COMMITTENTE:

PROGETTAZIONE:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01e s.m.i.

CUP: J14H20000440001

U.O. PROGETTAZIONE INTEGRATA NORD

PROGETTO DEFINITIVO

LINEA AV/AC MILANO - VENEZIA
LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

IV01 - CAVALCAFERROVIA AUTOSTRADA DEL BRENNERO

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

							SCALA:
							-
COMMESSA	LOTTO FA	ASE ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV	

 I N 1 0
 1 0
 D
 2 6
 C L
 I V 0 1 0 X
 0 0 1
 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	P. Maestrelli	Sett 2021	M. Rigo	Sett 2021	C. Mazzocchi	Sett 2021	A. Perego
		Lude Hall		Vassino Kije		duell		Sett 2021
								HEED BEN DEL
								PEREGO ANDREA
								Sez Settori:
								C cell'informizione
								MINIO
								B

File: IN1010D26CLIV010X001A n. Elab.:

LOTTO

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

CODIFICA D26CL DOCUMENTO
IV010X001

REV.

Α

FOGLIO 3 di 190

INDICE

1	RELAZIONE ILLUSTRATIVA	7
1.1	ASPETTI GENERALI	7
1.2	METODO DI CALCOLO	8
1.3	COMBINAZIONI DI CARICO AGLI STATI LIMITE	8
1.3.1	COMBINAZIONI PER LA VERIFICA AGLI SLU	8
1.3.2	COMBINAZIONI PER LA VERIFICA AGLI SLE	9
1.4	DOCUMENTI DI RIFERIMENTO	9
2	NORMATIVA DI RIFERIMENTO	10
3	CARATTERISTICHE DEI MATERIALI	11
3.1	TABELLA RIASSUNTIVA CLASSI DI ESPOSIZIONE SECONI NORMATIVA UNI EN 206-1	DO 11
3.2	PARAMETRI DI IDENTIFICAZIONE PER LA VERIFICA FESSURAZIONE	A 12
3.3	CALCESTRUZZO PER MAGRONE	12
3.4	CALCESTRUZZO PER TRAVE DI CORREA	12
3.5	ACCIAIO PER CEMENTO ARMATO	13
3.6	MALTA DI INIEZIONE TIRANTI	13
3.7	MALTA DI INIEZIONE MICROPALI	13
3.8	ACCIAIO PER TIRANTI ATTIVI	14
3.9	CARPENTERIA METALLICA PER MICROPALI, PALANCOLE	E
	TRAVI DI CORREA	14
3.10	COPRIFERRI	14
4	PROGRAMMI DI CALCOLO UTILIZZATI	16
4.1	METODO DI CALCOLO	16
4.1.1	CALCOLO DELLA PROFONDITÀ DI INFISSIONE	16
4.1.2	CALCOLO DELLA SPINTE	17
4.1.3	SPINTA IN PRESENZA DI SISMA	18
4.1.4	ANALISI AD ELEMENTI FINITI	18
4.1.	4.1 Schematizzazione del terreno	19
4.1.	4.2 Modalità di analisi e comportamento elasto-plastico del terreno	19

LOTTO

COMMESSA

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

DOCUMENTO

REV.

FOGLIO

NODO AV/AC DI VERONA: INGRESSO OVEST

CODIFICA

RELAZIONE DI CALCOLO OPERE PROVVISIONALI IN10 10 D26CL IV010X001 Α 4 di 190 4.1.4.3 Analisi per fasi di scavo 20 VERIFICA ALLA STABILITÀ GLOBALE 20 5 CARATTERIZZAZIONE GEOTECNICA 22 5.1 STRATIGRAFIA DI PROGETTO 22 5.2 PARAMETRI DI SPINTA 22 5.3 CARICHI E COMBINAZIONI DI CARICO 22 5.3.1 **CONDIZIONI DI CARICO** 22 **COMBINAZIONI DI CARICO** 5.3.2 23 23 5.3.2.1 S.L.E 5.3.2.2 S.L.U 23 6 **DIMENSIONAMENTO BERLINESI** 24 6.1 **BERLINESE TIPO 1** 24 6.1.1 **CARATTERISTICHE GENERALI** 25 6.1.2 **GEOMETRIA CORDOLI** 25 6.1.3 **DESCRIZIONE TERRENI** 26 **DESCRIZIONE STRATIGRAFIA** 6.1.4 26 6.1.5 **CONDIZIONI DI CARICO** 27 6.1.6 IMPOSTAZIONI DI PROGETTO 27 6.1.7 IMPOSTAZIONI DI ANALISI 28 6.1.7.1 Analisi per Fasi di Scavo. 28 6.1.8 **VERIFICHE BERLINESE TIPO1** 28 6.1.8.1 Diagrammi **58** 6.2 **BERLINESE TIPO 2** 61 6.2.1 **CARATTERISTICHE GENERALI 62** 6.2.2 **GEOMETRIA CORDOLI** 63 6.2.3 DESCRIZIONE TERRENI 63 6.2.4 **DESCRIZIONE STRATIGRAFIA** 63 6.2.5 **CONDIZIONI DI CARICO** 64 6.2.6 IMPOSTAZIONI DI PROGETTO 65 6.2.7 IMPOSTAZIONI DI ANALISI 65 6.2.7.1 Analisi per Fasi di Scavo. **65**

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

LINEA AV/AC MILANO - VENEZIA

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

FOGLIO

NODO AV/AC DI VERONA: INGRESSO OVEST

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

IN10 10 D26CL IV010X001	A 5 dl 190
6.2.8 VERIFICHE BERLINESE TIPO 2	65
6.2.8.1 Diagrammi	99
6.3 BERLINESE TIPO 3	102
6.3.1 CARATTERISTICHE GENERALI	103
6.3.2 DESCRIZIONE TERRENI	103
6.3.3 DESCRIZIONE STRATIGRAFIA	104
6.3.4 CONDIZIONI DI CARICO	104
6.3.5 IMPOSTAZIONI DI PROGETTO	105
6.3.6 IMPOSTAZIONI DI ANALISI	105
6.3.6.1 Analisi per Fasi di Scavo.	105
6.3.7 VERIFICHE BERLINESE TIPO 3	106
6.3.7.1 Diagrammi	132
6.4 BERLINESE TIPO 4	135
6.4.1 CARATTERISTICHE GENERALI	136
6.4.2 GEOMETRIA CORDOLI	136
6.4.3 DESCRIZIONE TERRENI	137
6.4.4 DESCRIZIONE STRATIGRAFIA	137
6.4.5 CONDIZIONI DI CARICO	138
6.4.6 IMPOSTAZIONI DI PROGETTO	138
6.4.7 IMPOSTAZIONI DI ANALISI	139
6.4.7.1 Analisi per Fasi di Scavo.	139
6.4.8 VERIFICHE BERLINESE TIPO4	139
6.4.8.1 Diagrammi	173
7 DIMENSIONAMENTO PALANCOLE	176
7.1 PALANCOLATO A SBALZO PRESSO PILE (FS)	176
7.1.1 GEOMETRIA PARATIA	176
7.1.2 GEOMETRIA PROFILO TERRENO	177
7.1.3 DESCRIZIONE TERRENI	177
7.1.4 DESCRIZIONE STRATIGRAFIA	178
7.1.5 CARATTERISTICHE MATERIALI UTILIZZATI	178
7.1.6 CONDIZIONI DI CARICO	179

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IN10 10 D26CL IV010X001 A 6 di 190

7.1.7	COMBINAZIONI DI CARICO	179
7.1.8	IMPOSTAZIONI DI PROGETTO	180
7.1.9	IMPOSTAZIONI DI ANALISI	180
7.1.10	ANALISI DELLA PARATIA	180
7.1.11	VALORI MASSIMI E MINIMI SOLLECITAZIONI PER METRO DI PARATIA	182
7.1.12	SPOSTAMENTI MASSIMI E MINIMI DELLA PARATIA	183
7.1.13	STABILITÀ GLOBALE	183
7.1.14	DESCRIZIONE ARMATURA CARATTERISTICHE SEZIONE	186
7.1.15	VERIFICA ARMATURA PARATIA (SEZIONI CRITICHE)	186
7 1 16	VERIFICA ARMATIIRA PARATIA (INVII IIPPO)	188

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 7 di 190

1 RELAZIONE ILLUSTRATIVA

1.1 ASPETTI GENERALI

La realizzazione del ponte in progetto e sostituzione del ponte attuale dovrà avvenire per successive fasi (come meglio descritte nella relazione illustrativa e nelle tavole grafiche) che comporteranno l'impiego di berlinesi per il sostegno del rilevato autostradale che dovrà accogliere in fase provvisoria la deviazione del traffico (due corsie per senso di marcia).

Il dimensionamento verrà eseguito considerando le varie tipologie di berlinesi presenti (e meglio esplicitate nelle tavole grafiche) di cui si riassumono le caratteristiche:

- 1) Berlinese tipo 1
- 2) Berlinese tipo 2
- 3) Berlinese tipo 3
- 4) Berlinese tipo 4
- 5) Palancolato a sbalzo

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

CODIFICA

D26CL

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO
IN10 10

DOCUMENTO
IV010X001

REV. FOGLIO A 8 di 190

1.2 METODO DI CALCOLO

Le verifiche sono condotte, in osservanza al *D.M. del 17.01.2018 "Norme tecniche per le costruzioni"* (in seguito indicate anche come NTC), attraverso il metodo semiprobabilistico agli Stati Limite.

Il calcolo delle paratie viene eseguito in accordo con il § 6.5.3.1.2 delle NTC, per quanto riguarda la verifica nei confronti degli Stati Limite Ultimi e degli Stati Limite di Esercizio.

Per quanto riguarda la verifica della paratia in condizioni sismiche si fa invece riferimento al § 2.4.1 dello stesso documento che dice: "Le verifiche sismiche di opere provvisorie o strutture in fase costruttiva possono omettersi quando le relative durate previste in progetto siano inferiori a 2 anni" (come nel caso in oggetto):

Al fine di rappresentare il comportamento delle paratie durante le fasi di lavoro (scavi, inserimento degli elementi di contrasto e dei tiranti) è opportuno l'impiego di un metodo di calcolo iterativo atto a simulare l'interazione, in fase elasto-plastica, tra terreno e paratia. Per questo scopo si impiega il programma di calcolo Pac della società "Aztec informatica srl".

1.3 COMBINAZIONI DI CARICO AGLI STATI LIMITE

Le combinazioni di carico agli stati limite considerate ai fini delle verifiche, sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto nel Cap. 2 delle (NTC).

1.3.1 COMBINAZIONI PER LA VERIFICA AGLI SLU

Per le paratie § 6.5.3.1.2 (NTC) devono essere effettuate le verifiche con riferimento almeno ai seguenti Stati Limite:

- SLU di tipo geotecnico (GEO)
- collasso per rotazione intorno a un punto dell'opera (atto di moto rigido);
- collasso per carico limite verticale;
- sfilamento di uno o più ancoraggi;
- instabilità del fondo scavo in terreni a grana fine in condizioni non drenate;
- instabilità del fondo scavo per sollevamento;
- sifonamento del fondo scavo;
- instabilità globale dell'insieme terreno-opera;
- SLU di tipo strutturale (STR)
- raggiungimento della resistenza in uno o più ancoraggi;
- raggiungimento della resistenza strutturale della paratia,

accertando che la condizione (6.2.1) sia soddisfatta per ogni stato limite considerato.

La verifica di stabilità globale dell'insieme terreno-opera deve essere effettuata secondo l'Approccio 1:

- Combinazione 2: (A2+M2+R2)
 tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II e 6.8.I.

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10 LOTTO CODIFICA

10 D26CL

DOCUMENTO
IV010X001

REV. FOGLIO A 9 di 190

Le rimanenti verifiche devono essere effettuate considerando le seguenti combinazioni di coefficienti:

- Combinazione 1: (A1+M1+R1)

Combinazione 2: (A2+M2+R1)

tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.5.I.

Ai fini delle verifiche degli Stati Limite Ultimi si definisce la seguente combinazione:

Combinazione fondamentale SLU:

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{Q1} \cdot Q_{k1} + \sum_i \gamma_{Qi} \cdot \psi_{0i} \cdot Q_{ki}$$

1.3.2 COMBINAZIONI PER LA VERIFICA AGLI SLE

Ai fini delle verifiche degli stati limite di esercizio si definiscono le seguenti combinazioni:

Rara \Rightarrow $G_1 + G_2 + Q_{k1} + \sum_i \psi_{0i} \cdot Q_{ki}$

 $Frequente \qquad \qquad \Rightarrow \qquad G_1 + \ G_2 + \ \psi_{11} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki}$

Quasi permanente \Rightarrow $G_1 + G_2 + \psi_{21} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki}$

Nella presente relazione di calcolo si fa riferimento solamente alla combinazione "Rara" in quanto risulta la più significativa.

1.4 DOCUMENTI DI RIFERIMENTO

La presente relazione è inscindibile dagli elaborate grafici e dai seguenti documenti:

Relazione di Calcolo Soletta di completamento

Relazione di Calcolo apparecchi di Appoggio e Giunti

Relazione di Calcolo Spalle e Fondazioni

Relazione di Calcolo Pile

Relazione di Calcolo Muri d'ala

Relazione di Calcolo Impalcato

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 10 di 190

2 NORMATIVA DI RIFERIMENTO

I calcoli sviluppati nel seguito sono svolti secondo il Metodo degli Stati Limite e nel rispetto della normativa vigente.

Ministero dei LL.PP - D.M. 17.01.2018

Circolare 21 Gennaio 2019 n.7

CNR - DT 207/2008

Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni.

RFI DTC SI MA IFS 001 E Manuale di progettazione delle opere civili – Parte II Sezione 2 – PONTI E STRUTTURE

EC3 - UNI EN 1993-1-1:2005

3 CARATTERISTICHE DEI MATERIALI

Materiali come prescritti dal Decreto Ministeriale 17.01.2018 "Norme Tecniche per le Costruzioni".

3.1 TABELLA RIASSUNTIVA CLASSI DI ESPOSIZIONE SECONDO NORMATIVA UNI EN 206-1

Questa tabella e da compilarsi in funzione dell'opera da eseguire: associare ad ogni elemento progettuale (fondazione, elevazione......).

Tab 2

Classe di	Descrizione	i <i>nta le secondo L</i> L'Esempi di condizioni	UNI 9858	AZC	Contenuto	Rek	Contenuto	Coprifer
Uasse di Esposizione	dell'ambiente di	ambientali	ONI 3838	massimo	minimo di	minima	minimo di	minimo
embientale	esposizione	anibierkan		IIIabsiiiib	cemento	N/mm²	aria	Mm
					kg/m		%	
	chio di corrosione o attac							
×0	Molto secco	Os per interni di edifici	1			C12/15	-	15
		con umidità dell'aria						
2 Comparison a dal	la persona un mar afficilia da	molto bassa						
z comosione del	le armature per effetto de Secco o	Os perintemi di editioi	2a	0.65	1280	C20/25	1.	120
WC 1	permanentemente	con umidità relatina	144	0,00	200	C20/20	Ι΄	120
	bagnato	bassa o immerso in	l	l				
	Ů	acqua						
XC2	Bagnato, raramente	Superfici in ds a	2a	0,00	280	C25/30	-	20
	secco	contatto con acqua per	l	l				1
		lungo tempo es. fondazioni						
XIC3	Umidtà moderata	Os perinterni con	5a	0.55	280	C30/37		30
ALS	Umidita moderata	umidità relativa	oa.	0,00	280	CSUS7	-	30
		moderata o alta e els						
		all'esterno protetto dalla	l	l				1
		pioggia	l	l				1
XC4	Ciclicamente bagnato	Superfici in dis a	4a,5b	0,50	300	C30/37	-	30
	ed asciutto	contatto con l'acqua,	l	l				1
	1	non nella dasse XC2.						
S Corrosione del XD1	le armsture per effetto de Umidità moderata	Superfici in els espeste	ovenienti o	aliacqua di 10.55	mare 1300*	T 030/37		130
ועג	Umiata moderata	a nebbia salina	oa	0,00	300"	C30/37	l.	30
ND2	Bagnato, raramente	Piscine; ds esposto ad	4a, 5b	0.55	300	C30/37		30
	asciutto	acque industriali	44,00	0,00	000	00000	l ⁻	100
		contenenti cloruri	l	l				1
XID3	Ciclicamente bagnato	Parti di ponti esposte a	5e	0,45	320	C35/45	-	40
	ed asciutto	spruzzi contenenti	l					1
		doruri, pavimentazioni						
4.0		di parcheggi	-5					
<u>4 Corrosione del</u> XSI	le armature indotta da olo Esposto alla nebbia	Strutture prossime o	di mare 4a. 5b	0.50	300	C30/37		30
voi	salina ma non alfacqua	sula costa	44,50	0,50	300	Course	Ι.	30
	dimare	3010 0000	l	l				1
XS2	Permanentemente	Parti di strutture marine	5c	0.45	320	C35/45		40
	sommerso							1.2
XS3	Zone esposte alle onde	Parti di strutture marine	5c	0.45	340	C35/45	-	40
	o alla marea							
	li di gelo/disgelo cono se		1					
XF1	Moderata saturazione	Superfici verticali in dis	2b	0,55	300	C30/37	-	30
	d'acqua in assenza di sali disgelanti	esposte alla pioggia e al gelo						
XF2	Moderata saturazione	Superfici verticali in dis	3.46	0.55	300	C25/30	4.0	30
or c	d'acqua in presenza di	di strutture stradali	3,70	0,00	300	02000	e aggregati	30
	sali disgelanti	esposte al gelo e nebbia	l	l			resistenti al	1
		dei sali disgelanti					gelo/disgelo	
XF3	Bevata saturazione	Superfici orizzontali in	2b	0,50	320	C30/37	4,0	30
	d'acqua in assenza di	ds esposte alla pioggia					e aggregati	
	sali disgelanti	e al gelo					resistenti al	
XF4	Berata saturazione	Strade e impalcati da	3.4b	0.45	340	C30/37	gelo/disgelo 4,0	40
AF4	d'acqua in presenza di	ponte esposti ai sali	3,40	0,40	340	Course	e aggregati	40
	sali disgelanti o acqua	disgelanti. Superfici in	l	l			resistenti al	1
	dimare	ds esposte drettamente	l	l			gelo/disgelo	1
		a nebbia contenente sali						
		disgelanti						
8 Attacco chimic								
XA1	Ambiente chimico	•	5a	0,55	300	C30/37		30
	debolmente aggressivo (vd. prospetto 2 della EN 206)			l	I	1	l	1
	EN 206)			l	I	1	l	1
XA2	Ambiente chimico		4°.56	0.50	320	C30/37		30
	moderatamente		' ' "	-	cemento		l	1
	aggressive (vd.			l	resistente	1	l	1
	prospetto 2 della EN			l	ai solfati	1	l	1
	206)		_					
XA3	Ambiente chimico	•	50	0,45	360	C35/45		40
	fortemente aggressivo			l	cemento	1	l	1
	(vd. prospeto 2 della EN 206)		l	l	resistente ai solfati	1	I	1

Conglomerato cementizio per elementi strutturali:

ELEMENTO	CLASSE DI RESISTENZA MINIMA (Mpa)		COPRIFERRO CLASSE DI CONSISTENZA		RAPPORTO ACQUA/CEMENTO (+Aria %)	DIMENSIONE MASSIMA NOMINALE DEGLI AGGREGATI (mm)	
CORREA	XC2	C25/30	40	S4	0.60	40	

3.2 PARAMETRI DI IDENTIFICAZIONE PER LA VERIFICA A FESSURAZIONE

Nel capitolo 4 del DM 17.01.2018 si identificano i parametri a cui fare riferimento per la verifica a fessurazione.

Tabella 4 l.III – Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE				
Ordinarie	X0, XC1, XC2, XC3, XF1				
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3				
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4				

Tabella 4 LIV – Criteri di scelta dello stato limite di fessurazione

Gruppi di	Condizioni	Combinazione	Armatura						
1 1	ambientali	diazioni	Sensibile	Poco sensibile					
esigenze	amoreman	аталош	Stato limite	\mathbf{w}_{4}	Stato limite	\mathbf{w}_{4}			
_	Ordinarie	frequente	ap. fessure	$\leq W_2$	ap. fessure	≤w₃			
a	Ommane	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	≤w₂			
ь	Aggressive	frequente	ap. fessure	$\leq w_1$	ap. fessure	≤w₂			
В	Agg ressive	quasi permanente	decompressione	-	ap, fessure	$\leq w_1$			
	Molto aggressive	frequente	formazione fessure	-	ap, fessure	$\leq w_1$			
c		quasi permanente	decompressione	-	ap, fessure	≤wı			

w₁, w₂, w₃ sono definiti al § 4.1.2.2.4.1, il valore di calcolo w₄, è definito al § 4.1.2.2.4.6.

Scheda riassuntiva parametri di fessurazione secondo DM2008:

ELEMENTO	Classe di esposizione	Gruppo di esigenza Combinazione		Wd
	YC2		frequente	0.4
CORREA	XC2	a	quasi permanente	0.3

3.3 CALCESTRUZZO PER MAGRONE

Per il magrone di sottofondazione si prevede l'utilizzo di calcestruzzo di classe Rck 15.

3.4 CALCESTRUZZO PER TRAVE DI CORREA

Per la realizzazione dei pali di fondazione in cemento armato di pile e spalle, si prevede l'utilizzo di calcestruzzo in classe Rck ≥ 30 N/mm², che presenta le seguenti caratteristiche:

Resistenza a compressione (cilindrica)

 \rightarrow f_{ck} = 0.83*R_{ck} =

24.90 N/mm²

Resistenza di calcolo a compressione

 \rightarrow f_{cd} = α_{cc}^* f_{ck}/ γ_{c} =0.85* f_{ck}/1.5 = 14.16 N/mm²

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IN10	10	D26CL	IV010X001	Α	13 di 190

Resistenza di calcolo a compressione	\rightarrow	$\sigma_c = 0.60^* f_{ck} =$	15.00 N/mm ²
elastica			
Resistenza a trazione media	\rightarrow	$f_{ctm} = 0.30^* f_{ck}^{2/3} =$	2.56 N/mm ²
Resistenza a trazione	\rightarrow	$f_{ctk} = 0.7^* f_{ctm} =$	1.795 N/mm ²
Resistenza a trazione di calcolo	\rightarrow	$f_{ctd} = f_{ctk} / \gamma_c =$	1.197 N/mm ²
Resistenza di calcolo a trazione	\rightarrow	$\tau_{c} = 0.50^{*} f_{ctk} =$	0.900 N/mm ²

3.5 ACCIAIO PER CEMENTO ARMATO

Per le armature metalliche si adottano tondini in acciaio del tipo B450C controllato in stabilimento, che presentano le seguenti caratteristiche:

Proprietà	Requisito
Limite di snervamento f _y	≥ 450 MPa
Limite di rottura f _t	\geq 540 MPa
Allungamento totale al carico massimo A _{gt}	≥ 7%
Rapporto f _t /f _y	$1,13 \le R_{\rm m}/R_{\rm e} \le 1,35$
Rapporto f _{y misurato} / f _{y nom}	≤ 1,25

Tensione di snervamento caratteristica	\rightarrow $f_{yk} \ge$	450.00 N/mm ²
Tensione caratteristica a rottura	\rightarrow $f_{tk} \ge$	540.00 N/mm ²
Tensione di calcolo elastica	\rightarrow $\sigma_c = 0.80^* f_{yk} =$	360.00 N/mm ²
Fattore di sicurezza acciaio	\rightarrow $\gamma_s =$	1.15
Resistenza a trazione di calcolo	\rightarrow $f_{yd} = f_{yk} / \gamma_s =$	391.30 N/mm ²

3.6 MALTA DI INIEZIONE TIRANTI

I tiranti previsti sono di tipo passivo, definitivi e ad iniezione ripetuta.

Caratteristiche secondo UNI EN 447:2007

Resistenza a rottura a 28gg	fc ≥	25.00 N/mm ²
Rapporto acqua / cemento	\leq	0.45
Separazione di acqua (in volume)	\leq	2%
Fluidità Marsh	=	10"-35"
Ritiro nullo (aggiunta di additivi e/o antiritiro)		

3.7 MALTA DI INIEZIONE MICROPALI

Caratteristiche secondo UNI EN 447:2007

Resistenza a rottura a 28gg fc \geq 30.00 N/mm²

Rapporto acqua / cemento ≤ 0.50 Quantità minima di cemento = 6 kN/mc

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO IN10 10

CODIFICA D26CL

DOCUMENTO IV010X001

RFV. FOGI IO 14 di 190

Α

3.8 **ACCIAIO PER TIRANTI ATTIVI**

I tiranti previsti sono di tipo attivo, definitivi e ad iniezione ripetuta.

Si prevede l'impiego di cavi costituiti da trefoli in acciaio armonico stabilizzato da 0.6" (area 139mm²) avente caratteristiche:

Tensione caratteristica a rottura

Tensione caratteristica all'1% di deformazione totale

Allungamento sotto carico massimo

Tensione iniziale all'atto della tesatura

(vale la condizione più restrittiva)

Modulo elastico

1860.00 N/mm² $f_{ptk} \ge$ 1670.00 N/mm² $f_{p(0,1)k} \ge$

3.5 $A_{gt} \ge$

1420.00 N/mm² $\sigma_{spi} < 0.85 \ f_{p(0.1)k}$ 1395.00 N/mm² $\sigma_{spi} < 0.75 f_{ptk}$

195000 N/mm² $E_{sp} =$

3.9 CARPENTERIA METALLICA PER MICROPALI, PALANCOLE E TRAVI DI **CORREA**

Per la realizzazione delle opere in carpenteria metallica, si prevede l'utilizzo di un acciaio tipo S355 (ex Fe 510), che presenta le seguenti caratteristiche:

Acciaio S355JR (UNI EN 10025)

Tensione di snervamento caratteristica 355.00 N/mm² $f_{vk} \ge$ Tensione caratteristica a rottura 510.00 N/mm² $f_{tk} \ge$ Fattore di sicurezza acciaio 1.05

 $\gamma_{M0} =$ 1.25 \rightarrow $\gamma_{M2} =$

Resistenza a trazione di calcolo 338.00 N/mm² $f_{vd} = f_{vk} / \gamma_{M0} =$

3.10 COPRIFERRI

Ai fini di preservare le armature dai fenomeni di aggressione ambientale, dovrà essere previsto un idoneo copriferro; il suo valore, misurato tra la parete interna del cassero e la generatrice dell'armatura metallica più vicina, individua il cosiddetto "copriferro nominale".

Il copriferro nominale c_{nom} è somma di due contributi, il copriferro minimo c_{min} e la tolleranza di posizionamento h.

Vale pertanto:

 $c_{nom} = c_{min} + h$

La tolleranza di posizionamento delle armature h, per le strutture gettate in opera, può essere assunta pari ad almeno 5mm.

Considerata la Classe di esposizione ambientale delle singole parti strutturali dell'opera, si adottano i seguenti copriferri.

	Copriferro - c _{min} [mm]
Correa	40

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO CODIFICA D26CL

10

DOCUMENTO IV010X001

REV. FOGLIO

Α

15 di 190

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IN10 10 D26CL IV010X001 A 16 di 190

4 PROGRAMMI DI CALCOLO UTILIZZATI

I calcoli della struttura saranno eseguiti con l'ausilio del programma di calcolo Paratie.Az.

4.1 METODO DI CALCOLO

4.1.1 CALCOLO DELLA PROFONDITÀ DI INFISSIONE

Nel caso generale l'equilibrio della paratia è assicurato dal bilanciamento fra la spinta attiva agente da monte sulla parte fuori terra, la resistenza passiva che si sviluppa da valle verso monte nella zona interrata e la controspinta che agisce da monte verso valle nella zona interrata al di sotto del centro di rotazione.

Nel caso di paratia tirantata nell'equilibrio della struttura intervengono gli sforzi dei tiranti (diretti verso monte); in questo caso, se la paratia non è sufficientemente infissa, la controspinta sarà assente.

Pertanto il primo passo da compiere nella progettazione è il calcolo della profondità di infissione necessaria ad assicurare l'equilibrio fra i carichi agenti (spinta attiva, resistenza passiva, controspinta, tiro dei tiranti ed eventuali carichi esterni).

Occorre pertanto costruire i diagrammi di spinta attiva e di spinta (resistenza) passiva agenti sulla paratia. A partire da questi si costruiscono i diagrammi risultanti.

Nella costruzione dei diagrammi risultanti si adotterà la seguente notazione:

K_{am} diagramma della spinta attiva agente da monte

 K_{av} diagramma della spinta attiva agente da valle sulla parte interrata

 K_{pm} diagramma della spinta passiva agente da monte

 K_{pv} diagramma della spinta passiva agente da valle sulla parte interrata.

Calcolati i diagrammi suddetti si costruiscono i diagrammi risultanti

 $D_m = K_{pm} - K_{av}$ e $D_v = K_{pv} - K_{am}$

Questi diagrammi rappresentano i valori limiti delle pressioni agenti sulla paratia. La soluzione è ricercata per tentativi facendo variare la profondità di infissione e la posizione del centro di rotazione fino a quando non si raggiunge l'equilibrio sia alla traslazione che alla rotazione.

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 17 di 190

4.1.2 CALCOLO DELLA SPINTE

Per il calcolo della spinta si utilizzerà il metodo Mononobe- Okabe, tale metodo adotta le stesse ipotesi della teoria di Mueller-Breslau: un cuneo di spinta a monte della paratia che si muove rigidamente lungo una superficie di rottura curvilinea. Mette in conto inoltre l'inerzia sismica del cuneo in direzione orizzontale e verticale. Dall'equilibrio del cuneo si ricava la spinta che il terreno esercita sull'opera di sostegno in condizioni sismiche. Viene messo in conto, come nella teoria di Coulomb, l'esistenza dell' attrito fra il terreno e il paramento del muro, e quindi la retta di spinta risulta inclinata rispetto alla normale al paramento stesso di un angolo di attrito terra-muro.

L'espressione della spinta totale (statica più sismica) esercitata da un terrapieno, di peso di volume γ , su una parete di altezza H, risulta espressa secondo la teoria di Mononobe-Okabe dalla seguente relazione

$$S = 1/2(1 \pm k_v)\gamma H^2 K_a$$

Ka rappresenta il coefficiente di spinta attiva espresso da

$$\mathsf{K}_{\mathsf{a}} = \frac{\sin^2(\alpha + \phi - \theta)}{\sqrt{[\sin(\phi + \delta)\sin(\phi - \beta - \theta)]}}$$

$$\cos\theta \, \sin^2\alpha \, \sin(\alpha - \delta - \theta) \, [1 + \frac{1}{\sqrt{[\sin(\alpha - \delta - \theta)\sin(\alpha + \beta)]}}]^2$$

essendo:

 α = angolo tra il paramento contro terra e l'orizzontale,

φ= angolo di attrito del terreno,

 δ = angolo di attrito terreno-muro,

β= angolo rispetto all'orizzontale della superficie del terrapieno

L'angolo θ è legato al coefficiente sismico dalla seguente espressione

$$tan(\theta)=k_h/(1\pm k_v)$$

dove k_h e k_v rappresentano i coefficienti di intensità sismica orizzontale e verticale.

Nel caso in cui il terrapieno sia gravato di un sovraccarico uniforme *Q* l'espressione della pressione e della spinta diventano

$$\sigma_a = (\gamma z + Q)K_a$$

$$S = (1/2\gamma H^2 + QH)K_a$$

Al carico Q corrisponde un diagramma delle pressioni rettangolare con risultante applicata a 1/2H.

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV010X001	Α	18 di 190

Nel caso di terreno dotato di coesione c l'espressione della pressione esercitata sulla parete, alla generica profondità z, diventa

$$\sigma_a = \gamma z K_a - 2c(K_a)^{1/2}$$

Al diagramma triangolare, espresso dal termine $\gamma z K_a$, si sottrae il diagramma rettangolare legato al termine con la coesione. La pressione σ_a risulta negativa per valori di z minori di

$$h_c = \frac{2c}{\gamma (K_a)^{1/2}}$$

La grandezza h_c è detta altezza critica e rappresenta la profondità di potenziale frattura del terreno. E' chiaro che se l'altezza della parete è inferiore ad h_c non abbiamo nessuna spinta sulla parete.

4.1.3 SPINTA IN PRESENZA DI SISMA

Per tenere conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di **Mononobe-Okabe**.

Il metodo di Mononobe-Okabe considera nell'equilibrio del cuneo spingente la forza di inerzia dovuta al sisma. Indicando con W il peso del cuneo e con C il coefficiente di intensità sismica la forza di inerzia valutata come

$$F_i = W^*C$$

Indicando con S la spinta calcolata in condizioni statiche e con S_s la spinta totale in condizioni sismiche l'incremento di spinta è ottenuto come

L'incremento di spinta viene applicato a 1/3 dell'altezza della parete stessa (diagramma triangolare con vertice in alto).

4.1.4 ANALISI AD ELEMENTI FINITI

La paratia è considerata come una struttura a prevalente sviluppo lineare con comportamento a trave. Come caratteristiche geometriche della sezione si assume il momento d'inerzia I e l'area A per metro lineare di larghezza della paratia. Il modulo elastico è quello del materiale utilizzato per la paratia.

La parte fuori terra della paratia è suddivisa in elementi di lunghezza pari a circa 5 centimetri e più o meno costante per tutti gli elementi. La suddivisione è suggerita anche dalla eventuale presenza di tiranti, carichi e vincoli. Infatti questi elementi devono capitare in corrispondenza di un nodo. Nel caso di tirante è inserito un ulteriore elemento atto a schematizzarlo. Detta L la lunghezza libera del tirante, A_f l'area di armatura nel tirante ed E_s il modulo elastico dell'acciaio è inserito un elemento di lunghezza pari ad L, area A_f, inclinazione pari a quella del tirante e modulo elastico E_s. La parte

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV010X001	Α	19 di 190

interrata della paratia è suddivisa in elementi di lunghezza, come visto sopra, pari a circa 5 centimetri.

4.1.4.1 Schematizzazione del terreno

La modellazione del terreno si rifà al classico schema di Winkler. Esso è visto come un letto di molle indipendenti fra di loro reagenti solo a sforzo assiale di compressione. La rigidezza della singola molla è legata alla costante di sottofondo orizzontale del terreno (*costante di Winkler*). La costante di sottofondo, k, è definita come la pressione unitaria che occorre applicare per ottenere uno spostamento unitario. Dimensionalmente è espressa quindi come rapporto fra una pressione ed uno spostamento al cubo [F/L³]. È evidente che i risultati sono tanto migliori quanto più è elevato il numero delle molle che schematizzano il terreno. Se (m è l'interasse fra le molle (in cm) e b è la larghezza della paratia in direzione longitudinale (b=100 cm) occorre ricavare l'area equivalente, A_m, della molla (a cui si assegna una lunghezza pari a 100 cm). Indicato con E_m il modulo elastico del materiale costituente la paratia (in Kg/cm²), l'equivalenza, in termini di rigidezza, si esprime come

$$A_m$$
=10000 x $-$

Le molle hanno, ovviamente, rigidezza flessionale e tagliante nulla e sono vincolate all'estremità alla traslazione. La matrice di rigidezza di tutto il sistema paratia-terreno sarà data dall'assemblaggio delle matrici di rigidezza degli elementi della paratia (elementi a rigidezza flessionale, tagliante ed assiale), delle matrici di rigidezza dei tiranti (solo rigidezza assiale) e delle molle (rigidezza assiale).

4.1.4.2 Modalità di analisi e comportamento elasto-plastico del terreno

Il programma \it{PAC} considera il terreno con comportamento elasto-plastico perfetto; si assume cioè che la curva sforzi-deformazioni del terreno abbia andamento bilatero. Per quanto concerne il criterio di plasticizzazione del terreno (molle) il programma fa riferimento ad un criterio di tipo cinematico o ad uno di tipo statico. Nel primo la resistenza della molla cresce con la deformazione fino a quando lo spostamento non raggiunge il valore X_{max} ; una volta superato tale spostamento limite non si ha più incremento di resistenza all'aumentare degli spostamenti. Nel secondo si assume che la molla abbia una resistenza crescente fino al raggiungimento di una pressione p_{max} . pari al valore della pressione passiva in corrispondenza della quota della molla. L'introduzione di criteri di plasticizzazione porta ad analisi di tipo non lineare (non linearità meccaniche).

Un sistema non lineare, viene risolto mediante un'analisi al passo per tener conto della plasticizzazione delle molle. Quindi si procede per passi di carico, a partire da un carico iniziale p0, fino a raggiungere il carico totale p. Ogni volta che si incrementa il carico si controllano eventuali plasticizzazioni delle molle. Se si hanno nuove plasticizzazioni la matrice globale andrà riassemblata escludendo il contributo delle molle plasticizzate.

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 20 di 190

4.1.4.3 Analisi per fasi di scavo

L'analisi della paratia per fasi di scavo consente di ottenere informazioni dettagliate sullo stato di sollecitazione e deformazione dell'opera durante la fase di realizzazione. In ogni fase lo stato di sollecitazione e di deformazione dipende dalla 'storia' dello scavo (soprattutto nel caso di paratie tirantate o vincolate).

Definite le varie altezze di scavo (in funzione della posizione di tiranti, vincoli, o altro) si procede per ogni fase al calcolo delle spinte inserendo gli elementi (tiranti, vincoli o carichi) attivi per quella fase, tendendo conto delle deformazioni dello stato precedente. Ad esempio, se sono presenti dei tiranti passivi si inserirà nell'analisi della fase la 'molla' che lo rappresenta. Indicando con u ed u_0 gli spostamenti nella fase attuale e nella fase precedente, con s ed s_0 gli sforzi nella fase attuale e nella fase precedente e con K la matrice di rigidezza della 'struttura' la relazione sforzi-deformazione è esprimibile nella forma

$$s=s_0+K(u-u_0)$$

In presenza di tirante attivo verrà inserita una molla con uno stato di pretensione pari allo sforzo di tesatura. Nelle fasi successive il tirante verrà considerato come una semplice molla che 'ricorda', naturalmente, lo sforzo della fase precedente.

4.1.5 VERIFICA ALLA STABILITÀ GLOBALE

La verifica alla stabilità globale del complesso paratia+terreno deve fornire un coefficiente di sicurezza non inferiore a 1.3.

È usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento è supposta circolare.

In particolare il programma esamina, per un dato centro 3 cerchi differenti: un cerchio passante per la linea di fondo scavo, un cerchio passante per il piede della paratia ed un cerchio passante per il punto medio della parte interrata. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 6x6 posta in prossimità della sommità della paratia. Il numero di strisce è pari a 50.

Il coefficiente di sicurezza fornito da Fellenius si esprime secondo la seguente formula:

$$\Sigma_{i} \; \left(\frac{c_{i}b_{i}}{cos\alpha_{i}} + [W_{i}cos\alpha_{i}\text{-}u_{i}l_{i}]tg\phi_{i} \; \right)$$

$$\eta = \frac{\sum_{i}W_{i}sin\alpha_{i}}{\sum_{i}W_{i}sin\alpha_{i}}$$

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV010X001	Α	21 di 190

dove n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i_{esima} rispetto all'orizzontale, W_i è il peso della striscia i_{esima} e c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia.

Inoltre u_i ed l_i rappresentano la pressione neutra lungo la base della striscia e la lunghezza della base della striscia ($l_i = b_i/\cos\alpha_i$).

Quindi, assunto un cerchio di tentativo si suddivide in n strisce e dalla formula precedente si ricava η . Questo procedimento è eseguito per il numero di centri prefissato ed è assunto come coefficiente di sicurezza della scarpata il minimo dei coefficienti così determinati.

5 CARATTERIZZAZIONE GEOTECNICA

5.1 STRATIGRAFIA DI PROGETTO

La trattazione completa della situazione geotecnica in prossimità delle opere in oggetto è riportata nella Relazione Geotecnica allegata al Progetto. Di seguito si riportano i parametri geotecnici caratteristici dei livelli geotecnici assunti nei calcoli.

Tipologia	Spessore [m]	$\gamma_{dry} [kN/m^3]$	$\gamma_{sat} [kN/m^3]$	c _k ' [kPa]	φ _k ' [°]	E (MPa)
rilevato		20	21	0	35	50
ghiaia addensata	-	20	21	0	38	50

Stratigrafia di progetto

П	\sim	,	^	
ப	w	v	H	_

 $\begin{array}{lll} \gamma_{dry} & peso \ di \ volume \ secco \\ \gamma_{sat} & peso \ di \ volume \ saturo \\ c' & coesione \ drenata \\ \varphi` \left[^{\circ} \right] & angolo \ di \ attrito \ efficace \\ c_{u} & coesione \ non \ drenata \end{array}$

E_{VC} modulo elastico in compressione vergine

La falda non è presente.

5.2 PARAMETRI DI SPINTA

I valori dei coefficienti di spinta attiva (k_a) sono stati calcolati secondo la relazione di Coulomb, mentre i coefficienti di spinta passiva (k_p) secondo le relazioni di Caquot. Il valore dell'angolo di attrito terreno-paratia (δ) è stato posto prudenzialmente pari a 0 sia per la spinta passiva, sia per la spinta attiva.

La relazione di Coulomb per il calcolo del coefficiente di spinta attiva, con le condizioni assunte, è la seguente:

$$K_{a} = \frac{\operatorname{sen}^{2}(\pi/2 + \phi)}{(1 + \sqrt{\frac{\operatorname{sen}(\delta + \phi) \cdot \operatorname{sen}(\phi)}{\operatorname{sen}(\pi/2 - \delta)}})^{2}}$$
 (spinta attiva)

Per le <u>verifiche strutturali</u> delle paratie si specifica che non si effettuano verifiche sismiche essendo opere provvisionali (come precedentemente definito).

5.3 CARICHI E COMBINAZIONI DI CARICO

5.3.1 CONDIZIONI DI CARICO

Per le verifiche strutturali e geotecniche si considereranno le seguenti condizioni di carico:

Pesi proprio struttura;

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 23 di 190

- Carico accidentale dovuto ai mezzi in transito di cantiere pari a 5 kN/mq a monte della paratia per i primi 2.0m;
- Carico accidentale dovuto ai mezzi in transito sull'autostrada pari a 20 kN/mq a monte della paratia, oltre i 2.0m.
- Carico accidentale dovuto ai mezzi in transito sulla ferrovia. il carico considerato è quello imposto dalla normativa FS44G. In dettaglio si sono considerate i due binari: sul primo, distante 3.00m dalla berlinese, è stato applicato il treno SW2 (150 kN/m diffusi sulla larghezza del binario di 2.5m per un contributo di 60kN/mq) mentre sul secondo, distante 7.00m dalla berlinese ,è stato applicato il treno SW0 (133 kN/m diffuse sulla larghezza del binario di 2.5m per un contributo di 53.2kN/mq).

5.3.2 COMBINAZIONI DI CARICO

5.3.2.1 S.L.E

Le verifiche SLE vengono effettuate impiegando le azioni ed i parametri caratteristici del terreno e controllando che le deformazioni indotte dallo scavo siano compatibili con le preesistenze e la paratia stessa.

Per la verifica agli S.L.E. indicando con

G: pesi propri, carichi permanenti, spinte del terreno

Q: carichi accidentali

si considerano le seguenti combinazioni:

la combinazione caratteristica (statica)

G1 + G2 + Qk1 + ψ 02·Qk2 + ψ 03·Qk3+ ... definita nel programma di calcolo [ESE]

5.3.2.2 S.L.U

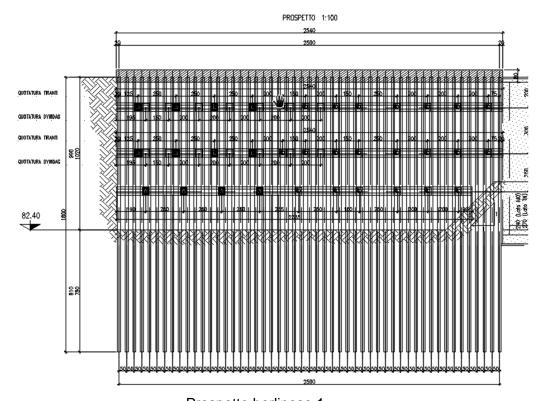
Per la verifica agli S.L.U. indicando con

G: pesi propri, carichi permanenti, spinte del terreno

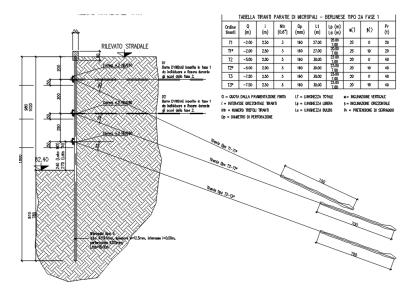
Q: carichi accidentali

si considereranno le seguenti combinazioni di carico:

- SLU strutturale: γ_G G + γ_Q Q gruppo di coefficienti A1, M1, R1: definita nel programma di calcolo [A1 M2]
- SLU geotecnico: gruppo di coefficienti A2, M2, R2: definita nel programma di calcolo [A1 - M2]
- SLU strutturale + Sisma: γ_G G + γ_Q Q gruppo di coefficienti A1, M1, R1: definita nel programma di calcolo [A1 M1]S
- SLU geotecnico + Sisma: gruppo di coefficienti A2, M2, R2: definita nel programma di calcolo [A2 M2]S



6 DIMENSIONAMENTO BERLINESI

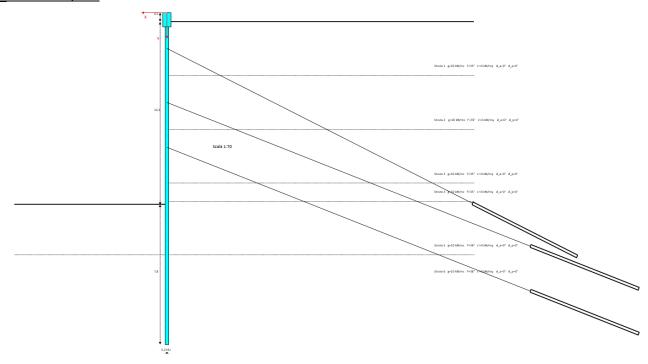

Si esegue nel presente capitolo il dimensionamento delle berlinesi in oggetto attraverso l'utilizzo del programma.

6.1 BERLINESE TIPO 1

Si riportano i dati ed i relativi disegni della berlinese in oggetto:

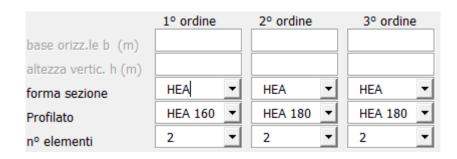
Prospetto berlinese 1

Sezione berlinese 1


6.1.1 CARATTERISTICHE GENERALI

L'inclinazione verticale dei tiranti è pari a 25° per i tiranti del primo ordine e a 20° per gli altri tiranti. Anche il precarico è uguale per tutti gli ordini di tiranti e pari a 200kN.

Il bulbo dei tiranti verrà eseguito ad iniezioni ripetute e selettive con una valvola al metro lineare di fondazione.


In sommità della paratia è previsto un cordolo di calcestruzzo armato avente sezione pari a 50 cm x 80 cm. Si riportano di seguito i 4 modelli agli elementi finiti implementati:

Berlinese tipo 1

6.1.2 GEOMETRIA CORDOLI

Si riportano le geometrie delle travi:

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO
IN10 10

CODIFICA D26CL DOCUMENTO IV010X001 REV. FOGLIO

Α

26 di 190

6.1.3 DESCRIZIONE TERRENI

Nella modellazione agli elementi finiti dei vari tratti di paratia, anche se si è in presenza di una sola tipologia di terreno, si considerano diversi strati aventi le medesime caratteristiche geologico-geotecniche per meglio discretizzare l'entità del coefficiente di Winkler (assunto crescente con la profondità, come meglio spiegato in seguito).

Simbologia adottata:

n°	numero d'ordine dello strato a partire dalla sommità della paratia
Descrizione	Descrizione del terreno
γ	peso di volume del terreno espresso in [kg/mc]
γs	peso di volume saturo del terreno espresso [kg/mc]
ф	angolo d'attrito interno del terreno espresso in [°]
δ	angolo d'attrito terreno/paratia espresso in [°]
С	coesione del terreno espressa in [kg/cmq]

Berlinese tipo 1

n°	Descrizio	ne	γ	γs φ	δ	С	
1	Rilevato	1	2000.00	2000.00	35.00	0.00	0.000
2	Rilevato	2	2000.00	2000.00	35.00	0.00	0.000
3	Rilevato	3	2000.00	2000.00	35.00	0.00	0.000
4	In Situ		1900.00	2000.00	38.00	0.00	0.000
5	Rilevato	4	2000.00	2000.00	35.00	0.00	0.000

6.1.4 DESCRIZIONE STRATIGRAFIA

Simbologia adottata

n° numero d'ordine dello strato a partire dalla sommità della paratia

sp spessore dello strato in corrispondenza dell'asse della paratia espresso in [m]

kw costante di Winkler orizzontale espressa in Kg/cm²/cm

α inclinazione dello strato espressa in GRADI(°)

Per la costante di Winkler si assume un andamento con la profondità definito dalla seguente espressione

 $K(z)=0.50 + 0.50 z^{0.50}$

dove K è la costante di Winkler espressa in Kg/cm²/cm e z è la profondità rispetto alla testa della paratia espressa in metri.

Berlinese tipo 1

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 27 di 190

Profondità di infissione 8.00 [m]

Altezza totale della paratia 18.00 [m]

n°	sp	α	kw	Terreno
1	3.00	0.00	1.11	Rilevato1
2	3.00	0.00	1.56	Rilevato2
3	3.00	0.00	1.87	Rilevato3
4	1.00	0.00	2.04	Rilevato 4
5	3.00	0.00	2.20	In Situ
6	3.00	0.00	2.40	In Situ
7	2.00	0.00	2.56	In Situ

6.1.5 CONDIZIONI DI CARICO

Simbologia e convenzioni adottate

Le ascisse dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia Le ordinate dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia

X_i ascissa del punto iniziale di applicazione del carico

X_f ascissa del punto finale di applicazione del carico

Q_i, Q_f Intensità dei carichi distribuiti sul profilo espresse in [kg/mq]

Per tutte le tipologie di berlinesi (1.1,1.2,1.3,1.4) si considera le seguente condizioni di carico:

Condizione n° 1

Carico distribuito sul profilo $X_i = 0.00$ $X_f = 30.00$ $Q_i = 500$ $Q_f = 500$

6.1.6 IMPOSTAZIONI DI PROGETTO

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γGfav	1.00	1.00
Permanenti	Sfavorevole	γGsfav	1.30	1.00
Variabili	Favorevole	γQfav	0.00	0.00
Variabili	Sfavorevole	VOctov	1.50	1.30

Coefficienti parziali per i parametri geotecnici del terreno:

Paramem	IVI I	IVIZ	
Tangente dell'angolo di attrito	γtanφ'	1.00	1.25

REL

LINEA AV/AC MILANO - VENEZIA

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

L	AZIONE DI CALCOLO OPERE PROVVISIONALI	(COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	ļ
			IN10	10	D26CL	IV010X001	Α	28 di 190	
	Coesione efficace	γ _{c'}		1.00	1.25				
	Resistenza non drenata	γ_{cu}	•	1.00	1.40				
	Resistenza a compressione uniassiale	γ_{qu}		1.00	1.60				
	Peso dell'unità di volume	γ_{γ}		1.00	1.00				

6.1.7 IMPOSTAZIONI DI ANALISI

6.1.7.1 Analisi per Fasi di Scavo.

Rottura del terreno: Pressione passiva Spostamento limite o per spostamento limite molle pari a 1.50cm

Impostazioni analisi per fasi di scavo:

Analisi per condizioni di esercizio Analisi per coefficienti tipo A1-M1 Analisi per coefficienti tipo A2-M2

Stabilità globale: Metodo di Fellenius

6.1.8 VERIFICHE BERLINESE TIPO1

In seguito vengono riportati I tabulate di verifica estrapolati dall programma di calcolo:

VERIFICHE AGLI STATI LIMITE ULTIMI

COMB. 1 (SLU-F)

SOLLECITAZIONI AGENTI SULLA PARATIA (calcolo FEM)

Sovraccarichi di progetto sui terrapieni

Terreno di monte, q1d=0,00 kN/mq Terreno di valle, q2d=0,00 kN/mq

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=35 (°) coesione drenata, c'_d=0,00 kN/mq angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°) angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°) strato 2

peso dell'unità di volume, g=20,00 kN/mc

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO IN10

CODIFICA D26CL

DOCUMENTO IV010X001

RFV. FOGI IO Α

29 di 190

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 4

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 5

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 6

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c' d=0,00 kN/mg

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

Coefficienti di spinta

strato 1

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 2

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO 10 CODIFICA D26CL DOCUMENTO
IV010X001

REV.

FOGLIO 30 di 190

coeff. di spinta passiva, Kp=3,690172 strato 3

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 4

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 5

lato monte:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

lato valle:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

strato 6

lato monte:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

lato valle:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

Numero di iterazioni nel calcolo non lineare e sollecitazioni

Numero di iterazione effettuate = 6

errore iterazione 0 = 0,004049

errore iterazione 1 = 0,240294

errore iterazione 2 = 0,035625

errore iterazione 3 = 0,02641

errore iterazione 4 = 0,006542

errore iterazione 5 = 0,002914

errore iterazione 6 = 0,000002

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 31 di 190

1				
coz /node	v / m)	Nx (Tz (My (kN*m/m)
sez./nodo 1	x (m) 0	kN/m) 0	kN/m) 0	
2	0,25	-0,63	0	0
3	0,23	-1,26	0	0
4	0,75	-1,20	-0,44	0
5	0,73	-1,66 -2,51	-1,32	-0,11
6	1,25	-2,31		
7	1,23	-3,14	-2,64 -4,4	-0,44 1 1
8	1,75	-3,77 -4,4	-4,4 -6,61	-1,1 -2,2
9	2	-5,03	-6,61	-3,85
9	2	-3,03	40,55	-3,85
10	2,25	-28,23	37,47	6,28
11	2,23	-28,87 -29,5	33,94	15,65
12	2,3	-30,13		24,14
13	2,73	-30,13	29,98 25,58	
14	3,25	-30,70		31,63
15	3,5		20,73	38,03
16	3,75	-32,01 -32,64	15,45 9,72	43,21
17	3,73	-32,04	3,56	47,07 49,5
18	4,25	-33,27	-3,05	50,39
19	4,23	-34,53	-10,09	49,63
20	4,75	-35,16	-10,09	47,11
21	4,73	-35,78	-17,58	42,71
21	5	-69,02	65,82	42,71
22	5,25	-69,65	57,46	59,17
23	5,5	-70,28	48,65	73,53
24	5,75	-70,28	39,4	85,69
25	6	-71,54	29,72	95,54
26	6,25	-72,17	19,59	102,97
27	6,5	-72,79	9,02	107,87
28	6,75	-73,42	-1,99	110,12
29	7	-74,05		109,63
30	7,25	-74,68	-25,33	106,27
31	7,5	-75,31	-25,33	99,93
31	7,5	-113,04	66,01	99,93
32	7,75	-113,67	53,24	116,44
33	8	-114,29	40,03	129,75
34	8,25	-114,92	26,37	139,75
35	8,5	-115,55	12,28	146,35
36	8,75	-116,18	-2,25	149,42
37	9	-116,81	-17,22	148,85
38	9,25	-117,44		144,55
39	9,5	-118,06	-48,49	136,39
40	9,75	-118,69	-64,78	124,27
41	10	-119,32	-81,51	108,07

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 32 di 190

42	10,25	-119,95	-98,69	87,69
43	10,5	-120,58	-114,54	63,02
44	10,7	-121,08	-128,86	40,11
45	10,95	-121,72	-138,26	7,31
46	11,21	-122,36	-140,96	-27,88
47	11,46	-123	-136,96	-63,76
48	11,72	-123,64	-126,28	-98,62
49	11,97	-124,28	-108,9	-130,77
50	12,23	-124,92	-84,83	-158,49
51	12,48	-125,56	-54,07	-180,08
52	12,74	-126,2	-16,61	-193,84
53	12,99	-126,83	27,54	-198,07
54	13,25	-127,47	78,38	-191,06
55	13,5	-128,11	133,49	-171,11
56	13,75	-128,74	151,34	-137,74
57	14	-129,37	143,76	-99,9
58	14,25	-130	115,43	-63,97
59	14,5	-130,63	82,07	-35,11
60	14,75	-131,25	50,98	-14,59
61	15	-131,88	26,67	-1,84
62	15,25	-132,51	9,92	4,82
63	15,5	-133,14	-0,16	7,3
64	15,75	-133,77	-5,15	7,26
65	16	-134,4	-6,74	5,98
66	16,25	-135,02	-6,34	4,29
67	16,5	-135,65	-5,02	2,71
68	16,75	-136,28	-3,45	1,45
69	17	-136,91	-2,03	0,59
70	17,25	-137,54	-0,93	0,08
71	17,5	-138,16	-0,18	-0,15
72	17,75	-138,79	0,23	-0,2
73	18	-139,42	0,35	-0,14
74	18,25	-140,05	0,2	-0,05
75	18,5	-140,68	0,2	0

REAZIONI VINCOLARI E PRESSIONI DI CONTATTO TERRENO-PARATIA (calcolo FEM)

RvX = componente della reazione vincolare lungo X (kN/m)

RvY = componente della reazione vincolare lungo Y (kN/m)

RvZ = componente momento della reazione vincolare (kN*m/m)

pXv = pressione orizzontale del terreno (molle di valle) (kN/mq)

pXm = pressione orizzontale del terreno (molle di monte) (kN/mq)

sez./nodo	x (m)	RvX	RvY	RvZ	pXv	pXm
3	0,5	0	0	0	0	0
4	0,75	0,34	0	0	0	1,35
5	1	0,68	0	0	0	2,71

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

	·										
RE	LAZIONE [OI CALCOLO	O OPERE PF	ROVVISIONALI		MESSA	LOTTO	CODIFICA D26CL	DOCUMENTO IV010X001	REV.	FOGLIO 33 di 190
_	6	1,25	1,02	0	0	0		4,06			
	7	1,5	1,36	0	0	0		5,42			
	8	1,75	1,69	0	0	0		6,77			
	9	2	-36,27	17,86	0	0		8,13			
	10	2,25	2,37	0	0	0		9,48			
	11	2,5	2,71	0	0	0		10,84			
	12	2,75	3,05	0	0	0		12,19			
	13	3	3,39	0	0	0		13,55			
	14	3,25	3,73	0	0	0)	14,9			
	15	3,5	4,06	0	0	0		16,26			
	16	3,75	4,4	0	0	0)	17,61			
	17	4	4,74	0	0	0)	18,97			
	18	4,25	5,08	0	0	0)	20,32			
	19	4,5	5,42	0	0	0)	21,68			
	20	4,75	5,76	0	0	0)	23,03			
	21	5	-64,16	25,57	0	0		24,39			
	22	5,25	6,44	0	0	0)	25,74			
	23	5,5	6,77	0	0	0		27,1			
	24	5,75	7,11	0	0	0)	28,45			
	25	6	7,45	0	0	0		29,81			
	26	6,25	7,79	0	0	0)	31,16			
	27	6,5	8,13	0	0	0		32,52			
	28	6,75	8,47	0	0	0)	33,87			
	29	7	8,81	0	0	0		35,23			
	30	7,25	9,15	0	0	0)	36,58			
	31	7,5	-70,26	29,02	0	0)	37,94			
	32	7,75	9,82	0	0	0		39,29			
	33	8	10,16	0	0	0		40,65			
	34	8,25	10,5	0	0	0)	42			
	35	8,5	10,84	0	0	0		43,36			
	36	8,75	11,18	0	0	0		44,71			
	37	9	11,52	0	0	0		46,07			
	38	9,25	11,86	0	0	0		47,42			
	39	9,5	12,19	0	0	0		48,78			
	40	9,75	12,53	0	0	0		50,13			
	41	10	12,87	0	0	0		51,49			
	42	10,25	13,21	0	0	0		52,84			
	43	10,5	12,19	0	0	0		54,2			
	44	10,7	11,02	0	0	0		48,53			
	45	10,95	7,23	0	0	-21,4		49,74			
	46	11,21	2,08	0	0	-42,8		50,95			
	47	11,46	-3,07	0	0	-64,2		52,16			
	48	11,72	-8,22	0	0	-85,6		53,37			
	49	11,97	-13,37	0	0	-107		54,58			
	50	12,23	-18,52	0		-128,41		55,79			
	51	12,48	-23,66	0		-149,81		57,01			
	52	12,74	-28,81	0	0	-171,21	Į.	58,22			

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE	DI CALCOL	O OPERE P	ROVVISIONALI	CON	MMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
					IN10	10	D26CL	IV010X001	Α	34 di 190
53	12,99	-33,96	0	0	-192,61	. 59	9,43			
54	13,25	-39,11	0	0	-214,01	. 60),64			
55	13,5	-42,4	0	0	-230,09	61	L , 85			
56	13,75	-13,73	0	0	-117,94	63	3,04			
57	14	5,83	0	0	-52,9	76	5,23			
58	14,25	21,79	0	0	-22,92	110),07			
59	14,5	25,66	0	0	-18,08	120),73			
60	14,75	23,91	0	0	-22,51	. 118	3,16			
61	15	18,7	0	0	-34,85	109	9,66			
62	15,25	12,88	0	0	-48,41	. 99	9,94			
63	15,5	7,75	0	0	-60,6	5 9	91,6			
64	15,75	3,84	0	0	-70,34	85	5,71			
65	16	1,22	0	0	-77,5	82	2,38			
66	16,25	-0,3	0	0	-82,47	7 81	L , 25			
67	16,5	-1,02	0	0	-85,82	81	L , 75			
68	16,75	-1,2	0	0	-88,12	2 8	33,3			
69	17	-1,09	0	0	-89,81	. 85	5,44			
70	17,25	-0,85	0	0	-91,25	87	7,85			
71	17,5	-0,57	0	0	-92,62	90),32			
72	17,75	-0,32	0	0	-94,03	92	<u>2,</u> 76			
73	18	-0,09	0	0	-95,5	95	5,13			
74	18,25	0,11	0	0	-97,01	. 97	7,47			
75	18,5	0,16	-108,21	0	-98,54	99	9,78			

PERCENTUALI DI SPINTA PASSIVA MOBILITATA

Spinta passiva mobilitata a monte = 9,9%

Spinta passiva mobilitata a valle = 49,9%

VERIFICA CONDIZIONI DI EQUILIBRIO (calcolo FEM)

Equilibrio alla traslazione orizzontale

somma delle forze esterne orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

somma delle reazioni vincolari lungo X, SommRvX=0,00 kN/m

equazione di equilibrio alla traslazione orizzontale: SFx+Sme+Sve+SommRvX=0,00 kN/m

Equilibrio alla traslazione verticale

peso proprio della paratia, Wp=35,76 kN/m

somma delle forze verticali applicate alla paratia, SFy=0,00 kN/m

somma delle reazioni vincolari lungo Y, SommRvY=-35,76 kN/m

equazione di equilibrio alla traslazione verticale: Wp+SFy+SommRvY=0,00 kN/m

Equilibrio alla rotazione (attorno al primo nodo)

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

momento delle reazioni vincolari lungo X, MRvX=0,00 kN*m/m

equazione di equilibrio alla rotazione: MFx+MSme+MSve+MRvX=0,00 kN*m/m

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO

CODIFICA D26CL DOCUMENTO
IV010X001

REV. FOGLIO

A 35 di 190

Spinte orizzontali

spinta delle terre di monte, Sm=894,42 kN/m

spinta delle terre di valle, Sv=-706,12 kN/m

somma componenti orizz. delle forze che i tiranti/puntoni esercitano sull'opera, STx=-188,30 kN/m

somma forze orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

Momenti delle spinte orizzontali rispetto al primo nodo

momento della spinta delle terre di monte, MSm=11.268,84 kN*m/m

momento della spinta delle terre di valle, MSv=-10.242,89 kN*m/m

momento delle compon. orizz. delle forze che i tiranti/puntoni esercitano sull'opera, MTx=-1.025,95 kN*m/m

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

SFORZI NEI TIRANTI/PUNTONI (calcolo FEM)

TX*=sforzo lungo l'asse globale X per metro lineare di paratia (kN/m)

TY*=sforzo lungo l'asse globale Y per metro lineare di paratia (kN/m)

TX=sforzo lungo l'asse globale X nel singolo tirante/puntone (kN)

TY=sforzo lungo l'asse globale Y nel singolo tirante/puntone (kN)

Fa=sforzo di trazione/compressione nel singolo tirante/puntone (kN)

Fad=gGs x Fa sforzo di trazione/compressione di progetto nel singolo tirante/puntone (kN)

Ordine	TX*	TY*	TX	TY	Fa	Fad
1	-38,30	17,86	-95,76	44,65	105,66	137,36
2	-70,25	25,57	-175,63	63,93	186,91	242,98
3	-79,74	29,02	-199,36	72,56	212,15	275,80

SPOSTAMENTI NODALI (calcolo FEM)

w = spostamento orizzontale (lungo l'asse globale X, coincidente con l'asse locale z)

u = spostamento verticale (lungo l'asse globale Y, coincidente con l'asse locale x)

				rot.
sez./nodo	x (m)	w (cm)	u (cm)	(rad)
1	0	0,732	0,025	0,01
2	0,25	0,982	0,025	0,01
3	0,5	1,232	0,025	0,01
4	0,75	1,482	0,025	0,01
5	1	1,732	0,025	0,01
6	1,25	1,982	0,025	0,01
7	1,5	2,232	0,025	0,01
8	1,75	2,482	0,025	0,01
9	2	2,733	0,025	0,01
10	2,25	2,984	0,025	0,01
11	2,5	3,234	0,025	0,0099
12	2,75	3,481	0,025	0,0098
13	3	3,722	0,024	0,0095

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI
RELAZIONE DI CALCOLO OFENE FNOVVISIONALI II

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 36 di 190

					N
14	3,25	3,957	0,024	0,0092	
15	3,5	4,183	0,024	0,0089	
16	3,75	4,4	0,024	0,0085	
17	4	4,608	0,024	0,0081	
18	4,25	4,804	0,024	0,0076	
19	4,5	4,99	0,024	0,0072	
20	4,75	5,165	0,024	0,0068	
21	5	5,33	0,023	0,0064	
22	5,25	5,485	0,023	0,006	
23	5,5	5,628	0,023	0,0054	
24	5,75	5,755	0,023	0,0047	
25	6	5,863	0,022	0,0039	
26	6,25	5,951	0,022	0,0033	
27	6,5	6,017	0,022	0,0022	
28	6,75	6,06	0,022	0,0022	
29	7	6,079	0,022	0,0012	
30	7,25	6,075	0,021		
31	7,23 7,5			-0,0006 -0.0015	
32	7,5 7,75	6,048 5,999	0,021	-0,0015 -0,0024	
33	7,73 8	5,925	0,02		
	_		0,02	-0,0035	
34 25	8,25	5,823	0,019	-0,0047	
35 26	8,5 8.75	5,691	0,019	-0,0059	
36	8,75	5,527	0,019	-0,0072	
37	9	5,332	0,018	-0,0085	
38	9,25	5,105	0,018	-0,0097	
39 40	9,5	4,847	0,017	-0,0109	
40	9,75	4,559	0,017	-0,012	
41	10	4,245	0,016	-0,013	
42	10,25	3,908	0,016	-0,0139	
43	10,5	3,553	0,016	-0,0145	
44	10,7	3,258	0,015	-0,0149	
45	10,95	2,876	0,015	-0,0151	
46	11,21	2,492	0,014	-0,015	
47	11,46	2,114	0,014	-0,0146	
48	11,72	1,751	0,013	-0,0139	
49	11,97	1,409	0,013	-0,0129	
50	12,23	1,097	0,012	-0,0116	
51	12,48	0,819	0,012	-0,0101	
52	12,74	0,582	0,011	-0,0085	
53	12,99	0,387	0,011	-0,0068	
54	13,25	0,236	0,01	-0,0051	
55	13,5	0,127	0,01	-0,0035	
56	13,75	0,057	0,01	-0,0022	
57	14	0,017	0,009	-0,0011	
58	14,25	-0,003	0,009	-0,0004	
59	14,5	-0,008	0,008	0	
60	14,75	-0,005	0,008	0,0002	

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISI	ONALI
-------------------------------------	-------

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV010X001	Α	37 di 190

61	15	0,001	0,007	0,0003
62	15,25	0,008	0,007	0,0003
63	15,5	0,014	0,006	0,0002
64	15,75	0,018	0,006	0,0001
65	16	0,021	0,005	0,0001
66	16,25	0,022	0,005	0
67	16,5	0,023	0,004	0
68	16,75	0,023	0,004	0
69	17	0,023	0,003	0
70	17,25	0,022	0,003	0
71	17,5	0,022	0,002	0
72	17,75	0,022	0,002	0
73	18	0,021	0,001	0
74	18,25	0,021	0,001	0
75	18,5	0,02	0	0

VERIFICA AL CARICO LIMITE VERTICALE

Parametri geotecnici di progetto

coesione = 0,00 kN/mq

angolo di resistenza al taglio = 38°

Resistenza alla punta

fattore Nq (Berezantzev) = 111,075

fattore Nc = 140,89

tensione litostatica verticale totale alla profondità L, sVL=360,00 kN/mq

pressione neutra alla profondità L, uL=0,00 kN/mq

tensione litostatica verticale efficace alla profondità L, s'VL=360,00 kN/mq

Resistenza unitaria alla punta, p=39.987,10 kN/mq

Resistenza alla punta, Pmax=3.001,24 kN

Resistenza laterale

Resistenza laterale, Smax=939,15 kN

Resistenza alla punta e laterale di progetto

Resistenza alla punta (valore medio) = 3.001,24 kN

Resistenza alla punta (valore minimo) = 3.001,24 kN

Resistenza laterale (valore medio) = 939,15 kN

Resistenza laterale (valore minimo) = 939,15 kN

Fattore di correlazione, xsi3=1,7

Fattore di correlazione, xsi4=1,7

Resistenza alla punta (valore caratteristico) = 1.765,44 kN

Resistenza laterale (valore caratteristico) = 552,44 kN

Resistenza alla punta di progetto, Pmax_d=1.535,16 kN

Resistenza laterale di progetto, Smax d=480,38 kN

Carico limite per carichi assiali di compressione

 $Qlim_d = Pmax_d + Smax_d = 2.015,55 kN$

Carico limite di sfilamento per carichi assiali di trazione

 $Qlimt_d = Smax_d = 480,38 kN$

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 38 di 190

Azione di progetto

Ed = 140,68 kN

Verifica al carico limite per carichi assiali di compressione

Verifica soddisfatta: l'azione di progetto non supera la resistenza di progetto

coeff. di sicurezza, Qlim_d/Ed=14,33

VERIFICA DI STABILITA' GLOBALE

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 2

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 3

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 4

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 5

peso dell'unità di volume, $\,g=20,00\,\,kN/mc$ angolo di resistenza al taglio, $\,Fi_d=32,01\,\,(^\circ)$ coesione drenata, $\,c'_d=0,00\,\,kN/mq$

strato 6

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq

Parametri di calcolo

n° di cerchi analizzati = 10 Metodo utilizzato: Bishop

Cerchio critico

Coordinate centro e raggio: X (m) = 0 Y (m) = -3,58 Rc (m) = 22,18

Simbologia adottata

Wt = peso del concio (kN)

Wq = forza risultante verticale dovuta al sovraccarico applicato sul concio (kN)

alfa=angolo (minore di 90°) che l'orizzontale forma con la base del concio (positivo se antiorario)

u = pressione neutra alla base del concio (kN/mg)

DX = larghezza lungo X del concio (m)

Fsh = forza sismica orizzontale sul concio (kN)

B = braccio della forza sismica orizzontale rispetto al centro del cerchio di rottura (m)

Fsv = forza sismica verticale sul concio (kN)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV010X001	Α	39 di 190

N = risultante delle tensioni normali di reazione del terreno alla base del concio (kN)

T = risultante delle tensioni tangenziali di reazione del terreno alla base del concio (kN)

	te delle ten									
concio	Wt	Wq	alfa (°)	u	DX	Fsh	В	Fsv	N	T
1	25,7	0	-46,99	0	1,55	0	32,78	0	36,94	-0,68
2	72,53	0	-41,39	0	1,55	0	32,78	0	95,13	-1,76
3	111,23	0	-36,25	0	1,55	0	32,78	0	136,07	-2,52
4	143,45	0	-31,42	0	1,55	0	32,78	0	166,22	-3,08
5	170,22	0	-26,83	0	1,55	0	32,78	0	188,99	-3,5
6	192,24	0	-22,43	0	1,55	0	32,78	0	206,39	-3,82
7	210	0	-18,16	0	1,55	0	32,78	0	219,67	-4,07
8	223,83	0	-13,99	0	1,55	0	32,78	0	229,62	-4,25
9	233,99	0	-9,9	0	1,55	0	32,78	0	236,76	-4,38
10	240,63	0	-5,86	0	1,55	0	32,78	0	241,44	-4,47
11	243,87	0	-1,85	0	1,55	0	32,78	0	352,05	-6,51
12	13	0	0,22	0	0,05	0	32,78	0	13	-0,24
										-
13	559,91	0	2,29	0	1,55	0	32,78	0	560,77	10,38
14	556,3	0	6,3	0	1 55	0	32,78	0	560,83	10.20
14	550,5	U	0,3	U	1,55	U	32,76	U	300,63	10,38
15	549,26	0	10,35	0	1,55	0	32,78	0	560,25	10,37
	- 10,-0	-		-	_,	-	,	_		-
16	538,69	0	14,45	0	1,55	0	32,78	0	558,97	10,34
										-
17	524,41	0	18,63	0	1,55	0	32,78	0	556,9	10,31
40	506.47	0	22.02	0	4.55	0	22.70	0	FF2 00	-
18	506,17	0	22,92	0	1,55	0	32,78	Ü	553,89	10,25
19	483,6	0	27,35	0	1,55	0	32,78	0	549,71	- 10,17
13	103,0	J	27,55	Ū	1,33	J	32,70	Ū	3 13,7 1	-
20	456,21	0	31,96	0	1,55	0	32,78	0	544	10,07
21	423,27	0	36,82	0	1,55	0	32,78	0	536,16	-9,92
22	383,67	0	42,02	0	1,55	0	32,78	0	525,16	-9,72
23	335,68	0	47,68	0	1,55	0	32,78		508,96	-9,42
24	276,19	0	54,07	0	1,55	0	32,78	0	481,7	-7,99
25	198,46	0	61,71	0	1,55	0	32,78	0	432,07	-7,17
26	76,93	0	72,67	0	1,55	0	32,78		272,78	-4,52
	.1.111				•		•		•	•

Lunghezza dell'arco di cerchio di scivolamento, L=50,06 m

Momento resistente, M_resist=127.549,26 kN*m

Momento instabilizzante, M_instab=-3.776,36 kN*m

Verifica soddisfatta

VERIFICHE STRUTTURALI PARATIA

Verifiche di resistenza a presso-flessione e taglio

sid_m: tensione ideale massima nella sezione di acciaio (N/mmq)

Mcy_Rd: resistenza di progetto della sezione soggetta a presso-flessione retta (asse vettore y)

Resistenza plastica della sezione lorda A, Npl_Rd=2.743,03 kN

Area resistente al taglio della sezione lungo z, Avz=51,65 cmq

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 40 di 190

Resistenza di progetto a taglio lungo z, Vcz_Rd=1.008,21 kN Momento resistente elastico lungo l'asse vettore y, Mely_Rd=134,08 kN*m Momento resistente plastico lungo l'asse vettore y, Mply_Rd=180,61 kN*m tensione di snervamento di progetto, fyd=338 N/mmq

x (m)	Nx	Tz	Му	sid_m	Mcy_Rd	Verif?
0	0	0	0		ivicy_ita	verii.
0,25	-0,32	0	0			
0,5	-0,63	0	0			
0,75	-0,94	-0,22	0			
1	-1,26	-0,66	-0,06	0,3		Si
1,25	-1,58	-1,33	-0,22	0,8		Si
1,5	-1,89	-2,21	-0,55	1,6		Si
1,75	-2,21	-3,32	-1,11	3,1		Si
2	-2,53	-3,32	-1,93	5,2		Si
2	-14,19	20,37	-1,93	8,4		Si
2,25	-14,5	18,82	3,15	9,7		Si
2,5	-14,82	17,05	7,86	21,6		Si
2,75	-15,14	15,06	12,13	32,4		Si
3	-15,45	12,85	15,89	42		Si
3,25	-15,77	10,41	19,1	50,1		Si
3,5	-16,08	7,76	21,71	56,7		Si
3,75	-16,4	4,88	23,64	61,6		Si
4	-16,71	1,79	24,87	64,8		Si
4,25	-17,03	-1,53	25,31	65,9		Si
4,5	-17,35	-5,07	24,93	65		Si
4,75	-17,66	-8,83	23,67	61,8		Si
5	-17,97	-8,83	21,45	56,3		Si
5	-34,67	33,06	21,45	58,4		Si
5,25	-34,99	28,86	29,72	79,3		Si
5,5	-35,3	24,44	36,94	97,5		Si
5,75	-35,62	19,79	43,05	112,9		Si
6	-35,94	14,93	47,99	125,4		Si
6,25	-36,25	9,84	51,73	134,9		Si
6,5	-36,56	4,53	54,19	141,1		Si
6,75	-36,88	-1	55,32	144		Si
7	-37,2	-6,75	55,07	143,4		Si
7,25	-37,51	-12,72	53,38	139,2		Si
7,5	-37,83	-12,72	50,2	131,2		Si
7,5	-56,78	33,16	50,2	133,6		Si
7,75	-57,1	26,74	58,49	154,5		Si
8	-57,41	20,11	65,18	171,4		Si
8,25	-57,73	13,25	70,2	184,1		Si
8,5	-58,04	6,17	73,52	192,5		Si
8,75	-58,36	-1,13	75,06	196,5		Si
9	-58,68	-8,65	74,77	195,8		Si
9,25	-58,99	-16,39	72,61	190,4		Si

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE	DI CALCOL	O OPERE PR	ROVVISIONA	LI	COMMESSA	LOTTO 10	CODIFICA D26CL	DOCUMENTO IV010X001	REV.	FOGLIO 41 di 190
9,5	-59,31	-24,36	68,51	18	0,1		Si			
9,75	-59,62	-32,54	62,43		4,8		Si			
10	-59,94	-40,95	54,29		4,3		Si			
10,25	-60,26	-49,58	44,05		.8,5		Si			
10,5	-60,57	-57 , 54	31,66		37,3		Si			
10,7	-60,82	-64,73	20,15		8,3		Si			
10,95	-61,14	-69,45	3,67		29		Si			
11,21	-61,47	-70,81	-14,01	4	2,9		Si			
11,46	-61,79	-68,8	-32,03		8,4		Si			
11,72	-62,11	-63,43	-49,54	13	2,6		Si			
11,97	-62,43	-54,7	-65,69	17	3,3		Si			
12,23	-62,75	-42,61	-79,62	20	8,5		Si			
12,48	-63,07	-27,16	-90,46	23	5,9		Si			
12,74	-63,39	-8,34	-97,37	25	3,3		Si			
12,99	-63,71	13,83	-99,5	25	8,7		Si			
13,25	-64,03	39,37	-95,98	24	9,9		Si			
13,5	-64,35	67,06	-85,95	22	4,7		Si			
13,75	-64,67	76,02	-69,19	18	2,4		Si			
14	-64,99	72,22	-50,18	13	4,5		Si			
14,25	-65,3	57,98	-32,13	8	9,1		Si			
14,5	-65,62	41,23	-17,64	5	2,6		Si			
14,75	-65,93	25,61	-7,33	2	6,6		Si			
15	-66,25	13,4	-0,92	1	.0,5		Si			
15,25	-66,56	4,98	2,42	1	.4,3		Si			
15,5	-66,88	-0,08	3,67	1	.7,5		Si			
15,75	-67,2	-2,59	3,65	1	.7,5		Si			
16	-67,51	-3,39	3	1	.5,9		Si			
16,25	-67,83	-3,18	2,16	1	.3,8		Si			
16,5	-68,14	-2,52	1,36	1	.1,8		Si			
16,75	-68,46	-1,73	0,73	1	.0,3		Si			
17	-68,77	-1,02	0,3		9,2		Si			
17,25	-69,09	-0,47	0,04		8,6		Si			
17,5	-69,4	-0,09	-0,08		8,7		Si			
17,75	-69,72	0,12	-0,1		8,8		Si			
18	-70,04	0,18	-0,07		8,8		Si			
18,25	-70,35	0,1	-0,03		8,7		Si			
18,5	-70,67	0,1	0		8,7		Si			

VERIFICHE S.L.U. DI TIPO GEOTECNICO E STRUTTURALE SUI TIRANTI

ANCORAGGIO DI ORDINE 1

forza di progetto di trazione agente sul tirante, Fad=137,36 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 3,14

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=329,40 N/mmq

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

RFV.

Α

FOGI IO

42 di 190

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO CODIFICA DOCUMENTO

IN10 10 D26CL IV010X001

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 4,91

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,27 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 8,78

ANCORAGGIO DI ORDINE 2

forza di progetto di trazione agente sul tirante, Fad=242,98 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,77

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=582,68 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 2,78

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,48 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 4,96

ANCORAGGIO DI ORDINE 3

forza di progetto di trazione agente sul tirante, Fad=275,80 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,56

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=661,39 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 2,45

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,55 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 4,37

COMB. 2 (SLU-F)

SOLLECITAZIONI AGENTI SULLA PARATIA (calcolo FEM)

Sovraccarichi di progetto sui terrapieni

Terreno di monte, q1d=23,08 kN/mq Terreno di valle, q2d=0,00 kN/mq

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=35 (°) coesione drenata, c'_d=0,00 kN/mq angolo di attrito terreno-paratia (lato spinta attiva), Delt ad=0 (°)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 43 di 190

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 2

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 4

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 5

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 6

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

Coefficienti di spinta

strato 1

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 2

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO 10 CODIFICA D26CL DOCUMENTO
IV010X001

REV.

FOGLIO 44 di 190

lato valle:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 3

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 4

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 5

lato monte:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

lato valle:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

strato 6

lato monte:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

lato valle:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

Numero di iterazioni nel calcolo non lineare e sollecitazioni

Numero di iterazione effettuate = 6

errore iterazione 0 = 0,004913

errore iterazione 1 = 0,310064

errore iterazione 2 = 0,037976

errore iterazione 3 = 0,030768

LOTTO

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

CODIFICA D26CL DOCUMENTO
IV010X001

REV.

FOGLIO 45 di 190

errore iterazione 4 = 0,013665 errore iterazione 5 = 0,003 errore iterazione 6 = 0,000001

				
, ,	, ,	Nx (Tz (My (
sez./nodo	x (m)	kN/m)	kN/m)	kN*m/m)
1	0	0	0	0
2	0,25	-0,63	0	0
3	0,5	-1,26	-1,02	0
4	0,75	-1,88	-3,49	-0,25
5	1	-2,51	-6,4	-1,13
6	1,25	-3,14	-9,76	-2,73
7	1,5	-3,77	-13,55	-5,17
8	1,75	-4,4	-17,78	-8,55
9	2	-5,03	-17,78	-13
9	2	-40,52	53,65	-13
10	2,25	-41,14	48,54	0,41
11	2,5	-41,77	42,98	12,55
12	2,75	-42,4	36,99	23,29
13	3	-43,03	30,55	32,54
14	3,25	-43,66	23,67	40,18
15	3,5	-44,29	16,36	46,1
16	3,75	-44,91	8,6	50,19
17	4	-45,54	0,4	52,34
18	4,25	-46,17	-8,24	52,44
19	4,5	-46,8	-17,31	50,38
20	4,75	-47,43	-26,83	46,05
21	5	-48,05	-26,83	39,34
21	5	-90,05	78,58	39,34
22	5,25	-90,67	68,18	58,99
23	5,5	-91,3	57,34	76,03
24	5,75	-91,93	46,06	90,37
25	6	-92,56	34,34	101,88
26	6,25	-93,19	22,18	110,47
27	6,5	-93,81	9,58	116,01
28	6,75	-94,44	-3,46	118,4
29	7	-95,07	-16,94	117,54
30	7,25	-95,7	-30,87	113,3
31	7,5	-96,33	-30,87	105,59
31	7,5	-142,29	81,06	105,59
32	7,75	-142,92	66,26	125,85
33	8	-143,55	51,02	142,42
34	8,25	-144,18	35,33	155,17
35	8,5	-144,81	19,21	164
36	8,75	-145,43	2,65	168,81
37	9	-146,06	-14,36	169,47
38	9,25	-146,69	-31,8	165,88
	•	•		•

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

		OPERE PROVVISIONALI
RELA/ILINE	1)	OPERE PROVISIONALI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV010X001	Α	46 di 190

9,5	-147,32	-49,69	157,93
9,75	-147,95	-68,02	145,51
10	-148,58	-86,78	128,5
10,25	-149,2	-105,99	106,81
10,5	-149,83	-123,67	80,31
10,7	-150,33	-139,61	55,58
10,95	-150,97	-150,82	20,04
11,21	-151,61	-155,35	-18,35
11,46	-152,25	-153,17	-57,9
11,72	-152,89	-144,31	-96,89
11,97	-153,53	-128,75	-133,62
12,23	-154,17	-106,5	-166,39
12,48	-154,81	-77,56	-193,5
12,74	-155,45	-41,92	-213,24
12,99	-156,09	0,41	-223,91
13,25	-156,73	49,43	-223,81
13,5	-157,37	104,49	-211,23
13,75	-158	156,36	-185,1
14	-158,63	170,42	-146,01
14,25	-159,25	155,75	-103,4
14,5	-159,88	121,69	-64,47
14,75	-160,51	84,63	-34,04
15	-161,14	51,05	-12,89
15,25	-161,77	25,48	-0,12
15,5	-162,4	8,31	6,25
15,75	-163,02	-1,69	8,32
16	-163,65	-6,37	7,9
16,25	-164,28	-7,57	6,31
16,5	-164,91	-6,82	4,42
16,75	-165,54	-5,21	2,71
17	-166,16	-3,45	1,41
17,25	-166,79	-1,91	0,54
17,5	-167,42	-0,76	0,07
17,75	-168,05	-0,03	-0,12
18	-168,68	0,29	-0,13
18,25	-169,31	0,22	-0,06
18,5	-169,93	0,22	0
	9,75 10 10,25 10,5 10,7 10,95 11,21 11,46 11,72 11,97 12,23 12,48 12,74 12,99 13,25 13,5 13,75 14 14,25 14,75 15,5 15,75 16 16,25 15,75 16 16,25 16,55 17,75 17,75 18 18,25	9,75 -147,95 10 -148,58 10,25 -149,2 10,5 -149,83 10,7 -150,33 10,95 -150,97 11,21 -151,61 11,46 -152,25 11,72 -152,89 11,97 -153,53 12,23 -154,17 12,48 -154,81 12,74 -155,45 12,99 -156,09 13,25 -156,73 13,5 -157,37 13,75 -158 14 -158,63 14,25 -159,25 14,5 -159,88 14,75 -160,51 15 -161,14 15,25 -161,77 15,5 -162,4 15,75 -163,02 16 -163,65 16,25 -164,28 16,5 -164,91 16,75 -165,54 17 -166,16 17,25 -166,79 17,5 -167,42 17,75 -168,05 18 -168,68 18,25 -169,31	9,75 -147,95 -68,02 10 -148,58 -86,78 10,25 -149,2 -105,99 10,5 -149,83 -123,67 10,7 -150,33 -139,61 10,95 -150,97 -150,82 11,21 -151,61 -155,35 11,46 -152,25 -153,17 11,72 -152,89 -144,31 11,97 -153,53 -128,75 12,23 -154,17 -106,5 12,48 -154,81 -77,56 12,74 -155,45 -41,92 12,99 -156,09 0,41 13,25 -156,73 49,43 13,5 -157,37 104,49 13,75 -158 156,36 14 -158,63 170,42 14,25 -159,25 155,75 14,5 -169,25 155,75 14,5 -160,51 84,63 15 -161,14 51,05 15,25 -161,77 25,48 15,5 -162,4 8,31 15,75 -163,02 -1,69 16 -163,65 -6,37 16,25 -164,91 -6,82 16,75 -164,91 -6,82 16,75 -166,79 -1,91 17,5 -166,79 -1,91 17,5 -167,42 -0,76 17,75 -168,05 -0,03 18 -168,68 0,29 18,25 -169,31 0,22

REAZIONI VINCOLARI E PRESSIONI DI CONTATTO TERRENO-PARATIA (calcolo FEM)

RvX = componente della reazione vincolare lungo X (kN/m)

RvY = componente della reazione vincolare lungo Y (kN/m)

RvZ = componente momento della reazione vincolare (kN*m/m)

pXv = pressione orizzontale del terreno (molle di valle) (kN/mq)

pXm = pressione orizzontale del terreno (molle di monte) (kN/mq)

sez./nodo	x (m)	RvX	RvY	RvZ	pXv	pXm

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI			OVVISIONALI	COMMESS			DOCUMENTO	REV.	FOGLIO
3	0,5	0,78	0	0 IN10	0	6,25	IV010X001	Α	47 di 190
4	0,75	1,9	0	0	0	7,61			
5	1	2,24	0	0	0	8,96			
6	1,25	2,58	0	0	0	10,32			
7	1,5	2,92	0	0	0	11,67			
8	1,75	3,26	0	0	0	13,03			
9	2	-54,95	27,3	0	0	14,38			
10	2,25	3,93	0	0	0	15,74			
11	2,5	4,27	0	0	0	17,09			
12	2,75	4,61	0	0	0	18,45			
13	3	4,95	0	0	0	19,8			
14	3,25	5,29	0	0	0	21,16			
15	3,5	5,63	0	0	0	22,51			
16	3,75	5,97	0	0	0	23,87			
17	4	6,31	0	0	0	25,22			
18	4,25	6,64	0	0	0	26,58			
19	4,5	6,98	0	0	0	27,93			
20	4,75	7,32	0	0	0	29,29			
21	5	-81,09	32,3	0	0	30,64			
22	5,25	8	0	0	0	32			
23	5,5	8,34	0	0	0	33,35			
24	5,75	8,68	0	0	0	34,71			
25	6	9,02	0	0	0	36,06			
26	6,25	9,35	0	0	0	37,42			
27	6,5	9,69	0	0	0	38,77			
28	6,75	10,03	0	0	0	40,13			
29	7	10,37	0	0	0	41,48			
30	7,25	10,71	0	0	0	42,84			
31	7,5	-86,1	35,36	0	0	44,19			
32	7,75	11,39	0	0	0	45,55			
33	8	11,73	0	0	0	46,9			
34	8,25	12,06	0	0	0	48,26			
35	8,5	12,4	0	0	0	49,61			
36	8,75	12,74	0	0	0	50,97			
37	9	13,08	0	0	0	52,32			
38	9,25	13,42	0	0	0	53,68			
39	9,5	13,76	0	0	0	55,03			
40	9,75	14,1	0	0	0	56,39			
41	10	14,44	0	0	0	57,74			
42	10,25	14,77	0	0	0	59,1			
43	10,5	13,6	0	0	0	60,45			
44	10,7	12,26	0	0	0	54,02			
45	10,95	8,63	0		21,4	55,23			
46	11,21	3,48	0		42,8	56,44			
47	11,46	-1,67	0		64,2	57,65			
48	11,72	-6,82	0		·85,6	58,86			
49	11,97	-11,97	0		-107	60,07			

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI				CON	MMESSA	LOT	TO CODIFIC	CA DOCUME	NTO	REV.	FOGLIO	
		- 2: -:: - :			IN10	10	D26CL	_ IV010X	001	Α	48 di 190	
50	12,23	-17,12	0	0	-128,4	1	61,28					
51	12,48	-22,26	0	0	-149,8	1	62,5					
52	12,74	-27,41	0	0	-171,2	1	63,71					
53	12,99	-32,56	0	0	-192,6	1	64,92					
54	13,25	-37,71	0	0	-214,0	1	66,13					
55	13,5	-42,35	0	0	-235,4	1	67,34					
56	13,75	-39,9	0	0	-228,1	4	68,53					
57	14	-10,81	0	0	-112,9	8	69,72					
58	14,25	11,29	0	0	-48,3	5	93,5					
59	14,5	26,2	0	0	-20,4	5	125,24					
60	14,75	28,51	0	0	-19,2	7	133,31					
61	15	25,83	0	0	-25,0	4	128,34					
62	15,25	19,67	0	0	-39,2	6	117,96					
63	15,5	13,21	0	0	-54,1	2	106,95					
64	15,75	7,69	0	0	-67,0	7	97,84					
65	16	3,6	0	0	-77,1	8	91,57					
66	16,25	0,93	0	0	-84,4	5	88,15					
67	16,5	-0,58	0	0	-89,3	8	87,07					
68	16,75	-1,24	0	0	-92,6	1	87,67					
69	17	-1,36	0	0	-94,7	8	89,35					
70	17,25	-1,18	0	0	-96,3	6	91,62					
71	17,5	-0,89	0	0	-97,6	8	94,13					
72	17,75	-0,56	0	0	-98,9	5	96,71					
73	18	-0,25	0	0	-100,2	4	99,26					
74	18,25	0,05	0	0	-101,5	7	101,78					
75	18,5	0,17	-130,72	0	-102,	9	104,29					

PERCENTUALI DI SPINTA PASSIVA MOBILITATA

Spinta passiva mobilitata a monte = 10%

Spinta passiva mobilitata a valle = 52,7%

VERIFICA CONDIZIONI DI EQUILIBRIO (calcolo FEM)

Equilibrio alla traslazione orizzontale

somma delle forze esterne orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

somma delle reazioni vincolari lungo X, SommRvX=0,00 kN/m

equazione di equilibrio alla traslazione orizzontale: SFx+Sme+Sve+SommRvX=0,00 kN/m

Equilibrio alla traslazione verticale

peso proprio della paratia, Wp=35,76 kN/m

somma delle forze verticali applicate alla paratia, SFy=0,00 kN/m

somma delle reazioni vincolari lungo Y, SommRvY=-35,76 kN/m

equazione di equilibrio alla traslazione verticale: Wp+SFy+SommRvY=0,00 kN/m

Equilibrio alla rotazione (attorno al primo nodo)

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 49 di 190

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

momento delle reazioni vincolari lungo X, MRvX=0,00 kN*m/m

equazione di equilibrio alla rotazione: MFx+MSme+MSve+MRvX=0,00 kN*m/m

Spinte orizzontali

spinta delle terre di monte, Sm=1.003,74 kN/m

spinta delle terre di valle, Sv=-759,30 kN/m

somma componenti orizz. delle forze che i tiranti/puntoni esercitano sull'opera, STx=-244,44 kN/m

somma forze orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

Momenti delle spinte orizzontali rispetto al primo nodo

momento della spinta delle terre di monte, MSm=12.296,68 kN*m/m

momento della spinta delle terre di valle, MSv=-11.007,25 kN*m/m

momento delle compon. orizz. delle forze che i tiranti/puntoni esercitano sull'opera, MTx=-1.289,44 kN*m/m

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

SFORZI NEI TIRANTI/PUNTONI (calcolo FEM)

TX*=sforzo lungo l'asse globale X per metro lineare di paratia (kN/m)

TY*=sforzo lungo l'asse globale Y per metro lineare di paratia (kN/m)

TX=sforzo lungo l'asse globale X nel singolo tirante/puntone (kN)

TY=sforzo lungo l'asse globale Y nel singolo tirante/puntone (kN)

Fa=sforzo di trazione/compressione nel singolo tirante/puntone (kN)

Fad=gGs x Fa sforzo di trazione/compressione di progetto nel singolo tirante/puntone (kN)

Ordine	TX*	TY*	TX	TY	Fa	Fad
1	-58,55	27,30	-146,37	68,25	161,50	209,95
2	-88,75	32,30	-221,87	80,75	236,10	306,94
3	-97,15	35,36	-242,87	88,40	258,46	336,00

SPOSTAMENTI NODALI (calcolo FEM)

w = spostamento orizzontale (lungo l'asse globale X, coincidente con l'asse locale z)

u = spostamento verticale (lungo l'asse globale Y, coincidente con l'asse locale x)

				rot.
sez./nodo	x (m)	w (cm)	u (cm)	(rad)
1	0	2,236	0,031	0,0097
2	0,25	2,477	0,031	0,0097
3	0,5	2,719	0,031	0,0097
4	0,75	2,96	0,031	0,0097
5	1	3,201	0,031	0,0097
6	1,25	3,443	0,031	0,0097
7	1,5	3,685	0,031	0,0097
8	1,75	3,928	0,031	0,0098
9	2	4,174	0,031	0,0099
10	2,25	4,421	0,031	0,0099

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 50 di 190

				IN10	
11	2,5	4,668	0,031	0,0099	
12	2,75	4,913	0,031	0,0097	
13	3	5,153	0,03	0,0095	
14	3,25	5,386	0,03	0,0092	
15	3,5	5,61	0,03	0,0088	
16	3,75	5,824	0,03	0,0084	
17	4	6,028	0,03	0,0079	
18	4,25	6,221	0,03	0,0075	
19	4,5	6,402	0,029	0,007	
20	4,75	6,572	0,029	0,0066	
21	5	6,733	0,029	0,0062	
22	5,25	6,884	0,029	0,0058	
23	5,5	7,023	0,028	0,0052	
24	5,75	7,146	0,028	0,0045	
25	6	7,249	0,028	0,0037	
26	6,25	7,33	0,027	0,0028	
27	6,5	7,388	0,027	0,0018	
28	6,75	7,421	0,027	0,0008	
29	7	7,428	0,026	-0,0002	
30	7,25	7,41	0,026	-0,0012	
31	7,5	7,368	0,026	-0,0021	
32	7,75	7,303	0,025	-0,0031	
33	8	7,21	0,024	-0,0043	
34	8,25	7,087	0,024	-0,0056	
35	8,5	6,931	0,023	-0,0069	
36	8,75	6,739	0,023	-0,0084	
37	9	6,512	0,022	-0,0098	
38	9,25	6,248	0,022	-0,0113	
39	9,5	5,948	0,021	-0,0127	
40	9,75	5,615	0,021	-0,014	
41	10	5,251	0,02	-0,0152	
42	10,25	4,859 4,444	0,02	-0,0162	
43 44	10,5	•	0,019	-0,017 0.0174	
44 45	10,7 10,95	4,1 3,651	0,019 0,018	-0,0174 -0,0178	
43 46	10,93	3,198	0,018	-0,0178	
40 47	11,46	3,198 2,749	0,017	-0,0178	
48	11,40	2,749	0,017	-0,0174	
49	11,97	1,898	0,016	-0,0158	
50	12,23	1,513	0,015	-0,0144	
51	12,48	1,165	0,015		
52	12,74	0,86	0,013	-0,0111	
53	12,99	0,602	0,014	-0,0092	
54	13,25	0,394	0,013	-0,0072	
55	13,5	0,235	0,013		
56	13,75	0,124	0,012	-0,0036	
57	14	0,053	0,011	-0,0022	
	= -	,	,		

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV010X001	Α	51 di 190

58	14,25	0,013	0,01	-0,0011
59	14,5	-0,005	0,01	-0,0004
60	14,75	-0,009	0,009	0
61	15	-0,005	0,009	0,0002
62	15,25	0,002	0,008	0,0003
63	15,5	0,01	0,007	0,0003
64	15,75	0,016	0,007	0,0002
65	16	0,021	0,006	0,0001
66	16,25	0,023	0,006	0,0001
67	16,5	0,025	0,005	0
68	16,75	0,026	0,004	0
69	17	0,026	0,004	0
70	17,25	0,025	0,003	0
71	17,5	0,025	0,003	0
72	17,75	0,024	0,002	0
73	18	0,024	0,001	0
74	18,25	0,023	0,001	0
75	18,5	0,023	0	0

VERIFICA AL CARICO LIMITE VERTICALE

Parametri geotecnici di progetto

coesione = 0,00 kN/mq

angolo di resistenza al taglio = 38°

Resistenza alla punta

fattore Nq (Berezantzev) = 111,075

fattore Nc = 140,89

tensione litostatica verticale totale alla profondità L, sVL=390,00 kN/mq

pressione neutra alla profondità L, uL=0,00 kN/mq

tensione litostatica verticale efficace alla profondità L, s'VL=390,00 kN/mq

Resistenza unitaria alla punta, p=43.319,35 kN/mq

Resistenza alla punta, Pmax=3.251,34 kN

Resistenza laterale

Resistenza laterale, Smax=1.072,78 kN

Resistenza alla punta e laterale di progetto

Resistenza alla punta (valore medio) = 3.251,34 kN

Resistenza alla punta (valore minimo) = 3.251,34 kN

Resistenza laterale (valore medio) = 1.072,78 kN

Resistenza laterale (valore minimo) = 1.072,78 kN

Fattore di correlazione, xsi3=1,7

Fattore di correlazione, xsi4=1,7

Resistenza alla punta (valore caratteristico) = 1.912,56 kN

Resistenza laterale (valore caratteristico) = 631,05 kN

Resistenza alla punta di progetto, Pmax_d=1.663,09 kN

Resistenza laterale di progetto, Smax_d=548,74 kN

Carico limite per carichi assiali di compressione

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 52 di 190

 $Qlim_d = Pmax_d + Smax_d = 2.211,83 kN$

Carico limite di sfilamento per carichi assiali di trazione

 $Qlimt_d = Smax_d = 548,74 kN$

Azione di progetto

Ed = 169,93 kN

Verifica al carico limite per carichi assiali di compressione

Verifica soddisfatta: l'azione di progetto non supera la resistenza di progetto coeff. di sicurezza, Qlim_d/Ed=13,02

VERIFICA DI STABILITA' GLOBALE

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 2

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 3

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 4

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 5

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq

strato 6

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq

Parametri di calcolo

n° di cerchi analizzati = 10 Metodo utilizzato: Bishop

Cerchio critico

Coordinate centro e raggio: X (m) = 0 Y (m) = -3,58 Rc (m) = 22,18

Simbologia adottata

Wt = peso del concio (kN)

Wq = forza risultante verticale dovuta al sovraccarico applicato sul concio (kN) alfa=angolo (minore di 90°) che l'orizzontale forma con la base del concio (positivo se antiorario)

u = pressione neutra alla base del concio (kN/mq)

DX = larghezza lungo X del concio (m)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 53 di 190

Fsh = forza sismica orizzontale sul concio (kN)

B = braccio della forza sismica orizzontale rispetto al centro del cerchio di rottura (m)

Fsv = forza sismica verticale sul concio (kN)

N = risultante delle tensioni normali di reazione del terreno alla base del concio (kN)

T = risultante delle tensioni tangenziali di reazione del terreno alla base del concio (kN)

concio	Wt	Wq	alfa (°)	u	DX	Fsh	В	Fsv	N	Т
1	25,7	0	-46,99	0	1,55	0	32,78	0	36,02	-1,55
2	72,53	0	-41,39	0	1,55	0	32,78	0	93,14	-4,01
3	111,23	0	-36,25	0	1,55	0	32,78	0	133,7	-5,76
4	143,45	0	-31,42	0	1,55	0	32,78		163,79	-7,05
5	170,22	0	-26,83	0	1,55	0	32,78		186,69	-8,04
6	192,24	0	-22,43	0	1,55	0	32,78		204,34	-8,8
7	210	0	-18,16	0	1,55	0	32,78		217,93	-9,38
8	223,83	0	-13,99	0	1,55	0	32,78	0	228,23	-9,83
0	222.00	0	0.0	0	1 55	0	22.70	0	225 76	10.15
9	233,99	0	-9,9	0	1,55	0	32,78	U	235,76	10,15
10	240,63	0	-5,86	0	1,55	0	32,78	0	240,83	10,37
	-,		-,		,		- , -		-,	-
11	243,87	0	-1,85	0	1,55	0	32,78	0	374,26	16,11
12	13	0	0,22	0	0,05	0	32,78	0	13	-0,56
13	559,91	40,28	2,29	0	1,55	0	32,78	0	601,71	-25,9
						_		_		-
14	556,3	40,28	6,3	0	1,55	0	32,78	0	603,08	25,96
15	549,26	40,28	10,35	0	1,55	0	32,78	0	604,05	26,01
13	343,20	40,20	10,33	U	1,55	U	32,76	U	004,03	20,01
16	538,69	40,28	14,45	0	1,55	0	32,78	0	604,61	26,03
										-
17	524,41	40,28	18,63	0	1,55	0	32,78	0	604,71	26,03
40	506.47	40.00	22.02	•	4 55	•	22.70		604.00	-
18	506,17	40,28	22,92	0	1,55	0	32,78	0	604,29	26,02
19	483,6	40,28	27,35	0	1,55	0	32,78	0	603,23	- 25,97
13	103,0	10,20	27,33	Ū	1,55	Ü	32,70	Ū	003,23	-
20	456,21	40,28	31,96	0	1,55	0	32,78	0	601,35	25,89
										-
21	423,27	40,28	36,82	0	1,55	0	32,78	0	598,34	25,76
22	202.67	40.20	42.02	0	4 55	0	22.70	0	E02 CE	- 25 5 6
22	383,67	40,28	42,02	0	1,55	0	32,78	U	593,65	25,56
23	335,68	40,28	47,68	0	1,55	0	32,78	0	586,17	25,24
	333,00	.0,20	.,,00	J	1,55	· ·	02,70	· ·	300,17	-
24	276,19	40,28	54,07	0	1,55	0	32,78	0	569,66	21,98
										-
25	198,46	40,28	61,71	0	1,55	0	32,78	0	542,65	20,94
20	76.00	40.30	72.67	•	4	•	22.70	^	440.05	- 17.22
26	76,93	40,28	72,67	0	1,55	0	32,78	Ü	449,05	17,33

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 54 di 190

Momento instabilizzante, M_instab=-9.674,27 kN*m Verifica soddisfatta

VERIFICHE STRUTTURALI PARATIA

Verifiche di resistenza a presso-flessione e taglio

sid_m: tensione ideale massima nella sezione di acciaio (N/mmq)

Mcy_Rd: resistenza di progetto della sezione soggetta a presso-flessione retta (asse vettore y)

Resistenza plastica della sezione lorda A, Npl_Rd=2.743,03 kN

Area resistente al taglio della sezione lungo z, Avz=51,65 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=1.008,21 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=134,08 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=180,61 kN*m

tensione di snervamento di progetto, fyd=338 N/mmq

x (m)	Nx	Tz	Му	sid_m	Mcy_Rd	Verif?
0	0	0	0			
0,25	-0,32	0	0			
0,5	-0,63	-0,51	0			
0,75	-0,94	-1,75	-0,13			
1	-1,26	-3,21	-0,57	1,6		Si
1,25	-1,58	-4,9	-1,37	3,7		Si
1,5	-1,89	-6,81	-2,6	6,8		Si
1,75	-2,21	-8,93	-4,29	11,1		Si
2	-2,53	-8,93	-6,53	16,8		Si
2	-20,35	26,95	-6,53	19		Si
2,25	-20,67	24,38	0,21	10,1		Si
2,5	-20,98	21,59	6,3	18,5		Si
2,75	-21,3	18,58	11,7	32,1		Si
3	-21,62	15,35	16,35	43,9		Si
3,25	-21,93	11,89	20,18	53,6		Si
3,5	-22,25	8,22	23,16	61,1		Si
3,75	-22,56	4,32	25,21	66,4		Si
4	-22,88	0,2	26,29	69,1		Si
4,25	-23,19	-4,14	26,34	69,3		Si
4,5	-23,51	-8,7	25,31	66,7		Si
4,75	-23,83	-13,48	23,13	61,3		Si
5	-24,14	-13,48	19,76	52,8		Si
5	-45,24	39,47	19,76	55,4		Si
5,25	-45,55	34,25	29,63	80,3		Si
5,5	-45,86	28,8	38,19	102		Si
5,75	-46,18	23,14	45,4	120,2		Si
6	-46,5	17,25	51,18	134,8		Si
6,25	-46,81	11,14	55,49	145,7		Si
6,5	-47,12	4,81	58,28	152,8		Si
6,75	-47,44	-1,74	59,48	155,8		Si
7	-47,76	-8,51	59,04	154,8		Si

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE	DI CALCOL	O OPERE P	ROVVISION	ALI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
7,25	-48,07	-15,51	56,91	14	9,4	10	D26CL Si	IV010X001	Α	55 di 190
7,25 7,5	-48,39	-15,51	53,04		9,7		Si			
7,5 7,5	-71,48	40,72	53,04		2,6		Si			
7,75	-71, 7 9	33,28	63,22		2,3 8,3		Si			
8	-72,11	25,63	71,54		9,3		Si			
8,25	-72,43	17,75	77,95		5,5		Si			
8,5	-72,74	9,65	82,38		6,7		Si			
8,75	-73,05	1,33	84,8		2,8		Si			
9	-73,37	-7,21	85,13		3,7		Si			
9,25	-73,69	-15,97	83,33		9,2		Si			
9,5	-74	-24,96	79,33		9,2		Si			
9,75	-74,32	-34,17	73,09		3,5		Si			
10	-74,64	-43,59	64,55	1	172		Si			
10,25	-74,95	-53,24	53,65	14	4,5		Si			
10,5	-75,26	-62,12	40,34		111		Si			
10,7	-75,52	-70,13	27,92	7	9,7		Si			
10,95	-75,84	-75,76	10,07	3	4,7		Si			
11,21	-76,16	-78,04	-9,22	3	2,8		Si			
11,46	-76,48	-76,94	-29,09	8	2,8		Si			
11,72	-76,8	-72,49	-48,67	13	2,2		Si			
11,97	-77,12	-64,68	-67,12	17	8,8		Si			
12,23	-77,45	-53,5	-83,58	22	0,3		Si			
12,48	-77,77	-38,96	-97,2	25	4,7		Si			
12,74	-78,09	-21,06	-107,12	27	9,7		Si			
12,99	-78,41	0,21	-112,48	29	3,3		Si			
13,25	-78,73	24,83	-112,43	29	3,2		Si			
13,5	-79,05	52,49	-106,11	27	7,3		Si			
13,75	-79,37	78,55	-92,98		4,2		Si			
14	-79,69	85,61	-73,35		4,8		Si			
14,25	-80	78,24	-51,94		0,8		Si			
14,5	-80,31	61,13		9			Si			
14,75	-80,63			5			Si			
15	-80,95	25,64	-6,48		6,3		Si			
15,25	-81,26	12,8	-0,06		1,3		Si			
15,5	-81,58	4,17	3,14		18		Si			
15,75	-81,89		4,18		0,6		Si			
16			3,97		0,1		Si s:			
16,25		-3,8	3,17		8,2		Si s:			
16,5	-82,84		2,22		5,8 2.7		Si			
16,75	-83,16		1,36		3,7		Si			
17 17 25	-83,47		0,71		2,1		Si c:			
17,25	-83,78	-0,96	0,27		11		Si c:			
17,5	-84,1	-0,38	0,04		0,5		Si c:			
17,75	-84,42	-0,02 0.15	-0,06		0,6 0.6		Si c:			
18	-84,73	0,15	-0,07		0,6		Si c:			
18,25	-85,05	0,11	-0,03		0,6 0.5		Si c:			
18,5	-85,36	0,11	0	1	0,5		Si			

LOTTO

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10 CODIFICA D26CL DOCUMENTO IV010X001 REV.

Α

FOGLIO 56 di 190

<u>VERIFICHE S.L.U. DI TIPO GEOTECNICO E STRUTTURALE SUI TIRANTI</u>

ANCORAGGIO DI ORDINE 1

forza di progetto di trazione agente sul tirante, Fad=209,95 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 2,05

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=503,47 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 3,21

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,42 N/mmg

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 5,75

ANCORAGGIO DI ORDINE 2

forza di progetto di trazione agente sul tirante, Fad=306,94 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,4

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=736,06 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 2,2

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,61 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 3,93

ANCORAGGIO DI ORDINE 3

forza di progetto di trazione agente sul tirante, Fad=336,00 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,28

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=805,74 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 2,01

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,66 N/mmg

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 3,59

CALCOLO ARMATURE TRAVE DI CORONAMENTO

Sollecitazioni di progetto

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 57 di 190

Momento flettente massimo, My=1,60 kN*m

Taglio massimo, Tz=3,20 kN

Armatura longitudinale a flessione

armatura lembo verticale lato monte = 4 fi 14 (6,16 cmq)

armatura lembo verticale lato valle = 4 fi 14 (6,16 cmq)

armatura lembo orizzontale superiore = 1 fi 14 (1,54 cmq)

armatura lembo orizzontale inferiore = 1 fi 14 (1,54 cmq)

l'armatura rispetta i limiti fissati dalla normativa:

- armatura minima in zona tesa = 5,48 cmq
- armatura massima = 160 cmg

Verifiche di resistenza a flessione

momento ultimo della sezione (lembo superiore maggiormente compresso)=103,3 kN*m momento ultimo della sezione (lembo inferiore maggiormente compresso)=-103,3 kN*m Verifica soddisfatta

Armatura trasversale a taglio

passo max delle staffe prescritto dalla normativa (armatura trasv. minima regolam.re), tc=13,1 cm

Resistenza al taglio dovuta al solo cls, Tcls=160,52 kN

passo staffe nella trave = 13,1 cm

Resistenza di progetto a "taglio compressione" nel tratto Li=L/2, Vrcd=3.527,78 kN

Resistenza di progetto a "taglio trazione" dell'armatura trasversale nel tratto Li, Vrsd=150,01 kN

Resistenza di progetto a taglio nel tratto Li, Vrd=150,01 kN

VERIFICA CORDOLI IN ACCIAIO IN CORRISPONDENZA DEI TIRANTI

ORDINE DI TIRANTE N° 1

Sollecitazioni di progetto

Momento flettente massimo, My=45,74 kN*m

Taglio massimo, Tz=73,18 kN

Verifiche di resistenza a flessione e taglio

tensione di snervamento di progetto, fyd=338 N/mmq

Resistenza plastica della sezione lorda A, Npl_Rd=2.623,62 kN

Area resistente al taglio della sezione lungo z, Avz=13,24 cmq

Resistenza di progetto a taglio lungo z, Vcz Rd=516,89 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=148,76 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply Rd=165,73 kN*m

Resistenza di progetto della sezione soggetta a flessione retta, Mcy_Rd=148,8 kN*m

Verifica soddisfatta

ORDINE DI TIRANTE N° 2

Sollecitazioni di progetto

Momento flettente massimo, My=69,33 kN*m

Taglio massimo, Tz=110,93 kN

Verifiche di resistenza a flessione e taglio

tensione di snervamento di progetto, fyd=338 N/mmq

Resistenza plastica della sezione lorda A, Npl Rd=3.063,14 kN

Area resistente al taglio della sezione lungo z, Avz=14,52 cmq

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 58 di 190

Resistenza di progetto a taglio lungo z, Vcz_Rd=566,86 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=198,80 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=219,69 kN*m

Resistenza di progetto della sezione soggetta a flessione retta, Mcy_Rd=198,8 kN*m

Verifica soddisfatta

ORDINE DI TIRANTE N° 3

Sollecitazioni di progetto

Momento flettente massimo, My=75,90 kN*m

Taglio massimo, Tz=121,44 kN

Verifiche di resistenza a flessione e taglio

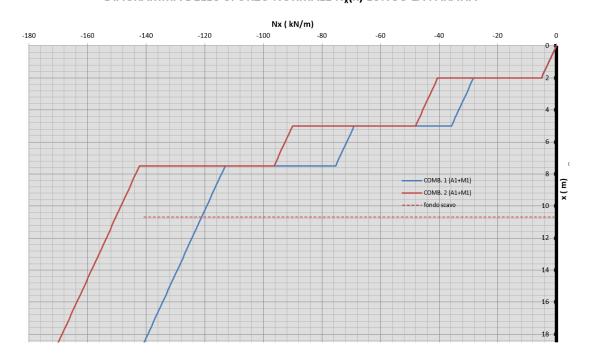
tensione di snervamento di progetto, fyd=338 N/mmq

Resistenza plastica della sezione lorda A, Npl_Rd=3.063,14 kN

Area resistente al taglio della sezione lungo z, Avz=14,52 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=566,86 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=198,80 kN*m


Momento resistente plastico lungo l'asse vettore y, Mply_Rd=219,69 kN*m

Resistenza di progetto della sezione soggetta a flessione retta, Mcy_Rd=198,8 kN*m

Verifica soddisfatta

6.1.8.1 Diagrammi

DIAGRAMMA DELLO SFORZO NORMALE N_x(x) LUNGO LA PARATIA

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 59 di 190

DIAGRAMMA DEL TAGLIO T_z(x) LUNGO LA PARATIA

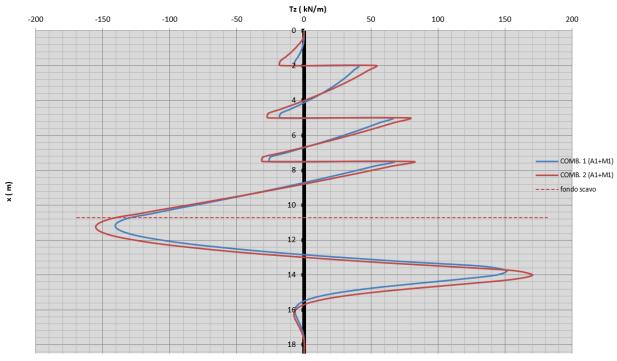
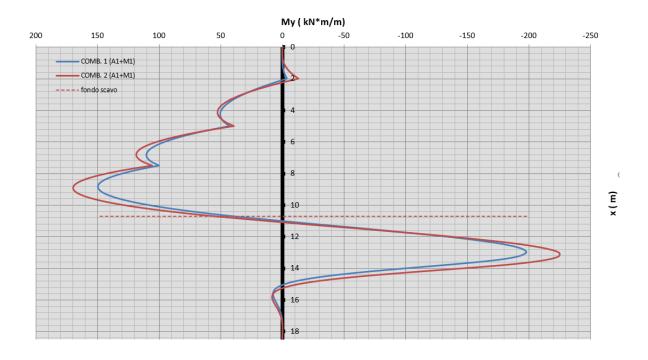
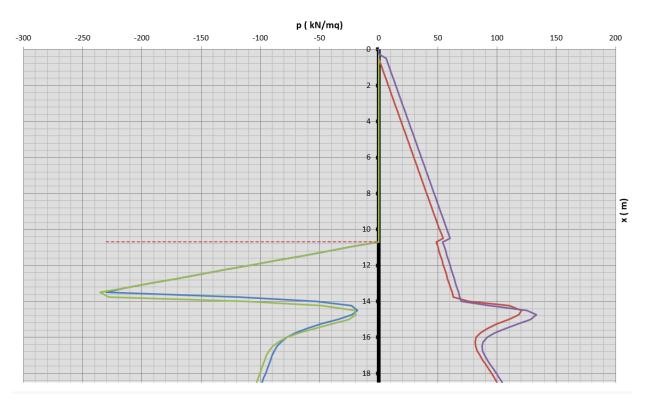



DIAGRAMMA DEL MOMENTO FLETTENTE M_v(x) LUNGO LA PARATIA

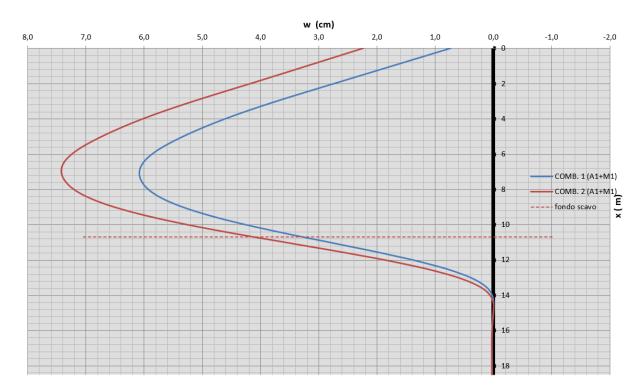
LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI


COMMESSA LOTTO

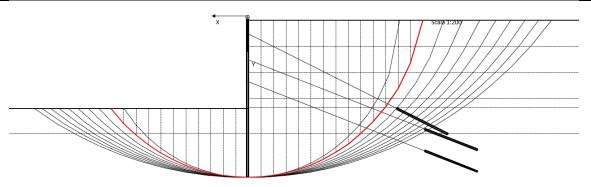
CODIFICA D26CL DOCUMENTO
IV010X001


REV. FOGLIO

A 60 di 190

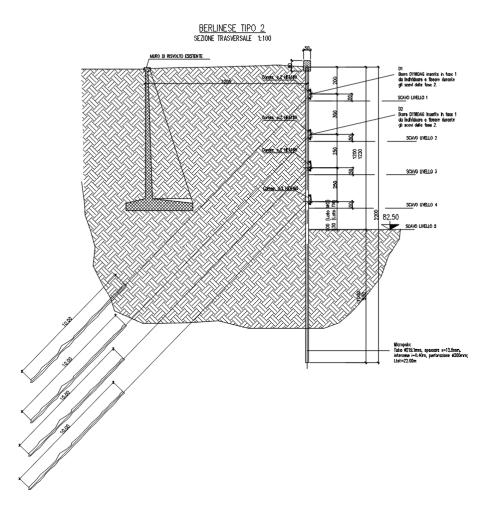
IN10 10 D26CL IV010 DIAGRAMMA PRESSIONI DI CONTATTO PARETE-TERRENO

SPOSTAMENTI ORIZZONTALI DELLA PARATIA



LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST


RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IN10	10	D26CL	IV010X001	Α	61 di 190	

6.2 BERLINESE TIPO 2

Si riportano i dati ed i relativi disegni della berlinese in oggetto:

Sezione berlinese 2

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 62 di 190

	TABELLA	TIRANTI	PARATIE	DI MICRO	DPALI -	BERLINES	E TIPO 3	FASE 2	
Ordine tìranti	Q (m)	ì (m)	Barre/ Ntr(0.6")	Dp (mm)	Lt (m)	Lp (m) La (m)	a (.)	B ()	Pr (t)
D1	-2.00	2.00	Dyw. ø32	100	12.70	/	0.	0.	0
D1*	-2.00	2.00	Dyw. ø32	100	12.70	/	5	19 ⁻	0
D2	-5.00	2.00	Dyw. ø32	100	12.70	/	0.	0.	0
D2*	-5.00	2.00	Dyw. ø32	100	12.70	/	5	19 ⁻	0
T1	-7.50	2.00	5	160	30.00	20.00 10.00	20°	19 ⁻	40
T2	-10.00	2.00	5	160	30.00	20.00 10.00	20°	19 ⁻	20

Q = QUOTA DALLA PAVIMENTAZIONE FINITA

LT = LUNGHEZZA TOTALE

= INCLINAZIONE VERTICALE

i = interasse orizzontale tiranti

ц» = LUNGHEZZA LIBERA

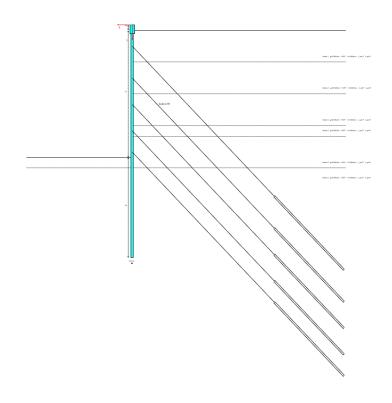
B = INCLINAZIONE ORIZZONTALE

Ntr = NUMERO TREFOLI TIRANTI

La = LUNGHEZZA BULBO

Pr = PRETENSIONE DI SERRAGGIO

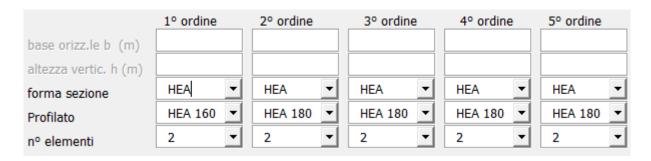
Dp = DIAMETRO DI PERFORAZIONE


6.2.1 CARATTERISTICHE GENERALI

L'inclinazione verticale dei tiranti è pari a 44°. Anche il precarico è uguale per tutti gli ordini di tiranti e pari a 200kN.

Il bulbo dei tiranti verrà eseguito ad iniezioni ripetute e selettive con una valvola al metro lineare di fondazione.

In sommità della paratia è previsto un cordolo di calcestruzzo armato avente sezione pari a 50 cm x 80 cm. Si riportano di seguito i 4 modelli agli elementi finiti implementati:


Berlinese tipo 2

6.2.2 GEOMETRIA CORDOLI

Si riportano le geometrie delle travi:

6.2.3 DESCRIZIONE TERRENI

Nella modellazione agli elementi finiti dei vari tratti di paratia, anche se si è in presenza di una sola tipologia di terreno, si considerano diversi strati aventi le medesime caratteristiche geologico-geotecniche per meglio discretizzare l'entità del coefficiente di Winkler (assunto crescente con la profondità, come meglio spiegato in seguito).

Simbologia adottata:

n°	numero d'ordine dello strato a partire dalla sommità della paratia
Descrizione	Descrizione del terreno
γ	peso di volume del terreno espresso in [kg/mc]
γs	peso di volume saturo del terreno espresso [kg/mc]
ф	angolo d'attrito interno del terreno espresso in [°]
δ	angolo d'attrito terreno/paratia espresso in [°]
С	coesione del terreno espressa in [kg/cmq]

Berlinese tipo 1

n°	Descrizio	ne	γ	γs	ф	δ	С	
1	Rilevato	1	2000.00	2000.0	0	35.00	0.00	0.000
2	Rilevato	2	2000.00	2000.0	0	35.00	0.00	0.000
3	Rilevato	3	2000.00	2000.0	0	35.00	0.00	0.000
4	In Situ		1900.00	2000.0	0	38.00	0.00	0.000
5	Rilevato	4	2000.00	2000.0	0	35.00	0.00	0.000

6.2.4 DESCRIZIONE STRATIGRAFIA

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV010X001	Α	64 di 190

n° numero d'ordine dello strato a partire dalla sommità della paratia

sp spessore dello strato in corrispondenza dell'asse della paratia espresso in [m]

kw costante di Winkler orizzontale espressa in Kg/cm²/cm

α inclinazione dello strato espressa in GRADI(°)

Per la costante di Winkler si assume un andamento con la profondità definito dalla seguente espressione

 $K(z)=0.50 + 0.50 z^{0.50}$

dove K è la costante di Winkler espressa in $Kg/cm^2/cm$ e z è la profondità rispetto alla testa della paratia espressa in metri.

Berlinese tipo 1

Altezza fuori terra della paratia 10.20 [m]

Profondità di infissione 8.00 [m]

Altezza totale della paratia 18.00 [m]

n°	sp	α	kw	Terreno
1	3.00	0.00	1.11	Rilevato1
2	3.00	0.00	1.56	Rilevato2
3	3.00	0.00	1.87	Rilevato3
4	1.00	0.00	2.04	Rilevato 4
5	3.00	0.00	2.20	In Situ
6	3.00	0.00	2.40	In Situ
7	2.00	0.00	2.56	In Situ

6.2.5 CONDIZIONI DI CARICO

Simbologia e convenzioni adottate

Le ascisse dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia Le ordinate dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia

X_i ascissa del punto iniziale di applicazione del carico

X_f ascissa del punto finale di applicazione del carico

Q_i, Q_f Intensità dei carichi distribuiti sul profilo espresse in [kg/mq]

Per tutte le tipologie di berlinesi (1.1,1.2,1.3,1.4) si considera le seguente condizioni di carico:

Condizione nº 1

Carico distribuito sul profilo $X_i = 0.00$ $X_f = 30.00$ $Q_i = 500$ $Q_f = 500$

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO CODIFICA 10 D26CL DOCUMENTO
IV010X001

REV. FOGLIO

65 di 190

Α

6.2.6 IMPOSTAZIONI DI PROGETTO

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γGfav	1.00	1.00
Permanenti	Sfavorevole	γGsfav	1.30	1.00
Variabili	Favorevole	γQfav	0.00	0.00
Variabili	Sfavorevole	γΩsfav	1.50	1.30

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri	M1	M2	
Tangente dell'angolo di attrito	γtanφ'	1.00	1.25
Coesione efficace	γс'	1.00	1.25
Resistenza non drenata	γcu	1.00	1.40
Resistenza a compressione uniassial	$e \gamma_{qu}$	1.00	1.60
Peso dell'unità di volume	γ_{γ}	1.00	1.00

6.2.7 IMPOSTAZIONI DI ANALISI

6.2.7.1 Analisi per Fasi di Scavo.

Rottura del terreno: Pressione passiva Spostamento limite o per spostamento limite molle pari a 1.50cm

Impostazioni analisi per fasi di scavo:

Analisi per condizioni di esercizio Analisi per coefficienti tipo A1-M1 Analisi per coefficienti tipo A2-M2

Stabilità globale: Metodo di Fellenius

6.2.8 VERIFICHE BERLINESE TIPO 2

VERIFICHE AGLI STATI LIMITE ULTIMI

COMB. 1 (SLU-F)

SOLLECITAZIONI AGENTI SULLA PARATIA (calcolo FEM)

Sovraccarichi di progetto sui terrapieni

Terreno di monte, q1d=0,00 kN/mq

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO CODIFICA 10 D26CL

DOCUMENTO IV010X001

RFV. FOGI IO 66 di 190

Α

Terreno di valle, q2d=0,00 kN/mq

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 2

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 4

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 5

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 6

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

Coefficienti di spinta

strato 1

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO 10 CODIFICA D26CL DOCUMENTO
IV010X001

REV.

FOGLIO 67 di 190

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 2

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 3

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 4

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 5

lato monte:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

lato valle:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

strato 6

lato monte:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

lato valle:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO IN10

CODIFICA

D26CL

DOCUMENTO IV010X001

REV.

Α

FOGLIO 68 di 190

coeff. di spinta passiva, Kp=4,203746

Numero di iterazioni nel calcolo non lineare e sollecitazioni

Numero di iterazione effettuate = 6

errore iterazione 0 = 0,004452

errore iterazione 1 = 0,43885

errore iterazione 2 = 0,037498

errore iterazione 3 = 0,024892

errore iterazione 4 = 0,009108

errore iterazione 5 = 0,001481

errore iterazione 6 = 0,000095

sez./nodo	x (m)	Nx (kN/m)	Tz (kN/m)	My (kN*m/m)
1	0	0	0	0
2	0,25	-0,63	0	0
3	0,5	-1,26	0	0
4	0,75	-1,88	-0,44	0
5	1	-2,51	-1,32	-0,11
6	1,25	-3,14	-2,64	-0,44
7	1,5	-3,77	-4,4	-1,1
8	1,75	-4,4	-6,61	-2,2
9	2	-5,03	-6,61	-3,85
9	2	-54,43	41,91	-3,85
10	2,25	-55,06	38,83	6,63
11	2,5	-55,69	35,31	16,33
12	2,75	-56,32	31,35	25,16
13	3	-56,94	26,94	33
14	3,25	-57,57	22,1	39,73
15	3,5	-58,2	16,81	45,26
16	3,75	-58,83	11,09	49,46
17	4	-59,46	4,92	52,23
18	4,25	-60,09	-1,68	53,46
19	4,5	-60,71	-8,73	53,04
20	4,75	-61,34	-16,21	50,86
21	5	-61,97	-16,21	46,81
21	5	-149,6	66,6	46,81
22	5,25	-150,23	58,24	63,46
23	5,5	-150,85	49,43	78,02
24	5,75	-151,48	40,18	90,38
25	6	-152,11	30,49	100,42
26	6,25	-152,74	20,36	108,04
27	6,5	-153,37	9,8	113,14
28	6,75	-154	-1,21	115,58
29	7	-154,62	•	115,28
30	7,25	-155,25	-24,55	112,12
31	7,5	-155,88	-24,55	105,98

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IN10	10	D26CL	IV010X001	Α	69 di 190

LAZIONE	DI ONLOGEO	OI LIKE I	110 1 11010111	\LI	IN10	10	
31	7,5	-258,33	69,21	105	5,98		
32	7,75	-258,96	56,44	123	3,28		
33	8	-259,59	43,23	137	7,39		
34	8,25	-260,22	29,58	14	18,2		
35	8,5	-260,84	15,49	155	5,59		
36	8,75	-261,47	0,95	159	9,46		
37	9	-262,1	-14,02	15	59,7		
38	9,25	-262,73	-29,43	15	56,2		
39	9,5	-263,36	-45,28	148	3,84		
40	9,75	-263,99	-61,58	137	7,52		
41	10	-264,61	-61,58	122	2,13		
41	10	-352,18	12,37	122	2,13		
42	10,25	-352,81	-4,8	125	5,22		
43	10,5	-353,44	-22,42	124	1,02		
44	10,75	-354,07	-38,27	118	3,41		
45	11	-354,7	-54,5	108	3,85		
46	11,25	-355,32	-71,12	95	5,22		
47	11,5	-355,95	-88,13	77	7,44		
48	11,75	-356,58	-105,53	55	5,41		
49	12	-357,21	-105,53	29	9,03		
49	12	-410,16	-68,47	29	9,03		
50	12,25	-410,79	-86,64	11	L,91		
51	12,5	-411,42	-105,2	-6	9,75		
52	12,75	-412,05	-117,31	-36	5,05		
53	13	-412,67	-122,97	-65	5,38		
54	13,25	-413,3	-122,2	-96	5,12		
55	13,5	-413,93	-114,97	-126	5,67		
56	13,75	-414,56	-101,3	-155	5,42		
57	14	-415,19	-81,19	-180),74		
58	14,25	-415,82	-54,64	-201	L ,04		
59	14,5	-416,44	•		L4,7		
60	14,75	-417,07	17,81	-220),11		
61	15	-417,7	•		5,66		
62	15,25	-418,33					
63	15,5	-418,96	-		•		
64	15,75	-419,58					
65	16	-420,21	•		9,97		
66	16,25	-420,84			3,77		
67	16,5	-421,47			5,44		
68	16,75	-422,1			3,28		
69	17	-422,72	-	2	2,14		
70	17,25	-423,35			6,9		
71	17,5	-423,98	-		3,03		
72	17,75	-424,61			7,15		
73	18	-425,24	-		5,45		
74 	18,25	-425,87			3,64		
75	18,5	-426,49	-4,53	2	2,09		

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

REV.

Α

FOGLIO

70 di 190

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE [OI CALCOLO	O OPERE PR	OVVISIONALI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO
				IN10	10	D26CL	IV010X001
76	18,75	-427,12	-2,92	0,96			
77	19	-427,75	-1,6	0,23			
78	19,25	-428,38	-0,67	-0,17			
79	19,5	-429,01	-0,09	-0,33			
80	19,75	-429,63	0,21	-0,36			
81	20	-430,26	0,32	-0,31			
82	20,25	-430,89	0,31	-0,23			
83	20,5	-431,52	0,25	-0,15			
84	20,75	-432,15	0,17	-0,09			
85	21	-432,78	0,1	-0,04			
86	21,25	-433,4	0,05	-0,02			
87	21,5	-434,03	0,02	0			
88	21,75	-434,66	0	0			
89	22	-435,29	0	0			

REAZIONI VINCOLARI E PRESSIONI DI CONTATTO TERRENO-PARATIA (calcolo FEM)

RvX = componente della reazione vincolare lungo X (kN/m)

RvY = componente della reazione vincolare lungo Y (kN/m)

RvZ = componente momento della reazione vincolare (kN*m/m)

pXv = pressione orizzontale del terreno (molle di valle) (kN/mq)

pXm = pressione orizzontale del terreno (molle di monte) (kN/mq)

sez./nodo	x (m)	RvX	RvY	RvZ	pXv	pXm
3	0,5	0	0	0	0	0
4	0,75	0,34	0	0	0	1,35
5	1	0,68	0	0	0	2,71
6	1,25	1,02	0	0	0	4,06
7	1,5	1,36	0	0	0	5,42
8	1,75	1,69	0	0	0	6,77
9	2	-37,32	38,01	0	0	8,13
10	2,25	2,37	0	0	0	9,48
11	2,5	2,71	0	0	0	10,84
12	2,75	3,05	0	0	0	12,19
13	3	3,39	0	0	0	13,55
14	3,25	3,73	0	0	0	14,9
15	3,5	4,06	0	0	0	16,26
16	3,75	4,4	0	0	0	17,61
17	4	4,74	0	0	0	18,97
18	4,25	5,08	0	0	0	20,32
19	4,5	5,42	0	0	0	21,68
20	4,75	5,76	0	0	0	23,03
21	5	-63,7	67,41	0	0	24,39
22	5,25	6,44	0	0	0	25,74
23	5,5	6,77	0	0	0	27,1
24	5,75	7,11	0	0	0	28,45
25	6	7,45	0	0	0	29,81

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI			СОММЕ	SSA LOTT	O CODIFIC	A DOCUMENTO	REV.	FOGLIO	
					10	D26CL	IV010X001	Α	71 di 190
26	6,25	7,79	0	0	0	31,16			
27	6,5	8,13	0	0	0	32,52			
28	6,75	8,47	0	0	0	33,87			
29	7	8,81	0	0	0	35,23			
30	7,25	9,15	0	0	0	36,58			
31	7,5	-72,12	78,81	0	0	37,94			
32	7,75	9,82	0	0	0	39,29			
33	8	10,16	0	0	0	40,65			
34	8,25	10,5	0	0	0	42			
35	8,5	10,84	0	0	0	43,36			
36	8,75	11,18	0	0	0	44,71			
37	9	11,52	0	0	0	46,07			
38	9,25	11,86	0	0	0	47,42			
39	9,5	12,19	0	0	0	48,78			
40	9,75	12,53	0	0	0	50,13			
41	10	-56,88	67,36	0	0	51,49			
42	10,25	13,21	0	0	0	52,84			
43	10,5	13,55	0	0	0	54,2			
44	10,75	12,19	0	0	0	48,77			
45	11	12,49	0	0	0	49,96			
46	11,25	12,79	0	0	0	51,14			
47	11,5	13,08	0	0	0	52,33			
48	11,75	13,38	0	0	0	53,52			
49	12	-28,5	40,73	0	0	54,71			
50	12,25	13,98	0	0	0	55,9			
51	12,5	14,27	0	0	0	57,09			
52	12,75	9,32	0	0	-21,02	58,28			
53	13	4,36	0	0	-42,04	59,47			
54	13,25	-0,6	0	0	-63,06	60,66			
55	13,5	-5,56	0	0	-84,07	61,85			
56	13,75	-10,51	0	0	-105,09	63,04			
57	14	-15,47	0	0	-126,11	64,23			
58	14,25	-20,43	0	0	-147,13	65,42			
59	14,5	-25,39	0	0	-168,15	66,61			
60	14,75	-30,34	0	0	-189,17	67,8			
61	15	-35,3	0	0	-210,19	68,99			
62	15,25	-40,26	0	0	-231,21	70,18			
63	15,5	-32,01	0	0	-199,41	71,36			
64	15,75	-5,93	0	0	-96,28	72,55			
65	16	15,83	0	0	-41,37	104,68			
66	16,25	27,27	0	0	-20,4	129,49			
67	16,5	28,24	0	0	-20,39	133,34			
68	16,75	23,79	0	0	-31,2	126,38			
69	17	17,42	0	0	-45,87	115,55			
70	17,25	11,2	0	0	-60,23	105,03			
71	17,5	6,14	0	0	-72,27	96,84			
72	17,75	2,55	0	0	-81,37	91,58			

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI					ESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
					10	10	D26CL	IV010X001	Α	72 di 190
73	18	0,33	0	0	-87,	74	89,05			
74	18,25	-0,83	0	0	-91,	98	88,66			
75	18,5	-1,26	0	0	-94,	75	89,73			
76	18,75	-1,24	0	0	-96,	64	91,68			
77	19	-1,01	0	0	-98,	11	94,06			
78	19,25	-0,72	0	0	-99,	44	96,57			
79	19,5	-0,44	0	0	-100,	82	99,04			
80	19,75	-0,23	0	0	-102,	31	101,39			
81	20	-0,08	0	0	-103,	94	103,61			
82	20,25	0	0	0	-105,	69	105,7			
83	20,5	0,05	0	0	-107,	52	107,71			
84	20,75	0,06	0	0	-109,	42	109,65			
85	21	0,05	0	0	-111,	35	111,57			
86	21,25	0,04	0	0	-113	3,3	113,46			
87	21,5	0,03	0	0	-115,	25	115,35			
88	21,75	0,01	0	0	-117	',2	117,25			
89	22	0	-334,84	0	-119,	14	119,15			

PERCENTUALI DI SPINTA PASSIVA MOBILITATA

Spinta passiva mobilitata a monte = 9,6%

Spinta passiva mobilitata a valle = 45%

VERIFICA CONDIZIONI DI EQUILIBRIO (calcolo FEM)

Equilibrio alla traslazione orizzontale

somma delle forze esterne orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

somma delle reazioni vincolari lungo X, SommRvX=0,00 kN/m

equazione di equilibrio alla traslazione orizzontale: SFx+Sme+Sve+SommRvX=0,00 kN/m

Equilibrio alla traslazione verticale

peso proprio della paratia, Wp=42,52 kN/m

somma delle forze verticali applicate alla paratia, SFy=0,00 kN/m

somma delle reazioni vincolari lungo Y, SommRvY=-42,52 kN/m

equazione di equilibrio alla traslazione verticale: Wp+SFy+SommRvY=0,00 kN/m

Equilibrio alla rotazione (attorno al primo nodo)

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

momento delle reazioni vincolari lungo X, MRvX=0,00 kN*m/m

equazione di equilibrio alla rotazione: MFx+MSme+MSve+MRvX=0,00 kN*m/m

Spinte orizzontali

spinta delle terre di monte, Sm=1.245,47 kN/m

spinta delle terre di valle, Sv=-942,77 kN/m

somma componenti orizz. delle forze che i tiranti/puntoni esercitano sull'opera, STx=-302,70 kN/m

somma forze orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 73 di 190

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

Momenti delle spinte orizzontali rispetto al primo nodo

momento della spinta delle terre di monte, MSm=18.581,45 kN*m/m

momento della spinta delle terre di valle, MSv=-16.337,96 kN*m/m

momento delle compon. orizz. delle forze che i tiranti/puntoni esercitano sull'opera, MTx=-2.243,50 kN*m/m

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

SFORZI NEI TIRANTI/PUNTONI (calcolo FEM)

TX*=sforzo lungo l'asse globale X per metro lineare di paratia (kN/m)

TY*=sforzo lungo l'asse globale Y per metro lineare di paratia (kN/m)

TX=sforzo lungo l'asse globale X nel singolo tirante/puntone (kN)

TY=sforzo lungo l'asse globale Y nel singolo tirante/puntone (kN)

Fa=sforzo di trazione/compressione nel singolo tirante/puntone (kN)

Fad=gGs x Fa sforzo di trazione/compressione di progetto nel singolo tirante/puntone (kN)

Ordine	TX*	TY*	TX	TY	Fa	Fad
1	-39,36	38,00	-98,39	95,01	136,78	177,81
2	-69,80	67,41	-174,50	168,52	242,59	315,37
3	-81,61	78,81	-204,02	197,02	283,63	368,71
4	-69,75	67,36	-174,39	168,40	242,43	315,15
5	-42.18	40.73	-105.45	101.83	146.59	190.57

SPOSTAMENTI NODALI (calcolo FEM)

w = spostamento orizzontale (lungo l'asse globale X, coincidente con l'asse locale z)

u = spostamento verticale (lungo l'asse globale Y, coincidente con l'asse locale x)

sez./nodo	x (m)	w (cm)	u (cm)	rot. (rad)
1	0	1,956	0,092	0,0128
2	0,25	2,277	0,092	0,0128
3	0,5	2,598	0,092	0,0128
4	0,75	2,919	0,092	0,0128
5	1	3,24	0,092	0,0128
6	1,25	3,562	0,091	0,0128
7	1,5	3,883	0,091	0,0129
8	1,75	4,204	0,091	0,0129
9	2	4,526	0,091	0,0129
10	2,25	4,849	0,091	0,0129
11	2,5	5,17	0,091	0,0128
12	2,75	5,487	0,091	0,0126
13	3	5,8	0,091	0,0124
14	3,25	6,105	0,09	0,012
15	3,5	6,401	0,09	0,0117
16	3,75	6,688	0,09	0,0113
17	4	6,965	0,09	0,0108

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IN10 10 D26CL IV010X001 A 74 di 190

				IN10	10	D26CL	IV010X001
18	4,25	7,23	0,09	0,0104			
19	4,5	7,484	0,089	0,0099			
20	4,75	7,726	0,089	0,0095			
21	5	7,957	0,089	0,0091			
22	5,25	8,178	0,088	0,0086			
23	5,5	8,385	0,088	0,008			
24	5,75	8,576	0,087	0,0072			
25	6	8,747	0,087	0,0064			
26	6,25	8,896	0,086	0,0055			
27	6,5	9,023	0,085	0,0046			
28	6,75	9,125	0,085	0,0036			
29	7	9,202	0,084	0,0026			
30	7,25	9,255	0,084	0,0016			
31	7,5	9,283	0,083	0,0007			
32	7,75	9,289	0,082	-0,0003			
33	8	9,267	0,081	-0,0014			
34	8,25	9,216	0,08	-0,0027			
35	8,5	9,134	0,079	-0,004			
36	8,75	9,018	0,078	-0,0053			
37	9	8,868	0,077	-0,0067			
38	9,25	8,684	0,076	-0,008			
39	9,5	8,466	0,075	-0,0094			
40	9,75	8,216	0,074	-0,0106			
41	10	7,937	0,073	-0,0117			
42	10,25	7,631	0,072	-0,0128			
43	10,5	7,299	0,071	-0,0138			
44	10,75	6,939	0,07	-0,0149			
45	11	6,555	0,068	-0,0159			
46	11,25	6,147	0,067	-0,0167			
47	11,5	5,719	0,066	-0,0175			
48	11,75	5,274	0,064	-0,0181			
49	12	4,817	0,063	-0,0184			
50	12,25	4,354	0,061	-0,0186			
51 52	12,5	3,889	0,06	-0,0186			
52	12,75	3,426	0,058	-0,0184			
53	13	2,97	0,057	-0,018			
54	13,25	2,529	0,055	-0,0173			
55 56	13,5	2,109	0,054	-0,0163			
56	13,75	1,715	0,052	-0,0151			
57 50	14 14 25	1,355	0,051 0,049	-0,0137 -0,012			
58 59	14,25 14,5	1,034	0,049				
		0,756		-0,0102			
60 61	14,75 15	0,523 0,338	0,046 0,044	-0,0084 -0,0065			
62	15,25	0,338	0,044	-0,0065			
63	15,25 15,5	0,198	0,043	-0,0047			
64	15,5 15,75	0,101	0,041	-0,0031			
04	13,73	0,041	0,04	0,0010			

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

REV.

FOGI IO

75 di 190

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO
	INIAO	40	Dacci	11/0407004

				IN10	10	D26CL	IV010X001	Α
65	16	0,008	0,038	-0,0009				
66	16,25	-0,005	0,037	-0,0002				
67	16,5	-0,006	0,035	0,0001				
68	16,75	-0,001	0,033	0,0003				
69	17	0,006	0,032	0,0003				
70	17,25	0,013	0,03	0,0002				
71	17,5	0,018	0,029	0,0002				
72	17,75	0,022	0,027	0,0001				
73	18	0,024	0,026	0,0001				
74	18,25	0,025	0,024	0				
75	18,5	0,026	0,022	0				
76	18,75	0,026	0,021	0				
77	19	0,025	0,019	0				
78	19,25	0,025	0,018	0				
79	19,5	0,024	0,016	0				
80	19,75	0,024	0,014	0				
81	20	0,024	0,013	0				
82	20,25	0,023	0,011	0				
83	20,5	0,023	0,01	0				
84	20,75	0,023	0,008	0				
85	21	0,023	0,006	0				
86	21,25	0,023	0,005	0				
87	21,5	0,023	0,003	0				
88	21,75	0,023	0,002	0				
89	22	0,023	0	0				

VERIFICA AL CARICO LIMITE VERTICALE

Parametri geotecnici di progetto

coesione = 0,00 kN/mq

angolo di resistenza al taglio = 38°

Resistenza alla punta

fattore Nq (Berezantzev) = 131,084

fattore Nc = 166,5

tensione litostatica verticale totale alla profondità L, sVL=430,00 kN/mq

pressione neutra alla profondità L, uL=0,00 kN/mq

tensione litostatica verticale efficace alla profondità L, s'VL=430,00 kN/mq

Resistenza unitaria alla punta, p=56.365,94 kN/mq

Resistenza alla punta, Pmax=4.230,56 kN

Resistenza laterale

Resistenza laterale, Smax=1.347,54 kN

Resistenza alla punta e laterale di progetto

Resistenza alla punta (valore medio) = 4.230,56 kN

Resistenza alla punta (valore minimo) = 4.230,56 kN

Resistenza laterale (valore medio) = 1.347,54 kN

Resistenza laterale (valore minimo) = 1.347,54 kN

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 76 di 190

Fattore di correlazione, xsi3=1,7

Fattore di correlazione, xsi4=1,7

Resistenza alla punta (valore caratteristico) = 2.488,56 kN

Resistenza laterale (valore caratteristico) = 792,67 kN

Resistenza alla punta di progetto, Pmax_d=2.163,97 kN

Resistenza laterale di progetto, Smax_d=689,28 kN

Carico limite per carichi assiali di compressione

 $Qlim_d = Pmax_d + Smax_d = 2.853,25 kN$

Carico limite di sfilamento per carichi assiali di trazione

Qlimt d = Smax d = 689,28 kN

Azione di progetto

Ed = 435,29 kN

Verifica al carico limite per carichi assiali di compressione

Verifica soddisfatta: l'azione di progetto non supera la resistenza di progetto coeff. di sicurezza, Qlim_d/Ed=6,55

VERIFICA DI STABILITA' GLOBALE

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 2

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 3

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 4

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 5

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq

strato 6

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq

Parametri di calcolo

n° di cerchi analizzati = 10 Metodo utilizzato: Bishop

Cerchio critico

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 77 di 190

Coordinate centro e raggio: X (m) = 0 Y (m) = -0.3 Rc (m) = 22.4

Simbologia adottata

Wt = peso del concio (kN)

Wq = forza risultante verticale dovuta al sovraccarico applicato sul concio (kN)

alfa=angolo (minore di 90°) che l'orizzontale forma con la base del concio (positivo se antiorario)

u = pressione neutra alla base del concio (kN/mq)

DX = larghezza lungo X del concio (m)

Fsh = forza sismica orizzontale sul concio (kN)

B = braccio della forza sismica orizzontale rispetto al centro del cerchio di rottura (m)

Fsv = forza sismica verticale sul concio (kN)

N = risultante delle tensioni normali di reazione del terreno alla base del concio (kN)

T = risultante delle tensioni tangenziali di reazione del terreno alla base del concio (kN)

concio	Wt	Wq	alfa (°)	u	DX	Fsh	В	Fsv	N	Т
1	35,58	0	-51,69	0	1,68	0	34,8	0	55,31	-1,65
2	99,46	0	-45,19	0	1,68	0	34,8	0	137	-4,08
3	150,81	0	-39,37	0	1,68	0	34,8	0	190,42	-5,68
4	192,84	0	-34,01	0	1,68	0	34,8	0	228,03	-6,8
5	227,37	0	-28,97	0	1,68	0	34,8	0	255,65	-7,62
6	255,54	0	-24,16	0	1,68	0	34,8	0	276,38	-8,24
7	278,12	0	-19,54	0	1,68	0	34,8	0	292,03	-8,71
8	295,65	0	-15,04	0	1,68	0	34,8	0	303,71	-9,06
9	308,49	0	-10,64	0	1,68	0	34,8	0	312,13	-9,31
10	316,87	0	-6,3	0	1,68	0	34,8	0	317,75	-9,47
11	320,95	0	-1,99	0	1,68	0	34,8	0	655,5	-19,54
12	15,6	0	0,22	0	0,05	0	34,8	0	15,6	-0,47
13	686,38	0	2,32	0	1,59	0	34,8	0	687,77	-20,51
14	682,52	0	6,4	0	1,59	0	34,8	0	689,1	-20,55
15	674,97	0	10,52	0	1,59	0	34,8	0	690,34	-20,58
16	663,63	0	14,7	0	1,59	0	34,8	0	691,48	-20,62
17	648,3	0	18,95	0	1,59	0	34,8	0	692,54	-20,65
18	628,69	0	23,32	0	1,59	0	34,8	0	693,53	-20,68
19	604,4	0	27,84	0	1,59	0	34,8	0	694,44	-20,71
20	574,87	0	32,56	0	1,59	0	34,8	0	695,27	-20,73
21	539,25	0	37,54	0	1,59	0	34,8	0	696	-20,75
22	496,28	0	42,88	0	1,59	0	34,8	0	696,58	-20,77
23	443,89	0	48,75	0	1,59	0	34,8	0	696,92	•
24	378,28	0	55,43	0	1,59	0	34,8	0	696,76	-20,77
25	290,55	0	63,59	0	1,59	0	34,8	0	690,51	-18,45
26	119,78	0	78,06	0	1,59	0	34,8	0	662,99	-17,72

Lunghezza dell'arco di cerchio di scivolamento, L=55,95 m

Momento resistente, M_resist=176.038,52 kN*m

Momento instabilizzante, M_instab=-8.397,69 kN*m

Verifica soddisfatta

VERIFICHE STRUTTURALI PARATIA

Verifiche di resistenza a presso-flessione e taglio

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

REV.

Α

FOGLIO

78 di 190

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO CODIFICA DOCUMENTO

IN10 10 D26CL IV010X001

sid_m: tensione ideale massima nella sezione di acciaio (N/mmq)

Mcy_Rd: resistenza di progetto della sezione soggetta a presso-flessione retta (asse vettore y)

Resistenza plastica della sezione lorda A, Npl_Rd=2.743,03 kN

Area resistente al taglio della sezione lungo z, Avz=51,65 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=1.008,21 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=134,08 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=180,61 kN*m

tensione di snervamento di progetto, fyd=338 N/mmq

x (m)	Nx	Tz	Му	sid_m	Mcy_Rd	Verif?
0	0	0	0			
0,25	-0,32	0	0			
0,5	-0,63	0	0			
0,75	-0,94	-0,22	0			
1	-1,26	-0,66	-0,06	0,3		Si
1,25	-1,58	-1,33	-0,22	0,8		Si
1,5	-1,89	-2,21	-0,55	1,6		Si
1,75	-2,21	-3,32	-1,11	3,1		Si
2	-2,53	-3,32	-1,93	5,2		Si
2	-27,34	21,05	-1,93	9,1		Si
2,25	-27,66	19,51	3,33	11,8		Si
2,5	-27,98	17,74	8,2	24,1		Si
2,75	-28,29	15,75	12,64	35,4		Si
3	-28,6	13,53	16,58	45,3		Si
3,25	-28,92	11,1	19,96	53,9		Si
3,5	-29,24	8,44	22,74	60,9		Si
3,75	-29,55	5,57	24,85	66,3		Si
4	-29,87	2,47	26,24	69,8		Si
4,25	-30,19	-0,84	26,85	71,4		Si
4,5	-30,5	-4,39	26,64	70,9		Si
4,75	-30,81	-8,14	25,55	68,2		Si
5	-31,13	-8,14	23,51	63,1		Si
5	-75,15	33,46	23,51	68,6		Si
5,25	-75,47	29,26	31,88	89,7		Si
5,5	-75,78	24,83	39,19	108,2		Si
5,75	-76,09	20,18	45,4	123,9		Si
6	-76,41	15,32	50,44	136,6		Si
6,25	-76,73	10,23	54,27	146,3		Si
6,5	-77,04	4,92	56,83	152,8		Si
6,75	-77,36	-0,61	58,06	155,9		Si
7	-77,67	-6,36	57,91	155,6		Si
7,25	-77,99	-12,33	56,32	151,6		Si
7,5	-78,3	-12,33	53,24	143,9		Si
7,5	-129,77	34,77	53,24	150,2		Si
7,75	-130,08	28,35	61,93	172,2		Si
8	-130,4	21,72	69,02	190,1		Si
8,25	-130,72	14,86	74,45	203,8		Si

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE	DI CALCOLO	OPERE PR	ROVVISIONA	LI COMMESSA IN10	LOTTO 10	CODIFICA D26CL	DOCUMENTO IV010X001	REV.	FOGLIO 79 di 190
8,5	-131,03	7,78	78,16	213,2		Si			
8,75	-131,35	0,48	80,1	218,2		Si			
9	-131,66	-7,04	80,22	218,5		Si			
9,25	-131,98	-14,78	78,46	214,1		Si			
9,5	-132,3	-22,75	74,77	204,8		Si			
9,75	-132,61	-30,93	69,08	190,5		Si			
10	-132,92	-30,93	61,35	171,1		Si			
10	-176,91	6,21	61,35	176,5		Si			
10,25	-177,23	-2,41	62,9	180,5		Si			
10,5	-177,55	-11,26	62,3	179		Si			
10,75	-177,86	-19,22	59,48	171,9		Si			
11	-178,18	-27,38	54,68	159,8		Si			
11,25	-178,49	-35,73	47,83	142,6		Si			
11,5	-178,81	-44,27	38,9	120,1		Si			
11,75	-179,12	-53,01	27,83	92,3		Si			
12	-179,44	-53,01	14,58	58,9		Si			
12	-206,04	-34,39	14,58	62,2		Si			
12,25	-206,35	-43,52	5,98	40,5		Si			
12,5	-206,67	-52,85	-4,9	37,8		Si			
12,75	-206,99	-58,93	-18,11	71,2		Si			
13	-207,3	-61,77	-32,84	108,4		Si			
13,25	-207,62	-61,39	-48,28	147,3		Si			
13,5	-207,93	-57,75	-63,63	186,1		Si			
13,75	-208,25	-50,89	-78,07	222,5		Si			
14	-208,56	-40,78	-90,79	254,6		Si			
14,25	-208,88	-27,45	-100,99	280,4		Si			
14,5	-209,19	-10,87	-107,85	297,7		Si			
14,75	-209,51	8,95	-110,57	304,6		Si			
15	-209,83	32	-108,33	299		Si			
15,25	-210,14	58,29	-100,33	278,9		Si			
15,5	-210,46	79,19	-85,76	242,2		Si			
15,75	-210,77	83,07	-65,96	192,3		Si			
16	-211,09	72,73	-45,2	140		Si			
16,25	-211,4	54,92	-27,01	94,2		Si			
16,5	-211,72	36,48	-13,28	59,6		Si			
16,75	-212,04	20,94	-4,16	36,6		Si			
17	-212,35	9,57	1,07	28,9		Si			
17,25	-212,66	2,26	3,47	35		Si			
17,5	-212,98	-1,76	4,03	36,4		Si			
17,75	-213,3	-3,43	3,59	35,3		Si			
18	-213,61	-3,64	2,74	33,2		Si			
18,25	-213,93	-3,09	1,83	31		Si			
18,5	-214,24	-2,28	1,05	29,1		Si			
18,75	-214,56	-1,47	0,48	27,7		Si			
19	-214,87	-0,8	0,12	26,8		Si			
19,25	-215,19	-0,34	-0,09	26,7		Si			
,	,	-,	-,	, .					

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE	COMMESSA IN10	LOTTO 10	CODIFICA D26CL	DOCUMENTO IV010X001	REV.	FOGLIO 80 di 190			
19,75	-215,82	0,11	-0,18	27,1		Si			
20	-216,13	0,16	-0,16	27		Si			
20,25	-216,45	0,16	-0,12	27		Si			
20,5	-216,77	0,13	-0,08	26,9		Si			
20,75	-217,08	0,09	-0,05	26,9		Si			
21	-217,4	0,05	-0,02	26,8		Si			
21,25	-217,71	0,03	-0,01	26,9		Si			
21,5	-218,03	0,01	0	26,9		Si			
21,75	-218,35	0	0			Si			
22	-218,66	0	0			Si			

VERIFICHE S.L.U. DI TIPO GEOTECNICO E STRUTTURALE SUI TIRANTI

ANCORAGGIO DI ORDINE 1

forza di progetto di trazione agente sul tirante, Fad=177,81 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 3,46

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=426,40 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 3,79

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,25 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 9,69

ANCORAGGIO DI ORDINE 2

forza di progetto di trazione agente sul tirante, Fad=315,37 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,95

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=756,27 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 2,14

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,44 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 5,46

ANCORAGGIO DI ORDINE 3

forza di progetto di trazione agente sul tirante, Fad=368,71 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,67

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=884,21 N/mmq

Verifica soddisfatta

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 81 di 190

coefficiente di sicurezza (non minore di 1) = 1,83

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,51 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 4,67

ANCORAGGIO DI ORDINE 4

forza di progetto di trazione agente sul tirante, Fad=315,15 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,95

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=755,77 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 2,14

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,44 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 5,47

ANCORAGGIO DI ORDINE 5

forza di progetto di trazione agente sul tirante, Fad=190,57 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 3,23

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=457,01 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 3,54

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,26 N/mmg

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 9,04

COMB. 2 (SLU-F)

SOLLECITAZIONI AGENTI SULLA PARATIA (calcolo FEM)

Sovraccarichi di progetto sui terrapieni

Terreno di monte, q1d=23,08 kN/mq Terreno di valle, q2d=0,00 kN/mq

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO

CODIFICA DOCUMENTO
D26CL IV010X001

REV.

FOGLIO 82 di 190

strato 2

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 4

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 5

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 6

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

Coefficienti di spinta

strato 1

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 2

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO CODIFICA

D26CL

DOCUMENTO
IV010X001

REV.

FOGLIO 83 di 190

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172

lato monte:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172 strato 4

lato monte:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172 lato valle:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172

strato 5

strato 3

lato monte:

coeff. di spinta attiva, Ka=0,237883 coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746 lato valle:

coeff. di spinta attiva, Ka=0,237883 coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746 strato 6

lato monte:

coeff. di spinta attiva, Ka=0,237883 coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746 lato valle:

coeff. di spinta attiva, Ka=0,237883 coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746

Numero di iterazioni nel calcolo non lineare e sollecitazioni

Numero di iterazione effettuate = 6 errore iterazione 0 = 0,005311 errore iterazione 1 = 0,551474 errore iterazione 2 = 0,03865 errore iterazione 3 = 0,026945 errore iterazione 4 = 0,011202

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO
IN10 10

CODIFICA D26CL DOCUMENTO
IV010X001

REV. FOGLIO

Α

84 di 190

errore iterazione 5 = 0,002964 errore iterazione 6 = 0,000516

		· · · · · · · · · · · · · · · · · · ·		
sez./nodo	x (m)	Nx (kN/m)	Tz (kN/m)	My (kN*m/m)
1	0	0	0	0
2	0,25	-0,63	0	0
3	0,5	-1,26	-1,02	0
4	0,75	-1,88	-3,49	-0,25
5	1	-2,51	-6,4	-1,13
6	1,25	-3,14	-9,76	-2,73
7	1,5	-3,77	-13,55	-5,17
8	1,75	-4,4	-17,78	-8,55
9	2	-5,03	-17,78	-13
9	2	-79,74	54,91	-13
10	2,25	-80,37	49,8	0,73
11	2,5	-81	44,24	13,18
12	2,75	-81,62	38,24	24,24
13	3	-82,25	31,81	33,8
14	3,25	-82,88	24,93	41,75
15	3,5	-83,51	17,61	47,98
16	3,75	-84,14	9,86	52,39
17	4	-84,76	1,66	54,85
18	4,25	-85,39	-6,98	55,27
19	4,5	-86,02	-16,06	53,52
20	4,75	-86,65	-25,57	49,51
21	5	-87,28	-25,57	43,11
21	5	-196,91	78	43,11
22	5,25	-197,54	67,6	62,61
23	5,5	-198,17	56,76	79,51
24	5,75	-198,8	45,48	93,7
25	6	-199,43	33,76	105,07
26	6,25	-200,05	21,6	113,51
27	6,5	-200,68	9	118,91
28	6,75	-201,31	-4,04	121,16
29	7	-201,94	-17,52	120,15
30	7,25	-202,57	-31,45	115,77
31	7,5	-203,2	-31,45	107,91
31	7,5	-324,55	79,86	107,91
32	7,75	-325,18	65,06	127,88
33	8	-325,81	49,81	144,14
34	8,25	-326,44	34,13	156,59
35	8,5	-327,07	18,01	165,13
36	8,75	-327,69	1,44	169,63
37	9	-328,32	-15,56	169,99
38	9,25		-33,01	166,1
39	9,5	-329,58	-50,89	157,85

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 85 di 190

				IN10
40	9,75	-330,21	-69,22	145,12
41	10	-330,84	-69,22	127,82
41	10	-432,82	17,63	127,82
42	10,25	-433,45	-1,58	132,23
43	10,5	-434,08	-21,22	131,83
44	10,75	-434,71	-38,86	126,53
45	11	-435,34	-56,88	116,81
46	11,25	-435,97	-75,28	102,59
47	11,5	-436,59	-94,08	83,77
48	11,75	-437,22	-113,26	60,25
49	12	-437,85	-113,26	31,94
49	12	-500,26	-68,2	31,94
50	12,25	-500,89	-88,15	14,89
51	12,5	-501,51	-108,49	-7,15
52	12,75	-502,14	-122,38	-34,27
53	13	-502,77	-129,83	-64,86
54	13,25	-503,4	-130,84	-97,32
55	13,5	-504,03	-125,4	-130,03
56	13,75	-504,66	-113,51	-161,38
57	14	-505,28	-95,19	-189,76
58	14,25	-505,91	-70,41	-213,56
59	14,5	-506,54	-39,2	-231,16
60	14,75	-507,17	-1,53	-240,96
61	15	-507,8	42,57	-241,34
62	15,25	-508,42	93,12	-230,7
63	15,5	-509,05	150,12	-207,42
64	15,75	-509,68	178,06	-169,89
65	16	-510,31	175,75	-125,37
66	16,25	-510,94	143,95	-81,43
67	16,5	-511,57	103,22	-45,45
68	16,75	-512,19	64,8	-19,64
69	17	-512,82	34,39	-3,44
70	17,25	-513,45	13,28	5,16
71	17,5	-514,08	0,51	8,48
72	17,75	-514,71	-5,88	8,6
73	18	-515,33	-7,99	7,13
74	18,25	-515,96	-7,6	5,14
75 -	18,5	-516,59	-6,05	3,24
76 	18,75	-517,22	-4,21	1,72
77	19	-517,85	-2,55	0,67
78	19,25	-518,47	-1,28	0,03
79	19,5	-519,1	-0,42	-0,29
80	19,75	-519,73	0,07	-0,39
81	20	-520,36	0,3	-0,37
82	20,25	-520,99	0,36	-0,3
83	20,5	-521,62	0,32	-0,21
84	20,75	-522,24	0,24	-0,13

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
				IN10	10	D26CL	IV010X001	Α	86 di 190
85	21	-522,87	0,16	-0,07					

85	21	-522,87	0,16	-0,07
86	21,25	-523,5	0,09	-0,03
87	21,5	-524,13	0,04	-0,01
88	21,75	-524,76	0,01	0
89	22	-525,38	0,01	0

REAZIONI VINCOLARI E PRESSIONI DI CONTATTO TERRENO-PARATIA (calcolo FEM)

RvX = componente della reazione vincolare lungo X (kN/m)

RvY = componente della reazione vincolare lungo Y (kN/m)

RvZ = componente momento della reazione vincolare (kN*m/m)

pXv = pressione orizzontale del terreno (molle di valle) (kN/mq)

pXm = pressione orizzontale del terreno (molle di monte) (kN/mq)

			`	1		<u>'</u>
/	(ma)	Dov	Dod	D. 7	V	
sez./nodo	x (m)	RvX	RvY	RvZ	pXv	pXm
3	0,5	0,78	0	0	0	6,25
4	0,75	1,9	0	0	0	7,61
5	1	2,24	0	0	0	8,96
6	1,25	2,58	0	0	0	10,32
7	1,5	2,92	0	0	0	11,67
8	1,75	3,26	0	0	0	13,03
9	2	-55,92	57,47	0	0	14,38
10	2,25	3,93	0	0	0	15,74
11	2,5	4,27	0	0	0	17,09
12	2,75	4,61	0	0	0	18,45
13	3	4,95	0	0	0	19,8
14	3,25	5,29	0	0	0	21,16
15	3,5	5,63	0	0	0	22,51
16	3,75	5,97	0	0	0	23,87
17	4	6,31	0	0	0	25,22
18	4,25	6,64	0	0	0	26,58
19	4,5	6,98	0	0	0	27,93
20	4,75	7,32	0	0	0	29,29
21	5	-79,67	84,34	0	0	30,64
22	5,25	8	0	0	0	32
23	5,5	8,34	0	0	0	33,35
24	5,75	8,68	0	0	0	34,71
25	6	9,02	0	0	0	36,06
26	6,25	9,35	0	0	0	37,42
27	6,5	9,69	0	0	0	38,77
28	6,75	10,03	0	0	0	40,13
29	7	10,37	0	0	0	41,48
30	7,25	10,71	0	0	0	42,84
31	7,5	-85,62	93,35	0	0	44,19
32	7,75	11,39	0	0	0	45,55
33	8	11,73	0	0	0	46,9
34	8,25	12,06	0	0	0	48,26

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE D	OI CALCOLO	OPERE PRO	OVVISIONALI	COMM IN1		CODIFICA D26CL		REV.	FOGLIO 87 di 190
35	8,5	12,4	0	0	0 10 0	49,61	IV010X001	Α	or at 190
36	8,75	12,74	0	0	0	50,97			
37	9	13,08	0	0	0	52,32			
38	9,25	13,42	0	0	0	53,68			
39	9,5	13,76	0	0	0	55,03			
40	9,75	14,1	0	0	0	56,39			
41	10	-66,81	78,45	0	0	57,74			
42	10,25	14,77	0	0	0	59,1			
43	10,5	15,11	0	0	0	60,45			
44	10,75	13,56	0	0	0	54,26			
45	11	13,86	0	0	0	55,45			
46	11,25	14,16	0	0	0	56,63			
47	11,5	14,46	0	0	0	57,82			
48	11,75	14,75	0	0	0	59,01			
49	12	-34,66	48,01	0	0	60,2			
50	12,25	15,35	0	0	0	61,39			
51	12,5	15,65	0	0	0	62,58			
52	12,75	10,69	0	0	-21,02	63,77			
53	13	5,73	0	0	-42,04	64,96			
54	13,25	0,77	0	0	-63,06	66,15			
55	13,5	-4,18	0	0	-84,07	67,34			
56	13,75	-9,14	0	0	-105,09	68,53			
57	14	-14,1	0	0	-126,11	69,72			
58	14,25	-19,06	0	0	-147,13	70,91			
59	14,5	-24,01	0	0	-168,15	72,1			
60	14,75	-28,97	0	0	-189,17	73,29			
61	15	-33,93	0	0	-210,19	74,48			
62	15,25	-38,89	0		-231,21	75,67			
63	15,5	-43,84	0	0	-252,22	76,85			
64 65	15,75	-21,5 1.79	0	0	-164,03	78,04			
65 66	16	1,78	0	0	-73,9	81,02			
66 67	16,25 16.5	24,46 21.22	0	0	-30,45 -19.03	128,31			
67 68	16,5 16.75	31,33 20.55	0 0	0	-19,03 -24.13	144,36			
69	16,75 17	29,55 23,4	0	0	-24,13 -38,36	142,32 131,94			
70	17,25	23,4 16,23	0	0	-38,36 -54,6	131,94			
70 71	17,25 17,5	9,83	0	0	-54,6 -69,34	119,54			
71 72	17,5 17,75	9,83 4,92	0	0	-69,54 -81,07	100,04			
72	17,73	4,92 1,62	0	0	-81,07 -89,59	96,07			
73 74	18,25	-0,3	0	0	-8 <i>9</i> ,3 <i>9</i> -95,35	94,16			
7 4 75	18,5	-1,19	0	0	-99,06	94,29			
75 76	18,75	-1,42	0	0	-101,44	95,76			
70 77	19	-1,42	0	0	-101,44	97,96			
77 78	19,25	-0,98	0	0	-104,4	100,48			
78 79	19,5	-0,66	0	0	-105,68	103,05			
80	19,75	-0,38	0	0	-107,04	105,52			
81	20	-0,38	0	0	-107,04	107,86			
01	20	0,10	U	J	100,00	107,00			

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE	DI CALCOLO	OPERE PR	ROVVISIONALI	COMM	IESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
				IN ²	10	10	D26CL	IV010X001	Α	88 di 190
82	20,25	-0,04	0	0	-110	,21	110,04			
83	20,5	0,03	0	0	-111	,99	112,11			
84	20,75	0,06	0	0	-113	,85	114,09			
85	21	0,06	0	0	-115	,77	116,02			
86	21,25	0,05	0	0	-117	,71	117,92			
87	21,5	0,04	0	0	-119	,66	119,81			
88	21,75	0,02	0	0	-121	,61	121,7			
89	22	0	-404,14	0	-123	,56	123,6			

PERCENTUALI DI SPINTA PASSIVA MOBILITATA

Spinta passiva mobilitata a monte = 9,9%

Spinta passiva mobilitata a valle = 45,9%

VERIFICA CONDIZIONI DI EQUILIBRIO (calcolo FEM)

Equilibrio alla traslazione orizzontale

somma delle forze esterne orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

somma delle reazioni vincolari lungo X, SommRvX=0,00 kN/m

equazione di equilibrio alla traslazione orizzontale: SFx+Sme+Sve+SommRvX=0,00 kN/m

Equilibrio alla traslazione verticale

peso proprio della paratia, Wp=42,52 kN/m

somma delle forze verticali applicate alla paratia, SFy=0,00 kN/m

somma delle reazioni vincolari lungo Y, SommRvY=-42,52 kN/m

equazione di equilibrio alla traslazione verticale: Wp+SFy+SommRvY=0,00 kN/m

Equilibrio alla rotazione (attorno al primo nodo)

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

momento delle reazioni vincolari lungo X, MRvX=0,00 kN*m/m

equazione di equilibrio alla rotazione: MFx+MSme+MSve+MRvX=0,00 kN*m/m

Spinte orizzontali

spinta delle terre di monte, Sm=1.369,75 kN/m

spinta delle terre di valle, Sv=-995,28 kN/m

somma componenti orizz. delle forze che i tiranti/puntoni esercitano sull'opera, STx=-374,47 kN/m

somma forze orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

Momenti delle spinte orizzontali rispetto al primo nodo

momento della spinta delle terre di monte, MSm=19.923,31 kN*m/m

momento della spinta delle terre di valle, MSv=-17.233,65 kN*m/m

momento delle compon. orizz. delle forze che i tiranti/puntoni esercitano sull'opera, MTx=-2.689,66 kN*m/m

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO CODIFICA D26CL

DOCUMENTO IV010X001

RFV. FOGI IO

Α

89 di 190

SFORZI NEI TIRANTI/PUNTONI (calcolo FEM)

TX*=sforzo lungo l'asse globale X per metro lineare di paratia (kN/m)

TY*=sforzo lungo l'asse globale Y per metro lineare di paratia (kN/m)

TX=sforzo lungo l'asse globale X nel singolo tirante/puntone (kN)

TY=sforzo lungo l'asse globale Y nel singolo tirante/puntone (kN)

Fa=sforzo di trazione/compressione nel singolo tirante/puntone (kN)

Fad=gGs x Fa sforzo di trazione/compressione di progetto nel singolo tirante/puntone (kN)

-			•		-	-
Ordine	TX*	TY*	TX	TY	Fa	Fad
1	-59,51	57,47	-148,79	143,68	206,84	268,89
2	-87,33	84,34	-218,33	210,84	303,52	394,57
3	-96,67	93,35	-241,67	233,38	335,96	436,75
4	-81,24	78,45	-203,10	196,13	282,34	367,05
5	-49.71	48.01	-124.28	120.02	172.77	224.60

SPOSTAMENTI NODALI (calcolo FEM)

w = spostamento orizzontale (lungo l'asse globale X, coincidente con l'asse locale z)

u = spostamento verticale (lungo l'asse globale Y, coincidente con l'asse locale x)

sez./nodo	x (m)	w (cm)	u (cm)	rot. (rad)
1	0	4,487	0,113	0,0116
2	0,25	4,778	0,113	0,0116
3	0,5	5,068	0,113	0,0116
4	0,75	5,359	0,113	0,0116
5	1	5,65	0,113	0,0116
6	1,25	5,941	0,113	0,0117
7	1,5	6,233	0,113	0,0117
8	1,75	6,525	0,113	0,0117
9	2	6,82	0,113	0,0118
10	2,25	7,117	0,112	0,0119
11	2,5	7,414	0,112	0,0118
12	2,75	7,708	0,112	0,0117
13	3	7,997	0,111	0,0114
14	3,25	8,278	0,111	0,0111
15	3,5	8,551	0,111	0,0107
16	3,75	8,813	0,11	0,0103
17	4	9,065	0,11	0,0098
18	4,25	9,304	0,11	0,0093
19	4,5	9,532	0,11	0,0089
20	4,75	9,748	0,109	0,0084
21	5	9,954	0,109	0,008
22	5,25	10,149	0,108	0,0076
23	5,5	10,331	0,107	0,007
24	5,75	10,496	0,107	0,0062
25	6	10,642	0,106	0,0054
26	6,25	10,764	0,105	0,0044

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IN10 10 D26CL IV010X001 A 90 di 190

				IN10	10	D26CL	IV010X001
27	6,5	10,862	0,104	0,0034			
28	6,75	10,935	0,104	0,0024			
29	7	10,982	0,103	0,0014			
30	7,25	11,003	0,102	0,0003			
31	7,5	10,999	0,101	-0,0006			
32	7,75	10,972	0,1	-0,0016			
33	8	10,916	0,099	-0,0028			
34	8,25	10,83	0,098	-0,0041			
35	8,5	10,711	0,097	-0,0055			
36	8,75	10,556	0,095	-0,0069			
37	9	10,364	0,094	-0,0084			
38	9,25	10,136	0,093	-0,0098			
39	9,5	9,873	0,092	-0,0112			
40	9,75	9,576	0,09	-0,0125			
41	10	9,248	0,089	-0,0137			
42	10,25	8,891	0,088	-0,0148			
43	10,5	8,507	0,086	-0,016			
44	10,75	8,094	0,084	-0,0171			
45	11	7,654	0,083	-0,0181			
46	11,25	7,189	0,081	-0,0191			
47	11,5	6,702	0,08	-0,0199			
48	11,75	6,197	0,078	-0,0205			
49	12	5,68	0,076	-0,0209			
50	12,25	5,155	0,074	-0,0211			
51	12,5	4,627	0,073	-0,0211			
52	12,75	4,101	0,071	-0,0209			
53	13	3,583	0,069	-0,0205			
54	13,25	3,078	0,067	-0,0198			
55	13,5	2,595	0,065	-0,0188			
56	13,75	2,139	0,063	-0,0176			
57 58	14 14 25	1,718	0,061	-0,0161			
58 59	14,25	1,337 1,003	0,059 0,058	-0,0143 -0,0124			
60	14,5 14,75	0,717	0,056	-0,0124			
61	14,73	0,717	0,054	-0,0104			
62	15,25	0,484	0,054	-0,0063			
63	15,5	0,168	0,052	-0,0044			
64	15,75	0,079	0,048	-0,0028			
65	16	0,027	0,046	-0,0015			
66	16,25	0,001	0,044	-0,0006			
67	16,5	-0,007	0,042	-0,0001			
68	16,75	-0,005	0,041	0,0002			
69	17	0,002	0,039	0,0003			
70	17,25	0,01	0,037	0,0003			
71	17,5	0,017	0,035	0,0002			
72	17,75	0,022	0,033	0,0002			
73	18	0,025	0,031	0,0001			
		•	•	-			

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE [OI CALCOLO	OPERE PRO	OVVISIONA	COMMESSA	LOTTO 10	CODIFICA D26CL	DOCUMENTO IV010X001	REV.	FOGLIO 91 di 190
74	18,25	0,027	0,029	0,0001					
75	18,5	0,028	0,027	0					
76	18,75	0,028	0,025	0					
77	19	0,028	0,023	0					
78	19,25	0,027	0,021	0					
79	19,5	0,027	0,019	0					
80	19,75	0,026	0,017	0					
81	20	0,026	0,016	0					
82	20,25	0,026	0,014	0					
83	20,5	0,026	0,012	0					
84	20,75	0,025	0,01	0					
85	21	0,025	0,008	0					
86	21,25	0,025	0,006	0					
87	21,5	0,025	0,004	0					
88	21,75	0,025	0,002	0					
89	22	0,025	0	0					

VERIFICA AL CARICO LIMITE VERTICALE

Parametri geotecnici di progetto

coesione = 0,00 kN/mq

angolo di resistenza al taglio = 38°

Resistenza alla punta

fattore Nq (Berezantzev) = 131,084

fattore Nc = 166,5

tensione litostatica verticale totale alla profondità L, sVL=460,00 kN/mq

pressione neutra alla profondità L, uL=0,00 kN/mq

tensione litostatica verticale efficace alla profondità L, s'VL=460,00 kN/mq

Resistenza unitaria alla punta, p=60.298,45 kN/mq

Resistenza alla punta, Pmax=4.525,71 kN

Resistenza laterale

Resistenza laterale, Smax=1.508,11 kN

Resistenza alla punta e laterale di progetto

Resistenza alla punta (valore medio) = 4.525,71 kN

Resistenza alla punta (valore minimo) = 4.525,71 kN

Resistenza laterale (valore medio) = 1.508,11 kN

Resistenza laterale (valore minimo) = 1.508,11 kN

Fattore di correlazione, xsi3=1,7

Fattore di correlazione, xsi4=1,7

Resistenza alla punta (valore caratteristico) = 2.662,18 kN

Resistenza laterale (valore caratteristico) = 887,12 kN

Resistenza alla punta di progetto, Pmax_d=2.314,94 kN

Resistenza laterale di progetto, Smax_d=771,41 kN

Carico limite per carichi assiali di compressione

 $Qlim_d = Pmax_d + Smax_d = 3.086,35 kN$

Carico limite di sfilamento per carichi assiali di trazione

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO CODIFICA DOCUMENTO
IN10 10 D26CL IV010X001

DOCUMENTO REV.

Α

FOGLIO 92 di 190

Qlimt_d = Smax_d = 771,41 kN

Azione di progetto

Ed = 525,38 kN

Verifica al carico limite per carichi assiali di compressione

Verifica soddisfatta: l'azione di progetto non supera la resistenza di progetto coeff. di sicurezza, Qlim_d/Ed=5,87

VERIFICA DI STABILITA' GLOBALE

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 2

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 3

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 4

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 5

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq

strato 6

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq

Parametri di calcolo

n° di cerchi analizzati = 10 Metodo utilizzato: Bishop

Cerchio critico

Coordinate centro e raggio: X (m) = 0 Y (m) = -0.3 Rc (m) = 22.4

Simbologia adottata

Wt = peso del concio (kN)

Wq = forza risultante verticale dovuta al sovraccarico applicato sul concio (kN)

alfa=angolo (minore di 90°) che l'orizzontale forma con la base del concio (positivo se antiorario)

u = pressione neutra alla base del concio (kN/mq)

DX = larghezza lungo X del concio (m)

Fsh = forza sismica orizzontale sul concio (kN)

B = braccio della forza sismica orizzontale rispetto al centro del cerchio di rottura (m)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV010X001	Α	93 di 190

Fsv = forza sismica verticale sul concio (kN)

N = risultante delle tensioni normali di reazione del terreno alla base del concio (kN)

T = risultante delle tensioni tangenziali di reazione del terreno alla base del concio (kN)

concio	Wt	Wq	alfa (°)	u	DX	Fsh	В	Fsv	N	Т
1	35,58	0	-51,69	0	1,68	0	34,8	0	54,25	-2,49
2	99,46	0	-45,19	0	1,68	0	34,8	0	134,88	-6,18
3	150,81	0	-39,37	0	1,68	0	34,8	0	188	-8,62
4	192,84	0	-34,01	0	1,68	0	34,8	0	225,64	-10,35
5	227,37	0	-28,97	0	1,68	0	34,8	0	253,44	-11,62
6	255,54	0	-24,16	0	1,68	0	34,8	0	274,43	-12,58
7	278,12	0	-19,54	0	1,68	0	34,8	0	290,39	-13,32
8	295,65	0	-15,04	0	1,68	0	34,8	0	302,41	-13,87
9	308,49	0	-10,64	0	1,68	0	34,8	0	311,2	-14,27
10	316,87	0	-6,3	0	1,68	0	34,8	0	317,19	-14,54
11	320,95	0	-1,99	0	1,68	0	34,8	0	724,37	-33,22
12	15,6	0	0,22	0	0,05	0	34,8	0	15,6	-0,72
13	686,38	41,37	2,32	0	1,59	0	34,8	0	729,7	-33,46
14	682,52	41,37	6,4	0	1,59	0	34,8	0	732,2	-33,57
15	674,97	41,37	10,52	0	1,59	0	34,8	0	734,85	-33,7
16	663,63	41,37	14,7	0	1,59	0	34,8	0	737,71	-33,83
17	648,3	41,37	18,95	0	1,59	0	34,8	0	740,86	-33,97
18	628,69	41,37	23,32	0	1,59	0	34,8	0	744,38	-34,13
19	604,4	41,37	27,84	0	1,59	0	34,8	0	748,42	-34,32
20	574,87	41,37	32,56	0	1,59	0	34,8	0	753,17	-34,54
21	539,25	41,37	37,54	0	1,59	0	34,8	0	758,97	-34,8
22	496,28	41,37	42,88	0	1,59	0	34,8	0	766,39	-35,14
23	443,89	41,37	48,75	0	1,59	0	34,8	0	776,57	-35,61
24	378,28	41,37	55,43	0	1,59	0	34,8	0	792,22	-36,33
25	290,55	41,37	63,59	0	1,59	0	34,8	0	813,73	-33,44
26	119,78	41,37	78,06	0	1,59	0	34,8	0	967,27	-39,75

Lunghezza dell'arco di cerchio di scivolamento, L=55,95 m

Momento resistente, M_resist=191.861,71 kN*m

Momento instabilizzante, M_instab=-14.075,40 kN*m

Verifica soddisfatta

VERIFICHE STRUTTURALI PARATIA

Verifiche di resistenza a presso-flessione e taglio

sid_m: tensione ideale massima nella sezione di acciaio (N/mmq)

Mcy_Rd: resistenza di progetto della sezione soggetta a presso-flessione retta (asse vettore y)

Resistenza plastica della sezione lorda A, Npl_Rd=2.743,03 kN

Area resistente al taglio della sezione lungo z, Avz=51,65 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=1.008,21 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=134,08 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply Rd=180,61 kN*m

tensione di snervamento di progetto, fyd=338 N/mmq

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 94 di 190

		-		IN	10 10 D26CL	. IV010X001	A	94 di 190
x (m)	Nx	Tz	Му	sid_m	Mcy_Rd Verif?			
0	0	0	0					
0,25	-0,32	0	0					
0,5	-0,63	-0,51	0					
0,75	-0,94	-1,75	-0,13					
1	-1,26	-3,21	-0,57	1,6	Si			
1,25	-1,58	-4,9	-1,37	3,7	Si			
1,5	-1,89	-6,81	-2,6	6,8	Si			
1,75	-2,21	-8,93	-4,29	11,1	Si			
2	-2,53	-8,93	-6,53	16,8	Si			
2	-40,06	27,58	-6,53	21,4	Si			
2,25	-40,37	25,02	0,33	11,2	Si			
2,23	-40,69	22,22	6,62	21,7	Si			
	-40,09 -41							
2,75		19,21	12,18	35,8	Si			
3	-41,32	15,98	16,98	47,9	Si			
3,25	-41,63	12,52	20,97	58	Si			
3,5	-41,95	8,85	24,1	65,9	Si			
3,75	-42,27	4,95	26,32	71,6	Si			
4	-42,58	0,83	27,55	74,7	Si			
4,25	-42,89	-3,51	27,76	75,3	Si			
4,5	-43,21	-8,07	26,88	73,1	Si			
4,75	-43,53	-12,84	24,87	68,1	Si			
5	-43,84	-12,84	21,66	60	Si			
5	-98,91	39,18	21,66	66,8	Si			
5,25	-99,23	33,96	31,45	91,5	Si			
5,5	-99,55	28,51	39,94	113	Si			
5,75	-99,86	22,85	47,07	131	Si			
6	-100,18	16,96	52,78	145,4	Si			
6,25	-100,49	10,85	57,02	156,2	Si			
6,5	-100,81	4,52	59,73	163	Si			
6,75	-101,13	-2,03	60,86	165,9	Si			
7	-101,44	-8,8	60,36	164,7	Si			
7,25	-101,76	-15,8	58,16	159,2	Si			
7,5	-102,07	-15,8	54,21	149,3	Si			
7,5	-163,03	40,12	54,21	156,8	Si			
7,75	-163,35	32,68	64,24	182,1	Si			
. 8	-163,67	25,02	72,41	202,7	Si			
8,25	-163,98	17,14	78,66	218,6	Si			
8,5	-164,3	9,05	82,95	229,4	Si			
8,75	-164,61	0,72	85,21	235,2	Si			
9	-164,93	-7,82	85,39	235,6	Si			
9,25	-165,24	-16,58	83,44	230,8	Si			
9,25	-165,56	-25,56	79,29	220,3	Si			
9,75	-165,88	-25,36	79,29 72,9	204,3	Si			
9,75					Si			
	-166,19	-34,77	64,21	182,4				
10	-217,42	8,86	64,21	188,7	Si			
10,25	-217,74	-0,79	66,42	194,3	Si			

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE I	DI CALCOLO	OPERE PR	ROVVISIONA	LI COMMESSA	LOTTO	CODIFICA D26CL	DOCUMENTO IV010X001	REV.	FOGLIO 95 di 190
10,5	-218,05	-10,66	66,22	193,9	10	Si	14010/001		33 til 130
10,75	-218,37	-19,52	63,56	187,2		Si			
11	-218,69	-28,57	58,68	174,9		Si			
11,25	-219	-37,82	51,53	156,9		Si			
11,5	-219,31	-47,26	42,08	133,1		Si			
11,75	-219,63	-56,89	30,27	103,4		Si			
12	-219,95	-56,89	16,04	67,6		Si			
12	-251,3	-34,26	16,04	71,4		Si			
12,25	-251,61	-44,28	7,48	49,9		Si			
12,5	-251,93	-54,5	-3,59	40,1		Si			
12,75	-252,24	-61,48	-17,22	74,5		Si			
13	-252,56	-65,22	-32,58	113,3		Si			
13,25	-252,88	-65,73	-48,89	154,4		Si			
13,5	-253,19	-62,99	-65,32	195,9		Si			
13,75	-253,51	-57,02	-81,07	235,7		Si			
14	-253,82	-47,82	-95,32	271,6		Si			
14,25	-254,14	-35,37	-107,28	301,8		Si			
14,5	-254,45	-19,69	-116,12	324,2		Si			
14,75	-254,77	-0,77	-121,04	336,6		Si			
15	-255,09	21,38	-121,23	337,1		Si			
15,25	-255,4	46,78	-115,89	323,7		Si			
15,5	-255,71	75,41	-104,19	294,2		Si			
15,75	-256,03	89,45	-85,34	246,7		Si			
16	-256,35	88,29	-62,98	190,4		Si			
16,25	-256,66	72,31	-40,91	134,8		Si			
16,5	-256,98	51,85	-22,83	89,2		Si			
16,75	-257,29	32,55	-9,87	56,6		Si			
17	-257,61	17,28	-1,73	36,1		Si			
17,25	-257,92	6,67	2,59	38,3		Si			
17,5	-258,24	0,26	4,26	42,6		Si			
17,75	-258,56	-2,95	4,32	42,8		Si			
18	-258,87	-4,01	3,58	40,9		Si			
18,25	-259,18	-3,82	2,58	38,5		Si			
18,5	-259,5	-3,04	1,63	36,1		Si			
18,75	-259,82	-2,11	0,86	34,2		Si			
19	-260,13	-1,28	0,34	32,9		Si			
19,25	-260,45	-0,64	0,02	32,1		Si			
19,5	-260,76	-0,21	-0,15	32,5		Si			
19,75	-261,08	0,04	-0,2	32,7		Si			
20	-261,4	0,15	-0,19	32,7		Si			
20,25	-261,71	0,18	-0,15	32,6		Si			
20,5	-262,03	0,16	-0,11	32,6		Si			
20,75	-262,34	0,12	-0,07	32,5		Si			
20,73	-262,66	0,08	-0,04	32,5		Si			
21,25	-262,97	0,05	-0,04	32,5		Si			
21,20	202,37		0,02			Ji			
21,5	-263,29	0,02	-0,01	32,5		Si			

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 96 di 190

22 -263,92

0,01

32,5

Si

VERIFICHE S.L.U. DI TIPO GEOTECNICO E STRUTTURALE SUI TIRANTI

ANCORAGGIO DI ORDINE 1

forza di progetto di trazione agente sul tirante, Fad=268,89 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 2,29

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=644,81 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 2,51

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,37 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 6,41

ANCORAGGIO DI ORDINE 2

forza di progetto di trazione agente sul tirante, Fad=394,57 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,56

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=946,21 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 1,71

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,55 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 4,37

ANCORAGGIO DI ORDINE 3

forza di progetto di trazione agente sul tirante, Fad=436,75 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,41

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=1.047,37 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 1,54

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,60 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 3,95

ANCORAGGIO DI ORDINE 4

forza di progetto di trazione agente sul tirante, Fad=367,05 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 97 di 190

coefficiente di sicurezza (non minore di 1,2) = 1,68

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=880,21 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 1,84

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,51 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 4,7

ANCORAGGIO DI ORDINE 5

forza di progetto di trazione agente sul tirante, Fad=224,60 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 2,74

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=538,61 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 3

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,31 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 7,67

CALCOLO ARMATURE TRAVE DI CORONAMENTO

Sollecitazioni di progetto

Momento flettente massimo, My=1,60 kN*m

Taglio massimo, Tz=3,20 kN

Armatura longitudinale a flessione

armatura lembo verticale lato monte = 4 fi 14 (6,16 cmg)

armatura lembo verticale lato valle = 4 fi 14 (6,16 cmq)

armatura lembo orizzontale superiore = 1 fi 14 (1,54 cmq)

armatura lembo orizzontale inferiore = 1 fi 14 (1,54 cmg)

l'armatura rispetta i limiti fissati dalla normativa:

- armatura minima in zona tesa = 5,48 cmq
- armatura massima = 160 cmq

Verifiche di resistenza a flessione

momento ultimo della sezione (lembo superiore maggiormente compresso)=103,3 kN*m momento ultimo della sezione (lembo inferiore maggiormente compresso)=-103,3 kN*m Verifica soddisfatta

Armatura trasversale a taglio

passo max delle staffe prescritto dalla normativa (armatura trasv. minima regolam.re), tc=13,1 cm Resistenza al taglio dovuta al solo cls, Tcls=160,52 kN

passo staffe nella trave = 13,1 cm

Resistenza di progetto a "taglio compressione" nel tratto Li=L/2, Vrcd=3.527,78 kN

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 98 di 190

Resistenza di progetto a "taglio trazione" dell'armatura trasversale nel tratto Li, Vrsd=150,01 kN Resistenza di progetto a taglio nel tratto Li, Vrd=150,01 kN

VERIFICA CORDOLI IN ACCIAIO IN CORRISPONDENZA DEI TIRANTI

ORDINE DI TIRANTE N° 1

Sollecitazioni di progetto

Momento flettente massimo, My=46,50 kN*m Taglio massimo, Tz=74,39 kN

Verifiche di resistenza a flessione e taglio

tensione di snervamento di progetto, fyd=338 N/mmq

Resistenza plastica della sezione lorda A, Npl_Rd=2.623,62 kN

Area resistente al taglio della sezione lungo z, Avz=13,24 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=516,89 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=148,76 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply Rd=165,73 kN*m

Resistenza di progetto della sezione soggetta a flessione retta, Mcy_Rd=148,8 kN*m

Verifica soddisfatta

ORDINE DI TIRANTE N° 2

Sollecitazioni di progetto

Momento flettente massimo, My=68,23 kN*m

Taglio massimo, Tz=109,17 kN

Verifiche di resistenza a flessione e taglio

tensione di snervamento di progetto, fyd=338 N/mmq

Resistenza plastica della sezione lorda A, Npl_Rd=3.063,14 kN

Area resistente al taglio della sezione lungo z, Avz=14,52 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=566,86 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=198,80 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=219,69 kN*m

Resistenza di progetto della sezione soggetta a flessione retta, Mcy_Rd=198,8 kN*m

Verifica soddisfatta

ORDINE DI TIRANTE N° 3

Sollecitazioni di progetto

Momento flettente massimo, My=75,52 kN*m

Taglio massimo, Tz=120,84 kN

Verifiche di resistenza a flessione e taglio

tensione di snervamento di progetto, fyd=338 N/mmq

Resistenza plastica della sezione lorda A, Npl Rd=3.063,14 kN

Area resistente al taglio della sezione lungo z, Avz=14,52 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=566,86 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=198,80 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=219,69 kN*m

Resistenza di progetto della sezione soggetta a flessione retta, Mcy_Rd=198,8 kN*m

Verifica soddisfatta

ORDINE DI TIRANTE N° 4

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 99 di 190

Sollecitazioni di progetto

Momento flettente massimo, My=63,47 kN*m

Taglio massimo, Tz=101,55 kN

Verifiche di resistenza a flessione e taglio

tensione di snervamento di progetto, fyd=338 N/mmq

Resistenza plastica della sezione lorda A, Npl_Rd=3.063,14 kN

Area resistente al taglio della sezione lungo z, Avz=14,52 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=566,86 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=198,80 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=219,69 kN*m

Resistenza di progetto della sezione soggetta a flessione retta, Mcy_Rd=198,8 kN*m

Verifica soddisfatta

ORDINE DI TIRANTE N° 5

Sollecitazioni di progetto

Momento flettente massimo, My=38,84 kN*m

Taglio massimo, Tz=62,14 kN

Verifiche di resistenza a flessione e taglio

tensione di snervamento di progetto, fyd=338 N/mmq

Resistenza plastica della sezione lorda A, Npl_Rd=3.063,14 kN

Area resistente al taglio della sezione lungo z, Avz=14,52 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=566,86 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=198,80 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=219,69 kN*m

Resistenza di progetto della sezione soggetta a flessione retta, Mcy_Rd=198,8 kN*m

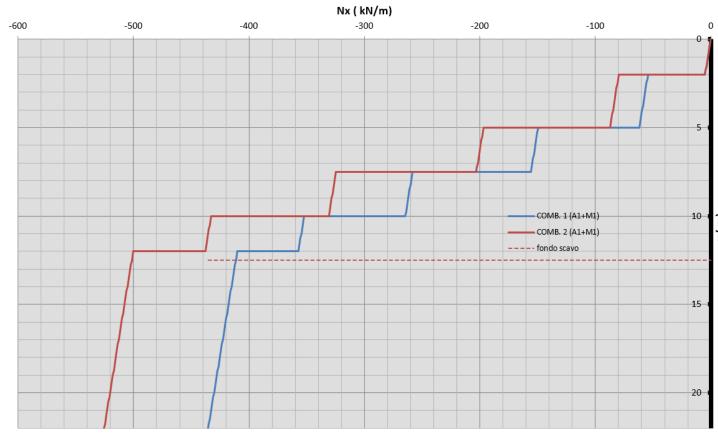
Verifica soddisfatta

6.2.8.1 Diagrammi

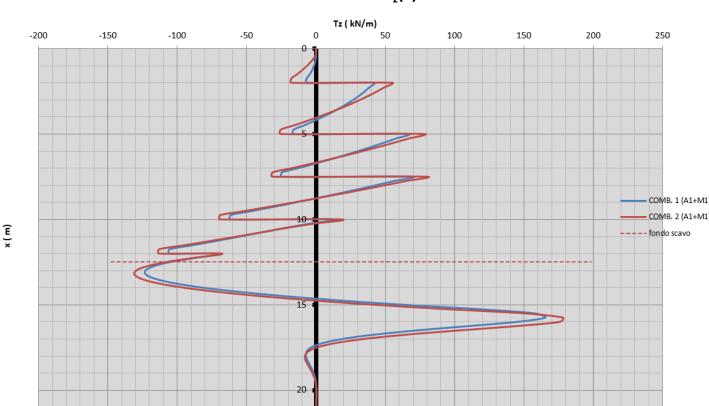
LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI


COMMESSA LOTTO
IN10 10

CODIFICA D26CL DOCUMENTO


REV. FOGLIO

IV010X001 A 100 di 190

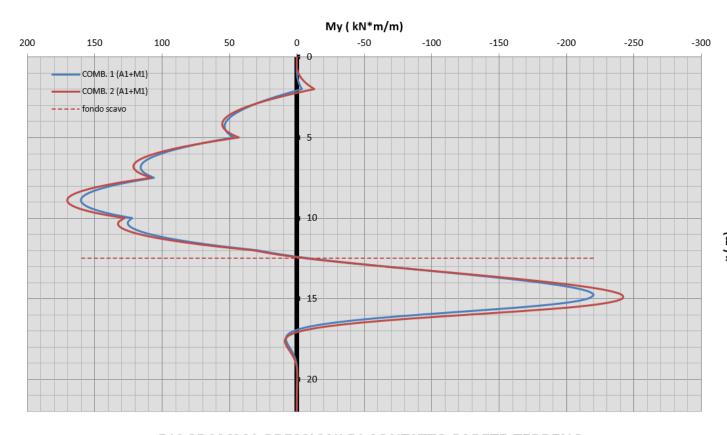
DIAGRAMMA DELLO SFORZO NORMALE N_x(x) LUNGO LA PARATIA

DIAGRAMMA DEL TAGLIO T_z(x) LUNGO LA PARATIA

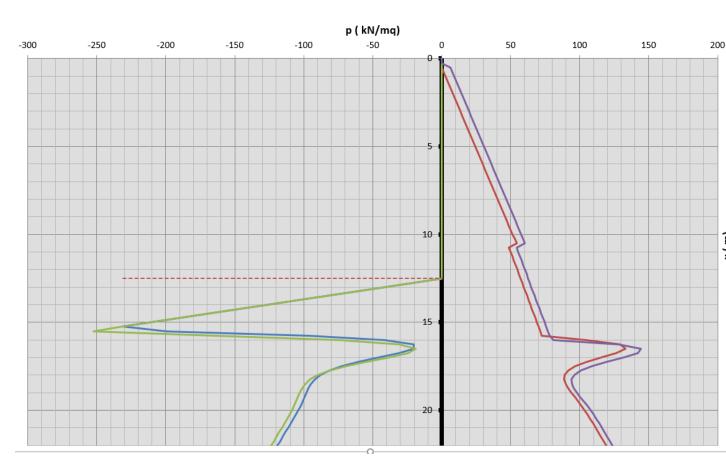
LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

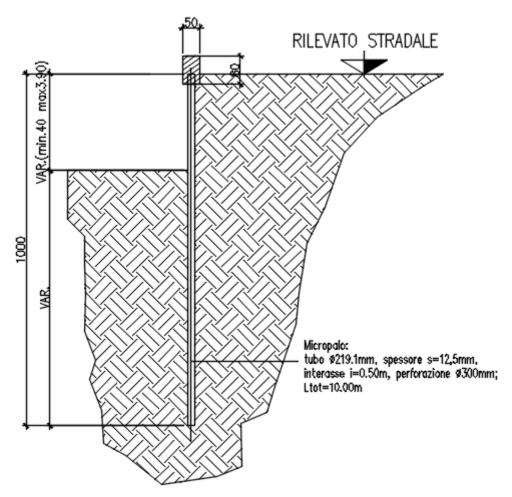

COMMESSA LOTTO
IN10 10

CODIFICA D26CL DOCUMENTO
IV010X001


REV. FOGLIO

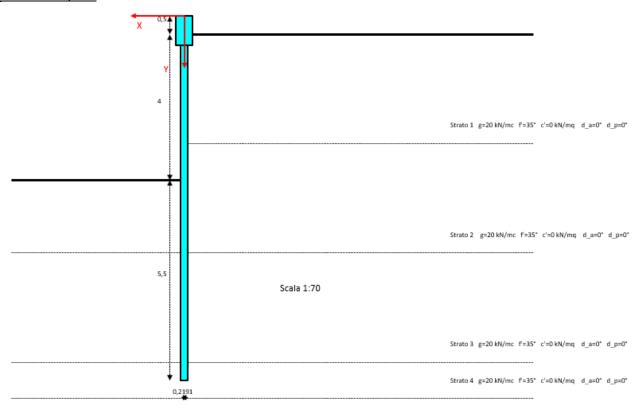
101 di 190

DIAGRAMMA DEL MOMENTO FLETTENTE M_v(x) LUNGO LA PARATIA


DIAGRAMMA PRESSIONI DI CONTATTO PARETE-TERRENO

6.3 BERLINESE TIPO 3

Si riportano i dati ed i relativi disegni della berlinese in oggetto:



Sezione berlinese 3

6.3.1 CARATTERISTICHE GENERALI

Berlinese tipo 3

6.3.2 DESCRIZIONE TERRENI

Nella modellazione agli elementi finiti dei vari tratti di paratia, anche se si è in presenza di una sola tipologia di terreno, si considerano diversi strati aventi le medesime caratteristiche geologico-geotecniche per meglio discretizzare l'entità del coefficiente di Winkler (assunto crescente con la profondità, come meglio spiegato in seguito).

Simbologia adottata:

n°	numero d'ordine dello strato a partire dalla sommità della paratia
Descrizione	Descrizione del terreno
γ	peso di volume del terreno espresso in [kg/mc]
γs	peso di volume saturo del terreno espresso [kg/mc]
ф	angolo d'attrito interno del terreno espresso in [°]
δ	angolo d'attrito terreno/paratia espresso in [°]
С	coesione del terreno espressa in [kg/cmq]

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 104 di 190

Berlinese tipo 1								
n°	Descrizio	ne	γ	γ _s φ	δ	С		
1	Rilevato	1	2000.00	2000.00	35.00	0.00	0.000	
2	Rilevato	2	2000.00	2000.00	35.00	0.00	0.000	
3	Rilevato	3	2000.00	2000.00	35.00	0.00	0.000	
4	In Situ		1900.00	2000.00	38.00	0.00	0.000	
5	Rilevato	4	2000.00	2000.00	35.00	0.00	0.000	

6.3.3 DESCRIZIONE STRATIGRAFIA

Simbologia adottata

n° numero d'ordine dello strato a partire dalla sommità della paratia

sp spessore dello strato in corrispondenza dell'asse della paratia espresso in [m]

kw costante di Winkler orizzontale espressa in Kg/cm²/cm

α inclinazione dello strato espressa in GRADI(°)

Per la costante di Winkler si assume un andamento con la profondità definito dalla seguente espressione

 $K(z)=0.50 + 0.50 z^{0.50}$

dove K è la costante di Winkler espressa in $Kg/cm^2/cm$ e z è la profondità rispetto alla testa della paratia espressa in metri.

Berlinese tipo 1

Altezza fuori terra della paratia 10.20 [m]

Profondità di infissione 8.00 [m]

Altezza totale della paratia 18.00 [m]

n°	sp	α	kw	Terreno
1	3.00	0.00	1.11	Rilevato1
2	3.00	0.00	1.56	Rilevato2
3	3.00	0.00	1.87	Rilevato3
4	1.00	0.00	2.04	Rilevato 4
5	3.00	0.00	2.20	In Situ
6	3.00	0.00	2.40	In Situ
7	2.00	0.00	2.56	In Situ

6.3.4 CONDIZIONI DI CARICO

Simbologia e convenzioni adottate

Le ascisse dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia Le ordinate dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia

LOTTO

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

CODIFICA D26CL

DOCUMENTO
IV010X001

REV. FOGLIO

Α

105 di 190

X_i ascissa del punto iniziale di applicazione del carico
 X_f ascissa del punto finale di applicazione del carico

Q_i, Q_f Intensità dei carichi distribuiti sul profilo espresse in [kg/mq]

Per tutte le tipologie di berlinesi (1.1,1.2,1.3,1.4) si considera le seguente condizioni di carico:

Condizione nº 1

Carico distribuito sul profilo $X_i = 0.00$

 $X_f = 30.00$

 $Q_i = 500$

 $Q_f = 500$

6.3.5 IMPOSTAZIONI DI PROGETTO

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γGfav	1.00	1.00
Permanenti	Sfavorevole	γGsfav	1.30	1.00
Variabili	Favorevole	γQfav	0.00	0.00
Variabili	Sfavorevole	γQsfav	1.50	1.30

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri	M1	M2	
Tangente dell'angolo di attrito	$\gamma_{tan\phi'}$	1.00	1.25
Coesione efficace	γ _{c'}	1.00	1.25
Resistenza non drenata	γcu	1.00	1.40
Resistenza a compressione uniassia	ale γ_{qu}	1.00	1.60
Peso dell'unità di volume	γ_{γ}	1.00	1.00

6.3.6 IMPOSTAZIONI DI ANALISI

6.3.6.1 Analisi per Fasi di Scavo.

Rottura del terreno: Pressione passiva Spostamento limite o per spostamento limite molle pari a 1.50cm

Impostazioni analisi per fasi di scavo:

Analisi per condizioni di esercizio Analisi per coefficienti tipo A1-M1 Analisi per coefficienti tipo A2-M2

Stabilità globale: Metodo di Fellenius

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 106 di 190

6.3.7 VERIFICHE BERLINESE TIPO 3

In seguito vengono riportati I tabulate di verifica estrapolati dall programma di calcolo:

VERIFICHE AGLI STATI LIMITE ULTIMI

COMB. 1 (SLU-F)

VERIFICA ALLA ROTAZIONE INTORNO A UN PUNTO DELL'OPERA (atto di moto rigido)

Sovraccarichi di progetto sui terrapieni

Terreno di monte, q1d=0,00 kN/mq Terreno di valle, q2d=0,00 kN/mq

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 2

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 4

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 5

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=32,01 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt pd=0 (°)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

D26CL

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO CODIFICA 10

DOCUMENTO IV010X001

RFV. Α

FOGI IO 107 di 190

strato 6

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°) angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

Coefficienti di spinta

strato 1

lato monte:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702

lato valle:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 strato 2

lato monte:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702

lato valle:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 strato 3

lato monte:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 lato valle:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 strato 4

lato monte:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 lato valle:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 strato 5

lato monte:

coeff. di spinta attiva, Ka=0,307176

LOTTO

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

CODIFICA D26CL DOCUMENTO
IV010X001

REV.

Α

FOGLIO 108 di 190

coeff. di spinta a riposo, Ko=0,469984 coeff. di spinta passiva, Kp=3,255467 lato valle:

coeff. di spinta attiva, Ka=0,307176 coeff. di spinta a riposo, Ko=0,469984 coeff. di spinta passiva, Kp=3,255467 strato 6

lato monte:

lato valle:

coeff. di spinta attiva, Ka=0,307176 coeff. di spinta a riposo, Ko=0,469984 coeff. di spinta passiva, Kp=3,255467

coeff. di spinta attiva, Ka=0,307176 coeff. di spinta a riposo, Ko=0,469984 coeff. di spinta passiva, Kp=3,255467

Profondità punto di rotazione e profondità di infissione o coefficiente di sicurezza

Profondità punto di rotazione, Dr=4,906 m Coefficiente di sicurezza, Eta=1,524 n° iterazioni effettuate (metodo bisezione) = 21 errore equazione di equilibrio alla rotazione = 0,11 kN*m

Punti caratteristici e tensioni a monte della paratia

tensioni in kN/mq

tipo punto	z (m)	strato	SV	u	sa/sp/s_sup	s inf
<u> </u>						<u> </u>
1	0,00	1	0,00	0,00	0,00	
SS	3,00	1	60,00	0,00	20,61	20,61
SS	6,00	2	120,00	0,00	41,21	41,21
2	8,91	3	178,13	0,00	61,18	340,44
SS	9,00	3	180,00	0,00	344,01	344,01
3	9,50	4	190,00	0,00	363,13	

Punti caratteristici e tensioni a valle della paratia

tensioni in kN/mq

tipo punto	z (m)	strato	sv	u	sa/sp/s_sup	s_inf
11	4,00	2	0,00	0,00	0,00	
SS	6,00	2	40,00	0,00	76,45	76,45
12	8,91	3	98,13	0,00	187,54	33,70
SS	9,00	3	100,00	0,00	34,34	34,34
13	9,50	4	110,00	0,00	37,78	

Spinte di monte e di valle (orizzontali) agenti sulla paratia

Spinta di monte, Sm=481,25 kN/m Spinta di valle, Sv=481,29 kN/m

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 109 di 190

braccio della spinta di monte rispetto all'estremo inferiore paratia, dm=2,144 m braccio della spinta di valle rispetto all'estremo inferiore paratia, dv=2,144 m

Esito verifica alla rotazione

Verifica soddisfatta (essendo Eta>=gRot)

SOLLECITAZIONI AGENTI SULLA PARATIA (calcolo FEM)

Sovraccarichi di progetto sui terrapieni

Terreno di monte, q1d=0,00 kN/mq Terreno di valle, q2d=0,00 kN/mq

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 2

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 4

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 5

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 6

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 110 di 190

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°) angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

Coefficienti di spinta

strato 1

lato monte:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172 strato 2

lato monte:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172 lato valle:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172 strato 3

lato monte:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172 lato valle:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172 strato 4

lato monte:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172 lato valle:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172 strato 5

lato monte:

coeff. di spinta attiva, Ka=0,237883 coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746 lato valle:

coeff. di spinta attiva, Ka=0,237883

LOTTO

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

CODIFICA D26CL DOCUMENTO
IV010X001

REV.

Α

FOGLIO 111 di 190

coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746 strato 6

lato monte:

lato valle:

coeff. di spinta attiva, Ka=0,237883 coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746

coeff. di spinta attiva, Ka=0,237883 coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746

Numero di iterazioni nel calcolo non lineare e sollecitazioni

Numero di iterazione effettuate = 5

errore iterazione 0 = 0,001726

errore iterazione 1 = 0,113679

errore iterazione 2 = 0,07007

errore iterazione 3 = 0,036692

errore iterazione 4 = 0,007848

errore iterazione 5 = 0,00008

1	1			1
sez./nodo	v (m)	Nx (Tz (kN/m)	My (
sez./nodo	x (m)	kN/m)	KIN/III)	kN*m/m)
1	0	0	0	0
2	0,25	-0,63	0	0
3	0,5	-1,26	0	0
4	0,75	-1,88	-0,44	0
5	1	-2,51	-1,32	-0,11
6	1,25	-3,14	-2,64	-0,44
7	1,5	-3,77	-4,4	-1,1
8	1,75	-4,4	-6,61	-2,2
9	2	-5,03	-9,25	-3,85
10	2,25	-5,65	-12,33	-6,17
11	2,5	-6,28	-15,85	-9,25
12	2,75	-6,91	-19,82	-13,21
13	3	-7,54	-24,22	-18,16
14	3,25	-8,17	-29,06	-24,22
15	3,5	-8,79	-34,35	-31,49
16	3,75	-9,42	-40,07	-40,07
17	4	-10,05	-46,24	-50,09
18	4,25	-10,68	-52,84	-61,65
19	4,5	-11,31	-59,89	-74,86
20	4,75	-11,94	-61,38	-89,83
21	5	-12,56	-57,31	-105,18
22	5,25	-13,19	-47,69	-119,51
23	5,5	-13,82	-32,51	-131,43
24	5,75	-14,45	-11,77	-139,56

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

DOCUMENTO

IV010X001

REV.

Α

FOGLIO

112 di 190

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI	COMMESSA	LOTTO	CODIFICA	
	IN10	10	D26CL	

25	6	-15,08	14,52	-142,5
26	6,25	-15,7	46,36	-138,87
27	6,5	-16,33	76,83	-127,28
28	6,75	-16,96	90,73	-108,07
29	7	-17,59	93,61	-85,39
30	7,25	-18,22	83,91	-61,99
31	7,5	-18,85	67,68	-41,01
32	7,75	-19,47	49,87	-24,09
33	8	-20,1	33,12	-11,62
34	8,25	-20,73	19,13	-3,34
35	8,5	-21,36	8,47	1,44
36	8,75	-21,99	1,11	3,56
37	9	-22,61	-3,28	3,83
38	9,25	-23,24	-5,11	3,01
39	9,5	-23,87	-4,7	1,74
40	9,75	-24,5	-2,24	0,56
41	10	-25,13	-2,24	0

REAZIONI VINCOLARI E PRESSIONI DI CONTATTO TERRENO-PARATIA (calcolo FEM)

RvX = componente della reazione vincolare lungo X (kN/m)

RvY = componente della reazione vincolare lungo Y (kN/m)

RvZ = componente momento della reazione vincolare (kN*m/m)

pXv = pressione orizzontale del terreno (molle di valle) (kN/mq)

pXm = pressione orizzontale del terreno (molle di monte) (kN/mq)

sez./nodo	o x (m) RvX		RvY	RvZ	pXv	pXm
3	0,5	0	0	0	0	0
4	0,75	0,34	0	0	0	1,35
5	1	0,68	0	0	0	2,71
6	1,25	1,02	0	0	0	4,06
7	1,5	1,36	0	0	0	5,42
8	1,75	1,69	0	0	0	6,77
9	2	2,03	0	0	0	8,13
10	2,25	2,37	0	0	0	9,48
11	2,5	2,71	0	0	0	10,84
12	2,75	3,05	0	0	0	12,19
13	3	3,39	0	0	0	13,55
14	3,25	3,73	0	0	0	14,9
15	3,5	4,06	0	0	0	16,26
16	3,75	4,4	0	0	0	17,61
17	4	4,74	0	0	0	18,97
18	4,25	5,08	0	0	0	20,32
19	4,5	5,42	0	0	0	21,68
20	4,75	1,15	0	0	-18,45	23,03
21	5	-3,13	0	0	-36,9	24,39
22	5,25	-7,4	0	0	-55,35	25,74

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE D	OI CALCOLO	O OPERE PI	ROVVISIONALI	COMM	MESSA LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
					10 10	D26CL	IV010X001	Α	113 di 190
23	5,5	-11,68	0	0	-73,8	27,1			
24	5,75	-15,95	0	0	-92,25	28,45			
25	6	-20,22	0	0	-110,71	29,81			
26	6,25	-24,5	0	0	-129,16	31,16			
27	6,5	-23,43	0	0	-126,25	32,52			
28	6,75	-10,7	0	0	-76,65	33,87			
29	7	-2,22	0	0	-44,1	35,23			
30	7,25	7,47	0	0	-25,58	55,44			
31	7,5	12,48	0	0	-17,68	67,61			
32	7,75	13,7	0	0	-17,61	72,42			
33	8	12,89	0	0	-21,13	72,68			
34	8,25	10,76	0	0	-27,52	70,56			
35	8,5	8,2	0	0	-34,78	67,56			
36	8,75	5,66	0	0	-41,98	64,63			
37	9	3,38	0	0	-48,67	62,2			
38	9,25	1,41	0	0	-54,75	60,38			
39	9,5	-0,31	0	0	-60,33	59,07			
40	9,75	-1,9	0	0	-65,63	58,04			
41	10	-1,72	-19,33	0	-70,85	57,08			

PERCENTUALI DI SPINTA PASSIVA MOBILITATA

Spinta passiva mobilitata a monte = 13%

Spinta passiva mobilitata a valle = 54,1%

VERIFICA CONDIZIONI DI EQUILIBRIO (calcolo FEM)

Equilibrio alla traslazione orizzontale

somma delle forze esterne orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

somma delle reazioni vincolari lungo X, SommRvX=0,00 kN/m

equazione di equilibrio alla traslazione orizzontale: SFx+Sme+Sve+SommRvX=0,00 kN/m

Equilibrio alla traslazione verticale

peso proprio della paratia, Wp=19,33 kN/m

somma delle forze verticali applicate alla paratia, SFy=0,00 kN/m

somma delle reazioni vincolari lungo Y, SommRvY=-19,33 kN/m

equazione di equilibrio alla traslazione verticale: Wp+SFy+SommRvY=0,00 kN/m

Equilibrio alla rotazione (attorno al primo nodo)

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

momento delle reazioni vincolari lungo X, MRvX=0,00 kN*m/m

equazione di equilibrio alla rotazione: MFx+MSme+MSve+MRvX=0,00 kN*m/m

Spinte orizzontali

spinta delle terre di monte, Sm=303,68 kN/m

spinta delle terre di valle, Sv=-303,68 kN/m

somma componenti orizz. delle forze che i tiranti/puntoni esercitano sull'opera, STx=0,00 kN/m

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 114 di 190

somma forze orizzontali applicate alla paratia, SFx=0,00 kN/m spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

Momenti delle spinte orizzontali rispetto al primo nodo

momento della spinta delle terre di monte, MSm=2.160,65 kN*m/m momento della spinta delle terre di valle, MSv=-2.160,65 kN*m/m momento delle compon. orizz. delle forze che i tiranti/puntoni esercitano sull'opera, MTx=0,00 kN*m/m momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

SPOSTAMENTI NODALI (calcolo FEM)

w = spostamento orizzontale (lungo l'asse globale X, coincidente con l'asse locale z) u = spostamento verticale (lungo l'asse globale Y, coincidente con l'asse locale x)

				rot.
sez./nodo	x (m)	w (cm)	u (cm)	(rad)
1	0	7,822	0,002	-0,0141
2	0,25	7,469	0,002	-0,0141
3	0,5	7,117	0,002	-0,0141
4	0,75	6,764	0,002	-0,0141
5	1	6,412	0,002	-0,0141
6	1,25	6,059	0,002	-0,0141
7	1,5	5,707	0,002	-0,0141
8	1,75	5,355	0,002	-0,0141
9	2	5,003	0,002	-0,014
10	2,25	4,653	0,002	-0,014
11	2,5	4,303	0,002	-0,0139
12	2,75	3,956	0,002	-0,0138
13	3	3,611	0,002	-0,0137
14	3,25	3,271	0,002	-0,0135
15	3,5	2,936	0,002	-0,0133
16	3,75	2,607	0,002	-0,013
17	4	2,287	0,002	-0,0126
18	4,25	1,979	0,002	-0,0121
19	4,5	1,683	0,001	-0,0115
20	4,75	1,403	0,001	-0,0108
21	5	1,143	0,001	-0,01
22	5,25	0,906	0,001	-0,009
23	5,5	0,694	0,001	-0,0079
24	5,75	0,51	0,001	-0,0068
25	6	0,356	0,001	-0,0055
26	6,25	0,233	0,001	-0,0043
27	6,5	0,139	0,001	-0,0032
28	6,75	0,072	0,001	-0,0022
29	7	0,028	0,001	-0,0013
30	7,25	0,003	0,001	-0,0007

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 115 di 190

31	7,5	-0,009	0,001	-0,0003
32	7,75	-0,012	0,001	0
33	8	-0,01	0,001	0,0002
34	8,25	-0,005	0,001	0,0002
35	8,5	0,001	0,001	0,0002
36	8,75	0,006	0	0,0002
37	9	0,011	0	0,0002
38	9,25	0,015	0	0,0002
39	9,5	0,019	0	0,0001
40	9,75	0,022	0	0,0001
41	10	0,025	0	0,0001

VERIFICA AL CARICO LIMITE VERTICALE

Parametri geotecnici di progetto

coesione = 0,00 kN/mq

angolo di resistenza al taglio = 35°

Resistenza alla punta

fattore Nq (Berezantzev) = 46,845

fattore Nc = 65,47

tensione litostatica verticale totale alla profondità L, sVL=190,00 kN/mq

pressione neutra alla profondità L, uL=0,00 kN/mq

tensione litostatica verticale efficace alla profondità L, s'VL=190,00 kN/mg

Resistenza unitaria alla punta, p=8.900,56 kN/mq

Resistenza alla punta, Pmax=668,03 kN

Resistenza laterale

Resistenza laterale, Smax=284,01 kN

Resistenza alla punta e laterale di progetto

Resistenza alla punta (valore medio) = 668,03 kN

Resistenza alla punta (valore minimo) = 668,03 kN

Resistenza laterale (valore medio) = 284,01 kN

Resistenza laterale (valore minimo) = 284,01 kN

Fattore di correlazione, xsi3=1,7

Fattore di correlazione, xsi4=1,7

Resistenza alla punta (valore caratteristico) = 392,96 kN

Resistenza laterale (valore caratteristico) = 167,07 kN

Resistenza alla punta di progetto, Pmax_d=341,70 kN

Resistenza laterale di progetto, Smax_d=145,27 kN

Carico limite per carichi assiali di compressione

 $Qlim_d = Pmax_d + Smax_d = 486,98 kN$

Carico limite di sfilamento per carichi assiali di trazione

 $Qlimt_d = Smax_d = 145,27 kN$

Azione di progetto

Ed = 25,13 kN

Verifica al carico limite per carichi assiali di compressione

Verifica soddisfatta: l'azione di progetto non supera la resistenza di progetto

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO CODIFICA 10 D26CL DOCUMENTO
IV010X001

REV.

FOGLIO 116 di 190

coeff. di sicurezza, Qlim_d/Ed=19,38

VERIFICA DI STABILITA' GLOBALE

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 2

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 3

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 4

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 5

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq

strato 6

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq

Parametri di calcolo

n° di cerchi analizzati = 10 Metodo utilizzato: Bishop

Cerchio critico

Coordinate centro e raggio: X(m)=0 Y(m)=-1,94 Rc (m)=12,05

Simbologia adottata

Wt = peso del concio (kN)

Wq = forza risultante verticale dovuta al sovraccarico applicato sul concio (kN)

alfa=angolo (minore di 90°) che l'orizzontale forma con la base del concio (positivo se antiorario)

u = pressione neutra alla base del concio (kN/mq)

DX = larghezza lungo X del concio (m)

Fsh = forza sismica orizzontale sul concio (kN)

B = braccio della forza sismica orizzontale rispetto al centro del cerchio di rottura (m)

Fsv = forza sismica verticale sul concio (kN)

N = risultante delle tensioni normali di reazione del terreno alla base del concio (kN)

T = risultante delle tensioni tangenziali di reazione del terreno alla base del concio (kN)

concio	Wt	Wq	alfa (°)	u	DX	Fsh	В	Fsv	N	Т
1	10,08	0	-54,19	0	0,85	0	16,44	0	21,56	3,12

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

				<u> </u>								
RELAZIONE	ELAZIONE DI CALCOLO OPERE PROVVISIONALI					LOTTO	CODIFICA	4	DOCUMENTO	REV.	FOG	LIO
					IN10	10	D26CL		IV010X001	Α	117 di	i 190
2	28,16	0	-47,7		0	0,85	0	16,44	1 0	49,77	7,2	
3	42,7	0	-41,96		0	0,85	0	16,44	1 0	66,01	9,56	
4	54,67	0	-36,7		0	0,85	0	16,44	1 0	76,42	11,06	
5	64,6	0	-31,78		0	0,85	0	16,44	1 0	83,48	12,08	
6	72,83	0	-27,11		0	0,85	0	16,44	1 0	88,37	12,79	
7	79,59	0	-22,63		0	0,85	0	16,44	1 0	91,77	13,29	
8	85,03	0	-18,3		0	0,85	0	16,44	1 0	94,06	13,62	
9	89,26	0	-14,07		0	0,85	0	16,44	1 0	95,48	13,82	
10	92,35	0	-9,92		0	0,85	0	16,44	1 0	96,19	13,93	
11	94,37	0	-5,82		0	0,85	0	16,44	1 0	96,28	13,94	
12	95,33	0	-1,75		0	0,85	0	16,44	1 0	115,22	16,68	
13	7,6	0	0,4		0	0,05	0	16,44	1 0	7,59	1,1	
14	172,22	0	2,66		0	0,9	0	16,44	1 0	171,25	24,79	
15	170,86	0	6,96		0	0,9	0	16,44	1 0	169,14	24,49	
16	168,26	0	11,29		0	0,9	0	16,44	1 0	166,76	24,14	
17	164,37	0	15,69		0	0,9	0	16,44	1 0	164,07	23,75	
18	159,13	0	20,19		0	0,9	0	16,44	1 0	160,98	23,31	
19	152,42	0	24,83		0	0,9	0	16,44	1 0	157,4	22,79	
20	144,09	0	29,64		0	0,9	0	16,44	1 0	153,17	22,17	
21	133,89	0	34,71		0	0,9	0	16,44	1 0	148,03	21,43	
22	121,49	0	40,1		0	0,9	0	16,44	1 0	141,58	20,5	
23	106,33	0	45,98		0	0,9	0	16,44	1 0	133,07	19,27	
24	87,41	0	52,57		0	0,9	0	16,44	1 0	120,95	17,51	
25	62,61	0	60,43		0	0,9	0	16,44	1 0	101,09	14,64	
26	24,19	0	71,53		0	0,9	0	16,44	1 0	53,26	7,71	

Lunghezza dell'arco di cerchio di scivolamento, L=28,58 m

Momento resistente, M_resist=19.047,77 kN*m

Momento instabilizzante, M_instab=4.922,83 kN*m

Cofficiente di sicurezza del pendio = M_resist/M_instab = 3,869

Verifica soddisfatta

VERIFICHE STRUTTURALI PARATIA

Verifiche di resistenza a presso-flessione e taglio

sid_m: tensione ideale massima nella sezione di acciaio (N/mmq)

Mcy_Rd: resistenza di progetto della sezione soggetta a presso-flessione retta (asse vettore y)

Resistenza plastica della sezione lorda A, Npl_Rd=2.743,03 kN

Area resistente al taglio della sezione lungo z, Avz=51,65 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=1.008,21 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=134,08 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=180,61 kN*m

tensione di snervamento di progetto, fyd=338 N/mmq

x (m)	Nx	Tz	Му	sid_m	Mcy_Rd	Verif?
0	0	0	0			
0,25	-0,32	0	0			
0,5	-0,63	0	0			

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE I	DI CALCOLO	OPERE PF	ROVVISION	ALI CO	OMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
0,75	-0,94	-0,22	0		IN10	10	D26CL	IV010X001	Α	118 di 190
0,75 1	-0,94 -1,26	-0,22 -0,66	-0,06	0,3			Si			
1,25	-1,26 -1,58	-0,66 -1,33	-0,06 -0,22	0,3 0,8			Si Si			
1,25 1,5	-1,58 -1,89	-1,33 -2,21	-0,22 -0,55	0,8 1,6			Si Si			
1,5 1,75	-1,89 -2,21	-2,21 -3,32	-0,55 -1,11	1,6 3,1			Si Si			
1,75	-2,21 -2,53	-3,32 -4,65	-1,11 -1,93	5,1 5,2			Si Si			
2,25	-2,53 -2,84	-4,65 -6,19	-1,93 -3,1	5,2 8,2			Si Si			
2,25 2,5	-2,6 4 -3,15	-0,19 -7,96	-3,1 -4,65	0,2 12,1			Si			
2,5 2,75	-3,13 -3,47	-7,96 -9,96	-4,63 -6,64	17,2			Si			
2,73	-3,47 -3,79	-9,96 -12,17	-6,64 -9,12	23,5			Si			
3,25	-3,79 -4,1	-12,17 -14,6	-9,12 -12,17	31,2			Si			
3,25 3,5	-4,1 -4,42	-14,6 -17,26	-12,17 -15,82	31,2 40,4			Si			
3,75	-4,42 -4,73	-17,26	-15,82 -20,13	51,3			Si			
3,73 4	-4,73 -5,05		-20,13 -25,16	64,1			Si			
4,25	-5,05 -5,36	-23,23 -26,54	-23,10 -30,97	78,8			Si			
4,25	-5,68	-30,08	-30,97	95,5			Si			
4,75 4,75	-5,08 -6	-30,83	-37,0 -45,12	114,5			Si			
4,75 5	-6,31	-30,83	-43,12 -52,84	134			Si			
5,25	-6,63	-23,96	-60,03	152,2			Si			
5,5	-6,94	-16,33	-66,02	167,3			Si			
5,75	-7,26	-5,91	-70,11	177,7			Si			
5,75 6	-7,20 -7,58	7,29	-70,11	181,4			Si			
6,25	-7,38 -7,89	23,29	-71,38 -69,76	176,9			Si			
6,5	-8,2	38,59	-63,94	162,2			Si			
6,75	-8,52	45,58	-54,29	137,9			Si			
7	-8,84	47,02	-42,89	109,2			Si			
, 7,25	-9,15	42,15	-31,14	79,6			Si			
7,25	-9,47	34		53,1			Si			
7,75	-9,78	25,05	-12,1	31,7			Si			
8	-10,1	16,64	-5,84	16			Si			
8,25	-10,41	9,61	-1,68	5,5			Si			
8,5	-10,73	4,25	0,72	3,1			Si			
8,75	-11,05	0,56	1,79	5,9			Si			
9	-11,36	-1,65	1,92	6,3			Si			
9,25	-11,67	-2,57	1,51	5,3			Si			
9,5	-11,99	-2,36	0,87	3,7			Si			
9,75	-12,31	-1,13	0,28	2,2			Si			
10	-12,62	-1,13	0	, 1,6			Si			
	•	•		•						

COMB. 2 (SLU-F)

VERIFICA ALLA ROTAZIONE INTORNO A UN PUNTO DELL'OPERA (atto di moto rigido)

Sovraccarichi di progetto sui terrapieni

Terreno di monte, q1d=26,00 kN/mq Terreno di valle, q2d=0,00 kN/mq

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO

CODIFICA DOCUMENTO
D26CL IV010X001

REV.

FOGLIO 119 di 190

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 2

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 4

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 5

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=32,01 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 6

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=32,01 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

Coefficienti di spinta

strato 1

lato monte:

coeff. di spinta attiva, Ka=0,343442

coeff. di spinta a riposo, Ko=0,511286

coeff. di spinta passiva, Kp=2,911702

lato valle:

coeff. di spinta attiva, Ka=0,343442

coeff. di spinta a riposo, Ko=0,511286

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO

10

CODIFICA DOCUMENTO
D26CL IV010X001

REV.

FOGLIO 120 di 190

coeff. di spinta passiva, Kp=2,911702 strato 2

lato monte:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702

lato valle:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 strato 3

lato monte:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702

lato valle:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 strato 4

lato monte:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 lato valle:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 strato 5

lato monte:

coeff. di spinta attiva, Ka=0,307176 coeff. di spinta a riposo, Ko=0,469984 coeff. di spinta passiva, Kp=3,255467 lato valle:

coeff. di spinta attiva, Ka=0,307176 coeff. di spinta a riposo, Ko=0,469984 coeff. di spinta passiva, Kp=3,255467 strato 6

lato monte:

coeff. di spinta attiva, Ka=0,307176 coeff. di spinta a riposo, Ko=0,469984 coeff. di spinta passiva, Kp=3,255467 lato valle:

coeff. di spinta attiva, Ka=0,307176 coeff. di spinta a riposo, Ko=0,469984 coeff. di spinta passiva, Kp=3,255467

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 121 di 190

Profondità punto di rotazione e profondità di infissione o coefficiente di sicurezza

Profondità punto di rotazione, Dr=4,929 m

Coefficiente di sicurezza, Eta=1,073

n° iterazioni effettuate (metodo bisezione) = 21

errore equazione di equilibrio alla rotazione = 0,28 kN*m

Punti caratteristici e tensioni a monte della paratia

tensioni in kN/ma

terisioni in	instantin kiying									
tipo										
punto	z (m)	strato	SV	u	sa/sp/s_sup	s_inf				
1	0,00	1	26,00	0,00	8,93					
SS	3,00	1	86,00	0,00	29,54	29,54				
SS	6,00	2	146,00	0,00	50,14	50,14				
2	8,93	3	204,57	0,00	70,26	554,93				
SS	9,00	3	206,00	0,00	558,81	558,81				
3	9,50	4	216,00	0,00	585,94					

Punti caratteristici e tensioni a valle della paratia

tensioni in kN/mq

tipo punto	z (m)	strato	sv	u	sa/sp/s_sup	s_inf
11	4,00	2	0,00	0,00	0,00	
SS	6,00	2	40,00	0,00	108,51	108,51
12	8,93	3	98,57	0,00	267,39	33,85
SS	9,00	3	100,00	0,00	34,34	34,34
13	9,50	4	110,00	0,00	37,78	

Spinte di monte e di valle (orizzontali) agenti sulla paratia

Spinta di monte, Sm=679,49 kN/m

Spinta di valle, Sv=679,39 kN/m

braccio della spinta di monte rispetto all'estremo inferiore paratia, dm=2,156 m braccio della spinta di valle rispetto all'estremo inferiore paratia, dv=2,156 m

Esito verifica alla rotazione

Verifica soddisfatta (essendo Eta>=gRot)

SOLLECITAZIONI AGENTI SULLA PARATIA (calcolo FEM)

Sovraccarichi di progetto sui terrapieni

Terreno di monte, q1d=23,08 kN/mq Terreno di valle, q2d=0,00 kN/mq

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=35 (°) coesione drenata, c'_d=0,00 kN/mq

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 122 di 190

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 2

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 4

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 5

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 6

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

Coefficienti di spinta

strato 1

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 2

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

D26CL

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO CODIFICA

10

DOCUMENTO
IV010X001

REV.

FOGLIO 123 di 190

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 3

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 4

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 5

lato monte:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

lato valle:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

strato 6

lato monte:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

lato valle:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

Numero di iterazioni nel calcolo non lineare e sollecitazioni

Numero di iterazione effettuate = 6

errore iterazione 0 = 0,002593

errore iterazione 1 = 0,206693

errore iterazione 2 = 0,134914

LOTTO

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

CODIFICA D26CL DOCUMENTO
IV010X001

REV.

FOGLIO 124 di 190

errore iterazione 3 = 0,13667 errore iterazione 4 = 0,067629 errore iterazione 5 = 0,015527 errore iterazione 6 = -0,000351

·		·		· '
007/2545	v. /\	Nx (Tz (My (
sez./nodo	x (m)	kN/m)	kN/m)	kN*m/m)
1 2	0 25	0 63	0	0
3	0,25 0,5	-0,63 -1,26	-1,02	0
4				
5	0,75 1	-1,88 -2,51	-3,49 -6,4	-0,25 1 12
6	1,25			-1,13
7	•	-3,14 -3,77	-9,76 -13,55	-2,73 -5,17
8	1,5 1,75	-3,77 -4,4	-13,33	-3,17 -8,55
9	2	-5,03	-22,46	-8,55
10	2,25	-5,65	-22,40	-18,61
11	2,23	-6,28	-33,13	-25,51
12	2,75	-6,91	-39,12	-23,31
13	2,73	-7,54	-45,56	-33,7 <i>9</i> -43,57
14	3,25	-8,17	-52,44	-43,37 -54,96
15	3,23	-8,17	-52,44	-54,90 -68,07
16	3,75	-9,42	-67,51	-83,01
17	3,73	-10,05	-75,71	-99,89
18	4,25	-10,68	-84,35	-118,81
19	4,23	-11,31	-93,42	-139,9
20	4,75	-11,94	-96,95	-163,25
21	5	-12,56	-94,91	-187,49
22	5,25	-13,19	-87,32	-211,22
23	5,5	-13,82	-74,17	-233,05
24	5,75	-14,45	-55,47	-251,59
25	6	-15,08	-31,21	-265,46
26	6,25	-15,7	-1,4	-273,26
27	6,5	-16,33	33,97	-273,61
28	6,75	-16,96	74,9	-265,12
29	7	-17,59	121,38	
30	7,25	-18,22	159,3	
31	7,5	-18,85	171,06	
32	7,75	-19,47	158,93	-133,46
33	8	-20,1	133,05	-93,73
34	8,25	-20,73	103,35	-60,46
35	8,5	-21,36	73,56	-34,63
36	8,75	-21,99	45,97	-16,24
37	9	-22,61	21,74	-4,75
38	9,25	-23,24	4,83	0,69
39	9,5	-23,87	-3,71	1,9
40	9,75	-24,5	-3,88	0,97

LOTTO

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA

CODIFICA

DOCUMENTO

REV. FOGLIO

Α

IN10

0

41

10 -25,13 -3,88

D26CL

IV010X001

125 di 190

REAZIONI VINCOLARI E PRESSIONI DI CONTATTO TERRENO-PARATIA (calcolo FEM)

RvX = componente della reazione vincolare lungo X (kN/m)

RvY = componente della reazione vincolare lungo Y (kN/m)

RvZ = componente momento della reazione vincolare (kN*m/m)

pXv = pressione orizzontale del terreno (molle di valle) (kN/mq)

pXm = pressione orizzontale del terreno (molle di monte) (kN/mq)

· ·			,		, , , ,	
sez./nodo	x (m)	RvX	RvY	RvZ	pXv	pXm
3	0,5	0,78	0	0	0	6,25
4	0,75	1,9	0	0	0	7,61
5	1	2,24	0	0	0	8,96
6	1,25	2,58	0	0	0	10,32
7	1,5	2,92	0	0	0	11,67
8	1,75	3,26	0	0	0	13,03
9	2	3,6	0	0	0	14,38
10	2,25	3,93	0	0	0	15,74
11	2,5	4,27	0	0	0	17,09
12	2,75	4,61	0	0	0	18,45
13	3	4,95	0	0	0	19,8
14	3,25	5,29	0	0	0	21,16
15	3,5	5,63	0	0	0	22,51
16	3,75	5,97	0	0	0	23,87
17	4	6,31	0	0	0	25,22
18	4,25	6,64	0	0	0	26,58
19	4,5	6,98	0	0	0	27,93
20	4,75	2,71	0	0	-18,45	29,29
21	5	-1,56	0	0	-36,9	30,64
22	5,25	-5,84	0	0	-55,35	32
23	5,5	-10,11	0	0	-73,8	33,35
24	5,75	-14,39	0	0	-92,25	34,71
25	6	-18,66	0	0	-110,71	36,06
26	6,25	-22,93	0	0	-129,16	37,42
27	6,5	-27,21	0	0	-147,61	38,77
28	6,75	-31,48	0	0	-166,06	40,13
29	7	-35,76	0	0	-184,51	41,48
30	7,25	-29,17	0	0	-159,5	42,84
31	7,5	-9,05	0	0	-80,39	44,19
32	7,75	9,34	0	0	-31,02	68,37
33	8	19,91	0	0	-18,97	98,59
34	8,25	22,85	0	0	-20,32	111,72
35	8,5	22,91	0	0	-21,68	113,32
36	8,75	21,23	0	0	-23,03	107,94
37	9	18,64	0	0	-24,39	98,94
38	9,25	13,01	0	0	-36,47	88,5

41

LINEA AV/AC MILANO - VENEZIA

-81,6

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

57,74

RELAZIONE	DI CALCOLO	OPERE PRO	VVISIONALI	COMMESS	A LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
				IN10	10	D26CL	IV010X001	Α	126 di 190
39	9,5	6,57	0	0	-51,49	77,75			
40	9,75	0,13	0	0	-66,49	67,01			

0

PERCENTUALI DI SPINTA PASSIVA MOBILITATA

-2,98

Spinta passiva mobilitata a monte = 15,1% Spinta passiva mobilitata a valle = 73,7%

10

VERIFICA CONDIZIONI DI EQUILIBRIO (calcolo FEM)

Equilibrio alla traslazione orizzontale

somma delle forze esterne orizzontali applicate alla paratia, SFx=0,00 kN/m

-19,33

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

somma delle reazioni vincolari lungo X, SommRvX=0,00 kN/m

equazione di equilibrio alla traslazione orizzontale: SFx+Sme+Sve+SommRvX=0,00 kN/m

Equilibrio alla traslazione verticale

peso proprio della paratia, Wp=19,33 kN/m

somma delle forze verticali applicate alla paratia, SFy=0,00 kN/m

somma delle reazioni vincolari lungo Y, SommRvY=-19,33 kN/m

equazione di equilibrio alla traslazione verticale: Wp+SFy+SommRvY=0,00 kN/m

Equilibrio alla rotazione (attorno al primo nodo)

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

momento delle reazioni vincolari lungo X, MRvX=0,00 kN*m/m

equazione di equilibrio alla rotazione: MFx+MSme+MSve+MRvX=0,00 kN*m/m

Spinte orizzontali

spinta delle terre di monte, Sm=397,34 kN/m

spinta delle terre di valle, Sv=-397,34 kN/m

somma componenti orizz. delle forze che i tiranti/puntoni esercitano sull'opera, STx=0,00 kN/m

somma forze orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

Momenti delle spinte orizzontali rispetto al primo nodo

momento della spinta delle terre di monte, MSm=2.787,44 kN*m/m

momento della spinta delle terre di valle, MSv=-2.787,44 kN*m/m

momento delle compon. orizz. delle forze che i tiranti/puntoni esercitano sull'opera, MTx=0,00 kN*m/m

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

SPOSTAMENTI NODALI (calcolo FEM)

w = spostamento orizzontale (lungo l'asse globale X, coincidente con l'asse locale z)

u = spostamento verticale (lungo l'asse globale Y, coincidente con l'asse locale x)

				rot.
sez./nodo	x (m)	w (cm)	u (cm)	(rad)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 127 di 190

1	0	18,783	0,002	-0,0323
2	0,25	17,975	0,002	-0,0323
3	0,5	17,166	0,002	-0,0323
4	0,75	16,358	0,002	-0,0323
5	1	15,55	0,002	-0,0323
6	1,25	14,742	0,002	-0,0323
7	1,5	13,935	0,002	-0,0323
8	1,75	13,128	0,002	-0,0322
9	2	12,324	0,002	-0,0321
10	2,25	11,523	0,002	-0,032
11	2,5	10,725	0,002	-0,0318
12	2,75	9,933	0,002	-0,0315
13	3	9,149	0,002	-0,0312
14	3,25	8,374	0,002	-0,0308
15	3,5	7,611	0,002	-0,0303
16	3,75	6,862	0,002	-0,0296
17	4	6,131	0,002	-0,0288
18	4,25	5,422	0,002	-0,0279
19	4,5	4,739	0,001	-0,0268
20	4,75	4,086	0,001	-0,0255
21	5	3,468	0,001	-0,024
22	5,25	2,89	0,001	-0,0222
23	5,5	2,357	0,001	-0,0203
24	5,75	1,875	0,001	-0,0182
25	6	1,447	0,001	-0,016
26	6,25	1,075	0,001	-0,0137
27	6,5	0,762	0,001	-0,0113
28	6,75	0,507	0,001	-0,009
29	7	0,31	0,001	-0,0068
30	7,25	0,164	0,001	-0,0048
31	7,5	0,065	0,001	-0,0032
32	7,75	0,004	0,001	-0,0018
33	8	-0,029	0,001	-0,0008
34	8,25	-0,041	0,001	-0,0002
35	8,5	-0,04	0,001	0,0002
36	8,75	-0,031	0	0,0005
37	9	-0,018	0	0,0005
38	9,25	-0,004	0	0,0006
39	9,5	0,009	0	0,0005
40	9,75	0,023	0	0,0005
41	10	0,036	0	0,0005

VERIFICA AL CARICO LIMITE VERTICALE

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO

CODIFICA D26CL DOCUMENTO
IV010X001

REV.

Α

FOGLIO 128 di 190

angolo di resistenza al taglio = 35°

Resistenza alla punta

fattore Nq (Berezantzev) = 46,845

fattore Nc = 65,47

tensione litostatica verticale totale alla profondità L, sVL=220,00 kN/mq

pressione neutra alla profondità L, uL=0,00 kN/mq

tensione litostatica verticale efficace alla profondità L, s'VL=220,00 kN/mq

Resistenza unitaria alla punta, p=10.305,91 kN/mq

Resistenza alla punta, Pmax=773,51 kN

Resistenza laterale

Resistenza laterale, Smax=361,70 kN

Resistenza alla punta e laterale di progetto

Resistenza alla punta (valore medio) = 773,51 kN

Resistenza alla punta (valore minimo) = 773,51 kN

Resistenza laterale (valore medio) = 361,70 kN

Resistenza laterale (valore minimo) = 361,70 kN

Fattore di correlazione, xsi3=1,7

Fattore di correlazione, xsi4=1,7

Resistenza alla punta (valore caratteristico) = 455,01 kN

Resistenza laterale (valore caratteristico) = 212,77 kN

Resistenza alla punta di progetto, Pmax d=395,66 kN

Resistenza laterale di progetto, Smax_d=185,01 kN

Carico limite per carichi assiali di compressione

 $Qlim_d = Pmax_d + Smax_d = 580,67 kN$

Carico limite di sfilamento per carichi assiali di trazione

Qlimt d = Smax d = 185,01 kN

Azione di progetto

Ed = 25,13 kN

Verifica al carico limite per carichi assiali di compressione

Verifica soddisfatta: l'azione di progetto non supera la resistenza di progetto

coeff. di sicurezza, Qlim_d/Ed=23,11

VERIFICA DI STABILITA' GLOBALE

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

strato 2

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO CODIFICA D26CL

DOCUMENTO IV010X001

RFV. FOGI IO 129 di 190 Α

strato 4

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 5

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq

strato 6

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq

Parametri di calcolo

n° di cerchi analizzati = 10 Metodo utilizzato: Bishop

Cerchio critico

Coordinate centro e raggio: X (m) = 0 Y (m) = -1,94 Rc (m) = 12,05

Simbologia adottata

Wt = peso del concio (kN)

Wq = forza risultante verticale dovuta al sovraccarico applicato sul concio (kN)

alfa=angolo (minore di 90°) che l'orizzontale forma con la base del concio (positivo se antiorario)

u = pressione neutra alla base del concio (kN/mq)

DX = larghezza lungo X del concio (m)

Fsh = forza sismica orizzontale sul concio (kN)

B = braccio della forza sismica orizzontale rispetto al centro del cerchio di rottura (m)

Fsv = forza sismica verticale sul concio (kN)

N = risultante delle tensioni normali di reazione del terreno alla base del concio (kN)

T = risultante delle tensioni tangenziali di reazione del terreno alla base del concio (kN)

1 1	0,08 0			DX	Fsh	В	Fsv	N	Т
	0,08 0	-54,19	0	0,85	0	16,44	0	22,82	4,03
2 2	8,16 0	-47,7	0	0,85	0	16,44	0	51,93	9,17
3	42,7 0	-41,96	0	0,85	0	16,44	0	68,26	12,05
4 5	4,67 0	-36,7	0	0,85	0	16,44	0	78,51	13,86
5	64,6 0	-31,78	0	0,85	0	16,44	0	85,32	15,06
6 7	2,83 0	-27,11	0	0,85	0	16,44	0	89,95	15,88
7 7	9,59 0	-22,63	0	0,85	0	16,44	0	93,08	16,44
8 8	5,03 0	-18,3	0	0,85	0	16,44	0	95,11	16,79
9 8	9,26 0	-14,07	0	0,85	0	16,44	0	96,28	17
10 9	2,35 0	-9,92	0	0,85	0	16,44	0	96,74	17,08
11 9	4,37 0	-5,82	0	0,85	0	16,44	0	96,59	17,05
12 9	5,33 0	-1,75	0	0,85	0	16,44	0	115,33	20,36
13	7,6 0	0,4	0	0,05	0	16,44	0	7,59	1,34
14 17	2,22 23,37	2,66	0	0,9	0	16,44	0	194,21	34,29
15 17	0,86 23,37	6,96	0	0,9	0	16,44	0	191,54	33,82
16 16	8,26 23,37	11,29	0	0,9	0	16,44	0	188,76	33,33
17 16	4,37 23,37	15,69	0	0,9	0	16,44	0	185,8	32,8
18 15	9,13 23,37	20,19	0	0,9	0	16,44	0	182,6	32,24

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI			COMMESSA	LOTTO 10	CODIFICA D26CL	DOCUMENTO	REV.	FOGLIO 130 di 190	
19	152,42	23,37	24,83	0	0,9	0	16,44 0	179,07	31,62
20	144,09	23,37	29,64	0	0,9	0	16,44 0	175,08	30,91
21	133,89	23,37	34,71	0	0,9	0	16,44 0	170,45	30,1
22	121,49	23,37	40,1	0	0,9	0	16,44 0	164,87	29,11
23	106,33	23,37	45,98	0	0,9	0	16,44 0	157,8	27,86
24	87,41	23,37	52,57	0	0,9	0	16,44 0	148,11	26,15
25	62,61	23,37	60,43	0	0,9	0	16,44 0	132,88	23,46
26	24,19	23,37	71,53	0	0,9	0	16,44 0	98,2	17,34

Lunghezza dell'arco di cerchio di scivolamento, L=28,58 m

Momento resistente, M_resist=21.368,53 kN*m

Momento instabilizzante, M_instab=6.735,31 kN*m

Cofficiente di sicurezza del pendio = M_resist/M_instab = 3,173

Verifica soddisfatta

VERIFICHE STRUTTURALI PARATIA

Verifiche di resistenza a presso-flessione e taglio

sid_m: tensione ideale massima nella sezione di acciaio (N/mmq)

Mcy_Rd: resistenza di progetto della sezione soggetta a presso-flessione retta (asse vettore y)

Resistenza plastica della sezione lorda A, Npl_Rd=2.743,03 kN

Area resistente al taglio della sezione lungo z, Avz=51,65 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=1.008,21 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=134,08 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=180,61 kN*m

tensione di snervamento di progetto, fyd=338 N/mmq

x (m)	Nx	Tz	Му	sid_m	Mcy_Rd	Verif?
0	0	0	0			
0,25	-0,32	0	0			
0,5	-0,63	-0,51	0			
0,75	-0,94	-1,75	-0,13			
1	-1,26	-3,21	-0,57	1,6		Si
1,25	-1,58	-4,9	-1,37	3,7		Si
1,5	-1,89	-6,81	-2,6	6,8		Si
1,75	-2,21	-8,93	-4,29	11,1		Si
2	-2,53	-11,28	-6,53	16,8		Si
2,25	-2,84	-13,85	-9,35	23,9		Si
2,5	-3,15	-16,64	-12,81	32,7		Si
2,75	-3,47	-19,65	-16,97	43,2		Si
3	-3,79	-22,89	-21,89	55,7		Si
3,25	-4,1	-26,34	-27,61	70,1		Si
3,5	-4,42	-30,01	-34,19	86,8		Si
3,75	-4,73	-33,91	-41,7	105,7		Si
4	-5,05	-38,03	-50,18	127,1		Si
4,25	-5,36	-42,37	-59,68	151,2		Si
4,5	-5,68	-46,93	-70,28	177,9		Si
4,75	-6	-48,7	-82,01	207,5		Si

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONA				IALI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
					IN10	10	D26CL	IV010X001	Α	131 di 190
5	-6,31	-47,68	-94,18	23	8,3		Si			
5,25	-6,63	-43,86	-106,1	26	8,4		Si			
5,5	-6,94	-37,26	-117,07	2	296		Si			
5,75	-7,26	-27,86	-126,38	319	9,6		Si			
6	-7,58	-15,68	-133,35	33	7,2		Si			
6,25	-7,89	-0,7	-137,27	34	7,1		Si			
6,5	-8,2	17,06	-137,44	34	7,6		Si			
6,75	-8,52	37,62	-133,18	33	6,9		Si			
7	-8,84	60,97	-123,78	31	3,2		Si			
7,25	-9,15	80,02	-108,53	27	4,8		Si			
7,5	-9,47	85,93	-88,52	22	4,4		Si			
7,75	-9,78	79,84	-67,04	17	0,3		Si			
8	-10,1	66,84	-47,08	1	120		Si			
8,25	-10,41	51,92	-30,37	7	7,9		Si			
8,5	-10,73	36,95	-17,4	4.	5,2		Si			
8,75	-11,05	23,09	-8,16	2	1,9		Si			
9	-11,36	10,92	-2,39		7,4		Si			
9,25	-11,67	2,43	0,35		2,3		Si			
9,5	-11,99	-1,86	0,95		3,9		Si			
9,75	-12,31	-1,95	0,49	2	2,7		Si			
10	-12,62	-1,95	0		1,7		Si			

CALCOLO ARMATURE TRAVE DI CORONAMENTO

Sollecitazioni di progetto

Momento flettente massimo, My=1,60 kN*m

Taglio massimo, Tz=3,20 kN

Armatura longitudinale a flessione

armatura lembo verticale lato monte = 4 fi 14 (6,16 cmq)

armatura lembo verticale lato valle = 4 fi 14 (6,16 cmg)

armatura lembo orizzontale superiore = 1 fi 14 (1,54 cmq)

armatura lembo orizzontale inferiore = 1 fi 14 (1,54 cmq)

l'armatura rispetta i limiti fissati dalla normativa:

- armatura minima in zona tesa = 5,48 cmq
- armatura massima = 160 cmg

Verifiche di resistenza a flessione

momento ultimo della sezione (lembo superiore maggiormente compresso)=103,3 kN*m momento ultimo della sezione (lembo inferiore maggiormente compresso)=-103,3 kN*m Verifica soddisfatta

Armatura trasversale a taglio

passo max delle staffe prescritto dalla normativa (armatura trasv. minima regolam.re), tc=13,1 cm Resistenza al taglio dovuta al solo cls, Tcls=160,52 kN

passo staffe nella trave = 13,1 cm

Resistenza di progetto a "taglio compressione" nel tratto Li=L/2, Vrcd=3.527,78 kN

Resistenza di progetto a "taglio trazione" dell'armatura trasversale nel tratto Li, Vrsd=150,01 kN

IN10

Resistenza di progetto a taglio nel tratto Li, Vrd=150,01 kN

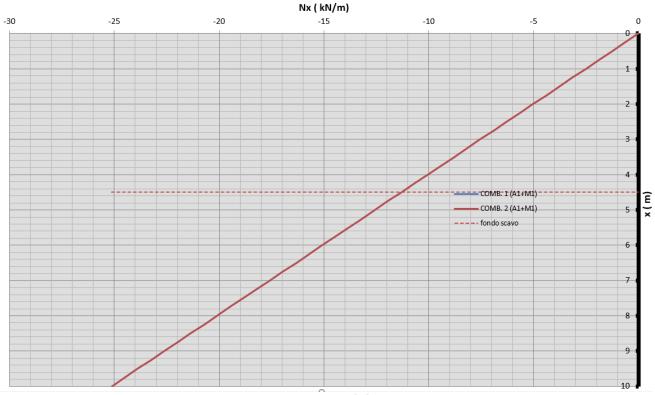
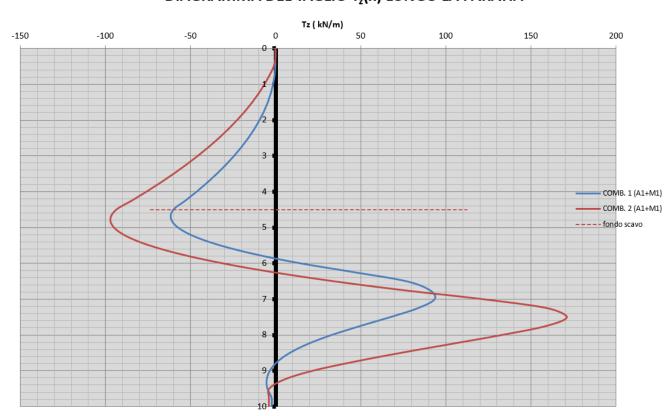

6.3.7.1 Diagrammi

DIAGRAMMA DELLO SFORZO NORMALE $N_x(x)$ LUNGO LA PARATIA


D26CL

IV010X001

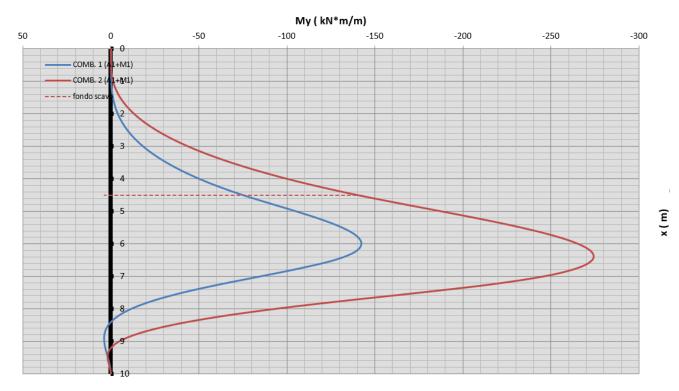
132 di 190

DIAGRAMMA DEL TAGLIO T_z(x) LUNGO LA PARATIA

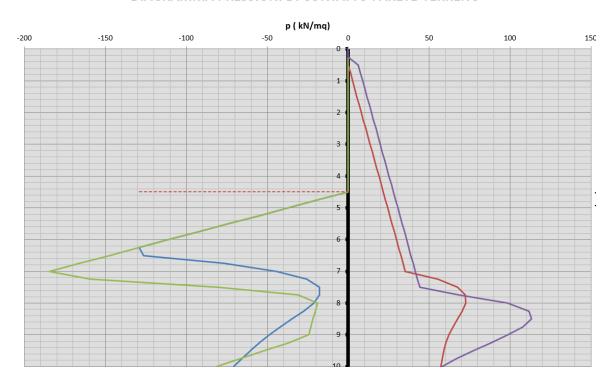
LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI


COMMESSA LOTTO C

CODIFICA DOCUMENTO
D26CL IV010X001

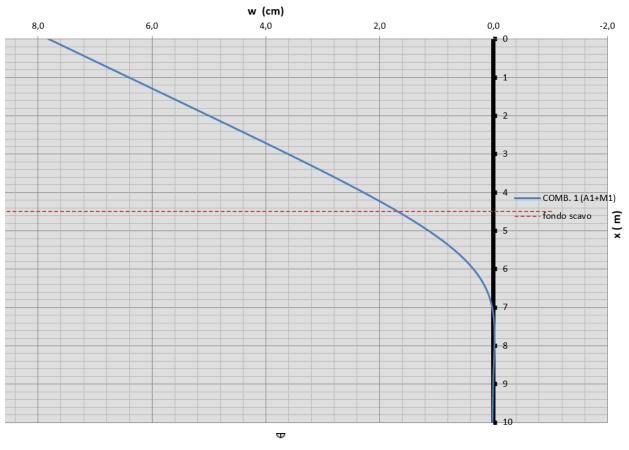

NTO REV.

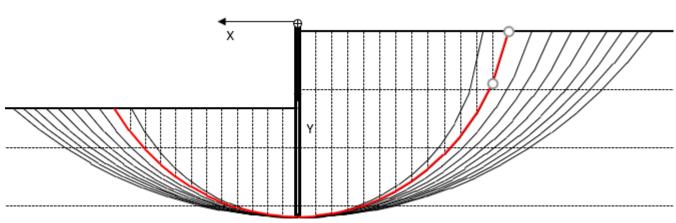
FOGLIO 133 di 190

DIAGRAMMA DEL MOMENTO FLETTENTE M_v(x) LUNGO LA PARATIA

DIAGRAMMA PRESSIONI DI CONTATTO PARETE-TERRENO

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

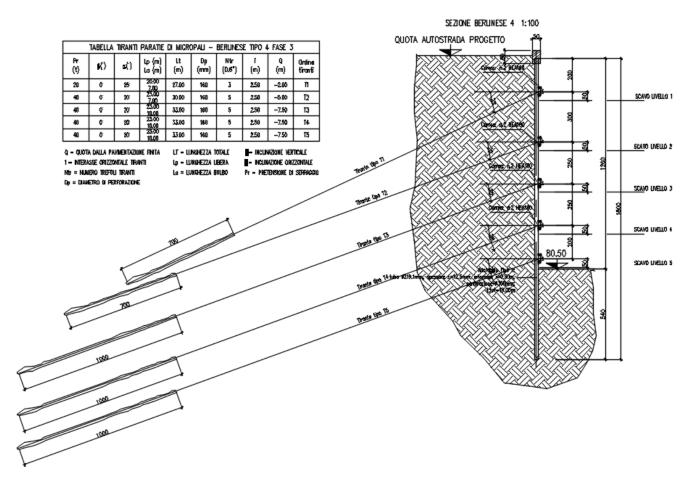

NODO AV/AC DI VERONA: INGRESSO OVEST


RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 134 di 190

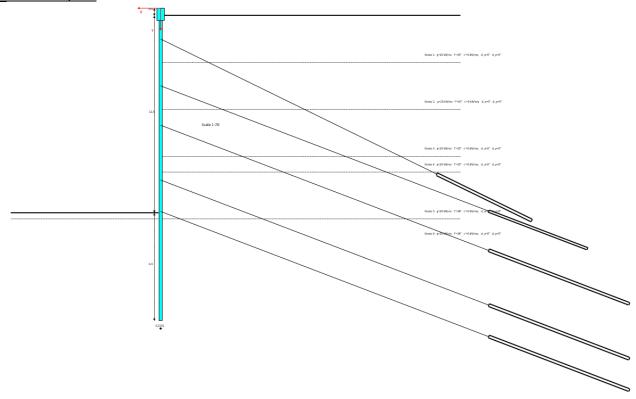
SPOSTAMENTI ORIZZONTALI DELLA PARATIA



6.4 BERLINESE TIPO 4

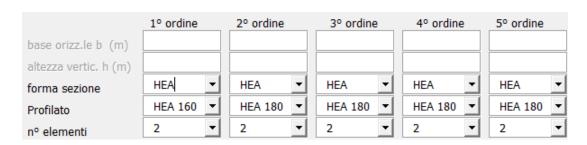
Si riportano i dati ed i relativi disegni della berlinese in oggetto:

Sezione berlinese 1


6.4.1 CARATTERISTICHE GENERALI

L'inclinazione verticale dei tiranti è pari a 65° per i tiranti del primo ordine e a 70° per gli altri tiranti. Anche il precarico è uguale per tutti gli ordini di tiranti e pari a 200kN.

Il bulbo dei tiranti verrà eseguito ad iniezioni ripetute e selettive con una valvola al metro lineare di fondazione.


In sommità della paratia è previsto un cordolo di calcestruzzo armato avente sezione pari a 50 cm x 80 cm. Si riportano di seguito i 4 modelli agli elementi finiti implementati:

Berlinese tipo 4

6.4.2 GEOMETRIA CORDOLI

Si riportano le geometrie delle travi:

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO IN10 10

CODIFICA D26CL

DOCUMENTO IV010X001

RFV. FOGI IO 137 di 190

Α

6.4.3 DESCRIZIONE TERRENI

Nella modellazione agli elementi finiti dei vari tratti di paratia, anche se si è in presenza di una sola tipologia di terreno, si considerano diversi strati aventi le medesime caratteristiche geologicogeotecniche per meglio discretizzare l'entità del coefficiente di Winkler (assunto crescente con la profondità, come meglio spiegato in seguito).

Simbologia adottata:

n°	numero d'ordine dello strato a partire dalla sommità della paratia
Descrizione	Descrizione del terreno
γ	peso di volume del terreno espresso in [kg/mc]
γs	peso di volume saturo del terreno espresso [kg/mc]
ф	angolo d'attrito interno del terreno espresso in [°]
δ	angolo d'attrito terreno/paratia espresso in [°]
С	coesione del terreno espressa in [kg/cmq]

Berlinese tipo 1

n°	Descrizio	ne	γ	γs	φ δ	С	
1	Rilevato	1	2000.00	2000.00	35.0	0.	0.000
2	Rilevato	2	2000.00	2000.00	35.0	0.	0.000
3	Rilevato	3	2000.00	2000.00	35.0	0.	0.000
4	In Situ		1900.00	2000.00	38.0	0.	0.000
5	Rilevato	4	2000.00	2000.00	35.0	0 0.	0.000

6.4.4 DESCRIZIONE STRATIGRAFIA

Simbologia adottata

n° numero d'ordine dello strato a partire dalla sommità della paratia

spessore dello strato in corrispondenza dell'asse della paratia espresso in [m] sp

kw costante di Winkler orizzontale espressa in Kg/cm²/cm

inclinazione dello strato espressa in GRADI(°) α

Per la costante di Winkler si assume un andamento con la profondità definito dalla seguente espressione

 $K(z)=0.50 + 0.50 z^{0.50}$

dove K è la costante di Winkler espressa in Kg/cm²/cm e z è la profondità rispetto alla testa della paratia espressa in metri.

Berlinese tipo 1

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 138 di 190

Profondità di infissione 8.00 [m]

Altezza totale della paratia 18.00 [m]

n°	sp	α	kw	Terreno
1	3.00	0.00	1.11	Rilevato1
2	3.00	0.00	1.56	Rilevato2
3	3.00	0.00	1.87	Rilevato3
4	1.00	0.00	2.04	Rilevato 4
5	3.00	0.00	2.20	In Situ
6	3.00	0.00	2.40	In Situ
7	2.00	0.00	2.56	In Situ

6.4.5 CONDIZIONI DI CARICO

Simbologia e convenzioni adottate

Le ascisse dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia Le ordinate dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia

X_i ascissa del punto iniziale di applicazione del carico

X_f ascissa del punto finale di applicazione del carico

Q_i, Q_f Intensità dei carichi distribuiti sul profilo espresse in [kg/mq]

Per tutte le tipologie di berlinesi (1.1,1.2,1.3,1.4) si considera le seguente condizioni di carico:

Condizione n° 1

Carico distribuito sul profilo $X_i = 0.00$ $X_f = 30.00$ $Q_i = 500$ $Q_f = 500$

6.4.6 IMPOSTAZIONI DI PROGETTO

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γGfav	1.00	1.00
Permanenti	Sfavorevole	γGsfav	1.30	1.00
Variabili	Favorevole	γQfav	0.00	0.00
Variabili	Sfavorevole	VOctov	1.50	1.30

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri	M1	M2	
Tangente dell'angolo di attrito	Vtano'	1.00	1.25

REL

LINEA AV/AC MILANO - VENEZIA

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

AZIONE DI CALCOLO OPERE PROVVISIONAL	.1	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
		IN10	10	D26CL	IV010X001	Α	139 di 190	
Coesione efficace	γ _{c'}		1.00	1.25				
Resistenza non drenata	γ_{cu}	•	1.00	1.40				
Resistenza a compressione uniassiale	γ _{qu}		1.00	1.60				
Peso dell'unità di volume	γ_{γ}	•	1.00	1.00				

6.4.7 IMPOSTAZIONI DI ANALISI

6.4.7.1 Analisi per Fasi di Scavo.

Rottura del terreno: Pressione passiva Spostamento limite o per spostamento limite molle pari a 1.50cm

Impostazioni analisi per fasi di scavo:

Analisi per condizioni di esercizio Analisi per coefficienti tipo A1-M1 Analisi per coefficienti tipo A2-M2

Stabilità globale: Metodo di Fellenius

6.4.8 VERIFICHE BERLINESE TIPO4

In seguito vengono riportati I tabulate di verifica estrapolati dall programma di calcolo:

VERIFICHE AGLI STATI LIMITE ULTIMI

COMB. 1 (SLU-F)

SOLLECITAZIONI AGENTI SULLA PARATIA (calcolo FEM)

Sovraccarichi di progetto sui terrapieni

Terreno di monte, q1d=0,00 kN/mq Terreno di valle, q2d=0,00 kN/mq

Parametri geotecnici di progetto

strato 1 peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=35 (°) coesione drenata, c'_d=0,00 kN/mq angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°) angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°) strato 2 peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 140 di 190

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 4

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 5

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 6

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

Coefficienti di spinta

strato 1

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 2

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO 10 CODIFICA D26CL

DOCUMENTO
IV010X001

REV.

FOGLIO 141 di 190

strato 3

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 4

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 5

lato monte:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

lato valle:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

strato 6

lato monte:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

lato valle:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

Numero di iterazioni nel calcolo non lineare e sollecitazioni

Numero di iterazione effettuate = 6

errore iterazione 0 = 0,004482

errore iterazione 1 = 0,385971

errore iterazione 2 = 0,033394

errore iterazione 3 = 0,018698

errore iterazione 4 = 0,003524

errore iterazione 5 = 0,00121

errore iterazione 6 = 0

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 142 di 190

I						IN10 10	D26CL	IV010X0
	sez./nodo	x (m)	Nx (kN/m)	Tz (kN/m)	My (kN*m/m)			
•	1	0	0	0	0	I		
	2	0,25	-0,63	0	0			
	3	0,5	-1,26	0	0			
	4	0,75	-1,88	-0,44	0			
	5	1	-2,51	-1,32	-0,11			
	6	1,25	-3,14	-2,64	-0,44			
	7	1,5	-3,77	-4,4	-1,1			
	8	1,75	-4,4	-6,61	-2,2			
	9	2	-5,03	-6,61	-3,85			
	9	2	-24,09	31,63	-3,85			
	10	2,25	-24,71	28,54	4,05			
	11	2,5	-25,34	25,02	11,19			
	12	2,75	-25,97	21,06	17,44			
	13	3	-26,6	16,65	22,71			
	14	3,25	-27,23	11,81	26,87			
	15 16	3,5	-27,85	6,53 0,8	29,82 31,46			
	17	3,75 4	-28,48 -29,11	-5,36	31,66			
	18	4,25	-29,11	-11,97	30,32			
	19	4,5	-30,37	-19,02	27,32			
	20	4,75	-30,99	-26,5	22,57			
	21	5	-31,62	-26,5	15,94			
	21	5	-68,48	66,83	15,94			
	22	5,25	-69,11	58,47	32,65			
	23	5 , 5	-69,74	49,66	47,27			
	24	5,75	-70,36	40,41	59,69			
	25	6	-70,99	30,73	69,79			
	26	6,25	-71,62	20,6	77,47			
	27	6,5	-72,25	10,03	82,62			
	28	6,75						
	29	7		-12,43				
	30	7,25		-24,32				
	31	7,5	-74,76	-24,32				
	31	7,5	-124,83					
	32	7,75						
	33	8		74,94				
	34	8,25						
	35 26	8,5 8 75						
	36 37	8,75 9	-127,97 -128,6					
	38	9,25		2,28	181,4			
	39	9,23	-129,23					
	40	9,75	-130,49					
	41	10	-131,11					
	42	10,25	-131,74		159,46			
		, -	,	, -	, -			

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 143 di 190

43	10,5	-132,37	-81,39	143,51
44	10,75	-133	-97,24	123,17
45	11	-133,63	-97,24	98,86
45	11	-175,87	2,59	98,86
46	11,25	-176,5	-14,04	99,5
47	11,5	-177,13	-31,04	96
48	11,75	-177,75	-48,44	88,23
49	12	-178,38	-66,22	76,12
50	12,25	-179,01	-84,39	59,57
51	12,5	-179,64	-102,94	38,47
52	12,75	-180,27	-121,89	12,74
53	13	-180,89	-121,89	-17,74
53	13	-203,49	-73,34	-17,74
54	13,1	-203,74	-85,03	-25,07
55	13,3	-204,24	-96,5	-42,08
56	13,5	-204,74	-104,75	-61,38
57	13,75	-205,37	-107,48	-87,56
58	14	-206	-103,76	-114,43
59	14,25	-206,63	-93,6	-140,37
60	14,5	-207,26	-76,99	-163,77
61	14,75	-207,88	-53,94	-183,02
62	15	-208,51	-24,44	-196,5
63	15,25	-209,14	11,5	-202,62
64	15,5	-209,77	53,88	-199,74
65	15,75	-210,4	102,71	-186,27
66	16	-211,02	144,71	-160,59
67	16,25	-211,65	153,61	-124,42
68	16,5	-212,28	136,35	-86,01
69	16,75	-212,91	103,9	-51,93
70	17	-213,54	69,56	-25,95
71	17,25	-214,17	40,32	-8,56
72	17,5	-214,79	18,74	1,52
73	17,75	-215,42	4,77	6,2
74	18	-216,05	-2,96	7,39
75	18,25	-216,68	-6,22	6,66
76	18,5	-217,31	-6,69	5,1
77	18,75	-217,93	-5,68	3,43
78	19	-218,56	-4,1	2,01
79	19,25	-219,19	-2,5	0,98
80	19,5	-219,82	-1,18	0,36
81	19,75	-220,45	-0,25	0,06
82	20	-221,07	-0,25	0

REAZIONI VINCOLARI E PRESSIONI DI CONTATTO TERRENO-PARATIA (calcolo FEM)

RvX = componente della reazione vincolare lungo X (kN/m)

RvY = componente della reazione vincolare lungo Y (kN/m)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 144 di 190

RvZ = componente momento della reazione vincolare (kN*m/m) pXv = pressione orizzontale del terreno (molle di valle) (kN/mq)

pXm = pressione orizzontale del terreno (molle di monte) (kN/mq)

pXm = pres	<u>sione orizzo</u>	ntale del te	rreno (mo	lle di mon	te) (kN/m	q)
sez./nodo	x (m)	RvX	RvY	RvZ	pXv	pXm
3	0,5	0	0	0	0	0
4	0,75	0,34	0	0	0	1,35
5	1	0,68	0	0	0	2,71
6	1,25	1,02	0	0	0	4,06
7	1,5	1,36	0	0	0	5,42
8	1,75	1,69	0	0	0	6,77
9	2	-29,41	14,66	0	0	8,13
10	2,25	2,37	0	0	0	9,48
11	2,5	2,71	0	0	0	10,84
12	2,75	3,05	0	0	0	12,19
13	3	3,39	0	0	0	13,55
14	3,25	3,73	0	0	0	14,9
15	3,5	4,06	0	0	0	16,26
16	3,75	4,4	0	0	0	17,61
17	4	4,74	0	0	0	18,97
18	4,25	5,08	0	0	0	20,32
19	4,5	5,42	0	0	0	21,68
20	4,75	5,76	0	0	0	23,03
21	5	-71,8	28,35	0	0	24,39
22	5,25	6,44	0	0	0	25,74
23	5,5	6,77	0	0	0	27,1
24	5,75	7,11	0	0	0	28,45
25	6	7,45	0	0	0	29,81
26	6,25	7,79	0	0	0	31,16
27	6,5	8,13	0	0	0	32,52
28	6,75	8,47	0	0	0	33,87
29	7	8,81	0	0	0	35,23
30	7,25	9,15	0	0	0	36,58
31	7,5	-96,34	38,52	0	0	37,94
32	7,75	9,82	0	0	0	39,29
33	8	10,16	0 0	0	0 0	40,65
34	8,25	10,5 10,84		0		42
35 36	8,5 8,75	10,84	0 0	0 0	0 0	43,36 44,71
37	9	11,18	0	0	0	46,07
38	9,25	11,32	0	0	0	
39	9,25 9,5	12,19	0	0	0	47,42 48,78
40	9,75	12,19	0	0	0	50,13
41	10	12,33	0	0	0	51,49
42	10,25	13,21	0	0	0	52,84
43	10,25	13,55	0	0	0	54,2
44	10,75	12,19	0	0	0	48,77
77	10,75	12,13	J	J	J	10,77

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE I	OI CALCOLO	O OPERE P	ROVVISIONALI	CON	MMESSA	LOTT	O CODIFICA	DOCUMENTO	REV.	FOGLIO	_
					IN10	10	D26CL	IV010X001	Α	145 di 190	_
45	11	-76,79	32,49	0	()	49,96				
46	11,25	12,79	0	0	()	51,14				
47	11,5	13,08	0	0	()	52,33				
48	11,75	13,38	0	0	()	53,52				
49	12	13,68	0	0	()	54,71				
50	12,25	13,98	0	0	()	55,9				
51	12,5	14,27	0	0	()	57,09				
52	12,75	14,57	0	0	()	58,28				
53	13	-37,34	17,38	0	()	59,47				
54	13,1	8,99	0	0	()	59,95				
55	13,3	8,82	0	0	-16,83	1	60,9				
56	13,5	6,35	0	0	-33,63	3	61,85				
57	13,75	2,1	0	0	-54,65	5	63,04				
58	14	-2,86	0	0	-75,67	7	64,23				
59	14,25	-7,82	0	0	-96,69	9	65,42				
60	14,5	-12,77	0	0	-117,	7	66,61				
61	14,75	-17,73	0	0	-138,72	2	67,8				
62	15	-22,69	0	0	-159,74	4	68,99				
63	15,25	-27,65	0	0	-180,76	ŝ	70,18				
64	15,5	-32,6	0	0	-201,78	3	71,36				
65	15,75	-37,56	0	0	-222,8	3	72,55				
66	16	-32,3	0	0	-202,96	ŝ	73,74				
67	16,25	-6,85	0	0	-102,32	2	74,93				
68	16,5	13,28	0	0	-48,01	1	101,11				
69	16,75	24,96	0	0	-26,56	ŝ	126,41				
70	17	26,41	0	0	-25,58		131,23				
71	17,25	22,5	0	0	-35,33	3	125,32				
72	17,5	16,6	0	0	-49,05		115,44				
73	17,75	10,74	0	0	-62,68		105,66				
74	18	5,94	0	0	-74,2		97,98				
75	18,25	2,51	0	0	-82,99		93,04				
76	18,5	0,36	0	0	-89,21		90,66				
77	18,75	-0,78	0	0	-93,41		90,3				
78	19	-1,22	0	0	-96,22		91,35				
79	19,25	-1,23	0	0	-98,15		93,25				
80	19,5	-1,02	0	0	-99,66		95,59				
81	19,75	-0,72	0	0	-100,97		98,11				
82	20		-170,06		-102,24		100,69				
-	-	-, -	, -	-	,-		,				

PERCENTUALI DI SPINTA PASSIVA MOBILITATA

Spinta passiva mobilitata a monte = 9,4%

Spinta passiva mobilitata a valle = 55,7%

VERIFICA CONDIZIONI DI EQUILIBRIO (calcolo FEM)

Equilibrio alla traslazione orizzontale

somma delle forze esterne orizzontali applicate alla paratia, SFx=0,00 kN/m

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 146 di 190

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

somma delle reazioni vincolari lungo X, SommRvX=0,00 kN/m

equazione di equilibrio alla traslazione orizzontale: SFx+Sme+Sve+SommRvX=0,00 kN/m

Equilibrio alla traslazione verticale

peso proprio della paratia, Wp=38,66 kN/m

somma delle forze verticali applicate alla paratia, SFy=0,00 kN/m

somma delle reazioni vincolari lungo Y, SommRvY=-38,66 kN/m

equazione di equilibrio alla traslazione verticale: Wp+SFy+SommRvY=0,00 kN/m

Equilibrio alla rotazione (attorno al primo nodo)

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

momento delle reazioni vincolari lungo X, MRvX=0,00 kN*m/m

equazione di equilibrio alla rotazione: MFx+MSme+MSve+MRvX=0,00 kN*m/m

Spinte orizzontali

spinta delle terre di monte, Sm=1.009,85 kN/m

spinta delle terre di valle, Sv=-657,67 kN/m

somma componenti orizz. delle forze che i tiranti/puntoni esercitano sull'opera, STx=-352,18 kN/m

somma forze orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

Momenti delle spinte orizzontali rispetto al primo nodo

momento della spinta delle terre di monte, MSm=13.701,38 kN*m/m

momento della spinta delle terre di valle, MSv=-10.852,60 kN*m/m

momento delle compon. orizz. delle forze che i tiranti/puntoni esercitano sull'opera, MTx=-2.848,78 kN*m/m

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

SFORZI NEI TIRANTI/PUNTONI (calcolo FEM)

TX*=sforzo lungo l'asse globale X per metro lineare di paratia (kN/m)

TY*=sforzo lungo l'asse globale Y per metro lineare di paratia (kN/m)

TX=sforzo lungo l'asse globale X nel singolo tirante/puntone (kN)

TY=sforzo lungo l'asse globale Y nel singolo tirante/puntone (kN)

Fa=sforzo di trazione/compressione nel singolo tirante/puntone (kN)

Fad=gGs x Fa sforzo di trazione/compressione di progetto nel singolo tirante/puntone (kN)

Ordine	TX*	TY*	TX	TY	Fa	Fad
1	-31,44	14,66	-78,60	36,65	86,73	112,75
2	-77,89	28,35	-194,74	70,88	207,23	269,40
3	-105,82	38,52	-264,55	96,29	281,53	365,99
4	-89,28	32,49	-223,20	81,24	237,52	308,78
5	-47,75	17,38	-119,37	43,45	127,03	165,13

SPOSTAMENTI NODALI (calcolo FEM)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 147 di 190

w = spostamento orizzontale (lungo l'asse globale X, coincidente con l'asse locale z)

u = spostamento verticale (lungo l'asse globale Y, coincidente con l'asse locale x)

u = spostar	mento verti	icale (lungo	l'asse glob	ale Y, coin
				rot.
sez./nodo	x (m)	w (cm)	u (cm)	(rad)
1	0	-0,367	0,038	0,0131
2	0,25	-0,04	0,038	0,0131
3	0,5	0,287	0,038	0,0131
4	0,75	0,614	0,038	0,0131
5	1	0,941	0,038	0,0131
6	1,25	1,268	0,038	0,0131
7	1,5	1,596	0,038	0,0131
8	1,75	1,923	0,038	0,0131
9	2	2,251	0,038	0,0131
10	2,25	2,58	0,038	0,0131
11	2,5	2,908	0,038	0,0131
12	2,75	3,233	0,038	0,0129
13	3	3,555	0,038	0,0128
14	3,25	3,871	0,038	0,0126
15	3,5	4,182	0,037	0,0123
16	3,75	4,487	0,037	0,0121
17	4	4,785	0,037	0,0118
18	4,25	5,076	0,037	0,0115
19	4,5	5,361	0,037	0,0113
20	4,75	5,64	0,037	0,0111
21	5	5,914	0,037	0,0109
22	5,25	6,184	0,037	0,0107
23	5,5	6,447	0,036	0,0103
24	5,75	6,699	0,036	0,0099
25	6	6,94	0,036	0,0093
26	6,25	7,165	0,036	0,0087
27	6,5	7,373	0,035	0,008
28	6,75	7,564	0,035	0,0073
29	7	7,737	0,035	0,0065
30	7,25	7,891	0,034	0,0058
31	7,5	8,028	0,034	0,0051
32	7,75	8,148	0,034	0,0044
33	8	8,246	0,033	0,0034
34	8,25	8,318	0,033	0,0023
35	8,5	8,359	0,032	0,001
36	8,75	8,367	0,032	-0,0004
37	9	8,338	0,031	-0,0019
38	9,25	8,272	0,031	-0,0034
39	9,5	8,167	0,03	-0,005
40	9,75	8,022	0,03	-0,0065
41	10	7,84	0,029	-0,008
42	10,25	7,621	0,029	-0,0095
43	10,5	7,367	0,028	-0,0108

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IN10 10 D26CL IV010X001 A 148 di 190

				I
44	10,75	7,083	0,028	-0,0119
45	11	6,773	0,027	-0,0129
46	11,25	6,44	0,027	-0,0137
47	11,5	6,086	0,026	-0,0146
48	11,75	5,712	0,025	-0,0154
49	12	5,319	0,025	-0,0161
50	12,25	4,91	0,024	-0,0167
51	12,5	4,488	0,023	-0,0171
52	12,75	4,058	0,023	-0,0173
53	13	3,625	0,022	-0,0173
54	13,1	3,452	0,022	-0,0172
55	13,3	3,111	0,021	-0,017
56	13,5	2,774	0,021	-0,0166
57	13,75	2,367	0,02	-0,016
58	14	1,978	0,019	-0,0151
59	14,25	1,613	0,018	-0,014
60	14,5	1,279	0,018	-0,0127
61	14,75	0,98	0,017	-0,0112
62	15	0,72	0,016	-0,0096
63	15,25	0,502	0,015	-0,0079
64	15,5	0,327	0,014	-0,0061
65	15,75	0,195	0,014	-0,0045
66	16	0,102	0,013	-0,003
67	16,25	0,044	0,012	-0,0017
68	16,5	0,012	0,011	-0,0008
69	16,75	-0,001	0,01	-0,0002
70	17	-0,002	0,01	0,0001
71	17,25	0,002	0,009	0,0002
72	17,5	0,008	0,008	0,0003
73	17,75	0,015	0,007	0,0002
74	18	0,02	0,007	0,0002
75	18,25	0,023	0,006	0,0001
76	18,5	0,025	0,005	0,0001
77	18,75	0,026	0,004	0
78	19	0,027	0,003	0
79	19,25	0,027	0,002	0
80	19,5	0,026	0,002	0
81	19,75	0,026	0,001	0
82	20	0,025	0	0

VERIFICA AL CARICO LIMITE VERTICALE

Parametri geotecnici di progetto

coesione = 0,00 kN/mq

angolo di resistenza al taglio = 38°

Resistenza alla punta

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 149 di 190

fattore Nq (Berezantzev) = 118,83

fattore Nc = 150,82

tensione litostatica verticale totale alla profondità L, sVL=390,00 kN/mq

pressione neutra alla profondità L, uL=0,00 kN/mq

tensione litostatica verticale efficace alla profondità L, s'VL=390,00 kN/mq

Resistenza unitaria alla punta, p=46.343,61 kN/mq

Resistenza alla punta, Pmax=3.478,33 kN

Resistenza laterale

Resistenza laterale, Smax=1.038,91 kN

Resistenza alla punta e laterale di progetto

Resistenza alla punta (valore medio) = 3.478,33 kN

Resistenza alla punta (valore minimo) = 3.478,33 kN

Resistenza laterale (valore medio) = 1.038,91 kN

Resistenza laterale (valore minimo) = 1.038,91 kN

Fattore di correlazione, xsi3=1,7

Fattore di correlazione, xsi4=1,7

Resistenza alla punta (valore caratteristico) = 2.046,08 kN

Resistenza laterale (valore caratteristico) = 611,12 kN

Resistenza alla punta di progetto, Pmax_d=1.779,20 kN

Resistenza laterale di progetto, Smax_d=531,41 kN

Carico limite per carichi assiali di compressione

 $Qlim_d = Pmax_d + Smax_d = 2.310,61 kN$

Carico limite di sfilamento per carichi assiali di trazione

Qlimt d = Smax d = 531,41 kN

Azione di progetto

Ed = 221,07 kN

Verifica al carico limite per carichi assiali di compressione

Verifica soddisfatta: l'azione di progetto non supera la resistenza di progetto

coeff. di sicurezza, Qlim_d/Ed=10,45

VERIFICA DI STABILITA' GLOBALE

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

strato 2

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

strato 4

peso dell'unità di volume, g=20,00 kN/mc

LOTTO

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

CODIFICA D26CL DOCUMENTO
IV010X001

REV. FOGLIO

Α

150 di 190

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

strato 5

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=32,01 (°)

coesione drenata, c'_d=0,00 kN/mq

strato 6

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=32,01 (°)

coesione drenata, c'_d=0,00 kN/mq

Parametri di calcolo

n° di cerchi analizzati = 10 Metodo utilizzato: Bishop

Cerchio critico

Coordinate centro e raggio: X (m)= 0 Y (m)= -0,3 Rc (m)= 20,4

Simbologia adottata

Wt = peso del concio (kN)

Wq = forza risultante verticale dovuta al sovraccarico applicato sul concio (kN)

alfa=angolo (minore di 90°) che l'orizzontale forma con la base del concio (positivo se antiorario)

u = pressione neutra alla base del concio (kN/mq)

DX = larghezza lungo X del concio (m)

Fsh = forza sismica orizzontale sul concio (kN)

B = braccio della forza sismica orizzontale rispetto al centro del cerchio di rottura (m)

Fsv = forza sismica verticale sul concio (kN)

N = risultante delle tensioni normali di reazione del terreno alla base del concio (kN)

T = risultante delle tensioni tangenziali di reazione del terreno alla base del concio (kN)

concio	Wt	Wq	alfa (°)	u	DX	Fsh	В	Fsv	N	T
1	20,48	0	-46,1	0	1,4	0	33,4	0	25,58	-3,8
2	57,88	0	-40,65	0	1,4	0	33,4	0	67,66	10,04
3	88,92	0	-35,63	0	1,4	0	33,4	0	98,88	14,68
4	114,84	0	-30,9	0	1,4	0	33,4	0	122,92	18,24
5	136,42	0	-26,4	0	1,4	0	33,4	0	141,86	21,05
6	154,2	0	-22,07	0	1,4	0	33,4	0	156,95	23,29
7	168,55	0	-17,88	0	1,4	0	33,4	0	169,01	25,08
8	179,74	0	-13,77	0	1,4	0	33,4	0	178,56	-26,5
9	187,95	0	-9,74	0	1,4	0	33,4	0	185,96	-27,6 -
10	193,32	0	-5,76	0	1,4	0	33,4	0	191,44	28,41
11	195,93	0	-1,81	0	1,4	0	33,4	0	364,46	54,09
12	13,3	0	0,24	0	0,05	0	33,4	0	13,31	-1,98
13	566,86	0	2,34	0	1,45	0	33,4	0	570,8	-

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE	DI CALCOLO	OPERE PRO	VVISIONALI	COMM	IESSA LOTT O	O CODIFICA	l	DOCUMENTO	REV.	FOGLIO
				IN [.]	10 10	D26CL		IV010X001	Α	151 di 190
										84,72
14	563,64	0	6,43	0	1,45	0	33,4	0	576,85	85,62
15	557,38	0	10,54	0	1,45	0	33,4	0	583,05	86,54
16	547,96	0	14,71	0	1,45	0	33,4	0	589,53	-87,5 -
17	535,25	0	18,97	0	1,45	0	33,4	0	596,42	88,52
18	518,99	0	23,34	0	1,45	0	33,4	0	603,9	89,63
19	498,86	0	27,85	0	1,45	0	33,4	0	612,24	90,87
20	474,38	0	32,57	0	1,45	0	33,4	0	621,84	-92,3
21	444,86	0	37,55	0	1,45	0	33,4	0	633,35	-94
22	409,26	0	42,89	0	1,45	0	33,4	0	647,93	96,17
23	365,86	0	48,75	0	1,45	0	33,4	0	667,98	99,14
24	311,51	0	55,42	0	1,45	0	33,4	0	699,6	103,8
25	238,86	0	63,59	0	1,45	0	33,4	0	733,37	97,55 -
26	98,32	0	77,96	0	1,45	0	33,4	0	1252,2	166,6

Lunghezza dell'arco di cerchio di scivolamento, L=48,67 m

Momento resistente, M_resist=138.979,90 kN*m

Momento instabilizzante, M_instab=-33.002,93 kN*m

Verifica soddisfatta

VERIFICHE STRUTTURALI PARATIA

Verifiche di resistenza a presso-flessione e taglio

sid_m: tensione ideale massima nella sezione di acciaio (N/mmq)

Mcy_Rd: resistenza di progetto della sezione soggetta a presso-flessione retta (asse vettore y)

Resistenza plastica della sezione lorda A, Npl_Rd=2.743,03 kN

Area resistente al taglio della sezione lungo z, Avz=51,65 cmq

Resistenza di progetto a taglio lungo z, Vcz Rd=1.008,21 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=134,08 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=180,61 kN*m

tensione di snervamento di progetto, fyd=338 N/mmq

x (m)	Nx	Tz	Му	sid_m	Mcy_Rd	Verif?
0	0	0	0			
0,25	-0,32	0	0			
0,5	-0,63	0	0			
0,75	-0,94	-0,22	0			
1	-1,26	-0,66	-0,06	0,3		Si
1,25	-1,58	-1,33	-0,22	0,8		Si
1,5	-1,89	-2,21	-0,55	1,6		Si

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

AZIONE [OI CALCOLO	O OPERE PR	ROVVISION	COMMESSA IN10	LOTTO 10	CODIFICA D26CL	DOCUMENTO IV010X001	REV.	FOGLIO 152 di 190
1,75	-2,21	-3,32	-1,11	3,1		Si			
2	-2,53	-3,32	-1,93	5,2		Si			
2	-12,1	15,89	-1,93	6,6		Si			
2,25	-12,41	14,34	2,03	6,7		Si			
2,5	-12,73	12,57	5,62	15,7		Si			
2,75	-13,05	10,58	8,76	23,7		Si			
3	-13,36	8,36	11,41	30,4		Si			
3,25	-13,68	5,93	13,5	35,7		Si			
3,5	-13,99	3,28	14,98	39,5		Si			
3,75	-14,31	0,4	15,8	41,6		Si			
4	-14,62	-2,69	15,9	41,9		Si			
4,25	-14,94	-6,01	15,23	40,2		Si			
4,5	-15,26	-9,55	13,72	36,5		Si			
4,75	-15,57	-13,31	11,34	30,5		Si			
5	-15,88	-13,31	8,01	22,1		Si			
5	-34,4	33,57	8,01	24,4		Si			
5,25	-34,72	29,37	16,4	45,6		Si			
5,5	-35,03	24,95	23,75	64,2		Si			
5,75	-35,34	20,3	29,98	80		Si			
6	-35,66	15,44	35,06	92,8		Si			
6,25	-35,98	10,35	38,92	102,6		Si			
6,5	-36,29	5,04	41,5	109,1		Si			
6,75	-36,61	-0,49	42,76	112,3		Si			
7	-36,92	-6,24	42,64	112,1		Si			
7,25	-37,24	-12,22	41,08	108,2		Si			
7,5	-37,55	-12,22	38,02	100,5		Si			
7,5	-62,71	50,7	38,02	103,6		Si			
7,75	-63,02	44,28	50,7	135,6		Si			
8	-63,34	37,65	61,77	163,6		Si			
8,25	-63,66	30,79	71,18	187,3		Si			
8,5	-63,97	23,71	78,88	206,8		Si			
8,75	-64,28	16,41	84,8	221,7		Si			
9	-64,6	8,89	84,8 88,9	232,1		Si			
9,25	-64,92	1,15	91,12	232,1		Si			
9,23 9,5	-65,23	-6,82	91,12	237,8		Si			
9,75	-65,55	-0,82 -15	89,71	236,3		Si			
10	-65,86	-23,41	85,95	234,3		Si			
10,25	-66,18	-23,41 -32,04	80,1	210,1		Si			
10,25	-66,49	-32,04 -40,89	72,09	190		Si			
10,75	-66,81	-40,89 -48,85	61,87	164,2		Si			
10,75	-66,81 -67,13	-48,85 -48,85	49,66	133,5		Si			
11	-88,35	1,3	49,66 40.08	136,1		Si c:			
11,25	-88,66	-7,05	49,98	137		Si c:			
11,5	-88,98	-15,59	48,22	132,6		Si c:			
11,75 12	-89,29	-24,33	44,32	122,8		Si c:			
17	-89,61	-33,26	38,24	107,5		Si			

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE	DI CALCOL	O OPERE P	ROVVISIONA	ALI	COMMESSA	LOTTO 10	CODIFICA D26CL	DOCUMENTO IV010X001	REV.	FOGLIO 153 di 190
12,5	-90,24	-51,71	19,32	5	9,9		Si			
12,75	-90,56	-61,23	6,4	2	7,3		Si			
13	-90,87	-61,23	-8,91		3,7		Si			
13	-102,22	-36,84	-8,91	3	5,1		Si			
13,1	-102,35	-42,71	-12,59	4	4,4		Si			
13,3	-102,6	-48,48	-21,14	6	5,9		Si			
13,5	-102,85	-52,62	-30,83	9	0,4		Si			
13,75	-103,16	-53,99	-43,98	12	3,6		Si			
14	-103,48	-52,12	-57,48	15	7,7		Si			
14,25	-103,8	-47,02	-70,51	19	0,6		Si			
14,5	-104,11	-38,67	-82,27	22	0,3		Si			
14,75	-104,43	-27,1	-91,94	24	4,7		Si			
15	-104,74	-12,28	-98,71	26	1,8		Si			
15,25	-105,06	5,78	-101,78	26	9,6		Si			
15,5	-105,37	27,07	-100,34	:	266		Si			
15,75	-105,69	51,59	-93,57	:	249		Si			
16	-106	72,69	-80,67	21	.6,5		Si			
16,25	-106,32	77,16	-62,5	17	0,7		Si			
16,5	-106,64	68,49	-43,21	12	2,1		Si			
16,75	-106,95	52,19	-26,09		79		Si			
17	-107,27	34,94	-13,04	4	6,1		Si			
17,25	-107,59	20,25	-4,3	2	4,1		Si			
17,5	-107,9	9,41	0,76	1	.5,2		Si			
17,75	-108,21	2,4	3,11	2	1,2		Si			
18	-108,53	-1,49	3,71	2	2,7		Si			
18,25	-108,85	-3,12	3,35	2	1,9		Si			
18,5	-109,16	-3,36	2,56	1	.9,9		Si			
18,75	-109,47	-2,85	1,72	1	.7,8		Si			
19	-109,79	-2,06	1,01		6,1		Si			
19,25	-110,11	-1,26	0,49	1	.4,8		Si			
19,5	-110,42	-0,59	0,18	1	4,1		Si			
19,75	-110,74	-0,13	0,03	1	.3,7		Si			
20	-111,05	-0,13	0	1	.3,7		Si			

VERIFICHE S.L.U. DI TIPO GEOTECNICO E STRUTTURALE SUI TIRANTI

ANCORAGGIO DI ORDINE 1

forza di progetto di trazione agente sul tirante, Fad=112,75 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 3,82

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=270,38 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 5,98

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,22 N/mmq

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

IN10 10 D26CL IV010X001 A

FOGI IO

154 di 190

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 10,7

ANCORAGGIO DI ORDINE 2

forza di progetto di trazione agente sul tirante, Fad=269,40 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,6

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=646,05 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 2,5

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,53 N/mmg

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 4,48

ANCORAGGIO DI ORDINE 3

forza di progetto di trazione agente sul tirante, Fad=365,99 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,68

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=877,67 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 1,84

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,51 N/mmg

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 4,71

ANCORAGGIO DI ORDINE 4

forza di progetto di trazione agente sul tirante, Fad=308,78 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,99

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=740,47 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 2,18

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,43 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 5,58

ANCORAGGIO DI ORDINE 5

forza di progetto di trazione agente sul tirante, Fad=165,13 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 3,73

2) Verifica alla rottura del tirante di acciaio (STR)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 155 di 190

tensione normale nell'acciaio del tirante, Sigf=396,01 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 4,08

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,23 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 10,44

COMB. 2 (SLU-F)

SOLLECITAZIONI AGENTI SULLA PARATIA (calcolo FEM)

Sovraccarichi di progetto sui terrapieni

Terreno di monte, q1d=23,08 kN/mq

Terreno di valle, q2d=0,00 kN/mq

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 2

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt pd=0 (°)

strato 4

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 5

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO CODIFICA D26CL 10

DOCUMENTO IV010X001

RFV. FOGI IO Α

156 di 190

strato 6

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=38 (°) coesione drenata, c'_d=0,00 kN/mq angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°) angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

Coefficienti di spinta

strato 1

lato monte:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 2

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 3

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 4

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 5

lato monte:

coeff. di spinta attiva, Ka=0,237883

LOTTO

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

CODIFICA D26CL

DOCUMENTO IV010X001

REV. FOGLIO Α

157 di 190

coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746 lato valle:

coeff. di spinta attiva, Ka=0,237883 coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746 strato 6

lato monte:

lato valle:

coeff. di spinta attiva, Ka=0,237883 coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746

coeff. di spinta attiva, Ka=0,237883 coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746

Numero di iterazioni nel calcolo non lineare e sollecitazioni

Numero di iterazione effettuate = 5

errore iterazione 0 = 0,005338

errore iterazione 1 = 0,460813

errore iterazione 2 = 0,035793

errore iterazione 3 = 0,021367

errore iterazione 4 = 0,006694

errore iterazione 5 = 0,000654

	Nx (Tz (My (
x (m)	kN/m)	kN/m)	kN*m/m)
0	0	0	0
0,25	-0,63	0	0
0,5	-1,26	-1,02	0
0,75	-1,88	-3,49	-0,25
1	-2,51	-6,4	-1,13
1,25	-3,14	-9,76	-2,73
1,5	-3,77	-13,55	-5,17
1,75	-4,4	-17,78	-8,55
2	-5,03	-17,78	-13
2	-36,1	44,18	-13
2,25	-36,73	39,06	-1,95
2,5	-37,35	33,51	7,81
2,75	-37,98	27,51	16,19
3	-38,61	21,07	23,06
3,25	-39,24	14,2	28,33
3,5	-39,87	6,88	31,88
3,75	-40,49	-0,88	33,6
4	-41,12	-9,07	33,38
4,25	-41,75	-17,71	31,12
4,5	-42,38	-26,79	26,69
	0 0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,5 2,75 3,25 3,5 3,75 4	x (m) kN/m) 0 0 0,25 -0,63 0,5 -1,26 0,75 -1,88 1 -2,51 1,25 -3,14 1,5 -3,77 1,75 -4,4 2 -5,03 2 -36,1 2,25 -36,73 2,5 -37,35 2,75 -37,98 3 -38,61 3,25 -39,87 3,75 -40,49 4 -41,12 4,25 -41,75	x (m) kN/m) kN/m) 0 0 0 0,25 -0,63 0 0,5 -1,26 -1,02 0,75 -1,88 -3,49 1 -2,51 -6,4 1,25 -3,14 -9,76 1,5 -3,77 -13,55 1,75 -4,4 -17,78 2 -5,03 -17,78 2 -36,1 44,18 2,25 -36,73 39,06 2,5 -37,35 33,51 2,75 -37,98 27,51 3 -38,61 21,07 3,25 -39,24 14,2 3,5 -39,87 6,88 3,75 -40,49 -0,88 4 -41,12 -9,07 4,25 -41,75 -17,71

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IN10	10	D26CL	IV010X001	Α	158 di 190

20	4,75	-43,01	-36,31	19,99
21	5	-43,64	-36,31	10,91
21	5	-89,08	78,59	10,91
22	5,25	-89,71	68,19	30,56
23	5,5	-90,34	57,35	47,61
24	5,75	-90,96	46,07	61,95
25	6	-91,59	34,35	73,46
26	6,25	-92,22	22,19	82,05
27	6,5	-92,85	9,59	87,6
28	6,75	-93,48	-3,45	90
29	7	-94,1	-16,93	89,13
30	7,25	-94,73	-30,86	84,9
31	7,5	-95,36	-30,86	77,18
31	7,5	-153,78	115,29	77,18
32	7,75	-154,41	100,49	106,01
33	8	-155,04	85,24	131,13
34	8,25	-155,67	69,56	152,44
35	8,5	-156,29	53,44	169,83
36	8,75	-156,92	36,87	183,19
37	9	-157,55	19,87	192,41
38	9,25	-158,18	2,42	197,37
39	9,5	-158,81	-15,46	197,98
40	9,75	-159,44	-33,79	194,11
41	10	-160,06	-52,55	185,67
42 42	10,25	-160,69	-71,76	172,53
43 44	10,5	-161,32	-91,41 -109,04	154,59
44 45	10,75 11	-161,95 -162,58	-109,04	131,74 104,48
45 45	11	-102,38	6,11	104,48
46	11,25	-211,63	-12,29	106,01
47	11,25	-212,3	-31,09	102,93
48	11,75	-212,93	-50,26	95,16
49	12	-213,56	-69,83	82,6
50	12,25	-214,19	-89,78	65,14
51	12,5	-214,82	-110,12	42,69
52	12,75	-215,44	-130,85	15,16
53	13	-216,07	-130,85	-17,55
53	13	-242,48	-73,08	-17,55
54	13,1	-242,73	-85,84	-24,86
55	13,3	-243,23	-98,73	-42,03
56	13,5	-243,73	-108,59	-61,77
57	13,75	-244,36	-113,1	-88,92
58	14	-244,99	-111,17	-117,19
59	14,25	-245,62	-102,79	-144,98
60	14,5	-246,25	-87,96	-170,68
61	14,75	-246,87	-66,7	-192,67
62	15	-247,5	-38,99	-209,35

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	INIAO	40	Dacci	11/0407004		450 4: 400

63	15,25	-248,13	-4,83	-219,09
64	15,5	-248,76	35,77	-220,3
65	15,75	-249,39	82,82	-211,36
66	16	-250,02	136,31	-190,65
67	16,25	-250,64	162,88	-156,58
68	16,5	-251,27	161,89	-115,86
69	16,75	-251,9	133,03	-75,39
70	17	-252,53	95,36	-42,13
71	17,25	-253,16	59,91	-18,29
72	17,5	-253,78	31,81	-3,31
73	17,75	-254,41	12,29	4,64
74	18	-255,04	0,48	7,71
75	18,25	-255,67	-5,43	7,83
76	18,5	-256,3	-7,36	6,48
77	18,75	-256,93	-6,97	4,64
78	19	-257,55	-5,47	2,89
79	19,25	-258,18	-3,65	1,53
80	19,5	-258,81	-1,94	0,61
81	19,75	-259,44	-0,52	0,13
82	20	-260,07	-0,52	0

REAZIONI VINCOLARI E PRESSIONI DI CONTATTO TERRENO-PARATIA (calcolo FEM)

RvX = componente della reazione vincolare lungo X (kN/m)

RvY = componente della reazione vincolare lungo Y (kN/m)

RvZ = componente momento della reazione vincolare (kN*m/m)

pXv = pressione orizzontale del terreno (molle di valle) (kN/mq)

pXm = pressione orizzontale del terreno (molle di monte) (kN/mq)

sez./nodo	x (m)	RvX	RvY	RvZ	pXv	pXm
3	0,5	0,78	0	0	0	6,25
4	0,75	1,9	0	0	0	7,61
5	1	2,24	0	0	0	8,96
6	1,25	2,58	0	0	0	10,32
7	1,5	2,92	0	0	0	11,67
8	1,75	3,26	0	0	0	13,03
9	2	-47,66	23,9	0	0	14,38
10	2,25	3,93	0	0	0	15,74
11	2,5	4,27	0	0	0	17,09
12	2,75	4,61	0	0	0	18,45
13	3	4,95	0	0	0	19,8
14	3,25	5,29	0	0	0	21,16
15	3,5	5,63	0	0	0	22,51
16	3,75	5,97	0	0	0	23,87
17	4	6,31	0	0	0	25,22
18	4,25	6,64	0	0	0	26,58
19	4,5	6,98	0	0	0	27,93

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE [OI CALCOL	.O OPERE PF	ROVVISIONALI		MESSA	LOTTO	CODIFICA D26CL	DOCUMENTO	REV.	FOGLIO 160 di 190
20	4,75	7,32	0	0		0	29,29			
21	5	-88,38	34,96	0		0	30,64			
22	5,25	8	0	0		0	32			
23	5,5	8,34	0	0		0	33,35			
24	5,75	8,68	0	0		0	34,71			
25	6	9,02	0	0		0	36,06			
26	6,25	9,35	0	0		0	37,42			
27	6,5	9,69	0	0		0	38,77			
28	6,75	10,03	0	0		0	40,13			
29	7	10,37	0	0		0	41,48			
30	7,25	10,71	0	0		0	42,84			
31	7,5	-112,42	44,94	0		0	44,19			
32	7,75	11,39	0	0		0	45,55			
33	8	11,73	0	0		0	46,9			
34	8,25	12,06	0	0		0	48,26			
35	8,5	12,4	0	0		0	49,61			
36	8,75	12,74	0	0		0	50,97			
37	9	13,08	0	0		0	52,32			
38	9,25	13,42	0	0		0	53,68			
39	9,5	13,76	0	0		0	55,03			
40	9,75	14,1	0	0		0	56,39			
41	10	14,44	0	0		0	57,74			
42	10,25	14,77	0	0		0	59,1			
43	10,5	15,11	0	0		0	60,45			
44	10,75	13,56	0	0		0	54,26			
45	11	-88,58	37,29	0		0	55,45			
46	11,25	14,16	0	0		0	56,63			
47	11,5	14,46	0	0		0	57,82			
48	11,75	14,75	0	0		0	59,01			
49	12	15,05	0	0		0	60,2			
50	12,25	15,35	0	0		0	61,39			
51	12,5	15,65	0	0		0	62,58			
52	12,75	15,94	0	0		0	63,77			
53	13	-44,44	20,31	0		0	64,96			
54	13,1	9,82	0	0		0	65,44			
55	13,3	9,91	0	0	-16,8		66,39			
56	13,5	7,58	0	0	-33,6		67,34			
57	13,75	3,47	0	0	-54,6		68,53			
58	14	-1,49	0	0	-75,6		69,72			
59	14,25	-6,44	0	0	-96,6		70,91			
60	14,5	-11,4	0	0	-117,		72,1			
61	14,75	-16,36	0		-138,7		73,29			
62	15	-21,32	0		-159,7		74,48			
63	15,25	-26,27	0		-180,7		75,67			
64	15,5	-31,23	0		-201,7		76,85			
65	15,75	-36,19	0	0	-222,		78,04			
66	16	-41,15	0	0	-243,8	2	79,23			

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE [OI CALCOL	O OPERE P	ROVVISIONALI		MMESSA	LOTT		DOCUMENTO	REV.	FOGLIO
					IN10	10	D26CL	IV010X001	A	161 di 190
67	16,25	-20,44	0	0	-162,1	8	80,42			
68	16,5	0,76	0	0	-77,4	8	81,61			
69	16,75	22,2	0	0	-36,5	2	125,31			
70	17	28,98	0	0	-24,8	8	140,8			
71	17,25	27,27	0	0	-30,2	3	139,29			
72	17,5	21,62	0	0	-43,4	4	129,93			
73	17,75	15,01	0	0	-58,5	8	118,63			
74	18	9,09	0	0	-72,3	5	108,7			
75	18,25	4,54	0	0	-83,3	6	101,54			
76	18,5	1,49	0	0	-91,	4	97,34			
77	18,75	-0,3	0	0	-96,	9	95,69			
78	19	-1,15	0	0	-100,5	2	95,91			
79	19,25	-1,4	0	0	-102,9	4	97,33			
80	19,5	-1,32	0	0	-104,6	9	99,42			
81	19,75	-1,08	0	0	-106,1	5	101,81			
82	20	-0,4	-200,05	0	-107,5	1	104,29			

PERCENTUALI DI SPINTA PASSIVA MOBILITATA

Spinta passiva mobilitata a monte = 9,4%

Spinta passiva mobilitata a valle = 57,7%

VERIFICA CONDIZIONI DI EQUILIBRIO (calcolo FEM)

Equilibrio alla traslazione orizzontale

somma delle forze esterne orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

somma delle reazioni vincolari lungo X, SommRvX=0,00 kN/m

equazione di equilibrio alla traslazione orizzontale: SFx+Sme+Sve+SommRvX=0,00 kN/m

Equilibrio alla traslazione verticale

peso proprio della paratia, Wp=38,66 kN/m

somma delle forze verticali applicate alla paratia, SFy=0,00 kN/m

somma delle reazioni vincolari lungo Y, SommRvY=-38,66 kN/m

equazione di equilibrio alla traslazione verticale: Wp+SFy+SommRvY=0,00 kN/m

Equilibrio alla rotazione (attorno al primo nodo)

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

momento delle reazioni vincolari lungo X, MRvX=0,00 kN*m/m

equazione di equilibrio alla rotazione: MFx+MSme+MSve+MRvX=0,00 kN*m/m

Spinte orizzontali

spinta delle terre di monte, Sm=1.124,65 kN/m

spinta delle terre di valle, Sv=-695,36 kN/m

somma componenti orizz. delle forze che i tiranti/puntoni esercitano sull'opera, STx=-429,02 kN/m

somma forze orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 162 di 190

Momenti delle spinte orizzontali rispetto al primo nodo

momento della spinta delle terre di monte, MSm=14.846,91 kN*m/m momento della spinta delle terre di valle, MSv=-11.481,31 kN*m/m momento delle compon. orizz. delle forze che i tiranti/puntoni esercitano sull'opera, MTx=-3.361,07 kN*m/m momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

SFORZI NEI TIRANTI/PUNTONI (calcolo FEM)

TX*=sforzo lungo l'asse globale X per metro lineare di paratia (kN/m)

TY*=sforzo lungo l'asse globale Y per metro lineare di paratia (kN/m)

TX=sforzo lungo l'asse globale X nel singolo tirante/puntone (kN)

TY=sforzo lungo l'asse globale Y nel singolo tirante/puntone (kN)

Fa=sforzo di trazione/compressione nel singolo tirante/puntone (kN)

Fad=gGs x Fa sforzo di trazione/compressione di progetto nel singolo tirante/puntone (kN)

Ordine	TX*	TY*	TX	TY	Fa	Fad
1	-51,26	23,90	-128,14	59,75	141,39	183,81
2	-96,04	34,96	-240,11	87,39	255,52	332,17
3	-123,47	44,94	-308,67	112,35	328,48	427,03
4	-102,44	37,29	-256,10	93,21	272,54	354,30
5	-55,81	20,31	-139,51	50,78	148,47	193,01

SPOSTAMENTI NODALI (calcolo FEM)

w = spostamento orizzontale (lungo l'asse globale X, coincidente con l'asse locale z) u = spostamento verticale (lungo l'asse globale Y, coincidente con l'asse locale x)

				rot.
sez./nodo	x (m)	w (cm)	u (cm)	(rad)
1	0	1,11	0,046	0,0127
2	0,25	1,428	0,046	0,0127
3	0,5	1,747	0,046	0,0127
4	0,75	2,065	0,046	0,0127
5	1	2,383	0,046	0,0127
6	1,25	2,701	0,046	0,0127
7	1,5	3,02	0,046	0,0128
8	1,75	3,341	0,046	0,0128
9	2	3,663	0,046	0,0129
10	2,25	3,987	0,046	0,013
11	2,5	4,312	0,046	0,013
12	2,75	4,635	0,046	0,0129
13	3	4,955	0,045	0,0127
14	3,25	5,27	0,045	0,0125
15	3,5	5,579	0,045	0,0122
16	3,75	5,881	0,045	0,0119
17	4	6,176	0,045	0,0117
18	4,25	6,463	0,045	0,0114

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IN10	10	D26CL	IV010X001	Α	163 di 190

				IN10
19	4,5	6,745	0,045	0,0111
20	4,75	7,02	0,044	0,0109
21	5	7,291	0,044	0,0108
22	5,25	7,559	0,044	0,0106
23	5,5	7,821	0,044	0,0103
24	5,75	8,072	0,043	0,0098
25	6	8,31	0,043	0,0092
26	6,25	8,532	0,043	0,0086
27	6,5	8,737	0,042	0,0078
28	6,75	8,923	0,042	0,0071
29	7	9,09	0,041	0,0063
30	7,25	9,238	0,041	0,0055
31	7,5	9,368	0,041	0,0048
32	7,75	9,479	0,04	0,0041
33	8	9,569	0,04	0,003
34	8,25	9,63	0,039	0,0018
35	8,5	9,658	0,038	0,0004
36	8,75	9,65	0,038	-0,0011
37	9	9,603	0,037	-0,0027
38	9,25	9,514	0,037	-0,0044
39	9,5	9,383	0,036	-0,0061
40	9,75	9,21	0,036	-0,0078
41	10	8,995	0,035	-0,0094
42	10,25	8,741	0,034	-0,0109
43	10,5	8,449	0,034	-0,0124
44 45	10,75 11	8,125	0,033	-0,0136
45 46	11,25	7,772 7,206	0,033 0,032	-0,0146 -0,0155
40 47	11,25	7,396 6,997	0,032	-0,0133
48	11,75	6,576	0,031	-0,0104
49	11,73	6,135	0,029	-0,0173
50	12,25	5,676	0,029	-0,0187
51	12,5	5,203	0,028	-0,0191
52	12,75	4,722	0,027	-0,0194
53	13	4,237	0,026	-0,0194
54	13,1	4,044	0,026	-0,0193
55	13,3	3,66	0,025	-0,0191
56	13,5	3,282	0,024	-0,0187
57	13,75	2,822	0,023	-0,0181
58	14	2,382	0,023	-0,0172
59	14,25	1,966	0,022	-0,016
60	14,5	1,582	0,021	-0,0147
61	14,75	1,234	0,02	-0,0131
62	15	0,927	0,019	-0,0114
63	15,25	0,666	0,018	-0,0095
64	15,5	0,451	0,017	-0,0077
65	15,75	0,283	0,016	-0,0058

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV010X001	Α	164 di 190

66	16	0,16	0,015	-0,0041
67	16,25	0,078	0,014	-0,0026
68	16,5	0,029	0,013	-0,0014
69	16,75	0,005	0,012	-0,0006
70	17	-0,003	0,011	-0,0001
71	17,25	-0,001	0,01	0,0002
72	17,5	0,005	0,01	0,0003
73	17,75	0,012	0,009	0,0003
74	18	0,019	0,008	0,0002
75	18,25	0,023	0,007	0,0002
76	18,5	0,026	0,006	0,0001
77	18,75	0,028	0,005	0
78	19	0,029	0,004	0
79	19,25	0,029	0,003	0
80	19,5	0,029	0,002	0
81	19,75	0,028	0,001	0
82	20	0,028	0	0

VERIFICA AL CARICO LIMITE VERTICALE

Parametri geotecnici di progetto

coesione = 0,00 kN/mq

angolo di resistenza al taglio = 38°

Resistenza alla punta

fattore Nq (Berezantzev) = 118,83

fattore Nc = 150,82

tensione litostatica verticale totale alla profondità L, sVL=420,00 kN/mq

pressione neutra alla profondità L, uL=0,00 kN/mq

tensione litostatica verticale efficace alla profondità L, s'VL=420,00 kN/mq

Resistenza unitaria alla punta, p=49.908,50 kN/mq

Resistenza alla punta, Pmax=3.745,89 kN

Resistenza laterale

Resistenza laterale, Smax=1.175,65 kN

Resistenza alla punta e laterale di progetto

Resistenza alla punta (valore medio) = 3.745,89 kN

Resistenza alla punta (valore minimo) = 3.745,89 kN

Resistenza laterale (valore medio) = 1.175,65 kN

Resistenza laterale (valore minimo) = 1.175,65 kN

Fattore di correlazione, xsi3=1,7

Fattore di correlazione, xsi4=1,7

Resistenza alla punta (valore caratteristico) = 2.203,47 kN

Resistenza laterale (valore caratteristico) = 691,56 kN

Resistenza alla punta di progetto, Pmax_d=1.916,06 kN

Resistenza laterale di progetto, Smax_d=601,36 kN

Carico limite per carichi assiali di compressione

 $Qlim_d = Pmax_d + Smax_d = 2.517,41 kN$

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 165 di 190

Carico limite di sfilamento per carichi assiali di trazione

 $Qlimt_d = Smax_d = 601,36 kN$

Azione di progetto

Ed = 260,07 kN

Verifica al carico limite per carichi assiali di compressione

Verifica soddisfatta: l'azione di progetto non supera la resistenza di progetto

coeff. di sicurezza, Qlim_d/Ed=9,68

VERIFICA DI STABILITA' GLOBALE

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 2

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 3

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 4

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 5

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq

strato 6

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq

Parametri di calcolo

n° di cerchi analizzati = 10 Metodo utilizzato: Bishop

Cerchio critico

Coordinate centro e raggio: X (m) = 0 Y (m) = -0.3 Rc (m) = 20.4

Simbologia adottata

Wt = peso del concio (kN)

Wq = forza risultante verticale dovuta al sovraccarico applicato sul concio (kN)

alfa=angolo (minore di 90°) che l'orizzontale forma con la base del concio (positivo se antiorario)

u = pressione neutra alla base del concio (kN/mq)

DX = larghezza lungo X del concio (m)

Fsh = forza sismica orizzontale sul concio (kN)

LOTTO

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

CODIFICA D26CL DOCUMENTO
IV010X001

REV.

Α

FOGLIO 166 di 190

B = braccio della forza sismica orizzontale rispetto al centro del cerchio di rottura (m)

Fsv = forza sismica verticale sul concio (kN)

N = risultante delle tensioni normali di reazione del terreno alla base del concio (kN)

T = risultante delle tensioni tangenziali di reazione del terreno alla base del concio (kN)

						lla base de				_
concio	Wt	Wq	alfa (°)	u	DX	Fsh	В	Fsv	N	T
1	20,48	0	-46,1	0	1,4	0	33,4	0	25,25	-4,12 -
2	57,88	0	-40,65	0	1,4	0	33,4	0	66,91	10,92
3	88,92	0	-35,63	0	1,4	0	33,4	0	97,95	15,98 -
4	114,84	0	-30,9	0	1,4	0	33,4	0	121,94	19,89 -
5	136,42	0	-26,4	0	1,4	0	33,4	0	140,9	22,99 -
6	154,2	0	-22,07	0	1,4	0	33,4	0	156,07	25,46 -
7	168,55	0	-17,88	0	1,4	0	33,4	0	168,25	27,45 -
8	179,74	0	-13,77	0	1,4	0	33,4	0	177,94	29,03
9	187,95	0	-9,74	0	1,4	0	33,4	0	185,5	30,26 -
10	193,32	0	-5,76	0	1,4	0	33,4	0	191,16	31,18
11	195,93	0	-1,81	0	1,4	0	33,4	0	394,15	-64,3
12	13,3	0	0,24	0	0,05	0	33,4	0	13,31	-2,17 -
13	566,86	37,65	2,34	0	1,45	0	33,4	0	609,09	99,36
14	563,64	37,65	6,43	0	1,45	0	33,4	0	616,43	100,6
15	557,38	37,65	10,54	0	1,45	0	33,4	0	624,2	101,8 -
16	547,96	37,65	14,71	0	1,45	0	33,4	0	632,58	103,2 -
17	535,25	37,65	18,97	0	1,45	0	33,4	0	641,79	104,7 -
18	518,99	37,65	23,34	0	1,45	0	33,4		652,13	106,4 -
19	498,86	37,65	27,85	0	1,45	0	33,4	0	664,05	108,3 -
20	474,38	37,65	32,57	0	1,45	0	33,4	0	678,23	110,6 -
21	444,86	37,65	37,55	0	1,45	0	33,4	0	695,83	113,5 -
22	409,26	37,65	42,89	0	1,45	0	33,4	0	718,92	117,3 -
23	365,86	37,65	48,75	0	1,45	0	33,4	0	751,9	122,7 -
24 25	311,51 238,86	37,65 37,65	55,42 63,59	0	1,45 1,45	0	33,4 33,4		806,06 880,88	131,5 -

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 167 di 190

128,8

_

26 98,32 37,65 77,96 0 1,45 0 33,4 0 2071,5 302,9

Lunghezza dell'arco di cerchio di scivolamento, L=48,67 m

Momento resistente, M_resist=159.088,34 kN*m

Momento instabilizzante, M_instab=-41.521,57 kN*m

Verifica soddisfatta

VERIFICHE STRUTTURALI PARATIA

Verifiche di resistenza a presso-flessione e taglio

sid_m: tensione ideale massima nella sezione di acciaio (N/mmq)

Mcy_Rd: resistenza di progetto della sezione soggetta a presso-flessione retta (asse vettore y)

Resistenza plastica della sezione lorda A, Npl_Rd=2.743,03 kN

Area resistente al taglio della sezione lungo z, Avz=51,65 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=1.008,21 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=134,08 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=180,61 kN*m

tensione di snervamento di progetto, fyd=338 N/mmq

x (m)	Nx	Tz	Му	sid_m	Mcy_Rd	Verif?
0	0	0	0			
0,25	-0,32	0	0			
0,5	-0,63	-0,51	0			
0,75	-0,94	-1,75	-0,13			
1	-1,26	-3,21	-0,57	1,6		Si
1,25	-1,58	-4,9	-1,37	3,7		Si
1,5	-1,89	-6,81	-2,6	6,8		Si
1,75	-2,21	-8,93	-4,29	11,1		Si
2	-2,53	-8,93	-6,53	16,8		Si
2	-18,13	22,19	-6,53	18,7		Si
2,25	-18,45	19,62	-0,98	8,2		Si
2,5	-18,76	16,83	3,92	12,2		Si
2,75	-19,08	13,82	8,13	22,9		Si
3	-19,4	10,58	11,58	31,6		Si
3,25	-19,71	7,13	14,23	38,3		Si
3,5	-20,03	3,46	16,01	42,8		Si
3,75	-20,34	-0,44	16,88	45,1		Si
4	-20,66	-4,56	16,77	44,8		Si
4,25	-20,97	-8,9	15,63	42		Si
4,5	-21,29	-13,46	13,41	36,4		Si
4,75	-21,61	-18,24	10,04	28		Si
5	-21,92	-18,24	5,48	16,5		Si
5	-44,75	39,48	5,48	19,3		Si
5,25	-45,06	34,25	15,35	44,3		Si
5,5	-45,38	28,81	23,92	65,9		Si
5,75	-45,69	23,14	31,12	84,1		Si
6	-46,01	17,26	36,9	98,7		Si

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

AZIONE	DI CALCOLO	O OPERE P	ROVVISION	ALI COMMI	CODIFICA D26CL	DOCUMENTO IV010X001	REV.	FOGLIO 168 di 190
6,25	-46,33	11,15	41,22	109,6	 Si			
6,5	-46,64	4,82	44	116,7	Si			
6,75	-46,96	-1,73	45,21	119,8	Si			
7	-47,27	-8,5	44,77	118,7	Si			
7,25	-47,59	-15,5	42,65	113,4	Si			
7,5	-47,9	-15,5	38,77	103,7	Si			
7,5	-77,25	57,91	38,77	107,3	Si			
7,75	-77,57	50,48	53,25	143,8	Si			
8	-77,88	42,82	65,87	175,7	Si			
8,25	-78,2	34,94	76,58	202,7	Si			
8,5	-78,51	26,84	85,31	224,8	Si			
8,75	-78,83	18,52	92,02	241,8	Si			
9	-79,14	9,98	96,65	253,5	Si			
9,25	-79,46	1,22	99,15	259,8	Si			
9,5	-79,78	-7,77	99,45	260,6	Si			
9,75	-80,09	-16,97	97,51	255,7	Si			
10	-80,4	-26,4	93,27	245,1	Si			
10,25	-80,72	-36,05	86,67	228,5	Si			
10,5	-81,04	-45,92	77,66	205,8	Si			
10,75	-81,35	-54,77	66,18	176,9	Si			
11	-81,67	-54,77	52,48	142,4	Si			
11	-106,02	3,07	52,48	145,4	Si			
11,25	-106,33	-6,17	53,25	147,4	Si			
11,5	-106,65	-15,62	51,71	143,5	Si			
11,75	-106,96	-25,25	47,8	133,7	Si			
12	-107,28	-35,08	41,49	117,8	Si			
12,25	-107,6	-45,1	32,72	95,8	Si			
12,5	-107,91	-55,32	21,44	67,4	Si			
12,75	-108,22	-65,73	7,62	32,5	Si			
13	-108,54	-65,73	-8,82	35,6	Si			
13	-121,81	-36,71	-8,82	37,2	Si			
13,1	-121,93	-43,12	-12,49	46,5	Si			
13,3	-122,18	-49,6	-21,11	68,3	Si			
13,5	-122,43	-54,55	-31,03	93,3	Si			
13,75	-122,75	-56,81	-44,67	127,8	Si			
14	-123,07	-55,84	-58,87	163,6	Si			
14,25	-123,38	-51,64	-72,83	198,8	Si			
14,5	-123,7	-44,19	-85,74	231,4	Si			
14,75	-124,01		-96,78	259,3	Si			
15	-124,33	-19,59	-105,16	280,5	Si			
15,25	-124,64	-2,43	-110,06	292,9	Si			
15,5	-124,96	17,97	-110,66	294,4	Si			
15,75	-125,28	41,6	-106,17	283,2	Si			
16	-125,59	68,47	-95,77	257	Si			
16,25	-125,91	81,82	-78,66	213,9	Si			
16,5	-126,22	81,32	-58,2	162,3	Si			
16,75	-126,54	66,83	-37,87	111,1	Si			

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE	DI CALCOLO	O OPERE PR	ROVVISIONAI	_I COMMESSA	LOTTO 10	CODIFICA D26CL	DOCUMENTO IV010X001	REV.	FOGLIO 169 di 190
17	-126,85	47,9	-21,16	69		Si			
17,25	-127,17	30,09	-9,19	38,8		Si			
17,5	-127,48	15,98	-1,66	19,9		Si			
17,75	-127,8	6,17	2,33	21,6		Si			
18	-128,12	0,24	3,87	25,6		Si			
18,25	-128,43	-2,73	3,93	25,7		Si			
18,5	-128,75	-3,7	3,26	24,1		Si			
18,75	-129,07	-3,5	2,33	21,8		Si			
19	-129,38	-2,75	1,45	19,6		Si			
19,25	-129,69	-1,83	0,77	17,9		Si			
19,5	-130,01	-0,97	0,31	16,8		Si			
19,75	-130,33	-0,26	0,07	16,2		Si			
20	-130,64	-0,26	0	16,1		Si			

VERIFICHE S.L.U. DI TIPO GEOTECNICO E STRUTTURALE SUI TIRANTI

ANCORAGGIO DI ORDINE 1

forza di progetto di trazione agente sul tirante, Fad=183,81 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 2,34

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=440,79 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 3,67

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,36 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 6,56

ANCORAGGIO DI ORDINE 2

forza di progetto di trazione agente sul tirante, Fad=332,17 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,3

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=796,57 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 2,03

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,66 N/mmg

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 3,63

ANCORAGGIO DI ORDINE 3

forza di progetto di trazione agente sul tirante, Fad=427,03 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,44

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 170 di 190

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=1.024,05 N/mmg

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 1,58

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,59 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 4,04

ANCORAGGIO DI ORDINE 4

forza di progetto di trazione agente sul tirante, Fad=354,30 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,74

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=849,64 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 1,9

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,49 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 4,86

ANCORAGGIO DI ORDINE 5

forza di progetto di trazione agente sul tirante, Fad=193,01 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 3,19

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=462,85 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 3,49

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,27 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 8,93

CALCOLO ARMATURE TRAVE DI CORONAMENTO

Sollecitazioni di progetto

Momento flettente massimo, My=1,60 kN*m

Taglio massimo, Tz=3,20 kN

Armatura longitudinale a flessione

armatura lembo verticale lato monte = 4 fi 14 (6,16 cmq)

armatura lembo verticale lato valle = 4 fi 14 (6,16 cmq)

armatura lembo orizzontale superiore = 1 fi 14 (1,54 cmq)

armatura lembo orizzontale inferiore = 1 fi 14 (1,54 cmq)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 171 di 190

l'armatura rispetta i limiti fissati dalla normativa:

- armatura minima in zona tesa = 5,48 cmg
- armatura massima = 160 cmg

Verifiche di resistenza a flessione

momento ultimo della sezione (lembo superiore maggiormente compresso)=103,3 kN*m momento ultimo della sezione (lembo inferiore maggiormente compresso)=-103,3 kN*m Verifica soddisfatta

Armatura trasversale a taglio

passo max delle staffe prescritto dalla normativa (armatura trasv. minima regolam.re), tc=13,1 cm Resistenza al taglio dovuta al solo cls, Tcls=160,52 kN passo staffe nella trave = 13,1 cm

Resistenza di progetto a "taglio compressione" nel tratto Li=L/2, Vrcd=3.527,78 kN Resistenza di progetto a "taglio trazione" dell'armatura trasversale nel tratto Li, Vrsd=150,01 kN Resistenza di progetto a taglio nel tratto Li, Vrd=150,01 kN

VERIFICA CORDOLI IN ACCIAIO IN CORRISPONDENZA DEI TIRANTI

ORDINE DI TIRANTE N° 1

Sollecitazioni di progetto

Momento flettente massimo, My=40,04 kN*m

Taglio massimo, Tz=64,07 kN

Verifiche di resistenza a flessione e taglio

tensione di snervamento di progetto, fyd=338 N/mmq

Resistenza plastica della sezione lorda A, Npl_Rd=2.623,62 kN

Area resistente al taglio della sezione lungo z, Avz=13,24 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=516,89 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=148,76 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=165,73 kN*m

Resistenza di progetto della sezione soggetta a flessione retta, Mcy_Rd=148,8 kN*m

Verifica soddisfatta

ORDINE DI TIRANTE N° 2

Sollecitazioni di progetto

Momento flettente massimo, My=75,03 kN*m

Taglio massimo, Tz=120,05 kN

Verifiche di resistenza a flessione e taglio

tensione di snervamento di progetto, fyd=338 N/mmq

Resistenza plastica della sezione lorda A, Npl_Rd=3.063,14 kN

Area resistente al taglio della sezione lungo z, Avz=14,52 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=566,86 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=198,80 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply Rd=219,69 kN*m

Resistenza di progetto della sezione soggetta a flessione retta, Mcy_Rd=198,8 kN*m

Verifica soddisfatta

ORDINE DI TIRANTE N° 3

Sollecitazioni di progetto

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 172 di 190

Momento flettente massimo, My=96,46 kN*m

Taglio massimo, Tz=154,34 kN

Verifiche di resistenza a flessione e taglio

tensione di snervamento di progetto, fyd=338 N/mmq

Resistenza plastica della sezione lorda A, Npl_Rd=3.063,14 kN

Area resistente al taglio della sezione lungo z, Avz=14,52 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=566,86 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=198,80 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=219,69 kN*m

Resistenza di progetto della sezione soggetta a flessione retta, Mcy_Rd=198,8 kN*m

Verifica soddisfatta

ORDINE DI TIRANTE N° 4

Sollecitazioni di progetto

Momento flettente massimo, My=80,03 kN*m

Taglio massimo, Tz=128,05 kN

Verifiche di resistenza a flessione e taglio

tensione di snervamento di progetto, fyd=338 N/mmq

Resistenza plastica della sezione lorda A, Npl Rd=3.063,14 kN

Area resistente al taglio della sezione lungo z, Avz=14,52 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=566,86 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=198,80 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=219,69 kN*m

Resistenza di progetto della sezione soggetta a flessione retta, Mcy_Rd=198,8 kN*m

Verifica soddisfatta

ORDINE DI TIRANTE N° 5

Sollecitazioni di progetto

Momento flettente massimo, My=43,60 kN*m

Taglio massimo, Tz=69,76 kN

Verifiche di resistenza a flessione e taglio

tensione di snervamento di progetto, fyd=338 N/mmq

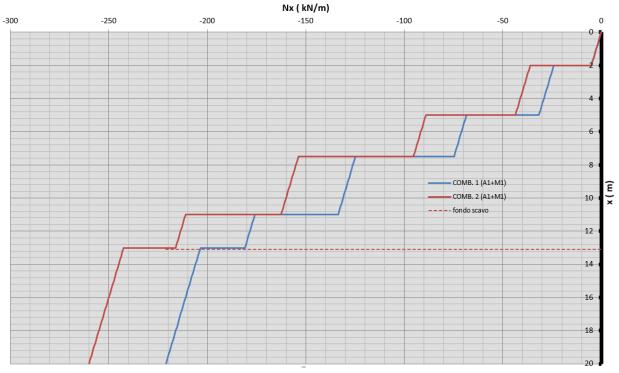
Resistenza plastica della sezione lorda A, Npl_Rd=3.063,14 kN

Area resistente al taglio della sezione lungo z, Avz=14,52 cmq

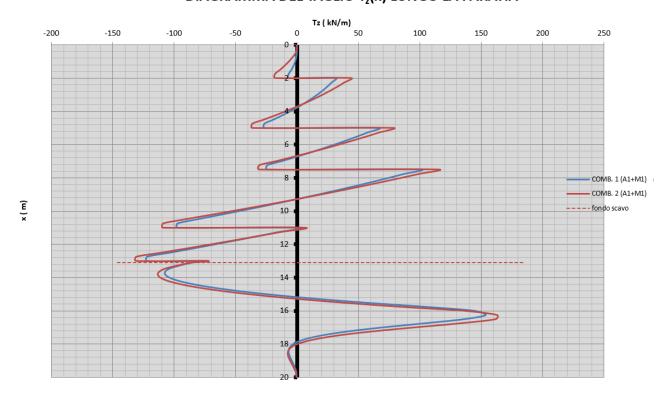
Resistenza di progetto a taglio lungo z, Vcz_Rd=566,86 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=198,80 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=219,69 kN*m


Resistenza di progetto della sezione soggetta a flessione retta, Mcy_Rd=198,8 kN*m

Verifica soddisfatta



6.4.8.1 Diagrammi

DIAGRAMMA DELLO SFORZO NORMALE N_x(x) LUNGO LA PARATIA

DIAGRAMMA DEL TAGLIO T_z(x) LUNGO LA PARATIA

LOTTO

10

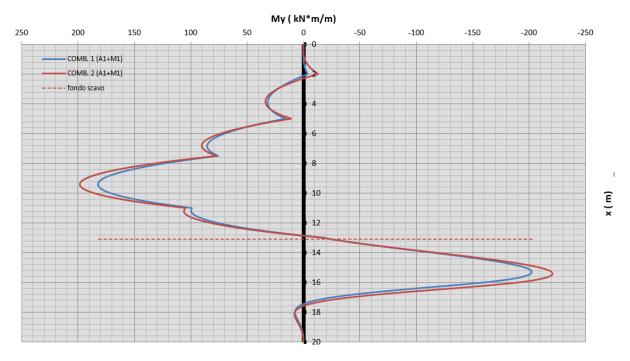
LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

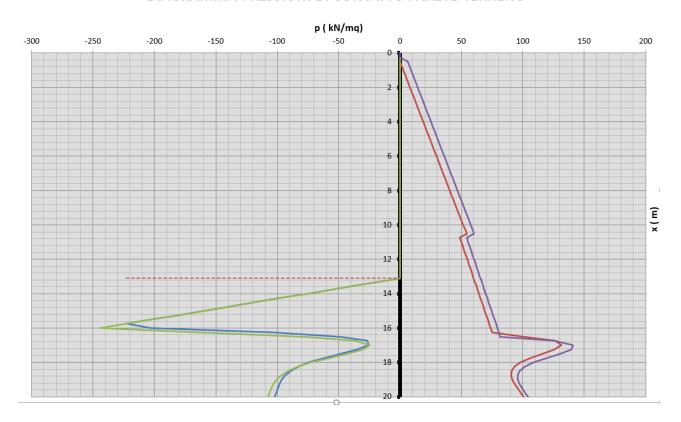
RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

CODIFICA D26CL


DOCUMENTO
IV010X001

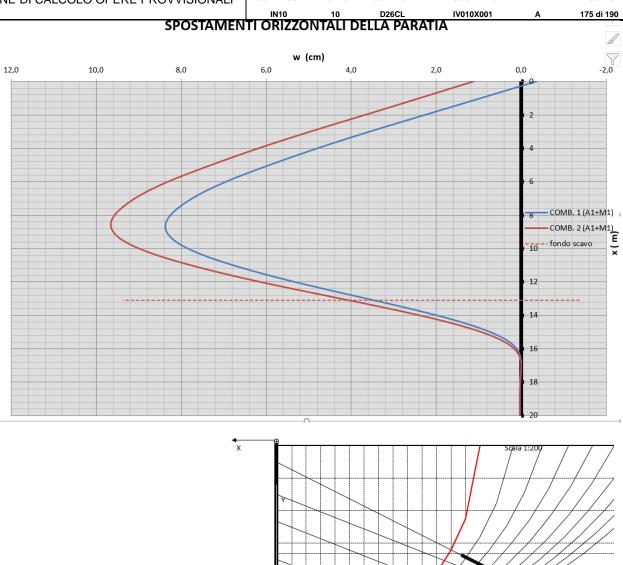
REV. FOGLIO


Α

174 di 190

DIAGRAMMA DEL MOMENTO FLETTENTE M_v(x) LUNGO LA PARATIA

DIAGRAMMA PRESSIONI DI CONTATTO PARETE-TERRENO



LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

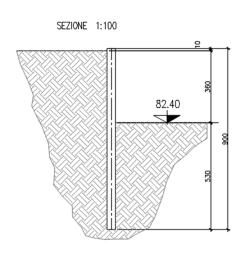
 IN10
 10
 D26CL
 IV010X001
 A
 176 di 190

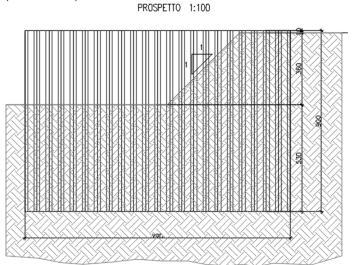
7 DIMENSIONAMENTO PALANCOLE

7.1 PALANCOLATO A SBALZO PRESSO PILE (FS)

Si prevede l'impiego di palancole tipo PU18 con le seguenti caratteristiche a metro lineare:

Area: 163 cm²/m


Massa: 128 kg/m²


Momento d'inerzia: 38650 cm⁴/m

Modulo di resistenza elastico: 1800 cm³/m

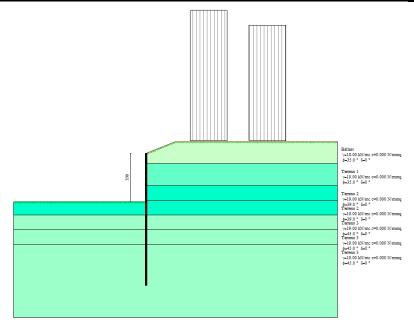
Modulo di resistenza plastico: 2134 cm³/m

SEZIONE TIPICA PALANCOLA H=9.00m (TIPO ARCELOR PU18)

7.1.1 GEOMETRIA PARATIA

Tipo paratia: Paratia in acciaio con parametri definiti a metro d	i paratia	
Altezza fuori terra	3.30	[m]
Profondità di infissione	5.70	[m]
Altezza totale della paratia	9.00	[m]
Lunghezza paratia	1.00	[m]
Area per metro lineare di larghezza	163.00	[cmq]
Inerzia per metro lineare di larghezza	38650.00	[cm^4]
Modulo di resistenza per metro lineare di larghezza	1800.00	[cm^3]
Momento ultimo della sezione per metro lineare di larghezza	608.5710	[kNm]
Fattore di taglio	1.20	

Si riporta di seguito il modello agli elementi finiti implementato:



LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV010X001	Α	177 di 190

7.1.2 GEOMETRIA PROFILO TERRENO

Simbologia adottata e sistema di riferimento

(Sistema di riferimento con origine in testa alla paratia, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]

Y ordinata del punto espressa in [m]

A inclinazione del tratto espressa in [°]

Profilo di monte

N	X	Υ	Α
2	2.00	0.20	5.71
3	10.00	0.20	0.00

Profilo di valle

N	X	Υ	Α
1	-9.00	-3.30	0.00
2	0.00	-3.30	0.00

7.1.3 DESCRIZIONE TERRENI

Simbologia adottata

n° numero d'ordine dello strato a partire dalla sommità della paratia

Descrizione Descrizione del terreno

peso di volume del terreno espresso in [kN/mc]

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV010X001	Α	178 di 190

γ_s	peso di volume saturo del terreno espresso [kN/mc]
ф	angolo d'attrito interno del terreno espresso in [°]
δ	angolo d'attrito terreno/paratia espresso in [°]
С	coesione del terreno espressa in [N/mmq]

n°	Descrizione	γ	γs	ф	δ	С
1	Ballast	18.0000	19.6136	35.00	0.00	0.0000
2	Terreno 1	19.0000	19.0000	35.00	0.00	0.0000
3	Terreno 2	19.0000	19.0000	39.00	0.00	0.0000
4	Terreno 3	19.0000	19.0000	45.00	0.00	0.0000

7.1.4 DESCRIZIONE STRATIGRAFIA

Simbologia adottata

n° numero d'ordine dello strato a partire dalla sommità della paratia

sp spessore dello strato in corrispondenza dell'asse della paratia espresso in [m]

kw costante di Winkler orizzontale espressa in Kg/cm²/cm

α inclinazione dello strato espressa in GRADI(°)

Terreno associato allo strato

n°	sp	α	kw	Terreno
1	0.70	0.00	0.15	Ballast
2	1.50	0.00	0.62	Terreno 1
3	1.00	0.00	1.43	Terreno 2
4	1.00	0.00	1.97	Terreno 2
5	1.00	0.00	3.41	Terreno 3
6	1.00	0.00	4.14	Terreno 3
7	5.00	0.00	6.33	Terreno 3

7.1.5 CARATTERISTICHE MATERIALI UTILIZZATI

Calcestruzzo

24.52	[kN/mc]
	24.52

Classe di Resistenza C25/30

Resistenza caratteristica a compressione R_{ck} 30.0 [N/mmq] Tensione ammissibile a compressione σ_c 9.7 [N/mmq]

Tensione tangenziale ammissibile τ_{c0} 0.60 [N/mmq] Tensione tangenziale ammissibile τ_{c1} 1.81 [N/mmq]

Acciaio

Tipo	Fe 510	
Tensione ammissibile σ_{fa}	235.4	[N/mmq]
Tensione di snervamento fyk	353.0	[N/mmq]

7.1.6 CONDIZIONI DI CARICO

Il carico considerato è quello imposto dalla normativa NTC2018.

In dettaglio si sono considerate i due binari: sul primo, distante 3.00m dalla berlinese, è stato applicato il treno SW2 (150 kN/m diffusi sulla larghezza del binario di 2.5m per un contributo di 60kN/mq) mentre sul secondo, distante 7.00m dalla berlinese ,è stato applicato il treno SW0 (133 kN/m diffuse sulla larghezza del binario di 2.5m per un contributo di 53.2kN/mq).

Simbologia e convenzioni adottate

Le ascisse dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia Le ordinate dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia

F_x Forza orizzontale espressa in [kN], positiva da monte verso valle

Forza verticale espressa in [kN], positiva verso il basso

M Momento espresso in [kNm], positivo ribaltante

Q_i, Q_f Intensità dei carichi distribuiti sul profilo espresse in [kN/mq]

V_i, V_s Intensità dei carichi distribuiti sulla paratia espresse in [kN/mq], positivi da monte

verso valle

R Risultante carico distribuito sulla paratia espressa in [kN]

Condizione nº 1

Carico distribuito sul profilo	$X_i = 2.00$	$X_f = 4.50$	$Q_i = 60.00$	$Q_f = 60.00$
Carico distribuito sul profilo	$X_i = 7.00$	$X_f = 9.50$	$Q_i = 53.20$	$Q_f = 53.20$

7.1.7 COMBINAZIONI DI CARICO

Nella tabella sono riportate le condizioni di carico di ogni combinazione con il relativo coefficiente di partecipazione.

Combinazione n° 1 [DA1 - A1M1]

Spinta terreno

Condizione 1 (Treni) x 1.00

Combinazione n° 2 [DA1- A2M2]

Spinta terreno

Condizione 1 (Treni) x 1.00

Combinazione nº 3

Spinta terreno

LOTTO

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

CODIFICA D26CL DOCUMENTO
IV010X001

REV. FOGLIO

A 180 di 190

Combinazione nº 4

Spinta terreno

Condizione 1 (Treni) x 0.50

Combinazione n° 5

Spinta terreno

Condizione 1 (Treni) x 1.00

7.1.8 IMPOSTAZIONI DI PROGETTO

Spinte e verifiche secondo:

Norme Tecniche sulle Costruzioni 14/01/2008

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γGfav	1.00	1.00
Permanenti	Sfavorevole	γGsfav	1.35	1.00
Variabili	Favorevole	γQfav	0.00	0.00
Variabili	Sfavorevole	γ̈Qsfav	1.45	1.25

Coefficienti parziali per i parametri geotecnici del terreno:

M1	M2		
γtanφ'	1.00	1.25	
	γc'	1.00	1.25
γcu	1.00	1.40	
γqu	1.00	1.60	
γγ	1.00	1.00	
	γcu γqu	$\gamma_{tan\phi'}$ 1.00 $\gamma_{c'}$ 1.00 γ_{qu} 1.00 γ_{qu} 1.00 γ_{qu} 1.00	$γ_{tanφ'}$ 1.00 1.25 $γ_{c'}$ 1.00 $γ_{cu}$ 1.00 1.40 $γ_{qu}$ 1.00 1.60

7.1.9 IMPOSTAZIONI DI ANALISI

Analisi per Combinazioni di Carico.

Rottura del terreno: Pressione passiva Spostamento limite (spostamento limite molle pari a 1.50) Influenza δ (angolo di attrito terreno-paratia): Nel calcolo del coefficiente di spinta attiva Ka e nell'inclinazione della spinta attiva (non viene considerato per la spinta passiva)

Stabilità globale: Metodo di Fellenius

7.1.10 ANALISI DELLA PARATIA

La paratia è analizzata con il metodo degli elementi finiti.

Essa è discretizzata in 66 elementi fuori terra e 114 elementi al di sotto della linea di fondo scavo.

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 181 di 190

Le molle che simulano il terreno hanno un comportamento elastoplastico: una volta raggiunta la pressione passiva oppure lo spostamento limite di 1.50 [cm] non reagiscono ad ulteriori incremento di carico.

Altezza fuori terra della paratia	3.30	[m]
Profondità di infissione	5.70	[m]
Altezza totale della paratia	9.00	[m]

Forze agenti sulla paratia

Tutte le forze si intendono positive se dirette da monte verso valle. Esse sono riferite ad un metro di larghezza della paratia. Le Y hanno come origine la testa della paratia, e sono espresse in [m]

Simbologia adottata

n°	Indice della Combinazione/Fase
Tipo	Tipo della Combinazione/Fase
Pa	Spinta attiva, espressa in [kN]

Is Incremento sismico della spinta, espressa in [kN]

Pw Spinta della falda, espressa in [kN]
Pp Resistenza passiva, espressa in [kN]

Pc Controspinta, espressa in [kN]

n°	Tipo	Pa Y _{Pa}	ls	\mathbf{Y}_{ls}	Pw	Y _{Pw} P _l	Y _{Pp}	Pc	\mathbf{Y}_{Pc}
1	[A1-M1]	55.902.44				97.30	4.65	41.41	7.63
2	[A2-M2]	70.752.51				136.7	0 5.14	65.95	7.96
3	[SLEQ]	27.762.21				48.43	3 4.47	20.68	7.50
4	[SLEF]	32.282.33				56.0	1 4.55	23.74	7.56
5	[SLER]	40.172.43				69.8	5 4.63	29.68	7.62

Simbologia adottata

n°	Indice della Combinazione/Fase
Tipo	Tipo della Combinazione/Fase
Rc	Risultante carichi esterni applicati, espressa in [kN]
Rt	Risultante delle reazioni dei tiranti (componente orizzontale), espressa in [kN]
Rv	Risultante delle reazioni dei vincoli, espressa in [kN]
Rp	Risultante delle reazioni dei puntoni, espressa in [kN]

n°	Tipo	$Rc\ Y_{Rc}$	Rt	\mathbf{Y}_{Rt}	Rv	\mathbf{Y}_{Rv}	Rp	\mathbf{Y}_{Rp}
1	[A1-M1]	0.000.00						
2	[A2-M2]	0.000.00						

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

LINEA AV/AC MILANO - VENEZIA

LOTTO

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

DOCUMENTO

REV.

FOGLIO

NODO AV/AC DI VERONA: INGRESSO OVEST

CODIFICA

				IN10	10	D26CL	IV010X001	Α	182 di 190
3	[SLEQ]	0.000.00	 						
4	[SLEF]	0.000.00	 						

COMMESSA

Simbologia adottata

[SLER]

5

n° Indice della Combinazione/FaseTipo della Combinazione/Fase

0.000.00

P_{NUL} Punto di nullo del diagramma, espresso in [m]

P_{INV} Punto di inversione del diagramma, espresso in [m]

C_{ROT} Punto Centro di rotazione, espresso in [m]

MP Percentuale molle plasticizzate, espressa in [%]

R/R_{MAX} Rapporto tra lo sforzo reale nelle molle e lo sforzo che le molle sarebbero in grado di

esplicare, espresso in [%]

1	[A1-M1]	3.634.25	6.13	16.52	3.61
2	[A2-M2]	3.955.05	6.55	31.30	10.60
3	[SLEQ]	3.494.25	5.98	11.30	2.42
4	[SLEF]	3.564.25	6.05	13.04	2.79
5	[SLER]	3.624.25	6.12	15.65	3.51

7.1.11 VALORI MASSIMI E MINIMI SOLLECITAZIONI PER METRO DI PARATIA

Simbologia adottata

n°

Tipo	Tipo della combinazione/fase
Υ	ordinata della sezione rispetto alla testa espressa in [m]
M	momento flettente massimo e minimo espresso in [kNm]
N	sforzo normale massimo e minimo espresso in [kN] (positivo di compressione)

T taglio massimo e minimo espresso in [kN]

Indice della combinazione/fase

n°	Tipo	М	Y_{M}	Т	Y_T	N	Y_N	
1	[A1-M1]	89.67	4.55	45.89	3.50	11.29	9.00	MAX
		0.00	9.00	-35.38	6.00	0.00	0.00	MIN
2	[A1-M1]	66.43	4.55	34.00	3.50	11.29	9.00	MAX
		0.00	9.00	-26.21	6.00	0.00	0.00	MIN
3	[A2-M2]	100.76	4.75	46.45	3.65	11.29	9.00	MAX
		0.00	0.00	-40.53	6.20	0.00	0.00	MIN
4	[A2-M2]	100.76	4.75	46.45	3.65	11.29	9.00	MAX
		0.00	0.00	-40.53	6.20	0.00	0.00	MIN
5	[A1-M1]	102.70	4.65	53.16	3.60	11.29	9.00	MAX
		0.00	0.00	-40.87	6.10	0.00	0.00	MIN
6	[A2-M2]	157.97	5.15	70.28	3.95	11.29	9.00	MAX
		0.00	9.00	-66.40	6.55	0.00	0.00	MIN
7	[SLEQ]	66.43	4.55	34.00	3.50	11.29	9.00	MAX

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI				COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
				IN10	10	D26CL	IV010X001	Α	183 di 190
		0.00	9.00	-26.21	6.00	0.00	0.00		MIN
8	[SLEF]	67.76	4.55	34.04	3.50	11.29	9.00		MAX
		0.00	0.00	-26.79	6.00	0.00	0.00		MIN
9	[SLER]	74.71	4.65	38.57	3.60	11.29	9.00		MAX
		0.00	0.00	-29.71	6.10	0.00	0.00		MIN

7.1.12 SPOSTAMENTI MASSIMI E MINIMI DELLA PARATIA

Simbologia adottata

n° Indice della combinazione/faseTipo della combinazione/fase

Y ordinata della sezione rispetto alla testa della paratia espressa in [m]

U spostamento orizzontale massimo e minimo espresso in [cm] positivo verso valle
 V spostamento verticale massimo e minimo espresso in [cm] positivo verso il basso

n°	Tipo	U	\mathbf{Y}_{U}	V	Y_V	
1	[A1-M1]	1.6483	0.00	0.0015	0.00	MAX
		-0.0259	7.25	0.0000	0.00	MIN
2	[A1-M1]	1.2210	0.00	0.0015	0.00	MAX
		-0.0192	7.25	0.0000	0.00	MIN
3	[A2-M2]	1.9638	0.00	0.0015	0.00	MAX
		-0.0300	7.50	0.0000	0.00	MIN
4	[A2-M2]	1.9638	0.00	0.0015	0.00	MAX
		-0.0300	7.50	0.0000	0.00	MIN
5	[A1-M1]	1.9197	0.00	0.0015	0.00	MAX
		-0.0299	7.35	0.0000	0.00	MIN
6	[A2-M2]	3.3333	0.00	0.0015	0.00	MAX
		-0.0536	8.15	0.0000	0.00	MIN
7	[SLEQ]	1.2210	0.00	0.0015	0.00	MAX
		-0.0192	7.25	0.0000	0.00	MIN
8	[SLEF]	1.2528	0.00	0.0015	0.00	MAX
		-0.0196	7.25	0.0000	0.00	MIN
9	[SLER]	1.3950	0.00	0.0015	0.00	MAX
		-0.0218	7.35	0.0000	0.00	MIN

7.1.13 STABILITÀ GLOBALE

Metodo di Fellenius

Numero di cerchi analizzati 100

Simbologia adottata

n° Indice della combinazione/fase

Tipo Tipo della combinazione/fase

(X_c; Y_c) Coordinate centro cerchio superficie di scorrimento, espresse in [m]

R Raggio cerchio superficie di scorrimento, espresso in [m]

(X_v; Y_v) Coordinate intersezione del cerchio con il pendio a valle, espresse in [m]

(X_M; Y_M) Coordinate intersezione del cerchio con il pendio a monte, espresse in [m]

FS Coefficiente di sicurezza

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV010X001	Α	184 di 190

n°	Tipo	(X _C , Y _C)	R	(X_V, Y_V)	(X_M, Y_M)	FS
3	[A2-M2]	(-0.90; 0.0	00)9.0	04(-9.33; -3.28)(8.11; -0.74)	4.03
4	[A2-M2]	(-0.90; 0.0	00)9.0	04(-9.33; -3.28)(8.11; -0.74)	4.03
6	[A2-M2]	(-0.90; 0.9	90)9.9	94(-9.92; -3.28) (9.04; 0.80)	2.78

Combinazione n° 6

Numero di strisce 50

Simbologia adottata

Le ascisse X sono considerate positive verso monte

Le ordinate Y sono considerate positive verso l'alto

Origine in testa alla paratia (spigolo contro terra)

Le strisce sono numerate da monte verso valle

N° numero d'ordine della striscia

W peso della striscia espresso in [kN]

- angolo fra la base della striscia e l'orizzontale espresso in gradi (positivo antiorario)
- φ angolo d'attrito del terreno lungo la base della striscia
- c coesione del terreno lungo la base della striscia espressa in [N/mmq]
- b larghezza della striscia espressa in [m]
- L sviluppo della base della striscia espressa in [m] (L=b/cosα)
- pressione neutra lungo la base della striscia espressa in [N/mmq]

Ctn, Ctt contributo alla striscia normale e tangenziale del tirante espresse in [kN]

Caratteristiche delle strisce

N°	W	lpha(°)Wsin $lpha$	L	ф	С	u(Ctn; Ctt)
1	2.5169	-62.75-228.17	0.83	32.94	0.0000	0.0000(0.00; 0.00)
2	7.4389	-58.26-645.09	0.73	35.80	0.0000	0.0000(0.00; 0.00)
3	11.5987	-54.29-960.29	0.65	38.66	0.0000	0.0000(0.00; 0.00)
4	15.2103	-50.67-1199.6	40.60	38.66	0.0000	0.0000(0.00; 0.00)
5	18.3975	-47.31-1378.89	90.56	38.66	0.0000	0.0000(0.00; 0.00)
6	21.2398	-44.15-1508.69	90.53	38.66	0.0000	0.0000(0.00; 0.00)
7	23.7919	-41.16-1596.7	60.51	38.66	0.0000	0.0000(0.00; 0.00)
8	26.0934	-38.30-1649.0	10.49	38.66	0.0000	0.0000(0.00; 0.00)
9	28.1739	-35.55-1670.1	50.47	38.66	0.0000	0.0000(0.00; 0.00)
10	30.0564	-32.88-1664.0	50.45	38.66	0.0000	0.0000(0.00; 0.00)
11	31.7590	-30.30-1633.9	50.44	38.66	0.0000	0.0000(0.00; 0.00)
12	33.2961	-27.78-1582.6	50.43	38.66	0.0000	0.0000(0.00; 0.00)
13	34.6794	-25.32-1512.6	20.42	38.66	0.0000	0.0000(0.00; 0.00)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

FOGLIO

185 di 190

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

IN10 10 D26CL IV010X001 A

14 35.9186	-22.91-1426.040	0.41	38.66	0.0000	0.0000(0.00; 0.00)
15 37.0217	-20.55-1324.890	0.41	38.66	0.0000	0.0000(0.00; 0.00)
16 37.9952	-18.21-1210.980	0.40	38.66	0.0000	0.0000(0.00; 0.00)
17 38.8446	-15.91-1085.980	0.40	38.66	0.0000	0.0000(0.00; 0.00)
18 39.5746	-13.64-951.450	.39	38.66	0.0000	0.0000(0.00; 0.00)
19 40.1886	-11.38-808.880	.39	38.66	0.0000	0.0000(0.00; 0.00)
20 40.6899	-9.15-659.68 0	.39	38.66	0.0000	0.0000(0.00; 0.00)
21 41.0806	-6.93-505.19 0	.38	38.66	0.0000	0.0000(0.00; 0.00)
22 41.3628	-4.72-346.73 0	.38	38.66	0.0000	0.0000(0.00; 0.00)
23 41.5375	-2.51-185.59 0	.38	38.66	0.0000	0.0000(0.00; 0.00)
24 41.6057	-0.31-23.02 0	.38	38.66	0.0000	0.0000(0.00; 0.00)
25 41.5676	1.89139.73 0	.38	38.66	0.0000	0.0000(0.00; 0.00)
26 41.4230	4.09301.40 0	.38	38.66	0.0000	0.0000(0.00; 0.00)
27 64.5145	6.29720.37 0	.38	38.66	0.0000	0.0000(0.00; 0.00)
28 65.1868	8.48979.81 0	.38	38.66	0.0000	0.0000(0.00; 0.00)
29 65.7534	10.681242.45 0	.38	38.66	0.0000	0.0000(0.00; 0.00)
30 66.2122	12.901507.03 0	.39	38.66	0.0000	0.0000(0.00; 0.00)
31 66.5606	15.141772.20 0	.39	38.66	0.0000	0.0000(0.00; 0.00)
32 66.5515	17.402029.18 0	.39	38.66	0.0000	0.0000(0.00; 0.00)
33 65.6955	19.692257.00 0	.40	38.66	0.0000	0.0000(0.00; 0.00)
34 65.6887	22.012510.66 0	.41	38.66	0.0000	0.0000(0.00; 0.00)
35 91.7648	24.383861.99 0	.41	38.66	0.0000	0.0000(0.00; 0.00)
36 90.4734	26.784157.35 0	.42	38.66	0.0000	0.0000(0.00; 0.00)
37 89.0381	29.244435.58 0	.43	38.66	0.0000	0.0000(0.00; 0.00)
38 87.4486	31.774694.44 0	.44	38.66	0.0000	0.0000(0.00; 0.00)
39 85.6922	34.364931.43 0	.46	38.66	0.0000	0.0000(0.00; 0.00)
40 83.7535	37.035143.67 0	.47	38.66	0.0000	0.0000(0.00; 0.00)
41 70.3243	39.814590.85 0	.49	38.66	0.0000	0.0000(0.00; 0.00)
42 50.9931	42.703526.09 0	.51	38.66	0.0000	0.0000(0.00; 0.00)
43 48.3664	45.733531.53 0	.54	38.66	0.0000	0.0000(0.00; 0.00)
44 45.4361	48.943493.38 0	.57	38.66	0.0000	0.0000(0.00; 0.00)
45 52.6019	52.374247.94 0	.62	38.66	0.0000	0.0000(0.00; 0.00)
46 63.4364	56.095368.65 0	.68	38.66	0.0000	0.0000(0.00; 0.00)
47 59.0742	60.235228.67 0		32.94	0.0000	0.0000(0.00; 0.00)
48 53.8292	64.984973.95 0		32.94	0.0000	0.0000(0.00; 0.00)
49 47.0556	70.864533.10 1		31.10	0.0000	0.0000(0.00; 0.00)
50 33.9905	81.793430.48 2	.64	29.26	0.0000	0.0000(0.00; 0.00)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO
IN10 10

CODIFICA D26CL DOCUMENTO
IV010X001

REV. FOGLIO

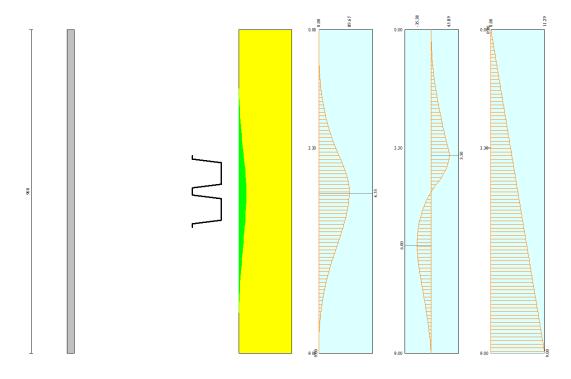
186 di 190

 $\Sigma W_i = 2382.5043 [kN]$

 $\Sigma W_i \sin \alpha_i = 567.3290 \text{ [kN]}$

 $\Sigma W_i cos \alpha_i tan \phi_i = 1578.1215 [kN]$

 $\Sigma c_i b_i / \cos \alpha_i = 0.0000 \text{ [kN]}$

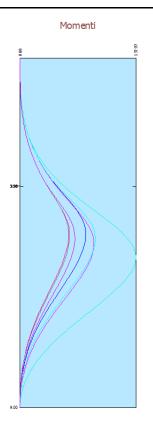

7.1.14 DESCRIZIONE ARMATURA CARATTERISTICHE SEZIONE

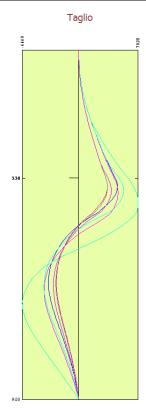
Area della sezione 163.00 cmq Inerzia della sezione 38650.00 cm^4 Modulo di resistenza 1800.00 cm^3

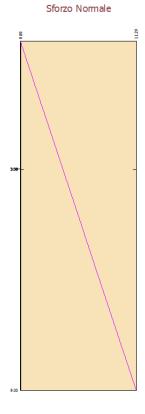
Fattore di taglio 1.20

7.1.15 VERIFICA ARMATURA PARATIA (SEZIONI CRITICHE)

Si riporta lo schema grafico delle sollecitazioni e di seguito i valori numerici:


LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA


NODO AV/AC DI VERONA: INGRESSO OVEST


RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV010X001
 A
 187 di 190

Simbologia adottata

n°	Indice della combinazione/fase
Tipo	Tipo della Combinazione/Fase

Y ordinata della sezione rispetto alla testa della paratia espressa in [m]

M momento flettente espresso in [kNm]

N sforzo normale espresso in [kN] (positivo di compressione)

Mu momento ultimo di riferimento espresso in [kNm]
Nu sforzo normale ultimo di riferimento espresso in [kN]

FS fattore di sicurezza (rapporto fra la sollecitazione ultima e la sollecitazione di esercizio)

T taglio espresso in [kN]

Tr taglio resistente espresso in [kN]

FS_⊤ fattore di sicurezza a taglio

n°	Tipo	Υ	М	Mu	FS
1	[A1-M1]	4.5	537.61	608.57	6.79
2	[A1-M1]	4.5	527.86	608.57	9.16
3	[A2-M2]	4.7	542.25	608.57	6.04
4	[A2-M2]	4.7	542.25	608.57	6.04
5	[A1-M1]	4.6	543.07	608.57	5.93
6	[A2-M2]	5.1	566.24	608.57	3.85

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO IN10

CODIFICA D26CL

DOCUMENTO IV010X001

FOGLIO

REV.

Α

188 di 190

Simbologia adottata

n° Indice della combinazione/fase Tipo Tipo della Combinazione/Fase

Υ ordinata della sezione rispetto alla testa della paratia espressa in [m]

tensione normale nell'armatura, espressa in [N/mmq] σ_{f} tensione tangenziale nell'armatura, espresso in [N/mmq]

tensione ideale ($\sigma_{id} = (\sigma_f^2 + 3 \tau_f^2)^{0.5}$) nella sezione del tubolare, espressa in [N/mmq] σ_{id}

n°Tipo	$\sigma_{fc}Y(\sigma_{fc})$ σ_{fc}	t Y(σft)	σ_{id}	$Y(\sigma_{id})$	τ_{f}	$Y(\tau_f)$
7 [SLEQ]	37.2534.55 0.685	8.95	37.254	4.55	2.503	3.50
8 [SLEF]	37.9974.55 0.685	8.95	37.997	4.55	2.506	3.50
9 [SLER]	41.8654.65 0.684	8.95	41.866	4.65	2.839	3.60

7.1.16 VERIFICA ARMATURA PARATIA (INVILUPPO)

Simbologia adottata

n° Indice della Combinazione/Fase Tipo Tipo della Combinazione/Fase

Υ ordinata della sezione con fattore di sicurezza minimo, espressa in [m]

M momento flettente, espresso in [kNm]

Ν sforzo normale, espresso in [kN] (positivo di compressione)

Mu momento ultimo di riferimento, espresso in [kNm] Nu sforzo normale ultimo di riferimento, espresso in [kN]

FS fattore di sicurezza (rapporto fra la sollecitazione ultima e la sollecitazione di esercizio)

Τ taglio, espresso in [kN]

Tr Taglio resistente, espresso in [kN]

 FS_{T} fattore di sicurezza a taglio

Tipo	Y	M	Mu	FS
[A1-M1]	0.00	0.00	608.57	1000.00
[A1-M1]	0.25	0.01	608.57	26589.90
[A1-M1]	0.50	0.08	608.57	3373.16
[A1-M1]	0.75	0.25	608.57	1004.08
[A1-M1]	1.00	0.60	608.57	423.13
[A1-M1]	1.25	1.18	608.57	216.12
[A1-M1]	1.50	2.05	608.57	124.74
[A1-M1]	1.75	3.26	608.57	78.35
[A2-M2]	2.00	4.91	608.57	52.02
[A2-M2]	2.25	7.21	608.57	35.39
	[A1-M1] [A1-M1] [A1-M1] [A1-M1] [A1-M1] [A1-M1] [A1-M1] [A1-M1] [A2-M2]	[A1-M1] 0.00 [A1-M1] 0.25 [A1-M1] 0.50 [A1-M1] 0.75 [A1-M1] 1.00 [A1-M1] 1.25 [A1-M1] 1.50 [A1-M1] 1.75 [A2-M2] 2.00	[A1-M1] 0.00 0.00 [A1-M1] 0.25 0.01 [A1-M1] 0.50 0.08 [A1-M1] 0.75 0.25 [A1-M1] 1.00 0.60 [A1-M1] 1.25 1.18 [A1-M1] 1.50 2.05 [A1-M1] 1.75 3.26 [A2-M2] 2.00 4.91	[A1-M1] 0.00 0.00 608.57 [A1-M1] 0.25 0.01 608.57 [A1-M1] 0.50 0.08 608.57 [A1-M1] 0.75 0.25 608.57 [A1-M1] 1.00 0.60 608.57 [A1-M1] 1.25 1.18 608.57 [A1-M1] 1.50 2.05 608.57 [A1-M1] 1.75 3.26 608.57 [A2-M2] 2.00 4.91 608.57

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI				COMMESSA	LOTTO 10	CODIFICA D26CL	DOCUMENTO IV010X001	REV.	FOGLIO 189 di 190	
6	[A2-M2]	2.50	10.22	608.57			DZGGL	14010/001		103 01 130
6	[A2-M2]		13.98	608.57						
6	[A2-M2]		18.56	608.57						
6	[A2-M2]		24.02	608.57						
6	[A2-M2]		30.39	608.57	8.4	.0				
6	[A2-M2]	3.75	37.42	608.57	6.8	2				
6	[A2-M2]	4.00	44.75	608.57	5.7	0				
6	[A2-M2]	4.25	52.01	608.57	4.9	1				
6	[A2-M2]	4.50	58.37	608.57	4.3	7				
6	[A2-M2]	4.75	63.14	608.57	4.0	4				
6	[A2-M2]	5.00	65.83	608.57	3.8	8				
6	[A2-M2]	5.25	66.00	608.57	3.8	7				
6	[A2-M2]	5.50	63.67	608.57	4.0	1				
6	[A2-M2]	5.75	59.40	608.57	4.3	0				
6	[A2-M2]	6.00	53.83	608.57	4.7	4				
6	[A2-M2]	6.25	47.48	608.57	5.3	8				
6	[A2-M2]	6.50	40.64	608.57	6.2	8				
6	[A2-M2]	6.75	33.71	608.57	7.5	7				
6	[A2-M2]	7.00	27.03	608.57	9.4	4				
6	[A2-M2]	7.25	20.87	608.57	12.2	3				
6	[A2-M2]	7.50	15.38	608.57	16.5	9				
6	[A2-M2]	7.75	10.67	608.57	23.9	1				
6	[A2-M2]	8.00	6.81	608.57	37.4	7				
6	[A2-M2]	8.25	3.81	608.57						
6	[A2-M2]	8.50	1.68	608.57						
6	[A2-M2]	8.75	0.42	608.57	609.6	8				

Simbologia adottata

n°	Indice della combinazione/fase
Tipo	Tipo della Combinazione/Fase
Υ	ordinata della sezione, espressa in [m]
σid	tensione ideale nell'acciaio, espressa in [N/mmq]
O f	tensione normale in [N/mmq]
τf	tensione tangenziale in [N/mmq]

Υ	σ _{fc} n° - Tipo	$\sigma_{\rm ft}$ n $^{\circ}$ - Tipo	σ _{id} n° - Tipo	τ _f n° - Tipo
0.00	0.0009 - [SLER]	0.0001 - [A1-M1]	0.0009 - [SLER]	0.0009 - [SLER]
0.25	0.0297 - [SLEQ]	0.0109 - [SLER]	0.0387 - [SLEQ]	0.0157 - [SLEQ]
0.50	0.1137 - [SLEQ]	0.0001 - [A1-M1]	0.1527 - [SLEQ]	0.0597 - [SLEQ]

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IN10 10 D26CL IV010X001 A 190 di 190

	IN10 10 D26CL IV010X001 A
0.75	0.3077 - [SLEQ] 0.0001 - [A1-M1] 0.3837 - [SLEQ] 0.1327 - [SLEQ]
1.00	0.6697 - [SLEQ] 0.0001 - [A1-M1] 0.7847 - [SLEQ] 0.2367 - [SLEQ]
1.25	1.2557 - [SLEQ] 0.0001 - [A1-M1] 1.4097 - [SLEQ] 0.3707 - [SLEQ]
1.50	2.1237 - [SLEQ] 0.0001 - [A1-M1] 2.3167 - [SLEQ] 0.5357 - [SLEQ]
1.75	3.3317 - [SLEQ] 0.0001 - [A1-M1] 3.5637 - [SLEQ] 0.7307 - [SLEQ]
2.00	4.9367 - [SLEQ] 0.0001 - [A1-M1] 5.2077 - [SLEQ] 0.9567 - [SLEQ]
2.25	6.9947 - [SLEQ] 0.0001 - [A1-M1] 7.2997 - [SLEQ] 1.2047 - [SLEQ]
2.50	9.5127 - [SLEQ] 0.0001 - [A1-M1] 9.8377 - [SLEQ] 1.4477 - [SLEQ]
2.75	12.5077 - [SLEQ] 0.0001 - [A1-M1] 12.8537 - [SLEQ] 1.7117 - [SLEQ]
3.00	16.0379 - [SLER] 0.0001 - [A1-M1] 16.4199 - [SLER] 2.0329 - [SLER]
3.25	20.2849 - [SLER] 0.0001 - [A1-M1] 20.7269 - [SLER] 2.4589 - [SLER]
3.50	25.3099 - [SLER] 0.0001 - [A1-M1] 25.7699 - [SLER] 2.7999 - [SLER]
3.75	30.6589 - [SLER] 0.0001 - [A1-M1] 31.0329 - [SLER] 2.7739 - [SLER]
4.00	35.6669 - [SLER] 0.0001 - [A1-M1] 35.9039 - [SLER] 2.3809 - [SLER]
4.25	39.6509 - [SLER] 0.0001 - [A1-M1] 39.7369 - [SLER] 1.5079 - [SLER]
4.50	41.6269 - [SLER] 0.0001 - [A1-M1] 41.6329 - [SLER] 0.3899 - [SLER]
4.75	41.6959 - [SLER] 0.0001 - [A1-M1] 41.7039 - [SLER] 0.6467 - [SLEQ]
5.00	40.3239 - [SLER] 0.0001 - [A1-M1] 40.3689 - [SLER] 1.1457 - [SLEQ]
5.25	37.9039 - [SLER] 0.0001 - [A1-M1] 38.0009 - [SLER] 1.5679 - [SLER]
5.50	34.6789 - [SLER] 0.0001 - [A1-M1] 34.8369 - [SLER] 1.9149 - [SLER]
5.75	30.9199 - [SLER] 0.0001 - [A1-M1] 31.1349 - [SLER] 2.1089 - [SLER]
6.00	26.8899 - [SLER] 0.0001 - [A1-M1] 27.1549 - [SLER] 2.1839 - [SLER]
6.25	22.7899 - [SLER] 0.0001 - [A1-M1] 23.0959 - [SLER] 2.1639 - [SLER]
6.50	18.8059 - [SLER] 0.0001 - [A1-M1] 19.1359 - [SLER] 2.0449 - [SLER]
6.75	15.0999 - [SLER] 0.0001 - [A1-M1] 15.4399 - [SLER] 1.8599 - [SLER]
7.00	11.7769 - [SLER] 0.0001 - [A1-M1] 12.1119 - [SLER] 1.6359 - [SLER]
7.25	8.8939 - [SLER] 0.0001 - [A1-M1] 9.2149 - [SLER] 1.3919 - [SLER]
7.50	6.4769 - [SLER] 0.0001 - [A1-M1] 6.7729 - [SLER] 1.1439 - [SLER]
7.75	4.5229 - [SLER] 0.0001 - [A1-M1] 4.7849 - [SLER] 0.9029 - [SLER]
8.00	3.0139 - [SLER] 0.0001 - [A1-M1] 3.2329 - [SLER] 0.6769 - [SLER]
8.25	1.9179 - [SLER] 0.0001 - [A1-M1] 2.0829 - [SLER] 0.4699 - [SLER]
8.50	1.1939 - [SLER] 0.2457 - [SLEQ] 1.2919 - [SLER] 0.2859 - [SLER]
8.75	0.8019 - [SLER] 0.5797 - [SLEQ] 0.8299 - [SLER] 0.1249 - [SLER]