COMMITTENTE:

PROGETTAZIONE:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01e s.m.i.

CUP: J14H20000440001

U.O. PROGETTAZIONE INTEGRATA NORD

PROGETTO DEFINITIVO

LINEA AV/AC MILANO - VENEZIA
LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

SL02 - SOTTOPASSO VIA CARNIA

RELAZIONE DI CALCOLO SCATOLARI IN OPERA – TRATTO A SINGOLA FORNICE

							SCALA.
							-
COMMESSA	LOTTO FASI	E ENTE	TIPO DOC.	OPERA/DISCIPLINA	A PROGR.	RE\	<i>/</i> .
I N 1 0	1 0 D	2 6	CL	S L 0 2 0 0	0 0 2	Α	
				_			

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	P. Cucino	Ott. 2021	M. Rigo	Ott. 2021	C. Mazzocchi	Ott. 2021	A. Perego
				Lessino Ge		XIII	ll	HCEEN ENT DELL
								PERECO AVERA SO
								a) civila elambientale
								or dell'informazione
								Mileso
								,

File:IN1010D26CLSL0200002A.doc	n. Elab.:

10

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO SCATOLARI IN OPERA TRATTO A SINGOLA FORNICE

COMMESSA LOTTO CODIFICA IN10

D26CL

DOCUMENTO SL 02 00 002

REV. Α

FOGLIO 2 di 60

INDICE

1	PRE	MESSA	3
2	DOG	CUMENTAZIONE DI RIFERIMENTO	4
	2.1	Normativa di riferimento	4
	2.2	ELABORATI DI PROGETTO DI RIFERIMENTO	5
3	CAF	RATTERISTICHE MATERIALI	6
	3.1	CALCESTRUZZO	6
	3.1.	l Magrone	6
	3.1.2	2 Calcestruzzo per pali, soletta di fondazione, piedritti e soletta di copertura	6
	3.2	ACCIAIO	6
	3.2.	l Acciaio di armatura per c.a	7
4	DES	SCRIZIONE DELL'OPERA	8
5	INQ	UADRAMENTO GEOTECNICO	12
6	DEF	TNIZIONE DELL'AZIONE SISMICA	13
7	CRI	TERI DI ANALISI E VERIFICA DELLE OPERE	16
	7.1	APPROCCI PROGETTUALI E METODI DI VERIFICA	16
8	VEF	RIFICA DELLE OPERE DELLA STRUTTURA "METODO MILANO" DEL SOTTOPASSO SL02	18
	8.1	DESCRIZIONE DEL MODELLO DI CALCOLO	20
	8.2	ANALISI DEI CARICHI FERROVIARI	21
	8.3	FASI DI CALCOLO IMPLEMATATE NEI MODELLI	24
	8.4	VERIFICA DEL COMPLESSO OPERA-TERRENO	25
	8.5	VERIFICHE STRUTTURALI DEI PALI SCATOLARE	28
	8.6	VERIFICHE STRUTTURALI DELLE SOLETTE	42

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LOTTO FU	NZIONAI		IA AV/AC BRESCI RESSO OVEST	A EST - V	ERONA
RELAZIONE DI CALCOLO SCATOLARI IN OPERA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
TRATTO A SINGOLA FORNICE	IN10	10	D26CL	SL 02 00 002	Α	3 di 60

1 PREMESSA

La presente relazione ha per oggetto la progettazione definitiva di opere strutturali relative all'Ingresso Ovest al Nodo AV/AC di Verona Porta Nuova della Tratta AV/AC Brescia-Verona.

L'intervento prevede la realizzazione delle nuove linee, prevalentemente in affiancamento al sedime della attuale Linea Storica Milano-Venezia, nel tratto compreso tra l'intersezione con l'Autostrada del Brennero A22 e la radice est della Stazione Ferroviaria di Verona Porta Nuova, per una estensione di circa 10km. Tali interventi sono funzionali al progetto di linea della Tratta Brescia Est – Verona.

Il progetto prevede la rilocazione della Linea Storica leggermente più a nord al fine di lasciare spazio all'inserimento dei binari della Linea AV/AC. Viene anche prevista la realizzazione di una ulteriore linea denominata "indipendente merci" per il collegameno con la Linea Brennero.

Sono previsti interventi di potenziamento e riconfigurazione della stazione di Verona Porta Nuova e realizzazione di una nuova Sottostazione Elettrica con conseguenti interventi tecnologici per la gestione delle modifiche.

Il progetto comprende tutte le opere atte a consentire l'allaccio e l'interfaccia con le linee storiche esistenti e la risoluzione delle interferenze tra la parte di progetto stesso e l'esistente (viabilità, idrografia, ecc).

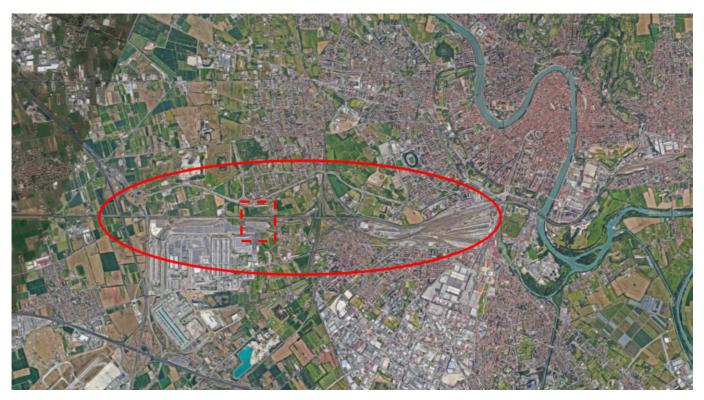


Figura 1 – Individuazione area d'intervento

2 DOCUMENTAZIONE DI RIFERIMENTO

2.1 Normativa di riferimento

Le analisi strutturali e le verifiche di sicurezza sono effettuate in accordo con le prescrizioni di seguito elencate è conformi alle normative vigenti:

- ✓ Ministero delle Infrastrutture, DM 17 gennaio 2018, «Aggiornamento delle Norme tecniche per le costruzioni»
- ✓ Ministero delle Infrastrutture e Trasporti, circolare 11 febbraio 2019, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione dell'aggiornamento delle Norme tecniche per le costruzioni di cui al decreto ministeriale 17 gennaio 2018»
- ✓ Manuale di progettazione RFI Opere Civili RFI DTC SIM AI FS 001 E e relative parti e sezioni.
- ✓ Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- ✓ Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea
- ✓ UNI EN 1998-1:2013 Strutture in zone sismiche parte 1: generale ed edifici.
- ✓ UNI EN 1998-2:2011 Strutture in zone sismiche –parte 2: ponti.
- ✓ UNI EN 1992-1-1: EUROCODICE 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO SCATOLARI IN OPERA TRATTO A SINGOLA FORNICE COMMESSA LOTTO
IN10 10

CODIFICA DOCUMENTO
D26CL SL 02 00 002

REV. FOGLIO
A 5 di 60

2.2 Elaborati di progetto di riferimento

2.2 Emborat at progetto at intrimento	
RELAZIONE TECNICA DESCRITTIVA	IN1010D26RGSL0200001A
RELAZIONE DI CALCOLO RINGROSSI LATERALI	IN1010D26CLSL0200003A
RELAZIONE DI CALCOLO E VERIFICA FUNZIONALITÀ TRATTO SOTTOPASSO ESISTENTE	IN1010D26CLSL0200004A
RELAZIONE DI CALCOLO MURI A U DI SOSTEGNO DELLA RAMPA NORD E SUD	IN1010D26CLSL0200005A
RELAZIONE DI CALCOLO PLATEA E MURO REGGISPINTA	IN1010D26CLSL0200007A
RELAZIONE DI CALCOLO FABBRICATO IMPIANTO DI SOLLEVAMENTO	IN1010D26CLSL0200008A
PLANIMETRIA DI PROGETTO SU CARTOGRAFIA	IN1010D26P9SL0200001A
PLANIMETRIA DI PROGETTO SU ORTOFOTO	IN1010D26P9SL0200002A
PIANTA SCAVI	IN1010D26P9SL0200003A
PIANTA SCAVI	IN1010D26P9SL0200004A
SEZIONI SCAVI	IN1010D26BASL0200001A
SEZIONI SCAVI	IN1010D26BASL0200002A
CARPENTERIA - PIANTA E SEZIONI	IN1010D26BZSL0200007A
CARPENTERIA - PIANTA E SEZIONI	IN1010D26BZSL0200016A
CARPENTERIA - PIANTA E SEZIONI	IN1010D26BZSL0200017A
CARPENTERIA - PIANTA E SEZIONI	IN1010D26BZSL0200018A
CARPENTERIA - PIANTA E SEZIONI	IN1010D26BZSL0200019A
CARPENTERIA - PIANTA E SEZIONI	IN1010D26BZSL0200008A
CARPENTERIA - PIANTA E SEZIONI	IN1010D26BZSL0200009A
CARPENTERIA - PIANTA E SEZIONI	IN1010D26BZSL0200010A
CARPENTERIA - PIANTA E SEZIONI	IN1010D26BZSL0200011A
CARPENTERIA - PIANTA E SEZIONI	IN1010D26BZSL0200012A
CARPENTERIA - PIANTA E SEZIONI	IN1010D26BZSL0200013A
CARPENTERIA - PIANTA E SEZIONI	IN1010D26BZSL0200014A
CARPENTERIA - PIANTA E SEZIONI	IN1010D26BZSL0200015A
CARPENTERIA IMPIANTO DI SOLLEVAMENTO	IN1010D26BASL0200003A
CARPENTERIA IMPIANTO DI SOLLEVAMENTO	IN1010D26BASL0200004A
SEZIONI LONGITUDINALI E TRASVERSALI	IN1010D26BASL0200005A
CARPENTERIA PIANTA SEZIONI LONGITUDINALI E TRASVERSALI	IN1010D26B9SL0200003A
CARPENTERIA PIANTA SEZIONI LONGITUDINALI E TRASVERSALI	IN1010D26B9SL0200004A
CARPENTERIA PIANTA SEZIONI LONGITUDINALI E TRASVERSALI	IN1010D26B9SL0200005A
CARPENTERIA PIANTA SEZIONI LONGITUDINALI E TRASVERSALI	IN1010D26B9SL0200006A
CARPENTERIA PIANTA SEZIONI LONGITUDINALI E TRASVERSALI	IN1010D26B9SL0200007A
FASI COSTRUTTIVE	IN1010D26B8SL0200001A
FASI COSTRUTTIVE	IN1010D26B8SL0200002A
FASI COSTRUTTIVE DI STRUTTURE IN METODO MILANO	IN1010D26BBSL0200003A
FASI COSTRUTTIVE DI STRUTTURE IN METODO MILANO	IN1010D26BBSL0200004A
PARTICOLARI, DETTAGLIO ZONE DI TRANSIZIONE E FINITURE	IN1010D26BZSL0200001A
PARTICOLARI FINITURE ROTATORIE	IN1010D26BZSL0200002A
RELAZIONE DI CALCOLO OPERE PROVVISIONALI	IN1010D26CLSL0200009A
OPERE PROVVISIONALI	IN1010D26BZSL0200003A
OPERE PROVVISIONALI	IN1010D26BZSL0200004A
OPERE PROVVISIONALI	IN1010D26BZSL0200005A
OPERE PROVVISIONALI	IN1010D26BZSL0200006A

GRUPPO FERROVIE DELLO STATO ITALIANE	LOTTO FU	LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA NODO AV/AC DI VERONA: INGRESSO OVEST							
RELAZIONE DI CALCOLO SCATOLARI IN OPERA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
TRATTO A SINGOLA FORNICE	IN10	10	D26CL	SL 02 00 002	Α	6 di 60			

3 CARATTERISTICHE MATERIALI

3.1 Calcestruzzo

3.1.1 Magrone

Classe di resistenza = C12/15

3.1.2 Calcestruzzo per pali, soletta di fondazione, piedritti e soletta di copertura

 γ_c = peso specifico = 25.00 kN/m³

Classe di resistenza = C30/37

 R_{ck} = resistenza cubica = 37.00 N/mm²

 f_{ck} = resistenza cilindrica caratteristica = 0.83 R_{ck} = 30.0 N/mm^2

 f_{cm} = resistenza cilindrica media = f_{ck} + 8 = 38.0 N/mm²

 f_{cd} = resistenza di calcolo a compressione = α_{cc} * f_{ck} / γ_c = 0.85 * 30/1.5 = 17.0 N/mm²

 f_{ctm} = resistenza a trazione media = 0.30 * f_{ck} ^(2/3) = 2.90 N/mm²

 f_{cfm} = resistenza a traz. per flessione media = 1.20 * f_{ctm} = 3.63 N/mm²

 $f_{\text{ctk}} = resistenza$ a traz. per flessione caratt. = 0.70 * f_{cfm} = 2.12 N/mm²

 $E_{cm} = modulo$ elast. tra 0 e 0.40 $f_{cm} = 22000 * (f_{cm}/10)^{0.3} = 33345 \ N/mm^2$

 σ_{c} = Resistenza a compressione (Comb. Rara) = 0.6 * f_{ck} = 18.0 N/mm²

 σ_c = Resistenza a compressione (Comb. Quasi Permanente) = 0.45 * f_{ck} = 13.5 N/mm²

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO SCATOLARI IN OPERA TRATTO A SINGOLA FORNICE
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 SL 02 00 002
 A
 7 di 60

3.2.1 Acciaio di armatura per c.a.

Tipo = B 450 C

 $\gamma_a = peso \ specifico = 78.50 \ kN/m^3$

 $f_{y \text{ nom}}$ = tensione nominale di snervamento = 450 N/mm²

 $f_{t nom}$ = tensione nominale di rottura = 540 N/mm²

 $f_{vk \, min}$ = minima tensione caratteristica di snervamento = 450 N/mm²

 $f_{tk \, min}$ = minima tensione caratteristica di rottura = 540 N/mm²

 $(f_t/f_y)_{k \text{ min}}$ = minimo rapporto tra i valori caratteristici = 1.15

 $(f_t/f_y)_{k \text{ max}}$ = massimo rapporto tra i valori caratteristici = 1.35

 $(f_v/f_{v \text{ nom}})_k$ = massimo rapporto tra i valori nominali = 1.25

 $(A_{gt})_k$ = allungamento caratteristico sotto carico massimo = 7.5 %

 φ_{min} = minimo diametro consentito delle barre = 6 mm

 ϕ_{max} = massimo diametro consentito delle barre = 40 mm

E = modulo di elasticità dell'acciaio = 206000 N/mm²

 α_T = coefficiente di dilatazione termica = 0.00001 °C⁻¹

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA NODO AV/AC DI VERONA: INGRESSO OVEST							
RELAZIONE DI CALCOLO SCATOLARI IN OPERA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
TRATTO A SINGOLA FORNICE	IN10	10	D26CL	SL 02 00 002	Α	8 di 60		

4 DESCRIZIONE DELL'OPERA

Attualmente nella zona interessata dall'intervento è presente un tratto di linea storica a due binari e a sud di questa, il fascio di binari che raccorda la linea da Bologna con quella per Milano.

L'attuale sottopasso di via Carnia è in una zona più ad est e sottopassa i binari delle linee ferroviarie presenti tramite una serie di manufatti. Con la nuova configurazione del fascio di binari e la necessità di avere un collegamento diretto tra la tangenziale (a nord) e le aree industriali (a sud), è stato previsto la progettazione di un

nuovo sottopasso che permetta quindi un collegamento più semplice e rapido.

Figura 2 – Vista aerea dalla zona e localizzazione

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA NODO AV/AC DI VERONA: INGRESSO OVEST							
RELAZIONE DI CALCOLO SCATOLARI IN OPERA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
TRATTO A SINGOLA FORNICE	IN10	10	D26CL	SL 02 00 002	Α	9 di 60		

L'intervento è collocato in corrispondenza della progressiva chilometrica 153+150 della linea AV/AC. Lo scatolare a due canne di nuova costruzione verrà realizzato come elemento unico, in maniera tale da ottimizzare i costi, e presenterà cinque sezione tipiche che distingueranno altrettanti tratti.

In corrispondenza dei binari della linea AV/AC è prevista l'installazione di barriere antirumore.

All'entrata e all'uscita del sottopasso sono previsti muri ad U progettati in modo da ridurre lo scavo e garantire la sicurezza della strada, e la cui altezza varia da 10,5 m a 4 m.



Figura 3 - Stralcio planimetrico (1/2)

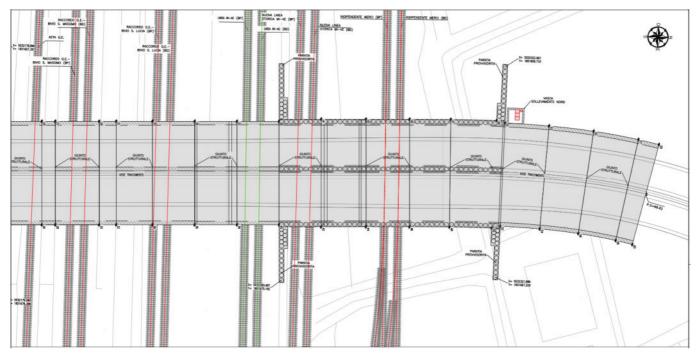


Figura 4 - Stralcio planimetrico (2/2)

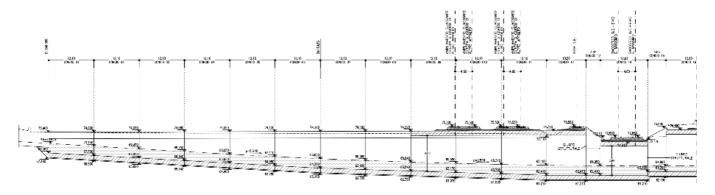


Figura 5 – Profilo Longitudinale (1/2)

Figura 6 – Profilo Longitudinale (2/2)

La parte sud del sottopasso è sotto e la parte nord del sottopasso è vicino ai binari denominati "Brennero-Quadrante Europa". E questi saranno installati prima del progetto del Nodo di Verona Ovest: sarà necessario procedere, in queste zone, alla costruzione di pali e soletta superiore prima della realizzazione dei binari del QE, per poi procedere ai lavori con il Metodo Milano.

Questo rapporto contiene la struttura Metodo Milano nella parte sud. La sezione tipica della struttura può essere vista nella figura seguente.

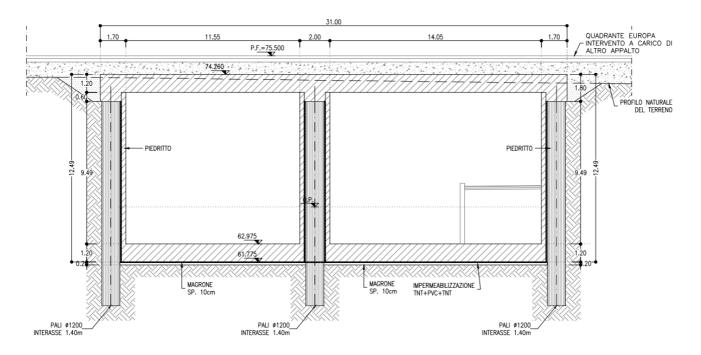


Figura 7 - Sezione Del Metodo Milano Box - Tratto a Singola Fornice (Parte sud)

STALFERR GRUPPO FEBROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA NODO AV/AC DI VERONA: INGRESSO OVEST						
RELAZIONE DI CALCOLO SCATOLARI IN OPERA TRATTO A SINGOLA FORNICE	COMMESSA IN10	LOTTO 10	CODIFICA D26CL	DOCUMENTO SL 02 00 002	REV.	FOGLIO 12 di 60	

5 INQUADRAMENTO GEOTECNICO

Per l'inquadramento geotecnico dell'opera si riporta l'estratto dell'elaborato Relazione Geotecnica da cui si riportano i dati geotecnici fondamentali di interesse.

Tabelle contenenti la stratigrafia di progetto per l'opera in esame e i relativi parametri geotecnici di calcolo:

Tabella 1 Caratteristiche meccaniche del terreno

Strato	Profondità da (m da p.c.)	Profondità a (m da p.c.)	Descrizione	Peso di volume γ [kN/m³]	Formazio ne	Angolo di resistenza al taglio ф' (°)	Coesione c' (kPa)	Modulo elastico Eoc (MPa)
1	0.00	5.00	Materiale rimaneggiato e/o di riporto antropico	19.00	MR	42.00	0.00	47.00
2	5.00	15.00	Ghiaia Poligenica	19.00	GP	40.00	0.00	70.00
3	15.00	Sotto	Ghiaia Poligenica	19.00	GP	38.00	0.00	80.00

6 DEFINIZIONE DELL'AZIONE SISMICA

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica necessari per la determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato dal D.M. 11 Febbraio 2018 e relativa circolare applicativa.

Le opere in progetto per la Sottopasso Via Carnia, in un sito con le seguenti coordinate geografiche: Latitudine 45.42695; Longitudine 10.93887.

Per la galleria artificiale si definisce una vita nominale VN pari a 75 anni e una classe d'uso III a cui corrisponde il coefficiente Cu pari a 1,5 (\S 2.4.2, DM 11/02/2018). Di conseguenza il periodo di riferimento per la definizione dell'azione sismica risulta pari a VR = VN · Cu = 112,5 anni.

Con riferimento alla probabilità di superamento dell'azione sismica, PVR, attribuita allo stato limite ultimo di salvaguardia della vita (SLV), nel periodo VR dell'opera in progetto, si determina il periodo di ritorno TR del sisma di progetto. Sulla base delle coordinate geografiche del sito e del tempo di ritorno del sisma di progetto, TR, sopra definito, si ricavano i parametri che caratterizzano il sisma di progetto relativo al sito di riferimento, rigido ed orizzontale:

- ag: accelerazione orizzontale massima
- F0: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
- T*C: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Il periodo di ritorno si determina con l'espressione:

$$T_R = -\frac{V_R}{\ln(1 - P_{V_D})}$$

Per tenere conto dei fattori locali del sito, l'accelerazione orizzontale massima attesa al sito è valutata con la relazione (DM 11/02/2018):

$$a_{\max} = S_s \cdot S_T \cdot \left(\frac{a_g}{g}\right)$$

dove:

- ag è l'accelerazione orizzontale massima attesa su sito di riferimento rigido.
- S_S è il fattore di amplificazione stratigrafica del terreno, funzione della categoria del sottosuolo di fondazione e dei parametri sismici F0 e ag/g (Tabella 3.2.IV del D.M. 11/02/2018);

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO SCATOLARI IN OPERA TRATTO A SINGOLA FORNICE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN10	10	D26CL	SL 02 00 002	Α	14 di 60

Tab. 3.2.IV - Espressioni di S_s e di C_c

Categoria sottosuolo	S _s	c _c
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	1,10 · (T _C *) ^{-0,20}
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	1,05 · (T _C *) ^{-0,33}
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	1,25 · (T _C) ^{-0,50}
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T _C *) ^{-0,40}

- S_T è il fattore di amplificazione che tiene conto delle condizioni topografiche, il cui valore dipende dalla categoria topografica e dall'ubicazione dell'opera (Tabella 3.2.V del D.M. 11/02/2018).

Tab. 3.2.V - Valori massimi del coefficiente di amplificazione topografica S_T

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
T3	In corrispondenza della cresta di un rilievo con	1,2
	pendenza media minore o uguale a 30°	
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore di 30°	1,4

La categoria di sottosuolo è stata valutata sulla base dei risultati della caratterizzazione geotecnica, in particolare sulla base della velocità delle onde di taglio ponderata sui primi 30 metri di profondità. Sulla base degliandamenti delle suddette grandezze con la profondità, con riferimento al documento "Relazione geotecnica e di calcolo" (Rif. [9]) cui si rimanda per maggiori approfondimenti, si individua come categoria di sottosuolo la classe sismica "B". I valori delle grandezze necessarie per la definizione dell'azione sismica per le opere d'imbocco sono riassunti nei paragrafi seguenti.

	Strutture di sostegno
Coordinate geografiche	Latitudine: 45.42695; Longitudine 10.93887
T_R	1068
$\mathrm{a}_{g'}\mathrm{g}$	0,210
F_0	2.461
Categoria di sottosuolo	В
S_{S}	1.193
Categoria topografica	T1
S_{T}	1,00
a _{max} /g	0.251

7 CRITERI DI ANALISI E VERIFICA DELLE OPERE

Le azioni considerate per la verifica delle strutture di sostegno dell'imbocco sono le seguenti:

- Azioni permanenti strutturali (G1): peso proprio degli elementi strutturali;
- Azioni permanenti non strutturali (G2): spinta del terreno a monte e a valle dell'opera; carico distribuito sul piano campagna a monte della struttura di sostegno al fine di simulare il piano campagna non orizzontale
- Azioni variabili (Q_k): carico variabile sul piano campagna atto a simulare la presenza di sovraccarichi variabili in fase costruttiva legato alle varie fasi realizzative
- Azione sismica (E): Accelerazione orizzontale e verticale come definita al Cap. 6

Sulla base della definizione dei carichi di cui sopra, in accordo a quanto prescritto dal DM 17/01/2018, sono state individuate le combinazioni di carico per le verifiche di stati limite ultimi e di esercizio in condizioni statiche e in condizioni sismiche.

- Combinazione fondamentale (SLU)
- Combinazione caratteristica (SLE), generalmente impiegata per gli stati limite di esercizio irreversibili: il coefficiente di combinazione per il carico variabile Q₁ è pari a 1
- Combinazione frequente (SLE), generalmente impiegata per gli stati limite di esercizio reversibili: il coefficiente di combinazione per il carico variabile Q₁ è pari a 0.8
- Combinazione frequente (SLE), generalmente impiegata per gli effetti di lungo termine: il coefficiente di combinazione per il carico variabile Q₁ è pari a 0
- Combinazione sismica (SLV): il coefficiente di combinazione per il carico variabile Q1 è assunto pari a 0.2.

7.1 Approcci progettuali e metodi di verifica

In accordo con il § 6.5.3 di NTC2018, le verifiche delle strutture di sostegno sono state condotte nei riguardi dei seguenti stati limite ultimi (SLU GEO e SLU STR e SLE):

- collasso del complesso opera-terreno;
- instabilità globale dell'insieme terreno-opera;
- raggiungimento della resistenza degli elementi strutturali.
- controllo dello stato tensionale e fessurativo degli elementi strutturali

Come prescritto dal DM 17/01/2018 per le strutture in oggetto, è stato adottato l'Approccio 1 con le due combinazioni di coefficienti parziali (tabelle 6.2.I, 6.2.II e 6.5.I del DM 14/01/2008):

- Combinazione 1: A1 + M1 + R1
- Combinazione 2: A2 + M2 + R1.

Il dimensionamento geotecnico dell'opera è stato condotto con la verifica di stati limite ultimi GEO, applicando la Combinazione 2 (A2+M2+R1); per quanto riguarda le verifiche di stati limite ultimi STR l'analisi è stata condotta la Combinazione 1 (A1+M1+R1).

Per le verifiche di stabilità globale è stato applicato l'Approccio 1- Combinazione 2 (A2+M2+R2 – Tabb. 6.2.I, 6.2.II e 6.8.I del DM 17/01/2018).

Il corretto dimensionamento nei confronti degli SLU GEO assicura che gli spostamenti dell'opera siano compatibili con le esigenze di funzionalità della stessa.

Le verifiche in condizioni sismiche sono state condotte con riferimento allo stato limite ultimo di salvaguardia della vita (SLV), con riferimento alla configurazione finale dell'opera di sostegno. Per le verifiche in condizioni sismiche i coefficienti parziali sulle azioni sono pari all'unità. Si è adottato il metodo pseudostatico, calcolando il coefficiente sismico orizzontale e verticale secondo le prescrizioni della normativa (DM 17/01/2008):

$$k_h = \beta_m \cdot \left(\frac{a_{max}}{g}\right)$$

$$k_v = \pm 0.5 \ k_h$$

dove:

- a_{max} è l'accelerazione orizzontale massima attesa al sito;
- β_m coefficiente di riduzione dell'accelerazione massima attesa al sito, a favore di sicurezza e in ipotesi di strutture rigide ed impedite di subire spostamenti relativi rispetto al terreno si assume $\beta_h=1$.

L'effetto del terremoto si ottiene applicando i valori di k_h e k_v al modello geotecnico nel software PLAXIS.

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA NODO AV/AC DI VERONA: INGRESSO OVEST						
RELAZIONE DI CALCOLO SCATOLARI IN OPERA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
TRATTO A SINGOLA FORNICE	IN10	10	D26CL	SL 02 00 002	Α	18 di 60	

8 VERIFICA DELLA STRUTTURA "METODO MILANO TRATTO A SINGOLA FORNICE" DEL SOTTOPASSO SL02

Le verifiche statiche della paratia sono state condotte mediante il codice di calcolo Plaxis 2D. Le sezioni di calcolo implementate nel codice sono di seguito indicate con riferimento alla figura seguente:

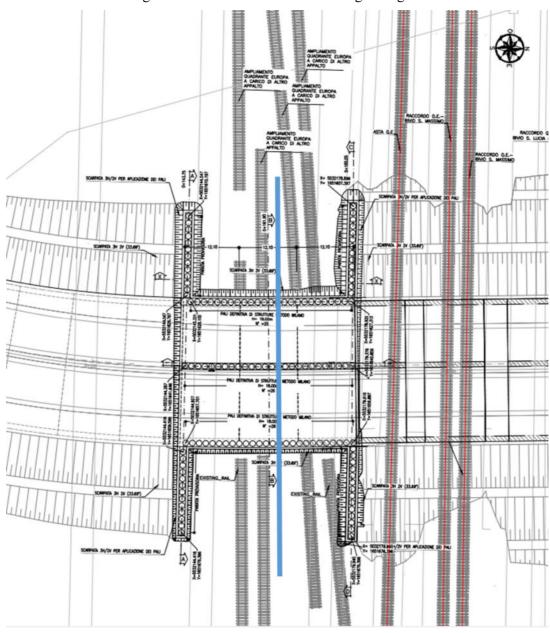


Figura 8 – Sezione di calcolo dalla vista in pianta

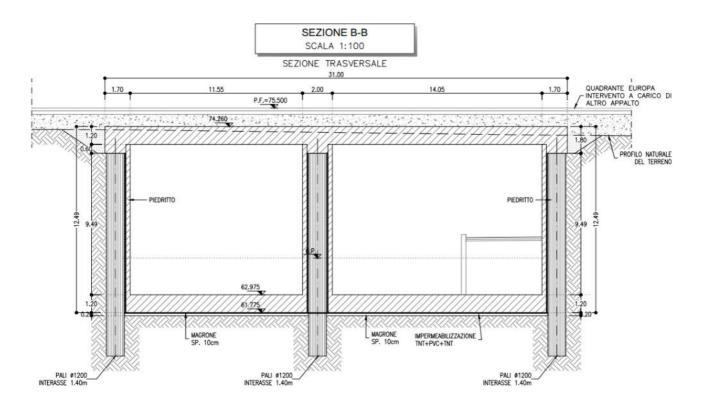


Figura 9 – Sezione di calcolo

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA NODO AV/AC DI VERONA: INGRESSO OVEST						
RELAZIONE DI CALCOLO SCATOLARI IN OPERA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
TRATTO A SINGOLA FORNICE	IN10	10	D26CL	SL 02 00 002	Α	20 di 60	

8.1 Descrizione del modello di calcolo

Sono di seguito descritte le principali caratteristiche della struttura e del modello geotecnico per le analisi di verifica.

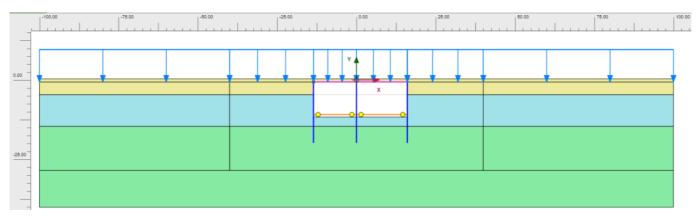


Figura 10 – Modello di calcolo: geometria, stratigrafia e carichi applicati

Nella di seguito si riportano i princiapli elementi geoemetrici della sezione di calcolo (Tabella 2).

Tabella 2 Caratteristiche geometriche della sezione di calcolo

Tipologia struttura	 Pali Ø1200 mm ad interasse 1.4 m, calcestruzzo C30/37 Soletta superiore sp. 1.20m, 						
Altezza totale di pali	 Soletta base sp. 1.20m, H_{tot} = 18 m 						
Altezza di scavo	• H = 11.07m (da estradosso soletta)						
Sovraccarichi permanenti sopra di strutture e superficie	Ritombamento + carichi di mezzi ferreviore 74,70 kPa						
• Falda	• assente						

Tabella 3 Parametri geotecnici di calcolo

Strato	Profondità da (m da p.c.)	Profondità a (m da p.c.)	Descrizione	Peso di volume y [kN/m3]	Tipo di terreno	Angolo di resistenza al taglio ¢' (°)	C' (kPa)	Modulo elastico Eop (MPa)
1	0.00	5.00	Materiale rimaneggiato e/o di riporto antropico	19.00	MR	42.00	0.00	47.00
2	5.00	15.00	Ghiaia Poligenica	19.00	GP	40.00	0.00	70.00
3	15.00	Sotto	Ghiaia Poligenica	19.00	GP	38.00	0.00	80.00

Tabella 4 Parametri per il calcolo dell'azione sismica

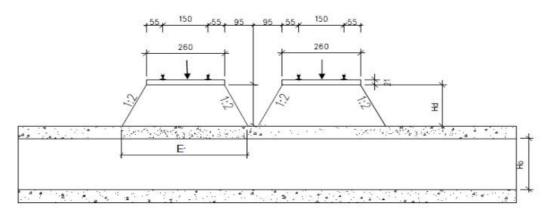
Terreno	Categori Condizione sottosuo		Categoria topografica	$a_{ m g}/g$	Ss	St	a _{max} /g
		(-)	(-)	(-)	(-)	(-)	(-)
MR-GP	SLV	В	T1	0,210	1,193	1,00	0,251

Ci sono 4 diversi elementi strutturali. queste sono pali, soletta superiore, soletta base sinistra e soletta base destra. Ogni materiale è assegnato come piastra sul Plaxis2D. Le rigidità utilizzate per gli elementi sono riassunte di seguito:

Tabella 5 Parametri elementi della strutturra per il calcolo

Elementi strutturali	Modulo Elastica E [Mpa]	Rigidità Assiale EA [kN/m]	Rigidità flessionale EI [kN/m³]		w [kN/m/m]
Pali	32000	25850819	2326573	25	20,20
Soletta Superiore	32000	38400000	4608000	25	30
Soletta Base	32000	38400000	4608000	25	30

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA NODO AV/AC DI VERONA: INGRESSO OVEST						
RELAZIONE DI CALCOLO SCATOLARI IN OPERA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
TRATTO A SINGOLA FORNICE	IN10	10	D26CL	SL 02 00 002	Α	22 di 60	


I carichi verticali sono definiti per mezzo di modelli di carico, in particolare sono forniti due treni di carico distinti: il primo rappresentativo del traffico normale LM71, il secondo rappresentativo del traffico pesante SW2.

Coefficiente di adattamento a

I valori dei suddetti carichi relativi alla configurazione LM71 e SW2 dovranno essere moltiplicati per un coefficiente di adattamento, variabile in ragione della tipologia dell'Infrastruttura (ferrovia ordinaria, ferrovia leggera metropolitane), viene di seguito riportata la tabella con la variabilità del coefficiente in base al tipo di linea o categoria di linea.

Tipi di linea o categorie di linea STI	Valore minimo del fattore alfa (α)
IV	1.1
V	1.0
VI	1.1
VII-P	0.83
VII-F, VII-M	0.91

Per completezza di informazioni viene di seguito riportata la tabella attinente alla categorie di linea STI per il sottosistema Infrastruttura del sistema ferroviario convenzionale:

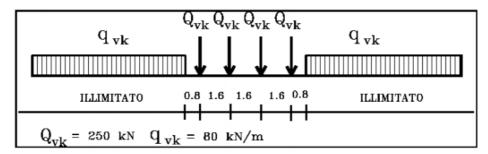


Fig. 5.2.1 - Modello di carico LM71

Hd=~1.5m Lnet= 11.6m

 $\Phi 1 = 1.4$

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO SCATOLARI IN OPERA TRATTO A SINGOLA FORNICE
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 SL 02 00 002
 A
 23 di 60

 Φ 2 = [2.16/(Lclear^0.5-0.2)] + 0.73 = 1.40

diffondere il carico del treno = $80 \ x \ 1.4 \ x \ 1.4 = 156.8 \ kN/m$

carico del treno singolo = $250 \times 1.4 \times 1.4 = 490 \text{ kN}$

E=4.1m

 $A = 4.1 \times 1.6 = 6.56 \text{m}$

Carico LM71 \rightarrow Wtrn(singolo) = 490 / 6.56 = 74.7 kN/m2

8.3 Fasi di calcolo implematate nei modelli

L'analisi del modello galleria artificiale scatolare è stata organizzata secondo le fasi seguenti, per maggiori dettagli fare riferimento ai risultati del calcolo;

- Condizione geostatica
- Esecuzione della paratia di pali
- Attivazione della soletta superiore
- Scavo fino a -4.60 m dalla base della soletta sinistra
- Scavo fino a -11.07 m dalla base della soletta sinistra
- Attivazione del solettone di fondo sinistra
- Scavo fino a -4.60 m dalla base della soletta destra
- Scavo fino a -11.07 m dalla base della soletta destra
- Attivazione del solettone di fondo destra
- Ritombamento superiore (1m da estradosso soletta) e e applicazione del carico variabile q=74.70 kPa (mezzi ferreviore) per verifiche agli stati limite di esercizio (SLE)
- Verifice stato limite di resistenza del terreno (GEO)
- Verifiche agli stati limite di esercizio (SLU)
- Verifiche Stato Limite di salvaguardia della Vita (SLV) e applicazione delle forze sismiche sono assegnate come effetto pseudostatico

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA NODO AV/AC DI VERONA: INGRESSO OVEST						
RELAZIONE DI CALCOLO SCATOLARI IN OPERA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
TRATTO A SINGOLA FORNICE	IN10	10	D26CL	SL 02 00 002	Α	25 di 60	

8.4 Verifica del complesso opera-terreno

La verifica è finalizzata a garantire il corretto dimensionamento dell'opera con particolare riferimento alla profondità di infissione della paratia, sia in condizioni statiche (SLU) che sismiche (SLV). A tale scopo, nei prospetti che seguono, sono riportati gli output in termini di deformata dell'opera.

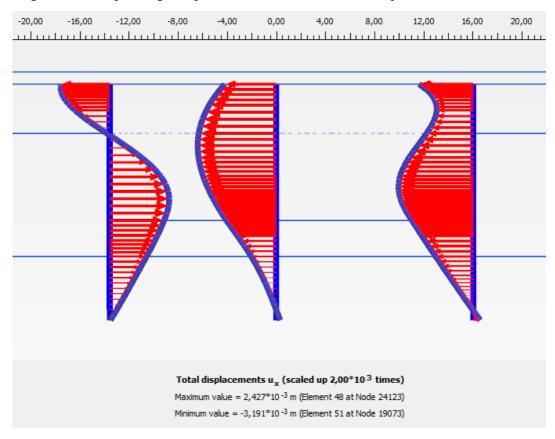


Figura 11 – Inviluppo della deformata dell'opera (SLU) nei vari step di calcolo

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VI NODO AV/AC DI VERONA: INGRESSO OVEST					ERONA
RELAZIONE DI CALCOLO SCATOLARI IN OPERA TRATTO A SINGOLA FORNICE	COMMESSA IN10	LOTTO 10	CODIFICA D26CL	DOCUMENTO SL 02 00 002	REV.	FOGLIO 26 di 60

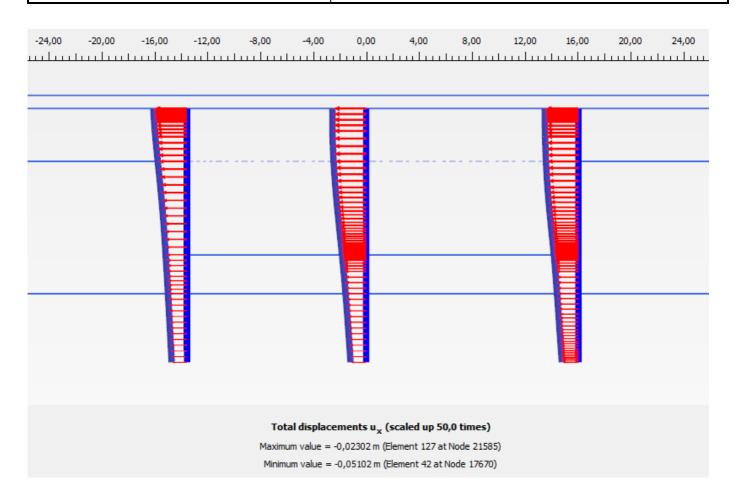


Figura 12 – Inviluppo della deformata dell'opera (SLV(+)) nei vari step di calcolo

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VI NODO AV/AC DI VERONA: INGRESSO OVEST					≣RONA	
RELAZIONE DI CALCOLO SCATOLARI IN OPERA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
TRATTO A SINGOLA FORNICE	IN10	10	D26CL	SL 02 00 002	Α	27 di 60	

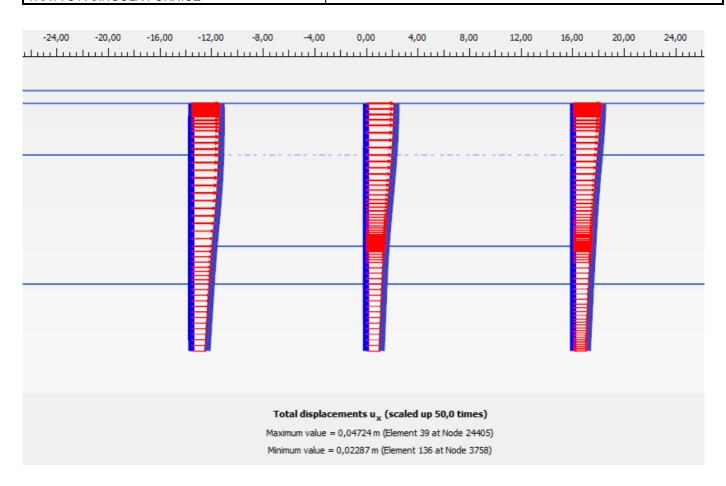


Figura 13 – Inviluppo della deformata dell'opera (SLV(-)) nei vari step di calcolo

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA NODO AV/AC DI VERONA: INGRESSO OVEST					ERONA
RELAZIONE DI CALCOLO SCATOLARI IN OPERA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
TRATTO A SINGOLA FORNICE	IN10	10	D26CL	SL 02 00 002	Α	28 di 60

8.5 Verifiche strutturali dei Pali Scatolare

Nei prospetti che seguono, per le combinazioni STR statica e sismica, si riportano gli andamenti delle caratteristiche della sollecitazione sulla paratia di pali per tutte le fasi di calcolo ed i valori delle sollecitazioni massime, utilizzate per le verifiche strutturali.

Le sollecitazioni strutturali date nella seguente tabella sono valori massimi da 3 pali della struttura. I valori delle sollecitazioni strutturali lungo i pali sono variabili, mentre nella parte superiore del palo questi valori sono alti, nella parte inferiore sono bassi.

Pertanto, i pali sono divisi in 2 gabbie, al fine di ottimizzare l'incidenza del rinforzo. La gabbia-1 va dalla cima della pila a 10,5 m (della pila) e la gabbia-2 va da 10,5 m alla base della pila.

Tabella 6 Gabbia 1 - Sollecitazioni SLU, SLE e SLV

Condizione	Fase di calcolo	Soll. Max.	Quota	M_{Sd}	T_{Sd}	N_{Sd}
[-]	[-]	<i>[-]</i>	[m]	[kNm/m]	[kN/m]	[kN/m]
SLU	Fondo Scavo	Momento	-1.80	1134	370	1042
SLU	Fondo Scavo	Taglio	-1.80	1134	370	1042
SLE	Fondo Scavo	Momento	-1.80	1018	337	900
SLV	Sisma	Momento	-1.80	1272	462	567
SLV	Sisma	Taglio	-1.80	1272	462	567

Tabella 7 Gabbia 2 - Sollecitazioni SLU, SLE e SLV

Condizione	Fase di calcolo	Soll. Max.	Quota	M_{Sd}	T_{Sd}	N_{Sd}
[-]	[-]	[-]	[m]	[kNm/m]	[kN/m]	[kN/m]
SLU	Fondo Scavo	Momento	-12.3	96	81	1111
SLU	Fondo Scavo	Taglio	-12.3	96	81	1111
SLE	Fondo Scavo	Momento	-12.3	91	91	1210
SLV	Sisma	Momento	-12.3	438	181	320
SLV	Sisma	Taglio	-12.3	438	181	320

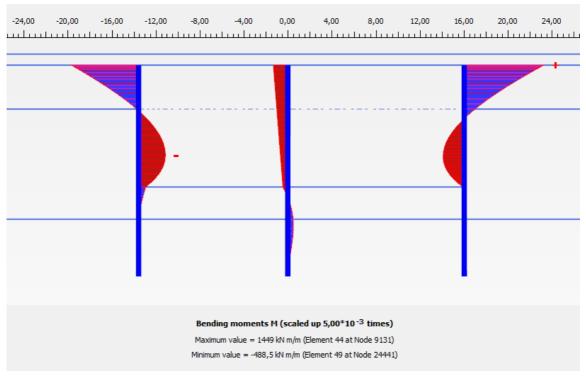


Figura 14: Momento flettente statico agente nei pali (SLE)

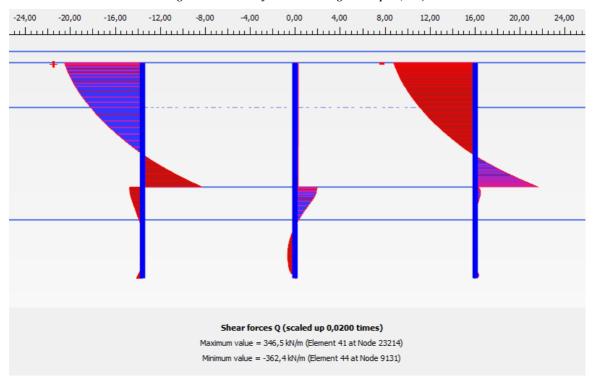


Figura 15: Taglio statico agente nei pali (SLE)

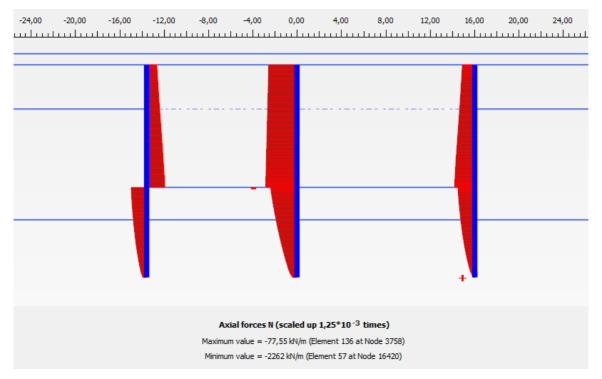


Figura 16: Sforzo normale statico agente nei pali (SLE)

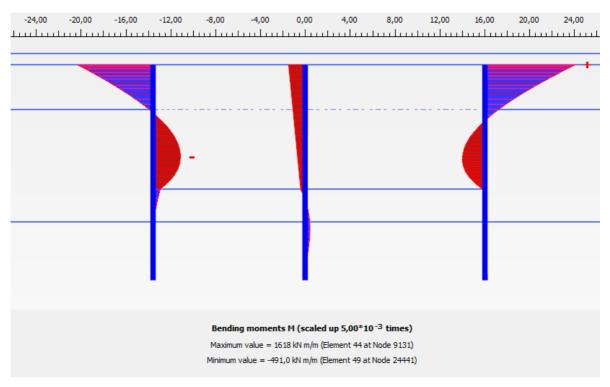


Figura 17: Momento flettente statico agente nei pali (SLU)

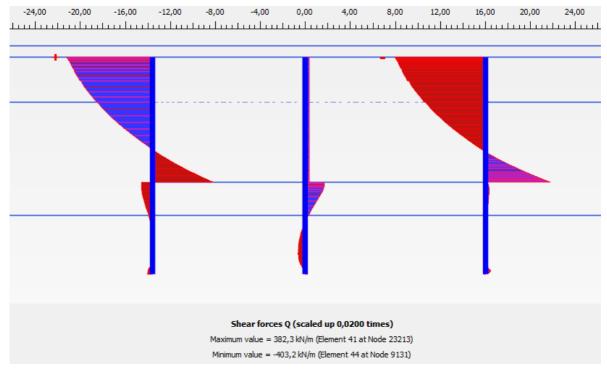


Figura 18: Taglio statico agente nei pali (SLU)

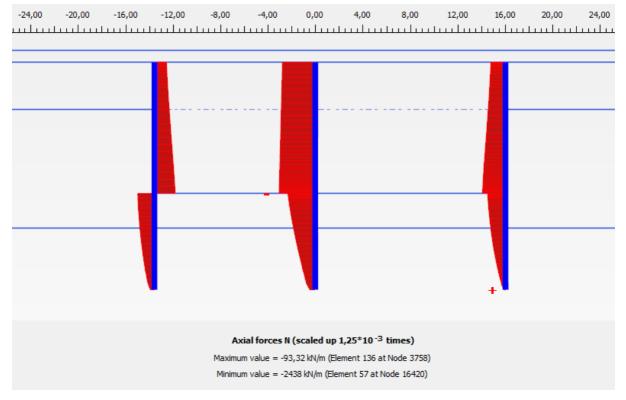


Figura 19: Sforzo normale statico agente nei pali (SLU)

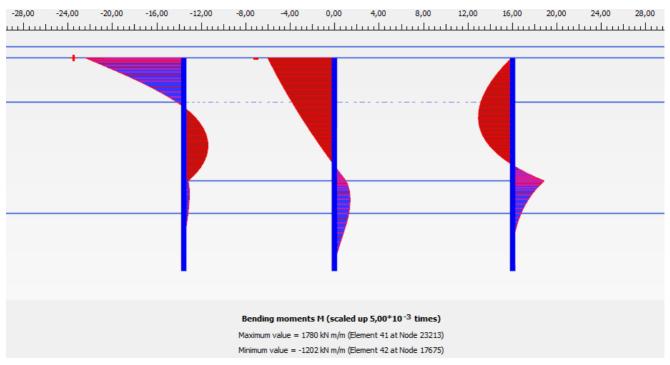


Figura 20: Momento flettente statico agente nei pali (SLV+)

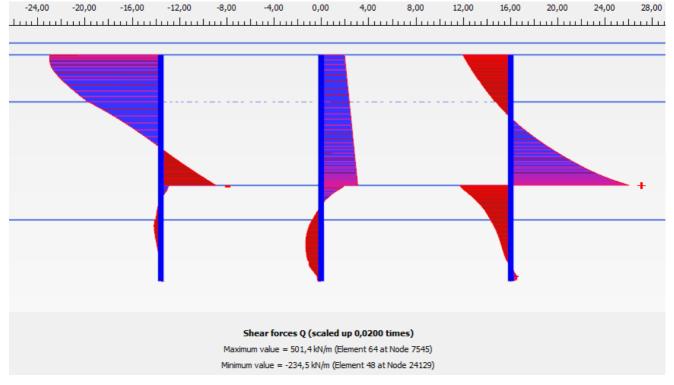


Figura 21: Taglio statico agente nei pali (SLV+)

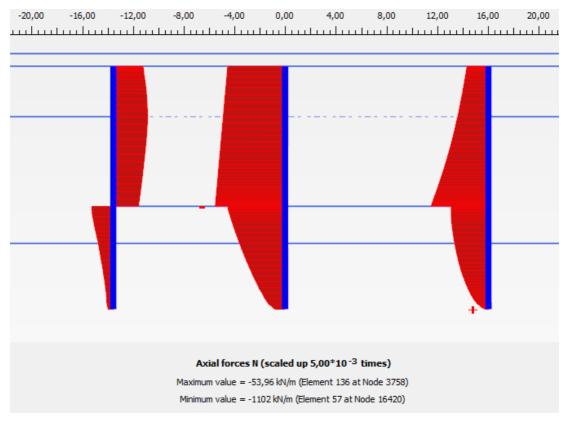


Figura 22: Sforzo normale statico agente nei pali (SLV+)

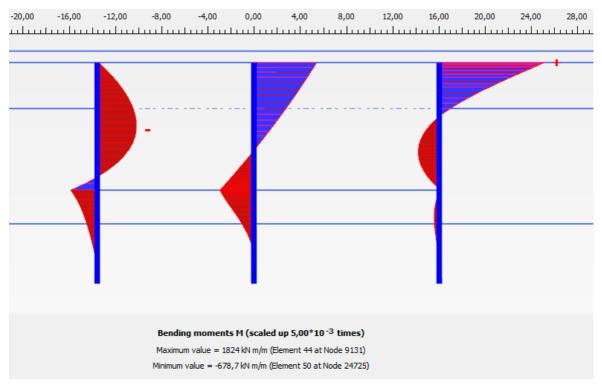


Figura 23: Momento flettente statico agente nei pali (SLV-)

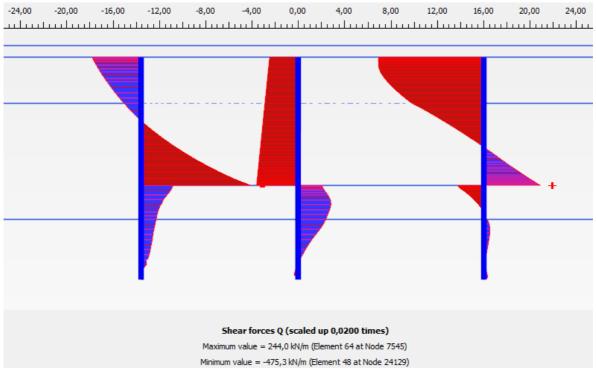


Figura 24: Taglio statico agente nei pali (SLV-)

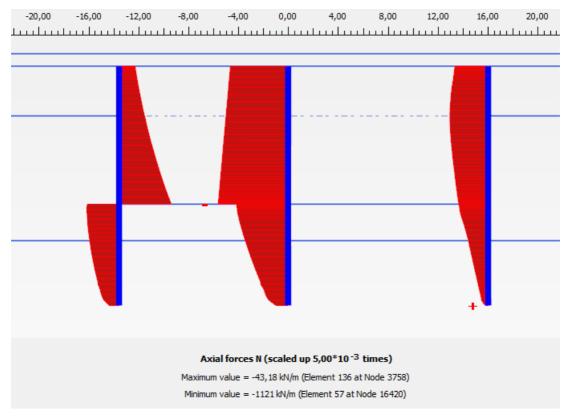


Figura 25: Sforzo normale statico agente nei pali (SLV-)

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LOTTO FU	NZIONAL		IA AV/AC BRESCI RESSO OVEST	A EST - V	ERONA
RELAZIONE DI CALCOLO SCATOLARI IN OPERA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
TRATTO A SINGOLA FORNICE	IN10	10	D26CL	SL 02 00 002	Α	37 di 60

La tabella seguente mostra le sollecitazioni massime di progetto in valore assoluto risultanti dall'analisi, ottenute applicando il coefficiente parziale, fornito da NTC 2018 per il calcolo dello SLU. I valori moltiplicati per la distanza tra i pali (1,4m) per ottenere la sollecitazione agente sul singolo palo.

Tabella 8 Gabbia 1 - Sollecitazioni SLU, SLE e SLV

Condizione	Fase di calcolo	Soll. Max.	Quota	M_{Sd}	T_{Sd}	N_{Sd}
<i>[-]</i>	[-]	[-]	[m]	[kNm]	[kN]	[kN]
CIII	Fondo Scavo	Momento	-1.80	2063,88	673,4	1896,44
SLU	Fondo Scavo	Taglio	-1.80	2063,88	673,4	1896,44
SLE	Fondo Scavo	Momento	-1.80	1425,2	471,8	1260
SLV	Sisma	Momento	-1.80	1780,8	646,8	793,8
SLV	Sisma	Taglio	-1.80	1780,8	646,8	793,8

Tabella 9 Gabbia 2 - Sollecitazioni SLU, SLE e SLV

Condizione	Fase di calcolo	Soll. Max.	Quota	M_{Sd}	T_{Sd}	N_{Sd}
<i>[-]</i>	[-]	[-]	[m]	[kNm]	[kN]	[kN]
CLLI	Fondo Scavo	Momento	-12.3	174,72	147,42	2022,02
SLU	Fondo Scavo	Taglio	-12.3	174,72	147,42	2022,02
SLE	Fondo Scavo	Momento	-12.3	127,4	127,4	1694
CLV	Sisma	Momento	-12.3	613,2	253,4	448
SLV	Sisma	Taglio	-12.3	613,2	253,4	448

LINEA AV/AC MILANO - VENEZIA

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO SCATOLARI IN OPERA TRATTO A SINGOLA FORNICE
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 SL 02 00 002
 A
 38 di 60

Tabella 10: Gabbia 1: materiali strutturali e geometria di verifica

	Tabella 10: Gabbia 1: materia					
	MATERIALI					
(Calcestru	ZZ0		Acciaio		
R _{ck}	37	Mpa	f_{yk}	450	Mpa	
f_{ck}	31	Mpa	$E_{\text{\tiny S}}$	200000	Mpa	
E_{cm}	33000	Mpa	$\gamma_{\rm c}$	1.15	-	
γ_{c}	1.5	-	$f_{\text{yd}} \\$	391.3	Mpa	
α_{cc}	0.85	-	ϵ_{uk}	75	‰	
$f_{cd} \\$	14.1	Mpa				
f_{ctm}	2.6	MPa				
ν	0.5	-				
ϵ_{c2}	2	‰				
ϵ_{cu2}	3.5	‰				
α_{e}	15.0	-				
\mathbf{k}_{t}	0.6	-				
\mathbf{k}_1	0.8	-	Va	lori limite		
\mathbf{k}_2	0.5	-	0,45 f _{ck}	13.8	Mpa	
\mathbf{k}_3	1.76	-	$0,75~\mathrm{f_{yk}}$	337.5	Mpa	
\mathbf{k}_4	0.425	-	$W_{\text{k,lim}}$	0.2	mm	

	GEOMI	ETRIA		
	Sezione trasversale			
D	120	cm		
d	108,7	cm		
Aı	Armatura longitudinale			
n _{barre}	Φ	С	$A_{\rm sl}$	
	mm	mm	cm^2	
20	26	60	106,19	
20	26	112	106,19	
	Armatura	a taglio		
tipo	Φ	passo	c	
	mm	cm	mm	
Spirale	14	15	60	

Tabella 11 : Gabbia 2 - Verifica combinazione Mmax e MSLE

	SLE			SLU/SLV	
$M_{\text{Ek}} \\$	1425,20	[kNm]	M_{Ed}	2063,88	[kNm]
N_{Ek}	-900,00	[kN]	$N_{\text{ed}} \\$	-1354,60	[kN]
Quo	ta asse neu	tro	V_{ed}	673,40	[kN]
y _{a.n.}	48,09	[cm]	Pr	esso-flessio	ne
	Tensioni		M_{Rd}	3977	[kNm]
$\sigma_{c, max}$	-9,2	[MPa]	FS	1,93	-
$\sigma_{\text{s,min}}$	-90,12	[MPa]		Taglio	
$\sigma_{\text{s,max}}$	179,2	[MPa]	V_{Rd}	498,0	[kN]
F	essurazione	;	Necessita	ı di armatura	a taglio
$\varepsilon_{\rm sm}$ - $\varepsilon_{\rm cm}$	0,64	[‰]	V_{Rsd}	1705,5	[kN]
$S_{r,max}$	17,2	[cm]	V_{Rcd}	2576,8	[kN]
Wk	0,110	[mm]	 θ	21,8	0

Tabella 12 :Verifica combinazione Tmax				
SL	SLU/SLV			
M_{Ed}	2063,88	[kNm]		
N_{ed}	0,0	[kN]		
V_{ed}	673,40	[kN]		
Presso	Presso-flessione			
M_{Rd}	3581	[kNm]		
FS	1,74	-		
T	aglio			
V_{Rd}	498,0	[kN]		
Necessita di a	Necessita di armatura a taglio			
V_{Rsd}	1705,5	[kN]		
V_{Rcd}	2576,8	[kN]		
θ	21,8	0		

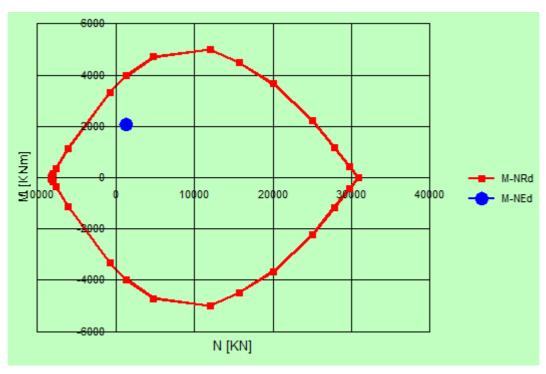


Tabella 13: Gabbia1 - Dominio di resistenza M - N

LINEA AV/AC MILANO - VENEZIA

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO SCATOLARI IN OPERA TRATTO A SINGOLA FORNICE
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN10
 10
 D26CL
 SL 02 00 002
 A
 40 di 60

Tabella 14: Gabbia 2: materiali strutturali e geometria di verifica

	MATERIALI				
(Calcestru	ZZ0		Acciaio	
R_{ck}	37	Mpa	f_{yk}	450	Mpa
$f_{ck} \\$	31	Mpa	$E_{\text{s}} \\$	200000	Mpa
$E_{\text{cm}} \\$	33000	Mpa	γ_{c}	1.15	-
γ_{c}	1.5	-	$f_{\text{yd}} \\$	391.3	Mpa
$\alpha_{\rm cc}$	0.85	-	ϵ_{uk}	75	‰
$f_{cd} \\$	14.1	Mpa			
f_{ctm}	2.6	MPa			
ν	0.5	-			
ϵ_{c2}	2	‰			
ϵ_{cu2}	3.5	‰			
$\alpha_{e} \\$	15.0	-			
\mathbf{k}_{t}	0.6	-			
\mathbf{k}_1	0.8	-	Va	lori limite	
\mathbf{k}_2	0.5	-	0,45 f _{ck}	13.8	Mpa
\mathbf{k}_3	1.76	-	$0,75~\mathrm{f_{yk}}$	337.5	Mpa
k ₄	0.425	-	$W_{\text{k,lim}}$	0.2	mm

	GEOMETRIA			
	Sezione trasversale			
D	120	cm		
d	110.6	cm		
Aı	rmatura lo	ngitudinale	•	
n _{barre}	Φ	c	$A_{\rm sl}$	
	mm	mm	cm^2	
20	26	67	106,19	
0	0	0	0	
	Armatura	a taglio		
tipo	Φ	passo	c	
	mm	cm	mm	
Spirale	14	30	60	
			•	

Tabella 15: Gabbia 2 - Verifica combinazione Mmax e MSLE

SLE	
900.20	[kNm]
-1497.00	[kN]
ota asse neut	ro
58.48	[cm]
Tensioni	
-6.7	[MPa]
-83.37	[MPa]
88.56	[MPa]
Fessurazione	
0.27	[‰]
29.2	[cm]
0.078	[mm]
	900.20 -1497.00 ota asse neut 58.48 Tensioni -6.7 -83.37 88.56 Fessurazione 0.27 29.2

	SLU/SLV				
M_{Ed}	1129.31	[kNm]			
$N_{\text{ed}} \\$	-2165.80	[kN]			
V_{ed}	13.81	[kN]			
	Presso-flessione				
M_{Rd}	3475	[kNm]			
FS	3.08	-			
	Taglio				
V_{Rd}	600.7	[kN]			
Non n	Non necessita di armatura a taglio				
V_{Rsd}	852.7	[kN]			
V_{Rcd}	2576.9	[kN]			
θ	21.8	0			

Tabella 16:	Tabella 16: Verifica combinazione Tmax				
	SLU/SLV				
M_{Ed}	613,20	[kNm]			
$N_{\text{ed}} \\$	0,0	[kN]			
V_{ed}	253,40	[kN]			
I	Presso-flessione				
M_{Rd}	1879	[kNm]			
FS	3,06				
	Taglio				
V_{Rd}	367,1	[kN]			
Non nece	Non necessita di armatura a taglio				
V_{Rsd}	852,7	[kN]			
V_{Rcd}	2576,7	[kN]			
θ	21,8	0			

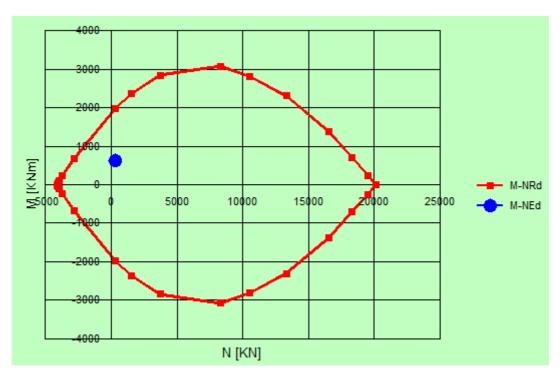


Figura 26: Gabbia1 - Dominio di resistenza M - N

Le verifiche strutturali sono pertanto tutte soddisfatte. Per la sezione in esame l'incidenza è di 190 kg/m^3 .

8.6 Verifiche strutturali delle Solette

La verifica strutturale del rivestimento definitivo prevede il confronto tra le sollecitazioni di calcolo, ottenute a partire dai risultati del modello numerico applicando i relativi coefficienti parziali, e le resistenze di calcolo che individuano il dominio resistente nel piano M,N.

Per la verifica a taglio, il valore di calcolo è ottenuto in accordo con la normativa vigente.

Le immagini seguenti sintetizzano le sollecitazioni ottenute nel rivestimento definitivo delle solette per la fase fianle, per la quale sono state condotte le verifiche, insieme ad una tabella riepilogativa riportante le sollecitazioni massime.

Di seguito sono riportate le verifiche strutturali condotte per i rivestimenti definitivi nelle fasi di analisi considerate più rappresentative. In ogni caso si sottolinea che le verifiche sono soddisfatte per tutte le fasi di calcolo.

Le combinazioni allo SLU sono ottenute moltiplicando le combinazioni derivanti dall'analisi per il coefficiente parziale $\gamma_G = 1.3$

Il valore limite di apertura delle fessure è fissato al valore nominale w₂=0.3mm in funzione delle condizioni ambientali (classe di esposizione XC2), della sensibilità della armature alla corrosione (armatura poco sensibile) e della combinazione di azioni (quasi permanente).

Poiché il valore di calcolo di apertura delle fessure w_k non supera il valore limite w₂, la verifica di fessurazione risulta soddisfatta.

La massima tensione di compressione nel calcestruzzo σ_c e la tensione massima nell'acciaio σ_f calcolate rispettano le limitazioni indicate al paragrafo 10. Pertanto la verifica delle tensioni di esercizio è soddisfatta.

8.6.1.1 Verifiche della Soletta Superiore

Tabella 17- Sollecitazioni massime di progetto nel rivestimento definitivo derivanti dall'analisi numerica

		7				
	N_{Sd}	$\mathbf{M}_{\mathbf{Sd}}$	$\mathbf{V}_{\mathbf{Sd}}$			
	(kN/m)	(kNm/m)	(kN/m)			
SLU	-405	1976	1042			
SLE	-365	1795	965			
SLV	-400	1414	520			

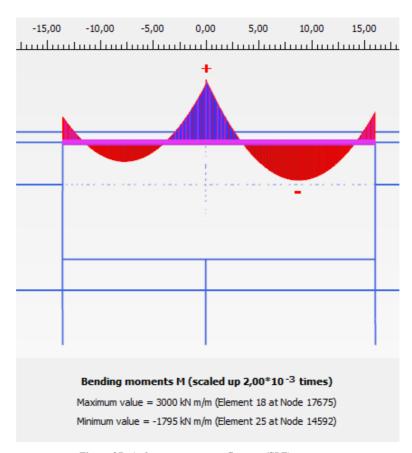


Figura 27: Andamento momento flettente (SLE)

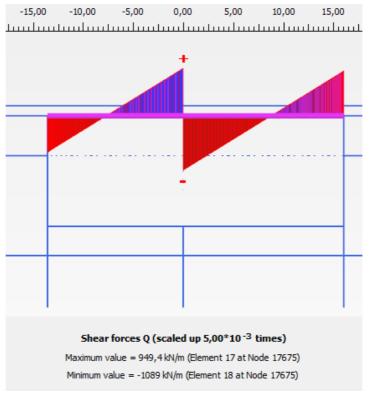


Figura 28: Andamento taglio (SLE)

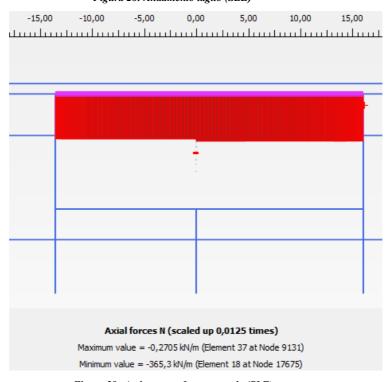


Figura 29: Andamento sforzo normale (SLE)

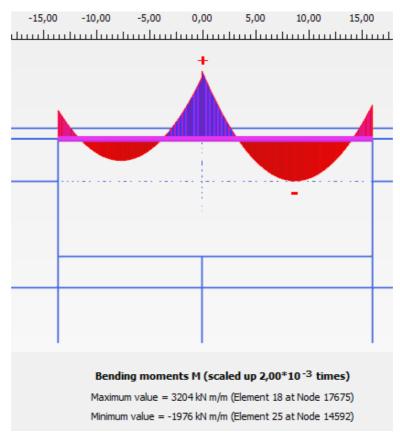


Figura 30: Andamento momento flettente (SLU)

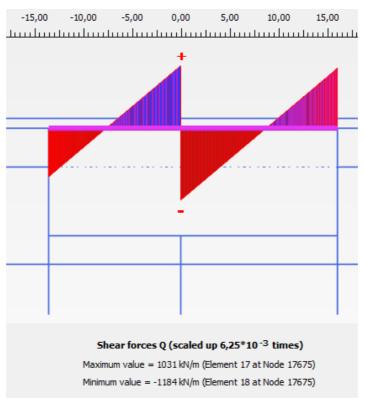


Figura 31: Andamento taglio (SLU)

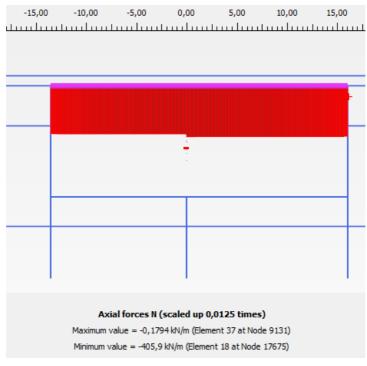


Figura 32: Andamento sforzo normale (SLU)

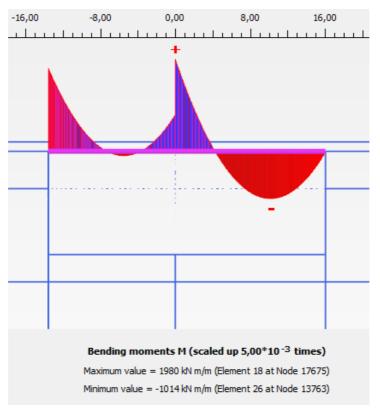


Figura 33: Andamento momento flettente (SLV+)

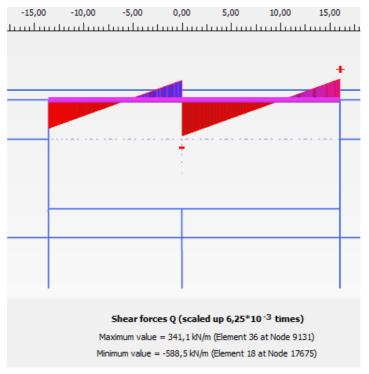


Figura 34: Andamento taglio (SLV+)

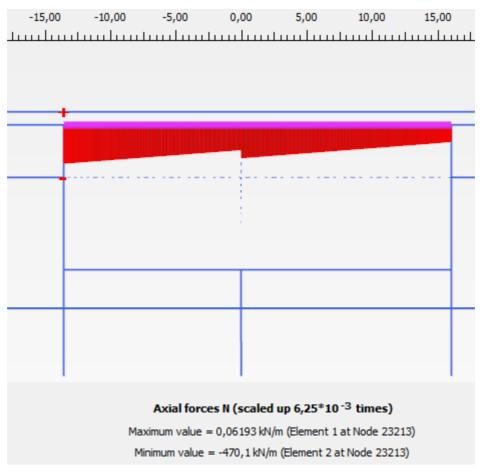


Figura 35: Andamento sforzo normale (SLV+)

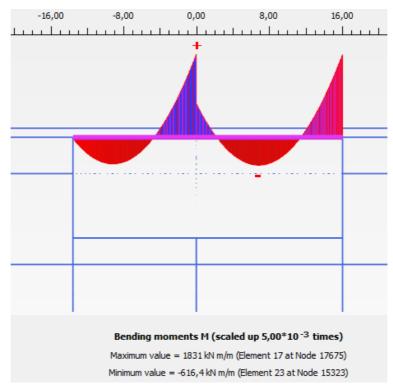


Figura 36: Andamento momento flettente (SLV-)

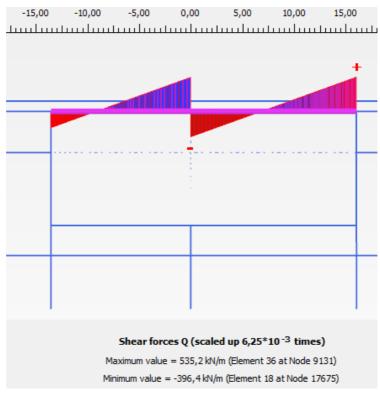


Figura 37: Andamento taglio (SLV-)

Figura 38: Andamento sforzo normale (SLV-)

LINEA AV/AC MILANO - VENEZIA

LOTTO FUNZIONALE TRATTA AV/AC BRESCIA EST - VERONA

NODO AV/AC DI VERONA: INGRESSO OVEST

RELAZIONE DI CALCOLO SCATOLARI IN OPERA TRATTO A SINGOLA FORNICE

COMMESSA LOTTO CODIFICA DOCUMENTO RFV. FOGL IO IN10 10 D26CL SL 02 00 002 Α 51 di 60

σlimit

18,000

352.000

w limit

0,200

0,300

1354,6

-526,5

1503.41

1,11

2,5

3286

1866

1866

1,38

SLV

1414,0

-400,0

SLV

3588,1

2,54

SLV

30000

6,43

6,43

192.94

0,816

0,869

V_{Sd} [kN]

N_{Sd} [kN]

VRd1 [KN]

 V_{Rd1}/V_{Sd}

cotan(θ)

 $V_{Rd2}(\theta)$ [KN]

 $V_{Rd3}(\theta)$ [KN]

V_{Rd} [KN]

SLU

2568,8

-526,5

SLU

3657,2

1,42

SLU

SOLETTA SUPERIORE INPUT OUTPUT SOLLECITAZIONI DI VERIFICA VERIFICHE IN ESERCIZIO Combinazione Nsd [kN] Msd [kNm] Vsd [kN] Verifica Tensionale SLE Quasi Permanente -365,0 Calcestruzzo SLE Quasi Permanente σ_c [Mpa] = 1795,0 Calcestruzzo SLE Rara SLE Frequente -365,0 965 $\sigma_c [Mpa] =$ SLE Rara -365.0 1795.0 965 Acciaio SLE Rara σ_s [Mpa] = SLU -526.5 2568.8 1354.6 SLV-400,0 1414,0 520,0 Verifica di fessurazione Combinazione SLE Quasi permanente w_d [mm] = Combinazione SLE Frequente $w_d [mm] =$ CARATTERISTICHE GEOMETRICHE DELLA SEZIONE IN C.A VERIFICA DI RESISTENZA A TAGLIO Geometria della sezion Sollecitazioni di progetto Base (ortogonale al Taglio) 100 Taglio sollecitante = max Taglio(SLU,SLV) B [cm] Altezza (parallela al Taglio) H [cm] 120 Sforzo Normale concomitante al massimo taglio Altezza utile della sezione 115 d [cm] 12000 Area di calcestruzzo A_c [cm²] Verifica di resistenza in assenza di armatura specifica Resistenza di progetto senza armatura specifica Coefficiente di sicurezza Armatura longitudinale tesa 1° STRATO 2° STRATO 3° STRATO Numero Barre 5,00 10,00 Verifica di resistenza dell'armatura specifica 0 Diametro 26 26 CoTan(θ) di progetto \$[mm] Posizione dal lembo esterno c [cm] 5.0 5.0 0.0 Resistenza a taglio delle bielle compresse in cls Area strato As [cm²] 26,55 53,09 0,00 Resistenza a taglio dell'armatura Rapporto di armatura 0,577% Resistenza a taglio di progetto ρ [%] Coefficiente di sicurezza 3° STRATO Armatura longitudinale compressa 1° STRATO 2° STRATO VERIFICA DI RESISTENZA A PRESSO-FLESSIONE 5,0 10 0 Numero Barre n Diametro φ[mm] 26 26 0 Posizione dal lembo esterno c' [cm] 5,0 5,0 0,0 Sollecitazioni di progetto 53,09 0,00 Momento sollecitante M_{Sd} [kNm] Area strato As' [cm²] 26,55 Rapporto di armatura ρ'[%] 0,693% Sforzo Normale concomitant N_{Sd} [kN] Armatura trasversale 1° TIPO 2° TIPO 3° TIPO Verifica di resistenza in termini di momento φ[mm] M_{Rd} [kNm] Diametro 12 0 0 Momento resistente Numero bracci 5 0 0 Coefficiente di sicurezza M_{Rd}/M_{Sd} Passo sw [cm] 30 0 0 Inclinazione α [deg] 90 90 Verifica di resistenza in termini di sforzo normale 0,00 NRd [kN] A_{sw}/s_w [cm²/m] 18,85 0,00 Area armatura a metro Sforzo normale resistente Coefficiente di sicurezza N_{Rd}/N_{Sd} M-N Interaction Diagram CARATTERISTICHE REOLOGICHE DEI MATERIALI 8000 6000 RCK 37 Resistenza cubica a compressione Resistenza cilindrica caratteristica a compressione fck [Mpa] 30,00 Resistenza cilindrica media a compressione f_{cm} [Mpa] 38.00 Resistenza media a trazione per flessione $f_{ctm}\left[Mpa\right]$ 2.90 Resistenza caratteristica a trazione per flessione 2,03 fctk [Mpa] 10000 15000 20000 17,00 Resistenza di progetto a compressione f_{cd} [Mpa] Resistenza di progetto delle bielle compresse fcd' [Mpa] 8,98 -4000 Acciaio Resistenza di progetto a snervamento fvd [Mpa] 382.61 -6000 N [kN] -8000

Le verifiche strutturali sono pertanto tutte soddisfatte. Per la sezione in esame l'incidenza è di 165 kg/m³.

8.6.1.2 Verifiche della Soletta Base

Tabella 18: Sollecitazioni massime di progetto nel rivestimento definitivo derivanti dall'analisi numerica

	<u> </u>				
	Nsd	M_{Sd}	V_{Sd}		
	(kN/m)	(kNm/m)	(kN/m)		
SLU	-281	905	347,5		
SLE	-266	691	246		
SLV	-716	860	324		

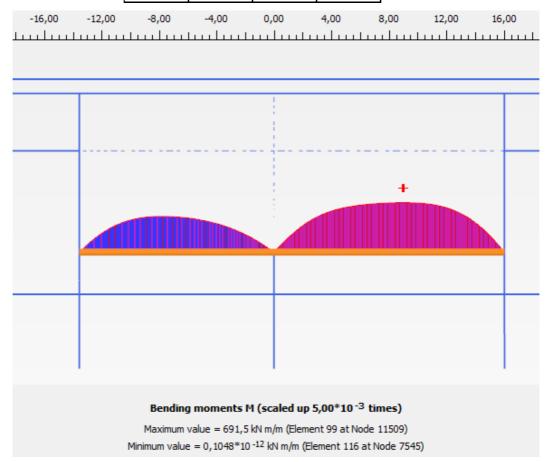
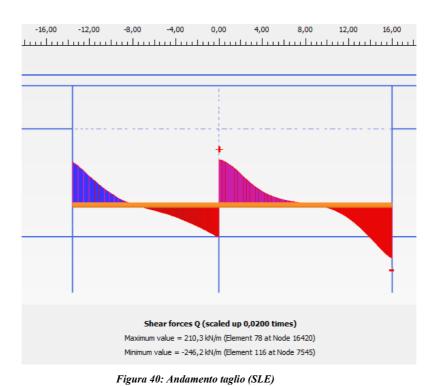



Figura 39: Andamento momento flettente (SLE)

-5,00 0,00 -15,00 -10,00 5,00 10,00

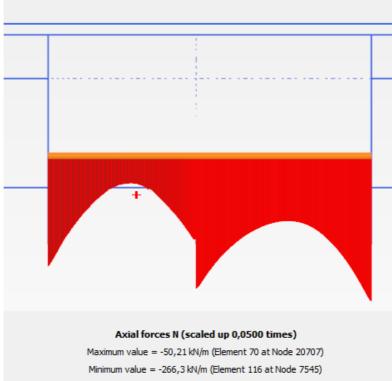


Figura 41: Andamento sforzo normale (SLE)

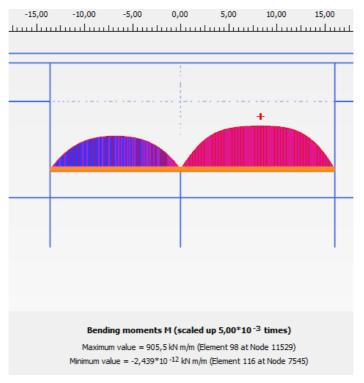


Figura 42: Andamento momento flettente (SLU)

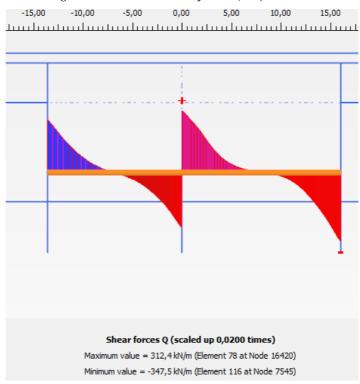


Figura 43: Andamento taglio (SLU)

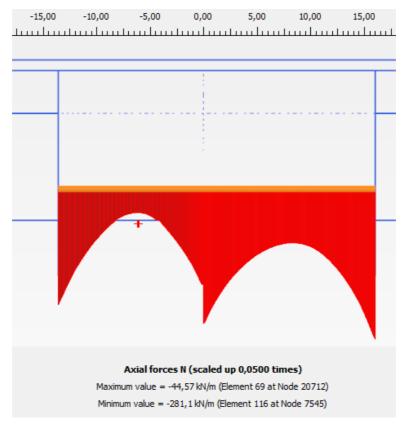


Figura 44: Andamento sforzo normale (SLU)

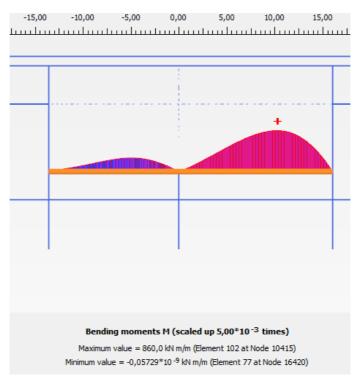


Figura 45: Andamento momento flettente (SLV+)

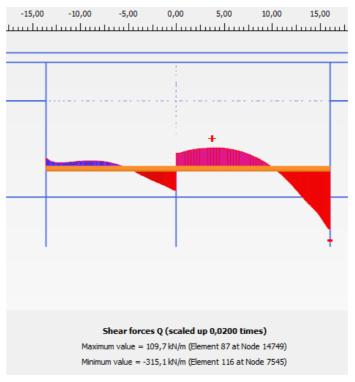


Figura 46: Andamento taglio (SLV+)

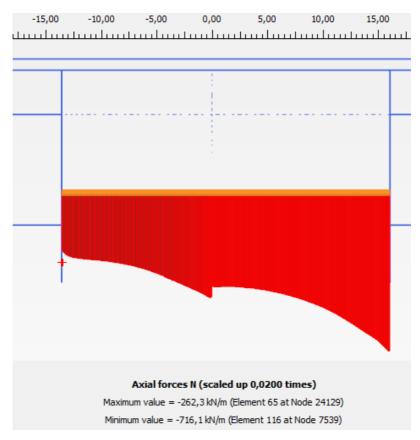


Figura 47: Andamento sforzo normale (SLV+)

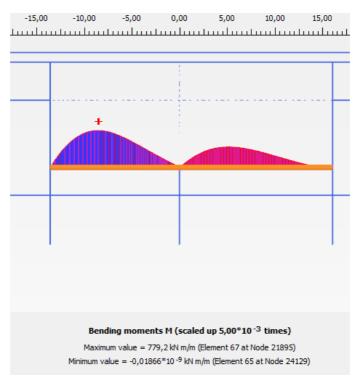


Figura 48: Andamento momento flettente (SLV-)

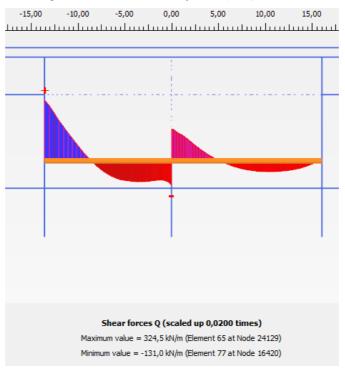


Figura 49: Andamento taglio (SLV-)

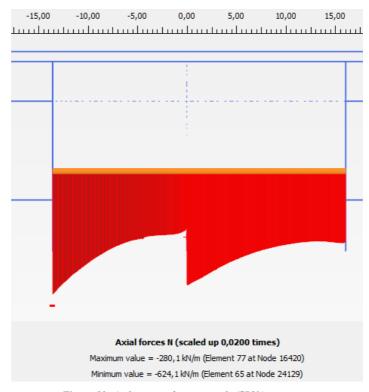


Figura 50: Andamento sforzo normale (SLV-)

INPUT					OUTDUT			
					OUTPUT			
SO	DLLECITAZIONI DI VI	ERIFICA			VERIFICHE IN ESER	CIZIO		
Combinazione		N _{Sd} [kN]	M _{Sd} [kNm]	V _{Sd} [kN]	Verifica Tensionale			σlimit
	SLE Quasi Permanente	-266,0	691,0	246	Calcestruzzo SLE Quasi Permanente Calcestruzzo SLE Rara	σ_c [Mpa] =	4,43	13,500
	SLE Frequente SLE Rara	-266,0 -266,0	691,0 691,0	246 246	Acciaio SLE Rara	$\sigma_c [Mpa] =$ $\sigma_s [Mpa] =$	4,43 196,82	18,000 352,000
	SLU SLU	-365,3	1176,5	451,8	ACCIDIO SEE NUIU	os [mpa] =	170,02	332,000
	SLV	-716,0	860,0	324,0	Verifica di fessurazione			w limit
		,.	,-	,-	Combinazione SLE Quasi permanente	w _d [mm] =	0,000	0,200
					Combinazione SLE Frequente	w _d [mm] =	0,000	0,300
CARATTERISTIC	HE GEOMETRICHE D	ELLA SEZ	ZIONE IN C.	A.	VERIFICA DI RESISTENZ	A A TAGLIO	0	
Geometria della sezione					Sollecitazioni di progetto			
Base (ortogonale al Taglio)			B [cm]	100	Taglio sollecitante = max Taglio (SLU,SLV)		V _{Sd} [kN]	451,8
Altezza (parallela al Taglio)			H [cm]	120	Sforzo Normale concomitante al massimo taglio		N _{Sd} [kN]	-365,3
Altezza utile della sezione			d [cm]	115				
Area di calcestruzzo				12000	Verifica di resistenza in assenza di armatura specifica			
					Resistenza di progetto senza armatura specifica		V _{Rd1} [KN]	1480,24
					Coefficiente di sicurezza		$V_{Rd1}/V_{Sd} \\$	3,28
Armatura longitudinale tesa		1° STRATO	2° STRATO	3° STRATO				
Numero Barre	n	5,00	0,00	0	Verifica di resistenza dell'armatura specifica			
Diametro	φ[mm]	26	0	0	CoTan($ heta$) di progetto		cotan(θ)	2,5
Posizione dal lembo esterno	c [cm]	5,0	0,0	0,0	Resistenza a taglio delle bielle compresse in cls		V _{Rd2} (θ) [KN]	3261
Area strato	As [cm ²]	26,55	0,00	0,00	Resistenza a taglio dell'armatura		V _{Rd3} (θ) [KN]	1866
Rapporto di armatura	ρ[%]		0,192%		Resistenza a taglio di progetto		V _{Rd} [KN]	1866
Armatura longitudinale comp	racea	1° STRATO	2° STRATO	3° CTD ATO	Coefficiente di sicurezza		V_{Rd}/V_{Sd}	4,13
Numero Barre	n	5,0	0	0	VERIFICA DI RESISTENZA A PR	ESSO-FLES	SSIONE	
Diametro	φ[mm]	26	0	0	-			
Posizione dal lembo esterno	c' [cm]	5,0	0,0	0,0	Sollecitazioni di progetto		SLU	SLV
Area strato	As' [cm ²]	26,55	0,00	0,00	Momento sollecitante	M _{Sd} [kNm]	1176,5	860,0
Rapporto di armatura	ρ'[%]		0,231%		Sforzo Normale concomitante	N _{Sd} [kN]	-365,3	-716,0
Armatura trasversale		1° TIPO	2° TIPO	3° TIPO	Verifica di resistenza in termini di momento		SLU	SLV
Diametro	φ[mm]	12	0	0	Momento resistente	M _{Rd} [kNm]	1338,3	1529,1
Numero bracci	n_{bi}	5	0	0	Coefficiente di sicurezza	M_{Rd}/M_{Sd}	1,14	1,78
Passo	sw [cm]	30	0	0				
Inclinazione	α [deg]	90	90	90	Verifica di resistenza in termini di sforzo normale		SLU	SLV
Area armatura a metro	A_{sw}/s_w [cm ² /m]	18,85	0,00	0,00	Sforzo normale resistente Coefficiente di sicurezza	N _{Rd} [kN] N _{Rd} /N _{Sd}	-	-
CARATTERI	STICHE REOLOGICH	F DEI MA	TERIALI		M-N Interaction Dia			
GARLI ZERI					5000		######	
Concrete					4000			
Resistenza cubica a compression			RCK	37	3000			
Resistenza cilindrica caratteristica a compressione		f _{ck} [Mpa]	30,00	2000 1				
Resistenza cilindrica media a compressione		f _{cm} [Mpa]	38,00					
Resistenza media a trazione per flessione		f _{ctm} [Mpa]	2,90	1000				
Resistenza caratteristica a trazione per flessione Resistenza di progetto a compressione		f _{ctk} [Mpa] f _{cd} [Mpa]	2,03 17,00	-5000 0 5000 10000	15000	2500	10	
Desistance di con catto e accomuna			f _{cd} [Mpa]	8,98	-5000 5000 10000 M	15000 20	2500	iU
Resistenza di progetto a compres Resistenza di progetto delle bielle								
Resistenza di progetto delle bielle					-2000			
			f _{yd} [Mpa]	382,61	-2000 - -3000 - -4000 -			

Le verifiche strutturali sono pertanto tutte soddisfatte. Per la sezione in esame l'incidenza è di 165 kg/m³.