fs	0,00		
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0,00		
0 0	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0,00		

Figura 8-4 – Carichi agenti

8.4 CARICHI ECCEZIONALI – URTO DA TRAFFICO VEICOLARE

Per i muri di sostegno si è considerata l'azione causata da collisioni accidentali sugli elementi di sicurezza. La normativa prevede una forza orizzontale equivalente di collisione di 100 kN agente trasversalmente ed orizzontalmente 100 mm sotto la sommità dell'elemento o 1,0 m sopra il livello del piano di marcia (il più piccolo dei due valori), ed applicata su una linea lunga 0,5 m. Effettuando una diffusione longitudinale a 45° fino alla base del paramento si ottiene la lunghezza longitudinale (Lc) e il valore della forza riferito ad 1 m di lunghezza di muro.

Nel dimensionamento degli elementi strutturali ai quali è collegata la barriera si deve tener conto della eventuale sovrapposizione delle zone di diffusione di tale sistema di forze, in funzione della geometria della barriera e delle sue condizioni di vincolo. Per il dimensionamento dell'impalcato, le forze orizzontali così determinate devono essere amplificate di un fattore pari a 1,50.

Il coefficiente parziale di sicurezza per la combinazione di carico agli SLU per l'urto di veicolo in svio deve essere assunto unitario.

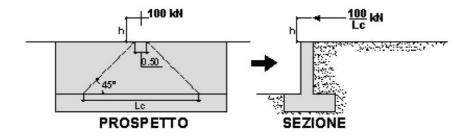


Figura 8-5 – Schema di diffusione della forza di collisione.

8.5 VALUTAZIONE DELL'AZIONE SISMICA

8.5.1 VITA NOMINALE

La vita nominale di un'opera strutturale V_N è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata. Nel presente caso l'opera viene inserita nella seguente tipologia di costruzione:

2) Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale La cui vita nominale è pari a: 50 anni.

8.5.2 CLASSE D'USO

In presenza di azioni sismiche, con riferimento alle conseguenze di un'interruzione di operatività o di un eventuale collasso, l'opera appartiene alla seguente classe d'uso:

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze dì un loro eventuale collasso.

Il coefficiente d'uso è pari a 1.50.

8.5.3 PERIODO DI RIFERIMENTO

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione al periodo di riferimento V_R ricavato, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_u .

Pertanto $V_R = 50 \times 1.5 = 75 \text{ anni.}$

8.5.4 PARAMETRI SISMICI

Fissata la vita di riferimento V_R , i due parametri T_R e P_{VR} sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante l'espressione:

$$T_R = -\frac{V_R}{\ln(1 - P_{VR})} = -\frac{C_{ul}V_N}{\ln(1 - P_{VR})}$$

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30 D 78	CL	MU8500 001	В	34 di 78

Stati Limite	P _{VR} : Probabilità	di superamento nel periodo di riferimento $\mathbf{V}_{\mathbf{R}}$
Stati limite di esercizio	SLO	81%
	SLD	63%
C	SLV	10%
Stati limite ultimi	SLC	5%

Tabella 8-1 – Probabilità di superamento al variare dello stato limite considerato.

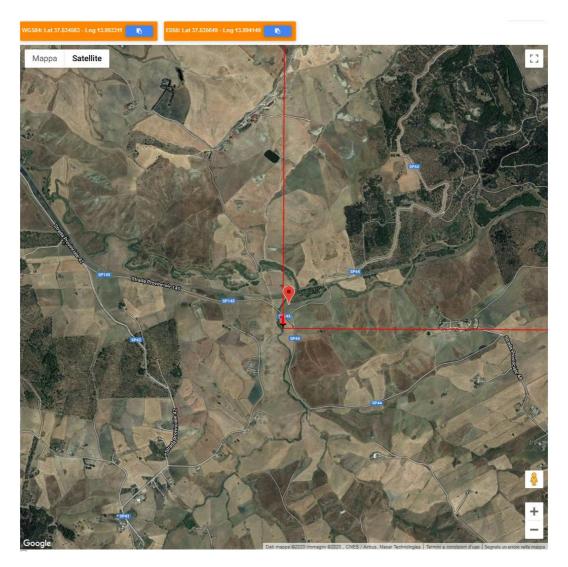


Tabella 8-2 – Localizzazione del sito ove sorgeranno le opera.

Da cui si ottiene la seguente tabella:

Tabella 8-3 – Parametri relativi all'azione sismica.

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale. Per la definizione dell'azione sismica si può fare riferimento a un approccio semplificato, che si basa sull'individuazione delle categorie di sottosuolo di riferimento in accordo a quanto indicato nel § 3.2.2 delle NTC2018. I terreni di progetto possono essere caratterizzati come appartenenti a terreni di Categoria C. In condizioni topografiche superficiali semplici si può adottare la seguente classificazione.

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^{\circ} \le i \le 30^{\circ}$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Tabella 8-4 – Categorie topografiche.

L'area interessata risulta classificabile come T1.

In riferimento a quanto indicato nel §3.2.3.2.1 delle NTC2018 per la definizione dello spettro elastico in accelerazione è necessario valutare il valore del coefficiente $S = S_SS_T$ e di C_C in base alla categoria di

sottosuolo e alle condizioni topografiche; si fa riferimento nella valutazione dei coefficienti alle tabelle di seguito riportate:

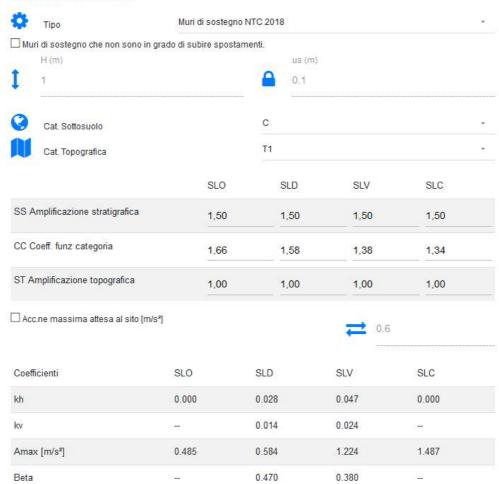
Categoria sottosuolo	S _s	C _c
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10 \cdot (T_C^*)^{-0,20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	$1,25 \cdot (T_C^*)^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T _C *) ^{-0,40}

Tabella 8-5 – Espressioni di S_S e C_C.

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	8-2	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con pendenza media minore o uguale a 30°	1,2
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore di 30°	1,4

Tabella 8-6 – Valori massimi dei coefficienti di amplificazione topografica S_T.

valori dei coefficienti di amplificazione stratigrafica sono pari a S_s =1.50 e C_c = 1.380 valore del coefficiente di amplificazione topografica è posto pari a ST = 1.0


Dalla sezione dedicata al calcolo dei parametri sismici di base del programma "GeoStru", si ricavano i seguenti parametri dello spettro di risposta relativo al sito più gravoso.

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 37 di 78

Coefficienti sismici

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA VALLELUNGA – CALTANISETTA XIRBI (LOTTO 3b) OPERE DI SOSTEGNO VIABILITA' – LOTTO 3B						
NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO	COMMESSA RS3T	LOTTO 30 D 78	CODIFICA	DOCUMENTO MU8500 001	REV.	FOGLIO 38 di 78	

9. COMBINAZIONI DI CARICO

Le combinazioni di carico prese in considerazione nelle verifiche sono state definite in base a quanto prescritto dalle NTC-2018 al par.2.5.3:

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLIT): $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$ [2.5.1]
- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stat^{a timit}? di esercizio (SLE) irreversibili:
 - $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$ [2.5.2]
- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio reversibili: $G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$ [2.5.3]
- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a curso termine:
 G₁ + G₂ + P + ψ₂₁ · Q_{k1} + ψ₂₂ · Q_{k2} + ψ₂₃ · Q_{k3} + ...
 [2.5.4]
- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E: $E+G_1+G_2+P+\psi_{21}\cdot Q_{k1}+\psi_{22}\cdot Q_{k2}+\dots$ [2.5.5]
- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A: $G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$ [2.5.6]

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_i \psi_{2i} Q_{ki}$$
 [2.5.7]

Per i muri di sostegno o per altre strutture miste ad essi assimilabili devono essere effettuate le verifiche con riferimento almeno ai seguenti stati limite:

SLU di tipo geotecnico (GEO)

- Scorrimento sul piano di posa;
- Collasso per carico limite del complesso fondazione-terreno;
- Ribaltamento:
- Stabilità globale del complesso opera di sostegno-terreno;

SLU di tipo strutturale (STR)

• Raggiungimento della resistenza negli elementi strutturali.

La verifica di stabilità globale del complesso opera di sostegno-terreno deve essere effettuata secondo l'Approccio 1, con la Combinazione 2 (A2+M2+R2).

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 2, con la combinazione (A1+M1+R3).

Per ciascuna verifica si deve tenere conto dei coefficienti parziali per le azioni, dei parametri geotecnici e dei coefficienti di amplificazione per le verifiche di sicurezza, tutti riportati nelle seguenti tabelle.

Nella verifica a ribaltamento i coefficienti R3 si applicano agli effetti delle azioni stabilizzanti.

Coefficie	EQU(1)	A1	A2		
Azioni permanenti	favorevoli sfavorevoli	YG1	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Ballast(3)	favorevoli sfavorevoli	YΒ	0,90 1,50	1,00 1,50	1,00 1,30
Azioni variabili da traffi- co ⁽⁴⁾	favorevoli sfavorevoli	ΥQ	0,00 1,45	0,00 1,45	0,00 1,25
Azioni variabili	favorevoli sfavorevoli	ΥQi	0,00 1,50	0,00 1,50	0,00 1,30
Precompressione	favorevole sfavorevo- le	ΥP	0,90 1,00 ⁽⁵⁾	1,00 1,00 ⁽⁶⁾	1,00
Ritiro, viscosità e cedi- menti non imposti appo- sitamente	favorevole sfavorevo- le	γCe d	0,00 1,20	0,00 1,20	0,00 1,00

Tabella 9-1 - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU.

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ _M	(M1)	(M2)	
Tangente dell'angolo di resi- stenza al taglio	$ an {f \phi}'_k$	Υφ΄	1,0	1,25	
Coesione efficace	c′ _k	Υc	1,0	1,25	
Resistenza non drenata	Cuk	γ _{cu}	1,0	1,4	
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0	

Tabella 9-2 - Coefficienti parziali per i parametri geotecnici del terreno.

Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.1$
Ribaltamento	$\gamma_R = 1.15$
Resistenza del terreno a valle	$\gamma_R = 1.4$

Tabella 9-3 – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi dei muri di sostegno.

COEFFICIENTE	R2
YR	1,1

Tabella 9-4 – Coefficienti parziali per le verifiche do sicurezza di opere di materiali sciolti e fronti di scavo.

Le combinazioni sismiche, in maniera del tutto analoga alle combinazioni statiche, sono effettuate con l'approccio 2, ponendo però pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici e impiegando le resistenze di progetto con i coefficienti parziali γ_R indicati nella seguente tabella.

Verifica	Coefficiente parziale yr
Carico limite	1.2
Scorrimento	1.0
Ribaltamento	1.0
Resistenza del terreno a valle	1.2

Tabella 9-5 – Coefficienti parziali y_R per le verifiche agli stati limite (SLV) dei muri di sostegno.

Le verifiche pseudo-statiche di sicurezza dei fronti di scavo e dei rilevati in condizioni sismiche si eseguono adottando valori unitari dei coefficienti parziali del gruppo A e M per il calcolo delle azioni e dei parametri geotecnici di progetto e un coefficiente parziale γ_R pari a 1.2.

Al fine della determinazione dei valori caratteristici delle azioni dovute al traffico, si devono considerare, generalmente, le combinazioni riportate nella seguente tabella:

		Caricl	i sulla superfic	ie carrabile		Carichi su marciapiedi e piste ciclabili non sormontabili
		Carichi vertical	i .	Carichi	orizzontali	Carichi verticali
Gruppo di azioni	Modello principale (schemi di carico 1, 2, 3, 4 e 6)	Veicoli spe- ciali	Folla (Sche- ma di carico 5)	Frenatura	Forza centrifuga	Carico uniformemente distribuito
1	Valore carat- teristico					Schema di carico 5 con valore di combinazione 2,5KN/m²
2a	Valore fre- quente			Valore carat- teristico		
2b	Valore fre- quente				Valore caratteri- stico	
3 (*)			,			Schema di carico 5 con valore caratteristico 5,0KN/m²
4 (**)			Schema di carico 5 con valore carat- teristico 5,0KN/m ²			Schema di carico 5 con valore caratteristico 5,0KN/m²
5 (***)	Da definirsi per il singo- lo progetto	Valore carat- terístico o nominale				

Tabella 9-6 – Valori caratteristici delle azioni dovute al traffico.

Questa fornisce i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimo.

I valori dei coefficienti di combinazione ψ_{0j} , ψ_{1j} , ψ_{2j} per le diverse categorie sono riportati nella tabella successiva:

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 41 di 78

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente W ₀ di combi- nazione	Coefficiente \(\psi_1\) (valori frequenti)	Coefficiente W ₂ (valori quasi permanenti)	
	Schema 1 (carichi tandem)	0,75	0,75	0,0	
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0	
Azioni da traffico (Tab. 5.1 IV)	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0	
	Schema 2	0,0	0,75	0,0	
	2	0,0	0,0	0,0	
	3	0,0	0,0	0,0	
	4 (folla)		0,75	0,0	
	5	0,0	0,0	0,0	
	a ponte scarico SLU e SLE	0,6	0,2	0,0	
Vento	in esecuzione	0,8	0,0	0,0	
	a ponte carico SLU e SLE	0,6	0,0	0,0	
	SLU e SLE	0,0	0,0	0,0	
Neve	in esecuzione	0,8	0,6	0,5	
Temperatura	SLU e SLE	0,6	0,6	0,5	

Tabella 9-7 – Coefficienti ψ per le azioni variabili per ponti stradali e pedonali.

Per le azioni da urto sono eccezionali, pertanto, si segue la rispettiva combinazione di carico per la sua valutazione.

Si ottengono le seguenti combinazioni di carico per le verifiche:

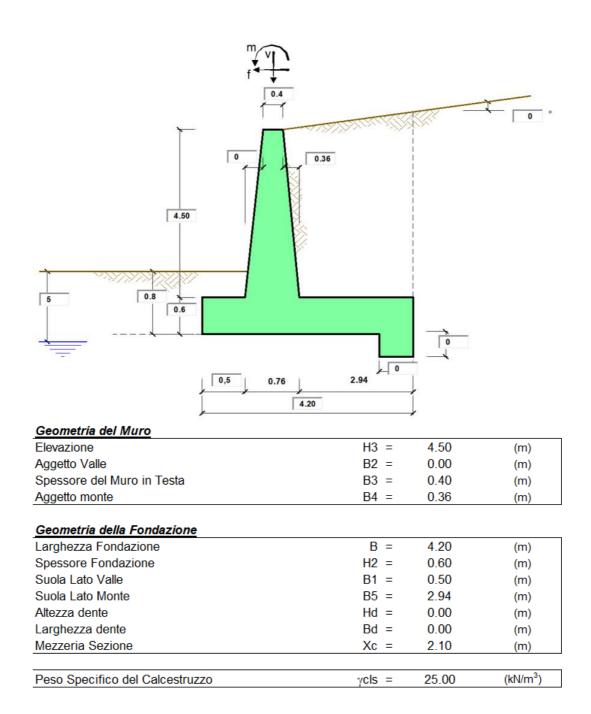

Caso	Peso proprio	Traffico	Pav. Stradale	Spinta	Qecc	tan φ'	c'	Cu
A1+M1+R3	1.35	1.35	1.35	1.35	0	1	1	1
A2+M2+R2	1	1.15	1	1	0	1.25	1.25	1.4
SISMA+M1+R3 (+)	1	0.2	1	1	0	1	1	1
SISMA+M1+R3 (-)	1	0.2	1	1	0	1	1	1
SISMA+M2+R2 (+)	1	0.2	1	1	0	1.25	1.25	1.4
SISMA+M2+R2 (-)	1	0.2	1	1	0	1.25	1.25	1.4
SLE, rara	1	1	1	1	0	1	1	1
SLE, frequente	1	1	1	1	0	1	1	1
SLE, quasi permanente	1	0	1	1	0	1	1	1
ECC, urto	1	0	1	1	1	1	1	1

Tabella 9-8- Combinazioni di carico.

10. PROGETTO E VERIFICA DEL MURO DI SOSTEGNO "TIPO 1"

10.1 DATI DI INPUT

Dati geotecnici e carichi agenti - Condizione statica e sismica

					valori cara	atteristici	valori di prog	
Dati (<u>Geotecnici</u>				SL	E	STR/GEO	EQU
e L	Angolo di attrito del terrapieno		(°)	φ'	35.	00	35.00	35.00
Dati Terrapien o	Peso Unità di Volume del terrapieno		(kN/m ³)	γ'	19.	00	19.00	19.00
– e	Angolo di attrito terreno-superficie ideale		(°)	δ	0.0	00	0.00	0.00
	Condizioni			drenate	○ Non D	renate		
၉ စ	Coesione Terreno di Fondazione		(kPa)	c1'	15.	00	15.00	15.00
Dati Terreno Fondazione	Angolo di attrito del Terreno di Fondazione		(°)	φ1'	25 .	00	25.00	25.00
Te	Peso Unità di Volume del Terreno di Fondazione		(kN/m³)	γ1	19.	00	19.00	19.00
Dati Fon	Peso Unità di Volume del Rinterro della Fondazione		(kN/m³)	γd	19.	00	19.00	19.00
	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)	Hs	8.0	00		
	Modulo di deformazione		(kN/m ²)	Е	100	00		
							_	
	Accelerazione sismica			a _g /g	0.083	(-)		
	Coefficiente Amplificazione Stratigrafico			Ss	1.5	(-)		
Dati Sismici	Coefficiente Amplificazione Topografico			S_T	1	(-)	RIBALTA	MENTO
S	Coefficiente di riduzione dell'accelerazione massima			β_s	0.38	(-)	β_s	0.57
ati	Coefficiente sismico orizzontale			kh	0.04731	(-)	kh	0.07097
	Coefficiente sismico verticale			kv	0.0237	(-)	kv	0.03548
	Muro libero di traslare o ruotare			•	si 🔘 r	10		
					STR/	GEO	– RI	В
	Coeff. di Spinta Attiva Statico	ka	0.271		0.271		0.271	
<u>⊟</u>	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.296		0.296		0.309	
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.297		0.297		0.312	
Spi	Coeff. Di Spinta Passiva	kp	2.464		2.464		2.464	
Ö	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2.390		2.390		2.353	
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	2.386		2.386		2.345	

				valori caratteristici	valori di p	rogetto
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
=	Sovraccarico permanente	(kN/m ²)	qp	0.00	0.00	0.00
ir E	Sovraccarico su zattera di monte ● si ○ no					
Carichi ermaner	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
Carichi permanenti	Forza Verticale in Testa permanente	(kN/m)	vp	3.50	3.50	3.50
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
_	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q	20.00	29.00	29.00
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statiche	(kN/m)	f	0.00	0.00	0.00
atio	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
S 22	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione frequer	nte Ψ1	1.00	condizione quasi permane	nte Ψ2	0.00
E e	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	4.00		
Condizioni Sismiche	Forza Orizzontale in Testa accidentale in condizioni sismiche	(kN/m)	fs	0.00		
ond	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
Ow	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

<u>Dati geotecnici e carichi agenti – Condizione eccezionale con urto</u>

	valori c				valori car	atteristici	valori di Į	progetto
Dati (<u>Dati Geotecnici</u>				SL	.E	STR/GEO	EQU
<u>e</u>	Angolo di attrito del terrapieno		(°)	φ'	35.	00	35.00	35.00
Dati Terrapien o	Peso Unità di Volume del terrapieno		(kN/m ³)	γ'	19.	00	19.00	19.00
o	Angolo di attrito terreno-superficie ideale		(°)	δ	0.0	00	0.00	0.00
	Condizioni			drenate	○ Non D	renate		
2 e	Coesione Terreno di Fondazione		(kPa)	c1'	15.	00	15.00	15.00
Dati Terreno Fondazione	Angolo di attrito del Terreno di Fondazione		(°)	φ1'	25.	.00	25.00	25.00
i Te	Peso Unità di Volume del Terreno di Fondazione		(kN/m³)	γ1	19.	.00	19.00	19.00
Pati	Peso Unità di Volume del Rinterro della Fondazione		(kN/m³)	γd	19.	00	19.00	19.00
_	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)	Hs	8.0	00		
	Modulo di deformazione		(kN/m ²)	E	100	000		
	Accelerazione sismica			a _g /g	0.083	(-)	7	
	Coefficiente Amplificazione Stratigrafico			Ss	1.5	(-)		
Dati Sismici	Coefficiente Amplificazione Topografico			S_T	1	(-)	RIBALTA	MENTO
<u>io</u>	Coefficiente di riduzione dell'accelerazione massima			β_s	0.38	(-)	β_s	0.57
ati	Coefficiente sismico orizzontale			kh	0.04731	(-)	kh	0.07097
	Coefficiente sismico verticale			kv	0.0237	(-)	kv	0.03548
	Muro libero di traslare o ruotare			•	si 🔘	no		
					STR/	GEO	RI	В
	Coeff. di Spinta Attiva Statico	ka	0.271		0.271		0.271	
` च	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.296		0.296		0.309	
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.297		0.297		0.312	
Spi	Coeff. Di Spinta Passiva	kp	2.464		2.464		2.464	
Ö	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2.390		2.390		2.353	
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	2.386		2.386		2.345	

				valori caratteristici	valori di p	rogetto
<u>Carichi</u>	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
=	Sovraccarico permanente	(kN/m ²)	qp	0.00	0.00	0.00
ir je	Sovraccarico su zattera di monte 💿 si 🔘 no					
Carichi	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
Carichi permanenti	Forza Verticale in Testa permanente	(kN/m)	vp	3.50	3.50	3.50
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q	0.00	0.00	0.00
io e	Forza Orizzontale in Testa accidentale in condizioni statiche	(kN/m)	f	10.00	14.50	14.50
Condizioni Statiche	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
S &	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	10.00	14.50	14.50
	Coefficienti di combinazione condizione frequer	nte Ψ1	1.00	condizione quasi permane	nte Ψ2	0.00
E e	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	0.00		
lizio Pich	Forza Orizzontale in Testa accidentale in condizioni sismiche	(kN/m)	fs	0.00		
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
0 0	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO

Calcestruzzo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 45 di 78

CARATTERISTICHE DEI MATERIALI STRUTTURALI

CUICOSUUZZO			
classe cls	C32/40 🔻		
Rck		40	(MPa)
fck		32	(MPa)
fcm Ec		40 33346	(MPa) (MPa)
α _{cc}		0.85	
γс		1.50	
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma c$		18.13	(MPa)
$f_{ctm} = 0.30*f_{ck}^{2/3}$	3	3.02	(MPa)

Tensioni limite (tensioni ammissibili)

condizioni statiche

condizioni sismiche

σ_c 19.2 Mpa σ_f 360 Mpa

Valore limite di apertura delle fessure

Frequente	w1	0.2	mm
Quasi Permanente	w1	0.2	mm

<u>Acciaio</u>

tipo di	acciaio	В	450C 🔻	
fyk =			450	(MPa)
γs	=		1.15	
fyd = f	yk /γs / _γ	Æ =	391.30	(MPa)
Es	=	210000	(MPa)	
ε _{ys}	=	0.19%		

coefficiente omogeneizzazione acciaio n = 15

<u>Copriferro</u> (distanza asse armatura-bordo)

c = 7.50 (cm)

<u>Copriferro minimo di normativa</u> (ricoprimento armatura)

 $c_{min} = 4.50$ (cm)

Interferro tra I e II strato

 $i_{\text{I-II}}$ 5.00 (cm)

10.2 CALCOLO DELLE AZIONI

10.2.1 FORZE VERTICALI E INERZIALI

FORZE VERTICALI

- Peso del Mur	o (Pm)		SLE	STR/GEO	EQU/RIB
Pm1 =	(B2*H3*ycls)/2	(kN/m)	0.00	0.00	0.00
Pm2 =	(B3*H3*γcls)	(kN/m)	45.00	45.00	45.00
Pm3 =	(B4*H3*γcls)/2	(kN/m)	20.25	20.25	20.25
Pm4 =	(B*H2*γcls)	(kN/m)	63.00	63.00	63.00
Pm5 =	(Bd*Hd*γcls)	(kN/m)	0.00	0.00	0.00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	128.25	128.25	128.25
- Peso del terre Pt1 = Pt2 = Pt3 = Sovr = Pt =	eno e sovr. perm. sulla scarpa di monte del muro (Pt) (B5*H3*γ') (0,5*(B4+B5)*H4*γ') (B4*H3*γ')/2 qp * (B4+B5) Pt1 + Pt2 + Pt3 + Sovr	(kN/m) (kN/m) (kN/m) (kN/m) (kN/m)	251.37 0.00 15.39 0.00 266.76	251.37 0.00 15.39 0.00 266.76	251.37 0.00 15.39 0.00 266.76
Sovr acc. Stat	accidentale sulla scarpa di monte del muro q * (B4+B5) n qs * (B4+B5)	(kN/m) (kN/m)	66 13.2	95.7	

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

- Muro (Mm)			SLE	STR/GEO	EQU/RIB
Mm1 = ` ′	Pm1*(B1+2/3 B2)	(kNm/m)	0.00	0.00	0.00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	31.50	31.50	31.50
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	20.66	20.66	20.66
Mm4 =	Pm4*(B/2)	(kNm/m)	132.30	132.30	132.30
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00	0.00	0.00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	184.46	184.46	184.46
- Terrapieno e	sovr. perm. sulla scarpa di monte del muro				
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	686.24	686.24	686.24
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	17.54	17.54	17.54
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	703.78	703.78	703.78
- Sovraccarico	accidentale sulla scarpa di monte del muro				
Sovr acc. Stat	*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	168.3	244.035	
Sovr acc. Sism	*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	33.66		

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 47 di 78

	MURO E DEL TERRAPIENO ontale e verticale del muro (Ps)			
Ps h =	Pm*kh	(kN/m)	6.07	9.10
Ps v=	Pm*kv	(kN/m)	3.03	4.55
13 1-	I III KV	(KIVIII)	5.05	4.00
- Inerzia orizzo	ontale e verticale del terrapieno a tergo del muro (Pts))		
Ptsh =	Pt*kh	(kN/m)	12.62	18.93
Ptsv =	Pt*kv	(kN/m)	6.31	9.47
		,		
- Incremento o	rizzontale di momento dovuto all'inerzia del muro (MF	s h)		
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)	0.00	0.00
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)	6.07	9.10
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)	2.01	3.02
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)	0.89	1.34
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)	0.00	0.00
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	8.97	13.46
- Incremento v MPs1 v= MPs2 v= MPs3 v= MPs4 v= MPs5 v= MPs v=	erticale di momento dovuto all'inerzia del muro (MPs v kv*Pm1*(B1+2/3*B2) kv*Pm2*(B1+B2+B3/2) kv*Pm3*(B1+B2+B3+B4/3) kv*Pm4*(B/2) kv*Pm5*(B-Bd/2) MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m)	0.00 0.75 0.49 3.13 0.00 4.36	0.00 1.12 0.73 4.69 0.00 6.54
- Incremento o	rizzontale di momento dovuto all'inerzia del terrapieno	(MPts h)		
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)	33.89	50.84
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)	0.00	0.00
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)	2.62	3.93
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)	36.51	54.77
		,		
- Incremento v	erticale di momento dovuto all'inerzia del terrapieno (l	MPts v)		
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)	16.23	24.35
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)	0.00	0.00
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)	0.52	0.79
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)	16.76	25.14

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 48 di 78

10.2.2 SPINTE IN CONDIZIONE STATICA

	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO	EQU/RIB	
St =	0,5*γ'*(H2+H3+H4+Hd) ² *ka	(kN/m)	66.96	87.05	87.05	
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	0.00	0.00	0.00	
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	27.64	40.08	40.08	
- Componente	orizzontale condizione statica					
Sth =	St*cosδ	(kN/m)	66.96	87.05	87.05	
Sqh perm =	Sq perm*cosδ	(kN/m)	0.00	0.00	0.00	
Sqh acc =	Sq acc*cosδ	(kN/m)	27.64	40.08	40.08	
- Componente	verticale condizione statica					
Stv =	St*senδ	(kN/m)	0.00	0.00	0.00	
Sqv perm=	Sq perm*senδ	(kN/m)	0.00	0.00	0.00	
Sqv acc =	Sq acc*senδ	(kN/m)	0.00	0.00	0.00	
- Spinta passiva sul dente						
Sp=½*g1'*Hd2	* ½*γ ₁ '*Hd ² *kp+(2*c ₁ '*kp ^{0.5} +γ1'*kp*H2')*Hd	(kN/m)	0.00	0.00	0.00	

MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRA	CCARICO	SLE	STR/GEO	EQU/RIB
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	113.83	147.98	147.98
MSt2 =	Stv*B	(kNm/m)	0.00	0.00	0.00
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	0.00	0.00	0.00
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	70.48	102.20	102.20
MSq2 perm=	Sqv perm*B	(kNm/m)	0.00	0.00	0.00
MSq2 acc =	Sqv acc*B	(kNm/m)	0.00	0.00	0.00
MSp = γ1'*I	Hd ³ *kp/3+(2*c1'*kp ^{0.5} +γ1'*kp*H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	0.00	0.00	0.00
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0.00	0.00	0.00
Mfext3 =	(vp+v)*(B1 +B2 + B3/2)	(kNm/m)	2.45	2.45	2.45

10.2.3 SPINTE IN CONDIZIONE SISMICA +

SPINTE DEL	TERRENO E DEL SOVRACCARICO ione sismica +		SLE	STR/GEO	EQU/RIB
Sst1 stat =	0,5*γ'*(H2+H3+H4+Hd) ² *ka	(kN/m)	66.96	66.96	66.96
Sst1 sism =	0,5*γ'*(1+kv)*(H2+H3+H4+Hd)²*kas*-Sst1 stat	(kN/m)	7.91	7.91	12.06
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	0.00	0.00	0.00
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	6.04	6.04	6.30
- Componente	orizzontale condizione sismica +				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	66.96	66.96	66.96
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	7.91	7.91	12.06
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	0.00	0.00	0.00
Ssq1h acc=	Ssq1 acc*cosδ	(kN/m)	6.04	6.04	6.30
- Componente	verticale condizione sismica +				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	0.00	0.00	0.00
Sst1v sism =	Sst1 sism*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	0.00	0.00	0.00
- Spinta passiv	a sul dente				
Sp=½*γ ₁ '(1+kv)) $Hd^{2*}kps^{+}+(2*c_{1}'*kps^{+0.5}+\gamma 1' (1+kv) kps^{+*}H2')*Hd$	(kN/m)	0.00	0.00	0.00
MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARICO) <u> </u>	SLE	STR/GEO	EQU/RIB

MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO - Condizione sismica +		SLE	STR/GEO	EQU/RIB	
MSst1 sism= MSst2 stat = MSst2 sism = MSsq1 = MSsq2 =	Sst1h stat * ((H2+H3+H4+hd)/3-hd) Sst1h sism* ((H2+H3+H4+Hd)/3-Hd) Sst1v stat* B Sst1v sism* B Ssq1h * ((H2+H3+H4+Hd)/2-Hd) Ssq1v * B \$\gamma_1'**Hd^3*kps*/3+(2*c1'*kps*0.5+\gamma_1'*kps**H2')*Hd^2/2	(kNm/m)	113.83 13.45 0.00 0.00 15.40 0.00 0.00	113.83 13.45 0.00 0.00 15.40 0.00	113.83 20.49 0.00 0.00 16.06 0.00 0.00
Mfext1 =	wuti alle forze esterne mp+ms (fp+fs)*(H3 + H2) (vp+vs)*(B1 +B2 + B3/2)	(kNm/m) (kNm/m) (kNm/m)		0.00 0.00 2.45	

10.2.4 SPINTE IN CONDIZIONE SISMICA -

	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU/RIB
- Spinta condiz			22.22	22.00	22.02
Sst1 stat =	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	66.96	66.96	66.96
Sst1 sism =	0,5*γ'*(1-kv)*(H2+H3+H4+Hd)²*kas ⁻ -Sst1 stat	(kN/m)	4.76	4.76	7.35
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	0.00	0.00	0.00
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	6.06	6.06	6.36
- Componente	orizzontale condizione sismica -				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	66.96	66.96	66.96
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	4.76	4.76	7.35
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	0.00	0.00	0.00
Ssq1h acc=	Ssq1 acc*cosδ	(kN/m)	6.06	6.06	6.36
- Componente	verticale condizione sismica -				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	0.00	0.00	0.00
Sst1v sism =	Sst1 sism*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	0.00	0.00	0.00
- Spinta passiva	a sul dente				
Sp=½*γ ₁ '(1-kv)	$Hd^{2*}kps^{-}+(2*c_{1}*kps^{-0.5}+\gamma 1' (1-kv) kps^{-*}H2')*Hd$	(kN/m)	0.00	0.00	0.00
MOMENT	LLA ADINTA DEL TERRENO E DEL AQUESACADICA	Г			
MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO - Condizione sismica -			SLE	STR/GEO	EQU/RIB

MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO - Condizione sismica -			SLE	STR/GEO	EQU/RIB		
MSst1 stat = MSst1 sism= MSst2 stat = MSst2 sism = MSsq1 = MSsq2 = MSp =	Sst1h stat * ((H2+H3+H4+hd)/3-hd) Sst1h sism* ((H2+H3+H4+Hd)/3-Hd) Sst1v stat* B Sst1v sism* B Ssq1h * ((H2+H3+H4+Hd)/2-Hd) Ssq1v * B γ ₁ '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} +γ1'*kps ^{+*} H2')*Hd ² /2	(kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m)	113.83 8.09 0.00 0.00 15.46 0.00 0.00	113.83 8.09 0.00 0.00 15.46 0.00	113.83 12.49 0.00 0.00 16.22 0.00		
MOMENTI DOVUTI ALLE FORZE ESTERNE Mfext1 = mp+ms (kNm/m) 0.00 Mfext2 = (fp+fs)*(H3 + H2) (kNm/m) 0.00 Mfext3 = (vp+vs)*(B1 + B2 + B3/2) (kNm/m) 2.45							

10.2.5 SPINTE IN PRESENZA DI URTO

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Risul N	tante forze	e verticali (N) Pm + Pt + v + Stv + Sqv perm + Sqv acc	398.51	(kN/m)			
	ltante forze	e orizzontali (T) Sth + Sqh + f	101.55	(kN/m)			
Coef f	fficiente di =	attrito alla base (f) tgφ1'	0.47	(-)			
Fs	scorr.	(N*f + Sp) / T	1.83	>	1.1		
		RIBALTAMENTO					
Mom Ms		izzante (Ms) Mm + Mt + Mfext3	890.69	(kNm/m)			
	ento ribalta =	ante (Mr) MSt + MSq + Mfext1+ Mfext2 + MSp	236.43	(kNm/m)			
Fs	ribaltan	nento Ms / Mr	3.77	>	1.15		
VER	VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)						

Risultante N =	forze verticali (N) Pm + Pt + v + Stv + Sqv (+ Sovr acc)	Nmin 398.51	Nmax 398.51 (kN/m)
Risultante	forze orizzontali (T) Sth + Sqh + f - Sp	101.55	101.55 (kN/m)
Risultante	dei momenti rispetto al piede di valle (MM) Σ M	654.26	654.26 (kNm/m)
	rispetto al baricentro della fondazione (M)	054.20	654.26 (kNm/m)
M =	Xc*N - MM	182.61	182.61 (kNm/m)

10.3 VERIFICHE GEOTECNICHE

10.3.1 VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. DRENATE

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Xc*N - MM

Rist N	ultante forze vertical = Pm + F	(N) Pt + v + Stv + Sqv perm + Sqv acc	398.51	(kN/m)	
Risi T	ultante forze orizzon = Sth + S		127.13	(kN/m)	
Coe f	efficiente di attrito al = tgφ1'	a base (f)	0.47	(-)	
Fs	scorr.	(N*f + Sp) / T	1.46	>	1.1
<u>VE</u>	RIFICA AL RIBAL	.TAMENTO			
Mor Ms	mento stabilizzante (= Mm + I	Ms) Mt + Mfext3	890.69	(kNm/m)	
Mor Mr	mento ribaltante (Mr = MSt +) MSq + Mfext1+ Mfext2 + MSp	250.18	(kNm/m)	
Fs	ribaltamento	Ms / Mr	3.56	>	1.15
<u>VE</u>	RIFICA CARICO	LIMITE DELLA FONDAZIONE (S	TR/GEO)		
Rist N	ultante forze vertical = Pm + F	(N) Pt + v + Stv + Sqv (+ Sovr acc)	Nmin 398.51	Nmax 494.21	(kN/m)
Risı T	ultante forze orizzon = Sth + S	tali (T) Sqh + f - Sp	127.13	127.13	(kN/m)
Rist MM		rispetto al piede di valle (MM)	640.50	884.54	(kNm/m)
Mor	mento rispetto al bar	icentro della fondazione (M)			

196.37

153.30 (kNm/m)

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 53 di 78

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		15.00 25.00 19.00		(kPa) (°) (kN/m³)		
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		15.20		(kN/m ²)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.49 3.21	0.31 3.58	(m) (m)		
I valori di Nc, N	lq e Ng sono stati valutati con le espressioni suggerite da \	/esic (1975)					
$\begin{aligned} Nq &= tg^2(45 + \phi'/2)^* e^{(\pi^* tg(\phi'))} & (1 \text{ in cond. nd}) & 10.66 & (-) \\ Nc &= (Nq - 1)/tg(\phi') & (2 + \pi \text{ in cond. nd}) & 20.72 & (-) \\ N\gamma &= 2^*(Nq + 1)^* tg(\phi') & (0 \text{ in cond. nd}) & 10.88 & (-) \end{aligned}$							
I valori di ic, iq	e iγ sono stati valutati con le espressioni suggerite da Ves	ic (1975)					
$iq = (1 - T/(N + B*c'cotg\phi'))^m$ (1 in cond. nd) 0.56 0.63 (ic = iq - (1 - iq)/(Nq - 1) 0.51 0.51 ($i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1}$ 0.42 0.43 (
(fondazione nastriforme m = 2)							
qlim	(carico limite unitario)		387.72	402.09	(kN/m ²)		
FS carico lir		min 3.	13	>	1.4		
ro carico III		max 2 .	91	>	1.4		

10.3.2 VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. DRENATE

Condizione sismica +

VERIFICA ALLO SCORRIMENTO

N	=	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv e orizzontali (T)	407.85	(kN/m)	
_	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	99.60	(kN/m)	
Coeff f	ficiente di =	attrito alla base (f) tgφ1'	0.47	(-)	
Fs	=	(N*f + Sp) / T	1.91	>	1

VERIFICA AL RIBALTAMENTO

Fr	=	Ms / Mr	4.76	>	4
Mr	=	MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	186.94	(kNm/m)	
Mom	ento ribal	Itante (Mr)			
Ms	=	Mm + Mt + Mfext3	890.69	(kNm/m)	
Mom	ento stab	ilizzante (Ms)			

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Rist	ultante forz	ze verticali (N)	Nmin	Nmax [*]	
N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	407.85	421.05	(kN/m)
Rist	ultante forz	ze orizzontali (T)			
Т	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	99.60		(kN/m)
Rist	ultante dei	momenti rispetto al piede di valle (MM)			
MM	=	Σ M	723.64	757.30	(kNm/m)
Mor	nento risp	etto al baricentro della fondazione (M)			
M	=	Xc*N - MM	132.85	126.91	(kNm/m)

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 55 di 78

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico lim	nite F = qlim*B*/ N	Nmin	4.29	>	1.2				
qlim	(carico limite unitario)		492.81	500.19	(kN/m ²)				
(fondazione nas	triforme m = 2)								
$i\gamma = (1 - T/(N + I))$	3*c'cotgφ')) ^{m+1}		0.53	0.53	(-)				
iq = (1 - 1)/(10 + 1) ic = iq - (1 - iq)/(10 + 1)	3177		0.65 0.62	0.66 0.63	(-) (-)				
I valori di ic, iq ϵ iq = $(1 - T/(N + 1))$	I valori di ic, iq e iγ sono stati valutati con le espressioni suggerite da Vesic (1975)								
$N\gamma = 2*(Nq + 1)$	*tg(φ') (0 in cond. nd)		10.88		(-)				
Nc = (Nq - 1)/tg			20.72		(-)				
$Nq = tg^2(45 + \varphi)$	//2)*e ^{(π*tg(φ'))} (1 in cond. nd)		10.66		(-)				
I valori di Nc, No	q e Ng sono stati valutati con le espressioni suggerit	e da Vesic (1975	5)						
B*= B - 2e	larghezza equivalente		3.55	3.60	(m)				
e = M / N	eccentricità		0.33	0.30	(m)				
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		15.20		(kN/m^2)				
γ1	peso unità di volume terreno fondaz.		19.00		(kN/m ³)				
φ1′	angolo di attrito terreno di fondaz.		25.00		(°)				
c1'	coesione terreno di fondaz		15.00		(kN/mg)				

Nmax

4.27

Condizione sismica -

VERIFICA ALLO SCORRIMENTO

Fr	=	Ms / Mr	3.67	>	1
	nento ribalt =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	242.45	(kNm/m)	
		izzante (Ms) Mm + Mt + Mfext3	890.69	(kNm/m)	
VEF	RIFICA AI	_ RIBALTAMENTO			
Fs	=	(N*f + Sp) / T	1.88	>	1
Coe	fficiente di =	attrito alla base (f) tgφ1'	0.47	(-)	
	Itante forze	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	96.47	(kN/m)	
Risu N	ltante forze	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	389.17	(kN/m)	

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risult N	tante forze	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	Nmin 389.17	Nmax 402.37	(kN/m)	
Risult T	tante forze	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	96.47		(kN/m)	
Risultante dei momenti rispetto al piede di valle (MM) $ MM = \sum M $ 686.70 720.36 (kM						
Mom M	ento rispet =	tto al baricentro della fondazione (M) Xc*N - MM	130.55	124.61	(kNm/m)	

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 57 di 78

4.43

Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

$i\gamma = (1 - T/(N + B*c'cotg\phi'))^{m+1}$ 0.53 0.53 (-) (fondazione nastriforme m = 2)						
iq = (1 - T/(N + ic = iq - (1 - iq)) iw = (1 - T/(N + iq))	/(Nq - 1)		0.65 0.62	0.66 0.63	(-) (-)	
I valori di ic, iq	e iγ sono stati valutati con le espressioni suggerite d	la Vesic (1975)				
Nq = $tg^2(45 + q)$ Nc = (Nq - 1)/ tg N γ = 2*(Nq + 1)	$g(\varphi')$ (2+ π in cond. nd)		10.66 20.72 10.88		(-) (-) (-)	
I valori di Nc, N	lq e Ng sono stati valutati con le espressioni suggerit	te da Vesic (1975	5)			
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.34 3.53	0.31 3.58	(m) (m)	
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		15.20		(kN/m ²)	
c1' φ1'	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		15.00 25.00 19.00		(kN/mq) (°) (kN/m³)	

10.3.3 VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. NON DRENATE

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Risult N	tante forze =	e verticali (N) Pm + Pt + v + Stv + Sqv perm + Sqv acc	398.51	(kN/m)			
Risult T	tante forze =	orizzontali (T) Sth + Sqh + f	127.13	(kN/m)			
Coef	ficiente di =	attrito alla base (f) tgφ1'	0.47	(-)			
Fs	scorr.	(N*f + Sp) / T	1.46	>	1.1		
VER	VERIFICA AL RIBALTAMENTO						

- -	vib altau	aonto Mo / Mr	2 56	
Mr	=	MSt + MSq + Mfext1+ Mfext2 + MSp	250.18	(kNm/m)
Mon	nento ribalt	ante (Mr)		
Ms	=	Mm + Mt + Mfext3	890.69	(kNm/m)
Mon	nento stabil	izzante (Ms)		

FS	ribaltamento	MS / Mr	3.56	>	1.15

VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)

Risultante forze verticali (N) Nmin			Nmin	Nmax	
N	=	Pm + Pt + v + Stv + Sqv (+ Sovr acc)	398.51	494.21	(kN/m)
Risult	tante forze	orizzontali (T)			
Т	=	Sth + Sqh + f - Sp	127.13	127.13	(kN/m)
Risult	tante dei m	nomenti rispetto al piede di valle (MM)			
MM	=	Σ M	640.50	884.54	(kNm/m)
Mom	Momento rispetto al baricentro della fondazione (M)				
M	=	Xc*N - MM	196.37	153.30	(kNm/m)

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 59 di 78

2.39

Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico lir	mite F = qlim*B*/ N	Nmin	2.60	>	1.4
qlim	(carico limite unitario)		321.72	329.79	(kN/m ²)
(fondazione nastriforme m = 2)					
iq = (1 - T/(N + ic = (1 - m T / (ic = (1 - T/(N + ic =	B* cu*Nc))		1.00 0.79 	1.00 0.82	(-) (-) (-)
I valori di ic, iq	e iγ sono stati valutati con le espressioni suggerite da	a Vesic (1975)			
Nq = $tg^2(45 + \varphi)$ Nc = (Nq - 1)/ tg N γ = 2*(Nq + 1)			1.00 5.14 0.00		(-) (-) (-)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite	e da Vesic (1975	5)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.49 3.21	0.31 3.58	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		15.20		(kN/m ²)
γ1	peso unità di volume terreno fondaz.		19.00		(kN/m³)
cu	res. al taglio nd terreno di fondaz.		75.00		(kPa)

10.3.4 VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. NON DRENATE

Condizione sismica +

VERIFICA ALLO SCORRIMENTO

Fs	=	(N*f + Sp) / T	1.91	>	1
Coef f	ficiente di =	attrito alla base (f) tgφ1'	0.47	(-)	
	tante forze =	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	99.60	(kN/m)	
Risul N	tante forze	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	407.85	(kN/m)	

VERIFICA AL RIBALTAMENTO

Fr	=	Ms / Mr	4.76	>	4
Mr	=	MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	186.94	(kNm/m)	
Mom	ento ribal	Itante (Mr)			
Ms	=	Mm + Mt + Mfext3	890.69	(kNm/m)	
Mom	ento stab	ilizzante (Ms)			

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risul	tante forze	e verticali (N)	Nmin	Nmax	
N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	407.85	421.05	(kN/m)
Risul	tante forze	e orizzontali (T)			
_	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	99.60		(kN/m)
Risul	tante dei n	nomenti rispetto al piede di valle (MM)			
MM	=	Σ M	723.64	757.30	(kNm/m)
Mom	ento rispet	tto al baricentro della fondazione (M)			
M	= .	Xc*N - MM	132.85	126.91	(kNm/m)

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 61 di 78

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

qlim FS carico lir	(carico limite unitario) nite	Nmin	344.68 3.00	345.44	(kN/m²)	
(fondazione nastriforme m = 2)						
iq = (1 - T/(N + ic = (1 - m T / (ic = (1 - T/(N + ic =	B* cu*Nc))		1.00 0.85 	1.00 0.86	(-) (-) (-)	
I valori di ic, iq e iγ sono stati valutati con le espressioni suggerite da Vesic (1975)						
	$('/2)^*e^{(\pi^*tg(\phi'))}$ (1 in cond. nd) (ϕ') (2+ π in cond. nd) $('tg(\phi')$ (0 in cond. nd)		1.00 5.14 0.00		(-) (-) (-)	
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite	da Vesic (1975)			
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.33 3.55	0.30 3.60	(m) (m)	
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		15.20		(kN/m ²)	
γ1	peso unità di volume terreno fondaz.		19.00		(kN/m³)	
cu	res. al taglio nd terreno di fondaz.		75.00		(kN/mq)	

Condizione sismica -

VERIFICA ALLO SCORRIMENTO

		e verticali (N)					
N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	389.17	(kN/m)			
Risult	ante forze	e orizzontali (T)					
T	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	96.47	(kN/m)			
Coeff	iciente di	attrito alla base (f)					
f	=	tgφ1'	0.47	(-)			
Fs	=	(N*f + Sp) / T	1.88	>	1		
VER	VERIFICA AL RIBALTAMENTO						
Mome	Momento stabilizzante (Ms)						

Ms		Mm + Mt + Mfext3	890.69	(kNm/m)
	ento ribalta =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	242.45	(kNm/m)

Fr = Ms/Mr 3.67 > 1

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risul N	tante forze	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	Nmin 389.17	Nmax 402.37	(kN/m)
Risul T	tante forze	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	96.47		(kN/m)
Risul MM		nomenti rispetto al piede di valle (MM) $$\Sigma{\rm M}$$	686.70	720.36	(kNm/m)
Mom M	ento rispe =	tto al baricentro della fondazione (M) Xc*N - MM	130.55	124.61	(kNm/m)

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

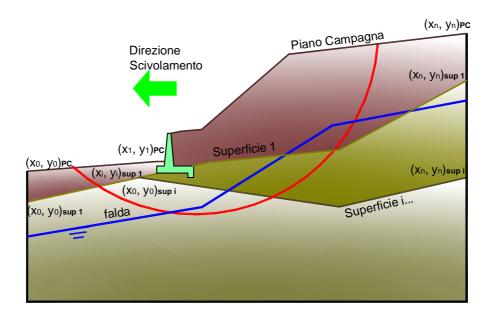
 RS3T
 30 D 78
 CL
 MU8500 001
 B
 63 di 78

3.09

Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

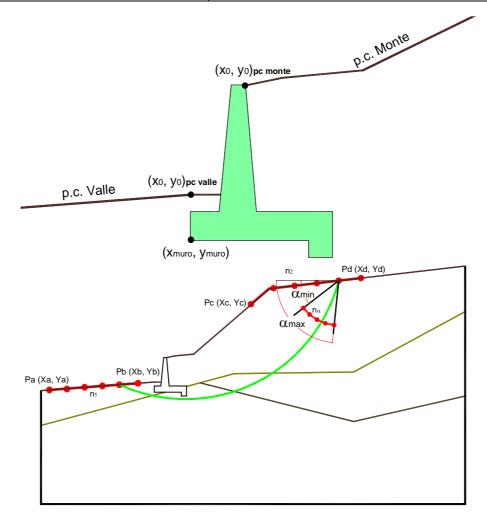

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico li	mite F = qlim*B*/ N	Nmin	3.14	>	1.2
qlim	(carico limite unitario)		346.15	346.93	(kN/m ²)
(fondazione na	striforme m = 2)				
$i\gamma = (1 - T/(N +$	· B*c'cotgφ')) ^{m+1}				(-)
iq = (1 - T/(N + ic = (1 - m T /	- B*c'cotgφ')) ^m (1 in cond. nd) (B* cu*Nc))		1.00 0.86	1.00 0.86	(-) (-)
	e iγ sono stati valutati con le espressioni suggerite da	a Vesic (1975)	4.00	4.05	
$N\gamma = 2*(Nq + 1$)*tg(φ') (0 in cond. nd)		0.00		(-)
Nq = tg (43 + t) Nc = (Nq - 1)/t			5.14		(-)
$Nq = tg^2(45 + c)$	p'/2)*e ^{(π*tg(φ'))} (1 in cond. nd)		1.00		(-)
I valori di Nc, N	Nq e Ng sono stati valutati con le espressioni suggerite	e da Vesic (1975	5)		
B*= B - 2e	larghezza equivalente		3.53	3.58	(m)
e = M / N	eccentricità		0.34	0.31	(m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		15.20		(kN/m^2)
γ1	peso unità di volume terreno fondaz.		19.00		(kN/m ³)
cu	res. al taglio nd terreno di fondaz.		75.00		(kN/mq)
-					

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI TRATTA VA	LLEGAME LLELUNG	NTO PALERI	NA – CATANIA – MO – CATANIA SETTA XIRBI (LO – LOTTO 3B		
NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO	COMMESSA RS3T	LOTTO 30 D 78	CODIFICA	DOCUMENTO MU8500 001	REV.	

10.3.5 VERIFICA DI STABILITÀ GLOBALE – COND. DRENATE

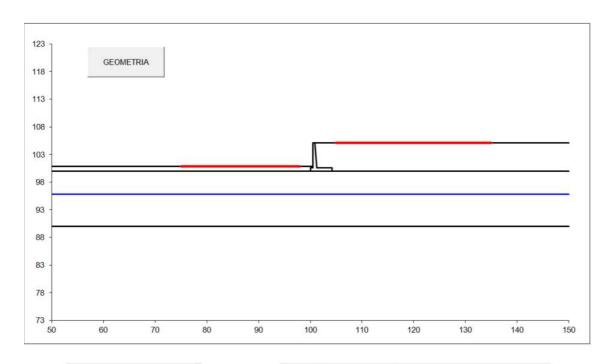
Le analisi di stabilità, di seguito riportate, sono state effettuate limitando la ricerca delle potenziali superfici di scorrimento critiche alla fascia più prossima alla linea stradale.



	γ [kN/m³]	φ [°]	c [kPa]	Descrizione
materiale 1	19.00	35	0	Rilevato - riporto
materiale 2	19.00	25	15	Unità geotecnica 1 - A2
materiale 3	20.00	21	20	Unità geotecnica 2 - FYN4
materiale 4				

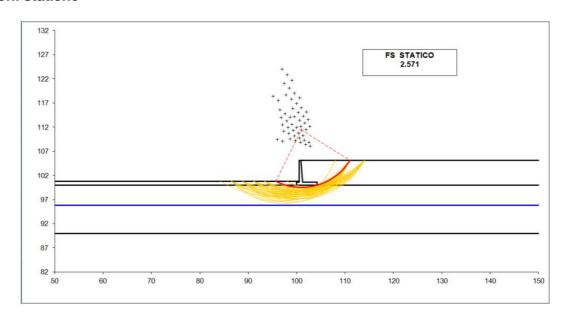
NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3T
 30 D 78
 CL
 MU8500 001
 B
 65 di 78



	p.c. valle		p.c		nte		superfic	ie 1		superfici	e 2	superficie 3			-200		
		materiale 1					materi	ale 2	1	materia	le 3 🔻		mate	eriale 4		g 'da	
	х	У		x	у		X	У		х	у		х	у	Į.	х	У
0	100.000	100.800	0	100.900	105.100	0	50.000	100.000	0	50.000	90.000	0			0	50.000	95.800
1	50.000	100.800	1	150.000	105.100	1	150.000	100.000	1	150.000	90.000	1			1	150.000	95.800
2			2			2			2			2			2		
3			3			3			3			3			3		
4			4			4			4			4			4		
5			5			5			5			5			5		
6			6			6			6			6			6		
7			7			7			7			7			7		
8			8			8			8			8			8		
9			9			9			9			9			9		
10			10			10			10			10			10		

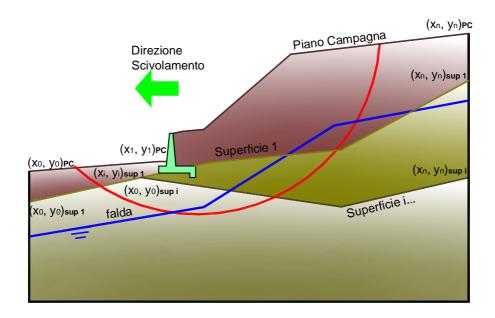
Sovraccarichi



#strisce	
30	


# Superfici Calcolate	FS Bish	
866	STATICO	2.571
000	SISMICO	1.973

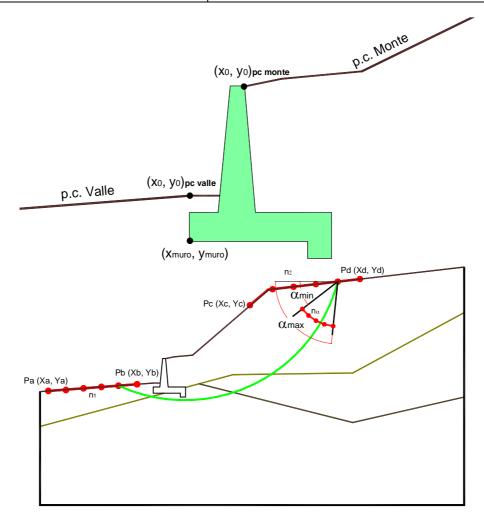
Condizioni statiche


Condizioni sismiche

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI TRATTA VA	LLEGAME LLELUNG	NTO PALERI	NA – CATANIA – 10 – CATANIA SETTA XIRBI (LO – LOTTO 3B		FOGLIO 68 di 78
NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO	COMMESSA RS3T	LOTTO 30 D 78	CODIFICA CL	DOCUMENTO MU8500 001	REV.	

10.3.6 VERIFICA DI STABILITÀ GLOBALE – COND. NON DRENATE

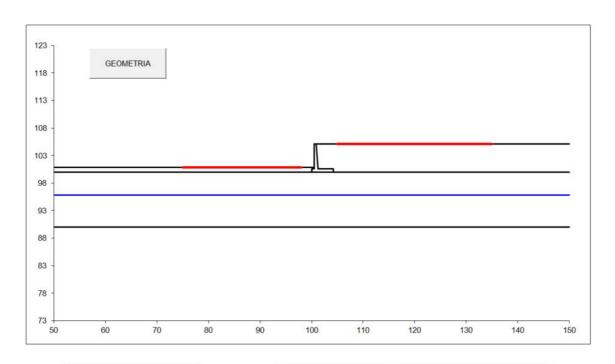
Le analisi di stabilità, di seguito riportate, sono state effettuate limitando la ricerca delle potenziali superfici di scorrimento critiche alla fascia più prossima alla linea stradale.



	γ [kN/m³]	φ [°]	c [kPa]	Descrizione
materiale 1	19.00	35	0	Rilevato - riporto
materiale 2	19.00	25	75	Unità geotecnica 1 - A2
materiale 3	20.00	21	175	Unità geotecnica 2 - FYN4
materiale 4				

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

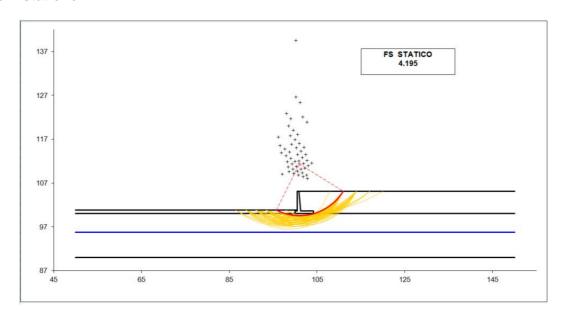
 RS3T
 30 D 78
 CL
 MU8500 001
 B
 69 di 78



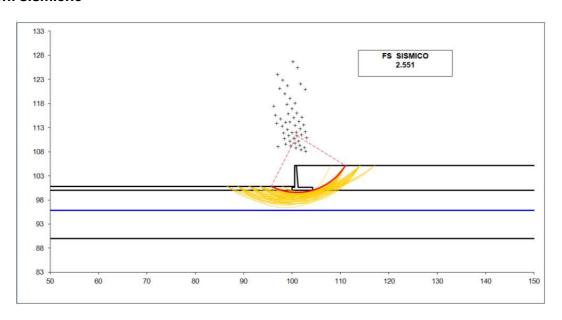
	p.c. va	lle		p.c. mor	nte		superfic	ie 1		superfici	e 2		superfic	cie 3			
		materiale 1		-		1	materi	ale 2 🔻	9	materia	ole 3 ▼	1	mater	riale 4		^j da	
П	x	у		x	у		x	у		х	у		x	у		x	у
0	100.000	100.800	0	100.900	105.100	0	50.000	100.000	0	50.000	90.000	0			0	50.000	95.800
1	50.000	100.800	1	150.000	105.100	1	150.000	100.000	1	150.000	90.000	1			1	150.000	95.800
2			2			2			2			2			2		
3			3			3			3			3			3		
4			4			4			4			4			4		
5			5			5			5			5			5		
6			6			6			6			6			6		
7			7			7			7			7			7		
8			8			8			8			8			8		
9			9			9			9			9			9		
10			10			10			10			10			10		

Sovraccarichi

		X _{in}	q _{in}	X _{fin}	q _{fin}	% sisma
sovraccarico 1	•	103.900	20	106.500	20	20%
sovraccarico 2						



#strisce	
30	


# Superfici Calcolate	FS Bish	
866	STATICO	4.195
000	SISMICO	2.551

Condizioni statiche

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI TRATTA VA	LLEGAME LLELUNG	NTO PALERI	NA – CATANIA – 10 – CATANIA SETTA XIRBI (LO – LOTTO 3B		0
NV62C: MURO DI SOSTEGNO MU85	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RELAZIONE DI CALCOLO	RS3T	30 D 78	CL	MU8500 001	В	71 di 78

Condizioni sismiche

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

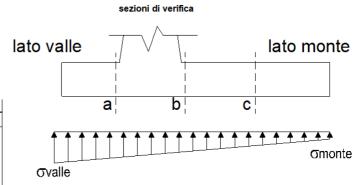
 RS3T
 30 D 78
 CL
 MU8500 001
 B
 72 di 78

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO

10.4 VERIFICHE STRUTTURALI

10.4.1 CALCOLO DELLE SOLLECITAZIONI

Reazione del terreno


ovalle = N / A + M / Wgg

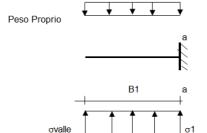
σmonte = N / A - M / Wgg

A = 1.0*B = 4.20 (m²)

 $Wgg = 1.0*B^2/6 = 2.94$ (m³)

	N	М	ovalle	omonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
statico	398.51	196.37	161.67	28.09
Statico	494.21	153.30	169.81	65.53
sisma+	407.85	132.85	142.30	51.92
Sisilia	421.05	126.91	143.42	57.08
sisma-	389.17	130.55	137.06	48.25
Sisilia-	402.37	124.61	138.19	53.42

Mensola Lato Valle


Peso Proprio.

PP = 15.00 (kN/m)

Ma = $\sigma 1^* B 1^2 / 2 + (\sigma valle - \sigma 1)^* B 1^2 / 3 - PP^* B 1^2 / 2^* (1 \pm kv)$

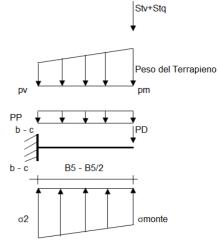
 $Va = \sigma 1*B1 + (\sigma valle - \sigma 1)*B1/2 - PP*B1*(1\pm kv)$

	ovalle	σ1	Ma	Va
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
statico	161.67	145.77	17.67	69.36
	169.81	157.40	18.83	74.30
aiama I	142.30	131.54	15.42	63.47
sisma+	143.42	133.14	15.62	64.03
sisma-	137.06	126.49	14.86	60.85
	138.19	128.09	14.98	61.42

Mensola Lato Monte

PP	=	15.00	(kN/m^2)	peso proprio soletta
PD	=	0.00	(kN/m)	peso proprio dente

			•	•	
		Nmin	N max stat	N max sism	
pm	=	85.50	114.50	89.50	(kN/m ²)
pvb	=	85.50	114.50	89.50	(kN/m ²)
nve	_	85.50	11/ 50	80.50	(kN/m ²)


$$\label{eq:monte-power} \begin{split} \text{Mb=}(\sigma_{\text{monte}}\cdot(\text{pvb+PP})^*(1\pm kv))^*B5^2/2 + (\sigma 2b - \sigma_{\text{monte}})^*B5^2/6 - (\text{pm-pvb}))^*(1\pm kv)^*B5^2/3 + \\ -(\text{Stv+Sqv})^*B5 - \text{PD}^*(1\pm kv)^*(B5 - \text{Bd/2}) - \text{PD}^*kh^*(\text{Hd+H2/2}) + \text{Msp+Sp}^*H2/2 \end{split}$$

 $\begin{aligned} &\text{Mc} = &(\sigma_{monte} - (pvc+PP)^*(1\pm kv))^*(B5/2)^2/2 + (\sigma 2c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(1\pm kv)^*(B5/2)^2/3 + \\ &- (Stv+Sqv)^*(B5/2) - PD^*(1\pm kv)^*(B5/2-Bd/2) - PD^*kh^*(Hd+H2/2) + Msp + Sp^*H2/2 \end{aligned}$

 $Vb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma 2b - \sigma_{monte})^*B5/2 - (pm - pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

 $Vc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma 2c - \sigma_{monte})^*(B5/2)/2 - (pm-pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

fondazione

NV62C: MURO DI SOSTEGNO MU85 RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3T	30 D 78	CL	MU8500 001	В	73 di 78

	omonte	σ2b	Mb	Vb	σ2c	Мс	Vc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m ²]	[kNm]	[kN]
statico	28.09	121.60	-178.23	-75.42	74.85	-61.39	-72.08
	65.53	138.53	-171.32	-80.77	102.03	-55.98	-67.21
	51.92	115.18	-129.09	-56.82	83.55	-43.66	-51.66
sisma+	57.08	117.52	-128.55	-57.83	87.30	-43.02	-51.13
sisma-	48.25	110.42	-125.97	-55.23	79.34	-42.69	-50.46
	53.42	112.76	-124.61	-55.69	83.09	-41.84	-49.65

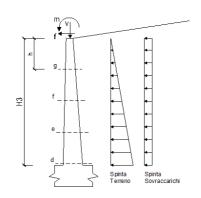
CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}}^* \gamma^* (1 \pm \text{kv})^* h^2 * h/3$

 $\label{eq:Mt_sism} \text{Mt sism} = \ 1/2 * \gamma * (Kas_{\text{orizz.}}*(1\pm kv)-Ka_{\text{orizz.}})*h^2*h/2 \quad o *h/3$

 $Mq = \frac{1}{2} Ka_{\text{orizz}} *q*h^{2}$ $M_{\text{ext}} = m+f*h$ $M_{\text{inerzia}} = \sum Pm_{i}*b_{i}*kh$


 $N_{ext} = v$

N $_{pp+inerzia}$ = $\Sigma Pm_i^*(1\pm kv)$

Vt stat = $\frac{1}{2}$ Ka_{orizz}* γ *(1±kv)*h²

Vt sism = $\frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv) - Ka_{orizz.}) * h^2$

 $Vq = Ka_{orizz}^*q^*h$ $V_{ext} = f$ $V_{inerzia} = \Sigma Pm_i^*kh$

condizione statica

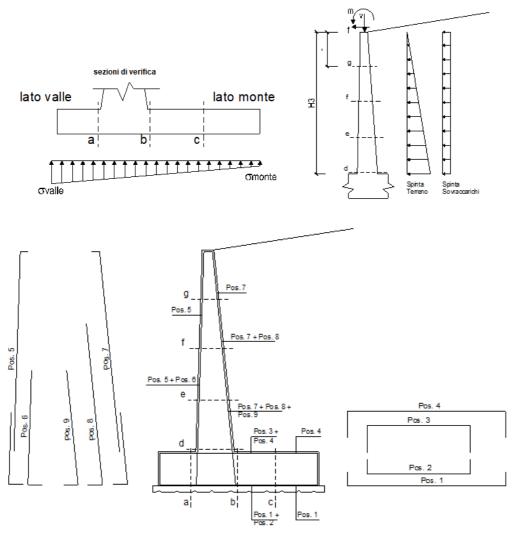
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N_{pp}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.50	101.66	79.57	0.00	181.23	3.50	65.25	68.75
е-е	3.38	42.89	44.76	0.00	87.64	3.50	45.14	48.64
f-f	2.25	12.71	19.89	0.00	32.60	3.50	27.56	31.06
g-g	1.13	1.59	4.97	0.00	6.56	3.50	12.52	16.02

sezione	h	Vt	Vq	$V_{\rm ext}$	V_{tot}
36210116	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.50	67.77	35.36	0.00	103.14
e-e	3.38	38.12	26.52	0.00	64.64
f-f	2.25	16.94	17.68	0.00	34.62
a-a	1 13	4 24	8 84	0.00	13 08

condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.50	78.20	9.24	11.99	0.00	6.23	105.65	3.50	66.79	70.29
e-e	3.38	32.99	3.90	6.74	0.00	3.30	46.93	3.50	46.21	49.71
f-f	2.25	9.77	1.16	3.00	0.00	1.38	15.30	3.50	28.21	31.71
g-g	1.13	1.22	0.14	0.75	0.00	0.32	2.44	3.50	12.81	16.31

sezione	h Vt stat		Vt sism	Vt _{sism} Vq		V _{inerzia}	V _{tot}	
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	
d-d	4.50	52.13	6.16	5.33	0.00	3.09	66.71	
e-e	3.38	29.32	3.47	4.00	0.00	2.14	38.92	
f-f	2.25	13.03	1.54	2.66	0.00	1.30	18.54	
a-a	1.13	3.26	0.39	1.33	0.00	0.59	5.57	


condizione sismica -

				COITG	IZIONE SISINI	su -				
sezione	h	Mt stat	Mt sism	Mq	M_{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.50	78.20	5.56	12.04	0.00	6.23	102.02	3.50	63.71	67.21
e-e	3.38	32.99	2.34	6.77	0.00	3.30	45.41	3.50	44.07	47.57
f-f	2.25	9.77	0.69	3.01	0.00	1.38	14.86	3.50	26.91	30.41
a-a	1 13	1 22	0.09	0.75	0.00	0.32	2.38	3.50	12 22	15 72

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V_{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.50	52.13	3.70	5.35	0.00	3.09	64.27
e-e	3.38	29.32	2.08	4.01	0.00	2.14	37.56
f-f	2.25	13.03	0.93	2.68	0.00	1.30	17.94
q-q	1.13	3.26	0.23	1.34	0.00	0.59	5.42

10.4.2 VERIFICHE SLU

Armatura minima

L'armatura minima principale in fondazione deve essere in percentuale non inferiore allo 0.20% dell'area di conglomerato.

L'armatura minima principale presente in zona tesa deve essere in percentuale non inferiore allo 0.15% dell'area di conglomerato per l'intera lunghezza.

L'armatura secondaria, ortogonale a quella principale, deve essere pari al massimo delle seguenti percentuali:

- 0.10% dell'area di conglomerato in entrambi i lembi;
- 20% dell'armatura principale.

Muro h = 4,50m su fondazione diretta

ARMATURE

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato
1	10.0	16		5	10.0	16	
2	0.0	0		6	0.0	0	
3	0.0	0		7	10.0	20	
4	10.0	20		8	0.0	0	
				9	0.0	0	

Pertanto l'armatura secondaria sarà pari a:

sez a – a: φ10/20cm (ripartitori in fondazione e in elevazione);

sez b – b: ϕ 10/20cm (ripartitori in fondazione);

sez c – c: ϕ 10/20cm (ripartitori in fondazione);

sez d - d: $\phi 10/20$ cm (ripartitori in fondazione);

sez e - e: ϕ 10/20cm (ripartitori in fondazione);

sez f – f: ϕ 10/20cm (ripartitori in fondazione);

sez g - g: $\phi 10/20$ cm (ripartitori in fondazione);

Sez.	M	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm²)	(cm ²)	(kNm)
a - a	18.83	0.00	0.60	20.11	31.42	394.45
b - b	-178.23	0.00	0.60	31.42	20.11	595.23
C - C	-61.39	0.00	0.60	31.42	20.11	595.23
d - d	181.23	68.75	0.76	31.42	20.11	812.99
e -e	87.64	48.64	0.67	31.42	20.11	694.01
f-f	32.60	31.06	0.58	31.42	20.11	577.38
g - g	6.56	16.02	0.49	31.42	20.11	462.76

Sez.	V _{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	_
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- -
a - a	74.30	0.60	234.90	10	20	20	21.8	907.58	Armatura a taglio non necessaria
b - b	80.77	0.60	272.58	10	20	20	21.8	907.58	Armatura a taglio non necessaria
C - C	72.08	0.60	272.58	10	20	20	21.8	907.58	Armatura a taglio non necessaria
d - d	103.14	0.76	319.29	10	20	20	21.8	1184.18	Armatura a taglio non necessaria
е -е	64.64	0.67	295.92	10	20	20	21.8	1028.59	Armatura a taglio non necessaria
f-f	34.62	0.58	271.65	10	20	20	21.8	873.01	Armatura a taglio non necessaria
g - g	13.08	0.49	246.16	10	20	20	21.8	717.42	Armatura a taglio non necessaria

10.4.3 VERIFICHE SLE TENSIONE

Condizione Statica

Sez.	M	N	h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	15.90	0.00	0.60	20.11	31.42	0.38	16.71
b - b	-126.58	0.00	0.60	31.42	20.11	2.70	86.47
C - C	-42.84	0.00	0.60	31.42	20.11	0.91	29.26
d - d	133.07	68.75	0.76	31.42	20.11	1.91	58.49
е -е	63.86	48.64	0.67	31.42	20.11	1.16	31.05
f-f	23.49	31.06	0.58	31.42	20.11	0.56	12.19
g - g	4.65	16.02	0.49	31.42	20.11	0.16	1.86

Condizione Sismica

COMMIZION	ic oldillica						
Sez.	M	N	h	Af	A'f	σC	o f
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	15.58	0.00	0.60	20.11	31.42	0.37	16.38
b - b	-129.09	0.00	0.60	31.42	20.11	2.76	88.19
C - C	-43.66	0.00	0.60	31.42	20.11	0.93	29.83
d - d	105.65	67.21	0.76	31.42	20.11	1.52	44.64
е -е	46.93	47.57	0.67	31.42	20.11	0.86	21.16
f-f	15.30	30.41	0.58	31.42	20.11	0.37	6.57
g - g	2.44	15.72	0.49	31.42	20.11	0.09	0.30

10.4.4 VERIFICHE SLE FESSURAZIONE

condizione Frequente

Sez.	М	N	h	Af	A'f	σc	σf	wk	W _{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	15.90	0.00	0.60	20.11	31.42	0.38	16.71	0.021	0.200
b - b	-126.58	0.00	0.60	31.42	20.11	2.70	86.47	0.093	0.200
C - C	-42.84	0.00	0.60	31.42	20.11	0.91	29.26	0.032	0.200
d - d	133.07	68.75	0.76	31.42	20.11	1.91	58.49	0.069	0.200
е -е	63.86	48.64	0.67	31.42	20.11	1.16	31.05	0.034	0.200
f-f	23.49	31.06	0.58	31.42	20.11	0.56	12.19	0.012	0.200
g - g	4.65	16.02	0.49	31.42	20.11	0.16	1.86	0.002	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

condizione Quasi Permanente

Sez.	M	N	h	Af	A'f	σc	σf	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	12.33	0.00	0.60	20.11	31.42	0.30	12.97	0.016	0.200
b - b	-71.32	0.00	0.60	31.42	20.11	1.52	48.72	0.052	0.200
C - C	-22.98	0.00	0.60	31.42	20.11	0.49	15.70	0.017	0.200
d - d	78.20	68.75	0.76	31.42	20.11	1.14	30.39	0.035	0.200
e -e	32.99	48.64	0.67	31.42	20.11	0.61	12.81	0.014	0.200
f-f	9.77	31.06	0.58	31.42	20.11	0.24	2.80	0.003	0.200
g - g	1.22	16.02	0.49	31.42	20.11	0.06	-0.15	0.000	0.200

10.4.5 VERIFICHE STRUTTURALI IN PRESENZA DI URTO

Per le verifiche strutturali dei muri <u>"tipo 1"</u> si considera la verifica a pressoflessione della sezione di spiccato del paramento per la quale:

M=[100*(Hp+1)]/Lc=57.89 kNm/m momento allo spiccato

T=100/Lc=10.53 kN/m taglio allo spiccato

in cui

Lc=0.5 m +2 Hp=9.50 m larghezza di ripartizione come descritto al par. 8.4

Hp=4.50 m altezza max del paramento

				valori caratteristici	valori di p	rogetto
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
==	Sovraccarico permanente	(kN/m ²)	qp	0.00	0.00	0.00
id je	Sovraccarico su zattera di monte ● si ○ no					
Carichi ermaner	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
Carichi permanenti	Forza Verticale in Testa permanente	(kN/m)	vp	3.50	3.50	3.50
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
	Sovraccarico Accidentale in condizioni statiche	(kN/m^2)	q	0.00	0.00	0.00
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statiche	(kN/m)	f	10.53	15.27	15.27
atic	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
S &	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	57.89	83.94	83.94
	Coefficienti di combinazione condizione frequer	nte Ψ1	1.00 c	condizione quasi permane	nte Ψ2	0.00
E e	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	0.00		
dizio Pict	Forza Orizzontale in Testa accidentale in condizioni sismiche	(kN/m)	fs	0.00		
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
0 0	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

					<u>Verifich</u>	ie SLU
Sez.	M	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(kNm)
a - a	20.00	0.00	0.60	20.11	31.42	394.45
b - b	-224.96	0.00	0.60	31.42	20.11	595.23
C - C	-78.19	0.00	0.60	31.42	20.11	595.23
d - d	254.31	68.75	0.76	31.42	20.11	812.99
e -e	178.36	48.64	0.67	31.42	20.11	694.01
f-f	131.00	31.06	0.58	31.42	20.11	577.38
g - g	102.71	16.02	0.49	31.42	20.11	462.76

Sez.	V_{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	_
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- -
a - a	78.29	0.60	234.90	10	20	20	21.8	907.58	Armatura a taglio non necessaria
b - b	93.31	0.60	272.58	10	20	20	21.8	907.58	Armatura a taglio non necessaria
C - C	91.45	0.60	272.58	10	20	20	21.8	907.58	Armatura a taglio non necessaria
d - d	83.04	0.76	319.29	10	20	20	21.8	1184.18	Armatura a taglio non necessaria
е -е	53.39	0.67	295.92	10	20	20	21.8	1028.59	Armatura a taglio non necessaria
f-f	32.21	0.58	271.65	10	20	20	21.8	873.01	Armatura a taglio non necessaria
q - q	19.50	0.49	246.16	10	20	20	21.8	717.42	Armatura a taglio non necessaria