

Direzione Progettazione e Realizzazione Lavori

S.S.N.318 DI VALFABBRICA

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354

Lotto 5 : 1 stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi

2 stralcio: raddoppio galleria Casacastalda e viadotto Calvario

MONITORAGGIO AMBIENTALE - FASE ANTE OPERAM

COD. PG131 - PG6

ESECUZIONE DEL SERV	/IZIO ARIEI ARIEI	n consulting s.r.l.
IL DIRETTORE OPERATIVO:		Il Direttore Tecnico
Dott. Geol. Matteo Rizzitelli		Dott Ing Domenico D'Alessandro Sez A
Il Direttore dei Lavori		N. A 707
Dott. Ing. Marco De Paolis		Ordine degli Ingegneri della Provincia della Provincia della Provincia Dott. Ing. Domenico D'Alessandro
visto il R.U.P.		D'Alessandro de su ou
Dott. Ing. Alessandro Micheli		
		IL GRUPPO DI LAVORO:
		Dott. Ing. Antonio Orlando (rumore)
		Dott. Arch. Emiliano Capozza (atmosfera)
		Dott. Geol. Francesco Morgante (suolo)
		Dott. Agr. Matteo Vetro (vegetazione e fauna)
		Dott. Geol. Francesco Vergara (acque superficiali e sotterranee)
		Dott. Arch. Caterina Scamardella (paesaggio)
PROTOCOLLO	DATA	
COMPONENTE AMBIE	NTE IDRICO SUPERFICI	AI F

COMPONENTE AMBIENTE IDRICO SUPERFICIALE SCHEDE DI MISURA E RAPPORTI DI PROVA

CODICE PROGET	TO LIV. PROG. N. PROG.	NOME FILE:				REVISIONE	SCALA:
DPPG		CODICE ELAB.	POOMO01M	OARE	0 1	А	
Α	Emissione			31/03/2021	F. Vergara	F. Vergara	D. D'Alessandro
REV.	DESCRIZIONE			DATA	REDATTO	VERIFICATO	APPROVATO

e Realizzazione Lavori

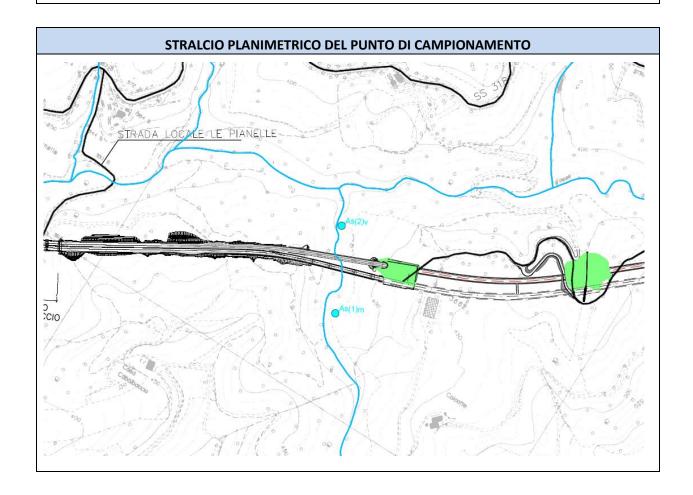
S.S. 318 DI VALFABBRICA

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi

2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA DI MONITORAGGIO AMBIENTE IDRICO SUPERFICIALE

CODICE PUNTO MISURA: AS(1)m **PROGR. (Km):** 16+360


DENOMINAZIONE: Viadotto Tre Vescovi

PASE DI MONITORAGGIO: ANTE OPERAM **DATA:** 20 novembre 2020

LOCALIZZAZIONE GEOGRAFICA

Comune: Casacastalda Provincia: Perugia Regione: Umbria

Coordinate geografiche: 43°11'9.64"N 12°37'50.20"E

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi

2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA DI MONITORAGGIO AMBIENTE IDRICO SUPERFICIALE

SCHEDA DI RILIEVO E CAMPIONAMENTO IN CAMPAGNA								
PARAMETRO	STRUMENTAZIONE	NUMERO MISURA	UNITÀ DI MISURA	RISULTATO				
Portata	OTT C31	1	m³/s	0.0074				
		1	°C	10.8				
Temperatura	HACH HQ40D	2	°C	10.8				
acqua		3	°C	10.8				
		JMENTAZIONE NUMERO MISURA UNIT MISURA OTT C31 1 m³ ACH HQ40D 2 °C 3 °C media °C 3 °C media °C 3 °C media °C 3 µS/ media µS/ MACH HQ40D 2 1 media ACH HQ40D 2 3 media MACH HQ40D 2 3 media MED 3 MED 3 <td< td=""><td>°C</td><td>10.8</td></td<>	°C	10.8				
		1	°C	12.5				
T	HACH HQ40D	2	°C	12.5				
Temperatura aria		3	°C	12.5				
		media	°C	12.5				
		1	μS/cm	803				
Conducibilità	HACH HQ40D	2	μS/cm	803				
elettrica	HACH HQ40D ducibilità HACH HQ40D	3	μS/cm	803				
		media	μS/cm	803				
		1		8.11				
	HACH HQ40D	2		8.11				
рн		3		8.11				
		3 μS/cm 80. media μS/cm 80. 1 8.1 CH HQ40D 2 8.1 3 8.1 media 8.1	8.11					
		1	mg/l	10.32				
Ossissana Dissialta	HACH HQ40D	2	mg/l	10.30				
Ossigeno Disciolto		1Q40D 2 °C 12.5 media °C 12.5 media °C 12.5 1 μS/cm 803 4Q40D 2 μS/cm 803 media μS/cm 803 media μS/cm 803 1 8.11 1 8.11 1 media 8.11 media 8.11 media 9.1 1 mg/l 10.32 HQ40D 2 mg/l 10.31 media mg/l 10.31 media mg/l 10.31 1 mv 153.0 1 mv 153.0	10.31					
	media	10.31						
		1	mV	153.0				
Dotonziala Badan	HACH HQ40D	2	mV	152.5				
Potenziale Redox		3	mV	151.8				
		media	mV	152.4				

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA DI MONITORAGGIO AMBIENTE IDRICO SUPERFICIALE

FOTO DEL PUNTO DI CAMPIONAMENTO

N	\cap	т	E

Natura S.r.I.
Sede Legale e Laboratorio di analisi:
Via Gioacchino Rossini, 16
80026 Casoria (NA)
Tel 081/5737038 Fax 081/5739776
P.IVA 02887711212
E-Mail: natura@naturasrl.it
Sito internet: www.naturasrl.it

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

RAPPORTO DI PROVA N 20LA18803 DEL	07/01/2021
-----------------------------------	------------

COMMITTENTE: ARIEN CONSULTING S.R.L.

INDIRIZZO COMMITTENTE: VIA TERENZIO, 21 00193 ROMA (RM)

PARTITA IVA E/O COD. FISCALE: 08978601006

UBICAZIONE CAMPIONAMENTO: SS318 CASACASTALDA

PUNTO DI CAMPIONAMENTO: AS (1)m

DESCRIZIONE CAMPIONE:CAMPIONAMENTO A CURA DI:

ACQUE SUPERFICIALI

A CURA DEL CLIENTE*

PROCEDURA/PIANO DI CAMPIONAMENTO: CAMPIONE CONSEGNATO DAL CLIENTE*

DATA CAMPIONAMENTO: 20/11/2020
DATA RICEZIONE CAMPIONE: 20/11/2020
DATA ACCETTAZIONE CAMPIONE: 20/11/2020

N° ACCETTAZIONE CAMPIONE: 20/11/2020

ORA ACCETTAZIONE CAMPIONE: 19.00

DATA INIZIO PROVA: 20/11/2020 DATA FINE PROVA: 04/12/2020

DATA INIZIO I NOVA: 20/11/2020	DAIAINE	NO 17. 07/12/2	020	
Parametro Metodo	U.M.	Risultato	Incertezza	Limite 1 - Limite 2 - Limite 3
*POTENZIALE REDOX \$APHA Standard methods 23nd 2500B	mV	152,4	±53,3	-
OSSIGENO DISCIOLTO (Cat.III) \$APHA Standard methods 23nd 4500-0	mg/L	10,3	±3,6	-
*TEMPERATURA ARIA \$APAT CNR IRSA 2120 Man 29 2003	°C	12,5	±4,4	-
IDROCARBURI TOTALI EPA 5030C 2003 + EPA 8015C 2007 + UNI EN ISO 9377-2 2002	μg/L	< 35		-
IDROCARBURI C6-C10 EPA 5030C 2003 + EPA 8015C 2007	μg/L	< 35		-
INDICE DI IDROCARBURI (C10 - C40) UNI EN ISO 9377-2: 2002	μg/L	< 35		-
TEMPERATURA - (cat.III) \$APAT CNR IRSA 2120 Man 29 2003	°C	10,8	±3,8	-
ALLUMINIO EPA 6020B 2014	μg/L	< 10		-
ARSENICO EPA 6020B 2014	μg/L	< 2,5		10 - 5
CADMIO EPA 6020B 2014	μg/L	< 0,1		-
CROMO TOTALE EPA 6020B 2014	μg/L	< 2,5		7 - 4
FERRO EPA 6020B 2014	μg/L	< 20		-
MERCURIO EPA 6020B 2014	μg/L	< 0,1		0,03 - 0,01 - 0,06
NICHEL EPA 6020B 2014	μg/L	< 2,5		20 - 20
PIOMBO EPA 6020B 2014	μg/L	< 2,5		7,2 - 7,2
RAME EPA 6020B 2014	μg/L	< 3		-

File firmato digitalmente Pagina 1 di 5

Natura S.r.I.
Sede Legale e Laboratorio di analisi:
Via Gioacchino Rossini, 16
80026 Casoria (NA)
Tel 081/5737038 Fax 081/5739776
P.IVA 02887711212
E-Mail: natura@naturasrl.it
Sito internet: www.naturasrl.it

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

SEGUE RAPPORTO DI PROVA N 20LA18803	DEL 07/01/20)21		
Parametro Metodo	U.M.	Risultato	Incertezza	Limite 1 - Limite 2 - Limite
ZINCO <i>EPA 6020B 2014</i>	μg/L	< 10		-
AZOTO AMMONIACALE APAT CNR IRSA 4030 A1 Man 29 2003	mg/L	0,1		-
CLORURI APAT CNR IRSA 4020 Man 29 2003	mg/L	14,9	±3,7	-
CONDUTTIVITÀ ELETTRICA (Cat.III) PUNI EN 27888: 1995	μs/cm	803	±281	-
pH (cat.III) UNI EN ISO 10523: 2012	unità pH	8,11	±0,20	-
SOLFATI APAT CNR IRSA 4020 Man 29 2003	mg/L	131	±33	-
TENSIOATTIVI ANIONICI APAT CNR IRSA 5170 Man 29 2003	mg/L	< 0,30		-
TENSIOATTIVI NON IONICI MI02: 2020 REV. 00	mg/L	< 0,5		-
CONTA DI ESCHERICHIA COLI APAT CNR IRSA 7030 F Man 29 2003	UFC/100mL	40	±14	-
MANGANESE EPA 6020B 2014	μg/L	2,72	±0,54	-
CALCIO EPA 6010D 2018	mg/L	110	±22	-
BENTAZONE EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,01		-
LINURON EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,005		-
ALACLOR EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,01		0,3 - 0,3 - 0,7
DIURON EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,005		0,2 - 0,2 - 1,8
TERBUTILAZINA EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,01		0,5 - 0,2
METOLACHLOR EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,01		-
TRIFLURALIN EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,005		0,03 - 0,03
XILENE <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,5		5 - 1
TRANS-1,2-DICLOROETILENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
TRIBROMOMETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
TRICLOROETILENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		10 - 10

File firmato digitalmente Pagina 2 di 5

Natura S.r.I.
Sede Legale e Laboratorio di analisi:
Via Gioacchino Rossini, 16
80026 Casoria (IAA)
Tel 081/5737038 Fax 081/5739776
P.IVA 02887711212
E-Mail: natura@naturasrl.it
Sito internet: www.naturasrl.it

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

SEGUE RAPPORTO DI PROVA N 20LA18803	DEL 07/01/2	2021		
Parametro Metodo	U.M.	Risultato	Incertezza	Limite 1 - Limite 2 - Limite
TETRACLOROETILENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		10 - 10
TOLUENE <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,5		5 - 1
DIBROMOCLOROMETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
CLORURO DI VINILE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
ESACLOROBUTADIENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		0,05 - 0,02 - 0,5
BENZENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,1		10 - 8 - 50
BROMODICLOROMETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
CIS-1,2-DICLOROETILENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
CLOROMETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
1,1,1-TRICLOROETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		10 - 2
TRICLOROMETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
1,1,2,2-TETRACLOROETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,001		-
1,1,2-TRICLOROETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
1,1-DICLOROETANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		-
1,1-DICLOROETILENE <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		-
1,2,3-TRICLOROPROPANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,001		-
1,2 - DIBROMOETANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,001		-
1,2-DICLOROETANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		10 - 10
1,2-DICLOROETILENE <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		-
RICHIESTA CHIMICA DI OSSIGENO (COD) ISO 15705: 2002	mg/L	< 10		-
DUREZZA TOTALE (da calcolo) DA CALCOLO	°F	39,2	±13,7	-
TORBIDITÀ (Cat. III) APAT CNR IRSA 2110 Man 29 2003	NTU	< 0,4		-

File firmato digitalmente Pagina 3 di 5

Natura S.r.I.
Sede Legale e Laboratorio di analisi:
Via Gioacchino Rossini, 16
80026 Casoria (NA) 80026 Casoria (NA)
Tel 081/5737038 Fax 081/5739776
P.IVA 02887711212
E-Mail: natura@naturasrl.it Sito internet: www.naturasrl.it

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

SEGUE RAPPORTO DI PROVA N 20LA18803	DEL 07/01/2	2021		_
Parametro Metodo	U.M.	Risultato	Incertezza	Limite 1 - Limite 2 - Limite 3
NITRATI APAT CNR IRSA 4020 Man 29 2003	mg/L	< 10		-
SOLIDI SOSPESI TOTALI (SOLIDI INDISCIOLTI) APAT CNR IRSA 2090 B Man 29 2003	mg/L	23,4	±8,2	-
FOSFORO TOTALE APAT CNR IRSA 4110 A2 Man 29 2003	mg/L	< 0,1		-

Legenda:

U.M. =unità di misura nd = non determinabile U (se presente) = incertezza LR (se presente) = limite di rivelabilità NR (se presente) = non rilevato

* = prova non accreditata ACCREDIA

= prova in subappalto

\$ = prova fornita dal cliente per la quale il laboratorio declina ogni responsabilità

Informazioni fornite dal cliente per le quali il laboratorio declina ogni eventuale responsabilità:

ANAGRAFICHE: DATA CAMPIONAMENTO, DESCRIZIONE CAMPIONE, PROCEDURA/PIANO DI CAMPIONAMENTO, UBICAZIONE CAMPIONAMENTO, PUNTO DI CAMPIONAMENTO

PROVE: Temperatura durante il campionamento - Conducibilità Lettura - CONDUTTIVITÀ ELETTRICA (Cat.III) - OSSIGENO DISCIOLTO (Cat.III) - POTENZIALE REDOX - TEMPERATURA - (cat.III) - TEMPERATURA ARIA

Il recupero dei singoli analiti è compreso tra l' 80% ed il 120%. Non si utilizza alcun fattore di correzione nel calcolo della concentrazione. Per le singole diossine, il recupero

Il criterio di valutazione utilizzato per l'espressione del giudizio di conformità tiene conto dell'incertezza di misura associata alle singole prove in conformità al documento ISPRA n. 52/2009.

Nota Campionamento: Il campionamento si intende accreditato solo se il metodo non è indicato con l'asterisco ed è associato ad una successiva prova accreditata secondo la norma ISO/IEC 17025.

I risultati ottenuti si riferiscono al campione così come ricevuto.

L'incertezza è espressa nelle unità di misura del parametro a cui si riferiscono. Il fattore di copertura è pari a k=2 con un intervallo di probabilità del 95% L'incertezza riportata non tiene conto del contributo del campionamento.

Note: Tab. 1/A e Tab 1/B del DM 260/2010

Limite 1: SQA-MA (standard di qualità ambientale espresso come valore medio annuo) per acque superficiali interne (fiumi, laghi e corpi idrici artificiali o modificati) Limite 2: SQA-MA (standard di qualità ambientale espresso come valore medio annuo) per altre acque di superficie (acque marino-costiere, acque territoriali e acque di

Limite 3: SQA-CMA (standard di qualità ambientale espresso come concentrazione massima ammissibile)

Per il Cadmio il limite è = 0,45 se DUREZZA < 4 °F; 0,45 se 4 °F < DUREZZA < 5 °F; 0,6 se 5 °F < DUREZZA < 10 °F; 0,9 se 10 °F < DUREZZA < 20 °F; 1,5 se DUREZZA > 20 °F

GIUDIZIO DI CONFORMITÀ

Tab. 1/A e Tab 1/B del DM 260/2010

Limite 1: SQA-MA (standard di qualità ambientale espresso come valore medio annuo) per acque superficiali interne (fiumi, laghi e corpi idrici artificiali o modificati)

Limite 2: SQA-MA (standard di qualità ambientale espresso come valore medio annuo) per altre acque di superficie (acque marino-costiere, acque territoriali e acque di transizione)

Limite 3: SQA-CMA (standard di qualità ambientale espresso come concentrazione massima ammissibile)

Per il Cadmio il limite è = 0,45 se DUREZZA < 4 °F; 0,45 se 4 °F < DUREZZA < 5 °F; 0,6 se 5 °F < DUREZZA < 10 °F; 0,9 se 10 °F < DUREZZA < 20 °F; 1,5 se DUREZZA > 20 °F

NESSUN SUPERAMENTO - CONFORME rispetto al limite per i parametri analizzati.

File firmato digitalmente Pagina 4 di 5

Natura S.r.I.

Sede Legale e Laboratorio di analisi:
Via Gioacchino Rossini, 16
80026 Casoria (NA)
Tel 081/5737038 Fax 081/5739776
P.IVA 02887711212
E-Mail: natura@naturasrl.it
Sito internet: www.naturasrl.it

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

SEGUE RAPPORTO DI PROVA N 20LA18803

DEL 07/01/2021

I risultati del presente rapporto di prova si devono intendere riferiti esclusivamente al campione sottoposto a prova. Il presente rapporto di prova non può essere riprodotto parzialmente se non previa approvazione scritta da parte di questo Laboratorio.

Il Responsabile di Laboratorio

Dott. Francesco Troisi

DOTT.
TROISI
CHIMICO
N. 1714

- Fine Rapporto di Prova -

File firmato digitalmente Pagina 5 di 5

Direzione Progettazione e Realizzazione Lavori

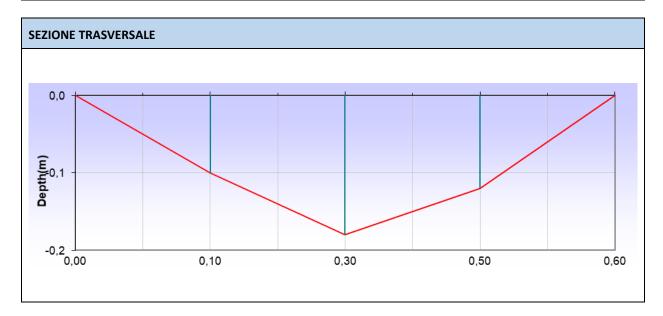
S.S. 318 DI VALFABBRICA

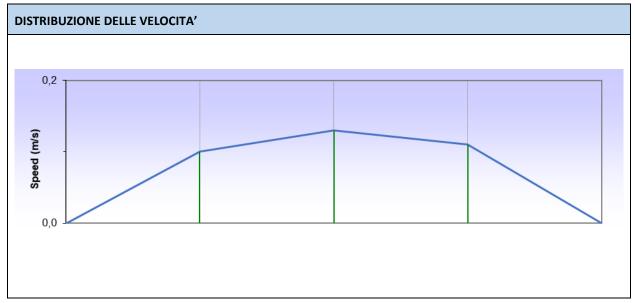
Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA MISURA DI PORTATA - AMBIENTE IDRICO SUPERFICIALE

RELAZIONE TECNICA MISURA DI PORTATA								
SITO AS(1)m C			CORS	O D'ACQUA	Foss	so Tre Vescovi		
DATA	DATA 20 Novembre 2020 UBICAZIONE		Novembre 2020 UBIC		Viado	otto Tre Vesco	/i	
STRUMENTO UTILIZZATO	Misurat	ore di Corrente OTT C31	re di Corrente OTT C31 OPERATORE		Geol. F	rancesco Verg	ara	
DESCRIZIONE CORSO D'ACQUA								
Corso d'acqua a regime torrentizio, alveo ciottoloso di forma irregolare, acque limpide con flusso turbolento, presenza di vegetazione riparia e in alveo.								
PROFONDITA' MAX (m)	0.18	VELOCITA' MINIMA (m/se	c)	0.0	PERIMETRO BAG	NATO (m)	0.72	
PROFONDITA' MEDIA (m)	0.115	VELOCITA' MAX (m/sec)		0.130	RAGGIO IDRAULI	CO (m)	0.0955	
LARGHEZZA ALVEO (m)	0.60	VELOCITA' MEDIA (m/sec)		0.11	SEZIONE (m²)		0.069	
METODO DI MISURA	М	edio- un punto di misura		PORTA	ATA (m³/s)	0.0	074	

FOTO DEL PUNTO DI MISURA




Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi

2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA MISURA DI PORTATA - AMBIENTE IDRICO SUPERFICIALE

GRAFICI DELLA SEZIONE DI MISURA

NOTE			

Direzione Progettazione e Realizzazione Lavori

S.S. 318 DI VALFABBRICA

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA INDICE LIMeco - AMBIENTE IDRICO SUPERFICIALE

CODICE PUNTO MISURA: AS(1)m **PROGR. (Km):** 16+360

CORPO IDRICO: fosso Tre Vescovi "monte"

FASE DI MONITORAGGIO: ANTE OPERAM **DATA:** 11 dicembre 2020

LOCALIZZAZIONE GEOGRAFICA

Comune: Casacastalda Provincia: Perugia Regione: Umbria

Coordinate geografiche: 43°11'9.64"N 12°37'50.20"E

APPLICAZIONE INDICE LIMeco							
PARAMETRO	UNITÀ DI MISURA	VALORE					
AZOTO AMMONIACALE	mg/l	< 0.01					
AZOTO NITRICO	mg/l	1.700					
FOSFOTO TOTALE	mg/l	0.050					
OSSIGENO DOSCIOLTO	%	99.3					
TEMPERATURA	°C	9.1					

GIUDIZIO LIMeco				
VALORE DI LIMeco	STATO			
0,687	ELEVATO			

Rapporto di Prova N. 4022_2020

C 464-20

Data emissione: 23/12/2020 Pagina 1 di 1

> Spett.le **DRONEEC DI FORNERIS STEFANO** Via Rivoli n°116 10090 Villarbasse (TO)

Data arrivo campione: 14/12/2020 alle ore: 09:00 Descrizione del campione: Acque di torrente

Etichetta: Stazione AS 1 M-Torrente Fosso 3 Vescovi; T al prelievo + 9,1°C (dati dichiarati dal Cliente)

Campionamento effettuato da: cliente

Data campionamento: 11/12/2020 alle ore: 08:30

Procedura campionamento: --

Modulo: Mod 5_8-1 Accettazione campioni compilato

Numero interno attribuito al campione: 4022-20

I risultati riportati sono rappresentativi dei soli campioni sottoposti a prova, così come ricevuti. Il presente Rapporto di Prova non può essere riprodotto parzialmente salvo autorizzazione del laboratorio.

Parametro	Metodo di prova	Unita' di misura	Risultato ± U	Limiti	Data inizio - fine prova
Azoto ammoniacale	APAT CNR IRSA 4030A1 Man 29 2003	mg/l	< 0,01	-	16/12/2020 - 16/12/2020
Azoto nitrico*	APAT CNR IRSA 4040A1 Man 29 2003	mg/l	1,700	1	16/12/2020 - 16/12/2020
Fosforo totale*	APAT CNR IRSA 4110A2 Man 29 2003	mg/l	0,050	-	21/12/2020 - 21/12/2020

^{*} prova non accreditata da ACCREDIA

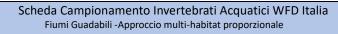
Responsabile Settore Chimico Dott. Gianluca Toro

Firmato digitalmente da

(owner

Toro Gianluca

CN: Toro Gianluca O: ArubaPEC S.p.A.
OU: Certification AuthorityC



Fiumi Guadabili -Approccio multi-habitat proporzionale

Fiume F	OSSO TRE VESCOVI	Sito A	S1M			Locali	tà CASACASTALDA	Comune V	ALFABBRICA
	PERUGIA	Region		UMBRIA		Locali	ta CASACASTALDA	Coordinate GP	
	-12-2020	Opera		S. FORNI		Ente	ANAS		
Idroecor	egione 11	Tipo fl	uviale 1 1	LIN7T				Corpo idrico W	/FD
Tipo di n	nonitoraggio	Operati		C	di Sorveglian		Altro (spec.)		
	Sito di	Riferimen	to 🗆		Investigat	ivo 🗆	Rete di monitoraggio (spec.)	
		Si 🛣		In p	arte 🗆		Poco onulla 🛚		
		lo IX			Si 🗆			(specificare foto d	riferimento)
	· · · · · · · · · · · · · · · · · · ·	le 🕅			Pool 🗆		Prop.generico Prop.generico	Altro (spec.)	
	ino utilizzato: Surbe	le 🗆		R. immani	Pool 🗆		FTOp.genenco	Altro (spec.)	
ripo di rei	Retino imm. con misura superfic			n. mman	cuto L			Aici o (spec.)	
Superficie	totale campionata: 0.5m	n² ⊠			1 m² □			Altro (spec.)	
	ocolli biologici: Diatome				rofite 🗆		Ittiofauna 🗖	Altro (spec.)	
	i supporto: Macrodescritto chimico-fisici	ri XI O ₂ (mg/l)	10.88	Idromorf	ologia □ pH		T°C 9.1	Altro (spec.) Conducibilità (μ	S/am²)
		O ₂ (mg/i)	10.00		Грп		1 6 3.1	+	
	i tenere separato il campione derivante dalle 10 on. Operativo) da quello derivante dalla raccolta		10	repliche p	roporziona	li (Mon	itoraggio Operativo)	1	dizionali (Monitoraggio
	iche addizionali								nza, Investigativo, Reference)
		codice		%	Nr.Re	pliche	Tipo diflusso	Nr.Repliche	Tipo diflusso
	limo/argilla < 6μ	ARG	2	0	2		BW-BW		
	sabbia 6μ-2 mm	SAB							
	ghiaia > 0.2-2cm	GHI							
ERALI ¹	microlithal* 2-6 cm	МІС	20	0	2		RP-BW		
AT MIN	mesolithal* 6-20 cm	MES	10	0	1		BW		
MICROHABITAT MINERALI ¹	macrolithal* 20-40cm	MAC	10	D	1		BW		
MICRO	megalithal* > 40cm	MGL	20	0	2		BW-BW		
	artificial (e.g. cemento)	ART							
1.0	igropetrico (sottile strato d'acqua su substrato roccioso)	IGR	20	0	2		CH-CH		
<u>+(I</u>	e dimensioni indicate si riferiscono all'asse intermed	io)							
	alghe	AL							
	macrofite sommerse (anche muschi, Characeae, etc.)	so							
<u>D</u>	macrofite emergenti (e.g. Thypha, Carex, Phragmites)	EM							
MICROHABITATBIOTICI	parti vive di piante terrestri (e.g. radichette sommerse)	TP							
НАВІТ	xylal/legno (rami, legno morto, radici)	XY							
MICRO	CPOM (materiale organico grossolano, foglie, rametti)	СР							
	FPOM (materiale organico fine)	FP							
	Film batterici, funghie sapropel	ВА							
	somma		1	00%		LO		4	
Il sito è ui	niformemente o quasi uniformemente ricopo un sottile strato di limo 🏻	erto da:		Algh	muschi e incrostanti		•	<u> </u>	
Note	1			1				iflusso	
				}	Flussida cons	iderare	per il campionamento:	4330	
					NP N	on perce	ettibile BW Broken star	ndingwaves	
						scio/ <i>Sm</i>			
F!	of On					<i>pwelling</i> crespate	g o/Rippled	1	evitare nel campionamento: Cascata/Freefall
Firma Op	peratore and telus						n standingwaves	CF	Flussocaotico/ Chaoticflow

Fiume	FOSSO TRE VESC	COVI	Stazione	:	AS(1)m	Operatore John Market	1100
Data	11-12-2020		Campion	ne	АА			
Organis	mi							Pres.
PLECOT	TERI	NEMOURA		7				
(genere		LEUCTRA		3				
(Bellere	-,							
EEENAEI	ROTTERI							
(genere	2)							
TRICOT	TERI	POLYCENTROPODIDAE		1				
(genere	e)							
COLEO	ΓΤΕRΙ	ELMIDAE		2				
(genere	2)							
ODONA	ATI							
(genere								
(genere	÷)							
DITTER		CHIRONOMIDAE		3				
DITTER		TIPULIDAE		2				
(genere	2)	LIMONIIDAE		1				
ETEROT	TTERI							
(genere	e)							
		L		1	1	<u> </u>		I

Fiume	FOSSO TRE VESC	COVI	Stazione	!	AS(1)m	Operatore Journal Co	att
Data	11-12-2020		Campior	ne	АА		0	
Organis	mi							Pres.
CROSTA	ACEI	GAMMARIDAE		76				
(genere	e)							
GASTE	ROPODI							
(genere	e)							
BIVALV	I							
(genere	2)							
TRICLA	DI							
(genere	!)							
IRUDIN	EI	HELOBDELLA		1				
(genere	!)							
OLIGO	CHETI	LUMBRICIDAE		1				
(genere	e)							
ALTRI								
(famigli	a)							
note								
note								

PARAMETRO	METODO	VALORE	CLASSE DI QUALITA'	GIUDIZIO
INDICE STAR_ICMi	IRSA-CNR n° 1 del 2007 + Ispra 111/2014	0,602	3	MODERATO

Direzione Progettazione e Realizzazione Lavori

S.S. 318 DI VALFABBRICA

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi

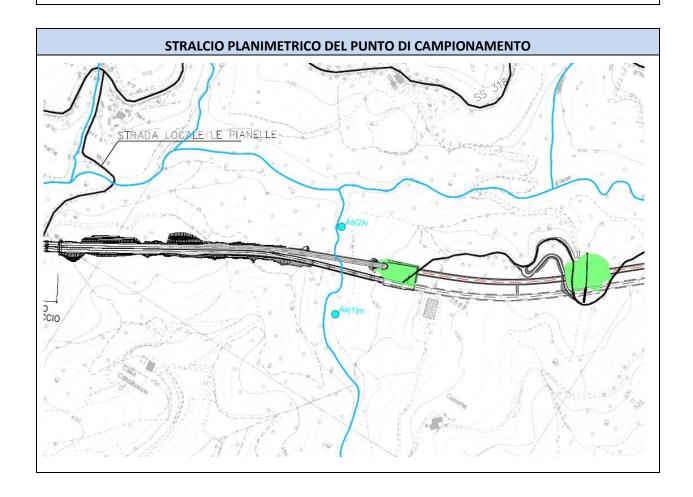
2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA DI MONITORAGGIO AMBIENTE IDRICO SUPERFICIALE

CODICE PUNTO MISURA: AS(2)v

PROGR. (Km): 16+340

DENOMINAZIONE: Viadotto Tre Vescovi


FASE DI MONITORAGGIO: ANTE OPERAM

DATA: 20 novembre 2020

LOCALIZZAZIONE GEOGRAFICA

Comune: Casacastalda Provincia: Perugia Regione: Umbria

Coordinate geografiche: 43°11'13.67"N 12°37'47.86"E

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA DI MONITORAGGIO AMBIENTE IDRICO SUPERFICIALE

SCHEDA DI RILIEVO E CAMPIONAMENTO IN CAMPAGNA						
PARAMETRO	STRUMENTAZIONE	NUMERO MISURA	UNITÀ DI MISURA	RISULTATO		
Portata	OTT C31	1	m³/s	0.0077		
		1	°C	10.8		
Temperatura	HACH HQ40D	2	°C	10.8		
acqua		3	°C	10.8		
		media	°C	10.8		
		1	°C	12.5		
Tamananatuma ania	HACH HQ40D	2	°C	12.5		
Temperatura aria		3	°C	12.5		
		media	°C	12.5		
		1	μS/cm	782		
Conducibilità	HACH HQ40D	2	μS/cm	782		
elettrica		3	μS/cm	782		
		media	μS/cm	782		
		1		8.33		
11	HACH HQ40D	2		8.33		
рН		3		8.33		
		media		8.33		
		1	mg/l	10.85		
Ossissana Dissialta	HACH HQ40D	2	mg/l	10.84		
Ossigeno Disciolto		3	mg/l	10.83		
		media	mg/l	10.84		
		1	mV	161.1		
Datanziala Badan	HACH HQ40D	2	mV	160.9		
Potenziale Redox		3	mV	158.2		
		media	mV	160.1		

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA DI MONITORAGGIO AMBIENTE IDRICO SUPERFICIALE

FOTO DEL PUNTO DI CAMPIONAMENTO

NOTE

Natura S.r.l.
Sede Legale e Laboratorio di analisi:
Via Gioacchino Rossini, 16
80026 Casoria (NA)
Tel 081/5737038 Fax 081/5739776
P.IVA 02887711212
E-Mail: natura@naturasrl.it
Sito internet: www.naturasrl.it

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

RAPPORTO DI PROVA N 20LA18804	DEL 07/01/2021
-------------------------------	----------------

COMMITTENTE: ARIEN CONSULTING S.R.L.

INDIRIZZO COMMITTENTE: VIA TERENZIO, 21 00193 ROMA (RM)

PARTITA IVA E/O COD. FISCALE: 08978601006

UBICAZIONE CAMPIONAMENTO: SS318 CASACASTALDA

PUNTO DI CAMPIONAMENTO: AS (2)v

DESCRIZIONE CAMPIONE:

CAMPIONAMENTO A CURA DI:

ACQUE SUPERFICIALI

A CURA DEL CLIENTE*

PROCEDURA/PIANO DI CAMPIONAMENTO: CAMPIONE CONSEGNATO DAL CLIENTE*

DATA CAMPIONAMENTO: 20/11/2020
DATA RICEZIONE CAMPIONE: 20/11/2020
DATA ACCETTAZIONE CAMPIONE: 20/11/2020

N° ACCETTAZIONE CAMPIONE: 20LA18804

ORA ACCETTAZIONE CAMPIONE: 19.00

IDATA INIZIO PROVA: 20/11/2020 DATA FINE PROVA: 04/12/202	DATA INIZIO PROVA: 20/11/2020	DATA FINE PROVA: 04/12/2020
---	--------------------------------------	------------------------------------

DATA INIZIO I NOVA. 20/11/2020	DATATINE			
Parametro Metodo	U.M.	Risultato	Incertezza	Limite 1 - Limite 2 - Limite 3
*POTENZIALE REDOX \$APHA Standard methods 23nd 2500B	mV	160,1	±56,0	-
OSSIGENO DISCIOLTO (Cat.III) \$APHA Standard methods 23nd 4500-0	mg/L	10,8	±3,8	-
*TEMPERATURA ARIA \$APAT CNR IRSA 2120 Man 29 2003	°C	12,5	±4,4	-
IDROCARBURI TOTALI EPA 5030C 2003 + EPA 8015C 2007 + UNI EN ISO 9377-2 2002	μg/L	< 35		<u>-</u>
IDROCARBURI C6-C10 EPA 5030C 2003 + EPA 8015C 2007	μg/L	< 35		-
INDICE DI IDROCARBURI (C10 - C40) UNI EN ISO 9377-2: 2002	μg/L	< 35		<u>.</u>
TEMPERATURA - (cat.III) \$APAT CNR IRSA 2120 Man 29 2003	°C	10,8	±3,8	<u>.</u>
ALLUMINIO EPA 6020B 2014	μg/L	< 10		-
ARSENICO EPA 6020B 2014	μg/L	< 2,5		10 - 5
CADMIO EPA 6020B 2014	μg/L	< 0,1		-
CROMO TOTALE EPA 6020B 2014	μg/L	< 2,5		7 - 4
FERRO EPA 6020B 2014	μg/L	< 20		-
MERCURIO EPA 6020B 2014	μg/L	< 0,1		0,03 - 0,01 - 0,06
NICHEL EPA 6020B 2014	μg/L	< 2,5		20 - 20
PIOMBO EPA 6020B 2014	μg/L	< 2,5		7,2 - 7,2
RAME EPA 6020B 2014	μg/L	< 3		-

File firmato digitalmente Pagina 1 di 5

Natura S.r.I.
Sede Legale e Laboratorio di analisi:
Via Gioacchino Rossini, 16
80026 Casoria (IAA)
Tel 081/5737038 Fax 081/5739776
P.IVA 02887711212
E-Mail: natura@naturasrl.it
Sito internet: www.naturasrl.it

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

SEGUE RAPPORTO DI PROVA N 20LA18804	DEL 07/01/20)21		
Parametro Metodo	U.M.	Risultato	Incertezza	Limite 1 - Limite 2 - Limite
ZINCO <i>EPA</i> 6020B 2014	μg/L	< 10		-
AZOTO AMMONIACALE APAT CNR IRSA 4030 A1 Man 29 2003	mg/L	0,1		-
CLORURI APAT CNR IRSA 4020 Man 29 2003	mg/L	14,8	±3,7	-
CONDUTTIVITÀ ELETTRICA (Cat.III) PUNI EN 27888: 1995	μs/cm	782	±274	-
р Н (cat.III) ФИNI EN ISO 10523: 2012	unità pH	8,33	±0,20	-
SOLFATI APAT CNR IRSA 4020 Man 29 2003	mg/L	125	±31	-
TENSIOATTIVI ANIONICI APAT CNR IRSA 5170 Man 29 2003	mg/L	< 0,30		-
*TENSIOATTIVI NON IONICI MI02: 2020 REV. 00	mg/L	< 0,5		-
CONTA DI ESCHERICHIA COLI APAT CNR IRSA 7030 F Man 29 2003	UFC/100mL	65	±23	-
MANGANESE EPA 6020B 2014	μg/L	3,95	±0,79	-
*CALCIO EPA 6010D 2018	mg/L	104	±21	-
BENTAZONE EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,01		-
*LINURON EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,005		-
ALACLOR EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,01		0,3 - 0,3 - 0,7
*DIURON EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,005		0,2 - 0,2 - 1,8
*TERBUTILAZINA EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,01		0,5 - 0,2
METOLACHLOR EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,01		-
*TRIFLURALIN EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,005		0,03 - 0,03
XILENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,5		5 - 1
TRANS-1,2-DICLOROETILENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
TRIBROMOMETANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		-
TRICLOROETILENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		10 - 10

File firmato digitalmente Pagina 2 di 5

Natura S.r.I.
Sede Legale e Laboratorio di analisi:
Via Gioacchino Rossini, 16
80026 Casoria (NA)
Tel 081/5737038 Fax 081/5739776
P.IVA 02887711212
E-Mail: natura@naturasrl.it
Sito internet: www.naturasrl.it

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

SEGUE RAPPORTO DI PROVA N 20LA18804	DEL 07/01/2	2021		
Parametro Metodo	U.M.	Risultato	Incertezza	Limite 1 - Limite 2 - Limite
TETRACLOROETILENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		10 - 10
TOLUENE <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,5		5 - 1
DIBROMOCLOROMETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
CLORURO DI VINILE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
ESACLOROBUTADIENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		0,05 - 0,02 - 0,5
BENZENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,1		10 - 8 - 50
BROMODICLOROMETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
CIS-1,2-DICLOROETILENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
CLOROMETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
1,1,1-TRICLOROETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		10 - 2
TRICLOROMETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
1,1,2,2-TETRACLOROETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,001		-
1,1,2-TRICLOROETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
1,1-DICLOROETANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		-
1,1-DICLOROETILENE <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		-
1,2,3-TRICLOROPROPANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,001		-
1,2 - DIBROMOETANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,001		-
1,2-DICLOROETANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		10 - 10
1,2-DICLOROETILENE <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		<u>-</u>
RICHIESTA CHIMICA DI OSSIGENO (COD) ISO 15705: 2002	mg/L	< 10		-
DUREZZA TOTALE (da calcolo) DA CALCOLO	°F	37,2	±13,0	-
TORBIDITÀ (Cat. III) APAT CNR IRSA 2110 Man 29 2003	NTU	< 0,4		-

File firmato digitalmente Pagina 3 di 5

Natura S.r.I.
Sede Legale e Laboratorio di analisi:
Via Gioacchino Rossini, 16
80026 Casoria (NA) ouuzo Casuria (NA)
Tel 081/5737038 Fax 081/5739776
P.IVA 02887711212
E-Mail: natura@naturasrl.it Sito internet: www.naturasrl.it

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

SEGUE RAPPORTO DI PROVA N 20LA18804	DEL 07/01/2021					
Parametro Metodo	U.M.	Risultato	Incertezza	Limite 1 - Limite 2 - Limite 3		
NITRATI APAT CNR IRSA 4020 Man 29 2003	mg/L	< 10		-		
SOLIDI SOSPESI TOTALI (SOLIDI INDISCIOLTI) APAT CNR IRSA 2090 B Man 29 2003	mg/L	8,05	±2,82	-		
FOSFORO TOTALE APAT CNR IRSA 4110 A2 Man 29 2003	mg/L	< 0,1		-		

Legenda:

U.M. =unità di misura nd = non determinabile U (se presente) = incertezza LR (se presente) = limite di rivelabilità NR (se presente) = non rilevato

= prova non accreditata ACCREDIA

= prova in subappalto

\$ = prova fornita dal cliente per la quale il laboratorio declina ogni responsabilità

Informazioni fornite dal cliente per le quali il laboratorio declina ogni eventuale responsabilità:

ANAGRAFICHE: DATA CAMPIONAMENTO, DESCRIZIONE CAMPIONE, PROCEDURA/PIANO DI CAMPIONAMENTO, UBICAZIONE CAMPIONAMENTO, PUNTO DI CAMPIONAMENTO

PROVE: Temperatura durante il campionamento - Conducibilità Lettura - CONDUTTIVITÀ ELETTRICA (Cat.III) - OSSIGENO DISCIOLTO (Cat.III) - pH (cat.III) - POTENZIALE REDOX - TEMPERATURA - (cat.III) - TEMPERATURA ARIA

Sommatorie presenti nel rapporto di prova:

m.p + o XILENE Lettura:

Il recupero dei singoli analiti è compreso tra l' 80% ed il 120%. Non si utilizza alcun fattore di correzione nel calcolo della concentrazione. Per le singole diossine, il recupero varia dal 63% al 170%

Il criterio di valutazione utilizzato per l'espressione del giudizio di conformità tiene conto dell'incertezza di misura associata alle singole prove in conformità al documento ISPRA n. 52/2009.

Nota Campionamento: Il campionamento si intende accreditato solo se il metodo non è indicato con l'asterisco ed è associato ad una successiva prova accreditata secondo la norma ISO/IEC 17025.

I risultati ottenuti si riferiscono al campione così come ricevuto.

L'incertezza è espressa nelle unità di misura del parametro a cui si riferiscono. Il fattore di copertura è pari a k=2 con un intervallo di probabilità del 95%

L'incertezza riportata non tiene conto del contributo del campionamento.

Note: Tab. 1/A e Tab 1/B del DM 260/2010

Limite 1: SQA-MA (standard di qualità ambientale espresso come valore medio annuo) per acque superficiali interne (fiumi, laghi e corpi idrici artificiali o modificati) Limite 2: SQA-MA (standard di qualità ambientale espresso come valore medio annuo) per altre acque di superficie (acque marino-costiere, acque territoriali e acque di

Limite 3: SQA-CMA (standard di qualità ambientale espresso come concentrazione massima ammissibile)

Per il Cadmio il limite è = 0,45 se DUREZZA < 4 °F; 0,45 se 4 °F < DUREZZA < 5 °F; 0,6 se 5 °F < DUREZZA < 10 °F; 0,9 se 10 °F < DUREZZA < 20 °F; 1,5 se DUREZZA > 20 °F

GIUDIZIO DI CONFORMITÀ

Tab. 1/A e Tab 1/B del DM 260/2010

Limite 1: SQA-MA (standard di qualità ambientale espresso come valore medio annuo) per acque superficiali interne (fiumi, laghi e corpi idrici artificiali o modificati)

Limite 2: SQA-MA (standard di qualità ambientale espresso come valore medio annuo) per altre acque di superficie (acque marino-costiere, acque territoriali e acque di transizione)

Limite 3: SQA-CMA (standard di qualità ambientale espresso come concentrazione massima ammissibile)

Per il Cadmio il limite è = 0,45 se DUREZZA < 4 °F; 0,45 se 4 °F < DUREZZA < 5 °F; 0,6 se 5 °F < DUREZZA < 10 °F; 0,9 se 10 °F < DUREZZA < 20 °F; 1,5 se DUREZZA > 20 °F

NESSUN SUPERAMENTO - CONFORME rispetto al limite per i parametri analizzati.

File firmato digitalmente Pagina 4 di 5

Natura S.r.I.

Sede Legale e Laboratorio di analisi:
Via Gioacchino Rossini, 16
80026 Casoria (NA)
Tel 081/5737038 Fax 081/5739776
P.IVA 02887711212
E-Mail: natura@naturasrl.it
Sito internet: www.naturasrl.it

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

SEGUE RAPPORTO DI PROVA N 20LA18804

DEL 07/01/2021

I risultati del presente rapporto di prova si devono intendere riferiti esclusivamente al campione sottoposto a prova. Il presente rapporto di prova non può essere riprodotto parzialmente se non previa approvazione scritta da parte di questo Laboratorio.

Il Responsabile di Laboratorio

Dott. Francesco Troisi

DOTT.
TROISI
TROISI
CHIMICO
N. 1714

- Fine Rapporto di Prova -

File firmato digitalmente Pagina 5 di 5

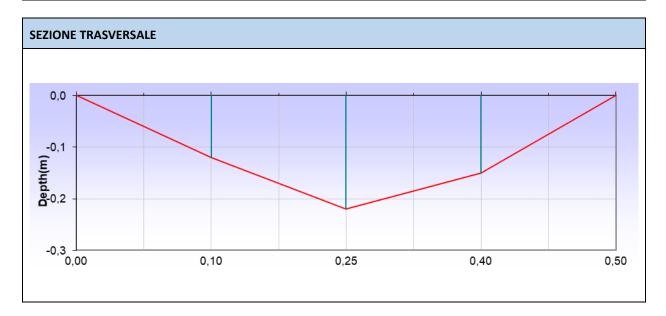
Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi

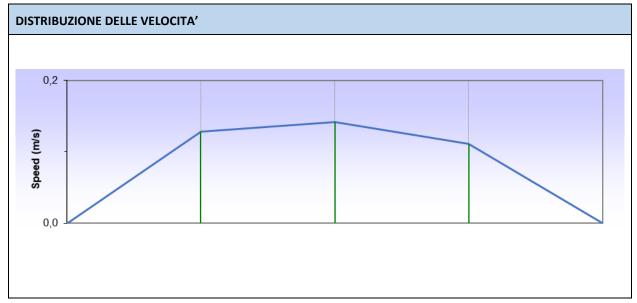
2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA MISURA DI PORTATA - AMBIENTE IDRICO SUPERFICIALE

RELAZIONE TECNICA MISURA DI PORTATA											
SITO AS(2)m CORSO D'ACQUA Fosso Tre Vescovi											
DATA	2	0 Novembre 2020	UB	ICAZIONE	Viado	Viadotto Tre Vescovi					
STRUMENTO UTILIZZATO	Misurat	ore di Corrente OTT C31	ОР	ERATORE	Geol. F	rancesco Verg	ara				
		DESCRIZIONE CO	ORSO D'	ACQUA							
Corso d'acqua a regime getazione riparia e in alv	*	lveo ciottoloso di forma i	rregolare	, acque limpio	de con flusso turl	bolento, pres	enza di ve-				
PROFONDITA' MAX (m)	0.22	VELOCITA' MINIMA (m/se	c)	0.0	PERIMETRO BAG	NATO (m)	0.68				
PROFONDITA' MEDIA (m)	0.133	VELOCITA' MAX (m/sec)		0.142	RAGGIO IDRAULI	CO (m)	0.0978				
LARGHEZZA ALVEO (m)	0.50	VELOCITA' MEDIA (m/sec)		0.12	SEZIONE (m²)		0.0667				
METODO DI MISURA Medio- un punto di misura PORTATA (m³/s) 0.0077							077				

FOTO DEL PUNTO DI MISURA




Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi

2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA MISURA DI PORTATA - AMBIENTE IDRICO SUPERFICIALE

GRAFICI DELLA SEZIONE DI MISURA

NOTE			

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA INDICE LIMeco - AMBIENTE IDRICO SUPERFICIALE

CODICE PUNTO MISURA: AS(2)v

PROGR. (Km): 16+340

CORPO IDRICO: fosso Tre Vescovi "valle"

PASE DI MONITORAGGIO: ANTE OPERAM **DATA:** 11 dicembre 2020

LOCALIZZAZIONE GEOGRAFICA

Comune: Casacastalda Provincia: Perugia Regione: Umbria

Coordinate geografiche: 43°11'13.67"N 12°37'47.86"E

APPLICAZIONE INDICE LIMeco									
PARAMETRO	PARAMETRO UNITÀ DI MISURA VALORE								
AZOTO AMMONIACALE	mg/l	< 0.01							
AZOTO NITRICO	mg/l	1.700							
FOSFOTO TOTALE	mg/l	0.050							
OSSIGENO DOSCIOLTO	OSSIGENO DOSCIOLTO % 99.6								
TEMPERATURA	°C	9.0							

GIUDIZIO LIMeco				
VALORE DI LIMeco	STATO			
0,687	ELEVATO			

Rapporto di Prova N. 4023_2020

C 464-20

Data emissione: 23/12/2020 Pagina 1 di 1

> Spett.le **DRONEEC DI FORNERIS STEFANO** Via Rivoli n°116 10090 Villarbasse (TO)

Data arrivo campione: 14/12/2020 alle ore: 09:00 Descrizione del campione: Acque di torrente

Etichetta: Stazione AS 2 V - Torrente Fosso 3 Vescovi; T al prelievo + 9,0°C (dati dichiarati dal Cliente)

Campionamento effettuato da: cliente

Data campionamento: 11/12/2020 alle ore: 10:00

Procedura campionamento: --

Modulo: Mod 5_8-1 Accettazione campioni compilato

Numero interno attribuito al campione: 4023-20

I risultati riportati sono rappresentativi dei soli campioni sottoposti a prova, così come ricevuti. Il presente Rapporto di Prova non può essere riprodotto parzialmente salvo autorizzazione del laboratorio.

Parametro	Metodo di prova	Unita' di misura	Risultato ± U	Limiti	Data inizio - fine prova
Azoto ammoniacale	APAT CNR IRSA 4030A1 Man 29 2003	mg/l	< 0,01	-	16/12/2020 - 16/12/2020
Azoto nitrico*	APAT CNR IRSA 4040A1 Man 29 2003	mg/l	1,700	1	16/12/2020 - 16/12/2020
Fosforo totale*	APAT CNR IRSA 4110A2 Man 29 2003	mg/l	0,050	-	21/12/2020 - 21/12/2020

^{*} prova non accreditata da ACCREDIA

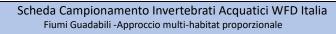
Responsabile Settore Chimico Dott. Gianluca Toro

Firmato digitalmente da

Toro Gianluca (owner

CN: Toro Gianluca O: ArubaPEC S.p.A.
OU: Certification AuthorityC

Scheda Campionamento Invertebrati Acquatici WFD Italia


Fiumi Guadabili -Approccio multi-habitat proporzionale

Pag.1 di 3

	OSSO TRE VESCOVI	Sito A				Localit	tà CASACAST	TALDA	-	ALFABBRICA
Provincia PERUGIA Data 11-12-2020			ne	UMBRIA S. FORNE		F4-	ANIAC		Coordinate GP	S
		Opera	uviale 1 2		:KIS	Ente	ANAS		Corno idrico M	/FD
	egione 11 nonitoraggio	Operati			li Sorvegliar	72 🗆	Altro (spe	no.1	Corpo idrico W	770
ripo di li		Riferimer			Investigat			nonitoraggio (spe	er.)	
		Si X I		In p	arte 🗆		Poco	onulla 🗆	/ 10 6 1	
		lo. DX le.DX			Si 🗆		Prop.ger	nerico 🗆	(specificare foto di	riferimento)
	· · · · · · · · · · · · · · · · · · ·				Pool 🗆		Prop.ger		Altro (spec.)	
		le 🗆		R. immanio	Pool 🗆		FTOP.get	ierico 🗖	Altro (spec.)	
ripo di ret	o di retino utilizzato: Surber R. immanicato Altro (spec.) Retino imm. con misura superficie R. immanicato									
Superficie	perficie totale campionata: 0.5m² Altro (spec.)									
	ocolli biologici: Diatome			Mac	rofite 🗆		ltt	iofauna 🗆	Altro (spec.)	
Indagini d	i supporto: Macrodescritto	ri D		Idromorfo	ologia 🗆				Altro (spec.)	
Parametri	chimico-fisici	O ₂ (mg/l)	11.00		pН		Т	°C 9.1	Conducibilità (μ	S/cm²)
Si ricorda di	tenere separato il campione derivante dalle 10		10			1: /			4 replichead	dizionali (Monitoraggio
repliche (m	on. Operativo) da quello derivante dalla raccolta		10	replicne p	roporziona	III (Mon	itoraggio Opera	tivo)	Sorvegliar	nza, Investigativo, Reference)
delle 4 repl	che addizionali			0/		P		1.0	Nr.Repliche	
		codice		%	Nr.Ke	pliche	Про	diflusso	W.Kepiiciie	Tipo diflusso
	limo/argilla < 6μ	ARG	2	0	2		RP-R	P		
	sabbia 6μ-2 mm	SAB								
	abiaia > 0.3.3am	GHI								
	ghiaia > 0.2-2cm									
MICROHABITAT MINERALI ¹	microlithal* 2-6 cm	MIC	20	ס	2		RP-R	P		
Ä	-									
Σ	mesolithal* 6-20 cm	MES	10	0	1		RP			
₹	-		-	<u> </u>	-		DIA/ DIA	V DIA/ DIA/ DD		
ABI-	macrolithal* 20-40cm	MAC	50	J	5		BW-BV	V-BW-BW-RP		
픙	20 400111									
핊	megalithal* > 40cm	MGL								
Σ	megantilai > 40cm									
	artificial (e.g. cemento)	ART								
	igropetrico (sottile strato d'acqua su	IGR								
1(1	substrato roccioso) e dimensioni indicate si riferiscono all'asse intermed	io)								
1)	e dimensioni malcate si menscono ali asse intermed	10)	1							
	alghe	AL								
	macrofite sommerse (anche									
	muschi, Characeae, etc.)	so								
_	macrofite emergenti (e.g. Thypha, Carex, Phragmites)	EM								
읃	- '									
МІСКОНАВІТАТВІОТІСІ	parti vive di piante terrestri (e.g. radichette sommerse)	TP								
₽	·									
ABI	xylal/legno (rami, legno morto, radici)	XY								
ĕ	CPOM (materiale organico									
Ę	grossolano, foglie, rametti)	CP								
2										
	FPOM (materiale organico fine)	FP								
	Film batterici, funghie sapropel	BA								
somma 100%				<u> </u>	10			4		
					Hvr	drurus 🗆				
o c ui	un sottile strato di limo □			Alghe	incrostant					
Note				,	Eluccido	eldere :	noril con!-	Tipi dif	usso	
						siderare on perce	per il campiona ettibile	amento: BW Broken stand	ingwaves	
						scio/Sm		CH Chute	J	
					UP Upwelling Flussi da evitare nel campionamento:				evitare nel campionamento:	
Firma Op	peratore James Lebes						o/Rippled		FF	Cascata/Freefall
	June Office				uw U	Inbroken	standingwaves	5	CF	Flussocaotico/ Chaoticflow

Fiume	FOSSO TRE VESC	COVI	OVI Stazione		AS(2)v		Operatore January	ME
Data	11-12-2020	-2020		ne	АВ			
Organis	mi							Pres.
PLECOT	TERI	NEMOURA		4				
(genere	e)							
FFFNAFI	DOTTED!	BAETIS		17				
	ROTTERI	ECDYONURUS		2				
(genere	2)							
TRICOT	TERI	POLYCENTROPODIDAE		4				
(genere	2)	RHYACOPHILIDAE		3				
		PHILOPOTAMIDAE		1				
COLEO	TTERI	ELMIDAE		2				
(genere	!)	DYTISCIDAE		1				
ODONA								
(genere	2)							
DITTER	1	CHIRONOMIDAE		6				
(genere		TIPULIDAE		2				
(85676								
ETEROT	TERI							
(genere	2)							
		1		1	1	<u> </u>		<u> </u>

Fiume	FOSSO TRE VESC	COVI	Stazione	Stazione AS(2)v		2)v	Operatore Output	
Data	11-12-2020		Campior	ne	AB		0 01	
Organis	mi							Pres.
CROSTA	ACEI	GAMMARIDAE		81				
(genere	e)							
GASTER	ROPODI							
(genere	e)							
BIVALV	1							
(genere	e)							
TRICLA								
(genere	e)							
IRUDIN								
(genere	2)							
011000								
OLIGO(
(genere	;)							
ALTRI								
(famigli	a)							
(lallingii	aj							
				l	l	<u> </u>		<u> </u>
note								

PARAMETRO	METODO	VALORE	CLASSE DI QUALITA'	GIUDIZIO
INDICE STAR_ICMi	IRSA-CNR n° 1 del 2007 + Ispra 111/2014	0,722	3	MODERATO

Direzione Progettazione e Realizzazione Lavori

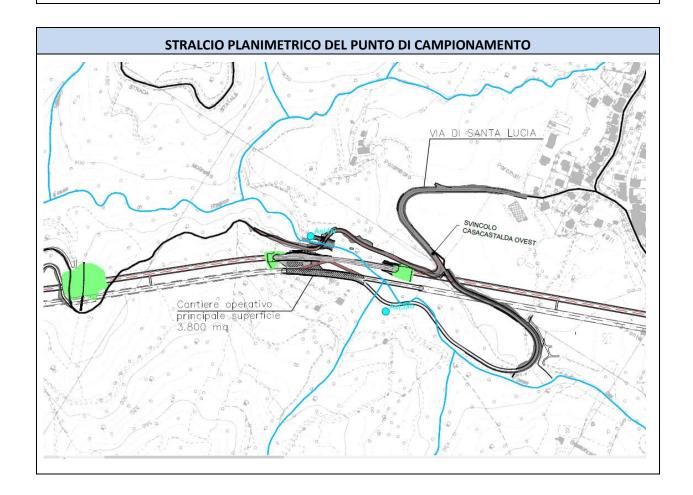
S.S. 318 DI VALFABBRICA

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi

2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA DI MONITORAGGIO AMBIENTE IDRICO SUPERFICIALE

CODICE PUNTO MISURA: AS(3)v PROGR. (Km): 17+600


DENOMINAZIONE: Viadotto Calvario, Svincolo Casacastalda Ovest

FASE DI MONITORAGGIO: ANTE OPERAM **DATA:** 20 novembre 2020

LOCALIZZAZIONE GEOGRAFICA

Comune: Casacastalda Provincia: Perugia Regione: Umbria

Coordinate geografiche: 43°11'31.82"N 12°38'41.68"E

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi

2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA DI MONITORAGGIO AMBIENTE IDRICO SUPERFICIALE

	SCHEDA DI RILIEVO E CAMPIONAMENTO IN CAMPAGNA										
PARAMETRO	STRUMENTAZIONE	NUMERO MISURA	UNITÀ DI MISURA	RISULTATO							
Portata	OTT C31	1	m³/s	0.0039							
		1	°C	10.6							
Temperatura	HACH HQ40D	2	°C	10.6							
acqua		3	°C	10.6							
		media	°C	10.6							
		1	°C	13.0							
T	HACH HQ40D	2	°C	13.0							
Temperatura aria		3	°C	13.0							
		media	°C	13.0							
		1	μS/cm	749							
Conducibilità	HACH HQ40D	2	μS/cm	749							
elettrica		3	μS/cm	750							
		media	μS/cm	749							
		1		8.28							
	HACH HQ40D	2		8.27							
рН		3		8.27							
		media		8.27							
		1	mg/l	9.72							
Ossissana Dissialta	HACH HQ40D	2	mg/l	9.69							
Ossigeno Disciolto		3	mg/l	9.68							
		media	mg/l	9.70							
		1	mV	157.6							
Datanziala Badan	HACH HQ40D	2	mV	157.5							
Potenziale Redox		3	mV	157.5							
		media	mV	157.5							

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA DI MONITORAGGIO AMBIENTE IDRICO SUPERFICIALE

FOTO DEL PUNTO DI CAMPIONAMENTO

	_		
N	O	Т	

Natura S.r.I.
Sede Legale e Laboratorio di analisi:
Via Gioacchino Rossini, 16
80026 Casoria (NA)
Tel 081/5737038 Fax 081/5739776
P.IVA 02887711212
E-Mail: natura@naturasrl.it
Sito internet: www.naturasrl.it

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

RAPPORTO DI PROVA N 20LA18805	DEL 07/01/2021
-------------------------------	----------------

COMMITTENTE: ARIEN CONSULTING S.R.L.

INDIRIZZO COMMITTENTE: VIA TERENZIO, 21 00193 ROMA (RM)

PARTITA IVA E/O COD. FISCALE: 08978601006

UBICAZIONE CAMPIONAMENTO: SS318 CASACASTALDA

PUNTO DI CAMPIONAMENTO: AS (3)m

DESCRIZIONE CAMPIONE:

CAMPIONAMENTO A CURA DI:

ACQUE SUPERFICIALI
A CURA DEL CLIENTE*

PROCEDURA/PIANO DI CAMPIONAMENTO: CAMPIONE CONSEGNATO DAL CLIENTE*

DATA CAMPIONAMENTO: 20/11/2020
DATA RICEZIONE CAMPIONE: 20/11/2020
DATA ACCETTAZIONE CAMPIONE: 20/11/2020

N° ACCETTAZIONE CAMPIONE: 20LA18805

ORA ACCETTAZIONE CAMPIONE: 19.00

DATA INIZIO PROVA: 20/11/2020 **DATA FINE PROVA**: 04/12/2020

DATA INIZIO I NOVA. 20/11/2020	DAIATINE	NOVA. 07/12/2	020	
Parametro Metodo	U.M.	Risultato	Incertezza	Limite 1 - Limite 2 - Limite 3
*POTENZIALE REDOX \$APHA Standard methods 23nd 2500B	mV	157,5	±55,1	-
OSSIGENO DISCIOLTO (Cat.III) \$APHA Standard methods 23nd 4500-0	mg/L	9,70	±3,40	-
*TEMPERATURA ARIA \$APAT CNR IRSA 2120 Man 29 2003	°C	13,0	±4,6	-
IDROCARBURI TOTALI EPA 5030C 2003 + EPA 8015C 2007 + UNI EN ISO 9377-2 2002	μg/L	< 35		-
IDROCARBURI C6-C10 EPA 5030C 2003 + EPA 8015C 2007	μg/L	< 35		-
INDICE DI IDROCARBURI (C10 - C40) UNI EN ISO 9377-2: 2002	μg/L	< 35		-
TEMPERATURA - (cat.III) \$APAT CNR IRSA 2120 Man 29 2003	°C	10,6	±3,7	-
ALLUMINIO <i>EPA 6020B 2014</i>	μg/L	< 10		-
ARSENICO EPA 6020B 2014	μg/L	< 2,5		10 - 5
CADMIO <i>EPA</i> 6020B 2014	μg/L	< 0,1		-
CROMO TOTALE EPA 6020B 2014	μg/L	< 2,5		7 - 4
FERRO EPA 6020B 2014	μg/L	< 20		-
MERCURIO EPA 6020B 2014	μg/L	< 0,1		0,03 - 0,01 - 0,06
NICHEL EPA 6020B 2014	μg/L	< 2,5		20 - 20
PIOMBO EPA 6020B 2014	μg/L	< 2,5		7,2 - 7,2
RAME EPA 6020B 2014	μg/L	< 3		-

File firmato digitalmente Pagina 1 di 5

Natura S.r.I.
Sede Legale e Laboratorio di analisi:
Via Gioacchino Rossini, 16
80026 Casoria (IAA)
Tel 081/5737038 Fax 081/5739776
P.IVA 02887711212
E-Mail: natura@naturasrl.it
Sito internet: www.naturasrl.it

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

SEGUE RAPPORTO DI PROVA N 20LA18805	DEL 07/01/20)21		
Parametro Metodo	U.M.	Risultato	Incertezza	Limite 1 - Limite 2 - Limite
ZINCO <i>EPA 6020B 2014</i>	μg/L	< 10		-
AZOTO AMMONIACALE APAT CNR IRSA 4030 A1 Man 29 2003	mg/L	0,3	±0,1	-
CLORURI APAT CNR IRSA 4020 Man 29 2003	mg/L	25,5	±6,4	-
*CONDUTTIVITÀ ELETTRICA (Cat.III) \$UNI EN 27888: 1995	μs/cm	749	±262	-
*pH (cat.III) \$UNI EN ISO 10523: 2012	unità pH	8,27	±0,20	-
SOLFATI APAT CNR IRSA 4020 Man 29 2003	mg/L	54,6	±13,7	-
TENSIOATTIVI ANIONICI APAT CNR IRSA 5170 Man 29 2003	mg/L	< 0,30		-
*TENSIOATTIVI NON IONICI MI02: 2020 REV. 00	mg/L	< 0,5		-
*CONTA DI ESCHERICHIA COLI APAT CNR IRSA 7030 F Man 29 2003	UFC/100mL	2000		-
MANGANESE EPA 6020B 2014	μg/L	2,61	±0,52	-
*CALCIO EPA 6010D 2018	mg/L	110	±22	<u>-</u>
*BENTAZONE EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,01		<u>-</u>
*LINURON EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,005		-
ALACLOR <i>EPA 3510C 1996 + EPA 8270E 2018</i>	μg/L	< 0,01		0,3 - 0,3 - 0,7
*DIURON EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,005		0,2 - 0,2 - 1,8
*TERBUTILAZINA EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,01		0,5 - 0,2
*METOLACHLOR EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,01		<u>.</u>
*TRIFLURALIN EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,005		0,03 - 0,03
XILENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,5		5 - 1
*TRANS-1,2-DICLOROETILENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
TRIBROMOMETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
TRICLOROETILENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		10 - 10

File firmato digitalmente Pagina 2 di 5

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

SEGUE RAPPORTO DI PROVA N 20LA18805	DEL 07/01/2	2021		
Parametro Metodo	U.M.	Risultato	Incertezza	Limite 1 - Limite 2 - Limite
TETRACLOROETILENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		10 - 10
TOLUENE <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,5		5 - 1
DIBROMOCLOROMETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
CLORURO DI VINILE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
ESACLOROBUTADIENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		0,05 - 0,02 - 0,5
BENZENE <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,1		10 - 8 - 50
BROMODICLOROMETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
CIS-1,2-DICLOROETILENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
CLOROMETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
1,1,1-TRICLOROETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		10 - 2
TRICLOROMETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
1,1,2,2-TETRACLOROETANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,001		-
1,1,2-TRICLOROETANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		-
1,1-DICLOROETANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		-
1,1-DICLOROETILENE <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		-
1,2,3-TRICLOROPROPANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,001		-
1,2 - DIBROMOETANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,001		-
1,2-DICLOROETANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		10 - 10
1,2-DICLOROETILENE <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		-
RICHIESTA CHIMICA DI OSSIGENO (COD) ISO 15705: 2002	mg/L	< 10		-
DUREZZA TOTALE (da calcolo) DA CALCOLO	°F	35,7	±12,5	-
TORBIDITÀ (Cat. III) APAT CNR IRSA 2110 Man 29 2003	NTU	< 0,4		-

File firmato digitalmente Pagina 3 di 5

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

SEGUE RAPPORTO DI PROVA N 20LA18805	DEL 07/01/2021						
Parametro Metodo	U.M.	Risultato	Incertezza	Limite 1 - Limite 2 - Limite 3			
NITRATI APAT CNR IRSA 4020 Man 29 2003	mg/L	< 10		-			
SOLIDI SOSPESI TOTALI (SOLIDI INDISCIOLTI) APAT CNR IRSA 2090 B Man 29 2003	mg/L	8,05	±2,82	-			
FOSFORO TOTALE APAT CNR IRSA 4110 A2 Man 29 2003	mg/L	0,3	±0,1	-			

Legenda:

U.M. =unità di misura nd = non determinabile U (se presente) = incertezza LR (se presente) = limite di rivelabilità NR (se presente) = non rilevato

= prova non accreditata ACCREDIA

= prova in subappalto

\$ = prova fornita dal cliente per la quale il laboratorio declina ogni responsabilità

Informazioni fornite dal cliente per le quali il laboratorio declina ogni eventuale responsabilità:

ANAGRAFICHE: DATA CAMPIONAMENTO, DESCRIZIONE CAMPIONE, PROCEDURA/PIANO DI CAMPIONAMENTO, UBICAZIONE CAMPIONAMENTO, PUNTO DI CAMPIONAMENTO

PROVE: Temperatura durante il campionamento - Conducibilità Lettura - CONDUTTIVITÀ ELETTRICA (Cat.III) - OSSIGENO DISCIOLTO (Cat.III) - pH (cat.III) - POTENZIALE REDOX - TEMPERATURA - (cat.III) - TEMPERATURA ARIA

Sommatorie presenti nel rapporto di prova:

m.p + o XILENE Lettura:

Il recupero dei singoli analiti è compreso tra l' 80% ed il 120%. Non si utilizza alcun fattore di correzione nel calcolo della concentrazione. Per le singole diossine, il recupero varia dal 63% al 170%

Il criterio di valutazione utilizzato per l'espressione del giudizio di conformità tiene conto dell'incertezza di misura associata alle singole prove in conformità al documento ISPRA n. 52/2009.

Nota Campionamento: Il campionamento si intende accreditato solo se il metodo non è indicato con l'asterisco ed è associato ad una successiva prova accreditata secondo la norma ISO/IEC 17025.

I risultati ottenuti si riferiscono al campione così come ricevuto.

L'incertezza è espressa nelle unità di misura del parametro a cui si riferiscono. Il fattore di copertura è pari a k=2 con un intervallo di probabilità del 95%

L'incertezza riportata non tiene conto del contributo del campionamento.

Note: Tab. 1/A e Tab 1/B del DM 260/2010

Limite 1: SQA-MA (standard di qualità ambientale espresso come valore medio annuo) per acque superficiali interne (fiumi, laghi e corpi idrici artificiali o modificati) Limite 2: SQA-MA (standard di qualità ambientale espresso come valore medio annuo) per altre acque di superficie (acque marino-costiere, acque territoriali e acque di

Limite 3: SQA-CMA (standard di qualità ambientale espresso come concentrazione massima ammissibile)

Per il Cadmio il limite è = 0,45 se DUREZZA < 4 °F; 0,45 se 4 °F < DUREZZA < 5 °F; 0,6 se 5 °F < DUREZZA < 10 °F; 0,9 se 10 °F < DUREZZA < 20 °F; 1,5 se DUREZZA > 20 °F

GIUDIZIO DI CONFORMITÀ

Tab. 1/A e Tab 1/B del DM 260/2010

Limite 1: SQA-MA (standard di qualità ambientale espresso come valore medio annuo) per acque superficiali interne (fiumi, laghi e corpi idrici artificiali o modificati)

Limite 2: SQA-MA (standard di qualità ambientale espresso come valore medio annuo) per altre acque di superficie (acque marino-costiere, acque territoriali e acque di transizione)

Limite 3: SQA-CMA (standard di qualità ambientale espresso come concentrazione massima ammissibile)

Per il Cadmio il limite è = 0,45 se DUREZZA < 4 °F; 0,45 se 4 °F < DUREZZA < 5 °F; 0,6 se 5 °F < DUREZZA < 10 °F; 0,9 se 10 °F < DUREZZA < 20 °F; 1,5 se DUREZZA > 20 °F

NESSUN SUPERAMENTO - CONFORME rispetto al limite per i parametri analizzati.

File firmato digitalmente Pagina 4 di 5

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

SEGUE RAPPORTO DI PROVA N 20LA18805

DEL 07/01/2021

I risultati del presente rapporto di prova si devono intendere riferiti esclusivamente al campione sottoposto a prova. Il presente rapporto di prova non può essere riprodotto parzialmente se non previa approvazione scritta da parte di questo Laboratorio.

Il Responsabile di Laboratorio

Dott. Francesco Troisi

DOTT.
TROISI
CHIMICO
N. 1714

- Fine Rapporto di Prova -

File firmato digitalmente Pagina 5 di 5

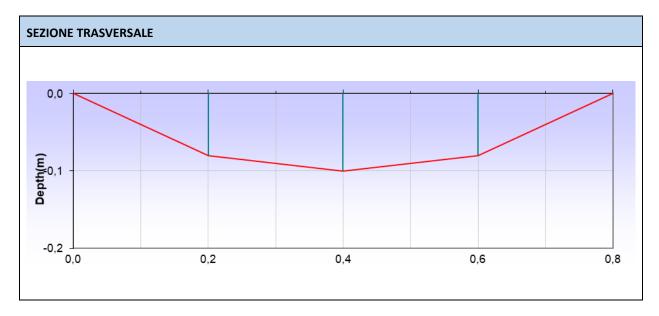
Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

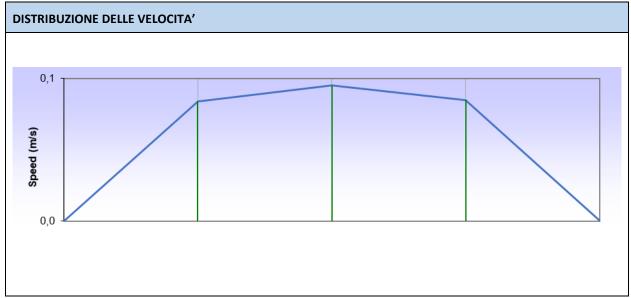
e Realizzazione Lavori

SCHEDA MISURA DI PORTATA - AMBIENTE IDRICO SUPERFICIALE

RELAZIONE TECNICA MISURA DI PORTATA								
SITO AS(3)m			CORSO D'ACQUA		Fo	sso Calvario		
DATA	2	0 Novembre 2020	UB	ICAZIONE		Viadotto Calvario, Svincolo Casacastalda Ovest		
STRUMENTO UTILIZZATO	Misurat	ore di Corrente OTT C31	ОР	ERATORE	Geol. F	rancesco Verg	ara	
DESCRIZIONE CORSO D'ACQUA								
Corso d'acqua a regime te presenza di vegetazion	•	veo sabbioso/ghiaioso di alveo.	forma re	golare, acque	limpide con flus	so laminare,	abbondan-	
PROFONDITA' MAX (m)	0.10	VELOCITA' MINIMA (m/se	c)	0.0	PERIMETRO BAG	NATO (m)	0.83	
PROFONDITA' MEDIA (m)	0.065	VELOCITA' MAX (m/sec)	VELOCITA' MAX (m/sec)			CO (m)	0.0624	
LARGHEZZA ALVEO (m)	0.80	VELOCITA' MEDIA (m/sec)		0.08	SEZIONE (m²)		0.052	
METODO DI MISURA Medio- un punto di misura				PORTA	ATA (m³/s)	0.0	039	

FOTO DEL PUNTO DI MISURA




Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

._.__

SCHEDA MISURA DI PORTATA - AMBIENTE IDRICO SUPERFICIALE

GRAFICI DELLA SEZIONE DI MISURA

N	NOTE			

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA INDICE LIMeco - AMBIENTE IDRICO SUPERFICIALE

CODICE PUNTO MISURA: AS(3)m **PROGR. (Km):** 17+600

CORPO IDRICO: fosso Calvario "monte"

FASE DI MONITORAGGIO: ANTE OPERAM **DATA:** 11 dicembre 2020

LOCALIZZAZIONE GEOGRAFICA

Comune: Casacastalda Provincia: Perugia Regione: Umbria

Coordinate geografiche: 43°11'31.82"N 12°38'41.68"E

APPLICAZIONE INDICE LIMeco								
PARAMETRO UNITÀ DI MISURA VALORE								
AZOTO AMMONIACALE	mg/l	< 0.01						
AZOTO NITRICO	mg/l	1.700						
FOSFOTO TOTALE	mg/l	0.060						
OSSIGENO DOSCIOLTO % 97.4								
TEMPERATURA	°C	9.4						

GIUDIZIO LIMeco				
VALORE DI LIMeco	STATO			
0,687	ELEVATO			

Rapporto di Prova N. 4024_2020

C 464-20

Data emissione: 23/12/2020 Pagina 1 di 1

> Spett.le **DRONEEC DI FORNERIS STEFANO** Via Rivoli n°116 10090 Villarbasse (TO)

Data arrivo campione: 14/12/2020 alle ore: 09:00 Descrizione del campione: Acque di torrente

Etichetta: Stazione AS 3 M - Torrente Fosso Calvario; T al prelievo + 9,4°C (dati dichiarati dal Cliente)

Campionamento effettuato da: cliente

Data campionamento: 11/12/2020 alle ore: 08:30

Procedura campionamento: --

Modulo: Mod 5_8-1 Accettazione campioni compilato

Numero interno attribuito al campione: 4024-20

I risultati riportati sono rappresentativi dei soli campioni sottoposti a prova, così come ricevuti. Il presente Rapporto di Prova non può essere riprodotto parzialmente salvo autorizzazione del laboratorio.

Parametro	Metodo di prova	Unita' di misura	Risultato ± U	Limiti	Data inizio - fine prova
Azoto ammoniacale	APAT CNR IRSA 4030A1 Man 29 2003	mg/l	< 0,01	-	16/12/2020 - 16/12/2020
Azoto nitrico*	APAT CNR IRSA 4040A1 Man 29 2003	mg/l	1,700	-	16/12/2020 - 16/12/2020
Fosforo totale*	APAT CNR IRSA 4110A2 Man 29 2003	mg/l	0,060	-	21/12/2020 - 21/12/2020

^{*} prova non accreditata da ACCREDIA

Responsabile Settore Chimico Dott. Gianluca Toro

Firmato digitalmente da

(owner

Toro Gianluca

CN: Toro Gianluca O: ArubaPEC S.p.A.
OU: Certification AuthorityC

Fiumi Guadabili -Approccio multi-habitat proporzionale

	OSSO CALVARIO	Sito A				Locali	tà CASACA	STALDA			ALFABBRICA	
	PERUGIA	Regio		UMBRIA	·DIC					Coordinate GP	S	
	-12-2020	Opera		S. FORNE	:KIS	Ente	ANAS			C :	/FD	
	egione 11	<u> </u>	luviale 1		: C	🗆	Altro (Corpo idrico W	/FU	_
ripo ai m	onitoraggio Sito di	Operati Riferimer		a	li Sorvegliar Investigat			_{spec.)} li monitora	agio (coo	c)		
			100							c.,		_
		Si 🕅		In pa	arte 🗆		Poce	onulla				_
		lo IX			Si 🗆		Dron a	enerico		(specificare foto di	riferimento)	
	· · · · · · · · · · · · · · · · · · ·				Pool 🗆					Altro (spec.)		-
	repliche (se previsto) effettuata in: Riffi ino utilizzato: Surbe			R. immanic	Pool 🗆		FTOP.g	enenco		Altro (spec.)		_
ripo di ret	Retino imm. con misura superfic			N. IIIIIIIaiiic	ato 🗖					Aiti O (spec.)		
Superficie	totale campionata: 0.5m				1 m² □					Altro (spec.)		-
Altri proto	ocolli biologici: Diatome	e 🗆		Macr	rofite 🗆			Ittiofauna		Altro (spec.)		
Indagini d	i supporto: Macrodescrittoi	ri D		Idromorfo	ologia 🗆					Altro (spec.)		
Parametri	chimico-fisici	O ₂ (mg/l)	10.52		pН			T°C 9.4		Conducibilità (μ	S/cm²)	
	tenere separato il campione derivante dalle 10		10	renliche n	ronorziona	ali (Mon	itoraggio Ope	erativo)		4 replichead	dizionali (Monitoraggio	
	on. Operativo) da quello derivante dalla raccolta che addizionali		10	replicite p	roporzione	411 (1 1 1011	тогабыо орс	.rativo,		Sorveglia	nza, Investigativo, Reference))
uene 4 repn		codice		%	Nr.Re	pliche	Ті	po diflusso		Nr.Repliche	Tipo diflusso	
	_			7.0		- pinone		po umasso			po umasso	_
	limo/argilla < 6µ	ARG										
												_
	sabbia 6μ-2 mm	SAB										
	ghiaia > 0.2-2cm	GHI	30)	3		BW	-BW-RP				
		MIC	1,	`	1		DD.					
RAI	microlithal* 2- 6 cm	MIC	10	,	1		RP					
Ĭ.		MES	3()	3		BW	-BW-UW				
≥ ⊢	mesolithal* 6-20 cm	IVIES		•			"	511 011				
ΑŢ		MAC	10)	1		BW	1				
MICROHABITAT MINERALI ¹	macrolithal* 20-40cm	WIAC										
280		MGL										
Σ	megalithal* > 40cm	WIGE										
		ART										
	artificial (e.g. cemento)											
	igropetrico (sottile strato d'acqua su	IGR										
	substrato roccioso)											
1(l	e dimensioni indicate si riferiscono all'asse intermed	io)										
	alghe	AL										
	macrofite sommerse (anche	so	20		2		U	W-UW				
	muschi, Characeae, etc.)											
	macrofite emergenti (e.g. Thypha, Carex,	EM										
딜	Phragmites)											
MICROHABITATBIOTICI	parti vive di piante terrestri (e.g.	TP										
ΓAΤ	radichette sommerse)											
ABIT	xylal/legno (rami, legno morto, radici)	XY										
Đ.	CDOM (make sinks annuming											_
E.	CPOM (materiale organico grossolano, foglie, rametti)	CP										
Σ	grossolatio, rogite, raintetti)											
	FPOM (materiale organico fine)	FP										
	-											
	Film batterici, funghie sapropel	ВА										
	somma		1	00%		10				4		_
Il sito è ur	niformemente o quasi uniformemente ricope	erto da:			muschi		, -	lydrurus				=
5.15 C UI	un sottile strato di limo □			Alghe	incrostant			specificare)	_			
					ootant		0					_
Note				-	Flussida con	siderare	per il campio		Tipi difl	usso		_
						lon perce		BW Broke	n standi	ngwaves		
					SM Li	iscio/ <i>Sm</i>	ooth	CH Chute				
	0 0					lpwelling				1	evitare nel campionamento):
Firma Op	peratore anno febros						o/Rippled	105			Cascata/Freefall	.,
					UW U	пргокеп	standingwa	162		CF	Flussocaotico/ Chaoticflow	,

Fiume	FOSSO CALVARIO	0	Stazione	Stazione		3)m	Operatore Outsub	NES
Data	11-12-2020		Campio	ne	AC		8 01	
Organis	mi							Pres.
PLECOT	TERI	NEMOURA		2				
(genere	·)	LEUCTRA		1				
EFEMEI	ROTTERI	BAETIS		31				
(genere	e)							
TRICOT	TERI							
(genere	e)							
COLEO	TTERI	DYTISCIDAE		1				
(genere	e)							
ODONA	ATI							
(genere	e)							
DITTER		CHIRONOMIDAE TIPULIDAE		702 32				
(genere	2)	SIMULIIDAE		279				
		LIMONIIDAE		2				
ETEROT								
(genere	2)							
							-	

Fiume	FOSSO CALVARIO	0	Stazione)	AS(3	3)m	Operatore Julius Telus	
Data	11-12-2020		Campion	ne	AC		S OF	
Organis	mi							Pres.
CROSTA	ACEI	GAMMARIDAE		9				
(genere	!)							
GASTE	ROPODI	PHYSIDAE		23				
(genere	e)							
BIVALV								
(genere	e)							
TRICLA								
(genere	2)							
		HELOBDELLA		10				
IRUDIN		HELOBDELLA		10				
(genere	?)							
OLIGO	CUETI	LUMBRICIDAE		57				
(genere								
(genere	·1							
ALTRI								
(famigli	a)							
(********	,							
		ı		1	l	L		1
note								

PARAMETRO	METODO	VALORE	CLASSE DI QUALITA'	GIUDIZIO
INDICE STAR_ICMI	IRSA-CNR n° 1 del 2007 + Ispra 111/2014	0,454	4	SCARSO

Direzione Progettazione e Realizzazione Lavori

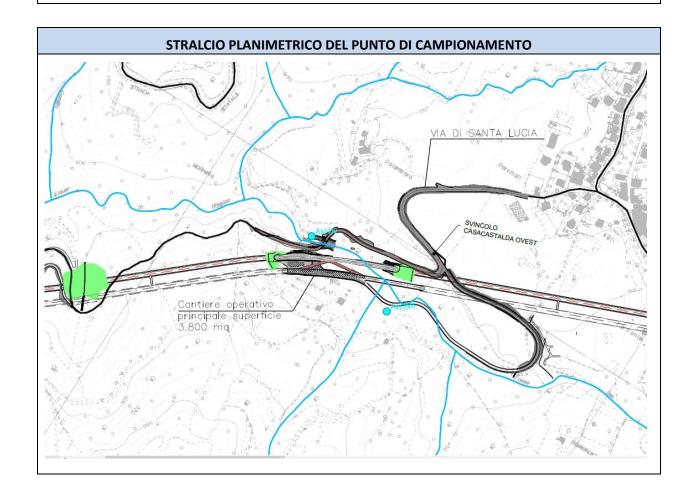
S.S. 318 DI VALFABBRICA

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi

2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA DI MONITORAGGIO AMBIENTE IDRICO SUPERFICIALE

CODICE PUNTO MISURA: AS(4)v PROGR. (Km): 17+400


DENOMINAZIONE: Viadotto Calvario, Svincolo Casacastalda Ovest

FASE DI MONITORAGGIO: ANTE OPERAM **DATA:** 20 novembre 2020

LOCALIZZAZIONE GEOGRAFICA

Comune: Casacastalda Provincia: Perugia Regione: Umbria

Coordinate geografiche: 43°11'32.34"N 12°38'24.90"E

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA DI MONITORAGGIO AMBIENTE IDRICO SUPERFICIALE

SCHEDA DI RILIEVO E CAMPIONAMENTO IN CAMPAGNA **NUMERO** UNITÀ DI **PARAMETRO RISULTATO STRUMENTAZIONE MISURA MISURA Portata** OTT C31 1 m^3/s 0.00815 °C 1 10.3 **Temperatura** HACH HQ40D 2 °C 10.3 °C 3 10.3 acqua °C 10.3 media 1 °C 13.0 2 °C 13.0 HACH HQ40D Temperatura aria °C 3 13.0 media °C 13.0 704 1 μS/cm Conducibilità HACH HQ40D 2 μS/cm 704 3 elettrica 704 μS/cm media μS/cm 704 8.30 1 HACH HQ40D 2 8.30 рΗ 3 8.30 media 8.30 mg/l 10.47 1 2 HACH HQ40D mg/l 10.42 **Ossigeno Disciolto** 3 10.39 mg/l media 10.43 mg/l 1 m۷ 156.4 2 156.3 HACH HQ40D m۷ **Potenziale Redox** 3 m۷ 156.2 media 156.3 m۷

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA DI MONITORAGGIO AMBIENTE IDRICO SUPERFICIALE

FOTO DEL PUNTO DI CAMPIONAMENTO

NI	$\boldsymbol{\cap}$	T	г
IV	.,		г

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

RAPPORTO DI PROVA N 20LA18806 DEL	07/01/2021
-----------------------------------	------------

COMMITTENTE: ARIEN CONSULTING S.R.L.

INDIRIZZO COMMITTENTE: VIA TERENZIO, 21 00193 ROMA (RM)

PARTITA IVA E/O COD. FISCALE: 08978601006

UBICAZIONE CAMPIONAMENTO: SS318 CASACASTALDA

PUNTO DI CAMPIONAMENTO: AS (4)v

DESCRIZIONE CAMPIONE:CAMPIONAMENTO A CURA DI:

ACQUE SUPERFICIALI

A CURA DEL CLIENTE*

PROCEDURA/PIANO DI CAMPIONAMENTO: CAMPIONE CONSEGNATO DAL CLIENTE*

DATA CAMPIONAMENTO: 20/11/2020
DATA RICEZIONE CAMPIONE: 20/11/2020
DATA ACCETTAZIONE CAMPIONE: 20/11/2020

N° ACCETTAZIONE CAMPIONE: 20LA18806

ORA ACCETTAZIONE CAMPIONE: 19.00

DATA INIZIO PROVA: 20/11/2020	DATA FINE F			
Parametro Metodo	U.M.	Risultato	Incertezza	Limite 1 - Limite 2 - Limite 3
*POTENZIALE REDOX \$APHA Standard methods 23nd 2500B	mV	156,3	±54,7	-
OSSIGENO DISCIOLTO (Cat.III) \$APHA Standard methods 23nd 4500-0	mg/L	10,4	±3,7	-
*TEMPERATURA ARIA \$APAT CNR IRSA 2120 Man 29 2003	°C	13,0	±4,6	-
IDROCARBURI TOTALI EPA 5030C 2003 + EPA 8015C 2007 + UNI EN ISO 9377-2 2002	μg/L	< 35		-
IDROCARBURI C6-C10 EPA 5030C 2003 + EPA 8015C 2007	μg/L	< 35		-
INDICE DI IDROCARBURI (C10 - C40) UNI EN ISO 9377-2: 2002	μg/L	< 35		-
TEMPERATURA - (cat.III) \$APAT CNR IRSA 2120 Man 29 2003	°C	10,3	±3,6	-
ALLUMINIO EPA 6020B 2014	μg/L	14	±3	-
ARSENICO EPA 6020B 2014	μg/L	< 2,5		10 - 5
CADMIO EPA 6020B 2014	μg/L	< 0,1		-
CROMO TOTALE EPA 6020B 2014	μg/L	< 2,5		7 - 4
FERRO EPA 6020B 2014	μg/L	< 20		-
MERCURIO EPA 6020B 2014	μg/L	< 0,1		0,03 - 0,01 - 0,06
NICHEL EPA 6020B 2014	μg/L	< 2,5		20 - 20
PIOMBO EPA 6020B 2014	μg/L	< 2,5		7,2 - 7,2
RAME EPA 6020B 2014	μg/L	< 3		-

File firmato digitalmente Pagina 1 di 5

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

SEGUE RAPPORTO DI PROVA N 20LA18806	DEL 07/01/20)21		
Parametro Metodo	U.M.	Risultato	Incertezza	Limite 1 - Limite 2 - Limite
ZINCO <i>EPA</i> 6020B 2014	μg/L	< 10		-
AZOTO AMMONIACALE APAT CNR IRSA 4030 A1 Man 29 2003	mg/L	< 0,05		-
CLORURI APAT CNR IRSA 4020 Man 29 2003	mg/L	21,6	±5,4	-
*CONDUTTIVITÀ ELETTRICA (Cat.III) \$UNI EN 27888: 1995	μs/cm	704	±246	-
pH (cat.III) PUNI EN ISO 10523: 2012	unità pH	8,30	±0,20	-
SOLFATI APAT CNR IRSA 4020 Man 29 2003	mg/L	63,0	±15,7	-
TENSIOATTIVI ANIONICI APAT CNR IRSA 5170 Man 29 2003	mg/L	< 0,30		-
*TENSIOATTIVI NON IONICI MI02: 2020 REV. 00	mg/L	< 0,5		-
*CONTA DI ESCHERICHIA COLI APAT CNR IRSA 7030 F Man 29 2003	UFC/100mL	200	±70	-
MANGANESE EPA 6020B 2014	μg/L	6,38	±1,28	-
*CALCIO EPA 6010D 2018	mg/L	97,3	±19,5	-
*BENTAZONE EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,01		-
*LINURON EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,005		-
ALACLOR EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,01		0,3 - 0,3 - 0,7
*DIURON EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,005		0,2 - 0,2 - 1,8
*TERBUTILAZINA EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,01		0,5 - 0,2
*METOLACHLOR EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,01		-
*TRIFLURALIN EPA 3510C 1996 + EPA 8270E 2018	μg/L	< 0,005		0,03 - 0,03
XILENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,5		5 - 1
*TRANS-1,2-DICLOROETILENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
TRIBROMOMETANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		-
TRICLOROETILENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		10 - 10

File firmato digitalmente Pagina 2 di 5

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

SEGUE RAPPORTO DI PROVA N 20LA18806	DEL 07/01/2	2021		
Parametro Metodo	U.M.	Risultato	Incertezza	Limite 1 - Limite 2 - Limite
TETRACLOROETILENE <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		10 - 10
TOLUENE <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,5		5 - 1
DIBROMOCLOROMETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
CLORURO DI VINILE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
ESACLOROBUTADIENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		0,05 - 0,02 - 0,5
BENZENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,1		10 - 8 - 50
BROMODICLOROMETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
CIS-1,2-DICLOROETILENE EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
CLOROMETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
1,1,1-TRICLOROETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		10 - 2
TRICLOROMETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,05		-
1,1,2,2-TETRACLOROETANO EPA 5030C 2003 + EPA 8260D 2018	μg/L	< 0,001		-
1,1,2-TRICLOROETANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		-
1,1-DICLOROETANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		-
1,1-DICLOROETILENE <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		-
1,2,3-TRICLOROPROPANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,001		-
1,2 - DIBROMOETANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,001		-
1,2-DICLOROETANO <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		10 - 10
1,2-DICLOROETILENE <i>EPA 5030C 2003 + EPA 8260D 2018</i>	μg/L	< 0,05		-
RICHIESTA CHIMICA DI OSSIGENO (COD) ISO 15705: 2002	mg/L	< 10		-
DUREZZA TOTALE (da calcolo) DA CALCOLO	°F	32,0	±11,2	-
TORBIDITÀ (Cat. III) APAT CNR IRSA 2110 Man 29 2003	NTU	< 0,4		-

File firmato digitalmente Pagina 3 di 5

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

SEGUE RAPPORTO DI PROVA N 20LA18806	DEL 07/01/2021							
Parametro Metodo	U.M.	Risultato	Incertezza	Limite 1 - Limite 2 - Limite 3				
NITRATI APAT CNR IRSA 4020 Man 29 2003	mg/L	< 10		-				
SOLIDI SOSPESI TOTALI (SOLIDI INDISCIOLTI) APAT CNR IRSA 2090 B Man 29 2003	mg/L	6,85	±2,40	-				
FOSFORO TOTALE APAT CNR IRSA 4110 A2 Man 29 2003	mg/L	< 0,1		-				

Legenda:

U.M. =unità di misura nd = non determinabile U (se presente) = incertezza LR (se presente) = limite di rivelabilità NR (se presente) = non rilevato

= prova non accreditata ACCREDIA

= prova in subappalto

\$ = prova fornita dal cliente per la quale il laboratorio declina ogni responsabilità

Informazioni fornite dal cliente per le quali il laboratorio declina ogni eventuale responsabilità:

ANAGRAFICHE: DATA CAMPIONAMENTO, DESCRIZIONE CAMPIONE, PROCEDURA/PIANO DI CAMPIONAMENTO, UBICAZIONE CAMPIONAMENTO, PUNTO DI CAMPIONAMENTO

PROVE: Temperatura durante il campionamento - Conducibilità Lettura - CONDUTTIVITÀ ELETTRICA (Cat.III) - OSSIGENO DISCIOLTO (Cat.III) - pH (cat.III) - POTENZIALE REDOX - TEMPERATURA - (cat.III) - TEMPERATURA ARIA

Sommatorie presenti nel rapporto di prova:

m.p + o XILENE Lettura:

Il recupero dei singoli analiti è compreso tra l' 80% ed il 120%. Non si utilizza alcun fattore di correzione nel calcolo della concentrazione. Per le singole diossine, il recupero varia dal 63% al 170%

Il criterio di valutazione utilizzato per l'espressione del giudizio di conformità tiene conto dell'incertezza di misura associata alle singole prove in conformità al documento ISPRA n. 52/2009.

Nota Campionamento: Il campionamento si intende accreditato solo se il metodo non è indicato con l'asterisco ed è associato ad una successiva prova accreditata secondo la norma ISO/IEC 17025.

I risultati ottenuti si riferiscono al campione così come ricevuto.

L'incertezza è espressa nelle unità di misura del parametro a cui si riferiscono. Il fattore di copertura è pari a k=2 con un intervallo di probabilità del 95%

L'incertezza riportata non tiene conto del contributo del campionamento.

Note: Tab. 1/A e Tab 1/B del DM 260/2010

Limite 1: SQA-MA (standard di qualità ambientale espresso come valore medio annuo) per acque superficiali interne (fiumi, laghi e corpi idrici artificiali o modificati) Limite 2: SQA-MA (standard di qualità ambientale espresso come valore medio annuo) per altre acque di superficie (acque marino-costiere, acque territoriali e acque di

Limite 3: SQA-CMA (standard di qualità ambientale espresso come concentrazione massima ammissibile)

Per il Cadmio il limite è = 0,45 se DUREZZA < 4 °F; 0,45 se 4 °F < DUREZZA < 5 °F; 0,6 se 5 °F < DUREZZA < 10 °F; 0,9 se 10 °F < DUREZZA < 20 °F; 1,5 se DUREZZA > 20 °F

GIUDIZIO DI CONFORMITÀ

Tab. 1/A e Tab 1/B del DM 260/2010

Limite 1: SQA-MA (standard di qualità ambientale espresso come valore medio annuo) per acque superficiali interne (fiumi, laghi e corpi idrici artificiali o modificati)

Limite 2: SQA-MA (standard di qualità ambientale espresso come valore medio annuo) per altre acque di superficie (acque marino-costiere, acque territoriali e acque di transizione)

Limite 3: SQA-CMA (standard di qualità ambientale espresso come concentrazione massima ammissibile)

Per il Cadmio il limite è = 0,45 se DUREZZA < 4 °F; 0,45 se 4 °F < DUREZZA < 5 °F; 0,6 se 5 °F < DUREZZA < 10 °F; 0,9 se 10 °F < DUREZZA < 20 °F; 1,5 se DUREZZA > 20 °F

NESSUN SUPERAMENTO - CONFORME rispetto al limite per i parametri analizzati.

File firmato digitalmente Pagina 4 di 5

SISTEMA GESTIONE QUALITÀ IN CONFORMITÀ CON LA NORMA UNI EN ISO 9001:2008

LAB N° 0562 L

SEGUE RAPPORTO DI PROVA N 20LA18806

DEL 07/01/2021

I risultati del presente rapporto di prova si devono intendere riferiti esclusivamente al campione sottoposto a prova. Il presente rapporto di prova non può essere riprodotto parzialmente se non previa approvazione scritta da parte di questo Laboratorio.

Il Responsabile di Laboratorio

Dott. Francesco Troisi

DOTT.
TROISI
CHIMICO
N. 1714

- Fine Rapporto di Prova -

File firmato digitalmente Pagina 5 di 5

Direzione Progettazione e Realizzazione Lavori

METODO DI MISURA

S.S. 318 DI VALFABBRICA

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA MISURA DI PORTATA - AMBIENTE IDRICO SUPERFICIALE

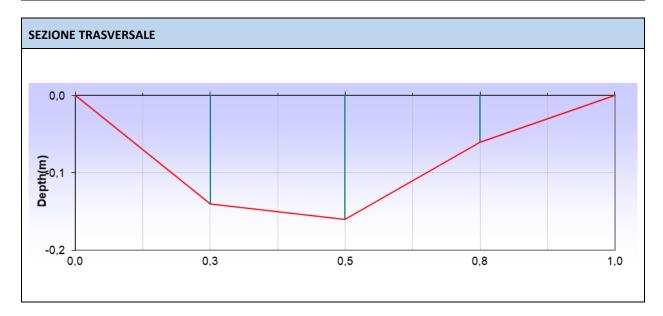
PORTATA (m³/s)

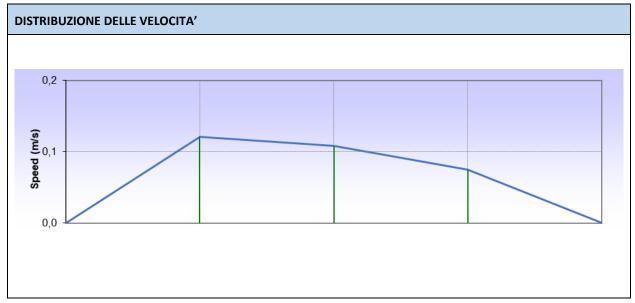
0.00815

RELAZIONE TECNICA MISURA DI PORTATA									
SITO		AS(4)v		AS(4)v CORSO D'ACQUA		Fosso Calvario			
DATA	2	0 Novembre 2020	UB	ICAZIONE	Viadotto Calvario, Svincolo Casacastalda Ovest				
STRUMENTO UTILIZZATO	Misurat	ore di Corrente OTT C31	ОР	ERATORE	Geol. F	ergara			
DESCRIZIONE CORSO D'ACQUA									
Corso d'acqua a regime di vegetazione riparia e i		veo sabbioso/ciottoloso (di forma	regolare, acqu	ıe limpide con flu	usso laminar	e, presenza		
PROFONDITA' MAX (m)	0.16	VELOCITA' MINIMA (m/se	c)	0.0	PERIMETRO BAGNATO (m)		1.06		
PROFONDITA' MEDIA (m)	0.09	VELOCITA' MAX (m/sec)		0.121	RAGGIO IDRAULICO (m)		0.084		
LARGHEZZA ALVEO (m)	1.00	VELOCITA' MEDIA (m/sec)		0.09	SEZIONE (m²)		0.09		
				_					

Medio- un punto di misura

FOTO DEL PUNTO DI MISURA Sala Barria Barria




Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi

2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA MISURA DI PORTATA - AMBIENTE IDRICO SUPERFICIALE

GRAFICI DELLA SEZIONE DI MISURA

NOTE			

Tratto Valfabbrica-Schifanoia - Interventi di completamento dal Km 16+224 al Km 19+354 Lotto 5: 1° stralcio parte B: raddoppio galleria Picchiarella e viadotto Tre Vescovi 2° stralcio: raddoppio galleria Casacastalda e viadotto Calvario

SCHEDA INDICE LIMeco - AMBIENTE IDRICO SUPERFICIALE

CODICE PUNTO MISURA: AS(4)v

PROGR. (Km): 17+400

CORPO IDRICO: fosso Calvario "valle"

PASE DI MONITORAGGIO: ANTE OPERAM **DATA:** 11 dicembre 2020

LOCALIZZAZIONE GEOGRAFICA

Comune: Casacastalda Provincia: Perugia Regione: Umbria

Coordinate geografiche: 43°11'32.34"N 12°38'24.90"E

APPLICAZIONE INDICE LIMeco								
PARAMETRO	UNITÀ DI MISURA	VALORE						
AZOTO AMMONIACALE	mg/l	< 0.01						
AZOTO NITRICO	mg/l	1.700						
FOSFOTO TOTALE	mg/l	0.060						
OSSIGENO DOSCIOLTO	%	98.3						
TEMPERATURA	°C	9.2						

GIUDIZIO LIMeco					
VALORE DI LIMeco	STATO				
0,687	ELEVATO				

Rapporto di Prova N. 4025_2020

C 464-20

Data emissione: 23/12/2020 Pagina 1 di 1

> Spett.le **DRONEEC DI FORNERIS STEFANO** Via Rivoli n°116 10090 Villarbasse (TO)

Data arrivo campione: 14/12/2020 alle ore: 09:00 Descrizione del campione: Acque di torrente

Etichetta: Stazione AS 4V - Torrente Fosso Calvario; T al prelievo +9,2°C (dati dichiarati dal Cliente)

Campionamento effettuato da: cliente

Data campionamento: 11/12/2020 alle ore: 08:30

Procedura campionamento: --

Modulo: Mod 5_8-1 Accettazione campioni compilato

Numero interno attribuito al campione: 4025-20

I risultati riportati sono rappresentativi dei soli campioni sottoposti a prova, così come ricevuti. Il presente Rapporto di Prova non può essere riprodotto parzialmente salvo autorizzazione del laboratorio.

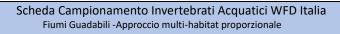
Parametro	Metodo di prova	Unita' di misura	Risultato ± U	Limiti	Data inizio - fine prova
Azoto ammoniacale	APAT CNR IRSA 4030A1 Man 29 2003	mg/l	< 0,01	-	16/12/2020 - 16/12/2020
Azoto nitrico*	APAT CNR IRSA 4040A1 Man 29 2003	mg/l	1,700	-	16/12/2020 - 16/12/2020
Fosforo totale*	APAT CNR IRSA 4110A2 Man 29 2003	mg/l	0,060	-	21/12/2020 - 21/12/2020

^{*} prova non accreditata da ACCREDIA

Responsabile Settore Chimico Dott. Gianluca Toro

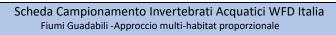
Firmato digitalmente da

Toro Gianluca (owner


CN: Toro Gianluca
O: ArubaPEC S.p.A.
OU: Certification AuthorityC

Pag.1 di

Fiumi Guadabili -Approccio multi-habitat proporzionale


	A
	7
AR	IEN CONSULTING

ARIEN C	ONSULTING										Pag	.1 ai
Fiume F	OSSO CALVARIO	Sito A	S4V			Località	CASACASTALDA		Comune	VALFABBR	ICA	
	PERUGIA	Regio	ne	UMBRIA					Coordinate 0	SPS		
	-12-2020	Opera		S. FORNE	ERIS	Ente A	ANAS					
	egione 11		luviale 1 :	1					Corpo idrico	WFD		
Tipo di m	nonitoraggio	Operati		C	li Sorvegliar		Altro (spec.)					
	Sito di	Riferimer	nto 🗆		Investigat	ivo 🗆	Rete di monitorag	ggio (spe	c.)			
Il letto de	l fiume è visibile?	Si 🛣		In p	arte 🗆		Poco onulla 🛭					
La sequer	nza riffle/pool è riconoscibile?	No 🛣			Si 🗖				(specificare foto	di riferimento	o)	
Raccolta 1	LO repliche effettuata in: Rif	fle ជ			Pool 🗆		Prop.generico []	Altro (spec.)			
Raccolta 4	1 repliche (se previsto) effettuata in: Rif	fle 🗆			Pool 🗆		Prop.generico]	Altro (spec.)			
Γipo di ret	ino utilizzato: Surb			R. immanio	ato 🗆				Altro (spec.)			
	Retino imm. con misura superf	icie X										
Superficie	totale campionata: 0.5	m² X I			1 m² □				Altro (spec.)			
Altri proto	ocolli biologici: Diatome	ee 🗆		Mac	rofite 🗆		Ittiofauna 🛭		Altro (spec.)			
Indagini d	i supporto: Macrodescritto	ri 💢		Idromorfo	ologia 🗆				Altro (spec.)			
Parametri	chimico-fisici	O ₂ (mg/l)	10.70		pН		T°C 9.2		Conducibilità	(μS/cm²)		
Si ricorda di	tenere separato il campione derivante dalle 10						·		4 repliche	addizionali	(Monitoraggio	_
	on. Operativo) da quello derivante dalla raccolta		10	repliche p	roporziona	ali (Monito	raggio Operativo)					,
delle 4 repl	iche addizionali				_				Sorvegi	ianza, Invest	igativo, Reference	<u>:)</u>
		codice		%	Nr.Re	epliche	Tipo diflusso		Nr.Repliche	т	ipo diflusso	
	li /	ARG										
	limo/argilla < 6μ	ANG										
	sabbia 6μ-2 mm	SAB										
	·											
	ghiaia > 0.2.2cm	GHI										
	ghiaia > 0.2-2cm											
MICROHABITAT MINERALI ¹	and an althought 2. Com	MIC	50	0	5		UW-UW-UW-UV	v-uw				
	microlithal* 2-6 cm											
		MES	10	0	1		uw					
į	mesolithal* 6-20 cm											
Ě		MAC	20	0	2		BW-UW					
₽	macrolithal* 20-40cm	IVIAC										
Ď			20	0	2		UW-CH					_
Ē	megalithal* > 40cm	MGL										
2	inegantila.											
	artificial (e.g. cemento)	ART										
	artificat (e.g. cements)											
	igropetrico (sottile strato d'acqua su	IGR										
	substrato roccioso)											
¹ (I	e dimensioni indicate si riferiscono all'asse interme	dio)										
	alghe	AL										
	angine											
	macrofite sommerse (anche	so										
	muschi, Characeae, etc.)	30										
	macrofite emergenti (e.g. Thypha, Carex,											_
_	Phragmites)	EM										
Ĕ												
MICROHABITATBIOTICI	parti vive di piante terrestri (e.g.	TP										
Ι	radichette sommerse)											
-BI	xylal/legno (rami, legno morto, radici)	XY										
ž												
S.	CPOM (materiale organico	СР										
Ē	grossolano, foglie, rametti)											
		FP										
	FPOM (materiale organico fine)											
	Film batterici, funghie sapropel	BA										
somma 100%						10			4			—
Il sito è uniformemente o quasi uniformemente ricoperto da:					musch		Hydrurus					
3110 E UI	·	cito ud.		Ala-l-			•					
	un sottile strato di limo 🗆			Alghe	e incrostant	i 🗆	Altro (specificare)					_
Note								Tipi difl	usso			
							er il campionamento:					
						on percetti		n standi	ngwaves			
						iscio/ <i>Smoo</i> i	th CH Chute					
	-2 (Da					<i>lpwelling</i> ncrespato/ <i>l</i>	Pinnled		ı	da evitare ne F Cascata/ <i>Fi</i>	el campionamento	э:
Firma Op	peratore						randingwaves		l		eefall otico/ Chaoticflo	w
	X OV				300 0	UNCII SL				,, ,,,,,,,,,,,,	,	

Fiume	FOSSO CALVAF	RIO	Stazione Campione		AS(4)v		Operatore Outsub Telaus	
Data	11-12-2020						0	
Organismi								Pres.
PLECOTTERI		NEMOURA		2				
(genere)								
EFEMEROTTERI		BAETIS ECDYONURUS		1				
(genere)		202101101100		_				
TRICOT	TFRI	PHILOPOTMIDAE		1				
(genere								
(genere	-1	_						
COLEO	ΓΤΕRI							
(genere	2)							
ODONA	ATI							
(genere	2)							
DITTER		SIMULIIDAE		1				
(genere	2)							
ETERO	TEDI							
ETEROT								
(genere	=)							

Fiume	FOSSO CALVARI) Stazione		AS(4)v		Operatore Journa Jefus		
Data	11-12-2020	Campione		AD				
Organismi								Pres.
CROSTACEI		GAMMARIDAE		111				
(genere)								
GASTER	ROPODI							
(genere	<u>e)</u>							
BIVALV	ı							
(genere	e)							
TRICLA	DI							
(genere))							
IRUDIN	IEI							
(genere	2)							
OLIGO	CHETI	LUMBRICIDAE		1				
(genere	<u>e)</u>							
ALTRI								
(famiglia)								
note								

PARAMETRO	METODO	VALORE	CLASSE DI QUALITA'	GIUDIZIO
INDICE STAR_ICMi	IRSA-CNR n° 1 del 2007 + Ispra 111/2014	0,590	3	MODERATO