COMMITTENTE:

PROGETTAZIONE:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01e s.m.i.

CUP: J14H20000440001

U	J.O.	PRO	GETT.	AZIONE	INTEGI	RATA	NORD
---	------	-----	-------	--------	--------	------	------

PROGETTO DEFINITIVO

LINEA AV/AC MILANO - VENEZIA
LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

IV03 - CAVALCAFERROVIA VIA FENILON

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

							SCALA:
							-
COMMESSA	LOTTO FAS	E ENTE	TIPO DOC	OPERA/DISCIPLINA	PROGR	RE\	1

 I N 1 0
 1 0
 D
 2 6
 C L
 I V 0 3 0 X
 0 0 1
 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	P. Maestrelli	Sett 2021	M. Rigo	Sett 2021	C. Mazzocchi	Sett 2021	A. Perego
		- Hart Martick		Corne 8 gr		ducell'		Sett 2021
								GEO PEN DE
								PEREGO NOREA
								a) civili querpientale
								M/A32-228

File: IN1010D26CLIV030X001A		n. Elab.:	
-----------------------------	--	-----------	--

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

D26CL

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO CODIFICA

10

A DOCUMENTO

IV0300003

REV.

FOGLIO 3 di 80

INDICE

1	RELAZIONE ILLUSTRATIVA	5
1.1	ASPETTI GENERALI	5
1.2	COMBINAZIONI DI CARICO AGLI STATI LIMITE	5
1.2.1	COMBINAZIONI PER LA VERIFICA AGLI SLU	5
1.2.2	COMBINAZIONI PER LA VERIFICA AGLI SLE	6
1.3	DOCUMENTI DI RIFERIMENTO	6
2	NORMATIVA DI RIFERIMENTO	8
3	CARATTERISTICHE DEI MATERIALI	9
3.1	TABELLA RIASSUNTIVA CLASSI DI ESPOSIZIONE SECON NORMATIVA UNI EN 206-1	DO 9
3.2	PARAMETRI DI IDENTIFICAZIONE PER LA VERIFICA FESSURAZIONE	A 10
3.3	ACCIAIO PER CEMENTO ARMATO	10
3.4	MALTA DI INIEZIONE TIRANTI	11
3.5	ACCIAIO PER TIRANTI ATTIVI	11
3.6	CARPENTERIA METALLICA PER PALANCOLE E TRAVI CORREA	DI 11
4	PROGRAMMI DI CALCOLO UTILIZZATI	12
4.1	METODO DI CALCOLO	12
4.1.1	CALCOLO DELLA PROFONDITÀ DI INFISSIONE	12
4.1.2	CALCOLO DELLA SPINTE	13
4.1.3	SPINTA IN PRESENZA DI SISMA	14
4.1.4	ANALISI AD ELEMENTI FINITI	14
4.1.	4.1 Schematizzazione del terreno	15
4.1.	4.2 Modalità di analisi e comportamento elasto-plastico del terreno	15
4.1.	4.3 Analisi per fasi di scavo	16
4.1.5	VERIFICA ALLA STABILITÀ GLOBALE	16
5	CARATTERIZZAZIONE GEOTECNICA	18
5.1	STRATIGRAFIA DI PROGETTO	18
5.2	PARAMETRI DI SPINTA	18

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IN10 10 D26CL IV0300003 A 4 di 80

5.3	CARICHI E COMBINAZIONI DI CARICO	18
5.3.1	CONDIZIONI DI CARICO	18
5.3.2	COMBINAZIONI DI CARICO	19
5.3.2	2.1 S.L.E	19
5.3.2	2.2 S.L.U	19
6	DIMENSIONAMENTO PALANCOLE	20
6.1	TIPO 1 ACELOR PU22	20
6.1.1	CARATTERISTICHE GENERALI	21
6.1.2	GEOMETRIA CORDOLI	21
6.1.3	DESCRIZIONE TERRENI	21
6.1.4	DESCRIZIONE STRATIGRAFIA	22
6.1.5	CONDIZIONI DI CARICO	22
6.1.6	IMPOSTAZIONI DI PROGETTO	23
6.1.7	IMPOSTAZIONI DI ANALISI	23
6.1.	7.1 Analisi per Fasi di Scavo.	23
6.1.8	VERIFICHE PALANCOLA	24
6.1.8	3.1 Diagrammi	47
6.2	TIPO 2 ACELOR PU22	49
6.2.1	CARATTERISTICHE GENERALI	49
6.2.2	GEOMETRIA CORDOLI	50
6.2.3	DESCRIZIONE TERRENI	50
6.2.4	DESCRIZIONE STRATIGRAFIA	51
6.2.5	CONDIZIONI DI CARICO	51
6.2.6	IMPOSTAZIONI DI PROGETTO	52
6.2.7	IMPOSTAZIONI DI ANALISI	52
6.2.	7.1 Analisi per Fasi di Scavo.	52
6.2.8	VERIFICHE PALANCOLA	53
6.2.8	3.1 Diagrammi	79

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 5 di 80

1 RELAZIONE ILLUSTRATIVA

1.1 ASPETTI GENERALI

La realizzazione del ponte in progetto a sostituzione del ponte attuale dovrà avvenire per successive fasi (come meglio descritte nella relazione illustrativa e nelle tavole grafiche) che comporteranno l'impiego di palancole per il sostegno delle linee ferrroviarie per realizzare loscavo delle fondazioni.

Il dimensionamento verrà eseguito considerando le varie tipologie di palancole presenti (e meglio esplicitate nelle tavole grafiche) di cui si riassumono le caratteristiche:

- 1) Tipo 1 Arcelor PU22
- 2) Tipo 2 Arcelor PU22

METODO DI CALCOLO

Le verifiche sono condotte, in osservanza al *D.M. del 17.01.2018 "Norme tecniche per le costruzioni"* (in seguito indicate anche come NTC), attraverso il metodo semiprobabilistico agli Stati Limite.

Il calcolo delle paratie viene eseguito in accordo con il § 6.5.3.1.2 delle NTC, per quanto riguarda la verifica nei confronti degli Stati Limite Ultimi e degli Stati Limite di Esercizio.

Per quanto riguarda la verifica della paratia in condizioni sismiche si fa invece riferimento al § 2.4.1 dello stesso documento che dice: "Le verifiche sismiche di opere provvisorie o strutture in fase costruttiva possono omettersi quando le relative durate previste in progetto siano inferiori a 2 anni" (come nel caso in oggetto):

Al fine di rappresentare il comportamento delle paratie durante le fasi di lavoro (scavi, inserimento degli elementi di contrasto e dei tiranti) è opportuno l'impiego di un metodo di calcolo iterativo atto a simulare l'interazione, in fase elasto-plastica, tra terreno e paratia. Per questo scopo si impiega il programma di calcolo Pac della società "Aztec informatica srl".

1.2 COMBINAZIONI DI CARICO AGLI STATI LIMITE

Le combinazioni di carico agli stati limite considerate ai fini delle verifiche, sono stabilite in modo da garantire la sicurezza in conformità a quanto prescritto nel Cap. 2 delle (NTC).

1.2.1 COMBINAZIONI PER LA VERIFICA AGLI SLU

Per le paratie § 6.5.3.1.2 (NTC) devono essere effettuate le verifiche con riferimento almeno ai sequenti Stati Limite:

- SLU di tipo geotecnico (GEO)
- collasso per rotazione intorno a un punto dell'opera (atto di moto rigido);
- collasso per carico limite verticale;

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10 LOTTO CODIFICA

10 D26CL

DOCUMENTO
IV0300003

REV. FOGLIO

6 di 80

Α

- sfilamento di uno o più ancoraggi;
- instabilità del fondo scavo in terreni a grana fine in condizioni non drenate;
- instabilità del fondo scavo per sollevamento;
- sifonamento del fondo scavo;
- instabilità globale dell'insieme terreno-opera;
- SLU di tipo strutturale (STR)
- raggiungimento della resistenza in uno o più ancoraggi;
- raggiungimento della resistenza strutturale della paratia,

accertando che la condizione (6.2.1) sia soddisfatta per ogni stato limite considerato.

La verifica di stabilità globale dell'insieme terreno-opera deve essere effettuata secondo l'Approccio 1:

- Combinazione 2: (A2+M2+R2)

tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II e 6.8.I.

Le rimanenti verifiche devono essere effettuate considerando le seguenti combinazioni di coefficienti:

- Combinazione 1: (A1+M1+R1)
- Combinazione 2: (A2+M2+R1)

tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.5.I.

Ai fini delle verifiche degli <u>Stati Limite Ultimi</u> si definisce la seguente combinazione:

Combinazione fondamentale SLU:

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{Q1} \cdot Q_{k1} + \sum_i \gamma_{Qi} \cdot \psi_{0i} \cdot Q_{ki}$$

1.2.2 COMBINAZIONI PER LA VERIFICA AGLI SLE

Ai fini delle verifiche degli stati limite di esercizio si definiscono le seguenti combinazioni:

Rara \Rightarrow $G_1+G_2+Q_{k1}+\sum_i\psi_{0i}\cdot Q_{ki}$

 $Frequente \qquad \qquad \Rightarrow \qquad G_1 + \ G_2 + \ \psi_{11} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki}$

Quasi permanente \Rightarrow $G_1 + G_2 + \psi_{21} \cdot Q_{k1} + \sum_i \psi_{2i} \cdot Q_{ki}$

Nella presente relazione di calcolo si fa riferimento solamente alla combinazione "Rara" in quanto risulta la più significativa.

1.3 DOCUMENTI DI RIFERIMENTO

La presente relazione è inscindibile dagli elaborate grafici e dai seguenti documenti:

Relazione di Calcolo Spalle e Fondazioni

Relazione di Calcolo Impalcati

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA NODO AV/AC DI VERONA: INGRESSO OVEST

DOCUMENTO

IV0300003

COMMESSA

IN10

LOTTO

10

CODIFICA

D26CL

REV.

Α

FOGLIO

7 di 80

Relazione Tecnica Descrittiva

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

Relazione di Calcolo Pile

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 8 di 80

2 NORMATIVA DI RIFERIMENTO

I calcoli sviluppati nel seguito sono svolti secondo il Metodo degli Stati Limite e nel rispetto della normativa vigente.

Ministero dei LL.PP - D.M. 17.01.2018

Circolare 21 Gennaio 2019 n.7

CNR - DT 207/2008

Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni.

RFI DTC SI MA IFS 001 E Manuale di progettazione delle opere civili – Parte II Sezione 2 – PONTI E STRUTTURE

EC3 - UNI EN 1993-1-1:2005

3 CARATTERISTICHE DEI MATERIALI

Materiali come prescritti dal Decreto Ministeriale 17.01.2018 "Norme Tecniche per le Costruzioni".

3.1 TABELLA RIASSUNTIVA CLASSI DI ESPOSIZIONE SECONDO NORMATIVA UNI EN 206-1

Questa tabella e da compilarsi in funzione dell'opera da eseguire: associare ad ogni elemento progettuale (fondazione, elevazione......).

Tab 2

		ntale secondo U						
Jasse di sposizione	Descrizione dell'ambiente di	Esempi di condizioni ambientali	UNI 9858	A/C massimo	Cantenuto minimo di	Rek minima	Contenuto minimo di	Coprifero
esposizione imbientale	esposizione	ambientali	l	massimo	oemento	N/mm²	minimo di	Mm
moientale	esposizione				kg/m"	NAMM	96	Mm
Assenza di riso	hio di corrosione o attac	10			I NGKU		170	
0	Molto secco	Os perintemi di editici	1			C12/15	ļ-	15
		con umidità dell'aria	1	l				1
		molto bassa						
2 Corrosione dell	e armature per effetto de	la carbonatazione						
XC1	Secco o	Cls per interni di editioi	2a	0,65	260	C20/25		20
	permanentemente	con umidità relatina	l	l				1
	bagnato	bassa o immerso in acqua	l	l				1
XC2	Bagnato, raramente	Superfici in ds a	2a	0.60	280	C25/30	 	20
NUC.	secoo	contatto con acqua per	44	0,00	200	623/30	Ι.	120
		lungo tempo es.	l	l				1
		fondazioni	l	l				1
XC3	Umidtà moderata	Os per interni con	5a	0.55	280	C30/37	-	30
		umidità relativa						
		moderata o alta e cis		l			l	1
		all'esterno protetto dalla	l	l				1
	Sell-	pioggia	1- 5	0.50	200	00000		
XC4	Ciclicamente bagnato ed asciutto	Superfici in dis a contatto con l'acqua.	4a,5b	0,50	300	C30/37	-	30
	ed asoluto	non nella dasse XC2.	l	l				1
Compsione dell	le armature per effetto de	i clonuri esclusi quelli pr	cuenienti d	all'acora d	mare			
XD1	Umidtà moderata	Superfici in els espeste	5a	D.55	1300×	T C30/37		130
	Gillata ilibatata	a nebbia salina	J	0,00	000	00000	l ⁻	100
XD2	Bagnato, raramente	Pisone: ds esposto ad	4a, 5b	0.55	300	C30/37		30
	asciutto	acque industriali					l	
		contenenti cloruri						
XD3	Ciclicamente bagnato	Parti di ponti esposte a	5e	0.45	320	C35/45	-	40
	ed asciutto	spruzzi contenenti	l					1
		doruri, pavimentazioni		l			l	1
		di parcheggi	Ļ					
<u>4 Corrosione dell</u> XSI	e armature indotta da olo Esposto alla nebbia	run presenti nell'acqua : Strutture prossime o	di mare 4a, 5b	0.50	300	C30/37		30
X S1	salina ma non alfacqua	strutture prossime o	48,00	UC,U	300	C30/37	-	30
	di mare	Sulla costa	l	l				1
XS2	Permanentemente	Parti di strutture marine	5c	0.45	320	C35/45	. 	40
	sommerso	T de di Se dadici il di ilic	**	0,10	020	0000		1.0
XS3	Zone esposte alle onde	Parti di strutture marine	5c	0.45	340	C35/45		40
	o alla marea							
5 Attacco dei cicl	i di gelo/disgelo cono se	nza sali disgelanti						
XF1	Moderata saturazione	Superfici verticali in dis	2b	0,55	300	C30/37	-	30
	d'acqua in assenza di	esposte alla pioggia e	l					1
XF2	sali disgelanti	al gelo Superfici verticali in cls	3.40	0.55	300	C25/30	4.0	30
XF2	Moderata saturazione d'acqua in presenza di	di strutture stradali	3,40	0,00	300	C2560D	4,0 e aggregati	30
	sali disgelanti	esposte al gelo e nebbia		l			resistenti al	1
	sai disgelalti	dei sali disgelanti	l				geloidisgelo	1
XF3	Bevata saturazione	Superfici orizzontali in	2b	0.50	320	C30/37	4.0	30
	d'acqua in assenza di	ds esposte alla pioggia		1000	1-2-		e aggregati	1 2
	sali disgelanti	e al gelo	l				registenti al	1
							gelo/tisgelo 4,0	
F4	Bevata saturazione	Strade e impalcati da	3.4b	0,45	340	C30/37	4,0	40
	d'acqua in presenza di	ponte esposti ai sali		l			e aggregati	1
	sali disgelanti o acqua	disgelanti. Superfici in	l				resistenti al	1
	di mare	ds esposte drettamente		l			gelo/disgelo	1
		a nebbia contenente sali disgelanti					I	
Attacco chimic		vegetatu.						
201	Ambiente chimico		5a	0.55	1300	LC30/37	Ι.	130
	deholmente aggressivo	Ī		3,55	-55	00000	ľ	150
	(vd. prospetto 2 della						I	
	(vd. prospetto 2 della EN 206)							
XA2	Ambiente chimico		4°,56	0,50	320	C30/37		30
	moderatamente		'		cemento		I	
	aggressivo (vd.			l	resistente		I	1
	prospetto 2 della EN			l	ai solfati		I	1
	206)		-					40
XA3	Ambiente chimico	•	50	0,45	360	C35/45		40
	fortemente aggressivo			l	cemento		l	1
	(vd. prospetto 2 della EN 206)			I	resistente ai solfati		I	1

3.2 PARAMETRI DI IDENTIFICAZIONE PER LA VERIFICA A FESSURAZIONE

Nel capitolo 4 del DM 17.01.2018 si identificano i parametri a cui fare riferimento per la verifica a fessurazione.

Tabella 4 LIII – Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 4 LIV - Criteri di scelta dello stato limite di fessurazione

Gruppi di	Condizioni	Combinazione		Armatur	a.	
	ambientali	diazioni	Sensibile		Poco sensi	bile
esigenze	amoienian	атамы	Stato limite	\mathbf{w}_{d}	Stato limite	\mathbf{w}_{d}
_	Ordinarie	frequente	ap. fessure	$\leq w_2$	ap. fessure	≤w₃
a	Ommane	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	≤w₂
ь	Aggressive	frequente	ap. fessure	$\leq w_1$	ap. fessure	≤w₂
В	Agg iessive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$
c	Malta a managaine	frequente	formazione fessure	-	ap, fessure	$\leq w_1$
٠	Molto aggressive	quasi permanente	decompressione	-	ap, fessure	$\leq w_1$

w₁, w₂, w₃ sono definiti al § 4.1.2.2.4.1, il valore di calcolo w₄, è definito al § 4.1.2.2.4.6.

3.3 ACCIAIO PER CEMENTO ARMATO

Per le armature metalliche si adottano tondini in acciaio del tipo B450C controllato in stabilimento, che presentano le seguenti caratteristiche:

Proprietà	Requisito
Limite di snervamento f _y	≥ 450 MPa
Limite di rottura f _t	≥ 540 MPa
Allungamento totale al carico massimo A _{gt}	≥ 7%
Rapporto f _t /f _y	$1,13 \le R_{\rm m}/R_{\rm e} \le 1,35$
Rapporto f _{y misurato} / f _{y nom}	≤ 1,25

Tensione di snervamento caratteristica	\rightarrow	$f_{yk} \geq$	450.00 N/mm ²
Tensione caratteristica a rottura	\rightarrow	$f_{tk} \geq$	540.00 N/mm ²
Tensione di calcolo elastica	\rightarrow	$\sigma_c = 0.80^* f_{yk} =$	360.00 N/mm ²
Fattore di sicurezza acciaio	\rightarrow	$\gamma_s =$	1.15
Resistenza a trazione di calcolo	\rightarrow	$f_{yd} = f_{yk} / \gamma_s =$	391.30 N/mm ²

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

CODIFICA LOTTO D26CL

DOCUMENTO IV0300003

REV. FOGLIO 11 di 80

Α

10 3.4 MALTA DI INIEZIONE TIRANTI

I tiranti previsti sono di tipo passivo, definitivi e ad iniezione ripetuta.

Caratteristiche secondo UNI EN 447:2007

Resistenza a rottura a 28gg

Rapporto acqua / cemento

Separazione di acqua (in volume) Fluidità Marsh

25.00 N/mm² fc

0.45 \leq

< 2%

10"-35"

Ritiro nullo (aggiunta di additivi e/o antiritiro)

3.5 **ACCIAIO PER TIRANTI ATTIVI**

I tiranti previsti sono di tipo attivo, definitivi e ad iniezione ripetuta.

Si prevede l'impiego di cavi costituiti da trefoli in acciaio armonico stabilizzato da 0.6" (area 139mm²) avente caratteristiche:

Tensione caratteristica a rottura

Tensione caratteristica all'1% di deformazione totale

Allungamento sotto carico massimo

Tensione iniziale all'atto della tesatura (vale la condizione più restrittiva)

Modulo elastico

1860.00 N/mm² $f_{ptk} \ge$ 1670.00 N/mm² $f_{p(0.1) k} \ge$

3.5 \rightarrow $A_{gt} \ge$

1420.00 N/mm² $\rightarrow \sigma_{spi} < 0.85 f_{p(0.1)k}$ 1395.00 N/mm² $\sigma_{spi} < 0.75 \ f_{ptk}$

195000 N/mm² \rightarrow $E_{sp} =$

CARPENTERIA METALLICA PER PALANCOLE E TRAVI DI CORREA 3.6

Per la realizzazione delle opere in carpenteria metallica, si prevede l'utilizzo di un acciaio tipo S355 (ex Fe 510), che presenta le seguenti caratteristiche:

Acciaio S355JR (UNI EN 10025)

Tensione di snervamento caratteristica

Tensione caratteristica a rottura

Fattore di sicurezza acciaio

Resistenza a trazione di calcolo

 \rightarrow $f_{vk} \ge$

 \rightarrow $f_{tk} \ge$

 \rightarrow $\gamma_{M0} =$ \rightarrow $\gamma_{M2} =$

 \rightarrow $f_{vd} = f_{vk} / \gamma_{M0} =$

355.00 N/mm²

510.00 N/mm² 1.05

1.25

338.00 N/mm²

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

FOGI IO

12 di 80

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

IN10 10 D26CL IV0300003 A

4 PROGRAMMI DI CALCOLO UTILIZZATI

I calcoli della struttura saranno eseguiti con l'ausilio del programma di calcolo Paratie. Az.

4.1 METODO DI CALCOLO

4.1.1 CALCOLO DELLA PROFONDITÀ DI INFISSIONE

Nel caso generale l'equilibrio della paratia è assicurato dal bilanciamento fra la spinta attiva agente da monte sulla parte fuori terra, la resistenza passiva che si sviluppa da valle verso monte nella zona interrata e la controspinta che agisce da monte verso valle nella zona interrata al di sotto del centro di rotazione.

Nel caso di paratia tirantata nell'equilibrio della struttura intervengono gli sforzi dei tiranti (diretti verso monte); in questo caso, se la paratia non è sufficientemente infissa, la controspinta sarà assente.

Pertanto il primo passo da compiere nella progettazione è il calcolo della profondità di infissione necessaria ad assicurare l'equilibrio fra i carichi agenti (spinta attiva, resistenza passiva, controspinta, tiro dei tiranti ed eventuali carichi esterni).

Occorre pertanto costruire i diagrammi di spinta attiva e di spinta (resistenza) passiva agenti sulla paratia. A partire da questi si costruiscono i diagrammi risultanti.

Nella costruzione dei diagrammi risultanti si adotterà la seguente notazione:

K_{am} diagramma della spinta attiva agente da monte

 K_{av} diagramma della spinta attiva agente da valle sulla parte interrata

 K_{pm} diagramma della spinta passiva agente da monte

 K_{pv} diagramma della spinta passiva agente da valle sulla parte interrata.

Calcolati i diagrammi suddetti si costruiscono i diagrammi risultanti

 $D_m = K_{pm} - K_{av}$ e $D_v = K_{pv} - K_{am}$

Questi diagrammi rappresentano i valori limiti delle pressioni agenti sulla paratia. La soluzione è ricercata per tentativi facendo variare la profondità di infissione e la posizione del centro di rotazione fino a quando non si raggiunge l'equilibrio sia alla traslazione che alla rotazione.

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300003	Α	13 di 80

4.1.2 CALCOLO DELLA SPINTE

Per il calcolo della spinta si utilizzerà il metodo Mononobe- Okabe, tale metodo adotta le stesse ipotesi della teoria di Mueller-Breslau: un cuneo di spinta a monte della paratia che si muove rigidamente lungo una superficie di rottura curvilinea. Mette in conto inoltre l'inerzia sismica del cuneo in direzione orizzontale e verticale. Dall'equilibrio del cuneo si ricava la spinta che il terreno esercita sull'opera di sostegno in condizioni sismiche. Viene messo in conto, come nella teoria di Coulomb, l'esistenza dell' attrito fra il terreno e il paramento del muro, e quindi la retta di spinta risulta inclinata rispetto alla normale al paramento stesso di un angolo di attrito terra-muro.

L'espressione della spinta totale (statica più sismica) esercitata da un terrapieno, di peso di volume γ , su una parete di altezza H, risulta espressa secondo la teoria di Mononobe-Okabe dalla seguente relazione

$$S = 1/2(1 \pm k_v)\gamma H^2 K_a$$

Ka rappresenta il coefficiente di spinta attiva espresso da

$$\mathsf{K}_{\mathsf{a}} = \frac{\sin^2(\alpha + \phi - \theta)}{\sqrt{\left[\sin(\phi + \delta)\sin(\phi - \beta - \theta)\right]}}$$

$$\cos\theta \ \sin^2\alpha \ \sin(\alpha - \delta - \theta) \left[1 + \frac{\sqrt{\left[\sin(\phi + \delta)\sin(\phi - \beta - \theta)\right]}}{\sqrt{\left[\sin(\alpha - \delta - \theta)\sin(\alpha + \beta)\right]}}\right]^2}$$

essendo:

 α = angolo tra il paramento contro terra e l'orizzontale,

φ= angolo di attrito del terreno,

 δ = angolo di attrito terreno-muro,

β= angolo rispetto all'orizzontale della superficie del terrapieno

L'angolo θ è legato al coefficiente sismico dalla seguente espressione

$$tan(\theta)=k_h/(1\pm k_v)$$

dove k_h e k_v rappresentano i coefficienti di intensità sismica orizzontale e verticale.

Nel caso in cui il terrapieno sia gravato di un sovraccarico uniforme *Q* l'espressione della pressione e della spinta diventano

$$\sigma_a = (\gamma z + Q)K_a$$

$$S = (1/2\gamma H^2 + QH)K_a$$

Al carico Q corrisponde un diagramma delle pressioni rettangolare con risultante applicata a 1/2H.

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300003	Α	14 di 80

Nel caso di terreno dotato di coesione c l'espressione della pressione esercitata sulla parete, alla generica profondità z, diventa

$$\sigma_a = \gamma z K_a - 2c(K_a)^{1/2}$$

Al diagramma triangolare, espresso dal termine $\gamma z K_a$, si sottrae il diagramma rettangolare legato al termine con la coesione. La pressione σ_a risulta negativa per valori di z minori di

$$h_c = \frac{2c}{\gamma (K_a)^{1/2}}$$

La grandezza h_c è detta altezza critica e rappresenta la profondità di potenziale frattura del terreno. E' chiaro che se l'altezza della parete è inferiore ad h_c non abbiamo nessuna spinta sulla parete.

4.1.3 SPINTA IN PRESENZA DI SISMA

Per tenere conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di **Mononobe-Okabe**.

Il metodo di Mononobe-Okabe considera nell'equilibrio del cuneo spingente la forza di inerzia dovuta al sisma. Indicando con W il peso del cuneo e con C il coefficiente di intensità sismica la forza di inerzia valutata come

$$F_i = W^*C$$

Indicando con S la spinta calcolata in condizioni statiche e con S_s la spinta totale in condizioni sismiche l'incremento di spinta è ottenuto come

L'incremento di spinta viene applicato a 1/3 dell'altezza della parete stessa (diagramma triangolare con vertice in alto).

4.1.4 ANALISI AD ELEMENTI FINITI

La paratia è considerata come una struttura a prevalente sviluppo lineare con comportamento a trave. Come caratteristiche geometriche della sezione si assume il momento d'inerzia I e l'area A per metro lineare di larghezza della paratia. Il modulo elastico è quello del materiale utilizzato per la paratia.

La parte fuori terra della paratia è suddivisa in elementi di lunghezza pari a circa 5 centimetri e più o meno costante per tutti gli elementi. La suddivisione è suggerita anche dalla eventuale presenza di tiranti, carichi e vincoli. Infatti questi elementi devono capitare in corrispondenza di un nodo. Nel caso di tirante è inserito un ulteriore elemento atto a schematizzarlo. Detta L la lunghezza libera del tirante, A_f l'area di armatura nel tirante ed E_s il modulo elastico dell'acciaio è inserito un elemento di lunghezza pari ad L, area A_f, inclinazione pari a quella del tirante e modulo elastico E_s. La parte

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300003	Α	15 di 80

interrata della paratia è suddivisa in elementi di lunghezza, come visto sopra, pari a circa 5 centimetri.

4.1.4.1 Schematizzazione del terreno

La modellazione del terreno si rifà al classico schema di Winkler. Esso è visto come un letto di molle indipendenti fra di loro reagenti solo a sforzo assiale di compressione. La rigidezza della singola molla è legata alla costante di sottofondo orizzontale del terreno (*costante di Winkler*). La costante di sottofondo, k, è definita come la pressione unitaria che occorre applicare per ottenere uno spostamento unitario. Dimensionalmente è espressa quindi come rapporto fra una pressione ed uno spostamento al cubo [F/L³]. È evidente che i risultati sono tanto migliori quanto più è elevato il numero delle molle che schematizzano il terreno. Se (m è l'interasse fra le molle (in cm) e b è la larghezza della paratia in direzione longitudinale (b=100 cm) occorre ricavare l'area equivalente, A_m, della molla (a cui si assegna una lunghezza pari a 100 cm). Indicato con E_m il modulo elastico del materiale costituente la paratia (in Kg/cm²), l'equivalenza, in termini di rigidezza, si esprime come

$$A_m$$
=10000 x $-$

Le molle hanno, ovviamente, rigidezza flessionale e tagliante nulla e sono vincolate all'estremità alla traslazione. La matrice di rigidezza di tutto il sistema paratia-terreno sarà data dall'assemblaggio delle matrici di rigidezza degli elementi della paratia (elementi a rigidezza flessionale, tagliante ed assiale), delle matrici di rigidezza dei tiranti (solo rigidezza assiale) e delle molle (rigidezza assiale).

4.1.4.2 Modalità di analisi e comportamento elasto-plastico del terreno

Il programma \it{PAC} considera il terreno con comportamento elasto-plastico perfetto; si assume cioè che la curva sforzi-deformazioni del terreno abbia andamento bilatero. Per quanto concerne il criterio di plasticizzazione del terreno (molle) il programma fa riferimento ad un criterio di tipo cinematico o ad uno di tipo statico. Nel primo la resistenza della molla cresce con la deformazione fino a quando lo spostamento non raggiunge il valore X_{max} ; una volta superato tale spostamento limite non si ha più incremento di resistenza all'aumentare degli spostamenti. Nel secondo si assume che la molla abbia una resistenza crescente fino al raggiungimento di una pressione p_{max} . pari al valore della pressione passiva in corrispondenza della quota della molla. L'introduzione di criteri di plasticizzazione porta ad analisi di tipo non lineare (non linearità meccaniche).

Un sistema non lineare, viene risolto mediante un'analisi al passo per tener conto della plasticizzazione delle molle. Quindi si procede per passi di carico, a partire da un carico iniziale p0, fino a raggiungere il carico totale p. Ogni volta che si incrementa il carico si controllano eventuali plasticizzazioni delle molle. Se si hanno nuove plasticizzazioni la matrice globale andrà riassemblata escludendo il contributo delle molle plasticizzate.

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 16 di 80

4.1.4.3 Analisi per fasi di scavo

L'analisi della paratia per fasi di scavo consente di ottenere informazioni dettagliate sullo stato di sollecitazione e deformazione dell'opera durante la fase di realizzazione. In ogni fase lo stato di sollecitazione e di deformazione dipende dalla 'storia' dello scavo (soprattutto nel caso di paratie tirantate o vincolate).

Definite le varie altezze di scavo (in funzione della posizione di tiranti, vincoli, o altro) si procede per ogni fase al calcolo delle spinte inserendo gli elementi (tiranti, vincoli o carichi) attivi per quella fase, tendendo conto delle deformazioni dello stato precedente. Ad esempio, se sono presenti dei tiranti passivi si inserirà nell'analisi della fase la 'molla' che lo rappresenta. Indicando con u ed u_0 gli spostamenti nella fase attuale e nella fase precedente, con s ed s_0 gli sforzi nella fase attuale e nella fase precedente e con K la matrice di rigidezza della 'struttura' la relazione sforzi-deformazione è esprimibile nella forma

$$s=s_0+K(u-u_0)$$

In presenza di tirante attivo verrà inserita una molla con uno stato di pretensione pari allo sforzo di tesatura. Nelle fasi successive il tirante verrà considerato come una semplice molla che 'ricorda', naturalmente, lo sforzo della fase precedente.

4.1.5 VERIFICA ALLA STABILITÀ GLOBALE

La verifica alla stabilità globale del complesso paratia+terreno deve fornire un coefficiente di sicurezza non inferiore a 1.3.

È usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento è supposta circolare.

In particolare il programma esamina, per un dato centro 3 cerchi differenti: un cerchio passante per la linea di fondo scavo, un cerchio passante per il piede della paratia ed un cerchio passante per il punto medio della parte interrata. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 6x6 posta in prossimità della sommità della paratia. Il numero di strisce è pari a 50.

Il coefficiente di sicurezza fornito da Fellenius si esprime secondo la seguente formula:

$$\Sigma_{i} \; \left(\frac{c_{i}b_{i}}{cos\alpha_{i}} + [W_{i}cos\alpha_{i}\text{-}u_{i}l_{i}]tg\phi_{i} \; \right)$$

$$\eta = \frac{\sum_{i}W_{i}sin\alpha_{i}}{\sum_{i}W_{i}sin\alpha_{i}}$$

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300003	Α	17 di 80

dove n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i_{esima} rispetto all'orizzontale, W_i è il peso della striscia i_{esima} e c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia.

Inoltre u_i ed l_i rappresentano la pressione neutra lungo la base della striscia e la lunghezza della base della striscia ($l_i = b_i/\cos\alpha_i$).

Quindi, assunto un cerchio di tentativo si suddivide in n strisce e dalla formula precedente si ricava η . Questo procedimento è eseguito per il numero di centri prefissato ed è assunto come coefficiente di sicurezza della scarpata il minimo dei coefficienti così determinati.

5 CARATTERIZZAZIONE GEOTECNICA

5.1 STRATIGRAFIA DI PROGETTO

La trattazione completa della situazione geotecnica in prossimità delle opere in oggetto è riportata nella Relazione Geotecnica allegata al Progetto. Di seguito si riportano i parametri geotecnici caratteristici dei livelli geotecnici assunti nei calcoli.

Tipologia	Spessore [m]	$\gamma_{dry} [kN/m^3]$	$\gamma_{sat} [kN/m^3]$	c _k ' [kPa]	φ _k ' [°]	E (MPa)
rilevato		20	21	0	35	50
ghiaia addensata	-	20	21	0	38	50

Stratigrafia di progetto

ı١	\sim	110	٠.
ப	w	Vτ	7.

 $\begin{array}{lll} \gamma_{dry} & peso \ di \ volume \ secco \\ \gamma_{sat} & peso \ di \ volume \ saturo \\ c' & coesione \ drenata \\ \varphi` \left[{}^{\circ} \right] & angolo \ di \ attrito \ efficace \\ c_{u} & coesione \ non \ drenata \end{array}$

E_{VC} modulo elastico in compressione vergine

La falda non è presente.

5.2 PARAMETRI DI SPINTA

I valori dei coefficienti di spinta attiva (k_a) sono stati calcolati secondo la relazione di Coulomb, mentre i coefficienti di spinta passiva (k_p) secondo le relazioni di Caquot. Il valore dell'angolo di attrito terreno-paratia (δ) è stato posto prudenzialmente pari a 0 sia per la spinta passiva, sia per la spinta attiva.

La relazione di Coulomb per il calcolo del coefficiente di spinta attiva, con le condizioni assunte, è la seguente:

$$K_{a} = \frac{\operatorname{sen}^{2}(\pi/2 + \phi)}{(1 + \sqrt{\frac{\operatorname{sen}(\delta + \phi) \cdot \operatorname{sen}(\phi)}{\operatorname{sen}(\pi/2 - \delta)}})^{2}}$$
 (spinta attiva)

Per le <u>verifiche strutturali</u> delle paratie si specifica che non si effettuano verifiche sismiche essendo opere provvisionali (come precedentemente definito).

5.3 CARICHI E COMBINAZIONI DI CARICO

5.3.1 CONDIZIONI DI CARICO

Per le verifiche strutturali e geotecniche si considereranno le seguenti condizioni di carico:

Pesi proprio struttura;

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 19 di 80

- Carico accidentale dovuto ai mezzi in transito di cantiere pari a 5 kN/mq a monte della paratia per i primi 2.0m;
- Carico accidentale dovuto ai mezzi in transito sulla ferrovia. il carico considerato è quello imposto dalla normativa FS44G. In dettaglio si sono considerate i due binari: sul primo, distante 3.00m dalla berlinese, è stato applicato il treno SW2 (150 kN/m diffusi sulla larghezza del binario di 2.5m per un contributo di 60kN/mq) mentre sul secondo, distante 7.00m dalla berlinese ,è stato applicato il treno SW0 (133 kN/m diffuse sulla larghezza del binario di 2.5m per un contributo di 53.2kN/mq).

5.3.2 COMBINAZIONI DI CARICO

5.3.2.1 S.L.E

Le verifiche SLE vengono effettuate impiegando le azioni ed i parametri caratteristici del terreno e controllando che le deformazioni indotte dallo scavo siano compatibili con le preesistenze e la paratia stessa.

Per la verifica agli S.L.E. indicando con

G: pesi propri, carichi permanenti, spinte del terreno

Q: carichi accidentali

si considerano le seguenti combinazioni:

la combinazione caratteristica (statica)

G1 + G2 + Qk1 + ψ02·Qk2 + ψ03·Qk3+ ... definita nel programma di calcolo [ESE]

5.3.2.2 S.L.U

Per la verifica agli S.L.U. indicando con

G: pesi propri, carichi permanenti, spinte del terreno

Q: carichi accidentali

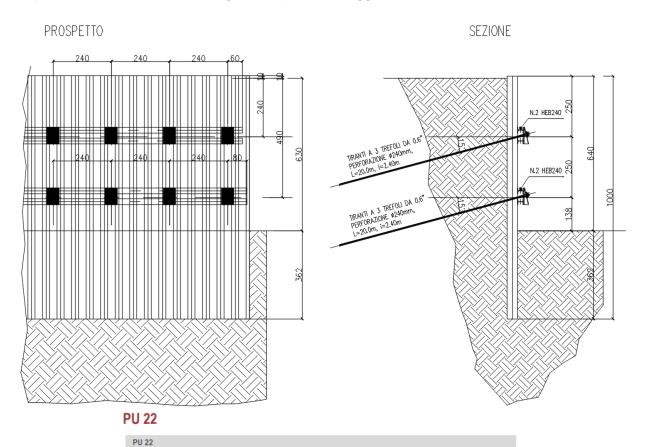
si considereranno le seguenti combinazioni di carico:

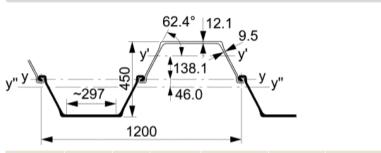
- SLU strutturale: γ_G G + γ_Q Q gruppo di coefficienti A1, M1, R1: definita nel programma di calcolo [A1 M2]
- SLU geotecnico: gruppo di coefficienti A2, M2, R2: definita nel programma di calcolo [A1 - M2]
- SLU strutturale + Sisma: γ_G G + γ_Q Q gruppo di coefficienti A1, M1, R1: definita nel programma di calcolo [A1 M1]S
- SLU geotecnico + Sisma: gruppo di coefficienti A2, M2, R2: definita nel programma di calcolo [A2 - M2]S

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300003	Α	20 di 80

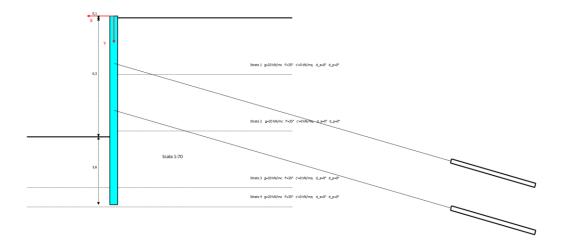

6 DIMENSIONAMENTO PALANCOLE

Si esegue nel presente capitolo il dimensionamento dell paratia in oggetto attraverso l'utilizzo del programma.

6.1 TIPO 1 ACELOR PU22

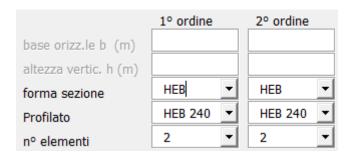
Si riportano i dati ed i relativi disegni della paratia in oggetto:

	Area della sezione	Massa per m	Momento d'inerzia	Modulo di resistenza elastico	Raggio giratore d'inerzia	Superficie di rivestimento*
	cm ²	kg/m	cm ⁴	cm ³	cm	m²/m
Per S	109,7	86,1	8740	546	8,93	0,90
Per D	219,5	172,3	59360	2640	16,45	1,79
Per T	329,2	258,4	82060	3025	15,79	2,68
Per m di muro	182,9	143,6	49460	2200	16,45	1,49



6.1.1 CARATTERISTICHE GENERALI

L'inclinazione dei tiranti è pari a 15°, anche il precarico è uguale per tutti gli ordini di tiranti e pari a 200kN.


Il bulbo dei tiranti L=5m verrà eseguito ad iniezioni ripetute e selettive con una valvola al metro lineare di fondazione.

Si riportano di seguito il modello agli elementi finiti implementati:

6.1.2 GEOMETRIA CORDOLI

Si riportano le geometrie delle travi:

6.1.3 DESCRIZIONE TERRENI

Nella modellazione agli elementi finiti dei vari tratti di paratia, anche se si è in presenza di una sola tipologia di terreno, si considerano diversi strati aventi le medesime caratteristiche geologico-geotecniche per meglio discretizzare l'entità del coefficiente di Winkler (assunto crescente con la profondità, come meglio spiegato in seguito).

Simbologia adottata:

n° numero d'ordine dello strato a partire dalla sommità della paratia

Descrizione Descrizione del terreno

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300003	Α	22 di 80

γ	peso di volume del terreno espresso in [kg/mc]							
γs	peso di vol	ume	saturo del t	erreno esp	oresso [kg/m	c]		
ф	angolo d'at	ttrito	interno del 1	terreno es _l	oresso in [°]			
δ	angolo d'at	ttrito	terreno/para	atia espres	sso in [°]			
С	coesione d	lel te	rreno espre	ssa in [kg/	cmq]			
n°	Descrizion	ne	γ	γs	δ	С		
n° 1	Descrizion Rilevato	n e 1	γ 2000.00	γ _s (δ 35.00	c 0.00	0.000	
			•			_	0.000 0.000	
1	Rilevato	1	2000.00	2000.00	35.00	0.00		
1 2	Rilevato Rilevato	1 2	2000.00	2000.00	35.00 35.00	0.00	0.000	

6.1.4 DESCRIZIONE STRATIGRAFIA

Simbologia adottata

n	numero d'ordine dello strato a partire dalla sommita della paratia
sp	spessore dello strato in corrispondenza dell'asse della paratia espresso in [m]
kw	costante di Winkler orizzontale espressa in Kg/cm²/cm

α inclinazione dello strato espressa in GRADI(°)

Per la costante di Winkler si assume un andamento con la profondità definito dalla seguente espressione

 $K(z)=0.50 + 0.50 z^{0.50}$

dove K è la costante di Winkler espressa in Kg/cm²/cm e z è la profondità rispetto alla testa della paratia espressa in metri.

n°	sp	α	kw	Terreno
1	3.00	0.00	1.11	Rilevato1
2	3.00	0.00	1.56	Rilevato2
3	3.00	0.00	1.87	Rilevato3
4	1.00	0.00	2.04	Rilevato 4
5	3.00	0.00	2.20	In Situ
6	3.00	0.00	2.40	In Situ
7	2.00	0.00	2.56	In Situ

6.1.5 CONDIZIONI DI CARICO

Simbologia e convenzioni adottate

Le ascisse dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia Le ordinate dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO CODIFICA IN10 D26CL

DOCUMENTO IV0300003

REV. FOGI IO 23 di 80

Α

 X_i ascissa del punto iniziale di applicazione del carico X_f ascissa del punto finale di applicazione del carico

 Q_i, Q_f Intensità dei carichi distribuiti sul profilo espresse in [kg/mq]

Per tutte le tipologie di paratie si considera le seguente condizioni di carico:

Condizione nº 1

Carico distribuito sul profilo $X_i = 0.00$

 $X_f = 30.00$

 $Q_i = 500$

 $Q_f = 500$

6.1.6 IMPOSTAZIONI DI PROGETTO

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γGfav	1.00	1.00
Permanenti	Sfavorevole	γGsfav	1.30	1.00
Variabili	Favorevole	γQfav	0.00	0.00
Variabili	Sfavorevole	γQsfav	1.50	1.30

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri	M1	M2	
Tangente dell'angolo di attrito	$\gamma_{tan\phi'}$	1.00	1.25
Coesione efficace	γ _{c'}	1.00	1.25
Resistenza non drenata	γcu	1.00	1.40
Resistenza a compressione uniassia	ale γ_{qu}	1.00	1.60
Peso dell'unità di volume	γ_{γ}	1.00	1.00

6.1.7 IMPOSTAZIONI DI ANALISI

6.1.7.1 Analisi per Fasi di Scavo.

Rottura del terreno: Pressione passiva Spostamento limite o per spostamento limite molle pari a 1.50cm

Impostazioni analisi per fasi di scavo:

Analisi per condizioni di esercizio Analisi per coefficienti tipo A1-M1 Analisi per coefficienti tipo A2-M2

Stabilità globale: Metodo di Fellenius

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO

CODIFICA D26CL DOCUMENTO
IV0300003

REV. FOGLIO

24 di 80

Α

6.1.8 VERIFICHE PALANCOLA

In seguito vengono riportati i tabulati di verifica estrapolati dal programma di calcolo:

VERIFICHE AGLI STATI LIMITE ULTIMI

COMB. 1 (SLU-F)

SOLLECITAZIONI AGENTI SULLA PARATIA (calcolo FEM)

Sovraccarichi di progetto sui terrapieni

Terreno di monte, q1d=0,00 kN/mq Terreno di valle, q2d=0,00 kN/mq

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 2

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 4

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 5

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt pd=0 (°)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO CODIFICA 10 D26CL DOCUMENTO
IV0300003

REV.

FOGLIO 25 di 80

strato 6

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=38 (°) coesione drenata, c'_d=0,00 kN/mq angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°) angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

Coefficienti di spinta

strato 1

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 2

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 3

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 4

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 5

lato monte:

coeff. di spinta attiva, Ka=0,237883

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

LOTTO COMMESSA IN10 10

CODIFICA DOCUMENTO D26CL IV0300003

REV. FOGLIO Α

26 di 80

coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746 lato valle:

coeff. di spinta attiva, Ka=0,237883 coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746 strato 6

lato monte:

coeff. di spinta attiva, Ka=0,237883 coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746 lato valle:

coeff. di spinta attiva, Ka=0,237883 coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746

Numero di iterazioni nel calcolo non lineare e sollecitazioni

Numero di iterazione effettuate = 1 errore iterazione 0 = 0,001555 errore iterazione 1 = 0,00018

		Nx (Tz (My (
sez./nodo	x (m)	kN/m)	kN/m)	kN*m/m)
1	0	0	0	0
2	0,1	-0,19	0	0
3	0,34	-0,63	-0,64	0
4	0,58	-1,08	-2,18	-0,15
5	0,82	-1,53	-4,7	-0,68
6	1,06	-1,98	-8,24	-1,8
7	1,3	-2,43	-12,83	-3,78
8	1,54	-2,87	-18,5	-6,86
9	1,78	-3,32	-25,22	-11,3
10	2,02	-3,77	-32,95	-17,35
11	2,26	-4,22	-41,56	-25,26
12	2,5	-4,67	-41,56	-35,24
12	2,5	-32,59	52,15	-35,24
13	2,8	-33,15	39,81	-19,59
14	3,1	-33,71	28,46	-7,65
15	3,34	-34,15	18,33	-0,89
16	3,58	-34,6	8,18	3,47
17	3,81	-35,04	-1,97	5,41
18	4,05	-35,48	-12,14	4,94
19	4,29	-35,93	-22,41	2,06
20	4,53	-36,37	-32,72	-3,27
21	4,76	-36,81	-42,96	-11,04
22	5	-37,26	-42,96	-21,24
22	5	-65,36	51,02	-21,24

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IN10	10	D26CL	IV0300003	Α	27 di 80

23	5,28	-65,87	39,8	-7,21
24	5,55	-66,38	29,22	3,73
25	5,82	-66,9	19,3	11,77
26	6,1	-67,41	7,13	17,08
27	6,4	-67,97	-4,99	19,22
28	6,65	-68,43	-10,52	17,99
29	6,89	-68,89	-10,71	15,41
30	7,14	-69,34	-10,35	12,78
31	7,38	-69,8	-9,59	10,24
32	7,63	-70,26	-8,56	7,89
33	7,87	-70,72	-7,36	5,79
34	8,12	-71,18	-6,08	3,98
35	8,36	-71,64	-4,78	2,49
36	8,61	-72,09	-3,5	1,32
37	8,85	-72,55	-2,27	0,46
38	9,1	-73,01	-0,73	-0,1
39	9,32	-73,43	0,2	-0,26
40	9,55	-73,85	0,58	-0,22
41	9,78	-74,27	0,39	-0,09
42	10	-74,69	0,39	0

REAZIONI VINCOLARI E PRESSIONI DI CONTATTO TERRENO-PARATIA (calcolo FEM)

RvX = componente della reazione vincolare lungo X (kN/m)

RvY = componente della reazione vincolare lungo Y (kN/m)

RvZ = componente momento della reazione vincolare (kN*m/m)

pXv = pressione orizzontale del terreno (molle di valle) (kN/mq)

pXm = pressione orizzontale del terreno (molle di monte) (kN/mq)

sez./	nodo	x (m)	RvX	RvY	RvZ	pXv	pXm
	2	0,1	0	0	0	0	0
	3	0,34	0,49	0	0	0	2,04
	4	0,58	1,19	0	0	0	4,94
	5	0,82	1,94	0	0	0	8,07
	6	1,06	2,72	0	0	0	11,35
	7	1,3	3,54	0	0	0	14,74
	8	1,54	4,36	0	0	0	18,16
	9	1,78	5,17	0	0	0	21,55
	10	2,02	5,94	0	0	0	24,76
	11	2,26	6,63	0	0	0	27,62
	12	2,5	-72,09	21,48	0	0	29,9
	13	2,8	9,49	0	0	0	31,64
	14	3,1	8,73	0	0	0	32,46
	15	3,34	7,79	0	0	0	32,72
	16	3,58	7,81	0	0	0	32,84
	17	3,81	7,8	0	0	0	32,92
	18	4,05	7,83	0	0	0	33,03

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

				ļ						
RELAZIONE	DI CALCOLO	O OPERE PE	ROVVISIONALI	СОМ	IMESSA	LOTT	O CODIFICA	DOCUMENTO	REV.	FOGLIO
				I	N10	10	D26CL	IV0300003	Α	28 di 80
19	4,29	7,9	0	0	()	33,19			
20	4,53	7,93	0	0	()	33,31			
21	4,76	7,88	0	0	()	33,24			
22	5	-72,29	21,62	0	()	32,74			
23	5,28	8,63	0	0	()	31,4			
24	5,55	8,13	0	0	()	29,58			
25	5,82	7,63	0	0	()	31,03			
26	6,1	9,37	0	0	()	32,52			
27	6,4	9,32	0	0	()	34,14			
28	6,65	4,25	0	0	-18,12	2	35,48			
29	6,89	0,15	0	0	-36,2	2	36,81			
30	7,14	-0,28	0	0	-39,2	7	38,14			
31	7,38	-0,58	0	0	-41,8	5	39,47			
32	7,63	-0,79	0	0	-44,03	3	40,8			
33	7,87	-0,92	0	0	-45,88	3	42,13			
34	8,12	-0,98	0	0	-47,47	7	43,46			
35	8,36	-1	0	0	-48,8	7	44,79			
36	8,61	-0,98	0	0	-50,14	4	46,12			
37	8,85	-0,94	0	0	-51,3	1	47,45			
38	9,1	-1,19	0	0	-52,42	2	48,78			
39	9,32	-0,72	0	0	-53,43	1	50,22			
40	9,55	-0,29	0	0	-54,3	7	53,09			
41	9,78	0,15	0	0	-55,32	2	55,98			
42	10	0,3	-57,45	0	-56,2	4	58,9			

PERCENTUALI DI SPINTA PASSIVA MOBILITATA

Spinta passiva mobilitata a monte = 15,5%

Spinta passiva mobilitata a valle = 44,6%

VERIFICA CONDIZIONI DI EQUILIBRIO (calcolo FEM)

Equilibrio alla traslazione orizzontale

somma delle forze esterne orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

somma delle reazioni vincolari lungo X, SommRvX=0,00 kN/m

equazione di equilibrio alla traslazione orizzontale: SFx+Sme+Sve+SommRvX=0,00 kN/m

Equilibrio alla traslazione verticale

peso proprio della paratia, Wp=14,36 kN/m

somma delle forze verticali applicate alla paratia, SFy=0,00 kN/m

somma delle reazioni vincolari lungo Y, SommRvY=-14,36 kN/m

equazione di equilibrio alla traslazione verticale: Wp+SFy+SommRvY=0,00 kN/m

Equilibrio alla rotazione (attorno al primo nodo)

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

momento delle reazioni vincolari lungo X, MRvX=0,00 kN*m/m

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 29 di 80

equazione di equilibrio alla rotazione: MFx+MSme+MSve+MRvX=0,00 kN*m/m

Spinte orizzontali

spinta delle terre di monte, Sm=321,05 kN/m

spinta delle terre di valle, Sv=-158,98 kN/m

somma componenti orizz. delle forze che i tiranti/puntoni esercitano sull'opera, STx=-160,84 kN/m

somma forze orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

Momenti delle spinte orizzontali rispetto al primo nodo

momento della spinta delle terre di monte, MSm=1.955,05 kN*m/m

momento della spinta delle terre di valle, MSv=-1.343,00 kN*m/m

momento delle compon. orizz. delle forze che i tiranti/puntoni esercitano sull'opera, MTx=-603,77 kN*m/m

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

SFORZI NEI TIRANTI/PUNTONI (calcolo

FEM)

TX*=sforzo lungo l'asse globale X per metro lineare di paratia (kN/m)

TY*=sforzo lungo l'asse globale Y per metro lineare di paratia (kN/m)

TX=sforzo lungo l'asse globale X nel singolo tirante/puntone (kN)

TY=sforzo lungo l'asse globale Y nel singolo tirante/puntone (kN)

Fa=sforzo di trazione/compressione nel singolo tirante/puntone (kN)

Fad=gGs x Fa sforzo di trazione/compressione di progetto nel singolo tirante/puntone (kN)

Ordine	TX*	TY*	TX	TY	Fa	Fad
1	-80,16	21,48	-192,39	51,55	199,17	258,93
2	-80,67	21,62	-193,62	51,88	200,45	260,58

SPOSTAMENTI NODALI (calcolo FEM)

w = spostamento orizzontale (lungo l'asse globale X, coincidente con l'asse locale z)

u = spostamento verticale (lungo l'asse globale Y, coincidente con l'asse locale x)

		<u> </u>		
				rot.
sez./nodo	x (m)	w (cm)	u (cm)	(rad)
1	0	0,004	0,009	-0,0001
2	0,1	0,003	0,009	-0,0001
3	0,34	0	0,009	-0,0001
4	0,58	-0,003	0,009	-0,0001
5	0,82	-0,005	0,009	-0,0001
6	1,06	-0,008	0,009	-0,0001
7	1,3	-0,011	0,009	-0,0001
8	1,54	-0,013	0,009	-0,0001
9	1,78	-0,015	0,009	-0,0001
10	2,02	-0,017	0,009	-0,0001
11	2,26	-0,017	0,009	0
12	2,5	-0,017	0,009	0
13	2,8	-0,015	0,009	0,0001

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300003	Α	30 di 80

14	3,1	-0,012	0,008	0,0001
15	3,34	-0,008	0,008	0,0001
16	3,58	-0,005	0,008	0,0001
17	3,81	-0,002	0,008	0,0001
18	4,05	0,001	0,008	0,0001
19	4,29	0,004	0,008	0,0001
20	4,53	0,006	0,007	0,0001
21	4,76	0,009	0,007	0,0001
22	5	0,012	0,007	0,0002
23	5,28	0,017	0,007	0,0002
24	5,55	0,022	0,006	0,0002
25	5,82	0,027	0,006	0,0002
26	6,1	0,032	0,006	0,0001
27	6,4	0,035	0,005	0,0001
28	6,65	0,037	0,005	0,0001
29	6,89	0,039	0,004	0
30	7,14	0,039	0,004	0
31	7,38	0,039	0,004	0
32	7,63	0,039	0,003	0
33	7,87	0,038	0,003	0
34	8,12	0,037	0,003	0
35	8,36	0,036	0,002	-0,0001
36	8,61	0,034	0,002	-0,0001
37	8,85	0,033	0,002	-0,0001
38	9,1	0,031	0,001	-0,0001
39	9,32	0,03	0,001	-0,0001
40	9,55	0,029	0,001	-0,0001
41	9,78	0,028	0	-0,0001
42	10	0,026	0	-0,0001

VERIFICA AL CARICO LIMITE VERTICALE

Parametri geotecnici di progetto

coesione = 0,00 kN/mq

angolo di resistenza al taglio = 35°

Resistenza alla punta

fattore Nq (Berezantzev) = 52,913

fattore Nc = 74,14

tensione litostatica verticale totale alla profondità L, sVL=198,00 kN/mq

pressione neutra alla profondità L, uL=0,00 kN/mq

tensione litostatica verticale efficace alla profondità L, s'VL=198,00 kN/mq

Resistenza unitaria alla punta, p=10.476,70 kN/mq

Resistenza alla punta, Pmax=191,62 kN

Resistenza laterale

Resistenza laterale, Smax=393,95 kN

Resistenza alla punta e laterale di progetto

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 31 di 80

Resistenza alla punta (valore medio) = 191,62 kN

Resistenza alla punta (valore minimo) = 191,62 kN

Resistenza laterale (valore medio) = 393,95 kN

Resistenza laterale (valore minimo) = 393,95 kN

Fattore di correlazione, xsi3=1,7

Fattore di correlazione, xsi4=1,7

Resistenza alla punta (valore caratteristico) = 112,72 kN

Resistenza laterale (valore caratteristico) = 231,74 kN

Resistenza alla punta di progetto, Pmax_d=98,01 kN

Resistenza laterale di progetto, Smax d=201,51 kN

Carico limite per carichi assiali di compressione

 $Qlim_d = Pmax_d + Smax_d = 299,52 kN$

Carico limite di sfilamento per carichi assiali di trazione

 $Qlimt_d = Smax_d = 201,51 kN$

Azione di progetto

Ed = 74,69 kN

Verifica al carico limite per carichi assiali di compressione

Verifica soddisfatta: l'azione di progetto non supera la resistenza di progetto coeff. di sicurezza, Qlim_d/Ed=4,01

VERIFICA DI STABILITA' GLOBALE

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 2

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 3

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 4

peso dell'unità di volume, $\,$ g=20,00 kN/mc angolo di resistenza al taglio, $\,$ Fi_d=29,26 (°) coesione drenata, $\,$ c'_d=0,00 kN/mq

strato 5

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq

strato 6

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

FOGI IO

32 di 80

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

IN10 10 D26CL IV0300003 A

Parametri di calcolo

n° di cerchi analizzati = 10 Metodo utilizzato: Bishop

Cerchio critico

Coordinate centro e raggio: X (m)= 0 Y (m)= -0,3 Rc (m)= 10,4

Simbologia adottata

Wt = peso del concio (kN)

Wq = forza risultante verticale dovuta al sovraccarico applicato sul concio (kN)

alfa=angolo (minore di 90°) che l'orizzontale forma con la base del concio (positivo se antiorario)

u = pressione neutra alla base del concio (kN/mq)

DX = larghezza lungo X del concio (m)

Fsh = forza sismica orizzontale sul concio (kN)

B = braccio della forza sismica orizzontale rispetto al centro del cerchio di rottura (m)

Fsv = forza sismica verticale sul concio (kN)

N = risultante delle tensioni normali di reazione del terreno alla base del concio (kN)

T = risultante delle tensioni tangenziali di reazione del terreno alla base del concio (kN)

_	i = risuitant	e delle ten	sioni tange	nziali di re	azione dei	terreno a	iia base de	i concio (KIN)	1	
	concio	Wt	Wq	alfa (°)	u	DX	Fsh	В	Fsv	N	Т
	1	5,85	0	-46,93	0	0,74	0	16,7	0	6,21	-2,2
	2	16,49	0	-41,23	0	0,74	0	16,7	0	16,74	-5,92
	3	25,26	0	-36,01	0	0,74	0	16,7	0	24,84	-8,78
	4	32,53	0	-31,11	0	0,74	0	16,7	0	31,31	- 11,07 -
	5	38,55	0	-26,46	0	0,74	0	16,7	0	36,61	12,95 -
	6	43,48	0	-21,99	0	0,74	0	16,7	0	41,03	14,51
	7	47,43	0	-17,65	0	0,74	0	16,7	0	44,73	15,82
	8	50,47	0	-13,42	0	0,74	0	16,7	0	47,85	16,92
	9	52,67	0	-9,26	0	0,74	0	16,7	0	50,45	17,84
	10	54,05	0	-5,16	0	0,74	0	16,7	0	52,59	-18,6
											-
	11	54,65	0	-1,07	0	0,74	0	16,7		111,38	39,39
	12	6,85	0	1,1	0	0,05	0	16,7	0	6,91	-2,72
	13	145,02	0	3,24	0	0,73	0	16,7	0	148,22	52,41 -
	14	144,05	0	7,26	0	0,73	0	16,7	0	152,07	53,77 -
	15	142,32	0	11,32	0	0,73	0	16,7	0	156,21	55,24 -
	16	139,8	0	15,44	0	0,73	0	16,7	0	160,74	56,84
	17	136,46	0	19,64	0	0,73	0	16,7	0	165,83	58,64
	18 19	132,23 127,03	0 0	23,95 28,42	0	0,73 0,73	0	16,7 16,7	0 0	171,68 178,64	60,71

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE	DI CALCOLO	OPERE PRO	VVISIONALI	COMME	ESSA LOTT	O CODIFICA		OCUMENTO	REV.	FOGLIO
				IN1	0 10	D26CL		IV0300003	Α	33 di 80
										63,17
										-
20	120,74	0	33,08	0	0,73	0	16,7	0 :	187,26	66,21
										-
21	113,17	0	38,01	0	0,73	0	16,7	0 :	198,54	70,21
										-
22	104,08	0	43,3	0	0,73	0	16,7	0 2	214,53	75,86
										-
23	93,01	0	49,11	0	0,73	0	16,7	0 2	240,21	84,94
										-
24	79,17	0	55,72	0	0,73	0	16,7	0 2	292,23	103,3
										-
25	60,7	0	63,81	0	0,73	0	16,7	0 4	489,99	173,3
26	24,98	0	78,07	0	0,73	0	16,7	0	-179,1	63,33

Lunghezza dell'arco di cerchio di scivolamento, L=25 m Momento resistente, M_resist=17.765,88 kN*m

Momento instabilizzante, M_instab=-11.214,65 kN*m

Verifica soddisfatta

VERIFICHE STRUTTURALI PARATIA

Verifiche di resistenza a presso-flessione e taglio

sid_m: tensione ideale massima nella sezione di acciaio (N/mmq)

Mcy_Rd: resistenza di progetto della sezione soggetta a presso-flessione retta (asse vettore y)

Resistenza plastica della sezione lorda A, Npl_Rd=6.183,76 kN

Area resistente al taglio della sezione lungo z, Avz=106,60 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=2.080,84 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=743,81 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=872,29 kN*m

tensione di snervamento di progetto, fyd=338 N/mmq

x (m)	Nx	Tz	My	sid_m	Mcy_Rd	Verif?
0	0	0	0			Si
0,1	-0,23	0	0			Si
0,34	-0,76	-0,77	0	0,1		Si
0,58	-1,3	-2,62	-0,18	0,5		Si
0,82	-1,84	-5,64	-0,82	1		Si
1,06	-2,38	-9,89	-2,16	1,7		Si
1,3	-2,92	-15,4	-4,54	2,6		Si
1,54	-3,44	-22,2	-8,23	3,9		Si
1,78	-3,98	-30,26	-13,56	6,4		Si
2,02	-4,52	-39,54	-20,82	9,7		Si
2,26	-5,06	-49,87	-30,31	14,1		Si
2,5	-5,6	-49,87	-42,29	19,5		Si
2,5	-39,11	62,58	-42,29	21,4		Si
2,8	-39,78	47,77	-23,51	12,9		Si
3,1	-40,45	34,15	-9,18	6,4		Si
3,34	-40,98	22	-1,07	4,4		Si
3,58	-41,52	9,82	4,16	4,2		Si

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE I	PROVVISIONALI	COMMESSA	LOTTO 10	CODIFICA D26CL	DOCUMENTO IV0300003	REV.	FOGLIO 34 di 80
3,81 -42,05 -2,36	6,49	5,3	10	Si	140300003		34 ui 00
4,05 -42,58 -14,57	5, 9 3	5		Si			
4,29 -43,12 -26,89	2,47	5,2		Si			
4,53 -43,64 -39,26	-3,92	7,2		Si			
4,76 -44,17 -51,55	-13,25	9,2		Si			
5 -44,71 -51,55	-25,49	14		Si			
5 -78,43 61,22		15,9		Si			
5,28 -79,04 47,76	-8,65	9,3		Si			
5,55 -79,66 35,06	4,48	7,4		Si			
5,82 -80,28 23,16		10,8		Si			
6,1 -80,89 8,56		13,7		Si			
6,4 -81,56 -5,99	23,06	15		Si			
6,65 -82,12 -12,62		14,3		Si			
6,89 -82,67 -12,85	•	12,9		Si			
7,14 -83,21 -12,42		11,5		Si			
7,38 -83,76 -11,51		10,2		Si			
7,63 -84,31 -10,27	9,47	8,9		Si			
7,87 -84,86 -8,83	6,95	7,8		Si			
8,12 -85,42 -7,3	4,78	6,8		Si			
8,36 -85,97 -5,74	2,99	6,1		Si			
8,61 -86,51 -4,2	1,58	5,5		Si			
8,85 -87,06 -2,72	0,55	5		Si			
9,1 -87,61 -0,88	-0,12	4,8		Si			
9,32 -88,12 0,24	-0,31	5		Si			
9,55 -88,62 0,7	-0,26	5		Si			
9,78 -89,12 0,47	-0,11	4,9		Si			
10 -89,63 0,47	0	4,9		Si			

<u>VERIFICHE S.L.U. DI TIPO GEOTECNICO E STRUTTURALE SUI TIRANTI</u>

ANCORAGGIO DI ORDINE 1

forza di progetto di trazione agente sul tirante, Fad=258,93 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,78

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=620,92 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 2,6

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,72 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 3,33

ANCORAGGIO DI ORDINE 2

forza di progetto di trazione agente sul tirante, Fad=260,58 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 35 di 80

coefficiente di sicurezza (non minore di 1,2) = 1,77

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=624,90 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 2,59

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,72 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 3,31

COMB. 2 (SLU-F)

SOLLECITAZIONI AGENTI SULLA PARATIA (calcolo FEM)

Sovraccarichi di progetto sui terrapieni

Terreno di monte, q1d=69,23 kN/mq

Terreno di valle, q2d=0,00 kN/mq

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 2

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c' d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt pd=0 (°)

strato 4

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 5

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 36 di 80

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°) angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 6

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

Coefficienti di spinta

strato 1

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 2

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 3

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 4

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 5

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

D26CL

COMMESSA IN10

LOTTO CODIFICA

10

DOCUMENTO
IV0300003

REV.

FOGLIO 37 di 80

lato monte:

coeff. di spinta attiva, Ka=0,237883

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

lato valle:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

strato 6

lato monte:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

lato valle:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

Numero di iterazioni nel calcolo non lineare e sollecitazioni

Numero di iterazione effettuate = 4

errore iterazione 0 = 0,003769

errore iterazione 1 = 0,08

errore iterazione 2 = 0,013936

errore iterazione 3 = 0,003489

errore iterazione 4 = 0

		Nx (Tz (My (
sez./nodo	x (m)	kN/m)	kN/m)	kN*m/m)
1	0	0	0	0
2	0,1	-0,19	-2,93	0
3	0,34	-0,63	-9,19	-0,7
4	0,58	-1,08	-15,85	-2,91
5	0,82	-1,53	-22,92	-6,71
6	1,06	-1,98	-30,4	-12,21
7	1,3	-2,43	-38,28	-19,51
8	1,54	-2,87	-46,57	-28,7
9	1,78	-3,32	-55,26	-39,87
10	2,02	-3,77	-64,36	-53,14
11	2,26	-4,22	-73,87	-68,58
12	2,5	-4,67	-73,87	-86,31
12	2,5	-43,93	61,52	-86,31
13	2,8	-44,49	48,49	-67,86
14	3,1	-45,05	36,25	-53,31
15	3,34	-45,49	25,01	-44,7
16	3,58	-45,94	13,38	-38,76
17	3,81	-46,38	1,4	-35,58
18	4,05	-46,82	-10,97	-35,25

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

DEL			$\sim \sim 1$	\triangle DEDE	PROVVISIONALI	
REI	$A / I U J V \Gamma$	1 /1 (,AI		UPERE	PRUVVISIUNALI	

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300003	Α	38 di 80

19	4,29	-47,27	-23,8	-37,85
20	4,53	-47,71	-37,02	-43,51
21	4,76	-48,15	-50,59	-52,3
22	5	-48,6	-50,59	-64,31
22	5	-82,72	61,68	-64,31
23	5,28	-83,23	44,94	-47,35
24	5,55	-83,75	27,68	-34,99
25	5,82	-84,26	9,88	-27,38
26	6,1	-84,77	-9,32	-24,67
27	6,4	-85,33	-28,1	-27,46
28	6,65	-85,79	-39,6	-34,36
29	6,89	-86,25	-45,76	-44,08
30	7,14	-86,71	-46,57	-55,31
31	7,38	-87,17	-42,04	-66,75
32	7,63	-87,62	-32,16	-77,06
33	7,87	-88,08	-16,93	-84,96
34	8,12	-88,54	3,64	-89,12
35	8,36	-89	29,56	-88,22
36	8,61	-89,46	55,31	-80,97
37	8,85	-89,91	70,76	-67,39
38	9,1	-90,37	76,29	-50,02
39	9,32	-90,79	72,55	-32,86
40	9,55	-91,21	53,13	-16,53
41	9,78	-91,63	20,35	-4,58
42	10	-92,05	20,35	0

REAZIONI VINCOLARI E PRESSIONI DI CONTATTO TERRENO-PARATIA (calcolo FEM)

RvX = componente della reazione vincolare lungo X (kN/m)

RvY = componente della reazione vincolare lungo Y (kN/m)

RvZ = componente momento della reazione vincolare (kN*m/m)

pXv = pressione orizzontale del terreno (molle di valle) (kN/mq)

pXm = pressione orizzontale del terreno (molle di monte) (kN/mq)

sez./nodo	x (m)	RvX	RvY	RvZ	pXv	pXm
2	0,1	2,25	0	0	0	18,76
3	0,34	4,81	0	0	0	20,06
4	0,58	5,13	0	0	0	21,36
5	0,82	5,44	0	0	0	22,66
6	1,06	5,75	0	0	0	23,96
7	1,3	6,06	0	0	0	25,26
8	1,54	6,38	0	0	0	26,57
9	1,78	6,69	0	0	0	27,87
10	2,02	7	0	0	0	29,17
11	2,26	7,31	0	0	0	30,47
12	2,5	-104,14	30,2	0	0	31,77
13	2,8	10,02	0	0	0	33,39

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI				CON	MMESSA	LO	TTO CODIFIC	A DOCUMENTO	REV.	FOGLIO
					IN10	1	0 D26CL	IV0300003	Α	39 di 80
14	3,1	9,42	0	0		0	35,02			
15	3,34	8,64	0	0		0	36,31			
16	3,58	8,95	0	0		0	37,59			
17	3,81	9,22	0	0		0	38,88			
18	4,05	9,52	0	0		0	40,17			
19	4,29	9,87	0	0		0	41,46			
20	4,53	10,17	0	0		0	42,74			
21	4,76	10,44	0	0		0	44,03			
22	5	-86,36	26,25	0		0	45,32			
23	5,28	12,87	0	0		0	46,81			
24	5,55	13,28	0	0		0	48,3			
25	5,82	13,69	0	0		0	49,79			
26	6,1	14,77	0	0		0	51,28			
27	6,4	14,44	0	0		0	52,91			
28	6,65	8,85	0	0	-18,1	2	54,24			
29	6,89	4,74	0	0	-36,2	23	55,57			
30	7,14	0,62	0	0	-54,3	5	56,9			
31	7,38	-3,49	0	0	-72,4	-6	58,23			
32	7,63	-7,6	0	0	-90,5	8	59,56			
33	7,87	-11,71	0	0	-108,6	9	60,89			
34	8,12	-15,82	0	0	-126,8	31	62,22			
35	8,36	-19,94	0	0	-144,9	2	63,55			
36	8,61	-19,81	0	0	-145,7	' 5	64,88			
37	8,85	-11,89	0	0	-114,7	'2	66,21			
38	9,1	-4,25	0	0	-85,6	64	67,54			
39	9,32	2,88	0	0	-60,1	.7	72,97			
40	9,55	14,94	0	0	-35,2	9	101,69			
41	9,78	25,21	0	0	-18,2	9	130,34			
42	10	15,66	-70,81	0	-19,5	1	159,31			

PERCENTUALI DI SPINTA PASSIVA MOBILITATA

Spinta passiva mobilitata a monte = 14,8%

Spinta passiva mobilitata a valle = 79,9%

VERIFICA CONDIZIONI DI EQUILIBRIO (calcolo FEM)

Equilibrio alla traslazione orizzontale

somma delle forze esterne orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

somma delle reazioni vincolari lungo X, SommRvX=0,00 kN/m

equazione di equilibrio alla traslazione orizzontale: SFx+Sme+Sve+SommRvX=0,00 kN/m

Equilibrio alla traslazione verticale

peso proprio della paratia, Wp=14,36 kN/m

somma delle forze verticali applicate alla paratia, SFy=0,00 kN/m

somma delle reazioni vincolari lungo Y, SommRvY=-14,36 kN/m

equazione di equilibrio alla traslazione verticale: Wp+SFy+SommRvY=0,00 kN/m

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 40 di 80

Equilibrio alla rotazione (attorno al primo nodo)

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m momento delle reazioni vincolari lungo X, MRvX=0,00 kN*m/m

equazione di equilibrio alla rotazione: MFx+MSme+MSve+MRvX=0,00 kN*m/m

Spinte orizzontali

spinta delle terre di monte, Sm=482,18 kN/m spinta delle terre di valle, Sv=-271,50 kN/m

somma componenti orizz. delle forze che i tiranti/puntoni esercitano sull'opera, STx=-210,68 kN/m

somma forze orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

Momenti delle spinte orizzontali rispetto al primo nodo

momento della spinta delle terre di monte, MSm=3.020,01 kN*m/m momento della spinta delle terre di valle, MSv=-2.248,40 kN*m/m

momento delle compon. orizz. delle forze che i tiranti/puntoni esercitano sull'opera, MTx=-771,61 kN*m/m

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

SFORZI NEI TIRANTI/PUNTONI (calcolo FEM)

TX*=sforzo lungo l'asse globale X per metro lineare di paratia (kN/m)

TY*=sforzo lungo l'asse globale Y per metro lineare di paratia (kN/m)

TX=sforzo lungo l'asse globale X nel singolo tirante/puntone (kN)

TY=sforzo lungo l'asse globale Y nel singolo tirante/puntone (kN)

Fa=sforzo di trazione/compressione nel singolo tirante/puntone (kN)

Fad=gGs x Fa sforzo di trazione/compressione di progetto nel singolo tirante/puntone (kN)

Ordine	TX*	TY*	TX	TY	Fa	Fad
1	-112,72	30,20	-270,53	72,49	280,08	364,10
2	-97,96	26,25	-235,11	63,00	243,40	316,42

SPOSTAMENTI NODALI (calcolo FEM)

w = spostamento orizzontale (lungo l'asse globale X, coincidente con l'asse locale z)

u = spostamento verticale (lungo l'asse globale Y, coincidente con l'asse locale x)

					rot.
sez./nodo		x (m)	w (cm)	u (cm)	(rad)
1		0	2,982	0,011	-0,0045
	2	0,1	2,937	0,011	-0,0045
	3	0,34	2,83	0,011	-0,0045
	4	0,58	2,723	0,011	-0,0045
	5	0,82	2,616	0,011	-0,0044
	6	1,06	2,51	0,011	-0,0044
	7	1,3	2,404	0,011	-0,0044
	8	1,54	2,299	0,011	-0,0044

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 41 di 80

9	1,78	2,195	0,011	-0,0043
10	2,02	2,093	0,011	-0,0042
11	2,26	1,993	0,011	-0,0041
12	2,5	1,896	0,011	-0,004
13	2,8	1,78	0,011	-0,0038
14	3,1	1,668	0,011	-0,0037
15	3,34	1,582	0,01	-0,0036
16	3,58	1,498	0,01	-0,0035
17	3,81	1,416	0,01	-0,0034
18	4,05	1,335	0,01	-0,0034
19	4,29	1,256	0,009	-0,0033
20	4,53	1,178	0,009	-0,0032
21	4,76	1,102	0,009	-0,0032
22	5	1,029	0,009	-0,0031
23	5,28	0,946	0,008	-0,0029
24	5,55	0,867	0,008	-0,0029
25	5,82	0,789	0,007	-0,0028
26	6,1	0,713	0,007	-0,0027
27	6,4	0,632	0,006	-0,0027
28	6,65	0,567	0,006	-0,0026
29	6,89	0,503	0,006	-0,0026
30	7,14	0,442	0,005	-0,0025
31	7,38	0,383	0,005	-0,0023
32	7,63	0,327	0,004	-0,0022
33	7,87	0,274	0,004	-0,0021
34	8,12	0,225	0,003	-0,0019
35	8,36	0,18	0,003	-0,0018
36	8,61	0,139	0,003	-0,0016
37	8,85	0,102	0,002	-0,0015
38	9,1	0,067	0,002	-0,0014
39	9,32	0,037	0,001	-0,0013
40	9,55	0,009	0,001	-0,0012
41	9,78	-0,019	0	-0,0012
42	10	-0,047	0	-0,0012

VERIFICA AL CARICO LIMITE VERTICALE

Parametri geotecnici di progetto

coesione = 0,00 kN/mq

angolo di resistenza al taglio = 35°

Resistenza alla punta

fattore Nq (Berezantzev) = 52,913

fattore Nc = 74,14

tensione litostatica verticale totale alla profondità L, $\,$ sVL=288,00 kN/mq pressione neutra alla profondità L, $\,$ uL=0,00 kN/mq

tensione litostatica verticale efficace alla profondità L, s'VL=288,00 kN/mq

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 42 di 80

Resistenza unitaria alla punta, p=15.238,84 kN/mq Resistenza alla punta, Pmax=278,72 kN

Resistenza laterale

Resistenza laterale, Smax=700,13 kN

Resistenza alla punta e laterale di progetto

Resistenza alla punta (valore medio) = 278,72 kN

Resistenza alla punta (valore minimo) = 278,72 kN

Resistenza laterale (valore medio) = 700,13 kN

Resistenza laterale (valore minimo) = 700,13 kN

Fattore di correlazione, xsi3=1,7

Fattore di correlazione, xsi4=1,7

Resistenza alla punta (valore caratteristico) = 163,95 kN

Resistenza laterale (valore caratteristico) = 411,84 kN

Resistenza alla punta di progetto, Pmax_d=142,57 kN

Resistenza laterale di progetto, Smax_d=358,12 kN

Carico limite per carichi assiali di compressione

 $Qlim_d = Pmax_d + Smax_d = 500,69 kN$

Carico limite di sfilamento per carichi assiali di trazione

 $Qlimt_d = Smax_d = 358,12 kN$

Azione di progetto

Ed = 92,05 kN

Verifica al carico limite per carichi assiali di compressione

Verifica soddisfatta: l'azione di progetto non supera la resistenza di progetto coeff. di sicurezza, Qlim_d/Ed=5,44

VERIFICA DI STABILITA' GLOBALE

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c' d=0,00 kN/mq

strato 2

peso dell'unità di volume, $\,$ g=20,00 kN/mc angolo di resistenza al taglio, $\,$ Fi_d=29,26 (°) coesione drenata, $\,$ c'_d=0,00 kN/mq

strato 3

peso dell'unità di volume, $\,$ g=20,00 kN/mc angolo di resistenza al taglio, $\,$ Fi_d=29,26 (°) coesione drenata, $\,$ c'_d=0,00 kN/mq

strato 4

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 5

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°)

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO CODIFICA D26CL

DOCUMENTO IV0300003

REV. FOGI IO Α

43 di 80

coesione drenata, c'_d=0,00 kN/mq

strato 6

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq

Parametri di calcolo

n° di cerchi analizzati = 10 Metodo utilizzato: Bishop

Cerchio critico

Coordinate centro e raggio: X (m) = 0 Y (m) = -2,16 Rc (m) = 12,26

Simbologia adottata

Wt = peso del concio (kN)

Wq = forza risultante verticale dovuta al sovraccarico applicato sul concio (kN)

alfa=angolo (minore di 90°) che l'orizzontale forma con la base del concio (positivo se antiorario)

u = pressione neutra alla base del concio (kN/mq)

DX = larghezza lungo X del concio (m)

Fsh = forza sismica orizzontale sul concio (kN)

B = braccio della forza sismica orizzontale rispetto al centro del cerchio di rottura (m)

Fsv = forza sismica verticale sul concio (kN)

N = risultante delle tensioni normali di reazione del terreno alla base del concio (kN)

T = risultante delle tensioni tangenziali di reazione del terreno alla base del concio (kN)

concio	Wt	Wq	alfa (°)	u	DX	Fsh	В	Fsv	N	Т
1	6,21	0	-43,13	0	0,81	0	18,56	0	6,88	-1,74
2	17,61	0	-38,11	0	0,81	0	18,56	0	18,68	-4,73
3	27,18	0	-33,41	0	0,81	0	18,56	0	27,9	-7,06
4	35,22	0	-28,95	0	0,81	0	18,56	0	35,3	-8,94 -
5	41,93	0	-24,69	0	0,81	0	18,56	0	41,34	10,46 -
6	47,46	0	-20,56	0	0,81	0	18,56	0	46,29	11,72 -
7	51,91	0	-16,54	0	0,81	0	18,56	0	50,37	12,75 -
8	55,36	0	-12,61	0	0,81	0	18,56	0	53,69	13,59 -
9	57,86	0	-8,73	0	0,81	0	18,56	0	56,35	14,26 -
10	59,45	0	-4,9	0	0,81	0	18,56	0	58,4	14,78 -
11	60,14	0	-1,09	0	0,81	0	18,56	0	130,35	32,99
12	6,85	0	0,93	0	0,05	0	18,56	0	6,88	-1,94 -
13	168,56	65,88	3,03	0	0,84	0	18,56	0	237,95	60,22
14	167,31	65,88	6,99	0	0,84	0	18,56	0	242,46	61,36 -
15	165,05	65,88	10,99	0	0,84	0	18,56	0	247,41	62,62 -
16	161,74	65,88	15,05	0	0,84	0	18,56	0	252,92	64,01

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE	DI CALCOLO	O OPERE PR	OVVISIONALI	СОММЕ	ESSA LOT	то сог	DIFICA	DOCUMENTO	O REV	. FOGLIO
				IN1	0 10	D:	26CL	IV0300003	Α	44 di 80
17	157,34	65,88	19,18	0	0,84	0	18,56	0	259,17	- 65,59
18	151,77	65,88	23,43	0	0,84	0	18,56	0	266,42	67,43 -
19	144,91	65,88	27,81	0	0,84	0	18,56	0	275,04	69,61
20	136,63	65,88	32,38	0	0,84	0	18,56	0	285,63	72,29
21	126,69	65,88	37,2	0	0,84	0	18,56	0	299,23	75,73
22	114,78	65,88	42,35	0	0,84	0	18,56	0	317,72	80,41
23	100,36	65,88	47,97	0	0,84	0	18,56	0	345,21	87,37
24	82,52	65,88	54,3	0	0,84	0	18,56	0	392,6	99,36
25	59,24	65,88	61,88	0	0,84	0	18,56	0	504,22	127,6
26	22,95	65,88	72,73	0	0,84	0	18,56	0	1610,9	407,7

Lunghezza dell'arco di cerchio di scivolamento, L=26,77 m

Momento resistente, M_resist=41.682,58 kN*m

Momento instabilizzante, M_instab=-18.832,55 kN*m

Verifica soddisfatta

VERIFICHE STRUTTURALI PARATIA

Verifiche di resistenza a presso-flessione e taglio

sid_m: tensione ideale massima nella sezione di acciaio (N/mmq)

Mcy_Rd: resistenza di progetto della sezione soggetta a presso-flessione retta (asse vettore y)

Resistenza plastica della sezione lorda A, Npl_Rd=6.183,76 kN

Area resistente al taglio della sezione lungo z, Avz=106,60 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=2.080,84 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=743,81 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=872,29 kN*m

tensione di snervamento di progetto, fyd=338 N/mmq

x (m)	Nx	Tz	Му	sid_m	Mcy_Rd	Verif?
0	0	0	0			Si
0,1	-0,23	-3,52	0	0,6		Si
0,34	-0,76	-11,03	-0,84	1,9		Si
0,58	-1,3	-19,02	-3,49	3,3		Si
0,82	-1,84	-27,5	-8,05	4,7		Si
1,06	-2,38	-36,48	-14,65	6,8		Si
1,3	-2,92	-45,94	-23,41	10,8		Si
1,54	-3,44	-55,88	-34,44	15,9		Si
1,78	-3,98	-66,31	-47,84	22		Si
2,02	-4,52	-77,23	-63,77	29,3		Si
2,26	-5,06	-88,64	-82,3	37,7		Si

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE	DI CALCOL	O OPERE P	ROVVISIONA	LI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
					IN10	10	D26CL	IV0300003	Α	45 di 80
2,5	-5,6	-88,64	-103,57	4	17,4		Si			
2,5	-52,72	73,82	-103,57		50		Si			
2,8	-53,39	58,19	-81,43		40		Si			
3,1	-54,06	43,5	-63,97		32,1		Si			
3,34	-54,59	30,01	-53,64		27,4		Si			
3,58	-55,13	16,06	-46,51		24,2		Si			
3,81	-55,66	1,68	-42,7	2	2,5		Si			
4,05	-56,18	-13,16	-42,3	2	2,3		Si			
4,29	-56,72	-28,56	-45,42	2	13,8		Si			
4,53	-57,25	-44,42	-52,21	2	16,9		Si			
4,76	-57,78	-60,71	-62,76	3	31,7		Si			
5	-58,32	-60,71	-77,17	3	8,3		Si			
5	-99,26	74,02	-77,17	4	0,5		Si			
5,28	-99,88	53,93	-56,82	3	31,3		Si			
5,55	-100,5	33,22	-41,99	2	4,6		Si			
5,82	-101,11	11,86	-32,86	2	20,5		Si			
6,1	-101,72	-11,18	-29,6		19		Si			
6,4	-102,4	-33,72	-32,95	2	20,6		Si			
6,65	-102,95	-47,52	-41,23	2	4,4		Si			
6,89	-103,5	-54,91	-52,9	2	9,7		Si			
7,14	-104,05	-55,88	-66,37	3	5,9		Si			
7,38	-104,6	-50,45	-80,1	4	2,2		Si			
7,63	-105,14	-38,59	-92,47	4	7,8		Si			
7,87	-105,7	-20,32	-101,95	5	52,2		Si			
8,12	-106,25	4,37	-106,94	5	54,5		Si			
8,36	-106,8	35,47	-105,86		54		Si			
8,61	-107,35	66,37	-97,16	5	0,1		Si			
8,85	-107,89	84,91	-80,87	4	2,7		Si			
9,1	-108,44	91,55	-60,02	3	3,2		Si			
9,32	-108,95	87,06	-39,43	2	13,9		Si			
9,55	-109,45	63,76	-19,84		15		Si			
9,78	-109,96	24,42	-5,5		8,5		Si			
10	-110,46	24,42	0		7,4		Si			

VERIFICHE S.L.U. DI TIPO GEOTECNICO E STRUTTURALE SUI TIRANTI

ANCORAGGIO DI ORDINE 1

forza di progetto di trazione agente sul tirante, Fad=364,10 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,27

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=873,14 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 1,85

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=1,01 N/mmq

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 46 di 80

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 2,37

ANCORAGGIO DI ORDINE 2

forza di progetto di trazione agente sul tirante, Fad=316,42 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,46

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=758,80 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 2,13

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,88 N/mmg

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 2,72

VERIFICA CORDOLI IN ACCIAIO IN CORRISPONDENZA DEI TIRANTI

ORDINE DI TIRANTE N° 1

Sollecitazioni di progetto

Momento flettente massimo, My=81,16 kN*m

Taglio massimo, Tz=135,27 kN

Verifiche di resistenza a flessione e taglio

tensione di snervamento di progetto, fyd=338 N/mmq

Resistenza plastica della sezione lorda A, Npl_Rd=7.167,62 kN

Area resistente al taglio della sezione lungo z, Avz=33,24 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=1.297,69 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=634,27 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=712,10 kN*m

Resistenza di progetto della sezione soggetta a flessione retta, Mcy_Rd=712,1 kN*m

Verifica soddisfatta

ORDINE DI TIRANTE N° 2

Sollecitazioni di progetto

Momento flettente massimo, My=70,53 kN*m

Taglio massimo, Tz=117,55 kN

Verifiche di resistenza a flessione e taglio

tensione di snervamento di progetto, fyd=338 N/mmq

Resistenza plastica della sezione lorda A, Npl Rd=7.167,62 kN

Area resistente al taglio della sezione lungo z, Avz=33,24 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=1.297,69 kN

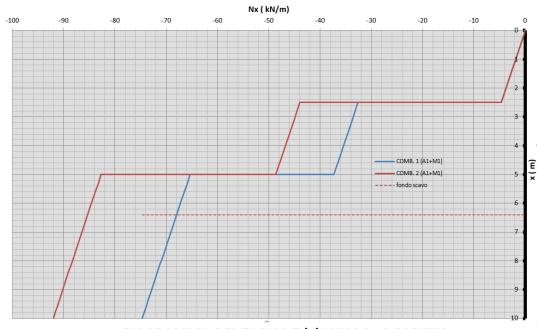
Momento resistente elastico lungo l'asse vettore y, Mely_Rd=634,27 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=712,10 kN*m

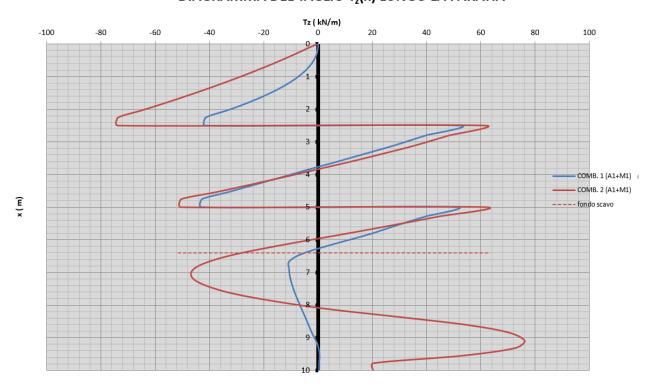
Resistenza di progetto della sezione soggetta a flessione retta, Mcy_Rd=712,1 kN*m

Verifica soddisfatta

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA NODO AV/AC DI VERONA: INGRESSO OVEST


RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

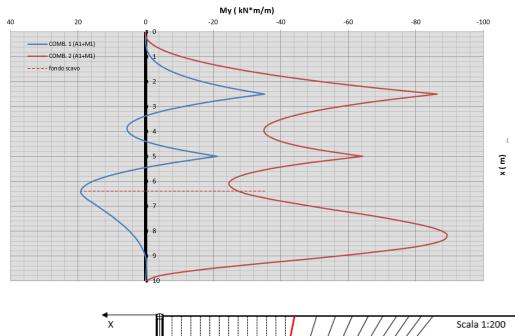

 IN10
 10
 D26CL
 IV0300003
 A
 47 di 80

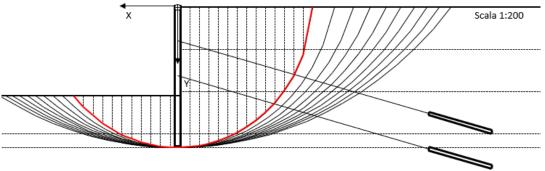
6.1.8.1 Diagrammi

DIAGRAMMA DELLO SFORZO NORMALE $N_{\rm x}(x)$ LUNGO LA PARATIA

DIAGRAMMA DEL TAGLIO T_z(x) LUNGO LA PARATIA

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

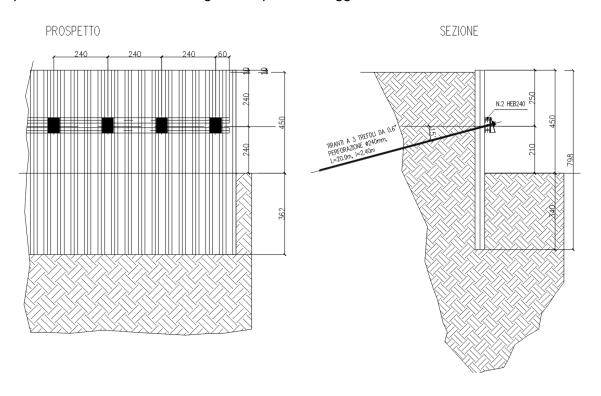

NODO AV/AC DI VERONA: INGRESSO OVEST

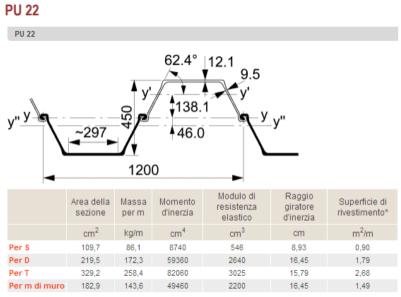

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 48 di 80

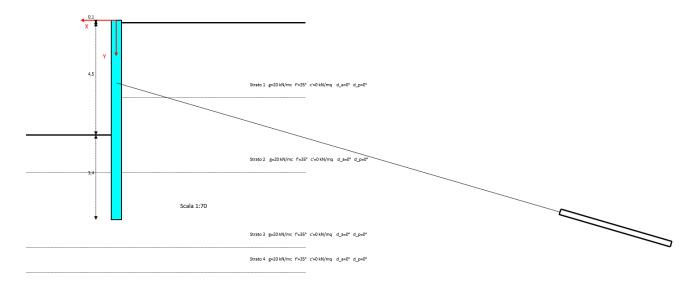
DIAGRAMMA DEL MOMENTO FLETTENTE M_y(x) LUNGO LA PARATIA





6.2 TIPO 2 ACELOR PU22

Si riportano i dati ed i relativi disegni della paratia in oggetto:


6.2.1 CARATTERISTICHE GENERALI

L'inclinazione dei tiranti è pari a 15°, anche il precarico è uguale per tutti gli ordini di tiranti e pari a 200kN.

Il bulbo dei tiranti L=5m verrà eseguito ad iniezioni ripetute e selettive con una valvola al metro lineare di fondazione.

Si riportano di seguito il modello agli elementi finiti implementati:

6.2.2 GEOMETRIA CORDOLI

Si riportano le geometrie delle travi:

6.2.3 DESCRIZIONE TERRENI

Nella modellazione agli elementi finiti dei vari tratti di paratia, anche se si è in presenza di una sola tipologia di terreno, si considerano diversi strati aventi le medesime caratteristiche geologico-geotecniche per meglio discretizzare l'entità del coefficiente di Winkler (assunto crescente con la profondità, come meglio spiegato in seguito).

Simbologia adottata:

n°	numero d'ordine dello strato a partire dalla sommità della paratia
Descrizione	Descrizione del terreno
γ	peso di volume del terreno espresso in [kg/mc]
γ_{s}	peso di volume saturo del terreno espresso [kg/mc]
ф	angolo d'attrito interno del terreno espresso in [°]
δ	angolo d'attrito terreno/paratia espresso in [°]

С

LINEA AV/AC MILANO - VENEZIA

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300003	Α	51 di 80

n°	Descrizio	ne	γ	γ _s φ	δ	С	
1	Rilevato	1	2000.00	2000.00	35.00	0.00	0.000
2	Rilevato	2	2000.00	2000.00	35.00	0.00	0.000
3	Rilevato	3	2000.00	2000.00	35.00	0.00	0.000
4	In Situ		1900.00	2000.00	38.00	0.00	0.000
5	Rilevato	4	2000.00	2000.00	35.00	0.00	0.000

coesione del terreno espressa in [kg/cmq]

6.2.4 DESCRIZIONE STRATIGRAFIA

Simbologia adottata

n° numero d'ordine dello strato a partire dalla sommità della paratia

sp spessore dello strato in corrispondenza dell'asse della paratia espresso in [m]

kw costante di Winkler orizzontale espressa in Kg/cm²/cm

α inclinazione dello strato espressa in GRADI(°)

Per la costante di Winkler si assume un andamento con la profondità definito dalla seguente espressione

 $K(z)=0.50 + 0.50 z^{0.50}$

dove K è la costante di Winkler espressa in Kg/cm²/cm e z è la profondità rispetto alla testa della paratia espressa in metri.

n°	sp	α	kw	Terreno
1	3.00	0.00	1.11	Rilevato1
2	3.00	0.00	1.56	Rilevato2
3	3.00	0.00	1.87	Rilevato3
4	1.00	0.00	2.04	Rilevato 4
5	3.00	0.00	2.20	In Situ
6	3.00	0.00	2.40	In Situ
7	2.00	0.00	2.56	In Situ

6.2.5 CONDIZIONI DI CARICO

Simbologia e convenzioni adottate

Le ascisse dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia Le ordinate dei punti di applicazione del carico sono espresse in [m] rispetto alla testa della paratia

X_i ascissa del punto iniziale di applicazione del carico
 X_f ascissa del punto finale di applicazione del carico

Q_i, Q_f Intensità dei carichi distribuiti sul profilo espresse in [kg/mq]

Per tutte le tipologie di paratie si considera le seguente condizioni di carico:

LOTTO

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

CODIFICA D26CL DOCUMENTO IV0300003 REV. FOGLIO

Α

52 di 80

Condizione nº 1

Carico distribuito sul profilo $X_i = 0.00$

 $X_f = 30.00$

 $Q_{i} = 500$

 $Q_f = 500$

6.2.6 IMPOSTAZIONI DI PROGETTO

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γGfav	1.00	1.00
Permanenti	Sfavorevole	γGsfav	1.30	1.00
Variabili	Favorevole	γQfav	0.00	0.00
Variabili	Sfavorevole	γQsfav	1.50	1.30

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri	M1	M2	
Tangente dell'angolo di attrito	γtan _φ '	1.00	1.25
Coesione efficace	γc'	1.00	1.25
Resistenza non drenata	γcu	1.00	1.40
Resistenza a compressione uniassi	ale γ _{qu}	1.00	1.60
Peso dell'unità di volume	γ_{γ}	1.00	1.00

6.2.7 IMPOSTAZIONI DI ANALISI

6.2.7.1 Analisi per Fasi di Scavo.

Rottura del terreno: Pressione passiva Spostamento limite o per spostamento limite molle pari a 1.50cm

Impostazioni analisi per fasi di scavo:

Analisi per condizioni di esercizio Analisi per coefficienti tipo A1-M1 Analisi per coefficienti tipo A2-M2

Stabilità globale: Metodo di Fellenius

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 53 di 80

6.2.8 VERIFICHE PALANCOLA

In seguito vengono riportati i tabulati di verifica estrapolati dal programma di calcolo:

VERIFICHE AGLI STATI LIMITE ULTIMI

COMB. 1 (SLU-F)

VERIFICA ALLA ROTAZIONE INTORNO AL PUNTO DI ANCORAGGIO (atto di moto rigido)

Metodo del supporto libero (free earth support)

Sovraccarichi di progetto sui terrapieni

Terreno di monte, q1d=0,00 kN/mq Terreno di valle, q2d=0,00 kN/mq

Parametri geotecnici di progetto

strato 1 peso del

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 2

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 4

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 5

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=32,01 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 6

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

IN10 10 D26CL IV0300003 A

FOGI IO

54 di 80

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°) angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

Coefficienti di spinta

strato 1

lato monte:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 lato valle:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 strato 2

lato monte:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 lato valle:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 strato 3

lato monte:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 lato valle:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 strato 4

lato monte:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 lato valle:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 strato 5

lato monte:

coeff. di spinta attiva, Ka=0,307176 coeff. di spinta a riposo, Ko=0,469984

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO CODIFICA D26CL

DOCUMENTO IV0300003

RFV. FOGI IO

Α

55 di 80

coeff. di spinta passiva, Kp=3,255467

lato valle:

coeff. di spinta attiva, Ka=0,307176

coeff. di spinta a riposo, Ko=0,469984

coeff. di spinta passiva, Kp=3,255467

strato 6

lato monte:

coeff. di spinta attiva, Ka=0,307176

coeff. di spinta a riposo, Ko=0,469984

coeff. di spinta passiva, Kp=3,255467

lato valle:

coeff. di spinta attiva, Ka=0,307176

coeff. di spinta a riposo, Ko=0,469984

coeff. di spinta passiva, Kp=3,255467

Forza nel tirante, per unità di lunghezza, e profondità di infissione o coeff. sicurezza

Forza orizz. che il tirante/puntone esercita sulla paratia (positiva se concorde con X), Th=-73,64 kN/m Forza vertic. che il tirante/puntone esercita sulla paratia (positiva se concorde con Y), Tv=19,73 kN/m Forza di trazione nel singolo tirante/puntone, Ttir=Th x ia/cos(alfa)=182,98 kN Coefficiente di sicurezza, Eta=2,392

n° iterazioni effettuate (metodo bisezione) = 21

errore equazione di equilibrio alla rotazione = 0,06 kN*m

Punti caratteristici e tensioni a monte della paratia

tensioni in kN/mq

tipo punto	z (m)	strato	sv	u	sa/sp/s_sup	s_inf
1	0,00	1	0,00	0,00	0,00	
4	0,08	1	1,50	0,00	0,52	
SS	3,00	1	60,00	0,00	20,61	20,61
SS	6,00	2	120,00	0,00	41,21	41,21
3	7,90	3	158,00	0,00	54,26	

Punti caratteristici e tensioni a valle della paratia

tensioni in kN/mg

tipo punto	z (m)	strato	sv	u	sa/sp/s_sup	s_inf
11	4,50	2	0,00	0,00	0,00	
SS	6,00	2	30,00	0,00	36,51	36,51
13	7,90	3	68,00	0,00	82,76	

Spinte di monte e di valle (orizzontali) agenti sulla paratia

Spinta di monte, Sm=214,34 kN/m

Spinta di valle, Sv=140,70 kN/m

braccio della spinta di monte rispetto al punto di ancoraggio, dm=2,867 m braccio della spinta di valle rispetto al punto di ancoraggio, dv=4,367 m

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10 LOTTO 10 CODIFICA DOCUMENTO
D26CL IV0300003

REV.

FOGLIO 56 di 80

Esito verifica alla rotazione

Verifica soddisfatta (essendo Eta>=gRot)

SOLLECITAZIONI AGENTI SULLA PARATIA (calcolo FEM)

Sovraccarichi di progetto sui terrapieni

Terreno di monte, q1d=0,00 kN/mq Terreno di valle, q2d=0,00 kN/mq

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 2

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 4

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 5

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 6

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO 10 CODIFICA D26CL

DOCUMENTO IV0300003 REV.

FOGLIO 57 di 80

Coefficienti di spinta

strato 1

lato monte:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172 strato 2

lato monte:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172 strato 3

lato monte:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172 lato valle:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172 strato 4

lato monte:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172 lato valle:

coeff. di spinta attiva, Ka=0,27099 coeff. di spinta a riposo, Ko=0,426424 coeff. di spinta passiva, Kp=3,690172 strato 5

lato monte:

coeff. di spinta attiva, Ka=0,237883 coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746 lato valle:

coeff. di spinta attiva, Ka=0,237883 coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO CODIFICA D26CL

DOCUMENTO IV0300003

REV.

Α

FOGLIO 58 di 80

strato 6

lato monte:

coeff. di spinta attiva, Ka=0,237883 coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

lato valle:

coeff. di spinta attiva, Ka=0,237883 coeff. di spinta a riposo, Ko=0,384339 coeff. di spinta passiva, Kp=4,203746

Numero di iterazioni nel calcolo non lineare e sollecitazioni

Numero di iterazione effettuate = 1 errore iterazione 0 = 0,001217 errore iterazione 1 = 0,00011

sez./nodo	x (m)	Nx (kN/m)	Tz (kN/m)	My (kN*m/m)
1	0	0	0	0
2	0,1	-0,19	0	0
3	0,34	-0,63	-1,14	0
4	0,58	-1,08	-3,15	-0,27
5	0,82	-1,53	-6,04	-1,03
6	1,06	-1,98	-9,81	-2,48
7	1,3	-2,43	-14,46	-4,83
8	1,54	-2,87	-19,96	-8,3
9	1,78	-3,32	-26,28	-13,09
10	2,02	-3,77	-33,32	-19,4
11	2,26	-4,22	-40,94	-27,4
12	2,5	-4,67	-40,94	-37,23
12	2,5	-32,64	54,49	-37,23
13	2,8	-33,2	44,45	-20,88
14	3,1	-33,76	35,56	-7,54
15	3,35	-34,23	27,88	1,35
16	3,6	-34,7	20,65	8,32
17	3,85	-35,16	13,86	13,48
18	4,1	-35,63	7,42	16,94
19	4,35	-36,1	-0,06	18,8
20	4,6	-36,56	-7,99	18,78
21	4,85	-37,03	-10,36	16,79
22	5,1	-37,5	-10,46	14,2
23	5,35	-37,96	-10,04	11,58
24	5,6	-38,43	-9,23	9,07
25	5,85	-38,9	-8,16	6,76
26	6,1	-39,36	-6,92	4,72
27	6,34	-39,81	-5,61	3,08
28	6,57	-40,25	-4,24	1,75
29	6,81	-40,69	-2,44	0,74

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI					COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
					IN10	10	D26CL	IV0300003	Α	59 di 80
	30	7,05	-41,14	-1,08	0,16					
	31	7,29	-41,58	-0,16	-0,1					

30	7,05	-41,14	-1,08	0,16
31	7,29	-41,58	-0,16	-0,1
32	7,52	-42,02	0,3	-0,13
33	7,76	-42,47	0,27	-0,06
34	8	-42,91	0,27	0

REAZIONI VINCOLARI E PRESSIONI DI CONTATTO TERRENO-PARATIA (calcolo FEM)

RvX = componente della reazione vincolare lungo X (kN/m)

RvY = componente della reazione vincolare lungo Y (kN/m)

RvZ = componente momento della reazione vincolare (kN*m/m)

pXv = pressione orizzontale del terreno (molle di valle) (kN/mq)

pXm = pressione orizzontale del terreno (molle di monte) (kN/mq)

P. C.			(11)		, (,	
sez./nodo	x (m)	RvX	RvY	RvZ	pXv	pXm
2	0,1	0	0	0	0	0
3	0,34	0,88	0	0	0	3,66
4	0,58	1,55	0	0	0	6,44
5	0,82	2,22	0	0	0	9,25
6	1,06	2,9	0	0	0	12,08
7	1,3	3,58	0	0	0	14,9
8	1,54	4,24	0	0	0	17,65
9	1,78	4,86	0	0	0	20,25
10	2,02	5,42	0	0	0	22,57
11	2,26	5,86	0	0	0	24,42
12	2,5	-73,41	21,52	0	0	25,57
13	2,8	7,73	0	0	0	25,76
14	3,1	6,84	0	0	0	24,86
15	3,35	5,91	0	0	0	23,63
16	3,6	5,56	0	0	0	22,24
17	3,85	5,23	0	0	0	20,9
18	4,1	4,95	0	0	0	21,68
19	4,35	5,76	0	0	0	23,03
20	4,6	6,1	0	0	0	24,39
21	4,85	1,82	0	0	-18,45	25,74
22	5,1	0,07	0	0	-26,8	27,1
23	5,35	-0,32	0	0	-29,75	28,45
24	5,6	-0,62	0	0	-32,28	29,81
25	5,85	-0,83	0	0	-34,48	31,16
26	6,1	-0,95	0	0	-36,41	32,52
27	6,34	-1,01	0	0	-38,05	33,81
28	6,57	-1,06	0	0	-39,55	35,09
29	6,81	-1,38	0	0	-40,96	36,38
30	7,05	-1,05	0	0	-42,3	37,87
31	7,29	-0,71	0	0	-43,6	
32	7,52	-0,35	0	0	-44,87	43,4
33	7,76	0,02	0	0	-46,11	46,21

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO CODIFICA DOCUMENTO RFV. FOGI IO 10 D26CL IV0300003 Α 60 di 80

34

0,21

-33,01

0 -47,32 49,05

PERCENTUALI DI SPINTA PASSIVA MOBILITATA

Spinta passiva mobilitata a monte = 16,5% Spinta passiva mobilitata a valle = 37,6%

VERIFICA CONDIZIONI DI EQUILIBRIO (calcolo FEM)

Equilibrio alla traslazione orizzontale

somma delle forze esterne orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

somma delle reazioni vincolari lungo X, SommRvX=0,00 kN/m

equazione di equilibrio alla traslazione orizzontale: SFx+Sme+Sve+SommRvX=0,00 kN/m

Equilibrio alla traslazione verticale

peso proprio della paratia, Wp=11,49 kN/m

somma delle forze verticali applicate alla paratia, SFy=0,00 kN/m

somma delle reazioni vincolari lungo Y, SommRvY=-11,49 kN/m

equazione di equilibrio alla traslazione verticale: Wp+SFy+SommRvY=0,00 kN/m

Equilibrio alla rotazione (attorno al primo nodo)

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

momento delle reazioni vincolari lungo X, MRvX=0,00 kN*m/m

equazione di equilibrio alla rotazione: MFx+MSme+MSve+MRvX=0,00 kN*m/m

Spinte orizzontali

spinta delle terre di monte, Sm=201,22 kN/m

spinta delle terre di valle, Sv=-120,14 kN/m

somma componenti orizz. delle forze che i tiranti/puntoni esercitano sull'opera, STx=-80,32 kN/m

somma forze orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

Momenti delle spinte orizzontali rispetto al primo nodo

momento della spinta delle terre di monte, MSm=992,80 kN*m/m

momento della spinta delle terre di valle, MSv=-788,12 kN*m/m

momento delle compon. orizz. delle forze che i tiranti/puntoni esercitano sull'opera, MTx=-200,79 kN*m/m

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

SFORZI NEI TIRANTI/PUNTONI (calcolo FEM)

TX*=sforzo lungo l'asse globale X per metro lineare di paratia (kN/m)

TY*=sforzo lungo l'asse globale Y per metro lineare di paratia (kN/m)

TX=sforzo lungo l'asse globale X nel singolo tirante/puntone (kN)

TY=sforzo lungo l'asse globale Y nel singolo tirante/puntone (kN)

Fa=sforzo di trazione/compressione nel singolo tirante/puntone (kN)

Fad=gGs x Fa sforzo di trazione/compressione di progetto nel singolo tirante/puntone (kN)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 61 di 80

Ordine TX* TY* TX TY Fa Fad

1 -80,32 21,52 -192,76 51,65 199,56 259,43

SPOSTAMENTI NODALI (calcolo FEM)

w = spostamento orizzontale (lungo l'asse globale X, coincidente con l'asse locale z)

u = spostamento verticale (lungo l'asse globale Y, coincidente con l'asse locale x)

u – spostai	nento verti	cale (luligo	i asse gion	ale 1, collici
sez./nodo	x (m)	w (cm)	u (cm)	rot. (rad)
1	0	-0,004	0,004	-0,0001
2	0,1	-0,005	0,004	-0,0001
3	0,34	-0,006	0,004	-0,0001
4	0,58	-0,007	0,004	-0,0001
5	0,82	-0,009	0,004	-0,0001
6	1,06	-0,01	0,004	0
7	1,3	-0,011	0,004	0
8	1,54	-0,012	0,004	0
9	1,78	-0,012	0,004	0
10	2,02	-0,012	0,004	0
11	2,26	-0,011	0,004	0,0001
12	2,5	-0,009	0,004	0,0001
13	2,8	-0,005	0,004	0,0002
14	3,1	0,001	0,004	0,0002
15	3,35	0,007	0,004	0,0002
16	3,6	0,012	0,003	0,0002
17	3,85	0,017	0,003	0,0002
18	4,1	0,021	0,003	0,0002
19	4,35	0,025	0,003	0,0001
20	4,6	0,028	0,003	0,0001
21	4,85	0,03	0,003	0,0001
22	5,1	0,031	0,002	0
23	5,35	0,031	0,002	0
24	5,6	0,031	0,002	0
25	5,85	0,031	0,002	0
26	6,1	0,03	0,002	0
27	6,34	0,029	0,001	0
28	6,57	0,028	0,001	0
29	6,81	0,027	0,001	-0,0001
30	7,05	0,026	0,001	-0,0001
31	7,29	0,024	0,001	-0,0001
32	7,52	0,023	0	-0,0001
33	7,76	0,022	0	-0,0001
34	8	0,021	0	-0,0001

VERIFICA AL CARICO LIMITE VERTICALE

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 62 di 80

coesione = 0,00 kN/mq angolo di resistenza al taglio = 35°

Resistenza alla punta

fattore Nq (Berezantzev) = 56,508

fattore Nc = 79,27

tensione litostatica verticale totale alla profondità L, sVL=158,00 kN/mq

pressione neutra alla profondità L, uL=0,00 kN/mq

tensione litostatica verticale efficace alla profondità L, s'VL=158,00 kN/mq

Resistenza unitaria alla punta, p=8.928,25 kN/mq

Resistenza alla punta, Pmax=163,30 kN

Resistenza laterale

Resistenza laterale, Smax=263,52 kN

Resistenza alla punta e laterale di progetto

Resistenza alla punta (valore medio) = 163,30 kN

Resistenza alla punta (valore minimo) = 163,30 kN

Resistenza laterale (valore medio) = 263,52 kN

Resistenza laterale (valore minimo) = 263,52 kN

Fattore di correlazione, xsi3=1,7

Fattore di correlazione, xsi4=1,7

Resistenza alla punta (valore caratteristico) = 96,06 kN

Resistenza laterale (valore caratteristico) = 155,01 kN

Resistenza alla punta di progetto, Pmax_d=83,53 kN

Resistenza laterale di progetto, Smax_d=134,79 kN

Carico limite per carichi assiali di compressione

 $Qlim_d = Pmax_d + Smax_d = 218,32 kN$

Carico limite di sfilamento per carichi assiali di trazione

 $Qlimt_d = Smax_d = 134,79 kN$

Azione di progetto

Ed = 42,91 kN

Verifica al carico limite per carichi assiali di compressione

Verifica soddisfatta: l'azione di progetto non supera la resistenza di progetto coeff. di sicurezza, Qlim_d/Ed=5,09

VERIFICA DI STABILITA' GLOBALE

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 2

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 3

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°)

LOTTO

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

CODIFICA D26CL DOCUMENTO
IV0300003

REV.

Α

FOGLIO 63 di 80

coesione drenata, c'_d=0,00 kN/mq

strato 4

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°) coesione drenata, c'_d=0,00 kN/mq

strato 5

peso dell'unità di volume, $\,$ g=20,00 kN/mc angolo di resistenza al taglio, $\,$ Fi_d=32,01 (°) coesione drenata, $\,$ c'_d=0,00 kN/mq

strato 6

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=32,01 (°) coesione drenata, c'_d=0,00 kN/mq

Parametri di calcolo

n° di cerchi analizzati = 10 Metodo utilizzato: Bishop

Cerchio critico

Coordinate centro e raggio: X (m) = 0 Y (m) = -0.3 Rc (m) = 8.4

Simbologia adottata

Wt = peso del concio (kN)

Wq = forza risultante verticale dovuta al sovraccarico applicato sul concio (kN)

alfa=angolo (minore di 90°) che l'orizzontale forma con la base del concio (positivo se antiorario)

u = pressione neutra alla base del concio (kN/mq)

DX = larghezza lungo X del concio (m)

Fsh = forza sismica orizzontale sul concio (kN)

B = braccio della forza sismica orizzontale rispetto al centro del cerchio di rottura (m)

Fsv = forza sismica verticale sul concio (kN)

N = risultante delle tensioni normali di reazione del terreno alla base del concio (kN)

T = risultante delle tensioni tangenziali di reazione del terreno alla base del concio (kN)

concio	Wt	Wq	alfa (°)	u	DX	Fsh	В	Fsv	N	Т
1	4,23	0	-51,16	0	0,58	0	12,9	0	5,55	-0,96
2	11,89	0	-45,17	0	0,58	0	12,9	0	14,35	-2,49
3	18,15	0	-39,76	0	0,58	0	12,9	0	20,62	-3,58
4	23,34	0	-34,75	0	0,58	0	12,9	0	25,35	-4,41
5	27,67	0	-30,03	0	0,58	0	12,9	0	29,04	-5,05
6	31,27	0	-25,52	0	0,58	0	12,9	0	31,99	-5,56
7	34,21	0	-21,18	0	0,58	0	12,9	0	34,38	-5,98
8	36,57	0	-16,97	0	0,58	0	12,9	0	36,31	-6,31
9	38,39	0	-12,85	0	0,58	0	12,9	0	37,87	-6,58
10	39,69	0	-8,79	0	0,58	0	12,9	0	39,11	-6,8
11	40,5	0	-4,78	0	0,58	0	12,9	0	40,06	-6,96
12	40,84	0	-0,8	0	0,58	0	12,9	0	73,67	-12,8
13	5,75	0	1,36	0	0,05	0	12,9	0	5,78	-1
										-
14	100,32	0	3,68	0	0,63	0	12,9	0	101,66	17,67
15	99,51	0	7,99	0	0,63	0	12,9	0	103	-17,9
16	98,09	0	12,35	0	0,63	0	12,9	0	104,38	-

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

				1						
RELAZIONE [OI CALCOLO	OPERE PR	OVVISIONALI	COMMESSA	LOTTO	CODIFICA	DOCUMEN	то	REV.	FOGLIO
				IN10	10	D26CL	IV030000)3	Α	64 di 80
										18,14
17	96,03	0	16,78	0	0,63	0	12,9	0	105,85	-18,4
18	93,3	0	21,32	0	0,63	0	12,9	0	107,44	18,67
19	89,83	0	26	0	0,63	0	12,9	0	109,21	18,98
20	85,55	0	30,88	0	0,63	0	12,9	0	111,24	19,33
21	80,31	0	36,03	0	0,63	0	12,9	0	113,67	19,76
22	73,94	0	41,54	0	0,63	0	12,9	0	116,77	20,29
23	66,11	0	47,59	0	0,63	0	12,9	0	121,04	21,04
24	56,26	0	54,45	0	0,63	0	12,9	0	127,86	22,22
25	43,04	0	62,83	0	0,63	0	12,9	0	142,53	- 24,77
26	17,67	0	77,4	0	0,63	0	12,9	0	364,06	- 63,28

Lunghezza dell'arco di cerchio di scivolamento, L=20,77 m

Momento resistente, M_resist=9.994,04 kN*m

Momento instabilizzante, M_instab=-3.100,92 kN*m

Verifica soddisfatta

VERIFICHE STRUTTURALI PARATIA

Verifiche di resistenza a presso-flessione e taglio

sid_m: tensione ideale massima nella sezione di acciaio (N/mmq)

Mcy_Rd: resistenza di progetto della sezione soggetta a presso-flessione retta (asse vettore y)

Resistenza plastica della sezione lorda A, Npl Rd=6.183,76 kN

Area resistente al taglio della sezione lungo z, Avz=106,60 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=2.080,84 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=743,81 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=872,29 kN*m

tensione di snervamento di progetto, fyd=338 N/mmq

x (m)	Nx	Tz	Му	sid_m	Mcy_Rd	Verif?
0	0	0	0			Si
0,1	-0,23	0	0			Si
0,34	-0,76	-1,37	0	0,2		Si
0,58	-1,3	-3,78	-0,32	0,7		Si
0,82	-1,84	-7,25	-1,24	1,2		Si
1,06	-2,38	-11,77	-2,98	2		Si
1,3	-2,92	-17,35	-5,8	3		Si
1,54	-3,44	-23,95	-9,96	4,7		Si
1,78	-3,98	-31,54	-15,71	7,4		Si
2,02	-4,52	-39,98	-23,28	10,8		Si
2,26	-5,06	-49,13	-32,88	15,2		Si

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE	DI CALCOLO	O OPERE PI	ROVVISIONA	LI COMMESSA	LOTTO 10	CODIFICA D26CL	DOCUMENTO IV0300003	REV.	FOGLIO 65 di 80	
2,5	-5,6	-49,13	-44,68	20,6		Si				
2,5	-39,17	65,39	-44,68	22,5		Si				
2,8	-39,84	53,34	-25,06	13,6		Si				
3,1	-40,51	42,67	-9,05	7,7		Si				
3,35	-41,08	33,46	1,62	6,2		Si				
3,6	-41,64	24,78	9,98	6,8		Si				
3,85	-42,19	16,63	16,18	9,7		Si				
4,1	-42,76	8,9	20,33	11,6		Si				
4,35	-43,32	-0,07	22,56	12,6		Si				
4,6	-43,87	-9,59	22,54	12,7		Si				
4,85	-44,44	-12,43	20,15	11,6		Si				
5,1	-45	-12,55	17,04	10,2		Si				
5,35	-45,55	-12,05	13,9	8,8		Si				
5,6	-46,12	-11,08	10,88	7,5		Si				
5,85	-46,68	-9,79	8,11	6,2		Si				
6,1	-47,23	-8,3	5,66	5,2		Si				
6,34	-47,77	-6,73	3,7	4,3		Si				
6,57	-48,3	-5,09	2,1	3,6		Si				
6,81	-48,83	-2,93	0,89	3,1		Si				
7,05	-49,37	-1,3	0,19	2,8		Si				
7,29	-49,9	-0,19	-0,12	2,8		Si				
7,52	-50,42	0,36	-0,16	2,8		Si				
7,76	-50,96	0,32	-0,07	2,8		Si				
8	-51,49	0,32	0	2,8		Si				

VERIFICHE S.L.U. DI TIPO GEOTECNICO E STRUTTURALE SUI TIRANTI

ANCORAGGIO DI ORDINE 1

forza di progetto di trazione agente sul tirante, Fad=259,43 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,78

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=622,13 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 2,6

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=0,72 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 3,32

COMB. 2 (SLU-F)

VERIFICA ALLA ROTAZIONE INTORNO AL PUNTO DI ANCORAGGIO (atto di moto rigido)

Metodo del supporto libero (free earth support)

Sovraccarichi di progetto sui terrapieni

Terreno di monte, q1d=78,00 kN/mq

LOTTO

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

CODIFICA

D26CL

DOCUMENTO
IV0300003

REV.

Α

FOGLIO 66 di 80

Terreno di valle, q2d=0,00 kN/mq

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 2

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 4

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 5

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=32,01 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 6

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=32,01 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

Coefficienti di spinta

strato 1

lato monte:

coeff. di spinta attiva, Ka=0,343442

coeff. di spinta a riposo, Ko=0,511286

coeff. di spinta passiva, Kp=2,911702

lato valle:

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO 10 CODIFICA D26CL DOCUMENTO
IV0300003

REV.

FOGLIO 67 di 80

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702

lato monte:

strato 2

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702

lato valle:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 strato 3

lato monte:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 lato valle:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 strato 4

lato monte:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 lato valle:

coeff. di spinta attiva, Ka=0,343442 coeff. di spinta a riposo, Ko=0,511286 coeff. di spinta passiva, Kp=2,911702 strato 5

lato monte:

coeff. di spinta attiva, Ka=0,307176 coeff. di spinta a riposo, Ko=0,469984 coeff. di spinta passiva, Kp=3,255467 lato valle:

coeff. di spinta attiva, Ka=0,307176 coeff. di spinta a riposo, Ko=0,469984 coeff. di spinta passiva, Kp=3,255467 strato 6

lato monte:

coeff. di spinta attiva, Ka=0,307176 coeff. di spinta a riposo, Ko=0,469984 coeff. di spinta passiva, Kp=3,255467 lato valle:

coeff. di spinta attiva, Ka=0,307176 coeff. di spinta a riposo, Ko=0,469984

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 68 di 80

coeff. di spinta passiva, Kp=3,255467

Forza nel tirante, per unità di lunghezza, e profondità di infissione o coeff. sicurezza

Forza orizz. che il tirante/puntone esercita sulla paratia (positiva se concorde con X), Th=-210,17 kN/m Forza vertic. che il tirante/puntone esercita sulla paratia (positiva se concorde con Y), Tv=56,32 kN/m Forza di trazione nel singolo tirante/puntone, Ttir=Th x ia/cos(alfa)=522,20 kN Coefficiente di sicurezza, Eta=1,56 n° iterazioni effettuate (metodo bisezione) = 21 errore equazione di equilibrio alla rotazione = 0,15 kN*m

Punti caratteristici e tensioni a monte della paratia

tensioni in kN/mq

tipo punto	z (m)	strato	sv	u	sa/sp/s_sup	s_inf
1	0,00	1	78,00	0,00	26,79	
SS	3,00	1	138,00	0,00	47,39	47,39
SS	6,00	2	198,00	0,00	68,00	68,00
3	7,90	3	236,00	0,00	81,05	

Punti caratteristici e tensioni a valle della paratia

tensioni in kN/mg

tipo punto	z (m)	strato	sv	u	sa/sp/s_sup	s_inf
 11	4,50	2	0,00	0,00	0,00	
SS	6,00	2	30,00	0,00	56,00	56,00
13	7,90	3	68,00	0,00	126,94	

Spinte di monte e di valle (orizzontali) agenti sulla paratia

Spinta di monte, Sm=425,97 kN/m Spinta di valle, Sv=215,80 kN/m braccio della spinta di monte rispetto al punto di ancoraggio, dm=2,213 m braccio della spinta di valle rispetto al punto di ancoraggio, dv=4,367 m

Esito verifica alla rotazione

Verifica soddisfatta (essendo Eta>=gRot)

SOLLECITAZIONI AGENTI SULLA PARATIA (calcolo FEM)

Sovraccarichi di progetto sui terrapieni

Terreno di monte, q1d=69,23 kN/mq Terreno di valle, q2d=0,00 kN/mq

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=35 (°) coesione drenata, c'_d=0,00 kN/mq

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 69 di 80

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

<u>strato 2</u>

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 4

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=35 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 5

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

strato 6

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=38 (°)

coesione drenata, c'_d=0,00 kN/mq

angolo di attrito terreno-paratia (lato spinta attiva), Delt_ad=0 (°)

angolo di attrito terreno-paratia (lato spinta passiva), Delt_pd=0 (°)

Coefficienti di spinta

strato 1

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 2

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO 10 CODIFICA D26CL DOCUMENTO
IV0300003

REV.

FOGLIO 70 di 80

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 3

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 4

lato monte:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

lato valle:

coeff. di spinta attiva, Ka=0,27099

coeff. di spinta a riposo, Ko=0,426424

coeff. di spinta passiva, Kp=3,690172

strato 5

lato monte:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

lato valle:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

strato 6

lato monte:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

lato valle:

coeff. di spinta attiva, Ka=0,237883

coeff. di spinta a riposo, Ko=0,384339

coeff. di spinta passiva, Kp=4,203746

Numero di iterazioni nel calcolo non lineare e sollecitazioni

Numero di iterazione effettuate = 4

errore iterazione 0 = 0,003454

errore iterazione 1 = 0,060652

errore iterazione 2 = 0,032412

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

D26CL

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

LOTTO 10 CODIFICA DOCUM

DOCUMENTO

IV0300003

REV. FOGLIO

Α

71 di 80

errore iterazione 3 = 0,010944 errore iterazione 4 = 0,000661

		Nx (Tz (Му (
sez./nodo	x (m)	kN/m)	kN/m)	kN*m/m)
1	0	0	0	0
2	0,1	-0,19	-2,93	0
3	0,34	-0,63	-9,19	-0,7
4	0,58	-1,08	-15,85	-2,91
5	0,82	-1,53	-22,92	-6,71
6	1,06	-1,98	-30,4	-12,21
7	1,3	-2,43	-38,28	-19,51
8	1,54	-2,87	-46,57	-28,7
9	1,78	-3,32	-55,26	-39,87
10	2,02	-3,77	-64,36	-53,14
11	2,26	-4,22	-73,87	-68,58
12	2,5	-4,67	-73,87	-86,31
12	2,5	-44,56	63,86	-86,31
13	2,8	-45,12	50,84	-67,15
14	3,1	-45,68	38,32	-51,9
15	3,35	-46,15	26,5	-42,32
16	3,6	-46,61	14,23	-35,7
17	3,85	-47,08	1,53	-32,14
18	4,1	-47,55	-11,61	-31,76
19	4,35	-48,01	-25,19	-34,66
20	4,6	-48,48	-39,22	-40,96
21	4,85	-48,95	-47,69	-50,76
22	5,1	-49,41	-50,6	-62,68
23	5,35	-49,88	-47,95	-75,33
24	5,6	-50,35	-39,75	-87,32
25	5,85	-50,81	-25,99	-97,26
26	6,1	-51,28	-7,14	-103,76
27	6,34	-51,72	16,17	-105,45
28	6,57	-52,17	44,6	-101,61
29	6,81	-52,61	78,07	-91,02
30	7,05	-53,05	98,11	-72,48
31	7,29	-53,5	101,44	-49,18
32	7,52	-53,94	74,75	-25,09
33	7,76	-54,38	30,88	-7,33
34	8	-54,82	30,88	0

REAZIONI VINCOLARI E PRESSIONI DI CONTATTO TERRENO-PARATIA (calcolo FEM)

RvX = componente della reazione vincolare lungo X (kN/m)

RvY = componente della reazione vincolare lungo Y (kN/m)

RvZ = componente momento della reazione vincolare (kN*m/m)

pXv = pressione orizzontale del terreno (molle di valle) (kN/mq)

pXm = pressione orizzontale del terreno (molle di monte) (kN/mq)

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IN10 10 D26CL IV0300003 A 72 di 80

				I.	N10 10	D26CL	170300003
sez./nodo	x (m)	RvX	RvY	RvZ	pXv	pXm	
2	0,1	2,25	0	0	0	18,76	
3	0,34	4,81	0	0	0	20,06	
4	0,58	5,13	0	0	0	21,36	
5	0,82	5,44	0	0	0	22,66	
6	1,06	5,75	0	0	0	23,96	
7	1,3	6,06	0	0	0	25,26	
8	1,54	6,38	0	0	0	26,57	
9	1,78	6,69	0	0	0	27,87	
10	2,02	7	0	0	0	29,17	
11	2,26	7,31	0	0	0	30,47	
12	2,5	-105,95	30,69	0	0	31,77	
13	2,8	10,02	0	0	0	33,39	
14	3,1	9,63	0	0	0	35,02	
15	3,35	9,09	0	0	0	36,38	
16	3,6	9,43	0	0	0	37,73	
17	3,85	9,77	0	0	0	39,09	
18	4,1	10,11	0	0	0	40,44	
19	4,35	10,45	0	0	0	41,8	
20	4,6	10,79	0	0	0	43,15	
21	4,85	6,51	0	0	-18,45	44,5	
22	5,1	2,24	0	0	-36,9	45,86	
23	5,35	-2,03	0	0	-55,35	47,21	
24	5,6	-6,31	0	0	-73,8	48,57	
25	5,85	-10,58	0	0	-92,25	49,92	
26	6,1	-14,5	0	0	-110,71	51,28	
27	6,34	-17,93	0	0	-128,23	52,57	
28	6,57	-21,87	0	0	-145,76	53,85	
29	6,81	-25,74	0	0	-163,29	55,14	
30	7,05	-15,42	0	0	-121,48	56,43	
31	7,29	-2,56	0	0	-68,48	57,72	
32	7,52	20,53	0	0	-15,85	102,12	
33	7,76	33,75	0	0	-17,14	159,53	
34	8	23,75	-42,17	0	-18,43	218,03	

PERCENTUALI DI SPINTA PASSIVA MOBILITATA

Spinta passiva mobilitata a monte = 19,4% Spinta passiva mobilitata a valle = 91,1%

VERIFICA CONDIZIONI DI EQUILIBRIO (calcolo FEM)

Equilibrio alla traslazione orizzontale

somma delle forze esterne orizzontali applicate alla paratia, SFx=0,00 kN/m spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m somma delle reazioni vincolari lungo X, SommRvX=0,00 kN/m

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA LOTTO CODIFICA D26CL

DOCUMENTO IV0300003

RFV. FOGI IO

73 di 80

Α

equazione di equilibrio alla traslazione orizzontale: SFx+Sme+Sve+SommRvX=0,00 kN/m

Equilibrio alla traslazione verticale

peso proprio della paratia, Wp=11,49 kN/m

somma delle forze verticali applicate alla paratia, SFy=0,00 kN/m

somma delle reazioni vincolari lungo Y, SommRvY=-11,49 kN/m

equazione di equilibrio alla traslazione verticale: Wp+SFy+SommRvY=0,00 kN/m

Equilibrio alla rotazione (attorno al primo nodo)

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

momento delle reazioni vincolari lungo X, MRvX=0,00 kN*m/m

equazione di equilibrio alla rotazione: MFx+MSme+MSve+MRvX=0,00 kN*m/m

Spinte orizzontali

spinta delle terre di monte, Sm=369,79 kN/m

spinta delle terre di valle, Sv=-255,27 kN/m

somma componenti orizz. delle forze che i tiranti/puntoni esercitano sull'opera, STx=-114,53 kN/m

somma forze orizzontali applicate alla paratia, SFx=0,00 kN/m

spinte di monte dovute a carichi distributi esterni, Sme=0,00 kN/m

spinte di valle dovute a carichi distributi esterni, Sve=0,00 kN/m

Momenti delle spinte orizzontali rispetto al primo nodo

momento della spinta delle terre di monte, MSm=1.917,47 kN*m/m

momento della spinta delle terre di valle, MSv=-1.631,15 kN*m/m

momento delle compon. orizz. delle forze che i tiranti/puntoni esercitano sull'opera, MTx=-286,31 kN*m/m

momento delle forze orizzontali applicate alla paratia, MFx=0,00 kN*m/m

momento dei carichi distribuiti esterni di monte, MSme=0,00 kN*m/m

momento dei carichi distribuiti esterni di valle, MSve=0,00 kN*m/m

SFORZI NEI TIRANTI/PUNTONI (calcolo FEM)

TX*=sforzo lungo l'asse globale X per metro lineare di paratia (kN/m)

TY*=sforzo lungo l'asse globale Y per metro lineare di paratia (kN/m)

TX=sforzo lungo l'asse globale X nel singolo tirante/puntone (kN)

TY=sforzo lungo l'asse globale Y nel singolo tirante/puntone (kN)

Fa=sforzo di trazione/compressione nel singolo tirante/puntone (kN)

Fad=gGs x Fa sforzo di trazione/compressione di progetto nel singolo tirante/puntone (kN)

Ordine TX* TY* TX TY Fa Fad 1 30,69 73,65 369,92 -114,53 -274,86 284,56

SPOSTAMENTI NODALI (calcolo FEM)

w = spostamento orizzontale (lungo l'asse globale X, coincidente con l'asse locale z)

u = spostamento verticale (lungo l'asse globale Y, coincidente con l'asse locale x)

sez./nodo	x (m)	w (cm)	u (cm)	rot. (rad)
1	0	3,363	0,006	-0,0056
2	0,1	3,307	0,006	-0,0056
3	0,34	3,174	0,006	-0,0056
4	0,58	3,04	0,006	-0,0056

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

		PROVVISIONALI	

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	IV0300003	Α	74 di 80

5	0,82	2,907	0,006	-0,0056
6	1,06	2,774	0,006	-0,0055
7	1,3	2,642	0,006	-0,0055
8	1,54	2,51	0,006	-0,0055
9	1,78	2,379	0,006	-0,0054
10	2,02	2,251	0,006	-0,0053
11	2,26	2,124	0,005	-0,0052
12	2,5	2,001	0,005	-0,0051
13	2,8	1,851	0,005	-0,0049
14	3,1	1,706	0,005	-0,0048
15	3,35	1,588	0,005	-0,0047
16	3,6	1,472	0,004	-0,0046
17	3,85	1,357	0,004	-0,0045
18	4,1	1,244	0,004	-0,0045
19	4,35	1,133	0,004	-0,0044
20	4,6	1,023	0,004	-0,0044
21	4,85	0,915	0,003	-0,0043
22	5,1	0,809	0,003	-0,0042
23	5,35	0,707	0,003	-0,004
24	5,6	0,608	0,003	-0,0039
25	5,85	0,512	0,002	-0,0037
26	6,1	0,422	0,002	-0,0035
27	6,34	0,34	0,002	-0,0033
28	6,57	0,263	0,002	-0,0032
29	6,81	0,189	0,001	-0,003
30	7,05	0,12	0,001	-0,0029
31	7,29	0,054	0,001	-0,0027
32	7,52	-0,011	0,001	-0,0027
33	7,76	-0,074	0	-0,0027
34	8	-0,137	0	-0,0026

VERIFICA AL CARICO LIMITE VERTICALE

Parametri geotecnici di progetto

coesione = 0,00 kN/mq

angolo di resistenza al taglio = 35°

Resistenza alla punta

fattore Nq (Berezantzev) = 56,508

fattore Nc = 79,27

tensione litostatica verticale totale alla profondità L, sVL=248,00 kN/mq pressione neutra alla profondità L, uL=0,00 kN/mq

tensione litostatica verticale efficace alla profondità L, s'VL=248,00 kN/mq

Resistenza unitaria alla punta, p=14.013,96 kN/mq

Resistenza alla punta, Pmax=256,32 kN

Resistenza laterale

Resistenza laterale, Smax=519,80 kN

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 75 di 80

Resistenza alla punta e laterale di progetto

Resistenza alla punta (valore medio) = 256,32 kN

Resistenza alla punta (valore minimo) = 256,32 kN

Resistenza laterale (valore medio) = 519,80 kN

Resistenza laterale (valore minimo) = 519,80 kN

Fattore di correlazione, xsi3=1,7

Fattore di correlazione, xsi4=1,7

Resistenza alla punta (valore caratteristico) = 150,77 kN

Resistenza laterale (valore caratteristico) = 305,76 kN

Resistenza alla punta di progetto, Pmax_d=131,11 kN

Resistenza laterale di progetto, Smax_d=265,88 kN

Carico limite per carichi assiali di compressione

 $Qlim_d = Pmax_d + Smax_d = 396,99 kN$

Carico limite di sfilamento per carichi assiali di trazione

 $Qlimt_d = Smax_d = 265,88 kN$

Azione di progetto

Ed = 54,82 kN

Verifica al carico limite per carichi assiali di compressione

Verifica soddisfatta: l'azione di progetto non supera la resistenza di progetto coeff. di sicurezza, Qlim_d/Ed=7,24

VERIFICA DI STABILITA' GLOBALE

Parametri geotecnici di progetto

strato 1

peso dell'unità di volume, g=20,00 kN/mc angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

strato 2

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c' d=0,00 kN/mg

strato 3

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

strato 4

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=29,26 (°)

coesione drenata, c'_d=0,00 kN/mq

strato 5

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=32,01 (°)

coesione drenata, c'_d=0,00 kN/mq

strato 6

peso dell'unità di volume, g=20,00 kN/mc

angolo di resistenza al taglio, Fi_d=32,01 (°)

LOTTO

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

COMMESSA IN10

CODIFICA D26CL DOCUMENTO IV0300003 REV. FOGLIO

76 di 80

Α

coesione dienata,

coesione drenata, c'_d=0,00 kN/mq

Parametri di calcolo

n° di cerchi analizzati = 10 Metodo utilizzato: Bishop

Cerchio critico

Coordinate centro e raggio: X (m) = 0 Y (m) = -0.3 Rc (m) = 8.4

Simbologia adottata

Wt = peso del concio (kN)

Wq = forza risultante verticale dovuta al sovraccarico applicato sul concio (kN)

alfa=angolo (minore di 90°) che l'orizzontale forma con la base del concio (positivo se antiorario)

u = pressione neutra alla base del concio (kN/mq)

DX = larghezza lungo X del concio (m)

Fsh = forza sismica orizzontale sul concio (kN)

B = braccio della forza sismica orizzontale rispetto al centro del cerchio di rottura (m)

Fsv = forza sismica verticale sul concio (kN)

N = risultante delle tensioni normali di reazione del terreno alla base del concio (kN)

T = risultante delle tensioni tangenziali di reazione del terreno alla base del concio (kN)

concio	Wt	Wq	alfa (°)	u	DX	Fsh	В	Fsv	N	Т
1	4,23	0	-51,16	0	0,58	0	12,9	0	5,95	-0,64
2	11,89	0	-45,17	0	0,58	0	12,9	0	15,21	-1,64
3	18,15	0	-39,76	0	0,58	0	12,9	0	21,66	-2,34
4	23,34	0	-34,75	0	0,58	0	12,9	0	26,43	-2,85
5	27,67	0	-30,03	0	0,58	0	12,9	0	30,08	-3,25
6	31,27	0	-25,52	0	0,58	0	12,9	0	32,95	-3,56
7	34,21	0	-21,18	0	0,58	0	12,9	0	35,22	-3,8
8	36,57	0	-16,97	0	0,58	0	12,9	0	37,02	-4
9	38,39	0	-12,85	0	0,58	0	12,9	0	38,43	-4,15
10	39,69	0	-8,79	0	0,58	0	12,9	0	39,5	-4,27
11	40,5	0	-4,78	0	0,58	0	12,9	0	40,28	-4,35
12	40,84	0	-0,8	0	0,58	0	12,9	0	82,89	-8,95
13	5,75	0	1,36	0	0,05	0	12,9	0	5,77	-0,62
14	100,32	49,02	3,68	0	0,63	0	12,9	0	150,69	- 16,27
	00,0	.5,52	3,33	•	0,00		,			-
15	99,51	49,02	7,99	0	0,63	0	12,9	0	152,3	16,45
16	98,09	49,02	12,35	0	0,63	0	12,9	0	154,24	16,66
17	96,03	49,02	16,78	0	0,63	0	12,9	0	156,61	16,91
18	93,3	49,02	21,32	0	0,63	0	12,9	0	159,5	17,23 -
19	89,83	49,02	26	0	0,63	0	12,9	0	163,09	17,61
20	85,55	49,02	30,88	0	0,63	0	12,9	0	167,63	-18,1
21	80,31	49,02	36,03	0	0,63	0	12,9	0	173,56	- 18,74 -
22	73,94	49,02	41,54	0	0,63	0	12,9	0	181,67	19,62

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO OPERE PROVVISIONALI					COMMESSA IN10	LOTTO 10	CODIFICA D26CL	DOCUMENT		FOGLIO 77 di 80	
	23	66,11	49,02	47,59	0	0,63	0	12,9	0 193,59	- 20,91	
	24	56,26	49,02	54,45	0	0,63	0	12,9	0 213,33	23,04	
	25	43,04	49,02	62,83	0	0,63	0	12,9	0 255,39	27,58	
	26	17,67	49,02	77,4	0	0,63	0	12,9	0 591,77	- 63,91	

Lunghezza dell'arco di cerchio di scivolamento, L=20,77 m

Momento resistente, M_resist=14.711,01 kN*m

Momento instabilizzante, M_instab=-2.836,19 kN*m

Verifica soddisfatta

VERIFICHE STRUTTURALI PARATIA

Verifiche di resistenza a presso-flessione e taglio

sid_m: tensione ideale massima nella sezione di acciaio (N/mmq)

Mcy_Rd: resistenza di progetto della sezione soggetta a presso-flessione retta (asse vettore y)

Resistenza plastica della sezione lorda A, Npl_Rd=6.183,76 kN

Area resistente al taglio della sezione lungo z, Avz=106,60 cmq

Resistenza di progetto a taglio lungo z, Vcz_Rd=2.080,84 kN

Momento resistente elastico lungo l'asse vettore y, Mely_Rd=743,81 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=872,29 kN*m

tensione di snervamento di progetto, fyd=338 N/mmq

		ı				
x (m)	Nx	Tz	Му	sid_m	Mcy_Rd	Verif?
0	0	0	0			Si
0,1	-0,23	-3,52	0	0,6		Si
0,34	-0,76	-11,03	-0,84	1,9		Si
0,58	-1,3	-19,02	-3,49	3,3		Si
0,82	-1,84	-27,5	-8,05	4,7		Si
1,06	-2,38	-36,48	-14,65	6,8		Si
1,3	-2,92	-45,94	-23,41	10,8		Si
1,54	-3,44	-55,88	-34,44	15,9		Si
1,78	-3,98	-66,31	-47,84	22		Si
2,02	-4,52	-77,23	-63,77	29,3		Si
2,26	-5,06	-88,64	-82,3	37,7		Si
2,5	-5,6	-88,64	-103,57	47,4		Si
2,5	-53,47	76,63	-103,57	50		Si
2,8	-54,14	61,01	-80,58	39,6		Si
3,1	-54,82	45,98	-62,28	31,3		Si
3,35	-55,38	31,8	-50,78	26,1		Si
3,6	-55,93	17,08	-42,84	22,5		Si
3,85	-56,5	1,84	-38,57	20,6		Si
4,1	-57,06	-13,93	-38,11	20,5		Si
4,35	-57,61	-30,23	-41,59	22,1		Si
4,6	-58,18	-47,06	-49,15	25,5		Si
4,85	-58,74	-57,23	-60,91	30,9		Si

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE	PROVVISIONALI	COMMESSA	LOTTO 10	CODIFICA D26CL	DOCUMENTO IV0300003	REV.	FOGLIO 78 di 80		
5,1	-59,29	-60,72	-75,22	37,5		Si			
5,35	-59,86	-57,54	-90,4	44,4		Si			
5,6	-60,42	-47,7	-104,78	51		Si			
5,85	-60,97	-31,19	-116,71	56,4		Si			
6,1	-61,54	-8,57	-124,51	60		Si			
6,34	-62,06	19,4	-126,54	61		Si			
6,57	-62,6	53,52	-121,93	58,9		Si			
6,81	-63,13	93,68	-109,22	53,1		Si			
7,05	-63,66	117,73	-86,98	43		Si			
7,29	-64,2	121,73	-59,02	30,4		Si			
7,52	-64,73	89,7	-30,11	17,2		Si			
7,76	-65,26	37,06	-8,8	7,6		Si			
8	-65,78	37,06	0	7,3		Si			

VERIFICHE S.L.U. DI TIPO GEOTECNICO E STRUTTURALE SUI TIRANTI

ANCORAGGIO DI ORDINE 1

forza di progetto di trazione agente sul tirante, Fad=369,92 kN

1) Verifica allo sfilamento dell'intero tirante, compresa la fondazione (GEO)

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1,2) = 1,25

2) Verifica alla rottura del tirante di acciaio (STR)

tensione normale nell'acciaio del tirante, Sigf=887,11 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 1,82

3) Verifica di aderenza acciaio-calcestruzzo (STR)

tensione tangenziale al contatto calcestruzzo-acciaio, Tau=1,02 N/mmq

Verifica soddisfatta

coefficiente di sicurezza (non minore di 1) = 2,33

VERIFICA CORDOLI IN ACCIAIO IN CORRISPONDENZA DEI TIRANTI

ORDINE DI TIRANTE N° 1

Sollecitazioni di progetto

Momento flettente massimo, My=82,46 kN*m

Taglio massimo, Tz=137,43 kN

Verifiche di resistenza a flessione e taglio

tensione di snervamento di progetto, fyd=338 N/mmq

Resistenza plastica della sezione lorda A, Npl Rd=7.167,62 kN

Area resistente al taglio della sezione lungo z, Avz=33,24 cmq

Resistenza di progetto a taglio lungo z, Vcz Rd=1.297,69 kN

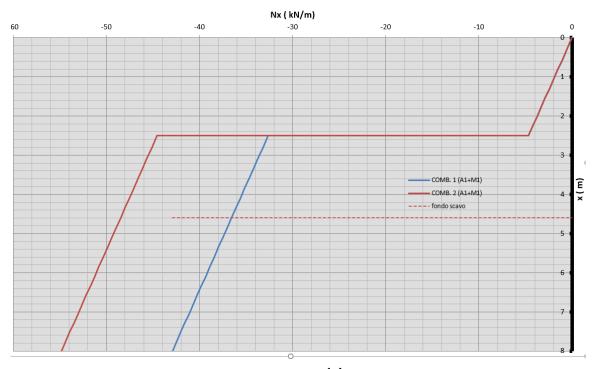
Momento resistente elastico lungo l'asse vettore y, Mely Rd=634,27 kN*m

Momento resistente plastico lungo l'asse vettore y, Mply_Rd=712,10 kN*m

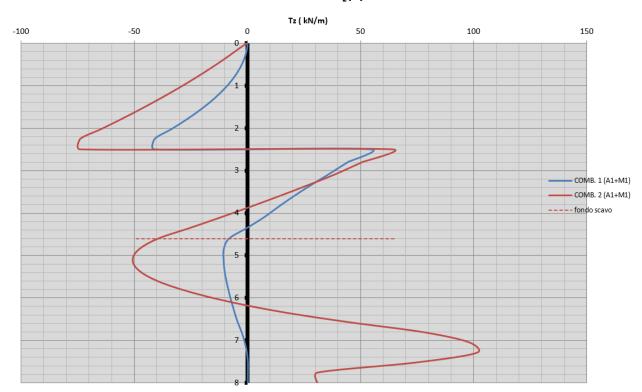
Resistenza di progetto della sezione soggetta a flessione retta, Mcy Rd=712,1 kN*m

Verifica soddisfatta

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA NODO AV/AC DI VERONA: INGRESSO OVEST


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 79 di 80

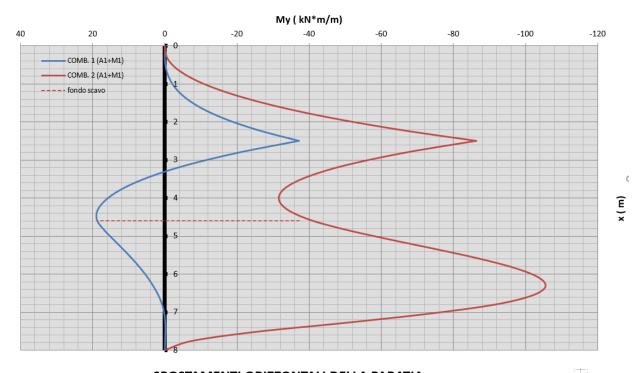

RELAZIONE DI CALCOLO OPERE PROVVISIONALI

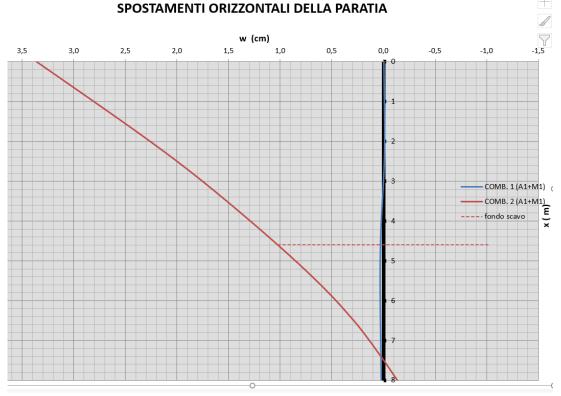
6.2.8.1 Diagrammi

DIAGRAMMA DELLO SFORZO NORMALE $N_x(x)$ LUNGO LA PARATIA

DIAGRAMMA DEL TAGLIO T_z(x) LUNGO LA PARATIA

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA


NODO AV/AC DI VERONA: INGRESSO OVEST


RELAZIONE DI CALCOLO OPERE PROVVISIONALI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 IV0300003
 A
 80 di 80

DIAGRAMMA DEL MOMENTO FLETTENTE M_v(x) LUNGO LA PARATIA

