
ANAS S.p.A.

Direzione Progettazione e Realizzazione Lavori

NUOVA S.S. 341 "GALLARATESE" - TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA - TRATTO NORD

STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO S.S. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8)
"BRETELLA DI GALLARATE"

PROGETTO ESECUTIVO

INDICE

1	PR	EME	ESSA	5
2	NO	RM	ATIVA DI RIFERIMENTO	9
3	DIC	CHIA	RAZIONI SECONDO N.T.C. 2018 (§ 10.2)	9
4	MA	TEF	RIALI	10
	4.1	Ca	lcestruzzo per strutture gettate in opera e diaframmi	10
	4.2	Ac	ciaio ordinario per armature c.a.	10
	4.3	Ac	ciaio in trefoli per tiranti	10
	4.4	Du 10	rabilità, prescrizioni sui materiali, scelta degli stati limite di fessurazione e d	ei copriferri
5	PAI	RAN	METRI GEOTECNICI	11
6	CA 6.1		TERIZZAZIONE SISMICAricolosità sismica di base	12 12
	6.2	De	finizione coefficienti sismici di calcolo	13
7	API	PRC	OCCI DI PROGETTO	13
	7.1	Ve	rifiche strutturali (STR)	13
	7.2	Ve	rifiche di stabilità del fondo scavo (GEO)	14
	7.3		rifica del carico limite del bulbo di ancoraggio dei tiranti (GEO)	14
	7.4	Ins	tabilità globale dell'insieme terreno-opera (GEO)	15
	7.5	Alt	re verifiche	15
8			RALITÀ SULLA MODELLAZIONE STRUTTURALE	
9			AMMA H=18,50 M ÷ 18,00 M	
	9.1		rametri geotecnici per il calcolo dei diaframmi	20
	9.2		ometria della struttura	21
	9.3		si di scavo	21
	9.4		etallazione dei tiranti essioni vericali e orizzontali del terreno sui diaframmi	25
	9.5 9.6		essioni vencali e onzzontali del terreno sui diarrammi llezitazioni	27 29
	9.7		formazioni	32
	9.8		azioni (Tiranti)	33
	9.9		rifiche allo Stato Limite Ultimo	33
	9.9.		Verifiche strutturali: verifiche a flessione e taglio	
	9.9.		Progetto e verifica strutturale della paratia	
	9.9.			
			Verifiche geotecniche: verifiche di stabilità del fondo scavo	
	9.9.		Verifiche strutturale e allo sfilamento dei tiranti attivi	
	9.9.		Verifica dello spostamento massimo	
	9.10		rifiche allo Stato Limite di Esercizio	41
	9.10	U.I	Verifica dello spostamento in fase di esercizio	41

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)

AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

9.10.2	Verifica fessurazione della paratia	42
9.10.3	Progetto e verifica strutturale del cordolo di testa	43
10 DIAFF	RAMMA H=15,00 M	46
	arametri geotecnici per il calcolo dei diaframmi	46
10.2 G	Seometria della struttura	47
10.3 F	asi di scavo	47
10.4 lr	nstallazione dei tiranti	51
10.5 P	ressioni vericali e orizzontali del terreno sui diaframmi	53
10.6 S	ollezitazioni	55
10.7 D	Deformazioni	57
10.8 R	teazioni (Tiranti)	58
10.9 V	erifiche allo Stato Limite Ultimo	58
10.9.1	Verifiche strutturali: verifiche a flessione e taglio	58
10.9.2	Progetto e verifica strutturale della paratia	61
10.9.3	Verifiche geotecniche: verifiche di stabilità del fondo scavo	62
10.9.4	Verifiche strutturale e allo sfilamento dei tiranti attivi	63
10.9.5	Verifica dello spostamento massimo	65
10.10 V	erifiche allo Stato Limite di Esercizio	66
10.10.	1 Verifica dello spostamento in fase di esercizio	66
10.10.	2 Verifica fessurazione della paratia	66
11 DIAFF	RAMMA H=12M ÷ 10,50M	68
11.1 P	arametri geotecnici per il calcolo dei diaframmi	68
11.2 G	Seometria della struttura	69
11.3 F	asi di scavo	69
11.4 lr	nstallazione dei tiranti	72
11.5 P	ressioni vericali e orizzontali del terreno sui diaframmi	74
11.6 S	ollezitazioni	76
11.7 D	Deformazioni	78
11.8 R	leazioni (Tiranti)	79
11.9 V	erifiche allo Stato Limite Ultimo	79
11.9.1	Verifiche strutturali: verifiche a flessione e taglio	79
11.9.2	Progetto e verifica strutturale della paratia	81
11.9.3	Verifiche geotecniche: verifiche di stabilità del fondo scavo	82
11.9.4	Verifiche strutturale e allo sfilamento dei tiranti attivi	83
11.9.5	Verifica dello spostamento massimo	85
11.10 V	erifiche allo Stato Limite di Esercizio	85
11.10.	1 Verifica dello spostamento in fase di esercizio	85

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)

AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

11.10.2	Verifica fessurazione della paratia	86
12 DIAFR	AMMA H=8,00M	88
12.1 Pa	rametri geotecnici per il calcolo dei diaframmi	88
12.2 G	eometria della struttura	89
12.3 Fa	si di scavo	89
12.4 Pr	essioni vericali e orizzontali del terreno sui diaframmi	91
12.5 Sc	llezitazioni	93
12.6 De	eformazioni	94
12.7 Ve	rifiche allo Stato Limite Ultimo	95
12.7.1	Verifiche strutturali: verifiche a flessione e taglio	95
12.7.2	Progetto e verifica strutturale della paratia	97
12.7.3	Verifiche geotecniche: verifiche di stabilità del fondo scavo	98
12.7.4	Verifica dello spostamento massimo	99
12.8 Ve	erifiche allo Stato Limite di Esercizio	100
12.8.1	Verifica dello spostamento in fase di esercizio	100
12.8.2	Verifica fessurazione della paratia	101
13 TABUL	ATI ALLEGATI	102
13.1 PA	ARATIA H=18,5 m	102
13.1.1	Descrizione del Software	102
13.1.2	Descrizione della Stratigrafia e degli Strati di Terreno	102
13.1.3	Descrizione Pareti	102
13.1.4	Fasi di Calcolo	103
13.1.5	Descrizione Coefficienti Design Assumption	111
13.1.6	Riepilogo Stage / Design Assumption per Inviluppo	112
13.1.7	Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)	112
13.1.8	Descrizione sintetica dei risultati delle Design Assumption in presenza di urto del ve	icolo
(Invilup	pi)	115
13.1.9	Normative adottate per le verifiche degli Elementi Strutturali	118
13.1.10	Verifiche tiranti	118
13.2 PA	ARATIA H=15 m	121
13.2.1	Descrizione della Stratigrafia e degli Strati di Terreno	121
13.2.2	Descrizione Pareti	121
13.2.3	Fasi di Calcolo	122
13.2.4	Descrizione Coefficienti Design Assumption	128
13.2.5	Riepilogo Stage / Design Assumption per Inviluppo	129
13.2.6	Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)	
13.2.7	Normative adottate per le verifiche degli Elementi Strutturali	132

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)

__AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

	13.2.8	Verifiche Tiranti	132
1	3.3 PA	RATIA H=12 m	134
	13.3.1	Descrizione della Stratigrafia e degli Strati di Terreno	134
	13.3.2	Descrizione Pareti	134
	13.3.3	Fasi di Calcolo	135
	13.3.4	Descrizione Coefficienti Design Assumption	139
	13.3.5	Riepilogo Stage / Design Assumption per Inviluppo	139
	13.3.6	Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)	140
	13.3.7	Inviluppo Spinta Reale Efficace / Spinta Attiva	143
	13.3.8	Normative adottate per le verifiche degli Elementi Strutturali	143
	13.3.9	Riepilogo Stage / Design Assumption per Inviluppo	143
	13.3.10	Risultati Caver	143
	13.3.11	Verifiche tiranti	147
1	3.4 PA	RATIA H=8m	149
	13.4.1	Descrizione della Stratigrafia e degli Strati di Terreno	149
	13.4.2	Descrizione Pareti	149
	13.4.3	Fasi di Calcolo	150
	13.4.4	Descrizione Coefficienti Design Assumption	152
	13.4.5	Riepilogo Stage / Design Assumption per Inviluppo	153
	13.4.6	Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)	153
	13.4.7	Normative adottate per le verifiche degli Elementi Strutturali	155
14	SOTTO	SCRIZIONE DELL'ELABORATO DA PARTE DEL R.T.P	156

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

1 PREMESSA

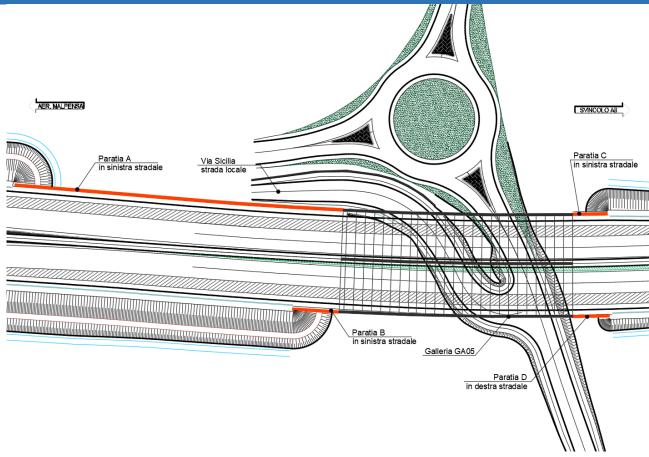
La presente relazione di calcolo riporta la descrizione, il dimensionamento, le verifiche strutturali e geotecniche delle "Paratie di diaframmi", in cemento armato ordinario, del progetto esecutivo nell'ambito dei lavori inerenti la Nuova S.S. 341 "Gallaratese" nel tratto da Samarate a confine con la provincia di Novara.

Le opere in esame sono collocate in approccio all'imbocco e sbocco dalla galleria GA05:

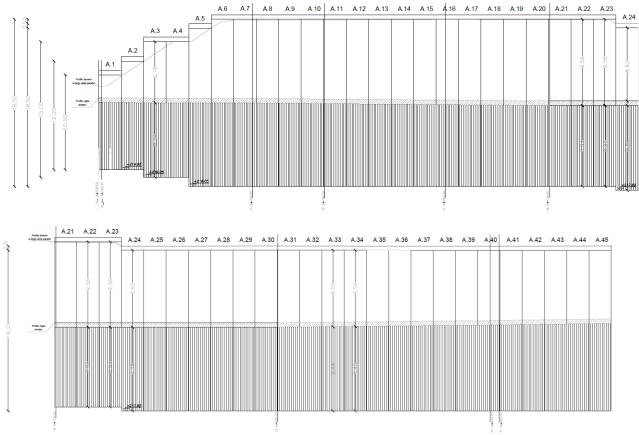
- <u>imbocco della galleria, in sinistra stradale</u> direzione Malpensa→Svincolo A8 paratia con **estensione pari a 115 m**. L'altezza dei diaframmi si mantiene pari a **18,5m** per uno sviluppo di 102,5 m, i restanti 12,5m si presentano ad altezza variabile, per seguire la transizione altimentrica tra la paratia e la scarpata della sezione stradale in sterro che precede l'opera.
- <u>imbocco della galleria, in destra stradale</u> direzione Malpensa→Svincolo A8 paratia con **estensione pari a circa 17,5 m**. L'altezza dei diaframmi varia lungo lo sviluppo della paratia, al fine di seguire la transizione altimetrica tra l'estradosso della galleria e la scarpata della sezione stradale in sterro che precede l'opera.
- <u>sbocco della galleria, in sinistra stradale</u> direzione Malpensa→Svincolo A8 paratia con **estensione pari a circa 12,5m**; L'altezza dei diaframmi varia lungo lo sviluppo della paratia, al fine di gestire la transizione altimetrica tra l'estradosso della galleria e la scarpata della sezione stradale successiva all'opera in esame.
- <u>sbocco della galleria, in destra stradale</u> direzione Malpensa→Svincolo A8 paratia con **estensione pari a circa 12,5 m**. L'altezza dei diaframmi varia lungo lo sviluppo della paratia, per seguire la transizione altimetrica tra l'estradosso della galleria e la scarpata della sezione stradale successiva all'opera in esame.

I diaframmi sono formati da un'alternanza di conci primari e secondari di 2,50 m di lunghezza e 1,00 m di spessore. Le strutture presentano differenti lunghezze di infissione dimensionate in base al relativo piano di scavo.

I calcoli di verifica statica e geotecnica sono svolti per le seguenti tipologie di paratie:


- Diaframmi di L=18,50÷18,00 m di lunghezza, per uno sbalzo massimo di 9,80 m con due ordini di tiranti;
- Diaframmi di L=15,00÷14,50 m di lunghezza, per uno sbalzo massimo di 7,00 m con due ordini di tiranti;
- Diaframmi di L=12,00÷10,50 m di lunghezza, per uno sbalzo massimo di 5 m con un ordine di tiranti;
- Diaframmi di L= 8,00 m di lunghezza, per uno sbalzo massimo di 2,70 m.

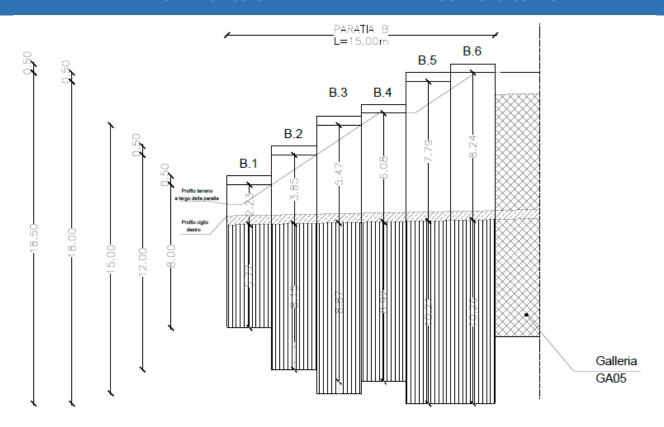
Di seguito si riportano l'inquadramento planimetrico, la sezione longitudinale e quella trasversale dell'opera in esame.

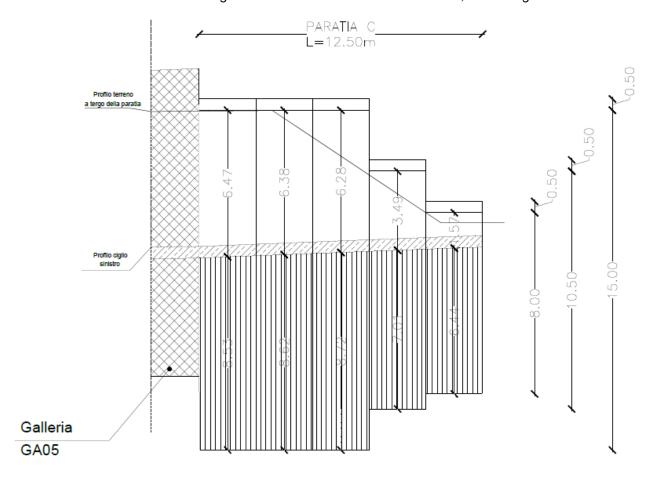


RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

I.1 Planimetria paratie in approccio all'imbocco e sbocco della galleria GA05

1.2 Sezione longitudinale Paratia A – n.46 diaframmi da 2,5 m di lunghezza

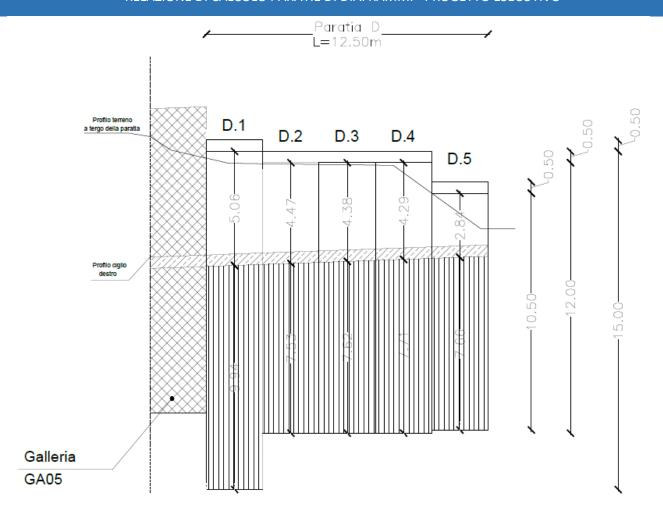


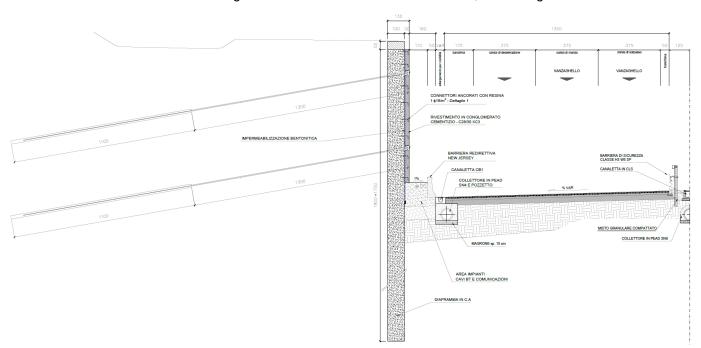


RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

1.3 Sezione longitudinale Paratia B – n.7 diaframmi da 2,5 m di lunghezza

1.4 Sezione longitudinale Paratia C – n.5 diaframmi da 2,5 m di lunghezza





RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

1.5 Sezione longitudinale Paratia D – n.5 diaframmi da 2,5 m di lunghezza

1.6 Sezione trasversale diaframma a monte della galleria GA05 in sinistra stradale

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

2 NORMATIVA DI RIFERIMENTO

I calcoli e le disposizioni esecutive sono conformi alle norme attualmente in vigore di seguito elencate:

- Legge nr. 1086 del 05/11/1971: Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica;
- **Legge nr. 64 del 02/02/1974**: Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- Norme Tecniche per le Costruzioni 2018 (D.M. 17 Gennaio 2018);
- Circolare C.S.LL.PP. 21/01/2019 n.7 Istruzioni per l'applicazione dell'Aggiornamento delle Norme tecniche per le costruzioni di cui al D.M. 17 gennaio 2018;
- UNI EN 1992-1 (Eurocodice 2 Parte 1) Progettazione delle strutture in calcestruzzo Regole generali;
- **UNI EN 1998-5 (Eurocodice 8)** Gennaio 2015 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici;
- UNI EN 206-1:2016 Calcestruzzo Specificazione, prestazione, produzione e conformità;

3 DICHIARAZIONI SECONDO N.T.C. 2018 (§ 10.2)

Tipo di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni. L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni delle NTC2018.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive e relative agli scenari di carico più gravosi cui l'opera sarà soggetta.

Origine e caratteristiche dei codici di calcolo

Titolo: Paratie Plus

Versione: 20.1.0

Produttore: Ce.A.S. srl, Viale Giustiniano 10, Milano (MI)

Utente: SETAC S.r.l.

Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. L'affidabilità e la robustezza del codice di calcolo sono validati dal produttore attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

Modalità di presentazione dei risultati

Nella presente relazione sono presentati i dati di input di calcolo in modo tale da garantire la leggibilità, la corretta interpretazione e la riproducibilità. Sono rappresentate graficamente le fasi di calcolo (Stage); l'inviluppo di ogni fase degli sforzi massimi sui tiranti, dei momenti flettenti, degli sforzi di taglio, il riepilogo delle spinte attive e passive mobilitate sulla paratia.

Informazioni generali sull'elaborazione

Il software prevede una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dagli scriventi. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, è stata valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, si asserisce che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili.

4 MATERIALI

Con riferimento alle normative citate, le strutture sono state verificate utilizzando il metodo di calcolo agli stati limite, adottando i seguenti parametri di resistenza dei materiali

4.1 CALCESTRUZZO PER STRUTTURE GETTATE IN OPERA E DIAFRAMMI

Per il cordolo e la paratia di diaframmi:

classe calcestruzzo: C32/40;

resistenza caratteristica: f_{ck}≥32 N/mm²;

- resistenza di calcolo a compressione: $f_{cd} = \alpha_{cc} f_{ck} / \gamma_c = 0.85 \times 32 / 1.5 = 18.13 \text{ N/mm}^2$;

- modulo di elasticità: $E_{cm}=22000 [(f_{ck}+8/10]^{0.3}=33346 \text{ N/mm}^2]$;

4.2 ACCIAIO ORDINARIO PER ARMATURE C.A.

Per le armature delle strutture in cemento armato è stato impiegato acciaio tipo B450C controllato in stabilimento, di tipo saldabile:

tensione caratteristica di rottura: f_{tk=}=540 N/mm²;
 tensione caratteristica di snervamento: f_{vk=}=450 N/mm²;

- resistenza di calcolo: $f_{vd}=f_{vk}/\gamma_s=450/1.15=391 \text{ N/mm}^2$;

modulo di elasticità: E₅=210000 N/mm².

4.3 ACCIAIO IN TREFOLI PER TIRANTI

Per i due ordini di tiranti:

tipo di acciaio: armonico;

tensione caratteristica di rottura:
 tensione caratteristica di rottura:
 f_{ptk}=1860 N/mm²;
 f_{pvk}=1660 N/mm²;

- resistenza di calcolo: $f_{yd} = f_{pyk}/\gamma_s = 1670/1.15 = 1452 \text{ N/mm}^2;$

modulo di elasticità:
 E_s=200100 N/mm².

4.4 DURABILITÀ, PRESCRIZIONI SUI MATERIALI, SCELTA DEGLI STATI LIMITE DI FESSURAZIONE E DEI COPRIFERRI

Il calcestruzzo deve essere in grado di resistere in maniera soddisfacente alle condizioni ambientali e di lavoro cui è sottoposto durante la vita dell'opera. Nella presente sezione si valutano pertanto le caratteristiche dei calcestruzzi (resistenza caratteristica, copriferri, ecc..) da impiegare per la realizzazione delle parti dell'opera in oggetto tali da conseguire il requisito di durabilità

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

richiesto.

In relazione alle classi di esposizione ambientale definite nella UNI EN 206-1 e nella UNI 11104, è stata attribuita la seguente classe di esposizione alla quale sono state associate le condizioni ambientali (vedi Tabella 4.1.III delle NTC 2018):

diaframmi e strutture gettate in opera XC3+XD1

Si riportano di seguito i valori limite per la composizione e le proprietà del calcestruzzo in funzione delle classi di esposizione (vedi Prospetto 4 delle NTC 2018):

Rapporto acqua/cemento 0.55;

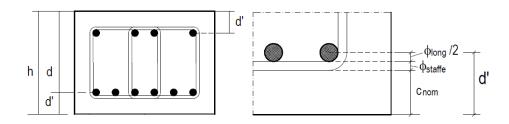
Minimo contenuto in cemento
 280-300 kg/m³;

Classe di consistenza
 S3;

L'armatura deve essere protetta da un adeguato ricoprimento di calcestruzzo (copriferro) dimensionato in funzione dell'aggressività dell'ambiente e della sensibilità delle armature alla corrosione, tenendo anche conto della tolleranza di posa delle armature.

La distanza tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina, individua il cosiddetto "copriferro nominale".

Il copriferro nominale c_{nom} è somma di due contributi, il copriferro minimo c_{min} e la tolleranza di posizionamento h, ovvero:


$$c_{nom} = c_{min} + h$$
.

La tolleranza di posizionamento delle armature h è assunta pari a 5 mm se vengono seguite in sistema di controllo della qualità oppure pari a **10** mm.

Considerata la classe di esposizione ambientale dell'opera, la tipologia dell'opera e la classe del calcestruzzo impiegato (vedi Tabella C4.1.IV della Circolare C.S.LL.PP. 21/01/2019 n.7), il valore del copriferro minimo è: $c_{min} = 30 \text{ mm}$

I valori riportati in tabella si riferiscono ad opere, come quella in esame, con vita nominale di 50 anni, Tipo 2 secondo la Tabella 2.4.I delle NTC 2018, (nel caso in cui Vn=100, i valori della Tabella C4.1.IV sono incrementati di 10 mm).

Pertanto, è stato assunto un copriferro netto pari a 50mm.

5 PARAMETRI GEOTECNICI

I **parametri geotecnici di calcolo** utilizzati sono i seguenti (i valori indicati tra parentesi corrispondono ai valori medi del range di variabilità indicati per ogni unità geotecnica d'interesse):

Unità	Descrizione	γ _n	c'	ф	E
geotecnica		(kN/m³)	(kPa)	(°)	(MPa)
Ug1a	Ghiaia in matrice sabbiosa e sabbia con ghiaia	18-20 (19)	0-5 (3)	27-34 (30)	10-40 (25)

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Ug1	Ghiaia in matrice	19-21	0	35-40	70-130
<i>Prof.</i> <25m	sabbiosa	(20)		(37)	(100)
Ug2	Sabbia e sabbia limosa con ghiaia	18-20	0-10	30-35	80-130
Prof.<25m		(19)	(5)	(32)	(100)
Ug1 <i>Prof.</i> ≥25m	Ghiaia in matrice sabbiosa	19-21 <i>(20)</i>	0	35-40 (37)	150-200 <i>(150)</i>

T.1 Parametri geotecnici

Le unità geotecniche Ug3 ed Ug4 sono presenti oltre i 45 m, dunque non sono interessate direttamente dalle opere in progetto.

Il livello della falda risulta essere sempre profondo lungo l'intero intervento, tra i 20÷35 m di profondità rispetto al piano campagna. Pertanto, le verifiche sono state condotte trascurando la presenza della falda, in quanto non interferente direttamente o indirettamente dalla costruzione dell'opera.

6 CARATTERIZZAZIONE SISMICA

6.1 PERICOLOSITÀ SISMICA DI BASE

Il progetto in esame ricade nel Comune di Gallarate. La pericolosità sismica, in accordo alle NTC 2018, è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale, con riferimento a prefissate probabilità di eccedenza P_{VR} , come definite al § 3.2.1 NTC 2018, nel periodo di riferimento V_R come definito al § 2.4 NTC 2018.

Considerando un livello elevato di prestazione dell'opera in esame (Tab. 2.4.I delle NTC 2018) al quale corrisponde una vita nominale V_N = 50 anni e una classe d'uso IV con C_u = 2 (Tab. 2.4II delle NTC 2018), si ha un periodo di riferimento V_R = 100 anni, corrispondente a uno stato limite di salvaguardia della vita (SLV) relativo a una probabilità di superamento P_{VR} nel periodo di riferimento V_R pari al 10%.

Sulla base di quanto riportato nella relazione geotecnica, i terreni presenti nell'area in esame appartengono alla categoria di sottosuolo C.

Per quanto riguarda il coefficiente topografico, per configurazioni topografiche semplici, si può adottare la classificazione come da Tabella 3.2.V delle NTC 2018; nel caso in esame si considera la categoria T1.

Il coefficiente S che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente:

$$S = S_S \cdot S_T$$

con

S_S: coefficiente di amplificazione stratigrafica S_T: coefficiente di amplificazione topografica

Definito in accordo alle espressioni e ai valori forniti nelle Tab. 3.2.IV e 3.2.V delle NTC 2018:

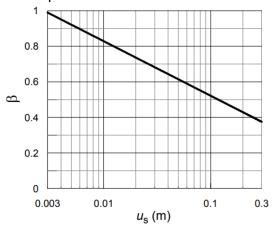
Nel caso specifico, riassumendo, si ha:

Parametro	Simbolo	U.M.		SLU
Accelerazione al suolo	ag	[m/s ²]		0.443
Accelerazione al suolo	a _g /g	[%]		0.045
Massimo fattore amplificazione spettro orizzontale	F0			2.634
Periodo inizio tratto spettro a velocità costante	Tc*			0.302
Tipo di sottosuolo - Coefficiente stratigrafico	Ss		С	1.500
Categoria topografica - Coefficiente topografico	St		T1	1.000

T.2 Parametri per la valutazione dell'azione sismica

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

6.2 DEFINIZIONE COEFFICIENTI SISMICI DI CALCOLO


Il coefficiente sismico orizzontale è determinato mediante la seguente relazione:

$$k_h = \alpha \cdot \beta \cdot \frac{a_{max}}{g}$$

α: coefficiente di deformabilità dei terreni interagenti;

β: coefficiente di spostamento, funzione della capacità dell'opera di subire spostamenti senza cadute di resistenza.

In riferimento a quanto previsto dal D.M. 17.01.2018 "Nuove Norme Tecniche per le Costruzioni" – \S 7.11.6.3, il valore di α è stato posto cautelativamente pari a 1; invece il valore di β , posto pari a 0.734, è stato determinato attraverso il diagramma mostrato di seguito, considerando lo spostamento ammissibile massimo pari a 2 cm.

I.7 Diagramma per la valutazione del coefficiente di spostamento β

Il coefficiente sismico orizzontale determinato è pertanto:

 $k_h = 0.0498$

7 APPROCCI DI PROGETTO

7.1 VERIFICHE STRUTTURALI (STR)

Per le verifiche strutturali delle paratie e dei tiranti si considerano i seguenti stati limite:

- SLU STR (A1+M1+R1): verifiche allo stato limite ultimo delle strutture, caso statico
- SLV STR (A1+M1+R1): verifiche allo stato limite ultimo delle strutture, caso sismico [2.5.5] Nella tabella seguente si riportano i coefficienti parziali relativi alle azioni A1, o per il loro effetto, per le combinazioni di carico previste; si omettono i coefficienti parziali relativi al terreno (γ_M) e alle resistenze (γ_R), tutti unitari.

Si intende che le azioni del terreno (spinte attive e passive) siano carichi permanenti strutturali, così come le azioni dei tiranti.

Si nota che l'azione del terreno sarebbe contemporaneamente "sfavorevole" (spinta attiva da monte) e "favorevole" (spinta passiva di valle); essendo le azioni originate da una fonte unica, si considera per entrambe lo stesso coefficiente parziale.

CASO	Permanenti strutturali γ _{G1}		Altri permanenti: γ _{G2}		Variab	ili: γ _{Qki}
	Sfavorevoli	Favorevoli	Sfavorevoli	Favorevoli	Sfavorevoli	Favorevoli
SLU (STR)	1.3	1.0	1.5	0	1.5	0
SLV (STR)	1	1	1	0	1	0

T.3 Coefficienti parziali azioni – Caso A1

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

7.2 VERIFICHE DI STABILITÀ DEL FONDO SCAVO (GEO)

Si verifica che la spinta passiva mobilitata a valle della paratia sia inferiore alla spinta passiva disponibile, si considerano i seguenti stati limite:

- SLU GEO (A2+M2+R1): verifiche allo stato limite ultimo, caso statico;
- SLV GEO (A2+M1+R1): verifiche allo stato limite ultimo, caso sismico.

Nelle tabelle seguenti si riportano i coefficienti parziali relativi alle azioni A2, o per il loro effetto, e ai parametri geotecnici M2 per le combinazioni di carico previste; si omettono i coefficienti parziali relativi alle resistenze (γ_R), tutti unitari.

CASO	Permanenti s	trutturali γ _{G1}	Altri perma	nnenti: γ _{G2}	nti: γ _{G2} Variabili: γ _Q		
	Sfavorevoli	Favorevoli	Sfavorevoli	Favorevoli	Sfavorevoli	Favorevoli	
SLU (GEO)	1	1	1.3	0	1.3	0	
SLV (GEO)	1	1	1	0	1	0	

T.4 Coefficienti parziali azioni – Caso A2

Parametro geotecnico	Coefficiente parziale	(M1)	(M2)	(M2) Sismica
Tangente dell'angolo di resistenza al taglio	γ φ·	1	1.25	1
Coesione efficace	Yc'	1	1.25	1
Resistenza non drenata	Ycu	1	1.4	1
Peso dell'unità di volume	Ϋ́Υ	1	1	1

T.5 Coefficienti parziali parametri geotecnici

7.3 VERIFICA DEL CARICO LIMITE DEL BULBO DI ANCORAGGIO DEI TIRANTI (GEO)

Si verifica lo stato limite di sfilamento della fondazione dell'ancoraggio, si considera il seguente stato limite:

• SLU GEO (A1+M1+R3): Verifica geotecnica ancoraggio tiranti.

La verifica a sfilamento della fondazione dell'ancoraggio si esegue confrontando la massima azione di progetto E_d con la resistenza di progetto R_{ad} , determinata applicando alla resistenza caratteristica R_{ak} i coefficienti parziali γ_R riportati nella tabella seguente:

	Simbolo	Coefficiente parziale
Temporanei	γR	1.1
Permanenti	γR	1.2

T.6 Coefficienti parziali per la resistenza degli ancoraggi

Il valore caratteristico della resistenza a sfilamento dell'ancoraggio R_{ak} si determina con metodo di calcolo analitico dei valori caratteristici dei paramentri geotecnici e applicando i fattori di correlazione ξ_{a3} e ξ_{a4} riportati nella tabella seguente:

Numero di profili di indagine	1	2	3	4	≥5
ξ _{a3}	1.80	1.75	1.70	1.65	1.60
ξ_{a4}	1.80	1.70	1.65	1.60	1.55

T.7 Fattori di correlazione per derivare la resistenza caratteristica delle prove geotecniche, in funzione del numero di profili di indagine.

Nel caso in esame si assumono:

- γ_R= 1.2 (tiranti definitivi);
- $\xi_{a3}=\xi_{a4}=1.80$ (un profilo di indagine)

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

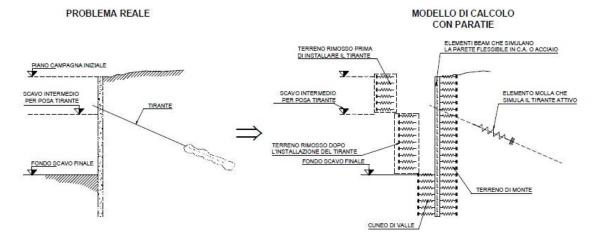
7.4 INSTABILITÀ GLOBALE DELL'INSIEME TERRENO-OPERA (GEO)

Nelle verifiche agli stati limite ultimi per la verifica dell'instabilità globale dell'insieme terreno-opera l'analisi sarà condotta con riferimento alla **Combinazione 2**: **(A2+M2+R2)**, nella quale i parametri di resistenza del terreno sono ridotti tramite i coefficienti parziali del gruppo M2, i coefficienti sulla resistenza globale (R2) sono riportati nella tabella sottostante e le sole azioni variabili sono amplificate con i coefficienti del gruppo A2. I parametri di resistenza di progetto sono perciò inferiori a quelli caratteristici. In linea generale, per la Combinazione in oggetto, essendo i coefficienti parziali amplificativi delle azioni permanenti pari ad 1.0 e dei variabili pari ad 1.3 (gruppo A2), si opererà applicando in fase di calcolo un coefficiente moltiplicativo ai carichi variabili pari a y₀=1.3.

COEFFICIENTE	R2
γR	1.1

T.8 Coefficiente resistenza globale

7.5 ALTRE VERIFICHE


In riferimento al paragrafo 6.5.3.1.2 delle NTC 2018 considerando gli stati limite ultimi pertinenti, si escludono stati limite di tipo idraulico (UPL e HYD) in quanto la falda non interferisce con l'opera che comunque possiede ampie capacità drenanti; inoltre si esclude la possibilità di collasso per rotazione rigida in quanto opera è relativamente flessibile e vincolata da più file di tiranti.

8 GENERALITÀ SULLA MODELLAZIONE STRUTTURALE

La paratia viene schematizzata come un'asta infissa in suolo avente caratteristiche elastoplastiche nelle varie fasi di costruzione. L' analisi è condotta con l'impiego del programma "ParatiePlus" (ver. 19.1) della Ce.A.S. Srl di Milano.

Tale programma opera mediante la simulazione di uno scavo sostenuto da elementi flessibili con il metodo degli elementi finiti, permettendo così l'analisi dell'interazione terreno – struttura.

La schematizzazione del fenomeno fisico è del tipo "trave su suolo elastico", con i diaframmi rappresentati da elementi trave, aventi comportamento flessionale definito da EJ, e il terreno da elementi elastoplastici monodirezionali connessi agli elementi trave. Viene così trascurata, con limitate ripercussioni sulla bontà dei risultati, l'interazione tra porzioni di terreno adiacenti.

La paratia viene discretizzata con elementi finiti tipo "beam": si tratta di elementi monodimensionali con comportamento elastico e sezione di inerzia equivalente a quella effettiva.

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Il terreno a monte e a valle della paratia viene schematizzato attraverso elementi "soil", ovvero elementi elasto-plastici, il cui comportamento è così definito:

- ACTIVE: l'elemento non ha rigidezza (fase plastica) e reagisce con una forza pari alla spinta attiva.
- PASSIVE: l'elemento non ha rigidezza (fase plastica) e reagisce con una forza pari alla spinta passiva.
- V-C; UL-RL: l'elemento è soggetto a una compressione minore della spinta passiva; il comportamento è elastico con una rigidezza direttamente proporzionale ai moduli elastici E_{vc} (in compressione vergine, V-C), oppure E_{ur} (in scarico-ricarico, UL-RL).

Si assume un rapporto:

$$\circ \quad \frac{E_{\rm ur}}{E_{\rm vc}} = 1.6 \ \ \text{per i terreni sabbiosi};$$

$$\circ \quad \frac{E_{ur}}{E_{vc}} = 3 \ \text{per i terreni limosi/argillosi;}$$

$$\circ \quad \frac{E_{ur}}{E_{vc}} = 1 \text{ per i terreni rocciosi.}$$

Nelle fasi elastiche la rigidezza dell'elemento terreno è data da:

$$K = \frac{E \times \Delta}{L}$$

in cui:

 Δ = distanza (passo) tra due elementi "molla" successivi

L = lunghezza fittizia dell'elemento "molla".

Il valore di L è fissato automaticamente dal programma; esso rappresenta una grandezza caratteristica che è diversa a monte e a valle della paratia perché diversa è la zona di terreno coinvolta dal movimento in zona attiva e passiva.

Il programma valuta, in zona attiva:

$$L_{a} = \frac{2}{3} \times Z_{a} \times \tan^{2} \left(45^{\circ} - \frac{\varphi}{2} \right)$$

in zona passiva:

$$L_{p} = \frac{2}{3} \times Z_{p} \times \tan^{2} \left(45^{\circ} + \frac{\varphi}{2} \right)$$

ove Z_a e Z_p sono rispettivamente uguali a:

$$Z_a = Min(T,2H)$$

$$Z_{p} = Min(T - H, H)$$

con:

T = altezza totale paratia

H = altezza corrente dello scavo.

La logica di questa scelta è illustrata in: Becci B., Nova R. (1987) "Un metodo di calcolo automatico per il progetto di paratie", Rivista Italiana di Geotecnica, 1,33-47.

I coefficienti di spinta dei terreni a monte e a valle della paratia sono calcolati tenendo conto dell'angolo di attrito paratia/terreno, assunto pari a δ = 2 Φ /3, e dell'inclinazione equivalente del piano di campagna a monte e a valle; si considera il terreno in scavo come orizzontale.

Si nota che i coefficienti di spinta utilizzati dal programma sono relativi alle sole componenti orizzontali degli stessi.

Nella fase geostatica si considera il coefficiente di spinta "a riposo" calcolato con l'usuale formula di Jaky, valida per terreni normal-consolidati con piano di campagna inclinato:

$$\lambda_0 = (1 - \operatorname{sen} \varphi) \times (1 + \operatorname{sen} \varepsilon_m)$$

I coefficienti di spinta attiva sono calcolati con le formule di Müller-Breslau, basate sulla teoria di Coulomb:

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

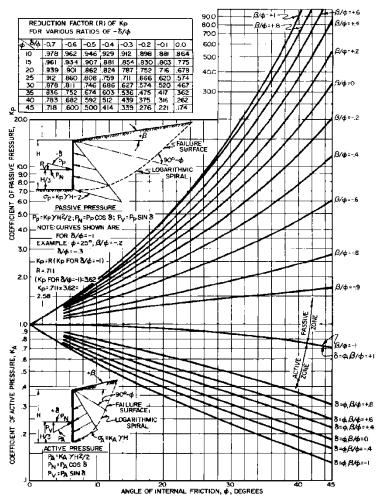
$$\lambda_{a} = \frac{sen^{2}(\beta - \phi)}{sen^{2}\beta \times sen(\beta + \delta) \times \left[1 + \sqrt{\frac{sin(\delta + \phi) \times sin(\phi - \epsilon)}{sen(\beta + \delta) \times sen(\beta - \epsilon)}}\right]^{2}}$$

dove: ϕ = angolo d'attrito del terreno

 ε = Inclinazione del piano campagna rispetto al piano orizzontale, positiva se verso l'alto

 $\delta < (\beta - \phi - \varepsilon)$ = angolo d'attrito terreno-parete

 β = Inclinazione della parete interna rispetto al piano orizzontale passante per il piede


Rif.: Müller-Breslau: "Erddruck anf Stuetzmanern", ed. Kroener, 1906

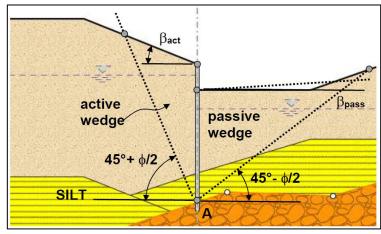
I coefficienti di spinta passiva sono calcolati secondo Caquot-Kerisel, formulazione che tiene conto della curvatura delle superfici di scorrimento, come da figura seguente.

Nelle fasi sismiche si assume che la paratia abbia deformazioni apprezzabili e quindi si considera l'incremento di spinta da monte calcolato secondo Mononobe-Okabe:

$$K_{as} = \frac{\sin^2(\alpha + \phi - \vartheta)}{\cos \vartheta \cdot \sin^2 \alpha \cdot \sin(\alpha - \vartheta - \delta) \left[1 - \frac{\sqrt{\sin(\phi + \delta)\sin(\phi - \beta - \vartheta)}}{\sqrt{\sin(\alpha - \vartheta - \delta)\sin(\alpha + \beta)}}\right]^2}$$

dove (terreno sopra falda): $\vartheta = \arctan \frac{k_h}{1 \pm k_v}$

.8 Rif.: NAVFAC Design Manual 7.02, "Foundation & Earth Structures", 1986



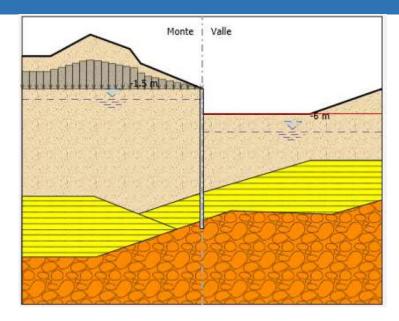
RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

In accordo a quanto indicato nelle NTC (paragrafo n.7.11.6.2.1) si assume che l'incremento di spinta attiva dovuto al sisma agisca nello stesso punto di quella statica. Rif: Mononobe N.,"Earthquake-Proof Construction of Mansory Dams", Proc. World Engineering Conference, vol.9, 1929.

Nel caso di piano di campagna con profilo irregolare il programma agisce in due modi alternativi:

- a) si calcola una pendenza equivalente del piano di campagna a monte e a valle e si calcolano quindi i coefficienti K_a e K_p ; segue esempio per lo strato "SILT" rappresentato in giallo in figura (da *Guida Utente Paratie Plus*).
 - dal punto A più basso dello strato in corrispondenza della parete si traccia la linea di rottura piana corrispondente al cuneo di mobilitazione in spinta attiva (o passiva) secondo la teoria di Coulomb, senza considerare attrito terra-muro, fino a raggiungere la linea di scavo (o piano campagna);
 - si determina quindi un ipotetico cuneo di terreno mobilitato, compreso tra il punto A e la sommità del tratto non esposto della parete: tale cuneo sarà delimitato superiormente da una superficie irregolare;
 - calcolata l'area di tale cuneo, si calcola una superficie piana equivalente (inclinata di β sull'orizzontate) tale che l'area del triangolo equivalente sia pari all'area del cuneo prima determinato.

b) la presenza del pendio (solo dal lato di monte), è modellata applicando, al piano campagna posto alla sommità della parete, una serie di sovraccarichi nastriformi (di larghezza definibile), di valore pari al peso del terreno soprastante; segue esempio (da Guida Utente Paratie Plus).



"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)

AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Nel caso in oggetto si sceglie l'opzione a) trattandosi in genere di piano di campagna pressochè regolare.

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

9 DIAFRAMMA H=18,50 m ÷ 18,00 m

L'opera in esame è composta da n. 43 diaframmi di altezza compresa tra 18,50 m÷18,00 m, lunghezza 2,50 m e spessore pari a 1,00 m.

La profondità di scavo varia da un minimo di 8,20 m a un massimo di 9,60 m, in funzione della quota di fondazione della pavimentazione stradale dell'asse principale.

I diaframmi in oggetto sono ancorati a due ordini di tiranti attivi permanenti con inclinazione pari a 10° rispetto al piano orizzontale. I tiranti, composti da 4 trefoli in acciaio armonico da $140~\text{mm}^2$ ciascuno (Φ =0.6"), sono disposti rispettivamente a -1,5m e -6m dall'estradosso della struttura e con interasse pari a 2,5m.

I diaframmi presentano un'armatura londitudinale da 16Φ26 e staffe Φ16 a 4 bracci con passo 0,2 m. Nelle verifiche effettuate con l'ausilio del software "Paratie Plus" è stato considerato, a favore di sicurezza, il contributo di 6Φ26 al m.

La paratia è protetta mediante un rivestimento in conglomerato cementizio C28/30, fissato alla struttura mediante connettori $(1\Phi16/m^2)$ ancorati con resine epossidiche, in continuità con il rivestimento della galleria GA05. Nelle verifiche di seguito riportate, a favore di sicurezza, non è stato considerato il contributo di tale rivestimento.

I calcoli si eseguono per la sezione più sollecitata n.18 alla Pk.6+775.00 dell'asse principale, in cui si ha la massima altezza di scavo del tratto pari a circa 9,60 m.

Si assume che i tratti a profondità di scavo inferiore siano implicitamente verificati.

9.1 PARAMETRI GEOTECNICI PER IL CALCOLO DEI DIAFRAMMI

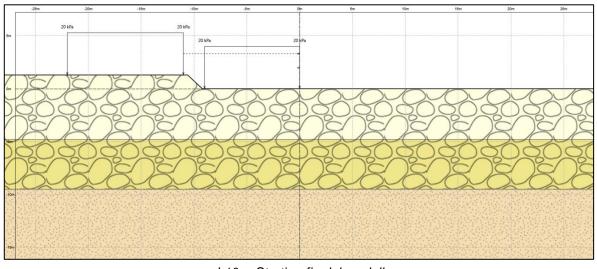
I parametri necessari a definire le caratteristiche del terreno utilizzati per il calcolo delle struttture sono stati ricavati dalla Relazione Geotecnica, rif. BB01_T00GE00GETRE01.A e dalle tavole del profilo geotecnico longitudinale dell'asse principale.

I parametri geotecnici utilizzati nella modellazione sono di seguito riportati:

	Terreni	YDRY [kN/m³]	c' [kPa]	[°] ø,
16	Ug1a Sabbia / Ghiaia	19	3	30
Karan Karan	Ug1 Sabbia / Ghiaia	20	0	37
	Ug2 Sabbia / Ghiaia	19	5	32
)4?	Ug1>25m Sabbia / Ghiaia	20	0	37

Name	Ug1a	
InitialStressK0nc	0.5	
InitialStressNocr	0.5	
UnitWeightGammaDry	19	kN/m³
UnitWeightGammaSat	20.6	kN/m³
PermeabilityKz	0.00001	m/s
ResistanceMohrCoulombC	3	kPa
ResistanceMohrCoulombFi	30	۰
WallAdhesion	0	kPa
ElasticConstantEvc	25000	kPa
ElasticConstantEur	40000	kPa

Name	Ug1	
InitialStressK0nc	0.5	
InitialStressNocr	0.5	
UnitWeightGammaDry	20	kN/m³
UnitWeightGammaSat	21.8	kN/m³
PermeabilityKz	0.00001	m/s
ResistanceMohrCoulombC	0	kPa
ResistanceMohrCoulombFi	37	۰
WallAdhesion	0	kPa
ElasticConstantEvc	100000	kPa
ElasticConstantEur	160000	kPa



RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Name	Ug2	
InitialStressK0nc	0.5	
InitialStressNocr	0.5	
UnitWeightGammaDry	19	kN/m³
UnitWeightGammaSat	20.6	kN/m³
PermeabilityKz	0.00001	m/s
ResistanceMohrCoulombC	5	kPa
ResistanceMohrCoulombFi	32	•
WallAdhesion	0	kPa
ElasticConstantEvc	100000	kPa
ElasticConstantEur	160000	kPa

Name	Ug1>25m	
InitialStressK0nc	0.5	
InitialStressNocr	0.5	
UnitWeightGammaDry	20	kN/m³
UnitWeightGammaSat	21.8	kN/m³
PermeabilityKz	0.00001	m/s
ResistanceMohrCoulombC	0	kPa
ResistanceMohrCoulombFi	37	۰
WallAdhesion	0	kPa
ElasticConstantEvc	150000	kPa
ElasticConstantEur	240000	kPa

I.9 Parametri geotecnici utilizzati nelle analisi

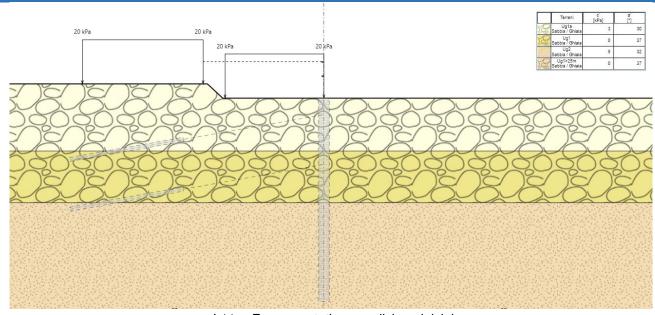
I.10 Stratigrafia del modello

9.2 GEOMETRIA DELLA STRUTTURA

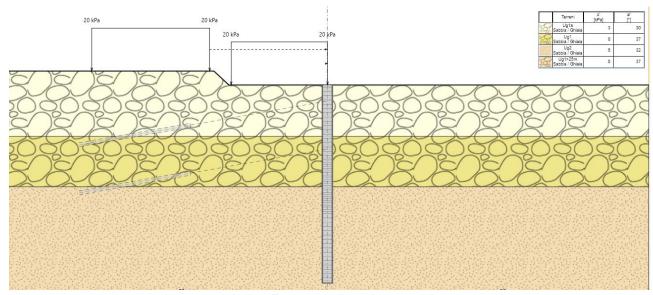
Il modello di calcolo adottato per le analisi con codice di calcolo "Paratie Plus 2020" comprende la paratia di diaframmi con i relativi tiranti. La paratia è caratterizzzata da diaframmi di spessore pari a 1 m, in calcestruzzo armato C32/40.

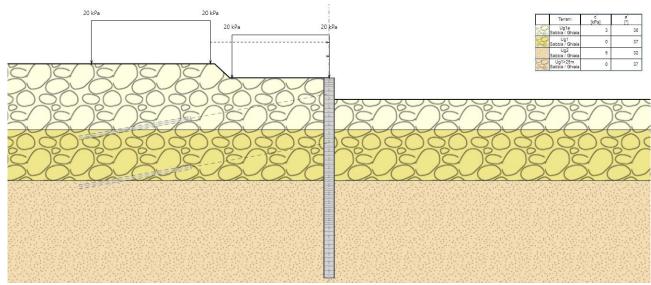
I dati della paratia di diaframmi, ai fini del calcolo, vengono tradotti in una rigidezza flessionale EJ equivalente. Tuttavia, ai fini della verifica, si terrà conto delle reali caratteristiche della sezione.

9.3 FASI DI SCAVO


Ponendo come quota di riferimento del piano campagna la quota di testa dei diaframmi, si descrivono di seguito le fasi di calcolo del modello:

- Fase geostatica: condizione iniziale, con presenza di carichi variabili da traffico pari 20 kPa;
- Fase 1: realizzazione della paratia fino a quota -18,5 m dal p.c.;
- Fase 2: scavo fino a quota -2 m dal p.c.;
- Fase 3: installazione del primo ordine di tiranti, a quota 1,5 m dal p.c;
- Fase 4: scavo fino a quota -6,5 m dal p.c.;
- Fase 5: installazione del secondo ordine di tiranti, a quota 6,0 m dal p.c;
- Fase 6: scavo fino a quota 9,6 m dal p.c., massima profondità di scavo;
- Fase 7: applicazione dell'azione sismica
- Fase 8: applicazione dell'urto da veicolo.

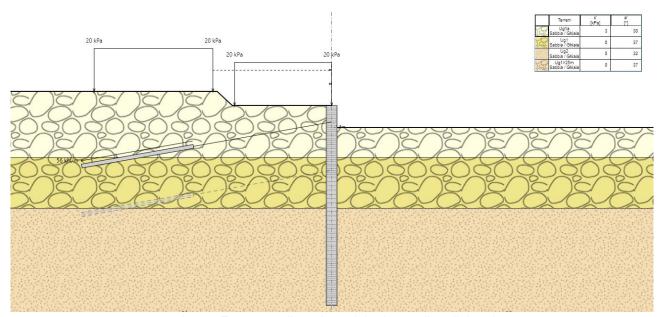

Si riportano di seguito le schematizzazioni grafiche relative agli step di carico presentati.

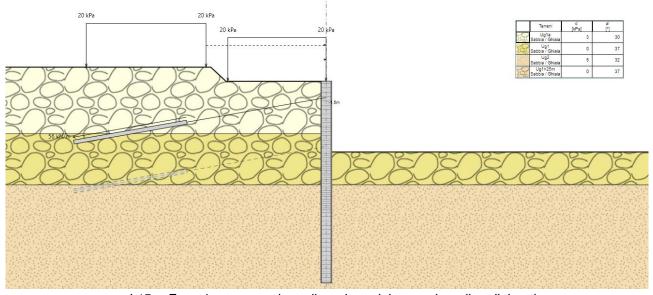


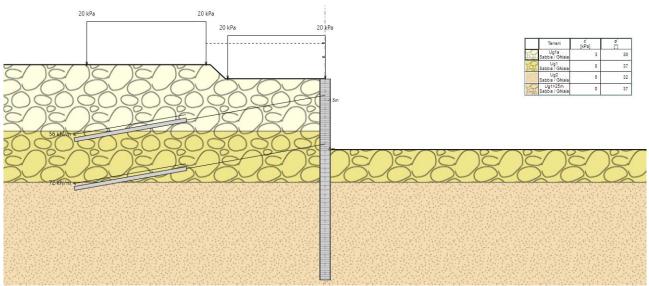
Fase geostatica: condizione iniziale

1.12 Fase 1: realizzazione paratia

I.13 Fase 2: scavo per realizzazione del primo ordine di tiranti



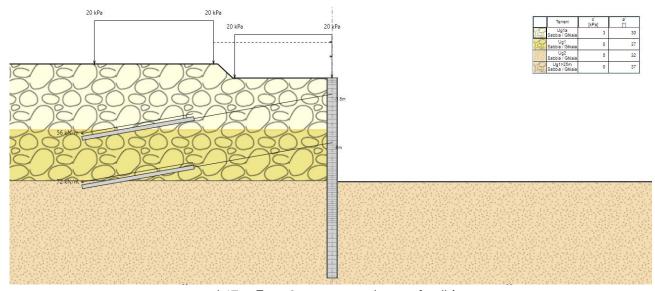


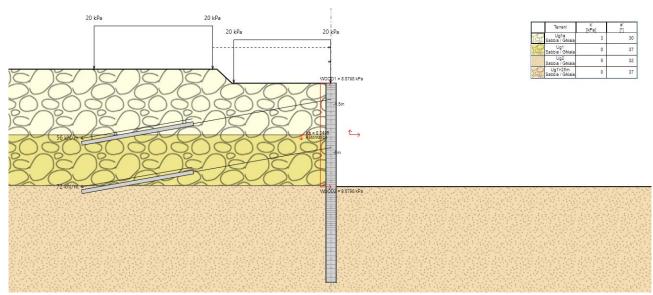


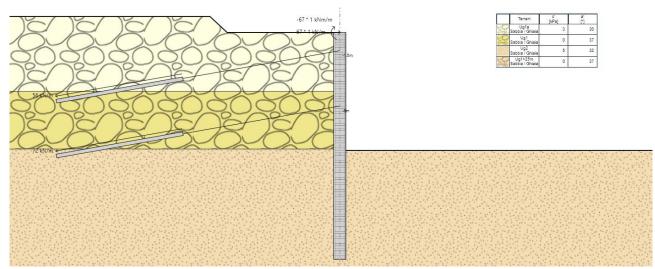
I.14 Fase 3: realizzazione del primo ordine di tiranti

1.15 Fase 4: scavo per la realizzazione del secondo ordine di tiranti

I.16 Fase 5: realizzazione del secondo ordine di tiranti



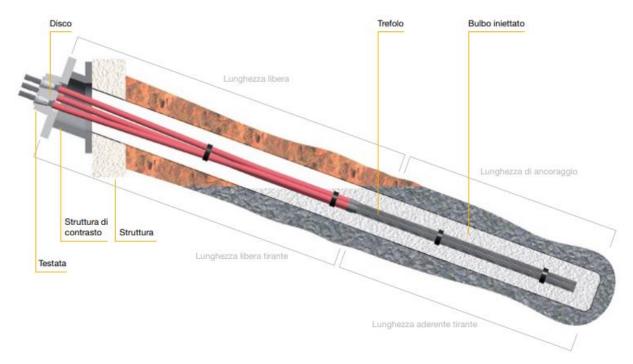




Fase 6: scavo massima profondità 1.17

*I.*18 Fase 7: condizione sismica

*I.*19 Fase 8: Applicazione dell'urto da autoveicolo


RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

9.4 INSTALLAZIONE DEI TIRANTI

La realizzazione della paratia prevede l'inserimento di due ordini di tiranti:

- il primo a profondità 1,5 m, con le seguenti caratteristiche:
 - tipologia di tirante: trefoli in acciaio armonico;
 - numero di trefoli: 4;
 - sezione singolo trefolo: 140 mm²;
 - inclinazione rispetto all'orizzontale: 10°;
 - diametro di perforazione: 0,2 m;
 - interasse orizzontale: 2,5 m;
 - lunghezza libera: 13 m;
 - lunghezza bulbo di fondazione: 10,5 m;
 - tecnologia di iniezione: in un'unica soluzione (IGU);
 - tensione di tesatura: 140 kN/tirante (35 kN/trefolo);
 tensione di collaudo: 180 kN/tirante (45 kN/trefolo).
- il secondo a profondità di 6 m, con le seguenti caratteristiche:
 - tipologia di tirante: trefoli in acciaio armonico;
 - numero di trefoli: 4;
 - sezione singolo trefolo: 140 mm²;
 - inclinazione rispetto all'orizzontale: 10°;
 - diametro di perforazione: 0,2 m;
 - interasse orizzontale: 2,5 m;
 - lunghezza libera: 13 m;
 - lunghezza bulbo di fondazione: 10,5 m;
 - tecnologia di iniezione: in un'unica soluzione (IGU);
 - tensione di tesatura: 180 kN/tirante (45 kN/trefolo);
 - tensione di collaudo: 220 kN/tirante (55 kN/trefolo).

Si riporta di seguito il particolare costruttivo dei tiranti precedentemente presentati.

I.20 Particolare costruttivo del tirante di ancoraggio

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD) AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Nelle verifiche dei tiranti di ancoraggio si valuta lo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che li compongono. Le verifiche sono state condotte con la combinazione di coefficienti parziali come indicato nel paragrafo 7 della presente relazione.

Il calcolo della resistenza al contatto fra bulbo e terreno, è eseguito con il metodo suggerito da Bustamante e Doix (1985). La lunghezza del bulbo è calcolata con la seguente espressione:

$$L_B = \frac{N_d}{d_s \cdot \pi \cdot \tau_{sd}}$$

- N_d rappresenta lo sforzo di trazione di progetto nel tirante
- ds diametro efficace del bulbo
- rsd indica la resistenza tangenziale di progetto all'interfaccia malta-terreno

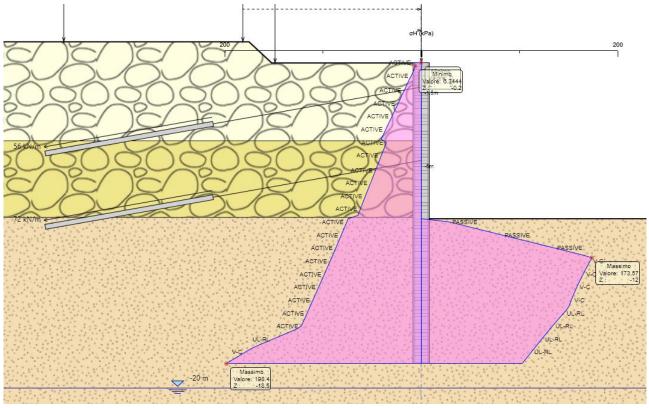
Secondo la teoria di Bustamante e Doix, le iniezioni del bulbo vengono distinte fra iniezioni in unica soluzione (IGU) e iniezioni ripetute (IRS). Per le due tipologie di iniezione, IGU e IRS, gli autori forniscono un coefficiente α maggiorativo del diametro di perforazione utilizzato per eseguire la fondazione dell'ancoraggio. Il diametro efficace viene valutato moltiplicando il coefficiente α per il diametro di perforazione, ossia:

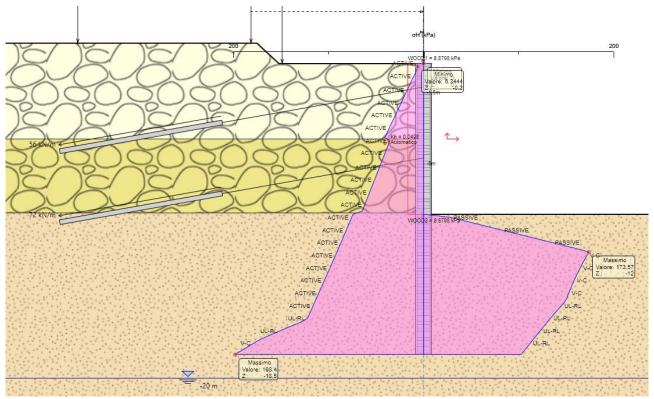
$$d_s = d \cdot \alpha$$

I valori del coefficiente α sono indicati nella seguente tabella . Nel caso in esame, in presenza di terreni incoerenti ed iniezioni tipo IGU, si utilizza un valore di α pari a 1.2

TERRENO	Valori di α		Quantità minima di miscela consigliata	
	IRS	IGU	IRS	IGU
Ghiaia	1.8	1.3 - 1.4	1.5 Vs	1.5 Vs
Ghiaia sabbiosa	1.6 - 1.8	1.2 - 1.4	1.5 Vs	1.5 Vs
sabbia ghiaiosa	1.5 - 1.6	1.2 - 1.3	1.5 Vs	1.5 Vs
Sabbia grossa	1.4 - 1.5	1.1 - 1.2	1.5 Vs	1.5 Vs
Sabbia media	1.4 - 1.5	1.1 - 1.2	1.5 Vs	1.5 Vs
Sabbia fine	1.4 - 1.5	1.1 -1.2	1.5 Vs	1.5 Vs
Sabbia limosa	1.4 - 1.5	1.1 - 1.2	(1.5 - 2) Vs	1.5 Vs
Limo	1.4 - 1.6	1.1 - 1.2	2 Vs	1.5 Vs
Argilla	1.8 - 2.0	1.2	(2.5 - 3) Vs	(1.5 - 2) Vs
Marne	1.8	1.1 - 1.2	(1.5 - 2) Vs per	strati compatti
Calcari mamosi	1.8	1.1 - 1.2	(2 - 6) Vs o più per strati fratturati	
Calcari alterati o fratturati	1.8	1.1 - 1.2		
Roccia alterata e/o fratturata	1.2	1.1	(1.1 - 1.5) Vs per strati poco fratturati; 2 Vs o più per strati fratturati	

T.9 Valori del coefficiente maggiorativo del diametro di perforazione al variare tipo di terreno



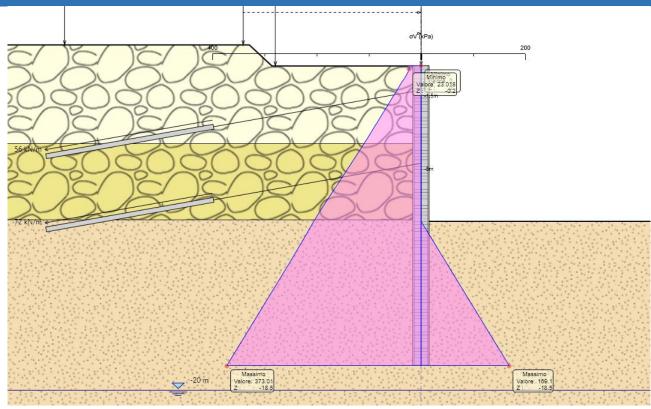

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

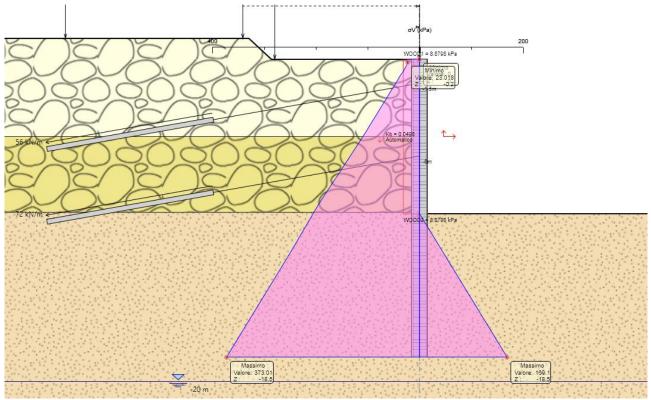
9.5 Pressioni vericali e orizzontali del terreno sui diaframmi

Le pressioni sul terreno sono espresse in kN/m² per le combinazioni allo stato limite ultimo: GEO-A2+M2+R1:

I.21 Fase 6 – Combinazione GEO (A2+M2+R1) – pressioni orizzontali

1.22 Fase 7 – Combinazione SISMICA GEO - pressioni orizzontali

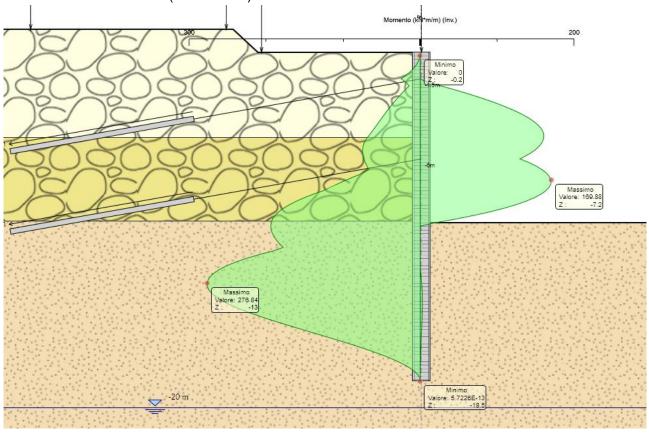




"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

1.23 Fase 6 – Combinazione GEO (A2+M2+R1) – pressioni verticali

1.24 Fase 7 - Combinazione SISMICA GEO - pressioni verticali

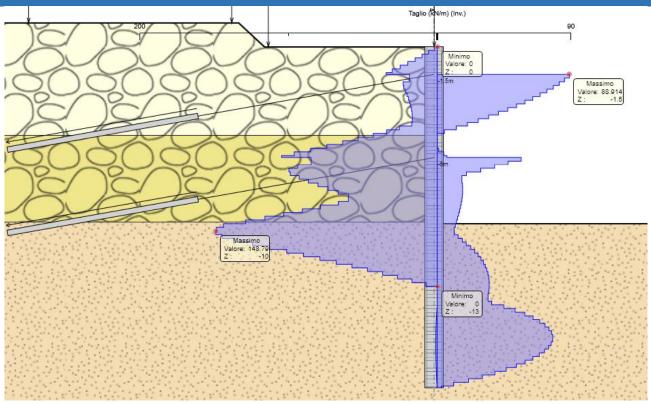

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

9.6 SOLLEZITAZIONI

Nella tabella riportata di seguito sono riportati i valori delle azioni sollecitanti per unità di lunghezza di paratia:

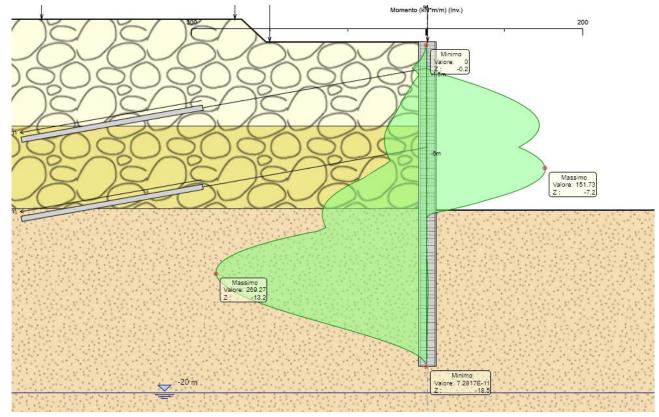
COMBINAZIONE	M _{sd,monte} [kNm/m]	V _{sd,monte} [kN/m]	M _{sd,valle} [kNm/m]	V _{sd,valle} [kN/m]
SLE-CARATTERISTICA	195.97	110.80	136.99	67.59
SLU – STR	276.84	148.79	169.88	88.92
SLU – GEO	335.63	161.39	222.09	103.93
SLV – STR	269.27	134.88	151.73	79.61
SLV – GEO	269.27	134.88	151.73	79.61
ECCEZIONALE (urto)	591.84	133.07	236.13	146.93

I momenti flettenti sulle strutture sono espressi in kNm/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: STR (A1+M1+R1).



I.25 Inviluppo fasi 1-6: Combinazione STR (A1+M1+R1) - momenti flettenti

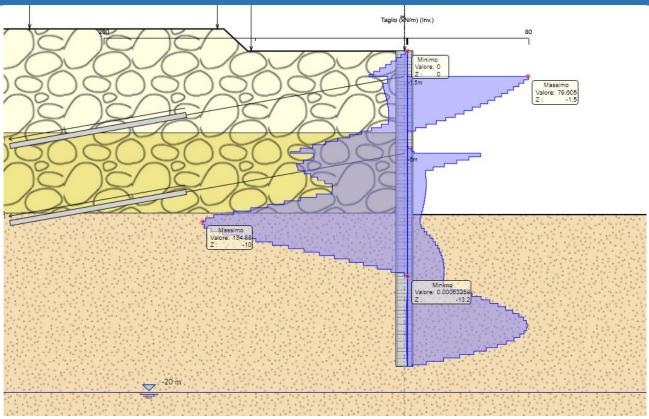
Gli sforzi taglianti sulle strutture sono espressi in kN/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: STR (A1+M1+R1).



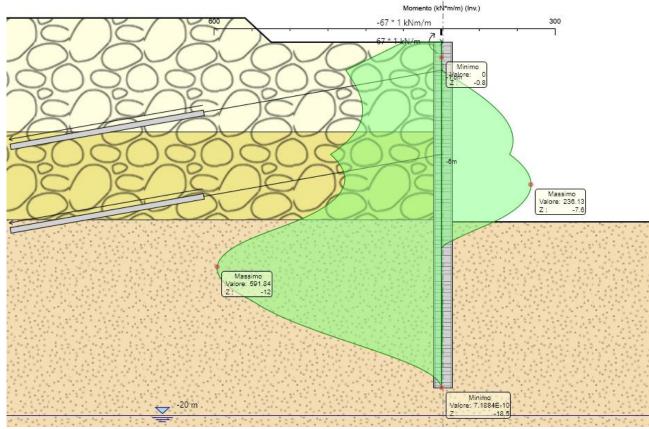
RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

I.26 Inviluppo fasi 1-6: Combinazione STR (A1+M1+R1) - sforzi di taglio

I momenti flettenti sulle strutture sono espressi in kNm/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: SISMICA STR.


I.27 Inviluppo fasi 1-7: Combinazione SISMICA STR - momenti flettenti

Gli sforzi taglianti sulle strutture sono espressi in kN/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: SISMICA STR.

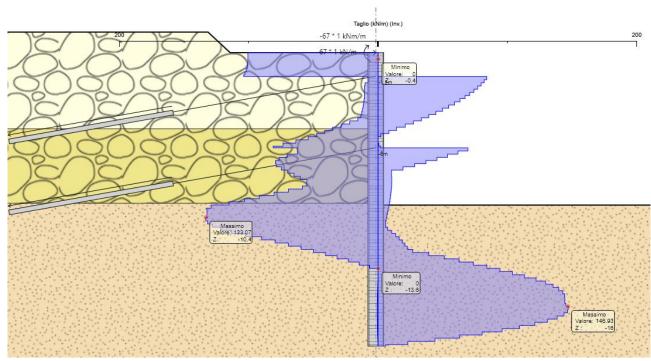


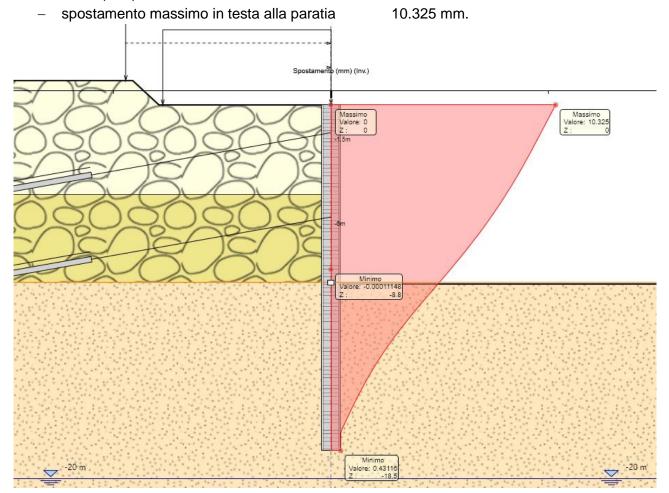
RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

1.28 Inviluppo fasi 1-7: Combinazione SISMICA STR - sforzi di taglio

I momenti flettenti sulle strutture sono espressi in kNm/m per gli inviluppi della combinazione ECCEZIONALE.

I.29 Fase 8: URTO – momenti flettenti

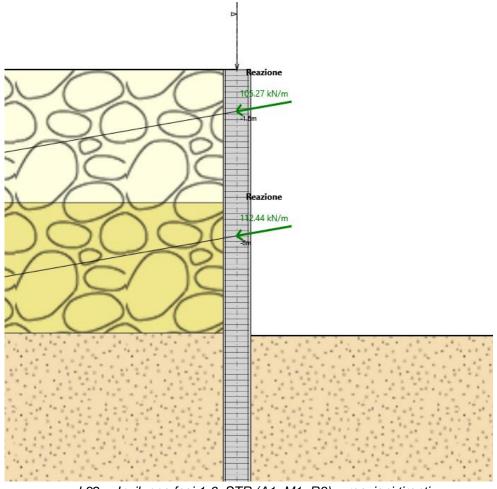



RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

I.30 Fase 8: URTO – sforzi di taglio

9.7 **DEFORMAZIONI**

Le deformate, espresse in mm, sono visualizzate per l'inviluppo di tutte le fasi della combinazione caratteristica (rara):


RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

I.31 Inviluppo fasi 1-6: Combinazione rara - deformata

9.8 REAZIONI (TIRANTI)

I valori delle reazioni ai tiranti sono espressi in kN/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: STR (A1+M1+R3):

primo ordine di tiranti
secondo ordine di tiranti
105,27 kN/m;
112,44 kN/m.

I.32 Inviluppo fasi 1-6: STR (A1+M1+R3) - reazioni tiranti

9.9 VERIFICHE ALLO STATO LIMITE ULTIMO

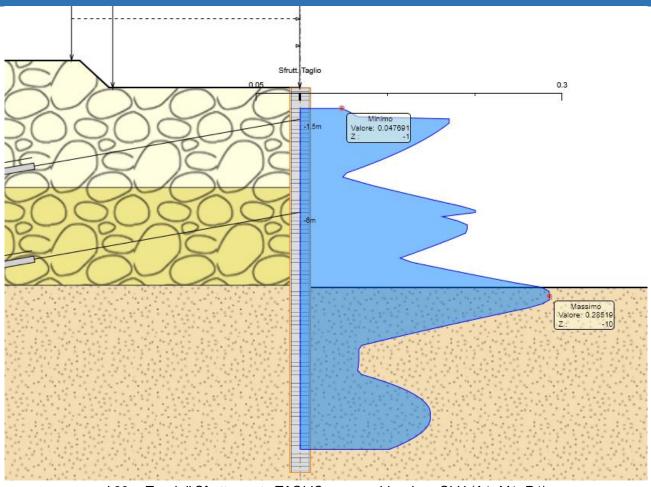
La verifica di resistenza delle sezioni nei vari elementi strutturali, viene condotta tenendo conto delle sollecitazioni più gravose che si individuano nelle diverse combinazioni di carico.

9.9.1 Verifiche strutturali: verifiche a flessione e taglio

Le verifiche sono svolte automaticamente dal programma di calcolo considerando le sollecitazioni statiche e sismiche derivate dalle combinazioni allo stato limite ultimo: STR (A1+M1+R1).

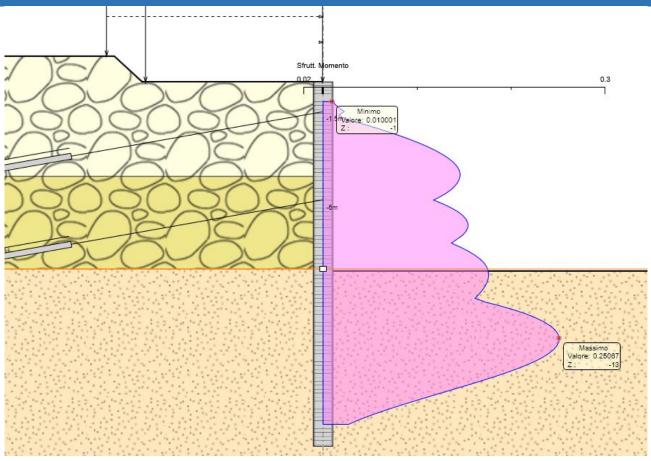
Seguono i diagrammi dei tassi di sfruttamento TS a taglio della resistenza dei diaframmi in c.a., per le combinazioni allo stato limite ultimo: STR: (A1+M1+R1).

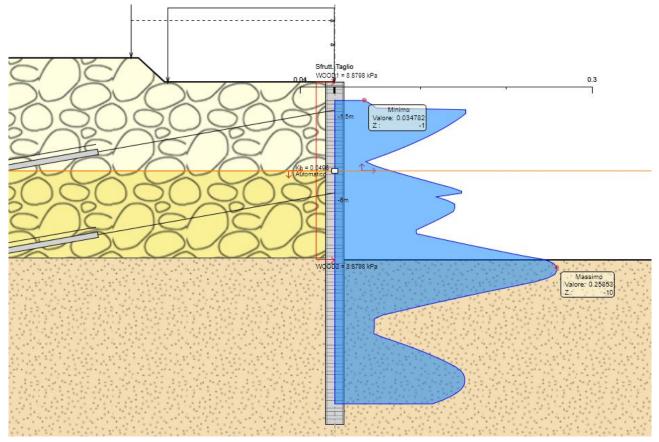
Le verifiche sono soddisfatte se: $TS = \frac{Sollec itazione}{Resistenza} \le 1$


Lo sforzo assiale viene trascurato. Nel calcolo del momento resistente $M_{c,Rd}$ non viene considerata l'interazione con la forza di taglio, in quanto in tutti i casi esaminati il taglio di calcolo associato al momento flettente è sempre inferiore a metà della resistenza di calcolo a taglio $V_{c,Rd}$.

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

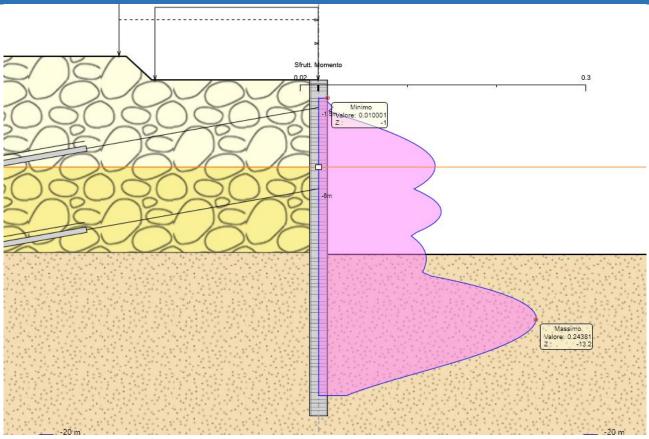
I.33 Tassi di Sfruttamento TAGLIO per combinazione SLU (A1+M1+R1) – inviluppo fasi 1-6 - TS_{max} =0.304(<1)





I.34 Tassi di Sfruttamento MOMENTO per combinazione SLU (A1+M1+R1) – inviluppo fasi 1-6 - TS_{max}=0.259(<1)

I.35 Tassi di Sfruttamento TAGLIO per combinazione SISMICA STR – inviluppo fasi 1-7 - TS_{max}=0.273(<1)



RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

I.36 Tassi di Sfruttamento MOMENTO per combinazioneSISMICA SLU – inviluppo fasi 1-7 - TS_{max}=0.246(<1)

9.9.2 Progetto e verifica strutturale della paratia

Il progetto della sezione in calcestruzzo armato è effettuato rispetto alle sollecitazioni di momento flettente e taglio derivanti dall'inviluppo delle combinazioni SLU – STR (A1+M1+R1) e SLV – STR (A1+M1+R1). In tal caso, le sollecitazioni massime, per metro lineare, sono: M_{sd} ' = 276.84 kNm/m e V_{sd} ' = 148.79 kN/m.

Considerando un pannello di larghezza pari a 2,5 m, risulta quindi $M_{sd} = M_{sd}$, * 2.5 = 692.10 kNm e $V_{sd} = V_{sd}$, * 2.5 = 371.98 kN.

La verifica a flessione semplice è condotta con riferimento ad una sezione 2.5 m x 1 m, armata con 16 φ 26 sul bordo inferiore e 16 φ 26 sul bordo superiore. L'armatura compressa, in questo caso, è in campo elastico e si è proceduto con la determinazione della profondità dell'asse neutro secondo l'espressione seguente:

$$b f_{cd} y^2 - (A_s f_{yd} - A'_s E_s \varepsilon_{cu}) y - 0.8 c A'_s E_s \varepsilon_{cu} = 0$$

dove:

b = 2500 mm;

 $f_{cd} = 18.13 \text{ MPa};$

 $A_s = A_s' = 8490.6 \text{ mm}^2;$

 $E_s = 210000 \text{ MPa};$

 $\varepsilon_{cu} = 0.0035$;

c è la distanza del baricentro delle armature superiori dal bordo compresso = 79 mm.

Risulta quindi: y = 66.49 mm, da cui x = y/0.8 = 83.11 mm.

La distanza della risultante di compressione C dal bordo superiore della sezione è pari a:

TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD) AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

$$d_c = \frac{C_1 \ 0.5 \ y + C_2 \ c}{C_1 + C_2} = 37.49 \ mm$$

In cui C₁ e C₂ sono le risultanti di compressione agenti rispettivamente sul calcestruzzo compresso e sull'armatura superiore: C_1 = f_{cd} b y = 3014 KN e C_2 = E_s A_s ' ϵ_{cu} (y - 0.8 c) / y = 308.4 kN. Il momento resistente della sezione è pari a:

$$M_{rd} = T d^* = A_s f_{vd} (d - d_c) = 2935.37 \, kNm > M_{sd} = 692.10 \, kNm$$
 verificato

Il quale risulta maggiore del momento sollecitante M_{sd} = 692.10 KNm, pertanto la verifica a flessione risulta essere soddisfatta.

Le verifiche dei dettagli costruttivi sono state condotte secondo quanto riportato al §4.1.6.6.1 e al §7.4.6.2.1 delle NTC 2018. In particolare, le armature longitudinali devono rispettare i seguenti limiti:

TRUTTIVI CAP 4	4 NTC 2018				
in trazione					
k	OK				
3.02		VERIFICA I	DETTAGLI COSTRI	JTTIVI CAP 7 NTC 20	18
4022.68		Percentuale geom	netrica di armatur	a tesa e compressa	
		ρ	0.003396224		
	OK	O comp	0.003396224		
2993.25		<u> </u>			
I	OK	1) ρ > 1.4/fyk			ОК
100000	OK	1.4/1	fyk	0.003111111	
compressione		2) ρ < ρ _{comp} + 3.5/1	fyk		ОК
	ОК	ρ comp + 3	3.5 / fyk	0.011174002	
	in trazione k 3.02 4022.68 2993.25	OK 3.02 4022.68 OK 2993.25 OK 100000	Note	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	in trazione k OK 3.02 4022.68 VERIFICA DETTAGLI COSTRUTTIVI CAP 7 NTC 20 Percentuale geometrica di armatura tesa e compressa ρ 0.003396224 ρ comp 0.003396224 ρ comp 0.003396224 ρ comp 0.00339621 1) ρ > 1.4/fyk 0.003111111 compressione 2) ρ < ρ comp + 3.5/fyk

Si procede con la verifica a taglio per elementi privi di armatura trasversale, secondo la relazione:

$$V_{Rd} = \left(\frac{0.18 k (100 \rho_l f_{ck})^{1/3}}{\gamma_c} + 0.15 \sigma_{cp}\right) b_w d \ge (v_{min} + 0.15 \sigma_{cp}) b_w d$$

dove:

$$k = 1 + (200/d)^{1/2};$$

 $v_{min} = 0.035 k^{3/2} f_{ck}^{1/2};$

d è l'altezza utile della sezione;

$$\rho_I = A_{sI}/(b_w d)$$
; $\sigma_{cp} = N_{ed}/A_c$;

b_w è la larghezza minima della sezione.

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

ELEMENTI S	ELEMENTI SENZA ARMATURA TRASVERSALE RESISTENTE A TAGLIO				
d (mm)	921				
bw (mm)	2500				
ρl (mmq)	0.00369	< 0.02	ОК		
k	1.47	< 2	ОК		
Nsd (KN)	0				
σср (МРа)	0				
v min	0.3514				
$\left(0,18\ k\ (100\ \rho_l\ f\right)$	$\left(\frac{1}{c_k}\right)^{\frac{1}{3}}/\gamma_c + 0.15 \sigma_{cp} b_w d$	922.17			
(Vmin + 0.15 σcp)*bw*d		809.18			
Vrd (KN)	922.17		-		
	Vrd > Vsd		VE	RIFICATO	

Il taglio resistente è pari a:

$$V_{Rd} = 922.17 \, kN > V_{sd} = 371.98 \, kN$$
 verificato

La verifica a taglio $V_{Rd} > V_{sd}$ è pertanto soddisfatta.

Pertanto si dispongono staffe φ16/20 a 4 bracci, nel rispetto dei quantità minimi di armatura trasversale, riportati nel Paragrafo 4.1.6.6.1 delle NTC 2018.

VERIFICA	VERIFICA DETTAGLI COSTRUTTIVI CAP 4 NTC 2018				
Pass	o effettivo scelto	(mm)	200		
			_		
1) Almeno tre	staffe al metro	ОК			
s <	s < 0.33 m				
2) s < 0.8*d		ОК			
3) Ast > 1.5 b	(mmq / m)	ОК			
Ast	4019.2				
1.5*b	3750				

Le sollecitazioni sul pannello, in combinazione eccezionale ed in presenza dell'urto dei veicoli in svio sulla barriera, sono pari a $M_{sd,eccez}$ = 591.84 * 2.5 = 1479.60 kNm e $V_{sd,eccez}$ = 146.93 * 2.5 = 367.33 kN.

Anche per tali sollecitazioni, le verifiche di resistenza sono rispettate.

$$M_{Sd,eccez.} < M_{Rd}$$
 verificato

$$V_{Sd,eccez.} < V_{Rd}$$
 verificato

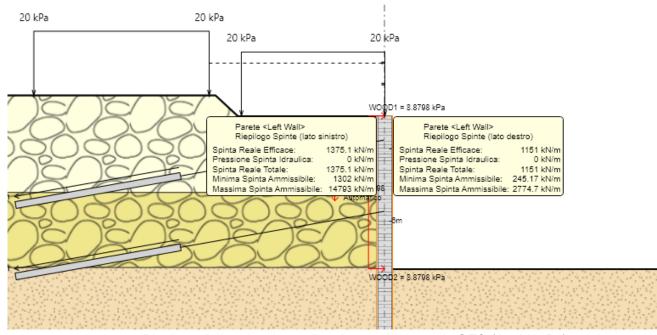
9.9.3 Verifiche geotecniche: verifiche di stabilità del fondo scavo

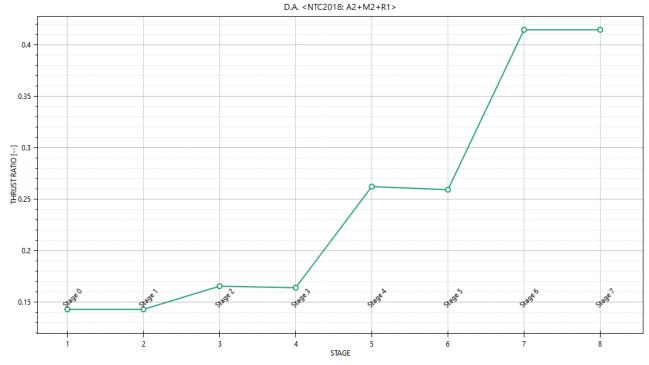
La verifica di stabilità del lato a valle della paratia è effettuata considerando il rispetto di due criteri:

- 1) il calcolo non lineare della paratia deve convergere a una soluzione equilibrata e congruente;
- 2) sul lato di scavo (valle) la spinta efficace mobilitata deve essere minore della spinta passiva disponibile, quindi il loro rapporto deve essere <1.

Dall'esame dei tabulati di calcolo, in particolare quello relativo alla combinazione più gravosa, ovvero la GEO (A2+M2+R1), si desume

- a) il calcolo non lineare converge a una soluzione equilibrata per tutte le fasi di scavo;
- b) il rapporto tra la spinta efficace mobilitata e la spinta passiva possibile assume il




RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

massimo nella fase 6 con il valore:

$$\frac{\text{Spinta Reale Efficace}}{\text{Massima Spinta Ammissibile}} = \frac{1151.00}{2774.70} = 0.415 \quad (< 1: \text{ verificato})$$

I.37 Riepilogo delle spinte lato valle e lato monte – comb. GEO (A2+M2+R1)

I.38 Massimi rapporti di mobilizzazione della spinta passiva al variare degli stage di scavo – comb. GEO(A2+M2+R1)

9.9.4 Verifiche strutturale e allo sfilamento dei tiranti attivi

La verifica viene svolta considerando lo Stato Limite GEO di tipo A1+M1+R3.

La resistenza del bulbo di ancoraggio dei tiranti attivi viene calcolata con il metodo di Bustamante-Doix (Rif. Bustamante M., Doix B. (1985): "Une méthode pour le calcul des tirants et des micropieux injectès", Bull. Liaison Lab. Ponts et Chaussées, n. 140, pagg. 75-95).

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Si verifica inoltre, nell'ottica della gerarchia delle resistenze, che la resistenza caratteristica allo snervamento del tirante sia maggiore della resistenza a sfilamento di progetto dell'ancoraggio (p. 6.6.2. NTC 2018).

Dati primo ordine di tiranti:

 $\begin{array}{lll} \text{- lunghezza bulbo di ancoraggio:} & L_f = 10.50 \text{ m} \\ \text{- lunghezza libera:} & L_I = 13.00 \text{ m} \\ \text{- diametro perforazione:} & \varnothing = 200 \text{ mm} \\ \text{- passo orizzontale:} & p = 2500 \text{ mm} \\ \end{array}$

- sollecitazione massima (Tirante superiore, Fase 7): $N_{Ed} = 105.27 \times 2.50 = 263.18 \text{ kN}$ - resistenza assiale tirante (4x140mm²): $R_{ad} = R_k/\gamma_s = f_{p(1)k} A/\gamma_s = 807.41 \text{ kN}$

Per: - tipo di terreno: ghiaia in matrice sabbiosa

- tipo di iniezione: in unica soluzione, a bassa pressione (IGU)

si ha (Bustamante-Doix):

- resistenza unitaria limite: $q_s = 100 \text{ kN/m}^2$

- fattore di incremento del diametro: $\alpha = 1.2$

- coefficiente parziale resistenza caratteristica (tiranti permanenti): γ_{Ra,t} = 1.2

- fattore di correlazione (1 sondaggio): $\xi_{a3} = 1.8$

Si determina quindi per il bulbo di ancoraggio:

- resistenza limite: $R_{lim} = \alpha \pi \mathcal{Q}_{perf} \Sigma(L_f q_s) = 1.2x\pi x 0.2x 10.5x 100 = 791.68 \text{ kN}$

- resistenza caratteristica: $R_{ck} = \frac{R_{lim}}{\xi_{a3}} = \frac{791.68}{1.8} = 439.82 \text{kN}$

- resistenza di progetto: $R_{cd} = \frac{R_{ck}}{\gamma_{Ra,t}} = \frac{439.82}{1.2} = 366.52 \text{ kN}$

Verifica di resistenza del tirante: $R_{ad} > N_{Ed} : 807.41 \text{ kN} > 263.18 \text{ kN}$ verificato. Verifica di resistenza dell'ancoraggio: $R_{cd} > N_{Ed} : 366.52 \text{ kN} > 263.18 \text{ kN}$ verificato.

Dati secondo ordine di tiranti:

 $\begin{array}{lll} \text{- lunghezza bulbo di ancoraggio:} & L_f = 10 \text{ m} \\ \text{- lunghezza libera:} & L_I = 13 \text{ m} \\ \text{- diametro perforazione:} & \varnothing = 200 \text{ mm} \\ \text{- passo orizzontale:} & p = 2500 \text{ mm} \\ \end{array}$

- sollecitazione massima (Tirante superiore, Fase 7): N_{Ed} =112.44 x 2.50 = 281.10 kN - resistenza assiale tirante (4x140mm²): R_{ad} = R_k/γ_s = $f_{p(1)k}$ A/ γ_s = 807.41 kN

Per: - tipo di terreno: ghiaia in matrice sabbiosa

- tipo di iniezione: in unica soluzione, a bassa pressione (IGU)

si ha (Bustamante-Doix):

- resistenza unitaria limite: $q_s = 100 \text{ kN/m}^2$

- fattore di incremento del diametro: $\alpha = 1.2$

- coefficiente parziale resistenza caratteristica (tiranti permanenti): γ_{Ra.t} = 1.2

- fattore di correlazione (1 sondaggio): $\xi_{a3} = 1.8$

Si determina quindi per il bulbo di ancoraggio:

- resistenza limite: R_{lim} = α π \varnothing_{perf} $\Sigma(L_f$ $q_s)$ = 1.2x π x0.2x10.5x100= 791.68 kN

- resistenza caratteristica: $R_{ck} = \frac{R_{lim}}{\xi_{a3}} = \frac{791.68}{1.8} = 439.82 kN$

- resistenza di progetto: $R_{cd} = \frac{R_{ck}}{V_{Ra,t}} = \frac{439.82}{1.2} = 366.52 \text{ kN}$

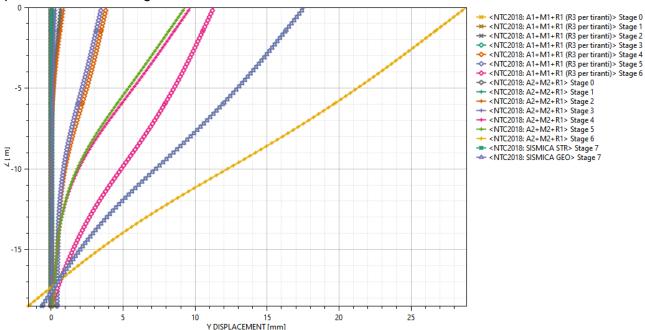
Verifica di resistenza del tirante: $R_{ad} > N_{Ed} : 807.41 \text{ kN} > 281.10 \text{ kN}$ verificato. Verifica di resistenza dell'ancoraggio: $R_{cd} > N_{Ed} : 366.52 \text{ kN} > 281.10 \text{ kN}$ verificato.

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Segue schema riassuntivo delle verifiche per ogni tirante e fase di calcolo.

Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (kN)	Sfruttamento GEO	Sfruttamento STR	Resistenza
Tirante superiore	Stage 3	182	366.52	807.41	0.497	0.225	~
Tirante superiore	Stage 4	208.09	366.52	807.41	0.568	0.258	*
Tirante superiore	Stage 5	205.44	366.52	807.41	0.561	0.254	*
Tirante superiore	Stage 6	263.18	366,52	807.41	0.718	0.326	~
Tirante superiore	Stage 7	263.18	366.52	807.41	0.718	0.326	~
Tirante inferiore	Stage 5	234	366.52	807.41	0.638	0.29	*
Tirante inferiore	Stage 6	281.1	366.52	807.41	0.767	0.348	~
Tirante inferiore	Stage 7	281.1	366.52	807.41	0.767	0.348	*

T.10 Tabella riassuntiva delle verifiche per il primo ordine di tiranti (tirante superiore) e per il secondo ordine di tiranti (tirante inferiore)


Risulta infine verificata la gerarchia delle resistenza, secondo cui la resistenza al limite dello snervamento del tratto libero è sempre maggiore della resistenza a sfilamento della fondazione dell'ancoraggio:

1) Primo ordine di tiranti $R_{d.STR} \ge R_{d.GEO} \rightarrow 807.41kN > 366.52 kN$ verificato;

2) Secondo ordine di tiranti $R_{d,STR} \ge R_{d,GEO} \rightarrow 807.41kN > 366.42 kN$ verificato.

9.9.5 Verifica dello spostamento massimo

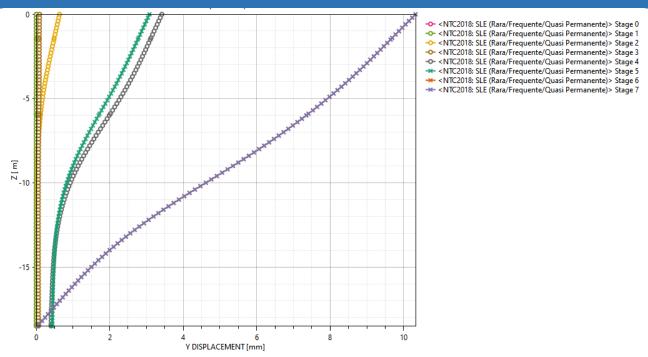
Nel diagramma successivo si riporta l'andamento dello spostamento massimo in testa della paratia per le combinazioni agli SLU.

I.39 Andamento spostamenti della paratia al variare della profondità – SLU (A1+M1+R1 – A2+R2+R1)

Lo spostamento massimo è stato determinato pari a 28.843 mm (combinazione SLV – GEO – fase6). Lo spostamento risulta inferiore ai limiti di normativa:

 d_{max} = 28.843 mm < d_{lim} = (0.005 x 18500) mm = 92.50 mm verificato

9.10 VERIFICHE ALLO STATO LIMITE DI ESERCIZIO


9.10.1 Verifica dello spostamento in fase di esercizio

Nel diagramma successivo si riporta l'andamento dello spostamento massimo in esercizio della paratia, il quale risulta pari a **10.325 mm** (combinazione SLE – fase 6). Valore massimo dell'ordine di 1 cm in fase di esercizio, valore contenuto e compatibile con la struttura in esame.

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

1.40 Andamento spostamenti della paratia al variare della profondità - SLE

9.10.2 Verifica fessurazione della paratia

Ai fini delle verifiche degli stati limite di esercizio si definiscono le seguenti combinazioni (D.M. del 17.01.2018 §2.5.3):

Rara \rightarrow G₁+G₂ +Q_{k1}+ $\Sigma i\psi_{0i}\cdot Q_{ki}$ Frequente \rightarrow G₁+G₂ + $\psi_{11}\cdot Q_{k1}$ + $\Sigma i\psi_{2i}\cdot Q_{ki}$ Quasi permanente \rightarrow G₁+G₂ + $\psi_{21}\cdot Q_{k1}$ + $\Sigma i\psi_{2i}\cdot Q_{ki}$

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportata nel prospetto sequente:

pi Ize	Condizioni	Combinazione di	Armatura			
Gruppi di Esigenze	ambientali	azioni	Sensibile	Sensibile Poco sensibile		
Gr Esig			Stato limite	$\mathbf{w_k}$	Stato limite	$\mathbf{w_k}$
A	Ordinarie	frequente	apertura fessure	\leq \mathbf{w}_2	apertura fessure	\leq w_3
A	Ordinarie	quasi permanente	apertura fessure	\leq \mathbf{w}_1	apertura fessure	\leq W_2
D	A	frequente	apertura fessure	\leq \mathbf{w}_1	apertura fessure	\leq w_2
В	Aggressive	quasi permanente	decompressione	-	apertura fessure	\leq \mathbf{w}_1
	Molto	frequente	formazione fessure	-	apertura fessure	\leq \mathbf{w}_1
С	aggressive	quasi permanente	decompressione	-	apertura fessure	$\leq w_1$

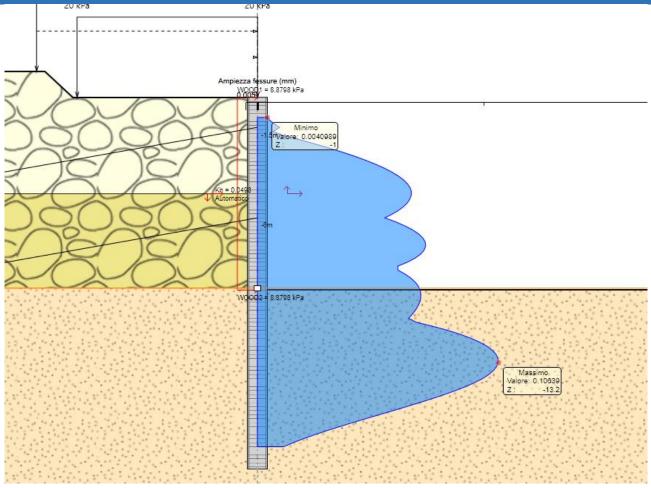
T.1 Criteri di scelta dello stato limite di fessurazione

I valori limite di apertura delle fessure, così come definiti al §4.1.2.2.4 delle NTC2018, sono pari a:

 $w_1 = 0.2 \text{ mm}$ $w_2 = 0.3 \text{ mm}$ $w_3 = 0.4 \text{ mm}$

I valori dell'ampiezzza di apertura delle fessure al variare dell'altezza della paratia sono riportati nell'immagine seguente. Da essa si evince un valore massimo pari a $w_{c,max}$ =0,11 mm.

Considerando una condizione ambientale di tipo aggressiva, si ha che:


 $w_{c,max}$ = 0.11042 mm $\leq w_1$ =0.2 mm verificato.

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD) AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

I.41 Andamento ampiezza di apertura delle fessure – Comb. SLE

9.10.3 Progetto e verifica strutturale del cordolo di testa

Secondo quanto riportato al §3.6.6.6.2 delle NTC2018, si considera una forza orizzontale equivalente di collisione pari a 100 KN agente ad 1 m sopra il livello del piano di marcia.

Facendo riferimento al generico montante della barriera stradale, secondo uno schema a mensola, le sollecitazioni trasmesse al cordolo sono: V_{sd} ' = 100 KN e T_{sd} ' = 100 KN * 1 m = 100 KNm.

Lo schema di verifica del cordolo sarà quello di trave di lunghezza infinita, sollecitata da un taglio $V_{sd} = V_{sd}'$ / i = 100KN / 1.5 m = 66.67 KN e da un momento torcente $T_{sd} = T_{sd}'$ / i = 100KN / 1.5 m = 66.67 KN, in cui i = 1.5 m è l'interasse tra i montanti; tali azioni sono considerate in combinazione eccezionale.

La verifica è stata condotta considerando, cautelativamente, una sezione minima 50 cm x 100 cm. La resistenza massima di una membratura soggetta a taglio e torsione è limitata dalla resistenza delle bielle compresse, per le quali deve risultare:

$$\frac{T_{sd}}{T_{Rcd}} + \frac{V_{sd}}{V_{Rcd}} \le 1$$

in cui T_{Rcd} e V_{Rcd} sono determinati per un valore di cot θ = 2.5.

La determinazione di V_{Rcd} e T_{Rcd} è effettuata secondo le espressioni (4.1.28) e (4.1.35) delle NTC 2018. I termini da inserire nelle espressioni precedenti sono riassunti nella tabella seguente:

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD) AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

SEZIONE			
b (m)	0.5		
h (m)	1		
c (m)	0.063		
d (m)	0.937		
TORSIO	NE		
Ac (mq)	0.5		
u (m)	3		
A (mq)	0.278		
p (m)	2.333		
t (m)	0.17	> 2*c	OK
t effettivo (m)	0.17		
TAGLI	0		
d* (m)	0.8433		
ας	0.5		
V	1		
	•		
cot θ	2.5		

La verifica delle bielle compresse di calcestruzzo risulta essere soddisfatta.

	PROGETTO A TORSIONE E TAGLIO					
	Verif	ica bielle co	mpresse			
Vsd / Vrcd	0.0506					
Tsd / Trcd	0.2303					
Vsd/ Vrcd + T	0.2809	< 1	VERIFICATO			

Considerando staffe $\phi 10$ a 2 bracci, si è determinato il passo delle armature trasversali, per taglio e torsione, ponendo $V_{Rsd} = V_{sd}$ e $T_{Rsd} = T_{sd}$, in cui V_{Rsd} e T_{Rsd} sono rispettivamente le espressioni (4.1.27) e (4.1.36) delle NTC 2018; si ottengono le seguenti relazioni in termini di passo delle staffe:

$$s_v = A_{sw} f_{yd} \frac{d^*}{V_{sd}} \cot \theta$$
$$s_T = A_s f_{yd} \frac{2 A}{T_{sd}} \cot \theta$$

Il passo delle staffe, per le due sollecitazioni combinate, è pari a:

$$\frac{1}{s} = \frac{1}{s_v} + \frac{1}{s_t}$$

Progetto staffe				
10				
2				
157				
78.5				
1942.80				
639.95				
481.38				

Per rispetto dei limiti di normativa, riportati al capitolo 4 delle NTC 2018, e tenuto conto che il cordolo ha larghezza massima pari a 2.5 m, si adottano staffe φ10/20 a 4 bracci.

<u>"Tratto da Samarate a confin</u>e con la provincia di Novara. Stralcio funzionale dal KM 6+500 (Svincolo SS n. 336 nord) AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

VER	VERIFICA STAFFE CAP 4 NTC 2018					
1) Almend	tre staffe	al metro				
s < 0.33 m	1		ОК			
2) s < 0.8*	2) s < 0.8*d					
3) Ast > 1.	3) Ast > 1.5 b (mmq/m)					
_	Ast	785				
	1.5*b	750				

In maniera analoga, l'armatura longitudinale è stata ottenuta uguagliando il momento torcente sollecitante all'espressione (4.1.37) delle NTC 2018, da cui si ricava il quantitativo di armatura longitudinale da ripartire nella sezione in relazione alla quota parte che ciascun lato ha sulla valutazione del perimetro p.

Dalla (4.1.37) si ricava:

 $A_{sl} = \frac{T_{sd}}{2 A f_{vd}} p \cot \theta$

Da cui:

$$A_{sl}(b) = \frac{A_{sl}}{p} (b - t)$$
$$A_{sl}(h) = \frac{A_{sl}}{p} (h - t)$$

$$A_{sl}(h) = \frac{A_{sl}}{p} (h - t)$$

Progetto armatura longitudinale a torsione					
Asl (mmq)	1788,89	_			
		Armatura necessa			
Ası lungo b (mmq)	255,56				
Ası lungo h (mmq)	638,89	1			
фі (mm)	16				
n barre totali	9	Barre strettamente			
n barre lungo b	2	neces	ssarie		
n barre lungo h	4				

Adottando un quantitativo minimo di armatura longitudinale pari a A_I = 0.15%A_{sez}, tenuto conto che il cordolo ha larghezza massima pari a 2.5 m e nel rispetto dell'interferro massimo tra le barre (assunto pari a 25 cm), si adottano 24\ph16, distribuiti nella sezione in proporzione alla dimensione dei lati della stessa.

ARMATURA MINIMA LONGITUDINALE				
Ac max (mmq)	1250000			
0.15% Ac	1875			
n barre min 10				

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

10 DIAFRAMMA H=15,00 m

L'opera in esame è composta da n. 8 diaframmi di altezza compresa tra 15,00m, lunghezza 2,50 m e spessore pari a 1,00 m.

La profondità di scavo varia da un minimo di 5,05 m a un massimo di 6,80 m, in funzione della quota di fondazione della pavimentazione stradale dell'asse principale.

I diaframmi in oggetto sono ancorati a due ordini di tiranti attivi permanenti con inclinazione pari a 10° rispetto al piano orizzontale. I tiranti, composti da 4 trefoli in acciaio armonico da $140~\text{mm}^2$ ciascuno (ϕ =0.6"), sono disposti rispettivamente a -1 m e -4 m dall'estradosso della struttura e con interasse pari a 2,5 m.

I diaframmi presentano un'armatura londitudinale da 16Φ26 e staffe Φ16 a 4 bracci con passo 0,2 m. Nelle verifiche effettuate con l'ausilio del software "Paratie Plus" è stato considerato, a favore di sicurezza, il contributo di 6Φ26 al m.

La paratia è protetta mediante un rivestimento in conglomerato cementizio C28/30, fissato alla struttura mediante connettori $(1\Phi 16/m^2)$ ancorati con resine epossidiche, in continuità con il rivestimento della galleria GA05. Nelle verifiche di seguito riportate, a favore di sicurezza, non è stato considerato il contributo di tale rivestimento.

Nel seguito si eseguono i calcoli per il diaframma più sollecitato, in cui si ha la massima altezza di scavo pari a 6,95 m.

Si assume che i tratti a profondità di scavo inferiore siano implicitamente verificati.

10.1 PARAMETRI GEOTECNICI PER IL CALCOLO DEI DIAFRAMMI

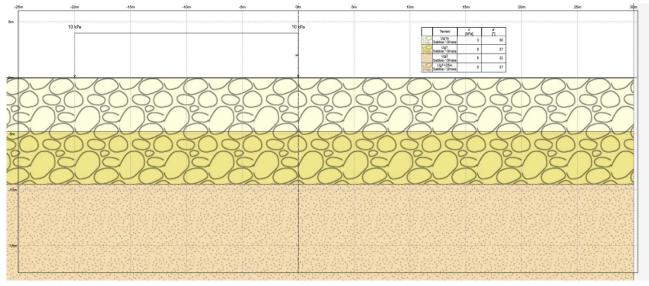
I parametri necessari a definire le caratteristiche del terreno utilizzati per il calcolo delle struttture sono stati ricavati dalla Relazione Geotecnica, rif. BB01_T00GE00GETRE01.A e dalle tavole del profilo geotecnico longitudinale dell'asse principale.

I parametri geotecnici utilizzati nella modellazione sono di seguito riportati:

	Terreni	YDRY [kN/m³]	c' [kPa]	[°] ø'
15	Ug1a Sabbia / Ghiaia	19	3	30
Á	Ug1 Sabbia / Ghiaia	20	0	37
	Ug2 Sabbia / Ghiaia	19	5	32
367	Ug1>25m Sabbia / Ghiaia	20	0	37

Name	Ug1a	
InitialStressK0nc	0.5	
InitialStressNocr	0.5	
UnitWeightGammaDry	19	kN/m³
UnitWeightGammaSat	20.6	kN/m³
PermeabilityKz	0.00001	m/s
ResistanceMohrCoulombC	3	kPa
ResistanceMohrCoulombFi	30	۰
WallAdhesion	0	kPa
ElasticConstantEvc	25000	kPa
ElasticConstantEur	40000	kPa

Name	Ug1	
InitialStressK0nc	0.5	
InitialStressNocr	0.5	
UnitWeightGammaDry	20	kN/m³
UnitWeightGammaSat	21.8	kN/m³
PermeabilityKz	0.00001	m/s
ResistanceMohrCoulombC	0	kPa
ResistanceMohrCoulombFi	37	0
WallAdhesion	0	kPa
ElasticConstantEvc	100000	kPa
ElasticConstantEur	160000	kPa



RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Name	Ug2	
Ivame	ugz	
InitialStressK0nc	0.5	
InitialStressNocr	0.5	
UnitWeightGammaDry	19	kN/m³
UnitWeightGammaSat	20.6	kN/m³
PermeabilityKz	0.00001	m/s
ResistanceMohrCoulombC	5	kPa
ResistanceMohrCoulombFi	32	•
WallAdhesion	0	kPa
ElasticConstantEvc	100000	kPa
ElasticConstantEur	160000	kPa

Name	Ug1>25m	
InitialStressK0nc	0.5	
InitialStressNocr	0.5	
UnitWeightGammaDry	20	kN/m³
UnitWeightGammaSat	21.8	kN/m³
PermeabilityKz	0.00001	m/s
ResistanceMohrCoulombC	0	kPa
ResistanceMohrCoulombFi	37	0
WallAdhesion	0	kPa
ElasticConstantEvc	150000	kPa
ElasticConstantEur	240000	kPa

I.42 Parametri geotecnici utilizzati nelle analisi

I.43 Stratigrafia del modello

10.2 GEOMETRIA DELLA STRUTTURA

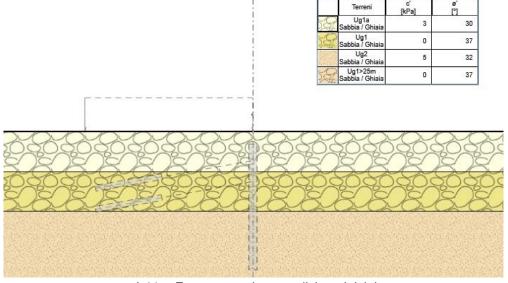
Il modello di calcolo adottato per le analisi con codice di calcolo "Paratie Plus 2020" comprende la paratia di diaframmi con i relativi tiranti. La paratia è caratterizzzata da diaframmi di spessore pari a 1 m, in calcestruzzo armato C32/40.

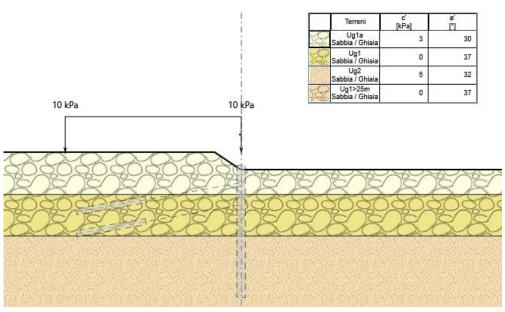
I dati della paratia di diaframmi, ai fini del calcolo, vengono tradotti in una rigidezza flessionale EJ equivalente. Tuttavia, ai fini della verifica, si tiene conto delle reali caratteristiche della sezione.

10.3 FASI DI SCAVO

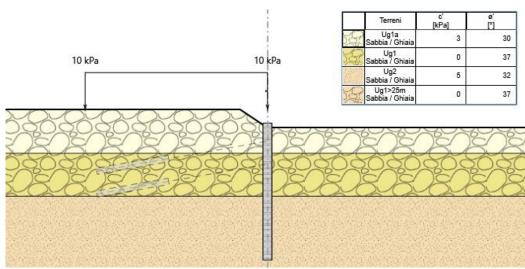
Ponendo come quota di riferimento del piano campagna la quota di testa dei diaframmi, si descrivono di seguito le fasi di calcolo del modello:

- Fase geostatica: condizione iniziale;
- Fase 1: si considera la presenza dei mezzi da lavoro rappresentati nelle procedure di calcolo come carico accidentale pari a 10 kPa.;
- Fase 2: realizzazione della paratia h=15m;
- Fase 3: scavo a valle della paratia fino a quota -1,5 m dalla testa del diaframma;
- Fase 4: installazione del primo ordine di tiranti, a quota -1 m dalla testa del diaframma;
- Fase 5: scavo a valle della paratia fino a quota -4,5m dalla testa del diaframma;
- Fase 6: installazione del secondo ordine di tiranti, a quota -4 m dalla testa del diaframma;
- Fase 7: scavo a valle della paratia fino alla quota di fondazione della pavimentazione stradale;




RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

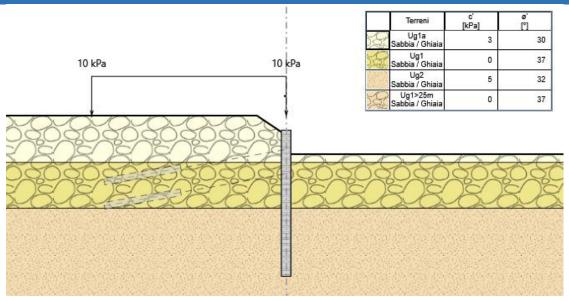
Fase 8: applicazione dell'azione sismica.

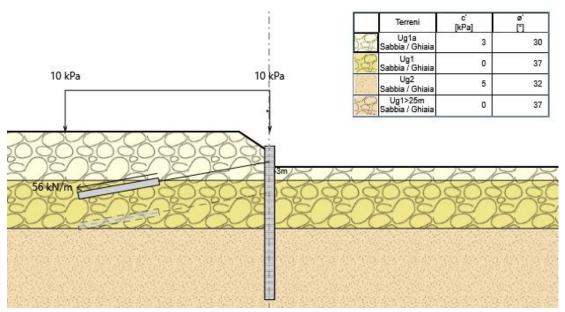

Si riportano di seguito le schematizzazioni grafiche relative agli step di carico presentati.

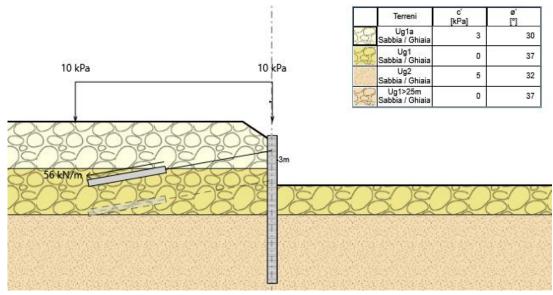
I.44 Fase geostatica: condizione iniziale

I.45 Fase 1: presenza dei mezzi da lavoro

1.46 Fase 2: realizzazione della paratia di diaframmi



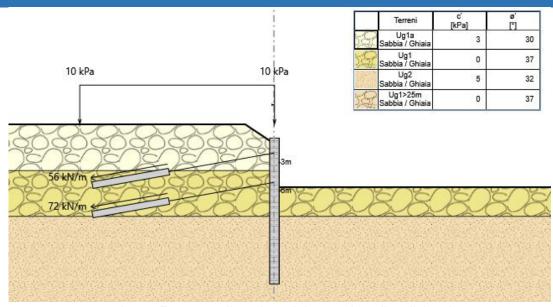


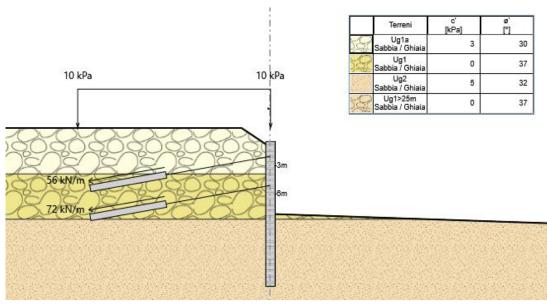

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

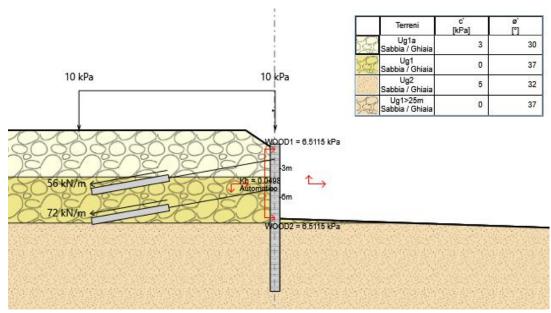
Fase 3: scavo per la realizzazione del primo ordine di tiranti

1.48 Fase 4: realizzazione del primo ordine di tiranti

1.49 Fase 5: scavo per la realizzazione del secondo ordine di tiranti



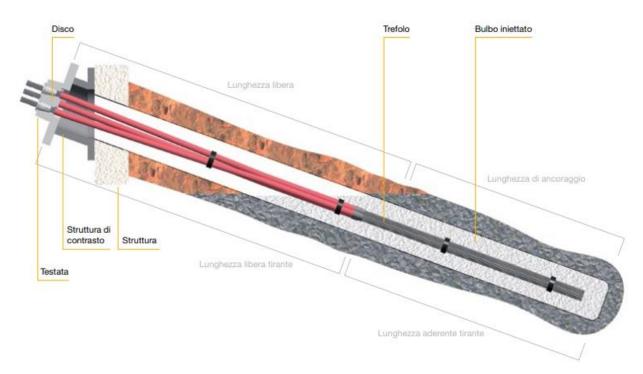



RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

1.50 Fase 6: realizzazione del secondo ordine di tiranti

1.51 Fase 7: scavo massima profondità

1.52 Fase 8: condizione sismica


RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

10.4 INSTALLAZIONE DEI TIRANTI

La realizzazione della paratia prevede l'inserimento di due ordini di tiranti:

- il primo a profondità 1 m dalla testa della paratia, con le seguenti caratteristiche:
 - tipologia di tirante: trefoli in acciaio armonico;
 - numero di trefoli: 4;
 - sezione singolo trefolo: 140 mm²;
 - inclinazione rispetto all'orizzontale: 10°;
 - diametro di perforazione: 0,2 m;
 - interasse orizzontale: 2,5 m;
 - lunghezza libera: 11 m;
 - lunghezza bulbo di fondazione: 8 m;
 - tecnologia di iniezione: in un'unica soluzione (IGU);
 - tensione di tesatura: 140 kN/tirante (35 kN/trefolo);
 - tensione di collaudo: 180 kN/tirante (45 kN/trefolo).
- il secondo a profondità di 4 m, con le seguenti caratteristiche:
 - tipologia di tirante: trefoli in acciaio armonico;
 - numero di trefoli: 4;
 - sezione singolo trefolo: 140 mm²;
 - inclinazione rispetto all'orizzontale: 10°;
 - diametro di perforazione: 0,2 m;
 - interasse orizzontale: 2,5 m;
 - lunghezza libera: 11 m;
 - lunghezza bulbo di fondazione: 8 m;
 - tecnologia di iniezione: in un'unica soluzione (IGU);
 - tensione di tesatura: 180 kN/tirante (45 kN/trefolo);
 - tensione di collaudo: 220 kN/tirante (55 kN/trefolo).

Si riporta di seguito il particolare costruttivo dei tiranti precedentemente presentati.

1.53 Particolare costruttivo del tirante di ancoraggio

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD) AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Nelle verifiche dei tiranti di ancoraggio si valuta lo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che li compongono. Le verifiche sono state condotte con la combinazione di coefficienti parziali come indicato nel paragrafo 7 della presente relazione.

Il calcolo della resistenza al contatto fra bulbo e terreno, è eseguito con il metodo suggerito da Bustamante e Doix (1985). La lunghezza del bulbo è calcolata con la seguente espressione:

$$L_B = \frac{N_d}{d_s \cdot \pi \cdot \tau_{sd}}$$

- N_d rappresenta lo sforzo di trazione di progetto nel tirante
- ds diametro efficace del bulbo
- rsd indica la resistenza tangenziale di progetto all'interfaccia malta-terreno

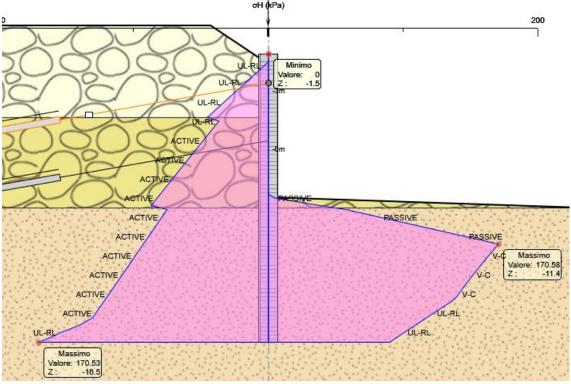
Secondo la teoria di Bustamante e Doix, le iniezioni del bulbo vengono distinte fra iniezioni in unica soluzione (IGU) e iniezioni ripetute (IRS). Per le due tipologie di iniezione, IGU e IRS, gli autori forniscono un coefficiente α maggiorativo del diametro di perforazione utilizzato per eseguire la fondazione dell'ancoraggio. Il diametro efficace viene valutato moltiplicando il coefficiente α per il diametro di perforazione, ossia:

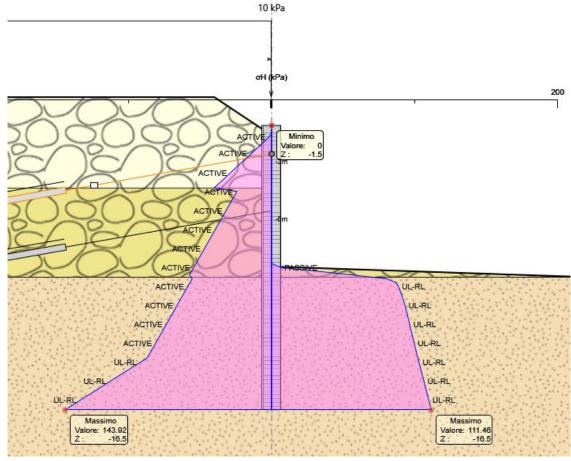
$$d_s = d \cdot \alpha$$

I valori del coefficiente α sono indicati nella seguente tabella . Nel caso in esame, in presenza di terreni incoerenti ed iniezioni tipo IGU, si utilizza un valore di α pari a 1.2

TERRENO	Valori di α		Quantità minima di miscela consigliata		
	IRS	IGU	IRS	IGU	
Ghiaia	1.8	1.3 - 1.4	1.5 Vs	1.5 Vs	
Ghiaia sabbiosa	1.6 - 1.8	1.2 - 1.4	1.5 Vs	1.5 Vs	
sabbia ghiaiosa	1.5 - 1.6	1.2 - 1.3	1.5 Vs	1.5 Vs	
Sabbia grossa	1.4 - 1.5	1.1 - 1.2	1.5 Vs	1.5 Vs	
Sabbia media	1.4 - 1.5	1.1 - 1.2	1.5 Vs	1.5 Vs	
Sabbia fine	1.4 - 1.5	1.1 -1.2	1.5 Vs	1.5 Vs	
Sabbia limosa	1.4 - 1.5	1.1 - 1.2	(1.5 - 2) Vs	1.5 Vs	
Limo	1.4 - 1.6	1.1 - 1.2	2 Vs	1.5 Vs	
Argilla	1.8 - 2.0	1.2	(2.5 - 3) Vs	(1.5 - 2) Vs	
Marne	1.8	1.1 - 1.2	(1.5 - 2) Vs per	strati compatti	
Calcari mamosi	1.8	1.1 - 1.2			
Calcari alterati o fratturati	1.8	1.1 - 1.2	(2 - 6) Vs o più per strati fratturati		
Roccia alterata e/o fratturata	1.2	1.1	(1.1 - 1.5) Vs per strati poco fratturati; 2 Vs o più per strati fratturati		

T.2 Valori del coefficiente maggiorativo del diametro di perforazione al variare tipo di terreno

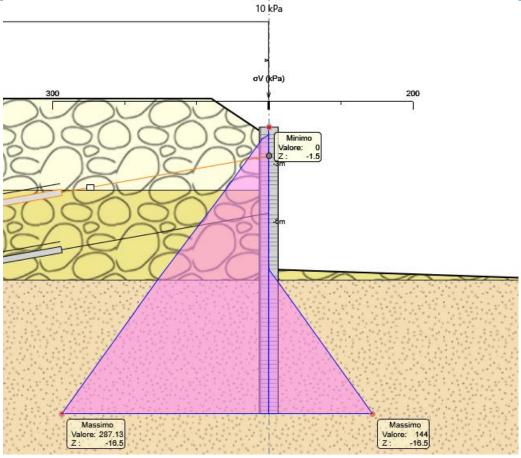


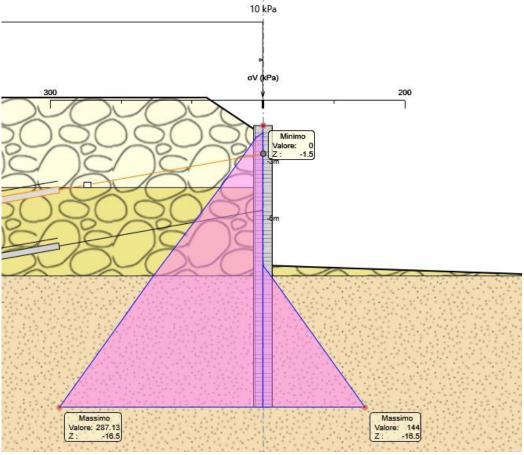

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

10.5 Pressioni vericali e orizzontali del terreno sui diaframmi

Le pressioni sul terreno sono espresse in kN/m² per le combinazioni allo stato limite ultimo: GEO-A2+M2+R1:

1.54 Fase 7 – Combinazione GEO (A2+M2+R1) – pressioni orizzontali

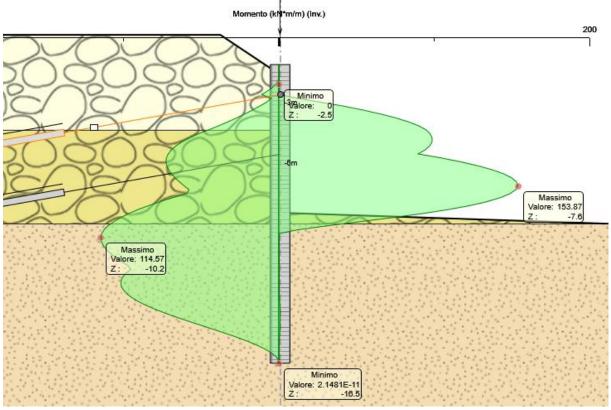

I.55 Fase 7 – Combinazione SISMICA GEO - pressioni orizzontali



RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

I.56 Fase 7 – Combinazione GEO (A2+M2+R1) – pressioni verticali

I.57 Fase 8 – Combinazione SISMICA GEO - pressioni verticali


RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

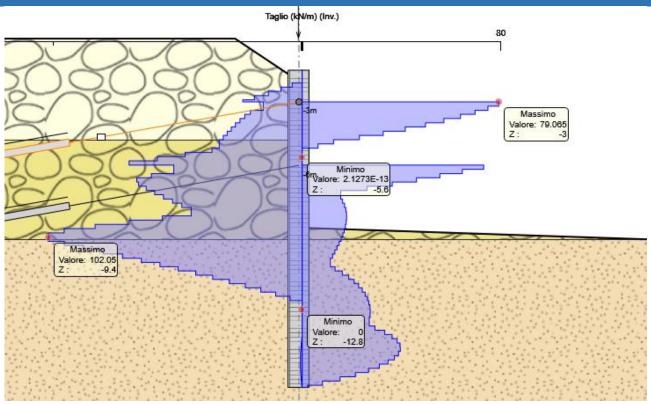
10.6 SOLLEZITAZIONI

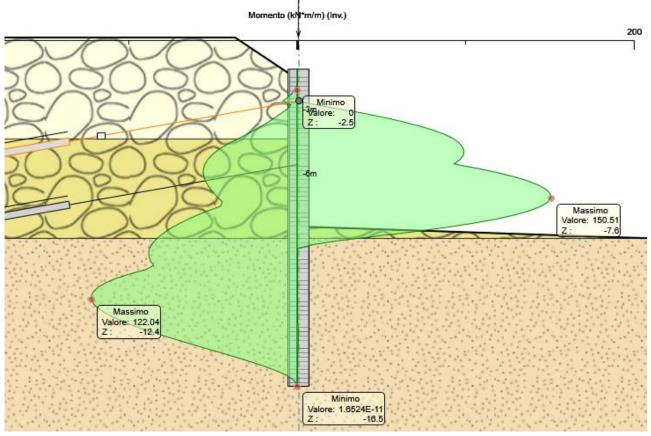
Nella tabella riportata di seguito sono riportati i valori delle azioni sollecitanti per unità di lunghezza di paratia:

COMBINAZIONE	M _{sd,monte} [kNm/m]	V _{sd,monte} [kN/m]	M _{sd,valle} [kNm/m]	V _{sd,valle} [kN/m]
SLE-CARATTERISTICA	88.13	81.14	122.06	61.45
SLU – STR	114.57	102.05	153.87	79.07
SLU – GEO	188.62	136.32	244.76	98.044
SLV – STR	122.04	108.17	150.51	75.05
SLV – GEO	122.04	108.17	150.51	75.05

I momenti flettenti sulle strutture sono espressi in kNm/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: STR (A1+M1+R1).

I.58 Inviluppo fasi 1-7: Combinazione STR (A1+M1+R1) - momenti flettenti


Gli sforzi taglianti sulle strutture sono espressi in kN/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: STR (A1+M1+R1).



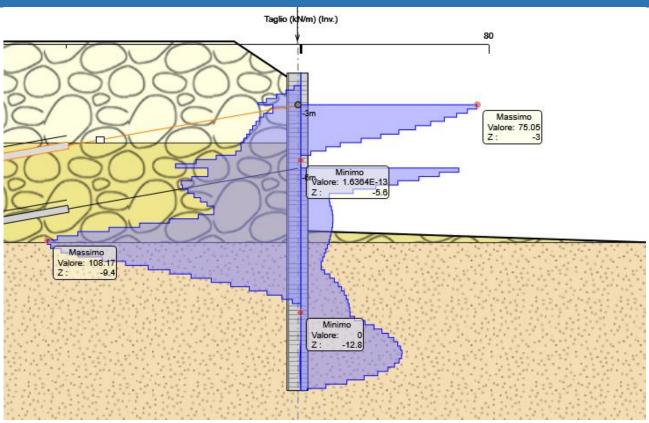
RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

1.59 Inviluppo fasi 1-7: Combinazione STR (A1+M1+R1) - sforzi di taglio

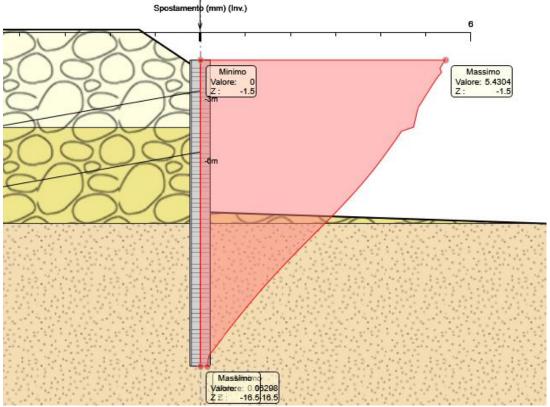
I momenti flettenti sulle strutture sono espressi in kNm/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: SISMICA STR.

1.60 Inviluppo fasi 1-8: Combinazione SISMICA STR - momenti flettenti

Gli sforzi taglianti sulle strutture sono espressi in kN/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: SISMICA STR.



RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO



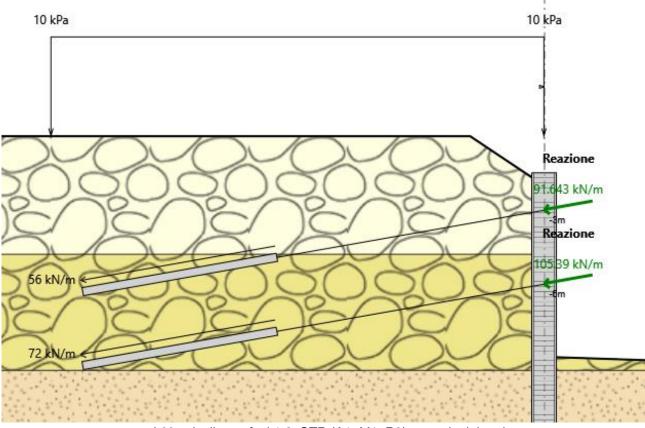
I.61 Inviluppo fasi 1-8: Combinazione SISMICA STR - sforzi di taglio

10.7 DEFORMAZIONI

Le deformate, espresse in mm, sono visualizzate per l'inviluppo di tutte le fasi della combinazione caratteristica (rara):

spostamento massimo in testa alla paratia
 5,43 mm

I.62 Inviluppo fasi 1-8: Combinazione rara - deformata


"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD) AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

10.8 REAZIONI (TIRANTI)

I valori delle reazioni ai tiranti sono espressi in kN/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: STR (A1+M1+R3):

reazione primo ordine di tiranti
91,64 kN/m
reazione secondo ordine di tiranti
105,39 kN/m

I.63 Inviluppo fasi 1-8: STR (A1+M1+R3) - reazioni tiranti

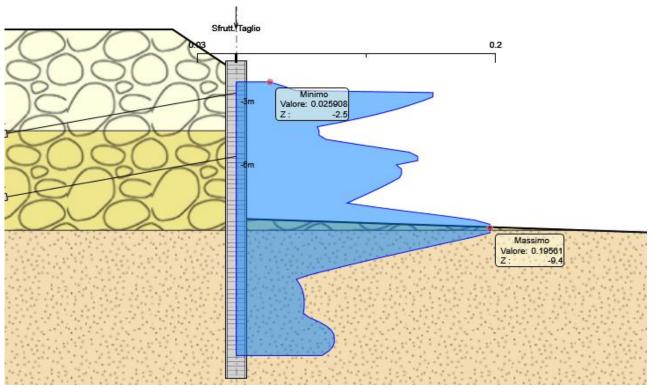
10.9 VERIFICHE ALLO STATO LIMITE ULTIMO

La verifica di resistenza delle sezioni nei vari elementi strutturali, viene condotta tenendo conto delle sollecitazioni più gravose che si individuano nelle diverse combinazioni di carico.

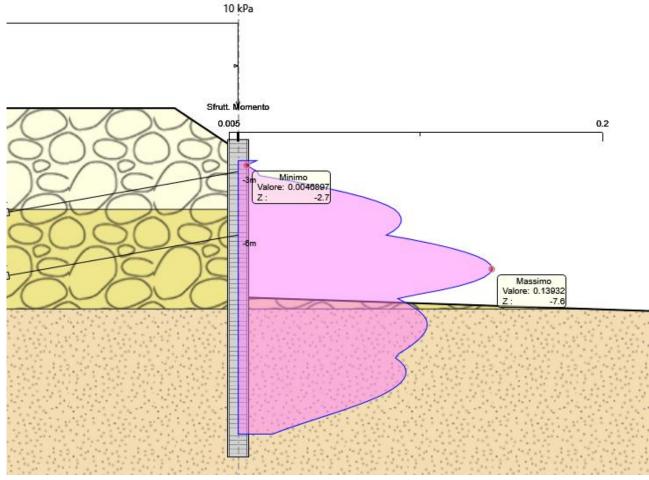
10.9.1 Verifiche strutturali: verifiche a flessione e taglio

Le verifiche sono svolte automaticamente dal programma di calcolo considerando le sollecitazioni statiche e sismiche derivate dalle combinazioni allo stato limite ultimo: STR (A1+M1+R1).

Seguono i diagrammi dei tassi di sfruttamento TS a taglio della resistenza dei diaframmi in c.a., per le combinazioni allo stato limite ultimo: STR: (A1+M1+R1).


Le verifiche sono soddisfatte se: $TS = \frac{Sollec itazione}{Re sistenza} \le 1$

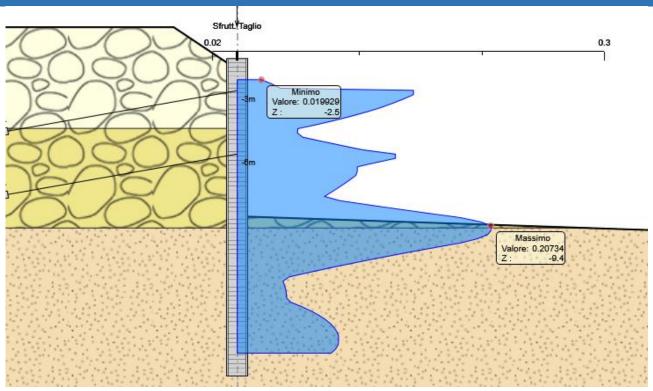
Lo sforzo assiale viene trascurato. Nel calcolo del momento resistente $M_{c,Rd}$ non viene considerata l'interazione con la forza di taglio, in quanto in tutti i casi esaminati il taglio di calcolo associato al momento flettente è sempre inferiore a metà della resistenza di calcolo a taglio $V_{c,Rd}$.

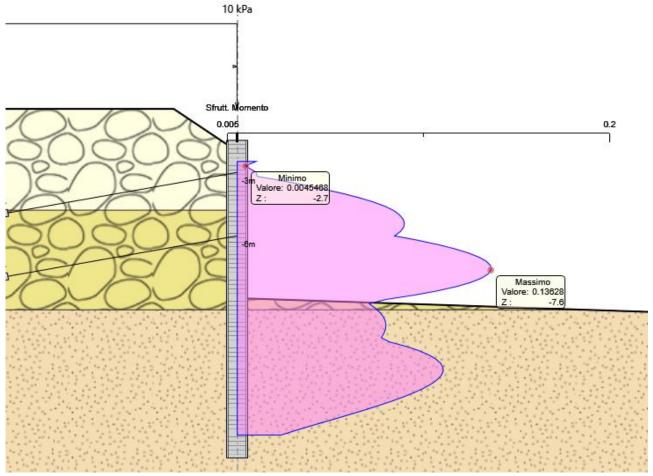


RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

I.64 Tassi di Sfruttamento TAGLIO per combinazione SLU (A1+M1+R1) – inviluppo fasi 1-7 - TS_{max} =0.294(<1)

I.65 Tassi di Sfruttamento MOMENTO per combinazione SLU (A1+M1+R1) – inviluppo fasi 1-7 - TS_{max}=0.300(<1)





RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

I.66 Tassi di Sfruttamento TAGLIO per combinazione SISMICA STR – inviluppo fasi 1-8 - TS_{max}=0.275(<1)

I.67 Tassi di Sfruttamento MOMENTO per combinazioneSISMICA SLU – inviluppo fasi 1-8 - TS_{max}=0.315(<1)</p>

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

10.9.2 Progetto e verifica strutturale della paratia

Il progetto della sezione in calcestruzzo armato è effettuato rispetto alle sollecitazioni di momento flettente e taglio derivanti dall'inviluppo delle combinazioni SLU – STR (A1+M1+R1) e SLV – STR (A1+M1+R1). In tal caso, le sollecitazioni massime, per metro lineare, sono: M_{sd} ' = 153.87 kNm/m e V_{sd} ' = 108.17 kN/m.

Considerando un pannello di larghezza pari a 2,5 m, risulta quindi $M_{sd} = M_{sd}$, * 2.5 = 384.68 kNm e $V_{sd} = V_{sd}$, * 2.5 = 270.43 kN.

La verifica a flessione semplice è condotta con riferimento ad una sezione 2.5 m x 1 m, armata con 16 φ 26 sul bordo inferiore e 16 φ 26 sul bordo superiore. L'armatura compressa, in questo caso, è in campo elastico e si è proceduto con la determinazione della profondità dell'asse neutro secondo l'espressione seguente:

$$b f_{cd} y^2 - (A_s f_{vd} - A_s' E_s \varepsilon_{cu}) y - 0.8 c A_s' E_s \varepsilon_{cu} = 0$$

dove:

b = 2500 mm;

 $f_{cd} = 18.13 MPa;$

 $A_s = A_s' = 8490.6 \text{ mm}^2$;

 $E_s = 210000 \text{ MPa};$

 $\varepsilon_{cu} = 0.0035;$

c è la distanza del baricentro delle armature superiori dal bordo compresso = 79 mm.

Risulta quindi: y = 66.49 mm, da cui x = y/0.8 = 83.11 mm.

La distanza della risultante di compressione C dal bordo superiore della sezione è pari a:

$$d_c = \frac{C_1 \ 0.5 \ y + C_2 \ c}{C_1 + C_2} = 37.49 \ mm$$

In cui C_1 e C_2 sono le risultanti di compressione agenti rispettivamente sul calcestruzzo compresso e sull'armatura superiore: C_1 = f_{cd} b y = 3014 kN e C_2 = E_s A_s ' ϵ_{cu} (y - 0.8 c) / y = 308.4 kN. Il momento resistente della sezione è pari a:

$$M_{rd} = T d^* = A_s f_{vd} (d - d_c) = 2935.37 \, kNm > M_{sd} = 384.68 \, kNm$$
 verificato

il quale risulta maggiore del momento sollecitante M_{sd} = 384.68 kNm, pertanto la verifica a momento flettente risulta essere soddisfatta.

Le verifiche dei dettagli costruttivi sono state condotte secondo quanto riportato al §4.1.6.6.1 e al §7.4.6.2.1 delle NTC 2018. In particolare, le armature longitudinali devono rispettare i seguenti limiti:

VERIFICA DETTAGLI COSTRUTTIVI CAP 4 NTC 2018					
Armatura	in trazione				
1) As > 0.26 * bt* d *fctm/fyl	k	ОК			
fctm (Mpa)	3.02				
0.26 * bt* d *fctm/fyk	4022.68				
2) As > 0.0013 * bt * d		ОК			
0.0013 * bt * d	2993.25				
3) As < 0.04 Ac		ОК			
0.04 Ac	100000				
Armatura in compressione					
4) As' < 0.04 Ac	ОК				

VERIFICA	DETTAGLI COSTRU	JITIVI CAP 7 NTC 20	18	
Percentuale geo	metrica di armatura	a tesa e compressa		
ρ	0.003396224			
ρ comp	0.003396224			
1) ρ > 1.4/fyk			ОК	
1.4,	1.4/fyk 0.003111111			
2) $\rho < \rho_{comp} + 3.5$	/fyk		ОК	
ρ comp + 3.5 / fyk 0.011174002				

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Si procede con la verifica a taglio per elementi privi di armatura trasversale, secondo la relazione:

$$V_{Rd} = \left(\frac{0.18 \, k \, (100 \, \rho_l \, f_{ck})^{1/3}}{\gamma_c} + 0.15 \sigma_{cp}\right) b_w \, d \, \geq \, \left(v_{min} + 0.15 \, \sigma_{cp}\right) b_w \, d$$

dove:

 $k = 1 + (200/d)^{1/2};$

 $V_{min} = 0.035 \, k^{3/2} \, f_{ck}^{1/2};$

d è l'altezza utile della sezione;

 $\rho_I = A_{sI}/(b_w d); \sigma_{cp} = N_{ed}/A_c;$

*b*_w è la larghezza minima della sezione.

ELEMENTI S	ENZA ARMATURA	TRASVERSAL	E RESISTEN	TE A TAGLIO
d (mm)	921			
bw (mm)	2500			
ρl (mmq)	0.00369	< 0.02	ОК	
k	1.47	< 2	ОК	
Nsd (KN)	0			
σср (МРа)	0			
v min	0.3514			
$(0.18 k (100 \rho_l f))$	$\left(\frac{1}{3}/\gamma_c + 0.15 \sigma_{cp}\right) b_w a$	922.17		
(Vmin + 0.15 σcp)*bw*d		809.18		
Vrd (KN)	922.17		•	
	Vrd > Vsd		VEF	RIFICATO

Il taglio resistente è pari a:

$$V_{Rd} = 922.17 \, kN > V_{sd} = 270.43 \, kN$$
 verificato

Pertanto la verifica a taglio $V_{Rd} > V_{sd}$ risulta essere soddisfatta.

Si procede disponendo staffe ϕ 16/20 a 4 bracci, nel rispetto dei quantita minimi di armatura trasversale, riportati al §4.1.6.6.1 delle NTC 2018.

VERIFICA	VERIFICA DETTAGLI COSTRUTTIVI CAP 4 NTC 2018					
Pass	o effettivo scelto	(mm)	200			
1) Almeno tre	staffe al metro	ОК				
s < 0.33 m						
2) s < 0.8*d		ОК				
3) Ast > 1.5 b	(mmq / m)	ОК				
Ast	4019.2					
1.5*b	3750					

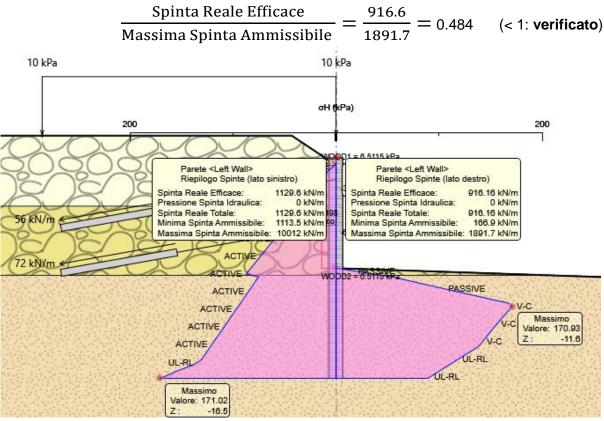
10.9.3 Verifiche geotecniche: verifiche di stabilità del fondo scavo

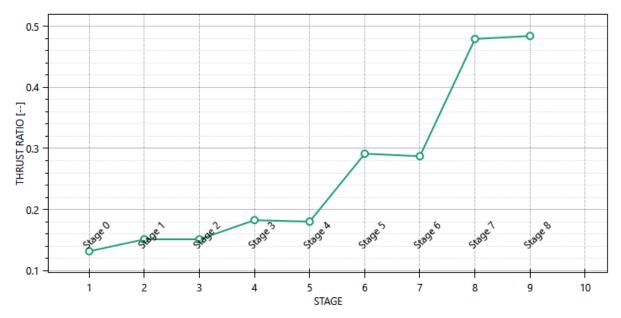
La verifica di stabilità del lato a valle della paratia è effettuata considerando il rispetto di due criteri:

- 3) il calcolo non lineare della paratia deve convergere a una soluzione equilibrata e congruente;
- 4) sul lato di scavo (valle) la spinta efficace mobilitata deve essere minore della spinta passiva disponibile, quindi il loro rapporto deve essere <1.

Dall'esame dei tabulati di calcolo, in particolare quello relativo alla combinazione più gravosa, ovvero la GEO (A2+M2+R1), si desume

- c) il calcolo non lineare converge a una soluzione equilibrata per tutte le fasi di scavo;
- d) il rapporto tra la spinta efficace mobilitata e la spinta passiva possibile assume il





RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

massimo nella fase 6 con il valore:

I.68 Riepilogo delle spinte lato valle e lato monte – comb. GEO (A2+M2+R1)

I.69 Massimi rapporti di mobilizzazione della spinta passiva al variare degli stage di scavo – comb. GEO(A2+M2+R1)

10.9.4 Verifiche strutturale e allo sfilamento dei tiranti attivi

La verifica viene svolta considerando lo Stato Limite GEO di tipo A1+M1+R3.

La resistenza del bulbo di ancoraggio dei tiranti attivi viene calcolata con il metodo di Bustamante-Doix (*Rif. Bustamante M., Doix B. (1985): "Une méthode pour le calcul des tirants et des micropieux injectès", Bull. Liaison Lab. Ponts et Chaussées, n. 140, pagg. 75-95*).

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Si verifica inoltre, nell'ottica della gerarchia delle resistenze, che la resistenza caratteristica allo snervamento del tirante sia maggiore della resistenza a sfilamento di progetto dell'ancoraggio (p. 6.6.2. NTC 2018).

Dati primo ordine di tiranti:

 $\begin{array}{lll} \text{- lunghezza bulbo di ancoraggio:} & L_f = 8 \text{ m} \\ \text{- lunghezza libera:} & L_I = 11 \text{ m} \\ \text{- diametro perforazione:} & \varnothing = 200 \text{ mm} \\ \text{- passo orizzontale:} & p = 2500 \text{ mm} \\ \end{array}$

- sollecitazione massima (Tirante superiore, Fase 7): N_{Ed} =92.47 x 2.50 =231.18 kN - resistenza assiale tirante (4x140mm²): R_{ad} = R_{k}/γ_{s} = $f_{p(1)k}$ A/ γ_{s} = 807.41 kN

Per: - tipo di terreno: ghiaia in matrice sabbiosa

- tipo di iniezione: in unica soluzione, a bassa pressione (IGU)

si ha (Bustamante-Doix):

- resistenza unitaria limite: $q_s = 100 \text{ kN/m}^2$

- fattore di incremento del diametro: $\alpha = 1.2$

- coefficiente parziale resistenza caratteristica (tiranti permanenti): $\gamma_{Ra,t} = 1.2$

- fattore di correlazione (1 sondaggio): $\xi_{a3} = 1.8$

Si determina quindi per il bulbo di ancoraggio:

- resistenza limite: $R_{lim} = \alpha \pi \mathcal{Q}_{perf} \Sigma (L_f q_s) = 1.2 \times \pi \times 0.2 \times 8 \times 100 = 603 \text{ kN}$

- resistenza caratteristica: $R_{\text{ck}} = \frac{R_{lim}}{\xi_{a3}} = \frac{603.11}{1.8} = 335.11 \text{ kN}$

- resistenza di progetto: $R_{cd} = \frac{R_{ck}}{\gamma_{Ra,t}} = \frac{335.11}{1.2} = 279.26 \text{ kN}$

Verifica di resistenza del tirante: $R_{ad} > N_{Ed} : 807.41 \text{ kN} > 231.18 \text{ kN}$ verificato. Verifica di resistenza dell'ancoraggio: $R_{cd} > N_{Ed} : 279.26 \text{ kN} > 231.18 \text{ kN}$ verificato.

Dati secondo ordine di tiranti:

 $\begin{array}{lll} \text{- lunghezza bulbo di ancoraggio:} & L_f = 11 \text{ m} \\ \text{- lunghezza libera:} & L_I = 8 \text{ m} \\ \text{- diametro perforazione:} & \varnothing = 200 \text{ mm} \\ \text{- passo orizzontale:} & p = 2500 \text{ mm} \\ \end{array}$

- sollecitazione massima (Tirante superiore, Fase 7): N_{Ed} =106.06 x 2.50 =265.15 kN - resistenza assiale tirante (4x140mm²): R_{ad} = R_k/γ_s = $f_{p(1)k}$ A/ γ_s = 807.41 kN

Per: - tipo di terreno: ghiaia in matrice sabbiosa

- tipo di iniezione: in unica soluzione, a bassa pressione (IGU)

si ha (Bustamante-Doix):

- resistenza unitaria limite: $q_s = 100 \text{ kN/m}^2$

- fattore di incremento del diametro: $\alpha = 1.2$

- coefficiente parziale resistenza caratteristica (tiranti permanenti): γ_{Ra.t} = 1.2

- fattore di correlazione (1 sondaggio): $\xi_{a3} = 1.8$

Si determina quindi per il bulbo di ancoraggio:

- resistenza limite: $R_{lim} = \alpha \pi \mathcal{Q}_{perf} \Sigma (L_f q_s) = 1.2 \text{ x } \pi \text{ x } 0.2 \text{ x } 8 \text{ x } 100 = 603 \text{ kN}$

- resistenza caratteristica: $R_{\text{ck}} = \frac{R_{lim}}{\xi_{a3}} = \frac{603.11}{1.8} = 335.11 \text{ kN}$

- resistenza di progetto: $R_{cd} = \frac{R_{ck}}{V_{Ra,t}} = \frac{335.11}{1.2} = 279.26 \text{ kN}$

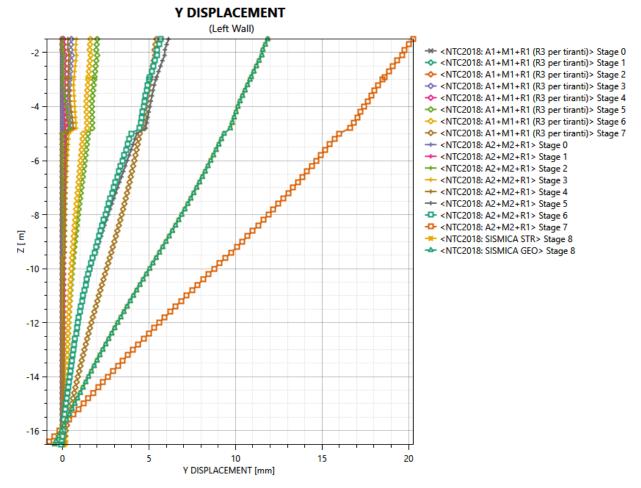
Verifica di resistenza del tirante: $R_{ad} > N_{Ed} : 807.41 \text{ kN} > 265.15 \text{ kN}$ verificato. Verifica di resistenza dell'ancoraggio: $R_{cd} > N_{Ed} : 279.26 \text{ kN} > 265.15 \text{ kN}$ verificato.

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Segue schema riassuntivo delle verifiche per ogni tirante e fase di calcolo.

Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (kN)	Sfruttamento GEO	Sfruttamento STR	Resistenza
Tirante superiore	Stage 4	182	279.26	807.41	0.652	0.225	*
Tirante superiore	Stage 5	198.36	279.26	807.41	0.71	0.246	>
Tirante superiore	Stage 6	195.06	279.26	807.41	0.698	0.242	>
Tirante superiore	Stage 7	229.11	279.26	807.41	0.82	0.284	>
Tirante superiore	Stage 8	231.18	279.26	807.41	0.828	0.286	>
Tirante inferiore	Stage 6	234	279.26	807.41	0.838	0.29	>
Tirante inferiore	Stage 7	263.47	279.26	807.41	0.943	0.326	~
Tirante inferiore	Stage 8	265.15	279.26	807.41	0.949	0.328	*

T.3 Tabella riassuntiva delle verifiche per il primo ordine di tiranti (tirante superiore) e per il secondo ordine di tiranti (tirante inferiore)


Risulta infine verificata la gerarchia delle resistenza, secondo cui la resistenza al limite dello snervamento del tratto libero è sempre maggiore della resistenza a sfilamento della fondazione dell'ancoraggio:

3) Primo ordine di tiranti $R_{d,STR} \ge R_{d,GEO} \rightarrow 807.41kN > 279.26 kN$ verificato;

4) Secondo ordine di tiranti $R_{d.STR} \ge R_{d.GEO} \rightarrow 807.41 kN > 279.26 kN$ verificato.

10.9.5 Verifica dello spostamento massimo

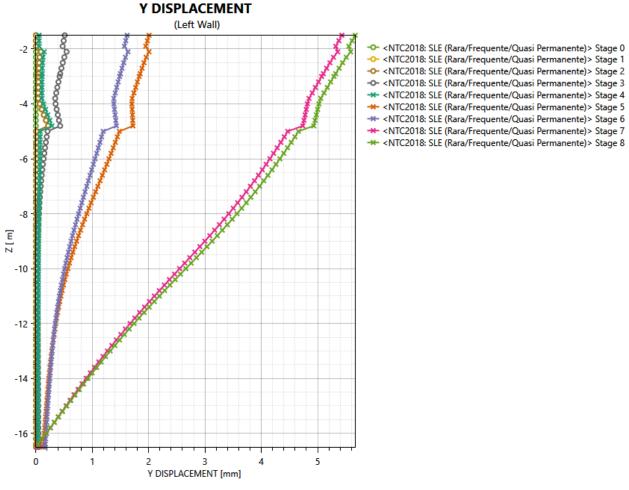
Nel diagramma successivo si riporta l'andamento dello spostamento massimo in testa della paratia per le combinazioni agli SLU.

1.70 Andamento spostamenti della paratia al variare della profondità – SLU (A1+M1+R1 – A2+R2+R1)

Lo spostamento massimo è stato determinato pari a 20,27 mm (combinazione SLV – GEO – fase6). Lo spostamento risulta inferiore ai limiti di normativa:

 d_{max} = 20,27 mm < d_{lim} = (0,005 x 15000,00) mm = 75 mm

verificato



RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

10.10 VERIFICHE ALLO STATO LIMITE DI ESERCIZIO

10.10.1 Verifica dello spostamento in fase di esercizio

Nel diagramma successivo si riporta l'andamento dello spostamento massimo in esercizio della paratia, il quale risulta pari a **5.67 mm** (combinazione SLE – fase 8). Valore massimo dell'ordine di 0.5 cm in fase di esercizio, valore contenuto e compatibile con la struttura in esame.

I.71 Andamento spostamenti della paratia al variare della profondità – SLE

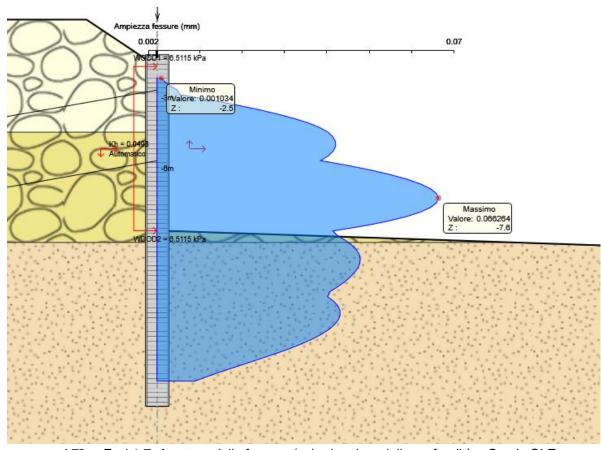
10.10.2 Verifica fessurazione della paratia

Ai fini delle verifiche degli stati limite di esercizio si definiscono le seguenti combinazioni (D.M. del 17.01.2018 §2.5.3):

Rara \rightarrow $G_1+G_2+Q_{k1}+\Sigma i\psi_{0i}\cdot Q_{ki}$ Frequente \rightarrow $G_1+G_2+\psi_{11}\cdot Q_{k1}+\Sigma i\psi_{2i}\cdot Q_{ki}$ Quasi permanente \rightarrow $G_1+G_2+\psi_{21}\cdot Q_{k1}+\Sigma i\psi_{2i}\cdot Q_{ki}$

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportata nel prospetto seguente:

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO


pi Ize	Condizioni	Combinazione di	Armatura			
Gruppi di Esigenze	ambientali	azioni	Sensibile		Poco sensibile	
Grupj di Esigen			Stato limite	$\mathbf{w_k}$	Stato limite	w _k
^	Oudinouio	frequente	apertura fessure	\leq W ₂	apertura fessure	\leq w_3
A	Ordinarie	quasi permanente	apertura fessure	\leq \mathbf{W}_1	apertura fessure	\leq W ₂
Ъ	A	frequente	apertura fessure	\leq \mathbf{W}_1	apertura fessure	$\leq w_2$
В	Aggressive	quasi permanente	decompressione	-	apertura fessure	\leq w_1
	Molto	frequente	formazione fessure	-	apertura fessure	\leq w_1
С	aggressive	quasi permanente	decompressione	-	apertura fessure	$\leq w_1$

T.1 Criteri di scelta dello stato limite di fessurazione

I valori limite di apertura delle fessure, così come definiti al $\S4.1.2.2.4$ delle NTC2018, sono pari a: $w_1 = 0.2$ mm $w_2 = 0.3$ mm $w_3 = 0.4$ mm

I valori dell'ampiezzza di apertura delle fessure al variare dell'altezza della paratia sono riportati nell'immagine seguente. Da essa si evince un valore massimo pari a $w_{c,max}$ =0,07 mm Considerando una condizione ambientale di tipo aggressiva, si ha che:

 $W_{c,max}$ = 0.06626 mm $\leq w_1$ =0.2 mm verificato.

1.72 Fasi 1-7: Apertura delle fessure (w_c) al variare della profondità – Comb. SLE

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

11 DIAFRAMMA H=12m ÷ 10,50m

sicurezza, il contributo di 6Φ26 al m.

L'opera in esame è composta da n. 9 diaframmi di altezza compresa tra 12,00 m ÷ 10,50 m, lunghezza 2,50 m e spessore pari a 1,00 m.

La profondità di scavo varia da un minimo di 3,50 m a un massimo di 4,60 m, in funzione della quota di fondazione della pavimentazione stradale dell'asse principale.

I diaframmi in oggetto sono ancorati a un ordine di tiranti attivi permanenti con inclinazione pari a 10° rispetto al piano orizzontale. I tiranti, composti da 4 trefoli in acciaio armonico da $140~\text{mm}^2$ ciascuno (\emptyset =0.6"), sono disposti -1,5 m dall'estradosso della struttura e con interasse pari a 2,5 m. I diaframmi presentano un'armatura londitudinale da $16\Phi26$ e staffe $\Phi16$ a 4 bracci con passo 0,2 m. Nelle verifiche effettuate con l'ausilio del software "Paratie Plus" è stato considerato, a favore di

La paratia è protetta mediante un rivestimento in conglomerato cementizio C28/30, fissato alla struttura mediante connettori $(1\Phi 16/m^2)$ ancorati con resine epossidiche, in continuità con il rivestimento della galleria GA05. Nelle verifiche di seguito riportate, a favore di sicurezza, non è stato considerato il contributo di tale rivestimento.

Nel seguito si eseguono i calcoli per il diaframma più sollecitato, in cui si ha la massima altezza di scavo pari a 4,60 m.

Si assume che i tratti a profondità di scavo inferiore siano implicitamente verificati.

11.1 PARAMETRI GEOTECNICI PER IL CALCOLO DEI DIAFRAMMI

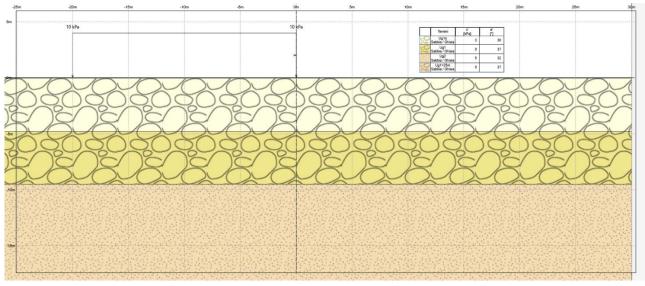
I parametri necessari a definire le caratteristiche del terreno utilizzati per il calcolo delle struttture sono stati ricavati dalla Relazione Geotecnica, rif. BB01_T00GE00GETRE01.A e dalle tavole del profilo geotecnico longitudinale dell'asse principale.

I parametri geotecnici utilizzati nella modellazione sono di seguito riportati:

	Terreni	YDRY [kN/m³]	c' [kPa]	[°] ø'
15	Ug1a Sabbia / Ghiaia	19	3	30
Á	Ug1 Sabbia / Ghiaia	20	0	37
	Ug2 Sabbia / Ghiaia	19	5	32
367	Ug1>25m Sabbia / Ghiaia	20	0	37

Name	Ug1a	
InitialStressK0nc	0.5	
InitialStressNocr	0.5	
UnitWeightGammaDry	19	kN/m³
UnitWeightGammaSat	20.6	kN/m³
PermeabilityKz	0.00001	m/s
ResistanceMohrCoulombC	3	kPa
ResistanceMohrCoulombFi	30	0
WallAdhesion	0	kPa
ElasticConstantEvc	25000	kPa
ElasticConstantEur	40000	kPa

Name	Ug1	
InitialStressK0nc	0.5	
InitialStressNocr	0.5	
UnitWeightGammaDry	20	kN/m³
UnitWeightGammaSat	21.8	kN/m³
PermeabilityKz	0.00001	m/s
ResistanceMohrCoulombC	0	kPa
ResistanceMohrCoulombFi	37	۰
WallAdhesion	0	kPa
ElasticConstantEvc	100000	kPa
ElasticConstantEur	160000	kPa



RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Name	Ug2	
InitialStressK0nc	0.5	
InitialStressNocr	0.5	
UnitWeightGammaDry	19	kN/m³
UnitWeightGammaSat	20.6	kN/m³
PermeabilityKz	0.00001	m/s
ResistanceMohrCoulombC	5	kPa
ResistanceMohrCoulombFi	32	•
WallAdhesion	0	kPa
ElasticConstantEvc	100000	kPa
ElasticConstantEur	160000	kPa

Name	Ug1>25m	
InitialStressK0nc	0.5	
InitialStressNocr	0.5	
UnitWeightGammaDry	20	kN/m³
UnitWeightGammaSat	21.8	kN/m³
PermeabilityKz	0.00001	m/s
ResistanceMohrCoulombC	0	kPa
ResistanceMohrCoulombFi	37	0
WallAdhesion	0	kPa
ElasticConstantEvc	150000	kPa
ElasticConstantEur	240000	kPa

I.73 Parametri geotecnici utilizzati nelle analisi

I.74 Stratigrafia del modello

11.2 GEOMETRIA DELLA STRUTTURA

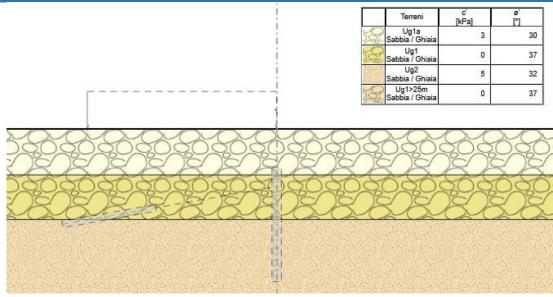
Il modello di calcolo adottato per le analisi con codice di calcolo "Paratie Plus 2020" comprende la paratia di diaframmi con i relativi tiranti. La paratia è caratterizzzata da diaframmi di spessore pari a 1 m, in calcestruzzo armato C32/40.

I dati della paratia di diaframmi, ai fini del calcolo, vengono tradotti in una rigidezza flessionale EJ equivalente. Tuttavia, ai fini della verifica, si tiene conto delle reali caratteristiche della sezione.

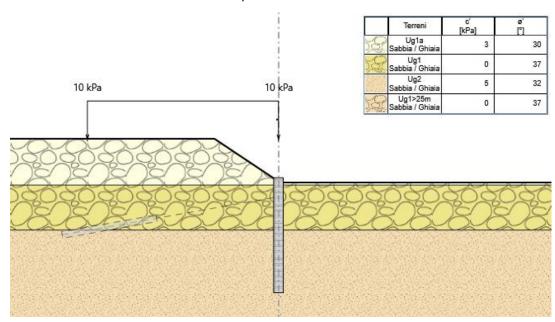
11.3 FASI DI SCAVO

Ponendo come quota di riferimento del piano campagna la quota di testa dei diaframmi, si descrivono di seguito le fasi di calcolo del modello:

- Fase geostatica: condizione iniziale;
- Fase 1: si considera la presenza dei mezzi da lavoro rappresentati nelle procedure di calcolo come carico accidentale pari a 10 kPa.;
- Fase 2: realizzazione della paratia h=12m;
- Fase 3: scavo a valle della paratia fino a quota -2 m dalla testa del diaframma;
- Fase 4: installazione del primo ordine di tiranti, a quota -1,5 m dalla testa del diaframma;
- Fase 5: scavo a valle della paratia fino alla quota di fondazione della pavimentazione stradale;
- Fase 6: applicazione dell'azione sismica.


Si riportano di seguito le schematizzazioni grafiche relative agli step di carico presentati.

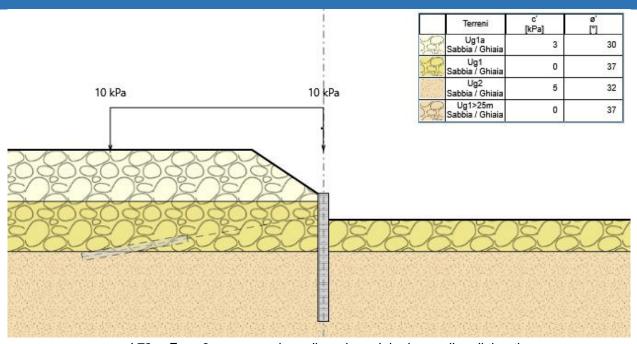


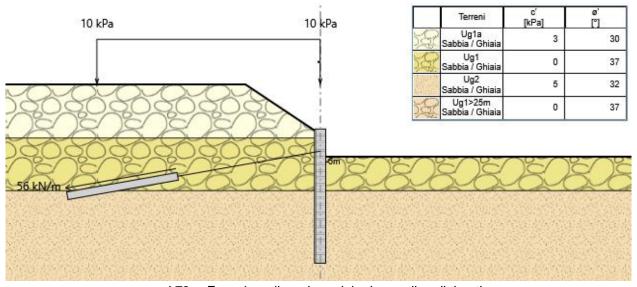

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

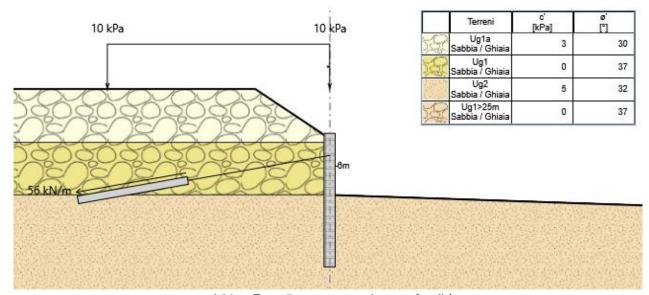
1.75 Fase geostatica: condizione iniziale

1.76 Fase 1: presenza dei mezzi da lavoro

1.77 Fase 2: realizzazione della paratia di diaframmi



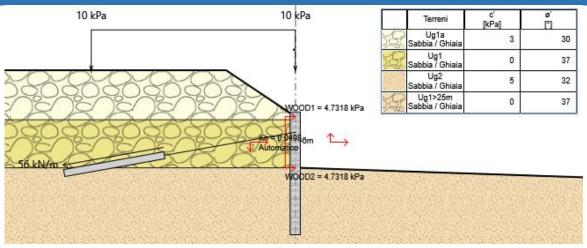



RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

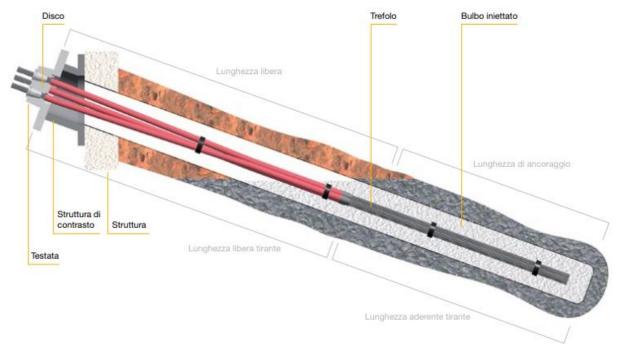
I.78 Fase 3: scavo per la realizzazione del primo ordine di tiranti

1.79 Fase 4: realizzazione del primo ordine di tiranti

I.80 Fase 5: scavo massima profondità



RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO


I.81 Fase 6: condizione sismica

11.4 INSTALLAZIONE DEI TIRANTI

La realizzazione della paratia prevede l'inserimento di un ordine di tiranti a profondità di 1,5 m dalla testa della paratia, con le seguenti caratteristiche:

- tipologia di tirante: trefoli in acciaio armonico;
- numero di trefoli: 4;
- sezione singolo trefolo: 140 mm²;
- inclinazione rispetto all'orizzontale: 10°;
- diametro di perforazione: 0,2 m;
- interasse orizzontale: 2,5 m;
- lunghezza libera: 13 m;
- lunghezza bulbo di fondazione: 10 m;
- tecnologia di iniezione: in un'unica soluzione (IGU);
- tensione di tesatura: 140 kN/tirante (35 kN/trefolo);
- tensione di collaudo: 180 kN/tirante (45 kN/trefolo).

Si riporta di seguito il particolare costruttivo dei tiranti precedentemente presentati.

1.82 Particolare costruttivo del tirante di ancoraggio

SETAC se

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD) AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Nelle verifiche dei tiranti di ancoraggio si valuta lo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che li compongono. Le verifiche sono state condotte con la combinazione di coefficienti parziali come indicato nel paragrafo 7 della presente relazione.

Il calcolo della resistenza al contatto fra bulbo e terreno, è eseguito con il metodo suggerito da Bustamante e Doix (1985). La lunghezza del bulbo è calcolata con la seguente espressione:

$$L_B = \frac{N_d}{d_s \cdot \pi \cdot \tau_{sd}}$$

- N_d rappresenta lo sforzo di trazione di progetto nel tirante
- · ds diametro efficace del bulbo
- rsd indica la resistenza tangenziale di progetto all'interfaccia malta-terreno

Secondo la teoria di Bustamante e Doix, le iniezioni del bulbo vengono distinte fra iniezioni in unica soluzione (IGU) e iniezioni ripetute (IRS). Per le due tipologie di iniezione, IGU e IRS, gli autori forniscono un coefficiente α maggiorativo del diametro di perforazione utilizzato per eseguire la fondazione dell'ancoraggio. Il diametro efficace viene valutato moltiplicando il coefficiente α per il diametro di perforazione, ossia:

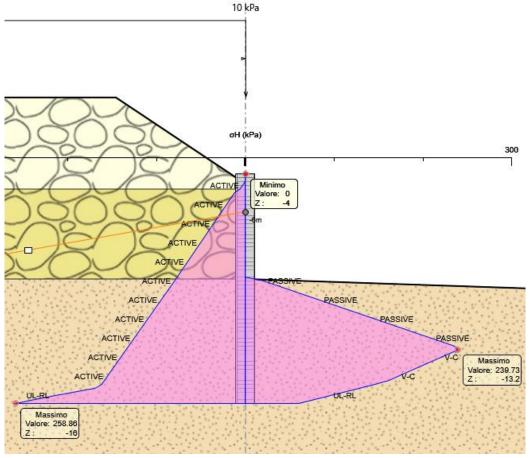
$$d_s = d \cdot \alpha$$

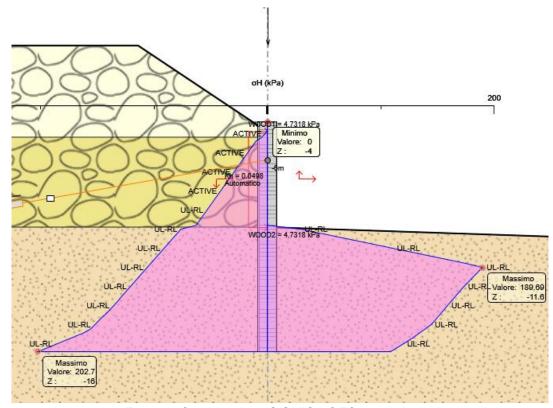
I valori del coefficiente α sono indicati nella seguente tabella . Nel caso in esame, in presenza di terreni incoerenti ed iniezioni tipo IGU, si utilizza un valore di α pari a 1.2

TERRENO	Valori di α		Quantità minima di miscela consigliata	
	IRS	IGU	IRS	IGU
Ghiaia	1.8	1.3 - 1.4	1.5 Vs	1.5 Vs
Ghiaia sabbiosa	1.6 - 1.8	1.2 - 1.4	1.5 Vs	1.5 Vs
sabbia ghiaiosa	1.5 - 1.6	1.2 - 1.3	1.5 Vs	1.5 Vs
Sabbia grossa	1.4 - 1.5	1.1 - 1.2	1.5 Vs	1.5 Vs
Sabbia media	1.4 - 1.5	1.1 - 1.2	1.5 Vs	1.5 Vs
Sabbia fine	1.4 - 1.5	1.1 -1.2	1.5 Vs	1.5 Vs
Sabbia limosa	1.4 - 1.5	1.1 - 1.2	(1.5 - 2) Vs	1.5 Vs
Limo	1.4 - 1.6	1.1 - 1.2	2 Vs	1.5 Vs
Argilla	1.8 - 2.0	1.2	(2.5 - 3) Vs	(1.5 - 2) Vs
Marne	1.8	1.1 - 1.2	(1.5 - 2) Vs per	strati compatti
Calcari mamosi	1.8	1.1 - 1.2		
Calcari alterati o	1.8	1.1 - 1.2	(2 - 6) Vs o più per strati fratturati	
fratturati	1.0	1.1 - 1.2		
Roccia alterata e/o	1.2	1.1	(1.1 - 1.5) Vs per strati poco fratturati;	
fratturata	1.2	1.1 Vs o più per strati fratti		strati fratturati

T.2 Valori del coefficiente maggiorativo del diametro di perforazione al variare tipo di terreno

MANDANTI:



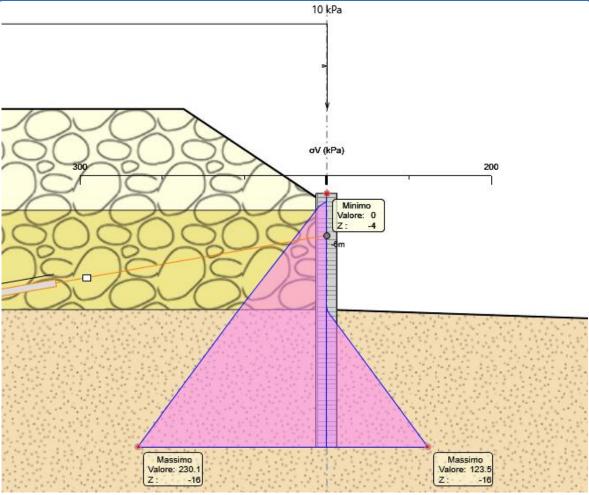

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

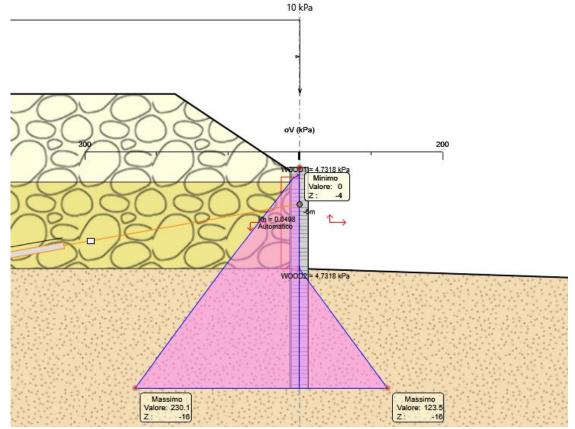
11.5 PRESSIONI VERICALI E ORIZZONTALI DEL TERRENO SUI DIAFRAMMI

Le pressioni sul terreno sono espresse in kN/m² per le combinazioni allo stato limite ultimo: GEO-A2+M2+R1:

1.83 Fase 5 – Combinazione GEO (A2+M2+R1) – pressioni orizzontali

I.84 Fase 6 – Combinazione SISMICA GEO - pressioni orizzontali

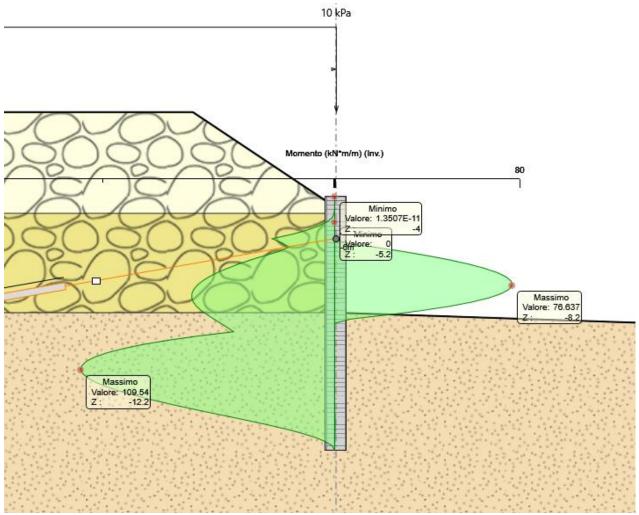




RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

1.85 Fase 5 – Combinazione GEO (A2+M2+R1) – pressioni verticali

Fase 6 – Combinazione SISMICA GEO - pressioni verticali


RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

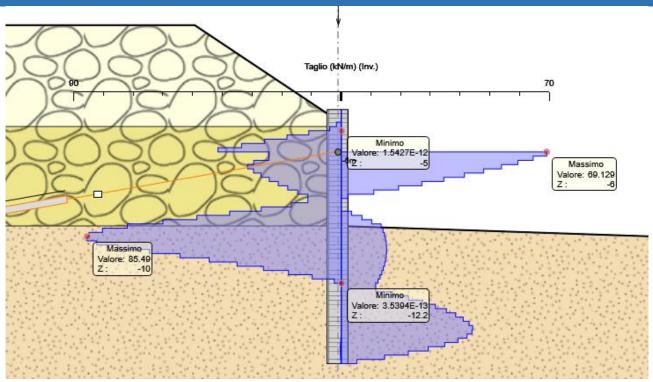
11.6 SOLLEZITAZIONI

Nella tabella riportata di seguito sono riportati i valori delle azioni sollecitanti per unità di lunghezza di paratia:

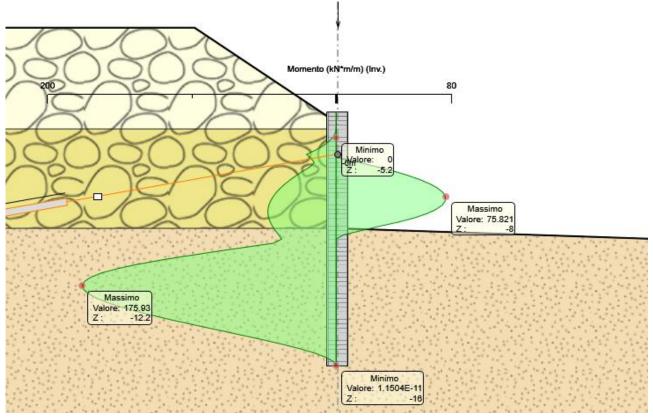
COMBINAZIONE	M _{sd,monte} [kNm/m]	V _{sd,monte} [kN/m]	M _{sd,valle} [kNm/m]	V _{sd,valle} [kN/m]
SLE-CARATTERISTICA	84.26	65.76	58.95	53.18
SLU – STR	109.54	85.49	76.64	69.13
SLU – GEO	209.92	116.95	137.98	105.88
SLV – STR	175.93	101.92	75.82	72.17
SLV – GEO	175.93	101.92	75.82	72.17

I momenti flettenti sulle strutture sono espressi in kNm/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: STR (A1+M1+R1).

I.87 Inviluppo fasi 1-5: Combinazione STR (A1+M1+R1) - momenti flettenti


Gli sforzi taglianti sulle strutture sono espressi in kN/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: STR (A1+M1+R1).

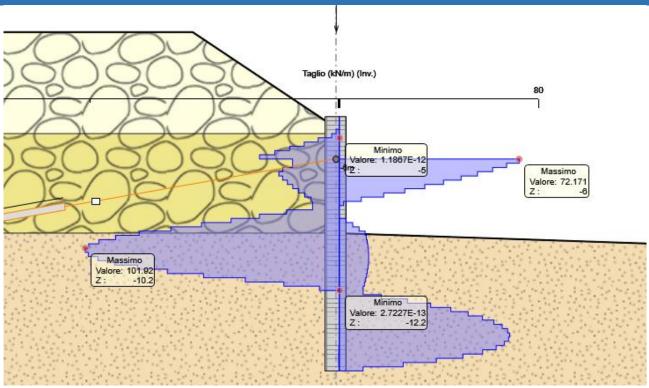
MANDANTI:



RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

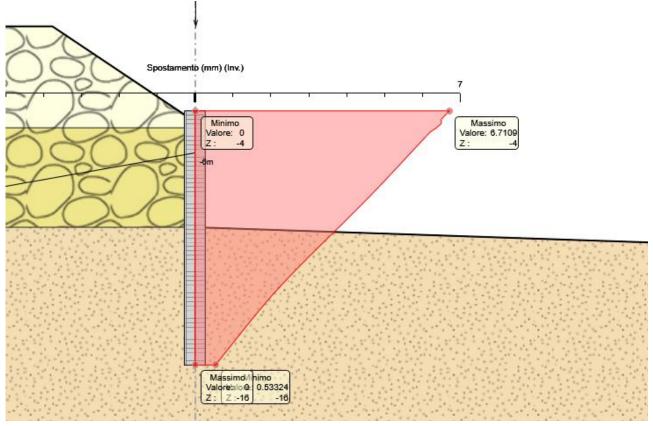
I.88 Inviluppo fasi 1-5: Combinazione STR (A1+M1+R1) - sforzi di taglio

I momenti flettenti sulle strutture sono espressi in kNm/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: SISMICA STR.


1.89 Inviluppo fasi 1-6: Combinazione SISMICA STR - momenti flettenti

Gli sforzi taglianti sulle strutture sono espressi in kN/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: SISMICA STR.

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO



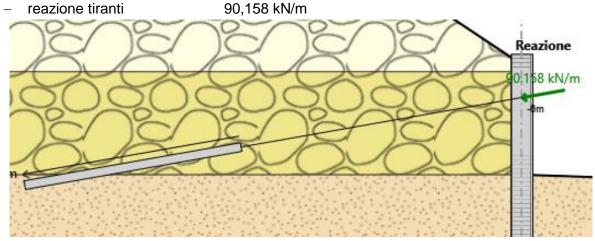
1.90 Inviluppo fasi 1-6: Combinazione SISMICA STR - sforzi di taglio

11.7 DEFORMAZIONI

Le deformate, espresse in mm, sono visualizzate per l'inviluppo di tutte le fasi della combinazione caratteristica (rara):

spostamento massimo in testa alla paratia
 6,71 mm

I.91 Inviluppo fasi 1-6: Combinazione rara - deformata



RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

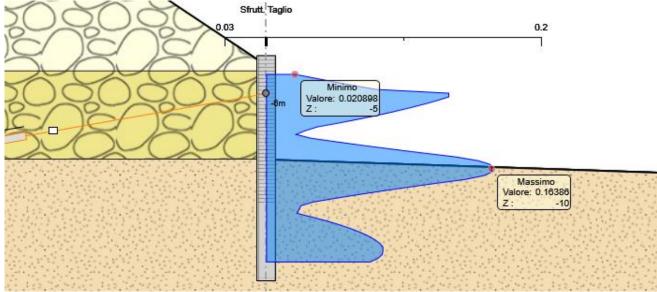
11.8 REAZIONI (TIRANTI)

I valori delle reazioni ai tiranti sono espressi in kN/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: STR (A1+M1+R3):

I.92 Inviluppo fasi 1-6: STR (A1+M1+R3) - reazioni tiranti

11.9 VERIFICHE ALLO STATO LIMITE ULTIMO

La verifica di resistenza delle sezioni nei vari elementi strutturali, viene condotta tenendo conto delle sollecitazioni più gravose che si individuano nelle diverse combinazioni di carico.

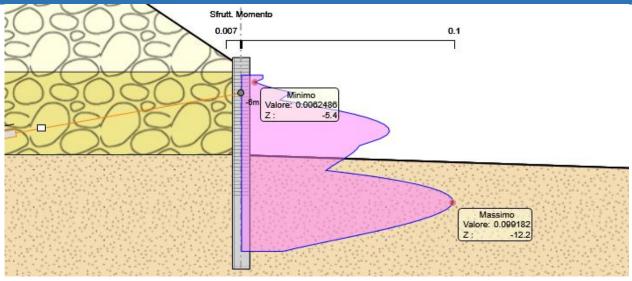

11.9.1 Verifiche strutturali: verifiche a flessione e taglio

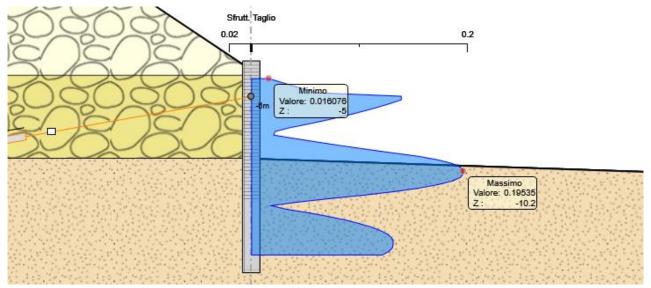
Le verifiche sono svolte automaticamente dal programma di calcolo considerando le sollecitazioni statiche e sismiche derivate dalle combinazioni allo stato limite ultimo: STR (A1+M1+R1).

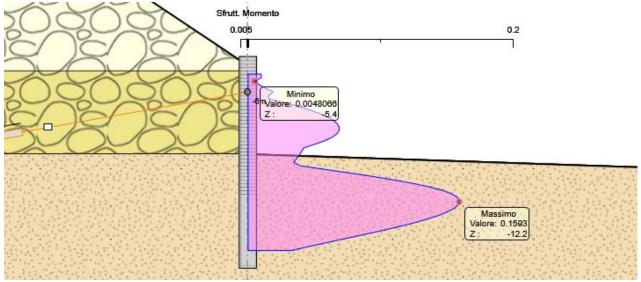
Seguono i diagrammi dei tassi di sfruttamento TS a taglio della resistenza dei diaframmi in c.a., per le combinazioni allo stato limite ultimo: STR: (A1+M1+R1).

Le verifiche sono soddisfatte se:
$$TS = \frac{Sollec itazione}{Re sistenza} \le 1$$

Lo sforzo assiale viene trascurato. Nel calcolo del momento resistente $M_{c,Rd}$ non viene considerata l'interazione con la forza di taglio, in quanto in tutti i casi esaminati il taglio di calcolo associato al momento flettente è sempre inferiore a metà della resistenza di calcolo a taglio $V_{c,Rd}$.


I.93 Tassi di Sfruttamento TAGLIO per combinazione SLU (A1+M1+R1) – inviluppo fasi 1-5 - TS_{max} =0.1639(<1)




RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

I.94 Tassi di Sfruttamento MOMENTO per combinazione SLU (A1+M1+R1) – inviluppo fasi 1-5 - TS_{max}=0.0992 (<1)

I.95 Tassi di Sfruttamento TAGLIO per combinazione SISMICA STR – inviluppo fasi 1-6 - TS_{max}=0.1954(<1)</p>

I.96 Tassi di Sfruttamento MOMENTO per combinazioneSISMICA SLU – inviluppo fasi 1-6 - TS_{max}=0.1593(<1)

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

11.9.2 Progetto e verifica strutturale della paratia

Il progetto della sezione in calcestruzzo armato è effettuato rispetto alle sollecitazioni di momento flettente e taglio derivanti dall'inviluppo delle combinazioni SLU - STR (A1+M1+R1) e SLV - STR (A1+M1+R1). In tal caso, le sollecitazioni massime, per metro lineare, sono: M_{sd} ' = 175.93 kNm/m e V_{sd} ' = 101.92 kN/m.

Considerando un pannello di larghezza pari a 2,5 m, risulta quindi $M_{sd} = M_{sd}$, * 2.5 = 439.83 kNm e $V_{sd} = V_{sd}$, * 2.5 = 254.80 kN.

La verifica a flessione semplice è condotta con riferimento ad una sezione 2.5 m x 1 m, armata con 16 φ 26 sul bordo inferiore e 16 φ 26 sul bordo superiore. L'armatura compressa, in questo caso, è in campo elastico e si è proceduto con la determinazione della profondità dell'asse neutro secondo l'espressione sequente:

$$b f_{cd} y^2 - (A_s f_{vd} - A'_s E_s \varepsilon_{cu}) y - 0.8 c A'_s E_s \varepsilon_{cu} = 0$$

dove:

b = 2500 mm;

 $f_{cd} = 18.13 MPa;$

 $A_s = A_s' = 8490.6 \text{ mm}^2;$

 $E_s = 210000 \text{ MPa};$

 $\varepsilon_{cu} = 0.0035;$

c è la distanza del baricentro delle armature superiori dal bordo compresso = 79 mm.

Risulta quindi: y = 66.49 mm, da cui x = y/0.8 = 83.11 mm.

La distanza della risultante di compressione C dal bordo superiore della sezione è pari a:

$$d_c = \frac{C_1 \ 0.5 \ y + C_2 \ c}{C_1 + C_2} = 37.49 \ mm$$

In cui C_1 e C_2 sono le risultanti di compressione agenti rispettivamente sul calcestruzzo compresso e sull'armatura superiore: C_1 = f_{cd} b y = 3014 kN e C_2 = E_s A_s ' ϵ_{cu} (y - 0.8 c) / y = 308.4 kN. Il momento resistente della sezione è pari a:

$$M_{rd} = T d^* = A_s f_{vd} (d - d_c) = 2935.37 \ kNm > M_{sd} = 439.83 \ kNm$$
 verificate

Il quale risulta maggiore del momento sollecitante M_{sd} = 439.83 kNm, pertanto la verifica a flessione risulta essere soddisfatta.

Le verifiche dei dettagli costruttivi sono state condotte secondo quanto riportato al §4.1.6.6.1 e al §7.4.6.2.1 delle NTC 2018. In particolare, le armature longitudinali devono rispettare i seguenti limiti:

VERIFICA DETTAGLI COSTRUTTIVI CAP 4 NTC 2018					
Armatura	in trazione				
1) As > 0.26 * bt* d *fctm/fyl	(ОК			
fctm (Mpa)	3.02				
0.26 * bt* d *fctm/fyk	4022.68				
2) As > 0.0013 * bt * d		ОК			
0.0013 * bt * d	2993.25				
3) As < 0.04 Ac		ОК			
0.04 Ac	100000				
Armatura in o	Armatura in compressione				
4) As' < 0.04 Ac	ОК				

VERIFICA DETTAGLI COSTRUTTIVI CAP 7 NTC 2018					
Percentuale geome	trica di armatur	a tesa e compressa			
ρ	0.003396224				
ρ comp	0.003396224				
1) ρ > 1.4/fyk OK					
1.4/fy	k	0.003111111			
2) ρ < ρ _{comp} + 3.5/fyk OK					
ρ comp + 3.5 / fyk 0.011174002					

MANDANTI:

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Si procede con la verifica a taglio per elementi privi di armatura trasversale, secondo la relazione:

$$V_{Rd} = \left(\frac{0.18 \, k \, (100 \, \rho_l \, f_{ck})^{1/3}}{\gamma_c} + 0.15 \sigma_{cp}\right) b_w \, d \, \geq \, \left(v_{min} + 0.15 \, \sigma_{cp}\right) b_w \, d$$

dove:

 $k = 1 + (200/d)^{1/2};$

 $V_{min} = 0.035 \, k^{3/2} \, f_{ck}^{1/2};$

d è l'altezza utile della sezione;

 $\rho_l = A_{sl}/(b_w d)$; $\sigma_{cp} = N_{ed}/A_c$;

b_w è la larghezza minima della sezione.

ELEMENTI S	ENZA ARMATURA	TRASVERSAL	E RESISTEN	ITE A TAGLIO
d (mm)	921			
bw (mm)	2500			
ρl (mmq)	0.00369	< 0.02	ОК	
k	1.47	< 2	ОК	
Nsd (KN)	0			
σср (МРа)	0			
v min	0.3514			
$\left(0,18k\left(100\rho_lf\right)\right)$	$\left(\frac{1}{3}\gamma_c + 0.15 \sigma_{cp}\right) b_w d$	922.17		
(vmin + 0.	15 σ _{cp})*b _w *d	809.18		
Vrd (KN)	922.17		•	
	Vrd > Vsd		VE	RIFICATO

Il taglio resistente è pari a:

$$V_{Rd} = 922.17 \ KN > V_{sd} = 254.80 \ kN$$
 verificato

Pertanto, la verifica a taglio V_{Rd} > V_{sd} risulta essere soddisfatta.

Si procede disponendo staffe ϕ 16/20 a 4 bracci, nel rispetto dei quantita minimi di armatura trasversale, riportati al §4.1.6.6.1 delle NTC 2018.

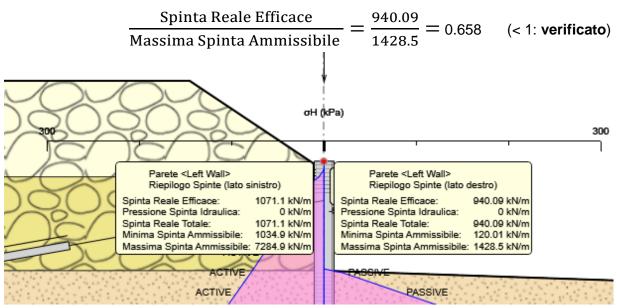
VERIFICA	VERIFICA DETTAGLI COSTRUTTIVI CAP 4 NTC 2018				
Pass	o effettivo scelto	(mm)	200		
1) Almeno tre	staffe al metro	ОК			
s <	s < 0.33 m				
2) s < 0.8*d		ОК			
3) Ast > 1.5 b	(mmq / m)	ОК			
Ast	4019.2				
1.5*b	3750				

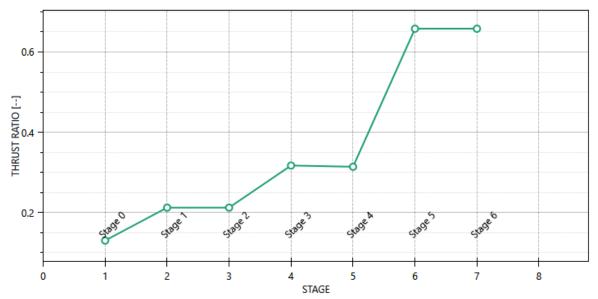
11.9.3 Verifiche geotecniche: verifiche di stabilità del fondo scavo

La verifica di stabilità del lato a valle della paratia è effettuata considerando il rispetto di due criteri:

- 5) il calcolo non lineare della paratia deve convergere a una soluzione equilibrata e congruente;
- 6) sul lato di scavo (valle) la spinta efficace mobilitata deve essere minore della spinta passiva disponibile, quindi il loro rapporto deve essere <1.

Dall'esame dei tabulati di calcolo, in particolare quello relativo alla combinazione più gravosa, ovvero la GEO (A2+M2+R1), si desume


e) il calcolo non lineare converge a una soluzione equilibrata per tutte le fasi di scavo;



RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

f) il rapporto tra la spinta efficace mobilitata e la spinta passiva possibile assume il massimo nella fase 6 con il valore:

I.97 Riepilogo delle spinte lato valle e lato monte – comb. GEO (A2+M2+R1)

I.98 Massimi rapporti di mobilizzazione della spinta passiva al variare degli stage di scavo – comb. GEO(A2+M2+R1)

11.9.4 Verifiche strutturale e allo sfilamento dei tiranti attivi

La verifica viene svolta considerando lo Stato Limite GEO di tipo A1+M1+R3.

La resistenza del bulbo di ancoraggio dei tiranti attivi viene calcolata con il metodo di Bustamante-Doix (Rif. Bustamante M., Doix B. (1985): "Une méthode pour le calcul des tirants et des micropieux injectès", Bull. Liaison Lab. Ponts et Chaussées, n. 140, pagg. 75-95).

Si verifica inoltre, nell'ottica della gerarchia delle resistenze, che la resistenza caratteristica allo snervamento del tirante sia maggiore della resistenza a sfilamento di progetto dell'ancoraggio (p. 6.6.2. NTC 2018).

Dati primo ordine di tiranti:

- lunghezza bulbo di ancoraggio: $L_f = 10 \text{ m}$ - lunghezza libera: $L_I = 13 \text{ m}$ - diametro perforazione: $\emptyset = 200 \text{ mm}$

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

- passo orizzontale: p = 2500 mm

- sollecitazione massima (Tirante superiore, Fase 7): N_{Ed} =90.158 x 2.50 =225.40 kN

- resistenza assiale tirante (4x140mm²): $R_{ad} = R_k/\gamma_s = f_{p(1)k} A/\gamma_s = 807.41 \text{ kN}$

Per: - tipo di terreno: ghiaia in matrice sabbiosa

- tipo di iniezione: in unica soluzione, a bassa pressione (IGU)

si ha (Bustamante-Doix):

- resistenza unitaria limite: $q_s = 100 \text{ kN/m}^2$

- fattore di incremento del diametro: $\alpha = 1.2$

- coefficiente parziale resistenza caratteristica (tiranti permanenti): $\gamma_{Ra,t} = 1.2$

- fattore di correlazione (1 sondaggio): $\xi_{a3} = 1.8$

Si determina quindi per il bulbo di ancoraggio:

- resistenza limite: $R_{lim} = \alpha \pi \mathcal{O}_{perf} \Sigma(L_f q_s) = 1.2 \times \pi \times 0.2 \times 10 \times 100 = 603 \text{ kN}$

- resistenza caratteristica: $R_{\text{ck}} = \frac{R_{lim}}{\xi_{a3}} = \frac{753.9}{1.8} = 418.9 \text{ kN}$

- resistenza di progetto: $R_{cd} = \frac{R_{ck}}{V_{Ra.t}} = \frac{418.9}{1.2} = 349.06 \text{ kN}$

Verifica di resistenza del tirante: $R_{ad} > N_{Ed} : 807.41 \text{ kN} > 231.18 \text{ kN}$ verificato. Verifica di resistenza dell'ancoraggio: $R_{cd} > N_{Ed} : 279.26 \text{ kN} > 231.18 \text{ kN}$ verificato.

Dati secondo ordine di tiranti:

 $\begin{array}{lll} \text{- lunghezza bulbo di ancoraggio:} & L_f = 11 \text{ m} \\ \text{- lunghezza libera:} & L_l = 8 \text{ m} \\ \text{- diametro perforazione:} & \varnothing = 200 \text{ mm} \\ \text{- passo orizzontale:} & p = 2500 \text{ mm} \\ \end{array}$

- sollecitazione massima (Tirante superiore, Fase 7): N_{Ed} =106.06 x 2.50 =265.15 kN - resistenza assiale tirante (4x140mm²): R_{ad} = R_k/γ_s = $f_{D(1)k}$ A/ γ_s = 807.41 kN

Per: - tipo di terreno: qhiaia in matrice sabbiosa

- tipo di iniezione: in unica soluzione, a bassa pressione (IGU)

si ha (Bustamante-Doix):

- resistenza unitaria limite: $q_s = 100 \text{ kN/m}^2$

- fattore di incremento del diametro: $\alpha = 1.2$

- coefficiente parziale resistenza caratteristica (tiranti permanenti): $\gamma_{Ra,t} = 1.2$

- fattore di correlazione (1 sondaggio): $\xi_{a3} = 1.8$

Si determina quindi per il bulbo di ancoraggio:

- resistenza limite: $R_{lim} = \alpha \pi \mathcal{Q}_{perf} \Sigma(L_f q_s) = 1.2 \times \pi \times 0.2 \times 10 \times 100 = 753.97 \text{ kN}$

- resistenza caratteristica: $R_{\text{ck}} = \frac{R_{lim}}{\xi_{a3}} = \frac{753.97}{1.8} = 418.87 \text{ kN}$

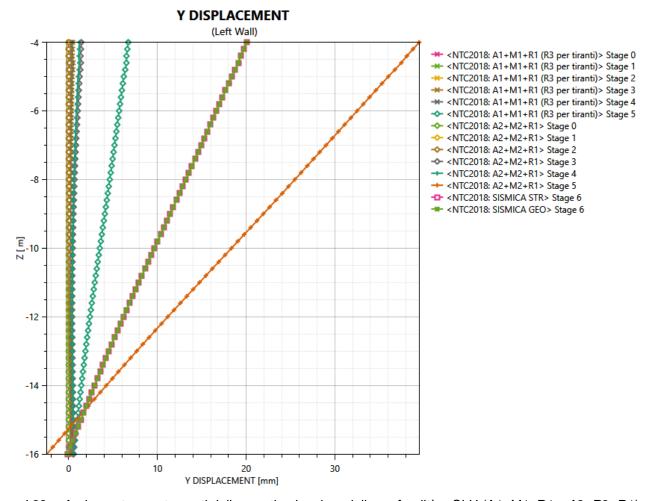
- resistenza di progetto: $R_{cd} = \frac{R_{ck}}{\gamma_{Ra,t}} = \frac{418.87}{1.2} = 349.06 \text{ kN}$

Verifica di resistenza del tirante: $R_{ad} > N_{Ed} : 807.41 \text{ kN} > 265.15 \text{ kN}$ verificato. Verifica di resistenza dell'ancoraggio: $R_{cd} > N_{Ed} : 349.06 \text{ kN} > 265.15 \text{ kN}$ verificato.

Segue schema riassuntivo delle verifiche per ogni tirante e fase di calcolo.

Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (kN)	Sfruttamento GEO	Sfruttamento STR	Resistenza
Stage 4	182	349.06	807.41	0.521	0.225	*
Stage 5	225.4	349.06	807.41	0.646	0.279	~
Stage 6	225.4	349.06	807.41	0.646	0.279	~

T.3 Tabella riassuntiva delle verifiche per il tirante


RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Risulta infine verificata la gerarchia delle resistenza, secondo cui la resistenza al limite dello snervamento del tratto libero è sempre maggiore della resistenza a sfilamento della fondazione dell'ancoraggio:

$$R_{d,STR} \ge R_{d,GEO} \to 807.41kN > 349.06 kN$$
 verificato;

11.9.5 Verifica dello spostamento massimo

Nel diagramma successivo si riporta l'andamento dello spostamento massimo in testa della paratia per le combinazioni agli SLU.

1.99 Andamento spostamenti della paratia al variare della profondità – SLU (A1+M1+R1 – A2+R2+R1)

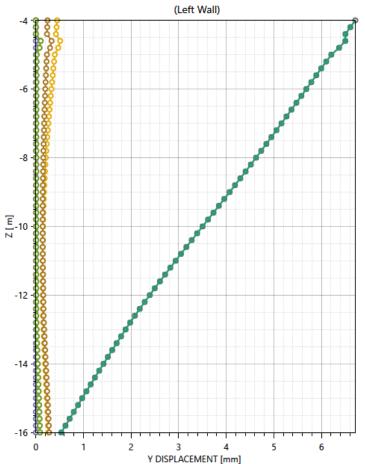
Lo spostamento massimo è stato determinato pari a 20,27 mm (combinazione SLV-GEO-fase 5). Lo spostamento risulta inferiore ai limiti di normativa:

$$d_{max}$$
= 39.503 mm < d_{lim} = (0,005 x 12000,00) mm = 60 mm verificato

11.10 VERIFICHE ALLO STATO LIMITE DI ESERCIZIO

11.10.1 Verifica dello spostamento in fase di esercizio

Nel diagramma successivo si riporta l'andamento dello spostamento massimo in esercizio della paratia, il quale risulta pari a **6,71 mm** (combinazione SLE – fase 6). Valore massimo inferiore a 1 cm in fase di esercizio, valore contenuto e compatibile con la struttura in esame.



RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

NTC2018: SLE (Rara/Frequente/Quasi Permanente)> Stage 0
 NTC2018: SLE (Rara/Frequente/Quasi Permanente)> Stage 1
 NTC2018: SLE (Rara/Frequente/Quasi Permanente)> Stage 2
 NTC2018: SLE (Rara/Frequente/Quasi Permanente)> Stage 3
 NTC2018: SLE (Rara/Frequente/Quasi Permanente)> Stage 4
 NTC2018: SLE (Rara/Frequente/Quasi Permanente)> Stage 5
 NTC2018: SLE (Rara/Frequente/Quasi Permanente)> Stage 6

I.100 Andamento spostamenti della paratia al variare della profondità – SLE

11.10.2 Verifica fessurazione della paratia

Ai fini delle verifiche degli stati limite di esercizio si definiscono le seguenti combinazioni (D.M. del 17.01.2018 §2.5.3):

Rara \rightarrow $G_1+G_2+Q_{k1}+\Sigma i\psi_{0i}\cdot Q_{ki}$ Frequente \rightarrow $G_1+G_2+\psi_{11}\cdot Q_{k1}+\Sigma i\psi_{2i}\cdot Q_{ki}$ Quasi permanente \rightarrow $G_1+G_2+\psi_{21}\cdot Q_{k1}+\Sigma i\psi_{2i}\cdot Q_{ki}$

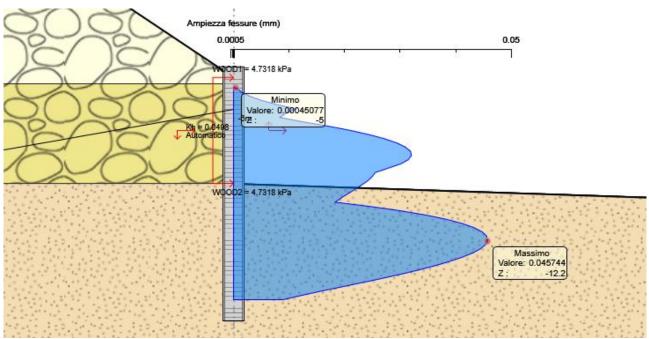
In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportata nel prospetto seguente:

pi Ize	Condizioni	Combinazione di	Armatura			
up di ger	ambientali	azioni	Sensibile		Poco sensibile	
Gr Esig			Stato limite	$\mathbf{w_k}$	Stato limite	w _k
Λ.	Ordinarie	frequente	apertura fessure	\leq W_2	apertura fessure	\leq w ₃
A	Ordinarie	quasi permanente	apertura fessure	\leq \mathbf{w}_1	apertura fessure	\leq w_2
D	A	frequente	apertura fessure	\leq \mathbf{w}_1	apertura fessure	\leq w_2
В	Aggressive	quasi permanente	decompressione	-	apertura fessure	\leq \mathbf{w}_1
	Molto	frequente	formazione fessure	1	apertura fessure	\leq \mathbf{w}_1
C	aggressive	quasi permanente	decompressione	-	apertura fessure	$\leq w_1$

T.4 Criteri di scelta dello stato limite di fessurazione

I valori limite di apertura delle fessure, così come definiti al $\S4.1.2.2.4$ delle NTC2018, sono pari a: $w_1 = 0.2$ mm $w_2 = 0.3$ mm $w_3 = 0.4$ mm

MANDANTI:



"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

I valori dell'ampiezzza di apertura delle fessure al variare dell'altezza della paratia sono riportati nell'immagine seguente. Da essa si evince un valore massimo pari a w_{c,max}=0,05 mm Considerando una condizione ambientale di tipo aggressiva, si ha che:

 $w_{c,max}$ = 0.045744 mm $\leq w_1$ =0.2 mm verificato.

I.101 Fasi 1-6: Apertura delle fessure (w_c) al variare della profondità – Comb. SLE

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

12 DIAFRAMMA H=8,00m

L'opera in esame è composta da n. 2 diaframmi di altezza pari a 8 m, lunghezza 2,50 m e spessore pari a 1,00 m.

La profondità di scavo varia da un minimo di 1,6 m a un massimo di 2,25 m, in funzione della quota di fondazione della pavimentazione stradale dell'asse principale.

I diaframmi presentano un'armatura londitudinale da 16Φ26 e staffe Φ16 a 4 bracci con passo 0,2 m. Nelle verifiche effettuate con l'ausilio del software "Paratie Plus" è stato considerato, a favore di sicurezza, il contributo di 6Φ26 al m.

La paratia è protetta mediante un rivestimento in conglomerato cementizio C28/30, fissato alla struttura mediante connettori $(1\Phi 16/m^2)$ ancorati con resine epossidiche, in continuità con il rivestimento della galleria GA05. Nelle verifiche di seguito riportate, a favore di sicurezza, non è stato considerato il contributo di tale rivestimento.

Nel seguito si eseguono i calcoli per il diaframma più sollecitato, in cui si ha la massima altezza di scavo pari a 2,25 m.

Si assume che i tratti a profondità di scavo inferiore siano implicitamente verificati.

12.1 PARAMETRI GEOTECNICI PER IL CALCOLO DEI DIAFRAMMI

I parametri necessari a definire le caratteristiche del terreno utilizzati per il calcolo delle struttture sono stati ricavati dalla Relazione Geotecnica, rif. BB01_T00GE00GETRE01.A e dalle tavole del profilo geotecnico longitudinale dell'asse principale.

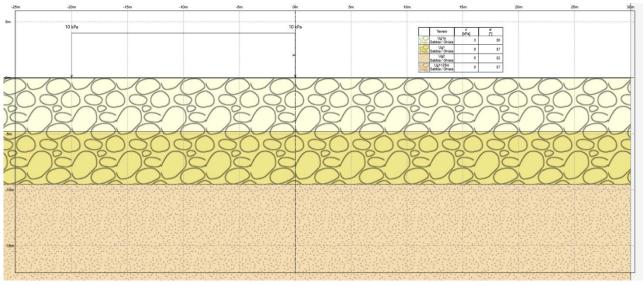
I parametri geotecnici utilizzati nella modellazione sono di seguito riportati:

	Terreni	YDRY [kN/m³]	c' [kPa]	ø' [°]
K.	Ug1a Sabbia / Ghiaia	19	3	30
M	Ug1 Sabbia / Ghiaia	20	0	37
	Ug2 Sabbia / Ghiaia	19	5	32
1	Ug1>25m Sabbia / Ghiaia	20	0	37

Name	Ug1a	
InitialStressK0nc	0.5	
InitialStressNocr	0.5	
UnitWeightGammaDry	19	kN/m³
UnitWeightGammaSat	20.6	kN/m³
PermeabilityKz	0.00001	m/s
ResistanceMohrCoulombC	3	kPa
ResistanceMohrCoulombFi	30	•
WallAdhesion	0	kPa
ElasticConstantEvc	25000	kPa
ElasticConstantEur	40000	kPa

Name	Ug1	
InitialStressK0nc	0.5	
InitialStressNocr	0.5	
UnitWeightGammaDry	20	kN/m³
UnitWeightGammaSat	21.8	kN/m³
PermeabilityKz	0.00001	m/s
ResistanceMohrCoulombC	0	kPa
ResistanceMohrCoulombFi	37	0
WallAdhesion	0	kPa
ElasticConstantEvc	100000	kPa
ElasticConstantEur	160000	kPa

MANDANTI:



RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Name	Ug2	
InitialStressK0nc	0.5	
InitialStressNocr	0.5	
UnitWeightGammaDry	19	kN/m³
UnitWeightGammaSat	20.6	kN/m³
PermeabilityKz	0.00001	m/s
ResistanceMohrCoulombC	5	kPa
ResistanceMohrCoulombFi	32	•
WallAdhesion	0	kPa
ElasticConstantEvc	100000	kPa
ElasticConstantEur	160000	kPa

Name	Ug1>25m	
InitialStressK0nc	0.5	
InitialStressNocr	0.5	
UnitWeightGammaDry	20	kN/m³
UnitWeightGammaSat	21.8	kN/m³
PermeabilityKz	0.00001	m/s
ResistanceMohrCoulombC	0	kPa
ResistanceMohrCoulombFi	37	۰
WallAdhesion	0	kPa
ElasticConstantEvc	150000	kPa
ElasticConstantEur	240000	kPa

I.102 Parametri geotecnici utilizzati nelle analisi

I.103 Stratigrafia del modello

12.2 GEOMETRIA DELLA STRUTTURA

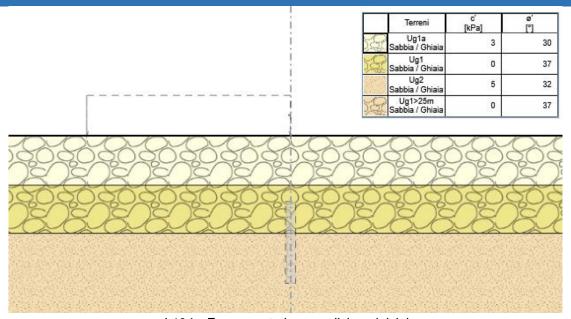
Il modello di calcolo adottato per le analisi con codice di calcolo "Paratie Plus 2020" comprende la paratia di diaframmi con i relativi tiranti. La paratia è caratterizzzata da diaframmi di spessore pari a 1 m, in calcestruzzo armato C32/40.

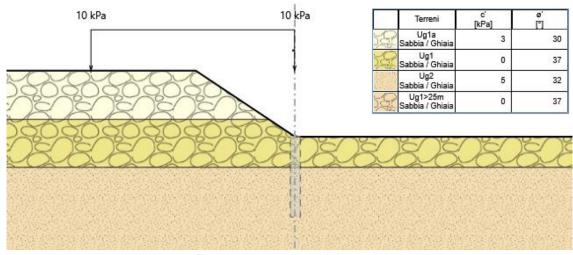
I dati della paratia di diaframmi, ai fini del calcolo, vengono tradotti una rigidezza flessionale EJ equivalente. Tuttavia, ai fini della verifica, si tiene conto delle reali caratteristiche della sezione.

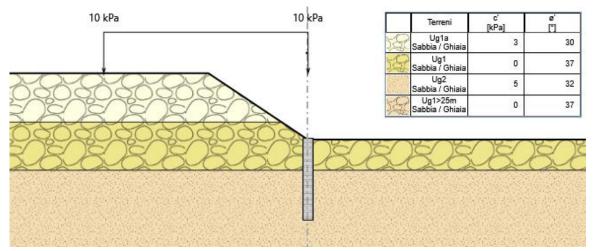
12.3 FASI DI SCAVO

Ponendo come quota di riferimento del piano campagna la quota di testa dei diaframmi, si descrivono di seguito le fasi di calcolo del modello:

- Fase geostatica: condizione iniziale;
- Fase 1: si considera la presenza dei mezzi da lavoro rappresentati nelle procedure di calcolo come carico accidentale pari a 10 kPa.;
- Fase 2: realizzazione della paratia h=8 m;
- Fase 3: scavo a valle della paratia fino alla quota di fondazione della pavimentazione stradale;
- Fase 4: applicazione dell'azione sismica.


Si riportano di seguito le schematizzazioni grafiche relative agli step di carico presentati.

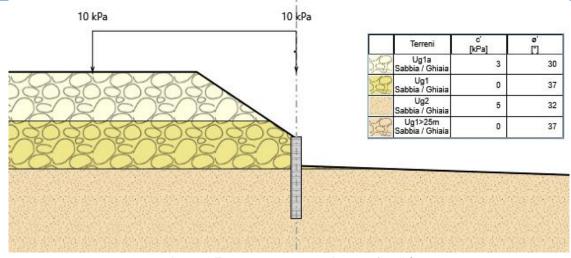


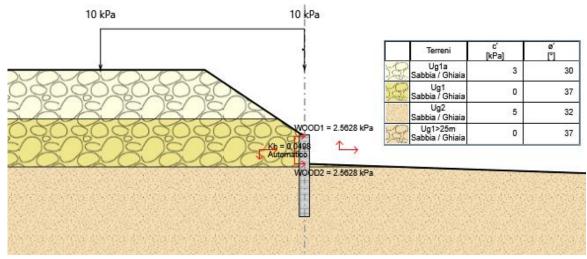

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

I.104 Fase geostatica: condizione iniziale

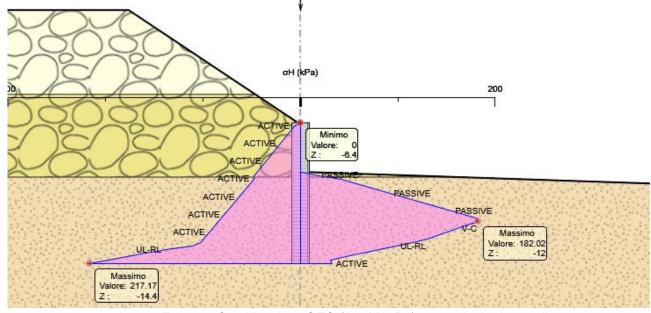
I.105 Fase 1: reapresenza dei mezzi da lavoro

I.106 Fase 2: realizzazione della paratia di diaframmi





RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

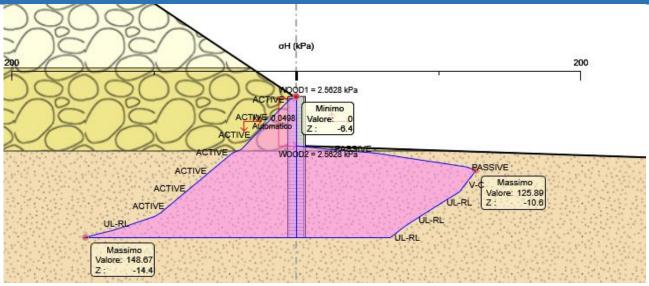

I.107 Fase 3: scavo massima profondità

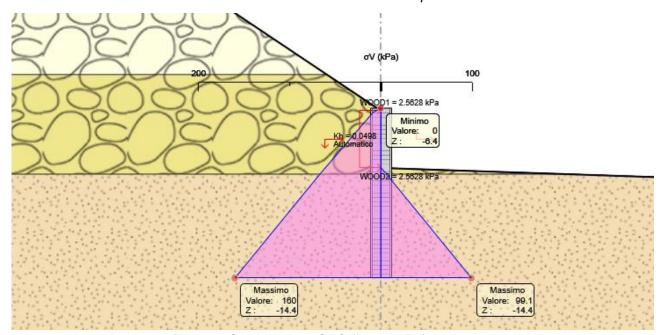
I.108 Fase 4: condizione sismica

12.4 PRESSIONI VERICALI E ORIZZONTALI DEL TERRENO SUI DIAFRAMMI

Le pressioni sul terreno sono espresse in kN/m² per le combinazioni allo stato limite ultimo: GEO-A2+M2+R1:

I.109 Fase 3 – Combinazione GEO (A2+M2+R1) – pressioni orizzontali



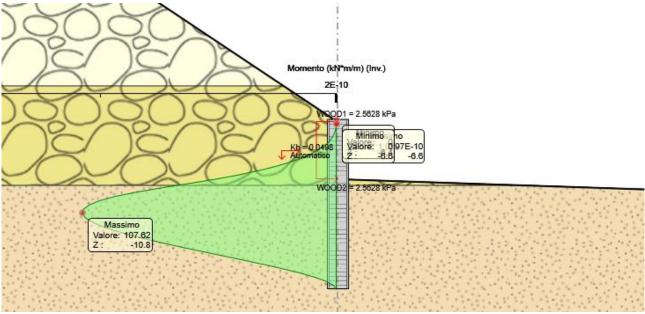


RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

I.110 Fase 4 - Combinazione SISMICA GEO - pressioni orizzontali

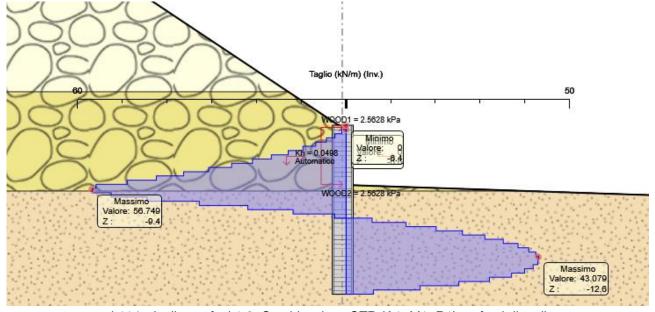
I.111 Fase 3 – Combinazione GEO (A2+M2+R1) – pressioni verticali

I.112 Fase 4 - Combinazione SISMICA GEO - pressioni verticali


RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

12.5 SOLLEZITAZIONI

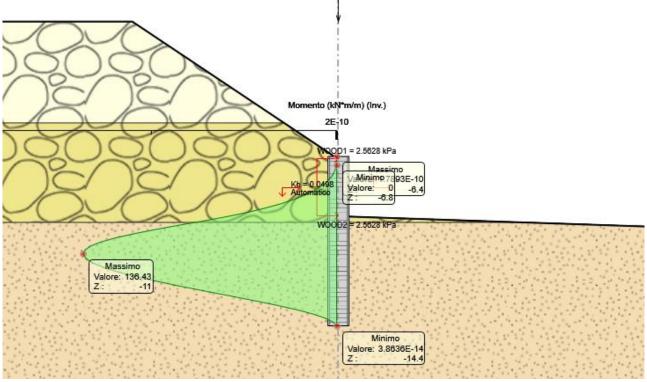
Nella tabella riportata di seguito sono riportati i valori delle azioni sollecitanti per unità di lunghezza di paratia:

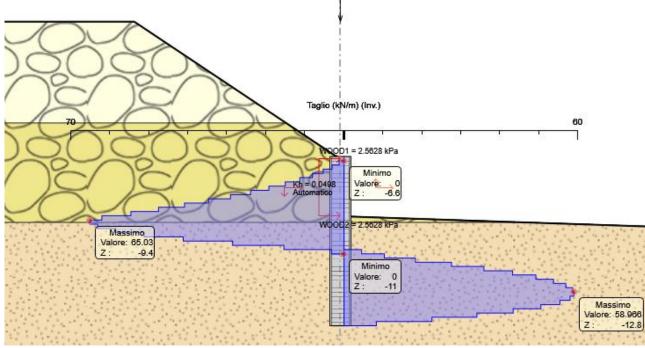

COMBINAZIONE	M _{sd,monte} [kNm/m]	V _{sd,monte} [kN/m]	M _{sd,valle} [kNm/m]	V _{sd,valle} [kN/m]
SLE-CARATTERISTICA	82.78	43.65	0	33.14
SLU – STR	107.62	56.75	0	43.08
SLU – GEO	203.68	79.04	0	111.46
SLV – STR	136.43	65.03	0	58.97
SLV – GEO	136.43	65.03	0	58.97

I momenti flettenti sulle strutture sono espressi in kNm/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: STR (A1+M1+R1).

I.113 Inviluppo fasi 1-3: Combinazione STR (A1+M1+R1) - momenti flettenti

Gli sforzi taglianti sulle strutture sono espressi in kN/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: STR (A1+M1+R1).


I.114 Inviluppo fasi 1-3: Combinazione STR (A1+M1+R1) - sforzi di taglio


RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

I momenti flettenti sulle strutture sono espressi in kNm/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: SISMICA STR.

I.115 Inviluppo fasi 1-4: Combinazione SISMICA STR - momenti flettenti

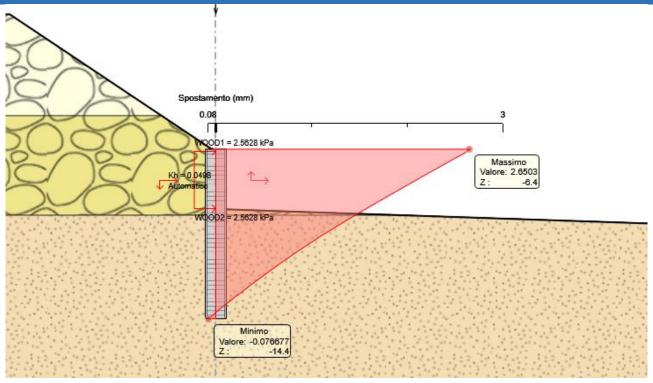
Gli sforzi taglianti sulle strutture sono espressi in kN/m per gli inviluppi delle combinazioni allo Stato Limite Ultimo: SISMICA STR.

I.116 Inviluppo fasi 1-4: Combinazione SISMICA STR - sforzi di taglio

12.6 DEFORMAZIONI

Le deformate, espresse in mm, sono visualizzate per l'inviluppo di tutte le fasi della combinazione caratteristica (rara):

spostamento massimo in testa alla paratia
 2,65 mm

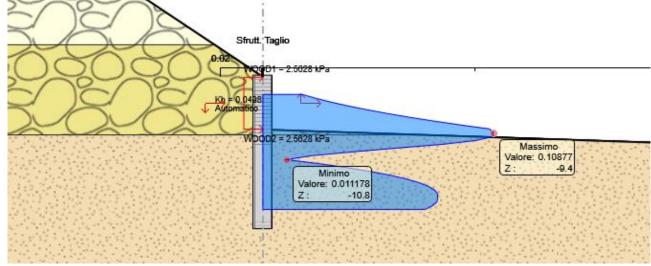


RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

I.117 Inviluppo fasi 1-4: Combinazione rara - deformata

12.7 VERIFICHE ALLO STATO LIMITE ULTIMO

La verifica di resistenza delle sezioni nei vari elementi strutturali, viene condotta tenendo conto delle sollecitazioni più gravose che si individuano nelle diverse combinazioni di carico.


12.7.1 Verifiche strutturali: verifiche a flessione e taglio

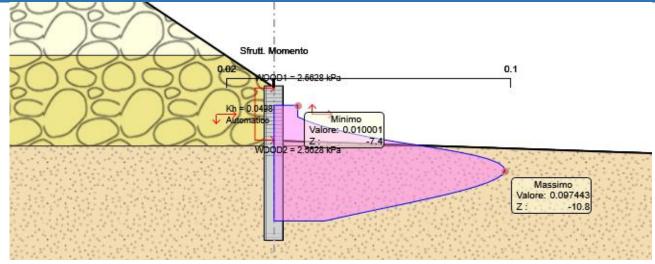
Le verifiche sono svolte automaticamente dal programma di calcolo considerando le sollecitazioni statiche e sismiche derivate dalle combinazioni allo stato limite ultimo: STR (A1+M1+R1).

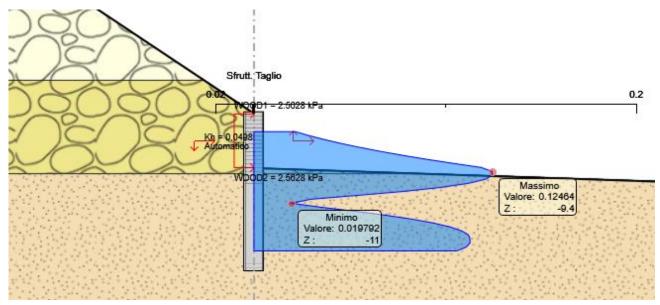
Seguono i diagrammi dei tassi di sfruttamento TS a taglio della resistenza dei diaframmi in c.a., per le combinazioni allo stato limite ultimo: STR: (A1+M1+R1).

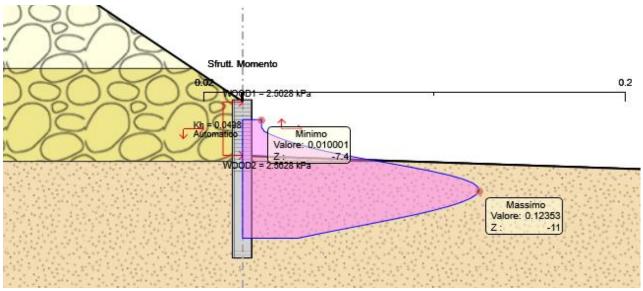
Le verifiche sono soddisfatte se:
$$TS = \frac{Sollec itazione}{Resistenza} \le 1$$

Lo sforzo assiale viene trascurato. Nel calcolo del momento resistente $M_{c,Rd}$ non viene considerata l'interazione con la forza di taglio, in quanto in tutti i casi esaminati il taglio di calcolo associato al momento flettente è sempre inferiore a metà della resistenza di calcolo a taglio $V_{c,Rd}$.

I.118 Tassi di Sfruttamento TAGLIO per combinazione SLU (A1+M1+R1) – inviluppo fasi 1-3 - TS_{max}=0.109 (<1)






RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

I.119 Tassi di Sfruttamento MOMENTO per combinazione SLU (A1+M1+R1) – inviluppo fasi 1-3 - TS_{max}=0.097 (<1)

I.120 Tassi di Sfruttamento TAGLIO per combinazione SISMICA STR – inviluppo fasi 1-4 - TS_{max}=0.125(<1)

I.121 Tassi di Sfruttamento MOMENTO per combinazioneSISMICA SLU – inviluppo fasi 1-4 - TS_{max}=0.124(<1)

12.7.2 Progetto e verifica strutturale della paratia

Il progetto della sezione in calcestruzzo armato è effettuato rispetto alle sollecitazioni di momento flettente e taglio derivanti dall'inviluppo delle combinazioni SLU – STR (A1+M1+R1) e SLV – STR (A1+M1+R1). In tal caso, le sollecitazioni massime, per metro lineare, sono: M_{sd} = 136.43 kNm/m e V_{sd} = 65.03 kN/m.

Considerando un pannello di larghezza pari a 2,5 m, risulta quindi $M_{sd} = M_{sd}$, * 2.5 = 341.08 kNm e $V_{sd} = V_{sd}$, * 2.5 = 162.58 kN.

La verifica a flessione semplice è condotta con riferimento ad una sezione 2.5 m x 1 m, armata con 16 φ 26 sul bordo inferiore e 16 φ 26 sul bordo superiore. L'armatura compressa, in questo caso, è in campo elastico e si è proceduto con la determinazione della profondità dell'asse neutro secondo l'espressione seguente:

$$b f_{cd} y^2 - (A_s f_{vd} - A_s' E_s \varepsilon_{cu}) y - 0.8 c A_s' E_s \varepsilon_{cu} = 0$$

dove:

b = 2500 mm;

 $f_{cd} = 18.13 \text{ MPa};$

 $A_s = A_s' = 8490.6 \text{ mm}^2;$

 $E_s = 210000 \text{ MPa};$

 $\varepsilon_{cu} = 0.0035;$

c è la distanza del baricentro delle armature superiori dal bordo compresso = 79 mm.

Risulta quindi: y = 66.49 mm, da cui x = y/0.8 = 83.11 mm.

La distanza della risultante di compressione C dal bordo superiore della sezione è pari a:

$$d_c = \frac{C_1 \ 0.5 \ y + C_2 \ c}{C_1 + C_2} = 37.49 \ mm$$

In cui C_1 e C_2 sono le risultanti di compressione agenti rispettivamente sul calcestruzzo compresso e sull'armatura superiore: C_1 = f_{cd} b y = 3014 kN e C_2 = E_s A_s ' ϵ_{cu} (y - 0.8 c) / y = 308.4k.

Il momento resistente della sezione è pari a:

$$M_{rd} = T d^* = A_s f_{vd} (d - d_c) = 2935.37 \ KNm > M_{sd} = 341.08 \ kNm$$
 verificato

Il quale risulta maggiore del momento sollecitante M_{sd} = 341.08 KNm, pertanto la verifica a flessione risulta essere soddisfatta.

Le verifiche dei dettagli costruttivi sono state condotte secondo quanto riportato al §4.1.6.6.1 e al §7.4.6.2.1 delle NTC 2018. In particolare, le armature longitudinali devono rispettare i seguenti limiti:

VERIFICA DETTAGLI COSTRUTTIVI CAP 4 NTC 2018								
Armatura in trazione								
1) As > 0.26 * bt* d *fctm/fyk	ОК							
fctm (Mpa)	3.02							
0.26 * bt* d *fctm/fyk	4022.68							
2) As > 0.0013 * bt * d		ОК						
0.0013 * bt * d								
<u> </u>								
3) As < 0.04 Ac		ОК						
0.04 Ac								
·								
Armatura in compressione								
4) As' < 0.04 Ac OK								

VERIFICA DETTAGLI COSTRUTTIVI CAP 7 NTC 2018							
Percentuale geome							
ρ	0.003396224						
ρ comp	0.003396224						
1) ρ > 1.4/fyk OK							
1.4/fy							
2) ρ < ρ _{comp} + 3.5/fyk OK							
ρ comp + 3.							

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Si procede con la verifica a taglio per elementi privi di armatura trasversale, secondo la relazione:

$$V_{Rd} = \left(\frac{0.18 \, k \, (100 \, \rho_l \, f_{ck})^{1/3}}{\gamma_c} + 0.15 \sigma_{cp}\right) b_w \, d \, \geq \, \left(v_{min} + 0.15 \, \sigma_{cp}\right) b_w \, d$$

dove:

 $k = 1 + (200/d)^{1/2};$

 $V_{min} = 0.035 \ k^{3/2} \ f_{ck}^{1/2};$

d è l'altezza utile della sezione;

 $\rho_l = A_{sl}/(b_w d); \sigma_{cp} = N_{ed}/A_c;$

b_w è la larghezza minima della sezione.

ELEMENTI SENZA ARMATURA TRASVERSALE RESISTENTE A TAGLIO									
d (mm)	921								
bw (mm)	2500								
ρl (mmq)	0.00369	< 0.02	ОК						
k	1.47	< 2	ОК						
Nsd (KN)	0								
σср (МРа)	0								
v min	0.3514								
$\left(0.18 \ k \ (100 \ \rho_l \ f_{ck})^{\frac{1}{3}} / \gamma_c + 0.15 \ \sigma_{cp}\right) b_w \ d$ 922.17									
(Vmin + 0.	15 σ _{cp})*b _w *d	809.18							
Vrd (KN)	922.17								
	Vrd > Vsd		VERIFICATO						

Il taglio resistente è pari a:

$$V_{Rd} = 922.17 \ kN > V_{sd} = 162.58 \ kN$$

Pertanto, la verifica a taglio $V_{Rd} > V_{sd}$ risulta essere soddisfatta.

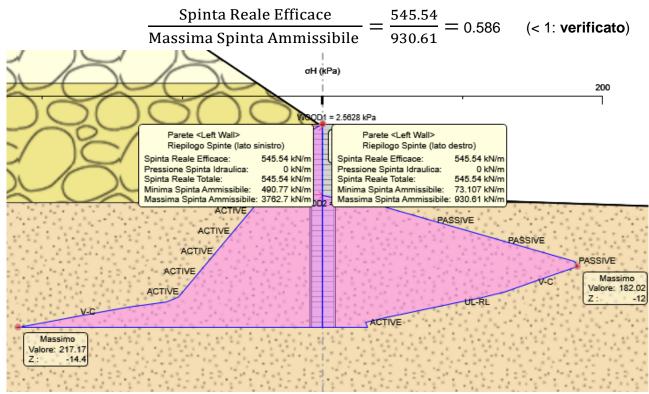
Si procede disponendo staffe ϕ 16/20 a 4 bracci, nel rispetto dei quantita minimi di armatura trasversale, riportati al §4.1.6.6.1 delle NTC 2018.

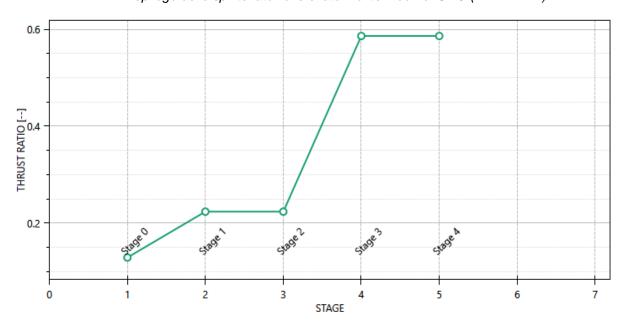
VERIFICA DETTAGLI COSTRUTTIVI CAP 4 NTC 2018								
Passo effettivo scelto (mm) 200								
1) Almeno tre	staffe al metro	OK						
s <	0.33 m							
2) s < 0.8*d		ОК						
3) Ast > 1.5 b (mmq / m) OK								
Ast	4019.2							
1.5*b	3750							

12.7.3 Verifiche geotecniche: verifiche di stabilità del fondo scavo

La verifica di stabilità del lato a valle della paratia è effettuata considerando il rispetto di due criteri:

- 7) il calcolo non lineare della paratia deve convergere a una soluzione equilibrata e congruente;
- 8) sul lato di scavo (valle) la spinta efficace mobilitata deve essere minore della spinta passiva disponibile, quindi il loro rapporto deve essere <1.




RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Dall'esame dei tabulati di calcolo, in particolare quello relativo alla combinazione più gravosa, ovvero la GEO (A2+M2+R1), si desume

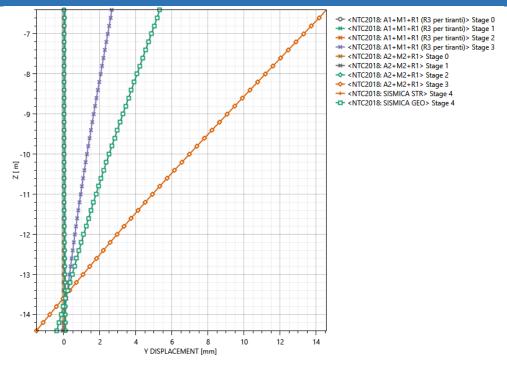
- a) il calcolo non lineare converge a una soluzione equilibrata per tutte le fasi di scavo;
- b) il rapporto tra la spinta efficace mobilitata e la spinta passiva possibile assume il massimo nella fase 6 con il valore:

I.122 Riepilogo delle spinte lato valle e lato monte – comb. GEO (A2+M2+R1)

I.123 Massimi rapporti di mobilizzazione della spinta passiva al variare degli stage di scavo – comb. GEO(A2+M2+R1)

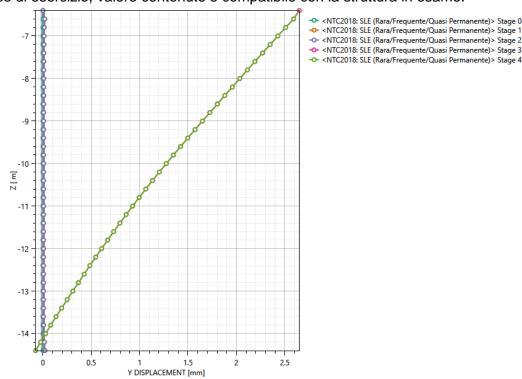
12.7.4 Verifica dello spostamento massimo

Nel diagramma successivo si riporta l'andamento dello spostamento massimo in testa della paratia per le combinazioni agli SLU.


MANDANTI:

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

I.124 Andamento spostamenti della paratia al variare della profondità – SLU (A1+M1+R1 – A2+R2+R1)


Lo spostamento massimo è stato determinato pari a 14.563 mm (combinazione SLV-GEO-fase 5). Lo spostamento risulta inferiore ai limiti di normativa:

 d_{max} = 14.563mm < d_{lim} = (0,005 x 8000,00) mm = 40 mm verificato.

12.8 VERIFICHE ALLO STATO LIMITE DI ESERCIZIO

12.8.1 Verifica dello spostamento in fase di esercizio

Nel diagramma successivo si riporta l'andamento dello spostamento massimo in esercizio della paratia, il quale risulta pari a **2,65 mm** (combinazione SLE – fase 4). Valore massimo inferiore a 1 cm in fase di esercizio, valore contenuto e compatibile con la struttura in esame.

1.125 Andamento spostamenti della paratia al variare della profondità - SLE

MANDANTI:

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

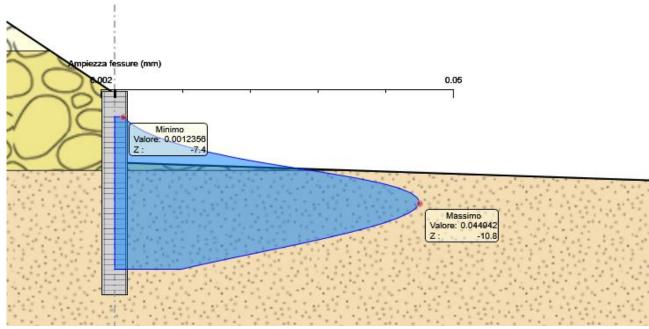
12.8.2 Verifica fessurazione della paratia

Ai fini delle verifiche degli stati limite di esercizio si definiscono le seguenti combinazioni (D.M. del 17.01.2018 §2.5.3):

Rara \Rightarrow G₁+G₂ +Q_{k1}+ $\Sigma i\psi_{0i}$ ·Q_{ki} Frequente \Rightarrow G₁+G₂ + ψ_{11} ·Q_{k1}+ $\Sigma i\psi_{2i}$ ·Q_{ki} Quasi permanente \Rightarrow G₁+G₂ + ψ_{21} ·Q_{ki}+ $\Sigma i\psi_{2i}$ ·Q_{ki}

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportata nel prospetto seguente:

pi nze	Condizioni	Combinazione di	Armatura					
up di ger	ambientali	azioni	Sensibile	Poco sensibile				
Gr Esi			Stato limite w ₁		Stato limite	w _k		
Δ.	Ondinonia	frequente	apertura fessure	\leq \mathbf{w}_2	apertura fessure	\leq w ₃		
A Ordinarie		quasi permanente	apertura fessure	\leq \mathbf{w}_1	apertura fessure	\leq w_2		
р	A	frequente	apertura fessure	\leq \mathbf{w}_1	apertura fessure	\leq w_2		
B Aggressive		quasi permanente	decompressione	-	apertura fessure	\leq w_1		
	Molto	frequente	formazione fessure	-	apertura fessure	$\leq w_1$		
C	aggressive	quasi permanente	decompressione	-	apertura fessure	$\leq w_1$		


T.5 Criteri di scelta dello stato limite di fessurazione

I valori limite di apertura delle fessure, così come definiti al §4.1.2.2.4 delle NTC2018, sono pari a:

 $w_1 = 0.2 \text{ mm}$ $w_2 = 0.3 \text{ mm}$ $w_3 = 0.4 \text{ mm}$

I valori dell'ampiezzza di apertura delle fessure al variare dell'altezza della paratia sono riportati nell'immagine seguente. Da essa si evince un valore massimo pari a w_{c,max}=0,045 mm Considerando una condizione ambientale di tipo aggressiva, si ha che:

$$W_{c,max}$$
= 0.04494 mm $\leq w_1$ =0.2 mm verificato.

I.126 Fasi 1-4: Apertura delle fessure (w_c) al variare della profondità – Comb. SLE

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

13 TABULATI ALLEGATI

13.1 PARATIA H=18,5 M

13.1.1 Descrizione del Software

ParatiePlus è un codice agli elementi finiti che simula il problema di uno scavo sostenuto da diaframmi flessibili e permette di valutare il comportamento della parete di sostegno durante tutte le fasi intermedie e nella configurazione finale.

13.1.2 Descrizione della Stratigrafia e degli Strati di Terreno

Tipo : HORIZONTAL Quota : 1.5 m OCR : 1

Tipo : HORIZONTAL Quota : -4.8 m

OCR:1

Tipo : HORIZONTAL Quota : -9.5 m

OCR:1

Tipo: HORIZONTAL Quota: -31.9 m

OCR:1

Strato di Terreno	Terreno	γ dry	γ sat	ø' (øcvøp c' Su	Modulo Elastico Eu	Evc	Eur	Ah Av exp Pa Rur/Rv	c Rvc Ku	Kvc Kur
		kN/m	kN/m	3 0	°° kPa kPa		kPa	kPa	kPa	kPa kN/n	n³kN/m³kN/m³
1	Ug1a	19	20.6	30	3	Constant	25000	40000			
2	Ug1	20	21.8	37	0	Constant	100000	160000)		
3	Ug2	19	20.6	32	5	Constant	100000	160000)		
4	Ug1>25m	20	21.8	37	0	Constant	150000	240000)		

13.1.3 Descrizione Pareti

X:0 m

Quota in alto : 0 m Quota di fondo : -18.5 m

Muro di sinistra

Armatura Lunghezza segmenti : 1 m

Rinforzo longitudinale 1 Lunghezza: 18.5 m

Materiale: B450C Quota iniziale: 0 m Barre di sinistra 1

> Numero di barre : 6 Diametro : 0.026 m

Distanza dal bordo : 0.079 m

Barre di destra 1

Numero di barre: 6

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Diametro: 0.026 m

Distanza dal bordo: 0.079 m

Staffe 1

Numero di staffe : 1.6 Copertura : 0.05 m Diametro : 0.016 m Lunghezza : 18.5 m Quota iniziale : 0 m Passo : 0.2 m

Sezione: 100

Area equivalente: 1 m

Inerzia equivalente : 0.0833 m⁴/m Materiale calcestruzzo : C32/40 Tipo sezione : Solid Spessore : 1 m

Efficacia: 1

13.1.4 Fasi di Calcolo

Stage 0

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : 0 m

Linea di scavo di sinistra (Irregolare)

(-30;1.3) (-10.6;1.3) (-9.2;0) (0;0)

Linea di scavo di destra (Orizzontale)

0 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -9 m X finale : 0 m

Pressione iniziale : 20 kPa Pressione finale : 20 kPa

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -22 m X finale : -11 m

Pressione iniziale : 20 kPa Pressione finale : 20 kPa

Stage 1

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : 0 m

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Linea di scavo di sinistra (Irregolare)

(-30;1.3)

(-10.6;1.3)

(-9.2;0)

(0;0)

Linea di scavo di destra (Orizzontale)

0 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -9 m X finale : 0 m

Pressione iniziale : 20 kPa Pressione finale : 20 kPa

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -22 m X finale : -11 m

Pressione iniziale : 20 kPa Pressione finale : 20 kPa

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto : 0 m Quota di fondo : -18.5 m

Sezione: 100

Stage 2

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -2 m

Linea di scavo di sinistra (Irregolare)

(-30;1.3) (-10.6;1.3) (-9.2;0) (0;0)

Linea di scavo di destra (Orizzontale)

-2 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -9 m X finale : 0 m

Pressione iniziale : 20 kPa Pressione finale : 20 kPa

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -22 m X finale : -11 m

Pressione iniziale : 20 kPa Pressione finale : 20 kPa

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD) AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Elementi strutturali

Paratia: WallElement X:0 m

Quota in alto : 0 m

Quota di fondo : -18.5 m

Sezione: 100

Stage 3

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -2 m

Linea di scavo di sinistra (Irregolare)

(-30;1.3) (-10.6;1.3) (-9.2;0) (0;0)

Linea di scavo di destra (Orizzontale)

-2 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -9 m X finale : 0 m

Pressione iniziale : 20 kPa Pressione finale : 20 kPa

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -22 m X finale : -11 m

Pressione iniziale : 20 kPa Pressione finale : 20 kPa

Elementi strutturali

Paratia : WallElement

X:0 m

Quota in alto : 0 m Quota di fondo : -18.5 m

Sezione : 100 Tirante : Tirante superiore

> X:0 m Z:-1.5 m

Lunghezza bulbo : 10.5 m Diametro bulbo : 0.2 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.5 m

Precarico : 140 kN Angolo : 10 ° Sezione : 4 strands

> Tipo di barre : Barre trefoli Numero di barre : 4 Diametro : 0.01331 m Area : 0.000556 m^2

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD) AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Stage 4

Scavo

Muro di sinistra

Lato monte: 0 m Lato valle: -6.5 m

Linea di scavo di sinistra (Irregolare)

(-30;1.3)(-10.6;1.3)(-9.2;0)(0;0)

Linea di scavo di destra (Orizzontale)

-6.5 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale: -9 m X finale: 0 m

Pressione iniziale: 20 kPa Pressione finale: 20 kPa

Carico lineare in superficie: SurfaceSurcharge

X iniziale: -22 m X finale: -11 m

Pressione iniziale: 20 kPa Pressione finale: 20 kPa

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto: 0 m Quota di fondo: -18.5 m

Sezione: 100 Tirante: Tirante superiore

> X:0 m Z:-1.5 m

Lunghezza bulbo: 10.5 m Diametro bulbo: 0.2 m Lunghezza libera: 13 m

Spaziatura orizzontale: 2.5 m

Precarico: 140 kN Angolo: 10° Sezione: 4 strands

> Tipo di barre: Barre trefoli Numero di barre: 4 Diametro: 0.01331 m Area: 0.000556 m^2

Stage 5

Scavo

Muro di sinistra

Lato monte: 0 m Lato valle: -6.5 m

Linea di scavo di sinistra (Irregolare)

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD) AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

(-30;1.3) (-10.6;1.3) (-9.2;0) (0;0)

Linea di scavo di destra (Orizzontale)

-6.5 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -9 m X finale : 0 m

Pressione iniziale : 20 kPa Pressione finale : 20 kPa

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -22 m X finale : -11 m

Pressione iniziale : 20 kPa Pressione finale : 20 kPa

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto : 0 m Quota di fondo : -18.5 m

Sezione : 100 Tirante : Tirante superiore

> X:0 m Z:-1.5 m

Lunghezza bulbo : 10.5 m Diametro bulbo : 0.2 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.5 m

Precarico : 140 kN Angolo : 10 ° Sezione : 4 strands

> Tipo di barre : Barre trefoli Numero di barre : 4 Diametro : 0.01331 m

Area: 0.000556 m^2

Tirante: Tirante inferiore

X:0 m Z:-6 m

Lunghezza bulbo : 10.5 m Diametro bulbo : 0.2 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.5 m

Precarico : 180 kN Angolo : 10 ° Sezione : 4 strands

> Tipo di barre : Barre trefoli Numero di barre : 4 Diametro : 0.01331 m Area : 0.000556 m^2

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Stage 6

Scavo

Muro di sinistra

Lato monte: 0 m Lato valle: -9.6 m

Linea di scavo di sinistra (Irregolare)

(-30;1.3)(-10.6;1.3)(-9.2;0)(0;0)

Linea di scavo di destra (Orizzontale)

-9.6 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale: -9 m X finale: 0 m

Pressione iniziale: 20 kPa Pressione finale: 20 kPa

Carico lineare in superficie: SurfaceSurcharge

X iniziale: -22 m X finale: -11 m

Pressione iniziale: 20 kPa Pressione finale: 20 kPa

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto: 0 m Quota di fondo: -18.5 m

Sezione: 100

Tirante: Tirante superiore

X:0 m Z:-1.5 m

Lunghezza bulbo: 10.5 m Diametro bulbo: 0.2 m Lunghezza libera: 13 m

Spaziatura orizzontale: 2.5 m

Precarico: 140 kN Angolo: 10° Sezione: 4 strands

Tipo di barre: Barre trefoli

Numero di barre: 4 Diametro: 0.01331 m Area: 0.000556 m^2

Tirante: Tirante inferiore

X:0 m Z:-6 m

Lunghezza bulbo: 10.5 m Diametro bulbo: 0.2 m Lunghezza libera: 13 m

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Spaziatura orizzontale: 2.5 m

Precarico : 180 kN Angolo : 10 ° Sezione : 4 strands

> Tipo di barre : Barre trefoli Numero di barre : 4 Diametro : 0.01331 m Area : 0.000556 m^2

Stage 7

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -9.6 m

Linea di scavo di sinistra (Irregolare)

(-30;1.3) (-10.6;1.3) (-9.2;0) (0;0)

Linea di scavo di destra (Orizzontale)

-9.6 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -9 m X finale : 0 m

Pressione iniziale : 20 kPa Pressione finale : 20 kPa

Carico lineare in superficie : SurfaceSurcharge

X iniziale : -22 m X finale : -11 m

Pressione iniziale : 20 kPa Pressione finale : 20 kPa

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto : 0 m Quota di fondo : -18.5 m

Sezione : 100 Tirante : Tirante superiore

> X:0 m Z:-1.5 m

Lunghezza bulbo : 10.5 m Diametro bulbo : 0.2 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.5 m

Precarico : 140 kN Angolo : 10 ° Sezione : 4 strands

> Tipo di barre : Barre trefoli Numero di barre : 4 Diametro : 0.01331 m

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Area: 0.000556 m^2

Tirante: Tirante inferiore

X : 0 m Z : -6 m

Lunghezza bulbo : 10.5 m Diametro bulbo : 0.2 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.5 m

Precarico : 180 kN Angolo : 10 ° Sezione : 4 strands

> Tipo di barre : Barre trefoli Numero di barre : 4 Diametro : 0.01331 m Area : 0.000556 m^2

Stage 8

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -9.6 m

Linea di scavo di sinistra (Irregolare)

(-30;1.3) (-10.6;1.3) (-9.2;0) (0;0)

Linea di scavo di destra (Orizzontale)

-9.6 m

Carichi

Carico puntuale alla paratia: WallLineLoad

Quota: 0 m Px: 67 kN/m Pz: 1 kN/m :-67 kNm/m X: 0 m

Elementi strutturali

Paratia : WallElement

X:0 m

Quota in alto : 0 m Quota di fondo : -18.5 m

Sezione : 100 Tirante : Tirante superiore

> X : 0 m Z : -1.5 m

Lunghezza bulbo : 10.5 m Diametro bulbo : 0.2 m Lunghezza libera : 13 m

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Spaziatura orizzontale: 2.5 m

Precarico : 140 kN Angolo : 10 ° Sezione : 4 strands

Tipo di barre : Barre trefoli

Numero di barre : 4 Diametro : 0.01331 m Area : 0.000556 m^2

Tirante: Tirante inferiore

X:0 m Z:-6 m

Lunghezza bulbo : 10.5 m Diametro bulbo : 0.2 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.5 m

Precarico : 180 kN Angolo : 10 °

Sezione: 4 strands

Tipo di barre : Barre trefoli Numero di barre : 4 Diametro : 0.01331 m Area : 0.000556 m^2

13.1.5 Descrizione Coefficienti Design Assumption

Nome	Carichi	Carichi	Carichi	Carichi	Carico	Pressio	Pressio	Carichi	Carichi	Carichi	Carichi	Carichi	Carichi
	Permanenti	Permanenti	Variabili	Variabili	Sismico	ni	ni	Permane	Perman	Variabili	Permane	Perman	Variabili
	Sfavorevoli	Favorevoli	Sfavorevoli	Favorevoli	(F_seis	Acqua	Acqua	nti	enti	Destabili	nti	enti	Destabili
	(F_dead_load	(F_dead_loa	(F_live_load	(F_live_loa	m_load)	Lato	Lato	Destabili	Stabilizz	zzanti	Destabili	Stabilizz	zzanti
	_unfavour)	d_favour)	_unfavour)	d_favour)		Monte	Valle	zzanti	anti	(F_UPL_	zzanti	anti	(F_HYD_
						(F_Wat	(F_Wat	(F_UPL_	(F_UPL_	QDStab)	(F_HYD_	(F_HYD_	QDStab)
						erDR)	erRes)	GDStab)	GStab)		GDStab)	GStab)	
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018:	1	1	1	1	0	1	1	1	1	1	1	1	1
SLE													
(Rara/Frequ													
ente/Quasi													
Permanente													
)		_			_								
NTC2018:	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
A1+M1+R1													
(R3 per													
tiranti) NTC2018:	4	1	1.3	4	0	4	1	1	4	4	1.3	0.0	4
A2+M2+R1	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
NTC2018:	1	4	4	4	4	4	1	1	4	1	4	4	4
SISMICA STR	· -	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018:	1	1	1	1	1	1	1	1	1	1	1.3	0.9	1
SISMICA	1	1	1	1	1	1	_	1	1	1	1.3	0.9	1
GEO													

Nome	Parziale su tan(ø')	Parziale su c'	Parziale su Su	Parziale su qu	Parziale su peso specifico
	(F_Fr)	(F_eff_cohe)	(F_Su)	(F_qu)	(F_gamma)
Simbolo	γф	γς	γcu	γqu	үү
Nominal	1	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi Permanente)	1	1	1	1	1

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Nome	Parziale su tan(ø')	Parziale su c'	Parziale su Su	Parziale su qu	Parziale su peso specifico
	(F_Fr)	(F_eff_cohe)	(F_Su)	(F_qu)	(F_gamma)
Simbolo	γф	γс	γcu	γqu	γγ
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1	1	1	1
NTC2018: A2+M2+R1	1.25	1.25	1.4	1	1
NTC2018: SISMICA STR	1	1	1	1	1
NTC2018: SISMICA GEO	1	1	1	1	1

Nome	Parziale resistenza terreno (es. Kp) (F_Soil_Res_walls)	Parziale resistenza Tiranti permanenti (F_Anch_P)	Parziale resistenza Tiranti temporanei (F_Anch_T)	Parziale elementi strutturali (F_wall)
Simbolo	γRe	үар	γat	
Nominal	1	1	1	1
NTC2018: SLE	1	1	1	1
(Rara/Frequente/Quasi				
Permanente)				
NTC2018: A1+M1+R1 (R3 per	1	1.2	1.1	1
tiranti)				
NTC2018: A2+M2+R1	1	1.2	1.1	1
NTC2018: SISMICA STR	1	1.2	1.1	1
NTC2018: SISMICA GEO	1	1.2	1.1	1

13.1.6 Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

NTC2018: SLE (Rara/Frequente/Quasi Permanente)
NTC2018: A1+M1+R1 (R3 per tiranti)
NTC2018: A2+M2+R1

NTC2018: A2+M2+R1 NTC2018: SISMICA STR NTC2018: SISMICA GEO

13.1.7 Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Tabella Inviluppi Momento WallElement

Selected Design Assumptions	Inviluppi: Momento	Muro: WallElement
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/m)
0	0	0
-0.2	0.24	0
-0.4	1.076	0
-0.6	2.544	0
-0.8	4.688	0
-1	7.55	0
-1.2	11.179	0
-1.4	15.603	0
-1.5	18.125	0
-1.7	12.783	8.455
-1.9	9.824	23.786
-2.1	13.047	38.464
-2.3	16.169	52.434
-2.5	19.159	65.642
-2.7	22.018	78.03
-2.9	24.758	89.544
-3.1	27.397	100.122
-3.3	29.955	109.709
-3.5	32.454	118.249
-3.7	34.917	125.686
-3.9	37.37	131.96
-4.1	39.835	137.014
-4.3	42.336	140.793
-4.5	44.897	143.24
-4.7	47.541	144.299
-4.9	50.289	143.91
-5.1	52.203	142.264
-5.3	53.374	139.315
-5.5	53.891	135.019
-5.7	53.834	129.328
-5.9	53.279	122.198
-6	52.843	118.077
-6.2	51.674	127.717

SETAC Set

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Calcutad Davies Assumption	Lavilancia Belomonto	Manua MallElamant
Selected Design Assumptions	Lato sinistro (kN*m/m)	Muro: WallElement
Z (m) -6.4	50.176	135.806
-6.6	48.406	142.297
-6.8	46.416	147.144
-7	52.883	150.303
-7.2	60.549	151.728
-7.4	67.868	151.375
-7.6	74.774	149.197
-7.8	81.209	145.149
-8	90.939	139.185
-8.2	99.829	131.261 121.331
-8.4 -8.6	107.696 114.521	109.348
-8.8	120.286	95.269
-9	124.972	79.816
-9.2	128.562	64.561
-9.4	131.052	47.373
-9.6	132.529	28.214
-9.8	133.153	6.776
-10	133	0
-10.2	132.147	0
-10.4 -10.6	130.663 128.615	0 0
-10.8	138.9	0
-11	161.067	0
-11.2	181.031	0
-11.4	198.832	0.003
-11.6	214.516	0.005
-11.8	228.128	0.007
-12	239.713	0.009
-12.2	249.317	0.01
-12.4	256.987	0.388
-12.6 -12.8	262.771 266.716	0.776 1.1
-12.6	268.867	1.364
-13.2	269.269	1.573
-13.4	267.987	1.733
-13.6	265.103	1.847
-13.8	260.697	1.921
-14	254.85	1.958
-14.2	247.638	1.963
-14.4	239.137	1.94
-14.6 -14.8	229.42	1.892
-14.8 -15	218.562 206.633	1.822 1.735
-15.2	193.702	1.634
-15.4	179.838	1.52
-15.6	165.138	1.398
-15.8	149.841	1.269
-16	134.181	1.137
-16.2	118.39	1.002
-16.4	102.699	0.869
-16.6	87.332	0.738
-16.8 -17	72.516 58.472	0.612
-17.2	58.473 45.424	0.493 0.383
-17.2 -17.4	33.592	0.383
-17.6	23.194	0.196
-17.8	14.45	0.122
-18	7.58	0.064
-18.2	2.802	0.024
-18.4	0.318	0.003
-18.5	0	0

Tabella Inviluppi Taglio WallElement

	_	
Selected Design Assumption	s Inviluppi: Taglio	Muro: WallElement
Z (m)	Lato sinistro (kN/m) Lato destro (kN/m)
0	1.201	0
-0.2	4.177	0
-0.4	7.342	0
-0.6	10.719	0

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Selected Design Assumptions		
	Lato sinistro (kN/m)	
-0.8	14.312	0
-1 -1.2	18.146 22.118	0 0
-1.4	25.214	0
-1.5	25.214	79.605
-1.7	12.97	79.605
-1.9	16.115	76.654
-2.1	16.115	73.391
-2.3	15.61	69.852
-2.5 2.7	14.951 14.296	66.036
-2.7 -2.9	14.296	61.942 57.568
-3.1	13.193	52.892
-3.3	12.788	47.936
-3.5	12.495	42.7
-3.7	12.319	37.184
-3.9	12.325	31.368
-4.1	12.507	25.272
-4.3 -4.5	17.107 23.576	18.895 12.236
-4.7	30.342	5.294
-4.9	38.076	0.042
-5.1	45.98	0.051
-5.3	54.049	0.058
-5.5	62.287	0.285
-5.7	70.682	2.771
-5.9	77.091	4.369
-6 -6.2	77.091 61.679	48.203 48.203
-6.4	68.544	40.444
-6.6	72.913	32.453
-6.8	72.913	24.236
-7	72.092	16.916
-7.2	68.022	11.907
-7.4	63.663	12.19
-7.6 -7.8	59.092 54.347	12.322 12.322
-7.8 -8	49.46	12.322
-8.2	49.653	12.209
-8.4	59.912	11.999
-8.6	70.397	11.706
-8.8	81.107	11.345
-9	92.043	10.929
-9.2 -9.4	103.194	10.469
-9.4 -9.6	114.56 127.534	9.976 9.46
-9.8	132.82	8.883
-10	134.878	8.3
-10.2	134.878	8.965
-10.4	133.708	10.913
-10.6	129.311	12.735
-10.8 -11	121.687 110.836	14.933 16.848
-11.2	99.818	18.498
-11.4	89.01	19.9
-11.6	78.422	21.07
-11.8	68.059	22.025
-12	57.924	22.779
-12.2	48.02	23.349
-12.4	38.352	23.747
-12.6 -12.8	28.92 19.723	23.989 24.086
-12.8 -13	10.756	24.086
-13.2	2.011	24.05
-13.4	0.001	23.894
-13.6	0.001	23.628
-13.8	0.002	29.237
-14	0.002	36.059
-14.2 -14.4	0.117	42.506 48.581
-14.4 -14.6	0.24 0.346	48.581 54.292
-14.8	0.435	59.647

SETAC se

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Selected Design Assumptions	Inviluppi: Taglio	Muro: WallElement
Z (m)	Lato sinistro (kN/m) Lato destro (kN/m)
-15	0.508	64.652
-15.2	0.567	69.321
-15.4	0.612	73.5
-15.6	0.644	76.487
-15.8	0.663	78.299
-16	0.671	78.952
-16.2	0.671	78.952
-16.4	0.667	78.459
-16.6	0.653	76.832
-16.8	0.629	74.081
-17	0.595	70.215
-17.2	0.552	65.241
-17.4	0.499	59.164
-17.6	0.438	51.989
-17.8	0.368	43.717
-18	0.289	34.351
-18.2	0.202	23.892
-18.4	0.106	12.417
-18.5	0.027	3.183

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva
				%
NTC2018: SISMICA GEO	Stage 0	Left Wall	LEFT	8.5
NTC2018: SISMICA GEO	Stage 7	Left Wall	RIGHT	28.9

Inviluppo Spinta Reale Efficace / Spinta Attiva

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Attiva
				%
NTC2018: SISMICA GEO Stage 7 Left Wall LEFT			108.99	
NTC2018: SISMICA GEO Stage 0 Left Wall RIGHT				190.38

13.1.8 Descrizione sintetica dei risultati delle Design Assumption in presenza di urto del veicolo (Inviluppi)

Tabella Inviluppi Momento WallElement

Selected Design Assumptions	Inviluppi: Momento	Muro: WallElement
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/m
0	67	0
-0.2	80.4	0
-0.4	93.8	0
-0.6	107.2	0
-0.8	120.613	0
-1	134.091	0
-1.2	147.683	0
-1.4	161.44	0
-1.5	168.399	0
-1.7	162.165	11.572
-1.9	156.222	23.752
-2.1	150.622	35.59
-2.3	145.415	47.035
-2.5	140.652	58.036
-2.7	136.382	68.542
-2.9	132.658	78.504
-3.1	129.528	87.871
-3.3	127.045	96.591
-3.5	125.259	104.615
-3.7	124.22	111.892
-3.9	123.978	118.37
-4.1	124.586	124.001
-4.3	126.092	128.732
-4.5	128.548	132.513
-4.7	132.005	135.294
-4.9	136.512	137.024
-5.1	141.948	137.825

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Selected Design Assumptions	• •	Muro: WallElement
	Lato sinistro (kN*m/m)	
-5.3 -5.5	148.352 155.764	137.659 136.484
-5.7	164.224	134.262
-5.9	173.771	130.952
-6	178.967	128.874
-6.2	170.818	139.546
-6.4	163.855	149.031
-6.6 -6.8	158.119 153.65	157.289 164.28
-0.8 -7	150.488	169.964
-7.2	148.673	174.301
-7.4	148.244	177.252
-7.6	149.242	178.777
-7.8	151.705	178.836
-8	155.674	177.389
-8.2 -8.4	161.19 168.29	174.396 169.817
-8.6	177.017	163.613
-8.8	187.408	155.743
-9	199.505	146.168
-9.2	213.347	134.849
-9.4	228.973	121.744
-9.6 -9.8	246.424 265.973	106.815 89.789
-9.8 -10	286.049	72.235
-10.2	305.964	54.842
-10.4	325.027	38.25
-10.6	342.55	22.519
-10.8	357.854	7.697
-11	370.97	0
-11.2 -11.4	381.928 390.762	0 0
-11.6	397.507	0
-11.8	402.199	0
-12	404.871	0
-12.2	405.561	0
-12.4	404.34	0 0.167
-12.6 -12.8	401.276 396.437	0.429
-13	389.887	0.648
-13.2	381.689	0.827
-13.4	371.904	0.968
-13.6	360.59	1.076
-13.8 -14	347.804	1.154 1.204
-14.2	333.598 318.024	1.204
-14.4	301.213	1.233
-14.6	283.378	1.217
-14.8	264.729	1.185
-15	245.467	1.139
-15.2	225.789	1.081
-15.4 -15.6	205.888 185.951	1.013 0.937
-15.8	166.161	0.856
-16	146.696	0.77
-16.2	127.734	0.682
-16.4	109.446	0.594
-16.6 -16.8	92.003 75.572	0.507
-16.8 -17	75.573 60.322	0.422 0.341
-17.2	46.415	0.265
-17.4	34.017	0.197
-17.6	23.289	0.136
-17.8	14.394	0.085
-18	7.494	0.045
-18.2 -19.4	2.752	0.017
-18.4 -18.5	0.311 0	0.002 0
-10.3	U	U

Tabella Inviluppi Taglio WallElement

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

***************************************	71210112 21 6712	COLO I ANATIL
Selected Design Assumptions		
Z (m)	Lato sinistro (kN/m) Lato destro (kN/m)
0	67	0
-0.2 -0.4	67	0 0
-0.4 -0.6	67 67.067	0
-0.8	67.387	0
-1	67.96	0
-1.2	68.786	0
-1.4	69.595	0
-1.5	69.595	62.358
-1.7 -1.9	5 6.948	62.358 60.9
-2.1	7.406	59.188
-2.3	7.646	57.223
-2.5	7.828	55.005
-2.7	8.011	52.534
-2.9	8.223	49.81
-3.1 -3.3	8.481 8.797	46.833 43.602
-3.5	9.176	40.119
-3.7	9.625	36.383
-3.9	10.144	32.393
-4.1	10.737	28.151
-4.3	12.281	23.655
-4.5 -4.7	17.283 22.538	18.906 13.904
-4.9	27.179	8.649
-5.1	33.897	4.008
-5.3	41.253	0
-5.5	48.769	0
-5.7	56.442	0
-5.9 -6	62.31 62.31	0.921 53.36
-6.2	45.633	53.36
-6.4	51.768	47.424
-6.6	55.408	41.289
-6.8	55.408	34.954
-7 -7.2	54.186	28.42
-7.2 -7.4	52.382 50.13	21.687 14.755
-7.6	47.51	7.927
-7.8	44.571	8.047
-8	41.35	8.078
-8.2	37.873	8.078
-8.4 -8.6	43.631 51.958	8.033 7.921
-8.8	60.484	7.754
-9	69.209	7.54
-9.2	78.133	7.289
-9.4	87.256	7.007
-9.6 -9.8	97.743 100.381	6.703 6.332
-9.8 -10	100.381	5.95
-10.2	99.572	5.562
-10.4	95.317	5.173
-10.6	87.615	4.786
-10.8	76.522	4.405
-11 -11.2	69.391 64.528	4.032 5.079
-11.4	59.553	6.215
-11.6	54.486	7.216
-11.8	49.347	8.09
-12	44.147	8.844
-12.2 -12.4	38.899	9.485
-12.4 -12.6	33.609 28.286	15.319 24.197
-12.8	22.933	32.75
-13	17.554	40.989
-13.2	12.152	48.924
-13.4	6.729	56.569
-13.6 -13.8	1.552 0	63.933 71.029
-13.8 -14	0	71.029 77.868
- ·	•	

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Selected Design Assumptions	Inviluppi: Taglio	Muro: WallElement
Z (m)	Lato sinistro (kN/m) Lato destro (kN/m)
-14.2	0	84.057
-14.4	0.077	89.174
-14.6	0.16	93.248
-14.8	0.231	96.31
-15	0.291	98.387
-15.2	0.34	99.505
-15.4	0.379	99.686
-15.6	0.408	99.686
-15.8	0.428	98.952
-16	0.439	97.322
-16.2	0.442	94.813
-16.4	0.442	91.439
-16.6	0.437	87.215
-16.8	0.424	82.15
-17	0.404	76.253
-17.2	0.377	69.533
-17.4	0.343	61.993
-17.6	0.303	53.64
-17.8	0.255	44.474
-18	0.201	34.498
-18.2	0.141	23.713
-18.4	0.074	12.204
-18.5	0.019	3.109

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva
				%
NTC2018: SISMICA GEO	Stage 0	Left Wall	LEFT	8.66
NTC2018: SISMICA GEO	Stage 8	Left Wall	RIGHT	25.31

Inviluppo Spinta Reale Efficace / Spinta Attiva

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Attiva
				%
NTC2018: SISMICA GEO	Stage 6	Left Wall	LEFT	115.45
NTC2018: SISMICA GEO	Stage 0	Left Wall	RIGHT	180.18

13.1.9 Normative adottate per le verifiche degli Elementi Strutturali

Normative Verifich	ne
Calcestruzzo	NTC
Acciaio	NTC
Tirante	NTC

Coefficienti per Verifica Tira	nti
GEO FS	1
ξa3	1.8
VS	1.15

13.1.10 Verifiche tiranti

Verifiche Tiranti NTC2018: SLE (Rara/Frequente/Quasi Permanente)

Design Assumption: NTC2018: SLE	Tipo Risultato:				NTC2018	
(Rara/Frequente/Quasi Permanente)	Verifiche Tiranti				(ITA)	
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio
		(kN)	(kN)	(kN)		STR
Tirante superiore	Stage 3	140	791.674	807.409	0.177	0.173
Tirante superiore	Stage 4	158.127	791.674	807.409	0.2	0.196
Tirante superiore	Stage 5	156.091	791.674	807.409	0.197	0.193
Tirante superiore	Stage 6	197.405	791.674	807.409	0.249	0.244
Tirante superiore	Stage 7	197.405	791.674	807.409	0.249	0.244
Tirante superiore	Stage 8	258.097	791.674	807.409	0.326	0.32
Tirante inferiore	Stage 5	180	791.674	807.409	0.227	0.223
Tirante inferiore	Stage 6	213.947	791.674	807.409	0.27	0.265

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Design Assumption: NTC2018: SLE	Tipo Risultato:				NTC2018	
(Rara/Frequente/Quasi Permanente)	Verifiche Tiranti				(ITA)	
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio
		(kN)	(kN)	(kN)		STR
Tirante inferiore	Stage 7	213.947	791.674	807.409	0.27	0.265
Tirante inferiore	Stage 8	246.284	791.674	807.409	0.311	0.305

Verifiche Tiranti NTC2018: A1+M1+R1 (R3 per tiranti)

Design Assumption: NTC2018: A1+M1+R1	Tipo Risultato: Verifiche				NTC2018	
(R3 per tiranti)	Tiranti				(ITA)	
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio
		(kN)	(kN)	(kN)		STR
Tirante superiore	Stage 3	182	366.516	807.409	0.497	0.225
Tirante superiore	Stage 4	208.088	366.516	807.409	0.568	0.258
Tirante superiore	Stage 5	205.442	366.516	807.409	0.561	0.254
Tirante superiore	Stage 6	263.183	366.516	807.409	0.718	0.326
Tirante superiore	Stage 7	263.183	366.516	807.409	0.718	0.326
Tirante superiore	Stage 8	354.851	366.516	807.409	0.968	0.439
Tirante inferiore	Stage 5	234	366.516	807.409	0.638	0.29
Tirante inferiore	Stage 6	281.101	366.516	807.409	0.767	0.348
Tirante inferiore	Stage 7	281.101	366.516	807.409	0.767	0.348
Tirante inferiore	Stage 8	330.537	366.516	807.409	0.902	0.409

Verifiche Tiranti NTC2018: A2+M2+R1

Design Assumption: NTC2018: A2+M2+R1	Tipo Risultato: Verifiche Tiranti				NTC2018 (ITA)	
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio
		(kN)	(kN)	(kN)		STR
Tirante superiore	Stage 3	140	366.516	807.409	0.382	0.173
Tirante superiore	Stage 4	189.697	366.516	807.409	0.518	0.235
Tirante superiore	Stage 5	187.431	366.516	807.409	0.511	0.232
Tirante superiore	Stage 6	298.388	366.516	807.409	0.814	0.37
Tirante superiore	Stage 7	298.388	366.516	807.409	0.814	0.37
Tirante superiore	Stage 8	366.251	366.516	807.409	0.999	0.454
Tirante inferiore	Stage 5	180	366.516	807.409	0.491	0.223
Tirante inferiore	Stage 6	270.413	366.516	807.409	0.738	0.335
Tirante inferiore	Stage 7	270.413	366.516	807.409	0.738	0.335
Tirante inferiore	Stage 8	314.325	366.516	807.409	0.858	0.389

Verifiche Tiranti NTC2018: SISMICA STR

Design Assumption: NTC2018: SISMICA STR	Tipo Risultato: Verifiche Tiranti				NTC2018 (ITA)	
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio
		(kN)	(kN)	(kN)		STR
Tirante superiore	Stage 3	140	366.516	807.409	0.382	0.173
Tirante superiore	Stage 4	158.127	366.516	807.409	0.431	0.196
Tirante superiore	Stage 5	156.091	366.516	807.409	0.426	0.193
Tirante superiore	Stage 6	197.405	366.516	807.409	0.539	0.244
Tirante superiore	Stage 7	237.031	366.516	807.409	0.647	0.294
Tirante superiore	Stage 8	258.097	366.516	807.409	0.704	0.32
Tirante inferiore	Stage 5	180	366.516	807.409	0.491	0.223
Tirante inferiore	Stage 6	213.947	366.516	807.409	0.584	0.265
Tirante inferiore	Stage 7	241.335	366.516	807.409	0.658	0.299
Tirante inferiore	Stage 8	246.284	366.516	807.409	0.672	0.305

Verifiche Tiranti NTC2018: SISMICA GEO

Design Assumption: NTC2018:	Tipo Risultato: Verifiche				NTC2018	
SISMICA GEO	Tiranti				(ITA)	
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio STR
		(kN)	(kN)	(kN)		
Tirante superiore	Stage 3	140	366.516	807.409	0.382	0.173
Tirante superiore	Stage 4	158.127	366.516	807.409	0.431	0.196
Tirante superiore	Stage 5	156.091	366.516	807.409	0.426	0.193
Tirante superiore	Stage 6	197.405	366.516	807.409	0.539	0.244
Tirante superiore	Stage 7	237.031	366.516	807.409	0.647	0.294
Tirante superiore	Stage 8	258.097	366.516	807.409	0.704	0.32
Tirante inferiore	Stage 5	180	366.516	807.409	0.491	0.223

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)

AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Design Assumption: NT	FC2018: Tipo Risultato: \	Verifiche			NTC2018	
SISMICA GEO	Tiranti				(ITA)	
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio GEO	Ratio STR
		(kN)	(kN)	(kN)		
Tirante inferiore	Stage 6	213.947	366.516	807.409	0.584	0.265
Tirante inferiore	e Stage 7	241.335	366.516	807.409	0.658	0.299
Tirante inferiore	e Stage 8	3 246.284	366.516	807.409	0.672	0.305

Inviluppo Verifiche Tiranti (su tutte le D.A. attive)

	Tipo Risultato:						
	Verifiche Tiranti						
Tirante	Stage	Sollecitazione	Resistenza	Resistenza	Ratio	Ratio STR	Design Assumption
		(kN)	GEO (kN)	STR (kN)	GEO		
Tirante superiore	Stage 6	298.388	366.516	807.409	0.814	0.37	NTC2018: A2+M2+R1
Tirante inferiore	Stage 6	281.101	366.516	807.409	0.767	0.348	NTC2018: A1+M1+R1 (R3 per tiranti)
Tirante superiore	Stage 8	366.251	366.516	807.409	0.999	0.454	NTC2018: A2+M2+R1
Tirante inferiore	Stage 8	330.537	366.516	807.409	0.902	0.409	NTC2018: A1+M1+R1 (R3 per tiranti)

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

13.2 PARATIA H=15 M

13.2.1 Descrizione della Stratigrafia e degli Strati di Terreno

Tipo: HORIZONTAL Quota: 1.5 m OCR: 1

Tipo : HORIZONTAL Quota : -4.8 m OCR : 1

Tipo: HORIZONTAL Quota: -9.5 m OCR: 1

Tipo: HORIZONTAL Quota: -31.9 m

OCR:1

Strato di Terreno	Terreno	γ dry	γ sat	ø'ø	cvøp c' Su	Modulo Elastico Eu	Evc	Eur	Ah Av exp Pa Rur/R	/c Rvc Ku	Kvc	Kur
		kN/m	kN/m	3 .	°° kPa kPa		kPa	kPa	kPa	kPa kN/m	³kN/m³	kN/m ³
1	Ug1a	19	20.6	30	3	Constant	25000	40000				
2	Ug1	20	21.8	37	0	Constant	100000	160000)			
3	Ug2	19	20.6	32	5	Constant	100000	160000)			
4	Ug1>25m	20	21.8	37	0	Constant	150000	240000)			

13.2.2 Descrizione Pareti

X:0 m

Quota in alto : -1.5 m Quota di fondo : -16.5 m

Muro di sinistra

Armatura Lunghezza segmenti : 1 m Rinforzo longitudinale 1

> Lunghezza : 15 m Materiale : B450C Quota iniziale : -1.5 m Barre di sinistra 1

> > Numero di barre : 6 Diametro : 0.026 m

Distanza dal bordo: 0.079 m

Barre di destra 1

Numero di barre : 6 Diametro : 0.026 m

Distanza dal bordo: 0.079 m

Staffe 1

Numero di staffe : 1.6 Copertura : 0.05 m Diametro : 0.016 m

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD) AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Lunghezza: 15 m Quota iniziale: -1.5 m

Passo: 0.2 m

Sezione: 100

Area equivalente: 1 m

Inerzia equivalente : 0.0833 m⁴/m Materiale calcestruzzo : C32/40 Tipo sezione : Solid

> Spessore : 1 m Efficacia : 1

13.2.3 Fasi di Calcolo

Stage 0

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : 0 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

0 m

Stage 1

Scavo

Muro di sinistra

Lato monte : -2 m Lato valle : -2 m

Linea di scavo di sinistra (Irregolare)

(-30;0) (-3;0) (0;-2)

Linea di scavo di destra (Orizzontale)

-2 m

Carichi

Carico lineare in superficie : SurfaceSurcharge

X iniziale : -20 m X finale : 0 m

Pressione iniziale : 10 kPa Pressione finale : 10 kPa

Stage 2

Scavo

Muro di sinistra

Lato monte : -2 m Lato valle : -2 m

Linea di scavo di sinistra (Irregolare)

(-30;0)

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

(-3;0)

(0;-2)

Linea di scavo di destra (Orizzontale)

-2 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -20 m X finale : 0 m

Pressione iniziale : 10 kPa Pressione finale : 10 kPa

Elementi strutturali

Paratia : WallElement

X:0 m

Quota in alto : -1.5 m Quota di fondo : -16.5 m

Sezione: 100

Stage 3

Scavo

Muro di sinistra

Lato monte : -2 m Lato valle : -3.5 m

Linea di scavo di sinistra (Irregolare)

(-30;0) (-3;0) (0;-2)

Linea di scavo di destra (Orizzontale)

-3.5 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -20 m X finale : 0 m

Pressione iniziale : 10 kPa Pressione finale : 10 kPa

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto : -1.5 m Quota di fondo : -16.5 m

Sezione: 100

Stage 4

Scavo

Muro di sinistra

Lato monte : -2 m Lato valle : -3.5 m

Linea di scavo di sinistra (Irregolare)

(-30;0)

(-3;0)

(0;-2)

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Linea di scavo di destra (Orizzontale)

-3.5 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -20 m X finale : 0 m

Pressione iniziale : 10 kPa Pressione finale : 10 kPa

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto : -1.5 m Quota di fondo : -16.5 m

Sezione : 100

Tirante : Tirante superiore

X:0 m Z:-3 m

Lunghezza bulbo : 8 m Diametro bulbo : 0.2 m Lunghezza libera : 11 m Spaziatura orizzontale : 2.5 m

Precarico : 140 kN Angolo : 10 °

Sezione: 4 strands

Tipo di barre : Barre trefoli Numero di barre : 4 Area : 0.000556 m^2

Stage 5

Scavo

Muro di sinistra

Lato monte : -2 m Lato valle : -6.5 m

Linea di scavo di sinistra (Irregolare)

(-30;0) (-3;0) (0;-2)

Linea di scavo di destra (Orizzontale)

-6.5 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -20 m X finale : 0 m

Pressione iniziale : 10 kPa Pressione finale : 10 kPa

Elementi strutturali

Paratia : WallElement

X:0m

Quota in alto : -1.5 m Quota di fondo : -16.5 m

Sezione: 100

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Tirante: Tirante superiore

X:0 m Z:-3 m

Lunghezza bulbo : 8 m Diametro bulbo : 0.2 m Lunghezza libera : 11 m Spaziatura orizzontale : 2.5 m

Precarico : 140 kN Angolo : 10 ° Sezione : 4 strands

> Tipo di barre : Barre trefoli Numero di barre : 4 Area : 0.000556 m^2

Stage 6

Scavo

Muro di sinistra

Lato monte : -2 m Lato valle : -6.5 m

Linea di scavo di sinistra (Irregolare)

(-30;0) (-3;0) (0;-2)

Linea di scavo di destra (Orizzontale)

-6.5 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -20 m X finale : 0 m

Pressione iniziale : 10 kPa Pressione finale : 10 kPa

Elementi strutturali

Paratia: WallElement

X : 0 m

Quota in alto : -1.5 m Quota di fondo : -16.5 m

Sezione : 100

Tirante : Tirante superiore

X:0 m Z:-3 m

Lunghezza bulbo : 8 m Diametro bulbo : 0.2 m Lunghezza libera : 11 m Spaziatura orizzontale : 2.5 m

Precarico : 140 kN Angolo : 10 ° Sezione : 4 strands

> Tipo di barre : Barre trefoli Numero di barre : 4 Area : 0.000556 m^2

Tirante: Tirante inferiore

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD) AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

X:0 m Z:-6 m

Lunghezza bulbo : 8 m Diametro bulbo : 0.2 m Lunghezza libera : 11 m Spaziatura orizzontale : 2.5 m

Precarico : 180 kN Angolo : 10 ° Sezione : 4 strands

> Tipo di barre : Barre trefoli Numero di barre : 4 Area : 0.000556 m^2

Stage 7

Scavo

Muro di sinistra

Lato monte : -2 m Lato valle : -8.95 m

Linea di scavo di sinistra (Irregolare)

(-30;0) (-3;0) (0;-2)

Linea di scavo di destra (Irregolare)

(0;-8.95) (30;-9.95)

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -20 m X finale : 0 m

Pressione iniziale : 10 kPa Pressione finale : 10 kPa

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto : -1.5 m Quota di fondo : -16.5 m

Sezione : 100

Tirante : Tirante superiore

X:0 m Z:-3 m

Lunghezza bulbo : 8 m Diametro bulbo : 0.2 m Lunghezza libera : 11 m Spaziatura orizzontale : 2.5 m

Precarico : 140 kN Angolo : 10 ° Sezione : 4 strands

> Tipo di barre : Barre trefoli Numero di barre : 4 Area : 0.000556 m^2

Tirante: Tirante inferiore

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

X:0 m Z:-6 m

Lunghezza bulbo : 8 m Diametro bulbo : 0.2 m Lunghezza libera : 11 m Spaziatura orizzontale : 2.5 m

Precarico : 180 kN Angolo : 10 ° Sezione : 4 strands

> Tipo di barre : Barre trefoli Numero di barre : 4 Area : 0.000556 m^2

Stage 8

Scavo

Muro di sinistra

Lato monte : -2 m Lato valle : -9 m

Linea di scavo di sinistra (Irregolare)

(-30;0) (-3;0) (0;-2)

Linea di scavo di destra (Irregolare)

(0;-9) (30;-10)

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -20 m X finale : 0 m

Pressione iniziale : 10 kPa Pressione finale : 10 kPa

Elementi strutturali

Paratia: WallElement

X : 0 m

Quota in alto : -1.5 m Quota di fondo : -16.5 m

Sezione : 100

Tirante : Tirante superiore

X:0 m Z:-3 m

Lunghezza bulbo : 8 m Diametro bulbo : 0.2 m Lunghezza libera : 11 m Spaziatura orizzontale : 2.5 m

Precarico : 140 kN Angolo : 10 ° Sezione : 4 strands

> Tipo di barre : Barre trefoli Numero di barre : 4 Area : 0.000556 m^2

Tirante: Tirante inferiore

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

X : 0 m Z : -6 m

Lunghezza bulbo : 8 m Diametro bulbo : 0.2 m Lunghezza libera : 11 m Spaziatura orizzontale : 2.5 m

Precarico : 180 kN Angolo : 10 ° Sezione : 4 strands

> Tipo di barre : Barre trefoli Numero di barre : 4 Area : 0.000556 m^2

13.2.4 Descrizione Coefficienti Design Assumption

Nome	Carichi	Carichi	Carichi	Carichi	Carico	Pressio	Pressio	Carichi	Carichi	Carichi	Carichi	Carichi	Carichi
	Permanenti	Permanenti	Variabili	Variabili	Sismico	ni	ni	Permane	Perman	Variabili	Permane	Perman	Variabili
	Sfavorevoli	Favorevoli	Sfavorevoli	Favorevoli	(F_seis	Acqua	Acqua	nti	enti	Destabili	nti	enti	Destabili
	(F_dead_load	(F_dead_loa	(F_live_load	(F_live_loa	m_load)	Lato	Lato	Destabili	Stabilizz	zzanti	Destabili	Stabilizz	zzanti
	_unfavour)	d_favour)	_unfavour)	d_favour)		Monte	Valle	zzanti	anti	(F_UPL_	zzanti	anti	(F_HYD_
						(F_Wat	(F_Wat	(F_UPL_	(F_UPL_	QDStab)	(F_HYD_	(F_HYD_	QDStab)
						erDR)	erRes)	GDStab)	GStab)		GDStab)	GStab)	
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018:	1	1	1	1	0	1	1	1	1	1	1	1	1
SLE													
(Rara/Frequ													
ente/Quasi													
Permanente													
) NTC2018:	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
A1+M1+R1	1.5	1	1.5	1	U	1.3	1	1	1	1	1.3	0.5	1
(R3 per													
tiranti)													
NTC2018:	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
A2+M2+R1													
NTC2018:	1	1	1	1	1	1	1	1	1	1	1	1	1
SISMICA STR													
NTC2018:	1	1	1	1	1	1	1	1	1	1	1.3	0.9	1
SISMICA													
GEO													

Nome	Parziale su tan(ø')	Parziale su c'	Parziale su Su	Parziale su qu	Parziale su peso specifico
	(F_Fr)	(F_eff_cohe)	(F_Su)	(F_qu)	(F_gamma)
Simbolo	γф	γс	γcu	γqu	γγ
Nominal	1	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi	1	1	1	1	1
Permanente)					
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1	1	1	1
NTC2018: A2+M2+R1	1.25	1.25	1.4	1	1
NTC2018: SISMICA STR	1	1	1	1	1
NTC2018: SISMICA GEO	1	1	1	1	1

Nome	Parziale resistenza terreno (es.	Parziale resistenza Tiranti	Parziale resistenza Tiranti	Parziale elementi
	Kp) (F_Soil_Res_walls)	permanenti (F_Anch_P)	temporanei (F_Anch_T)	strutturali (F_wall)
Simbolo	γRe	үар	γat	
Nominal	1	1	1	1
NTC2018: SLE	1	1	1	1
(Rara/Frequente/Quasi				
Permanente)				
NTC2018: A1+M1+R1 (R3 per	1	1.2	1.1	1
tiranti)				

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Nome	Parziale resistenza terreno (es.	Parziale resistenza Tiranti	Parziale resistenza Tiranti	Parziale elementi
	Kp) (F_Soil_Res_walls)	permanenti (F_Anch_P)	temporanei (F_Anch_T)	strutturali (F_wall)
Simbolo	γRe	үар	γat	
NTC2018: A2+M2+R1	1	1.2	1.1	1
NTC2018: SISMICA STR	1	1.2	1.1	1
NTC2018: SISMICA GEO	1	1 2	1 1	1

13.2.5 Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	Stage 6	Stage 7	Stage 8
NTC2018: SLE (Rara/Frequente/Quasi Permanente) V	V	V	V	V	V	V	V	V
NTC2018: A1+M1+R1 (R3 per tiranti)	V	V	V	V	V	V	V	V	V
NTC2018: A2+M2+R1	V	V	V	V	V	V	V	V	V
NTC2018: SISMICA STR	V	V	V	V	V	V	V	V	V
NTC2018: SISMICA GEO	V	V	V	V	V	V	V	V	V

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

13.2.6 Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Tabella Inviluppi Momento WallElement

	Momento Wallel	
Selected Design Assumption		
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/m)
-1.5	0	0
-1.7	0	0
-1.9 -2.1	0 0	0 0
-2.3	0.787	0
-2.5	2.476	0
-2.7	5.179	0
-2.9	9.011	0
-3	11.392	0
-3.2	5.449	16.348
-3.4 -3.6	8.437 12.576	35.157 53.039
-3.8	17.18	69.869
-4	22.175	85.523
-4.2	27.53	99.873
-4.4	33.221	112.796
-4.6	39.237	124.165
-4.8	45.573	133.856
-5 - 5	52.229	141.742
-5.2 -5.4	57.919 62.664	148.163 153.028
-5.6	66.484	156.244
-5.8	69.399	157.72
-6	71.428	157.365
-6.2	72.586	175.981
-6.4	72.889	192.583
-6.6	72.368	207.078
-6.8 -7	71.145 69.333	219.376 229.384
-7 -7.2	67.033	237.011
-7.4	65.817	242.166
-7.6	82.815	244.757
-7.8	98.44	244.692
-8	112.574	241.88
-8.2	125.296	236.23
-8.4 -8.6	136.684 146.819	227.649 216.046
-8.8	155.78	201.33
-9	163.645	183.409
-9.2	170.493	162.192
-9.4	176.4	138.276
-9.6	181.442	112.259
-9.8 10	185.108	85.406 58.141
-10 -10.2	187.477 188.624	30.891
-10.4	188.622	4.083
-10.6	187.542	0
-10.8	185.452	0
-11	182.419	0
-11.2	178.506	0
-11.4 -11.6	173.775 168.285	0 0
-11.8	162.1	0
-12	155.304	0
-12.2	156.246	0
-12.4	159.526	0
-12.6	160.571	0
-12.8	159.552	0
-13 -13 2	156.64 152.003	0.098
-13.2 -13.4	152.003 145.808	0.453 0.72
-13.4	138.224	0.908
-13.8	129.413	1.026
-14	119.555	1.084
-14.2	108.982	1.088
-14.4	97.631	1.049
-14.6	85.706	0.975

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Selected Design Assumptions Z (m)	• •	Muro: WallElement Lato destro (kN*m/m)
-14.8	73.471	0.872
-15	61.189	0.751
-15.2	49.122	0.618
-15.4	37.531	0.481
-15.6	26.746	0.348
-15.8	17.168	0.226
-16	9.265	0.124
-16.2	3.539	0.048
-16.4	0.413	0.006
-16.5	0	0

Tabella Inviluppi Taglio WallElement

Tabella Inviluppi Taglio WallElement								
Selected Design Assumption	ns Inviluppi: Taglio	Muro: WallElement						
Z (m)) Lato destro (kN/m)						
-1.5	0	0						
-1.7	0	0						
-1.9	0	0						
-2.1	3.937	0						
-2.3	8.443	0						
-2.5	13.517	0						
-2.7	19.158	0						
-2.9	23.815	0						
-3	23.815	98.044						
-3.2	15.602	98.044						
-3.4	20.761	94.041						
-3.6	23.018	89.411						
-3.8	24.976	84.152						
-4	26.773	78.267						
-4.2	28.456	71.754						
-4.4	30.08	64.614						
-4.6	31.681	56.847						
-4.8	33.28	48.452						
-5	33.28	39.431						
-5.2	36.173	32.106						
-5.4	47.005	24.322						
-5.6	58.12	16.081						
-5.8	69.51	7.382						
-6	69.51	93.081						
-6.2	60.716	93.081						
-6.4	71.247	83.008						
-6.6	80.405	72.477						
-6.8	86.358	61.488						
-7	89.106	50.041						
-7.2	89.106	38.137						
-7.4	88.65	25.774						
-7.6	84.99	16.179						
-7.8	78.124	17.006						
-8	70.671	17.533						
-8.2	63.609	17.797						
-8.4	60.935	17.832						
-8.6	76.502	17.832						
-8.8	92.527	17.67						
-9	108.147	17.341						
-9.2	120.778	16.872						
-9.4	130.42	16.288						
-9.6	134.269	15.611						
2.2	136.323	14.82						
-9.8 -10	136.323	13.977						
-10.2	136.247	13.098						
-10.4	134.039	12.196						
-10.6	129.701	11.286						
-10.8	123.232	15.166						
-11	114.631	19.564						
-11.2	103.9	23.655						
-11.4	91.038	27.45						
-11.6	76.045	30.929						
-11.8	60.804	33.978						
-12	46.473	36.614						
-12.2	33.045	38.854						
-12.4	20.516	40.713						

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Selected Design Assumptions	Inviluppi: Taglio	Muro: WallElement
Z (m)	Lato sinistro (kN/m) Lato destro (kN/m)
-12.6	8.88	42.204
-12.8	0	43.342
-13	0	44.14
-13.2	0	44.608
-13.4	0	44.758
-13.6	0	44.758
-13.8	0	49.361
-14	0	53.855
-14.2	0.196	57.539
-14.4	0.374	60.123
-14.6	0.511	61.433
-14.8	0.608	61.474
-15	0.665	61.474
-15.2	0.684	60.335
-15.4	0.684	57.953
-15.6	0.665	53.927
-15.8	0.608	47.889
-16	0.513	39.514
-16.2	0.38	28.633
-16.4	0.211	15.628
-16.5	0.056	4.13

Inviluppo Spinta Reale Efficace / Spinta Passiva

• • •				-
Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva
				%
NTC2018: A2+M2+R1	Stage 01	eft Wall	LEFT	13.16
NTC2018: A2+M2+R1	Stage 81	eft Wall	RIGHT	48.43

Inviluppo Spinta Reale Efficace / Spinta Attiva

				•
Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Attiva
				%
NTC2018: A2+M2+R1	Stage 5	Left Wall	LEFT	101.19
NTC2018: A2+M2+R1	Stage 0	l eft Wall	RIGHT	142 28

13.2.7 Normative adottate per le verifiche degli Elementi Strutturali

Normative Verifich	ne
Calcestruzzo	NTC
Acciaio	NTC
Tirante	NTC

Coefficienti per Verifica	GEO FS 1 §a3 1.8							
GEO FS	1							
ξa3	1.8							
vs	1.15							

13.2.8 Verifiche Tiranti

Verifiche Tiranti NTC2018: SLE (Rara/Frequente/Quasi Permanente)

Design Assumption: NTC2018: SLE	Tipo Risultato:				NTC2018		
(Rara/Frequente/Quasi Permanente)	Verifiche Tiranti				(ITA)		
Tirante	Stage	Sollecitazione	Resistenza	Resistenza	Ratio GEO	Ratio Res	istenza Gerarchia delle
		(kN)	GEO (kN)	STR (kN)		STR	Resistenze
Tirante superiore	Stage 4	140	603.196	807.409	0.232	0.173	
Tirante superiore	Stage 5	152.583	603.196	807.409	0.253	0.189	
Tirante superiore	Stage 6	150.044	603.196	807.409	0.249	0.186	
Tirante superiore	Stage 7	176.236	603.196	807.409	0.292	0.218	
Tirante superiore	Stage 8	177.827	603.196	807.409	0.295	0.22	
Tirante inferiore	Stage 6	180	603.196	807.409	0.298	0.223	
Tirante inferiore	Stage 7	202.666	603.196	807.409	0.336	0.251	
Tirante inferiore	Stage 8	203.959	603.196	807.409	0.338	0.253	

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Verifiche Tiranti NTC2018: A1+M1+R1 (R3 per tiranti)

Design Assumption: NTC2018:	Tipo Risultato:				NTC2018			
A1+M1+R1 (R3 per tiranti)	Verifiche Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza	Resistenza	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	GEO (kN)	STR (kN)		STR		Resistenze
Tirante superiore	Stage 4	182	279.258	807.409	0.652	0.225		
Tirante superiore	Stage 5	198.357	279.258	807.409	0.71	0.246		
Tirante superiore	Stage 6	195.057	279.258	807.409	0.698	0.242		
Tirante superiore	Stage 7	229.107	279.258	807.409	0.82	0.284		
Tirante superiore	Stage 8	231.175	279.258	807.409	0.828	0.286		
Tirante inferiore	Stage 6	234	279.258	807.409	0.838	0.29		
Tirante inferiore	Stage 7	263.466	279.258	807.409	0.943	0.326		
Tirante inferiore	Stage 8	265.147	279.258	807.409	0.949	0.328		

Verifiche Tiranti NTC2018: A2+M2+R1

Design Assumption:	Tipo Risultato:				NTC2018			
NTC2018: A2+M2+R1	Verifiche Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza	Resistenza STR	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	GEO (kN)	(kN)		STR		Resistenze
Tirante superiore	Stage 4	140	279.258	807.409	0.501	0.173		
Tirante superiore	Stage 5	177.019	279.258	807.409	0.634	0.219		
Tirante superiore	Stage 6	174.165	279.258	807.409	0.624	0.216		
Tirante superiore	Stage 7	272.638	279.258	807.409	0.976	0.338		
Tirante superiore	Stage 8	276.664	279.258	807.409	0.991	0.343		
Tirante inferiore	Stage 6	180	279.258	807.409	0.645	0.223		
Tirante inferiore	Stage 7	261.817	279.258	807.409	0.938	0.324		
Tirante inferiore	Stage 8	265.208	279.258	807.409	0.95	0.328		

Verifiche Tiranti NTC2018: SISMICA STR

Design Assumption: NTC2018: SISMICA STR	Tipo Risultato: Verifiche Tiranti				NTC2018 (ITA)			
Tirante	Stage	Sollecitazione	Resistenza	Resistenza STR	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	GEO (kN)	(kN)		STR		Resistenze
Tirante superiore	Stage 4	140	279.258	807.409	0.501	0.173		
Tirante superiore	Stage 5	152.583	279.258	807.409	0.546	0.189		
Tirante superiore	Stage 6	150.044	279.258	807.409	0.537	0.186		
Tirante superiore	Stage 7	176.236	279.258	807.409	0.631	0.218		
Tirante superiore	Stage 8	218.336	279.258	807.409	0.782	0.27		
Tirante inferiore	Stage 6	180	279.258	807.409	0.645	0.223		
Tirante inferiore	Stage 7	202.666	279.258	807.409	0.726	0.251		
Tirante inferiore	Stage 8	234.892	279.258	807.409	0.841	0.291		

Verifiche Tiranti NTC2018: SISMICA GEO

Design Assumption: NTC2018: SISMICA GEO	Tipo Risultato: Verifiche Tiranti				NTC2018 (ITA)			
Tirante	Stage	Sollecitazione	Resistenza	Resistenza STR	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	GEO (kN)	(kN)		STR		Resistenze
Tirante superiore	Stage 4	140	279.258	807.409	0.501	0.173		
Tirante superiore	Stage 5	152.583	279.258	807.409	0.546	0.189		
Tirante superiore	Stage 6	150.044	279.258	807.409	0.537	0.186		
Tirante superiore	Stage 7	176.236	279.258	807.409	0.631	0.218		
Tirante superiore	Stage 8	218.336	279.258	807.409	0.782	0.27		
Tirante inferiore	Stage 6	180	279.258	807.409	0.645	0.223		
Tirante inferiore	Stage 7	202.666	279.258	807.409	0.726	0.251		
Tirante inferiore	Stage 8	234.892	279.258	807.409	0.841	0.291		

Inviluppo Verifiche Tiranti (su tutte le D.A. attive)

	Tipo Risultato: Verifiche Tiranti								
Tirante	Stage	Sollecitazione	Resistenza GEO	Resistenza STR	Ratio	Ratio	Resistenza	Gerarchia delle	Design
		(kN)	(kN)	(kN)	GEO	STR		Resistenze	Assumption
Tirante	Stage 8	276.664	279.258	807.409	0.991	0.343			NTC2018:
superiore									A2+M2+R1
Tirante	Stage 8	265.208	279.258	807.409	0.95	0.328			NTC2018:
inferiore									A2+M2+R1

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

13.3 PARATIA H=12 M

13.3.1 Descrizione della Stratigrafia e degli Strati di Terreno

Tipo : HORIZONTAL Quota : 1.5 m OCR : 1

Tipo : HORIZONTAL Quota : -4.8 m OCR : 1

Tipo : HORIZONTAL Quota : -9.5 m OCR : 1

Tipo: HORIZONTAL Quota: -31.9 m

OCR:1

Strato di Terreno	Terreno	γ dry	γ sat	ø' øc	vøp c' Su l	Modulo Elastico Eu	Evc	Eur	Ah Av exp Pa Rur/Ru	vc Rvc Ku Kvc Kur
		kN/m	kN/m	3 0 0	° kPa kPa		kPa	kPa	kPa	kPakN/m³kN/m³kN/m³
1	Ug1a	19	20.6	30	3	Constant	25000	40000		
2	Ug1	20	21.8	37	0	Constant	100000	160000)	
3	Ug2	19	20.6	32	5	Constant	100000	160000)	
4	Ug1>25m	20	21.8	37	0	Constant	150000	240000)	

13.3.2 Descrizione Pareti

X:0 m

Quota in alto : -4 m Quota di fondo : -16 m Muro di sinistra

Armatura Lunghezza segmenti : 1 m

Rinforzo longitudinale 1
Lunghezza : 12 m
Materiale : B450C
Quota iniziale : -4 m
Barre di sinistra 1

Numero di barre : 6 Diametro : 0.026 m

Distanza dal bordo: 0.079 m

Barre di destra 1

Numero di barre : 6 Diametro : 0.026 m

Distanza dal bordo: 0.079 m

Staffe 1

Numero di staffe : 1.6 Copertura : 0.05 m Diametro : 0.016 m Lunghezza : 12 m

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD) AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Quota iniziale : -4 m Passo : 0.2 m

Sezione: 100

Area equivalente: 1 m

Inerzia equivalente : 0.0833 m⁴/m Materiale calcestruzzo : C32/40

> Tipo sezione : Solid Spessore : 1 m Efficacia : 1

13.3.3 Fasi di Calcolo

Stage 0

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : 0 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

0 m

Stage 1

Scavo

Muro di sinistra

Lato monte : -4.5 m Lato valle : -4.5 m

Linea di scavo di sinistra (Irregolare)

(-30;0) (-6.75;0) (0;-4.5)

Linea di scavo di destra (Orizzontale)

-4.5 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -20 m X finale : 0 m

Pressione iniziale : 10 kPa Pressione finale : 10 kPa

Stage 2

Scavo

Muro di sinistra

Lato monte : -4.5 m Lato valle : -4.5 m

Linea di scavo di sinistra (Irregolare)

(-30;0) (-6.75;0) (0;-4.5)

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Linea di scavo di destra (Orizzontale)

-4.5 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -20 m X finale : 0 m

Pressione iniziale : 10 kPa Pressione finale : 10 kPa

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto : -4 m Quota di fondo : -16 m

Sezione: 100

Stage 3

Scavo

Muro di sinistra

Lato monte : -4.5 m Lato valle : -6.5 m

Linea di scavo di sinistra (Irregolare)

(-30;0) (-6.75;0) (0;-4.5)

Linea di scavo di destra (Orizzontale)

-6.5 m

Carichi

Carico lineare in superficie : SurfaceSurcharge

X iniziale : -20 m X finale : 0 m

Pressione iniziale : 10 kPa Pressione finale : 10 kPa

Elementi strutturali

Paratia : WallElement X : 0 m

> Quota in alto : -4 m Quota di fondo : -16 m

Sezione: 100

Stage 4

Scavo

Muro di sinistra

Lato monte : -4.5 m Lato valle : -6.5 m

Linea di scavo di sinistra (Irregolare)

(-30;0) (-6.75;0)

(0; -4.5)

Linea di scavo di destra (Orizzontale)

-6.5 m

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -20 m X finale : 0 m

Pressione iniziale : 10 kPa Pressione finale : 10 kPa

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto : -4 m Quota di fondo : -16 m

Sezione: 100

Tirante: Tirante superiore

X:0 m Z:-6 m

Lunghezza bulbo : 10 m Diametro bulbo : 0.2 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.5 m

Precarico : 140 kN Angolo : 10 ° Sezione : 4 strands

> Tipo di barre : Barre trefoli Numero di barre : 4

Area: 0.000556 m^2

Stage 5

Scavo

Muro di sinistra

Lato monte : -4.5 m Lato valle : -9.5 m

Linea di scavo di sinistra (Irregolare)

(-30;0) (-6.75;0) (0;-4.5)

Linea di scavo di destra (Irregolare)

(0;-9.5) (30;-10.5)

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -20 m X finale : 0 m

Pressione iniziale : 10 kPa Pressione finale : 10 kPa

Elementi strutturali

Paratia: Wall Element

X : 0 m

Quota in alto : -4 m Quota di fondo : -16 m

Sezione : 100 Tirante : Tirante superiore

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

X:0 m Z:-6 m

Lunghezza bulbo : 10 m Diametro bulbo : 0.2 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.5 m

Precarico : 140 kN Angolo : 10 ° Sezione : 4 strands

> Tipo di barre : Barre trefoli Numero di barre : 4 Area : 0.000556 m^2

Stage 6

Scavo

Muro di sinistra

Lato monte : -4.5 m Lato valle : -9.5 m

Linea di scavo di sinistra (Irregolare)

(-30;0) (-6.75;0) (0;-4.5)

Linea di scavo di destra (Irregolare)

(0;-9.5) (30;-10.5)

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -20 m X finale : 0 m

Pressione iniziale : 10 kPa Pressione finale : 10 kPa

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto : -4 m Quota di fondo : -16 m

Sezione: 100

Tirante : Tirante superiore

X:0 m Z:-6 m

Lunghezza bulbo : 10 m Diametro bulbo : 0.2 m Lunghezza libera : 13 m Spaziatura orizzontale : 2.5 m

Precarico : 140 kN Angolo : 10 ° Sezione : 4 strands

> Tipo di barre : Barre trefoli Numero di barre : 4 Area : 0.000556 m^2

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

13.3.4 Descrizione Coefficienti Design Assumption

Nome	Carichi Permanenti	Carichi Permanenti	Carichi Variabili	Carichi Variabili	Carico Sismico	Pressio ni	Pressio ni	Carichi Permane		Carichi Variabili	Carichi Permane	Carichi Perman	Carichi Variabili
			Sfavorevoli		. –		-	nti Destabili		Destabili	nti Destabili	enti	Destabili
	(F_dead_load unfavour)	. – –		. – –	m_ioau)	Monte		zzanti	anti			anti	(F HYD
	_umavour)	u_ravour)	_unfavour)	u_ravour)						(F_UPL_			QDStab)
						erDR)	` —	GDStab)	. – –		GDStab)	. – –	QDStab)
Simbolo		··C	··O		··OF		•	•	•		•	•	Odet
	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018: SLE	1	1	1	1	0	1	1	1	1	1	1	1	1
(Rara/Frequ													
ente/Quasi													
Permanente													
1													
NTC2018:	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
A1+M1+R1													
(R3 per													
tiranti)													
NTC2018:	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
A2+M2+R1													
NTC2018:	1	1	1	1	1	1	1	1	1	1	1	1	1
SISMICA STR													
NTC2018:	1	1	1	1	1	1	1	1	1	1	1.3	0.9	1
SISMICA													
GEO													

Nome	Parziale su tan(ø')	Parziale su c'	Parziale su Su	Parziale su qu	Parziale su peso specifico
	(F_Fr)	(F_eff_cohe)	(F_Su)	(F_qu)	(F_gamma)
Simbolo	γф	γс	γcu	γqu	γγ
Nominal	1	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi	1	1	1	1	1
Permanente)					
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1	1	1	1
NTC2018: A2+M2+R1	1.25	1.25	1.4	1	1
NTC2018: SISMICA STR	1	1	1	1	1
NTC2018: SISMICA GEO	1	1	1	1	1

Nome	Parziale resistenza terreno (es.	Parziale resistenza Tiranti	Parziale resistenza Tiranti	Parziale elementi
	<pre>Kp) (F_Soil_Res_walls)</pre>	permanenti (F_Anch_P)	temporanei (F_Anch_T)	strutturali (F_wall)
Simbolo	γRe	үар	γat	
Nominal	1	1	1	1
NTC2018: SLE	1	1	1	1
(Rara/Frequente/Quasi				
Permanente)				
NTC2018: A1+M1+R1 (R3 per	1	1.2	1.1	1
tiranti)				
NTC2018: A2+M2+R1	1	1.2	1.1	1
NTC2018: SISMICA STR	1	1.2	1.1	1
NTC2018: SISMICA GEO	1	1.2	1.1	1
NTC2018. SISIVIICA GLO	1	1.2	1.1	1

13.3.5 Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	Stage 6
NTC2018: SLE (Rara/Frequente/Quasi Permanente)	V	٧	V	V	V	٧	V
NTC2018: A1+M1+R1 (R3 per tiranti)	V	V	V	V	V	V	V
NTC2018: A2+M2+R1	V	V	V	V	V	V	V
NTC2018: SISMICA STR	V	V	V	V	V	V	V
NTC2018: SISMICA GEO	V	V	V	V	V	V	V

MANDANTI:

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

13.3.6 Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Tabella Inviluppi Spostamento Left Wall

rabella inviluppi s		
Selected Design Assumption	ıs Inviluppi: Spostamento	Muro: LEFT
Z (m)	Lato sinistro (mm)	Lato destro (mm
-4	0	6.711
-4.2	0	6.607
-4.4	0	6.503
-4.6	0	6.501
-4.8	0	6.371
-5	0	6.206
-5.2	0	6.101
-5.4	0	5.996
-5.6	0	5.891
-5.8	0	5.786
-6	0	5.682
-6.2	0	5.578
-6.4	0	5.474
-6.6	0	5.369
-6.8	0	5.265
-7	0	5.16
-7.2	0	5.054
-7.4	0	4.948
-7.6	0	4.841
-7.8	0	4.734
-8	0	4.625
-8.2	0	4.516
-8.4	0	4.406
-8.6	0	4.295
-8.8	0	4.184
-9	0	4.071
-9.2	0	3.958
-9.4	0	3.845
-9.6	0	3.731
-9.8	0	3.617
-10	0	3.503
-10.2	0	3.388
-10.4	0	3.275
-10.6	0	3.161
-10.8	0	3.048
-11	0	2.936
-11.2	0	2.825
-11.4	0	2.715
-11.6	0	2.607
-11.8	0	2.499
-12	0	2.392
-12.2	0	2.287
-12.4	0	2.183
-12.6	0	2.08
-12.8	0	1.981
-13	0	1.885
-13.2	0	1.79
-13.4	0	1.697
-13.6	0	1.604
-13.8	0	1.512
-14	0	1.421
-14.2	0	1.33
-14.4	0	1.24
-14.6	0	1.151
-14.8	0	1.062
-15	0	0.974
-15.2	0	0.885
-15.4	0	0.797
-15.6	0	0.709
-15.8	0	0.621
-15.8 -16	0	0.533
-10	U	0.333

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Tabella Inviluppi Momento WallElement

Selected Design Assumption	s Invilunni: Momento	Muro: WallElamont
Z (m)	Lato sinistro (kN*m/m)	
-4	0	0
-4.2	0	0
-4.4	0	0
-4.6	0	0
-4.8	0.314	0
-5	1.079	0
-5.2	3.26	0
-5.4	6.901	0
-5.6	12.048	0
-5.8	18.746	0
-6	27.04	0
-6.2	23.297	9.332
-6.4 -6.6	23.435 30.591	29.319 47.999
-6.8	39.164	65.256
-7	48.18	80.972
-7.2	57.024	95.029
-7.4	65.079	107.311
-7.6	72.039	117.7
-7.8	77.959	126.078
-8	82.895	132.328
-8.2	86.906	136.334
-8.4	90.048	137.977
-8.6	92.38	137.141
-8.8	93.958	133.708
-9 2.2	94.845	127.56
-9.2	95.104	118.581
-9.4 -9.6	94.797 93.984	106.652 91.658
-9.8	92.62	74.314
-10	90.766	55.004
-10.2	88.479	34.111
-10.4	85.81	12.019
-10.6	84.145	0
-10.8	103.494	0
-11	121.525	0
-11.2	137.706	0
-11.4	151.502	0
-11.6	162.381	0
-11.8	169.911	0
-12 -12.2	174.344	0
-12.2 -12.4	177.54 190.545	0 0
-12.4 -12.6	200.533	0
-12.8	207.12	0
-13	209.924	0
-13.2	208.561	0
-13.4	202.983	0
-13.6	193.708	0
-13.8	181.253	0
-14	166.132	0
-14.2	148.858	0.075
-14.4	129.942	0.171
-14.6	109.893	0.217
-14.8 15	89.221	0.222
-15 -15.2	68.431 48.267	0.198 0.155
-15.2 -15.4	48.267 29.713	0.155
-15.4 -15.6	14.405	0.054
-15.8	3.975	0.016
-16	0	0

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Tabella Inviluppi Taglio WallElement

rabella iliviluppi		
Selected Design Assumptio	• • •	
Z (m)	Lato sinistro (kN/m)	Lato destro (kN/m)
-4	0	0
-4.2	0	0
-4.4	0	0
-4.6	1.568	0
-4.8	3.829	0
-5	10.903	0
-5.2	18.205	0
-5.4	25.735	0
-5.6	33.49	0
-5.8	41.468	0
-6	41.468	105.878
-6.2	31.05	105.878
-6.4	37.581	99.934
-6.6 -6.8	42.869	93.402
-0.6 -7	45.08 45.08	86.284 78.579
- <i>7</i> -7.2	44.216	70.287
-7.2 -7.4	40.276	61.408
-7.4 -7.6	34.801	51.943
-7.8	29.599	41.891
-7.8 -8	24.682	31.253
-8.2	20.053	20.028
-8.4	21.055	8.216
-8.6	31.948	0
-8.8	43.322	3.386
-9	55.177	6.878
-9.2	67.513	10.186
-9.4	80.265	13.335
-9.6	89.679	13.959
-9.8	96.55	14.45
-10	104.464	14.811
-10.2	110.461	15.047
-10.4	114.542	15.164
-10.6	116.706	16.426
-10.8	116.954	17.634
-11	116.954	18.642
-11.2	115.285	19.463
-11.4	111.7	20.111
-11.6	106.198	20.6
-11.8	98.779	20.917
-12	89.444	21.063
-12.2	78.192	21.101
-12.4	65.024	21.101
-12.6	49.939	27.264
-12.8	32.937	36.55
-13	14.019	44.662
-13.2	0	51.599
-13.4	0	57.36
-13.6	0	62.275
-13.8	0	75.604
-14	0	86.37
-14.2	0	94.581
-14.4	0	100.243
-14.6	0	103.363
-14.8	0.12	103.945
-15 15.2	0.214	103.945
-15.2	0.257	100.823
-15.4	0.257	92.768
-15.6	0.249	76.542 53.140
-15.8	0.19	52.149
-16	0.08	19.874

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption Stage I	Muro Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva
		%
NTC2018: A2+M2+R1 Stage 4 Le	eft Wall LEFT	14.94
NTC2018: A2+M2+R1 Stage 5 Le	eft Wall RIGHT	65.81

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

13.3.7 Inviluppo Spinta Reale Efficace / Spinta Attiva

Design Assumption	Stage	Muro Late	o Inviluppo Spinta Reale Efficace / Spinta Attiva
			%
NTC2018: SLE (Rara/Frequente/Quasi Perman	ente) Stage 3	Left Wall LEF	Т 100.27
NTC2018: A2+M2+R1	Stage 0	Left Wall RIGH	IT 142.66

13.3.8 Normative adottate per le verifiche degli Elementi Strutturali

he
NTC
NTC
NTC

Coefficienti per Verifica	Tiranti
GEO FS	1
ξa3	1.8
γs	1.15

13.3.9 Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	Stage 6
NTC2018: SLE (Rara/Frequente/Quasi Permanente) V	V	V	V	V	V	٧
NTC2018: A1+M1+R1 (R3 per tiranti)	V	V	V	V	V	V	V
NTC2018: A2+M2+R1	V	V	V	V	V	V	V
NTC2018: SISMICA STR	V	V	V	V	V	V	V
NTC2018: SISMICA GEO	V	V	V	V	V	V	V

13.3.10 Risultati Caver

Tabella Inviluppi Tasso di Sfruttamento Calcestruzzo - Caver : LEFT

Inviluppi Tasso di Sfruttamento Calcestruzzo - Caver	LEFT
Z (m)	Tasso di Sfruttamento Calcestruzzo - Caver
-5	0.001
-5.2	0.002
-5.4	0.004
-5.6	0.006
-5.8	0.01
-6	0.014
-6.2	0.012
-6.4	0.01
-6.6	0.015
-6.8	0.021
-7	0.025
-7.2	0.03
-7.4	0.033
-7.6	0.036
-7.8	0.038
-8	0.039
-8.2	0.039
-8.4	0.039
-8.6	0.037
-8.8	0.034
-9	0.031
-9.2	0.031
-9.4	0.03
-9.6	0.028
-9.8	0.027
-10	0.025

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Inviluppi Tasso di Sfruttamento Calcestruzzo - Cave	r LEFT
Z (m)	Tasso di Sfruttamento Calcestruzzo - Caver
-10.2	0.024
-10.4	0.022
-10.6	0.03
-10.8	0.037
-11	0.042
-11.2	0.047
-11.4	0.051
-11.6	0.053
-11.8	0.055
-12	0.056
-12.2	0.056
-12.4	0.056
-12.6	0.055
-12.8	0.053
-13	0.051
-13.2	0.048
-13.4	0.044
-13.6	0.041
-13.8	0.037
-14	0.033
-14.2	0.028
-14.4	0.024
-14.6	0.019
-14.8	0.015
-15	0.011

Tabella Inviluppi Tasso di Sfruttamento Armature - Caver : LEFT

Inviluppi Tasso di Sfruttamento Armature -	Caver LEFT
Z (m)	Tasso di Sfruttamento Armature - Caver
-5	0.001
-5.2	0.003
-5.4	0.005
-5.6	0.009
-5.8	0.015
-6	0.021
-6.2	0.018
-6.4	0.015
-6.6	0.023
-6.8	0.031
-7	0.039
-7.2	0.045
-7.4	0.05
-7.6	0.054
-7.8	0.057
-8	0.059
-8.2	0.059
-8.4	0.058
-8.6	0.056
-8.8	0.052
-9	0.047
-9.2	0.046
-9.4	0.045
-9.6	0.043
-9.8	0.04
-10	0.038
-10.2	0.036
-10.4	0.034
-10.6	0.046
-10.8	0.056
-11	0.064
-11.2	0.071
-11.4	0.076
-11.6	0.08
-11.8	0.083
-12	0.085
-12.2	0.085
-12.4	0.084
-12.6	0.083
-12.8	0.08
-13	0.076

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Inviluppi Tasso di Sfruttamento Armature - C	aver LEFT
Z (m)	Tasso di Sfruttamento Armature - Caver
-13.2	0.072
-13.4	0.067
-13.6	0.062
-13.8	0.056
-14	0.049
-14.2	0.043
-14.4	0.036
-14.6	0.029
-14.8	0.023
-15	0.016

Tabella Inviluppi Ape	rtura Fessure - Caver : LEFT
Inviluppi Apertura Fessure - Caver	r LEFT
Z (m)	Apertura Fessure - Caver (mm)
-5	0
-5.2	0.001
-5.4	0.003
-5.6	0.005
-5.8	0.008
-6	0.011
-6.2	0.009
-6.4	0.008
-6.6	0.000
-6.8	0.012
-7	0.021
-7 -7.2	0.021
-7.2 -7.4	0.024
-7.6 7.8	0.029
-7.8	0.031
-8	0.032
-8.2	0.032
-8.4	0.031
-8.6	0.03
-8.8	0.028
-9	0.026
-9.2	0.025
-9.4	0.024
-9.6	0.023
-9.8	0.022
-10	0.021
-10.2	0.019
-10.4	0.018
-10.6	0.025
-10.8	0.03
-11	0.034
-11.2	0.038
-11.4	0.041
-11.6	0.043
-11.8	0.045
-12	0.046
-12.2	0.046
-12.4	0.045
-12.6	0.044
-12.8	0.043
-13	0.041
-13.2	0.039
-13.4	0.036
-13.6	0.033
-13.8	0.03
-14	0.027
-14.2	0.023
-14.4	0.019
-14.6	0.016
-14.8	0.012
-15	0.009

Tabella Inviluppi Tasso di Sfruttamento a Momento - Caver : LEFT

Inviluppi Tasso di Sfruttamento a Momento - Caver

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Z (m)	Tasso di Sfruttamento a Momento - Caver
-5	0.01
-5.2	0.01
-5.2 -5.4	0.006
-5.4 -5.6	0.000
-5.8	0.017
-5.8 -6	0.017
-6.2 -6.4	0.021
	0.027
-6.6	0.043
-6.8 -7	0.059
	0.073
-7.2	0.086
-7.4	0.097
-7.6	0.107
-7.8	0.114
-8	0.12
-8.2	0.123
-8.4	0.125
-8.6	0.124
-8.8	0.121
-9	0.115
-9.2	0.107
-9.4	0.097
-9.6	0.085
-9.8	0.084
-10	0.082
-10.2	0.08
-10.4	0.078
-10.6	0.076
-10.8	0.094
-11	0.11
-11.2	0.125
-11.4	0.137
-11.6	0.147
-11.8	0.154
-12	0.158
-12.2	0.161
-12.4	0.173
-12.6	0.182
-12.8	0.188
-13	0.19
-13.2	0.189
-13.4	0.184
-13.6	0.175
-13.8	0.164
-14	0.15
-14.2	0.135
-14.4	0.118
-14.6	0.1
-14.8	0.081
-15	0.062

Tabella Inviluppi Tasso di Sfruttamento a Taglio - Caver : LEFT

Inviluppi Tasso di Sfruttamento a Taglio - Cave	r LEFT
Z (m)	Tasso di Sfruttamento a Taglio - Caver
-5	0.021
-5.2	0.035
-5.4	0.049
-5.6	0.064
-5.8	0.079
-6	0.203
-6.2	0.203
-6.4	0.192
-6.6	0.179
-6.8	0.165
-7	0.151
-7.2	0.135
-7.4	0.118
-7.6	0.1
-7.8	0.08
-8	0.06

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Inviluppi Tasso di Sfruttamento a Taglio - Cave	
Z (m)	Tasso di Sfruttamento a Taglio - Caver
-8.2	0.038
-8.4	0.04
-8.6	0.061
-8.8	0.083
-9	0.106
-9.2	0.129
-9.4	0.154
-9.6	0.172
-9.8	0.185
-10	0.2
-10.2	0.212
-10.4	0.22
-10.6	0.224
-10.8	0.224
-11	0.224
-11.2	0.221
-11.4	0.214
-11.6	0.204
-11.8	0.189
-12	0.171
-12.2	0.15
-12.4	0.125
-12.6	0.096
-12.8	0.07
-13	0.086
-13.2	0.099
-13.4	0.11
-13.6	0.119
-13.8	0.145
-14	0.166
-14.2	0.181
-14.4	0.192
-14.6	0.198
-14.8	0.199
-15	0.199

13.3.11 Verifiche tiranti

Verifiche Tiranti NTC2018: SLE (Rara/Frequente/Quasi Permanente)

Design Assumption: NTC2018: SLE	Tipo Risultato:				NTC2018		
(Rara/Frequente/Quasi Permanente)	Verifiche Tiranti				(ITA)		
Tirante	Stage	Sollecitazione	Resistenza	Resistenza	Ratio GEO	Ratio	Resistenza Gerarchia delle
		(kN)	GEO (kN)	STR (kN)		STR	Resistenze
Tirante superiore	Stage 4	140	753.978	807.409	0.186	0.173	
Tirante superiore	Stage 5	173.381	753.978	807.409	0.23	0.215	
Tirante superiore	Stage 6	173.381	753.978	807.409	0.23	0.215	

Verifiche Tiranti NTC2018: A1+M1+R1 (R3 per tiranti)

Design Assumption: NTC2018:	Tipo Risultato:				NTC2018			
A1+M1+R1 (R3 per tiranti)	Verifiche Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza	Resistenza	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	GEO (kN)	STR (kN)		STR		Resistenze
Tirante superiore	Stage 4	182	349.064	807.409	0.521	0.225		
Tirante superiore	Stage 5	225.396	349.064	807.409	0.646	0.279		
Tirante superiore	Stage 6	225.396	349.064	807.409	0.646	0.279		

Verifiche Tiranti NTC2018: A2+M2+R1

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Design Assumption:	Tipo Risultato:				NTC2018				
NTC2018: A2+M2+R1	Verifiche Tiranti				(ITA)				
Tirante	Stage	Sollecitazione	Resistenza	Resistenza STR	Ratio GEO	Ratio	Resistenza	Gerarchia delle	
		(kN)	GEO (kN)	(kN)		STR		Resistenze	ı
Tirante superiore	Stage 4	140	349.064	807.409	0.401	0.173			
Tirante superiore	Stage 5	332.51	349.064	807.409	0.953	0.412			
Tirante superiore	Stage 6	332.51	349.064	807.409	0.953	0.412			

Verifiche Tiranti NTC2018: SISMICA STR

Design Assumption:	Tipo Risultato:				NTC2018			
NTC2018: SISMICA STR	Verifiche Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza	Resistenza STR	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	GEO (kN)	(kN)		STR		Resistenze
Tirante superiore	Stage 4	140	349.064	807.409	0.401	0.173		
Tirante superiore	Stage 5	173.381	349.064	807.409	0.497	0.215		
Tirante superiore	Stage 6	240.097	349.064	807.409	0.688	0.297		

Verifiche Tiranti NTC2018: SISMICA GEO

Design Assumption:	Tipo Risultato:				NTC2018			
NTC2018: SISMICA GEO	Verifiche Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza	Resistenza STR	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	GEO (kN)	(kN)		STR		Resistenze
Tirante superiore	Stage 4	140	349.064	807.409	0.401	0.173		
Tirante superiore	Stage 5	173.381	349.064	807.409	0.497	0.215		
Tirante superiore	Stage 6	240.097	349.064	807.409	0.688	0.297		

Inviluppo Verifiche Tiranti (su tutte le D.A. attive)

	Tipo Risultato:								
	Verifiche Tiranti								
Tirante	Stage	Sollecitazione	Resistenza GEC	Resistenza STR	Ratio	Ratio	Resistenza	Gerarchia delle	Design
		(kN)	(kN)	(kN)	GEO	STR		Resistenze	Assumption
Tirante	Stage 5	332.51	349.064	807.409	0.953	0.412			NTC2018:
superiore									A2+M2+R1

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

13.4 PARATIA H=8M

13.4.1 Descrizione della Stratigrafia e degli Strati di Terreno

Tipo : HORIZONTAL Quota : 1.5 m OCR : 1

Tipo : HORIZONTAL Quota : -4.8 m OCR : 1

Tipo: HORIZONTAL Quota: -9.5 m OCR: 1

Tipo: HORIZONTAL Quota: -31.9 m

OCR:1

Strato di Terreno	Terreno	γ dry	γ sat	ø' øc	vøp c' Su ľ	Modulo Elastico Eu	Evc	Eur	Ah Avexp Pa Rur/Ru	c Rvc Ku	Kvc	Kur
		kN/m ³	kN/m	3 0 0	° kPa kPa		kPa	kPa	kPa	kPa kN/m	n³kN/m³	kN/m³
1	Ug1a	19	20.6	30	3	Constant	25000	40000				
2	Ug1	20	21.8	37	0	Constant	100000	160000)			
3	Ug2	19	20.6	32	5	Constant	100000	160000)			
4	Ug1>25m	20	21.8	37	0	Constant	150000	240000)			

13.4.2 Descrizione Pareti

X:0 m

Quota in alto: -6.4 m Quota di fondo: -14.4 m

Muro di sinistra

Armatura Lunghezza segmenti : 1 m

Rinforzo longitudinale 1
Lunghezza: 8 m
Materiale: B450C
Quota iniziale: -6.4 m
Barre di sinistra 1

Numero di barre : 6 Diametro : 0.026 m

Distanza dal bordo: 0.079 m

Barre di destra 1

Numero di barre : 6 Diametro : 0.026 m

Distanza dal bordo: 0.079 m

Staffe 1

Numero di staffe : 1.6 Copertura : 0.05 m Diametro : 0.016 m

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Lunghezza: 8 m Quota iniziale: -6.4 m

Passo: 0.2 m

Sezione: 100

Area equivalente: 1 m

Inerzia equivalente : 0.0833 m⁴/m Materiale calcestruzzo : C32/40 Tipo sezione : Solid

> Spessore : 1 m Efficacia : 1

13.4.3 Fasi di Calcolo

Stage 0

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : 0 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

0 m

Stage 1

Scavo

Muro di sinistra

Lato monte : -6.5 m Lato valle : -6.5 m

Linea di scavo di sinistra (Irregolare)

(-30;0) (-9.75;0) (0;-6.5)

Linea di scavo di destra (Orizzontale)

-6.5 m

Carichi

Carico lineare in superficie : SurfaceSurcharge

X iniziale : -20 m X finale : 0 m

Pressione iniziale : 10 kPa Pressione finale : 10 kPa

Stage 2

Scavo

Muro di sinistra

Lato monte : -6.5 m Lato valle : -6.5 m

Linea di scavo di sinistra (Irregolare) (-30;0)

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

(-9.75;0)

(0; -6.5)

Linea di scavo di destra (Orizzontale)

-6.5 m

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -20 m X finale : 0 m

Pressione iniziale : 10 kPa Pressione finale : 10 kPa

Elementi strutturali

Paratia : WallElement

X:0 m

Quota in alto : -6.4 m Quota di fondo : -14.4 m

Sezione: 100

Stage 3

Scavo

Muro di sinistra

Lato monte : -6.5 m Lato valle : -9.2 m

Linea di scavo di sinistra (Irregolare)

(-30;0) (-9.75;0) (0;-6.5)

Linea di scavo di destra (Irregolare)

(0;-9.2) (30;-10.2)

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -20 m X finale : 0 m

Pressione iniziale : 10 kPa Pressione finale : 10 kPa

Elementi strutturali

Paratia: WallElement

X : 0 m

Quota in alto : -6.4 m Quota di fondo : -14.4 m

Sezione: 100

Stage 4

Scavo

Muro di sinistra

Lato monte : -6.5 m Lato valle : -9.2 m

Linea di scavo di sinistra (Irregolare)

(-30;0) (-9.75;0)

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

(0; -6.5)

Linea di scavo di destra (Irregolare)

(0;-9.2)

(30;-10.2)

Carichi

Carico lineare in superficie: SurfaceSurcharge

X iniziale : -20 m X finale : 0 m

Pressione iniziale : 10 kPa Pressione finale : 10 kPa

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto: -6.4 m Quota di fondo: -14.4 m

Sezione: 100

13.4.4 Descrizione Coefficienti Design Assumption

Nome	Carichi	Carichi	Carichi	Carichi	Carico	Pressio	Pressio	Carichi	Carichi	Carichi	Carichi	Carichi	Carichi
	Permanenti	Permanenti	Variabili	Variabili	Sismico	ni	ni	Permane	Perman	Variabili	Permane	Perman	Variabili
	Sfavorevoli	Favorevoli	Sfavorevoli	Favorevoli	(F_seis	Acqua	Acqua	nti	enti	Destabili	nti	enti	Destabili
	(F_dead_load	(F_dead_loa	(F_live_load	(F_live_loa	m_load)	Lato	Lato	Destabili	Stabilizz	zzanti	Destabili	Stabilizz	zzanti
	_unfavour)	d_favour)	_unfavour)	d_favour)		Monte	Valle	zzanti	anti	(F_UPL_	zzanti	anti	(F_HYD_
						(F_Wat	(F_Wat	(F_UPL_	(F_UPL_	QDStab)	(F_HYD_	(F_HYD_	QDStab)
						erDR)	erRes)	GDStab)	GStab)		GDStab)	GStab)	
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
NTC2018:	1	1	1	1	0	1	1	1	1	1	1	1	1
SLE													
(Rara/Frequ													
ente/Quasi Permanente													
)													
NTC2018:	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
A1+M1+R1													
(R3 per													
tiranti)													
NTC2018:	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
A2+M2+R1													
NTC2018:	1	1	1	1	1	1	1	1	1	1	1	1	1
SISMICA STR		_	_										
NTC2018:	1	1	1	1	1	1	1	1	1	1	1.3	0.9	1
SISMICA GEO													
GEU													

Nome	Parziale su tan(ø') (F Fr)	Parziale su c' (F eff cohe)	Parziale su Su (F Su)	Parziale su qu (F qu)	Parziale su peso specifico (F gamma)
Simbolo	уф	γc	ycu	γqu	γγ
Nominal	1	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi	1	1	1	1	1
Permanente)					
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1	1	1	1
NTC2018: A2+M2+R1	1.25	1.25	1.4	1	1
NTC2018: SISMICA STR	1	1	1	1	1
NTC2018: SISMICA GEO	1	1	1	1	1

Nome	Parziale resistenza terreno (es.	Parziale resistenza Tiranti	Parziale resistenza Tiranti	Parziale elementi
	<pre>Kp) (F_Soil_Res_walls)</pre>	permanenti (F_Anch_P)	temporanei (F_Anch_T)	strutturali (F_wall)
Simbolo	γRe	үар	γat	

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Nome	Parziale resistenza terreno (es.	Parziale resistenza Tiranti	Parziale resistenza Tiranti	Parziale elementi
	Kp) (F_Soil_Res_walls)	permanenti (F_Anch_P)	temporanei (F_Anch_T)	strutturali (F_wall)
Simbolo	γRe	үар	γat	
Nominal	1	1	1	1
NTC2018: SLE	1	1	1	1
(Rara/Frequente/Quasi				
Permanente)				
NTC2018: A1+M1+R1 (R3 per	1	1.2	1.1	1
tiranti)				
NTC2018: A2+M2+R1	1	1.2	1.1	1
NTC2018: SISMICA STR	1	1.2	1.1	1
NTC2018: SISMICA GEO	1	1.2	1.1	1

13.4.5 Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4
NTC2018: SLE (Rara/Frequente/Quasi Permanente)	V	V	V	V	V
NTC2018: A1+M1+R1 (R3 per tiranti)	V	V	V	V	V
NTC2018: A2+M2+R1	V	V	V	V	V
NTC2018: SISMICA STR	V	V	V	V	V
NTC2018: SISMICA GEO	V	V	V	V	V

13.4.6 Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Tabella Inviluppi Momento WallElement

Selected Design Assumptions	Inviluppi: Momento	Muro: WallElement
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/m)
-6.4	0	0
-6.6	0	0
-6.8	0.26	0
-7	0.896	0
-7.2	2.027	0
-7.4	3.77	0
-7.6	6.242	0
-7.8	9.56	0
-8	13.842	0
-8.2	19.204	0
-8.4	25.766	0
-8.6	33.642	0
-8.8	42.952	0
-9	53.812	0
-9.2	66.34	0
-9.4	80.652	0
-9.6	96.178	0
-9.8	111.985	0
-10	127.69	0
-10.2	142.911	0
-10.4	157.264	0
-10.6	170.365	0
-10.8	181.831	0
-11	191.279	0
-11.2	198.325	0
-11.4	202.587	0
-11.6	203.681	0
-11.8	201.223	0
-12	194.83	0
-12.2	184.531	0
-12.4	170.867	0
-12.6	154.374	0
-12.8	135.588	0
-13	115.043	0
-13.2	93.268	0
-13.4	70.976	0
-13.6	49.21	0
-13.8	29.739	0
-14	14.079	0
-14.2	3.7	0

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

Selected Design Assumption	s Inviluppi: Momento	Muro: WallElement
Z (m)	Lato sinistro (kN*m/m) Lato destro (kN*m/m)
-14 4	n	0

Tabella Inviluppi Taglio WallElement

rabella inviluppi	ragilo waliEle	ment
Selected Design Assumptio	ns Inviluppi: Taglio	Muro: WallElement
Z (m)	Lato sinistro (kN/m)	Lato destro (kN/m)
-6.4	0	0
-6.6	1.298	0
-6.8	3.183	0
-7	5.655	0
-7.2	8.714	0
-7.4	12.359	0
-7.6	16.59	0
-7.8	21.409	0
-8	26.814	0
-8.2	32.806	0
-8.4	39.384	0
-8.6	46.549	0
-8.8	54.3	0
-9	62.638	0
-9.2	71.563	0
-9.4	77.627	0
-9.6	79.036	0
-9.8	79.036	0
-10	78.528	0
-10.2	76.103	0
-10.4	71.762	0
-10.6	65.505	0
-10.8	57.331	5.832
-11	47.24	13.424
-11.2	35.233	20.158
-11.4	21.309	27.552
-11.6	5.468	35.858
-11.8	0	43.21
-12	0	51.496
-12.2	0	68.325
-12.4	0	82.465
-12.6	0	93.928
-12.8	0	102.728
-13	0	108.874
-13.2	0	111.46
-13.4	0	111.46
-13.6	0	108.831
-13.8	0	97.355
-14	0	78.3
-14.2	0	51.894
-14.4	0	18.5

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption Stage Muro La	ato Inviluppo Spinta Reale Efficace / Spinta Passiva
	%
NTC2018: A2+M2+R1 Stage 3 Left Wall LE	FT 14.5
NTC2018: A2+M2+R1 Stage 3 Left Wall RIC	GHT 58.62

Inviluppo Spinta Reale Efficace / Spinta Attiva

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Attiva
				%
NTC2018: SLE (Rara/Frequente/Quasi Permanente) Stage 3	Left Wall	LEFT	102.83
NTC2018: A2+M2+R1	Stage 0	Left Wall	RIGHT	143.54

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD)
AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

13.4.7 Normative adottate per le verifiche degli Elementi Strutturali

Normative Verifiche

Calcestruzzo NTC
Acciaio NTC
Tirante NTC

Coefficienti per Verifica Tiranti

GEO FS 1 ξa3 1.8 γs 1.15

"TRATTO DA SAMARATE A CONFINE CON LA PROVINCIA DI NOVARA. STRALCIO FUNZIONALE DAL KM 6+500 (SVINCOLO SS N. 336 NORD) AL KM 8+844 (SVINCOLO AUTOSTRADA A8) – "BRETELLA DI GALLARATE"

RELAZIONE DI CALCOLO PARATIE DI DIAFRAMMI - PROGETTO ESECUTIVO

14 SOTTOSCRIZIONE DELL'ELABORATO DA PARTE DEL R.T.P

STUDIO CORONA S.r.I.	ECOPLAN S.r.I.
I.T. S.r.l. E&G S.r.l.	E&G S.r.l.
CONSORZIO UNING	ARKE' INGEGNERIA S.r.I.
SETAC S.r.l.	ING. RENATO DEL PRETE
DOTT. DANILO GALLO	

