COMMITTENTE:

PROGETTAZIONE:

U.O. COORDINAMENTO NO CAPTIVE E INGEGNERIA DI SISTEMA

PROGETTO DEFINITIVO

POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA

INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA

OPERE MINORI

Passerella ciclopedonale - relazione di calcolo impalcato

SCALA:
-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvaţo	Data	Autorizzato Data
Α	Emissione esecutiva	L.DInelli	Luglio 2020	S.Paoloni	Luglio 2020	T.Paoletti	Luglio 2020	L.Berardi Luglio 2020
		11) Mi			1	19		BERARO
								E 5 *
								100

File: IR0B.02.D.10.CL.IV02.0.0.001.A.doc n. Elab.:

OPERE MINORI

Passerella ciclopedonale - relazione di calcolo impalcato

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IROB 02 D10 CL IV0200 001 A 2 di 92

Indice

1	P	REMESSA	4
2	D	DESCRIZIONE GENERALE DELL'OPERA	6
3	N	ORMATIVA E DOCUMENTI DI RIFERIMENTO	8
	3.1	Normativa	8
	3.2	Elaborati di riferimento	9
4	C	CARATTERIZZAZIONE GEOTECNICA DEL SITO	10
5	U	JNITA' DI MISURA	13
6	N	MATERIALI	14
	6.1	CALCESTRUZZO	14
	6.2	ACCIAIO PER ARMATURE	14
	6.3	ACCIAIO DELLA CARPENTERIA METALLICA	15
7	II	POTESI DI CALCOLO E VERIFICHE	16
8	A	NALISI DEI CARICHI	17
	8.1	CARICHI PERMANENTI	17
	8.2	SOVRACCARICO ACCIDENTALE	18
	8.3	CARICO DELLA NEVE	18
	8.4	TEMPERATURA	20
	8.5	AZIONE DEL VENTO	20
	8.6	AZIONE SISMICA	23
	8.7	COMBINAZIONI DI CARICO	25
9	A	NALISI DEL MODELLO DI CALCOLO	36
10) V	VERIFICHE DEGLI ELEMENTI STRUTTURALI	39
	10.1	VERIFICHE DELLE TRAVI PRINCIPALI	39

OPERE MINORI Passerella ciclopedonale - relazione di calcolo impalcato COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IR0B 02 CL IV0200 001 3 di 92 D10 Α

	10.1.1	1 Classificazione della sezione	40
	10.1.2	2 Verifica di resistenza e stabilità	43
	10.1.3	3 Verifica di deformabilità delle travi inflesse (SLE)	45
	10.2	VERIFICHE DEI TRAVERSI	46
	10.2.1	1 Classificazione della sezione	47
	10.2.2	2 Verifica di resistenza e stabilità	49
	10.2.3	3 Verifica di deformabilità delle travi inflesse (SLE)	51
	10.3	VERIFICHE DEI CONTROVENTI	51
	10.3.1	1 Verifica di resistenza	52
	10.4	VERIFICA DELLA FREQUENZA FONDAMENTALE	54
11	VERI	IFICA DEI COLLEGAMENTI BULLONATI	56
	11.1	Travi principali	56
	11.2	Travi secondarie	72
12	SOLE	ETTA	89
13	GIUN	NTI E APPOGGI	91
	13.1	GIUNTI	91
	13.2	APPOGGI	91

APPOGGI91

1 PREMESSA

Nell'ambito del progetto Potenziamento della linea Foligno-Terontola, rientrano gli interventi di semplificazione e velocizzazione ed upgrade tecnologico presso la stazione di Ellera. Le attività prevedono la velocizzazione degli itinerari in deviata, l'adeguamento a STI dei marciapiedi di stazione e l'upgrading tecnologico dell'impianto esistente ACEI in un più moderno apparato ACC.

Il Programma di Esercizio fornito come input prevede interventi di semplificazione e velocizzazione dei deviatoi dell'impianto. In particolare si effettuano le seguenti lavorazioni:

- Sostituzione delle comunicazioni esistenti a 30 km/h con comunicazioni a 60 km/h lato Foligno. La sostituzione era prevista anche per i deviatoi lato Terontola ma è stato deciso successivamente da RFI di mantenere l'attuale velocità per le comunicazioni lato Terontola
- Realizzazione di tronchini di indipendenza per i binari di precedenza
- Ampliamento del marciapiede al servizio dei binari II e futuro III, accessibile attraverso un nuovo sottopasso, e adeguamento a STI del marciapiede esistente
- Dismissione dei binari di scalo lato F.V. e della relativa comunicazione di accesso posta sul I binario

Per la stazione di Ellera è inoltre previsto, come detto in precedenza, l'upgrade tecnologico dell'attuale apparato (con ACC telecomandabile) e conseguente riconfigurazione del Posto Centrale.

L'inizio dell'intervento è previsto alla progressiva Km 49+050 circa e termina alla progressiva Km 49+900 circa.

E' prevista la modifica dell'attuale PRG di stazione allo schematico comunicato dal Cliente, la realizzazione di un nuovo sottopasso e dei collegamenti perdonali (rampe scale ed ascensori), innalzamento del marciapiede del binario I H=55cm e realizzazione di un nuovo marciapiede ad isola H=55cm. Inoltre verrà prevista la realizzazione di un nuovo sottopasso pedonale.

Verranno previste due nuove pensiline ferroviarie su ciascun marciapiede a copertura del nuovo sottopasso.

Le suddette modifiche al PRG di stazione comportano la necessità di demolire e ricostruire il cavalcaferrovia di Via Corcianese.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	INTERVEN	MENTO I	DELLA LINE	A FOLIGNO-TER ONE E VELOCIZ ERA		
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OPERE MINORI	IR0B	02	D10	CL IV0200 001	Α	5 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						

Verrà previsto un nuovo Fabbricato Tecnologico per ospitare la cabina ACC, i locali tecnologici e la Cabina MT/BT, quest'ultima necessaria per una migliore gestione dei carichi elettrici presenti in stazione.

Saranno previsti infine, dal punto di vista impiantistico:

- illuminazione punte scambi;
- impianti RED;
- illuminazione scale, sottopasso, banchine
- impianti IaP e DS

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	INTERVEN	MENTO I TI DI SEN	DELLA LINE	CA FOLIGNO-TER ONE E VELOCIZ ERA		_
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OF ERE WINORI	IR0B	02	D10	CL IV0200 001	Α	6 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						

2 DESCRIZIONE GENERALE DELL'OPERA

La presente relazione riguarda il dimensionamento e la verifica della passerella pedonale posta nella città di Perugia a completamento di un progetto più ampio che riguarda la stazione di Ellera.

La passerella è composta nella sua struttura portante di due travi longitudinali aventi profilo commerciale HEA900, luce 23.4 m e da elementi trasversali HEA300 disposti con interasse di 2.925 m e da controventi diagonali formati da profili a L80x8 . L'impalcato è realizzato con una lamiera grecata su cui poggia una soletta in c.a. non collaborante con il graticcio di travi.

Di seguito si riportano le immagini della pianta e della sezione trasversale.

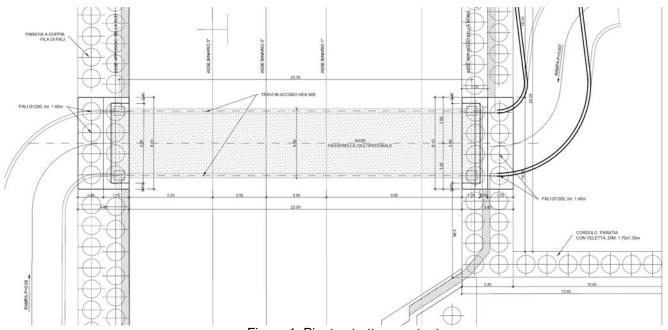


Figura 1: Pianta struttura portante

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA									
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO				
OI ERE MINORI	IR0B	02	D10	CL IV0200 001	Α	7 di 92				
Passerella ciclopedonale - relazione di calcolo impalcato										

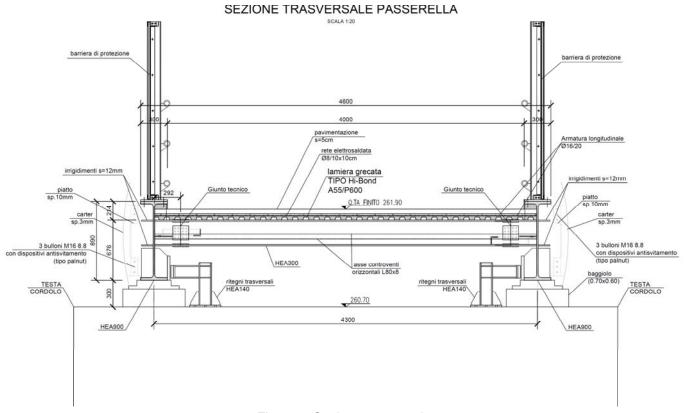


Figura 2: Sezione trasversale

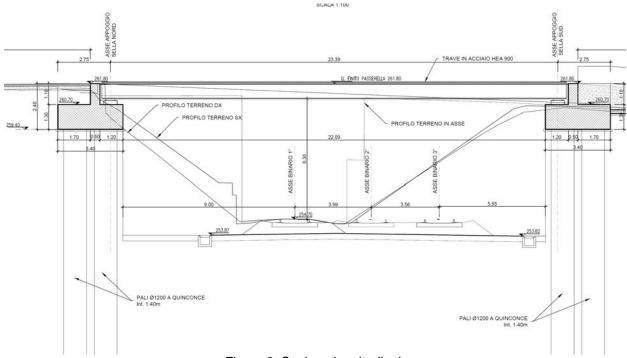
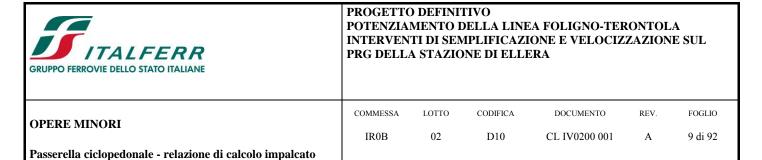


Figura 3: Sezione longitudinale

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERO INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZ PRG DELLA STAZIONE DI ELLERA COMMESSA LOTTO CODIFICA DOCUMENTO						
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
OF ERE MINORI	IR0B	02	D10	CL IV0200 001	Α	8 di 92	
Passerella ciclopedonale - relazione di calcolo impalcato							

3 NORMATIVA E DOCUMENTI DI RIFERIMENTO


3.1 Normativa

Le analisi strutturali e le verifiche di sicurezza sono state effettuate in accordo con le seguenti normative.

- Legge 5-1-1971 n° 1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica";
- Legge. 2 febbraio 1974, n. 64. Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- D.M. 17 gennaio 2018 Norme Tecniche per le Costruzioni;
- Circolare 21 gennaio 2019 n.7 " Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018";
- Manuale di Progettazione delle Opere Civili: PARTE I / Aspetti Generali (RFI DTC SI MA IFS 001 A)
- Manuale di Progettazione delle Opere Civili: PARTE II Sezione 2 / Ponti e Strutture (RFI DTC SI PS MA IFS 001 A– rev 30/12/2016)
- Manuale di Progettazione delle Opere Civili: PARTE II Sezione 3 / Corpo Stradale (RFI DTC SI CS MA IFS 001 A– rev 30/12/2016)
- Manuale di Progettazione delle Opere Civili: PARTE II Sezione 5 / Prescrizioni per i Marciapiedi e le Pensiline delle Stazioni Ferroviarie a servizio dei Viaggiatori (RFI DTC SI CS MA IFS 002 A– rev 30/12/2016)
- Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea
- Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- UNI 11104: Calcestruzzo: Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1

Si è tenuto inoltre conto dei seguenti documenti:

- UNI EN 1990 Aprile 2006: Eurocodice: Criteri generali di progettazione strutturale.
- UNI EN 1991-1-1 Agosto 2004: Eurocodice 1 Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi variabili.
- UNI EN 1991-1-4 Luglio 2005: Eurocodice 1. Azioni sulle strutture. Parte 1-4: Azioni in generale Azioni del vento.

- UNI EN 1992-1-1 Novembre 2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- UNI EN 1992-2 Gennaio 2006: Eurocodice 2. Progettazione delle strutture di calcestruzzo. Parte 2: Ponti di calcestruzzo Progettazione e dettagli costruttivi.
- UNI-EN 1997-1 Febbraio 2005: Eurocodice 7. Progettazione geotecnica. Parte 1: Regole generali.
- UNI-EN 1998-5 Gennaio 2005: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.
- UNI EN 206-1-2016: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".
- Calcestruzzo Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1 UNI 11104/2016;
- RFI DTC SI MA IFS 001 D Dicembre 2019: Manuale di progettazione delle opere civili;
- RFI DTC SI SP IFS 001 D Dicembre 2019: Capitolato Generale Tecnico di Appalto delle Opere Civili RFI;
- Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;

3.2 Elaborati di riferimento

Costituiscono parte integrante di quanto esposto nel presente documento, l'insieme degli elaborati di progetto specifici relativi all'opera in esame e riportati in elenco elaborati.

Passerella ciclopedonale - relazione tecnico descrittiva	I	R	0	В	0	2	D	1	0	R	О	I	V	0	2	0	0	0	0	1	Α
Passerella ciclopedonale - relazione di calcolo impalcato	Ι	R	0	В	0	2	D	1	0	C	L	I	V	0	2	0	0	0	0	1	Α
Passerella ciclopedonale - relazione di calcolo spalle e fondazioni	Ι	R	0	В	0	2	D	1	0	C	L	I	V	0	2	0	0	0	0	2	Α
Passerella ciclopedonale - Demolizione opera esistente	I	R	0	В	0	2	D	1	0	A	9	I	V	0	2	0	0	0	0	1	Α
Passerella ciclopedonale - Planimetria e sezioni	I	R	0	В	0	2	D	1	0	P	Z	I	V	0	2	0	0	0	0	1	A
Passerella ciclopedonale - Apparecchi di appoggio e dispositivi di dilatazione	I	R	0	В	0	2	D	1	0	В	Z	I	V	0	2	0	0	0	0	1	A

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	INTERVEN	MENTO I TI DI SEN	DELLA LINE	EA FOLIGNO-TER ONE E VELOCIZ ERA		
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OF ERE MINORI	IR0B	02	D10	CL IV0200 001	A	10 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						

4 CARATTERIZZAZIONE GEOTECNICA DEL SITO

Dal punto di vista geotecnico le unità che caratterizzano le stratigrafia di progetto sono le seguenti:

- R: materiale di riporto;
- T1 e T2: travertino fratturato, ghiaie e sabbie. Seppur geologicamente accomunate in un'unica litologia (PGL3a), dal punto di vista geotecnico si è preferito operare la suddivisione nelle due unità indicate sulla base della risposta ottenuta dalle prove SPT e da quelle geofisiche. Inoltre, considerando l'elevato stato di fratturazione e alterazione descritto nei report stratigrafici, per il travertino è stato cautelativamente assunto un approccio di caratterizzazione da terreno sabbioso (grana grossa);
- LA: limi, limi argillosi, limi sabbiosi e argille con locali intercalazioni di sabbie e ghiaie. Rappresenta l'unità geologica PGU1a.

L'interpretazione delle prove in sito e di laboratorio ha condotto alla definizione dei seguenti valori dei parametri meccanici per i terreni tipo individuati:

Unità	γ kN/m³	φ' (°)	·		G ₀ (MPa)	E _{op} (MPa)	k (m/s)
T1	19.0	32÷35	0	-	95 ÷ 200	20 ÷ 50	1E-04 ÷ 1E-05
T2	19.0	34÷38	0	-	175 ÷ 310	40 ÷ 75	1E-04 ÷ 1E-05
LA	20.0	22÷24	5 ÷ 10	100 ÷ 250	350 ÷ 500	85 ÷ 120	1E-07 ÷ 1E-08

La stratigrafia è stata dedotta in base ai risultati del sondaggio DPSH3 situato proprio in corrispondenza del fosso.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE PRG DELLA STAZIONE DI ELLERA COMMESSA LOTTO CODIFICA DOCUMENTO REV.						
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
OF EAR MINORI	IR0B	02	D10	CL IV0200 001	A	11 di 92	
Passerella ciclopedonale - relazione di calcolo impalcato							

Figura 2 - Ubicazione indagini di fase PD - Google Earth

I dati della falda libera indicano un livello piezometrico che si attesta a circa 7.0 m dal piano campagna.

strato	profondità da	profondità a
	m da pc	m da pc
R	0	1.0
T1	1.0	9.0
T2	9.0	24.0
LA	24.0	-

Tabella 1 - Stratigrafia di calcolo Materiali in sito.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	POTENZIA INTERVEN	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA						
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
OF ERE MINORI	IR0B	02	D10	CL IV0200 001	A	12 di 92		
Passerella ciclopedonale - relazione di calcolo impalcato								

Dal punto di vista sismico il terreno è classificato di tipo B.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	POTENZIA INTERVEN	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA						
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
OF ERE WINORI	IR0B	02	D10	CL IV0200 001	A	13 di 92		
Passerella ciclopedonale - relazione di calcolo impalcato								

5 UNITA' DI MISURA

Le unità di misura usate nella presente relazione sono:

- lunghezze [m]
- forze [kN]
- momenti [kNm]
- tensioni [MPa]

		PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA						
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
OI ERE MINORI	IR0B	02	D10	CL IV0200 001	A	14 di 92		
Passerella ciclopedonale - relazione di calcolo impalcato								

6 MATERIALI

6.1 CALCESTRUZZO

Calcestruzzo elevazione dell'impalcato C32/40

Classe di resistenza = C32/40

 γ_c = peso specifico = 25.00 kN/m³

 R_{ck} = resistenza cubica = 40.00 N/mm²

 f_{ck} = resistenza cilindrica caratteristica = $0.83 \cdot R_{ck}$ = 33.2 N/mm^2

 f_{cm} = resistenza cilindrica media = f_{ck} + 8 = 41.2 N/mm²

 f_{ctm} = resistenza a trazione media = 0.30· $f_{ck}^{2/3}$ = 3.10 N/mm²

 f_{cfm} = resistenza a traz. per flessione media = 1.20· f_{ctm} = 3.72 N/mm²

f_{cfk} = resistenza a traz. per flessione caratt. = 0.70·fcfm = 2.60 N/mm²

 E_{cm} = modulo elast. tra 0 e 0.40 f_{cm} = 22000·(fcm/10)^{0.3} = 33642.8 N/mm²

6.2 ACCIAIO PER ARMATURE

Tipo = B 450 C

 γ_a = peso specifico = 78.50 kN/m³

f_{v nom} = tensione nominale di snervamento = 450 N/mm²

 $f_{t nom}$ = tensione nominale di rottura = 540 N/mm²

 $f_{yk min}$ = minima tensione caratteristica di snervamento = 450 N/mm²

f_{tk min} = minima tensione caratteristica di rottura = 540 N/mm²

 $(f_t/f_y)_{k \text{ min}}$ = minimo rapporto tra i valori caratteristici = 1.15

 $(f_t/f_v)_{k \text{ max}}$ = massimo rapporto tra i valori caratteristici = 1.35

 $(f_v/f_{v \text{ nom}})_k$ = massimo rapporto tra i valori nominali = 1.25

 $(A_{at})_k$ = allungamento caratteristico sotto carico massimo = 7.5 %

E = modulo di elasticità dell'acciaio = 206000 N/mm²

Diametro del mandrino per prove di piegamento a 90° e successivo raddrizzamento senza cricche:

OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IR0B	02	D10	CL IV0200 001	Α	15 di 92
Passerella ciclonedonale - relazione di calcolo impalcato						

 \emptyset < 12 mm \rightarrow 4 \emptyset ;

 $12 \le \emptyset \le 16 \text{ mm} \rightarrow 5 \emptyset;$

 $16 < \emptyset \le 25 \text{ mm} \rightarrow 8 \emptyset$;

 $25 < \emptyset \le 40 \text{ mm} \rightarrow 10 \text{ }\emptyset.$

6.3 ACCIAIO DELLA CARPENTERIA METALLICA

Acciaio S355 J0 EN 10025 per profilati e lamiere

Acciaio S355 J0 EN 10025 per travi ed elementi saldati

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	INTERVEN	MENTO I	DELLA LINE	A FOLIGNO-TER ONE E VELOCIZ ERA		
OPEDE MINORY	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OPERE MINORI	IR0B	02	D10	CL IV0200 001	Α	16 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						

7 IPOTESI DI CALCOLO E VERIFICHE

Il calcolo statico della struttura è stato eseguito secondo i metodi della scienza e della tecnica delle costruzioni.

Per il progetto e la verifica delle strutture si è seguito il metodo agli stati limite facendo riferimento alle normative elencate. Sono riportate in allegato le uscite numeriche del programma di analisi strutturale utilizzato per il progetto e la verifica degli elementi inseriti nella modellazione della struttura.

Si sono analizzate le possibili condizioni di carico e si è proceduto al dimensionamento delle parti per le condizioni più gravose.

A parità di sezione resistente è stato omesso il risultato della verifica di quegli elementi che risultano meno sollecitati.

Le sollecitazioni agenti sulla struttura sono state calcolate mediante un modello agli elementi finiti realizzato con il programma di calcolo SAP2000. In esso gli elementi in acciaio costituenti la struttura sono stati modellati utilizzando degli elementi frame. Tali elementi hanno una sezione pari a quella dei profilati oggetto di analisi e sono stati definiti utilizzando l'ipotesi di materiale elastico lineare isotropo in un campo di piccoli spostamenti e deformazioni.

I carichi sono stati applicati sulla base dell'analisi di carico riportata al paragrafo successivo. I pesi propri delle strutture sono stati definiti automaticamente dal programma di calcolo ed i permanenti sono stati introdotti come carichi distribuiti secondo le area d'influenza. Si riportano di seguito alcune figure dei modelli agli elementi finiti creati per eseguire le verifiche ed alcune schermate relative ai carichi ad essi applicati.

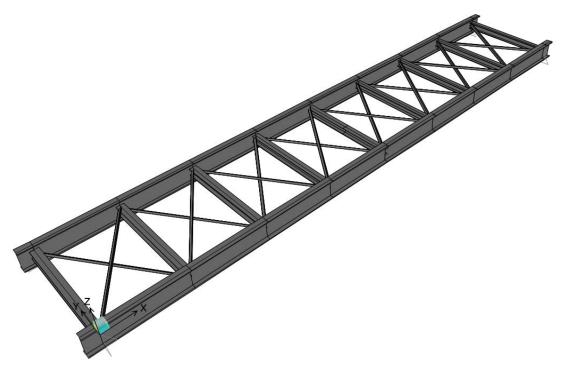


Figura 3 - Modello 3D agli elementi finiti.

		TI DI SEN	DELLA LINE	CA FOLIGNO-TER ONE E VELOCIZ ERA		
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IR0B	02	D10	CL IV0200 001	Α	17 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						

8 ANALISI DEI CARICHI

8.1 Carichi Permanenti

Peso proprio della pavimentazione s=0.05m: $g_1 = 1.0 \text{ kN/m}^2$

Peso proprio della soletta s=0.05m: $g_1 = 1.25 \text{ kN/m}^2$

Peso parapetto/barriera di protezione in acciaio: $g_1 = 0.8 \text{ kN/m}$

I pesi propri delle membrature presenti nel modello agli elementi finiti sono valutati in maniera automatica direttamente dal programma di calcolo (DEAD) mentre gli altri permanenti (PERM) sono inseriti come carichi uniformemente distribuiti su ciascuna trave principale in funzione della propria area d'influenza. Si considera inoltre un incremento del 5% del peso dell'impalcato per considerare il peso delle piastre e dei bulloni necessari per i vari collegamenti.

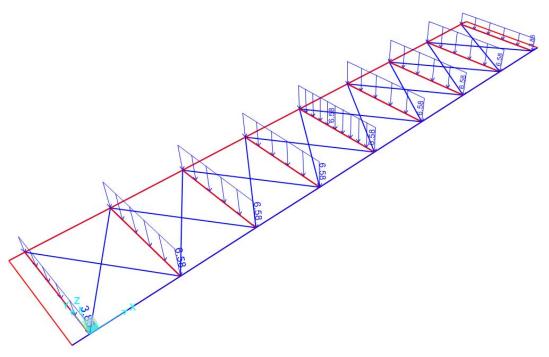


Figura 4 – Carichi PERM applicati alla soletta

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	POTENZIA INTERVEN	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA						
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
OI ERE MINORI	IR0B	02	D10	CL IV0200 001	Α	18 di 92		
Passerella ciclopedonale - relazione di calcolo impalcato								

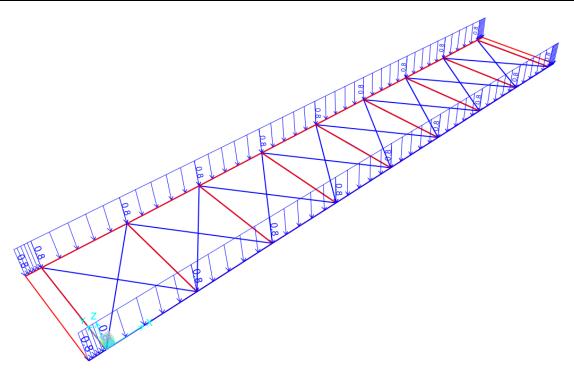


Figura 5 - Carichi PERM applicati alle travi

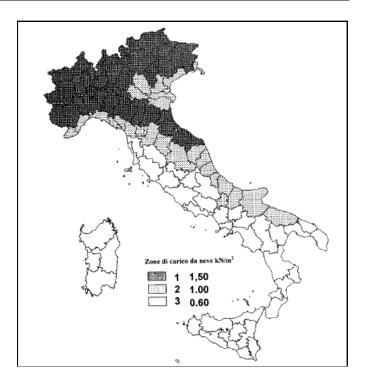
8.2 Sovraccarico Accidentale

Alle passerelle pedonali si applica un sovraccarico accidentale dovuto alla folla compatta pari a $5~\rm kN/m^2$ già comprensivo dell'incremento dinamico.

8.3 Carico della Neve.

CALCOLO DELL'AZIONE DELLA NEVE

	Zona I - Alpina Aosta, Belluno, Bergamo, Biella, Bolzano, Brescia, Como, Cuneo, Lecco, Pordenone, Sondrio, Torino, Trento, Udine, Verbania, Vercelli, Vicenza.	q _{sk} = 1,50 kN/mq q _{sk} = 1,39 [1+(a _s /728) ²] kN/mq	a _s ≤ 200 m a _s > 200 m
	Zona I - Mediterranea Alessandria, Ancona, Asti, Bologna, Cremona, Forlì-Cesena, Lodi, Milano, Modena, Novara, Parma, Pavia, Pesaro e Urbino, Piacenza, Ravenna, Reggio Emilia, Rimini, Treviso, Varese.	q_{sk} = 1,50 kN/mq q_{sk} = 1,35 [1+(a_s /602) ²] kN/mq	a _s ≤ 200 m a _s > 200 m
€	Zona II Arezzo, Ascoli Piceno, Bari, Campobasso, Chieti, Ferrara, Firenze, Foggia, Genova, Gorizia, Imperia, Isernia, La Spezia, Lucca, Macerata, Mantova, Massa Carrara, Padova, Perugia, Pescara, Pistoia, Prato, Rovigo, Savona, Teramo, Trieste, Venezia, Verona.	$q_{sk} = 1,00 \text{ kN/mq}$ $q_{sk} = 0,85 \left[1 + (a_s/481)^2\right] \text{ kN/mq}$	a _s ≤ 200 m a _s > 200 m
D	Zona III Agrigento, Avellino, Benevento, Brindisi, Cagliari, Caltanisetta, Carbonia-Iglesias, Caserta, Catania, Catanzaro, Cosenza, Crotone, Enna, Frosinone, Grosseto, L'Aquila, Latina, Lecce, Livorno, Matera, Medio Campidano, Messina, Napoli, Nuoro, Ogliastra, Olbia Tempio, Oristano, Palermo, Pisa, Potenza, Ragusa, Reggio Calabria, Rieti, Roma, Salerno, Sassari, Siena, Siracusa, Taranto, Terni, Trapani, Vibo Valentia, Viterbo.	q _{sk} = 0,60 kN/mq q _{sk} = 0,51 [1+(a _s /481 ²] kN/mq	$a_s \le 200 \text{ m}$ $a_s > 200 \text{ m}$


$$\begin{split} q_s \text{ (carico neve sulla copertura [N/mq]) = } &_{\mu_i} q_{sk}.C_E.C_t \\ &_{\mu_i} \text{ (coefficiente di forma)} \\ q_{sk} \text{ (valore caratteristico della neve al suolo [kN/mq])} \\ &C_E \text{ (coefficiente di esposizione)} \\ &C_t \text{ (coefficiente termico)} \end{split}$$

Valore carratteristicio della neve al suolo

a _s (altitudine sul livello del mare [m])	260
q _{sk} (val. caratt. della neve al suolo [kN/mq])	1.10

Coefficiente termico

Il coefficiente termico può essere utilizzato per tener conto della riduzione del carico neve a causa dello scioglimento della stessa, causata dalla perdita di calore della costruzione. Tale coefficiente tiene conto delle proprietà di isolamento termico del materiale utilizzato in copertura. In assenza di uno specifico e documentato studio, deve essere utilizzato **Ct = 1**.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	POTENZIA INTERVEN	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA						
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
OI ERE MINORI	IR0B	02	D10	CL IV0200 001	Α	20 di 92		
Passerella ciclopedonale - relazione di calcolo impalcato								

Coefficiente di esposizione

Topografia	Descrizione	C _E
Normale	Aree in cui non è presente una significativa rimozione di neve sulla costruzione prodotta dal vento, a causa del terreno, altre costruzioni o alberi.	1

Valore del carico della neve al suolo

q _s (carico della neve al suolo [kN/mq])	1.10
---	------

Coefficiente di forma (copertura ad una falda)

8.4 Temperatura

Si considera una variazione termica uniforme di +o- 25°C.

8.5 Azione del Vento

OPERE MINORI

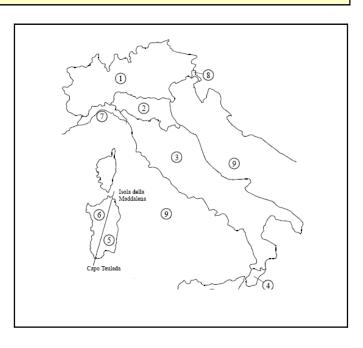
PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IR0B	02	D10	CL IV0200 001	A	21 di 92

Passerella ciclopedonale - relazione di calcolo impalcato

3) Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)

Zona	v _{b,0} [m/s]	a ₀ [m]	k _a [1/s]	
3	27	500	0.02	
a _s (altitudi	mare [m])	260		
T _R	T _R (Tempo di ritorno)			
$v_b = v_{b,0}$ per $a_s \le a_0$				
$v_b = v_{b,0} + k_a (a_s - a_0)$ per $a_0 < a_s \le 1500 \text{ m}$				
$\underline{v}_b (T_R = 50 [m/s])$ 27.000				
	1.02346			
V _b ($v_b(T_R) = v_b \times_{\alpha_R} [m/s]$			


p (pressione del vento [N/mq]) = $q_b \cdot c_e \cdot c_p \cdot c_d$

q_b (pressione cinetica di riferimento [N/mq])

ce (coefficiente di esposizione)

c_p (coefficiente di forma)

c_d (coefficiente dinamico)

Pressione cinetica di riferimento

$q_b = 1/2 \cdot \rho \cdot v_b^2$ ($\rho = 1,25 \text{ kg/mc}$)

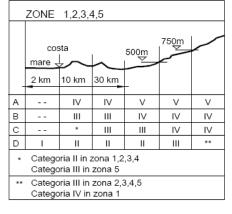
a _h [N/ma]	1 777 25
I Uh IIV/IIIUI	1 4//.23

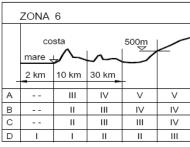
Coefficiente di forma

E' il coefficiente di forma (o coefficiente aerodinamico), funzione della tipologia e della geometria della costruzione e del suo orientamento rispetto alla direzione del vento. Il suo valore può essere ricavato da dati suffragati da opportuna documentazione o da prove sperimentali in galleria del vento.

Coefficiente dinamico

Esso può essere assunto autelativamente pari ad 1 nelle co struzioni di tipologia ricorrente, quali gli edifici di forma regolare non eccedenti 80 m di altezza ed i capanno ni industriali, o ppure può essere determinato mediante analisi specifiche o facendo riferimento a dati di comprovata affidabilità.

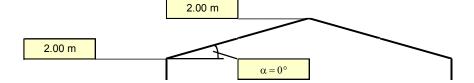

Coefficiente di esposizione


Classe di rugosità del terreno

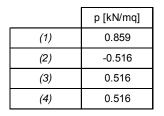
D) Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,....)

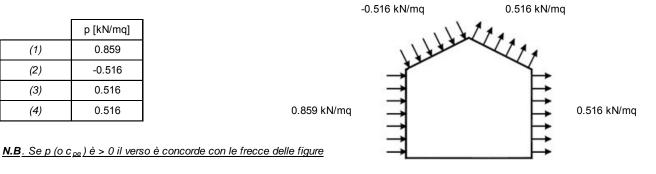
Categoria di esposizione

	ZONE	7,8	
		cos	eta .
	mare		
_	1.5 km	0.5 km	
Α			IV
В			IV
С			III
D	I	П	*
		II in zon III in zon	


	ZONA	9
		costa
	mare s	z/
Α		- 1
В		- 1
С		I
D	ı	- 1

$c_e(z) = k_r^2 \cdot c_t \cdot \ln(z/z_0) [7 + c_t \cdot \ln(z/z_0)]$	per z≥z _{min}
$c_{e}(z) = c_{e}(z_{min})$	per z < z _{min}


Zona	Classe di rugosità	a _s [m]
3	D	260


Cat. Esposiz.	k _r	z ₀ [m]	z _{min} [m]	c _t
=	0.19	0.05	4	1

z [m]	C _e
z ≤ 4	1.801
z = 2	1.801
z = 2	1.801

Combinazione più sfavorevole:

Vento Y

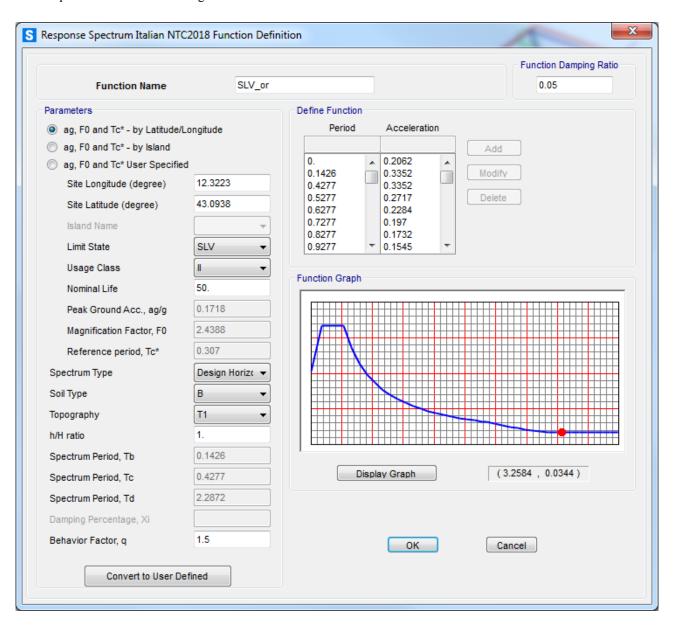
Si considera che il vento sia applicato su una barriera di protezione di altezza pari a 2.0 a cui si aggiunge l'impalcato per un'altezza totale pari a circa 3.0m. Il vento si applica quindi come un carico orizzontale ed un momento flettente pari a:

Fvento = 0.859 * 3.0 m = 2.58 kN/m

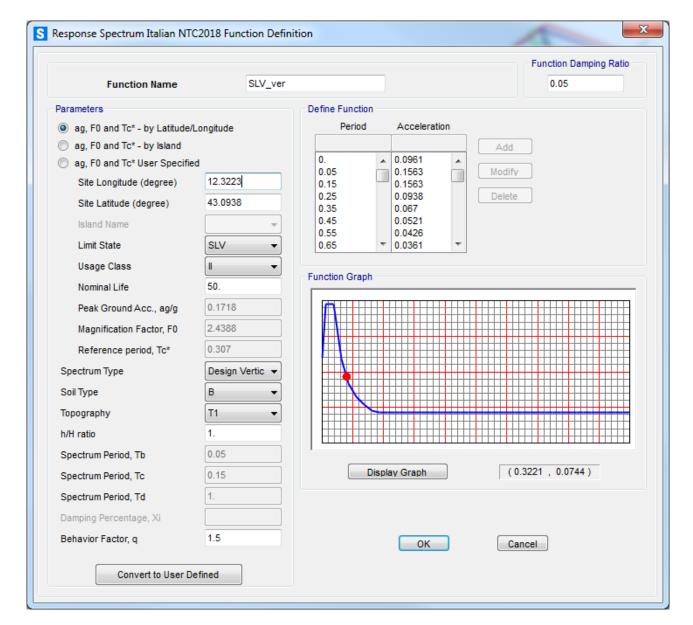
M vento = 2.58 * 1.2 m = 3.10 kNm/m

Vento Z

Si considera che il vento sia applicato sulla superficie dell'impalcato sia verso l'altro che verso il basso con un carico uniformemente distribuito di 0.516 kN/mq


TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SI PRG DELLA STAZIONE DI ELLERA					
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OF EAE MINORI	IR0B	02	D10	CL IV0200 001	A	23 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						

8.6 Azione Sismica


Ai sensi del DM 17/01/2018 – Nuove norme tecniche per le costruzioni, la struttura in oggetto è verificata tramite modello elastico lineare tridimensionale ed analisi modale con spettro di risposta (o "analisi lineare dinamica"); le azioni sismiche in termini di accelerazioni spettrali sono valutate come riportato di seguito.

La località è individuata da LON 12.3217°E; LAT 43.09286°N. Periodo di riferimento V_R =1.0·50=50 anni (classe d'uso II). In base alla categorizzazione geotecnica allegata si individua per il sottosuolo la categoria B; il coefficiente di amplificazione topografica assunto pari T1.

Si riassumono di seguito i passaggi fondamentali per la determinazione dello spettro di progetto della componente verticale ed orizzontale per lo stato limite di salvaguardia della vita umana.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA					
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OF ERE MINORI	IR0B	02	D10	CL IV0200 001	A	24 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						

Il fattore di struttura q, funzione della tipologia strutturale e della classe di duttilità, è stato valutato tramite la seguente espressione:

$$q = q_0 \cdot K_R = 1.5$$

L'analisi sismica della struttura è stata eseguita sulla base delle azioni dovute agli spettri di progetto definiti in precedenza. Lo spettro è stato applicato singolarmente lungo le due direzioni orizzontali sulla base dell'analisi modale eseguita tramite la tecnica Ritz Vector. In quest'ultima analisi come previsto al punto 3.2.4 del D.M. 14.01.2008 sono state prese in considerazione le masse associate ai seguenti carichi gravitazionali moltiplicati per i rispettivi coefficienti:

- 1 * DEAD
- 1 * PERM

Gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti ecc.) sono stati combinati successivamente, applicando la seguente espressione:

$$1.0 \cdot E_x + 0.3 \cdot E_y + 0.3 \cdot E_z$$

Con rotazione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

8.7 Combinazioni di carico

Sono state considerate le combinazioni di carico, secondo quanto riportato al punto 2.5.3 del D.M. 17.01.2018.

Le combinazioni statiche allo stato limite ultimo seguono le leggi di seguito riportate:

$$\text{SLU} \qquad \qquad \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

SISMICA
$$E + G_1 + G_2 + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

I coefficienti γ e ψ presi in considerazione per le combinazioni allo stato limite ultimo EQU, STR e GEO sono riportati di seguito:

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	INTERVEN	MENTO I TI DI SEN	DELLA LINE	EA FOLIGNO-TER ONE E VELOCIZ ERA		
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OF ERE MINORI	IR0B	02	D10	CL IV0200 001	Α	26 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	$\gamma_{\rm G2}$	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2},\gamma_{\epsilon 3},\gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Figura 6: Estratto Tabella 5.1.V - Coefficiente parziali di sicurezza per le combinazioni di carico agli SLU - punto 5.1.3.12 D.M. 14.01.2008

Di seguito si riportano le tabelle riassuntive delle varie combinazioni di carico prese in considerazione, sia allo SLV che allo SLE in condizioni statiche e sismiche.

TABLE: Combinazioni di carico							
ComboName	ComboType	AutoDesign	CaseName	ModeNumber	ScaleFactor		
A1_1	Linear Add	No	DEAD		1.35		
A1_1			PERM		1.35		
A1_1			VENTO Z		1.5		
A1_1			NEVE		0.75		
A1_1			TEMP		-0.72		
A1_2	Linear Add	No	DEAD		1.35		
A1_2			PERM		1.35		
A1_2			VENTO Y		1.5		
A1_2			NEVE		0.75		
A1_2			TEMP		-0.72		
A1_3	Linear Add	No	DEAD		1.35		
A1_3			PERM		1.35		
A1_3			ACC		1.35		
A1_3			TEMP		-0.72		
A1_3			VENTO Z		0.9		
A1_4	Linear Add	No	DEAD		1.35		

Valori di GEO.

(2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

OPERE MINORI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IROB 02 D10 CL IV0200 001 A 27 di 92

TABLE: Com	TABLE: Combinazioni di carico							
	ComboType	_	CaseName	ModeNumber	ScaleFactor			
A1_4			PERM		1.35			
A1_4			ACC		1.35			
A1_4			TEMP		0.72			
A1_4			VENTO Z		0.9			
A1_5	Linear Add	No	DEAD		1.35			
A1_5			PERM		1.35			
A1_5			ACC		1.35			
A1_5			TEMP		-0.72			
A1_5			VENTO Y		0.9			
A1_6	Linear Add	No	DEAD		1.35			
A1_6			PERM		1.35			
A1_6			ACC		1.35			
A1_6			TEMP		0.72			
A1_6			VENTO Y		0.9			
A1_7	Linear Add	No	DEAD		1.35			
A1_7			PERM		1.35			
A1_7			NEVE		1.5			
A1_7			TEMP		-0.72			
A1_7			VENTO Z		0.72			
A1_8	Linear Add	No	DEAD		1.35			
A1_8			PERM		1.35			
A1_8			NEVE		1.5			
A1_8			TEMP		-0.72			
A1_8			VENTO Y		0.72			
A1_9	Linear Add	No	DEAD		1.35			
A1_9			PERM		1.35			
A1_9			TEMP		1.5			
A1_9			VENTO Z		0.72			
A1_10	Linear Add	No	DEAD		1.35			
A1_10			PERM		1.35			
A1_10			TEMP		1.5			
A1_10			VENTO Y		0.72			
A1_11	Linear Add	No	DEAD		1.35			
A1_11			PERM		1.35			
A1_11			TEMP		-1.5			
A1_11			VENTO Z		0.72			
A1_11			NEVE		0.75			
A1_12	Linear Add	No	DEAD		1.35			
A1_12			PERM		1.35			
A1_12			TEMP		-1.5			
A1_12		1	VENTO Y		0.72			
A1_12			NEVE		0.75			
A1_13	Linear Add	No	DEAD		1.35			
A1_13			PERM		1.35			

OPERE MINORI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IROB 02 D10 CL IV0200 001 A 28 di 92

TABLE: Combinazioni di carico							
		CaseName	ModeNumber	ScaleFactor			
~ .							
		VENTO Z		1.5			
		TEMP		0.72			
Linear Add	No	DEAD		1.35			
		PERM		1.35			
		VENTO Y		1.5			
		TEMP		0.72			
Linear Add	No	DEAD		1			
		PERM		1			
		SISMA_X		1			
		SISMA_Y		0.3			
		TEMP		0.5			
		SISMA Z		0.3			
		ACC		0.2			
Linear Add	No	DEAD		1			
		PERM		1			
		SISMA X		1			
		SISMA Y		0.3			
		TEMP		-0.5			
		SISMA Z		0.3			
		_		0.2			
Linear Add	No			1			
				1			
				1			
		_		-0.3			
		TEMP		0.5			
		SISMA Z		0.3			
				0.2			
Linear Add	No			0.2			
		PERM		1			
		SISMA X		1			
				-0.3			
		TEMP		-0.5			
		SISMA Z		0.3			
Linear Add	No	DEAD		1			
		PERM		1			
				-1			
		SISMA Y		0.3			
				0.5			
		SISMA Z		0.3			
		_		0.2			
Linear Add	No			0.2			
	-			1			
				-1			
		_		0.3			
	Linear Add Linear Add Linear Add Linear Add	Linear Add No Linear Add No	ComboType AutoDesign CaseName VENTO Z TEMP Linear Add No DEAD PERM VENTO Y TEMP Linear Add No DEAD PERM SISMA_X SISMA_Y TEMP Linear Add No DEAD PERM SISMA_Z ACC Linear Add No DEAD PERM SISMA_X SISMA_Z ACC	ComboType AutoDesign CaseName ModeNumber Linear Add No DEAD PERM VENTO Y TEMP VENTO Y Linear Add No DEAD PERM SISMA X SISMA X SISMA Y TEMP SISMA Z ACC ACC Linear Add No DEAD PERM SISMA X SISMA X SISMA X SISMA X SISMA X Linear Add No DEAD PERM SISMA Z Linear Add No DEAD PERM SISMA X SISMA X SISMA			

OPERE MINORI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IROB 02 D10 CL IV0200 001 A 29 di 92

TABLE: Comb	oinazioni di car	rico			
ComboName	ComboType	AutoDesign	CaseName	ModeNumber	ScaleFactor
	3.1	<u> </u>			
SISMA 6			TEMP		-0.5
SISMA 6			SISMA Z		0.3
SISMA 7	Linear Add	No	ACC		0.2
SISMA 7			PERM		1
SISMA 7			SISMA X		-1
SISMA 7			SISMA Y		-0.3
SISMA 7			TEMP		0.5
SISMA 7			SISMA Z		0.3
SISMA 8	Linear Add	No	DEAD		1
SISMA_8			PERM		1
SISMA_8			SISMA_X		-1
SISMA_8			SISMA_Y		-0.3
SISMA_8			TEMP		-0.5
SISMA_8			SISMA_Z		0.3
SISMA_8			ACC		0.2
SISMA_9	Linear Add	No	ACC		0.2
SISMA_9			PERM		1
SISMA_9			SISMA_X		0.3
SISMA_9			SISMA_Y		1
SISMA_9			TEMP		0.5
SISMA_9			SISMA_Z		0.3
SISMA_10	Linear Add	No	DEAD		1
SISMA_10			PERM		1
SISMA_10			SISMA_X		0.3
SISMA_10			SISMA_Y		1
SISMA_10			TEMP		-0.5
SISMA_10			SISMA_Z		0.3
SISMA_10			ACC		0.2
SISMA_11	Linear Add	No	DEAD		1
SISMA_11			PERM		1
SISMA_11			SISMA_X		0.3
SISMA_11			SISMA_Y		-1
SISMA_11			TEMP		0.5
SISMA_11			SISMA_Z		0.3
SISMA_11			ACC		0.2
SISMA_12	Linear Add	No	DEAD		1
SISMA_12			PERM		1
SISMA_12			SISMA_X		0.3
SISMA_12			SISMA_Y		-1
SISMA_12			TEMP		-0.5
SISMA_12			SISMA_Z		0.3
SISMA_12			ACC		0.2
SISMA_13	Linear Add	No	DEAD		1
SISMA_13			PERM		1

OPERE MINORI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IROB 02 D10 CL IV0200 001 A 30 di 92

TABLE: Combinazioni di carico							
		CaseName	ModeNumber	ScaleFactor			
-							
		SISMA X		-0.3			
		SISMA Y		1			
		TEMP		0.5			
		SISMA Z		0.3			
		ACC		0.2			
Linear Add	No	DEAD		1			
		PERM		1			
		SISMA_X		-0.3			
		SISMA_Y		1			
		TEMP		-0.5			
		SISMA Z		0.3			
		ACC		0.2			
Linear Add	No	DEAD		1			
		PERM		1			
		SISMA X		-0.3			
		SISMA Y		-1			
		TEMP		0.5			
		SISMA Z		0.3			
		ACC		0.2			
Linear Add	No	DEAD		1			
		PERM		1			
				-0.3			
				-1			
		TEMP		-0.5			
		SISMA Z		0.3			
				0.2			
Linear Add	No	DEAD		1			
		PERM		1			
		SISMA X		1			
		SISMA Y		0.3			
				0.5			
				-0.3			
				0.2			
Linear Add	No			1			
				1			
				1			
		SISMA Y		0.3			
				-0.5			
		†		-0.3			
				0.2			
Linear Add	No			1			
		PERM		1			
				1			
		_		-0.3			
	Linear Add Linear Add Linear Add	ComboType AutoDesign Linear Add No Linear Add No	ComboType AutoDesign CaseName SISMA X SISMA Y TEMP SISMA Z ACC Linear Add No DEAD PERM SISMA X SISMA X SISMA X SISMA X SISMA X SISMA Y TEMP SISMA Z ACC Linear Add No DEAD PERM SISMA X SISMA Z ACC Linear Add No DEAD PERM SISMA X SISMA X SISMA X SISMA X SISMA X SISMA X SISMA Y TEMP SISMA Z ACC Linear Add No DEAD PERM SISMA X SISMA Z ACC Linear Add No DEAD PERM SISMA Z ACC Linear Add No DEAD PERM SISMA Z ACC Linear Add No DEAD PERM SISMA X SISMA Z ACC Linear Add No DEAD PERM SISMA Z ACC Linear Add No DEAD PERM SISMA Z ACC Linear Add No DEAD PERM SISMA Z ACC Linear Add No DEAD	ComboType			

OPERE MINORI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IROB 02 D10 CL IV0200 001 A 31 di 92

TABLE: Combinazioni di carico							
ComboName	ComboType	AutoDesign	CaseName	ModeNumber	ScaleFactor		
SISMA_19			TEMP		0.5		
SISMA_19			SISMA_Z		-0.3		
SISMA_19			ACC		0.2		
SISMA_20	Linear Add	No	DEAD		1		
SISMA_20			PERM		1		
SISMA_20			SISMA_X		1		
SISMA_20			SISMA_Y		-0.3		
SISMA_20			TEMP		-0.5		
SISMA_20			SISMA_Z		-0.3		
SISMA_20			ACC		0.2		
SISMA_21	Linear Add	No	DEAD		1		
SISMA_21			PERM		1		
SISMA_21			SISMA_X		-1		
SISMA_21			SISMA_Y		0.3		
SISMA_21			TEMP		0.5		
SISMA_21			SISMA_Z		-0.3		
SISMA_21			ACC		0.2		
SISMA_22	Linear Add	No	DEAD		1		
SISMA_22			PERM		1		
SISMA_22			SISMA_X		-1		
SISMA_22			SISMA_Y		0.3		
SISMA_22			TEMP		-0.5		
SISMA_22			SISMA_Z		-0.3		
SISMA_22			ACC		0.2		
SISMA_23	Linear Add	No	DEAD		1		
SISMA_23			PERM		1		
SISMA_23			SISMA_X		-1		
SISMA_23			SISMA_Y		-0.3		
SISMA_23			TEMP		0.5		
SISMA_23			SISMA_Z		-0.3		
SISMA_23			ACC		0.2		
SISMA_24	Linear Add	No	DEAD		1		
SISMA_24			PERM		1		
SISMA_24			SISMA_X		-1		
SISMA_24			SISMA_Y		-0.3		
SISMA_24			TEMP		-0.5		
SISMA_24			SISMA_Z		-0.3		
SISMA_24			ACC		0.2		
SISMA_25	Linear Add	No	DEAD		1		
SISMA_25			PERM		1		
SISMA_25			SISMA_X		0.3		
SISMA_25			SISMA_Y		1		
SISMA_25			TEMP		0.5		
SISMA_25			SISMA_Z		-0.3		

OPERE MINORI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IROB 02 D10 CL IV0200 001 A 32 di 92

TABLE: Combinazioni di carico							
			CaseName	ModeNumber	ScaleFactor		
SISMA 25			ACC		0.2		
SISMA 26	Linear Add	No	DEAD		1		
SISMA 26			PERM		1		
SISMA 26			SISMA X		0.3		
SISMA_26			SISMA_Y		1		
SISMA 26			TEMP		-0.5		
SISMA_26			SISMA_Z		-0.3		
SISMA_26			ACC		0.2		
SISMA_27	Linear Add	No	DEAD		1		
SISMA_27			PERM		1		
SISMA 27			SISMA X		0.3		
SISMA 27			SISMA Y		-1		
SISMA 27			TEMP		0.5		
SISMA 27			SISMA Z		-0.3		
SISMA 27			ACC		0.2		
SISMA 28	Linear Add	No	DEAD		1		
SISMA 28			PERM		1		
SISMA 28			SISMA X		0.3		
SISMA 28			SISMA Y		-1		
SISMA 28			TEMP		-0.5		
SISMA 28			SISMA Z		-0.3		
SISMA 28			ACC		0.2		
SISMA 29	Linear Add	No	DEAD		1		
SISMA 29			PERM		1		
SISMA 29			SISMA X		-0.3		
SISMA 29			SISMA Y		1		
SISMA 29			TEMP		0.5		
SISMA 29			SISMA Z		-0.3		
SISMA 29			ACC		0.2		
SISMA 30	Linear Add	No	DEAD		1		
SISMA 30			PERM		1		
SISMA 30			SISMA X		-0.3		
SISMA 30			SISMA Y		1		
SISMA 30			TEMP		-0.5		
SISMA 30			SISMA Z		-0.3		
SISMA 30			ACC		0.2		
SISMA 31	Linear Add	No	DEAD		1		
SISMA 31			PERM		1		
SISMA 31			SISMA X		-0.3		
SISMA 31			SISMA Y		-1		
SISMA 31			TEMP		0.5		
SISMA 31			SISMA Z		-0.3		
SISMA 31			ACC		0.2		
SISMA 32	Linear Add	No	DEAD		1		

OPERE MINORI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IROB 02 D10 CL IV0200 001 A 33 di 92

TABLE: Comb	oinazioni di car	rico			
ComboName	ComboType	AutoDesign	CaseName	ModeNumber	ScaleFactor
	71	S			
SISMA 32			PERM		1
SISMA 32			SISMA X		-0.3
SISMA 32			SISMA Y		-1
SISMA 32			TEMP		-0.5
SISMA 32			SISMA Z		-0.3
SISMA 32			ACC		0.2
SISMA 33	Linear Add	No	DEAD		1
SISMA 33			PERM		1
SISMA 33			SISMA X		0.3
SISMA 33			SISMA Y		0.3
SISMA 33			TEMP		0.5
SISMA 33			SISMA Z		1
SISMA 33			ACC		0.2
SISMA 34	Linear Add	No	DEAD		1
SISMA 34			PERM		1
SISMA 34			SISMA X		0.3
SISMA 34			SISMA Y		0.3
SISMA 34			TEMP		-0.5
SISMA 34			SISMA Z		1
SISMA 34			ACC		0.2
SISMA 35	Linear Add	No	DEAD		1
SISMA 35			PERM		1
SISMA 35			SISMA X		0.3
SISMA_35			SISMA_Y		-0.3
SISMA 35			TEMP		0.5
SISMA_35			SISMA_Z		1
SISMA_35			ACC		0.2
SISMA_36	Linear Add	No	DEAD		1
SISMA_36			PERM		1
SISMA_36			SISMA_X		0.3
SISMA_36			SISMA_Y		-0.3
SISMA_36			TEMP		-0.5
SISMA_36			SISMA_Z		1
SISMA_36			ACC		0.2
SISMA_37	Linear Add	No	DEAD		1
SISMA_37			PERM		1
SISMA_37			SISMA_X		-0.3
SISMA_37			SISMA_Y		0.3
SISMA_37			TEMP		0.5
SISMA_37			SISMA_Z		1
SISMA_37			ACC		0.2
SISMA_38	Linear Add	No	DEAD		1
SISMA_38			PERM		1
SISMA_38			SISMA_X		-0.3

OPERE MINORI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IROB 02 D10 CL IV0200 001 A 34 di 92

TABLE: Comb	oinazioni di car	rico			
ComboName	ComboType	AutoDesign	CaseName	ModeNumber	ScaleFactor
	J 1	Ŭ.			
SISMA 38			SISMA Y		0.3
SISMA 38			TEMP		-0.5
SISMA 38			SISMA Z		1
SISMA 38			ACC		0.2
SISMA 39	Linear Add	No	DEAD		1
SISMA 39			PERM		1
SISMA 39			SISMA X		-0.3
SISMA 39			SISMA Y		-0.3
SISMA 39			TEMP		0.5
SISMA 39			SISMA Z		1
SISMA 39			ACC		0.2
SISMA 40	Linear Add	No	DEAD		1
SISMA 40			PERM		1
SISMA_40			SISMA_X		-0.3
SISMA 40			SISMA Y		-0.3
SISMA 40			TEMP		-0.5
SISMA 40			SISMA Z		1
SISMA 40			ACC		0.2
SISMA 41	Linear Add	No	DEAD		1
SISMA 41			PERM		1
SISMA 41			SISMA X		0.3
SISMA 41			SISMA Y		0.3
SISMA 41			TEMP		0.5
SISMA_41			SISMA_Z		-1
SISMA 41			ACC		0.2
SISMA_42	Linear Add	No	DEAD		1
SISMA_42			PERM		1
SISMA_42			SISMA_X		0.3
SISMA_42			SISMA_Y		0.3
SISMA_42			TEMP		-0.5
SISMA_42			SISMA_Z		-1
SISMA_42			ACC		0.2
SISMA_43	Linear Add	No	DEAD		1
SISMA_43			PERM		1
SISMA_43			SISMA_X		0.3
SISMA_43			SISMA_Y		-0.3
SISMA_43			TEMP		0.5
SISMA_43			SISMA_Z		-1
SISMA_43			ACC		0.2
SISMA_44	Linear Add	No	DEAD		1
SISMA_44			PERM		1
SISMA_44			SISMA_X		0.3
SISMA_44			SISMA_Y		-0.3
SISMA_44			TEMP		-0.5

OPERE MINORI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IROB 02 D10 CL IV0200 001 A 35 di 92

TABLE: Comb	oinazioni di car	rico			
ComboName	ComboType	AutoDesign	CaseName	ModeNumber	ScaleFactor
	3.1	Č			
SISMA 44			SISMA Z		-1
SISMA 44			ACC		0.2
SISMA 45	Linear Add	No	DEAD		1
SISMA 45			PERM		1
SISMA 45			SISMA X		-0.3
SISMA 45			SISMA Y		0.3
SISMA 45			TEMP		0.5
SISMA 45			SISMA Z		-1
SISMA 45			ACC		0.2
SISMA 46	Linear Add	No	DEAD		1
SISMA 46			PERM		1
SISMA 46			SISMA X		-0.3
SISMA 46			SISMA Y		0.3
SISMA 46			TEMP		-0.5
SISMA 46			SISMA Z		-1
SISMA 46			ACC		0.2
SISMA 47	Linear Add	No	DEAD		1
SISMA 47			PERM		1
SISMA 47			SISMA X		-0.3
SISMA 47			SISMA Y		0.3
SISMA 47			TEMP		-0.5
SISMA 47			SISMA Z		-1
SISMA 47			ACC		0.2
SISMA 48	Linear Add	No	DEAD		1
SISMA 48			PERM		1
SISMA 48			SISMA X		-0.3
SISMA 48			SISMA Y		-0.3
SISMA 48			TEMP		-0.5
SISMA 48			SISMA Z		-1
SISMA 48			ACC		0.2
SLE 2	Linear Add	No	DEAD		1
SLE 2	22.25		PERM		1
SLE 2			VENTO Y		0.2
SLE 2			TEMP		0.5
SLE 2-	Linear Add	No	DEAD		1
SLE 2-			PERM		1
SLE 2-			VENTO Y		0.2
SLE 2-			TEMP		-0.5
RARA 1	Linear Add	No	DEAD		1
RARA 1			ACC		1
RARA 1			PERM		1
RARA 1			VENTO Z		1
RARA 2	Linear Add	No	DEAD		1
RARA 2			ACC		1
111111111111111111111111111111111111111	l	L	1100	1	1

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA					
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OI ERE MINORI	IR0B	02	D10	CL IV0200 001	Α	36 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						

TABLE: Combinazioni di carico									
ComboName	ComboType	AutoDesign	CaseName	ModeNumber	ScaleFactor				
RARA_2			PERM		1				
RARA 2			VENTO Y		1				

9 ANALISI DEL MODELLO DI CALCOLO

Si assume che lo sforzo assiale di trazione sia positivo e la sollecitazione di momento flettente sia positiva quando genera tensioni di trazione all'intradosso delle travi.

Si riportano di seguito i diagrammi delle deformazioni e delle sollecitazioni ottenute per le diverse combinazioni di carico.

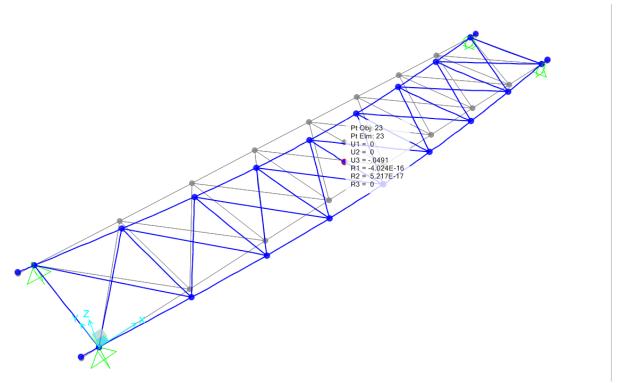


Figura 7 - Deformata carico accidentale (folla)

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA					
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OF ERE MINORI	IR0B	02	D10	CL IV0200 001	A	37 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						

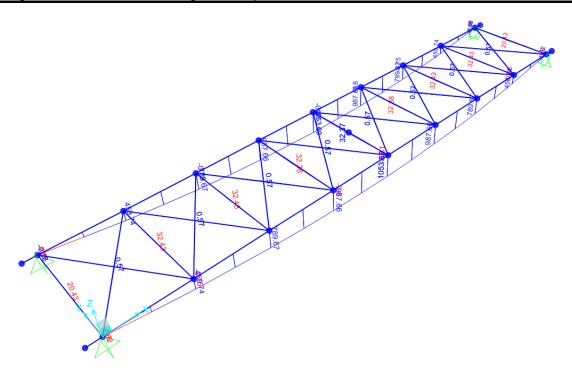


Figura 8 - Diagramma del momento flettente M33 (kNm) comb. A1_1

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA					
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OI ERE MINORI	IR0B	02	D10	CL IV0200 001	Α	38 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						

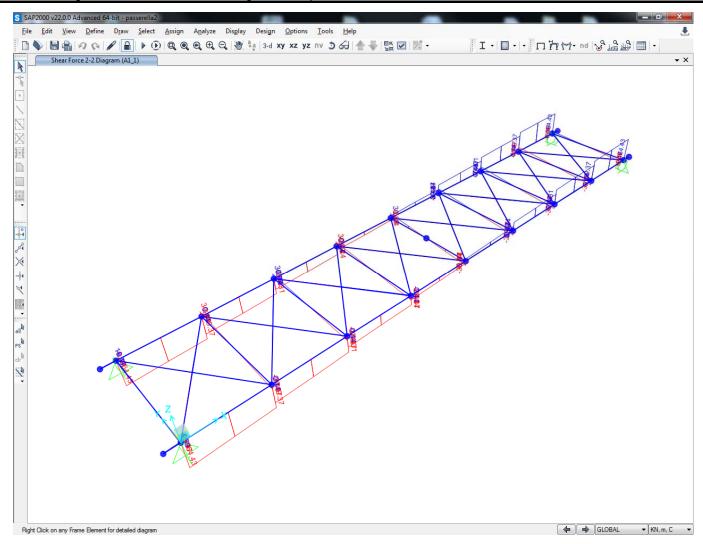


Figura 9 - Diagramma del taglio V22 (kN) comb. A1_1

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA					
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OF ERE MINORI	IR0B	02	D10	CL IV0200 001	Α	39 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						

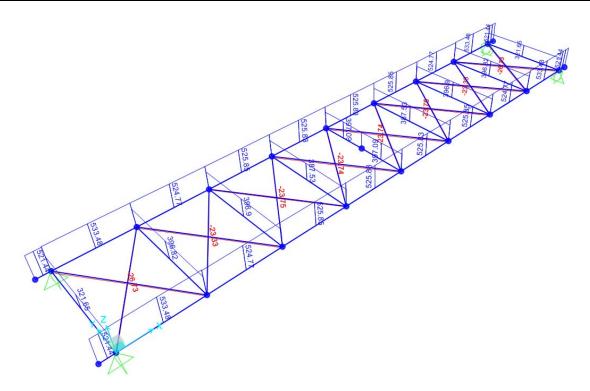


Figura 9 - Diagramma dello sforzo assiale N (kN) comb.A1_1

10 VERIFICHE DEGLI ELEMENTI STRUTTURALI

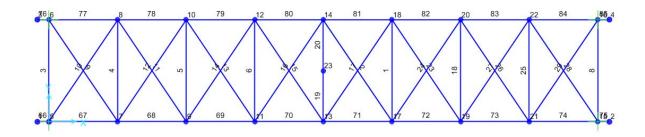


Figura 10 - Numerazione degli elementi frame e joint

10.1 Verifiche delle travi principali

Si riportano di seguito le tabelle con i valori delle sollecitazioni ottenute per le combinazioni di carico statiche e sismiche utilizzate nelle successive verifiche.

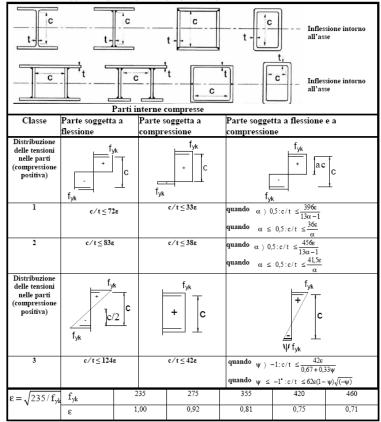
		Р	V2	V3	T	M2	М3	Frame	Distance	OutputCase
		KN	KN	KN	KN-m	KN-m	KN-m	Text	m	Text
М3	max	525.8	-33.9	-0.4	0.0	0.3	1899.7	70	2.9	A1_3
М3	min	521.4	7.6	-18.1	-0.1	12.3	-3.4	66	0.5	A1_3
M2	max	-1087.1	-3.9	37.7	0.0	25.7	-1.5	85	0.0	A1_10
M2	min	-1087.8	3.7	38.9	0.0	-26.6	-1.4	66	0.5	A1_10
T	max	523.9	136.6	5.0	7.1	0.0	-1.3	74	2.9	A1_2
Т	min	563.9	-136.6	-5.1	-7.1	-0.3	-1.3	67	0.0	A1_2
V3	max	-1087.8	1.5	38.9	0.0	-7.2	-0.1	66	0.0	A1_10
V3	min	-1087.3	-3.7	-38.5	0.0	-26.3	-1.4	75	0.0	A1_10
V2	max	533.5	291.1	-0.9	0.2	2.9	-3.1	74	2.9	A1_3
V2	min	533.5	-291.1	0.9	-0.2	2.9	-3.1	67	0.0	A1_3
Р	max	1126.0	-142.2	-1.0	-3.4	4.5	-1.4	67	0.0	A1_12
Р	min	-1127.0	-137.8	1.7	0.0	5.7	-1.3	77	0.0	A1_10

10.1.1 Classificazione della sezione

Le travi sono realizzate con HEA900.

Si procede all'assegnazione della classe della sezione attraverso le tabelle 4.2.I e 4.2.II riportate nelle D.M. 17/01/2018

Altezza della sezione trasversale	h	900.00 [mm]
Larghezza della sezione trasversale	b	300.00 [mm]
Spessore dell'anima	t_{w}	16.00 [mm]
Spessore delle ali	t_f	30.00 [mm]
Raggio di raccordo	r	30.00 [mm]
Eventuale spessore della saldatura delle ali con l'anima	S	0.00 [mm]



CARATTERISTICHE MECCANICHE		
Altezza tra le ali	hi	840.00 [mm]
Altezza della porzione saldabile	d	780.00 [mm]
Area della sezione trasversale	Α	322.1 [cm ²]
Area della sezione resistente al taglio agente lungo z	\mathbf{A}_{vz}	164.93 [cm²]
Area della sezione resistente al taglio agente lungo y	A_{vy}	180.00 [cm²]
Momento d'inerzia attorno all'asse forte	lyy	432966 [cm ⁴]
Momento d'inerzia attorno all'asse debole	I _{zz}	13548 [cm ⁴]
Raggio d'inerzia attorno all'asse forte	İyy	36.66 [cm]
Raggio d'inerzia attorno all'asse debole	i _{zz}	6.49 [cm]
Modulo di resistenza elastico attorno all'asse forte	$W_{\text{el,yy}}$	9621.5 [cm³]
Modulo di resistenza elastico attorno all'asse debole	$W_{\text{el,zz}}$	903.2 [cm ³]
Modulo di resistenza plastico attorno all'asse forte	$W_{\text{pl,yy}}$	10971.7 [cm ³]
Modulo di resistenza plastico attorno all'asse debole	$W_{\text{pl,zz}}$	1415.1 [cm ³]
Momento d'inerzia torsionale	It	738.1 [cm ⁴]
Costante di warping	I _w	25545375 [cm ⁶]

CLASSIFICAZIONE DELLA SEZIONE		
Valore di snervamento dell'acciaio	fy	355 [MPa]
Coefficiente ε	3	0.81 [-]
Classificazione dell'anima		
Altezza dell'anima depurata dei raccordi o delle saldature	С	780.00 [mm]
Spessore dell'anima	t_{W}	16.00 [mm]
Rapporto tra altezza e spessore	c/tw	48.75 [-]
Classificazione dell'anima per flessione		CLASSE 1
Classificazione dell'anima per compressione		CLASSE 4
Classificazione delle ali		
Semi larghezza delle ali depurata dei raccordi o delle saldature	С	112 [mm]
Spessore delle ali	t f	30.00 [mm]
Spessore defice diff		
Rapporto tra semi larghezza e spessore	c/t _f	3.73 [-]

PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL **TALFERR** PRG DELLA STAZIONE DI ELLERA **GRUPPO FERROVIE DELLO STATO ITALIANE** COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO OPERE MINORI IR0B 02 D10 CL IV0200 001 A 42 di 92 Passerella ciclopedonale - relazione di calcolo impalcato

Tabella 4.2.I - Massimi rapporti larghezza spessore per parti compresse

^{*)} $\psi \le -1$ si applica se la tensione di compressione $\sigma \le f_{vk}$ o la deformazione a trazione $\epsilon_v > f_{vk}/E$

Tabella 4.2.II- Massimi rapporti larghezza spessore per parti compresse

1.2.11 - Massimi rapporti larghezza spessore per parti compresse								
		Piattal	bande esterne	e				
t [†]		t	<u>c</u> =	t c	t †			
		ninati a caldo		Sezioni s				
Classe	Piattaba				gette a flessio	ne e a		
		soggette a	compression		16 .			
	compre	ssione	Con estrem		Con estr	emitá in		
			compression	ne αc	trazione	_		
Distribuzione delle tensioni nelle parti (compressione positiva)			αc +					
1	c/t≤9ε		c/	$t \le \frac{9\varepsilon}{\alpha}$		$c/t \le \frac{9\varepsilon}{\alpha\sqrt{\alpha}}$		
2	c∕t≤10ε		$c/t \le \frac{10\varepsilon}{\alpha}$		$c/t \le \frac{9\varepsilon}{\alpha\sqrt{\alpha}}$	$c/t \le \frac{9\varepsilon}{\alpha\sqrt{\alpha}}$		
Distribuzione delle tensioni nelle parti (compressione positiva)][-	+ C		¢	1			
3	c∕t≤14ε		$c/t \le 21\epsilon \sqrt{k_e}$ Per k_e vedere					
0- [225]5	f_{yk}	235	275	355	420	460		
$\varepsilon = \sqrt{235/f_{yk}}$	ε	1,00	0,92	0,81	0,75	0,71		

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA					
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OI ERE MENOR	IR0B	02	D10	CL IV0200 001	A	43 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						

10.1.2 Verifica di resistenza e stabilità

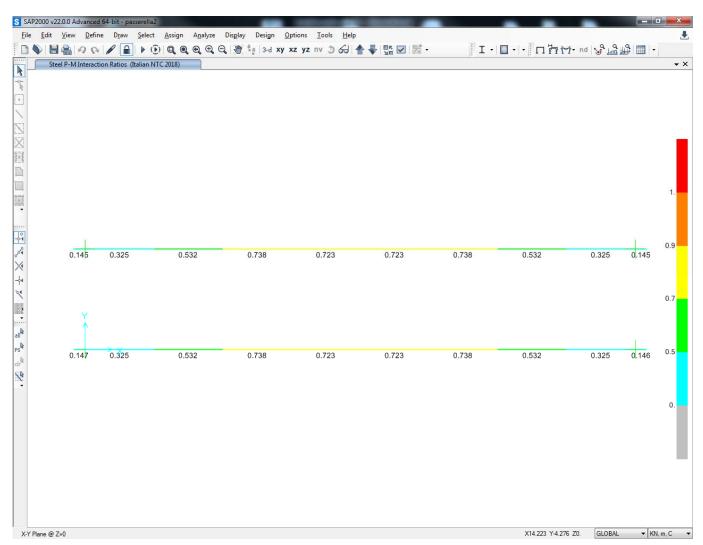
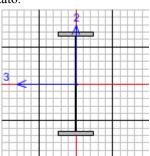



Figura 11 – Coefficienti di verifica delle travi principali

Si riportano le verifiche dell'elemento più sollecitato.

OPERE MINORI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IROB 02 D10 CL IV0200 001 A 44 di 92

Passerella ciclopedonale - relazione di calcolo impalcato

Italian NTC 2018 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C Frame: 79 X Mid: 7.313 Combo: A1_4
Length: 2.925 Y Mid: 4.3 Shape: HE900A
Loc : 2.925 Z Mid: 0. Class: Class 1 Design Type: Beam Frame Type: DCL-CBF Rolled : Yes Interaction=Method Both MultiResponse=Envelopes P-Delta Done? No Consider Torsion? No Gatume.
RLLF=1. GammaM0=1.05 GammaM1=1.1 GammaM2=1.25 PLLF=0.75 D/C Lim=0.95 An/Ag=1. eNy=-8.925E-04 eNz=-8.925E-04 Iyy=0.004 iyy=0.363 Izz=1.355E-04 izz=0.065 Iyz=0. h=0.89 fy=355000. fu=510000. Aeff=0.032 iyy=0.363 A=0.032 Wel,yy=0.009 Weff,yy=0.009 It=7.490E-06 Wel,zz=9.033E-04 Weff,zz=9.033E-04 Wpl,yy=0.011 Av,y=0.019 Wpl,zz=0.001 Av,z=0.016 Iw=2.505E-05 E=210000000. STRESS CHECK FORCES & MOMENTS Ved,y Med,yy 1780.654 Location Med,zz Ved,z Ted Ned -525.847 2.925 0.12 -115.192 0.423 -9.167E-04 PMM DEMAND/CAPACITY RATIO (Governing Equation NTC Eq C4.2.32) D/C Ratio: 0.738 = 0.066 + 0.67 + 0.002 <0.95 = NEd/(Chi_min (fyk*A)/GammaM1) + (My,Ed)/(Chi_LT ((fyk*Wy)/GammaMl)*(1-NEd/Ncr,y)) + (Mz,Ed)/(((fyk*Wz)/GammaM1)*(1-NEd/Ncr,z)) (NTC Eq C4.2.32) AXIAL FORCE DESIGN Nc.Rd Ned Nt .Rd Force Capacity Capacity 10852.857 10852.857 -525.847 Axial Nu,Rd Ncr,T Ncr.TF Npl,Rd An/Ag 10852.857 11787.12 49178.468 49178.468 Curve Alpha Ncr LambdaBar Phi Chi Nb.Rd 0.769 0.769 0.842 0.845 7969.482 15977.274 0.924 Major (y-y) a 0.21 15977.274 MajorB(y-y) a 0.21 0.845 0.924 7969.482 0.589 0.589 0.481 0.74 Minor (z-z) b
MinorB(z-z) b
Torsional TF b 0.34 32825.141 8727.312 0.842 0.34 32825.141 0.74 8727.312 0.34 49178.468 0.481 0.664 0.892 9244.606 MOMENT DESIGN Med, span Mm, Ed Meq, Ed Med Moment Moment Moment Moment 1780.654 1780.654 1604.835 1780.654 Major (y-y) Minor (z-z) 0.12 1.356 0.738 0.862 Mc,Rd Mv.Rd Mn,Rd Mb, Rd Capacity Capacity Capacity Capacity 3654.81 478.067 3654.81 3654.0₋ 478.067 3654.81 2748.278 Major (y-y) 478.067 Minor (z-z) PhiLT Curve AlphaLT LambdaBarLT ChiLT 2.505E-05 10804.456 LTB 0.49 0.596 0.775 0.788 C kw Psi C2 0.459 zg 0.445 C2 C3 Factors 0.525 1.132 1. zs 0. ZZ za zj 0.445 0.

OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OI ERE MINORI	IR0B	02	D10	CL IV0200 001	A	45 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						

Factors	kуу 0.961	kyz 0.395	kzy 0.995	kzz 0.658	
SHEAR DESIGN					
	Ved	Ted	Vc,Rd	Stress	Status
	Force	Torsion	Capacity	Ratio	Check
Major (z)	115.192	9.167E-04	3197.364	0.036	OK
Minor (y)	0.423	9.167E-04	3673.651	0.	OK
	Vpl,Rd	Eta	LambdabarW		
Reduction	3197.364	1.	0.67		

CONNECTION SHEAR FORCES FOR BEAMS

VMajor VMajor Left Right
Major (V2) 128.595 115.192

10.1.3 Verifica di deformabilità delle travi inflesse (SLE)

Per la verifica di deformabilità si fa riferimento alla combinazione di carico d'esercizio.

Il valore totale dello spostamento ortogonale all'asse della trave è definito come:

$$\delta_{tot} = \delta_1 + \delta_2$$

In cui:

 δ_1 =spostamento elastico dovuto ai carichi permanenti

 δ_2 =spostamento elastico dovuto ai carichi variabili.

 δ_{max} =spostamento nello stato finale, depurato della monta iniziale (nulla)

I limiti di deformabilità sono specificati nella tabella 4.2.X del D.M. 17/01/2018 .

Tabella 4.2.X Limiti di deformabilità per gli elementi di impalcato delle costruzioni ordinarie

Limiti superiori per gli spostam verticali		
$\frac{\delta_{\max}}{L}$	$\frac{\delta_2}{L}$	
1 200	1 250	
1 250	1 300	
1 250	1 300	
1 250	1 350	
1 400	1 500	
1 250		
	$\begin{array}{c c} \delta_{max} \\ \hline L \\ \hline \frac{1}{200} \\ \hline \frac{1}{250} \\ \hline \frac{1}{250} \\ \hline \frac{1}{250} \\ \hline \frac{1}{400} \\ \hline 1 \\ \hline \end{array}$	

Dall'analisi del modello si ricavano i seguenti valori degli spostamenti verticali massimi, e dovuti al solo carico accidentale, che vengono confrontati con i valori ammissibili.

$$\delta_{\text{max}} = 9.03 \text{ cm} < \frac{L}{250} = 9.36 \text{ cm}$$

$$\delta_{2} = 4.91 \text{ cm} < \frac{L}{300} = 7.8 \text{ cm}$$

10.2 Verifiche dei traversi

Si riportano di seguito le tabelle con i valori delle sollecitazioni ottenute per le combinazioni di carico statiche e sismiche utilizzate nelle successive verifiche.

		Р	V2	V3	T	M2	М3	Frame	Distance	OutputCase
		KN	KN	KN	KN-m	KN-m	KN-m	Text	m	Text
М3	max	396.0	1.8	0.0	0.0	0.3	71.5	5	2.2	A1_5
М3	min	397.1	-67.1	0.0	0.0	0.0	-1.7	19	0.0	A1_3
M2	max	-274.1	0.3	3.0	0.0	3.3	24.2	19	2.2	SISMA_1
M2	min	-277.4	-0.3	-3.0	0.0	-3.3	22.8	19	2.2	SISMA_1
Т	max	334.3	-14.7	0.1	0.0	0.7	6.7	3	0.0	A1_2
Т	min	329.3	-14.7	0.0	0.0	-0.7	6.7	8	0.0	A1_2
V3	max	-274.1	-22.1	3.0	0.0	3.1	-0.6	19	0.0	SISMA_1
V3	min	-277.4	-22.7	-3.0	0.0	-3.1	-0.6	19	0.0	SISMA_1
V2	max	387.5	67.1	0.0	0.0	0.1	-1.7	1	4.3	A1_3
V2	min	387.5	-67.1	0.0	0.0	0.1	-1.7	1	0.0	A1_3
Р	max	827.3	-28.3	0.0	0.0	0.0	-0.8	19	0.0	A1_11
Р	min	-828.7	-20.3	0.0	0.0	1.1	5.8	4	0.0	A1_10

10.2.1 Classificazione della sezione

Le travi sono realizzate con HEA300.

Come già effettuato per le travi principali si procede all'assegnazione della classe della sezione attraverso le tabelle 4.2.I e 4.2.II riportate nelle D.M. 17/01/2018

Altezza della sezione trasversale	h	290.00 [mm]
Larghezza della sezione trasversale	b	300.00 [mm]
Spessore dell'anima	tw	8.50 [mm]
Spessore delle ali	t_{f}	14.00 [mm]
Raggio di raccordo	r	27.00 [mm]
Eventuale spessore della saldatura delle ali con l'anima	S	0.00 [mm]

CARATTERISTICHE MECCANICHE		
Altezza tra le ali	h_i	262.00 [mm]
Altezza della porzione saldabile	d	208.00 [mm]
Area della sezione trasversale	Α	112.5 [cm ²]
Area della sezione resistente al taglio agente lungo z	\mathbf{A}_{vz}	37.28 [cm ²]
Area della sezione resistente al taglio agente lungo y	A_{vy}	84.00 [cm ²]
Momento d'inerzia attorno all'asse forte	lyy	18263 [cm⁴]
Momento d'inerzia attorno all'asse debole	I_{zz}	6310 [cm⁴]
Raggio d'inerzia attorno all'asse forte	İ _{yy}	12.74 [cm]
Raggio d'inerzia attorno all'asse debole	i _{zz}	7.49 [cm]
Modulo di resistenza elastico attorno all'asse forte	$W_{el,yy}$	1259.5 [cm ³]
Modulo di resistenza elastico attorno all'asse debole	$W_{\text{el,zz}}$	420.6 [cm ³]
Modulo di resistenza plastico attorno all'asse forte	$W_{\text{pl,yy}}$	1383.3 [cm ³]
Modulo di resistenza plastico attorno all'asse debole	$W_{pl,zz}$	641.2 [cm ³]
Momento d'inerzia torsionale	It	85.2 [cm⁴]
Costante di warping	l _w	1199772 [cm ⁶]

CLASSIFICAZIONE DELLA SEZIONE		
Valore di snervamento dell'acciaio	fy	355 [MPa]
Coefficiente ε	ε	0.81 [-]
Classificazione dell'anima		
Altezza dell'anima depurata dei raccordi o delle saldature	С	208.00 [mm]
Spessore dell'anima	tw	8.50 [mm]
Rapporto tra altezza e spessore	c/t _w	24.47 [-]
Classificazione dell'anima per flessione		CLASSE 1
Classificazione dell'anima per compressione		CLASSE 1
Classificazione delle ali		
Semi larghezza delle ali depurata dei raccordi o delle saldature	С	118.75 [mm]
Spessore delle ali	t_{f}	14.00 [mm]
Rapporto tra semi larghezza e spessore	c/t _f	8.48 [-]
Classificazione delle ali per flessione		CLASSE 3

		PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA						
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
OI ERE MINORI	IR0B	02	D10	CL IV0200 001	A	49 di 92		
Passerella ciclopedonale - relazione di calcolo impalcato								

10.2.2 Verifica di resistenza e stabilità

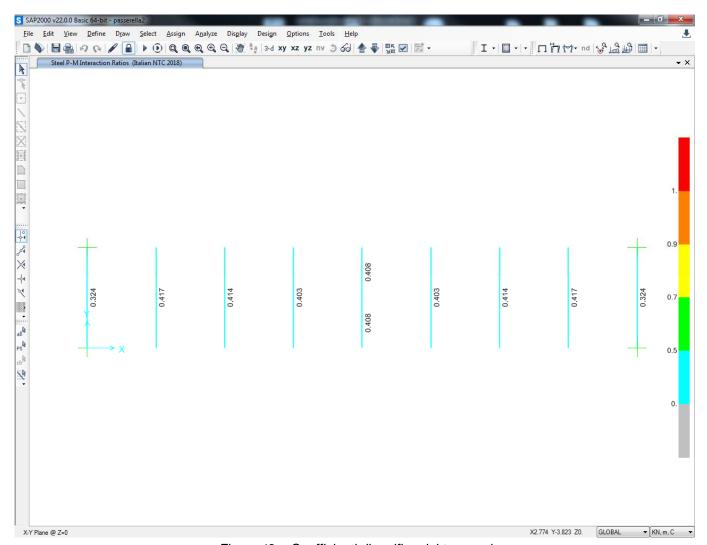
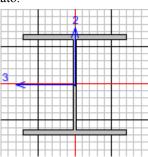



Figura 12 – Coefficienti di verifica dei trasversi

Si riportano le verifiche dell'elemento più sollecitato.

Italian NTC 2018 STEEL SECTION CHECK Units : KN, m, C

(Summary for Combo and Station)

COMMESSA LOTTO CODIFICA DOCLIMENTO REV FOGLIO OPERE MINORI IR0B 02. D10 CL IV0200 001 Α 50 di 92

Frame :	4	X Mid:	2.925	Combo:	A1_10	Design Type:	Beam
Length:	4.3	Y Mid:	2.15	Shape:	HE300A	Frame Type:	DCL-CBF
Loc :	2.15	z Mid:	0.	Class:	Class 3	Rolled : Yes	

Interaction=Method Both MultiResponse=Envelopes P-Delta Done? No

Consider Torsion? No

Passerella ciclopedonale - relazione di calcolo impalcato

GammaM0=1.05 Gammaru--- RLLF=1. GammaM1=1.1 GammaM2=1.25 PLLF=0.75 D/C Lim=0.95

Aeff=0.011 eNy=-8.925E-04 eNz=-8.925E-04

iyy=0.127 izz=0.075 Wel,yy=0.001 Weff,yy=0.001 Wel,zz=4.207E-04 Weff,zz=4.207E-04 A=0.011 Iyy=1.826E-04 It=0.Izz=6.310E-05 Iw=1.202E-06 Iyz=0.h=0.29 Wpl,yy=0.001 Av, y=0.009E=210000000. fy=355000. fu=510000. Wpl,zz=6.410E-04 Av,z=0.004

STRESS CHECK FORCES & MOMENTS

Med,zz Location Med, yy Ved,z Ved,y Ned Ted 2.15 -828.673 26.016 1.051 1.47 0.028 0.009

PMM DEMAND/CAPACITY RATIO (Governing Equation NTC Eq C4.2.38)

Curve AlphaLT LambdaBarLT

Psi

zs 0.

kyy

1.025

1.132

kw

1.

za

0.145

b 0.34 0.692

C2 0.459 zg 0.145

1.099

kyz

DEMAND/CAPACITY RATIO (Governing Equation NTC Eq C4.2.50,
D/C Ratio: 0.417 = 0.329 + 0.08 + 0.009 < 0.95 OK
= NEd/(Chi_z NRk/GammaM1) + kzy (My,Ed+NEd eNy)/(Chi_LT My,Rk/GammaM1)

'Mo Ed-NED eNz)/(Mz,Rk/GammaM1) (NTC Eq C4.2.38)

AX

Factors

Factors

AXIAL FORCE DESIG	N							
		Ned	Nc,Rd	Nt,Rd				
		Force	Capacity	Capacity				
Axial	-	828.673	3820.476	3820.476				
		Npl,Rd	Nu,Rd	Ncr,T	Ncr,TF	An/Aq		
	2	820.476	4149.36	9456.496	9456.496	AII/ Ag		
	3	020.470	4149.30	9450.490	9450.490	1.		
Cu	rve	Alpha	Ncr	LambdaBar	Phi	Chi	Nb,Rd	
Major (y-y)	b	0.34	20468.353	0.443	0.639	0.909	3314.082	
MajorB(y-y)	b	0.34	20468.353	0.443	0.639	0.909	3314.082	
Minor $(z-z)$	C	0.49	7073.128	0.753	0.919	0.692	2522.139	
MinorB(z-z)	C	0.49	7073.128	0.753	0.919	0.692	2522.139	
Torsional TF	C	0.49	9456.496	0.651	0.823	0.755	2751.788	
MOMENT DESIGN								
		Med	Med, span	Mm, Ed	Meq, Ed			
		Moment	Moment	Moment	Moment			
Major (y-y)		26.016	26.016	14.324	19.512			
Minor (z-z)		1.051	1.112	1.051	1.063			
		Mc,Rd	Mv,Rd	Mn,Rd	Mb,Rd			
	C	apacity	Capacity	Capacity	Capacity			
Major (y-y)		425.767	425.767	382.498	320.255			
Minor (z-z)		142.225	142.225	142.225	323.233			
111101 (1 1)			112.223	111.223				

PhiLT

0.823

0.525

ZZ

kzy

0.983

C3

0.

ChiLT

0.788

zj

0.

kzz

1.099

1.202E-06

932.581

GRUPPO FERROVIE DELLO STATO ITALIANE		PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA						
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
OI ERE MENOR	IR0B	02	D10	CL IV0200 001	Α	51 di 92		
Passerella ciclopedonale - relazione di calcolo impalcato						ļ		

SHEAR DESIGN					
	Ved	Ted	Vc,Rd	Stress	Status
	Force	Torsion	Capacity	Ratio	Check
Major (z)	1.47	0.009	736.877	0.002	OK
Minor (y)	0.028	0.009	1771.043	1.586E-05	OK
	Vpl,Rd	Eta	LambdabarW		
Reduction	736.877	1.	0.429		
Reduction	/36.8//	1.	0.429		
CONNECTION SHEAR	FORCES FOR BEA	AMS			
	VMajor	VMajor			
	Left	Right			
Major (V2)	67.122	67.122			

10.2.3 Verifica di deformabilità delle travi inflesse (SLE)

La luce di calcolo è 4.3 m, dall'analisi del modello si ricavano i seguenti valori degli spostamenti verticali massimi, e dovuti al solo carico accidentale, che vengono scomputati dell'abbassamento delle travi laterali e confrontati con i valori ammissibili.

$$\delta_{\text{max}} = 8.82 - 8.45 = 0.37 \text{ cm} < \frac{L}{250} = 1.72 \text{ cm}$$

$$\delta_2 = 4.85 - 4.6 = 0.25 \text{ cm} < \frac{L}{300} = 1.4 \text{ cm}$$

10.3 Verifiche dei controventi

Si riportano di seguito le tabelle con i valori delle sollecitazioni ottenute per le combinazioni di carico statiche e sismiche utilizzate nelle successive verifiche.

OPERE MINORI

PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IROB 02 D10 CL IV0200 001 A 52 di 92

Passerella ciclopedonale - relazione di calcolo impalcato

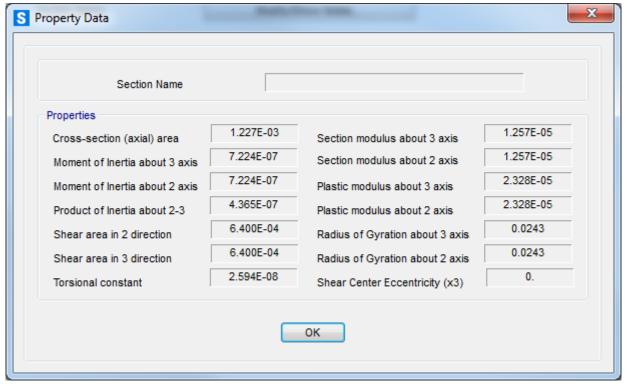
		Р	V2	V3	T	M2	М3	Frame	Distance	OutputCase
		KN	KN	KN	KN-m	KN-m	KN-m	Text	m	Text
М3	max	-23.7	0.0	0.0	0.0	0.0	0.6	2	2.6	A1_1
М3	min	-23.7	0.4	0.0	0.0	0.0	0.0	2	5.2	A1_1
M2	max	-23.7	0.4	0.0	0.0	0.0	0.0	15	5.2	A1_1
M2	min	-23.7	-0.4	0.0	0.0	0.0	0.0	2	0.0	A1_1
Т	max	-23.7	-0.4	0.0	0.0	0.0	0.0	2	0.0	A1_1
Т	min	-23.7	-0.4	0.0	0.0	0.0	0.0	2	0.0	A1_1
V3	max	-16.3	0.0	0.0	0.0	0.0	0.0	2	0.0	SISMA_4
V3	min	-23.7	-0.4	0.0	0.0	0.0	0.0	15	0.0	A1_1
V2	max	-23.7	0.4	0.0	0.0	0.0	0.0	2	5.2	A1_1
V2	min	-23.7	-0.4	0.0	0.0	0.0	0.0	2	0.0	A1_1
Р	max	57.0	-0.4	0.0	0.0	0.0	0.0	10	0.0	A1_10
Р	min	-56.6	-0.4	0.0	0.0	0.0	0.0	9	0.0	A1_12

10.3.1 Verifica di resistenza

I controventi sono realizzati con profili a L80x8, e sono disposti a croce di S.Andrea tra un traverso e l'altro.

TRAZIONE

La verifica consiste nel rispettare la seguente relazione:

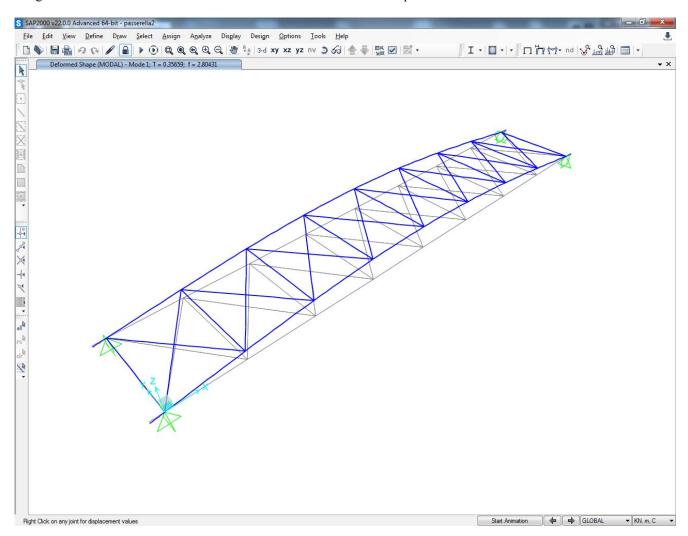

$$\frac{N_{Ed}}{N_{t,Rd}} \le 1$$

 $N_{t,Rd}$ = resistenza di calcolo a trazione ed è pari a $N_{pl,Rd}$

$$N_{pl,Rd} = \frac{A \cdot f_{yk}}{\gamma_{MO}}$$

$$\begin{array}{ccccc} A & & 1220.0 & mm^2 \\ & & N/mm \\ f_{yk} & & 355 & \end{array}$$

$$\begin{array}{ccccc} \gamma_{M0} & & 1.05 \\ N_{t,Rd} & & 412.5 & kN \\ N_{Ed} & & 57.0 & kN \\ & & & verifica soddisfatta \end{array}$$



		PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA						
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
OF ERE MINORI	IR0B	02	D10	CL IV0200 001	Α	54 di 92		
Passerella ciclopedonale - relazione di calcolo impalcato								

10.4 Verifica della frequenza fondamentale

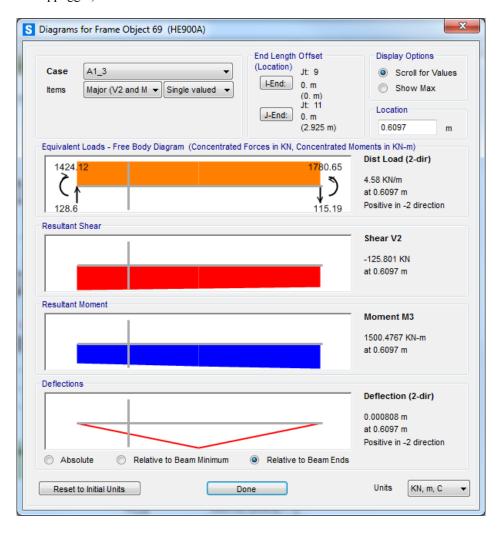
Per garantire il confort la EN1990:2002 richiede di verirficare che la frequenza fondamentale sia inferiore a 5Hz

Come si vede in figura la frequenza è pari a 2.8 HZ, di seguito si riassumono le frequenze calcolate per tutti i modi e le relative masse partecipanti.

	TABLE: Modal Participating Mass Ratios											
OutputCase	StepType	StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ			
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless			
MODAL	Mode	1	0.3566	0.000	0.000	0.879	0.000	0.000	0.879			
MODAL	Mode	2	0.3380	0.000	0.000	0.000	0.000	0.000	0.879			
MODAL	Mode	3	0.0910	0.000	0.000	0.000	0.000	0.000	0.879			
MODAL	Mode	4	0.0908	0.000	0.000	0.000	0.000	0.000	0.879			

OPEDE MINODI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OPERE MINORI	IR0B	02	D10	CL IV0200 001	A	55 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						

MODAL	Mode	5	0.0560	0.000	0.000	0.019	0.000	0.000	0.897
MODAL	Mode	6	0.0537	0.000	0.798	0.000	0.000	0.798	0.897
MODAL	Mode	7	0.0485	0.081	0.000	0.000	0.081	0.798	0.897
MODAL	Mode	8	0.0403	0.000	0.000	0.000	0.081	0.798	0.897
MODAL	Mode	9	0.0385	0.000	0.000	0.059	0.081	0.798	0.956
MODAL	Mode	10	0.0278	0.766	0.000	0.000	0.847	0.798	0.956
MODAL	Mode	11	0.0251	0.000	0.000	0.000	0.847	0.798	0.956
MODAL	Mode	12	0.0251	0.000	0.000	0.000	0.847	0.798	0.956


ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA					
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OF ERE MINORI	IR0B	02	D10	CL IV0200 001	Α	56 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						

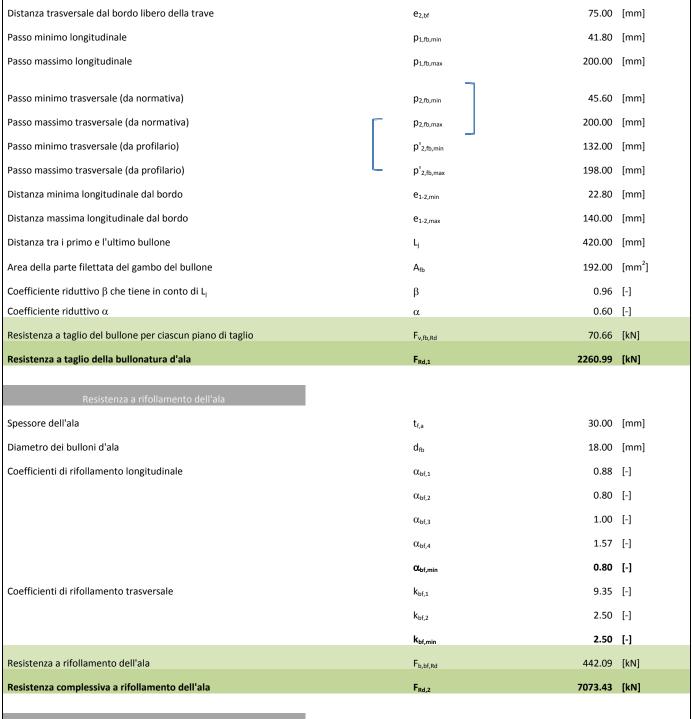
11 VERIFICA DEI COLLEGAMENTI BULLONATI

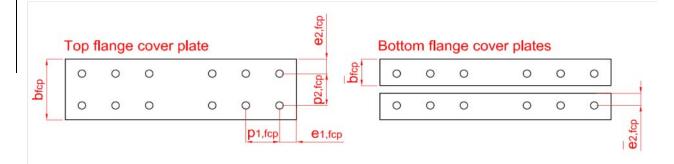
11.1 Travi principali

Le travi principali sono collegate con giunti a completo ripristino, di seguito si riporta il calcolo per la trave HEA900

Si verifica la sezione in corrispondenza della quale il momento massimo assume il valore di 1500 kNm (sezione a 6.45 m dall'appoggio)

GIUNTO CON COPRIGIUNTI D'ALA E ANIM	1A - NTC2008	
Materiali utilizzati	© Dott. Simone Caffè - 25/10/2010	
	S 355 ▼	
Profilo da giuntare e relativi coprigiunti	10 000	
Valore di snervamento dell'acciaio del profilo	f _{yk} 38	55 [N/mm²]
Valore di rottura dell'acciaio del profilo	f _{uk} 5	10 [N/mm²]
Modulo di elasticità dell'acciaio del profilo	E _a 210,00	00 [N/mm²]
Coefficiente di sicurezza dell'acciaio del profilo	γмо 1.	00 [-]
Coefficiente di sicurezza dell'acciaio del profilo	γ _{м2} 1.	25 [-]
	d 0.0	
Bulloni d'ala	Classe 8.8 ▼	
Valore di snervamento dell'acciaio del bullone	$f_{yb,f}$ 64	49 [N/mm²]
Valore di rottura dell'acciaio del bullone		00 [N/mm²]
Coefficiente di sicurezza dell'acciaio del profilo		25 [-]
Coefficiente di Sical etta dell'accidio del promo		<u> </u>
Bulloni d'anima	Classe 8.8 ▼	
	,	22
Valore di snervamento dell'acciaio del bullone	,,,,	49 [N/mm²]
Valore di rottura dell'acciaio del bullone		00 [N/mm²]
Coefficiente di sicurezza dell'acciaio del profilo	γм2 1.	25 [-]
	HE 900 A ▼	
Caratteristiche meccaniche del profilo		
Distanza reciproca tra le travi da giuntare	g 10.	00 [mm]
Altezza della sezione trasversale		90 [mm]
Larghezza della sezione trasversale		00 [mm]
Spessore dell'anima		16 [mm]
Spessore dell'ala	-,-	30 [mm]
Raggio di raccordo	,-	30 [mm]
Area della sezione trasversale		50 [mm²]
Altezza della sezione trasversale al netto delle ali		30 [mm]
Altezza dell'anima		70 [mm]
Diametro massimo consentito dei bulloni d'ala	,	27 [mm]
Passo minimo trasversale tra i bulloni d'ala		32 [mm]




asserella ciclopedonale - relazione di calcolo impalcato			
Passo massimo trasversale tra i bulloni d'ala	р _{b,max}	198	[mm]
Momento d'inerzia della sezione trasversale	$I_{a,y}$	4.221E+09	[mm ⁴]
Modulo di resistenza elastico	$W_{a,el,y}$	9.485E+06	[mm³]
Modulo di resistenza plastico	$W_{a,pl,y}$	1.081E+07	[mm³]
Area resistente a taglio	$A_{a,V}$	16330	[mm²]
Classificazione del profilo			
Valore di snervamento dell'acciaio delle ali	$f_{yf,a}$	355	[N/mm²]
Valore di rottura dell'acciaio delle ali	$f_{uf,a}$	510	[N/mm ²]
Larghezza di metà ala al netto del raggio di raccordo	·ur,a		[mm]
Spessore dell'ala	$t_{f,a}$	30	[mm]
Rapporto di resistenza	3	0.81	
Rapporto c/t	$(c/t_{f,a})/\epsilon$		[-]
Classificazione delle ali (tensioni di compressione costanti)	CL _{f,compressione}	1	[-]
Valore di snervamento dell'acciaio del'anima	$f_{vw,a}$	355	[N/mm²]
Valore di rottura dell'acciaio dell'anima	$f_{uw,a}$	510	[N/mm²]
Altezza dell'anima	$h_{w,a}$	770	[mm]
Spessore dell'anima	$t_{w,a}$	16	[mm]
Rapporto di resistenza	3	0.81	[-]
Rapporto h _w /t	$(h_{w,a}/t_{w,a})/\epsilon$	59.15	[-]
Classificazione dell'anima (distribuzione tensioni a farfalla)	$CL_{w,flessione}$	1	[-]
Classificazione dell'anima (distribuzione tensioni costanti)	CL _{w,compressione}	4	[-]
		4	
Momento resistente del profilo			
Momento resistente plastico	$M_{pl,Rd}$	3,838	[kNm]
Momento resistente elastico	$M_{el,Rd}$	3,367	[kNm]
Coefficiente di imbozzamento	$\mathbf{k}_{\sigma,ali}$	0.43	[-]
Snellezza delle ali	$\lambda_{p,ali}$	0.246	[-]
Coefficiente riduttivo dell'area delle ali	$ ho_{ali}$	1.000	[-]
Area di un'ala	A_{ali}	9000	[mm²]
Area efficace di un'ala	$A_{ali,eff}$	9000	[mm²]
Larghezza efficace dell'ala	$b_{a,eff}$	300.00	[mm]
Larghezza della parte non efficace dell'ala	Δb_{a}	0.00	[mm]

asserella ciclopedonale - relazione di calcolo impalcato		
Momento d'inerzia efficace della sezione	l _{a,y,eff}	4.221E+09 [mm ⁴]
Modulo di resistenza efficace	$W_{a,eff,y}$	9.485E+06 [mm ³]
Momento resistente efficace	$M_{eff,Rd}$	3,367 [kNm]
<u>Taglio resistente del profilo</u>		
Taglio resistente del profilo	$V_{\mathrm{pl,Rd}}$	3,347 [kN]
Resistenza a taglio dei bulloni d'ala	I	
e1,bf p1,bf 42.00	tbf	
	Bottom flange cover plates O O O O O O O O O O O O O O O O O O O	62,fcp
Numero di bulloni presenti sull'ala	n _{fb}	16.00 [-]
Numero di coprigiunti presenti sull'ala	n _{fcp}	2.00 [-]
Spessore dei coprigiunti d'ala	t _{fcp}	25.00 [mm]
Passo longitudinale dei bulloni d'ala	p _{1,fb}	60.00 [mm]
Passo trasversale dei bulloni d'ala	$p_{2,fb}$	150.00 [mm]
Distanza longitudinale dal bordo libero della trave	e _{1,fb}	50.00 [mm]
Distanza longitudinale dal bordo libero del coprigiunto	e _{1,fcp}	50.00 [mm]
Diametro dei bulloni d'ala	d _{fb}	18.00 [mm]
Diametro del foro dei bulloni d'ala	d _{0,fb}	19.00 [mm]
Diametro massimo dei bulloni d'ala	$d_{fb,max}$	27.00 [mm]

300.00 40.00 2.00 50.00	[mm]
2.00	
2.00	[mm]
50.00	[-]
	[mm]
25.00	[mm]
112.00	[mm]
115.00	[mm]
75.00	[mm]
0.88	[-]
0.80	[-]
1.00	[-]
1.57	[-]
0.80	[-]
4.19	[-]
9.35	[-]
2.50	[-]
2.50	[-]
736.82	[kN]
11789.05	[kN]
300.00	
	[mm]
2886.19	[kN]
	[mm]
300.00	
	3195.00 2886.19 300.00

PERE MINORI asserella ciclopedonale - relazione di calcolo impalcato	IR0B 02 D10	CL IV0200 001 A 62 di 92
asserena ciciopedonaie - reiazione di calcolo impalcato		
Spessore dei coprigiunti d'ala	t_fcp	25.00 [mm]
Area netta del coprigiunto superiore	$A_{fcp,net}$	6550.00 [mm ²]
Area netta del coprigiunto inferiore	A'_fcp,net	4800.00 [mm²]
Resistenza dei coprigiunti in trazione (sezione lorda)	F _{Rd,6}	4703.75 [kN]
Resistenza dei coprigiunti in trazione (sezione netta)	F _{Rd,7}	4167.72 [kN]
Resistenza dell'ala in trazione (block tearing) Lj e1,bf p1,bf		tbf
Area netta dell'ala soggetta a trazione	$A_{nt,bf}$	3930.00 [mm²]
Area netta dell'ala soggetta a taglio	$A_{nv,bf}$	19650.00 [mm²]
Resistenza dell'ala in trazione (block tearing)	F _{Rd,8}	5630.89 [kN]
Resistenza dell'ala in trazione (block tearing)	I	
	Bottom flange co	ver plates
Area netta del coprigiunto superiore soggetta a trazione	$A_{nt,fcp}$	3275.00 [mm²]
Area netta del coprigiunto inferiore soggetta a trazione	$A'_{nt,fcp}$	1525.00 [mm²]
Area netta del coprigiunto superiore soggetta a taglio	$A_{nv,fcp}$	16375.00 [mm²]

 $A'_{nv,fcp}$

16375.00 [mm²]

Area netta del coprigiunto inferiore soggetta a taglio

Passo verticale dei bulloni d'anima

PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA

CODIFICA

D10

OPERE MINORI

COMMESSA LOTTO

02

IR0B

DOCUMENTO

CL IV0200 001

REV. FO

Α

55.00 [mm]

FOGLIO 63 di 92

Passerella ciclopedonale - relazione di calcolo impalcato

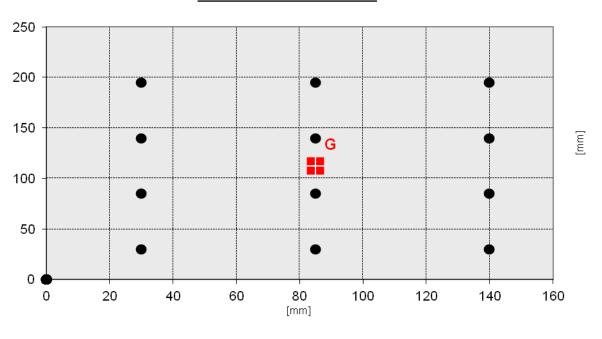
sserella ciclopedonale - relazione di calcolo impalcato		
Resistenza del coprigiunto in trazione (block tearing)	F _{Rd,9}	8670.82 [kN]
Resistenza del giunto d'ala		
Resistenza a taglio della bullonatura d'ala	F _{Rd,1}	2260.99 [kN]
Resistenza complessiva a rifollamento dell'ala	F _{Rd,2}	7073.43 [kN]
Resistenza complessiva a rifollamento dei coprigiunti	F _{Rd,3}	11789.05 [kN]
Resistenza dell'ala in trazione (sezione lorda)	F _{Rd,4}	3195.00 [kN]
Resistenza dell'ala in trazione (sezione netta)	F _{Rd,5}	2886.19 [kN]
Resistenza dei coprigiunti in trazione (sezione lorda)	F _{Rd,6}	4703.75 [kN]
Resistenza dei coprigiunti in trazione (sezione netta)	F _{Rd,7}	4167.72 [kN]
Resistenza dell'ala in trazione (block tearing)	F _{Rd,8}	5630.89 [kN]
Resistenza del coprigiunto in trazione (block tearing)	F _{Rd,9}	8670.82 [kN]
	$\mathbf{F}_{\mathbf{j},\mathbf{f},Rd}$	2260.99 [kN]
Resistenza a taglio dei bulloni d'anima		
nesistenza a tagno dei bunom d'amma		
nb,v		8
		e1,wcp
	i	
01,bw ○	. 000	
<u>a</u>	9	d0,wb
0	hwcp 0 0	
, n b,h		D1 ,wcp
		ا م
	p2,wcp	e2,wcp
e2,bw p2,bw		
Numero di colonne verticali	n _{v,col}	3.00 [-]
Numero di righe orizzontali	n _{h,rig}	4.00 [-]
Spessore dei coprigiunti d'anima	t _{wcp}	20.00 [mm]
Distanza verticale dal bordo libero del coprigiunto	$e_{1,wcp}$	30.00 [mm]
Distanza orizzontale dal bordo libero del coprigiunto	е _{2,wcp}	30.00 [mm]
Sistanza Grizzontaic dai bordo ilbero dei coprigiunto	C2,wcp	30.00 [11111]

p_{1,bw}

Passerella ciclopedonale - relazione di calcolo impalcato

Resistenza a taglio del bullone per ciascun piano di taglio

PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA


73.73 [kN]

OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OF ERE WINOR	IR0B	02	D10	CL IV0200 001	Α	64 di 92

			E
Passo orizzontale dei bulloni d'anima	P _{2,bw}	55.00	[mm]
Distanza orizzontale dal bordo libero della trave	e _{2,bw}	30.00	[mm]
Diametro dei bulloni d'anima	d _{wb}	18.00	[mm]
Diametro del foro dei bulloni d'anima	$d_{0,wb}$	19.00	[mm]
Numero totale dei bulloni d'anima	n_{wb}	12.00	[-]
Numero di bulloni presenti in una colonna	$n_{b,v}$	4.00	[-]
Numero di bulloni presenti in una riga	$n_{b,h}$	3.00	[-]
Altezza massima del coprigiunto d'anima	$h_{\text{wcp,max}}$	770.00	[mm]
Altezza del coprigiunto d'anima	h_{wcp}	225.00	[mm]
Passo minimo verticale e orizzontale	$p_{bw,min}$	41.80	[mm]
Passo massimo verticale e orizzontale	$p_{bw,max}$	200.00	[mm]
Distanza minima dal bordo	e _{1-2,min}	22.80	[mm]
Distanza massima dal bordo	e _{1-2,max}	104.00	[mm]
Momento d'inerzia polare della bullonatura	J_b	69575.00	[mm ²]
Eccentricità tra il baricentro della bullonatura e l'asse giunto	e_x	90.00	[mm]
Area della parte filettata del gambo del bullone	A_wb	192.00	[mm²]
Coefficiente riduttivo $lpha$	α	0.60	[-]

Coordinate dei Bulloni d'Anima

 $F_{v,wb,Rd}$

Distanza orizzontale massima del bullone più esterno da G	X _{max}	55.00	[mm]
Distanza verticale massima del bullone più esterno da G	y max	82.50	[mm]
Resistenza a taglio della bullonatura d'anima	$V_{Rd,1}$	785.35	[kN]
Resistenza a forza normale della bullonatura d'anima	F _{w,Rd,1}	1769.47	[kN]
Resistenza a rifollamento dell'anima			
Spessore dell'anima	$t_{w_{\!a}}$	16.00	[mm]
Diametro dei bulloni d'anima	d_{wb}		[mm]
Coefficienti di rifollamento longitudinale per la direzione x	$\alpha_{x,bw,1}$	0.53	
coefficient at monamento forgitaamate per la affectione x	O _{x,bw,2}	0.71	
	O _{x,bw,3}		[-]
	$\alpha_{x,bw,4}$	1.57	
	$lpha_{x,bw,min}$	0.53	
Coefficienti di rifollamento trasversale per la direzione x	$k_{x,bw,1}$	2.35	
Coefficient di monamento trasversare per la direzione x			[-]
	k _{x,bw,2}	2.35	
Coefficienti di rifollamento trasversale per la direzione y	k _{x,bw,min}	0.71	
Coefficient di monamento trasversare per la direzione y	$lpha_{ m y,bw,1}$	1.00	
	$lpha_{ m y,bw,2}$	1.57	
	α _{γ,bw,3}	0.71	
Coefficienti di rifollamento longitudinale per la direzione y	$lpha_{ m y,bw,min}$		
Coefficienti di monamento iongitudinale per la direzione y	k _{y,bw,1}	2.72	
	k _{y,bw,2}	2.35	
	k _{y,bw,3}	2.50	
Resistenza a rifollamento orizzontale dell'anima	K _{y,bw,min}	2.35 145.50	[-J
Resistenza a rifollamento verticale dell'anima	F _{x,b,bw,Rd}		
	F _{y,b,bw,Rd}		[kN]
Resistenza a taglio per rifollamento dell'anima	V _{Rd,2}	932.92	
Resistenza a forza normale per rifollamento dell'anima	F _{w,Rd,2}	1745.96	[KN]
Resistenza a rifollamento dei coprigiunti			
Spessore dei coprigiunti d'anima	t_wcp	20.00	[mm]
Diametro dei bulloni d'anima	d_{wb}	18.00	[mm]
Coefficienti di rifollamento longitudinale per la direzione x	$lpha_{x,wcp,1}$	0.53	[-]
	$lpha_{\sf x,wcp,2}$	0.71	ſ.1

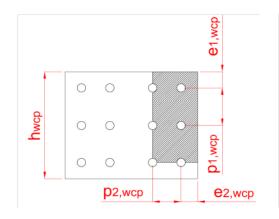
OPERE MINORI

REV. FOGLIO

IROB 02 D10 CL IV0200 001 A 66 di 92

Passerella ciclopedonale - relazione di calcolo impalcato

<u> </u>		
	Cl _{x,wcp,3}	1.00 [-]
	$\alpha_{x, wcp, 4}$	1.57 [-]
	$lpha_{x, wcp, min}$	0.53 [-]
Coefficienti di rifollamento trasversale per la direzione x	$k_{x,wcp,1}$	2.72 [-]
	$k_{x,wcp,2}$	2.35 [-]
	$k_{x,wcp,3}$	2.50 [-]
	$\mathbf{k}_{x,wcp,min}$	2.35 [-]
Coefficienti di rifollamento trasversale per la direzione y	$lpha_{ m y,wcp,1}$	0.53 [-]
	$\alpha_{y, wcp, 2}$	0.71 [-]
	$lpha_{y, wcp, 3}$	1.00 [-]
	$lpha_{ m y,wcp,4}$	1.57 [-]
	$lpha_{\!\scriptscriptstyle \gamma, m wcp, min}$	0.53 [-]
Coefficienti di rifollamento longitudinale per la direzione y	k _{y,wcp,1}	2.72 [-]
	k _{y,wcp,2}	2.35 [-]
	k _{y,wcp,3}	2.50 [-]
	k _{y,wcp,min}	2.35 [-]
Resistenza a rifollamento orizzontale dei coprigiunti	$F_{x,b,wcp,Rd}$	363.74 [kN]
Resistenza a rifollamento verticale dei coprigiunti	$F_{y,b,wcp,Rd}$	363.74 [kN]
Resistenza a taglio per rifollamento dei coprigiunti	$V_{Rd,3}$	1937.29 [kN]
Resistenza a forza normale per rifollamento dei coprigiunti	F _{w,Rd,3}	4364.90 [kN]
Resistenza dei coprigiunti a trazione e taglio		
Spessore dei coprigiunti d'anima	t_wcp	20.00 [mm]
Altezza dei coprigiunti d'anima	h_wcp	225.00 [mm]
Area lorda della sezione trasversale	A_wcp	9000.00 [mm²]
Resistenza a taglio dei coprigiunti (sezione lorda)	$\mathbf{V}_{Rd,4}$	1441.12 [kN]
Resistenza a forza normale dei coprigiunti (sezione lorda)	F _{w,Rd,4}	3195.00 [kN]
Resistenza dei coprigiunti a trazione e taglio		
Numero bulloni verticali	$n_{b,v}$	4.00 [-]
Area netta della sezione trasversale	$A_{wcp,net}$	5960.00 [mm²]
Resistenza a taglio dei coprigiunti (sezione netta)	V _{Rd,5}	1403.93 [kN]
Resistenza a forza normale dei coprigiunti (sezione netta)	F _{w,Rd,5}	2188.51 [kN]
Desistanza dell'anima a trazione e terlie		


Passerella ciclopedonale - relazione di calcolo impalcato

PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA

OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OI ERE MINORI	IR0B	02	D10	CL IV0200 001	Α	67 di 92

Spessore dell'anima	$t_{w,a}$	16.00 [mm]
Altezza dell'anima pari a quella del coprigiunto	h_{wcp}	225.00 [mm]
Area lorda della sezione trasversale	A _{bw}	3600.00 [mm ²]
Resistenza a taglio dell'anima (sezione lorda)	$V_{ m Rd,6}$	580.99 [kN]
Resistenza a forza normale dell'anima (sezione lorda)	F _{w,Rd,6}	1278.00 [kN]
Resistenza dell'anima a trazione e taglio		
Numero bulloni verticali	$n_{b,v}$	4.00 [-]
Area netta della sezione trasversale	$A_{wcp,net}$	2384.00 [mm ²]
Resistenza a taglio dell'anima (sezione netta)	$V_{Rd,7}$	561.57 [kN]
Resistenza a forza normale dell'anima (sezione netta)	F _{w,Rd,7}	875.40 [kN]

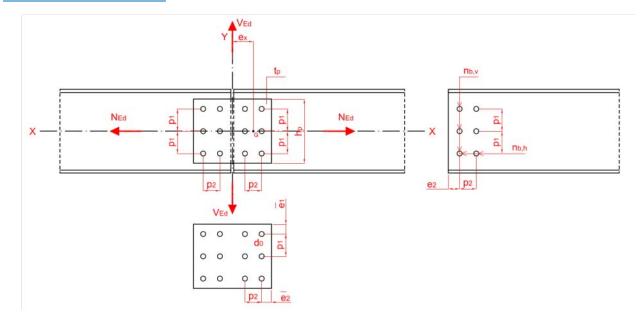
Resistenza dei coprigiunti a trazione e taglio

Resistenza a forza normale dei copriogiunti (block tearing)	F _{w,Rd,8}	3279.26	[kN]
Resistenza a taglio dei coprigiunti (block tearing)	$V_{Rd,8}$	1808.29	[kN]
Area netta soggetta a taglio (block tearing orizzontale)	A' _{nv,wcp}	7400.00	[mm ²]
Area netta soggetta a trazione (block tearing orizzontale)	$A'_{nt,wcp}$	4320.00	[mm²]
Area netta soggetta a taglio (block tearing verticale)	$A_{nv,wcp}$	5140.00	[mm²]
Area netta soggetta a trazione (block tearing verticale)	$A_{nt,wcp}$	3700.00	[mm²]
Numero bulloni orizzontali	$n_{b,h}$	3.00	[-]
Numero bulloni verticali	$n_{b,v}$	4.00	[-]

Resistenza dell'anima a trazione e taglio

Numero bulloni verticali	$n_{b,v}$	4.00 [-]
Numero bulloni orizzontali	$n_{b,h}$	3.00 [-]
Distanza verticale del bullone più esterno dall'ala	e _{1,bw}	362.50 [mm]
Area netta soggetta a trazione (block tearing verticale)	$A_{nt,bw}$	1480.00 [mm ²]
Area netta soggetta a taglio (block tearing verticale)	$A_{nv,bw}$	7376.00 [mm ²]
Area netta soggetta a trazione (block tearing orizzontale)	$A'_{nt,bw}$	1728.00 [mm²]
Area netta soggetta a taglio (block tearing orizzontale)	A' _{nv,bw}	2960.00 [mm²]
Resistenza a taglio dell'anima (block tearing)	$V_{Rd,9}$	1813.70 [kN]
Resistenza a forza normale dell'anima (block tearing)	F _{w,Rd,9}	1311.70 [kN]
Resistenza del giunto d'anima		
Resistenza a taglio della bullonatura d'anima	V _{Rd,1}	785.35 [kN]
Resistenza a forza normale della bullonatura d'anima	F _{w.Rd.1}	
		1769.47 [kN]
Resistenza a taglio per rifollamento dell'anima	V _{Rd,2}	932.92 [kN]
Resistenza a forza normale per rifollamento dell'anima	$V_{ m Rd,2}$ $F_{ m w,Rd,2}$	932.92 [kN] 1745.96 [kN]
Resistenza a forza normale per rifollamento dell'anima Resistenza a taglio per rifollamento dei coprigiunti	$egin{align*} V_{Rd,2} \ F_{w,Rd,2} \ V_{Rd,3} \ \end{array}$	932.92 [kN] 1745.96 [kN] 1937.29 [kN]
Resistenza a forza normale per rifollamento dell'anima Resistenza a taglio per rifollamento dei coprigiunti Resistenza a forza normale per rifollamento dei coprigiunti	$V_{Rd,2}$ $F_{w,Rd,2}$ $V_{Rd,3}$ $F_{w,Rd,3}$	932.92 [kN] 1745.96 [kN] 1937.29 [kN] 4364.90 [kN]
Resistenza a forza normale per rifollamento dell'anima Resistenza a taglio per rifollamento dei coprigiunti Resistenza a forza normale per rifollamento dei coprigiunti Resistenza a taglio dei coprigiunti (sezione lorda)	$V_{Rd,2}$ $F_{w,Rd,2}$ $V_{Rd,3}$ $F_{w,Rd,3}$ $V_{Rd,4}$	932.92 [kN] 1745.96 [kN] 1937.29 [kN] 4364.90 [kN] 1441.12 [kN]
Resistenza a forza normale per rifollamento dell'anima Resistenza a taglio per rifollamento dei coprigiunti Resistenza a forza normale per rifollamento dei coprigiunti Resistenza a taglio dei coprigiunti (sezione lorda) Resistenza a forza normale dei coprigiunti (sezione lorda)	$V_{Rd,2}$ $F_{w,Rd,2}$ $V_{Rd,3}$ $F_{w,Rd,3}$ $V_{Rd,4}$	932.92 [kN] 1745.96 [kN] 1937.29 [kN] 4364.90 [kN] 1441.12 [kN] 3195.00 [kN]
Resistenza a forza normale per rifollamento dell'anima Resistenza a taglio per rifollamento dei coprigiunti Resistenza a forza normale per rifollamento dei coprigiunti Resistenza a taglio dei coprigiunti (sezione lorda) Resistenza a forza normale dei coprigiunti (sezione lorda) Resistenza a taglio dei coprigiunti (sezione netta)	V _{Rd,2} F _{w,Rd,2} V _{Rd,3} F _{w,Rd,3} V _{Rd,4} F _{w,Rd,4}	932.92 [kN] 1745.96 [kN] 1937.29 [kN] 4364.90 [kN] 1441.12 [kN] 3195.00 [kN] 1403.93 [kN]
Resistenza a forza normale per rifollamento dell'anima Resistenza a taglio per rifollamento dei coprigiunti Resistenza a forza normale per rifollamento dei coprigiunti Resistenza a taglio dei coprigiunti (sezione lorda) Resistenza a forza normale dei coprigiunti (sezione lorda) Resistenza a taglio dei coprigiunti (sezione netta) Resistenza a forza normale dei coprigiunti (sezione netta)	V _{Rd,2} F _{w,Rd,2} V _{Rd,3} F _{w,Rd,3} V _{Rd,4} F _{w,Rd,4} V _{Rd,5}	932.92 [kN] 1745.96 [kN] 1937.29 [kN] 4364.90 [kN] 1441.12 [kN] 3195.00 [kN] 1403.93 [kN] 2188.51 [kN]
Resistenza a forza normale per rifollamento dell'anima Resistenza a taglio per rifollamento dei coprigiunti Resistenza a forza normale per rifollamento dei coprigiunti Resistenza a taglio dei coprigiunti (sezione lorda) Resistenza a forza normale dei coprigiunti (sezione lorda) Resistenza a taglio dei coprigiunti (sezione netta) Resistenza a forza normale dei coprigiunti (sezione netta) Resistenza a taglio dell'anima (sezione lorda)	V _{Rd,2} F _{w,Rd,2} V _{Rd,3} F _{w,Rd,3} V _{Rd,4} F _{w,Rd,4} V _{Rd,5} F _{w,Rd,5} V _{Rd,6}	932.92 [kN] 1745.96 [kN] 1937.29 [kN] 4364.90 [kN] 1441.12 [kN] 3195.00 [kN] 1403.93 [kN] 2188.51 [kN] 580.99 [kN]
Resistenza a forza normale per rifollamento dell'anima Resistenza a taglio per rifollamento dei coprigiunti Resistenza a forza normale per rifollamento dei coprigiunti Resistenza a taglio dei coprigiunti (sezione lorda) Resistenza a forza normale dei coprigiunti (sezione lorda) Resistenza a taglio dei coprigiunti (sezione netta) Resistenza a forza normale dei coprigiunti (sezione netta)	V _{Rd,2} F _{w,Rd,2} V _{Rd,3} F _{w,Rd,3} V _{Rd,4} F _{w,Rd,4} V _{Rd,5}	932.92 [kN] 1745.96 [kN] 1937.29 [kN] 4364.90 [kN] 1441.12 [kN] 3195.00 [kN] 1403.93 [kN] 2188.51 [kN]

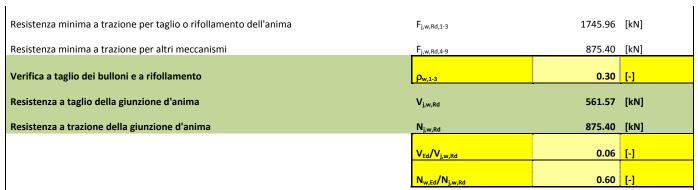
sserella ciclopedonale - relazione di calcolo impalcato		
Resistenza a forza normale dell'anima (sezione netta)	F _{w,Rd,7}	875.40 [kN]
Resistenza a taglio dei coprigiunti (block tearing)	V _{Rd,8}	1808.29 [kN]
Resistenza a forza normale dei copriogiunti (block tearing)	F _{w,Rd,8}	3279.26 [kN]
Resistenza a taglio dell'anima (block tearing)	$V_{Rd,9}$	1813.70 [kN]
Resistenza a forza normale dell'anima (block tearing)	F _{w,Rd,9}	1311.70 [kN]
GIUNTO CON COPRIGIUNTI (A COMPLETO RIPRISTINO)		
	O NEd NEd	X
Forza normale di progetto	$N_{\sf Ed}$	525.80 [kN]
Forza di taglio di progetto	V_{Ed}	201.00 [kN]
Momento flettente	M_{Ed}	1200.00 [kNm]
Forza normale assorbita da una singola ala	${\sf N}_{\sf f,Ed}$	147.65 [kN]
Forza di scorrimento competente alla singola ala	$F_{bf,Ed}$	1543.00 [kN]
Resistenza della giunzione d'ala	F _{j,f,Rd}	2260.99 [kN]
	F _{bf,Ed} /F _{j,f,Rd}	0.68 [-]
Forza normale assorbita dall'anima Forza di taglio assorbita dall'anima Resistenza plastica della travi collegate	$N_{w,Ed}$ V_{Ed}	230.50 [kN] 201.00 [kN]
Resistenza plastica delle travi collegate Rapporto di resistenza a taglio	$V_{pl,Rd}$ $V_{Ed}/V_{pl,Rd}$	3346.99 [kN] 0.06 [-]
Coefficiente riduttivo di resistenza per la presenza di N e V	$v_{Ed}/v_{pl,Rd}$ 1 - ρ	1.00 [-]
socimolente mautuvo arresistenza per la presenza unive v	1-μ	1.00 [-]

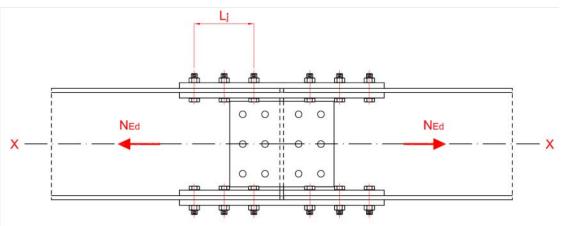

OPERE MINORI	

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IR0B	02	D10	CL IV0200 001	A	70 di 92

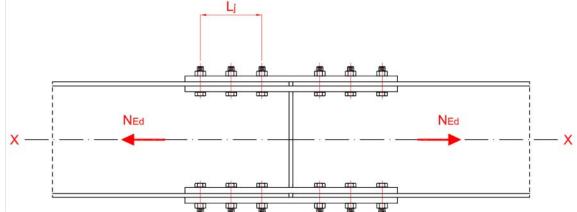
Passerella ciclopedonale - relazione di calcolo impalcato

Resistenza minima a taglio per taglio o rifollamento dell'anima	$V_{j,Rd,1-3}$	785.35	[kN]
Resistenza minima a taglio per altri meccanismi	$V_{j,Rd,4-9}$	561.57	[kN]
Resistenza minima a trazione per taglio o rifollamento dell'anima	F _{j,w,Rd,1-3}	1745.96	[kN]
Resistenza minima a trazione per altri meccanismi	F _{j,w,Rd,4-9}	875.40	[kN]
Verifica a taglio dei bulloni e a rifollamento	ρ _{w,1-3}	0.29	[-]
Resistenza a taglio della giunzione d'anima	$V_{j,w,Rd}$	561.57	[kN]
Resistenza a trazione della giunzione d'anima	$N_{j,w,Rd}$	875.40	[kN]
	V _{Ed} /V _{j,w,Rd}	0.36	[-]
	N _{w,Ed} /N _{j,w,Rd}	0.26	[-]


GIUNTO CON COPRIGIUNTI D'ANIMA


Sollecitazioni di progetto

Forza normale di progetto	N _{Ed}	525.80	[kN]
Forza di taglio di progetto	$V_{\rm Ed}$	33.90	[kN]
Resistenza plastica delle travi collegate	$V_{pl,Rd}$	3346.99	[kN]
Rapporto di resistenza a taglio	$V_{Ed}/V_{pl,Rd}$	0.01	[-]
Coefficiente riduttivo di resistenza per la presenza di N e V	1 - ρ	1.00	[-]
Resistenza minima a taglio per taglio o rifollamento dell'anima	$V_{j,Rd,1-3}$	785.35	[kN]
Resistenza minima a taglio per altri meccanismi	$V_{j,Rd,4-9}$	561.57	[kN]

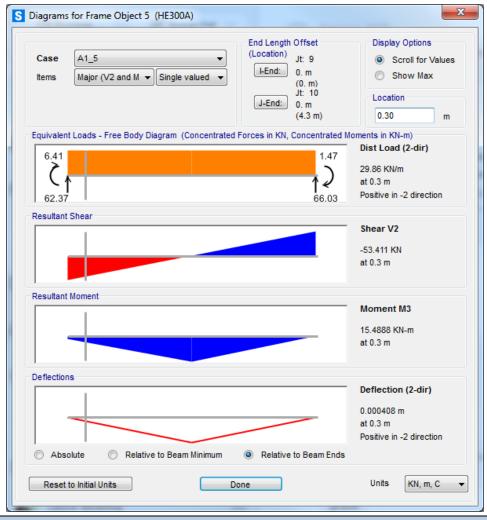


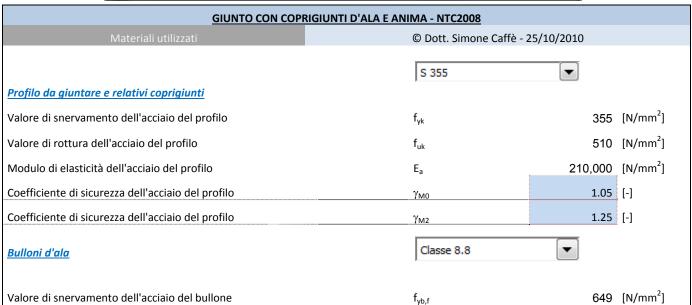
SPLICE SOGGETTO UNICAMENTE A FORZA NORMALE

Sollecitazioni di progetto			
Forza normale di progetto	N _{Ed}	1127.00	[kN]
Resistenza della giunzione d'ala	$F_{i,f,Rd}$	2260.99	[kN]
Resistenza della giunzione d'anima	$F_{j,w,Rd}$	875.40	[kN]
Resistenza a trazione della giunzione	$N_{ m j,Rd}$	5397.39	[kN]
	N _{Ed} /N _{j,Rd}	0.21	[-]

SPLICE SOGGETTO UNICAMENTE A FORZA NORMALE (senza coprigiunti d'anima)

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA					
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OF ERE MINORI	IR0B	02	D10	CL IV0200 001	Α	72 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						


Sollecitazioni di progetto		
Forza normale di progetto	N _{Ed}	1127.00 [kN]
Resistenza della giunzione d'ala	$F_{j,f,Rd}$	2260.99 [kN]
Resistenza a trazione della giunzione	$N_{j,Rd}$	4521.98 [kN]
	N _{Ed} /N _{j,Rd}	0.25 [-]


11.2 Travi secondarie

I trasversi sono collegati ai monconi saldati a completo ripristino alle travi principali mediante giunti a completo ripristino, di seguito si riporta il calcolo per la trave HEA300

Si verifica la sezione in corrispondenza del giunto (sezione a 0.3 m dall'anima della trave HEA900)

sserella ciclopedonale - relazione di calcolo impalcato	D 02 DIV C		, i di
Valore di rottura dell'acciaio del bullone	$f_{ub,f}$	800	[N/mm ²]
Coefficiente di sicurezza dell'acciaio del profilo	γм2	1.25	[-]
Bulloni d'anima	Classe 8.8		
Valore di snervamento dell'acciaio del bullone	$f_{yb,w}$	649	[N/mm²]
Valore di rottura dell'acciaio del bullone	$f_{ub,w}$	800	[N/mm ²]
Coefficiente di sicurezza dell'acciaio del profilo	_ Үм2	1.25	[-]
Caratteristiche meccaniche del profilo	HE 300 A	•	
Distanza reciproca tra le travi da giuntare	g	10.00	[mm]
Altezza della sezione trasversale	h _a	290	[mm]
Larghezza della sezione trasversale	b_a	300	[mm]
Spessore dell'anima	$t_{w,a}$	8.5	[mm]
Spessore dell'ala	$t_{f,a}$	14	[mm]
Raggio di raccordo	r_a	27	[mm]
Area della sezione trasversale	A_{a}	11250	[mm ²]
Altezza della sezione trasversale al netto delle ali	h _{i,a}	262	[mm]
Altezza dell'anima	$h_{w,a}$	208	[mm]
Diametro massimo consentito dei bulloni d'ala	$d_{bf,max}$	27	[mm]
Passo minimo trasversale tra i bulloni d'ala	$p_{b,min}$	118	[mm]
Passo massimo trasversale tra i bulloni d'ala	$p_{b,max}$	198	[mm]
Momento d'inerzia della sezione trasversale	I _{a,y}	1.826E+08	[mm ⁴]
Modulo di resistenza elastico	$W_{a,el,y}$	1.260E+06	[mm ³]
Modulo di resistenza plastico	$W_{a,pl,y}$	1.383E+06	[mm ³]
Area resistente a taglio	$A_{a,V}$	3728	[mm ²]
Classificazione del profilo			
Valore di snervamento dell'acciaio delle ali	$f_{yf,a}$	355	[N/mm ²]
Valore di rottura dell'acciaio delle ali	$f_{uf,a}$	510	[N/mm ²]
Larghezza di metà ala al netto del raggio di raccordo	С	118.75	[mm]
Spessore dell'ala	$t_{f,a}$	14	[mm]
Rapporto di resistenza	ε	0.81	[-]
Rapporto c/t	$(c/t_{f,a})/\epsilon$	10.43	[-]

OPERE MINORI

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

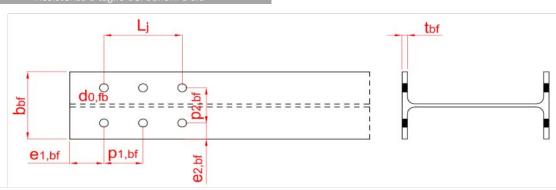
IROB 02 D10 CL IV0200 001 A

FOGLIO

75 di 92

Passerella ciclopedonale - relazione di calcolo impalcato

Classificazione delle ali (tensioni di compressione costanti)	CL _{f,compressione}	3	[-]
Valore di snervamento dell'acciaio del'anima	$f_{yw,a}$	355	[N/mm ²]
Valore di rottura dell'acciaio dell'anima	$f_{uw,a}$	510	[N/mm ²]
Altezza dell'anima	$h_{w,a}$	208	[mm]
Spessore dell'anima	$t_{w,a}$	8.5	[mm]
Rapporto di resistenza	ε	0.81	[-]
Rapporto h _w /t	$(h_{w,a}/t_{w,a})/\epsilon$	30.08	[-]
Classificazione dell'anima (distribuzione tensioni a farfalla)	CL _{w,flessione}	1	[-]
Classificazione dell'anima (distribuzione tensioni costanti)	CL _{w,compressione}	1	[-]
		3	


Momento resistente del profilo

Momento resistente plastico	$M_{pl,Rd}$	468 [kNm]
Momento resistente elastico	$M_{el,Rd}$	426 [kNm]
Coefficiente di imbozzamento	$k_{\sigma,ali}$	0.43 [-]
Snellezza delle ali	$\lambda_{p,ali}$	0.560 [-]
Coefficiente riduttivo dell'area delle ali	$ ho_{ali}$	1.000 [-]
Area di un'ala	A_{ali}	4200 [mm ²]
Area efficace di un'ala	$A_{ali,eff}$	4200 [mm ²]
Larghezza efficace dell'ala	$\mathfrak{b}_{a,eff}$	300.00 [mm]
Larghezza della parte non efficace dell'ala	Δb_{a}	0.00 [mm]
Momento d'inerzia efficace della sezione	$I_{a,y,eff}$	1.826E+08 [mm ⁴]
Modulo di resistenza efficace	$W_{a,eff,y}$	1.259E+06 [mm ³]
Momento resistente efficace	$M_{eff,Rd}$	426 [kNm]

Taglio resistente del profilo

Taglio resistente del profilo V_{pl,Rd} 728 [kN]

esistenza a taglio dei bulloni d'ala

e2,fcp

Top flange cover plate

Bottom flange cover plates

Numero di bulloni presenti sull'ala	r	n _{fb}	4.00	[-]
Numero di coprigiunti presenti sull'ala		n _{fcp}	2.00	
Spessore dei coprigiunti d'ala		fcp	12.00	
Passo longitudinale dei bulloni d'ala		•	70.00	
		0 _{1,fb}		
Passo trasversale dei bulloni d'ala		O _{2,fb}	140.00	
Distanza longitudinale dal bordo libero della trave		e _{1,fb}	40.00	[mm]
Distanza longitudinale dal bordo libero del coprigiunto		e _{1,fcp}	40.00	[mm]
Diametro dei bulloni d'ala	(d _{fb}	20.00	[mm]
Diametro del foro dei bulloni d'ala	(d _{0,fb}	21.00	[mm]
Diametro massimo dei bulloni d'ala	,	$d_{fb.max}$	27.00	[mm]
Distanza trasversale dal bordo libero della trave		•		
		e _{2,bf}	80.00	[mm]
Passo minimo longitudinale		0 _{1,fb,min}	46.20	
Passo massimo longitudinale	F	O _{1,fb,max}	168.00	[mm]
Passo minimo trasversale (da normativa)	ŗ	O _{2,fb,min}	50.40	[mm]
Passo massimo trasversale (da normativa)		O _{2,fb,max}	168.00	[mm]
Passo minimo trasversale (da profilario)	F	o' _{2,fb,min}	118.00	[mm]
Passo massimo trasversale (da profilario)	L,	o' _{2,fb,max}	198.00	[mm]
Distanza minima longitudinale dal bordo	ϵ	e _{1-2,min}	25.20	[mm]
Distanza massima longitudinale dal bordo	6	e _{1-2,max}	88.00	[mm]
Distanza tra i primo e l'ultimo bullone	l	L _j	70.00	[mm]
Area della parte filettata del gambo del bullone	,	Δ_{fb}	245.00	[mm ²
Coefficiente riduttivo β che tiene in conto di L $_{\rm i}$	ſ	3	1.00	[-]
Coefficiente riduttivo $lpha$		α	0.60	[-]

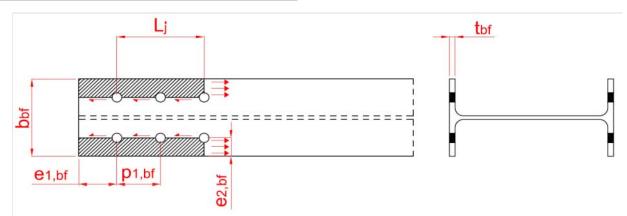
OPERE MINORI

Passerella ciclopedonale - relazione di calcolo impalcato

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IROB 02 D10 CL IV0200 001 A 77 di 92

Resistenza a taglio del bullone per ciascun piano di taglio	$F_{v,fb,Rd}$	94.08	[kN]
Resistenza a taglio della bullonatura d'ala	F _{Rd,1}	752.64	[kN]
Resistenza a rifollamento dell'ala			
Spessore dell'ala	$t_{f,a}$	14.00	[mm]
Diametro dei bulloni d'ala	d_fb	20.00	[mm]
Coefficienti di rifollamento longitudinale	$lpha_{bf,1}$	0.63	[-]
	$lpha_{ ext{bf,2}}$	0.86	[-]
	$lpha_{bf,3}$	1.00	[-]
	$lpha_{bf,4}$	1.57	[-]
	$lpha_{\sf bf,min}$	0.63	[-]
Coefficienti di rifollamento trasversale	k _{bf,1}	8.97	[-]
	k _{bf,2}	2.50	[-]
	$\mathbf{k}_{bf,min}$	2.50	[-]
Resistenza a rifollamento dell'ala	$F_{b,bf,Rd}$	181.33	[kN]
Resistenza complessiva a rifollamento dell'ala	F _{Rd,2}	725.33	[kN]


e2,fcp Bottom flange cover plates Top flange cover plate P1,fcp e1,fcp

Larghezza del coprigiunto superiore d'ala	b _{fcp}	300.00	[mm]
Distanza trasversale dal bordo del coprigiunto inferiore	e' _{2,fcp}	40.00	[mm]
Numero di coprigiunti presenti sull'ala	n _{fcp}	2.00	[-]
Distanza longitudinale dal bordo libero del coprigiunto	e _{1,fcp}	40.00	[mm]
Spessore dei coprigiunti d'ala	t _{fcp}	12.00	[mm]
Larghezza massima del coprigiunto inferiore d'ala	b' _{fcp,max}	118.75	[mm]
Larghezza del coprigiunto inferiore d'ala	b' _{fcp}	120.00	[mm]
Distanza trasversale dal bordo del coprigiunto superiore	e _{2,fcp}	80.00	[mm]

Coefficienti di rifollamento longitudinale	$lpha_{fcp,1}$	0.63 [-]
	$lpha_{fcp,2}$	0.86 [-]
	$lpha_{fcp,3}$	1.00 [-]
	$lpha_{fcp,4}$	1.57 [-]
	$lpha_{\sf fcp,min}$	0.63 [-]
Coefficienti di rifollamento trasversale	$k_{fcp,1}$	3.63 [-]
	k _{fcp,2}	7.63 [-]
	$k_{fcp,3}$	2.50 [-]
	$\mathbf{k}_{fcp,min}$	2.50 [-]
Resistenza a rifollamento dei coprigiunti	$F_{b,fcp,Rd}$	310.86 [kN]
Resistenza complessiva a rifollamento dei coprigiunti	F _{Rd,3}	1243.43 [kN]
Resistenza dell'ala in trazione		
Larghezza della sezione trasversale	b _a	300.00 [mm]
Spessore dell'ala	t _{f,a}	14.00 [mm]
Resistenza dell'ala in trazione (sezione lorda)	F _{Rd,4}	1420.00 [kN]
Resistenza dell'ala in trazione (sezione netta)	F _{Rd,5}	1326.33 [kN]
Resistenza dei coprigiunti in trazione		
Larghezza del coprigiunto superiore d'ala	b_{fcp}	300.00 [mm]
Larghezza del coprigiunto inferiore d'ala	b' _{fcp}	120.00 [mm]
Spessore dei coprigiunti d'ala	t_fcp	12.00 [mm]
Area netta del coprigiunto superiore	$A_{fcp,net}$	3096.00 [mm ²]
Area netta del coprigiunto inferiore	A' _{fcp,net}	2376.00 [mm²]
Resistenza dei coprigiunti in trazione (sezione lorda)	F _{Rd,6}	2190.86 [kN]
Resistenza dei coprigiunti in trazione (sezione netta)	F _{Rd,7}	2009.32 [kN]

Resistenza dell'ala in trazione (block tearing)

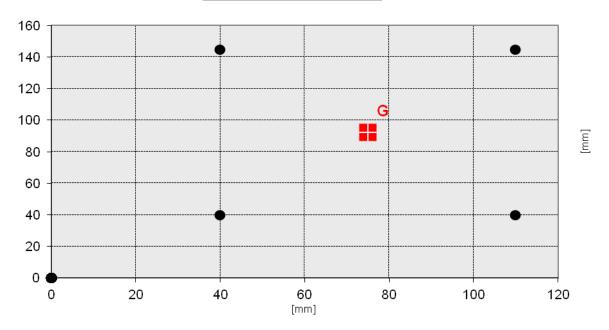
Area netta dell'ala soggetta a trazione Area netta dell'ala soggetta a taglio	A _{nt,bf} A _{nv,bf}	1946.00 [mm²] 2198.00 [mm²]			
Resistenza dell'ala in trazione (block tearing)	F _{Rd,8}	1223.02 [kN]			
Resistenza dell'ala in trazione (block tearing)					
Top flange cover plate Bottom flange cover plates D1,fcp e1,fcp Bottom flange cover plates P1,fcp Bottom flange cover plates					
Area netta del coprigiunto superiore soggetta a trazione Area netta del coprigiunto inferiore soggetta a trazione	$A_{nt,fcp}$	1428.00 [mm ²] 708.00 [mm ²]			
Area netta del coprigiunto superiore soggetta a taglio	A _{nv,fcp}	1884.00 [mm ²]			
Area netta del coprigiunto inferiore soggetta a taglio	A' _{nv,fcp}	1884.00 [mm²]			
Resistenza del coprigiunto in trazione (block tearing)	F _{Rd,9}	1607.00 [kN]			
Resistenza del giunto d'ala					
Resistenza a taglio della bullonatura d'ala	F _{Rd,1}	752.64 [kN]			
Resistenza complessiva a rifollamento dell'ala	F _{Rd,2}	725.33 [kN]			
Resistenza complessiva a rifollamento dei coprigiunti Resistenza dell'ala in trazione (sezione lorda)	F _{Rd,3} F _{Rd,4}	1243.43 [kN] 1420.00 [kN]			
Resistenza dell'ala in trazione (sezione netta)	F _{Rd,5}	1326.33 [kN]			
Resistenza dei coprigiunti in trazione (sezione lorda)	F _{Rd,6}	2190.86 [kN]			
Resistenza dei coprigiunti in trazione (sezione netta)	F _{Rd,7}	2009.32 [kN]			
Resistenza dell'ala in trazione (block tearing)	F _{Rd,8}	1223.02 [kN]			
Resistenza del coprigiunto in trazione (block tearing)	F _{Rd,9}	1607.00 [kN]			
	$\mathbf{F}_{\mathbf{j},\mathbf{f},Rd}$	725.33 [kN]			

OPERE MINORI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IROB 02 D10 CL IV0200 001 A 80 di 92

Passerella ciclopedonale - relazione di calcolo impalcato


Resistenza a taglio dei bulloni d'anima			
nb,v nb,h e2,bw p2,bw	© 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	do,wb e2,	wcp
Numero di colonne verticali	$n_{ m v,col}$	2.00	[-]
Numero di righe orizzontali	$n_{h,rig}$	2.00	[-]
Spessore dei coprigiunti d'anima	t _{wcp}	12.00	[mm]
Distanza verticale dal bordo libero del coprigiunto	e _{1,wcp}	40.00	
Distanza orizzontale dal bordo libero del coprigiunto	e _{2,wcp}	40.00	
Passo verticale dei bulloni d'anima	p _{1,bw}	105.00	
Passo orizzontale dei bulloni d'anima	p _{2,bw}	70.00	-
Distanza orizzontale dal bordo libero della trave	e _{2,bw}	40.00	
Diametro dei bulloni d'anima	d _{wb}	16.00	
Diametro del foro dei bulloni d'anima	d _{0,wb}	17.00	[mm]
Numero totale dei bulloni d'anima	n _{wb}	4.00	[-]
Numero di bulloni presenti in una colonna	$n_{b,v}$	2.00	[-]
Numero di bulloni presenti in una riga	n _{b,h}	2.00	[-]
Altezza massima del coprigiunto d'anima	$h_{wcp,max}$	208.00	[mm]
Altezza del coprigiunto d'anima	h_{wcp}	185.00	[mm]
Passo minimo verticale e orizzontale	$p_{bw,min}$	37.40	[mm]
Passo massimo verticale e orizzontale	$p_{bw,max}$	119.00	[mm]
Distanza minima dal bordo	e _{1-2,min}	20.40	
Distanza massima dal bordo	e _{1-2,max}	74.00	[mm]

OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OF ERE WINORI	IR0B	02	D10	CL IV0200 001	A	81 di 92
Passerella ciclonedonale - relazione di calcolo impalcato						

	Momento d'inerzia polare della bullonatura	J_b	15925.00	[mm ²]
	Eccentricità tra il baricentro della bullonatura e l'asse giunto	e_{x}	80.00	[mm]
	Area della parte filettata del gambo del bullone	A_{wb}	157.00	[mm ²]
	Coefficiente riduttivo $lpha$	α	0.60	[-]
	Resistenza a taglio del bullone per ciascun piano di taglio	$F_{v,wb,Rd}$	60.29	[kN]

Coordinate dei Bulloni d'Anima

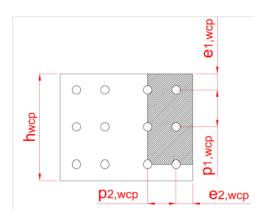
Resistenza a forza normale della bullonatura d'anima	F _{w,Rd,1}	482.30	[kN]
Resistenza a taglio della bullonatura d'anima	V _{Rd,1}	240.73	[kN]
Distanza verticale massima del bullone più esterno da G	y max	52.50	[mm]
Distanza orizzontale massima del bullone più esterno da G	x _{max}	35.00	[mm]

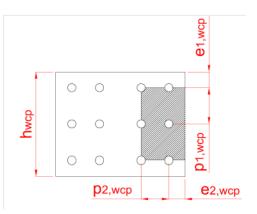
Resistenza a rifollamento dell'anima		
Spessore dell'anima	$t_{w,a}$	8.50 [mm]
Diametro dei bulloni d'anima	d_{wb}	16.00 [mm]
Coefficienti di rifollamento longitudinale per la direzione x	$\alpha_{x,bw,1}$	0.78 [-]
	$\alpha_{x,bw,2}$	1.12 [-]
	$\alpha_{x,bw,3}$	1.00 [-]
	$lpha_{x,bw,4}$	1.57 [-]
	$\alpha_{x,bw,min}$	0.78 [-]

JPPO FERROVIE DELLO STATO ITALIANE						
PERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	
sserella ciclopedonale - relazione di calcolo impalcato	IR0B	02	D10	CL IV0200 001	A	82 di 9
Coefficienti di rifellamente trasversale per la direzione y		l.			6.05	r 1
Coefficienti di rifollamento trasversale per la direzione x			x,bw,1		6.95	
			x,bw,2		2.50	
Coefficienti di rifollamento trasversale per la direzione y			x,bw,min		2.50 1.81	
Coefficienti di monamento trasversale per la direzione y			C _{y,bw,1}		1.00	
			ι _{y,bw,2}		1.57	
			ι _{y,bw,3}		1.00	
Coefficienti di rifollamento longitudinale per la direzione y			رy,bw,min		4.89	
Coemolenti di monamento iongitudinale per la direzione y			y,bw,1		4.89	
			y,bw,2 y,bw,3		2.50	
					2.50	
Resistenza a rifollamento orizzontale dell'anima			y,bw,min x,b,bw,Rd		108.80	
Resistenza a rifollamento verticale dell'anima			x,b,bw,Rd y,b,bw,Rd		138.72	
Resistenza a taglio per rifollamento dell'anima			y,b,bw,Rd /Rd,2		255.66	
Resistenza a forza normale per rifollamento dell'anima					435.20	
Resistenza a 1012a normale per monamento den anima		F	w,Rd,2		455.20	[KIV]
Resistenza a rifollamento dei coprigiunti	l					
Spessore dei coprigiunti d'anima		t,	wcp		12.00	[mm]
Diametro dei bulloni d'anima		d	l _{wb}		16.00	[mm]
Coefficienti di rifollamento longitudinale per la direzione x		0	ι _{x,wcp,1}		0.78	[-]
		0	$\iota_{x,wcp,2}$		1.12	[-]
		0	ι _{x,wcp,3}		1.00	[-]
		o	$\iota_{x,wcp,4}$		1.57	[-]
		0	L _{x,wcp,min}		0.78	[-]
Coefficienti di rifollamento trasversale per la direzione x		k	x,wcp,1		4.89	[-]
		k	x,wcp,2		6.95	[-]
		k	x,wcp,3		2.50	[-]
		k	x,wcp,min		2.50	[-]
Coefficienti di rifollamento trasversale per la direzione y		o	ι _{γ,wcp,1}		0.78	[-]
		o	ι _{γ,wcp,2}		1.81	[-]
		o	$\iota_{y,wcp,3}$		1.00	[-]
		0	$\iota_{y,wcp,4}$		1.57	[-]
			C _{y,wcp,4} Cy,wcp,min		1.57 0.78	

OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IR0B	02	D10	CL IV0200 001	A	83 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						

	k _{y,wcp,2}	4.06	[-]
	k _{у,wcp,3}	2.50	
	k _{y,wcp,min}	2.50	
Resistenza a rifollamento orizzontale dei coprigiunti	F _{x,b,wcp,Rd}	307.20	
Resistenza a rifollamento verticale dei coprigiunti	$F_{y,b,wcp,Rd}$	307.20	[kN]
Resistenza a taglio per rifollamento dei coprigiunti	V _{Rd,3}	613.32	[kN]
Resistenza a forza normale per rifollamento dei coprigiunti	F _{w,Rd,3}	1228.80	[kN]
	, ,		
Resistenza dei coprigiunti a trazione e taglio			
Spessore dei coprigiunti d'anima	t_wcp	12.00	[mm]
Altezza dei coprigiunti d'anima	h_{wcp}	185.00	[mm]
Area lorda della sezione trasversale	A_{wcp}	4440.00	[mm ²]
Resistenza a taglio dei coprigiunti (sezione lorda)	$V_{Rd,4}$	677.10	[kN]
Resistenza a forza normale dei coprigiunti (sezione lorda)	F _{w,Rd,4}	1501.14	[kN]
Resistenza dei coprigiunti a trazione e taglio			
Numero bulloni verticali	$n_{b,v}$	2.00	[-]
Area netta della sezione trasversale	$A_{wcp,net}$	3624.00	[mm ²]
Resistenza a taglio dei coprigiunti (sezione netta)	V _{Rd,5}	853.67	[kN]
Resistenza a forza normale dei coprigiunti (sezione netta)	F _{w,Rd,5}	1330.73	[kN]
Resistenza dell'anima a trazione e taglio		0.50	
Spessore dell'anima	t _{w,a}		[mm]
Altezza dell'anima pari a quella del coprigiunto	h _{wcp}	185.00	
Area lorda della sezione trasversale	A _{bw}	1572.50	
Resistenza a taglio dell'anima (sezione lorda)	$V_{Rd,6}$	241.69	[kN]
	$V_{Rd,6}$ $F_{w,Rd,6}$	241.69 531.65	
Resistenza a forza normale dell'anima (sezione lorda)			
Resistenza a forza normale dell'anima (sezione lorda) Resistenza dell'anima a trazione e taglio	F _{w,Rd,6}	531.65	[kN]
Resistenza a forza normale dell'anima (sezione lorda) Resistenza dell'anima a trazione e taglio Numero bulloni verticali	F _{w,Rd,6} $n_{b,v}$	531.65 2.00	[kN]
Resistenza a forza normale dell'anima (sezione lorda) Resistenza dell'anima a trazione e taglio Numero bulloni verticali Area netta della sezione trasversale	$F_{w,Rd,6}$ $n_{b,v}$ $A_{wcp,net}$	2.00 1283.50	[kN] [-] [mm ²]
Resistenza a forza normale dell'anima (sezione lorda) Resistenza dell'anima a trazione e taglio Numero bulloni verticali Area netta della sezione trasversale Resistenza a taglio dell'anima (sezione netta)	$\mathbf{F_{w,Rd,6}}$ $\mathbf{n_{b,v}}$ $\mathbf{A_{wcp,net}}$ $\mathbf{V_{Rd,7}}$	2.00 1283.50 302.34	[kN] [-] [mm²] [kN]
Resistenza a forza normale dell'anima (sezione lorda) Resistenza dell'anima a trazione e taglio Numero bulloni verticali Area netta della sezione trasversale	$F_{w,Rd,6}$ $n_{b,v}$ $A_{wcp,net}$	2.00 1283.50	[kN] [-] [mm²] [kN]

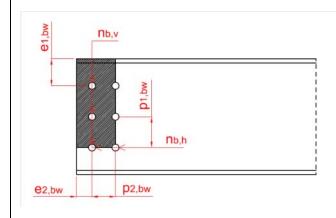


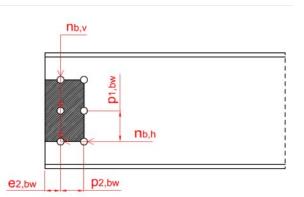

OPERE MINORI

Passerella ciclopedonale - relazione di calcolo impalcato

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IROB 02 D10 CL IV0200 001 A 84 di 92

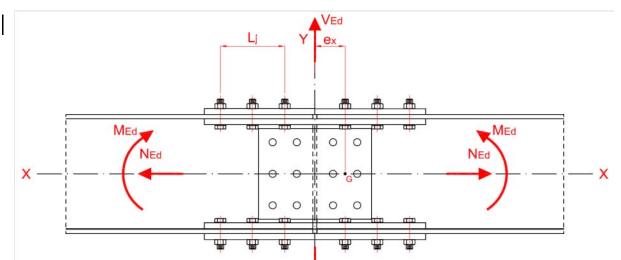



F_{w,Rd,8}

Numero bulloni verticali	$n_{b,v}$	2.00	[-]
Numero bulloni orizzontali	$n_{b,h}$	2.00	[-]
Area netta soggetta a trazione (block tearing verticale)	$A_{nt,wcp}$	2028.00	[mm ²]
Area netta soggetta a taglio (block tearing verticale)	$A_{nv,wcp}$	2868.00	[mm ²]
Area netta soggetta a trazione (block tearing orizzontale)	A' _{nt,wcp}	2112.00	[mm ²]
Area netta soggetta a taglio (block tearing orizzontale)	A' _{nv,wcp}	4056.00	[mm ²]
Resistenza a taglio dei coprigiunti (block tearing)	V _{Rd,8}	973.54	[kN]

Resistenza dell'anima a trazione e taglic

Resistenza a forza normale dei copriogiunti (block tearing)


1653.42 [kN]

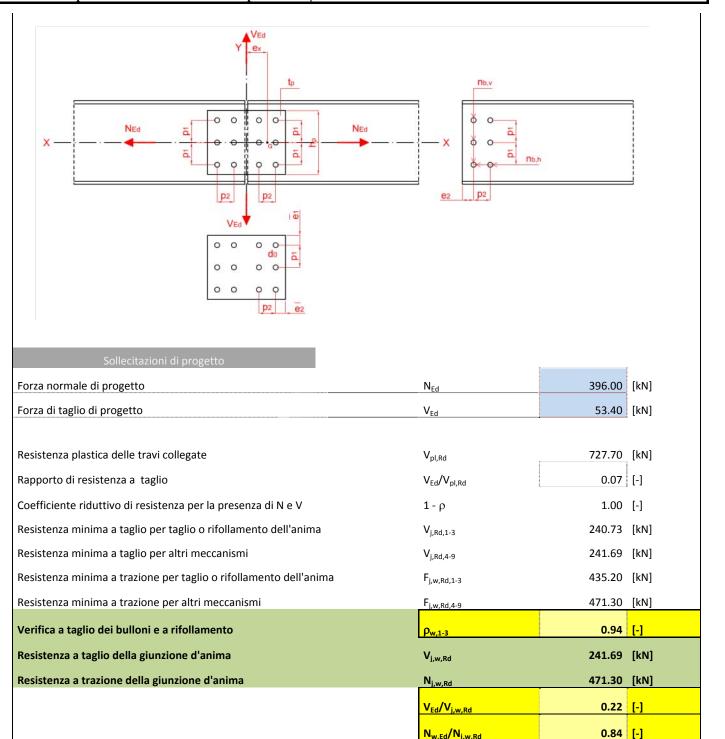
Numero bulloni verticali	$n_{b,v}$	2.00 [-]
Numero bulloni orizzontali	$n_{b,h}$	2.00 [-]
Distanza verticale del bullone più esterno dall'ala	e _{1,bw}	92.50 [mm]

Area netta soggetta a trazione (block tearing verticale)	$A_{nt,bw}$	718.25 [mm ²]
Area netta soggetta a taglio (block tearing verticale)	$A_{nv,bw}$	1462.00 [mm ²]
Area netta soggetta a trazione (block tearing orizzontale)	A' _{nt,bw}	748.00 [mm ²]
Area netta soggetta a taglio (block tearing orizzontale)	A' _{nv,bw}	1436.50 [mm²]
Resistenza a taglio dell'anima (block tearing)	V _{Rd,9}	431.90 [kN]
Resistenza a forza normale dell'anima (block tearing)	F _{w,Rd,9}	585.59 [kN]
Resistenza del giunto d'anima		
Resistenza a taglio della bullonatura d'anima	V _{Rd,1}	240.73 [kN]
Resistenza a forza normale della bullonatura d'anima	F _{w,Rd,1}	482.30 [kN]
Resistenza a taglio per rifollamento dell'anima	V _{Rd,2}	255.66 [kN]
Resistenza a forza normale per rifollamento dell'anima	F _{w,Rd,2}	435.20 [kN]
Resistenza a taglio per rifollamento dei coprigiunti	V _{Rd,3}	613.32 [kN]
Resistenza a forza normale per rifollamento dei coprigiunti	F _{w,Rd,3}	1228.80 [kN]
Resistenza a taglio dei coprigiunti (sezione lorda)	V _{Rd,4}	677.10 [kN]
Resistenza a forza normale dei coprigiunti (sezione lorda)	F _{w,Rd,4}	1501.14 [kN]
Resistenza a taglio dei coprigiunti (sezione netta)	V _{Rd,5}	853.67 [kN]
Resistenza a forza normale dei coprigiunti (sezione netta)	F _{w,Rd,5}	1330.73 [kN]
Resistenza a taglio dell'anima (sezione lorda)	$V_{Rd,6}$	241.69 [kN]
Resistenza a forza normale dell'anima (sezione lorda)	F _{w,Rd,6}	531.65 [kN]
Resistenza a taglio dell'anima (sezione netta)	V _{Rd,7}	302.34 [kN]
Resistenza a forza normale dell'anima (sezione netta)	F _{w,Rd,7}	471.30 [kN]
Resistenza a taglio dei coprigiunti (block tearing)	V _{Rd,8}	973.54 [kN]
Resistenza a forza normale dei copriogiunti (block tearing)	F _{w,Rd,8}	1653.42 [kN]
Resistenza a taglio dell'anima (block tearing)	V _{Rd,9}	431.90 [kN]
Resistenza a forza normale dell'anima (block tearing)	F _{w,Rd,9}	585.59 [kN]

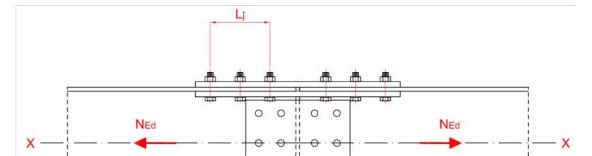
GIUNTO CON COPRIGIUNTI

Sollecitazioni di progetto		
Forza normale di progetto	N _{Ed}	396.00 [kN]
Forza di taglio di progetto	V_{Ed}	53.40 [kN]
Momento flettente	M _{Ed}	15.50 [kNm]
Forza normale assorbita da una singola ala	$N_{f,Ed}$	147.84 [kN]
Forza di scorrimento competente alla singola ala	F _{bf,Ed}	204.00 [kN]
Resistenza della giunzione d'ala	F _{j,f,Rd}	725.33 [kN]
	F _{bf,Ed} /F _{j,f,Rd}	0.28 [-]
Momento ultimo della trave	$M_{u,Rd}$	425.85 [kNm]
Momento offerto dalla giunzione	$M_{j,Rd}$	200.19 [kNm]
Forza normale assorbita dall'anima	$N_{w,Ed}$	100.32 [kN]
Forza di taglio assorbita dall'anima	V_{Ed}	53.40 [kN]
Resistenza plastica delle travi collegate	$V_{pl,Rd}$	727.70 [kN]
Rapporto di resistenza a taglio	$V_{Ed}/V_{pl,Rd}$	0.07 [-]
Coefficiente riduttivo di resistenza per la presenza di N e V	1 - ρ	1.00 [-]
Resistenza minima a taglio per taglio o rifollamento dell'anima	$V_{j,Rd,1-3}$	240.73 [kN]
Resistenza minima a taglio per altri meccanismi	$V_{j,Rd,4-9}$	241.69 [kN]
Resistenza minima a trazione per taglio o rifollamento dell'anima	$F_{j,w,Rd,1-3}$	435.20 [kN]
Resistenza minima a trazione per altri meccanismi	F _{i,w,Rd,4-9}	471.30 [kN]
Verifica a taglio dei bulloni e a rifollamento	<u>ρ_{w,1-3}</u>	0.32 [-]
Resistenza a taglio della giunzione d'anima	$V_{\rm j,w,Rd}$	241.69 [kN]
Resistenza a trazione della giunzione d'anima	N _{j,w,Rd}	471.30 [kN]
	V _{Ed} /V _{j,w,Rd}	0.22 [-]
	N _{w,Ed} /N _{j,w,Rd}	0.21 [-]

GIUNTO CON COPRIGIUNTI D'ANIMA

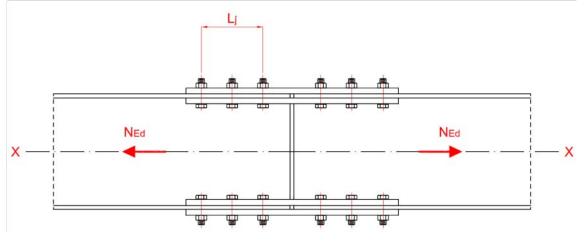

OPERE MINORI

PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA


COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IROB 02 D10 CL IV0200 001 A 87 di 92

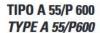
Passerella ciclopedonale - relazione di calcolo impalcato

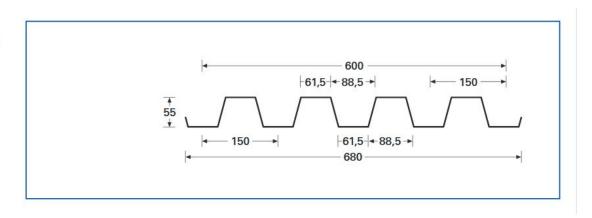

SPLICE SOGGETTO UNICAMENTE A FORZA NORMALE

Sollecitazioni di progetto		
Forza normale di progetto	N _{Ed}	396.00 [kN]
Resistenza della giunzione d'ala	$F_{j,f,Rd}$	725.33 [kN]
Resistenza della giunzione d'anima	$F_{j,w,Rd}$	435.20 [kN]
Resistenza a trazione della giunzione	N _{j,Rd}	1885.87 [kN]
	N _{Ed} /N _{j,Rd}	0.21 [-]

SPLICE SOGGETTO UNICAMENTE A FORZA NORMALE (senza coprigiunti d'anima)

SOIL		6	getto


	N _{Ed} /N _{i,Rd}	0.27 [-]
Resistenza a trazione della giunzione	N _{j,Rd}	1450.67 [kN]
Resistenza della giunzione d'ala	F _{j,f,Rd}	725.33 [kN]
Forza normale di progetto	N _{Ed}	396.00 [kN]


GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO POTENZIAMENTO DELLA LINEA FOLIGNO-TERONTOLA INTERVENTI DI SEMPLIFICAZIONE E VELOCIZZAZIONE SUL PRG DELLA STAZIONE DI ELLERA						
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
OPERE MINORI	IR0B	02	D10	CL IV0200 001	A	89 di 92	
Passerella ciclopedonale - relazione di calcolo impalcato							

12 SOLETTA

L'impalcato è realizzato con una soletta in c.a. gettata su una lamiera grecata non collaborante, la distanza tra i traversi fornisce la luce di calcolo che è pari a 2.925 m.

Come di osserva dalla figura seguente estratta da un catalogo commerciale, per una luce di 3.0 m ipotizzando uno schema statico di trave continua su più appoggi si arriva ad un carico massimo di 6.0 k/mq

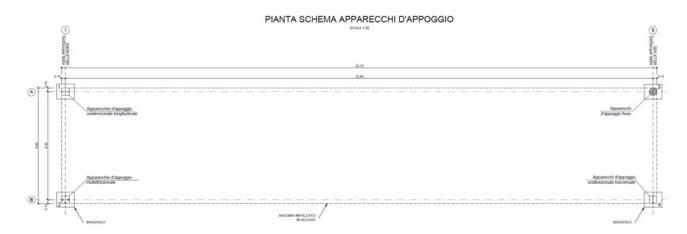
Caratteristiche della lamiera - Properties of the trapezoidal sheets - Caracteristiques du profil - Blecheigenschaften

	Spessore - Thickness - Epaisseur - Stärke							
	mm	0,60	0,70	0,80	1,00	1,20		
Peso - Weight - Poids - Gewicht	kg/m	4,71	5,50	6,28	7,85	9,42		
Peso - Weight - Poids - Gewicht	kg/m ²	7,85	9,16	10,47	13,08	15,70		
Compressione sup Top compression								
Jf	cm ⁴ /m	39,12	45,98	54,90	73,46	92,57		
W _i	cm ³ /m	17,13	20,48	23,88	30,76	37,72		
W _s	cm ³ /m	11,11	13,89	16,85	23,27	30,19		
Compressione inf Bottom compression								
Wi	cm ³ /m	12,72	16,00	19,53	27,14	35,25		
W_{S}	cm ³ /m	14,95	17,87	20,83	26,81	32,82		

Spess. Thick. Epaiss. Dicke	J	Wp	Wn		D	istanz	a fra g	li appo	oggi in	metri	- Spar	in me	p	Entr'a	xe des	soliv	es - Sp	annw	eite in	Mete	rn	
mm	cm ⁴ /m	cm ⁴ /m	cm ⁴ /m	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	4,25	4,50	4,75	5,00	5,25	5,50
0,60	39,12	11,11	12,72	2099	1343	933	685	525	415	336	278	221 233	174 199	139 171	113 149	93 131	78 116	66 104	56 93	48 84	_	
0,70	45,98	13,89	16,00	2640	1690	1173	862	660	521	422	337 349	260 293	204 250	164 216	133 188	110 165	91 146	77 130	65 117	56 106	48 96	_
0,80	54,90	16,85	19,53	3222	2062	1432	1052	806	637	516	403 426	310 358	244 305	195 263	159 229	131 201	109 178	92 159	78 143	67 129	58 117	50 107
1,00	73,46	23,27	26,81	4424	2831	1966	1444	1106	874	708	539 585	415 492	327 419	261 361	213 315	175 276	146 245	123 218	105 196	90 177	77 160	67 146
1,20	92,57	30,19	32,82	5415	3466	2407	1768	1354	1070	866	679 716	523 602	412 513	330 442	268 385	221 338	184 300	155 267	132 240	113 217	98 196	85 179

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	INTERVEN	MENTO I TI DI SEN	DELLA LINE	A FOLIGNO-TER ONE E VELOCIZ ERA		
OPERE MINORI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
OI ERE MINORI	IR0B	02	D10	CL IV0200 001	A	91 di 92
Passerella ciclopedonale - relazione di calcolo impalcato						

13 GIUNTI E APPOGGI


13.1 GIUNTI

Gli spostamenti elementari degli appoggi dovuti alle varie condizioni di carico in direzione longitudinale sono di seguito valutati:

	TABLE: Joint Displacements									
Joint	OutputCase	CaseType	StepType	U1	U2					
Text	Text	Text	Text	mm	mm					
15	VENTO Y	LinStatic		0.0	0.0					
15	SISMA_X	LinRespSpec	Max	0.1	0.0					
15	SISMA_Y	LinRespSpec	Max	0.1	0.0					
15	TEMP	LinStatic		4.3	0.0					
16	VENTO Y	LinStatic		0.0	0.0					
16	SISMA_X	LinRespSpec	Max	0.1	0.0					
16	SISMA_Y	LinRespSpec	Max	0.0	0.0					
16	TEMP	LinStatic		4.3	0.4					

13.2 APPOGGI

Nella tabella seguente si riportano gli scarichi degli appoggi posizionati secondo lo schema riportato in figura.

OPERE MINORI

Passerella ciclopedonale - relazione di calcolo impalcato

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IROB 02 D10 CL IV0200 001 A 92 di 92

		F1	F2	F3	Joint	OutputCase
	fisso	KN	KN	KN	Text	Text
F3	max	0.0	0.0	340.3	5	A1_3
F3	min	-55.0	-16.1	93.4	5	SISMA_4
F2	max	73.0	52.0	96.7	5	SISMA_9
F2	min	-54.4	-55.3	156.1	5	A1_2
F1	max	73.0	52.0	96.7	5	SISMA_9
F1	min	-73.0	-52.0	93.4	5	SISMA_9

		F1	F2	F3	Joint	OutputCase
ι	Jni_long	KN	KN	KN	Text	Text
F3	max	0.0	0.0	340.3	15	A1_3
F3	min	0.0	-9.7	93.4	15	SISMA_4
F2	max	0.0	31.1	96.7	15	SISMA_9
F2	min	0.0	-35.3	156.1	15	A1_2
F1	max	0.0	0.0	189.0	15	A1_1
F1	min	0.0	0.0	189.0	15	A1_1

		F1	F2	F3	Joint	OutputCase
U	Jni_trasv	KN	KN	KN	Text	Text
F3	max	0.0	0.0	340.3	6	A1_3
F3	min	-54.9	0.0	93.4	6	SISMA_4
F2	max	0.0	0.0	189.0	6	A1_1
F2	min	0.0	0.0	189.0	6	A1_1
F1	max	73.2	0.0	96.7	6	SISMA_9
F1	min	-73.2	0.0	93.4	6	SISMA 9

		F1	F2	F3	Joint	OutputCase
	multi	KN	KN	KN	Text	Text
F3	max	0.0	0.0	340.3	16	A1_3
F3	min	0.0	0.0	93.4	16	SISMA_4
F2	max	0.0	0.0	189.0	16	A1_1
F2	min	0.0	0.0	189.0	16	A1_1
F1	max	0.0	0.0	189.0	16	A1_1
F1	min	0.0	0.0	189.0	16	A1 1