VERIFICHE DI STABILITA'

Sono state eseguite verifiche di stabilità secondo sezioni ricavate dall'aereofotogrammetrico allegato avuto dal progettista in condizioni future in fase dinamica secondo gli spessori e le caratteristiche geotecniche dei litotipi riscontrati in fase di indagine o ricavate dalle stesse

Le verifiche sono state eseguite utilizzando il programma di calcolo commerciato dalla ditta Geostru.

Le verifiche di seguito riportate condotte in condizioni dinamiche secondo le sezioni passanti per gli aerogeneratori n. 6 (SEZ 1) -9 E 5 (SEZ. 2) -3 E 20 (SEZ. 3) -15 (SEZ. 4) e secondo le combinazioni A2-M2-R2 evidenziano una situazione del coefficiente di sicurezza Fs accettabile

I valori geotecnici utilizzati sono stati quelli ricavate dalle prove di laboratorio eseguiti sui campioni prelevati dai sondaggi più vicini agli aerogeneratori .

I livelli utilizzati sono quelli delle serie sedimentaria cartografata (Conglomerati di Irsina – Sabbie di Monte Marano – Argille subappenniniche)

La eterogeneità nella composizione dei vari complessi ha determinato l'utilizzo in particolare delle singole indagini vicino alle sezione di verifica utilizzando per il complesso di base (argille subappenniniche) i valori geotecnici di bibliografia riscontrati dal sottoscritto in ambito di studi che hanno interessato tale complesso

. Per i valori utilizzati e per lo schema di rimanda al rapporto geologico finale. Di seguito si riporta la relazione di calcolo con i risultati ottenuti :

RELAZIONE DI CALCOLO

Definizione

Per pendio s'intende una porzione di versante naturale il cui profilo originario è stato modificato da interventi artificiali rilevanti rispetto alla stabilità. Per frana s'intende una situazione di instabilità che interessa versanti naturali e coinvolgono volumi considerevoli di terreno.

Introduzione all'analisi di stabilità

La risoluzione di un problema di stabilità richiede la presa in conto delle equazioni di campo e dei legami costitutivi. Le prime sono di equilibrio, le seconde descrivono il comportamento del terreno. Tali equazioni risultano particolarmente complesse in quanto i terreni sono dei sistemi multifase, che possono essere ricondotti a sistemi monofase solo in condizioni di terreno secco, o di analisi in condizioni drenate.

Nella maggior parte dei casi ci si trova a dover trattare un materiale che se saturo è per lo meno bifase, ciò rende la trattazione delle equazioni di equilibrio notevolmente complicata. Inoltre è praticamente impossibile definire una legge costitutiva di validità generale, in quanto i terreni presentano un comportamento non-lineare già a piccole deformazioni, sono anisotropi ed inoltre il loro comportamento dipende non solo dallo sforzo deviatorico ma anche da quello normale. A causa delle suddette difficoltà vengono introdotte delle ipotesi semplificative:

- (a) Si usano leggi costitutive semplificate: modello rigido perfettamente plastico. Si assume che la resistenza del materiale sia espressa unicamente dai parametri coesione (c) e angolo di resistenza al taglio (ϕ), costanti per il terreno e caratteristici dello stato plastico; quindi si suppone valido il criterio di rottura di Mohr-Coulomb.
- (b) In alcuni casi vengono soddisfatte solo in parte le equazioni di equilibrio.

Metodo equilibrio limite (LEM)

Il metodo dell'equilibrio limite consiste nello studiare l'equilibrio di un corpo rigido, costituito dal pendio e da una superficie di scorrimento di forma qualsiasi (linea retta, arco di cerchio, spirale logaritmica); da tale equilibrio vengono calcolate le tensioni da taglio (τ) e confrontate con la resistenza disponibile (τ_f), valutata secondo il criterio di rottura di *Coulomb*, da tale confronto ne scaturisce la prima indicazione sulla stabilità attraverso il coefficiente di sicurezza $F = \tau_f / \tau$.

Tra i metodi dell'equilibrio limite alcuni considerano l'equilibrio globale del corpo rigido (*Culman*), altri a causa della non omogeneità dividono il corpo in conci considerando l'equilibrio di ciascuno (*Fellenius, Bishop, Janbu ecc.*).

Di seguito vengono discussi i metodi dell'equilibrio limite dei conci.

Metodo dei conci

La massa interessata dallo scivolamento viene suddivisa in un numero conveniente di conci. Se il numero dei conci è pari a n, il problema presenta le seguenti incognite:

n valori delle forze normali Ni agenti sulla base di ciascun concio;

n valori delle forze di taglio alla base del concio Ti

(n-1) forze normali E; agenti sull'interfaccia dei conci;

(n-1) forze tangenziali X; agenti sull'interfaccia dei conci;

n valori della coordinata a che individua il punto di applicazione delle E_i;

(n-1) valori della coordinata che individua il punto di applicazione delle X_i ;

una incognita costituita dal fattore di sicurezza F.

Complessivamente le incognite sono (6n-2).

mentre le equazioni a disposizione sono: Equazioni di equilibrio dei momenti nEquazioni di equilibrio alla traslazione verticale nEquazioni di equilibrio alla traslazione orizzontale nEquazioni relative al criterio di rottura nTotale numero di equazioni 4n

Il problema è staticamente indeterminato ed il grado di indeterminazione è pari a

$$i = (6n-2)-(4n) = 2n-2.$$

Il grado di indeterminazione si riduce ulteriormente a (n-2) in quando si fa l'assunzione che N_i sia applicato nel punto medio della striscia, ciò equivale ad ipotizzare che le tensioni normali totali siano uniformemente distribuite.

I diversi metodi che si basano sulla teoria dell'equilibrio limite si differenziano per il modo in cui vengono eliminate le (n-2) indeterminazioni.

Metodo di FELLENIUS (1927)

Con questo metodo (valido solo per superfici di scorrimento di forma circolare) vengono trascurate le forze di interstriscia pertanto le incognite si riducono a:

n valori delle forze normali N_i;

n valori delle forze da taglio T_i;

1 fattore di sicurezza.

Incognite (2n+1)

Le equazioni a disposizione sono:

n equazioni di equilibrio alla traslazione verticale;

n equazioni relative al criterio di rottura;

1 equazione di equilibrio dei momenti globale.

$$F = \frac{\sum \{ c_i \times l_i + (W_i \times \cos \alpha_i - u_i \times l_i) \times \tan \varphi_i \}}{\sum W_i \times \sin \alpha_i}$$

Questa equazione è semplice da risolvere ma si è trovato che fornisce risultati conservativi (fattori di sicurezza bassi) soprattutto per superfici profonde.

Metodo di BISHOP (1955)

Con tale metodo non viene trascurato nessun contributo di forze agenti sui blocchi e fu il primo a descrivere i problemi legati ai metodi convenzionali.

Le equazioni usate per risolvere il problema sono:

 $\Sigma F_V = 0$, $\Sigma M_0 = 0$, Criterio di rottura.

$$F = \frac{\sum \{c_i \times b_i + (W_i - u_i \times b_i + \Delta X_i) \times \tan \varphi_i \} \times \frac{\sec \alpha_i}{1 + \tan \alpha_i \times \tan \varphi_i / F}}{\sum W_i \times \sin \alpha_i}$$

I valori di F e di ΔX per ogni elemento che soddisfano questa equazione danno una soluzione rigorosa al problema. Come prima approssimazione conviene porre $\Delta X = 0$ ed iterare per il calcolo del fattore di sicurezza, tale procedimento è noto come metodo di **Bishop ordinario**, gli errori commessi rispetto al metodo completo sono di circa 1 %.

Metodo di JANBU (1967)

Janbu estese il metodo di Bishop a superfici si scorrimento di forma qualsiasi.

Quando vengono trattate superfici di scorrimento di forma qualsiasi il braccio delle forze

cambia (nel caso delle superfici circolari resta costante e pari al raggio) a tal motivo risulta

più conveniente valutare l'equazione del momento rispetto allo spigolo di ogni blocco.

$$F = \frac{\sum \{c_i \times b + (W_i - u_i \times b_i + \Delta X_i) \times \tan \varphi_i\} \times \frac{\sec^2 \alpha_i}{1 + \tan \alpha_i \times \tan \varphi_i / F}}{\sum W_i \times \tan \alpha_i}$$

Assumendo $\Delta X_i = 0$ si ottiene il metodo ordinario.

Janbu propose inoltre un metodo per la correzione del fattore di sicurezza ottenuto con il metodo ordinario secondo la seguente:

$$F_{corretto} = f_0 F$$

dove f_0 è riportato in grafici funzione di geometria e parametri geotecnici.

Tale correzione è molto attendibile per pendii poco inclinati.

Metodo di BELL (1968)

Le forze agenti sul corpo che scivola includono il peso effettivo del terreno, W, le forze sismiche pseudostatiche orizzontali e verticali K_XW e K_ZW , le forze orizzontali e verticali X e Z applicate esternamente al profilo del pendio, infine, la risultante degli sforzi totali normali e di taglio σ e τ agenti sulla superficie potenziale di scivolamento.

Lo sforzo totale normale può includere un eccesso di pressione dei pori u che deve essere specificata con l'introduzione dei parametri di forza efficace.

In pratica questo metodo può essere considerato come un'estensione del metodo del cerchio di attrito per sezioni omogenee precedentemente descritto da *Taylor*.

In accordo con la legge della resistenza di *Mohr-Coulomb* in termini di tensione efficace, la forza di taglio agente sulla base dell'i-esimo concio è data da:

$$T_{i} = \frac{c_{i}L_{i} + (N_{i} - u_{ci}L_{i})\tan\phi_{i}}{F}$$

in cui

F = il fattore di sicurezza;

c_i = la coesione efficace (o totale) alla base dell'i-esimo concio;

 ϕ_i = l'angolo di attrito efficace (= 0 con la coesione totale) alla base dell'i-esimo concio;

L_i = la lunghezza della base dell'i-esimo concio;

 u_{ci} = la pressione dei pori al centro della base dell'i-esimo concio.

L'equilibrio risulta uguagliando a zero la somma delle forze orizzontali, la somma delle forze verticali e la somma dei momenti rispetto all'origine.

Viene adottata la seguente assunzione sulla variazione della tensione normale agente sulla potenziale superficie di scorrimento:

$$\sigma_{ci} = \left[C_1 (1 - K_z) \frac{W_i \cos \alpha_i}{L_i} \right] + C_2 f(x_{ci}, y_{ci}, z_{ci})$$

in cui il primo termine dell'equazione include l'espressione:

 $W_i \cos \alpha_i / L_i = \text{valore dello sforzo normale totale associato con il metodo ordinario dei conci.}$

Il secondo termine dell'equazione include la funzione:

$$f = \sin 2\pi \left(\frac{x_n - x_{ci}}{x_n - x_0} \right)$$

Dove x_0 ed x_n sono rispettivamente le ascisse del primo e dell'ultimo punto della superficie di scorrimento, mentre x_{ci} rappresenta l'ascissa del punto medio della base del concio i-esimo.

Una parte sensibile di riduzione del peso associata con una accelerazione verticale del terreno K_Z g può essere trasmessa direttamente alla base e ciò è incluso nel fattore (1 - K_Z).

Lo sforzo normale totale alla base di un concio è dato da:

$$N_i = \sigma_{ci} L_i$$

La soluzione delle equazioni di equilibrio si ricava risolvendo un sistema lineare di tre equazioni ottenute moltiplicando le equazioni di equilibrio per il fattore di sicurezza F, sostituendo l'espressione di N_i e moltiplicando ciascun termine della coesione per un coefficiente arbitrario C_3 . Si assume una relazione di linearità tra detto coefficiente, determinabile tramite la regola di Cramer, ed il fattore di sicurezza F. Il corretto valore di F può essere ottenuto dalla formula di interpolazione lineare:

$$F = F(2) + \left(\frac{1 - C_3(2)}{C_3(2) - C_3(1)}\right) (F(2) - F(1))$$

dove i numeri in parentesi (1) e (2) indicano i valori iniziale e successivo dei parametri F e C3.

Qualsiasi coppia di valori del fattore di sicurezza nell'intorno di una stima fisicamente ragionevole può essere usata per iniziare una soluzione iterativa.

Il numero necessario di iterazioni dipende sia dalla stima iniziale sia dalla desiderata precisione della soluzione; normalmente, il processo converge rapidamente.

Metodo di SARMA (1973)

Il metodo di **Sarma** è un semplice, ma accurato metodo per l'analisi di stabilità dei pendii, che permette di determinare l'accelerazione sismica orizzontale richiesta affinché l'ammasso di terreno, delimitato dalla superficie di scivolamento e dal profilo topografico, raggiunga lo stato di equilibrio limite (accelerazione critica Kc) e, nello stesso tempo, consente di ricavare l'usuale fattore di sicurezza ottenuto come per gli altri metodi più comuni della geotecnica.

Si tratta di un metodo basato sul principio dell'equilibrio limite e delle strisce, pertanto viene considerato l'equilibrio di una potenziale massa di terreno in scivolamento suddivisa in n strisce verticali di spessore sufficientemente piccolo da ritenere ammissibile l'assunzione che lo sforzo normale N_i agisce nel punto medio della base della striscia.

Le equazioni da prendere in considerazione sono:

L'equazione di equilibrio alla traslazione orizzontale del singolo concio;

L'equazione di equilibrio alla traslazione verticale del singolo concio;

L'equazione di equilibrio dei momenti.

Condizioni di equilibrio alla traslazione orizzontale e verticale:

$$N_i \cos \alpha_i + T_i \sin \alpha_i = W_i - \Delta X_i$$

 $T_i \cos \alpha_i - N_i \sin \alpha_i = KW_i + \Delta E_i$

Viene, inoltre, assunto che in assenza di forze esterne sulla superficie libera dell'ammasso si ha:

$$\Sigma \Delta E_i = 0$$
$$\Sigma \Delta X_i = 0$$

dove Ei e Xi rappresentano, rispettivamente, le forze orizzontale e verticale sulla faccia i-esima del concio generico i.

L'equazione di equilibrio dei momenti viene scritta scegliendo come punto di riferimento il baricentro dell'intero ammasso; sicché, dopo aver eseguito una serie di posizioni e trasformazioni trigonometriche ed algebriche, nel metodo di **Sarma** la soluzione del problema passa attraverso la risoluzione di due equazioni:

$$*\sum \Delta X_{i} \cdot tg(\psi_{i}' - \alpha_{i}) + \sum \Delta E_{i} = \sum \Delta_{i} - K \cdot \sum W_{i}$$

$$**\sum \Delta X_{i} \cdot [(y_{mi} - y_{G}) \cdot tg(\psi_{i}' - \alpha') + (x_{i}' - x_{G})] = \sum W_{i} \cdot (x_{mi} - x_{G}) + \sum \Delta_{i} \cdot (y_{mi} - y_{G})$$

Ma l'approccio risolutivo, in questo caso, è completamente capovolto: il problema infatti impone di trovare un valore di K (accelerazione sismica) corrispondente ad un determinato fattore di sicurezza; ed in particolare, trovare il valore dell'accelerazione K corrispondente al fattore di sicurezza F = 1, ossia l'accelerazione critica.

Si ha pertanto:

K = Kc accelerazione critica se F = 1

F = Fs fattore di sicurezza in condizioni statiche se K = 0

La seconda parte del problema del Metodo di Sarma è quella di trovare una distribuzione di forze interne Xi ed Ei tale da verificare l'equilibrio del concio e quello globale dell'intero ammasso, senza violazione del criterio di rottura.

E' stato trovato che una soluzione accettabile del problema si può ottenere assumendo la seguente distribuzione per le forze Xi:

$$\Delta X_i = \lambda \cdot \Delta Q_i = \lambda \cdot (Q_{i+1} - Q_i)$$

dove Qi è una funzione nota, in cui vengono presi in considerazione i parametri geotecnici medi sulla i-esima faccia del concio i, e λ rappresenta un'incognita.

La soluzione completa del problema si ottiene pertanto, dopo alcune iterazioni, con i valori di Kc, λ e F, che permettono di ottenere anche la distribuzione delle forze di interstriscia.

Metodo di SPENCER

Il metodo è basato sull'assunzione:

Le forze d'interfaccia lungo le superfici di divisione dei singoli conci sono orientate parallelamente fra loro ed inclinate rispetto all'orizzontale di un angolo θ . tutti i momenti sono nulli $M_i = 0$ i=1,...,n

Sostanzialmente il metodo soddisfa tutte le equazioni della statica ed equivale al metodo di Morgenstern e Price quando la funzione f(x) = 1.

Imponendo l'equilibrio dei momenti rispetto al centro dell'arco descritto dalla superficie di scivolamento si ha:

$$\sum Q_i R \cos(\alpha - \theta) = 0$$

dove:

$$Q_{i} = \frac{\frac{c}{F_{s}} \left(W \cos \alpha - \gamma_{w} h l \sec \alpha \right) \frac{tg \alpha}{F_{s}} - W sen \alpha}{\cos(\alpha - \theta) \left[\frac{F_{s} + tg \varphi tg(\alpha - \theta)}{F_{s}} \right]}$$

forza d'interazione fra i conci;

R = raggio dell'arco di cerchio;

 θ = angolo d'inclinazione della forza Qi rispetto all'orizzontale.

Imponendo l'equilibrio delle forze orizzontali e verticali si ha rispettivamente:

$$\sum (Q_i \cos \theta) = 0 \quad \sum (Q_i sen \theta) = 0$$

Con l'assunzione delle forze Qi parallele fra loro, si può anche scrivere:

$$\sum Q_i = 0$$

Il metodo propone di calcolare due coefficienti di sicurezza: il primo (F_{Sm}) ottenibile dalla 1), legato all'equilibrio dei momenti; il secondo (F_{Sf}) dalla 2) legato all'equilibrio delle forze. In pratica si procede risolvendo la 1) e la 2) per un dato intervallo di valori dell'angolo θ , considerando come valore unico del coefficiente di sicurezza quello per cui si abbia $F_{Sm} = F_{Sf}$.

Metodo di MORGENSTERN e PRICE

Si stabilisce una relazione tra le componenti delle forze di interfaccia del tipo $X = \lambda f(x)E$, dove λ è un fattore di scala e f(x), funzione della posizione di E e di X, definisce una relazione tra la variazione della forza X e della forza E all'interno della massa scivolante. La funzione f(x) è scelta

arbitrariamente (costante, sinusoide, semisinusoide, trapezia, spezzata...) e influenza poco il risultato, ma va verificato che i valori ricavati per le incognite siano fisicamente accettabili.

La particolarità del metodo è che la massa viene suddivisa in strisce infinitesime alle quali vengono imposte le equazioni di equilibrio alla traslazione orizzontale e verticale e di rottura sulla base delle strisce stesse. Si perviene ad una prima equazione differenziale che lega le forze d'interfaccia incognite E, X, il coefficiente di sicurezza F_S , il peso della striscia infinitesima dW e la risultante delle pressioni neutra alla base dU.

Si ottiene la cosiddetta "equazione delle forze":

$$c'\sec^2\frac{\alpha}{F_s} + tg\,\varphi'\left(\frac{dW}{dx} - \frac{dX}{dx} - tg\,\alpha\frac{dE}{dx} - \sec\alpha\frac{dU}{dx}\right) =$$

$$= \frac{dE}{dx} - tg\alpha \left(\frac{dX}{dx} - \frac{dW}{dx}\right)$$

Una seconda equazione, detta "equazione dei momenti", viene scritta imponendo la condizione di equilibrio alla rotazione rispetto alla mezzeria della base:

$$X = \frac{d(E_{\gamma})}{dx} - \gamma \frac{dE}{dx}$$

queste due equazioni vengono estese per integrazione a tutta la massa interessata dallo scivolamento. Il metodo di calcolo soddisfa tutte le equazioni di equilibrio ed è applicabile a superfici di qualsiasi forma, ma implica necessariamente l'uso di un calcolatore.

VALUTAZIONE DELL'AZIONE SISMICA

Nelle verifiche agli Stati Limite Ultimi la stabilità dei pendii nei confronti dell'azione sismica viene eseguita con il metodo pseudo-statico. Per i terreni che sotto l'azione di un carico ciclico possono sviluppare pressioni interstiziali elevate viene considerato un aumento in percento delle pressioni neutre che tiene conto di questo fattore di perdita di resistenza.

Ai fini della valutazione dell'azione sismica, nelle verifiche agli stati limite ultimi, vengono considerate le seguenti forze statiche equivalenti:

$$F_{H} = K_{o} \cdot W$$
$$F_{V} = K_{v} \cdot W$$

Essendo:

 F_H e F_V rispettivamente la componente orizzontale e verticale della forza d'inerzia applicata al baricentro del concio;

W: peso concio

K₀: Coefficiente sismico orizzontale

K_V: Coefficiente sismico verticale.

Calcolo coefficienti sismici

Le NTC 2008 calcolano i coefficienti K_0 e K_V in dipendenza di vari fattori:

$$K_0 = \beta s \times (a_{max}/g)$$

$$K_v = \pm 0.5 \times K_o$$

Con

βs coefficiente di riduzione dell'accelerazione massima attesa al sito;

amax accelerazione orizzontale massima attesa al sito;

g accelerazione di gravità.

Tutti i fattori presenti nelle precedenti formule dipendono dall'accelerazione massima attesa sul sito di riferimento rigido e dalle caratteristiche geomorfologiche del territorio.

$$a_{max} = S_S S_T a_g$$

 S_S (effetto di amplificazione stratigrafica): $0.90 \le S_S \le 1.80$; è funzione di F_0 (Fattore massimo di amplificazione dello spettro in accelerazione orizzontale) e della categoria di suolo (A, B, C, D, E). S_T (effetto di amplificazione topografica).

Il valore di S_T varia con il variare delle quattro categorie topografiche introdotte:

$$T1(S_T = 1.0) T2(S_T = 1.20) T3(S_T = 1.20) T4(S_T = 1.40).$$

Questi valori sono calcolati come funzione del punto in cui si trova il sito oggetto di analisi. Il parametro di entrata per il calcolo è il tempo di ritorno dell'evento sismico che è valutato come segue:

$$T_R = -V_R / \ln(1 - PVR)$$

Con V_R vita di riferimento della costruzione e PVR probabilità di superamento, nella vita di riferimento, associata allo stato limite considerato. La vita di riferimento dipende dalla vita nominale della costruzione e dalla classe d'uso della costruzione (in linea con quanto previsto al punto 2.4.3 delle NTC). In ogni caso V_R dovrà essere maggiore o uguale a 35 anni.

Con l'**OPCM 3274** e successive modifiche, i coefficienti sismici orizzontale Ko e verticale Kv che interessano tutte le masse vengono calcolatati come:

$$K_O = S \cdot (a_g/g) K_V = 0.5 \cdot K_O$$

S: fattore dipendente dal tipo di suolo secondo lo schema:

tipo A - S=1;

tipo B - S=1.25;

tipo C - S=1.25;

tipo E - S=1.25;

tipo D - S=1.35.

Per pendii con inclinazione superiore a 15° e dislivello superiore a 30 m, l'azione sismica deve essere incrementata moltiplicandola per il coefficiente di amplificazione topografica ST:

 $S_T \ge 1.2$ per siti in prossimità del ciglio superiore di pendii scoscesi isolati;

 $S_T \ge 1,4$ per siti prossimi alla sommità di profili topografici aventi larghezza in testa molto inferiore alla larghezza alla base e pendenza media > 30° ; $S_T \ge 1,2$ per siti dello stesso tipo ma pendenza media inferiore.

L'applicazione del **D.M. 88** e successive modifiche ed integrazioni è consentito mediante l'inserimento del coefficiente sismico orizzontale Ko in funzione delle Categorie Sismiche secondo il seguente schema: I Cat. Ko=0.1; II Cat. Ko=0.07; III Cat. Ko=0.04

Per l'applicazione dell'**Eurocodice 8** (progettazione geotecnica in campo sismico) il coefficiente sismico orizzontale viene così definito:

$$K_0 = a_{gR} \cdot \gamma_I \cdot S / (g)$$

 $a_{\mbox{\scriptsize gR}}$: accelerazione di picco di riferimento su suolo rigido affiorante,

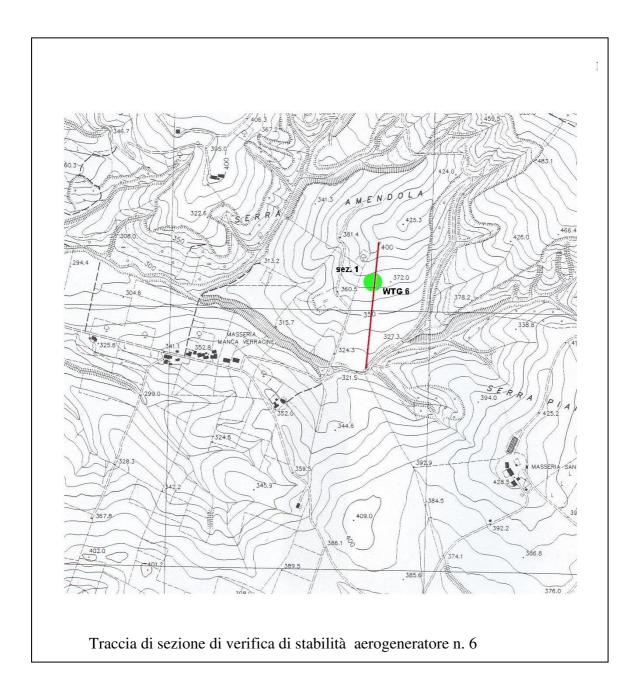
γ_I: fattore di importanza,

S: soil factor e dipende dal tipo di terreno (da A ad E).

$$a_g = a_{gR} \cdot \gamma_I$$

è la "design ground acceleration on type A ground".

Il coefficiente sismico verticale K_V è definito in funzione di K_O , e vale:


$$K_V = \pm 0.5 \cdot K_O$$

Ricerca della superficie di scorrimento critica

In presenza di mezzi omogenei non si hanno a disposizione metodi per individuare la superficie di scorrimento critica ed occorre esaminarne un numero elevato di potenziali superfici.

Nel caso vengano ipotizzate superfici di forma circolare, la ricerca diventa più semplice, in quanto dopo aver posizionato una maglia dei centri costituita da m righe e n colonne saranno esaminate tutte le superfici aventi per centro il generico nodo della maglia m×n e raggio variabile in un determinato range di valori tale da esaminare superfici cinematicamente ammissibili.

SEZIONE 1 (AEROGENERATORE n. 6)

Analisi di stabilità dei pendii con JANBU

Numero di strati	3.0
Numero dei conci	10.0
Superficie di forma circolare	

Maglia dei Centri

Ascissa vertice sinistro inferiore xi	29.35 m
Ordinata vertice sinistro inferiore yi	417.5 m
Ascissa vertice destro superiore xs	480.58 m
Ordinata vertice destro superiore ys	514.36 m
Passo di ricerca	10.0
Numero di celle lungo x	10.0
Numero di celle lungo y	10.0

Coefficienti sismici [N.T.C.]

Dati generali

Descrizione:

Latitudine: 40.86
Longitudine: 16.15
Tipo opera: 2 - Opere ordinarie
Classe d'uso: Classe II
Vita nominale: 50.0 [anni]
Vita di riferimento: 50.0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: Categoria topografica: T2

S.L.	TR	ag	F0	TC*
Stato limite	Tempo ritorno	$[m/s^2]$	[-]	[sec]
	[anni]			
S.L.O.	30.0	0.39	2.53	0.28
S.L.D.	50.0	0.5	2.52	0.32
S.L.V.	475.0	1.27	2.63	0.45
S.L.C.	975.0	1.67	2.61	0.5

Coefficienti sismici orizzontali e verticali

Opera: Stabilità dei pendii

S.L.	amax	beta	kh	kv
Stato limite	$[m/s^2]$	[-]	[-]	[sec]
S.L.O.	0.702	0.2	0.0143	0.0072
S.L.D.	0.9	0.2	0.0184	0.0092
S.L.V.	2.2793	0.24	0.0558	0.0279
S.L.C.	2.8723	0.24	0.0703	0.0352

Coefficiente azione sismica orizzontale 0.07 Coefficiente azione sismica verticale 0.035 Vertici profilo

v ci tici pi oino		
N	X	у
	m	m
1	0.0	310.0
2	40.0	330.0
3	280.0	370.0
4	291.94	372.01
5	311.96	372.01
6	326.97	378.26
7	390.0	390.0
8	480.0	410.0

Vertici strato1

N	X	у
	m	m
1	0.0	310.0
2	0.0	310.0
3	46.7	320.17
4	286.99	364.32
5	392.31	381.98
6	480.0	392.86

Vertici strato2

vertici struto		
N	X	у
	m	m
1	0.0	303.88
2	41.65	311.34
3	100.94	319.54
4	281.94	353.6
5	397.35	368.73
6	480.0	377.57

Stratigrafia

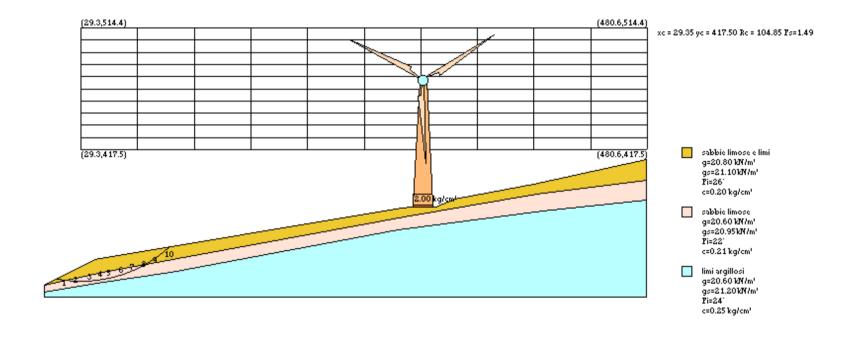
c: coesione: Fi: Angolo di attrito: G: Peso Specifico: Gs: Peso Specifico Saturo: K: Modulo di Winkler

c. coesione, i.i. inigolo di attitto, G. i eso specimeo, Gs. i eso specimeo sattito, K. iniodulo di Wilkiei									
	Strato	c	Fi	G	Gs	K	Litologia		
		(kg/cm²)	(°)	(kN/m^3)	(kN/m^3)	(Kg/cm³)			
	1	0.20	26	20.80	21.10	0.00		sabbie limose	
								e limi	
	2	0.21	22	20.60	20.95	0.00		sabbie limose	
	3	0.25	24	20.60	21.20	0.00		limi argillosi	

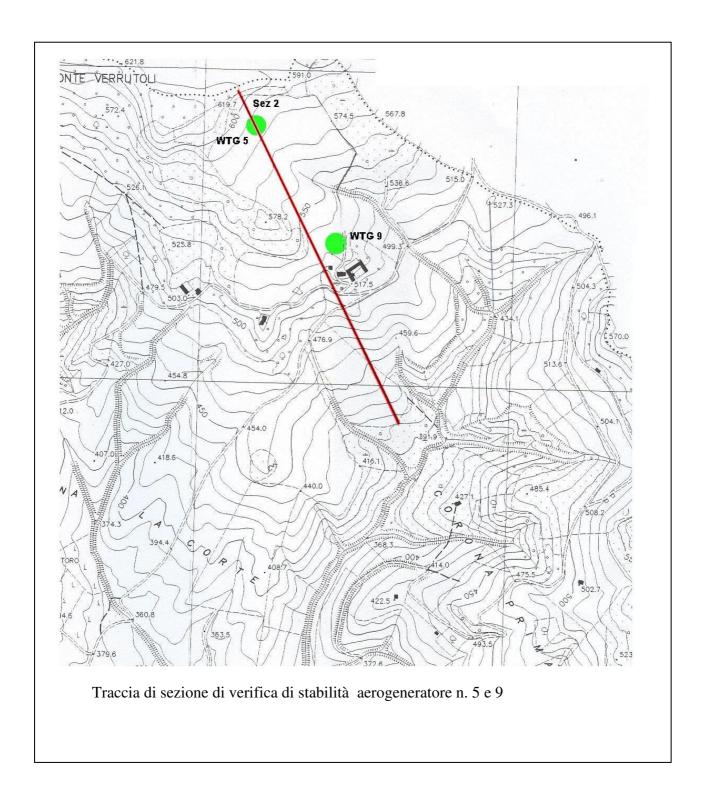
Carichi distribuiti

Cultur arsults	4101					
N°	xi	xi yi xf		yf	Carico esterno	
	m	ı	m	m	m	(kg/cm²)
	1	294	371.96	310	371.9637	2

Risultati analisi pendio


=======================================	=======================================
Fs minimo individuato	1.49
Ascissa centro superficie	29.35 m
Ordinata centro superficie	417.5 m
Raggio superficie	104.85 m

Analisi dei conci. Superficie...xc = 29.347 yc = 417.501 Rc = 104.848 Fs=1.4916


Nr.	В	Alfa	Li	Wi	Kh•Wi	Kv•Wi	c	Fi	Ui	N'i	Ti
	m	(°)	m	(Kg)	(Kg)	(Kg)	(kg/cm²)	(°)	(Kg)	(Kg)	(Kg)
1	9.07	-8.6	9.18	58768.23	4113.78	2056.89	0.16	21.3	0.0	64245.4	32329.6
2	9.07	-3.6	9.09	164249.6	11497.47	5748.74	0.17	17.9	0.0	168062.5	56081.2
3	12.64	2.4	12.65	376734.6	26371.421	3185.71	0.17	17.9	0.0	372339.2	113980.3
4	5.51	7.3	5.55	197320.2	13812.41	6906.21	0.17	17.9	0.0	191564.2	57776.2
5	9.07	11.4	9.26	325238.4	22766.691	1383.35	0.17	17.9	0.0	312865.2	95723.9
6	9.07	16.5	9.46	311100.5	21777.041	0888.52	0.17	17.9	0.0	297746.7	94067.9
7	9.07	21.8	9.77	279930.7	19595.15	9797.58	0.17	17.9	0.0	268302.9	89318.9
8	9.07	27.2	10.21	230005.1	16100.36	8050.18	0.17	17.9	0.0	221895.4	80380.2
9	9.07	33.0	10.82	158308.9	11081.62	5540.81	0.16	21.3	0.0	149286.0	72438.4
10	9.07	39.1	11.7	60549.08	4238.44	2119.22	0.16	21.3	0.0	52425.5	40616.7

SEZIONE DI VERIFICA N. 1

AEROGENERATORE N. 6

Sezione 2 (AEROGENERATORE N. 5 E 9)

Analisi di stabilità dei pendii con JANBU

Numero di strati	3.0
Numero dei conci	10.0

Superficie di forma circolare

Maglia dei Centri

Ascissa vertice sinistro inferiore xi	265.19 m
Ordinata vertice sinistro inferiore yi	664.62 m
Ascissa vertice destro superiore xs	1201.72 m
Ordinata vertice destro superiore ys	856.61 m
Passo di ricerca	10.0
Numero di celle lungo x	10.0
Numero di celle lungo y	10.0

Coefficienti sismici [N.T.C.]

Dati generali

Descrizione:

Latitudine: 40.7
Longitudine: 16.2
Tipo opera: 2 - Opere ordinarie
Classe d'uso: Classe II
Vita nominale: 50.0 [anni]
Vita di riferimento: 50.0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: Categoria topografica: T2

S.L.	TR	ag	F0	TC*
Stato limite	Tempo ritorno	$[m/s^2]$	[-]	[sec]
	[anni]			
S.L.O.	30.0	0.43	2.48	0.28
S.L.D.	50.0	0.56	2.51	0.32
S.L.V.	475.0	1.47	2.55	0.37
S.L.C.	975.0	1.82	2.6	0.4

Coefficienti sismici orizzontali e verticali

Opera: Stabilità dei pendii

S.L.	amax	beta	kh	kv
Stato limite	$[m/s^2]$	[-]	[-]	[sec]
S.L.O.	0.774	0.2	0.0158	0.0079
S.L.D.	1.008	0.2	0.0206	0.0103
S.L.V.	2.5942	0.24	0.0635	0.0317
S.L.C.	3.0805	0.24	0.0754	0.0377

Coefficiente azione sismica orizzontale 0.0754 Coefficiente azione sismica verticale 0.0377 Vertici profilo

vertici promo		
N	X	y
	m	m
1	0.0	420.0
2	70.0	440.0
3	200.0	455.43
4	236.0	461.55
5	252.0	468.81
6	264.0	473.03
7	310.0	481.83
8	342.0	489.86
9	360.0	493.3
10	412.0	501.93
11	460.0	510.0
12	500.0	520.0
13	560.0	530.0
14	600.0	530.0
15	623.71	530.0
16	626.0	531.59
17	690.0	531.57
18	720.0	536.77
19	780.0	540.0
20	835.38	551.43
21	960.0	570.0
22	1050.0	580.0
23	1080.0	589.7
24	1120.0	599.53
25	1154.72	599.63
26	1160.0	610.0
27	1192.03	614.76
28	1200.0	615.0

Vertici strato1

veruci strato1	37	
N	X	y
	m	m
1	0.0	420.0
2	70.0	440.0
3	70.0	440.0
4	70.0	440.0
5	204.0	456.2
6	234.0	461.17
7	252.0	468.81
8	266.0	473.03
9	304.0	481.06
10	335.0	488.71
11	360.0	492.92
12	412.0	501.93
13	460.0	510.0
14	500.0	520.0
15	560.0	530.0
16	600.0	530.0
17	623.24	530.0
18	626.0	531.68
19	690.0	531.68
20	720.0	536.76
21	780.0	540.0
22	830.0	550.0
23	960.0	570.0
24	1044.0	579.24
25	1080.0	579.24

26	1104.0	581.15
27	1120.0	582.11
28	1150.0	583.71
29	1200.0	585.0

Vertici strato2

N	X	y
	m	m
1	0.0	420.0
2	70.0	440.0
3	70.0	440.0
4	70.0	440.0
5	70.0	440.0
6	204.0	456.2
7	234.0	461.17
8	252.0	468.81
9	266.0	473.03
10	304.0	481.06
11	335.0	488.71
12	360.0	492.92
13	412.0	501.93
14	460.95	503.5
15	499.1	506.82
16	560.47	512.32
17	601.66	511.97
18	625.6	512.32
19	691.78	513.02
20	740.72	515.49
21	794.23	521.12
22	844.57	526.4
23	962.5	557.03
24	1043.83	566.89
25	1088.53	569.0
26	1109.66	570.05
27	1123.03	569.0
28	1156.83	570.76
29	1200.0	572.15

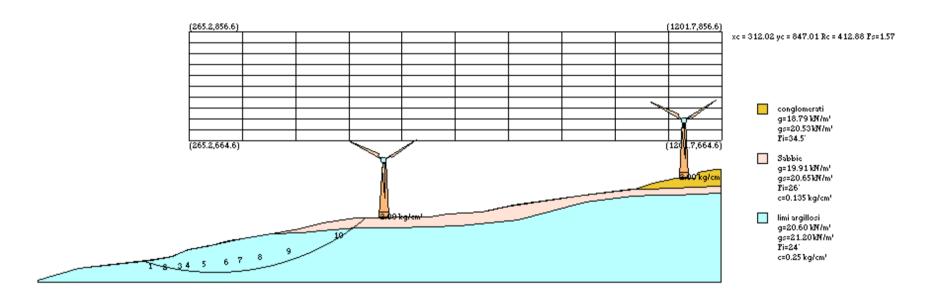
Stratigrafia

c: coesione; Fi: Angolo di attrito; G: Peso Specifico; Gs: Peso Specifico Saturo; K: Modulo di Winkler

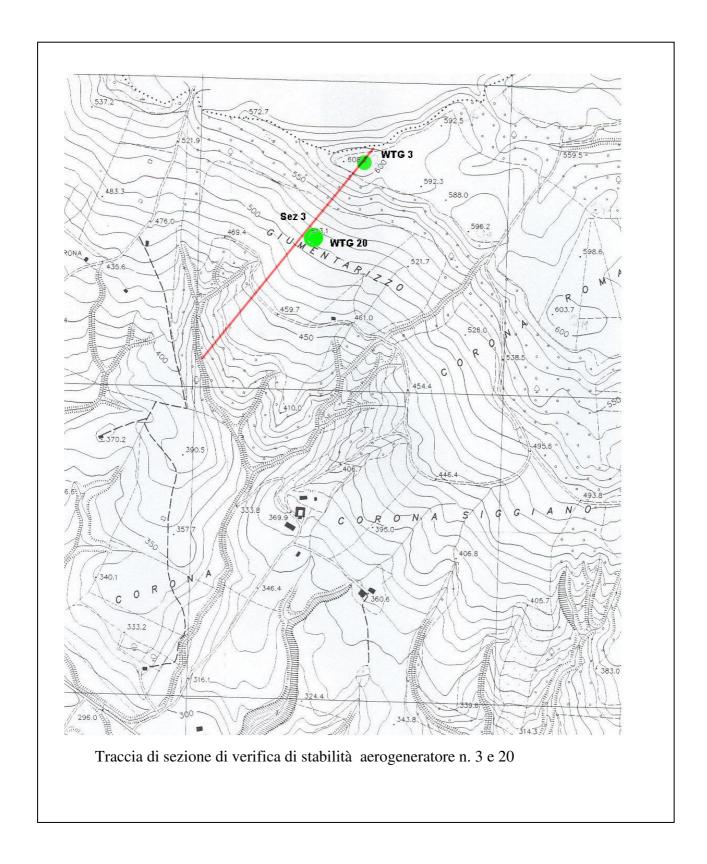
Strato	С	Fi	G	Gs	K	Litologia	
	(kg/cm²)	(°)	(kN/m^3)	(kN/m^3)	(Kg/cm³)		
1	0	34.5	18.79	20.53	0.00		conglomerati
2	0.135	26	19.91	20.65	0.00		Sabbie
3	0.25	24	20.60	21.20	0.00		limi argillosi

Carichi distribuiti

Cultural distribution					
N°	xi yi		xf	yf	Carico esterno
	m	m	m	m	(kg/cm²)
1	600	530	616	530	2
2	1128	599.62	1144	599.6656	2


Risultati analisi pendio

=======================================	
Fs minimo individuato	1.57
Ascissa centro superficie	312.02 m
Ordinata centro superficie	847.01 m
Raggio superficie	412.88 m


Analisi dei conci. Superficie...xc = 312.019 yc = 847.006 Rc = 412.883 Fs = 1.5673

Nr.	В	Alfa	Li	Wi	Kh•Wi	Kv•Wi	c	Fi	Ui	N'i	Ti
	m	(°)	m	(Kg)	(Kg)	(Kg)	(kg/cm²)	(°)	(Kg)	(Kg)	(Kg)
1	13.88	-16.7	14.5	87551.05	6601.35 3	300.68	0.2	19.6	0.0	106878.8	53612.1
2	36.0	-13.2	36.97	1022908.0	77127.2538	3563.63	0.2	19.6	0.0 1	136355.0	376370.0
3	16.0	-9.5	16.22	854896.3	64459.1832	2229.59	0.2	19.6	0.0	912455.0	277430.0
4	12.0	-7.5	12.1	837356.2	63136.6631	1568.33	0.2	19.6	0.0	878685.3	260364.0
5	46.0	-3.5	46.08	4111507.0	310007.615	55003.8	0.2	19.6	0.0 4	192905.0	1216091.0
6	32.0	1.9	32.02	3464500.0	261223.313	30611.7	0.2	19.6	0.0 3	3433090.0	985697.9
7	18.0	5.4	18.08	2102206.0	158506.379	9253.15	0.2	19.6	0.0 2	2055839.0	590894.9
8	52.0	10.3	52.86	6203433.0	467738.823	33869.4	0.2	19.6	0.0 5	5992892.0	1743359.0
9	48.0	17.5	50.33	5311253.0	400468.420	00234.2	0.2	19.6	0.0 5	3105767.0	1540636.0
10	116.56	30.4	135.17	8135129.0	613388.830	06694.4	0.2	19.6	0.0 8	3027251.0	2778322.0

VERIFICA DI STABILITA' SEZ. 2 AEROGENRATORE 5 E 9

SEZIONE 3 (AEROGENERATORE 3 E 20)

Analisi di stabilità dei pendii con JANBU

Numero di strati	5.0
Numero dei conci	10.0

Superficie di forma circolare

Maglia dei Centri

=======================================	=======================================
Ascissa vertice sinistro inferiore xi	102.9 m
Ordinata vertice sinistro inferiore yi	687.46 m
Ascissa vertice destro superiore xs	898.95 m
Ordinata vertice destro superiore ys	832.62 m
Passo di ricerca	10.0
Numero di celle lungo x	10.0
Numero di celle lungo y	10.0

Coefficienti sismici [N.T.C.]

Dati generali

Descrizione:

Latitudine: 40.86
Longitudine: 16.15
Tipo opera: 2 - Opere ordinarie
Classe d'uso: Classe II
Vita nominale: 50.0 [anni]
Vita di riferimento: 50.0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: B Categoria topografica: T2

S.L.	TR	ag	F0	TC*
Stato limite	Tempo ritorno	$[m/s^2]$	[-]	[sec]
	[anni]			
S.L.O.	30.0	0.39	2.53	0.28
S.L.D.	50.0	0.5	2.52	0.32
S.L.V.	475.0	1.27	2.63	0.45
S.L.C.	975.0	1.67	2.61	0.5

Coefficienti sismici orizzontali e verticali

Opera: Stabilità dei pendii

S.L.	amax	beta	kh	kv
Stato limite	$[m/s^2]$	[-]	[-]	[sec]
S.L.O.	0.5616	0.2	0.0115	0.0057
S.L.D.	0.72	0.2	0.0147	0.0073
S.L.V.	1.8288	0.24	0.0448	0.0224
S.L.C.	2.4048	0.24	0.0589	0.0294

Coefficiente azione sismica orizzontale 0.059 Coefficiente azione sismica verticale 0.029 Vertici profilo

vertici promo	***	
N	X	у
	m	m
1	0.0	360.0
2	120.0	430.0
3	300.0	460.0
4	420.0	490.0
5	490.0	500.0
6	534.8	512.49
7	560.0	512.49
8	570.94	523.47
9	599.65	528.79
10	629.78	537.65
11	646.94	547.68
12	669.29	554.64
13	708.18	564.09
14	751.48	586.47
15	793.59	600.25
16	804.45	601.28
17	810.21	600.0
18	820.0	600.0
19	840.43	600.0
20	843.97	601.39
21	865.84	601.78
22	900.0	600.0

Vertici strato1

N	X	у
	m	m
1	0.0	360.0
2	120.0	430.0
3	120.0	430.0
4	120.0	430.0
5	300.0	460.0
6	420.0	490.0
7	490.0	500.0
8	535.23	512.49
9	560.19	512.49
10	570.23	522.76
11	598.23	528.43
12	629.78	537.65
13	648.92	548.64
14	670.24	555.11
15	707.64	564.09
16	753.86	587.42
17	785.67	597.79
18	822.31	596.5
19	900.0	594.02

Vertici strato2

VCI tici sti ato		
N	X	у
	m	m
1	0.0	360.0
2	120.0	430.0
3	120.0	430.0
4	120.0	430.0
5	120.0	430.0
6	300.0	460.0
7	420.0	490.0
8	490.0	500.0

9	535.23	512.49
10	560.19	512.49
11	569.87	522.76
12	597.17	527.72
13	629.78	537.29
14	647.49	547.68
15	670.24	555.11
16	707.64	564.09
17	753.86	587.42
18	771.74	592.87
19	821.72	591.18
20	900.0	587.08

Vertici strato3

veruci strato3			
N	X	у	
	m	m	
1	0.0	360.0	
2	120.0	430.0	
3	120.0	430.0	
4	120.0	430.0	
5	120.0	430.0	
6	120.0	430.0	
7	300.0	460.0	
8	420.0	490.0	
9	490.0	500.0	
10	535.23	512.49	
11	560.19	512.49	
12	569.52	522.41	
13	594.69	527.01	
14	630.13	537.29	
15	646.79	547.22	
16	670.24	555.11	
17	706.0	563.54	
18	745.57	583.81	
19	771.36	580.13	
20	823.77	576.03	
21	900.0	568.66	

Vertici strato4

N	X	у
	m	m
1	0.0	360.0
2	120.0	430.0
3	120.0	430.0
4	120.0	430.0
5	120.0	430.0
6	120.0	430.0
7	120.0	430.0
8	300.0	460.0
9	420.0	490.0
10	480.83	498.17
11	695.9	489.03
12	900.0	483.26

Stratigrafia

c: coesione; Fi: Angolo di attrito; G: Peso Specifico; Gs: Peso Specifico Saturo; K: Modulo di Winkler

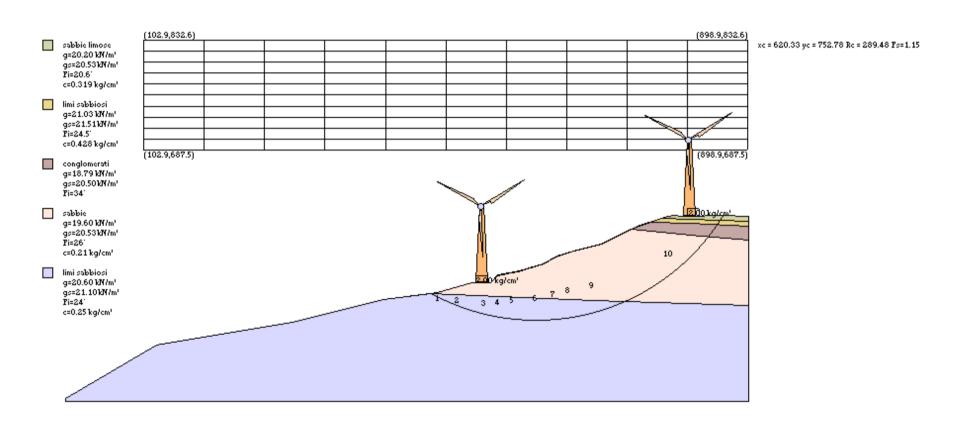
Strato	С	Fi	G	Gs	K	Litologia	
	(kg/cm²)	(°)	(kN/m^3)	(kN/m^3)	(Kg/cm³)		
1	0.319	20.6	20.20	20.53	0.00		sabbie limose
2	0.428	24.5	21.03	21.51	0.00		limi sabbiosi
3	0	34	18.79	20.50	0.00		conglomerati
4	0.21	26	19.60	20.53	0.00		sabbie
5	0.25	24	20.60	21.10	0.00		limi sabbiosi

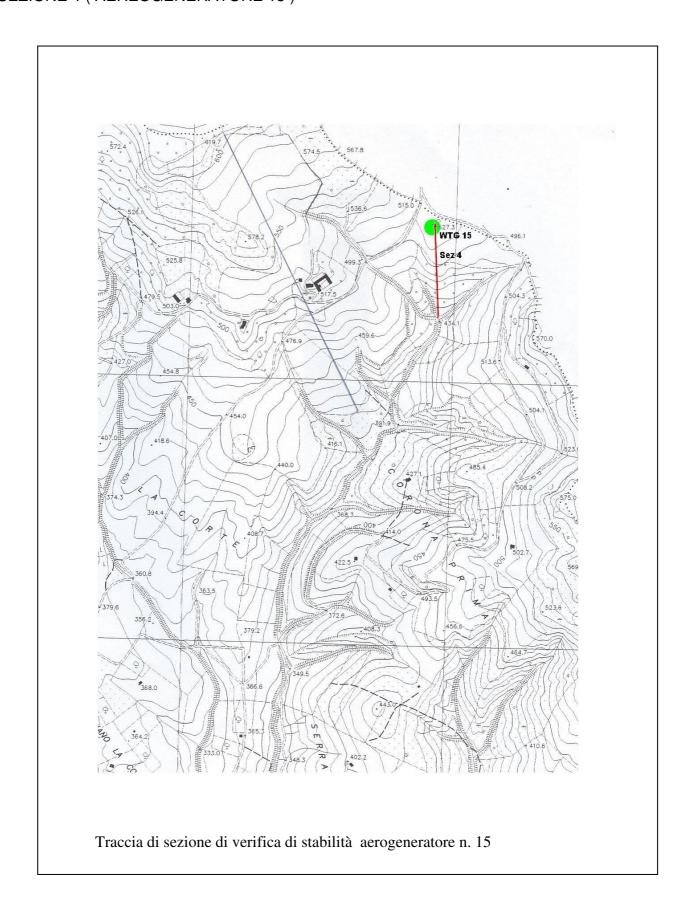
Carichi distribuiti

Current distribute					
N°	xi	yi	xf	yf	Carico esterno
	m	m	m	m	(kg/cm²)
1	820	600	836	600	2
2	540	512.49	556	512.4897	2

Risultati analisi pendio

=======================================	
Fs minimo individuato	1.15
Ascissa centro superficie	620.33 m
Ordinata centro superficie	752.78 m
Raggio superficie	289.48 m
=======================================	


B: Larghezza del concio; Alfa: Angolo di inclinazione della base del concio; Li: Lunghezza della base del concio; Wi: Peso del concio ; Ui: Forze derivanti dalle pressioni neutre; Ni: forze agenti normalmente alla direzione di scivolamento; Ti: forze agenti parallelamente alla superficie di scivolamento; Fi: Angolo di attrito; c: coesione.



Analisi dei conci. Superficie...xc = 620.33 yc = 752.784 Rc = 289.485 Fs = 1.1471

Nr.	В	Alfa	Li	Wi	Kh•Wi	Kv•Wi	c	Fi	Ui	N'i	Ti
	m	(°)	m	(Kg)	(Kg)	(Kg)	(kg/cm²)	(°)	(Kg)	(Kg)	(Kg)
1	8.54	-27.7	9.64	50695.85	2991.06	1470.18	0.2	19.6	0.0	84363.9	58276.9
2	44.8	-22.0	48.31	2034364.0	120027.55	8996.57	0.2	19.6	0.0 2	629661.0	1165252.0
3	25.2	-14.6	26.04	2385620.0	140751.66	9182.98	0.2	19.6	0.0 2	746095.0	1113409.0
4	10.94	-10.9	11.14	1109334.0	65450.713	2170.69	0.2	19.6	0.0 1	222203.0	487417.3
5	28.71	-7.0	28.92	3566970.0	210451.31	03442.1	0.2	19.6	0.0 3	772408.0	1476645.0
6	30.13	-1.1	30.13	4297891.0	253575.61	24638.8	0.2	19.6	0.0 4	331290.0	1676799.0
7	17.17	3.6	17.2	2752467.0	162395.57	9821.54	0.2	19.6	0.0 2	692953.0	1041150.0
8	22.35	7.5	22.54	3871329.0	228408.41	12268.5	0.2	19.6	0.0 3	716173.0	1443843.0
9	38.89	13.7	40.03	6899063.0	407044.72	00072.8	0.2	19.6	0.0 6	491195.0	2575048.0
10	159.08	38.1	202.172	6257660.0	1549202.07	61472.2	0.17	21.3	0.025	5068110.0	13451450.0

VERIFICA DI STABILITA' SEZ. N. 3 AEROGENRATORE 3 E 20

Analisi di stabilità dei pendii con JANBU

Numero di strati	3.0
Numero dei conci	10.0
Cunauficia di farma sincolore	

Superficie di forma circolare

Maglia dei Centri

	=======================================
Ascissa vertice sinistro inferiore xi	10.9 m
Ordinata vertice sinistro inferiore yi	574.19 m
Ascissa vertice destro superiore xs	346.48 m
Ordinata vertice destro superiore ys	702.03 m
Passo di ricerca	10.0
Numero di celle lungo x	10.0
Numero di celle lungo y	10.0

Coefficienti sismici [N.T.C.]

Dati generali

Descrizione:

Latitudine: 40.7
Longitudine: 16.2
Tipo opera: 2 - Opere ordinarie
Classe d'uso: Classe II
Vita nominale: 50.0 [anni]
Vita di riferimento: 50.0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: Categoria topografica: T2

S.L.	TR	ag	F0	TC*
Stato limite	Tempo ritorno	$[m/s^2]$	[-]	[sec]
	[anni]			
S.L.O.	30.0	0.43	2.48	0.28
S.L.D.	50.0	0.56	2.51	0.32
S.L.V.	475.0	1.47	2.55	0.37
S.L.C.	975.0	1.82	2.6	0.4

Coefficienti sismici orizzontali e verticali

Opera: Stabilità dei pendii

S.L.	amax	beta	kh	kv
Stato limite	[m/s ²]	[-]	[-]	[sec]
S.L.O.	0.774	0.2	0.0158	0.0079
S.L.D.	1.008	0.2	0.0206	0.0103
S.L.V.	2.5942	0.24	0.0635	0.0317
S.L.C.	3.0805	0.24	0.0754	0.0377

Coefficiente azione sismica orizzontale 0.075 Coefficiente azione sismica verticale 0.038 Vertici profilo

vertici profilo		
N	X	у
	m	m
1	0.0	438.0
2	39.05	454.75
3	100.0	470.0
4	167.34	492.32
5	189.47	498.78
6	214.35	503.29
7	260.0	510.0
8	322.69	517.74
9	332.21	517.74
10	339.04	517.74
11	341.73	523.84
12	343.84	525.37
13	350.0	527.0

Vertici strato1

N	X	у
	m	m
1	0.0	438.0
2	39.05	455.39
3	100.0	470.0
4	190.06	498.98
5	256.66	509.57
6	331.7	512.19
7	350.0	514.12

Vertici strato2

N	X	у
	m	m
1	0.0	438.0
2	40.34	456.04
3	100.0	470.0
4	190.06	499.17
5	258.56	502.49
6	331.58	506.3
7	350.0	507.39

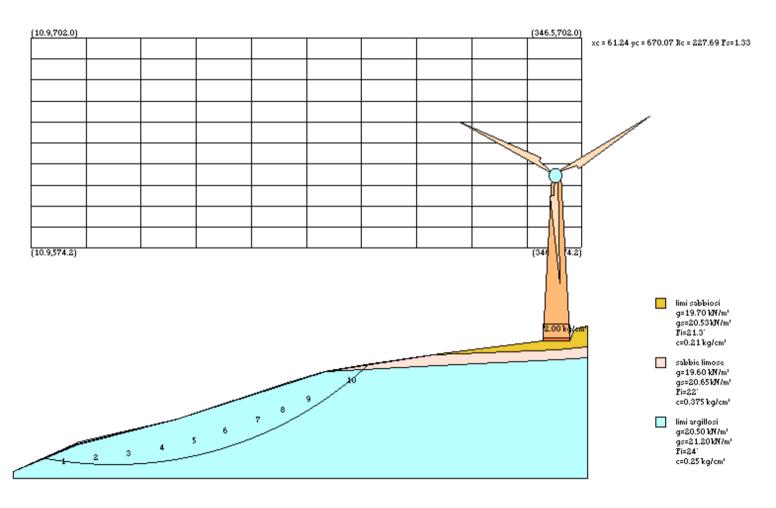
Stratigrafia

c: coesione; Fi: Angolo di attrito; G: Peso Specifico; Gs: Peso Specifico Saturo; K: Modulo di Winkler

Strato	С	Fi	G	Gs	K	Litologia	
	(kg/cm²)	(°)	(kN/m^3)	(kN/m^3)	(Kg/cm³)		
1	0.21	21.3	19.70	20.53	0.00		limi sabbiosi
2	0.375	22	19.60	20.65	0.00		sabbie limose
3	0.25	24	20.50	21.20	0.00		limi argillosi

Carichi distribuiti

Carlein distributi									
N°	xi	yi	xf	yf	Carico esterno				
	m	m	m	m	(kg/cm ²)				
1	323	517.74	339	517,7388					


Risultati analisi pendio

Fs minimo individuato	1.33
Ascissa centro superficie	61.24 m
Ordinata centro superficie	670.07 m
Raggio superficie	227.69 m

Analisi dei conci. Superficie...xc = 61.236 yc = 670.065 Rc = 227.689 Fs = 1.3323

Nr.	B m	Alfa (°)	Li m	Wi (Kg)	Kh•Wi (Kg)	Kv•Wi (Kg)	c (kg/cm²)	Fi (°)	Ui (Kg)	N'i (Kg)	Ti (Kg)
1	19.76	-8.1	19.96	243122.2	18234.17	9238.65	0.2	19.6	0.0	262681.4	121369.2
2	19.7	-3.1	19.73	598559.6	44891.972	2745.26	0.2	19.6	0.0	612023.1	232090.0
3	19.73	1.9	19.74	811312.5	60848.4430	0829.87	0.2	19.6	0.0	802233.1	292910.4
4	21.52	7.1	21.68	1043869.0	78290.239	9667.03	0.2	19.6	0.0	1006969.0	364667.0
5	17.95	12.1	18.35	957889.8	71841.733	6399.81	0.2	19.6	0.0	909993.2	332205.5
6	19.73	17.0	20.63	1108778.0	83158.3442	2133.56	0.2	19.6	0.0	1045573.0	389440.1
7	19.73	22.3	21.33	1087879.0	81590.954	1339.41	0.2	19.6	0.0	1025255.0	396793.0
8	9.93	26.4	11.08	510265.1	38269.891	9390.07	0.2	19.6	0.0	482890.8	195095.7
9	22.13	31.0	25.83	958139.8	71860.493	6409.31	0.2	19.6	0.0	913889.3	396200.7
10	27.13	38.7	34.74	524833.6	39362.521	9943.67	0.2	19.6	0.0	495075.1	283336.6

SEZIONE DI VERIFICA N. 4 AEROGENERATORE N. 15

