COMMITTENTE:

PROGETTAZIONE:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01e s.m.i.

CUP: J14H20000440001

n. Elab.:

U.O. GEOLOGIA TECNICA, DELL'AMBIENTE E DEL TERRITORIO

PROGETTO DEFINITIVO

LINEA AV/AC MILANO - VENEZIA
LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

GEOLOGIA ED IDROGEOLOGIA

REPORT PROVE SISMICHE:

File: IN1010D69IGGE0005001A

DOWN HOLE, M.A.S.W./Re.Mi. E H.V.S.R.

						SCALA:
						-
COMMESSA	LOTTO FASE	ENTE TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV.	
I N 1 0	1 0 D	6 9 I G	G E 0 0 0 5	0 0 2	Α	

S. Hodani 20.	zato Data
	omedini 04.21
OBSERT RESOURCE DE LA CONTROL	I FERR
Ordina del G	ssimo Comedini eologi del Lazio 2103

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 2 di 63

INDICE

1	PRE	MESSA GENERALE	3
2	SIN	TESI DELLE ATTIVITA' SVOLTE	4
2.	.1	REPORT FOTOGRAFICO DELLE ATTIVITÀ SVOLTE	6
3	IND	AGINI SISMICHE M.A.S.W. / RE.MI.	7
3.	.1	M.A.S.W. / RE.MI. – RIFERIMENTO NORMATIVO (<i>N.T.C. 2018, D.M. 17/01/2018</i>)	7
3.	.2	STENDIMENTI SISMICI CON METODO "M.A.S.W." E "RE.MI." CENNI METODOLOGICI	9
3.	.3	MODALITÀ ESECUTIVE DELL'INDAGINE	.10
3.	.4	ELABORAZIONE DATI	.11
ALL	EGA	TO 1 SPETTRI MEDI, CURVA DI DISPERSIONE LOG VELOCITÀ ONDE VS (PROVE M.A.S.W./RE.MI.)	.12
4	RILI	IEVI SISMICI H.V.S.R.	.28
4.	.1	CENNI TEORICI	.28
4.	.2	METODOLOGIA	.29
4.	.3	SINTESI DEI DATI REGISTRATI	.31
		TO 2 STAZIONI H.V.S.R. GRAFICI H.V.S.R. MEDI GRAFICI DELLE TRE COMPONENTI N-S / E-W / UP HV1 – HV2 – HV3 – HV4	
5	PRO	VE DOWN-HOLE	.41
5.	.1	DESCRIZIONE / ACQUISIZIONE PROVA D-H	.41
5.	.2	ELABORAZIONE E RESTITUZIONE DEI DATI	.42
	EGA AMF	TO 3 UBICAZIONE PLANIMETRICA SISMOGRAMMI $V_P - V_S$ GRAFICO VELOCITÀ $V_P - V_S$ TABELLA	

1 PREMESSA GENERALE

A seguito dell'Ordine n. 100039895 di attivazione n. 19 su A.Q. n. 200001269 del 21.05.2019, sono state eseguite specifiche prospezioni geofisiche di supporto al Progetto Definitivo dell'ingresso Ovest di Verona – PD Nodo Verona ingresso Ovest.

Le indagini geofisiche sono state eseguite sia in prossimità dell'asse del tracciato ferroviario in progetto sia in ulteriori settori indicati dalla Committenza.

In Figura 1 si riporta il settore interessato dalle indagini geofisiche (riquadro blu) su mappa stradale.

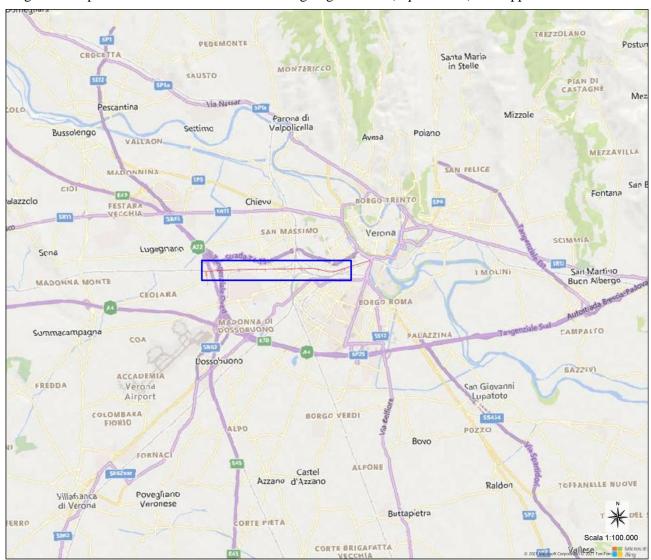


Figura 1 – Estratto in formato ridotto dell'ubicazione del tratto interessato dalle indagini geofisiche su mappa stradale.

2 SINTESI DELLE ATTIVITA' SVOLTE

Le ubicazioni di dettaglio dei punti d'indagine sono inserite nell'elaborato grafico **PROGR. 001** – "Planimetria indagini eseguite" a scala 1:2.500 su base cartografica fornita dalla Committenza e negli estratti da Figura 3 a Figura 5.

Per ragioni di rappresentazione cartografica, le ubicazioni delle indagini geofisiche sono state suddivise in n. 3 settori (da A a C - Figura 2) corrispondenti a diversi tratti del progetto di tracciato ferroviario:

Figura 2 – Inquadramento di dettaglio dei settori interessati dalle indagini geofisiche.

- Settore A: da circa km 150 + 780 a circa km 152 + 000;
- Settore B: da circa km 153 + 218 a circa km 154 + 733;
- Settore C: da circa km 155 + 866 a circa km 156 + 145.

In particolare, l'attività si è articolata mediante differenti indagini di tipo sismico:

- N. **8 acquisizioni sismiche di tipo M.A.S.W./Re.Mi.**, identificate con sigle da **M1/R1** a **M8/R8**, finalizzate alla determinazione dei parametri Vs_{eq} e alla definizione delle categorie sismiche dei suoli di fondazione, ai sensi delle N.T.C. 2018. Le prove sono state caratterizzate da stendimenti di n.24 geofoni posizionati ad intervalli regolari di 3.0 m (da M2/R2 a M8/R8) e 5.0 m (M1/R1). L'indicazione di dettaglio del punto centrale di riferimento, rappresentativo del volume di terreno indagato è stato posizionato su foto aerea nella relativa scheda monografica nello specifico capitolo dedicato;
- N. 8 prove sismiche passive di tipo H.V.S.R. denominate da HV1 a HV8, finalizzate alla definizione delle frequenze di risonanza di sito nonché alla verifica congiunta degli eventuali contrasti di impedenza sismica osservati nelle rispettive prove di tipo M.A.S.W./Re.Mi. per la ricostruzione del modello sismo-stratigrafico in termini di velocità Vs;
- N. 5 prove sismiche di tipo Down-Hole, denominate DH1, DH2, DH7, DH16 e DH21, realizzate rispettivamente nei fori di sondaggio opportunamente attrezzati S1bis, S2bis, S7bis, S16bis e S21 terebrati fino alle profondità di 40.0 m (S1bis, S7bis, S16bis e S21) e 50.0 m (S2bis), finalizzati alla definizione dei profili di velocità Vp, Vs e alla determinazione dei parametri Vseq ai sensi delle N.T.C. 2018, nonché dei moduli dinamici dei terreni carotati.

Per una corretta ubicazione planimetrica delle indagini è stato eseguito un rilievo topografico realizzato mediante strumentazione GPS "Trimble R2".

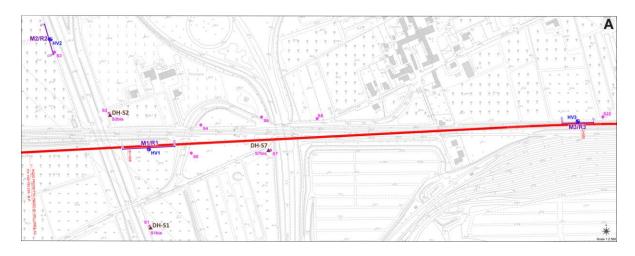


Figura 3 - Estratto ubicazione indagini rispetto il tracciato ferroviario di progetto (in rosso) – Settore A (da circa km 150 + 780 a circa km 152 + 000).

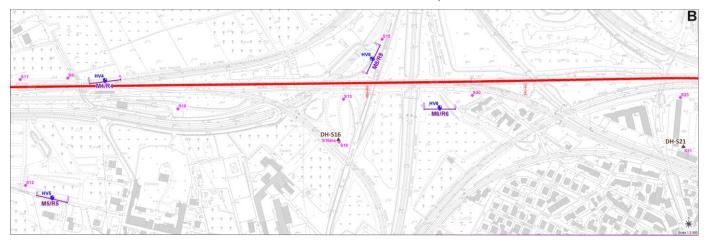


Figura 4 - Estratto ubicazione indagini rispetto il tracciato ferroviario di progetto (in rosso) – Settore B (da circa km 153 + 218 a circa km 154 + 733).

Figura 5 - Estratto ubicazione indagini rispetto il tracciato ferroviario di progetto (in rosso) – Settore C (da circa km 155 + 866 a circa km 156 + 145).

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 6 di 63

2.1 Report fotografico delle attività svolte

INDAGINE SISMICA Prova M.A.S.W./Re.Mi. (Stendimento geofonico a sinistra ed energizzazione a destra)

INDAGINE SISMICA IN FORO – Prova DOWN-HOLE - (*Energizzazione in onde P a sinistra e in onde S a destra*)

INDAGINE SISMICA – Prova H.V.S.R.

3 INDAGINI SISMICHE M.A.S.W. / RE.MI.

Per la determinazione dei parametri $V_{S_{eq}}$ e la classificazione della categoria sismica dei suoli di fondazione ai sensi delle N.T.C. 2018, sono state eseguite n.8 prove sismiche di tipo M.A.S.W./Re.Mi., denominate con sigle da M1/R1 a M8/R8.

La Figura 6 visualizza su foto aerea, i punti di misura rappresentativi dei volumi di terreno investigati e di determinazione dei profili sismostratigrafici per ognuna delle n.8 prove eseguite.

Figura 6 - Inquadramento territoriale delle prove M.A.S.W./Re.Mi. rispetto il tracciato ferroviario in progetto (in rosso).

L'ubicazione di dettaglio su foto aerea della prova sismica è riportata in **Allegato 1** "SPETTRI, CURVE DI DISPERSIONE e LOG VELOCITÀ ONDE Vs M.A.S.W. / Re.Mi.

3.1 M.A.S.W. / Re.Mi. – Riferimento normativo (*N.T.C. 2018, D.M. 17/01/2018*)

La normativa D.M. 14.01.08 "Norme tecniche per le costruzioni", aggiornata con D.M. del 17 gennaio 2018, indica che ai fini della definizione dell'azione sismica di progetto (punto 3.2.2), deve essere valutata l'influenza delle condizioni litologiche e morfologiche locali sulle caratteristiche del moto del suolo in superficie, mediante studi specifici di risposta sismica locale.

In alternativa, qualora le condizioni stratigrafiche e le proprietà dei terreni siano chiaramente riconducibili alle categorie definite nella Tab. 3.2.II, si può fare riferimento ad un approccio semplificato che si basa sulla classificazione del sottosuolo in funzione dei valori della velocità di propagazione delle onde di taglio (Vs), ottenuti mediante specifiche prove geofisiche.

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, $V_{s,eq}$ (in m/s), definita dall'espressione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$
[3.2.1]

con:

h_i spessore dell'i-esimo strato;

V_{S,i} velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Per le fondazioni superficiali, la profondità del substrato è riferita al piano d'imposta delle stesse, mentre per le fondazioni su pali è riferita alla testa dei pali. Nel caso di opere di sostegno di terreni naturali, la profondità è riferita alla testa dell'opera. Per muri di sostegno di terrapieni, la profondità è riferita al piano d'imposta della fondazione.

Per depositi con profondità H del substrato superiore a 30 m, la velocità equivalente delle onde di taglio $V_{s,eq}$ è definita dal parametro $V_{s_{30}}$, ottenuto ponendo H=30 m nella precedente espressione e considerando le proprietà degli strati di terreno fino a tale profondità.

Le categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato sono definite in Tab. 3.2.II.

Tab. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.				
Categoria	Caratteristiche sismiche del sottosuolo			
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.			
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.			
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi- stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.			
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.			
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego- rie C o D, con profondità del substrato non superiore a 30 m.			

Per queste cinque categorie di sottosuolo, le azioni sismiche sono definibili come descritto al § 3.2.3 delle N.T.C. 2018. Per qualsiasi condizione di sottosuolo non classificabile nelle categorie precedenti, è necessario predisporre specifiche analisi di risposta locale per la definizione delle azioni sismiche.

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 9 di 63

3.2 Stendimenti sismici con metodo "M.A.S.W." e "Re.Mi." cenni metodologici

Il metodo M.A.S.W. (Multichannel Analysis of Surface Waves) è una tecnica d'indagine non invasiva (non è necessario eseguire perforazioni o scavi e ciò limita i costi), che individua il profilo di velocità delle onde di taglio verticali Vs, basandosi sulla misura delle onde superficiali fatta in corrispondenza di diversi sensori (accelerometri o geofoni) posti sulla superficie del suolo. Il contributo predominante alle onde superficiali è dato dalle onde di Rayleigh, che viaggiano con una velocità correlata alla rigidezza della porzione di terreno interessata dalla propagazione delle onde.

In un mezzo stratificato le onde di Rayleigh sono dispersive, cioè onde con diverse lunghezze d'onda si propagano con diverse velocità di fase e velocità di gruppo (Achenbach, J.D., 1999, Aki, K. and Richards, P.G., 1980) o detto in maniera equivalente la velocità di fase (o di gruppo) apparente delle onde di Rayleigh dipende dalla frequenza di propagazione.

La natura dispersiva delle onde superficiali è correlabile al fatto che onde ad alta frequenza con lunghezza d'onda corta si propagano negli strati più superficiali e quindi danno informazioni sulla parte più superficiale del suolo, invece onde a bassa frequenza si propagano negli strati più profondi e quindi danno informazioni sulla parte più profonda del suolo. Il metodo d'indagine M.A.S.W. si distingue in metodo attivo e metodo passivo (Zywicki, D.J.1999) o in una combinazione di entrambi.

Nel metodo attivo, utilizzato nell'indagine, le onde superficiali generate in un punto sulla superficie del suolo sono misurate da uno stendimento lineare di sensori.

Nel metodo passivo lo stendimento dei sensori può essere sia lineare che circolare e si misura il rumore ambientale di fondo esistente. Il metodo attivo generalmente consente di ottenere una velocità di fase (o curva di dispersione) sperimentale apparente nel range di frequenze compreso tra 5 Hz e 70 Hz, quindi dà informazioni sulla parte più superficiale del suolo, sui primi 30 m-50 m, in funzione della rigidezza del suolo. Il metodo passivo in genere consente di tracciare una velocità di fase apparente sperimentale compresa tra 0 Hz e 10 Hz, quindi dà informazioni sugli strati più profondi del suolo, generalmente al di sotto dei 50m, in funzione della rigidezza del suolo.

L'elaborazione dei dati con il metodo M.A.S.W. prevede tre fasi di lavoro:

- 1. la prima fase prevede il calcolo della velocità di fase (o curva di dispersione) apparente sperimentale;
- 2. la seconda fase consiste nel calcolare la velocità di fase apparente numerica;
- 3. la terza ed ultima fase consiste nell'individuazione del profilo di velocità delle onde di taglio verticali Vs, modificando opportunamente lo spessore h, le velocità delle onde di taglio Vs e di compressione Vp (o in maniera alternativa alle velocità Vp è possibile assegnare il coefficiente di Poisson), la densità di massa degli strati che costituiscono il modello del suolo, fino a raggiungere una sovrapposizione ottimale tra la velocità di fase (o curva di dispersione) sperimentale e la velocità di fase (o curva di dispersione) numerica corrispondente al modello di suolo assegnato.

Il modello di suolo e quindi il profilo di velocità delle onde di taglio verticali possono essere individuati con procedura manuale o con procedura automatica o con una combinazione delle due. Generalmente si assegnano il numero di strati del modello, il coefficiente di Poisson, la densità di massa ρ e si variano lo spessore h e la velocità Vs degli strati.

Nella procedura manuale l'utente assegna per tentativi diversi valori delle velocità Vs e degli spessori h, cercando di avvicinare la curva di dispersione numerica alla curva di dispersione sperimentale. Nella procedura automatica la ricerca del profilo di velocità ottimale è affidata ad un algoritmo di ricerca globale o locale che cerca di minimizzare l'errore tra la curva sperimentale e la curva numerica. In genere quando l'errore relativo, tra curva sperimentale e curva numerica è compresa tra il 5% e il 10% si ha un soddisfacente accordo tra le due

LINEA AV/AC MILANO - VENEZIA	
LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST – VERONA	

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D 69 IG	GE 00 05 002	Α	10 di 63

curve e il profilo di velocità delle onde di taglio Vs e quindi il tipo di suolo sismico conseguente rappresentano una soluzione valida da un punto di vista ingegneristico.

La tecnica di prospezione "Refraction Microtremor" (Re.Mi.), utilizzata nell'ambito di questo progetto, capovolge il concetto comune del parametro "segnale-disturbo", per il quale tradizionalmente il primo (segnale) ha necessità di essere rilevato in condizioni favorevoli quindi in assenza o scarsità di rumore. Viceversa, in presenza di forte rumore di fondo (es. ambiente urbano), le tradizionali rilevazioni sismiche hanno sempre trovato una condizione di difficile applicazione a causa della difficoltà di discriminare il segnale dal rumore.

Con questa tecnica, il disturbo, il "noise" ambientale diventa il segnale utilizzato per la caratterizzazione sismica. Sono i microtremori (rumore di fondo generato dal traffico stradale, ferroviario e comunque il rumore presente costantemente in ambito urbanizzato) a costituire la sorgente di energia utile allo scopo.

Numerose sperimentazioni hanno consentito di appurare che le registrazioni del rumore di fondo ambientale, effettuate con uno stendimento sismico normalmente utilizzato per la sismica a rifrazione, possono essere utilizzate, con opportune procedure di acquisizione ed elaborazione, per stimare la velocità delle onde di taglio (Vs) fino a profondità che possono essere superiori a 100 m. La metodologia d'indagine più applicata per la determinazione del profilo verticale di velocità delle onde di taglio Vs, è stata proposta e sperimentata da J.N.Louie del Seismological Laboratory and Dept. of Geological Sciences dell'Università del Nevada, ed è basata su due aspetti fondamentali:

- uno pratico, rappresentato dal fatto che alcuni sistemi di acquisizione di sismica a rifrazione (con dinamica a 24 bit) sono in grado di registrare onde di superficie con frequenze fino a 2 Hz per intervalli di tempo sufficientemente lunghi (almeno 10 sec);
- uno teorico, sulla base del quale una semplice trasformata bidimensionale (p-f) slowness-frequency della registrazione di un rumore di fondo (microtremore) è in grado di separare le onde di Rayleigh (onde di superficie) da altri tipi di onde che compongono il sismogramma, rendendo possibile il riconoscimento delle vere velocità di fase dalle velocità apparenti.

3.3 Modalità esecutive dell'indagine

Per poter definire con buona certezza il dato medio di Vs_{eq} , si è proceduto ad acquisire sia profili sismici di tipo "M.A.S.W." che "Re.Mi." impiegando geofoni da 4.5 Hz ed acquisitore digitale a 24 canali della Geometrics tipo "Geode" con dinamica a 24 bit.

Per quanto riguarda le prove sismiche attive M.A.S.W. sono state effettuate molteplici registrazioni energizzando agli estremi degli stendimenti sismici (minimo n.3 per estremo) a distanze diverse dai geofoni iniziali e finali.

Per le prove sismiche passive (Re.Mi.) in ogni punto d'indagine sono state effettuate molteplici acquisizioni con l'intento di ottenere statisticamente un migliore dato da processare, in **All.1** nella pagina "Prove Re.Mi. - ..." sono graficati gli "spettri medi" ottenuti dall'elaborazione congiunta delle singole registrazioni.

In questa stessa pagina sono riportati anche gli "spettri medi" delle prove M.A.S.W. acquisite secondo lo schema descritto precedentemente.

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 11 di 63

3.4 Elaborazione dati

I dati delle prove "M.A.S.W." sono stati elaborati con il software "WinMasw – Eliosoft.

Per la metodologia "Re.Mi.", l'elaborazione dei dati è avvenuta tramite il pacchetto software SeisOpt Re.Mi. 5.0 prodotto dalla Optim Software LLC.

L'analisi spettrale di più sismogrammi ha consentito di elaborare un'immagine della distribuzione media del segnale di velocità sismica in funzione delle diverse frequenze. Da tale elaborazione è stata estrapolata la curva di attenuazione del segnale caratteristico e in funzione del suo andamento (curva di dispersione) si è risaliti alla stratigrafia sismica in termini di velocità delle onde di taglio (Vs). Il risultato finale dell'elaborazione è consistito, quindi, nella rappresentazione grafica del profilo di velocità.

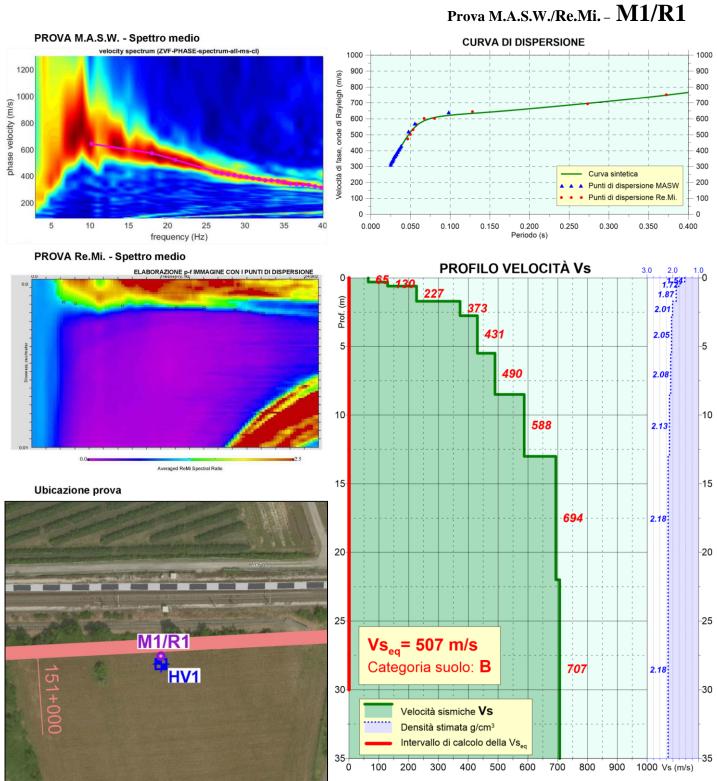
La tabella seguente sintetizza, per ognuna delle prove eseguite, il valore di $V_{s_{eq}}$ calcolato con relativa profondità di misura e conseguente categoria di suolo sismico:

Sigla Prova	Vs _{eq} (m/sec)	Profondità di riferimento (m)	Categoria suolo
M1/R1	507	30	В
M2/R2	524	30	В
M3/R3	561	30	В
M4/R4	452	30	В
M5/R5	476	30	В
M6/R6	492	30	В
M7/R7	333	30	С
M8/R8	538	30	В

 $Tabella\ 1-Valori\ di\ Vs_{eq}\ (m/s)\ e\ relativa\ categoria\ di\ sottosuolo\ delle\ n.8\ prove\ sismiche\ di\ tipo\ M.A.S.W./Re.Mi..$

ALLEGATO 1 SPETTRI MEDI, CURVA DI DISPERSIONE LOG VELOCITÀ ONDE Vs (Prove M.A.S.W./Re.Mi.)

M1/R1 - M2/R2 - M3/R3 - M4/R4

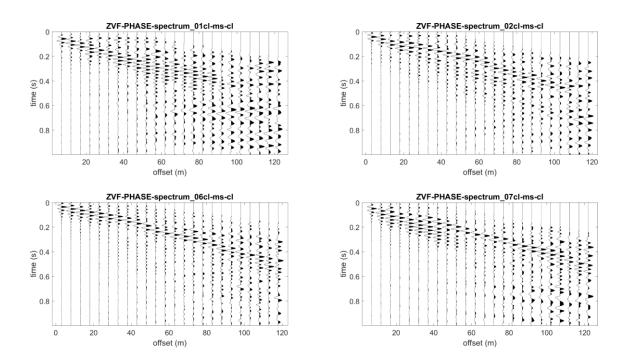

M5/R5 - M6/R6 - M7/R7 - M8/R8

NODO AV/AC DI VERONA: INGRESSO OVEST

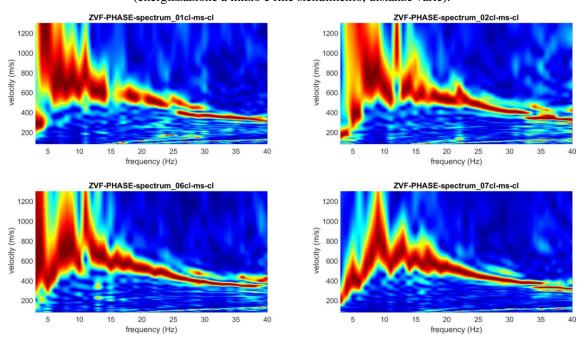
REPORT PROVE SISMICHE

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO D 69 IG GE 00 05 002 13 di 63 IN10 10 Α

REPORT PROVE SISMICHE


LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST – VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

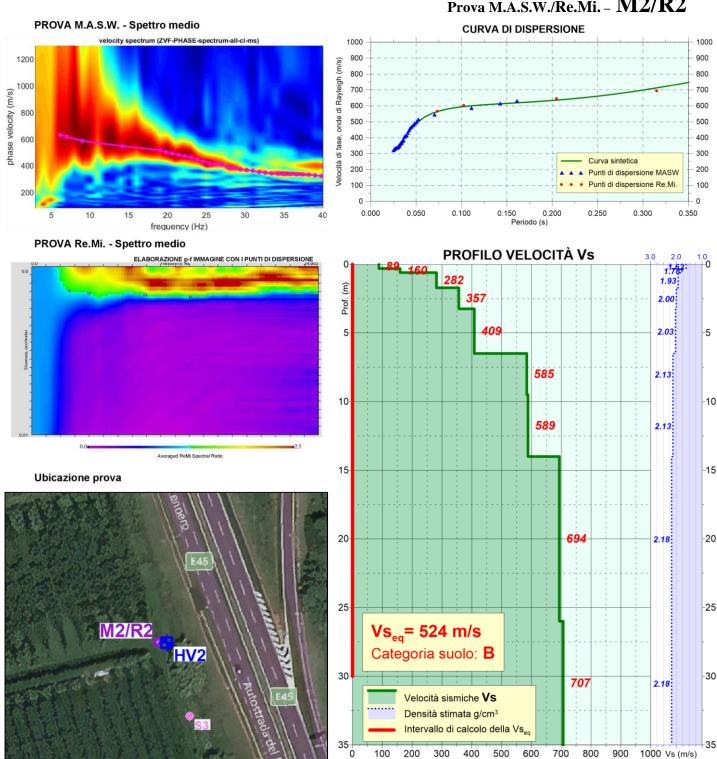
 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 14 di 63

Prova M.A.S.W. – Acquisizioni elaborate per M1/R1

Tracce utilizzate per l'elaborazione dello spettro M.A.S.W. medio (energizzazione a inizio e fine stendimento, distanze varie).

Spettri delle tracce utilizzate per l'elaborazione dello spettro M.A.S.W. medio.

NODO AV/AC DI VERONA: INGRESSO OVEST


REPORT PROVE SISMICHE

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 15 di 63 D 69 IG GE 00 05 002 IN10 10 Α

Prova M.A.S.W./Re.Mi. – M2/R2

-35

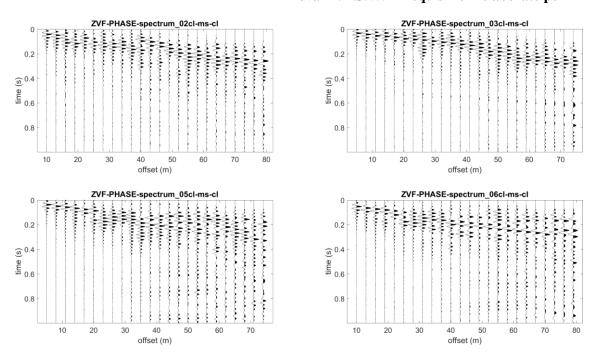
1000 Vs (m/s)

100

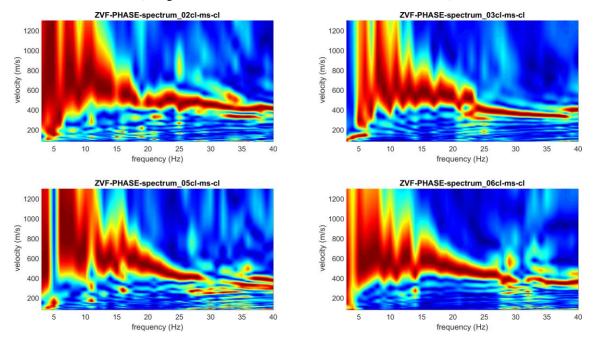
600

700

800


NODO AV/AC DI VERONA: INGRESSO OVEST

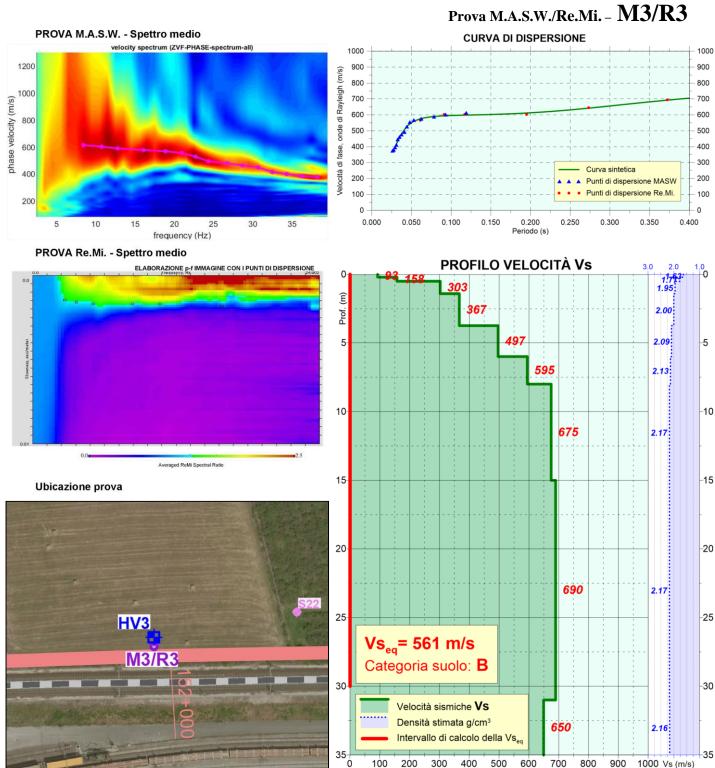
REPORT PROVE SISMICHE


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 16 di 63

Prova M.A.S.W. – Acquisizioni elaborate per M2/R2

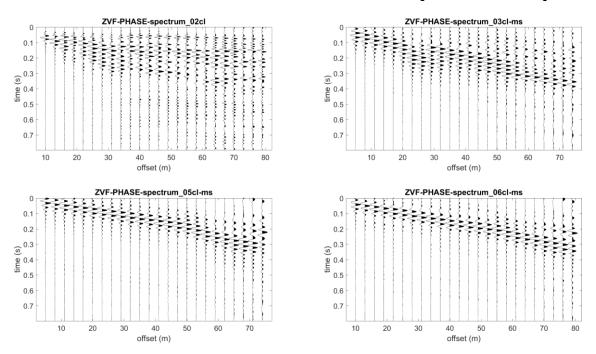
Tracce utilizzate per l'elaborazione dello spettro M.A.S.W. medio (energizzazione a inizio e fine stendimento, distanze varie).


Spettri delle tracce utilizzate per l'elaborazione dello spettro M.A.S.W. medio.

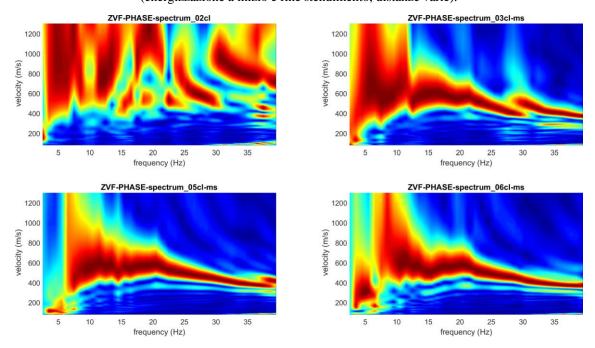
NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO D 69 IG GE 00 05 002 17 di 63 IN10 10 Δ


NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

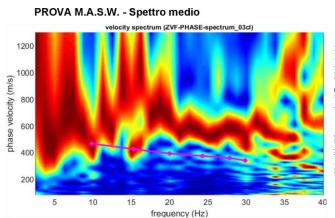

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

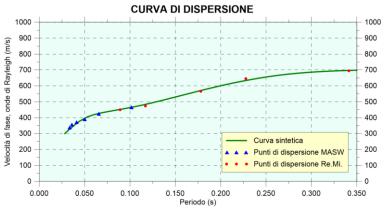
 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 18 di 63

Prova M.A.S.W. – Acquisizioni elaborate per M3/R3

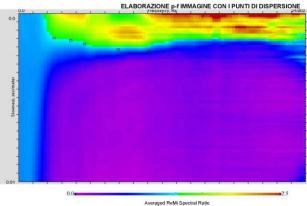
Tracce utilizzate per l'elaborazione dello spettro M.A.S.W. medio (energizzazione a inizio e fine stendimento, distanze varie).

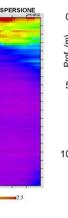
Spettri delle tracce utilizzate per l'elaborazione dello spettro M.A.S.W. medio.

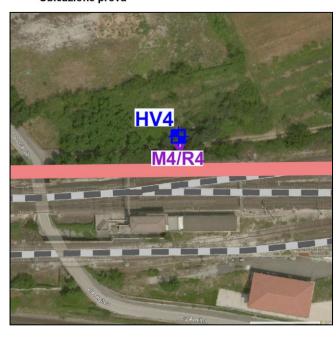


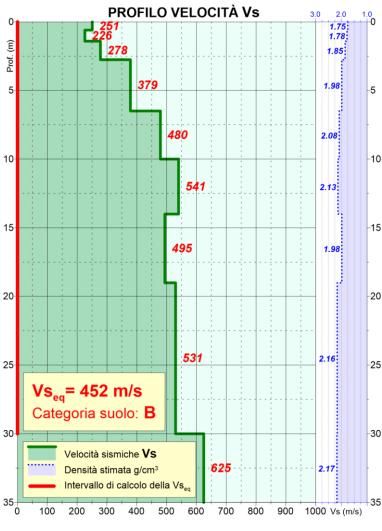

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE


COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO D 69 IG GE 00 05 002 19 di 63 IN10 10 Δ

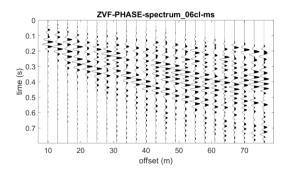

Prova M.A.S.W./Re.Mi. – M4/R4

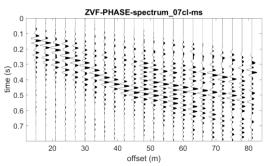



PROVA Re.Mi. - Spettro medio

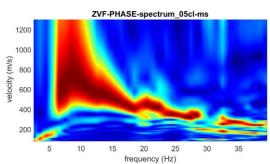
Ubicazione prova

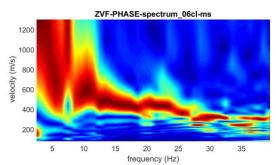

NODO AV/AC DI VERONA: INGRESSO OVEST

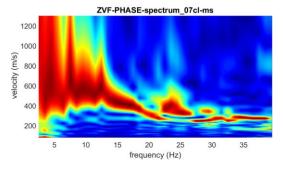

REPORT PROVE SISMICHE


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 20 di 63


Prova M.A.S.W. – Acquisizioni elaborate per M4/R4



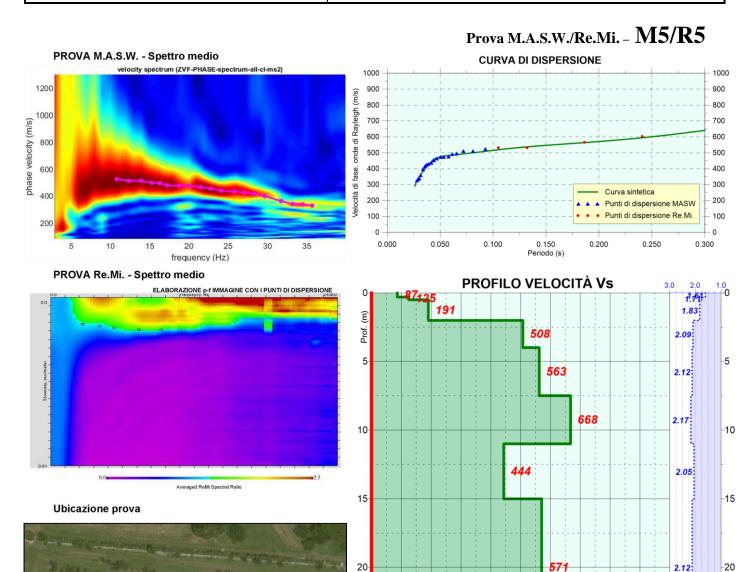


Tracce utilizzate per l'elaborazione dello spettro M.A.S.W. medio (energizzazione a inizio e fine stendimento, distanze varie).

Spettri delle tracce utilizzate per l'elaborazione dello spettro M.A.S.W. medio.

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 21 di 63

25

-30

1000 Vs (m/s)

25

30

100

Vs_{eq}= 476 m/s Categoria suolo: **B**

Velocità sismiche **Vs**Densità stimata g/cm³

Intervallo di calcolo della Vs_{ec}

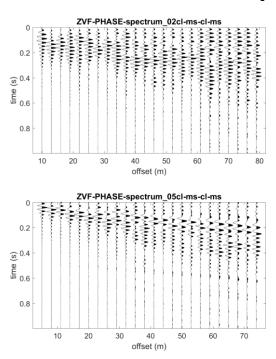
300

400

500

600

613


700

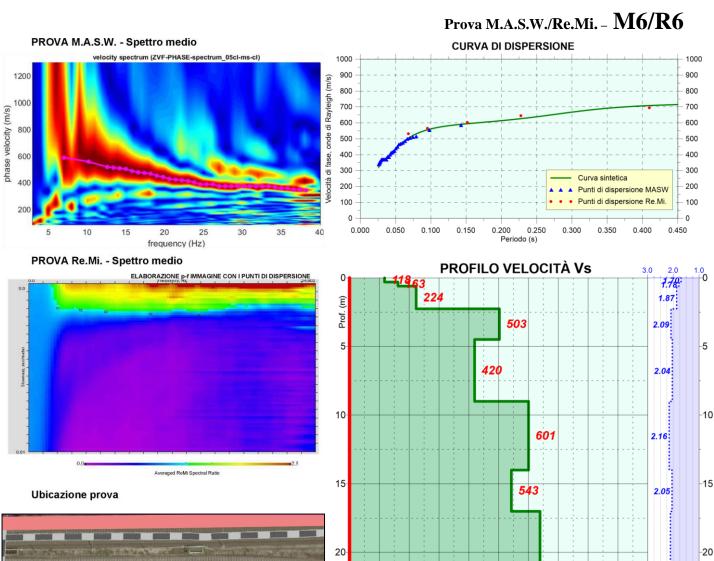
800

900

Prova M.A.S.W. – Acquisizioni elaborate per M5/R5

Tracce utilizzate per l'elaborazione dello spettro M.A.S.W. medio (energizzazione a inizio e fine stendimento, distanze varie).

Spettri delle tracce utilizzate per l'elaborazione dello spettro M.A.S.W. medio.

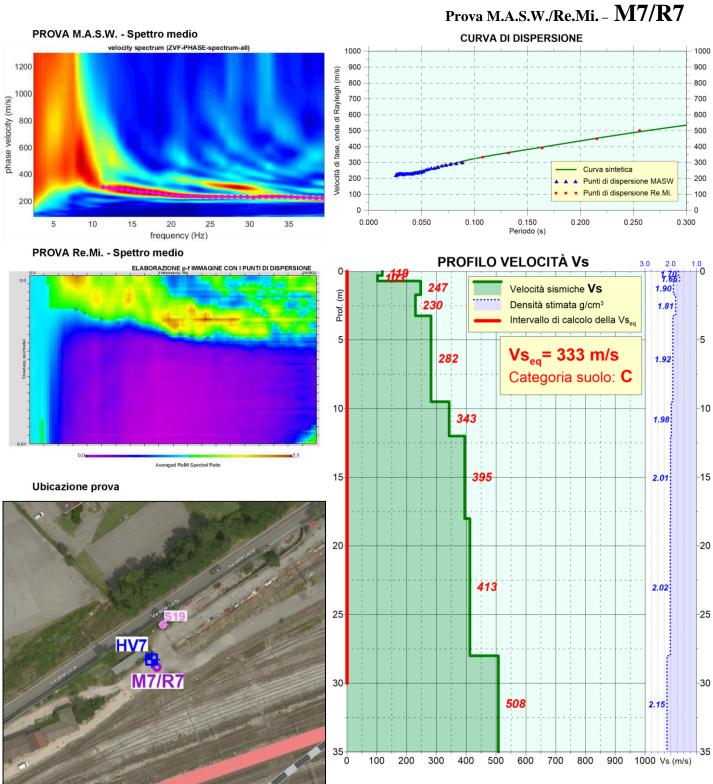


NODO AV/AC DI VERONA: INGRESSO OVEST


REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

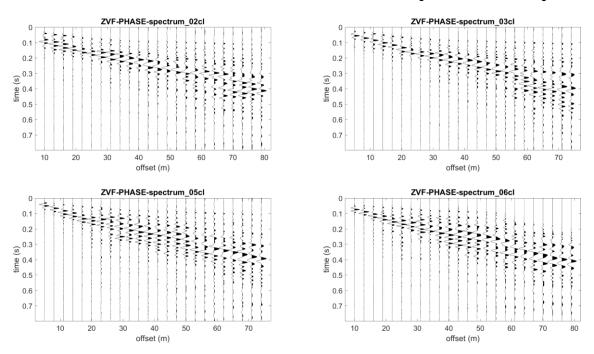
 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 23 di 63



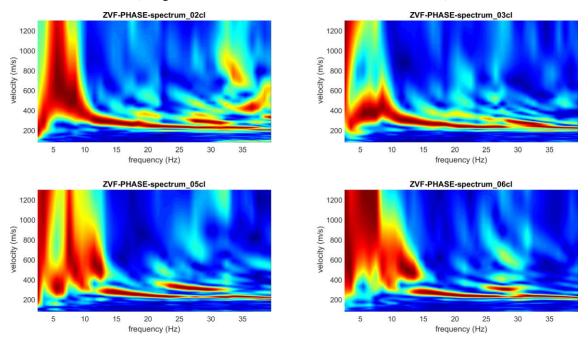
NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO D 69 IG GE 00 05 002 24 di 63 IN10 10 Α


NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 25 di 63

Prova M.A.S.W. – Acquisizioni elaborate per M7/R7

Tracce utilizzate per l'elaborazione dello spettro M.A.S.W. medio (energizzazione a inizio e fine stendimento, distanze varie).

Spettri delle tracce utilizzate per l'elaborazione dello spettro M.A.S.W. medio.

NODO AV/AC DI VERONA: INGRESSO OVEST

Densità stimata g/cm³ Intervallo di calcolo della Vs_{eq}

300

400

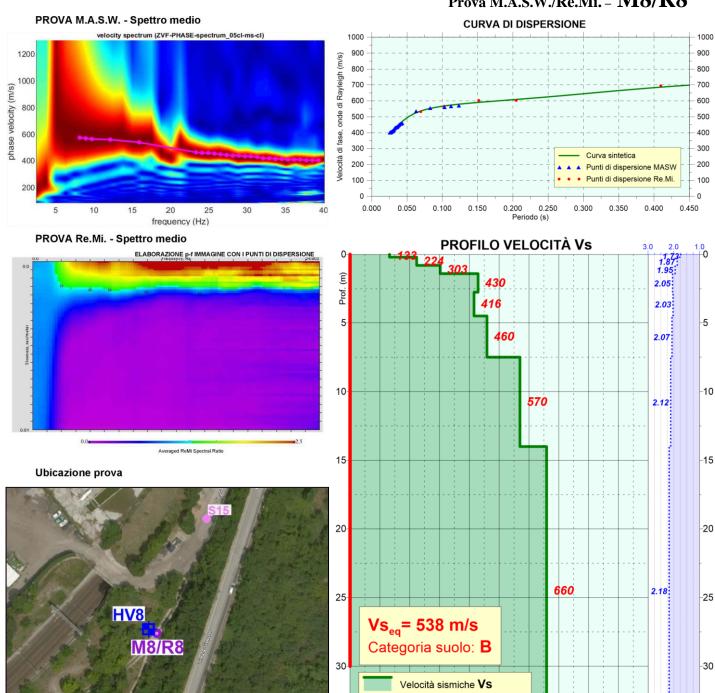
500

600

700

800

900


1000 Vs (m/s)

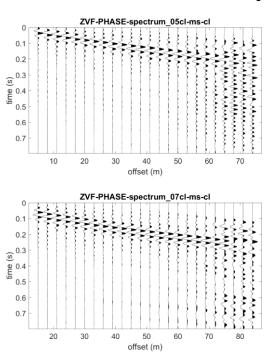
REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

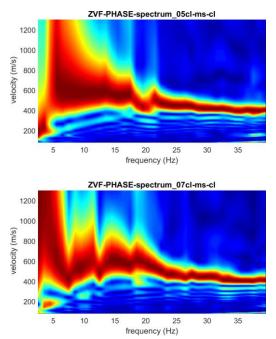
 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 26 di 63

Prova M.A.S.W./Re.Mi. - M8/R8

35


100

200



COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO D 69 IG GE 00 05 002 27 di 63 IN10 10 Α

Prova M.A.S.W. – Acquisizioni elaborate per M8/R8

Tracce utilizzate per l'elaborazione dello spettro M.A.S.W. medio (energizzazione a inizio e fine stendimento, distanze varie).

Spettri delle tracce utilizzate per l'elaborazione dello spettro M.A.S.W. medio.

4 RILIEVI SISMICI H.V.S.R.

Sono state eseguite n. 8 specifiche misure H.V.S.R. a stazione singola e denominate da HV1 a HV8. Le prove sono state svolte in prossimità dei punti di misura delle prove M.A.S.W./Re.Mi., finalizzate all'individuazione di eventuali contrasti d'impedenza di natura stratigrafica e determinare le frequenze fondamentali di vibrazione di sito f_0 .

In Figura 7 sono rappresentate le ubicazioni delle prove su foto aerea.

Figura 7 - Inquadramento territoriale delle prove H.V.S.R. rispetto il tracciato ferroviario in progetto (in rosso).

Le misure sono state realizzate con tromografo Tromino[®], con frequenza di campionamento di 256 Hz e tempo di acquisizione pari a 20 minuti, mentre per l'elaborazione è stato utilizzato il software dedicato Grilla[®]. I risultati della prova sono riportati in **Allegato 2**.

4.1 Cenni teorici

La superficie terrestre è costantemente percorsa da onde di varia natura, generate da sorgenti naturali (prevalentemente perturbazioni atmosferiche e oceaniche che eccitano le basse frequenze, < 1 Hz, Gutenberg 1931; 1936) ed antropiche (che eccitano per lo più le medio-alte frequenze, > 1 Hz). Questo insieme di onde, che prende il nome di microtremore sismico ambientale, può essere immaginato come un rumore bianco, sebbene non sia propriamente così, che viene filtrato dal sottosuolo che attraversa e che un sismometro sufficientemente sensibile posato sul terreno potrà registrare ovunque.

Un'opportuna analisi sarà in grado di inferire - a partire dal segnale filtrato - alcune informazioni sul filtro, ossia sul sottosuolo attraversato dalle onde.

Nel microtremore sono presenti onde di tutti i tipi (di volume, P e S, e di superficie, Rayleigh e Love), tuttavia poiché le onde di superficie si attenuano meno velocemente con la distanza rispetto alle onde di volume, il campo del microtremore sismico è costituito principalmente da onde di superficie. Queste ultime hanno velocità molto prossime a quelle delle onde di taglio S (circa 10% inferiori) e sono usate come stimatori di queste ultime da molte tecniche geofisiche di ultima generazione.

LINEA AV/AC MILANO - VENEZIA
LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST – VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D 69 IG	GE 00 05 002	Α	29 di 63

In un sistema alluvioni su roccia, per esempio, alla frequenza di risonanza dello strato alluvionale si assiste ad un annullamento dello spettro della componente verticale dell'onda di Rayleigh (V), pertanto sarebbe sufficiente analizzare i rapporti 1/V per far emergere i 'picchi di risonanza' del sottosuolo. Nella pratica, poiché i valori spettrali assoluti variano in funzione del livello di rumore che cambia naturalmente con le condizioni atmosferiche ed antropiche, è prassi usare il rapporto H/V (dove H è la media delle componenti spettrali orizzontali) che agisce da efficace normalizzatore. Tale rapporto si mantiene infatti sufficientemente stabile nel tempo.

Dalla formula della risonanza

$$f = n \frac{Vs}{4H}$$
 (n=1, 3, 5, ..)

si comprende come la tecnica H/V abbia una prima applicazione stratigrafica pratica perché a partire da una misura di microtremore ambientale, nota la Vs delle coperture, si può stimare la profondità dei principali riflettori sismici.

4.2 Metodologia

Nella pratica una misura di microtremore deve avere una durata commisurata alla frequenza d'indagine d'interesse. Nella già citata ipotesi che una misura d'interesse ingegneristico ricada nell'intervallo 1-20 Hz (frequenze dei modi di vibrare della maggior parte delle strutture), segue che un campionamento adeguato deve durare almeno 10-15 min., in modo da poter analizzare il segnale su finestre di almeno 30 s di lunghezza e da avere almeno 20-30 finestre su cui effettuare una media, considerando anche che qualcuna potrà essere rimossa per la presenza di disturbi che alterano lo spettro medio.

Le serie temporali registrate nelle tre componenti del moto vengono analizzate secondo procedure spettrali più o meno classiche (FFT o wavelet) fino alla produzione delle curve H/V, dove H è la media di due componenti spettrali orizzontali ortogonali (SESAME, 2004).

Un esempio di come appaiono i picchi di risonanza in una curva H/V è visibile nel riquadro A della Figura 8 (tratta da Castellaro S.). Nei riquadri B e C sono invece illustrati i rapporti f-H-Vs (coperture) secondo la citata equazione, da cui si comprende che il picco di risonanza a 0.6 Hz (curva 1) si riferisce alla presenza di un riflettore sismico a circa 200 m di profondità, il picco di risonanza a 4 Hz (curva 2) si riferisce alla presenza di un riflettore sismico a circa 15 m ed il picco di risonanza a 12 Hz (curva 3) si riferisce alla presenza di un riflettore sismico entro 5 m di profondità.

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D 69 IG	GE 00 05 002	Α	30 di 63

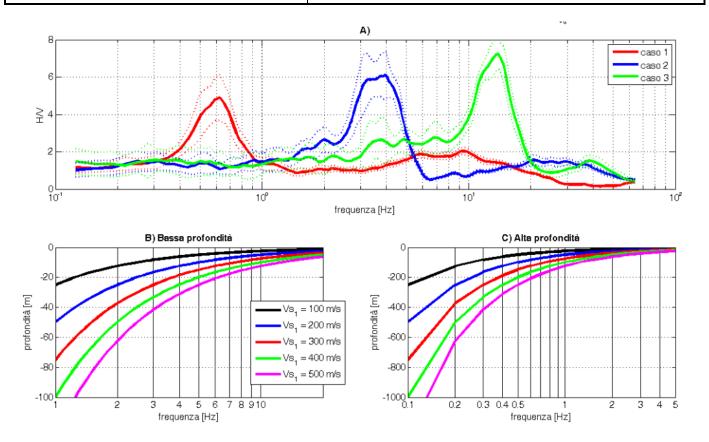


Figura 8 – a) Esempi di picchi di risonanza in n.3 curve H/V e b-c) rapporti f-H-Vs secondo la nota formula della risonanza.

La tecnica H/V permette di rilevare variabilità spaziali laterali. Nella Figura 9 riquadro A (tratta da Castellaro S.) è illustrato il caso di due misure effettuate a 40 m di distanza reciproca, una delle quali effettuata su terreno limoso (caso 2), l'altra effettuata sullo stesso terreno ma che presenta – a circa 12 m di profondità – un paleo alveo di ghiaie (caso 1). È evidente come nel primo caso si generi a 6 Hz una risonanza dei limi sopra le ghiaie, del tutto assente nel secondo sito. Nonostante la vicinanza dei luoghi, il sito 1 è più sfavorevole dal punto di vista degli effetti sismici di sito rispetto al sito 2 per strutture con modi propri attorno a 6-8 Hz.

Questi esempi mostrano come la tecnica H/V sia molto sensibile alle variazioni stratigrafiche laterali, permettendo pertanto di discriminare geometrie 1D da geometrie 2D, ovviamente entro i limiti di visibilità imposti dalla nota legge $\lambda f = V$ (lunghezza d'onda x frequenza = velocità).

Le curve H/V non vanno mai osservate da sole ma sempre congiuntamente agli spettri delle singole componenti da cui derivano. Questo permette di discernere agevolmente i picchi di natura stratigrafica da quelli di natura antropica. In condizioni normali le componenti spettrali NS, EW e Z (verticale) hanno ampiezze simili. Alla frequenza di risonanza, come si è detto, si genera un picco H/V legato ad un minimo locale della componente spettrale verticale che determina una forma "a ogiva" come quella indicata dalle frecce nella Figura 9 riquadro B. Questa forma è indicativa di risonanze stratigrafiche (cfr. anche Castellaro e Mulargia, 2009).

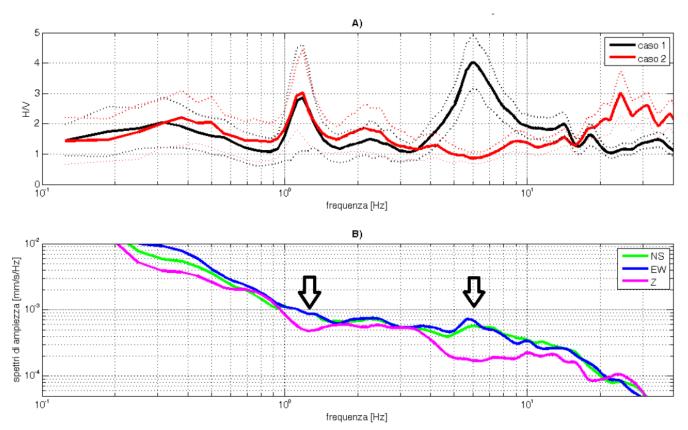


Figura 9 – a) Esempi di grafico H.V.S.R. medio per n.2 casi esemplificativi e b) rispettivo grafico delle tre componenti NS/EW/Z con evidenziati mediante frecce i picchi di natura stratigrafica.

4.3 Sintesi dei dati registrati

Le misure H.V.S.R. eseguite, hanno permesso di evidenziare in alcune prove dei picchi significativi di rapporto spettrale con possibile significato stratigrafico (nel range di frequenze di interesse ingegneristico $1-20~{\rm Hz}$) e quindi di determinare le frequenze fondamentali di vibrazione di sito f_0 riassunte in tabella sotto.

Sigla Prova	f0
HV1	18.63 Hz
HV2	13.69 Hz
HV3	-
HV4	14.84 Hz
HV5	-
HV6	16.56 Hz
HV7	6.56 Hz
HV8	-

Tabella 2 – Frequenze fondamentali di vibrazione del sito (f0) relative a picchi spettrali di possibile significato stratigrafico per le n.8 prove eseguite.

ALLEGATO 2

STAZIONI H.V.S.R.

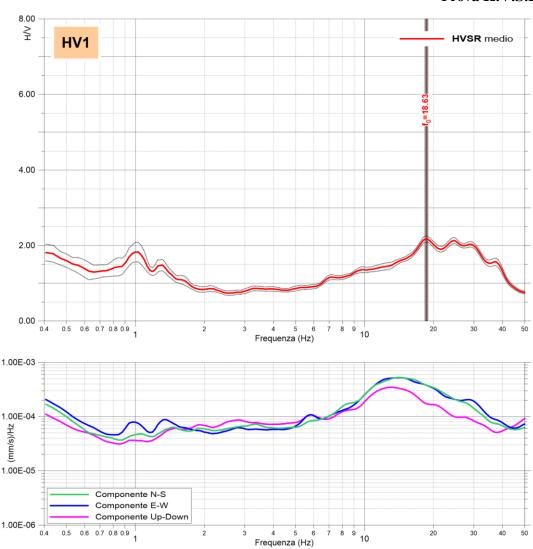
GRAFICI H.V.S.R. MEDI

GRAFICI DELLE TRE COMPONENTI N-S / E-W / UP-DOWN

HV1 - HV2 - HV3 - HV4

HV5 - HV6 - HV7 - HV8

REPORT PROVE SISMICHE


LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST – VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

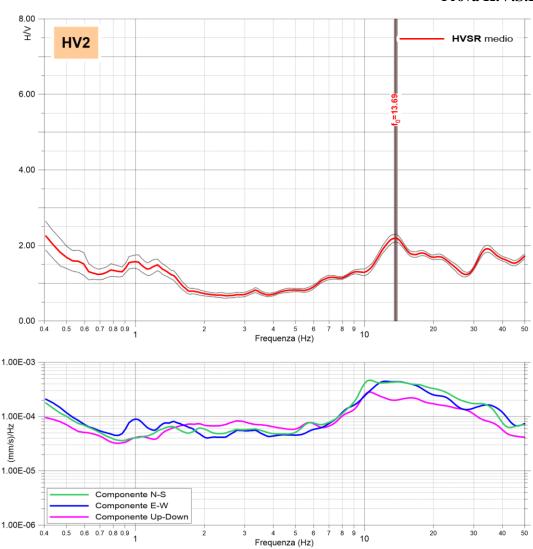
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 33 di 63

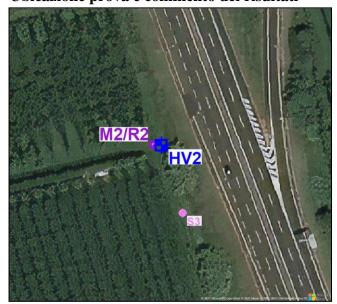
Prova H.V.S.R. - HV1

Ubicazione prova e commento dei risultati

• La misura H.V.S.R. eseguita ha permesso di evidenziare un contrasto di impedenza di possibile natura stratigrafica alla frequenza di 18.63 Hz (f0), ad una profondità di circa -4.0 m dal p.c..


NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

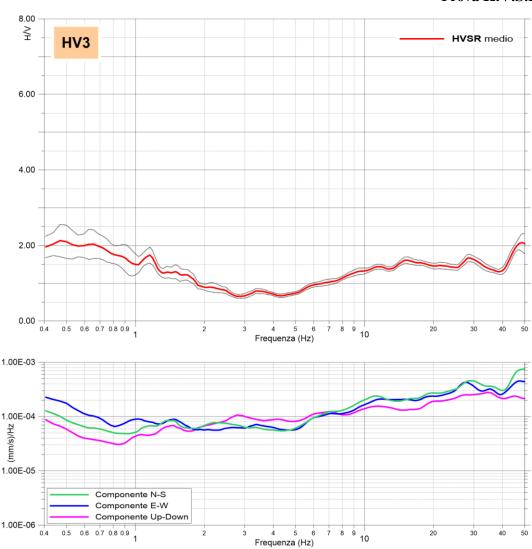

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 34 di 63

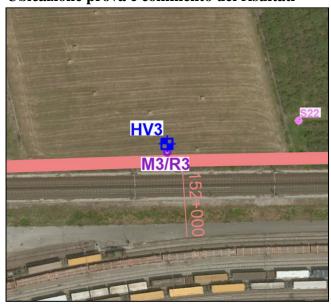
Prova H.V.S.R. - HV2

Ubicazione prova e commento dei risultati

• La misura H.V.S.R. eseguita ha permesso di evidenziare un contrasto di impedenza di possibile natura stratigrafica alla frequenza di 13.69 Hz (f0). Tale contrasto è osservabile inoltre nella vicina prova M.A.S.W./Re.Mi. M2/R2, ove alla profondità di -6.5 m dal p.c. si registra un incremento di velocità Vs.


NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

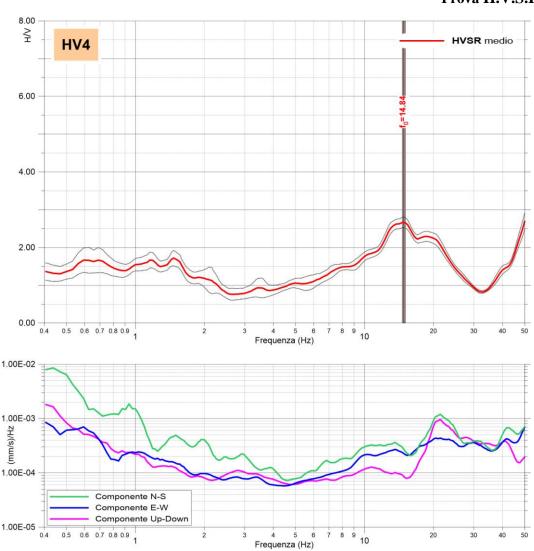
 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 35 di 63

Prova H.V.S.R. - HV3

Ubicazione prova e commento dei risultati

• La misura H.V.S.R. eseguita non ha evidenziato significativi contrasti d'impedenza di natura stratigrafica nel range di frequenze di interesse ingegneristico (1-20 Hz).

REPORT PROVE SISMICHE


LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST – VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

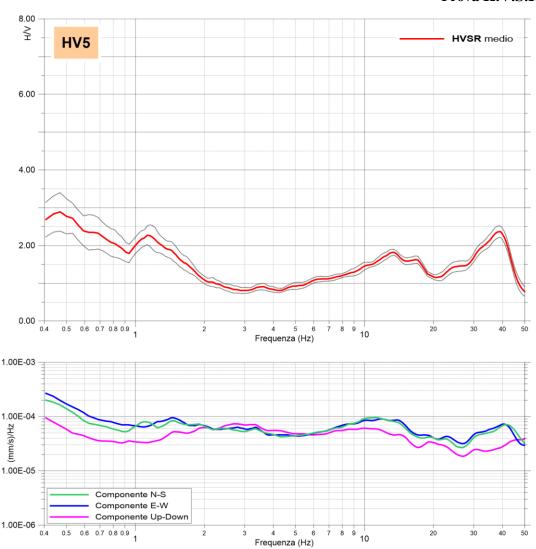
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 36 di 63

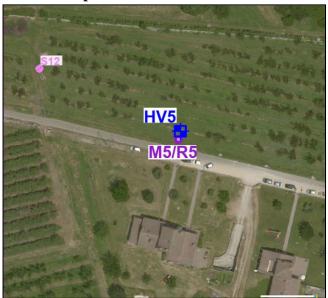
Prova H.V.S.R. - HV4

Ubicazione prova e commento dei risultati

• La misura H.V.S.R. eseguita ha permesso di evidenziare un contrasto di impedenza di possibile natura stratigrafica alla frequenza di 14.84 Hz (f0), ad una profondità di circa -6.0 m dal p.c..


NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

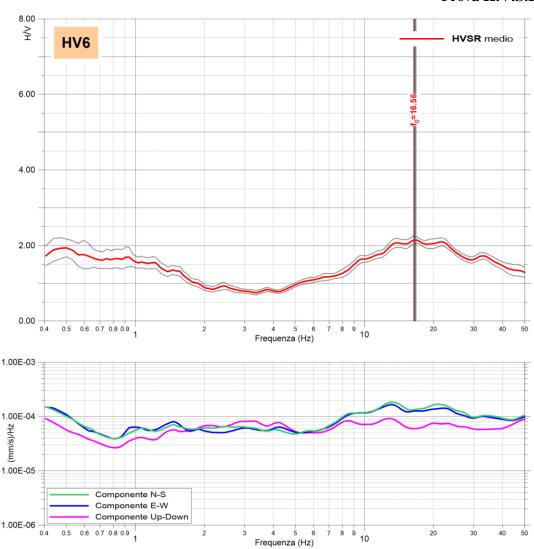

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 37 di 63

Prova H.V.S.R. - HV5

Ubicazione prova e commento dei risultati

• La misura H.V.S.R. eseguita non ha evidenziato significativi contrasti d'impedenza di natura stratigrafica nel range di frequenze di interesse ingegneristico (1-20 Hz).


NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

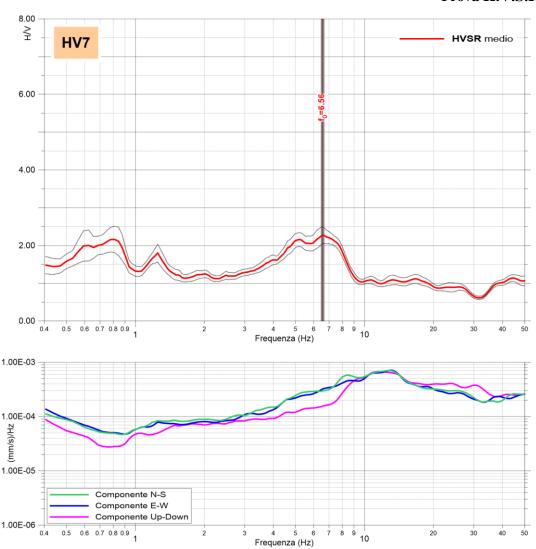

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 38 di 63

Prova H.V.S.R. - HV6

Ubicazione prova e commento dei risultati

• La misura H.V.S.R. eseguita ha permesso di evidenziare un contrasto di impedenza di possibile natura stratigrafica alla frequenza di 16.56 Hz (f0), ad una profondità di circa -6.5 m dal p.c..


NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

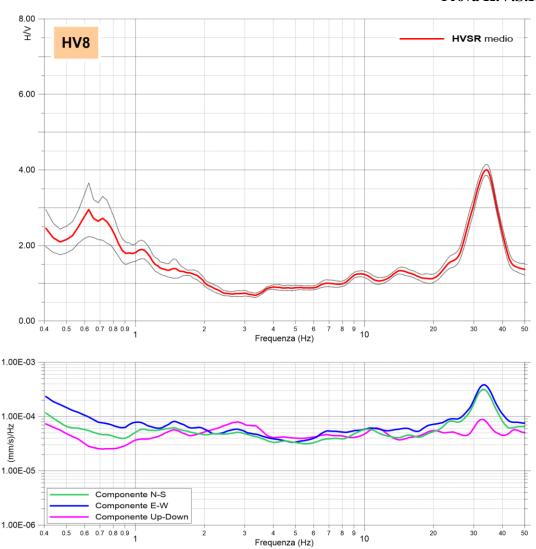
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 39 di 63

Prova H.V.S.R. - HV7

Ubicazione prova e commento dei risultati

• La misura H.V.S.R. eseguita ha permesso di evidenziare un contrasto di impedenza di possibile natura stratigrafica alla frequenza di 6.56 Hz (f0). Tale contrasto è osservabile inoltre nella vicina prova M.A.S.W./Re.Mi. M7/R7, ove alla profondità di -9.5 m dal p.c. si registra un incremento di velocità Vs.


NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 40 di 63

Prova H.V.S.R. - HV8

Ubicazione prova e commento dei risultati

• La misura H.V.S.R. eseguita non ha evidenziato significativi contrasti d'impedenza di natura stratigrafica nel range di frequenze di interesse ingegneristico (1-20 Hz).

5 PROVE DOWN-HOLE

Per la definizione dei valori di Vp, Vs, dei parametri Vs_{eq} ai sensi delle N.T.C. 2018 e dei moduli dinamici dei terreni carotati, in corrispondenza dei sondaggi **S1bis**, **S2bis**, **S7bis**, **S16bis** e **S21**, opportunamente attrezzati, sono state effettuate rispettivamente n.5 prove Down-Hole denominate **DH-S1**, **DH-S2**, **DH-S7**, **DH16** e **DH-21**. In Figura 10 si riporta l'ubicazione delle prove su foto aerea.

Figura 10 – Ubicazione territoriale delle prove Down-Hole, in rosso il tracciato ferroviario in progetto.

5.1 Descrizione / acquisizione prova D-H

La tecnica del Down-Hole consiste nel misurare i tempi di arrivo delle onde sismiche P e S generate da una specifica sorgente ad un geofono tridimensionale (costituito da tre geofoni orientati secondo le tre direzioni spaziali) posto in un foro di sondaggio a profondità crescenti.

Le Onde di compressione (P) sono state create con impulsi verticali generati da una massa battente agente in prossimità del sondaggio (Figura 11).

Le onde di taglio (S), sono state generate con impulsi orizzontali (Figura 11) ottenuti battendo su lati opposti di due tavole rese solidali con il terreno dal peso del veicolo d'appoggio. In fase di elaborazione di tali registrazioni sono stati analizzati e integrati i "primi arrivi" relativi ad entrambe le battute.

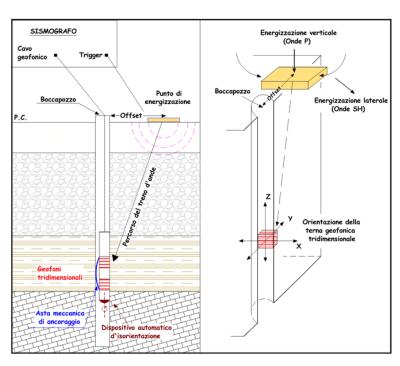


Figura 11 – Schema prova Down-Hole.

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IN10 10 D 69 IG GE 00 05 002 A 42 di 63

5.2 Elaborazione e restituzione dei dati

Nei grafici riportati in Allegato 3 sono visualizzati i sismogrammi acquisiti con il relativo "picking", i grafici delle velocità sismiche Vp e Vs, e le relative tabelle dei parametri elaborati, unitamente ai moduli dinamici, calcolati sulla base dei parametri sismici e degli specifici valori di peso di volume (y) delle litologie presenti. In dettaglio sono riportati:

- Velocità Onde P= Vp;
- Velocità Onde S= Vs;
- Rapporto VP/VS;
- Rapporto di Poisson σ;
- Modulo di taglio G din;
- Modulo di Young E din;
- Modulo di compressione Ev.

L'analisi dei dati relativi alle velocità delle onde di taglio (Vs) ha consentito inoltre di definire le categorie sismiche dei suoli riassunte in tabella sotto.

Sigla Prova	Vs _{eq} (m/sec)	Profondità di calcolo (m dal p.c.)	Categoria suolo
DH-S1	500	0-30	В
DH-S2	508	0-30	В
DH-S7	490	0-30	В
DH-S16	498	0-30	В
DH-S21	520	0-30	В

Tabella 3 - Valori di Vseq (m/s) e relativa categoria di sottosuolo delle n.5 prove sismiche di tipo Down-Hole.

ALLEGATO 3 UBICAZIONE PLANIMETRICA SISMOGRAMMI $V_P - V_S$ GRAFICO VELOCITÀ $V_P - V_S$ TABELLA PARAMETRI

DOHN-HOLE

DH-S1 – DH-S2 – DH-S7 DH-S16 – DH-S21

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 44 di 63

Documentazione fotografica Down-Hole DH-S1

Piazzola sondaggio S1bis

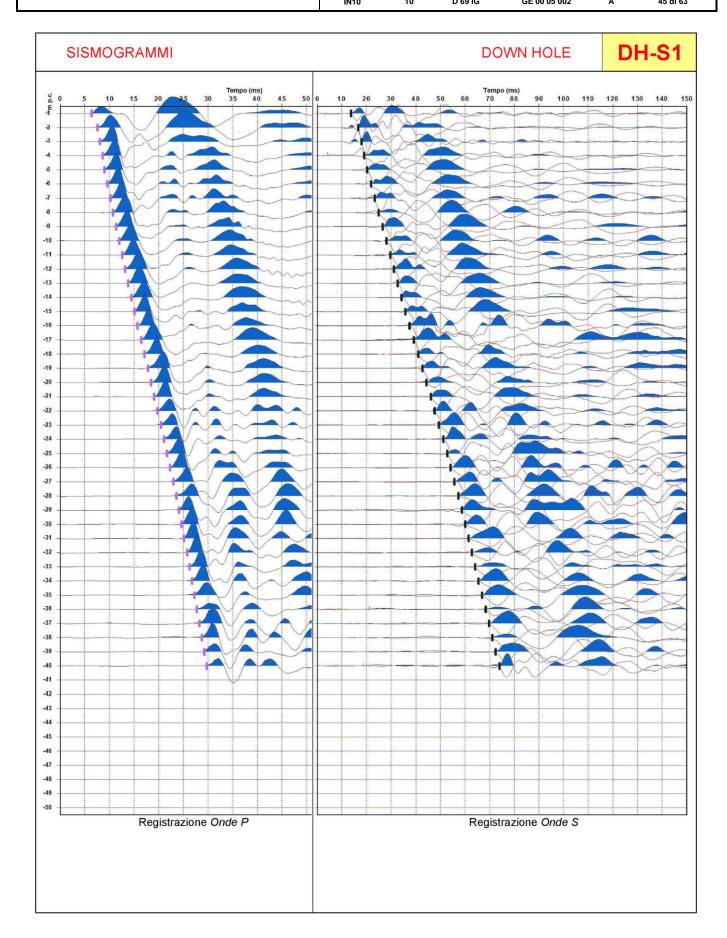
Ubicazione territoriale

Energizzazione onde P

Energizzazione onde S

Commento risultati DH-S1

- Relativamente alle velocità sismiche **Vp** nei primi 2.0 m di spessore si registrano valori < 400 m/s. A partire da -3.0 m dal p.c. le velocità rapidamente incrementano sino a 1400 m/s ad una profondità di -5.0 m dal p.c.. Segue sino ad almeno -24.0 m dal p.c. un'alternanza di Vp, le quali rimangono su valori medi prossimi a 1500 m/s. Da -25.0 m dal p.c. si registra un graduale incremento di Vp, con valori che da 1500 m/s lambiscono i 2000 m/s ad una profondità compresa tra -32.0 m dal p.c. e fondo foro.
- I valori di **Vs** descrivono un andamento pressochè analogo, i primi 2.0 m di spessore sono caratterizzati da velocità inferiori a 200 m/s. A partire da -3.0 m dal p.c., le velocità incrementano rapidamente sino ad oltrepassare i 500 m/s alla profondità di -5.0 m dal p.c.. Segue un andamento complessivamente costante sino a fondo foro, con leggere alternanze di valori. Da -30.0 m dal p.c. le velocità raggiungono valori medi prossimi a 720 m/s.

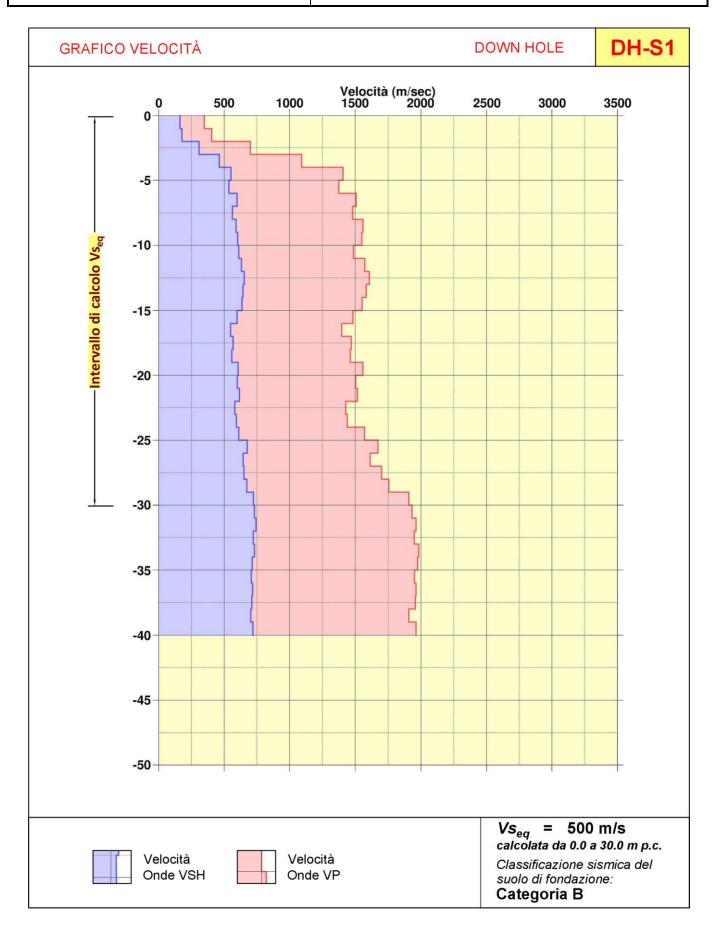

REPORT PROVE SISMICHE

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST – VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 45 di 63



NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 46 di 63

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

COMMESSA LOTTO
IN10 10

CODIFICA D 69 IG DOCUMENTO GE 00 05 002 REV.

FOGLIO 47 di 63

TABELLA PARAMETRI	DOWN HOLE	DH-S1
-------------------	-----------	-------

-1 6.425 2.874 348 13.718 6.135 163 2.13 0.36 4.6E+01 1.3E+02 1.5E+03 1 2.7 7.564 5.349 404 16.621 11.753 178 2.27 0.38 5.5E+01 1.5E+02 2.1E+03 1 3.8145 6.777 700 18.027 15.000 308 2.27 0.38 1.7E+02 4.7E+02 6.5E+03 1 3.8 8.145 6.777 700 18.027 15.000 308 2.27 0.38 1.7E+02 4.7E+02 6.5E+03 1 3.8 8.602 7.694 1091 19.185 17.160 463 2.36 0.39 3.8E+02 1.1E+03 1.6E+04 1 3.8 8.602 7.694 1091 20.433 18.971 552 2.55 0.41 5.6E+02 1.5E+03 2.9E+04 1 3.8 8.10 8 9.796 1507 23.410 22.509 598 2.52 0.41 5.3E+02 1.5E+03 3.3E+04 1 3.07 11.384 11.113 1559 26.611 25.977 591 2.64 0.42 6.6E+02 1.9E+03 3.7E+04 1 3.1 11.2 6.34 12.430 1487 29.752 29.272 611 2.43 0.40 7.1E+02 2.0E+03 3.2E+04 1 3.3 13.849 13.688 1608 32.767 32.386 653 2.46 0.40 8.1E+02 2.3E+03 3.7E+04 1 3.1 13.849 13.688 1608 32.767 32.386 653 2.46 0.40 8.1E+02 2.3E+03 3.7E+04 1 3.1 14.465 14.319 1584 34.283 33.939 644 2.46 0.40 7.6E+02 2.1E+03 3.7E+04 1 3.1 15.096 14.963 1553 35.825 35.511 636 2.44 0.40 7.6E+02 2.1E+03 3.7E+04 1 3.1 17.138 17.033 1471 41.016 40.765 568 2.59 0.41 5.9E+02 1.7E+03 3.3E+04 1 41.016 40.765 568 2.59 0.41 5.9E+02 1.7E+03 3.3E+04 1 41.016 40.765 568 2.59 0.41 5.9E+02 1.7E+03 3.3E+04 1 41.016 40.765 568 2.59 0.41 5.9E+02 1.7E+03 3.3E+04 1 41.016 40.765 568 2.59 0.41 5.9E+02 1.7E+03 3.3E+04 1 41.016 40.765 568 2.59 0.41 5.9E+02 1.7E+03 3.3E+04 1 41.016 40.765 568 2.59 0.41 5.9E+02 1.7E+03 3.3E+04 1 41.016 40.765 568 2.59 0.41 5.9E+02 1.7E+03 3.3E+04 1 41.016 40.765 568 2.59 0.41 5.9E+02 1.7E+03 3.3E+04 1 41.016 40.765 568 2.59 0.41 5.9E+02 1.7E+03 3.3E+04 1 41.016 40.765 568 2.59 0.41 5.9E+02 1.7E+03 3.3E+04 1 41.016 40.765 568 2.59 0.41 5.9E+02 1.7E+03 3.3E+04 1 41.016 40.765 568 2.59 0.41 5.9E+02 1.7E+03 3.3E+04 1 41.016 40.765 568 2.59 0.41 5.9E+02 1.7E+03 3.3E+04 1 41.016 40.765 568 2.59 0.41 5.9E+02 1.7E+03 3.3E+04 1 41.016 40.765 568 2.59 0.41 5.9E+02 1.7E+03 3.3E+04 1 41.016 40.765 568 2.59 0.40 6.8E+02 1.9E+03 3.4E+04 1 40.466 18.358 1559 44.422 44.202 607 2.57 0.41 5.9E+02 1.7E+03 3.3E+04 1 41.016 40.765 568 2.59 0.40 6.8E+02 1.9E+03 3.4E+	1.70 1.70 1.75 1.75 1.80 1.80 1.80 1.85 1.85 1.85 1.85
0 348 163 2.13 0.36 4.6E+01 1.3E+02 1.5E+03 1 -1 6.425 2.874 348 13.718 6.135 163 2.13 0.36 4.6E+01 1.3E+02 1.5E+03 1 -2 7.564 5.349 404 16.621 11.753 178 2.27 0.38 5.5E+01 1.5E+02 2.1E+03 1 -3 8.145 6.777 700 18.027 15.000 308 2.27 0.38 5.5E+01 1.5E+02 2.1E+03 1 -4 8.602 7.694 1091 19.185 17.160 463 2.36 0.39 3.8E+02 1.1E+03 1.6E+04 1 -5 9.052 8.405 1407 21.964 20.837 536 2.55 0.41 5.6E+02 1.1E+03 2.8E+04 1 -7 10.188 9.796 1507 23.410 22.509 598 2.52 0.41 5.6E+02 1.9E+03	1.70 1.70 1.75 1.75 1.80 1.80 1.80 1.85 1.85 1.85 1.85
0	1.70 1.70 1.75 1.75 1.80 1.80 1.80 1.85 1.85 1.85 1.85
0	1.70 1.70 1.75 1.75 1.80 1.80 1.80 1.85 1.85 1.85 1.85
0	1.70 1.75 1.75 1.80 1.80 1.80 1.85 1.85 1.85 1.85
-1 6.425 2.874 348 13.718 6.135 163 2.13 0.36 4.6E+01 1.3E+02 1.5E+03 1 2.7 564 5.349 404 16.621 11.753 178 2.27 0.38 5.5E+01 1.5E+02 2.1E+03 1 3.8145 6.777 700 18.027 15.000 308 2.27 0.38 1.7E+02 4.7E+02 6.5E+03 1 3.8 1.45 6.777 700 18.027 15.000 308 2.27 0.38 1.7E+02 4.7E+02 6.5E+03 1 3.8 1.7E+02 4.7E+03 1.6E+04 1 3.8 1.7E+02 4.7E+02 6.5E+03 1 3.8 1.7E+02 4.7E+03 1.6E+04 1 3.8 1.7E+02 4.7E+03 1.6E+04 1 3.8 1.7E+02 4.7E+03 1.6E+04 1 3.8 1.7E+02 1.5E+03 2.8E+04 1 3.8 1.7E+02 1.5E+03 3.8E+04 1 3.8 1.7E+04 1 3.7E+04	1.70 1.75 1.75 1.80 1.80 1.80 1.85 1.85 1.85 1.85
-2 7.564 5.349 404 16.621 11.753 178 2.27 0.38 5.5E+01 1.5E+02 2.1E+03 1 8.145 6.777 700 18.027 15.000 308 2.27 0.38 1.7E+02 4.7E+02 6.5E+03 1 9.16E+04 1	1.70 1.75 1.80 1.80 1.80 1.85 1.85 1.85 1.85 1.85
-2 7.564 5.349 404 16.621 11.753 178 2.27 0.38 5.5E+01 1.5E+02 2.1E+03 1 8.145 6.777 700 18.027 15.000 308 2.27 0.38 1.7E+02 4.7E+02 6.5E+03 1 9.052 8.405 1407 20.433 18.971 552 2.55 0.41 5.6E+02 1.6E+03 2.9E+04 1 9.052 10.188 9.796 1507 23.410 22.509 598 2.52 0.41 5.6E+02 1.9E+03 3.3E+04 1 9.052 11.1991 11.758 1550 28.183 27.636 603 2.57 0.41 6.6E+02 1.9E+03 3.7E+04 1 9.052 11.1991 11.758 1550 28.183 27.636 603 2.57 0.41 6.6E+02 1.9E+03 3.7E+04 1 9.052 11.1991 11.758 1550 28.183 27.636 603 2.57 0.41 6.9E+02 1.9E+03 3.7E+04 1 9.052 11.1991 11.758 1550 28.183 27.636 603 2.57 0.41 6.9E+02 1.9E+03 3.7E+04 1 9.052 11.1991 11.758 1550 2.8E+04 1 9.052 11.1991 11.758 1550 28.183 27.636 603 2.57 0.41 6.9E+02 1.9E+03 3.7E+04 1 9.052 11.1991 11.758 1550 28.183 27.636 603 2.57 0.41 6.9E+02 1.9E+03 3.7E+04 1 9.052 11.1991 11.758 1550 28.183 27.636 603 2.57 0.41 6.9E+02 1.9E+03 3.7E+04 1 9.052 11.1991 11.758 1550 28.183 27.636 603 2.57 0.41 6.9E+02 1.9E+03 3.7E+04 1 9.052 11.1991 11.758 1550 28.183 27.636 603 2.57 0.41 6.9E+02 1.9E+03 3.7E+04 1 9.052 11.1991 11.758 1550 28.183 27.636 603 2.57 0.41 6.9E+02 1.9E+03 3.7E+04 1 9.052 11.1991 11.758 1550 28.183 27.636 603 2.57 0.41 6.9E+02 1.9E+03 3.7E+04 1 9.052 11.1991 11.758 1550 28.183 27.636 603 2.57 0.41 6.9E+02 1.9E+03 3.7E+04 1 9.052 11.1991 11.758 1550 28.183 27.636 603 2.57 0.41 6.9E+02 1.9E+03 3.7E+04 1 9.052 11.1991 11.758 1550 28.183 27.636 603 2.57 0.41 6.9E+02 1.9E+03 3.7E+04 1 9.052 11.1991 11.758 15.53 12.80 30.855 632 2.49 0.40 7.6E+02 2.1E+03 3.7E+04 1 9.052 11.1991 11.758 15.53 12.80 30.855 632 2.49 0.40 7.6E+02 2.1E+03 3.7E+04 1 9.052 11.1991 11.758 15.53 13.280 30.855 632 2.49 0.40 7.6E+02 2.1E+03 3.7E+04 1 9.052 11.1991 11.758 15.771 1463 13.280 30.855 632 2.49 0.40 7.6E+02 2.1E+03 3.7E+04 1 1.5E+02 1.7E+03 3.7E+04 1 1.753 17.751 1463 13.280 13	1.75 1.80 1.80 1.80 1.80 1.85 1.85 1.85 1.85 1.85
-3 8.145 6.777 700	1.75 1.80 1.80 1.80 1.80 1.85 1.85 1.85 1.85 1.85
-4 8.602 7.694 1091 19.185 17.160 463 2.36 0.39 3.8E+02 1.1E+03 1.6E+04 19.5 14.07 20.433 18.971 552 2.55 0.41 5.6E+02 1.6E+03 2.9E+04 19.683 15.77 10.188 9.796 1507 23.410 22.509 598 2.52 0.41 6.6E+02 1.9E+03 3.3E+04 19.683 15.78 15.09 19.023 15.03 2.8E+04 19.185 17.160 463 2.50 0.41 5.6E+02 1.5E+03 2.8E+04 19.683 15.79 19.10 19.023 15.03 10.471 14.016 40.765 568 19.18 19.19 19.023 15.03 14.28 19.02 19.18 19.10 19.023 15.03 14.28 19.20 19.18 19.10 19.023 15.03 14.20 19.20 19.18 19.10 19.023 15.03 14.20 19.18 19.10 19.18 19.023 15.03 14.20 19.20 19.18 19.10 19.023 15.03 14.20 19.20 19.18 19.10 19.023 15.03 14.20 19.20 19.18 19.10 19.023 15.03 14.20 19.20 19.18 19.020 18.450 19.02 19.18 19.020 19.18 19.020 19.18 19.020 19.18 19.020 19.18 19.020 19.18 19.020 19.18 19.020 19.18 19.020 19.18 19.020 19.18 19.020 19.18 19.023 15.03 14.28 19.20 19.20 19.18 19.020 19.020 19.18 19.020 19.040 19.020 19.040 19.020 19.040 19.020 19.040 19.020 19.040 19.020 19.040 19.020 19.040 19.020 19.040 19.020 19.040 19.020 19.040 19.020 19.040 19.020 19.040 19.020 19.040 19.020 19	1.75 1.80 1.80 1.80 1.85 1.85 1.85 1.85 1.85
-5 9.052 8.405 1407 -6 9.626 9.132 1375 -7 10.188 9.796 1507 -8 10.793 10.471 1480 -9 11.384 11.113 1559 -10 11.991 11.758 1550 -11 12.634 12.430 1487 -12 13.246 13.066 1573 -13 13.849 13.688 1608 -14 14.465 14.319 1584 -15 15.096 14.963 1553 -16 15.759 15.637 1483 -17 16.466 16.353 1397 -18 17.138 17.033 1471 -19 17.815 17.717 1463 -20 18.450 18.358 1559 -21 19.109 19.023 1503 -22 19.764 19.683 1517 -23 20.460 20.383 1428	1.80 1.80 1.80 1.85 1.85 1.85 1.85 1.85
-6 9.626 9.132 1375 -7 10.188 9.796 1507 -8 10.793 10.471 1480 -9 11.384 11.113 1559 -10 11.991 11.758 1550 -11 12.634 12.430 1487 -12 13.246 13.066 1573 -13 13.849 13.688 1608 -14 14.465 14.319 1584 -15 15.096 14.963 1553 -16 15.759 15.637 1483 -17 16.466 16.353 1397 -18 17.138 17.033 1471 -19 17.815 17.717 1463 -20 18.450 18.358 1559 -21 19.109 19.023 1503 -22 19.764 19.683 1517 -23 20.460 20.383 1428	1.80 1.80 1.85 1.85 1.85 1.85 1.85 1.85
-7 10.188 9.796 1507 23.410 22.509 598 2.52 0.41 6.6E+02 1.9E+03 3.3E+04 1 -8 10.793 10.471 1480 25.033 24.285 563 2.63 0.42 5.8E+02 1.7E+03 3.2E+04 1 -9 11.384 11.113 1559 26.611 25.977 591 2.64 0.42 6.6E+02 1.9E+03 3.7E+04 1 -10 11.991 11.758 1550 28.183 27.636 603 2.57 0.41 6.9E+02 1.9E+03 3.7E+04 1 -11 12.634 12.430 1487 29.752 29.272 611 2.43 0.40 7.1E+02 2.0E+03 3.2E+04 1 -12 13.246 13.066 1573 31.280 30.855 632 2.49 0.40 7.6E+02 2.1E+03 3.7E+04 1 -13 13.849 13.688 1608 32.767 32.386 <td>1.80 1.85 1.85 1.85 1.85 1.85 1.85</td>	1.80 1.85 1.85 1.85 1.85 1.85 1.85
-8 10.793 10.471 1480 25.033 24.285 563 24.285 563 2.63 0.42 5.8E+02 1.7E+03 3.2E+04 10.11 1.11 1.11 1.11 1.11 1.11 1.11 1	1.80 1.85 1.85 1.85 1.85 1.85
-9 11.384 11.113 1559 26.611 25.977 591 -10 11.991 11.758 1550 28.183 27.636 603 -11 12.634 12.430 1487 29.752 29.272 611 -12 13.246 13.066 1573 31.280 30.855 632 -13 13.849 13.688 1608 32.767 32.386 653 -14 14.465 14.319 1584 34.283 33.939 644 -15 15.096 14.963 1553 35.825 35.511 636 -16 15.759 15.637 1483 37.473 37.183 598 -17 16.466 16.353 1397 39.274 39.005 549 -18 17.138 17.033 1471 41.016 40.765 568 -20 18.450 18.358 1559 44.422 44.202 607 -21 19.109 19.023 1503 46.073 45.866 601 -22 19.764	1.85 1.85 1.85 1.85 1.85 1.85
-10	1.85 1.85 1.85 1.85 1.85
-11	1.85 1.85 1.85 1.85
-12	1.85 1.85 1.85
-13 13.849 13.688 1608 32.767 32.386 653 2.46 0.40 8.1E+02 2.3E+03 3.8E+04 1 -14 14.465 14.319 1584 34.283 33.939 644 2.46 0.40 7.8E+02 2.2E+03 3.7E+04 1 -15 15.096 14.963 1553 35.825 35.511 636 2.44 0.40 7.6E+02 2.1E+03 3.5E+04 1 -16 15.759 15.637 1483 37.473 37.183 598 2.48 0.40 6.8E+02 1.9E+03 3.2E+04 1 -17 16.466 16.353 1397 39.274 39.005 549 2.54 0.41 5.7E+02 1.6E+03 2.9E+04 1 -18 17.138 17.033 1471 41.016 40.765 568 2.59 0.41 5.7E+02 1.7E+03 3.3E+04 1 -20 18.450 18.358 1559 44.422 44.202	1.85 1.85
-14	1.85
-15	
-16 15.759 15.637 1483 37.473 37.183 598 2.48 0.40 6.8E+02 1.9E+03 3.2E+04 1 -17 16.466 16.353 1397 39.274 39.005 549 2.54 0.41 5.7E+02 1.6E+03 2.9E+04 1 -18 17.138 17.033 1471 41.016 40.765 568 2.59 0.41 6.1E+02 1.7E+03 3.3E+04 1 -19 17.815 17.717 1463 42.789 42.554 559 2.62 0.41 5.9E+02 1.7E+03 3.3E+04 1 -20 18.450 18.358 1559 44.422 44.202 607 2.57 0.41 7.0E+02 2.0E+03 3.7E+04 1 -21 19.109 19.023 1503 46.073 45.866 601 2.50 0.40 6.8E+02 1.9E+03 3.4E+04 1 -22 19.764 19.683 1517 47.682 47.486 617 2.46 0.40 7.2E+02 2.0E+03 3.4E+04 1 <td>1 05</td>	1 05
-17 16.466 16.353 1397 39.274 39.005 549 -18 17.138 17.033 1471 41.016 40.765 568 -19 17.815 17.717 1463 42.789 42.554 559 -20 18.450 18.358 1559 -21 19.109 19.023 1503 -22 19.764 19.683 1517 -23 20.460 20.383 1428 49.393 49.208 581 2.54 0.41 5.7E+02 1.6E+03 2.9E+04 1 2.59 0.41 6.1E+02 1.7E+03 3.3E+04 1 2.62 0.41 5.9E+02 1.7E+03 3.3E+04 1 2.57 0.41 7.0E+02 2.0E+03 3.7E+04 1 2.50 0.40 6.8E+02 1.9E+03 3.4E+04 1 2.50 0.40 6.8E+02 1.9E+03 3.4E+04 1 2.46 0.40 7.2E+02 2.0E+03 3.0E+04 1 2.46 0.40 6.4E+02 1.8E+03 3.0E+04 1	1.85
-17	1.85
-18 17.138 17.033 1471 41.016 40.765 568 -19 17.815 17.717 1463 42.789 42.554 559 -20 18.450 18.358 1559 44.422 44.202 607 -21 19.109 19.023 1503 46.073 45.866 601 -22 19.764 19.683 1517 -23 20.460 20.383 1428 49.393 49.208 581 2.59 0.41 6.1E+02 1.7E+03 3.3E+04 1 2.62 0.41 5.9E+02 1.7E+03 3.3E+04 1 2.57 0.41 7.0E+02 2.0E+03 3.7E+04 1 2.50 0.40 6.8E+02 1.9E+03 3.4E+04 1 2.46 0.40 7.2E+02 2.0E+03 3.4E+04 1 2.46 0.40 6.4E+02 1.8E+03 3.0E+04 1	1.85
-19 17.815 17.717 1463 42.789 42.554 559 -20 18.450 18.358 1559 44.422 44.202 607 -21 19.109 19.023 1503 46.073 45.866 601 -22 19.764 19.683 1517 47.682 47.486 617 -23 20.460 20.383 1428 49.393 49.208 581 2.62 0.41 5.9E+02 1.7E+03 3.3E+04 11 2.57 0.41 7.0E+02 2.0E+03 3.4E+04 11 2.60 0.40 6.8E+02 1.9E+03 3.4E+04 11 2.46 0.40 6.4E+02 1.8E+03 3.0E+04 11	1.85
-20 18.450 18.358 1559 44.422 44.202 607 2.57 0.41 7.0E+02 2.0E+03 3.7E+04 1 -21 19.109 19.023 1503 46.073 45.866 601 2.50 0.40 6.8E+02 1.9E+03 3.4E+04 1 -22 19.764 19.683 1517 47.682 47.486 617 2.46 0.40 7.2E+02 2.0E+03 3.4E+04 1 -23 20.460 20.383 1428 49.393 49.208 581 2.46 0.40 6.4E+02 1.8E+03 3.0E+04 1	1.85
-21 19.109 19.023 1503 46.073 45.866 601 2.50 0.40 6.8E+02 1.9E+03 3.4E+04 1 -22 19.764 19.683 1517 47.682 47.486 617 2.46 0.40 7.2E+02 2.0E+03 3.4E+04 1 -23 20.460 20.383 1428 49.393 49.208 581 2.46 0.40 6.4E+02 1.8E+03 3.0E+04 1	1.85
-22 19.764 19.683 1517 47.682 47.486 617 2.46 0.40 7.2E+02 2.0E+03 3.4E+04 1 -23 20.460 20.383 1428 49.393 49.208 581 2.46 0.40 6.4E+02 1.8E+03 3.0E+04 1	1.85
-23 20.460 20.383 1428 49.393 49.208 581 2.46 0.40 6.4E+02 1.8E+03 3.0E+04 1	
	1.85
	1.85
	1.85
	1.90
	1.90
	1.90
	1.90
-29 <mark>24.147 24.090 1754</mark> 58.721 58.582 673 2.61 0.41 8.8E+02 2.5E+03 4.8E+04 1	1.90
-30	2.00
-31 25.184 25.132 1931 61.459 61.331 731 2.64 0.42 1.1E+03 3.1E+03 6.2E+04 2	2.00
-32 25.691 25.641 1963 62.800 62.677 743 2.64 0.42 1.1E+03 3.2E+03 6.4E+04 2	2.00
-33 26.203 26.155 1948 64.178 64.060 723 2.69 0.42 1.1E+03 3.0E+03 6.3E+04 2	2.00
	2.00
	2.00
	2.00
	2.00
	2.00
	2.00
	2.00
-41	
-42	
-43	
-44	
-45	
-46	
-47	
-48	
-49	
-50	

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 48 di 63

Documentazione fotografica Down-Hole DH-S2

Piazzola sondaggio S2bis

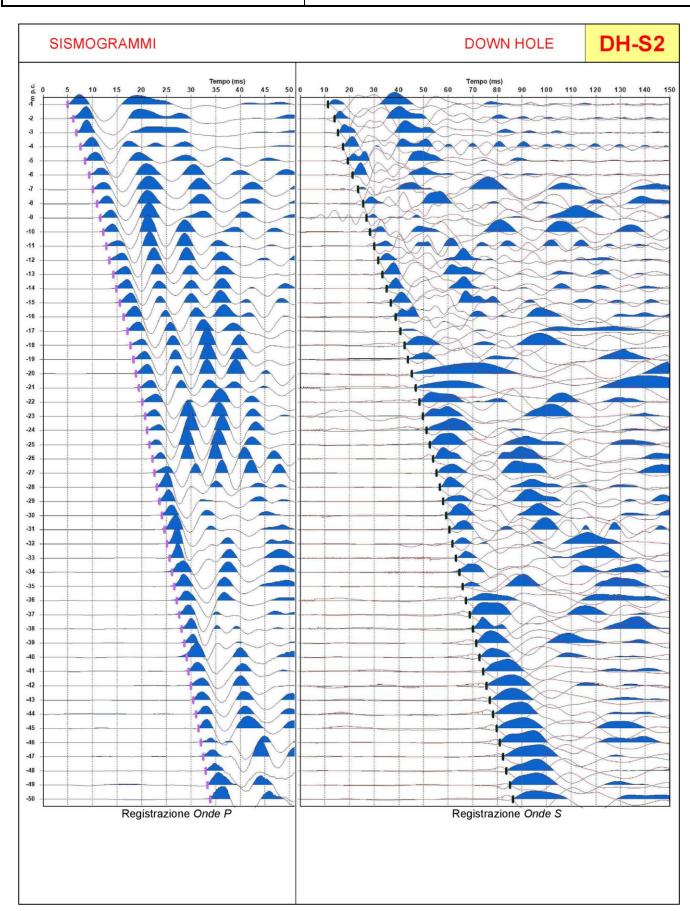
Ubicazione territoriale

Energizzazione onde P

Energizzazione onde S

Commento risultati DH-S2

- Le velocità sismiche **Vp** risultano inferiori a 470 m/s nei primi -2.0 m dal p.c.. Al di sotto si registra un netto incremento di velocità oltre 800 m/s fino a valori di poco superiori a 1000 m/s. A partire da -9.0 m dal p.c. le velocità raggiungono i 15000 m/s, segue un'alternanza di valori sino a -23.0 m dal p.c., con valori che rimangono complessivamente compresi tra 1300 e 1800 m/s. A partire da -24.0 m dal p.c. le velocità rimangono mediamente prossime a 2000 m/s sino a fondo foro.
- Le velocità sismiche **Vs** rimangono prossime a 200 m/s nei primi 2.0 m di spessore, segue un graduale incremento dei valori che raggiungono i 630 m/s ad una profondità di -9.0 m dal p.c.. Al di sotto e fino a -23.0 m del p.c. le velocità rimangono comprese tra 500 e 690 m/s. A partire da -24.0 m dal p.c. e fino a fondo foro le Vs si attestano su valori medi prossimi a 750 m/s.

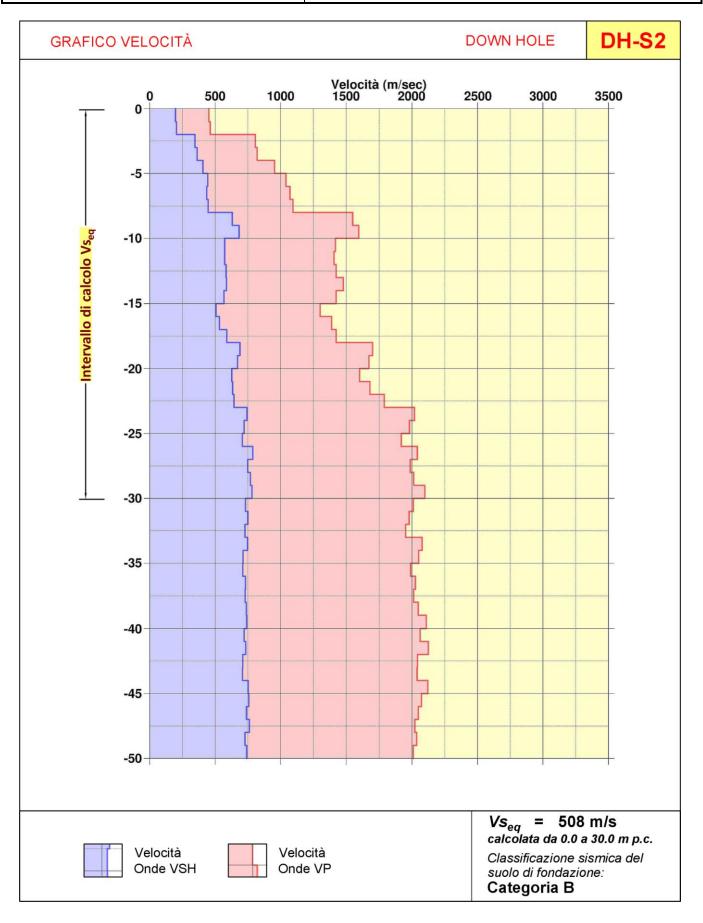


NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 49 di 63



NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 50 di 63

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

LOTTO COMMESSA 10 IN10

CODIFICA D 69 IG

DOCUMENTO GE 00 05 002

REV. FOGLIO Α

51 di 63

TABELLA PARAMETRI	DOWN HOLE	DH-S2
-------------------	-----------	-------

	s)	ti	0	(SI	æ	()		di	Mod.	Mod.	Mod.	
Prof. (m)	TP letti (ms)	corretti (ms)	(s/m)	TSH letti (ms)	TSH corretti (ms)	(s/m)	VP/VSH	Rapporto di Poisson	taglio G	Young E	Comp.	Densità (1/m3)
-	i I	corre (ms)		lett	H con (ms)		2	por	Gdin	Edin	Vol. Ev	Densità (t/m3)
l _P	9	TP)	<u>d</u>	Ξ	HS.	VSH	>	ap Po	(MPa)	(MPa)	(MPa)	2 ±
	F	_		Ľ.	_							
0			452			198	2.28	0.38	6.8E+01	1.9E+02	2.6E+03	1.70
-1	4.947	2.212	452	11.293	5.051	198	2.28	0.38	6.8E+01	1.9E+02	2.6E+03	1.70
-2	6.183	4.372	463	14.041	9.929	205	2.26	0.38	7.3E+01	2.0E+02	2.7E+03	1.70
-3	6.744	5.611	807	15.396	12.810	347	2.33	0.39	2.2E+02	6.0E+02	8.8E+03	1.75
-4	7.636	6.829	821	17.402	15.565	363	2.26	0.38	2.4E+02	6.5E+02	8.9E+03	1.75
-5	8.486	7.879	953	19.411	18.022	407	2.34	0.39	3.0E+02	8.5E+02	1.3E+04	1.80
-6	9.317	8.839	1041	21.377	20.280	443	2.35	0.39	3.6E+02	1.0E+03	1.5E+04	1.80
-7	10.164	9.773	1071	23.476	22.573	436	2.46	0.40	3.5E+02	9.8E+02	1.6E+04	1.80
-8	11.017	10.688	1093	25.574	24.810	447	2.45	0.40	3.7E+02	1.0E+03	1.7E+04	1.80
-9	11.610	11.334	1549	27.039	26.395	631	2.45	0.40	7.5E+02	2.1E+03	3.5E+04	1.85
-10	12.197	11.960	1596	28.411	27.859	683	2.34	0.39	8.8E+02	2.4E+03	3.6E+04	1.85
-11			1418	30.090	29.604	573	2.47	0.40	6.2E+02		3.0E+04	1.85
	12.873	12.665								1.7E+03		
-12	13.561	13.376	1407	31.782	31.350	573	2.46	0.40	6.2E+02	1.7E+03	2.9E+04	1.85
-13	14.244	14.079	1423	33.454	33.065	583	2.44	0.40	6.4E+02	1.8E+03	3.0E+04	1.85
-14	14.905	14.755	1478	35.121	34.768	587	2.52	0.41	6.5E+02	1.8E+03	3.3E+04	1.85
-15	15.595	15.458	1423	36.855	36.532	567	2.51	0.41	6.1E+02	1.7E+03	3.0E+04	1.85
-16	16.353	16.227	1301	38.804	38.504	507	2.57	0.41	4.9E+02	1.4E+03	2.5E+04	1.85
-17	17.064	16.947	1389	40.659	40.381	533	2.61	0.41	5.4E+02	1.5E+03	2.9E+04	1.85
-18	17.758	17.649	1423	42.337	42.078	589	2.42	0.40	6.6E+02	1.8E+03	2.9E+04	1.85
-19	18.338	18.237	1701	43.770	43.530	689	2.47	0.40	9.2E+02	2.6E+03	4.4E+04	1.90
-20	18.929	18.835	1673	45.245	45.020	671	2.49	0.40	8.7E+02	2.5E+03	4.3E+04	1.90
-21	19.547	19.459	1602	46.826	46.615	627	2.56	0.41	7.6E+02	2.2E+03	4.0E+04	1.90
-22	20.137	20.054	1681	48.394	48.195	633	2.66	0.42	7.8E+02	2.2E+03	4.4E+04	1.90
-23	20.691	20.613	1789	49.935	49.748	644	2.78	0.43	8.1E+02	2.3E+03	5.1E+04	1.90
-24	21.182	21.108	2019	51.271	51.094	743	2.72	0.42	1.1E+03	3.0E+03	6.5E+04	1.90
-25	21.682	21.613	1981	52.648	52.480	721	2.75	0.42	1.0E+03	2.9E+03	6.3E+04	1.90
-26	22.200	22.135	1918	54.054	53.895	707	2.71	0.42	1.0E+03	2.9E+03	6.1E+04	2.00
-27	22.687	22.625	2041	55.317	55.166	787	2.59	0.41	1.3E+03	3.6E+03	6.8E+04	2.00
-28	23.187	23.128	1987	56.646	56.502	748	2.66	0.42	1.1E+03	3.2E+03	6.5E+04	2.00
-29	23.681	23.625	2013	57.940	57.803	769	2.62	0.41	1.2E+03	3.4E+03	6.7E+04	2.00
-30	24.155	24.101	2098	59.214	59.083	781	2.69	0.42	1.2E+03	3.5E+03	7.3E+04	2.00
-31	24.650	24.599	2011	60.577	60.451	731	2.75	0.42	1.1E+03	3.1E+03	6.8E+04	2.00
-32	25.153	25.104	1978	61.907	61.786	749	2.64	0.42	1.1E+03	3.2E+03	6.5E+04	2.00
-33	25.664	25.617	1951	63.276	63.160	728	2.68	0.42	1.1E+03	3.1E+03	6.3E+04	2.00
-34	26.143	26.098	2078	64.610	64.499	747	2.78	0.42	1.1E+03	3.3E+03	7.3E+04	2.00
-35	26.629	26.585	2051	66.009	65.901	713	2.88	0.43	1.0E+03	3.0E+03	7.2E+04	2.00
			1989					2000 0.000				120000000000000000000000000000000000000
-36	27.130	27.088		67.411	67.308	711	2.80	0.43	1.0E+03	2.9E+03	6.7E+04	2.00
-37	27.622	27.582	2026	68.776	68.676	731	2.77	0.43	1.1E+03	3.1E+03	6.9E+04	2.00
-38	28.117	28.079	2013	70.144	70.047	729	2.76	0.42	1.1E+03	3.1E+03	6.8E+04	2.00
-39	28.605	28.567	2047	71.496	71.402	738	2.77	0.43	1.1E+03	3.2E+03	7.1E+04	2.00
-40	29.078	29.041	2109	72.843	72.752	741	2.85	0.43	1.1E+03	3.2E+03	7.6E+04	2.00
-41	29.561	29.526	2063	74.227	74.139	721	2.86	0.43	1.1E+03	3.0E+03	7.3E+04	2.00
-42	30.031	29.997	2125	75.589	75.503	733	2.90	0.43	1.1E+03	3.1E+03	7.7E+04	2.00
-43	30.519	30.486	2042	76.993	76.910	711	2.87	0.43	1.0E+03	3.0E+03	7.1E+04	2.00
-44	31.009	30.977	2039	78.403	78.322	708	2.88	0.43	1.0E+03	2.9E+03	7.1E+04	2.00
-45	31.479	31.448	2121	79.732	79.654	751	2.82	0.43	1.2E+03	3.3E+03	7.6E+04	2.00
-46	31.961	31.931	2072	81.051	80.975	757	2.74	0.42	1.2E+03	3.3E+03	7.2E+04	2.00
-47	32.448	32.419	2049	82.402	82.328	739	2.77	0.43	1.1E+03	3.2E+03	7.1E+04	2.00
-48	32.942	32.914	2021	83.714	83.642	761	2.66	0.42	1.2E+03	3.4E+03	6.8E+04	2.00
-49	33.433	33.405	2036	85.086	85.015	728	2.80	0.43	1.1E+03	3.1E+03	7.0E+04	2.00
-50	33.929	33.902	2010	86.434	86.365	741	2.71	0.42	1.1E+03	3.2E+03	6.7E+04	2.00

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 52 di 63

Documentazione fotografica Down-Hole DH-S7

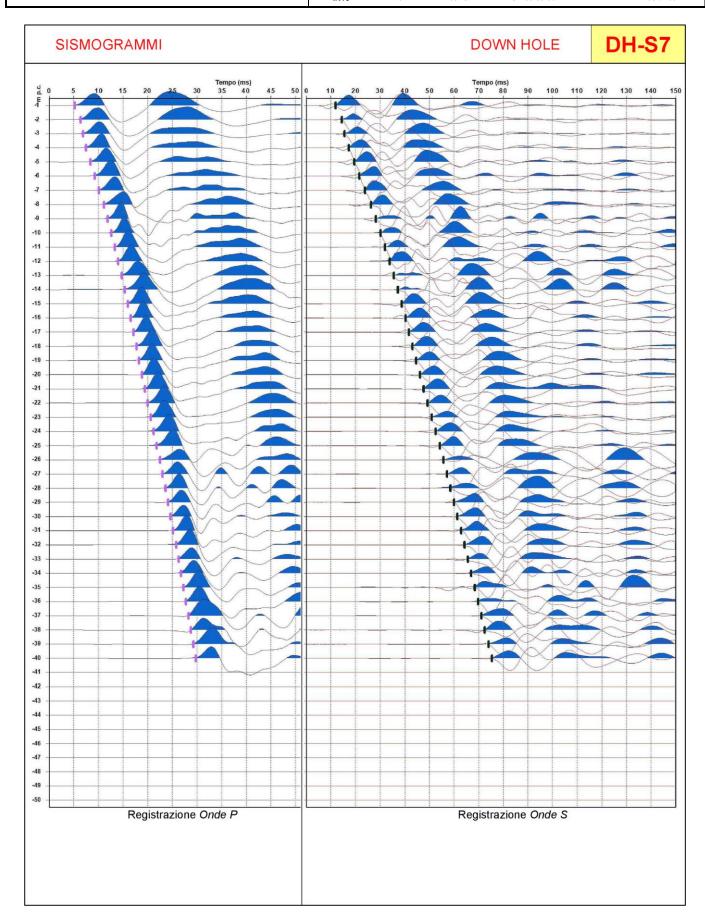
Piazzola sondaggio S7bis

Energizzazione onde P

Energizzazione onde S

Commento risultati DH-S7

- Relativamente alle velocità sismiche **Vp** si registrano valori inferiori a 460 m/s nei primi 2.0 m di spessore. Segue un netto incremento di velocità oltre gli 800 m/s con valori che si attestano mediamente su 1000 m/s fino a -8.0 m dal p.c.. A partire da -9.0 m dal p.c. le velocità superano i 1200 m/s per raggiungere progressivamente i 1750 m/s a -16.0 m di profondità. Al di sotto i valori di Vp non registrano forti oscillazioni, solamente oltre -27.0 m dal p.c. oltrepassano i 1800 m/s per attestarsi su velocità prossime a 2000 m/s in prossimità del fondo foro.
- Per quanto riguarda le velocità sismiche **Vs** si registrano valori inferiori a 200 m/s nei primi 2.0 m di spessore. A partire da -3.0 m dal p.c. i valori oltrepassano i 350 m/s per poi gradualmente incrementare sino a 690 m/s ad una profondità di -16.0 m dal p.c.. Seguono deboli alternanze di valori di Vs sino a fondo foro, senza mai oltrepassare i 750 m/s.

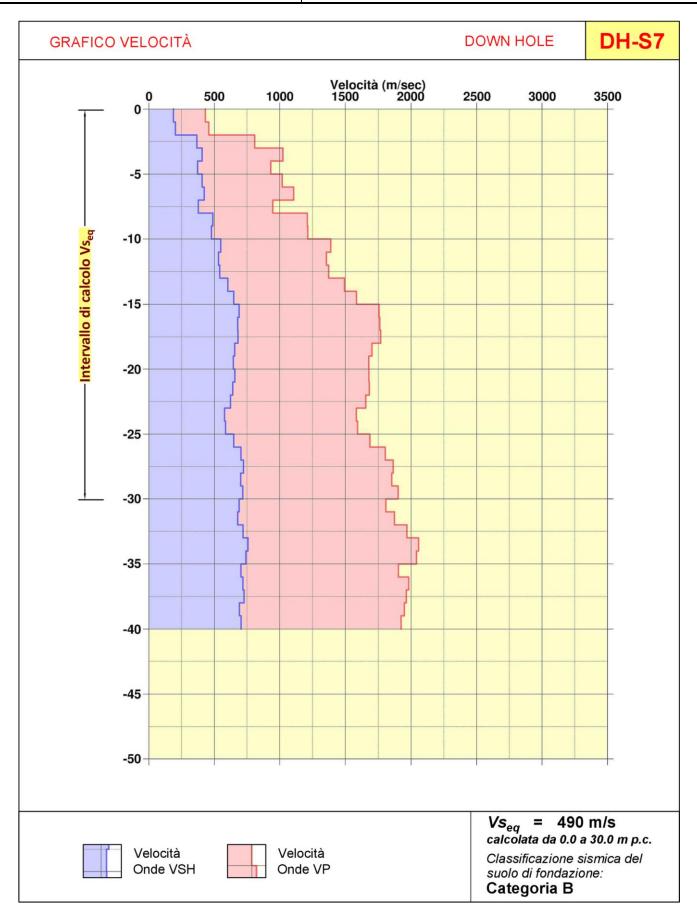


NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 53 di 63



NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 54 di 63

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

TABELLA PARAMETRI

COMMESSA LOTTO
IN10 10

CODIFICA D 69 IG DOCUMENTO GE 00 05 002 REV. FOGLIO A 55 di 63

DOWN HOLE DH-S7

	(SI	Ŧ	_	(SI	Ξ	(8		ib	Mod.	Mod.	Mod.	
Prof. (m)	E)	corretti (ms)	(m/s)	Ē) orre	(s/m)	VP/VSH	5 6	taglio G	Young E	Comp.	Densità (t/m3)
æ.	etti	(ms)		ett	H con (ms)		>	odo	Gdin	Edin	Vol. Ev	Densità (t/m3)
ď	TP letti (ms)	<u>Б</u>	VP	TSH letti (ms)	TSH corretti (ms)	VSH	>	Rapporto di Poisson	(MPa)	(MPa)	(MPa)	ے ق
	-		404	F			0.00					4 70
0	F 400	0.000	431	44.004	F 240	188	2.29	0.38	6.1E+01	1.7E+02	2.4E+03	1.70
-1	5.188	2.320	431	11.894	5.319	188	2.29	0.38	6.1E+01	1.7E+02	2.4E+03	1.70
-2	6.376	4.508	457	14.489	10.245	203	2.25	0.38	7.2E+01	2.0E+02	2.7E+03	1.70
-3	6.908	5.748	807	15.588	12.970	367	2.20	0.37	2.4E+02	6.6E+02	8.4E+03	1.75
-4	7.519	6.725	1023	17.248	15.427	407	2.51	0.41	3.0E+02	8.3E+02	1.5E+04	1.75
-5	8.401	7.800	930	19.511	18.115	372	2.50	0.40	2.5E+02	7.2E+02	1.2E+04	1.80
-6	9.258	8.783	1018	21.685	20.572	407	2.50	0.40	3.0E+02	8.6E+02	1.5E+04	1.80
-7	10.075	9.688	1105	23.854	22.936	423	2.61	0.41	3.3E+02	9.3E+02	1.8E+04	1.80
-8	11.077	10.746	945	26.369	25.582	378	2.50	0.40	2.6E+02	7.4E+02	1.3E+04	1.80
-9	11.855	11.573	1209	28.301	27.627	489	2.47	0.40	4.5E+02	1.3E+03	2.2E+04	1.8
-10	12.643	12.397	1213	30.307	29.719	478	2.54	0.41	4.3E+02	1.2E+03	2.2E+04	1.8
-11	13.332	13.117	1389	32.057	31.540	549	2.53	0.41	5.7E+02	1.6E+03	2.9E+04	1.8
-12	14.046	13.855	1355	33.881	33.420	532	2.55	0.41	5.3E+02	1.5E+03	2.8E+04	1.8
-13	14.756	14.584	1372	35.683	35.268	541	2.54	0.41	5.5E+02	1.6E+03	2.8E+04	1.8
-14	15.409	15.254	1493	37.302	36.927	603	2.48	0.40	6.9E+02	1.9E+03	3.3E+04	1.8
-15	16.025	15.885	1585	38.811	38.470	648	2.45	0.40	7.9E+02	2.2E+03	3.7E+04	1.8
-16	16.583	16.455	1755	40.232	39.921	689	2.55	0.41	9.0E+02	2.5E+03	4.6E+04	1.8
-17	17.140	17.023	1761	41.682	41.396	678	2.60	0.41	8.7E+02	2.5E+03	4.7E+04	1.88
-18	17.697	17.588	1767	43.129	42.865	681	2.59	0.41	8.8E+02	2.5E+03	4.7E+04	1.85
-19	18.276	18.176	1703	44.634	44.389	656	2.60	0.41	8.4E+02	2.4E+03	4.5E+04	1.90
-20	18.865	18.772	1678	46.169	45.940	645	2.60	0.41	8.1E+02	2.3E+03	4.4E+04	1.90
-21	19.454	19.367	1680	47.676	47.462	657	2.56	0.41	8.4E+02	2.4E+03	4.4E+04	1.90
-22	20.043	19.961	1683	49.224	49.022	641	2.63	0.42	8.0E+02	2.3E+03	4.4E+04	1.90
-23	20.642	20.565	1656	50.818	50.627	623	2.66	0.42	7.5E+02	2.1E+03	4.3E+04	1.90
-24	21.270	21.196	1584	52.538	52.357	578	2.74	0.42	6.5E+02	1.8E+03	4.0E+04	1.90
-25	21.894	21.824	1593	54.236	54.063	586	2.72	0.42	6.7E+02	1.9E+03	4.0E+04	1.90
-26	22.483	22.417	1687	55.771	55.607	648	2.60	0.41	8.6E+02	2.4E+03	4.7E+04	2.00
-27	23.034	22.971	1803	57.185	57.029	703	2.56	0.41	1.0E+03	2.8E+03	5.3E+04	2.00
-28	23.568	23.508	1863	58.561	58.412	723	2.58	0.41	1.1E+03	3.0E+03	5.7E+04	2.00
-29	24.105	24.048	1852	59.981	59.839	701	2.64	0.42	1.0E+03	2.8E+03	5.7E+04	2.00
-30	24.629	24.574	1901	61.369	61.233	717	2.65	0.42	1.1E+03	3.0E+03	6.0E+04	2.00
-31	25.180	25.128	1807	62.815	62.685	689	2.62	0.41	9.7E+02	2.7E+03	5.4E+04	2.00
-32	25.711	25.661	1873	64.285	64.160	678	2.76	0.42	9.4E+02	2.7E+03	5.9E+04	2.00
-33	26.218	26.170	1967	65.671	65.551	719	2.74	0.42	1.1E+03	3.0E+03	6.5E+04	2.00
-34	26.702	26.656	2057	66.987	66.872	757	2.72			3.3E+03	7.1E+04	2.00
-35	27.190	27.146	2041	68.332	68.221	741	2.75	0.42		3.2E+03	7.1E+04 7.0E+04	2.00
-36	27.714	27.146	1903	69.751	69.644	703	2.73	0.42		2.9E+03		2.00
-37	28.217	28.176	1981	71.140	71.036	718	2.76	0.42		3.0E+03	6.6E+04	2.00
-38	28.725	28.686	1963	71.140	72.412	710	2.70	0.42		3.1E+03	6.6E+04 6.4E+04	2.00
-39	29.237		1963	73.956	73.859	691	2.70	0.42			6.4E+04 6.4E+04	2.00
-40		29.199			75.280	100000000000000000000000000000000000000			9.8E+02 1.0E+03	2.8E+03		
-40	29.756	29.719	1923	75.374	75.260	704	2.73	0.42	1.02+03	2.9E+03	6.2E+04	2.00
-42												
-43												
-44												
-45												
-46												
-47												
-48												
-49												
-50												

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 56 di 63

Documentazione fotografica Down-Hole DH-S16

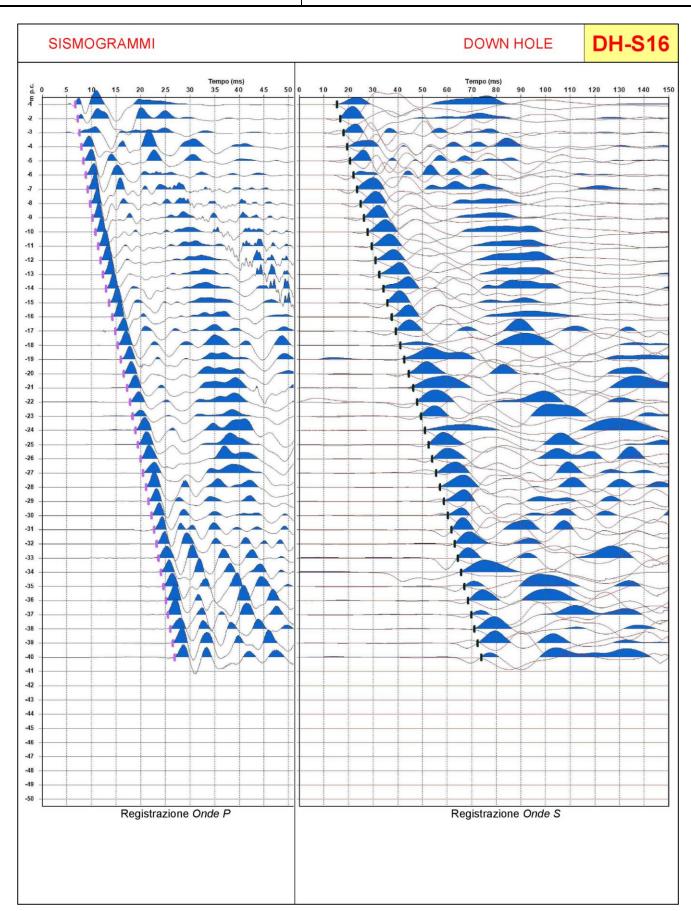
Ubicazione territoriale

Energizzazione onde P

Energizzazione onde S

Commento risultati DH-S16

- Le velocità sismiche **Vp** fanno registrare un repentino incremento dei valori nei primi 6.0 m di spessore, i quali da 330 m/s passano a 1800 m/s. Al di sotto e sino a -31.0 m dal p.c., le velocità si attestano su valori medi prossimi a 1750 m/s, con leggere fluttuazioni comprese tra 1600 e 1900 m/s. A partire da -32.0 m dal p.c. le velocità raggiungono i 2300 m/s e fino a fondo foro rimangono superiori a 2000 m/s.
- Le velocità sismiche **Vs**, analogamente all'andamento delle Vp, nei primi 6.0 di spessore rapidamente incrementano da 140 a 600 m/s. Al di sotto segue un andamento pressochè costante sino a -31.0 m dal p.c. con velocità che si attestano su valori medi poco superiori a 600 m/s. Da -32.0 m dal p.c., si registra un incremento di Vs sopra i 750 m/s praticamente fino a fondo foro.

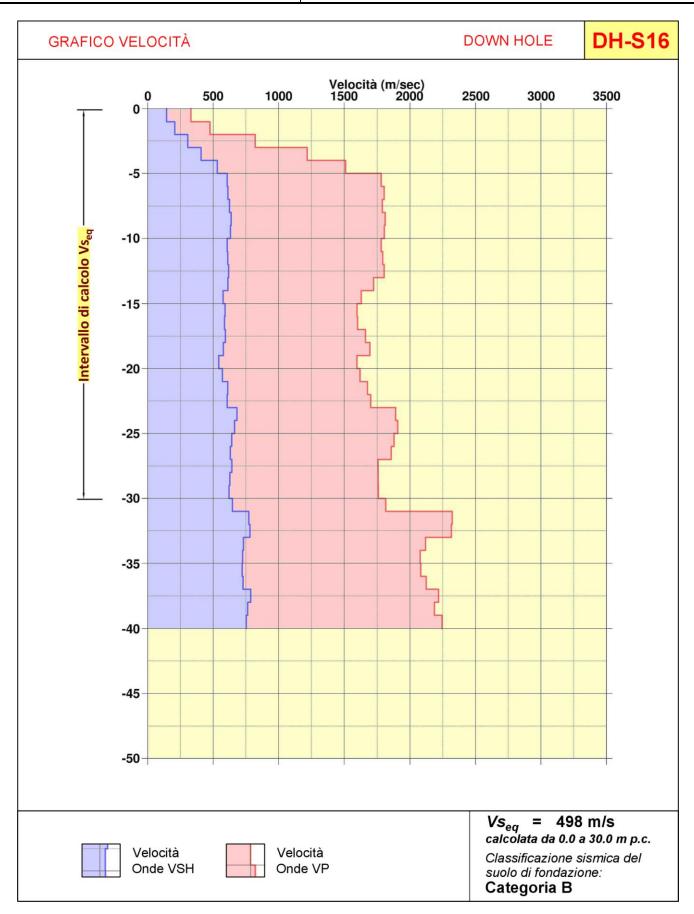


NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IN10 10 D 69 IG GE 00 05 002 A 57 di 63



NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 58 di 63

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

COMMESSA LOTTO IN10

10

CODIFICA D 69 IG

DOCUMENTO GE 00 05 002

REV. Α

FOGLIO 59 di 63

TABELLA PARAMETRI	DOWN HOLE	DH-S16
-------------------	-----------	---------------

_	TP letti (ms)	≆	<i>∞</i>	TSH letti (ms)	五	(s)	_	'ਚ _	Mod.	Mod.	Mod.	_
Prof. (m)	i.	corretti (ms)	(m/s)	±.	orre s)	(m/s)	VP/VSH	apporto Poisson	taglio G	Young E	Comp.	Densità
of.	ett	(ms)		<u>a</u>	H con (ms)	I	~	odo sis	Gdin	Edin	Vol. Ev	eu
<u>~</u>	٥	<u>ط</u> (N N	SH	TSH corretti (ms)	VSH	>	Rapporto di Poisson	(MPa)	(MPa)	(MPa)	Ο,
0			330	-		145	2.28		3.7E+01	1.0E+02	1.4E+03	1.
-1	6.776	3.030	330	15.42	1 6.897	145	2.28		3.7E+01	1.0E+02	1.4E+03	1.
-2	7.257	5.131	476	16.58	190	207	2.30		7.4E+01	2.1E+02	2.9E+03	1.
-3		6.349	821	18.00		307	2.67		1.7E+02	4.8E+02	9.8E+03	1.
-4	7.631 8.017	7.170	1218	19.49		408	2.99		3.0E+02	8.6E+02	2.3E+04	1.
- 4 -5	48500500000		1511	20.80		532	2.84		5.2E+02	1.5E+03	3.5E+04	1.
	8.435	7.832										
-6	8.848	8.393	1781	22.09		607	2.93		6.8E+02	1.9E+03	4.9E+04	1.
-7	9.306	8.948	1803	23.49		613	2.94		7.1E+02	2.0E+03	5.2E+04	1.6
-8	9.800	9.507	1789	24.94		624	2.87		7.4E+02	2.1E+03	5.1E+04	1.8
-9	10.305	10.059	1811	26.39		637	2.84		7.7E+02	2.2E+03	5.2E+04	1.8
-10	10.824	10.614	1804	27.89		632	2.85		7.6E+02	2.2E+03	5.1E+04	1.8
-11	11.358	11.175	1781	29.47	100000000000000000000000000000000000000	607	2.93		7.0E+02	2.0E+03	5.1E+04	1.8
-12	11.895	11.733	1792	31.05		611	2.93	10000	7.1E+02	2.0E+03	5.1E+04	1.8
-13	12.432	12.288	1803	32.63		618	2.92	_	7.2E+02	2.1E+03	5.2E+04	1.8
-14	12.998	12.868	1724	34.22		613	2.81	0.43	7.1E+02	2.0E+03	4.7E+04	1.8
-15	13.600	13.481	1631	35.93	4 35.619	576	2.83	0.43	6.3E+02	1.8E+03	4.2E+04	1.8
-16	14.216	14.107	1598	37.60	1 37.311	591	2.70	0.42	6.6E+02	1.9E+03	3.9E+04	1.8
-17	14.832	14.731	1603	39.28	3 39.014	587	2.73	0.42	6.5E+02	1.9E+03	4.0E+04	1.8
-18	15.426	15.332	1663	40.95	1 40.701	593	2.80	0.43	6.6E+02	1.9E+03	4.3E+04	1.8
-19	16.009	15.921	1696	42.66	5 42.431	578	2.93	0.43	6.3E+02	1.8E+03	4.6E+04	1.8
-20	16.630	16.548	1597	44.49	3 44.272	543	2.94	0.43	5.6E+02	1.6E+03	4.1E+04	1.8
-21	17.242	17.165	1621	46.23	2 46.024	571	2.84	0.43	6.2E+02	1.8E+03	4.1E+04	1.8
-22	17.834	17.760	1678	47.85	7 47.660	611	2.75		7.1E+02	2.0E+03	4.4E+04	1.8
-23	18.417	18.348	1703	49.49	4 49.308	607	2.81	0.43	7.2E+02	2.0E+03	4.7E+04	1.9
-24	18.942	18.877	1891	50.95		681	2.78		9.0E+02	2.6E+03	5.7E+04	1.9
-25	19.463	19.401	1907	52.45		663	2.88		8.5E+02	2.4E+03	5.9E+04	1.9
-26	19.992	19.933	1879	54.00		642	2.93		8.0E+02	2.3E+03	5.8E+04	1.9
-27	20.528	20.472	1857	55.57	ATTENDED	631	2.94		7.7E+02	2.2E+03	5.7E+04	1.9
-28	21.094	21.041	1757	57.12		643	2.73		8.0E+02	2.3E+03	4.9E+04	1.9
-29	21.661	21.610	1758	58.71		628	2.80		7.7E+02	2.2E+03	5.0E+04	1.9
-30	22.227	22.178	1759	60.31		621	2.83		7.5E+02	2.1E+03	5.0E+04	1.9
-31	22.776	22.729	1815	61.85		647	2.81	0.43	8.1E+02	2.3E+03	5.3E+04	1.9
-32 -33	23.205	23.160	2323	63.14 64.42	_	772 781	3.01 2.97	0.44	1.2E+03	3.5E+03 3.6E+03	9.4E+04 9.3E+04	2.0
	23.634	23.591	7.02-7400-94100	5007551000					1.2E+03			2.0
-34	24.105	24.063	2119	65.78		731	2.90		1.1E+03		7.7E+04	2.0
-35	24.584	24.544	2078	67.16		725	2.87	250/4-5250	1.1E+03	2010/01/2010	7.4E+04	2.0
-36	25.063	25.024	2083	68.54		721	2.89		1.1E+03		7.4E+04	2.0
-37	25.532	25.495	2125	69.91		728	2.92	_	1.1E+03		7.8E+04	2.0
-38	25.982	25.946	2218	71.18		786	2.82		1.3E+03		8.4E+04	2.0
-39	26.438	26.403	2187	72.49		763	2.87		1.2E+03		8.2E+04	2.0
-40	26.882	26.848	2245	73.81	7 73.725	753	2.98	0.44	1.2E+03	3.3E+03	8.7E+04	2.0
-41												
-42												
-43												
-44												
-45												
-46												
-47												
-48												
-49												
-50												
00												

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 60 di 63

Documentazione fotografica Down-Hole DH-S21

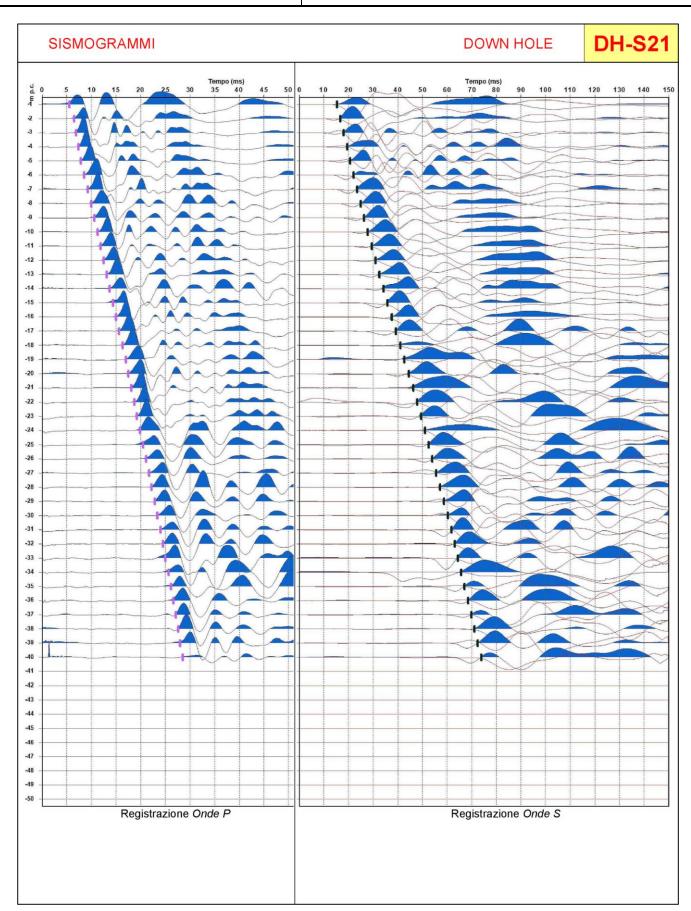
Piazzola sondaggio S21

Ubicazione territoriale

Energizzazione onde P

Energizzazione onde S

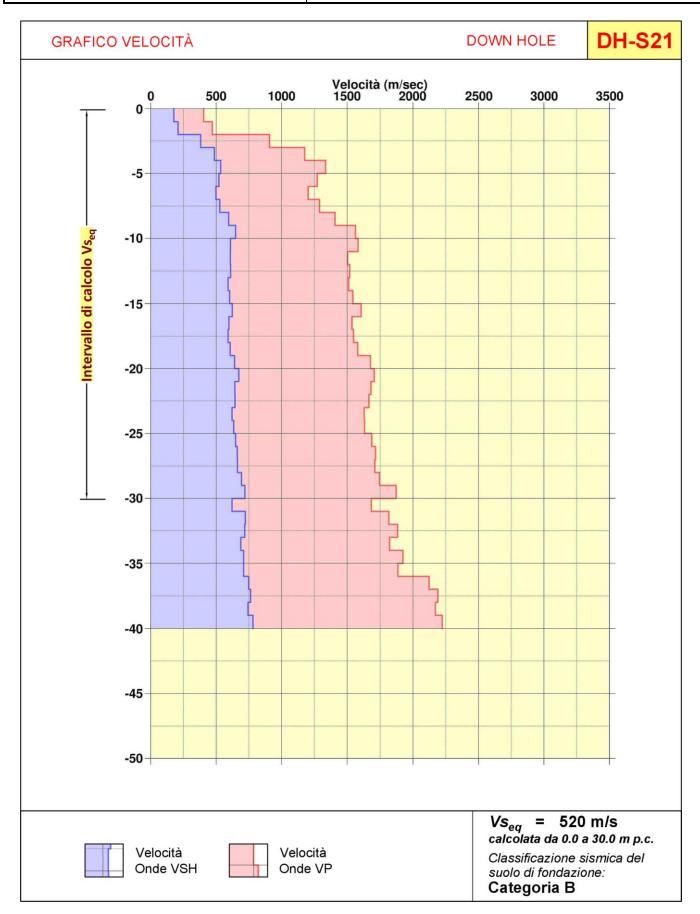
Commento risultati DH-S21


- Relativamente alle velocità sismiche **Vp** si registrano, nei primi 2.0 m di spessore, valori inferiori a 470 m/s. Al di sotto segue un rapido incremento di velocità, le quali raggiungono ed oltrepassano i 1000 m/s sino a circa 1300 m/s ad una profondità di -5.0 m dal p.c.. Da tale profondità e sino a fondo foro, le velocità Vp complessivamente aumentano gradualmente, con locali deboli decrementi, oltrepassando i 2100 m/s oltre 37.0 m dal p.c..
- Per quanto riguarda le velocità **Vs**, nei primi 2.0 m di spessore i valori rimangono inferiori a 210 m/s. Al di sotto i valori incrementano sino a raggiungere velocità prossime a 500 m/s ad una profondità di -5.0 m dal p.c.. Segue un andamento complessivamente costante dei valori di Vs, in leggero incremento da circa -30.0 m dal p.c., ove le velocità da 700 m/s raggiungono i 780 m/s in prossimità del fondo foro.

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

| COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO | 1010 D 69 IG | GE 00 05 002 A | 61 di 63



NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D 69 IG
 GE 00 05 002
 A
 62 di 63

NODO AV/AC DI VERONA: INGRESSO OVEST

REPORT PROVE SISMICHE

COMMESSA LOTTO
IN10 10

CODIFICA D 69 IG DOCUMENTO GE 00 05 002 REV. FOGLIO A 63 di 63

TABELLA PARAMETRI DOWN HOLE DH-S21

	10000000			-					No.			
_	TP letti (ms)	₽	<u>@</u>	TSH letti (ms)	Ħ	(s)	_	'ਰ _	Mod.	Mod.	Mod.	_
Prof. (m)	i i	corretti (ms)	(m/s)	ti C	s)	(m/s)	VP/VSH	apporto (Poisson	taglio G	Young E	Comp.	Densità
of.	ett	(ms)		<u>e</u>	H con (ms)	I	~	odo sio	Gdin	Edin	Vol. Ev	eu
<u>q</u>	٥	<u>ط</u> (V	SH	TSH corretti (ms)	VSH	>	Rapporto di Poisson	(MPa)	(MPa)	(MPa)	Ο,
0	-	•	105	-			0.00		5.4E+01	2		4
0	5 504	0.400	405	40.000	F 050	177	2.29			1.5E+02	2.1E+03	1.
-1	5.521	2.469	405	12.633		177	2.29	_	5.4E+01	1.5E+02	2.1E+03	1.
-2	6.494	4.592	471	14.756	100000000000000000000000000000000000000	209	2.25		7.6E+01	2.1E+02	2.8E+03	1.
-3	6.844	5.695	907	15.687	100000000000000000000000000000000000000	382	2.37		2.6E+02	7.3E+02	1.1E+04	1.
-4	7.318	6.545	1176	16.889		487	2.41		4.2E+02	1.2E+03	1.9E+04	1.
-5	7.856	7.294	1335	18.282		535	2.50		5.3E+02	1.5E+03	2.6E+04	1.
-6	8.518	8.081	1271	19.916		521	2.44		5.0E+02	1.4E+03	2.3E+04	1.
-7	9.269	8.912	1203	21.739	20.902	498	2.42		4.6E+02	1.3E+03	2.0E+04	1.
-8	9.986	9.688	1289	23.501	22.800	527	2.45	0.40	5.1E+02	1.4E+03	2.4E+04	1.
-9	10.652	10.399	1407	25.078	24.480	595	2.36	0.39	6.7E+02	1.9E+03	2.8E+04	1.
-10	11.257	11.038	1564	26.539	26.024	648	2.41	0.40	7.9E+02	2.2E+03	3.6E+04	1.8
-11	11.861	11.670	1583	28.116	27.663	610	2.60	0.41	7.0E+02	2.0E+03	3.8E+04	1.8
-12	12.505	12.335	1503	29.712	29.308	608	2.47	0.40	7.0E+02	2.0E+03	3.3E+04	1.8
-13	13.146	12.994	1519	31.308		611	2.49		7.1E+02	2.0E+03	3.4E+04	1.
-14	13.794	13.655	1511	32.968		591	2.56		6.6E+02	1.9E+03	3.4E+04	1.
-15	14.430	14.303	1543	34.598		603	2.56		6.9E+02	1.9E+03	3.6E+04	1.
-16	15.042	14.926	1607	36.179		623	2.58		7.3E+02	2.1E+03	3.9E+04	1.
-17	15.684	15.577	1536	37.831		598	2.57		6.8E+02	1.9E+03	3.6E+04	1.
-18	16.323	16.223	1548	39.506		591	2.62		6.6E+02	1.9E+03	3.6E+04	1.
-19	16.948	16.855	1581	41.138		607	2.60		7.0E+02	2.0E+03	3.8E+04	1.6
-20	17.538	17.451	1678	42.684		641	2.62		8.0E+02	2.3E+03	4.4E+04	1.9
-21	18.119	18.037	1707	44.156		673	2.54		8.8E+02	2.5E+03	4.5E+04	1.
-22	18.709	18.632	1681	45.700		643	2.61		8.0E+02	2.3E+03	4.4E+04	1.
-23	19.305	19.232	1666	47.243	47.066	644	2.59	0.41	8.1E+02	2.3E+03	4.3E+04	1.9
-24	19.914	19.846	1630	48.845	48.676	621	2.62	0.42	7.5E+02	2.1E+03	4.2E+04	1.9
-25	20.524	20.458	1632	50.414	50.253	634	2.57	0.41	7.8E+02	2.2E+03	4.1E+04	1.9
-26	21.113	21.051	1687	51.949	51.796	648	2.60	0.41	8.2E+02	2.3E+03	4.4E+04	1.9
-27	21.693	21.634	1716	53.455	53.309	661	2.60	0.41	8.5E+02	2.4E+03	4.6E+04	1.9
-28	22.275	22.218	1711	54.959	54.820	662	2.58	0.41	8.5E+02	2.4E+03	4.5E+04	1.9
-29	22.846	22.792	1744	56.394	56.261	694	2.51	0.41	9.4E+02	2.6E+03	4.6E+04	1.9
-30	23.378	23.326	1872	57.778	57.650	720	2.60		1.0E+03	2.8E+03	5.5E+04	1.9
-31	23.970	23.920	1684	59.383		621	2.71		7.5E+02	2.1E+03	4.5E+04	1.9
-32	24.518	24.470	1816	60.761		723	2.51		1.0E+03	2.9E+03	5.0E+04	1.9
-33	25.048	25.002	1882	62.150		718	2.62		1.0E+03	2.8E+03	5.5E+04	1.9
-34	25.595	25.551	1821	63.599		688	2.65				5.2E+04	1.9
-35	26.113	26.071	1923	65.004		710	2.71		1.0E+03		6.2E+04	2.0
-36	26.642	26.601	1885	66.408		710	2.65	250/10-10-10	1.0E+03	State (Seption Control	5.9E+04	2.
	27.112											
-37		27.073	2123	67.740		749	2.83	_	1.1E+03		7.7E+04	2.
-38	27.567	27.529	2190	69.047		763	2.87		1.2E+03		8.2E+04	2.
-39	28.027	27.990	2171	70.390		743	2.92		1.1E+03		8.1E+04	2.
-40	28.475	28.440	2223	71.668	71.578	781	2.85	0.43	1.2E+03	3.6E+03	8.4E+04	2.
-41												
-42												
-43												
-44												
-45												
-46												
-47												
-48												
-49												
-50												
00												