COM	MITTEN	TE:								
					FRET	_	RIA ITALIA			
				GRU	JPPO FERRO	OVIE DELLO \$1	TATO ITALIA	ANE		
PRO	GETTAZ	IONE:							=	
										<i>l FFRR</i>
								GRUPPO F		L F E A A
U.O	. INF	RASTR	IJŦŦŧ	JRF (FNTR	0				
0.0	, II V I I	NAO I IX	0110			•				
PRO	OGET	TO DI	FATT	IBILI7	ΓÀ TEC	NICA E) ECON	IOMICA		
PRO	OGET	TO DI	FATT	IBILI1	ΓÀ TEC	NICA E	D ECON	IOMICA		
PRO	OGET	TO DI	FATT	IBILI7	ΓÀ TEC	NICA E	ECON	IOMICA		
									ac cia	MDINO 2
QU	ADRU	JPLICA	MEN						RG CIA	MPINO 2
QU	ADRU		MEN						RG CIA	MPINO 2
QU FA	ADRU SE L <i>A</i>	JPLICA	MEN'	то с					RG CIA	MPINO 2
QU FA	ADRU SE L <i>A</i>	JPLICA ATO RC	MEN'	то с					RG CIA	MPINO 2
QU FA	ADRU SE L <i>A</i>	JPLICA ATO RC	MEN'	то с					RG CIA	MPINO 2
QU FA	ADRU SE L <i>A</i>	JPLICA ATO RC	MEN'	то с					RG CIA	MPINO 2
QU FAS	ADRU SE L <i>A</i> ADRUP	JPLICA ATO RC	MEN'	то с					RG CIA	MPINO 2
QU FAS QUA	ADRU SE LA ADRUP	JPLICA ATO RC LICAMEN	MEN' MA NTO LII	TO C	IAMPIN	NO-CAP			RG CIA	MPINO 2
QU FAS QUA	ADRU SE LA ADRUP	JPLICA ATO RC	MEN' MA NTO LII	TO C	IAMPIN	NO-CAP			RG CIA	MPINO 2
QU FAS QUA	ADRU SE LA ADRUP	JPLICA ATO RC LICAMEN	MEN' MA NTO LII	TO C	IAMPIN	NO-CAP				AMPINO 2
QU FAS QUA	ADRU SE LA ADRUP	JPLICA ATO RC LICAMEN	MEN' MA NTO LII	TO C	IAMPIN	NO-CAP				
QU FAS QUA	ADRU SE LA ADRUP	JPLICA ATO RC LICAMEN	MEN' MA NTO LII	TO C	IAMPIN	NO-CAP				
QU FAS QUA	ADRUP OTEC	JPLICA ATO RC LICAMEN NICA e di stat	MEN' OMA NTO LII	TO C	i ferrovi	NO-CAP	ANNEL	LE E PR	So	
QU FAS QUA GEO	ADRUP OTEC azione	JPLICA ATO RC LICAMEN	MEN' OMA NTO LII	TO C NEA Tilevat	i ferrovi	ari OPERA/DI	SCIPLINA	PROGR.	REV.	
QU FAS QUA GEC	ADRUP OTEC azione	JPLICA ATO RC LICAMEN NICA e di stat	MEN' OMA NTO LII	TO C	i ferrovi	NO-CAP	ANNEL	LE E PR	So	
QU FAS QUA GEO	ADRUP OTEC azione	JPLICA ATO RC LICAMEN	MEN' OMA NTO LII	TO C NEA Tilevat	i ferrovi	ari OPERA/DI	SCIPLINA	PROGR.	REV.	
QUAGE COMP	ADRUP OTEC azione	JPLICA ATO RC LICAMEN	MEN' OMA NTO LII FASE R	TO C NEA Tilevat	i ferrovi	ari OPERA/DI	SCIPLINA	PROGR.	REV.	
QUAGE COMP	ADRUP OTEC azione	JPLICA ATO RC LICAMEN NICA e di stat	MEN' OMA NTO LII FASE R	TO C NEA Tilevat ENTE 2 9	i ferrovi	AO-CAPA	SCIPLINA 0 0 5	PROGR. 0 0 3	REV.	CALA: - Autorizzato Da F. Arduini
QU FAS QUA	ADRUP OTEC azione MESSA 4 5	JPLICA ATO RC LICAMEN NICA e di stat	MEN' OMA NTO LII FASE R	TO C NEA Tilevat ENTE 2 9	i ferrovi	NO-CAPA ari OPERA/DI GE0 Verificato	SCIPLINA 0 0 5	PROGR. O O 3 Approvato	REV.	CALA: - Autorizzato Da

		Data	Verificato	Data	Approvato	Data	Autorizzato Data
Emissione esecutiva	Cons. INTEGRA	Feb. 2021	I. Siano	Feb. 2021	T. Paoletti	Feb. 2021	F. Arduini Feb. 2021
inissione esecutiva		. 00. 202	₩	. 66. 262	<i>l</i> 2	. 55. 252	Ordine de
-						-	ITALFERN Directors infrastrutur Infrastrutur Dout.thm. Eab si Ingopen # Cap si Ingopen # Ca
-						-	S.p.A. Tecnica v Centro trics Ardural dia-Provincia di
							Roma
	missione esecutiva						

n. Elab.:

File: NR4500R29RHGE0005003A

QUADRUPLICAMENTO LINEA

Relazione di stabilità rilevati ferroviari

COMMESSA LOTTO
NR45 00

FASE-ENTE R29 DOCUMENTO EHGE0005003 REV.

FOGLIO 0 di 21

INDICE

1.	INTI	RODUZIONE	1
2.	NOF	RMATIVA DI RIFERIMENTO E DOCUMENTAZIONE DI PROGETTO	2
	2.1	NORMATIVA DI RIFERIMENTO	.2
	2.2	DOCUMENTAZIONE DI PROGETTO	. 3
3.	ANA	ALISI DI STABILITÀ DELLE SCARPATE	4
	3.1	METODO DI CALCOLO	. 4
	3.1.1	CARICHI FERROVIARI	. 5
	3.1.2	? AZIONI SISMICHE PER L'ANALISI DI STABILITÀ	. 8
	3.2	MODELLAZIONE	.9
	3.3	RISULTATI	12

	QUADRUP CIAMPINO	_	ITO CIAM LATO ROMA	PINO-CAPANNI A	ELLE	Е	PRG
ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRU	JPLICA	MENTO LI	NEA			
Relazione di stabilità rilevati ferroviari	COMMESSA NR45	LOTTO 00	FASE-ENTE R29	DOCUMENTO EHGE0005003	REV.	-	OGLIO di 21

1. INTRODUZIONE

Il presente documento illustra le verifiche di stabilità delle scarpate dei rilevati ferroviari previsti nel progetto di fattibilità tecnica ed economica del quadruplicamento ferroviario della tratta Capannelle – Ciampino appartenente alla linea Roma – Cassino e del PRG di Ciampino.

L'ubicazione della tratta in questione segue la linea rossa rappresentata in **Figura 1-1**.

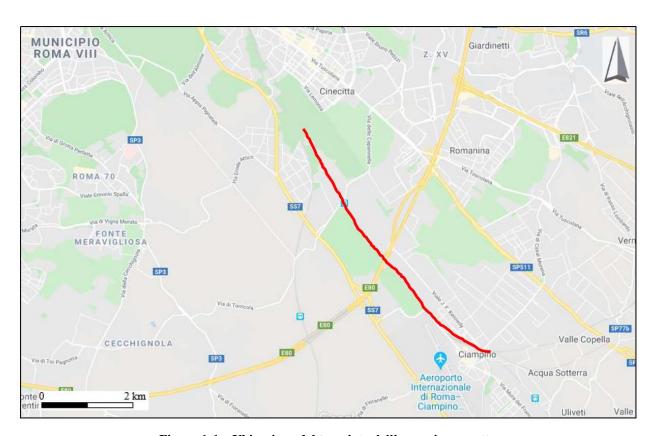


Figura 1-1 – Ubicazione del tracciato dell'opera in progetto

QUADRUPLICAMENTO LINEA

Relazione di stabilità rilevati ferroviari

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO NR45 00 R29 EHGE0005003 A 2 di 21

2. NORMATIVA DI RIFERIMENTO E DOCUMENTAZIONE DI PROGETTO

2.1 NORMATIVA DI RIFERIMENTO

- [N.1]. Norme Tecniche per le Costruzioni, DM del 17/01/2018;
- [N.2]. Legge 05/01/1971 n°1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica;
- [N.3]. Legge 02/02/1974 n°64: Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- [N.4]. C.M. 21/01/2019 n.7: Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni;
- [N.5]. RFI DTC SI PS MA IFS 001 C del 21/12/2018: Manuale di progettazione delle opere civili Parte II Sezione 2 Ponti e Strutture;
- [N.6]. RFI DTC SI PS SP IFS 001 C del 21/12/2018: Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 6 Opere in conglomerato cementizio e in acciaio;
- [N.7]. UNI EN 1991-1-4:2005: Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento;
- [N.8]. UNI EN 1992-1-1:2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici;
- [N.9]. UNI EN 1992-2:2006: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 2: Ponti;
- [N.10]. UNI EN 1993-1-1:2005: Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici;
- [N.11]. UNI EN 1993-2:2007: Eurocodice 3 Progettazione delle strutture di acciaio Parte 2: Ponti;
- [N.12]. UNI EN 1998-1:2005: Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici;
- [N.13]. UNI EN 1998-2:2006: Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 2: Ponti;
- [N.14]. STI 2014 –Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019.

QUADRUPLICAMENTO LINEA

Relazione di stabilità rilevati ferroviari

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO NR45 00 R29 EHGE0005003 A 3 di 21

2.2 DOCUMENTAZIONE DI PROGETTO

- 1) ITALFERR Relazione geotecnica generale (Doc. NR4500R29GEGE0005001)
- 2) ITALFERR Profilo longitudinale tav. 1 (Doc. NR4500R29F6GE0005001)
- 3) ITALFERR Profilo longitudinale tav. 2 (Doc. NR4500R29F6GE0005002)
- 4) ITALFERR Profilo longitudinale tav. 3 (Doc. NR4500R29F6GE0005003)
- 5) ITALFERR Profilo longitudinale tav. 4 (Doc. NR4500R29F6GE0005004)
- 6) ITALFERR Relazione sui cedimenti dei rilevati ferroviari (Doc. NR4500R29RHGE0005001)
- 7) ITALFERR Relazione sui cedimenti dei rilevati stradali (Doc. NR4500R29RHGE0005002)
- 8) ITALFERR Relazione di stabilità rilevati ferroviari (Doc. NR4500R29RHGE0005003)
- 9) ITALFERR Relazione di stabilità rilevati stradali (Doc. NR4500R29RHGE0005004)
- 10) ITALFERR Relazione di stabilità trincee stradali (Doc. NR4500R29RHGE0005005)
- 11) ITALFERR Indagini geognostiche e prove in sito (Doc. NR4511D69SGGE0001001)
- 12) ITALFERR Indagini geofisiche (Doc. NR4511D69IGGE0001001)
- 13) ITALFERR Prove di laboratorio geotecnico (Doc. NR4511D69PRGE0005001)
- 14) ITALFERR Relazione geologica, ideogeologica, geomorfologica e sismica (Doc. NR4511D69RGGE0001001)
- 15) ITALFERR Profilo geologico (Doc. NR4511D69FZGE0001001)

QUADRUPLICAMENTO LINEA

Relazione di stabilità rilevati ferroviari

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO
NR45 00 R29 EHGE0005003 A 4 di 21

3. ANALISI DI STABILITÀ DELLE SCARPATE

Nel presente paragrafo si riportano i risultati delle verifiche di stabilità delle scarpate dei rilevati. Dette verifiche sono state svolte sia in condizioni statiche che in condizioni sismiche con le metodologie ed i parametri geotecnici indicati di seguito.

3.1 METODO DI CALCOLO

L'analisi delle condizioni di stabilità è stata condotta avvalendosi degli usuali metodi dell'equilibrio limite. Per la valutazione dei fattori di sicurezza nei confronti della stabilità globale è stato impiegato il software di calcolo SlopeCAD, dove è possibile tracciare una molteplicità di superfici di potenziale scivolamento generando la maglia dei centri, scegliendo una serie di punti di passaggio ed un fascio di tangenti. Il metodo di analisi è quello di Bishop, il quale prevede la generazione di superfici di scorrimento circolari.

Il coefficiente di sicurezza FS a rottura lungo la superficie di scorrimento viene definito come il rapporto tra la resistenza al taglio disponibile lungo la superficie S e quella effettivamente mobilitata lungo detta superficie:

$$FS = \frac{\int_{S} \tau_{disp}}{\int_{S} \tau_{mob}}$$

In accordo alle NTC 2018, per rilevati in materiali sciolti e fronti scavo, le analisi di stabilità vengono condotte secondo la combinazione (A2+M2+R2), in base alla quale i parametri di resistenza del terreno devono essere abbattuti mediante i coefficienti parziali di seguito riportati:

 γ_{Φ} '=1.25 coefficiente parziale per l'angolo di resistenza al taglio

 γ_{c} '=1.25 coefficiente parziale per la coesione drenata

L'analisi viene, quindi, condotta con i seguenti parametri geotecnici di calcolo:

 $\tan(\varphi'_{\text{calcolo}}) = \tan(\varphi'_{k})/\gamma_{\varphi}$, coefficiente parziale per l'angolo di resistenza al taglio

 $c'_{calcolo} = c'_{k}/\gamma_{c'}$ coefficiente parziale per la coesione drenata

In condizioni sismiche, i coefficienti di sicurezza dei gruppi A2 ed M2 assumono invece valori unitari (v. 7.11.4 delle NTC 2018).

QUADRUPLICAMENTO LINEA

Relazione di stabilità rilevati ferroviari

 COMMESSA
 LOTTO
 FASE-ENTE
 DOCUMENTO
 REV.
 FOGLIO

 NR45
 00
 R29
 EHGE0005003
 A
 5 di 21

La sezione sottoposta a verifica, ubicata alla progressiva PK 2+075, è caratterizzata da un rilevato ferroviario avente un'altezza massima $H_{max}=4.05$ m ed una base B=18.41 m. Detta sezione viene associata alla stratigrafia dell'**Area Geotecnica 1** (per la definizione delle aree geotecniche, si veda la Relazione geotecnica generale: Doc. NR4500R29GEGE0005001); tale stratigrafia è riportata in **Tabella 3-1** con relativi parametri geotecnici di riferimento.

Tabella 3-1 -Valori di progetto dell'angolo d'attrito e della coesione drenata

D	A PK 0 A PK 2+600)						
AREA	PROFONDITÀ	UNITÀ	γ_t [kN/m ³]	c' (kPa)	Φ' (°)	Φ'cv (°)	E' _{op} (kPa)	k _v (m/s)
GEOTECNICA	PROPONDITA	GEOTECNICA	di calcolo	di calcolo	di calcolo	di calcolo	di calcolo	-
	da 0 m a 15 m	S(L) ₁	17.5	-	35	29	50 000	1.0E-06
1	da 15 m a 22 m	R _A	13.5	135	43	1	980 000	1.0E-07
	oltre 22 m	S(L) ₂	17.5	-	37	30	100 000	1.0E-06

In accordo al §6.8.2 delle NTC 2018, il coefficiente di sicurezza minimo per le verifiche di stabilità di opere in materiali sciolti e fronti scavo deve essere pari a 1.1 (γ_R), ossia deve essere verificata la seguente diseguaglianza:

$FS \ge 1.1$

In accordo al §7.11 delle NTC 2018, il coefficiente minimo di sicurezza in condizioni sismiche è invece pari a 1.2.

 $FS \geq 1.2$

3.1.1 CARICHI FERROVIARI

Le analisi di stabilità dei rilevati ferroviari sono state svolte con i carichi permanenti ed accidentali valutati in accordo alle STI (vedasi Doc. [N.14]).

Nelle analisi in accordo alle STI oltre ai carichi permanenti di 14.4 kPa, a cui poi va applicato il coefficiente parziale per le azioni, $\gamma_F = 1.3$ (v. Tabella 5.2.V delle **NTC 2018**), va considerato un carico da traffico ferroviario, valutato dal modello di carico 71 di cui al punto 6.3.2. della norma EN 1991-2:2003/AC:2010.

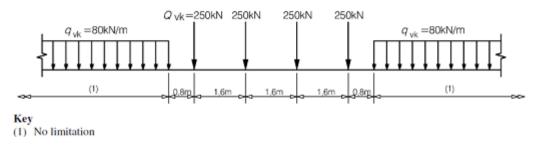


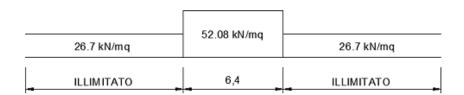
Figura 2: Load model 71 (al punto 6.3.2. della norma EN 1991-2:2003)

Il carico equivalente per le opere in terra si ricava dalla ripartizione trasversale e longitudinale dei carichi per effetto delle traverse e del ballast previsti dalla norma EN 1991-1:2003. Considerando i 4 carichi assiali da 250 kN e la relativa distribuzione longitudinale, il carico verticale equivalente a metro lineare agente a quota piattaforma ferroviaria risulta pari a:

$$p = \frac{4 \times 250}{4 \times 1.60} = 156.25 \text{ kPa}$$

$$156.25 \text{ kN/m}$$

$$80 \text{ kN/m}$$


$$156.25 \text{ kN/m}$$

$$156.25 \text{ kN/m}$$

$$156.25 \text{ kN/m}$$

$$156.25 \text{ kN/m}$$

Considerando la distribuzione trasversale dei carichi su una larghezza di 3.0 m (a 0.7 m dal piano ferro), secondo quanto previsto dalla norma EN 1991-2:2003 punto 6.3.6.4, si ricava il carico equivalente unitario agente alla quota della piattaforma ferroviaria:

A tali carichi si deve applicare il coefficiente α relativo alle categorie S.T.I. come indicato in **Tabella 2**.

Tabella 2: coefficiente α relativo alle categorie S.T.I

Tipi di linea o categorie di linea STI	Valore minimo del fattore alfa (α)
IV	1.1
V	1.0
VI	1.1
VII-P	0.83
VII-F, VII-M	0.91

Nel caso in esame il coefficiente α è pari ad 1.0 perché le categorie di traffico sono P2 per il traffico passeggeri e F1 per il traffico merci.

In sintesi, per le condizioni di carico esaminate, si applicano i seguenti carichi derivanti da STI:

- Condizioni statiche: carico permanente pari a 18.7 kPa, carico accidentale pari a 67.7 kPa;
- Condizioni sismiche: carico permanente pari a 14.4 kPa, carico accidentale pari a 10.4 kPa (coefficiente di combinazione pari a 0.2 come da \S 2.3.3 delle Specifiche RFI). In condizioni sismiche i coefficienti parziali sulle azioni vanno posti pari ad 1 e al carico accidentale va applicato un coefficiente di combinazione Ψ_2 =0.2 (v. \S 5.2.2.8 delle NTC 2018).

QUADRUPLICAMENTO LINEA

Relazione di stabilità rilevati ferroviari

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO NR45 00 R29 EHGE0005003 A 8 di 21

3.1.2 AZIONI SISMICHE PER L'ANALISI DI STABILITÀ

In base al metodo pseudo-statico, l'azione sismica viene modellata considerando, in luogo delle azioni dinamiche, le azioni statiche equivalenti ovvero forze statiche orizzontali f_h e verticali f_v per unità di volume, di intensità pari al prodotto tra il peso specifico del corpo γ sottoposto all'azione dinamica ed il coefficiente sismico:

 $f_h = \gamma \cdot k_h$ forza orizzontale per unità di volume

 $f_v = \gamma \cdot k_v$ forza verticale per unità di volume

dove:

 γ peso specifico del volume considerato

k_h coefficiente sismico in direzione orizzontale

k_v coefficiente sismico in direzione verticale

In base \$7.11.3.5.2 delle NTC 2018, i coefficienti sismici sono definiti in funzione dell'accelerazione orizzontale massima attesa al sito (a_{max}), mediante le seguenti espressioni:

$$k_h = \beta_s \cdot a_{max}/g$$

$$k_v = \pm 0.5 \cdot k_h$$

$$a_{max} = a_g \cdot S_s S_t$$

dove:

$$a_g/g = 0.212$$

$$\beta_s = 0.38$$

$$S_S=1.185$$

$$S_T = 1$$

da cui:

$$a_{max} = 0.212*1.185 = 0.251 g$$

3.2 MODELLAZIONE

Il modello di calcolo elaborato fa riferimento al metodo di analisi di Bishop. Detto metodo si fonda sull'ipotesi che la superficie di scivolamento sia assimilabile ad un arco di circonferenza. Se si considera la massa interessata dallo scivolamento suddivisa in n conci, il fattore di sicurezza può essere espresso in termini di momenti generati dalle forze agenti su singoli conci rispetto al centro della circonferenza stessa:

$$FS = \frac{M_S}{M_R}$$

In cui M_R è il momento delle forze ribaltanti pari a

$$M_R = r \cdot \sum_{i=1}^n W_i \cdot \sin \alpha_i$$

M_S è il momento stabilizzante dato da

$$M_S = \sum_{i=1}^{n} (c + \sigma_i \cdot tan\varphi_i) \cdot \Delta l_i$$

dove r e Δl_i sono rispettivamente il raggio e la lunghezza della base del concio considerato (v. Figura 3-3).

Nel metodo di Bishop si assume che le azioni agenti all'interfaccia dei conci abbiano risultante orizzontale, perciò, se si esprime la resistenza mobilitata T_i come un'aliquota della resistenza al taglio, tramite il fattore di sicurezza FS (assunto uguale a quello dell'equazione generale), e si ricava N_i dall'equilibrio alla traslazione verticale, si ha:

$$N_{i} = \frac{W_{i} - u_{i} \cdot \Delta x_{i} - (1/FS) \cdot c \cdot \Delta x_{i} \cdot tan\alpha_{i}}{cos\alpha_{i} \cdot [1 + (tan\alpha_{i} \cdot tan\varphi_{i})/FS]}$$

ottenendo:

$$FS = \frac{\sum_{i=1}^{n} [c \cdot \Delta x_i + (W_i - u_i \cdot \Delta x_i) \cdot tan\varphi_i] \cdot [1/M_i(\alpha)]}{\sum_{i=1}^{n} W_i \cdot sin\alpha_i}$$
[1]

con

$$M_i(\alpha) = \cos \alpha_i \cdot \left(1 + \frac{\tan \alpha_i \cdot \tan \varphi_i}{FS}\right)$$
 [2]

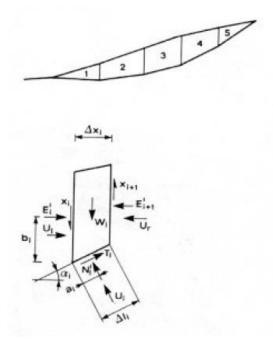


Figura 3-3 – metodo di Bishop

Poiché il coefficiente di sicurezza FS compare in [1] sia al primo membro, sia al secondo (per la presenza di $M_i(\alpha)$), è necessaria una procedura iterativa: si introduce un valore di tentativo in [2] e se ne calcola uno nuovo mediante la [1], continuando fino a convergenza (grado di approssimazione pari a 0.001).

In conclusione, il metodo di Bishop trascura l'equilibrio alla traslazione orizzontale del singolo concio, pertanto il risultato è necessariamente approssimato. Tuttavia, il confronto con le procedure rigorose dimostra che l'errore commesso è di pochi punti percentuali e, quindi, accettabile.

Si specifica che, sulla base dei risultati delle indagini eseguite, sono stati definiti gli spessori di scotico e bonifica per il piano di posa di rilevati e trincee.

	QUADRUP CIAMPINO		NTO CIAM LATO ROMA	PINO-CAPANNE	LLE	Е	PRG
ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	QUADRI	JPLICA	MENTO LI	NEA			
Relazione di stabilità rilevati ferroviari	COMMESSA NR45	LOTTO 00	FASE-ENTE R29	DOCUMENTO EHGE0005003	REV.		OGLIO 1 di 21

In **Figura 3-4** è rappresentata la geometria del modello di calcolo.

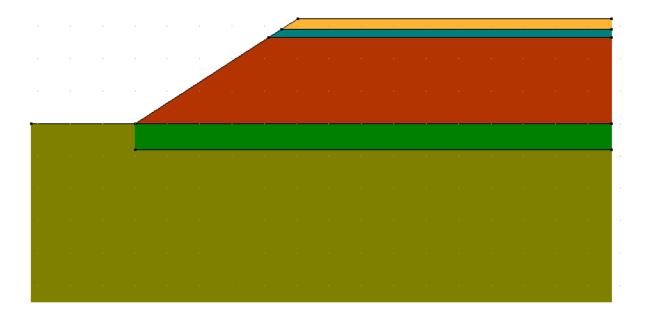


Figura 3-4 – geometria del modello di calcolo per la stabilità del rilevato

3.3 RISULTATI

L'analisi allo SLU ha fornito un coefficiente di sicurezza FS = 1.16, a fronte di un valore minimo di 1.1. In presenza di sisma, il coefficiente di sicurezza relativo alla condizione più gravosa è FS = 1.23, a fronte di un valore minimo di 1.2. Dunque le verifiche di stabilità risultano soddisfatte. In Figura 3-5 e Figura 3-6 sono rappresentate la superfici di scorrimento critiche, per le condizioni di SLU e SLV, rispettivamente.

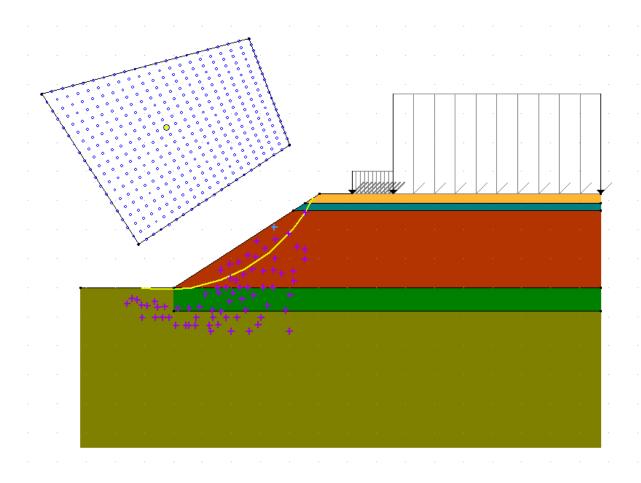


Figura 3-5 – Superficie di scorrimento critica (in giallo) per SLU

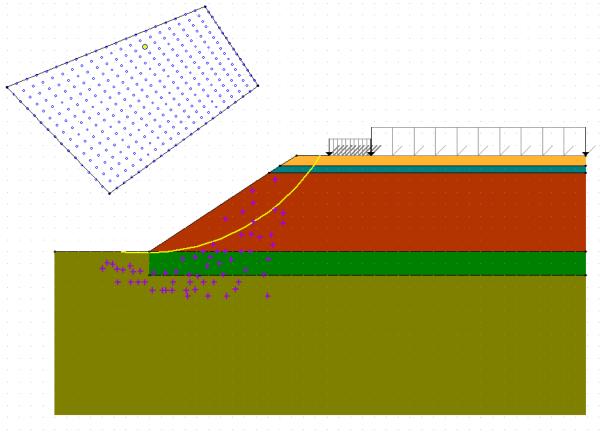


Figura 3-6 – Superficie di scorrimento critica (in giallo) per SLV

QUADRUPLICAMENTO LINEA

FASE-ENTE

Relazione di stabilità rilevati ferroviari

COMMESSA LOTTO
NR45 00

DOCUMENTO EHGE0005003 REV. FOGLIO
A 14 di 21

3.4 ALLEGATO

Risultati di calcolo SLU

Vengono disegnate le 10 superfici più critiche, con in evidenza la peggiore trovata.

Simboli usati nella tabella dei risultati:

alfa = angolo alla base del concio in gradi

l = lunghezza della base del concio

C = coesione di progetto alla base del concio

Tgfi = tangente dell'angolo di attrito di progetto alla base del concio

Xg = ascissa del baricentro del concio

Yg = ordinata del baricentro del concio

b = braccio relativo al peso del concio

Peso = peso complessivo del concio

Pvert = carico verticale complessivo agente sul concio

Ptot = carico totale agente alla base del concio

Press = pressione di falda

Mstab = momento stabilizzante complessivo

MstabS = momento instabilizzante complessivo

Unità di misura utilizzate nella tabella dei risultati: daN,cm

Coefficiente di sicurezza richiesto = 1.1

Minimo coefficiente di sicurezza calcolato FS = 1.164 (VERIFICATO)

Caratteristiche del cerchio che comporta il minimo coefficiente di sicurezza:

Ascissa del centro X = -28.92

Ordinata del centro Y = 690.79

Raggio del cerchio R = 699 cm

QUADRUPLICAMENTO LINEA

Relazione di stabilità rilevati ferroviari

COMMESSA LOTTO FA NR45 00

FASE-ENTE R29 DOCUMENTO EHGE0005003 REV. FOGLIO A 15 di 21

Caratteristiche della massa interessata dallo scivolamento:

Volume = 50332 cmc/cm

Peso = 100 daN/cm

Perimetro di scivolamento = 890 cm

STABILITA' DEL PENDIO CON IL METODO DI BISHOP

Stabilità del pendio senza sisma

Concio	alfa	1	С	Tgfi	Xg	Yg	b	Peso	Pvert	Ptot	Press	Mstab	Minst
1	-7.4	38	0	0.56	-112	-2	83	0	0	0	0	66	-14
2	-1.7	100	0	0.56	-46	-3	17	1	0	1	0	441	-23
3	5.6	80	0	0.62	49	14	78	5	0	5	0	1952	322
4	9.9	24	0	0.62	92	31	121	3	0	3	0	1106	328
5	15.3	107	0	0.62	159	61	188	17	0	17	0	6662	3113
6	24.4	114	0	0.62	260	112	289	23	0	23	0	8826	6596
7	34.1	125	0	0.62	362	174	391	25	0	25	0	9505	9636
8	45.3	147	0	0.62	462	248	491	20	0	20	0	8167	10078
9	54.8	85	0	0.62	539	315	568	6	0	6	0	2473	3283
10	58.8	11	0	0.62	569	346	598	0	0	0	0	184	246
11	60.6	34	0	0.39	579	359	608	1	0	1	0	278	486
12	63.1	25	0	0.72	593	375	621	0	0	0	0	85	106
		890						100	0	100		39745	34155

Coefficiente di sicurezza FS = 1.16

QUADRUPLICAMENTO LINEA

Relazione di stabilità rilevati ferroviari

COMMESSA LOTTO FASE-ENTE NR45 00 R29

DOCUMENTO EHGE0005003 REV. FOGLIO
A 16 di 21

Risultati di calcolo SLV

Vengono disegnate le 10 superfici più critiche, con in evidenza la peggiore trovata.

Simboli usati nella tabella dei risultati:

alfa = angolo alla base del concio in gradi

l = lunghezza della base del concio

C = coesione di progetto alla base del concio

Tgfi = tangente dell'angolo di attrito di progetto alla base del concio

Xg = ascissa del baricentro del concio

Yg = ordinata del baricentro del concio

b = braccio relativo al peso del concio

Peso = peso complessivo del concio

Pvert = carico verticale complessivo agente sul concio

Ptot = carico totale agente alla base del concio

Press = pressione di falda

Mstab = momento stabilizzante complessivo

MstabS = momento instabilizzante complessivo

Unità di misura utilizzate nella tabella dei risultati: daN,cm

Coefficiente di sicurezza richiesto = 1.2

Minimo coefficiente di sicurezza calcolato FS = 1.232

Caratteristiche del cerchio che comporta il minimo coefficiente di sicurezza:

Ascissa del centro X = -18.42

Ordinata del centro Y = 865.8

Raggio del cerchio R = 871 cm

Caratteristiche della massa interessata dallo scivolamento:

Volume = 82170 cmc/cm

QUADRUPLICAMENTO LINEA

Relazione di stabilità rilevati ferroviari COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO NR45 00 R29 EHGE0005003 A 17 di 21

Peso = 164 daN/cm

Perimetro di scivolamento = 983 cm

STABILITA' DEL PENDIO CON IL METODO DI BISHOP

Stabilità del pendio con sisma orizzontale e verticale positivi

Concio	alfa	1	С	Tgfi	Xg	Yg	b	Peso	Pvert	Ptot	Press	Mstab	Minst
1	-6	18	0	0.7	-106	-1	88	0	0	0	0	20	0
2	-2.1	100	0	0.7	-42	-2	23	1	0	1	0	421	32
3	3.9	81	0	0.78	52	16	70	5	0	5	0	3264	680
4	7.2	20	0	0.78	91	31	110	2	0	2	0	1555	453
5	11.2	103	0	0.78	156	58	174	18	0	18	0	11406	4498
6	18.1	106	0	0.78	254	104	273	26	0	27	0	16028	9170
7	25.3	112	0	0.78	354	157	372	31	0	32	0	18902	14189
8	32.9	120	0	0.78	454	218	472	33	0	35	0	20018	18439
9	38.9	61	0	0.78	528	267	546	15	0	16	0	9280	9585
10	44	95	0	0.78	585	311	603	19	0	20	0	12023	13341
11	49.7	79	0	0.78	643	352	661	10	0	11	0	6564	7693
12	53.5	37	0	0.49	681	376	700	2	0	3	0	1225	1948
13	56.4	50	0	0.9	703	391	721	1	0	1	0	837	944
		983						164	0	172		101542	80974

Coefficiente di sicurezza FS = 1.25

STABILITA' DEL PENDIO CON IL METODO DI BISHOP

Stabilità del pendio con sisma orizzontale positivo e verticale negativo

Concio	alfa	1	С	Tgfi	Xg	Yg	b	Peso	Pvert	Ptot	Press	Mstab	Minst
1	-6	18	0	0.7	-106	-1	88	0	0	0	0	18	0
2	-2.1	100	0	0.7	-42	-2	23	1	0	1	0	382	34
3	3.9	81	0	0.78	52	16	70	5	0	5	0	2965	653
4	7.2	20	0	0.78	91	31	110	2	0	2	0	1412	429

QUADRUPLICAMENTO LINEA

Relazione di stabilità rilevati ferroviari

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

NR45 00 R29 EHGE0005003 A 18 di 21

5	11.2	103	0	0.78	156	58	174	18	0	17	0	10346	4212
6	18.1	106	0	0.78	254	104	273	26	0	24	0	14525	8505
7	25.3	112	0	0.78	354	157	372	31	0	30	0	17112	13088
8	32.9	120	0	0.78	454	218	472	33	0	31	0	18104	16945
9	38.9	61	0	0.78	528	267	546	15	0	14	0	8386	8791
10	44	95	0	0.78	585	311	603	19	0	18	0	10857	12220
11	49.7	79	0	0.78	643	352	661	10	0	10	0	5922	7038
12	53.5	37	0	0.49	681	376	700	2	0	2	0	1106	1781
13	56.4	50	0	0.9	703	391	721	1	0	1	0	753	863
		983						164	0	156		91888	74559

Coefficiente di sicurezza FS = 1.23

STABILITA' DEL PENDIO CON IL METODO DI BISHOP

Stabilità del pendio con sisma orizzontale negativo e verticale positivo

Concio	alfa	1	C	Tgfi	Xg	Yg	b	Peso	Pvert	Ptot	Press	Mstab	Minst
1	-6	18	0	0.7	-106	-1	88	0	0	0	0	20	-5
2	-2.1	100	0	0.7	-42	-2	23	1	0	1	0	418	-75
3	3.9	81	0	0.78	52	16	70	5	0	5	0	3307	-92
4	7.2	20	0	0.78	91	31	110	2	0	2	0	1593	81
5	11.2	103	0	0.78	156	58	174	18	0	18	0	11824	1780
6	18.1	106	0	0.78	254	104	273	26	0	27	0	16949	5431
7	25.3	112	0	0.78	354	157	372	31	0	32	0	20390	9993
8	32.9	120	0	0.78	454	218	472	33	0	35	0	22052	14350
9	38.9	61	0	0.78	528	267	546	15	0	16	0	10395	7847
10	44	95	0	0.78	585	311	603	19	0	20	0	13672	11284
11	49.7	79	0	0.78	643	352	661	10	0	11	0	7597	6682
12	53.5	37	0	0.49	681	376	700	2	0	3	0	1377	1715
13	56.4	50	0	0.9	703	391	721	1	0	1	0	1004	838

QUADRUPLICAMENTO LINEA

Relazione di stabilità rilevati ferroviari COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO NR45 00 R29 EHGE0005003 A 19 di 21

983 164 0 172 110597 59830

Coefficiente di sicurezza FS = 1.85

STABILITA' DEL PENDIO CON IL METODO DI BISHOP

Stabilità del pendio con sisma orizzontale e verticale negativi

Concio	alfa	1	С	Tgfi	Xg	Yg	b	Peso	Pvert	Ptot	Press	Mstab	Minst
1	-6	18	0	0.7	-106	-1	88	0	0	0	0	18	-5
2	-2.1	100	0	0.7	-42	-2	23	1	0	1	0	380	-73
3	3.9	81	0	0.78	52	16	70	5	0	5	0	3008	-119
4	7.2	20	0	0.78	91	31	110	2	0	2	0	1449	57
5	11.2	103	0	0.78	156	58	174	18	0	17	0	10765	1494
6	18.1	106	0	0.78	254	104	273	26	0	24	0	15446	4766
7	25.3	112	0	0.78	354	157	372	31	0	30	0	18600	8891
8	32.9	120	0	0.78	454	218	472	33	0	31	0	20137	12856
9	38.9	61	0	0.78	528	267	546	15	0	14	0	9501	7053
10	44	95	0	0.78	585	311	603	19	0	18	0	12505	10162
11	49.7	79	0	0.78	643	352	661	10	0	10	0	6955	6027
12	53.5	37	0	0.49	681	376	700	2	0	2	0	1259	1548
13	56.4	50	0	0.9	703	391	721	1	0	1	0	921	757
		983						164	0	156		100942	53415

Coefficiente di sicurezza FS = 1.89