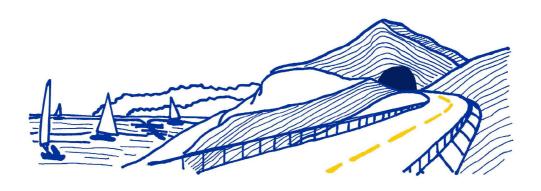


ANAS S.p.A.


anas Direzione Progettazione e Realizzazione Lavori

VARIANTE ALLA S.S.1 AURELIA (AURELIA BIS)
VIABILITA' DI ACCESSO ALL' HUB PORTUALE DI LA SPEZIA
INTERCONNESSIONE TRA I CASELLI DELLA A-12 E IL PORTO DI LA SPEZIA
3° LOTTO TRA FELETTINO E IL RACCORDO AUTOSTRADALE

PROGETTO ESECUTIVO DI STRALCIO E COMPLETAMENTO C - 3° TRATTO

PROGETTO ESECUTIVO

GE265

Mandataria

VISTO: IL RESPONSABILE DEL PROCEDIMENTO

RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE PROGETTISTA SPECIALISTA

IL COORDINATORE DELLA SICUREZZA IN FASE DI PROGETTAZIONE

Ing. Fabrizio CARDONE

DESCRIZIONE

REV.

Ing. Alessandro RODINO

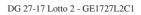
Ing. Alessandro RODINO

REDATTO

VERIFICATO

APPROVATO

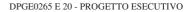

Dott. Domenico TRIMBOLI


OPERE MAGGIORI

GALLERIE ARTIFICIALI
GALLERIA ARTIFICIALE SCATOLARE LE FORNACI 2
SOTTOPASSO SCATOLARE - RELAZIONE DI CALCOLO

CODICE PROGETTO PROGETTO LIV. PROG. N. PROG. DPGE0265 E 20		NOME FILE 0000_P00GA03STRRE04_A		REVISION	NE SCALA:	
		CODICE POOGAO3STRRE02) 2 A	-	
				'	'	
С						
В						
Δ	FMISSIONE		Marzo 2021	M Barale	F Giraudo	A Rodino

DATA



IND	ICE			pag.
1.	GE	NERAI	LITÀ1	
2.	NO	RMAT	IVA DI RIFERIMENTO3	
3.	CA	RATTE	ERIZZAZIONE SISMICA5	
4.	CA	RATTE	ERISTICHE DEI MATERIALI6	
	4.1	Calco	estruzzo6	
	4.2	Acci	aio per armature ordinarie6	
5.	CR	ITERI (GENERALI DI PROGETTAZIONE7	
	5.1	Verit	fiche agli Stati Limite Ultimi (SLU)7	
		5.1.1	Resistenza a sforzo normale e flessione	
		5.1.2	Resistenza nei confronti di sollecitazioni taglianti8	
	5.2	Verit	fiche agli Stati Limite di Esercizio (SLE)10	
		5.2.1	Verifica di fessurazione	
		5.2.2	Verifica delle tensioni di esercizio11	
	5.3	Com	binazione delle azioni12	
6.	AN	ALISI	E MODELLAZIONE DELLO SCATOLARE13	
	6.1	Mod	ello di calcolo13	
	6.2	Anal	isi dei carichi14	
		6.2.1	Peso proprio (DEAD)14	
		6.2.2	Carichi permanenti non strutturali (PERM)14	
		6.2.3	Spinta idrostatica (SI)15	
		6.2.4	Spinta del terreno laterale (ST)15	
		6.2.5	Carichi mobili agenti sulla soletta di fondazione (Qv)17	
		6.2.6	Carichi mobili agenti sulla soletta di copertura (Qsup)	
		6.2.7	Spinte sulle pareti dovute ai carichi mobili (VAR Q)19	
		6.2.8	Azione sismica	
	6.3	Com	binazione delle azioni	
	6.4	Solle	ecitazioni31	
	6.5	Verif	fiche33	
		6.5.1	Sezioni di verifica indagate	
		6.5.2	Sezione di verifica A	

VARIANTE ALLA S.S.1 AURELIA (AURELIA BIS) - VIABILITA' DI ACCESSO ALL' HUB PORTUALE DI LA SPEZIA INTERCONNESSIONE TRA I CASELLI DELLA A-12 E IL PORTO DI LA SPEZIA - 3º LOTTO TRA FELETTINO E IL RACCORDO AUTOSTRADALE

DG 27-17	Lotto 2 -	GE17271	.2C1

6.5.3	Sezione di verifica B	39
6.5.4	Sezione di verifica C	47
6.5.5	Sezione di verifica D	55
6.5.6	Sezione di verifica E	60
6.5.7	Sezione di verifica F	68
6.5.8	Armatura secondaria solettone di copertura, piedritti e	solettone di
fondaz	zione	75

TRA FELETTINO E IL RACCORDO AUTOSTRADALE

DG 27-17 Lotto 2 - GE1727L2C1

1. Generalità

La presente Relazione viene redatta nell'ambito della redazione del Progetto Esecutivo di Completamento dello "Stralcio C" dei "Lavori di costruzione della variante alla S.S. 1 Aurelia (Aurelia bis), viabilità di accesso all'HUB portuale di La Spezia, interconnessione tra i caselli della A 12 e il porto di La Spezia – 3° Lotto tra Felettino ed il raccordo autostradale".

La presente relazione fa riferimento alla progettazione esecutiva di completamento della Galleria artificiale Fornaci II.

Trattandosi del Progetto di completamento di un'infrastruttura in avanzata fase realizzativa, nel seguito, dopo una generale descrizione dell'infrastruttura, si porrà l'attenzione e si descriveranno nel dettaglio lo stato di avanzamento dei lavori.

Nella progettazione delle opere e parti d'opera da realizzare, non si sono potuti apportare modifiche sostanziali alle opere così come precedentemente progettate ed autorizzate in sede di approvazione della Progettazione Definitiva e successivamente progettate nella sede della Progettazione Esecutiva e Costruttiva trasmesseci da ANAS SpA.

Non sono stati pertanto variati i tracciati stradali ed i dati di tracciamento delle opere, sia per l'asta principale che per gli svincoli.

Lo stato di avanzamento dei lavori è stato desunto dalla documentazione di As-Built trasmessaci.

Le indagini geognostiche e le relative risultanze sulle quali si basa l'attuale Progetto di completamento, fanno riferimento al complesso delle indagini programmate, svolte ed analizzate nella sede progettuale costruttiva precedente.

Nell'attuale Progetto di Completamento sono stati talvolta riportati, al fine di garantire la completezza e migliorare la comprensione del progetto, elaborati di As-Built relativi alle parti d'opera già realizzate trasmessi dalla Stazione appaltante.

In particolare, la presente relazione si riferisce al tratto di struttura scatolare, gettata in opera, da realizzarsi a cielo aperto in continuità con il tratto di galleria artificiale realizzata con diaframmi.

La struttura presenta una sezione rettangolare, in cui il solettone di copertura presenta una pendenza del 3%. Le dimensioni interne (in retto) sono pari a circa 13.33 m di base per un'altezza che passa dai 7.17m ai 6.77 m. Lo spessore del solettone di copertura, dei ritti e del solettone di fondazione sono pari rispettivamente a 1.20 m, 1.20 m e 1.50 m. Lo

scatolare ha una lunghezza complessiva pari a circa 20 m.

Le azioni considerate nel calcolo sono quelle tipiche di una struttura interrata con l'aggiunta delle azioni da traffico stradale per ponti di 1° Categoria agenti sia sulla soletta superiore che sulla soletta di fondazione.

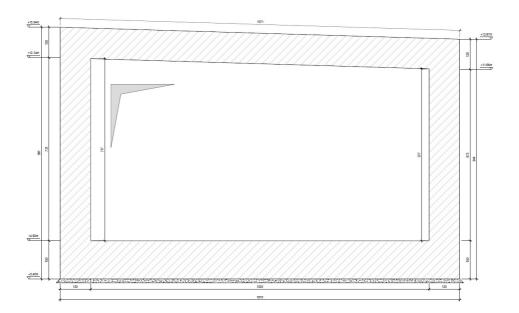


Figura 1.1: Sezione trasversale tipica dell'opera

La presente relazione, che integra la relazione descrittiva e di calcolo di variante (P00GA03STRRE01), illustra il calcolo di dettaglio e le verifiche strutturali dello scatolare in oggetto.

2. Normativa di riferimento

Con riferimento al quadro normativo di riferimento progettuale per le strutture, si evidenzia che, il D.M. 17/01/2018 "Aggiornamento delle «Norme tecniche per le costruzioni»", prevede, all'Art. 2 "Ambito di applicazione e disposizioni transitorie", che "per le opere pubbliche o di pubblica utilità in corso di esecuzione, per i contratti pubblici di lavori già affidati, nonché per i progetti definitivi o esecutivi già affidati prima della data di entrata in vigore delle norme tecniche per le costruzioni, si possono continuare ad applicare le previgenti norme tecniche per le costruzioni fino all'ultimazione dei lavori ed al collaudo statico degli stessi".

Pertanto, essendo l'attività da svolgere il progetto di completamento di opere già parzialmente realizzate il riferimento normativo di riferimento restano le Norme tecniche per le costruzioni» di cui al Decreto Ministeriale 14 gennaio 2008.

Per quanto sopra la normativa di riferimento per il calcolo e la verifica delle strutture risulta essere la seguente:

- Decreto 14 gennaio 2008 "Norme tecniche per le costruzioni".
- Circolare Ministero Infrastrutture e Trasporti n. 617 del 2 Febbraio 2009 "Istruzioni per l'applicazione delle Nuove Norme Tecniche per le costruzioni di cui al decreto ministeriale 14 Gennaio 2008".
- Legge 5 novembre 1971, n. 1086 Norme per la disciplina delle opere in conglomerato cementizio armato normale e precompresso ed a struttura metallica.
- Circolare Ministero dei Lavori pubblici 14 febbraio 1974, n.11951 Applicazione delle norme sul cemento armato.
- Eurocodici UNI EN 1990:2006; UNI EN 1991; UNI EN 1992; UNI EN 1993; UNI EN 1994; UNI EN 1997; UNI EN 1998
- Calcestruzzo specificazione, prestazione, produzione e conformità (UNI EN 2061:2006);
- UNI EN 1992-1-1:2005 EC 2: PROGETTAZIONE DELLE STRUTTURE DI CALCESTRUZZO:
- D.M. LL. PP. 11 marzo 1988 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere di fondazione" e le relative istruzioni (Circolare Ministero Lavori Pubblici 24 settembre 1988, N. 30483 Circolare Ministero Lavori Pubblici 9 gennaio 1996, N. 218/24/3).

- D.M. LL. PP. 14 febbraio 1992 "Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche" e le relative istruzioni (Circolare Ministero Lavori Pubblici 24 giugno 1993, N. 37406/STC).
- D.M. LL. PP. 9 gennaio 1996 "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche" e le relative istruzioni (Circolare Ministero Lavori Pubblici 15 ottobre 1996, N. 252).
- D.M. LL. PP. 16 gennaio 1996 "Norme tecniche relative ai «Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e dei sovraccarichi»" e le relative istruzio-ni (Circolare Ministero Lavori Pubblici 4 luglio 1996, N. 156AA.GG./STC).
- Legge 2 Febbraio 1974 n° 64 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- D.M. LL. PP. 16 gennaio 1996 "Norme tecniche per le costruzioni in zone sismiche" e le relative istruzioni (Circolare Ministero Lavori Pubblici 10 aprile 1997, N. 65/AA.GG.).
- Ordinanza n. 3274 20 marzo 2003 della Presidenza del Consiglio dei Ministri "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e normative tecniche per le costruzioni in zona sismica" e s.m.i.
- Presidenza del Consiglio dei Ministri Ordinanza n. 3519 del 28 Aprile 2006 "Criteri generali per l'individuazione delle zone sismiche e per la formazione e
 l'aggiornamento degli elenchi delle medesime zone".

3. Caratterizzazione sismica

L'azione sismica di progetto, in accordo con il D.M.14/01/2008, deriva dalla pericolosità sismica di base del sito che viene definita in termini di accelerazione orizzontale massima (ag) attesa in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (categoria A).

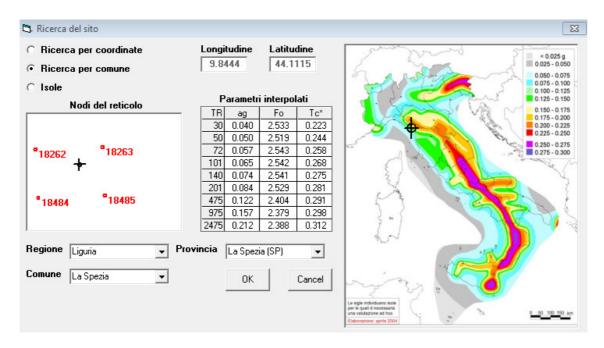


Figura 3.1: Individuazione del sito di costruzione

Vita nominale	$V_N = 50$ anni
Classe d'uso	III
Coefficiente d'uso	$C_{\rm U} = 1.5$
Categoria di sottosuolo	C
Categoria topografica	T1

L'accelerazione orizzontale massima al sito (su suolo rigido) risulta pari a:

$$a_g = 0.142g$$

Le condizioni locali del sito di costruzione dell'opera determinano:

Coefficiente di amplificazione stratigrafica	$S_S = 1.496$
Coefficiente di amplificazione topografica	$S_T = 1.000$

Tali coefficienti consentono di individuare l'accelerazione massima di progetto secondo la seguente espressione:

$$a_{\text{max}} = a_g \cdot S_S \cdot S_T = 0.212g$$

4. Caratteristiche dei materiali

Per la realizzazione delle opere oggetto della presente relazione saranno impiegati calcestruzzo di classe C28/35 e acciaio per cemento armato tipo B450C.

Le caratteristiche assunte per i materiali sono riassunte nelle tabelle seguenti.

4.1 Calcestruzzo

Conglomerato cementizio classe C28/35

Peso specifico	25.00	kN/m ³
Resistenza cubica caratteristica a compressione: R _{ck}	35	MPa
Resistenza cilindrica caratteristica a compressione: fck	28	MPa
Coefficiente riduttivo per resistenza di lunga durata: α_{cc}	0.85	
Coefficiente di sicurezza: γ_c	1.50	
Resistenza a compressione di progetto: fcd	15.87	MPa
Modulo elastico di Young istantaneo: Ecm	32308	MPa
Classe di esposizione (UNI EN 206-1)	XF2, XF3	
Minimo contenuto in cemento	≥280	kg/m ³
Massimo rapporto a/c	0.60	
Diametro massimo aggregato: D _{max}	20	mm
Consistenza (slump)	S4 (fluida)	

4.2 Acciaio per armature ordinarie

Acciaio da cemento armato tipo B450C

Tensione caratteristica di snervamento: f _{yk}	450	MPa
Tensione caratteristica di rottura: ftk	540	MPa
Deformazione ultima: (Agt)k	≥7.5%	
Coefficiente di sicurezza: γ _s	1.15	
Tensione di snervamento di progetto: fyd	391.30	MPa
Modulo elastico di Young: Es	210000	MPa

INTERCONNESSIONE TRA I CASELLI DELLA A-12 E IL PORTO DI LA SPEZIA - 3º LOTTO

DG 27-17 Lotto 2 - GE1727L2C1

5. Criteri generali di progettazione

Nel presente paragrafo sono illustrati i criteri impiegati per il dimensionamento strutturale delle opere civili previste per la realizzazione dello scatolare in accordo con quanto specificato al cap. 4 del D.M.14/01/2008.

5.1 Verifiche agli Stati Limite Ultimi (SLU)

Resistenza a sforzo normale e flessione 5.1.1

Per la valutazione della resistenza ultima delle sezioni nei confronti di sforzo normale e flessione, si adottano le seguenti ipotesi (par. 4.1.2.1.2 D.M.14/01/2008):

- conservazione delle sezioni piane;
- perfetta aderenza tra acciaio e calcestruzzo;
- resistenza a trazione del calcestruzzo nulla;
- rottura del calcestruzzo determinata dal raggiungimento della sua capacità deformativa ultima a compressione;
- rottura dell'armatura tesa determinata dal raggiungimento della sua capacità deformativa ultima.

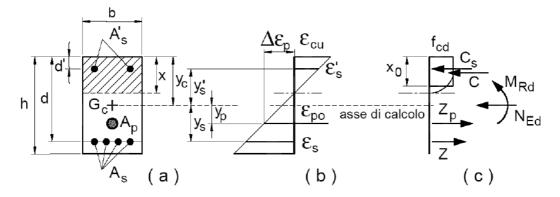


Figura 4.1.3- Sezione pressoinflessa

Con riferimento alla sezione presso-inflessa, la verifica di resistenza (SLU) si esegue controllando che:

$$M_{Rd} = M_{Rd} (N_{Ed}) \ge M_{Ed}$$

dove:

M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed};

N_{Ed} è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

M_{Ed} è il valore di calcolo della componente flettente dell'azione.

5.1.2 Resistenza nei confronti di sollecitazioni taglianti

Per la valutazione delle resistenze ultime nei confronti di sollecitazioni taglianti, si considera quanto segue (par. 4.1.2.3 D.M.14/01/2008):

Elementi senza armature trasversali resistenti a taglio

La resistenza a taglio VRd degli elementi strutturali sprovvisti di specifica armatura a taglio è stata valutata, utilizzando formule di comprovata affidabilità, sulla base della resistenza a trazione del calcestruzzo.

La verifica di resistenza (SLU) si pone con:

$$V_{Rd} > V_{Ed}$$

dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all'elemento fessurato da momento flettente, la resistenza al taglio si valuta con:

$$V_{Rd} = [0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp}] \cdot b_w \cdot d \ge (v_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w \cdot d$$

con:

k = 1 + $(200/d)^{1/2}$ ≤ 2 v_{min} = $0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$ e dove:

d è l'altezza utile della sezione (in mm);

 $\rho_1 = A_{sl}/(b_W \cdot d)$ è il rapporto geometrico di armatura longitudinale (≤ 0.02); $\sigma_{cp} = N_{Ed}/A_c$ è la tensione media di compressione nella sezione ($\leq 0.2 f_{cd}$);

bw è la larghezza minima della sezione (in mm).

Le armature longitudinali, oltre ad assorbire gli sforzi conseguenti alle sollecitazioni di flessione, devono assorbire quelli provocati dal taglio dovuti all'inclinazione delle fessure rispetto all'asse della trave, inclinazione assunta pari a 45°. In particolare, in corrispondenza degli appoggi, le armature longitudinali devono assorbire uno sforzo pari al taglio sull'appoggio.

Elementi con armature trasversali resistenti al taglio

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio è stata valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

 $1 \le \operatorname{ctg} \theta \le 2.5$

La verifica di resistenza (SLU) si pone con:

$$V_{Rd} \ge V_{Ed}$$

dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" si calcola con:

$$VRsd = 0.9 \cdot d \cdot (Asw/s \cdot fyd) \cdot (ctg\alpha + ctg\theta) \cdot sin\alpha$$

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" si calcola con:

$$VRcd = 0.9 \cdot d \cdot \alpha c \cdot f'cd \cdot (ctg\alpha + ctg\theta) / (1 + ctg2\theta)$$

La resistenza al taglio della trave è la minore delle due sopra definite:

dove d, bw e σcp hanno il significato già visto in precedenza e inoltre si è posto:

Asw area dell'armatura trasversale;

interasse tra due armature trasversali consecutive;

angolo di inclinazione dell'armatura trasversale rispetto all'asse della trave; resistenza a compressione ridotta del calcestruzzo d'anima (f 'cd = $0.5 \cdot$ fcd); f 'cd

coefficiente maggiorativo pari a: αc

1	per membrature non compresse
$1 + \sigma cp / fcd$	per $0 \le \sigma cp < 0.25$ fcd
1.25	per $0.25 \text{ fcd} \le \sigma \text{cp} \le 0.5 \text{ fcd}$
2.5 (1 - σcp /fcd)	per 0.5 fcd $<\sigma$ cp $<$ 0.5 fcd

Le armature longitudinali, dimensionate in base alle sollecitazioni flessionali, dovranno essere prolungate di una misura pari a:

$$a_1 = 0.9 \cdot d \cdot (ctg\theta + ctg\alpha) / 2 \ge 0$$

5.2 Verifiche agli Stati Limite di Esercizio (SLE)

5.2.1 Verifica di fessurazione

Per assicurare la funzionalità e la durata delle strutture è necessario:

- realizzare un sufficiente ricoprimento delle armature con calcestruzzo di buona qualità e compattezza, bassa porosità e bassa permeabilità;
- non superare uno stato limite di fessurazione adeguato alle condizioni ambientali, alle sollecitazioni ed alla sensibilità delle armature alla corrosione;
- tener conto delle esigenze estetiche.
- In ordine di severità crescente si distinguono i seguenti stati limite:
 - a) stato limite di decompressione nel quale, per la combinazione di azioni prescelta, la tensione normale è ovunque di compressione ed al più uguale a 0;
 - b) stato limite di formazione delle fessure, nel quale, per la combinazione di azioni prescelta, la tensione normale di trazione nella fibra più sollecitata è:

$$\sigma_{\rm t} = \frac{{\rm f}_{\rm ctm}}{1.2}$$

c) stato limite di apertura delle fessure nel quale, per la combinazione di azioni prescelta, il valore limite di apertura della fessura calcolato al livello considerato è pari ad uno dei seguenti valori nominali:

$$w_1 = 0.2 \text{ mm}$$

 $w_2 = 0.3 \text{ mm}$
 $w_3 = 0.4 \text{ mm}$

Lo stato limite di fessurazione deve essere fissato in funzione delle condizioni ambientali e della sensibilità delle armature alla corrosione.

Le condizioni ambientali, ai fini della protezione contro la corrosione delle armature metalliche, possono essere suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato nella tabella seguente (Tab. 4.1.III D.M.14/01/2008):

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE	
Ordinarie	X0, XC1, XC2, XC3, XF1	
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3	
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4	

In riferimento alla possibile corrosione causata da gelo e agenti antigelo la classe di esposizione da considerare per le strutture oggetto della presente relazione è la XF2 per i ritti e la XF3 per il solettone di copertura e il solettone di fondo.

Le armature si distinguono in due gruppi:

- armature sensibili;
- armature poco sensibili.

Gli acciai ordinari utilizzati nella struttura in esame appartengono al secondo gruppo. Nella tabella seguente si riportano per completezza anche i limiti di apertura delle fessure in funzione delle condizioni ambientali e della sensibilità delle armature (Tab. 4.1.IV D.M.14/01/2008):

Tabella 4.1.IV - Criteri di scelta dello stato limite di fessurazione

Cumpi di	Condizioni Combinazione		Armatura			
Gruppi di esigenze	ambientali	Combinazione	Sensibile		Poco sensibile	
	amolentan	di azioni	Stato limite	$\mathbf{w_d}$	Stato limite	$\mathbf{w_d}$
	Ordinarie	frequente	ap. fessure	\leq W ₂	ap. fessure	\leq W ₃
a	Ordinarie	quasi permanente	ap. fessure	\leq w ₁	ap. fessure	\leq W ₂
15	Aconomisto	frequente	ap. fessure	\leq W ₁	ap. fessure	\leq W ₂
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	\leq w ₁
с	Molto accressive	frequente	formazione fessure	-	ap. fessure	\leq w ₁
	Molto aggressive	quasi permanente	decompressione	-	ap. fessure	\leq w ₁

5.2.2 Verifica delle tensioni di esercizio

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si verifica che tali tensioni siano inferiori ai massimi valori consentiti di seguito riportati.

Tensione massima di compressione del calcestruzzo nelle condizioni di esercizio

La massima tensione di compressione del calcestruzzo \Box c, deve rispettare la limitazione seguente:

 $\sigma c < 0.60$ fck per combinazione caratteristica (rara) $\sigma c < 0.45$ fck per combinazione quasi permanente.

Tensione massima dell'acciaio in condizioni di esercizio

Per l'acciaio la tensione massima σ_s , per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

 σ s < 0.80 fyk.

5.3 Combinazione delle azioni

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni, in accordo con il par. 2.5.3 del D.M.14/01/2008.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

dove:

- G₁ è il peso proprio di tutti gli elementi strutturali; peso proprio del terreno, quando pertinente; forze indotte dal terreno (esclusi gli effetti di carichi variabili applicati al terreno); forze risultanti dalla pressione dell'acqua (quando si configurino costanti nel tempo);
- G₂ è il peso proprio di tutti gli elementi non strutturali;
- Q sono le azioni variabili;
- E sono le azioni sismiche;
- A_d sono le azioni eccezionali;
- γ_G e γ_Q sono i coefficienti parziali di sicurezza delle azioni;
- ψ_i sono i coefficienti di combinazione dei carichi variabili.

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Qkj che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G₂.

I valori dei coefficienti parziali di sicurezza e dei coefficienti di combinazione adottati in fase di analisi sono specificati nei paragrafi successivi.

6. Analisi e modellazione dello scatolare

Nel presente capitolo si riportano il calcolo e le principali verifiche relative al sottopasso scatolare.

6.1 Modello di calcolo

L'analisi dello stato tensionale e di deformazione dovuto alle combinazioni di carico di progetto è stato analizzato tramite modellazioni agli elementi finiti realizzate con il programma di calcolo SAP2000 Advanced. In particolare il dimensionamento degli elementi strutturali dell'opera è stato effettuato utilizzando un modello di calcolo piano, costituito da un telaio rettangolare chiuso, rappresentativo di una striscia di scatolare di larghezza unitaria (1.0m). I piedritti, il solettone di copertura e il solettone di fondo sono stati modellati da elementi finiti monodimensionali Frames, posti in corrispondenza della linea media.

Si sono considerati infinitamente rigidi e resistenti i nodi di intersezione tra i piedritti e il solettone di copertura e di fondo.

L'elemento trave che rappresentante il solettone di fondo è stato schematizzato come trave su suolo elastico (suddivisa in sotto-elementi finiti di lunghezza opportuna) con costante di Winkler assunta pari a:

 $k = 10 000 \text{ kN/m}^3$.

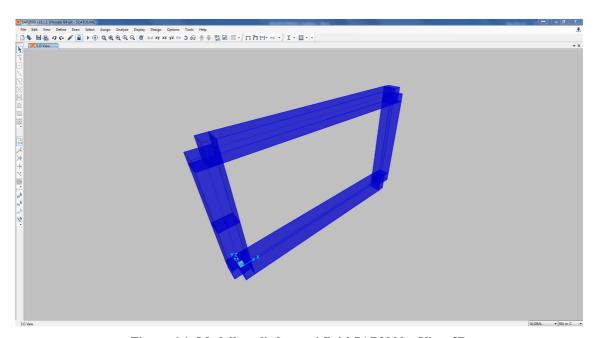


Figura 6.1: Modello agli elementi finiti SAP2000 – Vista 3D

6.2 Analisi dei carichi

Il modello di calcolo realizzato è soggetto ad azioni esterne definite con gli usuali criteri di determinazione dei carichi. Si elencano di seguito i casi di carico elementari che costituiscono l'input nel programma di calcolo.

6.2.1 Peso proprio (DEAD)

Il programma di calcolo considera automaticamente il peso proprio degli elementi strutturali in funzione delle sezioni assegnate e del peso specifico del materiale valutato in ragione di 25 kN/m³.

6.2.2 Carichi permanenti non strutturali (PERM)

Il carico permanente sui solettoni di copertura e di fondo è costituito dal peso del ricoprimento valutato in ragione di 20 kN/m³.

Lo spessore medio del ricoprimento del solettone di copertura è pari a 1.00m, dunque:

$$q_{ricoprim.1.0m} = 20 \text{ x } 1.00 = 20.00 \text{ kN/m}^2$$

Lo spessore medio del ricoprimento di del solettone di fondo è pari a 0.80m, dunque:

$$q_{ricoprim.0.8m} = 20 \text{ x } 0.80 = 16.00 \text{ kN/m}^2$$

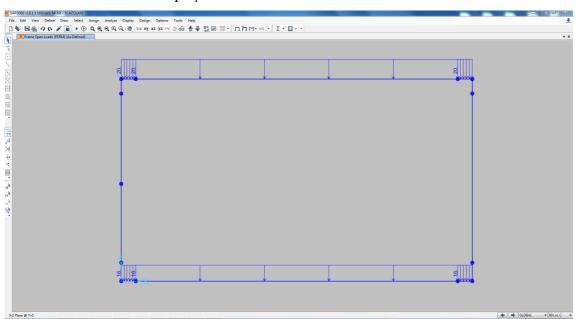


Figura 6.2: Load pattern: PERM

6.2.3 Spinta idrostatica (SI)

La spinta idrostatica esercitata dall'acqua di falda sui ritti, in condizioni di esercizio dell'opera, è modellata mediante una distribuzione lineare di pressioni a partire dalla quota del livello statico di falda assunta a +12.00 m s.l.m. (cioè a quota +8.5 m da intradosso fondazione).

La distribuzione della pressione idrostatica sulle pareti assume i valori sottostanti.

$$p_{w} = (1-K_{0}) \gamma_{w} z$$

Pressione alla quota +3.5 m s.l.m agente sul ritto sinistro dello scatolare:

$$p_{w,sx} = 0.5 \times 10 \times 4.00 = 20.00 \text{ kN/m/m}$$

Pressione alla quota +3.5 m s.l.m agente sul ritto destro dello scatolare:

$$p_{w,dx} = 0.5 \times 10 \times 8.50 = 42.50 \text{ kN/m/m}$$

6.2.4 Spinta del terreno laterale (ST)

La spinta del terreno è valutata in base alle caratteristiche geotecniche del terreno di riempimento ed è calcolata con riferimento al valore del coefficiente di spinta a riposo (K_0) . Si assume, per la suddetta opera:

$$\gamma_t = 20 \text{ kN/m}^3;$$

 $\phi' = 30^\circ;$
 $c' = 0 \text{ kN/m}^2.$

Pertanto, il coefficiente di spinta a riposo vale:

$$K_0 = 0.500$$

La distribuzione delle pressioni orizzontali sui ritti viene determinata con la seguente formula:

$$p_t = K_0 \gamma_t z$$

La distribuzione delle pressioni è un diagramma trapezoidale a partire dalla sommità del ritto.

Pressione del terreno alla quota +3.5 m s.l.m agente sul ritto sinistro dello scatolare:

$$p_{t.sx} = 0.5 \times 20 \times 4.00 = 40.00 \text{ kN/m/m}$$

Pressione del terreno alla quota +3.5 m s.l.m agente sul ritto destro dello scatolare:

$$p_{t,dx} = 0.5 \times 20 \times 8.50 = 85.00 \text{ kN/m/m}$$

Al modello di calcolo si assegnano la spinta idrostatica e la spinta del terreno laterale allo stesso caso di carico.

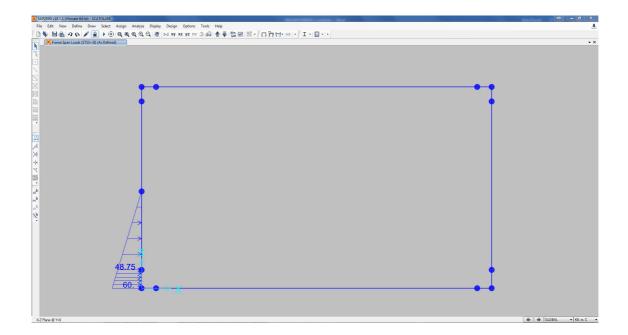


Figura 6.3: Spinta idrostatica e spinta del terreno laterale piedritto sx (STSX+SI)

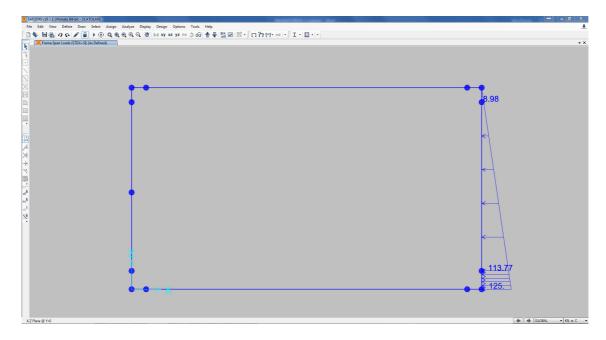


Figura 6.4: Spinta idrostatica e spinta del terreno laterale piedritto dx (STDX+SI)

6.2.5 Carichi mobili agenti sulla soletta di fondazione (Qv)

Con riferimento allo schema di carico 1 riportato al punto 5.1.3.3.2 di cui al D.M. 14/01/2008, si prendono in considerazione tre corsie convenzionali di carico. Si considera il carico trasmesso dalle impronte dello Schema di Carico 1 e una diffusione a 30° nello spessore del ricoprimento e a 45° fino alla mezzeria della soletta di fondazione (0.8m di ricoprimento e 1.5m di soletta di fondo).

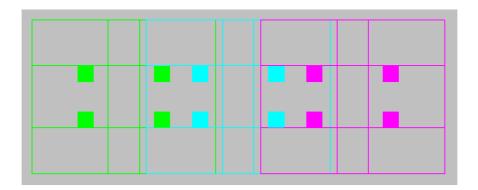


Figura 6.5: Diffusione impronte di carico schema di carico 1 agenti sulla soletta di fondazione

In via semplificata si è assunto un carico uniformemente distribuito pari alla somma dei carichi di tutte le impronte diviso l'area totale di diffusione, si somma poi il carico distribuito delle tre corsie convenzionali. Considerando il metro maggiormente caricato si è assunto cautelativamente un carico uniformemente distribuito pari a 35.00 KN/m/m.

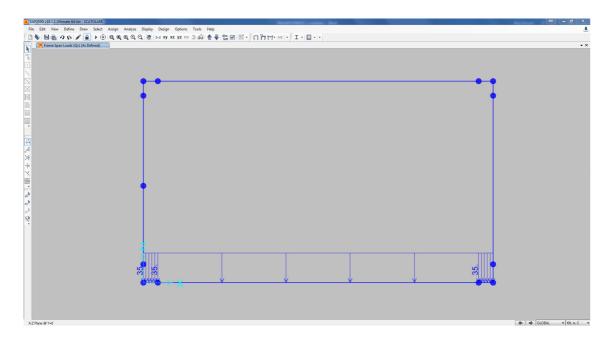


Figura 6.6: Distribuzione del carico mobile sulla soletta di fondazione (Qv)

6.2.6 Carichi mobili agenti sulla soletta di copertura (Qsup)

Con riferimento allo schema di carico 1 riportato al punto 5.1.3.3.2 di cui al D.M. 14/01/2008, si prendono in considerazione tre corsie convenzionali di carico. Considerando il carico trasmesso dalle impronte dello Schema di Carico 1 e considerando una diffusione a 30° nello spessore del ricoprimento e a 45° fino alla mezzeria della soletta di fondazione (1.0m di ricoprimento e 1.2m di soletta di fondo).

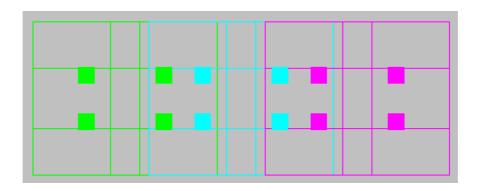


Figura 6.7: Diffusione impronte di carico schema di carico 1 agenti sulla soletta di copertura

In via semplificata si è assunto un carico uniformemente distribuito pari alla somma dei carichi di tutte le impronte diviso l'area totale di diffusione, si somma poi il carico distribuito delle tre corsie convenzionali. Considerando il metro maggiormente caricato si è assunto cautelativamente un carico uniformemente distribuito pari a 35.00 KN/m/m.

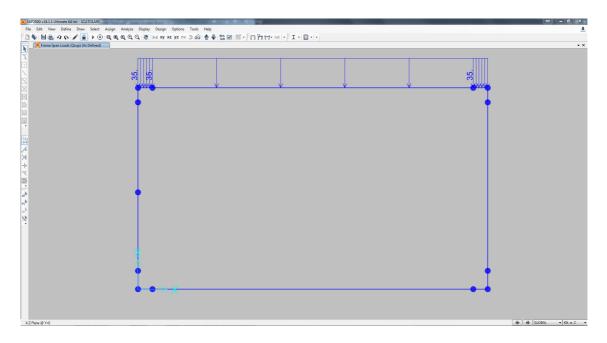


Figura 6.8: Distribuzione del carico mobile sulla soletta di copertura (Qsup)

6.2.7 Spinte sulle pareti dovute ai carichi mobili (VAR Q)

La presenza dei carichi mobili ai lati della struttura comporta la presenza di una spinta orizzontale sulle pareti della stessa. Per la valutazione di tale spinta si è fatto riferimento, come per la spinta litostatica, al coefficiente di spinta a riposo.

Conformemente a quanto previsto al par. C5.1.3.3.7.1 dalle "Istruzioni per l'applicazione delle Norme Tecniche per le Costruzioni", il carico verticale agente su rilevati e terrapieni adiacenti ai ponti può essere assunto pari allo Schema di Carico 1, in cui per semplicità, i carichi tandem possono essere sostituiti da carichi uniformemente distribuiti equivalenti, applicati su una superficie rettangolare larga 3.0 m e lunga 2.20 m (si assume una diffusione del carico all'interno del rilevato con angolo 45°). La pressione orizzontale agente sui ritti a distribuzione delle pressioni è un diagramma trapezoidale a partire dalla sommità del ritto, per semplicità e cautelativamente si assume una distribuzione costante lungo il ritto.

La distribuzione delle pressioni orizzontali sui ritti viene determinata con la seguente formula:

$$p_{VAR Q} = K_0 \cdot \gamma = 0.5 \times 20 = 10 \text{kN/m}^2$$

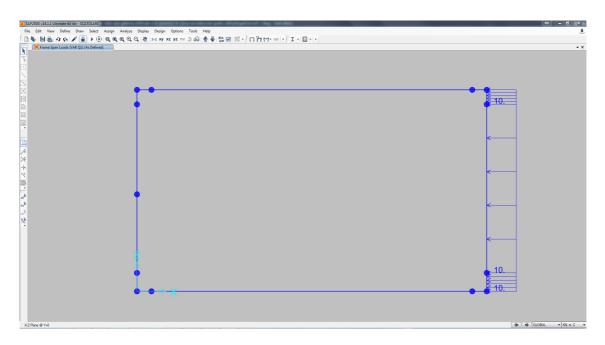


Figura 6.9: Distribuzione del carico mobile sul ritto di destra (VAR Q1)

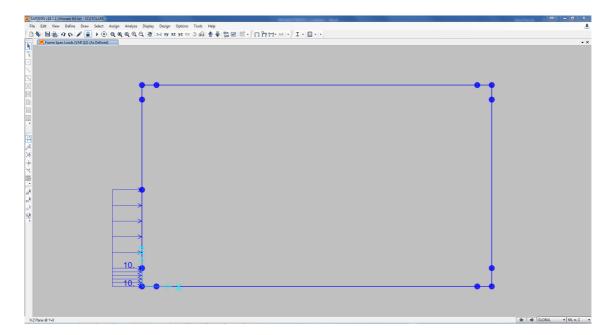


Figura 6.10: Distribuzione del carico mobile sul ritto di sinistra (VAR Q2)

6.2.8 Azione sismica

L'analisi sismica della struttura è condotta con il metodo pseudo-statico in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico K.

L'azione sismica comporta due contributi: l'azione inerziale agente sulle masse considerate attive e la spinta del terreno in condizione sismica.

Azioni inerziali (Ex - Ez)

Per quanto attiene alle forze inerziali originate dalle masse proprie degli elementi strutturali e dei carichi permanenti portati sono rappresentate da un insieme di forze orizzontali e verticali applicate staticamente alla struttura di intensità pari al prodotto del peso degli elementi per il coefficiente sismico Kh e Kv nel rispetto dei principi dell'analisi statica lineare.

$$K_h = a_g * S_S * S_T / g = 0.142g * 1.496 * 1 / g = 0.2124$$

$$K_v = \pm 0.5 * K_h = 0.1062$$

Le masse considerate sono quelle dei due ritti, della soletta di copertura e del carico permanente da essa portato. Non si considerano attive le masse associate ai carichi mobili.

Masse attive

 $M_{copertura}$ = 15.7m x 1.2m x 25kN/m³ = 471 kN/m M_{ritti} = 8.5m x 1.2m x 25Kn/m³ = 255 kN/m $M_{copertura,perm}$ = 15.7m x 1.0m x 20kN/m³ = 471 kN/m

Azioni inerziali orizzontali

 $E_{x,inerziali,copertura} = (255/2 + 314) \times 0.2124 = 94 \text{ kN/m}$ $E_{x,inerziali,ritti} = 255 \times 0.2124 = 54 \text{ kN/m}$

Azioni inerziali verticali

 $E_{z,inerziali,copertura} = (255/2 + 314) \times 0.1062 = 47 \text{ kN/m}$

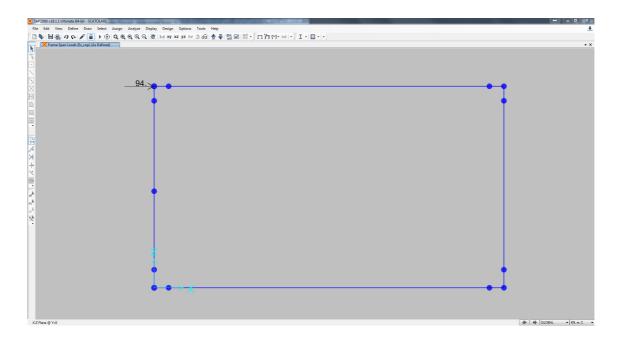


Figura 6.11: Azione inerziale sismica copertura (Ex_cop)

 $E_{x,inerziali,ritti} = 54 \text{ kN/m} / 8.35\text{m} = 6.49 \text{ kN/m/m}$

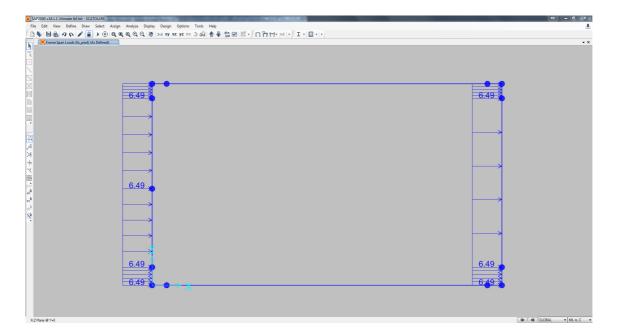


Figura 6.12: Azione inerziale sismica piedritti (Ex-pied)

 $E_{z,inerziali,copertura} = 47 \text{ kN/m} / 14.5 \text{m} = 3.23 \text{ kN/m/m}$

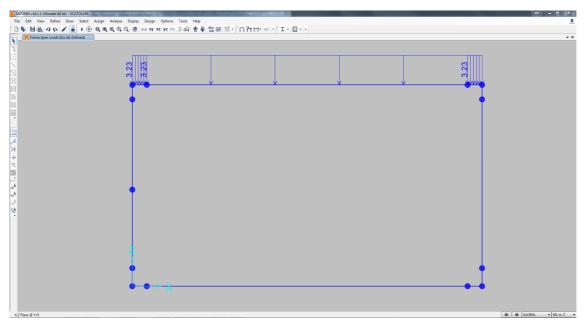


Figura 6.13: Azione inerziale verticale (Ez)

Spinta del terreno (SST)

Per quanto concerne la valutazione delle spinte delle terre agenti sui piedritti in condizioni sismiche, la pressione esercitata dal terreno contro la struttura è stata calcolata considerando l'interazione struttura-terreno. Sul ritto sopravento si considerano

INTERCONNESSIONE TRA I CASELLI DELLA A-12 E II. PORTO DI LA SPEZIA - 3º LOTTO

DG 27-17 Lotto 2 - GE1727L2C1

simultaneamente agenti:

- 1) Un carico distribuito variabile linearmente determinato con riferimento al coefficiente di spinta a riposo del terreno;
- 2) Un carico distribuito costante, determinato secondo la teoria di Wood, simulante l'incremento di spinta del terreno per effetto del sisma (il carico definito tiene debitamente conto anche della presenza di una aliquota del sovraccarico variabile simulante i convogli ferroviari). Tale carico assume la seguente espressione:

$$\Delta S_{E} = (a_{max}/g) \cdot \gamma \cdot H^{2}$$

 $p_{wood,SSDX} = a_g \ x \ S_S \ x \ S_T \ x \ \gamma \ x \ H/\ g = 0.2124 g * 20 kN/m^3 * (8.35 m)^2/g = 298 kN/m$ $p_{\text{wood,SSSX}} = a_g \times S_S \times S_T \times \gamma \times H/g = 0.2124g*20kN/m^3*(4m)^2/g = 68kN/m$

Incremento di spinta idrodinamica (SSI)

Si è assunto in via semplificata un diagramma delle pressioni lineare, avente il seguente valore (secondo quanto riportato nell'Eurocodice 8 UNI EN 1998:5-2005):

$$p_{\rm w} = 7/8 * \gamma_{\rm w} * k_h * (h*z)^{0.5}$$

 $p_{w,z=8.35m} = 7/8 \times 10 \text{kN/m}^3 \times 0.2124 \times (8.35m \times 8.35m)^{0.5} = 15.52 \text{ kN/m}$ $p_{w,z=4.00m} = 7/8 \times 10 \text{kN/m}^3 \times 0.2124 \times (4.00 \text{m} \times 4.00 \text{m})^{0.5} = 7.43 \text{kN/m}$

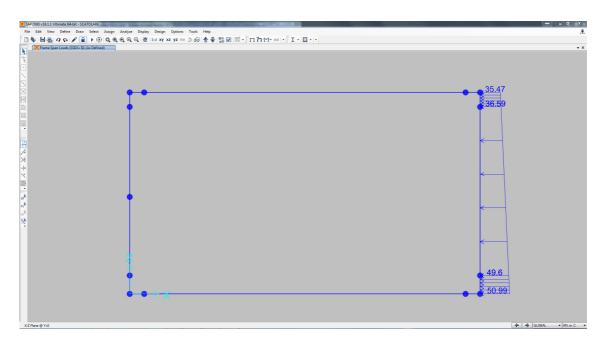


Figura 6.14: Spinta sismica del terreno e incremento di spinta idrodinamica piedritto dx (SSDX+SI)

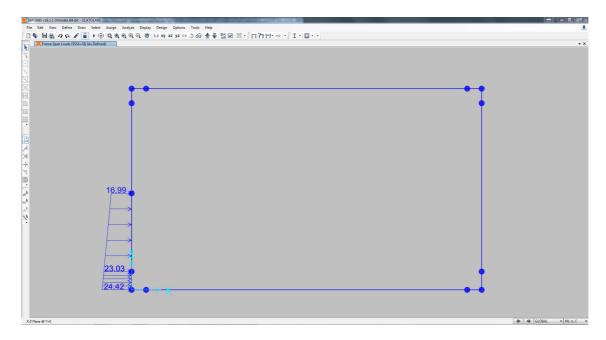


Figura 6.15: Spinta sismica del terreno e incremento di spinta idrodinamica piedritto sx (SSSX+SI)

Casi di carico e tipologie di analisi eseguite

La seguente Tabella riporta le analisi eseguite per i singoli casi di carico elementari specificandone la tipologia.

Tabella 1: Load Case Definitions

TABLE: Load Ca	ase Definitions	
Case	Туре	Notes
Text	Text	Text
DEAD	LinStatic	Peso proprio
PERM	LinStatic	Peso del ricoprimento
STSX+SI	LinStatic	Spinta idrostatica e spinta del terreno laterale piedritto sx
STDX+SI	LinStatic	Spinta idrostatica e spinta del terreno laterale piedritto dx
Qv	LinStatic	Carico mobile soletta di fondazione
Qsup	LinStatic	Carico mobile soletta di copertura
VAR Q1	LinStatic	Carico mobile piedritto dx
VAR Q2	LinStatic	Carico mobile piedritto sx
Ex_cop	LinStatic	Azione inerziale sismica soletta di copertura
Ex_pied	LinStatic	Azione inerziale sismica piedritti
Ez	LinStatic	Azione inerziale verticale
SSDX+SI	LinStatic	Spinta sismica del terreno e incremento di spinta idrodinamica piedritto dx
SSSX+SI	LinStatic	Spinta sismica del terreno e incremento di spinta idrodinamica piedritto sx

Si specifica che con "LinStatic" si intende un'analisi statica lineare.

6.3 Combinazione delle azioni

I coefficienti di amplificazione dei carichi e i coefficienti di combinazione per le diverse combinazioni di carico da adottare in fase di analisi sono riportati nelle tabelle seguenti. In particolare, con riferimento alle verifiche strutturali condotte nei riguardi delle combinazioni SLU, si fa riferimento ai coefficienti parziali di sicurezza indicati per la combinazione "A1 STR".

I coefficienti di amplificazione da adottare per i carichi agenti sullo scatolare sono riportati nella tabella seguente (Tab. 5.1.V D.M.14/01/2008).

Tabella 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γ _Q	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2}, \gamma_{\epsilon 3}, \gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

I coefficienti di amplificazione da adottare per i carichi variabili da traffico sono riportati nelle tabelle seguenti (Tab. 5.1.VI D.M.14/01/2008).

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

INTERCONNESSIONE TRA I CASELLI DELLA A-12 E IL PORTO DI LA SPEZIA - 3° LOTTO

Tabella 5.1.VI - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente \psi_0 di combinazione	Coefficiente ψ 1 (valori frequenti)	Coefficiente ψ (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
Azioni da traffico (Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	Vento a ponte scarico			
/	SLU e SLE	0,6	0,2	0,0
Vento q_5	Esecuzione	0,8		0,0
	Vento a ponte carico	0,6		
Nove a	SLU e SLE	0,0	0,0	0,0
Neve q_5	esecuzione	0,8	0,6	0,5
Temperatura	T _k	0,6	0,6	0,5
	1	-		

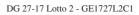
Nella seguente Tabella si riassumono tutte le condizioni di carico precedentemente elencate con indicati i relativi coefficienti parziali assunti in fase di analisi.

Tabella 2: Coefficienti di combinazione dei casi di carico elementari

Load Case	γ	Ψ ₀	Ψ1	Ψ2
DEAD	1.00/1.35	ı	ı	=
PERM	1.00/1.50	1	-	=
STSX+SI	1.00/1.35	1	-	=
STDX+SI	1.00/1.35	-	-	-
Qv	0.00/1.35	0.75	0.75	-
Qsup	0.00/1.35	0.75	0.75	-
VAR Q1	0.00/1.35	0.75	0.75	-
VAR Q2	0.00/1.35	0.75	0.75	=

Le verifiche in combinazione sismica (SLV) per la struttura in esame risultano meno gravose delle verifiche in condizione statica (SLU). Tali verifiche non vengono pertanto riportate ai fini della presente relazione in quanto non dimensionanti.

Nella seguente Tabella si riportano le combinazioni dei carichi impiegate in fase di analisi.


Tabella 3: Load Combination Definitions

ComboName	ComboType		CaseName	ScaleFactor
Text	Text	Text	Text	Unitless
SLU 01	Linear Add	Linear Static	DEAD	1.35
SLU_01	Linear Add	Linear Static	PERM	1.5
SLU_01		Linear Static	STSX+SI	1.35
SLU_01		Linear Static	STDX+SI	1.55
SLU_01		Linear Static	Qv	1.35
SLU_01		Linear Static	Qsup	1.01
SLU_01		Linear Static	VAR Q1	1.01
SLU_01		Linear Static	VAR Q2	1.01
SLU_01 SLU_02	Linear Add	Linear Static	DEAD	1.35
SLU_02 SLU_02	Lilleal Auu	Linear Static	PERM	1.5
SLU_02 SLU_02		Linear Static	STSX+SI	1.3
SLU_02		Linear Static	STDX+SI	1.35
SLU_02 SLU_02		Linear Static		1.35
			Qv	
SLU_02		Linear Static	Qsup	1.01
SLU_02		Linear Static	VAR Q1	1.01
SLU_02	Limanu Add	Linear Static	VAR Q2	1.01
SLU_03	Linear Add	Linear Static	DEAD	1.35
SLU_03		Linear Static	PERM	1.5
SLU_03		Linear Static	STSX+SI	1
SLU_03			STDX+SI	1 1
SLU_03		Linear Static	Qv	1.35
SLU_03		Linear Static	Qsup	1.01
SLU_03		Linear Static	VAR Q1	1.01
SLU_03	11	Linear Static	VAR Q2	1.01
SLU_04	Linear Add	Linear Static	DEAD	1.35
SLU_04		Linear Static	PERM	1.5
SLU_04		Linear Static	STSX+SI	1.35
SLU_04		Linear Static	STDX+SI	1.35
SLU_04		Linear Static	Qv	1.35
SLU_04		Linear Static	Qsup	1.01
SLU_04		Linear Static	VAR Q1	1.01
SLU_04		Linear Static	VAR Q2	1.01
SLU_05	Linear Add	Linear Static	DEAD	1.35
SLU_05		Linear Static	PERM	1.5
SLU_05		Linear Static	STSX+SI	1.35
SLU_05		Linear Static	STDX+SI	1
SLU_05		Linear Static	Qv	1.01
SLU_05		Linear Static	Qsup	1.35
SLU_05		Linear Static	VAR Q1	1.01
SLU_05		Linear Static	VAR Q2	1.01
SLU_06	Linear Add	Linear Static	DEAD	1.35
SLU_06		Linear Static	PERM	1.5
SLU_06		Linear Static	STSX+SI	1
SLU_06		Linear Static	STDX+SI	1.35
SLU_06		Linear Static	Qv	1.01
SLU_06		Linear Static	Qsup	1.35
SLU_06		Linear Static	VAR Q1	1.01
SLU_06		Linear Static	VAR Q2	1.01
SLU_07	Linear Add	Linear Static	DEAD	1.35
SLU_07		Linear Static	PERM	1.5
SLU_07		Linear Static	STSX+SI	1
SLU_07		Linear Static	STDX+SI	1
SLU_07		Linear Static	Qv	1.01
SLU_07		Linear Static	Qsup	1.35
SLU_07		Linear Static	VAR Q1	1.01
SLU_07		Linear Static	VAR Q2	1.01
SLU_08	Linear Add	Linear Static	DEAD	1.35
SLU_08		Linear Static	PERM	1.5
SLU_08		Linear Static	STSX+SI	1.35
SLU_08		Linear Static	STDX+SI	1.35
SLU_08		Linear Static	Qv	1.01
SLU_08		Linear Static	Qsup	1.35
SLU 08		Linear Static	VAR Q1	1.01
			VAR Q2	

	ination Defin			
ComboName		CaseType		ScaleFactor
Text	Text	Text	Text	Unitless
SLU_09	Linear Add	Linear Static	DEAD	1.35
SLU_09		Linear Static	PERM	1.5
SLU_09		Linear Static	STSX+SI	1.35
SLU_09		Linear Static	STDX+SI	1 01
SLU_09		Linear Static	Qv	1.01
SLU_09		Linear Static	Qsup VAR Q1	1.01 1.35
SLU_09		Linear Static	VAR Q1	1.01
SLU_09 SLU_10	Linear Add	Linear Static	DEAD	1.01
SLU_10	Lilleal Auu	Linear Static	PERM	1.55
SLU 10		Linear Static	STSX+SI	1.3
SLU 10		Linear Static	STDX+SI	1.35
SLU 10		Linear Static	Qv	1.01
SLU 10		Linear Static	Qsup	1.01
SLU 10		Linear Static	VAR Q1	1.35
SLU 10		Linear Static	VAR Q2	1.01
SLU 11	Linear Add	Linear Static	DEAD	1.35
SLU 11		Linear Static	PERM	1.5
SLU 11		Linear Static	STSX+SI	1
SLU 11		Linear Static	STDX+SI	1
SLU 11		Linear Static	Qv	1.01
SLU 11		Linear Static	Qsup	1.01
SLU 11		Linear Static	VAR Q1	1.35
SLU_11		Linear Static	VAR Q2	1.01
SLU_12	Linear Add	Linear Static	DEAD	1.35
SLU_12		Linear Static	PERM	1.5
SLU_12		Linear Static	STSX+SI	1.35
SLU_12		Linear Static	STDX+SI	1.35
SLU_12		Linear Static	Qv	1.01
SLU_12		Linear Static	Qsup	1.01
SLU_12		Linear Static	VAR Q1	1.35
SLU_12		Linear Static	VAR Q2	1.01
SLU_13	Linear Add	Linear Static	DEAD	1.35
SLU_13		Linear Static	PERM	1.5
SLU_13		Linear Static	STSX+SI	1.35
SLU_13		Linear Static	STDX+SI	1
SLU_13		Linear Static	Qv	1.01
SLU_13		Linear Static	Qsup	1.01
SLU_13		Linear Static	VAR Q1	1.01
SLU_13		Linear Static	VAR Q2	1.35
SLU_14	Linear Add	Linear Static	DEAD	1.35
SLU_14		Linear Static	PERM	1.5
SLU_14		Linear Static	STSX+SI	1
SLU_14		Linear Static	STDX+SI	1.35
SLU_14		Linear Static	Qv	1.01
SLU_14		Linear Static Linear Static	Qsup	1.01
SLU_14 SLU_14		Linear Static	VAR Q1 VAR Q2	1.01 1.35
SLU_15	Linear Add	Linear Static	DEAD	1.35
SLU_15	Lilleal Auu	Linear Static	PERM	1.55
SLU_15		Linear Static	STSX+SI	1.3
SLU_15		Linear Static	STDX+SI	1
SLU_15		Linear Static	Qv	1.01
SLU 15		Linear Static	Qsup	1.01
SLU_15		Linear Static	VAR Q1	1.01
SLU_15		Linear Static	VAR Q2	1.35
SLU_15	Linear Add	Linear Static	DEAD	1.35
SLU 16	Linear Aud	Linear Static	PERM	1.55
SLU_16		Linear Static	STSX+SI	1.35
SLU 16		Linear Static	STDX+SI	1.35
SLU 16		Linear Static	Qv	1.01
_		Linear Static	Qsup	1.01
SLU 16			- COUP	1.01
SLU_16 SLU_16		Linear Static	VAR Q1	1.01

TABLE: Comb	ination Defin	itions		
ComboName	ComboType	CaseType	Case Name	ScaleFactor
Text	Text	Text	Text	Unitless
SLU_17	Linear Add	Linear Static	DEAD	1.35
SLU_17		Linear Static	PERM	1.5
SLU_17		Linear Static	STSX+SI	1.35
SLU 17		Linear Static	STDX+SI	1
SLU 17		Linear Static	Qv	1.35
SLU 17		Linear Static	Qsup	0
SLU 17		Linear Static	VAR Q1	0
SLU 17		Linear Static	VAR Q2	0
SLU 18	Linear Add	Linear Static	DEAD	1.35
SLU_18	Linear Add	Linear Static	PERM	1.55
SLU_18		Linear Static	STSX+SI	1.5
_				
SLU_18		Linear Static	STDX+SI	1.35
SLU_18		Linear Static	Qv	1.35
SLU_18		Linear Static	Qsup	0
SLU_18		Linear Static	VAR Q1	0
SLU_18		Linear Static	VAR Q2	0
SLU_19	Linear Add	Linear Static	DEAD	1.35
SLU_19		Linear Static	PERM	1.5
SLU_19		Linear Static	STSX+SI	1
SLU_19		Linear Static	STDX+SI	1
SLU_19		Linear Static	Qv	1.35
SLU 19		Linear Static	Qsup	0
SLU 19		Linear Static	VAR Q1	0
SLU 19		Linear Static	VAR Q2	0
SLU 20	Linear Add	Linear Static	DEAD	1.35
SLU 20	Linear Add	Linear Static	PERM	1.5
SLU_20		Linear Static	STSX+SI	1.35
SLU_20			STDX+SI	1.35
_		Linear Static		
SLU_20		Linear Static	Qv	1.35
SLU_20		Linear Static	Qsup	0
SLU_20		Linear Static	VAR Q1	0
SLU_20		Linear Static	VAR Q2	0
SLU_21	Linear Add	Linear Static	DEAD	1.35
SLU_21		Linear Static	PERM	1.5
SLU_21		Linear Static	STSX+SI	1.35
SLU_21		Linear Static	STDX+SI	1
SLU_21		Linear Static	Qv	0
SLU_21		Linear Static	Qsup	1.35
SLU 21		Linear Static	VAR Q1	0
SLU 21		Linear Static	VAR Q2	0
SLU 22	Linear Add	Linear Static	DEAD	1.35
SLU 22		Linear Static	PERM	1.5
SLU 22		Linear Static	STSX+SI	1
SLU 22		Linear Static	STDX+SI	1.35
SLU 22		Linear Static	Qv	0
_		Linear Static		1.35
SLU_22			Qsup	
SLU_22		Linear Static	VAR Q1	0
SLU_22		Linear Static	VAR Q2	0
SLU_23	Linear Add	Linear Static	DEAD	1.35
SLU_23		Linear Static	PERM	1.5
SLU_23		Linear Static	STSX+SI	1
SLU_23		Linear Static	STDX+SI	1
SLU_23		Linear Static	Qv	0
SLU_23		Linear Static	Qsup	1.35
SLU_23		Linear Static	VAR Q1	0
SLU_23		Linear Static	VAR Q2	0
SLU_24	Linear Add	Linear Static	DEAD	1.35
SLU_24		Linear Static	PERM	1.55
SLU_24		Linear Static	STSX+SI	1.35
				1.35
SLU_24		Linear Static	STDX+SI	
SLU_24		Linear Static	Qv	0
SLU_24		Linear Static	Qsup	1.35
SLU_24		Linear Static	VAR Q1	0
SLU 24		Linear Static	VAR Q2	0

TABLE: Combination Definitions					
ComboName	I .	CaseType	CaseName	ScaleFactor	
Text	Text	Text	Text	Unitless	
SLU_25	Linear Add	Linear Static	DEAD	1.35	
SLU_25		Linear Static	PERM	1.5	
SLU_25		Linear Static	STSX+SI	1.35	
SLU_25		Linear Static	STDX+SI	1	
SLU_25		Linear Static	Qv	0	
SLU_25		Linear Static	Qsup	0	
SLU_25		Linear Static	VAR Q1	1.35	
SLU_25		Linear Static	VAR Q2	0	
SLU_26	Linear Add	Linear Static	DEAD	1.35	
SLU_26		Linear Static	PERM	1.5	
SLU_26		Linear Static	STSX+SI	1	
SLU_26		Linear Static	STDX+SI	1.35	
SLU_26		Linear Static	Qv	0	
SLU_26		Linear Static	Qsup	0	
SLU_26		Linear Static	VAR Q1	1.35	
SLU_26	Linoar Add	Linear Static	VAR Q2	1 25	
SLU_27	Linear Add	Linear Static	DEAD	1.35	
SLU_27 SLU 27		Linear Static Linear Static	PERM STSX+SI	1.5	
SLU_27		Linear Static	STDX+SI	1	
SLU_27		Linear Static	Qv	0	
SLU_27		Linear Static	Qsup	0	
SLU_27		Linear Static	VAR Q1	1.35	
SLU_27		Linear Static	VAR Q2	0	
SLU_27	Linear Add	Linear Static	DEAD	1.35	
SLU_28	Linear Add	Linear Static	PERM	1.5	
SLU_28		Linear Static	STSX+SI	1.35	
SLU 28		Linear Static	STDX+SI	1.35	
SLU 28		Linear Static	Qv	0	
SLU 28		Linear Static	Qsup	0	
SLU 28		Linear Static	VAR Q1	1.35	
SLU 28		Linear Static	VAR Q2	0	
SLU 29	Linear Add	Linear Static	DEAD	1.35	
SLU 29		Linear Static	PERM	1.5	
SLU 29		Linear Static	STSX+SI	1.35	
SLU_29		Linear Static	STDX+SI	1	
SLU_29		Linear Static	Qv	0	
SLU_29		Linear Static	Qsup	0	
SLU_29		Linear Static	VAR Q1	0	
SLU_29		Linear Static	VAR Q2	1.35	
SLU_30	Linear Add	Linear Static	DEAD	1.35	
SLU_30		Linear Static	PERM	1.5	
SLU_30		Linear Static	STSX+SI	1	
SLU_30		Linear Static	STDX+SI	1.35	
SLU_30		Linear Static	Qv	0	
SLU_30		Linear Static	Qsup	0	
SLU_30		Linear Static	VAR Q1	0	
SLU_30		Linear Static	VAR Q2	1.35	
SLU_31	Linear Add	Linear Static	DEAD	1.35	
SLU_31		Linear Static	PERM	1.5	
SLU_31		Linear Static	STSX+SI	1	
SLU_31		Linear Static	STDX+SI	1	
SLU_31		Linear Static	Qv	0	
SLU_31		Linear Static	Qsup	0	
SLU_31		Linear Static	VAR Q1	0	
SLU_31	Linear Add	Linear Static	VAR Q2	1.35	
SLU_32	Linear Add	Linear Static	DEAD	1.35	
SLU_32		Linear Static	PERM	1.5	
SLU_32		Linear Static	STSX+SI	1.35	
SLU_32		Linear Static	STDX+SI	1.35	
SLU_32		Linear Static	Qv	0	
SLU_32		Linear Static	Qsup	0	
SLU_32		Linear Static	VAR Q1	1.25	
SLU_32		Linear Static	VAR Q2	1.35	

TABLE: Comb	ination Defin	itions			TABLE: Cor
ComboName	ComboType	CaseType	CaseName	ScaleFactor	ComboNa
Text	Text	Text	Text	Unitless	Text
SLEr_01	Linear Add	Linear Static	DEAD	1	SLEf_01
SLEr_01		Linear Static	PERM	1	SLEf_01
SLEr_01		Linear Static	STSX+SI	1	SLEf_01
SLEr_01		Linear Static	STDX+SI	1	SLEf_01
SLEr_01		Linear Static	Qv	1	SLEf_01
SLEr_01		Linear Static	Qsup	0.75	SLEf_01
SLEr_01		Linear Static	VAR Q1	0.75	SLEf_01
SLEr_01		Linear Static	VAR Q2	0.75	SLEf_01
SLEr_02	Linear Add	Linear Static	DEAD	1	SLEf_02
SLEr_02		Linear Static	PERM	1	SLEf_02
SLEr_02		Linear Static	STSX+SI	1	SLEf_02
SLEr_02		Linear Static	STDX+SI	1	SLEf_02
SLEr_02		Linear Static	Qv	0.75	SLEf_02
SLEr_02		Linear Static	Qsup	1	SLEf_02
SLEr_02		Linear Static	VAR Q1	0.75	SLEf_02
SLEr_02		Linear Static	VAR Q2	0.75	SLEf_02
SLEr_03	Linear Add	Linear Static	DEAD	1	SLEf_03
SLEr_03		Linear Static	PERM	1	SLEf_03
SLEr_03		Linear Static	STSX+SI	1	SLEf_03
SLEr_03		Linear Static	STDX+SI	1	SLEf_03
SLEr_03		Linear Static	Qv	0.75	SLEf_03
SLEr_03		Linear Static	Qsup	0.75	SLEf_03
SLEr_03		Linear Static	VAR Q1	1	SLEf_03
SLEr_03		Linear Static	VAR Q2	0.75	SLEf_03
SLEr_04	Linear Add	Linear Static	DEAD	1	SLEf_04
SLEr_04		Linear Static	PERM	1	SLEf_04
SLEr_04		Linear Static	STSX+SI	1	SLEf_04
SLEr_04		Linear Static	STDX+SI	1	SLEf_04
SLEr_04		Linear Static	Qv	0.75	SLEf_04
SLEr_04		Linear Static	Qsup	0.75	SLEf_04
SLEr_04		Linear Static	VAR Q1	0.75	SLEf_04
SLEr_04		Linear Static	VAR Q2	1	SLEf_04

TABLE: Comb	ination Defini	itions		
ComboName	ComboType	CaseType	CaseName	ScaleFactor
Text	Text	Text	Text	Unitless
SLEf_01	Linear Add	Linear Static	DEAD	1
SLEf_01		Linear Static	PERM	1
SLEf_01		Linear Static	STSX+SI	1
SLEf_01		Linear Static	STDX+SI	1
SLEf_01		Linear Static	Qv	0.75
SLEf_01		Linear Static	Qsup	0
SLEf_01		Linear Static	VAR Q1	0
SLEf_01		Linear Static	VAR Q2	0
SLEf_02	Linear Add	Linear Static	DEAD	1
SLEf_02		Linear Static	PERM	1
SLEf_02		Linear Static	STSX+SI	1
SLEf_02		Linear Static	STDX+SI	1
SLEf_02		Linear Static	Qv	0
SLEf_02		Linear Static	Qsup	0.75
SLEf_02		Linear Static	VAR Q1	0
SLEf_02		Linear Static	VAR Q2	0
SLEf_03	Linear Add	Linear Static	DEAD	1
SLEf_03		Linear Static	PERM	1
SLEf_03		Linear Static	STSX+SI	1
SLEf_03		Linear Static	STDX+SI	1
SLEf_03		Linear Static	Qv	0
SLEf_03		Linear Static	Qsup	0
SLEf_03		Linear Static	VAR Q1	0.75
SLEf_03		Linear Static	VAR Q2	0
SLEf_04	Linear Add	Linear Static	DEAD	1
SLEf_04		Linear Static	PERM	1
SLEf_04		Linear Static	STSX+SI	1
SLEf_04		Linear Static	STDX+SI	1
SLEf_04		Linear Static	Qv	0
SLEf_04		Linear Static	Qsup	0
SLEf_04		Linear Static	VAR Q1	0
SLEf_04		Linear Static	VAR Q2	0.75

TABLE: Combination Definitions						
ComboName	ComboType	CaseType	CaseName	ScaleFactor		
Text	Text	Text	Text	Unitless		
SLEqp_01	Linear Add	Linear Static	DEAD	1		
SLEqp_01		Linear Static	PERM	1		
SLEqp_01		Linear Static	STSX+SI	1		
SLEqp_01		Linear Static	STDX+SI	1		
SLEqp_01		Linear Static	Qv	0		
SLEqp_01		Linear Static	Qsup	0		
SLEqp_01		Linear Static	VAR Q1	0		
SLEqp_01		Linear Static	VAR Q2	0		

VARIANTE ALLA S.S.1 AURELIA (AURELIA BIS) - VIABILITA' DI ACCESSO ALL' HUB PORTUALE DI LA SPEZIA INTERCONNESSIONE TRA I CASELLI DELLA A-12 E IL PORTO DI LA SPEZIA - 3° LOTTO

TRA FELETTINO E IL RACCORDO AUTOSTRADALE

TABLE: Comb	TABLE: Combination Definitions						
ComboName	ComboType	CaseType	CaseName	ScaleFactor			
Text	Text	Text	Text	Unitless			
ENV SLU	Envelope	Response Combo	SLU 01	1			
ENV SLU		Response Combo		1			
ENV SLU		Response Combo	SLU 03	1			
ENV SLU		Response Combo	SLU 04	1			
ENV SLU		Response Combo	SLU 05	1			
ENV SLU		Response Combo	SLU 06	1			
ENV_SLU		Response Combo	SLU 07	1			
ENV SLU		Response Combo	SLU 08	1			
ENV SLU		Response Combo	SLU 09	1			
ENV_SLU		Response Combo	SLU_10	1			
ENV SLU		Response Combo		1			
ENV SLU		Response Combo	SLU 12	1			
ENV_SLU		Response Combo	_	1			
ENV SLU		Response Combo	SLU 14	1			
ENV SLU		Response Combo	SLU 15	1			
ENV_SLU		Response Combo	SLU_16	1			
ENV_SLU		Response Combo		1			
ENV SLU		Response Combo	SLU 18	1			
ENV SLU		Response Combo	SLU 19	1			
ENV_SLU		Response Combo	_	1			
ENV SLU		Response Combo	SLU 21	1			
ENV SLU		Response Combo	SLU 22	1			
ENV SLU		Response Combo	_	1			
ENV SLU		Response Combo	SLU 24	1			
ENV SLU		Response Combo	SLU 25	1			
ENV SLU		Response Combo	SLU 26	1			
ENV SLU		Response Combo	SLU 27	1			
ENV SLU		Response Combo	_	1			
ENV SLU		Response Combo	SLU 29	1			
ENV_SLU		Response Combo	SLU 30	1			
ENV SLU		Response Combo	SLU 31	1			
ENV_SLU		Response Combo	SLU_32	1			
ENV_SLEr	Envelope	Response Combo	SLEr_01	1			
ENV SLEr	·	Response Combo		1			
ENV_SLEr		Response Combo	SLEr_03	1			
ENV_SLEr		Response Combo	SLEr_04	1			
ENV_SLEf	Envelope	Response Combo	SLEf_01	1			
ENV_SLEf		Response Combo	SLEf_02	1			
ENV_SLEf		Response Combo	_	1			
ENV_SLEf		Response Combo	_	1			
ENV_SLEqp	Envelope	Response Combo	_	1			
	•						

6.4 Sollecitazioni

Nelle Figure seguenti si riportano i grafici indicativi dell'inviluppo agli SLU delle sollecitazioni sugli elementi in esame per effetto delle combinazioni di carico di progetto. Per i valori delle sollecitazioni assunti in fase di verifica si rimanda ai successivi paragrafi.

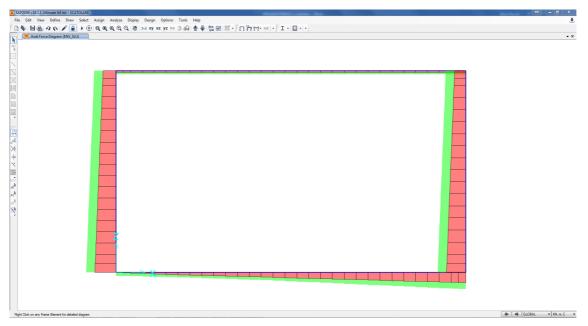


Figura 6.16: Diagramma sforzo assiale ENV_SLU

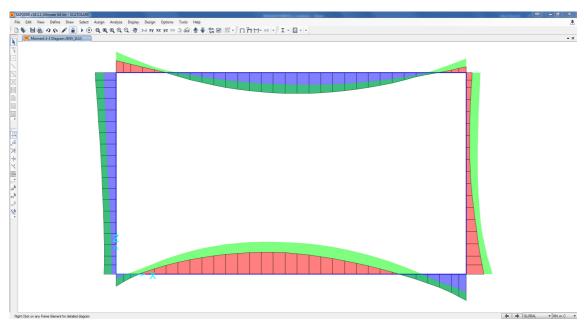


Figura 6.17: Diagramma momento flettente ENV_SLU

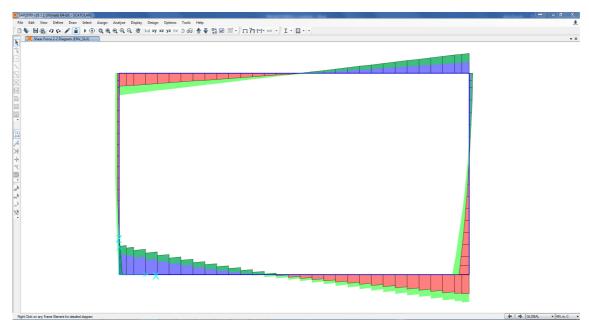


Figura 6.18: Diagramma sforzo tagliante ENV_SLU

Nel seguito si assumono le seguenti convenzioni:

Solettone di copertura e solettone di fondazione

- Momento flettente negativo se tende le fibre superiori;
- Momento flettente positivo se tende le fibre inferiori;
- Sforzo assiale negativo se di compressione;
- Sforzo assiale positivo se di trazione.

Piedritti

- Momento flettente negativo se tende le fibre esterne;
- Momento flettente positivo se tende le fibre interne;
- Sforzo assiale negativo se di compressione;
- Sforzo assiale positivo se di trazione.

6.5 Verifiche

Nei seguenti paragrafi si riportano le principali verifiche strutturali effettuate in riferimento alle sezioni maggiormente significative.

Le verifiche sono state eseguite con il metodo semiprobabilistico agli Stati Limite. Si effettuano le seguenti verifiche:

- Stato Limite Ultimo (SLU) verifiche di resistenza in combinazione fondamentale delle azioni;
- Stato Limite di Esercizio (SLE) verifiche dello stato tensionale in combinazione caratteristica delle azioni;
- Stato Limite di Esercizio (SLE) verifiche di fessurazione in combinazione frequente e quasi permanente delle azioni.

6.5.1 Sezioni di verifica indagate

Si sono individuate nel modello strutturale n.6 sezioni trasversali significative, il cui stato di sollecitazione risulta determinante per il dimensionamento e le verifiche di resistenza dello scatolare in esame, in considerazione delle diverse tipologie di armatura adottate. Tali sezioni sono individuate nella Figura seguente.

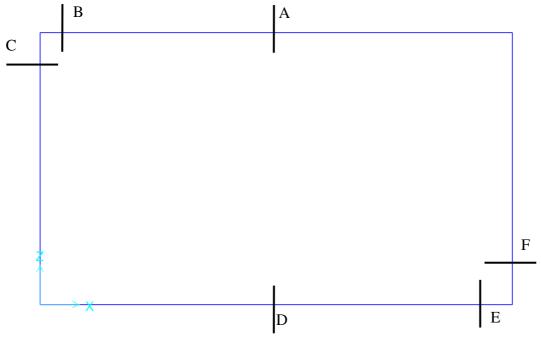


Figura 6.19: Individuazione sezioni di verifica

Le sollecitazioni riportate nelle tabelle che seguono così come le rispettive verifiche sono sempre riferite ad una striscia di larghezza unitaria. Per il dettaglio della disposizione delle armature nelle sezioni di verifica indagate si rimanda agli elaborati grafici di progetto.

6.5.2 Sezione di verifica A

Si riportano i risultati in termini di sollecitazioni per la combinazione ENV_SLU riferiti ad una striscia di larghezza unitaria e le relative verifiche di resistenza.

Armatura	Copriferro netto	Armatura corrente
	SUPERIORE:	SUPERIORE:
PRINCIPALE	46 mm	1Ø20/20
PRINCIPALE	INFERIORE:	INFERIORE:
	46 mm	1Ø26/10
	SUPERIORE:	SUPERIORE:
SECONDARIA	30 mm	1Ø16/20
SECONDARIA	INFERIORE:	INFERIORE:
	30 mm	1Ø16/20

La sezione ha spessore pari a 120 cm e risulta armata nella sezione A superiormente da $1\varphi 20/20$ e inferiormente da $1\varphi 26/10$. Si ha quanto segue:

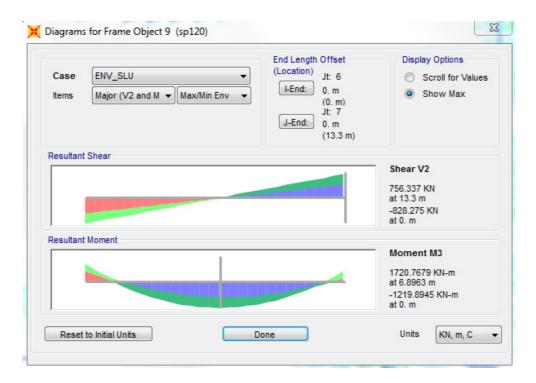
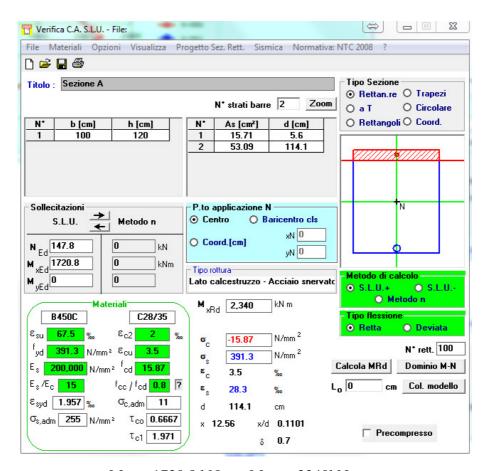



Figura 20: Sezione A - Sollecitazioni ENV_SLU

 $M_{Ed} = 1720.8 \text{ kNm} < M_{Rd} = 2340 \text{kNm}$

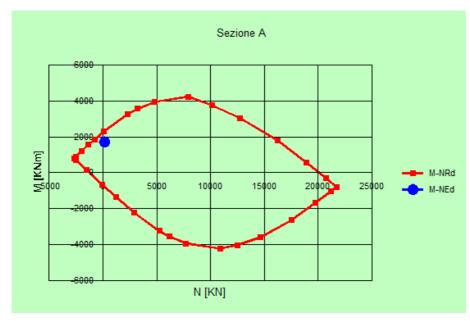


Figura 21: Sezione A – Verifica a momento flettente SLU

Si riportano i risultati in termini di sollecitazioni per la combinazione ENV_SLE riferiti ad una striscia di larghezza unitaria e le relative verifiche in condizioni di esercizio.

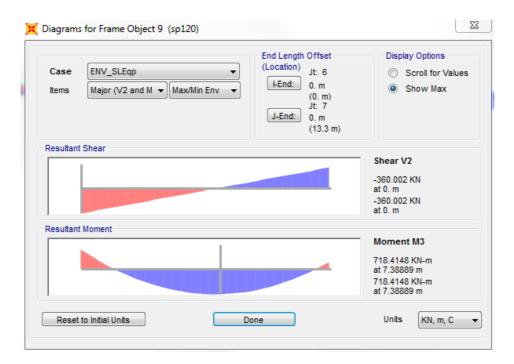


Figura 22: Sezione A - Sollecitazioni ENV_SLEqp

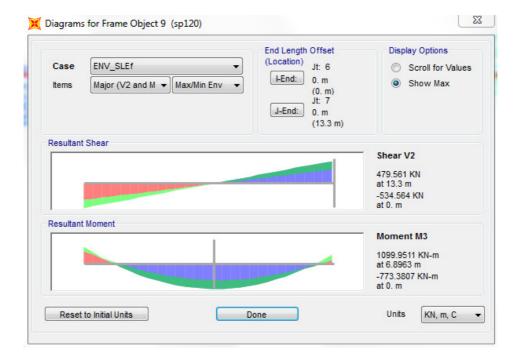


Figura 23: Sezione A - Sollecitazioni ENV_SLEf

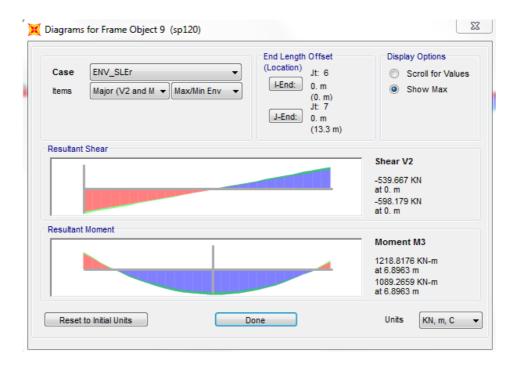


Figura 24: Sezione A - Sollecitazioni ENV_SLEr

Tabella 4: Sezione A – Verifiche in esercizio

1. Com	1. Combinazione caratteristica (ENV_SLEr)						
Momento flettente [kNm]	Sforzo assiale [kN]	σ _s [MPa]	σ _c [MPa]	σ _{s max} [MPa]	σ _{c max} [MPa]	w _d [mm]	w _{d,max} [mm]
1218.8	-103.3	221.2	-6.3	360	-16.8	ı	-
2. Com	binazione fre	quente (ENV	_SLEf)				
Momento flettente [kNm]	Sforzo assiale [kN]	σ _s [MPa]	σ _c [MPa]	σ _{s max} [MPa]	σ _{c max} [MPa]	w _d [mm]	w _{d,max} [mm]
1100.0	-70.5	194.6	-5.7	360	-12.6	0.267	0.300
3. Com	3. Combinazione quasi permanente (ENV_SLEqp)						
Momento flettente [kNm]	Sforzo assiale [kN]	σ _s [MPa]	σ _c [MPa]	σ _{s max} [MPa]	σ _{c max} [MPa]	w _d [mm]	w _{d,max} [mm]
718.4	-70.4	125.1	-3.7	-	-	0.171	0.200

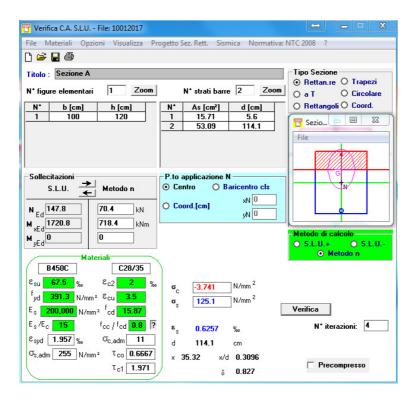


Figura 25: Sezione A – tensioni in esercizio combinazione quasi permanente

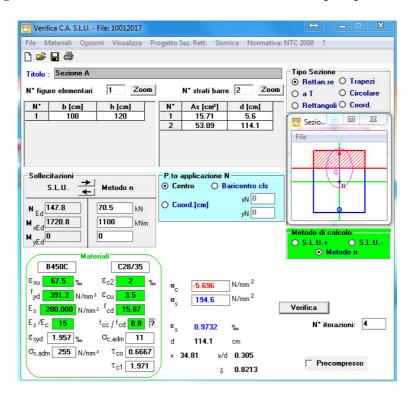


Figura 26: Sezione A – tensioni in esercizio combinazione frequente

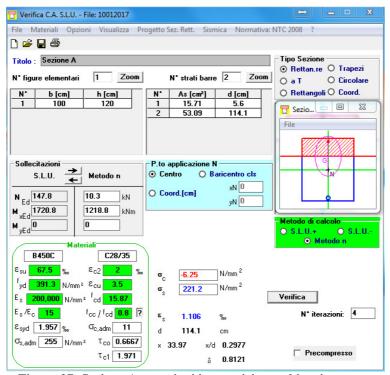


Figura 27: Sezione A - tensioni in esercizio combinazione rara

6.5.3 Sezione di verifica B

Si riportano i risultati in termini di sollecitazioni per la combinazione ENV_SLU riferiti ad una striscia di larghezza unitaria e le relative verifiche di resistenza.

Armatura	Copriferro netto	Armatura corrente
	SUPERIORE:	
PRINCIPALE	46 mm	SUPERIORE: 1Ø26/20 +1Ø20/20
PRINCIPALE	INFERIORE:	INFERIORE: 1Ø26/20
	46 mm	
	SUPERIORE:	
SECONDARIA	30 mm	SUPERIORE: 1Ø16/20
SECONDANIA	INFERIORE:	INFERIORE: 1Ø16/20
	30 mm	

La sezione ha spessore pari a 120 cm e risulta armata nella sezione B superiormente da 10/26/20 + 10/20/20 e inferiormente da 10/26/20. Si ha quanto segue:

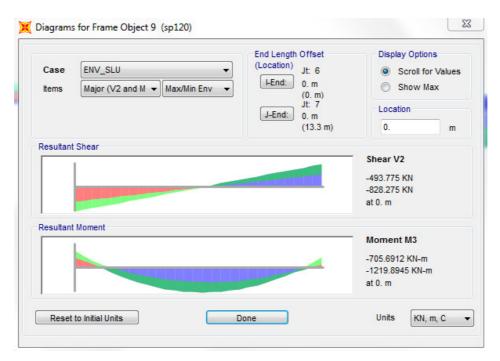
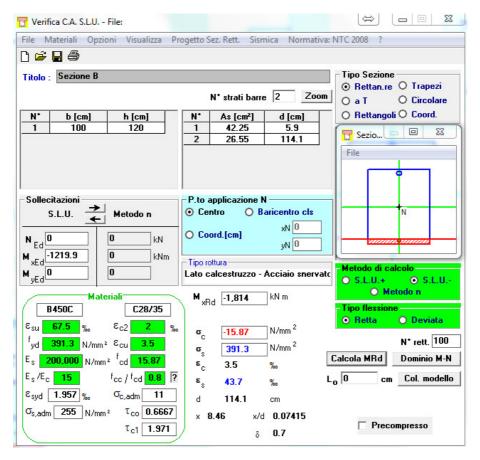



Figura 28: Sezione B - Sollecitazioni ENV_SLU

 $M_{Ed} = 1219.9 \text{kNm} < M_{Rd} = 1814.0 \text{ kNm}$

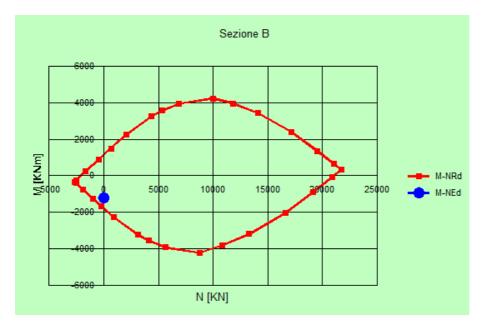


Figura 29: Sezione B – Verifica a momento flettente SLU

La sezione risulta armata a taglio da ganci $1\phi14/40x40$ per i primi 4.50 m. Si ha quanto segue:

TRA FELETTINO E IL RACCORDO AUTOSTRADALE

DG 27-17 Lotto 2 - GE1727L2C1

Tabella 5: Sezione B - calcolo della resistenza a taglio

RESISTENZA NEI CONFRONTI DI SOLLECITAZIONI TAGLIANTI

(p.to 4.1.2.1.3 DM2008)

1) DATI GENERALI

1.1) CARATTERISTICHE DEI MATERIALI

- calcestruzzo	f _{ck}	28.0	MPa
	$oldsymbol{lpha}_{cc}$	0.85	-
	γς	1.50	_
	\mathbf{f}_{cd}	15.9	MPa
	f _{ctm}	2.8	MPa
- acciaio	f_{yk}	450.0	MPa
	fa	391.3	MPa

1.2) CARATTERISTICHE DELLA SEZIONE

- altezza	h	1200	mm
- larghezza minima	b_w	1000	mm
- copriferro di calcolo	С	59	mm

- area cls	A_c	1.20E+06	mm ²
- altezza utile	d	1141	mm
- braccio coppia interna (= 0,9 d)	z	1026.9	mm

1.3) ARMATURA LONGITUDINALE TESA

- armatura longitudinale 1	ϕ_1	26	mm
	n_1	5	-
- armatura longitudinale 2	ϕ_2	20	mm
	n ₂	5	<u>-</u>
- area armatura longitudinale tesa	A_{sl}	4225	mm ²

1.4) SOLLECITAZIONI DI CALCOLO

- taglio di calcolo	V_{Ed}	828.3	kN
- compressione (+) / trazione (-)	N_{Ed}	0.0	kN

2) ELEMENTI SENZA ARMATURE TRASVERSALI RESISTENTI A TAGLIO (p.to 4.1.2.1.3.1 DM2008)

(p.to 4.1.2.1.3.1 DIVI2000)			_
- parametri di calcolo	k	1.42]-
	v _{min}	0.31	
- rapporto geometrico di armatura	ρ_1	3.70E-03	
- tensione media di compressione	$\sigma_{\sf cp}$	0.00	MPa
- taglio resistente minimo	$V_{Rd,min}$	357.1	kN
- taglio resistente	V_{Rd}	423.6	kN
VEDIEICA V. S.V.	VEDIEIC	A NON CODE	ICEATT

VERIFICA $V_{Rd} > V_{Ed}$	VERIFICA	NON SOD	DISFATTA
- prolungamento armatura tesa (o in alternativa)	a _l = z	-	mm
- incremento trazione armatura tesa	$\Delta N_{sl,d}$	-	kN
	$\Delta A_{sl,d}$	-	mm ²

3) ELEMENTI CON ARMATURE TRASVERSALI RESISTENTI A TAGLIO (p.to 4.1.2.1.3.2 DM2008)

3.1) STAFFE - diametro 14 mm 2.5 - n° braccia n_b 400 mm - passo 385 mm² - area di acciaio per ogni staffa 962 - area staffe per metro mm²/m 3.3) RESISTENZA DEI PUNTONI IN CLS - coefficiente maggiorativo 1.00 - resistenza a compressione ridotta $\mathbf{f'}_{cd}$ 7.9 MPa 7.9 MPa - resistena a compressione dei puntoni 2809.2 kΝ - resistenza minima lato cls $V_{Rcd,min}$ - resistenza max lato cls 4073.4 kΝ $V_{Rcd,max}$ ОК VERIFICA $V_{Rcd.max} > V_{Ed}$

3.4) VERIFICA A TAGLIO

kΝ - taglio resistente di progetto VERIFICA $V_{Rd} > V_{Ed}$ ОК - inclinazione ultima dei puntoni 2.50 $cotg\theta_u$ deg 21.8 θ_{u}

$$V_{Ed,MAX} = 828.3 \text{ kN} < V_{Rd} = 966.5 \text{ kN}$$

Si dispone superiormente in corrispondenza degli appoggi un'armatura longitudinale adeguatamente ancorata in grado di assorbire uno sforzo di trazione almeno pari al taglio:

$$A_s = 26.55 \text{ cm}^2 (5\%26) > V_{Ed,MAX} / f_{yd} = 24.70 \text{ cm}^2$$

Si riportano i risultati in termini di sollecitazioni per la combinazione ENV_SLE riferiti ad una striscia di larghezza unitaria e le relative verifiche in condizioni di esercizio.

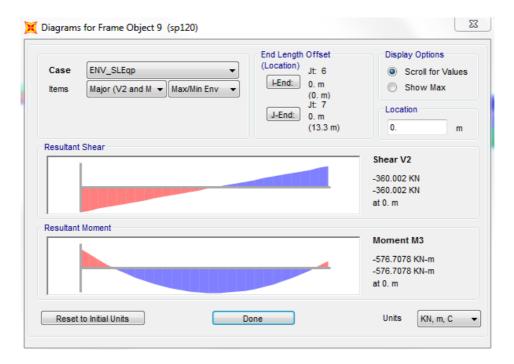


Figura 30: Sezione B - Sollecitazioni ENV_SLEqp

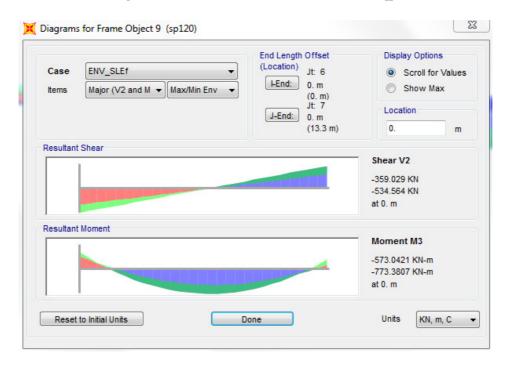


Figura 31: Sezione B - Sollecitazioni ENV_SLEf

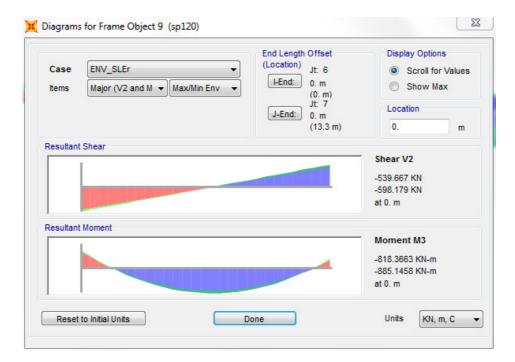


Figura 32: Sezione B - Sollecitazioni ENV_SLEr

Tabella 6: Sezione B - Verifiche in esercizio

1. Combinazione caratteristica (ENV_SLEr)							
Momento flettente [kNm]	Sforzo assiale [kN]	σ _s [MPa]	σ _c [MPa]	σ _{s max} [MPa]	σ _{c max} [MPa]	w _d [mm]	w _{d,max} [mm]
-885.1	-103.3	210.7	-4.6	360	-16.8	-	-
2. Combi	nazione frequ	iente (ENV_	SLEf)				
Momento flettente [kNm]	Sforzo assiale [kN]	σ _s [MPa]	σ _c [MPa]	σ _{s max} [MPa]	σ _{c max} [MPa]	w _d [mm]	W _{d,max} [mm]
-773.3	-70.4	182	-4.0	360	-12.6	0.191	0.300
3. Combi	3. Combinazione quasi permanente (ENV_SLEqp)						
Momento flettente [kNm]	Sforzo assiale [kN]	σ _s [MPa]	σ _c [MPa]	σ _{s max} [MPa]	σ _{c max} [MPa]	w _d [mm]	w _{d,max} [mm]
-576.7	-70.4	137.6	-3.0	-	-	0.129	0.200

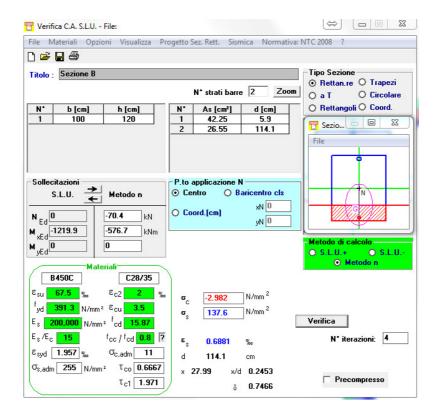


Figura 33: Sezione B – tensioni in esercizio combinazione quasi permanente

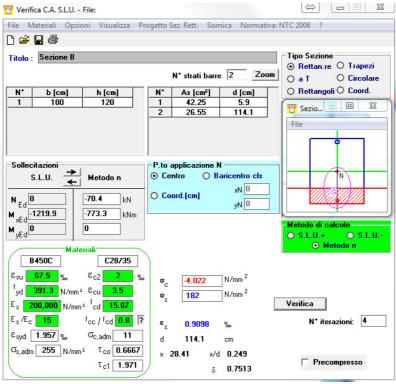


Figura 34: Sezione B – tensioni in esercizio combinazione frequente

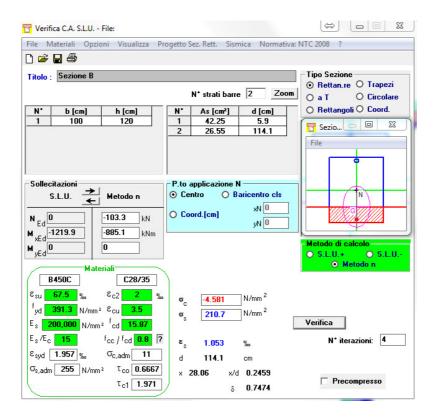


Figura 35: Sezione B - tensioni in esercizio combinazione rara

6.5.4 Sezione di verifica C

Si riportano i risultati in termini di sollecitazioni per la combinazione ENV_SLU riferiti ad una striscia di larghezza unitaria e le relative verifiche di resistenza.

Armatura	Copriferro netto	Armatura corrente
PRINCIPALE	ESTERNA: 46 mm	ESTERNA: 1Ø26/10
PRINCIPALE	INTERNA: 46 mm	INTERNA: 1Ø20/20
SECONDARIA	ESTERNA: 30 mm	ESTERNA: 1Ø16/20
SECONDANIA	INTERNA: 30 mm	INTERNA: 1Ø16/20

La sezione ha spessore pari a 120 cm e risulta armata nella sezione C esternamente da $1\phi26/10$ e internamente da $1\phi20/20$. Si ha quanto segue:

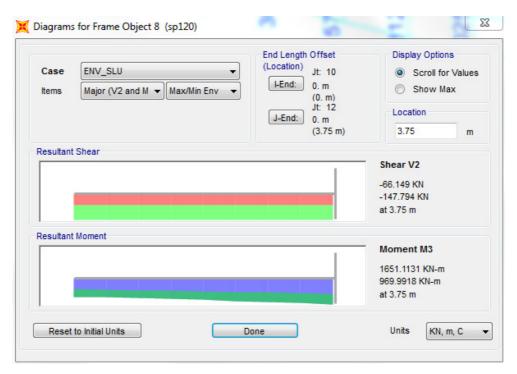
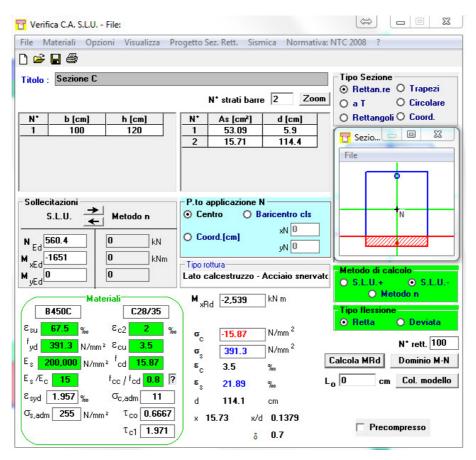



Figura 36: Sezione C - Sollecitazioni ENV_SLU

 $M_{Ed} = 1651.1 \text{kNm} < M_{Rd} = 2610.0 \text{kNm}$

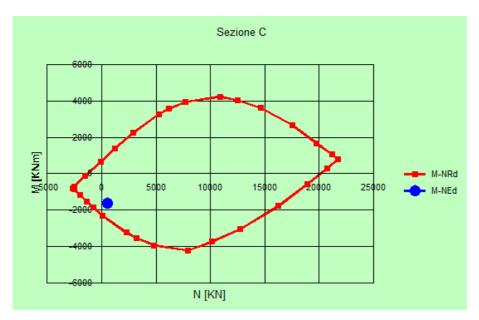


Figura 37: Sezione C – Verifica a momento flettente SLU La sezione risulta armata a taglio da ganci $1\phi14/40x40$. Si ha quanto segue:

Tabella 7: Sezione C - calcolo della resistenza a taglio

1) DATI GENERALI			
1.1) CARATTERISTICHE DEI MATERIALI			_
- calcestruzzo	$\mathbf{f_{ck}}$	28.0	MPa
	$oldsymbol{lpha}_{cc}$	0.85	
	γ_{c}	1.50	<u>-</u>
	f_{cd}	15.9	MPa
	\mathbf{f}_{ctm}	2.8	MPa
- acciaio	f _{yk}	450.0	MPa
	f _{yd}	391.3	MPa
1.2) CARATTERISTICHE DELLA SEZIONE			
- altezza	h	1200	mm
- larghezza minima	b_{w}	1000	mm
- copriferro di calcolo	c	59	mm
- area cls	$\mathbf{A}_{\mathbf{c}}$	1.20E+06	mm ²
- altezza utile	d d	1141	mm
- braccio coppia interna (= 0,9 d)	z	1026.9	mm
1.3) ARMATURA LONGITUDINALE TESA			
- armatura longitudinale 1	φ ₁	26	mm
aatara iongitaaate 1	n ₁	10	
- armatura longitudinale 2	ν ₁ φ ₂	10	mm
armatara rongitaamare 2	Ψ2 n ₂		┨
- area armatura longitudinale tesa	A _{sl}	5309	mm ²
1.4) SOLLECITAZIONI DI CALCOLO			
- taglio di calcolo	$V_{\sf Ed}$	147.8	kN
- compressione (+) / trazione (-)	N _{Ed}	0.0	kN
2) ELEMENTI SENZA ARMATURE TRASVERSALI RESISTEN	ITI A TAGLIO		_
(p.to 4.1.2.1.3.1 DM2008)			
- parametri di calcolo	k	1.42	7-
	v _{min}	0.31	7-
- rapporto geometrico di armatura	ρι	4.65E-03	7-
- tensione media di compressione	σ _{cp}	0.00	MPa
- taglio resistente minimo	V _{Rd,min}	357.1	kN
- taglio resistente	V_Rd	457.1	kN

 $V_{Ed,MAX} = 147.8 \ kN < V_{Rd} = 457.1 \ kN$

VERIFICA $V_{Rd} > V_{Ed}$

ОК

Si dispone esternamente in corrispondenza degli appoggi un'armatura longitudinale adeguatamente ancorata in grado di assorbire uno sforzo di trazione almeno pari al taglio:

$$A_s = 53.09 \text{ cm}^2 (10\emptyset26) > V_{Ed,MAX} / f_{yd} = 3.78 \text{ cm}^2$$

Si riportano i risultati in termini di sollecitazioni per la combinazione ENV_SLE riferiti ad una striscia di larghezza unitaria e le relative verifiche in condizioni di esercizio.

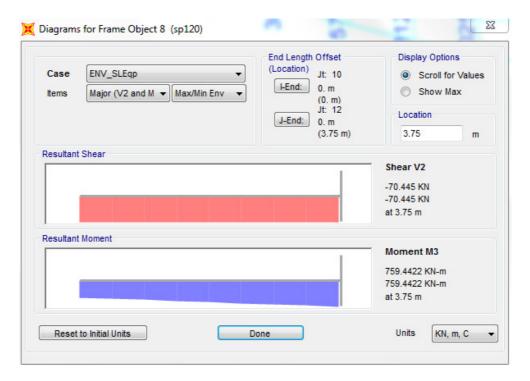


Figura 38: Sezione C - Sollecitazioni ENV_SLEqp

Figura 39: Sezione C - Sollecitazioni ENV_SLEf

Figura 40: Sezione C - Sollecitazioni ENV_SLEr

Tabella 8: Sezione C - Verifiche in esercizio

1. Combinazione caratteristica (ENV_SLEr)							
Momento flettente [kNm]	Sforzo assiale [kN]	σ _s [MPa]	σ _c [MPa]	σ _{s max} [MPa]	σ _{c max} [MPa]	w _d [mm]	W _{d,max} [mm]
-1194.4	-603.4	170.2	-6.58	360	-16.8	ı	-
2. Combi	2. Combinazione frequente (ENV_SLEf)						
Momento flettente [kNm]	Sforzo assiale [kN]	σ _s [MPa]	σ _c [MPa]	σ _{s max} [MPa]	σ _{c max} [MPa]	w _d [mm]	w _{d,max} [mm]
-1056.7	-407.0	160.2	-5.73	360	-12.6	0.163	0.300
3. Combi	3. Combinazione quasi permanente (ENV_SLEqp)						
Momento flettente [kNm]	Sforzo assiale [kN]	σ _s [MPa]	σ _c [MPa]	σ _{s max} [MPa]	σ _{c max} [MPa]	w _d [mm]	w _{d,max} [mm]
-759.4	-520.5	98.2	-4.25	-	-	0.080	0.200

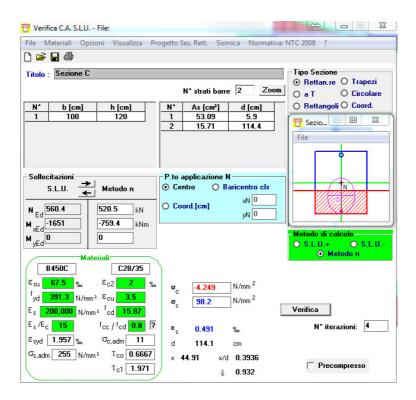


Figura 41: Sezione C – tensioni in esercizio combinazione quasi permanente

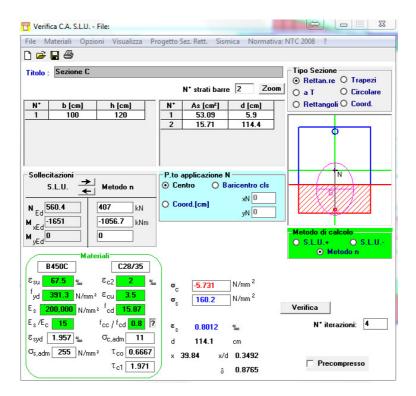


Figura 42: Sezione C – tensioni in esercizio combinazione frequente

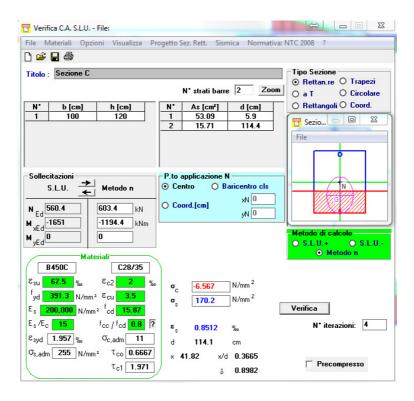


Figura 43: Sezione C – tensioni in esercizio combinazione rara

6.5.5 Sezione di verifica D

Si riportano i risultati in termini di sollecitazioni per la combinazione ENV_SLU riferiti ad una striscia di larghezza unitaria e le relative verifiche di resistenza.

Armatura	Copriferro netto	Armatura corrente
PRINCIPALE	SUPERIORE: 46 mm	SUPERIORE: 1Ø26/10
	INFERIORE: 46 mm	INFERIORE: 1Ø20/20
SECONDARIA	SUPERIORE: 30 mm INFERIORE: 30 mm	SUPERIORE: 1Ø16/20 INFERIORE: 1Ø16/20

La sezione ha spessore pari a 150 cm e risulta armata nella sezione D superiormente da $1\varphi 26/10$ e inferiormente da $1\varphi 20/20$. Si ha quanto segue:

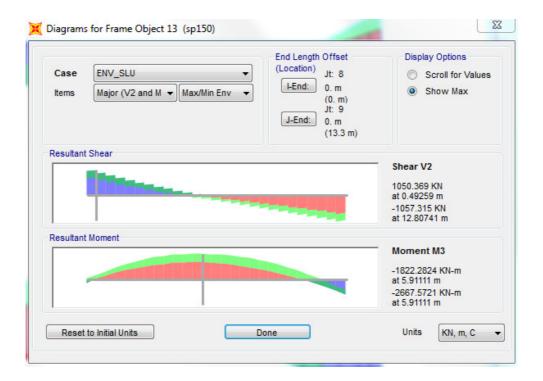
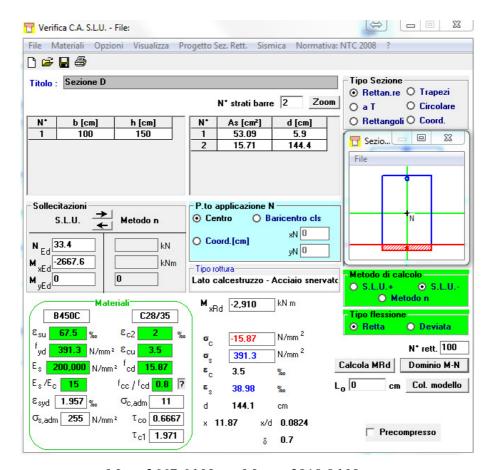



Figura 44: Sezione D - Sollecitazioni ENV_SLU

 $M_{Ed} = 2667.6 \text{ kNm} < M_{Rd} = 2910.0 \text{ kNm}$

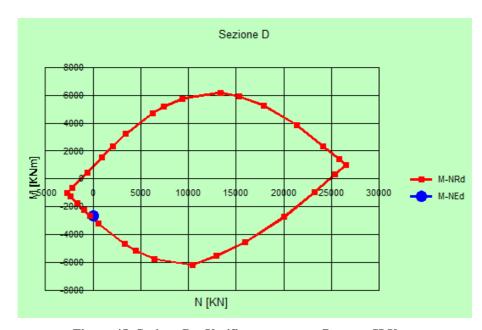


Figura 45: Sezione D - Verifica a momento flettente SLU

Si riportano i risultati in termini di sollecitazioni per la combinazione ENV_SLE riferiti ad una striscia di larghezza unitaria e le relative verifiche in condizioni di esercizio.

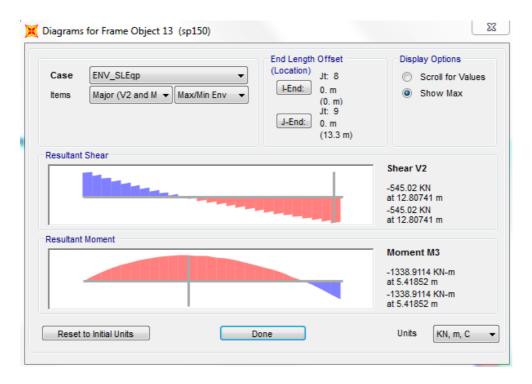


Figura 46: Sezione D - Sollecitazioni ENV_SLEqp

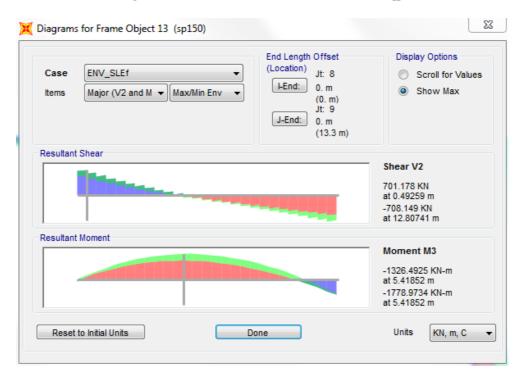


Figura 47: Sezione D - Sollecitazioni ENV_SLEf

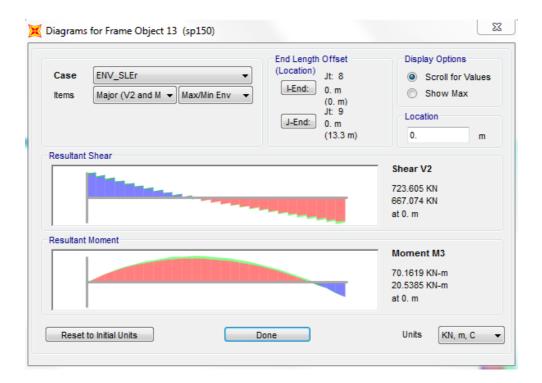


Figura 48: Sezione D - Sollecitazioni ENV_SLEr

Tabella 9: Sezione D - Verifiche in esercizio

4. Combinazione caratteristica (ENV_SLEr)							
Momento flettente [kNm]	Sforzo assiale [kN]	σ _s [MPa]	σ _c [MPa]	σ _{s max} [MPa]	σ _{c max} [MPa]	W _d [mm]	W _{d,max} [mm]
-1926.6	-66.9	269.9	-6.9	360	-16.8	ı	-
5. Combi	5. Combinazione frequente (ENV_SLEf)						
Momento flettente [kNm]	Sforzo assiale [kN]	σ _s [MPa]	σ _c [MPa]	σ _{s max} [MPa]	σ _{c max} [MPa]	w _d [mm]	w _{d,max} [mm]
-1779.0	-58.1	249.5	-6.3	360	-12.6	0.277	0.300
6. Combi	6. Combinazione quasi permanente (ENV_SLEqp)						
Momento flettente [kNm]	Sforzo assiale [kN]	σ _s [MPa]	σ _c [MPa]	σ _{s max} [MPa]	σ _{c max} [MPa]	w _d [mm]	w _{d,max} [mm]
-1338.9	-72.8	185.4	-4.8	-	-	0.194	0.200

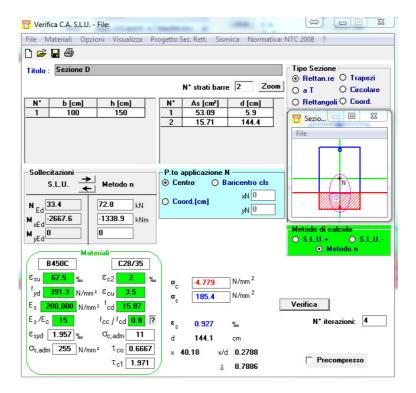


Figura 49: Sezione D – tensioni in esercizio combinazione quasi permanente

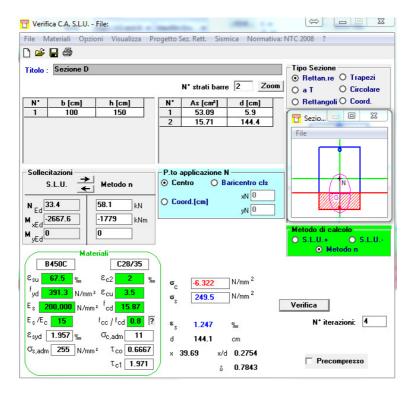


Figura 50: Sezione D – tensioni in esercizio combinazione frequente

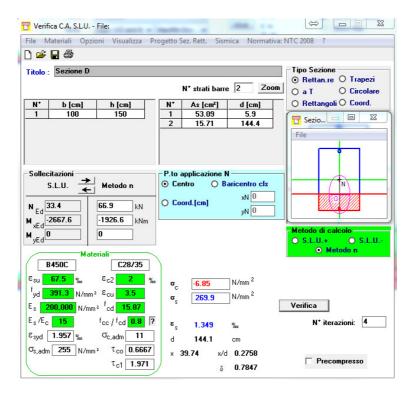


Figura 51: Sezione D - tensioni in esercizio combinazione rara

6.5.6 Sezione di verifica E

Si riportano i risultati in termini di sollecitazioni per la combinazione ENV_SLU riferiti ad una striscia di larghezza unitaria e le relative verifiche di resistenza.

Armatura	Copriferro netto	Armatura corrente
DDINCIDALE	SUPERIORE: 46 mm	SUPERIORE: 1Ø26/20
PRINCIPALE	INFERIORE: 46 mm	INFERIORE: 1Ø26/20+1Ø20/20
SECONDARIA	SUPERIORE: 30 mm	SUPERIORE: 1Ø16/20
SECUNDARIA	INFERIORE: 30 mm	INFERIORE: 1Ø16/20

La sezione ha spessore pari a 150 cm e risulta armata nella sezione E superiormente da $1\varphi26/20$ e inferiormente da $1\varphi26/20+1\varphi20/20$. Si ha quanto segue:

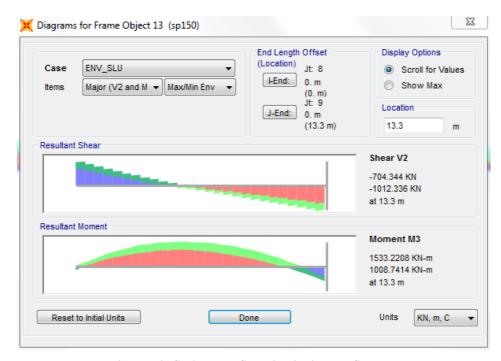
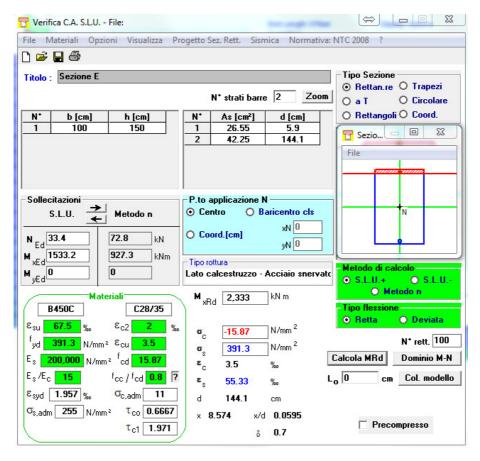



Figura 52: Sezione E - Sollecitazioni ENV_SLU

 $M_{Ed} = 1533.2 \text{ kNm} < M_{Rd} = 2333.0 \text{ kNm}$

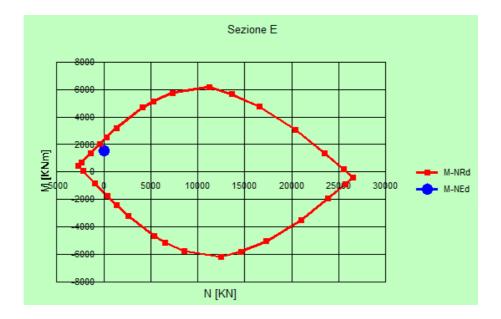


Figura 53: Sezione E – Verifica a momento flettente SLU

La sezione risulta armata a taglio da ganci $1\phi14/40x40$ per 4m di lunghezza. Si ha quanto segue:

Tabella 10: Sezione E - calcolo della resistenza a taglio

1) DATI GENERALI

1.1) CARATTERISTICHE DEI MATERIALI			
- calcestruzzo	f _{ck}	28.0	MPa
careest uzzo	$oldsymbol{lpha}_{\sf cc}$	0.85	-
	ν _c	1.50	┪_
	f _{cd}	15.9	MPa
	f _{ctm}	2.8	MPa
	•ctm	2.0	-
- acciaio	f _{yk}	450.0	MPa
	f _{yd}	391.3	MPa
	,		
1.2) CARATTERISTICHE DELLA SEZIONE			
- altezza	h	1500	mm
- larghezza minima	b_w	1000	mm
- copriferro di calcolo	С	59	mm
			_
- area cls	A_c	1.50E+06	mm ²
- altezza utile	d	1441	mm
- braccio coppia interna (= 0,9 d)	z	1296.9	mm
1.3) ARMATURA LONGITUDINALE TESA			_
- armatura longitudinale 1	$\pmb{\phi_1}$	26	mm
	n_1	5	
- armatura longitudinale 2	ϕ_2	20	mm
	n ₂	5	
- area armatura longitudinale tesa	A_{sl}	4225	mm ²
4.4) 500 150 74 710 11 01 01 01 0			
1.4) SOLLECITAZIONI DI CALCOLO	.,	1012.2] _{kN}
- taglio di calcolo	V _{Ed}	1012.3	_
- compressione (+) / trazione (-)	N_{Ed}	0.0	kN
2) ELEMENTI SENZA ARMATURE TRASVERSALI RESI	STENTI A TAGLIO		
(p.to 4.1.2.1.3.1 DM2008)			_
- parametri di calcolo	k	1.37	_
	\mathbf{v}_{min}	0.30	_
- rapporto geometrico di armatura	ρ_{l}	2.93E-03	
- tensione media di compressione	$\sigma_{\sf cp}$	0.00	MPa
- taglio resistente minimo	$V_{Rd,min}$	429.1	kN
			_
- taglio resistente	V_{Rd}	478.8	kN
VERIFICA $V_{Rd} > V_{Ed}$	VERIFI	CA NON SODD	ISFATTA
			7
- prolungamento armatura tesa	a _l = z	-	mm
(o in alternativa)			┥
- incremento trazione armatura tesa	$\Delta N_{sl,d}$	-	kN
	$\Delta A_{sl,d}$	-	mm ²

 $V_{Rcd,max}$

ОК

DG 27-17 Lotto 2 - GE1727L2C1

3) ELEMENTI CON ARMATURE TRASVERSALI RESISTENTI A TAGLIO (p.to 4.1.2.1.3.2 DM2008)

VERIFICA $V_{Rcd.max} > V_{Ed}$

3.1) STAFFE - diametro 14 mm 2.5 - n° braccia n_b 400 mm - passo 385 mm² - area di acciaio per ogni staffa 962 - area staffe per metro mm²/m 3.3) RESISTENZA DEI PUNTONI IN CLS - coefficiente maggiorativo 1.00 - resistenza a compressione ridotta $\mathbf{f'}_{cd}$ 7.9 MPa 7.9 MPa - resistena a compressione dei puntoni 3547.8 kΝ - resistenza minima lato cls $V_{Rcd,min}$ - resistenza max lato cls 5144.4 kΝ

3.4) VERIFICA A TAGLIO

1220.6 - taglio resistente di progetto VERIFICA $V_{Rd} > V_{Ed}$ ОК - inclinazione ultima dei puntoni 2.50 $cotg\theta_u$ deg 21.8 θ_{u}

$$V_{Ed,MAX} = 1012.3 \text{ kN} < V_{Rd} = 1220.6 \text{ kN}$$

Si dispone inferiormente in corrispondenza degli appoggi un'armatura longitudinale adeguatamente ancorata in grado di assorbire uno sforzo di trazione almeno pari al taglio:

$$A_s = 42.25 \text{ cm}^2 (5\%26 + 5\%20) > V_{Ed,MAX} / f_{yd} = 25.87 \text{ cm}^2$$

Si riportano i risultati in termini di sollecitazioni per la combinazione ENV_SLE riferiti ad una striscia di larghezza unitaria e le relative verifiche in condizioni di esercizio.

Figura 54: Sezione E - Sollecitazioni ENV_SLEqp

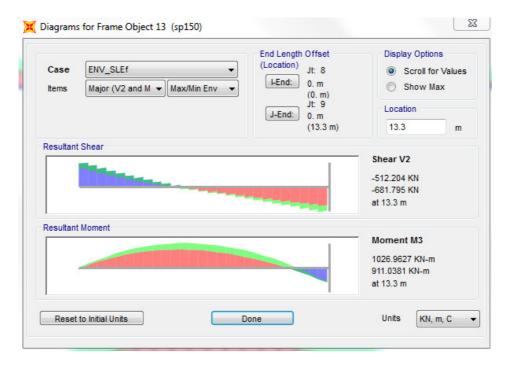


Figura 55: Sezione E - Sollecitazioni ENV_SLEf

Figura 56: Sezione E - Sollecitazioni ENV_SLEr

Tabella 11: Sezione E – Verifiche in esercizio

7. Combinazione caratteristica (ENV_SLEr)							
Momento flettente [kNm]	Sforzo assiale [kN]	σ _s [MPa]	σ _c [MPa]	σ _{s max} [MPa]	σ _{c max} [MPa]	w _d [mm]	W _{d,max} [mm]
1118.6	-66.9	191.1	-4.2	360	-16.8	ı	-
8. Combi	8. Combinazione frequente (ENV_SLEf)						
Momento flettente [kNm]	Sforzo assiale [kN]	σ _s [MPa]	σ _c [MPa]	σ _{s max} [MPa]	σ _{c max} [MPa]	w _d [mm]	W _{d,max} [mm]
1026.9	-58.1	175.8	-3.8	360	-12.6	0.183	0.300
9. Combi	9. Combinazione quasi permanente (ENV_SLEqp)						
Momento flettente [kNm]	Sforzo assiale [kN]	σ _s [MPa]	σ _c [MPa]	σ _{s max} [MPa]	σ _{c max} [MPa]	w _d [mm]	w _{d,max} [mm]
927.3	-72.8	156.6	-3.5	-	-	0.156	0.200

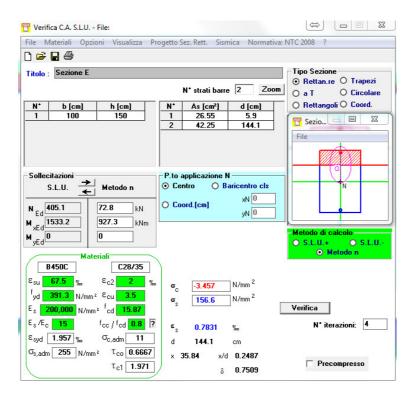


Figura 57: Sezione E – tensioni in esercizio combinazione quasi permanente

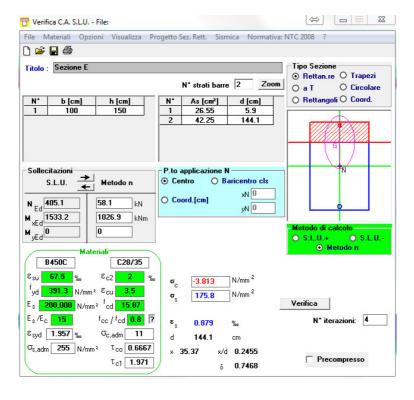


Figura 58: Sezione E – tensioni in esercizio combinazione frequente

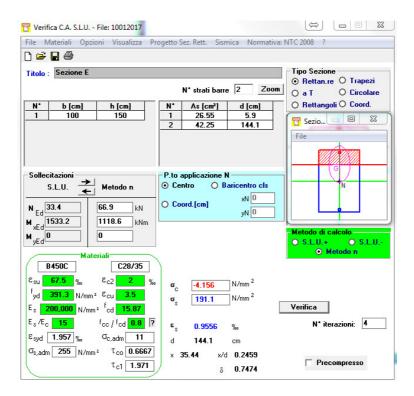


Figura 59: Sezione E - tensioni in esercizio combinazione rara

6.5.7 Sezione di verifica F

Si riportano i risultati in termini di sollecitazioni per la combinazione ENV_SLU riferiti ad una striscia di larghezza unitaria e le relative verifiche di resistenza.

Armatura	Copriferro netto	Armatura corrente
DDINCIDALE	INTERNA: 46 mm	INTERNA: 1Ø20/20
PRINCIPALE	ESTERNA: 46 mm	ESTERNA: 1Ø26/10
SECONDADIA	INTERNA: 30 mm	INTERNA: 1Ø16/20
SECONDARIA	ESTERNA: 30 mm	ESTERNA: 1Ø16/20

La sezione ha spessore pari a 120 cm e risulta armata nella sezione F internamente da $1\varphi 20/20$ e esternamente da $1\varphi 26/10$. Si ha quanto segue:

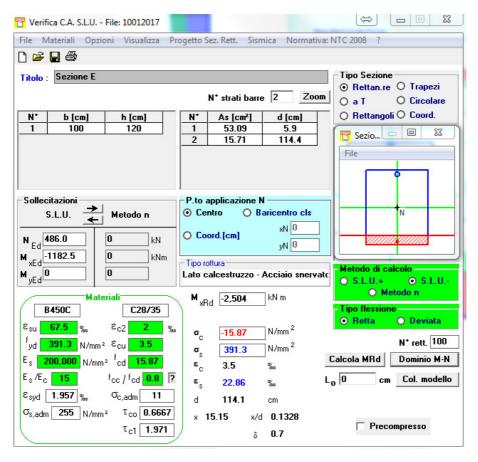


Figura 60: Sezione F - Sollecitazioni ENV_SLU

 $M_{Ed} = 1182.5 \text{ kNm} < M_{Rd} = 2504.0 \text{ kNm}$

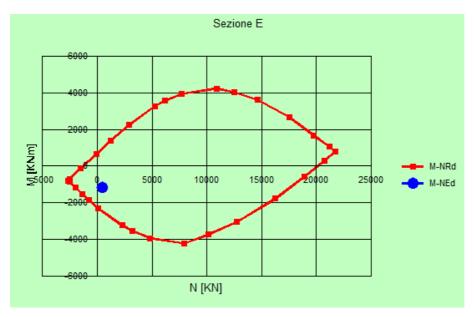


Figura 61: Sezione F - Verifica a momento flettente SLU

La sezione risulta armata a taglio da ganci 1φ14/40x40. Si ha quanto segue:

1) DATI GENERALI

Tabella 12: Sezione F - calcolo della resistenza a taglio

1.1) CARATTERISTICHE DEI MATERIALI			_
- calcestruzzo	f _{ck}	28.0	MPa
	α_{cc}	0.85	
	γ _c	1.50	
	\mathbf{f}_{cd}	15.9	MPa
	\mathbf{f}_{ctm}	2.8	MPa
- acciaio	f_{yk}	450.0	MPa
	\mathbf{f}_{yd}	391.3	MPa
1.2) CARATTERISTICHE DELLA SEZIONE			
- altezza	h	1200	mm
- larghezza minima	b _w	1000	mm
- copriferro di calcolo	c c	59	mm
			_
- area cls	\mathbf{A}_{c}	1.20E+06	mm ²
- area cls - altezza utile	$f A_c$ d	1.20E+06 1141	mm ²
	-		-
- altezza utile - braccio coppia interna (= 0,9 d)	d	1141	mm
- altezza utile	d z	1141	mm
- altezza utile - braccio coppia interna (= 0,9 d) 1.3) ARMATURA LONGITUDINALE TESA	d	1141 1026.9	mm mm
- altezza utile - braccio coppia interna (= 0,9 d) 1.3) ARMATURA LONGITUDINALE TESA	d z \$\phi_1\$	1141 1026.9	mm mm
 altezza utile braccio coppia interna (= 0,9 d) 1.3) ARMATURA LONGITUDINALE TESA armatura longitudinale 1 	φ ₁ η ₁	1141 1026.9 26 10	mm mm
 altezza utile braccio coppia interna (= 0,9 d) 1.3) ARMATURA LONGITUDINALE TESA armatura longitudinale 1 	φ ₁ η ₁ φ ₂	1141 1026.9 26 10	mm mm
- altezza utile - braccio coppia interna (= 0,9 d) 1.3) ARMATURA LONGITUDINALE TESA - armatura longitudinale 1 - armatura longitudinale 2 - area armatura longitudinale tesa	φ ₁ η ₁ φ ₂ η ₂	1141 1026.9 26 10 0	mm mm - mm
- altezza utile - braccio coppia interna (= 0,9 d) 1.3) ARMATURA LONGITUDINALE TESA - armatura longitudinale 1 - armatura longitudinale 2 - area armatura longitudinale tesa 1.4) SOLLECITAZIONI DI CALCOLO	d z φ ₁ η ₁ φ ₂ η ₂ Α _{sl}	1141 1026.9 26 10 0 0 5309	mm mm - mm - mm
- altezza utile - braccio coppia interna (= 0,9 d) 1.3) ARMATURA LONGITUDINALE TESA - armatura longitudinale 1 - armatura longitudinale 2 - area armatura longitudinale tesa	φ ₁ η ₁ φ ₂ η ₂	1141 1026.9 26 10 0	mm mm - mm

2) ELEMENTI SENZA ARMATURE TRASVERSALI RESISTENTI A TAGLIO (p.to 4.1.2.1.3.1 DM2008) - parametri di calcolo 1.42 0.31 \mathbf{v}_{\min} 4.65E-03 - rapporto geometrico di armatura ρ_{l} - tensione media di compressione 0.00 MPa $\sigma_{\sf cp}$ 357.1 kΝ - taglio resistente minimo $V_{Rd,min}$ - taglio resistente 457.1 kN V_{Rd} **VERIFICA NON SODDISFATTA** VERIFICA $V_{Rd} > V_{Ed}$ - prolungamento armatura tesa mm (o in alternativa) kΝ - incremento trazione armatura tesa $\Delta N_{sl.d}$ $\Delta A_{\text{sl,d}}$ mm^2 3) ELEMENTI CON ARMATURE TRASVERSALI RESISTENTI A TAGLIO (p.to 4.1.2.1.3.2 DM2008) 3.1) STAFFE - diametro mm 14 - n° braccia 2.5 n_b 400 - passo mm - area di acciaio per ogni staffa 385 mm^2 - area staffe per metro 962 mm²/m 3.3) RESISTENZA DEI PUNTONI IN CLS - coefficiente maggiorativo 1.00 α_c 7.9 - resistenza a compressione ridotta MPa f'cd 7.9 MPa - resistena a compressione dei puntoni f_{cdw} - resistenza minima lato cls 2809.2 kΝ $V_{Rcd,min}$ - resistenza max lato cls 4073.4 kΝ V_{Rcd,max} VERIFICA $V_{Rcd,max} > V_{Ed}$ ОК 3.4) VERIFICA A TAGLIO - taglio resistente di progetto 966.5 OK VERIFICA $V_{Rd} > V_{Ed}$

$$V_{Ed,MAX} = 563.3 \text{ kN} < V_{Rd} = 966.5 \text{ kN}$$

 $cotg\theta_u$

2.50 21.8

deg

Si dispone internamente in corrispondenza degli appoggi un'armatura longitudinale adeguatamente ancorata in grado di assorbire uno sforzo di trazione almeno pari al taglio:

$$A_s = 53.09 \text{ cm}^2 (10\%26) > V_{Ed,MAX} / f_{yd} = 14.39 \text{ cm}^2$$

Si riportano i risultati in termini di sollecitazioni per la combinazione ENV_SLE riferiti ad una striscia di larghezza unitaria e le relative verifiche in condizioni di esercizio.

- inclinazione ultima dei puntoni

Figura 62: Sezione F - Sollecitazioni ENV_SLEqp

Figura 63: Sezione F - Sollecitazioni ENV_SLEf

Figura 64: Sezione F - Sollecitazioni ENV_SLEr

Tabella 13: Sezione F - Verifiche in esercizio

10. Combinazione caratteristica (ENV_SLEr)							
Momento flettente [kNm]	Sforzo assiale [kN]	σ _s [MPa]	σ _c [MPa]	σ _{s max} [MPa]	σ _{c max} [MPa]	w _d [mm]	w _{d,max} [mm]
-718.9	-535.8	89.89	-4.0	360	-16.8	ı	-
11. Combi	11. Combinazione frequente (ENV_SLEf)						
Momento flettente [kNm]	Sforzo assiale [kN]	σ _s [MPa]	σ _c [MPa]	σ _{s max} [MPa]	σ _{c max} [MPa]	w _d [mm]	w _{d,max} [mm]
-658.5	-346.6	92.82	-3.6	360	-12.6	0.073	0.300
12. Combi	nazione quas	i permanent	te (ENV_SLE	qp)			
Momento flettente [kNm]	Sforzo assiale [kN]	σ _s [MPa]	σ _c [MPa]	σ _{s max} [MPa]	σ _{c max} [MPa]	w _d [mm]	w _{d,max} [mm]
-361.2	-353.0	39.41	-2.1	-	-	0.031	0.200

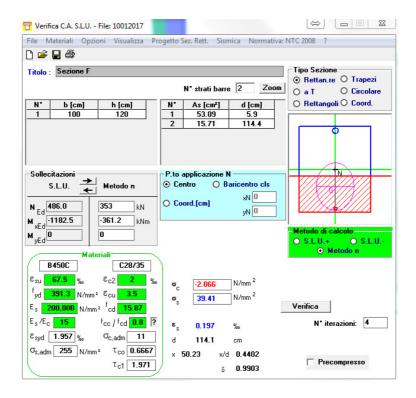


Figura 65: Sezione F – tensioni in esercizio combinazione quasi permanente

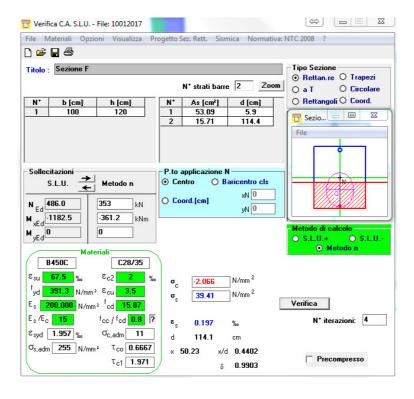


Figura 66: Sezione F – tensioni in esercizio combinazione frequente

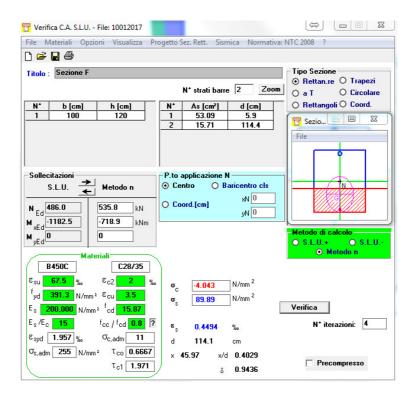


Figura 67: Sezione F – tensioni in esercizio combinazione rara

6.5.8 Armatura secondaria solettone di copertura, piedritti e solettone di fondazione

Si dispone un'armatura secondaria pari ad almeno il 20% dell'armatura principale, uguale per tutte le sezioni. Per la sezione maggiormente armata nella direzione principale risulta:

 $A_s = 20.10 \text{ cm}^2 (5+5\Phi 16) > 0.20 \cdot 68.80 \text{ cm}^2 (5+5\Phi 26+5\Phi 20) = 13.76 \text{cm}^2$

