COMMITTENTE:

PROGETTAZIONE:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01e s.m.i.

CUP: J14H20000440001

U.O. COORDINAMENTO TERRITORIALE NORD

PROGETTO DEFINITIVO

LINEA AV/AC MILANO - VENEZIA
LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

IV03 - CAVALCAFERROVIA VIA FENILON

RELAZIONE DI CALCOLO IMPALCATO DI SCAVALCO P2 – P3

SCALA:
-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

I N 1 0 D 2 6 C L I V 0 3 0 0 0 1 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	P. Maestrelli	Sett 2021	M. Rigo	Sett 2021	C. Mazzocchi	Sett 2021	A. Perego
		- Hand Trusted		Tossumo Vije		ducell'		Sett 2021
				4				DOTT, NO.
								a) corn demolection (2)

File: IN1010D26CLIV0300001A n. Elab.:

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA LOTTO
IN10 10

CODIFICA D26CL DOCUMENTO IV0300001

A

FOGLIO 3 di 59

INDICE

1	INTRODUZIONE	6
2	ELABORATI DI RIFERIMENTO	7
3	NORMATIVA DI RIFERIMENTO	7
3.1	METODO DI CALCOLO	8
3.1.1	CRITERI E DEFINIZIONE DELL'AZIONE SISMICA	8
3.1.2	COMBINAZIONI DI CARICO	11
3.1.	2.1 Combinazione fondamentale (slu)	12
3.1.	2.2 Combinazione rara o caratteristica (sle)	14
3.1.	2.3 Combinazione frequente (sle)	14
3.1.	2.4 Combinazione quasi permanente (sle)	14
3.1.	2.5 Combinazione eccezionale (slu)	14
3.1.	2.6 Combinazione Sismica (slv)	14
3.1.3	VERIFICHE DEGLI ELEMENTI STRUTTURALI	15
4	MATERIALI	16
4.1	TABELLA RIASSUNTIVA CLASSI DI ESPOSIZIONE SECONDO NORMATIVA UNI EN 206-1	16
4.2	PARAMETRI DI IDENTIFICAZIONE PER LA VERIFICA A FESSURAZIONE	17
4.3	CALCESTRUZZO PER SOLETTA IMPALCATO	17
4.4	ACCIAIO PER CEMENTO ARMATO	19
4.5	STRUTTURE METALLICHE	19
4.5.1	ACCIAIO	19
4.5.2	BULLONI	20
4.5.3	SALDATURE	21
4.5.4	PIOLI	21
4.6	COPRIFERRI	21
5	CALCOLO DELLA STRUTTURA - IMPALCATO	21
5.1	MODELLO DI CALCOLO	21

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI COMMESSA APPROCCIO P2 – P3 IN10 10

LOTTO

CODIFICA D26CL

DOCUMENTO IV0300001

REV. FOGLIO Α

4 di 59

5.2 AN	ALISI DEI CARICHI	26
5.2.1.1	Peso proprio carpenteria metallica	26
5.2.1.2	Peso proprio soletta	26
5.2.1.1	Carichi permanenti	26
5.2.1.2	Effetti del ritiro	26
5.2.1.3	Effetti delle dilatazioni termiche differenziali	27
5.2.1.4	Cedimenti vincolari	27
5.2.1.5	Azione del vento	28
5.2.1.6	Carichi mobili (Q)	29
5.2.1.1	Azione centrifuga: q4	30
5.2.1.2	Azione di frenamento o di accclerazione	30
5.2.1.3	Azioni sismiche	30
5.3 AN	ALISI STRUTTURALE	31
5.4 TR	AVI PRINCIPALI	31
5.4.1 VI	CRIFICHE DI RESISTENZA	31
5.4.2 ST	ATI LIMITE ULTIMI DI STABILITÀ PER LA SEZIONE METALLICA	38
5.4.3 VI	CRIFICA ALL'IMBOZZAMENTO DEI PANNELLI D'ANIMA	38
5.4.4 VI	CRIFICA DEGLI IRRIGIDIMENTI TRASVERSALI	40
5.4.1 ST	ATO LIMITE ULTIMO DI FATICA	41
5.4.1.1	Verifiche per vita illimitata	41
5.4.1.2	Verifica della sezione	41
5.4.1.2.1	Saldatura anima trave principale / ali travi principali	42
5.4.1.2.1	Attacco ala superiore trave principale / ala superiore traverso di pila e spalla	42
5.4.2 VI	CRIFICA DEI PIOLI	43
5.5 TR	AVERSI	44
5.5.1 VI	CRIFICHE DI RESISTENZA	44
5.6 SO	LETTA	48
5.6.1 VI	CRIFICHE IN DIREZIONE TRASVERSALE	49
5.6.1.1	Fase provvisionale	49
5.6.1.2	Fase definitiva	51
562 VI	CRIFICHE IN DIREZIONE LONGITUDINALE	51

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO APPROCCIO P2 – P3 IN10 10 D26CL IV0300001 A 5 di 59

5.6.	3 SBA	ALZO	52
5.	6.3.1	Carichi accidentali	53
5.	6.3.1.1	Carichi mobili (q1)	53
5.	6.3.1.2	Urto di veicolo in svio (q8)	54
5.	6.3.1.3	Carico accidentale (q5)	54
5.	6.3.2	Verifiche resistenza	54
6	CAI	LCOLO APPOGGI	55
6.1	AZI	ONI SUGLI APPOGGI	57
7	CAI	LCOLO DELLE FRECCE MASSIME	58
8	VEF	RIFICA RESISTENZA CAMPATA TEMPORANEA IN FASE DI	
	MO	NTAGGIO	59

1 INTRODUZIONE

Nel presente elaborato si riportano i calcoli e le verifiche dell'impalcato collocato tra le pile P2 e P3. Il ponte presenta una carreggiata, a campata singola di luce L = 45m.

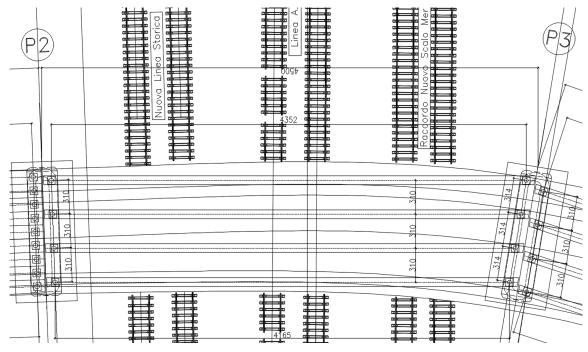


Figura 1.1 Pianta impalcato

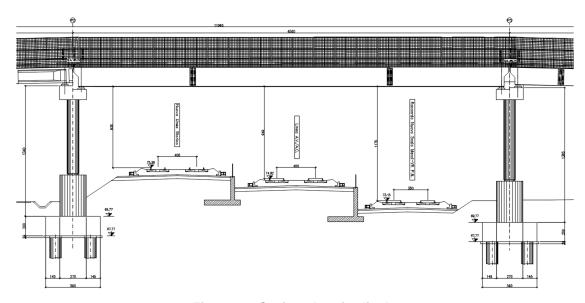


Figura 1.2 Sezione longitudinale

La struttura in oggetto è in semplice appoggio, costituito da travi di altezza H=200cm in sezione mista e soletta superiore collaborante in conglomerato cementizio armato di spessore 18cm.

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300001
 A
 7 di 59

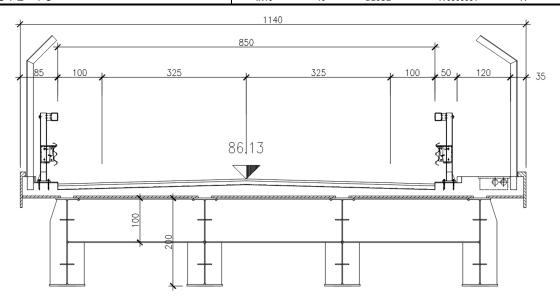


Figura 1.3 Sezione trasversale impalcati

L'impalcato ha una larghezza complessiva nella sezione tipica di 11.40m, tale larghezza è dovuta alla somma delle larghezze di due cordoli (0,85m+2,05m) e una larghezza carreggiata pari a 8,5m.

L'impalcato presenta n.4 travi in acciaio con interasse i=3.10m e gli sbalzi hanno luce massima di 2.5m circa.

Sono presenti traversi in campata di altezza pari a 1m, a interasse di 4.5m.

2 ELABORATI DI RIFERIMENTO

La presente relazione è inscindibile dagli elaborate grafici e dai seguenti documenti:

Relazione Tecnica Descrittiva

Relazione di Calcolo Spalle e Fondazioni

Relazione di Calcolo Pile

Relazione di Calcolo Impalcato

Relazione di Opere provvisionali

3 NORMATIVA DI RIFERIMENTO

I calcoli sviluppati nel seguito sono svolti secondo il Metodo degli Stati Limite e nel rispetto della normativa vigente.

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA LOTTO CODIFICA
IN10 10 D26CL

DOCUMENTO
IV0300001

REV.

FOGLIO 8 di 59

Ministero dei LL.PP - D.M. 17.01.2018

Circolare 21 Gennaio 2019 n.7

CNR - DT 207/2008

Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni.

RFI DTC INC PO SP IFS 001 A

Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario.

EC3 - UNI EN 1993-1-1:2005

3.1 METODO DI CALCOLO

La sicurezza strutturale è verificata tramite il metodo semiprobabilistico agli stati limite, applicando il DM17/01/2018 "Norme Tecniche per le costruzioni" e relative Istruzioni.

In particolare viene verificata la sicurezza sia nei confronti degli stati limite ultimi (SLU) sia nei confronti degli stati limite di esercizio (SLE).

3.1.1 CRITERI E DEFINIZIONE DELL'AZIONE SISMICA

L'effetto dell'azione sismica di progetto sull'opera nel suo complesso, includendo il volume significativo di terreno, la struttura di fondazione, gli elementi strutturali e non, nonché gli impianti, deve rispettare gli stati limite ultimi e di esercizio definiti al § 3.2.1, i cui requisiti di sicurezza sono indicati nel § 7.1 della norma.

Il rispetto degli stati limite si considera conseguito quando:

- nei confronti degli stati limite di esercizio siano rispettate le verifiche relative al solo Stato Limite di Danno;
- nei confronti degli stati limite ultimi siano rispettate le indicazioni progettuali e costruttive riportate nel § 7 e siano soddisfatte le verifiche relative al solo Stato Limite di salvaguardia della Vita.

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300001
 A
 9 di 59

Per Stato Limite di Danno (SLD) s'intende che l'opera, nel suo complesso, a seguito del terremoto, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non provocare rischi agli utenti e non compromette significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali e orizzontali. Lo stato limite di esercizio comporta la verifica delle tensioni di lavoro, come riportato al § 4.1.2.2.5.

Per Stato Limite di salvaguardia della Vita (SLV) si intende che l'opera a seguito del terremoto subisce rotture e crolli dei componenti non strutturali e impiantistici e significativi danni di componenti strutturali, cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali (creazione di cerniere plastiche secondo il criterio della gerarchia delle resistenze), mantenendo ancora un margine di sicurezza (resistenza e rigidezza) nei confronti delle azioni verticali.

Gli stati limite, sia di esercizio sia ultimi, sono individuati riferendosi alle prestazioni che l'opera a realizzarsi deve assolvere durante un evento sismico; nel caso di specie per la funzione che l'opera deve espletare nella sua vita utile, è significativo calcolare lo Stato Limite di Danno (SLD) per l'esercizio e lo Stato Limite di Salvaguardia della Vita (SLV) per lo stato limite ultimo.

Per la definizione dell'azione sismica, occorre definire il periodo di riferimento P_{VR} in funzione dello stato limite considerato.

La vita nominale (V_N) dell'opera è stata assunta pari a 100 anni.

La classe d'uso assunta è la IV.

Il periodo di riferimento (V_R) per l'azione sismica, data la vita nominale e la classe d'uso vale:

$$V_R = V_N \cdot C_u = 200 \text{ anni}$$

I valori di probabilità di superamento del periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente è:

$$P_{VR}(SLV) = 10\%$$

Il periodo di ritorno dell'azione sismica T_R espresso in anni, vale:

$$T_R (SLV) = -\frac{Vr}{\ln(1 - Pvr)} = 1898 \text{ anni}$$

Dato il valore del periodo di ritorno suddetto, tramite le tabelle riportate nell'Allegato B della norma, è possibile definire i valori di a_g , F_0 , T^*_c .

- ag → accelerazione orizzontale massima del terreno su suolo di categoria C, espressa come frazione dell'accelerazione di gravità;
- F₀ → valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300001	Α	10 di 59

- T*_c → periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;
- S → coefficiente che comprende l'effetto dell'amplificazione stratigrafica (Ss) e dell'amplificazione topografica (St);

L'opera ricade all'incirca alla Latitudine di 45°25'48 N e Longitudine 10°54'29 E, ad una quota di circa 82 m.s.m..

I valori delle caratteristiche sismiche (a_g , F_0 , T^*_c) per lo Stato Limite di salvaguardia della Vita sono riportati di seguito:

Figura 3.1 Tratto adeguamento del tracciato A22

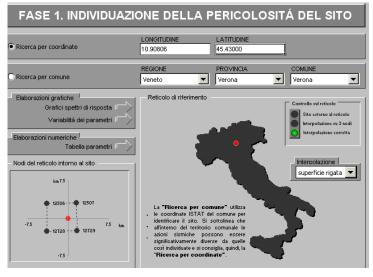


Figura 3.2 Individuazione coordinate Verona

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

IN10 10 D26CL IV0300001 A

FOGLIO

11 di 59

Valori dei parametri ag, Fo, Tc* per i periodi di ritorno TR associati a ciascuno SL sono:

	37 -7			
SLATO	T _R	$\mathbf{a}_{ ext{g}}$	F _o	Tc*
LIMITE	[anni]	[g]	[-]	[s]
SLO	120	0.087	2.442	0.262
SLD	201	0.111	2.407	0.271
SLV	1898	0.260	2.407	0.287
SLC	2475	0.287	2.382	0.289

Per le spalle il calcolo viene eseguito con il metodo <u>dell'analisi statica equivalente,</u> applicando come prescritto da normativa un'accelerazione pari ad a_qS.

Il sottosuolo su cui insiste l'opera può essere inserito nella categoria "A".

Il valore del coefficiente di amplificazione stratigrafico risulta:

 S_s (SLV) \Rightarrow 1.00

 S_T (SLV) \Rightarrow 1.00

L'accelerazione massima è valutata con la relazione

 $a_{max}(SLV)=S \cdot a_g=S_s * S_T * \cdot a_g=0.260g$

Lo studio sismico delle opere facenti parte del tratto di intervento è stato impostato in maniera univoca, affidando a favore di sicurezza lo spettro della città di Verona (di cui si tiportano i parametri di seguito), risultando questo sempre più "gravoso" di quello specifico dell'opera.

Latitudine di 45.4351 e Longitudine 10.9988.

Valori dei parametri ag, Fo, TC* per i periodi di ritorno TR associati a ciascuno SL sono:

SLATO LIMITE	T_R	a_{g}	Fo	T _C *
	[anni]	[g]	[-]	[s]
SLO	120	0.087	2.443	0.263
SLD	201	0.111	2.409	0.271
SLV	1898	0.260	2.406	0.287
SLC	2475	0.286	2.381	0.290

3.1.2 COMBINAZIONI DI CARICO

Le combinazioni di carico, considerate ai fini delle verifiche, sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto nel D.M. 17/01/2018.

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300001
 A
 12 di 59

I carichi variabili sono stati suddivisi in carichi da traffico, vento e resistenza passiva dei vincoli; di conseguenza, le combinazioni sono state generate assumendo alternativamente ciascuno dei tre suddetti carichi come azione variabile di base.

Fra i carichi variabili si distinguono:

 $\begin{array}{ll} Q & \text{carichi da traffico} \\ Q_T & \text{azioni termiche} \\ Q_w & \text{azione del vento} \end{array}$

Inoltre, come indicato nella tabella 5.1.IV, sono stati identificati tre gruppi di azioni caratteristiche, corrispondenti rispettivamente ai carichi verticali, alla forza di frenamento e alla forza centrifuga. Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

3.1.2.1 Combinazione fondamentale (slu)

 $\gamma_{G1} * G_{1+} \gamma_{G2} * G_{2} + \gamma_{Q1} * Q_{k1} + \gamma_{Q2} * \psi_{02} * Q_{k2} + \gamma_{Q3} * \psi_{03} * Q_{k3} +$

dove:

G₁ peso di tutti gli elementi strutturali

G₂ peso proprio di tutti gli elementi non strutturali

Q_{k1} azione variabile dominante

Q_{ki} azioni variabili che possono agire contemporaneamente a quella dominante

Il ritiro e la viscosità nelle NTC sono indicate genericamente come azioni permanenti G (punto 2.5.1.3).

Fra i carichi variabili si distinguono:

 ${f Q}$ carichi da traffico ${f Q}_{f T}$ azioni termiche ${f Q}_{f w}$ azione del vento

I valori dei coefficienti parziali e dei coefficienti di combinazione ψ nel caso dei ponti stradali sono indicati rispettivamente nelle Tab.5.1.VI delle NTC, tabelle che vengono di seguito riportate.

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300001
 A
 13 di 59

Tabella 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

complete parameter per recommendation and against a							
		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO		
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00		
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30		
Carichi variabili da traffico	favorevoli sfavorevoli	γQ	0,00 1,35	0,00 1,35	0,00 1,15		
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,00 1,50	0,00 1,50	0,00 1,30		
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γel	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00		
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	γε2, γε3, γε4	0,00 1,20	0,00 1,20	0,00 1,00		

⁽i) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Tabella 5.1.VI - Coefficienti y per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente \psi_0 di combinazione	Coefficiente \(\psi_1\) (valori frequenti)	Coefficiente ψ2 (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
Vento q s	Vento a ponte scarico SLU e SLE	0,6	0,2	0,0
	Esecuzione	0,8		0,0
	Vento a ponte carico	0,6		
Neve q ₅	SLU e SLE	0,0	0,0	0,0
21414 93	esecuzione	0,8	0,6	0,5
Temperatura	T_k	0,6	0,6	0,5

Per le opere di luce maggiore di 300 m è possibile modificare i coefficienti indicati in tabella previa autorizzazione del Servizio Tecnico Centrale del Ministero delle Infrastrutture, sentito il Consiglio Superiore dei lavori pubblici.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300001	Α	14 di 59

3.1.2.2 Combinazione rara o caratteristica (sle)

$$G_{1+}G_{2}+Q_{k1}+\psi_{02}*Q_{k2}+\psi_{03}*Q_{k3}+...$$

dove, per il significato dei simboli e per i valori dei coefficienti di combinazione ψ (relativi alle azioni variabili), si rimanda al paragrafo 3.1.2.1.

3.1.2.3 Combinazione frequente (sle)

$$G_{1+}G_{2} + \psi_{11}Q_{k1} + \psi_{22} * Q_{k2} + \psi_{23} * Q_{k3} +$$

dove, per il significato dei simboli e per i valori dei coefficienti di combinazione ψ (relativi alle azioni variabili), si rimanda al paragrafo 3.1.2.1.

3.1.2.4 Combinazione quasi permanente (sle)

$$G_{1+}G_{2} + \psi_{21}Q_{k1} + \psi_{22} * Q_{k2} + \psi_{23} * Q_{k3} +$$

dove, per il significato dei simboli e per i valori dei coefficienti di combinazione ψ (relativi alle azioni variabili), si rimanda al paragrafo 3.1.2.1.

3.1.2.5 Combinazione eccezionale (slu)

$$G_{1+}G_{2} + A_{d} + \psi_{21}Q_{k1} + \psi_{22} * Q_{k2} + \psi_{23} * Q_{k3} +$$

dove, per il significato dei simboli e per i valori dei coefficienti di combinazione ψ (relativi alle azioni variabili), si rimanda al paragrafo 3.1.2.1.

3.1.2.6 Combinazione Sismica (slv)

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1+G_2+\sum_i\psi_{2i}\cdot Q_{ki}$$

I valori del coefficiente ψ_{2i} sono quelli riportati nella tabella 2.5.I della norma; la stessa propone nel caso di ponti ferroviari, di assumere per i carichi dovuti al transito dei mezzi ψ_{2i} = 0.2 (condizione cautelativa). In questo caso in favore di sicurezza si assimila il ponte in esame come ferroviario applicando il coefficiente ψ_{2i} = 0.2.

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300001
 A
 15 di 59

3.1.3 VERIFICHE DEGLI ELEMENTI STRUTTURALI

Le verifiche degli elementi strutturali verranno svolte secondo quanto prescritto dalla normative in vigore (DM 17/01/2018); i limiti tensionali massimi assunti sono riportati nel paragrafo specifico relativo alle caratteristiche dei materiali.

Per le parti strutturali costituenti l'impalcato (soletta, travi, traversi, cordoli) saranno svolte le verifiche allo stato limite ultimo per le condizioni di esercizio, nonché le verifiche a fessurazione per lo stato limite di esercizio.

4 MATERIALI

4.1 TABELLA RIASSUNTIVA CLASSI DI ESPOSIZIONE SECONDO NORMATIVA UNI EN 206-1

Tab 2

		ntale secondo L						
Jasse di	Descrizione	Esempi di condizioni	UNI 9858	A/C	Contenuto	Rck	Contenuto	Copriferro
sposizione	dell'ambiente di	ambientali		massimo	minimo di	minima N/mm²	minimo di	minimo
imbientale	esposizione				cemento kg/m²	NAMM	aria %	Mm
l Assenza di risc	i hio di corrosione o attaci	00			I NGPI II		J 70	
0	Molto secco	Os per interni di editici	1	-		C12/15	-	15
		con umidità dell'aria						
	<u> </u>	molto bassa						
z Corrosione delli XC1	e armature per effetto de l Seccolo	lla carbonatazione Os perintemi di edifici	2a	0.65	260	C20/25		120
XC1	permanentemente	con umidità relativa	Za	כמען	200	C210/25	-	20
	bagnato	bassa o immerso in						
	•	acqua						
XC2	Bagnato, raramente	Superfici in ds a	2a	0,60	280	C25/30	-	20
	secoo	contatto con acqua per						
		lungo tempo es. fondazioni						
XC3	Umidità moderata	Os per interni con	5a	0.55	280	C30/37		30
n00	Gilliata Illodelata	umidità relativa	0	0,00	1200	Const		100
		moderata o alta e ols						
		all'esterno protetto dalla						
08.4		pioggia		0.50				ļ
XC4	Ciclicamente bagnato ed asciutto	Superfici in cls a contatto con l'acqua,	4a,5b	0,50	300	C30/37	-	30
	eu asciulio	non nella dasse XC2.						
3 Corrosione dell	e armature per effetto de		ovenienti d	all'accua di	mare			
XD1	Umidità moderata	Superfici in als esposte	5a	0.55	300×	C30/37	I-	30
		a nebbia salina						
XD2	Bagnato, raramente	Piscine; ds esposto ad	4a,5b	0,55	300	C30/37	-	30
	asciutto	acque industriali						
XD3	Ciclicamente bagnato	contenenti doruri Parti di ponti esposte a	5c	0.45	320	C35/45		40
VDO	ed asciutto	spruzzi contenenti	90	0,40	320	C33/40	-	140
	ed asodato	doruri,pavimentazioni						
		di parcheggi						
	e armature indotta da olo	ruri presenti nell'acqua						
XS1	Esposto alla nebbia	Strutture prossime o	4a,5b	0,50	300	C30/37	-	30
	salina ma non all'acqua	sulla costa						
XS2	di mare Permanentemente	Parti di strutture marine	5c	0.45	320	C35/45		40
A-02	sommerso	Parti di strutture manne	96	0,40	320	C35/46	-	140
XS3	Zone esposte alle onde	Parti di strutture marine	5c	0.45	340	C35/45		40
	o alla marea		**	-,				"
	í digelo/disgeloconose		•	'		•		
XF1	Moderata saturazione	Superfici verticali in ds	2b	0,55	300	C30/37	-	30
	d'acqua in assenza di	esposte alla pioggia e						
XF2	sali disgelanti Moderata saturazione	al gelo Superfici verticali in dis	3.4b	0.55	300	C25/30	4.0	30
AFZ	d'acqua in presenza di	di strutture stradali	3,40	0,00	300	C25V3D	e aggregati	30
	sali disoelanti	esposte al gelo e nebbia					resistenti al	
		dei sali disgelanti					gelo/disgelo	
XF3	Bevata saturazione	Superfici orizzontali in	2b	0,50	320	C30/37	4,0	30
	d'acqua in assenza di	ds esposte alla pioggia					e aggregati	
	sali disgelanti	e al gelo					resistenti al	
XF4	Bevata saturazione	Strade e impalcati da	3.4b	0.45	340	C30/37	gelo/disgelo 4.0	40
ni 4	d'acqua in presenza di	ponte esposti ai sali	3,70	10,700	1370	Cobron	e aggregati	ا™
	sali disgelanti o acqua	disgelanti. Superfici in					resistenti al	
	di mare	dis esposte direttamente					gelo/disgelo	
		a nebbia contenente sali				1		
0.044		disgelanti						
6 Attacco chimico XA1	Ambiente chimico	I	5a	0.55	300	T C30/37		130
nn 1	debolmente aggressivo	-	Ja .	0,00	300	C30/37	Ι.	30
	(vd. prospetto 2 della					1	1	
	EN 208)							
XA2	Ambiente chimico		4°, 5b	0,50	320	C30/37	-	30
	moderatamente		' -	Ι΄	cemento		1	
	aggressivo (vd.			1	resistente	1	I	
	prospetto 2 della EN				aisolfati	1	1	
XA3	206)		F	0.45	360	C35/45		40
AMS	Ambiente chimico fortemente aggressivo	•	5c	0,45	360 cemento	U35/46	ļ.	40
	(vd. prospetto 2 della			1	resistente	1	I	
	EN 206)		I	1	ai solfati			1

ITALFERR	LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA NODO AV/AC DI VERONA: INGRESSO OVEST						
RELAZIONE DI CALCOLO IMPALCATO RAMPA DI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
APPROCCIO P2 – P3	IN10	10	D26CI	IV0300001	Δ	17 di 59	

Conglomerato cementizio per elementi strutturali:

<u> </u>						
ELEMENTO	CLASSE DI ESPOSIZIONE		COPRIFERRO (mm)	CLASSE DI CONSISTENZA	CLASSE DI CONTENUTO IN CLORURI	DIMENSIONE MASSIMA NOMINALE DEGLI AGGREGATI (mm)
IMPALCATI GETTATI IN OPERA	XC4+XF4	C32/40	40	S4/S5	0.45 (+4%)	25

4.2 PARAMETRI DI IDENTIFICAZIONE PER LA VERIFICA A FESSURAZIONE

Nel capitolo 4 del DM 17.01.2018 si identificano i parametri a cui fare riferimento per la verifica a fessurazione.

Tabella 4 l.III – Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 4 LIV - Criteri di scelta dello stato limite di fessurazione

Gruppi di	Condizioni	Combinazione	Armatura					
	ambientali	diazioni	Sensibile	Poco sensibile				
esigenze	amoreman	атальн	Stato limite	\mathbf{w}_{4}	Stato limite	\mathbf{w}_{4}		
	Ordinarie	frequente	ap. fessure	$\leq W_2$	ap, fessure	$\leq w_3$		
a	Ommane	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$		
1	Aggressive	frequente	ap. fessure	≤wı	ap, fessure	$\leq W_2$		
В	Mgg Jessive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$		
	Molto aggressive	frequente	formazione fessure	-	ap, fessure	$\leq w_1$		
°		quasi permanente	decompressione	-	ap. fessure	≤wı		

w1, w2, w3 sono definiti al § 4.1.2.2.4.1, il valore di calcolo w4, è definito al § 4.1.2.2.4.6.

ELEMENTO	Classe desposizione	di	Gruppo di esigenza	Combinazione	$\mathbf{W_d}$	
IMPALCATI GETTATI I	N	VC4 · VE4			frequente	0.2
OPERA XC4+ XF4			С	quasi permanente	0.2	

4.3 CALCESTRUZZO PER SOLETTA IMPALCATO

Per la realizzazione della soletta d'impalcato in cemento armato, si prevede l'utilizzo di calcestruzzo in classe C32/40, che presenta le seguenti caratteristiche:

NODO AV/AC DI VERONA: INGRESSO OVEST

 \rightarrow E_{cm} = 2200*[f_{cm}/10]^{0.3}

CODIFICA

LOTTO

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3 IN10

	IN10 10 D26CL		IV0300001	Α	18 di 59	
ione			$f_{cc} f_{ck} / \gamma_c = 0.8$ $f_{ck} = 0.8$	35* f _{ck} /1.5 =	_	37 N/mm² 92 N/mm²
	\rightarrow		0.30* $f_{ck}^{2/3} =$.7* $f_{ctm} =$.tk / $\gamma_c =$:	2.1	0 N/mm ² 7 N/mm ² 4 N/mm ²

DOCUMENTO

REV.

FOGLIO

33643 N/mm²

Resistenza di calcolo a compressione Resistenza di calcolo a compressione elastica Resistenza a trazione media Resistenza a trazione Resistenza a trazione di calcolo Modulo Elastico

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300001	Α	19 di 59

4.4 ACCIAIO PER CEMENTO ARMATO

Per le armature metalliche si adottano tondini in acciaio del tipo B450C controllato in stabilimento, che presentano le seguenti caratteristiche:

Proprietà	Requisito
Limite di snervamento f _y	≥450 MPa
Limite di rottura f _t	≥540 MPa
Allungamento totale al carico massimo Agt	≥7%
Rapporto f _t /f _y	$1,13 \le R_{\rm m}/R_{\rm e} \le 1,35$
Rapporto f _{y misurato} / f _{y nom}	≤ 1,25

4.5 STRUTTURE METALLICHE

4.5.1 ACCIAIO

Materiale secondo UNI EN 10025 (laminati), UNI EN 102109-1 (tubi saldati)

Per le travi ed i traversi a sostegno dell'impalcato si prevede l'impiego di acciaio da carpenteria tipo S355J2 (ex Fe 510) con le seguenti caratteristiche:

Tensione di snervamento caratteristica	\rightarrow	$f_{yk} \ge$	355.00 N/mm ²
Tensione caratteristica a rottura	\rightarrow	$f_{tk} \ge$	510.00 N/mm ²
Fattore di sicurezza acciaio	\rightarrow	γs	Variabile a seconda del tipo di verifica *
Resistenza a trazione di calcolo	\rightarrow	$f_{yd} = f_{yk} / \gamma_s$	$= 284.00 \text{ N/mm}^2$
Modulo elastico	\rightarrow	É _s =	206000 N/mm ²

(*) Il valore del coeff. parziale viene specificato nelle NTC2008 nella Tabella 4.2.V.

Tabella 4.2.V Coefficienti di sicurezza per la resistenza delle membrature e la stabilità

Resistenza delle Sezioni di Classe 1-2-3-4	$\gamma_{M0} = 1.05$
Resistenza all'instabilità delle membrature	$\gamma_{\rm M1} = 1.05$
Resistenza all'instabilità delle membrature di ponti stradali e ferroviari	$\gamma_{\rm MI} = 1.10$
Resistenza, nei riguardi della frattura, delle sezioni tese (indebolite dai fori)	$\gamma_{M2} = 1,25$

Elementi principali composti per saldatura.

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300001	Α	20 di 59

4.5.2 BULLONI

Giunzioni a taglio

Per i collegamenti di controventi sono previsti giunzioni a taglio, le cui caratteristiche dimensionali dovranno essere conformi alle norme UNI EN ISO 4016: 2002 e UNI 5592: 1968.

Classi secondo UNI EN ISO 898-1: 2001

Viti classe 8.8 (UNI 14399: 2005), Dadi classe 8 (UNI 14399: 2005)

Giunzioni ad attrito

Per il collegamento dei traversi di impalcato sono previsti giunzioni ad attrito con bulloni classe 10.9.

Tabella 11.3.XII.a

	Normali			Ad alta resistenza	
Vite	4.6	5.6	6.8	8.8	10.9
Dado	4	5	6	8	10

Le tensioni di snervamento fyb e di rottura ftb delle viti appartenuti alle classi indicate nella precedente tabella 11.3.XII.a sono riportate nella seguente tabella 11.3.XII.b:

Tabella 11.3.XII.b

Classe	4.6	5.6	6.8	8.8	10.9
F _{yb} (N/mm ²)	240	300	480	649	900
F _{yb} (N/mm ²)	400	500	600	800	1000

I bulloni per giunzioni ad attrito devono essere conformi alle prescrizioni della Tab. 11.3.XIII Viti e dadi, devono essere associati come indicato nella Tab. 11.3.XII.

Tabella 11.3.XIII

Elemento	Materiale	Riferimento
Viti	8.8 – 10.9 secondo UNI EN ISO 898-1 : 2001	UNI EN 14399 :2005 parti 3 e 4
Dadi	8 - 10 secondo UNI EN 20898-2 :1994	
Rosette	Acciaio C 50 UNI EN 10083-2: 2006	UNI EN 14399 :2005 parti 5 e 6
	temperato e rinvenuto HRC 32÷ 40	
Piastrine	Acciaio C 50 UNI EN 10083-2: 2006	
	temperato e rinvenuto HRC 32÷ 40	

Gli elementi di collegamento strutturali ad alta resistenza adatti al precarico devono soddisfare i requisiti di cui alla norma europea armonizzata UNI EN 14399-1, e recare la relativa marcatura CE.

Si assumono i coefficienti di sicurezza da adottare per la verifica dello unioni (Tabella 4.2.XII).

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA LOTTO CODIFICA IN10 10

D26CL

DOCUMENTO IV0300001

REV. FOGLIO 21 di 59

Tabella 4.2. XII Coefficienti di sicurezza per la verifica delle unioni.

The second of th	
Resistenza dei bulloni	
Resistenza dei chiodi]
Resistenza delle connessioni a perno	$\gamma_{M2} = 1,25$
Resistenza delle saldature a parziale penetrazione e a cordone d'angolo	Tiviz -,
Resistenza dei piatti a contatto]
Resistenza a scorrimento	
per SLU	$\gamma_{M3} = 1,25$
per SLE	$\gamma_{M3} = 1,10$
•	-
Resistenza delle connessioni a perno allo stato limite di esercizio	$\gamma_{M6,ser} = 1.0$
Precarico di bulloni ad alta resistenza	$\gamma_{M7} = 1,10$

4.5.3 SALDATURE

Esecuzione secondo UNI EN 1011: 2005.

Preparazione lembi secondo UNI EN ISO 9692-1: 2005.

Controlli secondo UNI EN 12062: 2004

4.5.4 PIOLI

Secondo UNI EN ISO 13918

Pioli tipo Nelson (diametro ed altezza come da elaborati grafici):

Acciaio ex ST37-3K (S235J2G3+C450)

Tensione di snervamento 350.00 N/mm² $f_v \ge$ 450.00 N/mm² Tensione di rottura f_t ≥

4.6 COPRIFERRI

Impalcato - Si adottano conriferri pari a:

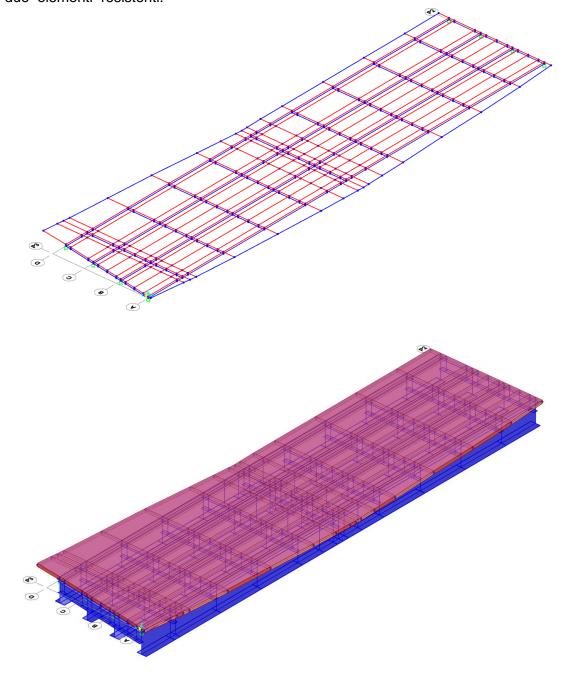
impaicate - of adoltario copiliciti p		
	Copriferro - c _{min} [mm]	
Soletta	40	

5 CALCOLO DELLA STRUTTURA - IMPALCATO

5.1 MODELLO DI CALCOLO

La struttura è risolta mediante metodo di calcolo automatico attraverso l'impiego del software Sap2000 v23.

La struttura è rappresentata da un modello tridimensionale, in cui si sono considerati tutti gli elementi strutturali opportunamente modellati. Il comportamento a piastra della soletta di calcestruzzo è stato considerato con degli elementi bidimensionali mentre le travi sono state


NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300001
 A
 22 di 59

schematizzate tramite elementi frame. Le connessioni, invece, tra i nodi delle travi con quelli della soletta vengono rappresentate mediante link rigidi per permettere il trasferimento degli sforzi tra i due elementi resistenti.

Sezioni elementi FEM

Di seguito si riportano le sezioni adottate per gli elementi Fem utilizzati nel modello di calcolo.

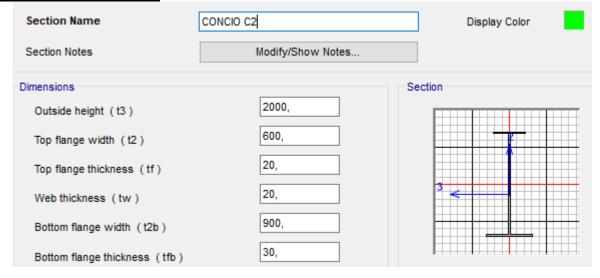
NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 - P3

COMMESSA LOTTO IN10 10


CODIFICA D26CL

DOCUMENTO IV0300001

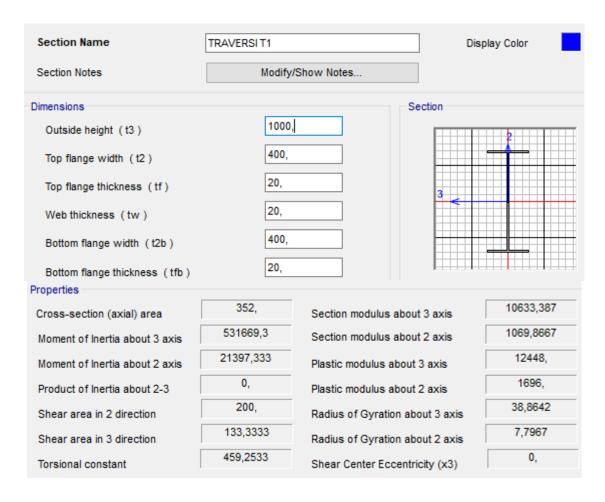

REV. FOGLIO

23 di 59

Trave Principale Concio C1:

Trave Principale Concio C2:

NODO AV/AC DI VERONA: INGRESSO OVEST


RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300001
 A
 24 di 59

Properties			
Cross-section (axial) area	780,	Section modulus about 3 axis	40143,06
Moment of Inertia about 3 axis	4761585,	Section modulus about 2 axis	4852,8889
Moment of Inertia about 2 axis	218380,	Plastic modulus about 3 axis	54750,
Product of Inertia about 2-3	0,	Plastic modulus about 2 axis	8070,
Shear area in 2 direction	400,	Radius of Gyration about 3 axis	78,1319
Shear area in 3 direction	325,	Radius of Gyration about 2 axis	16,7324
Torsional constant	1466,27	Shear Center Eccentricity (x3)	0,

Traversi T1:

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300001	Α	25 di 59

Per tener conto dell'effetto delle fasi costruttive sullo stato sollecitativo e tensionale, sono stati realizzati due distinti modelli:

Modello 1: si riferisce alla fase di struttura metallica completa e di soletta gettata ma non collaborante. E' utilizzato per la valutazione degli effetti indotti dai pesi propri strutturali;.

Modello 2: si riferisce all'impalcato misto acciaio/calcestruzzo completo e sottoposto ad azioni di lunga durata ed al ritiro. E' ottenuto considerando le proprietà inerziali degli elementi metallici e della soletta collaborante omogeneizzata.

L'analisi strutturale è condotta analizzando le sollecitazioni massime che interessano le travi composte, sottoposta al peso proprio, ai sovraccarichi permanenti, alle distorsioni, al vento e dai carichi mobili.

La trave composta è discretizzata in conci di sezione costante, tenendo conto quindi delle variazioni geometriche e delle azioni concentrate.

La larghezza efficace della soletta è così definita (punto 4.3.2.3 delle NTC):

 $b_{\text{eff}} = 3.1 \text{m}$

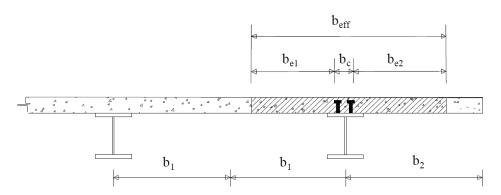


Figura 5.1 Definizione della larghezza efficace

Il valore dei moduli di elasticità dei materiali adottati, in relazione a quanto precedentemente detto, è pari a:

 E_s = modulo di elasticità dell'acciaio = $2.06*10^5$ N/mm²;

E_{c,n18}= modulo di elasticità del calcestruzzo per fenomeni lenti = 1.14*10⁴ N/mm² (=E_s/18);

 $E_{c,n6}$ = modulo di elasticità del calcestruzzo per fenomeni veloci = 3.43*10⁴ N/mm²(= $E_s/6$).

I controventamenti diagonali posti presso l'intradosso delle travi metalliche trasversali sono concepiti per irrigidire l'impalcato prima che la soletta collaborante sia efficace strutturalmente; in condizioni di esercizio la loro azione è ridottissima per la presenza della soletta: per lo schema utilizzato, e comunque a favore di sicurezza, questi elementi non vengono quindi presi in conto.

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA LOTTO
IN10 10

CODIFICA D26CL DOCUMENTO IV0300001 REV. FOGLIO A 26 di 59

5.2 ANALISI DEI CARICHI

5.2.1.1 Peso proprio carpenteria metallica

Il peso proprio della carpenteria metallica è determinato automaticamente dal programma di calcolo, considerando la sezione trasversale delle aste implementate ed il peso specifico dell'acciaio posto pari a:

 $\gamma_s = 78.50 \text{ kN/m}^3$

Questo carico è inserito nella condizione di carico elementare "DEAD".

5.2.1.2 Peso proprio soletta

Il peso proprio della soletta è determinato automaticamente dal programma di calcolo, consideranco un peso specifico del calcestruzzo posto pari a:

 $\gamma_c = 25.00 \text{ kN/m}^3$

Questo carico è inserito nella condizione di carico elementare "DEAD".

5.2.1.1 Carichi permanenti

I carichi permanenti constano del peso della pavimentazione stradale, del peso della porzione dei cordoli perimetrali eccedenti lo spessore di 30cm, parapetti e le barriere; la loro entità è la seguente:

 $p_{pavimentazione} = 3.00 \text{ kN/m}^2$

 $p_{cordolo\ lato\ ovest}$ = 25.00*0.12 = 3.00 kN/m² $p_{cordolo\ lato\ est}$ = 25.00*0.53 = 13kN/m²

 $p_{parapetto+rete} = 6 \text{ kN/m}$

5.2.1.2 Effetti del ritiro

Si considera soggetta a fenomeni di ritiro la sola soletta superiore.

La deformazione totale da ritiro si può esprimere come:

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

IN10 10 D26CL IV0300001 A

FOGLIO

27 di 59

 $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$

dove:

εcs è la deformazione totale per ritiro

εcd è la deformazione per ritiro da essiccamento

 ε_{ca} è la deformazione per ritiro autogeno.

Il valore medio a tempo infinito della deformazione per ritiro da essiccamento:

$$\varepsilon_{cd.\infty} = k_h^* \varepsilon_{c0}$$

può essere valutato mediante i valori delle seguenti Tab. 11.2.Va-b (NTC) in funzione della resistenza caratteristica a compressione, dell'umidità relativa e del parametro h_0 .

Il valore medio a tempo infinito della deformazione per ritiro autogeno εca,∞ può essere valutato mediante l'espressione:

$$\varepsilon_{ca,\infty} = -2.5*(f_{ck}-10)*10^{-6}$$
 (con f_{ck} in N/mm²)

Assumendo come umidità relativa Ur=70%, si ha il seguente valore del ritiro: εcs =-0.00035

Trattandosi di un fenomeno lento si utilizza un modulo di elasticità pari a 1/3 Ec.

L'effetto del ritiro è stato equiparato ad una distorsione termica uniforme di -35° C tale da determinare una contrazione della soletta pari a quella prevista per il ritiro da normativa, che comporta:

$$\varepsilon_{cs} = -0.00035 \Rightarrow DL/L = \alpha \cdot \Delta T \Rightarrow \Delta T = \varepsilon / \alpha = 0.00035/0.00001 = -35^{\circ}$$

5.2.1.3 Effetti delle dilatazioni termiche differenziali

Gli effetti termici sono suddivisi in una variazione uniforme di temperatura

- Variazione di temperatura uniforme, il valore di delta termico è:

$$\Delta T = +25 \,^{\circ}C$$

5.2.1.4 Cedimenti vincolari

Si ipotizza l'entità di tali cedimenti sulla base delle istruzioni delle Ferrovie dello Stato. Tale documento suggerisce di assumere per essi un valore pari ad 1/5000 della luce delle campate afferenti sull'appoggio. Trattandosi di un fenomeno "lento", gli effetti prodotti dai cedimenti (qualora presi in considerazione) verranno determinati sul modello 2 (coeff. di omogeinizzazione n=18) L'entità di tali cedimenti sarà pari a:

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300001
 A
 28 di 59

 δ = L_{media} / 5000 ed in particolare $\delta_{Sb} = \delta_{Sa} = 45 / 5000 = 9*10^{-3} m$

5.2.1.5 Azione del vento

In accordo con le norme tecniche per le costruzioni (NTC18), la struttura in esame, situata in Veneto, ricade in Zona 1, su suolo riconducibile a una Classe di Rugosità D, a più di 30 Km dal mare. Pertanto la Categoria di Esposizione è la II. Si ottiene:

Velocità di riferimento

 $v_b = 25 \text{ m/s}$

Velocità di riferimento relativa al periodo di ritorno

$$v_b(T_r=500) = \alpha_r(T_r) v_b = 1.12318 \cdot 25 = 28.079 \text{ m/s}$$

Pressione cinetica di riferimento

$$q_b = 0.50 \; \rho \; v_{b500}{}^2 \; = 0.50 \, \cdot \, 1.25 \, \cdot \, 28.08^2 = 492.79 \; N/m^2$$

dove

 ρ = 1.25 Kg/m³ densità dell'aria;

Coefficiente di esposizione

$$c_e = k_r^2 \cdot c_t \cdot \ln(z/z_0) \cdot [7 + c_t \cdot \ln(z/z_0)] = 2.181 \xrightarrow{con} c_t = 1$$

dove:

 $K_r = 0.19$;

 $z_0 = 0.05 \text{ m}$;

 z_{min} = 4.0 m < z = 14 m (altezza impalcato rispetto al suolo);

Pressione del vento

$$p = q_b c_e c_p c_d = 492.79 \times 2.181 \times 1 \times 1 = 1.07 \text{ kN/m}^2$$

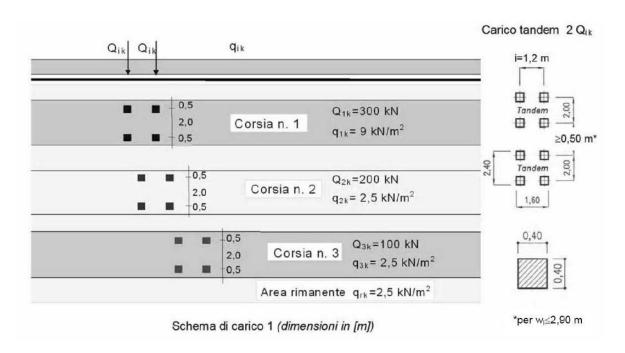
dove

 $c_p = 1$ è il coefficiente di forma;

 $c_d = 1$

è il coefficiente dinamico.

A favore di sicurezza si assume l'azione del vento agente sulla barriera antirumore, con pressione pari a $p_v = 2.50 \text{ kN/m}^2$.


Considerando la geometria generale del ponte e la presenza sui lati esterni della rete, si considera un'altezza massima di 5.22m. Per la verifica di resistenza dell'impalcato la condizione di vento significativa è quella con direzione del vento trasversale allo stesso, e quindi ortogonale alla barriera.

L'entità delle azioni conseguenti a tale configurazione di carico, con riferimento alla **Errore.** L'origine riferimento non è stata trovata., sarà:

 $F_v = 2.50*(5.22) = 13.05 \text{ kN/m}$ $M_v = 2.50*5.22^2/2 = 34.06 \text{ kN*m/m}$

5.2.1.6 Carichi mobili (Q)

Si considerano le azioni da traffico dello Schema di Carico 1, le cui caratteristiche sono riportate nella figura seguente:

La folla compatta, con valore di combinazione 2.50 kN/m² (Schema di Carico 5), viene presa in considerazione perché è presente un marciapiede lato est.

LINEA AV/AC MILANO - VENEZIA
LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300001	Α	30 di 59

Come previsto dalla normativa vigente le corsie di carico sono affiancate con larghezza convenzionale di 3.00m ciascuna; per la larghezza della carreggiata di 8,5m si prendono in considerazione 2 colonne di carico.

5.2.1.1 Azione centrifuga: q4

Nei ponti con asse curvo di raggio R (in metri) l'azione centrifuga corrispondente ad ogni colonna di carico si valuta convenzionalmente come indicato in Tab. 5.1.III (D.M. 14-01-2008), essendo il $Q_v = \sum_i 2Q_{ik}$ carico totale dovuto agli assi tandem dello schema di carico 1 agente sul ponte.

Tabella 5.1.III - Valori caratteristici delle forze centrifughe

Raggio di curvatura [m]	Q ₄ [kN]
R < 200	0,2·Q _v
200 ≤R ≤ 1500	40·Q _v /R
1500 ≤R	0

Il carico concentrato Q4, applicato a livello della pavimentazione, agisce in direzione normale all'asse del ponte. La forza centrifuga si ha solo nei ponti in curva di raggio R ed agisce ortogonalmente all'asse del ponte. Per R=233m circa e Qv=1000kN si determina q₄=17.1kN/m.

5.2.1.2 Azione di frenamento o di accclerazione

L'azione di frenatura si distribuisce sulle pile e sulle spalle in maniera direttamente proporzionale alle rigidezze degli appoggi che le collegano all'impalcato.

La forza totale di frenatura sull'impalcato di una via di corsa è pari a:

$$F_{fren} = 0.6*(2Q_{1K})+0.10q_{1K}*w_1*L =$$
 425 kN

5.2.1.3 Azioni sismiche

Il criterio di dimensionamento per l'impalcato in condizioni simiche, secondo il par. 7.9.5.3 della Norma è che esso non subisca danni per le azioni corrispondenti allo SLV, ossia per effetto delle massime sollecitazioni indotte dall'azione sismica di progetto; inoltre, essendo presenti apparecchi di appoggio dissipativi, il par. 7.10.2 prevede il mantenimento in campo elastico della sovrastruttura.

Le sollecitazioni si determineranno quindi riferendosi allo spettro di risposta elastico e le verifiche di resistenza si effettueranno rispetto ai limiti di resistenza propri degli SLE ossia per la soletta ai

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA LOTTO
IN10 10

CODIFICA D26CL DOCUMENTO IV0300001 REV. FOGLIO A 31 di 59

limiti tensionali di cui al par. 4.1.2.2.5 delle Norme e per la struttura metallica effettuando le verifiche con il metodo elastico.

Ai sensi del par. 5.1.3.12 delle NTC si assume per i carichi da traffico un coefficiente $\psi_{2j=0.2}$ si nella combinazione delle azioni sia per la definizione dell'effetto dell'azione sismica.

5.3 ANALISI STRUTTURALE

Il calcolo delle sollecitazioni e le verifiche di resistenza sono state effettuate con riferimento alle travi maggiormente sollecitate.

5.4TRAVI PRINCIPALI

5.4.1 VERIFICHE DI RESISTENZA

Le tabelle riprodotte nelle pagine seguenti riportano le verifiche di resistenza delle sezioni significative.

Le tensioni massime rilevate saranno sempre inferiori ai valori di calcolo, pari a:

 $f_{yd, carp}$ = 355/1.05 = 338.00 N/mm²

 $f_{yd, arm}$ = = 391.30 N/mm² f_{cd} = = 18.37 N/mm²

(vedi cap. 4 "Errore. L'origine riferimento non è stata trovata.")

Verifica trave principale sezione in mezzeria Concio C1

TRAVE METALLICA

Altezza totale della trave in acciaio: 2000 Spessore anima: 20

Ala inferiore: 900 x 40 Ala superiore: 600 x 35

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300001	Α	32 di 59

	955.		55993,11
Cross-section (axial) area	333,	Section modulus about 3 axis	33333,11
Moment of Inertia about 3 axis	6452473,	Section modulus about 2 axis	6802,8519
Moment of Inertia about 2 axis	306128,33	Plastic modulus about 3 axis	71665,63
Product of Inertia about 2-3	0,	Plastic modulus about 2 axis	11442,5
Shear area in 2 direction	400,	Radius of Gyration about 3 axis	82,198
Shear area in 3 direction	475,	Radius of Gyration about 2 axis	17,904
Torsional constant	3202,2002	Shear Center Eccentricity (x3)	0,

DATI SOLETTA

1	`	1~
L	7	S

Altezza	30	cm
Larghezza	310	cm
Area soletta	9300	cm^2

Baricentro soletta rispetto a proprio asse -15 cm Inerzia soletta cls rispetto proprio asse 697500 cm^4

Armatura cls	24	cm^2
Baricentro armature	-15	cm

DATI STRUTTURA ACCIAIO

Momento inerzia intera sezione Js	6452473	cm^4
Area complessiva sezione acciaio	955	cm^2
Baricentro rispetto ad origine struttura acciaio Baricentro rispetto ad origine (sopra soletta	115,24	cm
cls)	30	cm
Altezza totale profilo acciaio	200	cm

CALCOLO MOMENTO DI INERZIA SEZIONE COMPOSTA

Fase 0 - Cls non reagente - Coeff. Omog.	0	
Momento inerzia sezione	6452473	cm^4

Fase 1 - Carichi	permanenti - Coeff. Omog.	18
lase i Calielli	pormanomi docii. Omog.	10

Area totale	1495,666667	cm^2
-------------	-------------	------

Baricentro della sezione Yg 68,15970582 Momento inerzia sezione 12347032,33

Fase 2 - Carichi accidentali - Coeff. Omog.	6
Area totale	2529
Baricentro della sezione Yg	34,18117833

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300001
 A
 33 di 59

Momento inerzia sezione 16650754,39

Fase 3 - Ritiro 18
Area totale 1495,666667
Baricentro della sezione Yg 68,15970582
Momento inerzia sezione 12347032,33

CALCOLO MODULI RESISTENZA ALLE DIVERSE ALTEZZE DELLA TRAVE

Fase 0 - Cls non reagente

Modulo resistenza Cls - Wc0Modulo resistenza Acciaio Superiore - Wss55991,60882Modulo resistenza Acciaio Inferiore - Wii-76126,39217

CALCOLO MODULI RESISTENZA ALLE DIVERSE ALTEZZE DELLA TRAVE

Fase 1 - Carichi permanenti

Modulo resistenza Cls - Wc 125785,1399

Modulo resistenza Acciaio Superiore - Wss 181148,5566

Modulo resistenza Acciaio Inferiore - Wii -93651,43185

CALCOLO MODULI RESISTENZA ALLE DIVERSE ALTEZZE DELLA TRAVE

Fase 2 - Carichi accidentali

Modulo resistenza Cls - Wc259433,6038Modulo resistenza Acciaio Superiore - Wss487132,2525Modulo resistenza Acciaio Inferiore - Wii-100415,3462

CALCOLO MODULI RESISTENZA ALLE DIVERSE ALTEZZE DELLA TRAVE

Fase 3 - Ritiro

Modulo resistenza Cls - Wc 125785,1399

Modulo resistenza Acciaio Superiore - Wss 181148,5566

Modulo resistenza Acciaio Inferiore - Wii -93651,43185

SectionCut	OutputCase	CaseType	StepType	P	V2	V3	T	M2	M3
Text 🏋	Text 📭	Text 💌	Text▼	KN 🔻	KN 💌	KN 💌	KN-m	KN-m ▼	KN-m ▼
SEZ C1	SLU1 P.P	Combination		448,143	23,366	32,243	4,0323	184,8145	15307,9098
SectionCut	OutputCase	CaseType	StepType	P	V2	V3	T	M2	M3
Text 🖵	Text 🖵	Text 💌	Text▼	KN 🔻	KN 💌	KN 🔻	KN-m	KN-m ▼	KN-m →
SEZ C1 FASE 2	SLU3	Combination		287,343	216,816	133,388	37,891	474,1475	11903,34
SectionCut	OutputCase	CaseType	StepType	P	V2	V3	T	M2	M3
Text 🏋	Text 🏋	Text 💌	Text▼	KN 🔻	KN 💌	KN 💌	KN-m	KN-m ▼	KN-m ▼
SEZ C1	SLU 2 RITIRO	Combination		-368,35	5,335	-137,072	-95,7008	-90,8704	-44,9363

CALCOLO STATO TENSIONALE SEZIONE

Azioni sollecitanti fase 0

Momento flettente 0 KNxm Sforzo normale -27 KN

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 - P3

COMMESSA IN10

LOTTO 10

CODIFICA D26CL

DOCUMENTO IV0300001

REV. Α

FOGLIO 34 di 59

Azioni sollecitanti fase 1

15308 KNxm Momento flettente Sforzo normale 448 KN

Azioni sollecitanti fase 2

Momento flettente 11903 KNxm Sforzo normale 287 KN

Azioni sollecitanti fase 3

Momento flettente -45 KNxm Sforzo normale -368 KN

	Coeff.			
	Om.	σ c	σ ss	σ ii
FASE	n	daN/cm^2	daN/cm^2	daN/cm^2
0	0	0,00	-2,83	-2,83
1	18	69,27	875,01	-1604,62
2	6	78,36	255,70	-1174,03
3	18	-1,57	-27,09	-19,80
	TOTALE	146,07	1100,79	-2801,27

La verifica risulta soddisfatta.

Verifica trave principale Concio C2

TRAVE METALLICA

Spessore anima: 20 Altezza totale della trave in acciaio: 2000 Ala inferiore: 900 x 30 Ala superiore: 600 x 20

roperties		_	
Cross-section (axial) area	780,	Section modulus about 3 axis	40143,06
Moment of Inertia about 3 axis	4761585,	Section modulus about 2 axis	4852,8889
Moment of Inertia about 2 axis	218380,	Plastic modulus about 3 axis	54750,
Product of Inertia about 2-3	0,	Plastic modulus about 2 axis	8070,
Shear area in 2 direction	400,	Radius of Gyration about 3 axis	78,1319
Shear area in 3 direction	325,	Radius of Gyration about 2 axis	16,7324
Torsional constant	1466,27	Shear Center Eccentricity (x3)	0,

DATI SOLETTA

18 cm Altezza

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA IN10 LOTTO CODIFICA

10 D26CL

DOCUMENTO IV0300001

0

REV.

FOGLIO 35 di 59

Larghezza 310 cm

Area soletta 9300 cm^2

Baricentro soletta rispetto a proprio asse -15 cm Inerzia soletta cls rispetto proprio asse 697500 cm^4

Armatura cls 24 cm^2

Baricentro armature -15 cm

DATI STRUTTURA ACCIAIO

Momento inerzia intera sezione Js	4761585	cm^4
Area complessiva sezione acciaio	780	cm^2
Baricentro rispetto ad origine struttura acciaio Baricentro rispetto ad origine (sopra soletta	118,62	cm
cls)	30	cm
Altezza totale profilo acciaio	200	cm

CALCOLO MOMENTO DI INERZIA SEZIONE COMPOSTA

Fase 0 - Cls non reagente - Coeff. Omog. 0

Momento inerzia sezione 4761585 cm^4

Fase 1 - Carichi permanenti - Coeff. Omog. 18

Area totale 1320,666667 cm^2

Baricentro della sezione Yg 63,91741545 Momento inerzia sezione 10501635,29

Fase 2 - Carichi accidentali - Coeff. Omog. 6

Area totale 2354
Baricentro della sezione Yg 29,2751062
Momento inerzia sezione 14189681,47

Fase 3 - Ritiro 18

Area totale 1320,666667
Baricentro della sezione Yg 63,91741545
Momento inerzia sezione 10501635,29

CALCOLO MODULI RESISTENZA ALLE DIVERSE ALTEZZE DELLA TRAVE

Fase 0 - Cls non reagente

Modulo resistenza Cls - Wc

Modulo resistenza Acciaio Superiore - Wss 40141,50228

Modulo resistenza Acciaio Inferiore - Wii -58510,50627

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA LOTTO
IN10 10

CODIFICA D26CL DOCUMENTO IV0300001 REV.

FOGLIO 36 di 59

CALCOLO MODULI RESISTENZA ALLE DIVERSE ALTEZZE DELLA TRAVE

Fase 1 - Carichi permanenti

Modulo resistenza Cls - Wc 111817,7629

Modulo resistenza Acciaio Superiore - Wss 164300,0615

Modulo resistenza Acciaio Inferiore - Wii -77171,04526

CALCOLO MODULI RESISTENZA ALLE DIVERSE ALTEZZE DELLA TRAVE

Fase 2 - Carichi accidentali

Modulo resistenza Cls - Wc239386,8587Modulo resistenza Acciaio Superiore - Wss484701,2808Modulo resistenza Acciaio Inferiore - Wii-83114,30839

CALCOLO MODULI RESISTENZA ALLE DIVERSE ALTEZZE DELLA TRAVE

Fase 3 - Ritiro

Modulo resistenza Cls - Wc111817,7629Modulo resistenza Acciaio Superiore - Wss164300,0615Modulo resistenza Acciaio Inferiore - Wii-77171,04526

SectionCut	OutputCase	CaseType	StepType	Р	V2	V3	Т	M2	M3
Text 🖵	Text 🖵	Text 💌	Text▼	KN 💌	KN 💌	KN 💌	KN-m	KN-m ▼	KN-m
SEZ C3	SLU1 P.P	Combination		211,651	-627,996	-72,147	-43,42	-525,3936	12319,3883
SectionCut	OutputCase	CaseType	StepType	P	V2	V3	T	M2	M3
Text 🏋	Text 🖵	Text 💌	Text▼	KN 💌	KN 🔻	KN 💌	KN-m	KN-m ▼	KN-m ↓↓
SEZ C3 FASE 2	SLV Z	Combination	Max	-67,613	-463,683	-4,679	-2,2777	-196,4441	8765,4184
SectionCut	OutputCase	CaseType	StepType	P	V2	V3	T	M2	M3
Text 🖵	Text 🍱	Text 💌	Text▼	KN 💌	KN 💌	KN 🔻	KN-m	KN-m ▼	KN-m
SEZ C3	SLU 2 RITIRO	Combination		-367,885	-39,848	75,794	43,3124	291,9282	-250,7596

CALCOLO STATO TENSIONALE SEZIONE

Azioni sollecitanti fase 0

Momento flettente 0 KNxm Sforzo normale -27 KN

Azioni sollecitanti fase 1

Momento flettente 12319 KNxm Sforzo normale 211 KN

Azioni sollecitanti fase 2

Momento flettente 8765 KNxm Sforzo normale -67 KN

Azioni sollecitanti fase 3

Momento flettente -250 KNxm Sforzo normale -367 KN

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300001	Α	37 di 59

FASE	Coeff. Om.	σ c daN/cm^2	σss daN/cm^2	σii daN/cm^2
0	0	0	-3,4615385	- 3,46153846
1	18	62,09333855	765,763474	1580,34733
2	6	60,54958697	177,986808	- 1057,41795
3	18	-2,78593349	-43,005058	4,60657456
	TOTALE	119,856992	897,283685	- 2636,62024

La verifica risulta soddisfatta.

Verifica resistenza a taglio trave principale:

GEOMETRIE DEL CONCIO C1

 $\begin{array}{l} \textit{ANIMA} \\ h_{_{W}} := 1920 \text{ mm} \end{array}$

 $f_{yk} := 355 \frac{N}{mm^2}$

classe 1

 $t_w := 20 \text{ mm}$

 $Y_{m0} := 1,05$

VERIFICHE RESISTENZA TAGLIO

$$A_{\rm v} \coloneqq h_{\rm w} \cdot t_{\rm w} = 0,0384~{\rm m}^2$$

SectionCu	t	OutputCa	ise	CaseType	StepType	P	V2
Text	Ψ,	Text	Ψ,	Text 💌	Text▼	KN 🔻	KN →
SEZ A1		SLU1 P.P		Combination		23,434	-1296,91
SectionCu	ıt	OutputCa	ise	CaseType	StepType	Р	V2
Text	Ţ,	Text	Ţ,	Text 🔻	Text▼	KN 🔻	KN ↓↑
SEZ A1 FAS	E2	SLU11		Combination		-243,695	-947,765
SectionCu	ıt	OutputCa	se	CaseType	StepType	P	V2
Text	Ψ,	Text	Ţ,	Text 🔻	Text▼	KN 🔻	KN ↓¹
SEZ A1		SLU 2 RITII	RO	Combination		-389,096	191,77

$$V_{ED} := 2245 \text{ kN}$$

$$V_{Rd} := \frac{A_{v} \cdot f_{yk}}{\gamma_{m0} \cdot \sqrt{3}} = 7495,7 \text{ kN}$$

Verifica soddisfatta

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300001	Α	38 di 59

5.4.2 STATI LIMITE ULTIMI DI STABILITÀ PER LA SEZIONE METALLICA

5.4.3 VERIFICA ALL'IMBOZZAMENTO DEI PANNELLI D'ANIMA

I pannelli d'anima degli elementi strutturali, laminati oppure realizzati in soluzione composta saldata, devono essere verificati nei confronti dei fenomeni di instabilità dell'equilibrio allo stato limite ultimo.

Per quanto riguarda la stabilità di pannelli in parete sottile (classe 4) le NTC rimandano a normative di comprovata validità. Qui le verifiche vengono svolte in accordo a quanto indicato nella CNR 10011 §7.6.2.1.

La verifica s'intende soddisfatta quando:

$$\frac{\sigma_{cr,id}}{\sqrt{\sigma_1^2 + 3 \cdot \tau^2}} \ge \beta \cdot \nu$$

dove:

 σ_1 e τ tensioni normale e tangenziale definite nei punti 7.6.1.4-7.6.1.5 delle Norme CNR-10011/97:

 $\sigma_{cr,id}$ tensione di confronto da valutarsi come segue:

$$\begin{split} \sigma_{cr,id} &= \sqrt{3} \cdot \tau_{cr} \;\; \text{per} \; \sigma_1 = 0 \\ \sigma_{cr,id} &= \sigma_{cr} \;\; \text{per} \; \tau = 0 \\ \sigma_{cr,id} &= \frac{\sqrt{\sigma_1^2 + 3 \cdot \tau^2}}{\frac{1 + \psi}{4} \cdot \frac{\sigma_1}{\sigma_{cr}} + \sqrt{\left(\frac{3 - \psi}{4} \cdot \frac{\sigma_1}{\sigma_{cr}}\right) + \left(\frac{\tau_1}{\tau_{cr}}\right)}} \;\; \text{per} \; \sigma_1 \neq 0 \;\; e \;\; \tau \neq 0 \end{split}$$

v coefficiente definito al punto 7.1 delle Norme CNR-10011/97: per quella agli Stati Limite Ultimi è pari a 1;

$$\beta = \frac{\sigma_N + 0.80 \cdot \sigma_M}{\sigma_N + \sigma_M} \, per \, \alpha \leq \text{1.5}; \, \, \beta = \text{1per} \, \alpha \geq \text{1.5}$$

essendo:

Ψ

 α rapporto tra la base a e l'altezza h del pannello di spessore t,

 σ_N , σ_M valori delle tensioni normali dovute allo sforzo normale N ed al momento flettente M;

coefficiente che definisce la legge di variazione lineare della σ;

$$\sigma_{cr} = \mathbf{k}_{\sigma} \cdot \sigma_{cr,o}$$

$$\tau_{cr} = \mathbf{k}_{\tau} \cdot \sigma_{cr,o}$$

dove:

 $\sigma_{\text{cr,o}} = 186200 \text{ (t/h)}^2$ tensione di riferimento espressa in N/mm²;

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300001	Α	39 di 59

k coefficiente di imbozzamento, i cui valori si ricavano dal prospetto 7-VIII (CNR-10011/97) in funzione del coefficiente ψ e del rapporto α = a/h. Qualora il rapporto tra il passo degli irrigidenti e l'altezza totale dell'anima sia maggiore di 1.5, i valori del coefficiente k_{τ} per le tensioni tangenziali devono essere moltiplicati per 0.8.

Nel caso in cui il valore calcolato di σ_{cr} risulti maggiore del limite di proporzionalità del tipo di acciaio impiegato per il pannello, da porsi convenzionalmente pari a 0.8 f_d, alla tensione ideale di confronto deve essere sostituita una tensione di confronto ridotta $\sigma_{cr,red}$ ad essa corrispondente:

$$\sigma_{cr,red} = f_d \cdot \frac{20 + \sqrt{25 - 15 \cdot \left(f_y / \sigma_{cr,id}\right)^2}}{25 + 15 \cdot \left(f_y / \sigma_{cr,id}\right)^2}$$

La verifica risulta soddisfatta quando il rapporto σ_{cr}/σ_{id} è maggiore del fattore di sicurezza β ν .

$$f_{d} := 338 \frac{N}{m} \frac{1}{2} \qquad f_{y} := 355 \frac{N}{m} \frac{N}{2}$$

$$h_{w} := 1000 \text{ mm} \qquad \text{altezza anima} \qquad a := 2250 \text{ mm} \qquad \text{base pannello}$$

$$\sigma_{sup} := \{110\} \frac{N}{m} \frac{1}{m} \frac{1}{$$

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300001	Α	40 di 59

5.4.4 VERIFICA DEGLI IRRIGIDIMENTI TRASVERSALI

Detto J il momento d'inerzia dell'irrigidimento rispetto all'anima della trave, secondo le CNR-10030/87, occorre sempre verificare la seguente disuguaglianza:

$$J \ge 0.15 \cdot \gamma_T^* \cdot h_w \cdot t_w^3 \tag{1}$$

dove i termini assumono di volta in volta il significato specificato nel seguito.

Lungo tutto l'impalcato come irrigidenti trasversali si sono utilizzati piatti disposti da un solo lato dell'anima, di larghezza 240mm e spessore di 15 mm.

Poiché a irrigidire l'anima vi sono solo nervature trasversali, nella disuguaglianza (1), da verificare secondo il § 2.1.2 delle CNR-10030/87, il significato ed il valore dei coefficienti assunti nel calcolo risultano i seguenti:

J momento di inerzia della sezione dell'irrigidimento, calcolato, nel nostro caso, secondo l'asse individuato dall'intersezione fra irrigidimento e anima.

h_W altezza anima tra le piattabande (variabile da concio a concio)

t_W spessore anima (variabile da concio a concio)

a interasse nervature

 α a/h_W

 γ^*_T coefficiente di rigidezza flessionale minima da assumersi in funzione di α come indicato al punto 3.1.3 delle CNR-10030/87.

a = 2500 mm $h_w = 1925 \text{ mm}$ $t_w = 15 \text{ mm}$

$$\alpha = 2500 / 1035 = 2.410 \Rightarrow \gamma^*_T = 8$$

a cui segue:

 $J_{min} = 0.15*8*1925*15^3 = 6.8648*10^6 mm^4$

La geometria dell'irrigidimento di questo concio è pari a

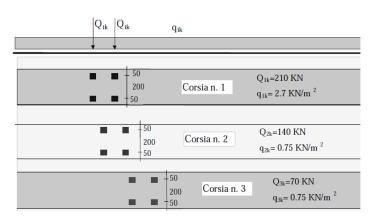
 $h_{irr} = 150mm$ $t_{irr} = 15mm$

a cui segue (tenendo conto della limitazione h_{irr} ≤ 12.2*t_{irr}=183mm per l'acciaio S355)

 $J = (t_{irr}^*(12.2^*t_{irr})^3)/3 = 3.06^*10^7 \text{mm} > J_{min}$

La verifica è soddisfatta

5.4.1 STATO LIMITE ULTIMO DI FATICA


Le verifiche saranno condotte considerando il punto 5.1.4.3 delle NTC.

5.4.1.1 Verifiche per vita illimitata

Le verifiche a fatica per vita illimitata possono essere condotte controllando che il massimo delta di tensione $\Delta\sigma_{max}$ indotto nel dettaglio dallo spettro di carico risulti minore del limite di fatica del dettaglio stesso:

$$\begin{split} \gamma_{\text{Mf}}^* \Delta \sigma_{\text{max}} &< \Delta \sigma_{\text{D}} \\ \gamma_{\text{Mf}}^* \Delta \tau_{\text{max}} &< \Delta \tau_{\text{D}} = \Delta \tau_{\text{L}} \\ \text{con:} \\ \gamma_{\text{Mf}} &= 1,15 \\ \Delta \sigma_{\text{D}} &= 0,737 \ \Delta \sigma_{\text{C}} \\ \Delta \tau_{\text{L}} &= 0,457 \ \Delta \tau_{\text{C}} \end{split}$$

Ai fini del calcolo di $\Delta \sigma_{max}$ si impiega il modello di carico di fatica 1, costituito dallo schema di carico 1 con valore dei carichi concentrati ridotti del 30% e valori dei carichi distribuiti ridotti del 70%.

Modello di carico a fatica n.1

5.4.1.2 Verifica della sezione

Un certo numero di verifiche a fatica per vita illimitata riguarda dettagli delle travi principali o di attacco fra queste e gli altri elementi della struttura: per queste è necessario calcolare la $\Delta \sigma$ indotta dai carichi di fatica sulle travi principali.

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA LOTT

CODIFICA D26CL DOCUMENTO IV0300001

KEV.

FOGLIO 42 di 59

Le combinazioni a fatica sono le stesse già valutate per i carichi mobili nel suddetto modello cui si sono attribuiti i coefficienti 0.3 e 0.7 ("load case") rispettivamente per carichi mobili tandem e distribuiti.

5.4.1.2.1 Saldatura anima trave principale / ali travi principali

Con riferimento alla tabella C.4.2.XIII.1, il dettaglio presenta classe di fatica

 $\Delta \sigma_C = 125 \text{ N/mm}^2$

Dalle curve S-N riportate nel par. C.4.2.4.1.4.4 avremo

 $\Delta \sigma_D = 0.737^* \Delta \sigma_C = 92.5 \text{ N/mm}^2$

Dai tabulati di output si ricava: $\sigma_{inf} = 35.9 \text{ N/mm}^2$; $\sigma_{inf} = 6.6 \text{ N/mm}^2$

la $\Delta \sigma_{MAX}$ si evidenzia all'intradosso della piattabanda inferiore, con valore pari a

 $\Delta \sigma_{MAX} = 35.9 - 6.6 = 29.3 \text{ N/mm}^2$

Si adotta

 $\gamma_{Mf} = 1.35$

(tab. C.4.2.XII)

da cui la verifica a fatica porge:

 $\Delta \sigma_{MAX}^* \gamma_{Mf} < \Delta \sigma_{D} \Leftrightarrow 29.3^*1.35 = 39.56 \text{ N/mm}^2 < 92.12 \text{ N/mm}^2$

La verifica è soddisfatta.

5.4.1.2.1 Attacco ala superiore trave principale / ala superiore traverso di pila e spalla

Con riferimento alla tabella C.4.2.XV.4, il dettaglio presenta classe di fatica

 $\Delta \sigma_C = 40 \text{ N/mm}^2$

essendo L = 350mm ed r = 150mm.

Dalle curve S-N riportate nel par. C.4.2.4.1.4.4 avremo

 $\Delta \sigma_{D} = 0.737^* \Delta \sigma_{C} = 29.6 \text{ N/mm}^2$

Dai tabulati di output si ricava: $\sigma_{sup} = 4 \text{ N/mm}^2$; $\sigma_{sup} = 0.2 \text{ N/mm}^2$

per la sezione di estradosso della piattabanda superiore avremo:

 $\Delta \sigma_{MAX} = 4 \text{ N/mm}^2$

Si adotta

 $\gamma_{Mf} = 1.35$

(tab. C.4.2.XII)

da cui la verifica a fatica porge:

 $\Delta \sigma_{MAX}^* \gamma_{Mf} < \Delta \sigma_{D} \Leftrightarrow 4*1.35 = 5.4 \text{ N/mm}^2 < 29.6 \text{ N/mm}^2$

La verifica è soddisfatta.

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 - P3

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IN10 10 D26CL IV0300001 Α 43 di 59

5.4.2 VERIFICA DEI PIOLI

La collaborazione tra la trave metallica e la soletta è assicurata mediante pioli elettrosaldati all'ala della trave di acciaio. Per le verifiche si fa riferimento al punto 4.3.4.3.1 delle NTC.

$$f_{u} = 350 \, \frac{N}{mn^2} \quad \text{resistenza snervamento piolo} \qquad \qquad d \coloneqq 22 \, \text{mm} \qquad \text{diametro piolo} \\ L \coloneqq 160 \, \text{mm} \qquad \text{lunghezza piolo} \\ A_{res} \coloneqq \frac{\mathbf{n} \cdot d^2}{4} = 3,8013 \, \text{cm}^2 \qquad \text{area piolo} \\ P_{Rd} \coloneqq \left(\frac{0,8 \cdot f_u \cdot \left(A_{res} \right)}{1,25} \right) = 85,15 \, \text{kN} \quad \text{resistenza singolo connettore} \\ R_{ck} \coloneqq 95 \, \frac{N}{mm} \qquad \text{resistenza caratteristica C28/35} \\ f_{ck} \coloneqq 60 \, \frac{N}{mm^2} \qquad \text{resistenza caratteristica cilindrica C28/35} \\ f_{hc} \coloneqq 4 \cdot k_{ck} = 380 \, \frac{N}{mm^2} \qquad \text{resistenza ultima rifollamento cls} \\ a \coloneqq 1,5 \cdot d \qquad \qquad L_1 \coloneqq a + d \cdot \sqrt{\frac{f_u}{3 \cdot f_{hc}}} = 45,19 \, \text{mm} \\ L_c \coloneqq a + d \cdot \sqrt{\frac{f_u}{3 \cdot f_{hc}}} = 45,19 \, \text{mm} \\ L_c \coloneqq a + d \cdot \sqrt{\frac{2 \cdot f_u}{3 \cdot f_{hc}}} = 0,0502 \, \text{m} \\ L_2 \coloneqq 2 \cdot L_e - a = 67,4786 \, \text{mm} \\ \hline \text{Forza sollecitante} \qquad F \coloneqq 3600 \, \frac{\text{kN}}{\text{m}} \\ \text{Numero di pioli su 1 metro } n \coloneqq 10 \\ \hline \text{Forza tagliante:} \qquad F_r \coloneqq \frac{F}{hc} \cdot \text{in} = 360 \, \text{kN} \\ \hline Per pioli corti se L < L1 : \\ S_{uc} \coloneqq f_{hc} \cdot d \cdot L \equiv 1337,6 \, \text{kN} \qquad \text{carico ultimo} \\ \hline Per pioli medi se L1 \le L \le L2 : \\ \hline L_{am} \coloneqq a + \left(L - a \right) \cdot \left(-1 + \sqrt{2 + \frac{2 \cdot f_u}{3 \cdot f_{hc}} \cdot \left(\frac{d}{L - a} \right)^2} \right) = 86,4306 \, \text{nm} \\ \hline S_{um} \coloneqq f_{hc} \cdot d \cdot L_{em} = 722,5596 \, \text{kN} \qquad \text{carico ultimo} \\ \hline \text{Per pioli lunghi se L5L2:} \\ \hline \end{array}$$

$$L_{el} := a + d \cdot \sqrt{\frac{2 \cdot f_u}{3 \cdot f_{hc}}} = 50,2393 \text{ mm}$$

$$S_{ul} := f_{hc} \cdot d \cdot L_{el} = 420,0004 \text{ kN}$$
 carico ultimo

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA LOTTO
IN10 10

CODIFICA D26CL DOCUMENTO IV0300001 REV. I

FOGLIO 44 di 59

5.5TRAVERSI

5.5.1 VERIFICHE DI RESISTENZA

Le tabelle riprodotte nelle pagine seguenti riportano le verifiche di resistenza delle sezioni significative.

Le tensioni massime rilevate saranno sempre inferiori ai valori di calcolo, pari a:

 $f_{yd, carp}$ = 355/1.05 = 338.00 N/mm²

 $f_{yd, arm}$ = = 391.30 N/mm² f_{cd} = = 18.37 N/mm²

(vedi cap. 4 "Errore. L'origine riferimento non è stata trovata.")

SEZIONE MEZZERIA TRAVERSO T1

TRAVE METALLICA

Altezza totale della trave in acciaio: 1000 Spessore anima: 20 Ala inferiore : 400 x 20 Ala superiore : 400 x 20

cross-section (axial) area	352,	Section modulus about 3 axis	10633,387
Moment of Inertia about 3 axis	531669,3	Section modulus about 2 axis	1069,8667
Moment of Inertia about 2 axis	21397,333	Plastic modulus about 3 axis	12448,
Product of Inertia about 2-3	0,	Plastic modulus about 2 axis	1696,
Shear area in 2 direction	200,	Radius of Gyration about 3 axis	38,8642
Shear area in 3 direction	133,3333	Radius of Gyration about 2 axis	7,7967
Torsional constant	459,2533	Shear Center Eccentricity (x3)	0,

DATI SOLETTA

Cls		
Altezza	18	cm
Larghezza	425	cm
Area soletta	7650	cm^2

Baricentro soletta rispetto a proprio asse Inerzia soletta cls rispetto proprio asse

-9 cm 206550 cm^4

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA IN10

LOTTO 10 CODIFICA D26CL DOCUMENTO IV0300001 REV.

FOGLIO 45 di 59

Armatura cls 24 cm^2
Baricentro armature -9 cm

DATI STRUTTURA ACCIAIO

Momento inerzia intera sezione Js	531669,3	cm^4
Area complessiva sezione acciaio	352	cm^2
Baricentro rispetto ad origine struttura acciaio Baricentro rispetto ad origine (sopra soletta	50	cm
cls)	30	cm
Altezza totale profilo acciaio	100	cm

CALCOLO MOMENTO DI INERZIA SEZIONE COMPOSTA

Fase 0 - Cls non	reagente - Co	peff. Omog.	0

Momento inerzia sezione 531669,3 cm⁴

Fase 1 - Carichi permanenti - Coeff. Omog. 18

Area totale 801 cm^2

Baricentro della sezione Yg 16,92759051 Momento inerzia sezione 1229992,1

Fase 2 - Carichi accidentali - Coeff. Omog. 6
Area totale 1651
Baricentro della sezione Yg 3,579043004
Momento inerzia sezione 1530164,735

Fase 3 - Ritiro 18
Area totale 801
Baricentro della sezione Yg 16,92759051
Momento inerzia sezione 1229992,1

<u>CALCOLO MODULI RESISTENZA ALLE DIVERSE ALTEZZE DELLA TRAVE</u>

Fase 0 - Cls non reagente

Modulo resistenza Cls - Wc 0
Modulo resistenza Acciaio Superiore - Wss 10633,386
Modulo resistenza Acciaio Inferiore - Wii -10633,386

CALCOLO MODULI RESISTENZA ALLE DIVERSE ALTEZZE DELLA TRAVE

Fase 1 - Carichi permanenti

Modulo resistenza Cls - Wc35215,48673Modulo resistenza Acciaio Superiore - Wss72661,97155Modulo resistenza Acciaio Inferiore - Wii-14806,26489

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA LOTTO
IN10 10

O CODIFICA D26CL DOCUMENTO IV0300001 REV.

FOGLIO 46 di 59

CALCOLO MODULI RESISTENZA ALLE DIVERSE ALTEZZE DELLA TRAVE

Fase 2 - Carichi accidentali

Modulo resistenza Cls - Wc 70909,75881 Modulo resistenza Acciaio Superiore - Wss 427534,6044 Modulo resistenza Acciaio Inferiore - Wii -15869,62817

CALCOLO MODULI RESISTENZA ALLE DIVERSE ALTEZZE DELLA TRAVE

Fase 3 - Ritiro

Modulo resistenza Cls - Wc35215,48673Modulo resistenza Acciaio Superiore - Wss72661,97155Modulo resistenza Acciaio Inferiore - Wii-14806,26489

CALCOLO STATO TENSIONALE SEZIONE

Azioni sollecitanti fase 0

Momento flettente 0 KNxm Sforzo normale -27 KN

Azioni sollecitanti fase 1

Momento flettente -116 KNxm Sforzo normale -104 KN

Azioni sollecitanti fase 2

Momento flettente 261 KNxm Sforzo normale 287 KN

Azioni sollecitanti fase 3

Momento flettente 102 KNxm Sforzo normale -368 KN

SectionCut	OutputCase	CaseType	StepType	P	V2	V3	T	M2	M3
Text 🏋	Text 🏋	Text 💌	Text 🕶	KN 💌	KN 💌	KN 💌	KN-m	KN-m ▼	KN-m
SEZ U1	SLU1 P.P	Combination		-104,842	-9,773	-65,995	5,9516	-0,725	-115,9631
SectionCut	OutputCase	CaseType	StepType	P	V2	V3	Т	M2	M3
Text 🏋	Text 🏋	Text 💌	Text 🕶	KN 💌	KN 💌	KN 🔻	KN-m	KN-m ▼	KN-m →
SEZ U1 FASE 2	SLU9	Combination		-2,551	-42,829	-30,805	5,6548	-4,1191	261,3064
SectionCut	OutputCase	CaseType	StepType	P	V2	V3	T	M2	M3
Text 🖵	Text 🏋	Text 💌	Text▼	KN 🔻	KN 💌	KN 💌	KN-m ▼	KN-m ▼	KN-m ▼
SEZ U1	SLU 2 RITIRO	Combination		-112,697	-1,894	-16,315	2,1667	-8,2617	102,5936

Azioni sollecitanti fase 1

Momento flettente -116 KNxm Sforzo normale -104 KN

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA LOTTO CODIFICA
IN10 10 D26CL

DOCUMENTO IV0300001 REV. FOGLIO A 47 di 59

Azioni sollecitanti fase 2

Momento flettente 261 KNxm Sforzo normale 287 KN

Azioni sollecitanti fase 3

Momento flettente 102 KNxm Sforzo normale -368 KN

		Coeff.			
		Om.	σ C	σ ss	σii
FASE		n	daN/cm^2	daN/cm^2	daN/cm^2
	0	0	0,0000	-7,6705	-7,6705
	1	18	-2,5513	-28,9481	65,3614
	2	6	9,0318	23,4882	-147,0817
	3	18	-0,9432	-31,9050	-114,8323
		TOTALE	5,5372	-45,0354	-204,2230

La verifica risulta soddisfatta.

Verifica a taglio del traverso:

GEOMETRIE DEL TRAVERSO

$$ANIMA$$
 $h_w := 960 \text{ mm}$

$$f_{yk} := 355 \frac{N}{mm^2}$$

classe 1

$$t_w := 20 \text{ mm}$$

$$Y_{m0} := 1,05$$

VERIFICHE RESISTENZA TAGLIO

$$A_{_{\boldsymbol{\mathrm{V}}}} \coloneqq h_{_{\boldsymbol{\mathrm{W}}}} \cdot t_{_{\boldsymbol{\mathrm{W}}}} = 0,0192 \; \mathrm{m}^2$$

SectionCu	onCut OutputCase		CaseType	StepType	P	V2	
Text	Ţ,	Text	"T	Text 💌	Text	KN 🔻	KN 🔻
SEZ T6	SLU1 P.P		Combination	ı	-31,807	-158,236	
SectionCut O		OutputCa	outCase CaseType		StepType	P	V2
Text	"T	Text	Ţ	Text	✓ Text ✓	KN 🔻	KN ▼
SEZ T6 FASE2 SLU 20		Combination		40,669	-652,503		
SectionCut OutputCa		se	CaseType	StepType	P	V2	
Text	Ţ	Text	Ţ	Text 🔻	Text▼	KN 🔻	KN 🔻
SEZ T6		SLU 2 RITIF	RO	Combination		-993,759	363,283

 $V_{ED} := 307 \text{ kN}$

Verifica soddisfatta

$$V_{Rd} := \frac{A_v \cdot f_{yk}}{Y_{m0} \cdot \sqrt{3}} = 3747,8 \text{ kN}$$

5.6 SOLETTA

La realizzazione della soletta d'impalcato è prevista con il sistema costruttivo "a prédalles", armate con tralicci tipo Bausta (o similari), autoportanti nei confronti del getto in opera della soletta (s=6+24=18cm).

La sezione trasversale dell'impalcato presenta larghezza complessiva di 11.4m circa, con superficie pavimentata di 8.5m, cordolo laterale di 0.85m da un lato e 2.05m dall'altro, come schematizzato nella figura seguente:

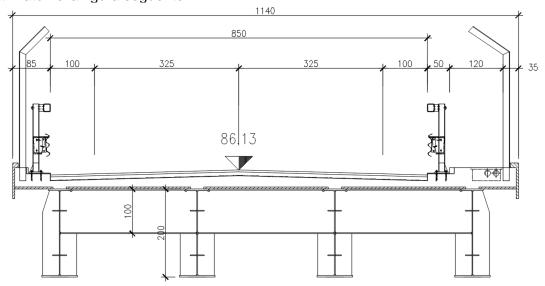


Figura 5.2 Sezione trasversale impalcato

Si verifica lo sbalzo interno in quanto di luce maggiore e soggetto ai carichi mobili:

Luce di calcolo sbalzo estL = 1.40 mLuce di calcolo campataL = 3.00 mSpessore soletta $s_s = 0.18m$ Spessore pavimentazione $s_p = 0.12 m$

Di seguito si eseguono le verifiche considerando il comportamento della soletta in senso trasversale e longitudinale.

Tali verifiche vengono condotte con riferimento a due fasi distinte:

• una prima fase, detta "provvisionale", in cui il getto integrativo è ancora in fase fluida e risultano efficaci le sole armature inserite nelle prédalles. Le azioni presenti sono costituite dal peso proprio delle lastre, dal getto integrativo e da un temporaneo sovraccarico accidentale dovuto al personale, ai piccoli mezzi d'opera e ad accumuli di conglomerato cementizio;

LINEA AV/AC MILANO - VENEZIA
LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300001
 A
 49 di 59

• una seconda fase, detta "definitiva", in cui nella soletta monolitica risultano efficaci sia le armature delle prédalles che quelle inserite in opera. Il calcolo delle sollecitazioni indotte dai carichi accidentali e permanenti verrà effettuato adottando una schematizzazione monodimensionale della sezione trasversale della soletta assumendo una striscia di larghezza unitaria. Lo schema statico adottato è quello di trave in semplice appoggio.

5.6.1 VERIFICHE IN DIREZIONE TRASVERSALE

5.6.1.1 Fase provvisionale

Nella prima fase le prédalles hanno un comportamento schematizzabile a trave continua, soggetta al peso proprio, al getto integrativo ed al sovraccarico "di lavorazione" descritto nel precedente paragrafo. Le lastre non si sviluppano monoliticamente per tutta la larghezza dell'impalcato ma sono interrotte in corrispondenza delle piattabande delle travi principali; in tali zone risultano passanti solo le armature dei tralicci. In particolare sull'appoggio centrale la lastra tralicciata si interrompe completamente. Si prescrive quindi il getto della soletta dapprima nella fascia compresa fra le travi principali e dopo sugli sbalzi per scongiurare pericoli di ribalmento delle lastre.

Analisi dei carichi

1. Peso proprio prédalles

 $g_1 = 1.35 * 0.06 * 25.00 = 2.03 \text{ kN/m}^2$

2. Getto integrativo

 $q_2 = 1.35 * 0.12 * 25.00 = 4 kN/m^2$

3. Sovraccarico

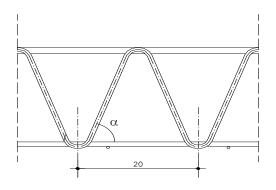
 $q_3 = 1.50 * 1.00 = 1.50 kN/m^2$

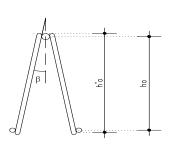
Verifiche

Le verifiche vengono eseguite facendo riferimento allo Stato Limite Ultimo della sezione.

Si verifica che le tensioni sugli elementi metallici che costituiscono il traliccio siano inferiori alla tensione di calcolo ($f_{yd} = 391 \text{ N/mm}^2$ per acciaio B450C) e che la stabilità degli elementi compressi risulti soddisfatta.

Di seguito si riporta una rappresentazione schematica del traliccio.

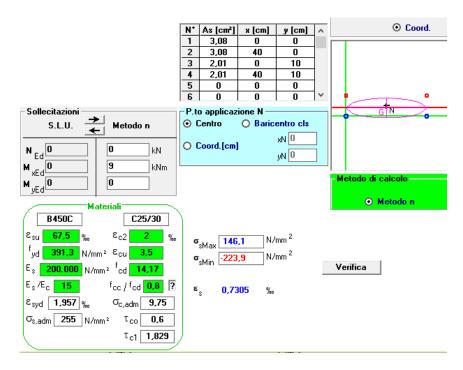



LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300001	Α	50 di 59

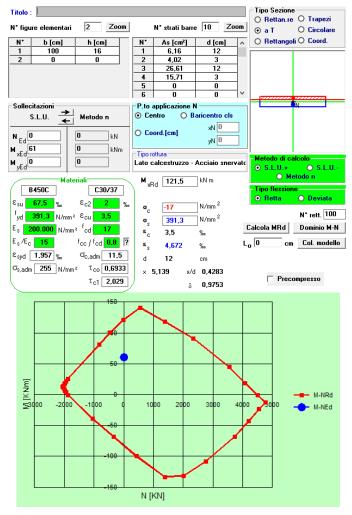

Altezza totale del traliccio: h'₀ = 16.5 cm

Braccio della coppia resistente: $h_0 = h_{0'} - (\phi_{cs} + \phi_{ci}) / 2 = 15$ cm

Numero di tralicci nella lastra: 6 (interasse = 0.40m)

Larghezza lastra: 2.40 m

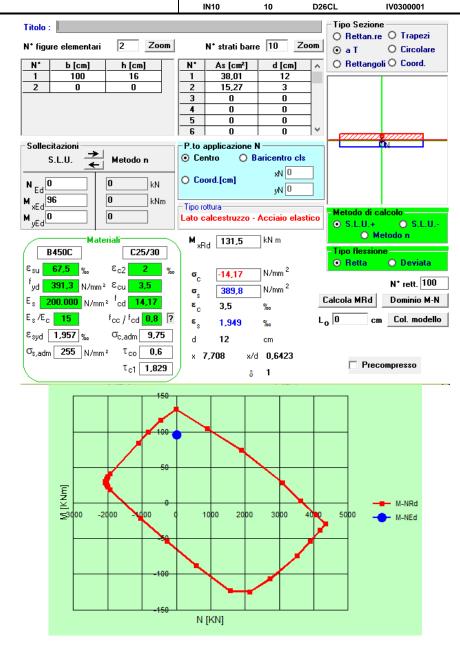
$$q := 7, 5 \, rac{\mathrm{kN}}{\mathrm{m}}$$
 carico
$$1 := 3, 1 \, \mathrm{m}$$
 interassi travi principali
$$M_{max} := rac{q \cdot 1}{8}^2 = 9, 01 \, \mathrm{kN} \, \mathrm{m}$$
 momento sollecitante



Le verifiche risultano soddisfatte, in quanto le tensioni ottenute sono inferiori a $f_{yd} = 391 \text{ N/mm}^2$.

5.6.1.2 Fase definitiva

Sono stase ricavate le sollecitazioni massime che interessano la soletta in senso trasversale e si riporta la verifica della soletta:



Si considerano presenti due tralicci in un metro, e si prevedono armature aggiuntive 6Ø20 superiormente e 8Ø22 inferiormente.

5.6.2 VERIFICHE IN DIREZIONE LONGITUDINALE

Sono stase ricavate le sollecitazioni massime che interessano la soletta in senso trasversale e si riporta la verifica della soletta:

Si prevedono armature longitudinali 6Ø18 superiormente e 10Ø22 inferiormente per una striscia di un metro.

5.6.3 **SBALZO**

Il calcolo delle sollecitazioni e le verifiche delle armature sono state effettuate per il caso di massimo sbalzo (250 cm in direzione parallela ai tralicci) che si presenta in corrispondenza della pila P3.

5.6.3.1 Carichi accidentali

I carichi accidentali agenti sono i carichi mobili da traffico q₁, l'urto del veicolo in svio q8, il vento ed il carico accidentale per manutenzione q₅ definiti nel punti 5.1 delle NTC sui ponti stradali.

La disposizione sarà quella più sfavorevole per la determinazione dei massimi negativi e delle massime sollecitazioni taglianti. Gli effetti dinamici sono compresi nei valori considerati.

5.6.3.1.1 Carichi mobili (q₁)

Si considerano gli Schemi di Carico 1 e 2 al fine di valutare quale dei due sia maggiormente gravoso, sia per le azioni flessionali che per quelle taglianti.

Si dispongono le ruote rispettivamente in adiacenza al cordolo per lo studio delle sollecitazioni flessionali ed in prossimità dell'asse verticale della trave metallica per quelle taglianti come illustrato nelle figure di seguito riportate.

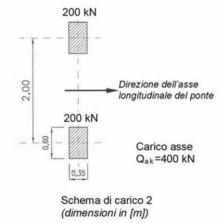


Figura 5-3: Disposizione dello Schema di Carico 2

I carichi concentrati considerati ai fini delle verifiche locali ed associati agli schemi di carico 1 e 2, si assumono uniformemente distribuiti sulla superficie della rispettiva impronta; si considera inoltre una diffusione a 45° fino al piano medio della soletta e verso l'asse della trave.

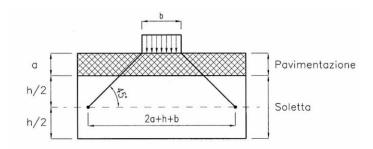
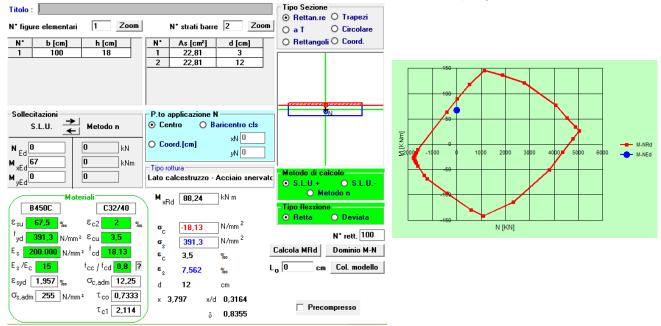


Figura 5-4: Diffusione dei carichi concentrati nella soletta

Si rammenta che nello schema 1 alle azioni concentrate del mezzo si somma il carico distribuito sulla corsia pari a 9.00kN/m².

5.6.3.1.2 Urto di veicolo in svio (q₈)

La forza orizzontale equivalente di collisione è assunta pari a 100 kN e viene considerata distribuita su 0,50 m ed applicata ad una quota h, misurata dal piano viario, pari alla minore delle dimensioni h1, h2, dove h1 = (altezza della barriera - 0,10 m), h2 = 1,00 m (punto 3.6.3.3.2 delle NTC).

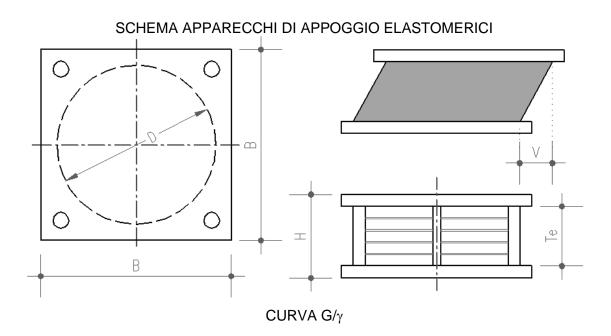

5.6.3.1.3 Carico accidentale (q₅)

Si assume la presenza di un carico accidentale pari a $q = 1.50 \text{ kN/m}^2$

agente sulla parte praticabile di soletta.

5.6.3.2 Verifiche resistenza

Le verifiche vengono eseguite trascurando la presenza dei ferri del traliccio, considerando come armature efficaci i ferri in opera. Analizzando le sollecitazioni massime si individua un momento sollecitante M=67kNm, di seguito si riporta la verifica efffettuata con il programma VCA.

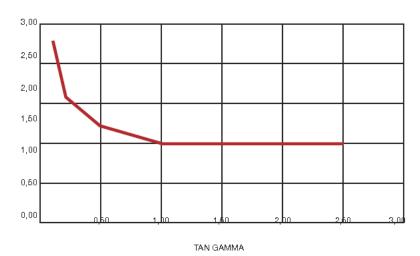

La geometria e le caratteristiche resistenti della sezione di verifica sono riportate nella tabella seguente.

Larghezza b (cm)	100
Altezza h (cm)	18
Armatura Estradosso	1Φ22/16.5 (A _s '=22.8cm ²)
Copriferro armatura superiore (cm)	3cm
Armatura Intradosso	1Ф22/16.5" (A _s =22.8cm²)
Copriferro armatura inferiore (cm)	7.00cm

6 CALCOLO APPOGGI

Per effettuare i calcoli di verifica si farà riferimento ad appoggi tipo HDRB della ditta "ALGA" precisando che tale riferimento è solo indicativo, in quanto questi apparecchi sono ormai prodotti dalle principali ditte del settore.

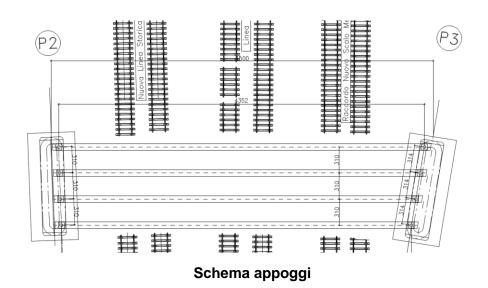
Le caratteristiche dimensionali e meccaniche degli apparecchi previsti sono descritte negli schemi e tabelle successive.



LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300001	Α	56 di 59

Variazione relativa della rigidezza in funzione della deformazione tangenziale Relative variation of stiffness as a function of shear strain (shear deformation)

Caratteristiche fisico-meccaniche delle mescole		Mescola / Compound				
Rubber compound phisical-mechanical characteris	tic	Normale nd / Normal nd	Morbida / Soft	Normale / Normal	Dura / Hard	
Durezza / Hardness	Shore A3	50±3	40±3	60±3	75±3	
Resistenza a rottura / Tensíle strength	N/mm²	20	20	20	18	
Allungamento a rottura / Tensile strain	%	600	750	600	500	
Modulo di elasticità G / G Modulus	N/mm²	0,9	0,4	0,8	1,4	
Smorzamento viscoso equivalente del solo elastomero / Equivalent viscous damping	%	4	10	10	16	
Smorzamento viscoso equivalente dell'intero isolatore / Equivalent viscous damping	%	30<	10	10	16	
Isolatore corrispondente / Corresponding Isolator		LRN	LRS/HDS	HDN	HDH	

Per l'opera in progetto si prevede il seguente schema di disposizione degli appoggi, con isolatori sismici elastomerici ad alta dissipazione di caratteristiche riportate di seguito:

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

COMMESSA LOTTO
IN10 10

CODIFICA D26CL

DOCUMENTO IV0300001 REV. FO

FOGLIO 57 di 59

Si prevede l'impiego di un dispositivo tipo HDH D350 B400

CARATTERISTICHE APPARECCHI DI APPOGGIO

Carico verticale max (SLU)	Deformazione max	Dimensioni				
F _z (kN)	V (mm)	D (mm)	H (mm)	B (mm)	T _e (mm)	
3500	170	350	198	400	84	

DATI APPARECCHI DI APPOGGIO	
DISPOSITIVI DI APPOGGIO SU SPALLA	
Tipo di appoggio	HDH D350
Spostamento orizzontale massimo in sisma (S.L.U.)	150 mm
Coefficiente di smorzamento equivalente (ξ)	0.16 mm
Diametro gomma (ØD)	350 mm
Altezza totale (H)	198 mm
Piastra di base (Z)	400 mm
Modulo di elasticità G (per scorrimento del 100%)	1.4 MPa

CARATTERISTICHE FISICO MECCANICHE HDRB

Durezza	Resistenza a rottura	Allungamento a rottura	Modulo G (scorrimento 100%)	Smorzamento viscoso equivalente
Shore A3	N/mm ²	%	N/mm ²	%
75 ± 3	18	500	1.4	16

6.1 AZIONI SUGLI APPOGGI

Si effettua il dimensionamento per gli appoggi della via nord.

N. travi n = 4Luce di calcolo L = 45m

Retrotrave R = (0.80 m di acciaio, 1.00 di soletta)

Larghezza impalcato B =11.40m

Carichi verticali ad appoggio pile V=2600kN<3500kN

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO IMPALCATO RAMPA DI APPROCCIO P2 – P3

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300001
 A
 58 di 59

7 CALCOLO DELLE FRECCE MASSIME

Nelle tabella seguente si riportano i risultati in termini di abbassamenti massimi in corrispondenza della mezzeria della campata centrale e delle campate laterali per le travi longitudinali (tale spostamento è da intendersi come spostamento relativo tra l'estremo libero e l'estremo vincolato).

In particolare vengono riportati gli abbassamenti provocati dai seguenti carichi:

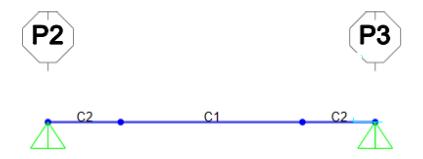
- Peso proprio della struttura in acciaio (sezione resistente solo acciaio);
- Peso della soletta in c.a. (sezione resistente solo acciaio);
- Peso dei carichi permanenti (sezione resistente mista omogeneizzata ad acciaio con coefficiente di omogeneizzazione: n=18, carichi di lunga durata – caso sezione a momento negativo non fessurata);
- Azione del Ritiro (sezione resistente mista omogeneizzata ad acciaio con coefficiente di omogeneizzazione: n=18, carichi di lunga durata – caso sezione a momento negativo non fessurata);
- Carichi variabili da traffico coefficiente moltiplicativo dei carichi pari a (sezione resistente mista omogeneizzata ad acciaio con coefficiente di omogeneizzazione: n=6, carichi di breve durata – caso sezione a momento negativo non fessurata).

Frecce teoriche travi principali	Peso acciaio	Peso soletta	Peso permanenti portati	Ritiro	Carichi mobili	Totale
Campata centrale	31mm	53mm	23.4mm	26.3mm	49mm	182mm

Dovrà risultare che le deformazioni elastiche dovute ai carichi relative peso proprio della struttura metallica e della soletta d'impalcato $f_p \le 1/300 L$,

 $\begin{array}{c} \text{f}_{\text{p}}\text{=}84\text{mm} \\ \text{L=}45\text{m} \\ \text{f}_{\text{p}} \leq 1/300 \text{ L} \end{array}$

84mm<150mm


Le controfrecce di officina sono assunte pari agli abbassamenti teorici dovuti ai carichi permanenti sommati a quelli dovuti al ritiro (solo se positivo cioè verso il basso) più il 25% degli abbassamenti teorici dovuti ai carichi mobili:

controfreccia = $f_{G1}+f_{G2}+f_{R+}+0.25f_M$

Controfrecce di officina	Valore di calcolo	Valore assunto	
Campata centrale	145.96mm	146mm	

8 VERIFICA RESISTENZA CAMPATA TEMPORANEA IN FASE DI MONTAGGIO

Viene schematizzata una trave avente una luce di 45m modellata con elementi frame aventi sezioni come da progetto. Per la verifica si considera la sezione come non collaborante assumendo come resistente solamente la trave in acciaio; di seguito lo schema adottato e il report delle verifiche di resistenza la combinazione relativa al peso proprio dell'acciaio e della soletta in cls.

Si riporta nella tabella sottostante le verifiche della trave in oggetto.

DesignSect	DesignType	Combo	Location	MuMajor	VuMajor	MspanMajor	Equation	TotalRatio
Text	Text	Text	m	KN-m	KN	KN-m	Text	Unitless
C2	Beam	COMB1	0,5	351,8488	-696,046	5583,2279	NTC Eq C4.2.38	0,471512
C1	Beam	COMB1	0	5583,2279	-405,297	8116,3316	NTC Eq C4.2.38	0,777032