

PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000	
LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710		
PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 1 di 121	Rev. 2	

STUDIO DELLA QUALITA' DELL'ARIA

ADEGUAMENTO CENTRALE DI COMPRESSIONE GAS, NUOVA STAZIONE ELETTRICA (SE) RTN 132 kV E RACCORDI AEREI 132 kV, NUOVA SOTTOSTAZIONE ELETTRICA (SSE) 132/15 kV E CAVIDOTTO MT 15 kV

Fase di cantiere

2	Emissione per Enti	C.DI MAURO	S.VALENTINI	R. BOZZINI G. MONTI	25/09/2021
1	Emissione per approvazione – variato ove indicato	C.DI MAURO	S.VALENTINI	R. BOZZINI G. MONTI	20/09/2021
0	Emissione per commenti	C.DI MAURO	S.VALENTINI	R. BOZZINI G. MONTI	13/09/2021
Rev.	Descrizione	Elaborato	Verificato	Approvato Autorizzato	Data

_	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000	
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710		
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 2 di 121	Rev. 2	

INDICE

1	Sco	opo del lavoro	4
2	Rife	erimenti normativi	5
3	Qua	alità dell'aria	6
	3.1	La qualità dell'aria della Provincia di Ferrara	6
	3.2	Monossido di carbonio (CO)	7
	3.3	Biossido di azoto (NO ₂)	8
	3.4	Polveri PM10	10
	3.5	Polveri PM2.5	13
4	La	qualità dell'aria su scala locale	15
5	Des	scrizione del modello di simulazione	18
	5.1	Struttura del modello CALPUFF	19
	5.1	.1 CALMET	20
	5.1	.2 Descrizione del modello lagrangiano	20
	5.1	.3 CALPOST	22
6	lmp	postazione del modello	25
	6.1	DEM e Land Use	25
	6.2	Analisi dei dati meteorologici	28
7	Ana	alisi metereologica	31
	7.1	Analisi dei dati di vento	31
	7.2	Temperatura atmosferica	33
	7.3	Profili termici atmosferici	34
	7.4	Conclusioni dell'analisi meteorologica	34
	7.5	Condizioni di simulazione – CALPUFF	35
8	Em	issioni in fase di cantiere	36
	8.1	Descrizione delle attività di cantiere	36
	8.2	Metodi di stima delle emissioni	37
	8.2	.1 Emissioni dai mezzi di movimentazione e trasporto	37
	8.2		37
	8.2	,	37
	8.2		38
	8.2	Risollevamento di inquinamenti da transito di mezzi su strade non asfaltate	39

PROGETTISTA	TEN TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
LOCALITA' POGGI	ZA-E-94710		
PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO		Fg. 3 di 121	Rev. 2

	8.3	Can	itiere per l'allestimento di una base logistica	39
	8.4 Ferrar		itiere per la realizzazione dei raccordi in Alta Tensione (AT) alla linea 132 kV "Alteod"	do – 41
	8.5	Des	crizione delle attività di cantiere della Centrale di Compressione SNAM	42
	8.5.	1	Emissioni di mezzi e macchinari di cantiere	43
	8.5.	2	Movimentazione del terreno, formazione e stoccaggio cumuli	46
	8.5.	3	Erosione del vento dai cumuli di terra	48
	8.5.	4	Risollevamento di inquinamenti da transito di mezzi su strade non asfaltate	49
	8.6	Des	crizione delle attività di cantiere delle Stazioni Elettriche RTN e Utente	49
	8.6.	1	Emissioni di mezzi e macchinari di cantiere	50
	8.6.	2	Movimentazione del terreno, formazione e stoccaggio cumuli	52
	8.6.	3	Erosione del vento dai cumuli di terra	53
	8.6.	4	Risollevamento di inquinamenti da transito di mezzi su strade non asfaltate	53
	8.7	Des	crizione delle attività di cantiere per la realizzazione del cavidotto di collegamento	54
	8.7.	1	Emissioni di mezzi e macchinari di cantiere	54
	8.7.	2	Movimentazione del terreno, formazione e stoccaggio cumuli	56
	8.7.	3	Erosione del vento dai cumuli di terra	56
	8.7.	4	Risollevamento di inquinamenti da transito di mezzi su strade non asfaltate	57
	8.8	Qua	adro comparativo	57
	8.9	Ass	unzioni modellistiche	60
	8.10	Sce	nario conservativo di picco	65
	8.11	Valu	utazione delle concentrazioni attese	68
	8.1	1.1	Concentrazioni attese di NOx	68
	8.1	1.2	Concentrazioni attese di CO	77
	8.1	1.3	Concentrazioni attese di PM	80
	8.1	1.4	Confronto fra lo scenario peggiore ed uno intermedio	88
9	Cor	nclus	sioni	95
10	Bib	liogr	afia	97
11 FII			ATO 1 – Cronoprogramma LAVORI CON INDICAZIONE DELLE CONSIDERATI STIMA DELLE EMISSIONI	98 98
			ATO 2 - MAPPE DELLE CONCENTRAZIONI DEGLI INQUINANTI AL SUOLO PI ENARI SIMULATI	ER I 106
13	ΔΙΙ	FG/	ATO 3 - Assunzioni delle variabili modellistiche di input	116

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000	
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710		
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 4 di 121	Rev. 2	

1 SCOPO DEL LAVORO

Il presente documento contiene gli esiti della valutazione degli impatti sulla qualità dell'aria ambiente in relazione al progetto di Adeguamento della Centrale di Compressione gas SNAM di Poggio Renatico (FE).

Il progetto prevede la sostituzione del Turbocompressore TC1 esistente con un nuovo Elettrocompressore (o ELCO) EC5 di taglia 15 MW e la realizzazione delle seguenti opere accessorie:

- raccordi in Alta Tensione (AT) alla linea 132 kV "Altedo Ferrara Sud";
- nuova Stazione Elettrica RTN 132 kV;
- nuova Sottostazione Elettrica Utente 132/15 kV:
- collegamento interrato in Media Tensione (MT) dalla Sottostazione Utente fino alla Centrale di Compressione gas SNAM.

In questo rapporto tecnico si riportano i dettagli in merito alla modellazione e le ipotesi poste alla base dell'analisi dei fenomeni di dispersione delle emissioni in atmosfera originate dalle attività di cantiere, al fine di valutare i possibili impatti sulla componente "Atmosfera".

Per valutare la dispersione di inquinanti in atmosfera è stato utilizzato il modello Lagrangiano CALPUFF. In particolare, è stato utilizzato Breeze CALPUFF, sviluppato e distribuito da Trinity Consultants Inc. Il modello, espressamente indicato fra quelli raccomandati per le simulazioni di dispersioni atmosferiche, consente di valutare in maniera rigorosa gli effetti del *building downwash* e l'effetto dovuto alle ricircolazioni indotte dalle calme di vento.

Nel presente documento sono descritti la metodologia seguita (modello utilizzato e dati impiegati) e i risultati ottenuti.

PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000	
LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710		
PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 5 di 121	Rev. 2	

2 RIFERIMENTI NORMATIVI

La normativa di riferimento per il monitoraggio della qualità dell'aria è il Decreto Legislativo 13 agosto 2010 n° 155, modificato e integrato dal Decreto Legislativo 24 dicembre 2012, n. 250 e dal Decreto 26 gennaio 2017 del Ministero dell'Ambiente e della Tutela del Territorio.

Tale decreto recepisce la direttiva 2008/50/CE e sostituisce le disposizioni di attuazione della direttiva 2004/107/CE, istituendo un quadro normativo unitario in materia di valutazione e di gestione della qualità dell'aria ambiente.

In Tabella 2-1 vengono riportati i valori limite di concentrazione in aria ambiente per gli inquinanti presi in considerazione.

Tabella 2-1 – Valori di riferimento delle concentrazioni in aria ambiente

Inquinante	Destinazione del limite	Periodo di mediazione	Parametro di riferimento	Valore Limite(*) [mg/mc]	Normativa di riferimento	
со	salute umana	8 ore	media massima giornaliera calcolata su 8 ore	10.000	D.lgs. 155/10	
		1 ora	massimo	400(**) (soglia di allarme)		
NO ₂	salute umana		99,8 percentile	200 al 1° gennaio 2010	D.lgs. 155/10	
		anno civile	media	40 al 1° gennaio 2010		
NOx	vegetazione	anno civile	media	30(***)	D.lgs. 155/10	
Polveri	salute umana	24 ore	90,4 percentile	50	D.lgs. 155/10	
1 017611	Saluto ullialia	Anno civile	media	40	D.lgs. 155/10	

^(*) I valori limite devono essere espressi in μg/mc. Per gli inquinanti gassosi il volume deve essere standardizzato alla temperatura di 293
°K e alla pressione atmosferica di 101,3 kPa. Per il particolato e le sostanze in esso contenute da analizzare, il volume di campionamento si riferisce alle condizioni ambiente in termini di temperatura e di pressione atmosferica alla data delle misurazioni.

^(**) valori misurati per tre ore consecutive

^(***) I punti di campionamento destinati alla protezione degli ecosistemi o della vegetazione dovrebbero essere ubicati a più di 20 km dagli agglomerati o a più di 5 km da aree edificate diverse dalle precedenti, o da impianti industriali o autostrade.

snam //	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 6 di 121	Rev. 2

3 QUALITÀ DELL'ARIA

Nel presente capitolo si fornisce una descrizione dello stato della qualità dell'aria nell'area in cui si colloca la Centrale SNAM; il quadro di riferimento descritto deriva dalle valutazioni condotte attraverso la rete di monitoraggio della qualità dell'aria gestita da ARPA Emilia Romagna (www.arpae.it).

3.1 La qualità dell'aria della Provincia di Ferrara

Per la descrizione dello stato di qualità dell'aria nell'area vasta intorno al sito si è fatto riferimento al Rapporto sulla Qualità dell'Aria della Provincia di Ferrara - dati 2019.

Le centraline considerate, riportate nell'immagine seguente, sono localizzate nella città di Ferrara (Corso Isonzo, Barco Nuova, Cassana e Villa Fulvia) e nelle zone limitrofe (Cento, Ostellato e Jolanda di Savoia (Gherardi)).

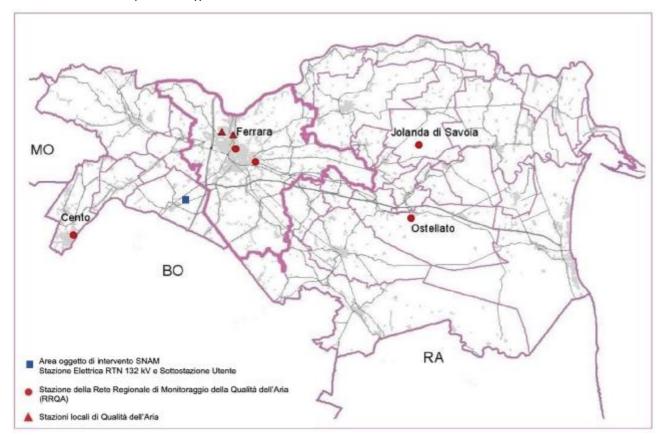


Figura 3-1 - Localizzazione delle centraline Arpae considerate

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 7 di 121	Rev. 2

Tra gli inquinanti monitorati dalle centraline presenti nel territorio della Provincia di Ferrara si riportano di seguito i dati relativi a CO, NO2 e polveri, in quanto inquinanti atmosferici che vengono originanti anche dai punti di emissione della Centrale SNAM in esame.

3.2 Monossido di carbonio (CO)

Il monossido di carbonio, inquinante legato principalmente al traffico veicolare, viene monitorato presso le centraline di C. Isonzo, Cassana e Barco Nuova. Le elaborazioni statistiche indicano la totale assenza di superamenti del valore limite previsto dalla normativa, con una media annua molto bassa, pari a 0,4 mg/mc a C. Isonzo e 0,5 mg/mc a Cassana e Barco Nuova. Le concentrazioni medie mensili in generale sono inferiori a 1 mg/mc. I dati relativi al CO per le centraline considerate sono riportati in Tabella 3-1.

Tabella 3-1 – Elaborazioni statistiche concentrazioni CO [mg/mc] anno 2019.

Centralina Tipo	Stazione	% dati validi	Valore Minimo	Media annuale	Valore massimo	N° superamenti valore orario
Corso Isonzo	Traffico	100,00%	<0,4	0,4	2,2	0
Barco Nuova	Industriale	99,00%	<0,4	0,5	2,7	0
Cassana	Industriale	99,00%	<0,4	0,5	1,7	0

In Figura 3-2 si evidenzia un andamento tipicamente stagionale, con un lieve aumento a partire dal mese di novembre e con valori più elevati nei mesi propriamente invernali. Anche a livello regionale il CO risulta nei limiti.

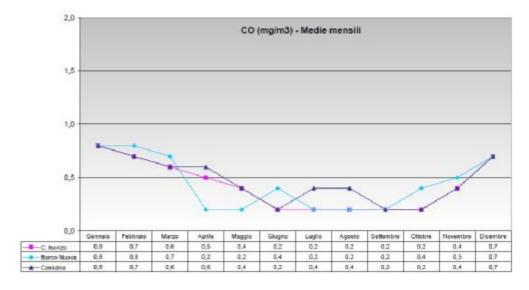


Figura 3-2 - Andamento della concentrazione media mensile anno 2019.

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 8 di 121	Rev. 2

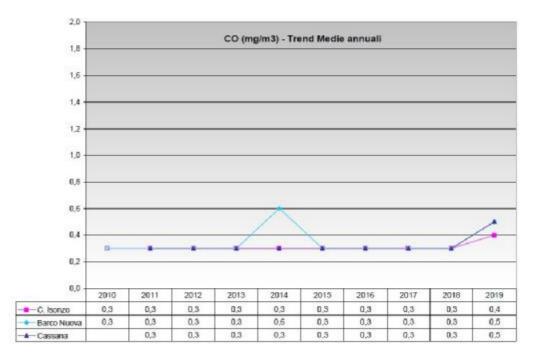


Figura 3-3 – CO. Andamento delle concentrazioni medie annuali 2010÷2019. I simboli cavi indicano un rendimento annuale delle misure inferiore al 90%.

3.3 Biossido di azoto (NO₂)

Le elaborazioni statistiche dell'anno 2019 mostrano come il biossido di azoto, misurato in tutte le centraline della rete di monitoraggio analizzate, raggiunga i valori più elevati, in termini di media annua, nella centralina da traffico di Corso Isonzo, mentre i valori più bassi si misurano nelle centraline di fondo rurale (Ostellato) e di fondo rurale remoto (Gherardi). In nessuna centralina si sono verificati superamenti sia della media annua (40 $\,\mu$ g/mc), sia del valore orario (200 $\,\mu$ g/mc). I valori relativi al NO₂ per le centraline considerate sono riportati in Tabella 3-2.

_	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam // V	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 9 di 121	Rev. 2

Tabella 3-2 – Elaborazioni statistiche concentrazioni NO₂ [μg/mc] anno 2019.

Centralina Tipo	Stazione	% dati validi	Valore Minimo	Media annuale	Valore massimo	N° superamenti valore orario	Superamento valore limite media annua
Corso Isonzo	Traffico	100,00%	<8	36	129	0	No
Villa Fulvia	Fondo urbano	100,00%	<8	19	101	0	No
Barco Nuova	Industriale	99,00%	<8	26	122	0	No
Cassana	Industriale	98,00%	<8	21	118	0	No
Cento	Fondo sub- urbano	99,00%	<8	20	124	0	No
Ostellato	Fondo rurale	100,00%	<8	13	60	0	No
Gherardi	Fondo rurale remoto	100,00%	<8	13	65	0	No

Il biossido di azoto presenta in tutte le centraline, ad eccezione di quelle di fondo rurale remoto (Gherardi) e di fondo rurale (Ostellato), il classico andamento bimodale con un aumento dei valori di concentrazione in corrispondenza delle ore di punta del traffico (ore $8 \div 10$ del mattino, $18 \div 20$ della sera).

Le medie mensili, riportate in Figura 3-4, presentano andamento stagionale, con valori in aumento a partire dai mesi di settembre e valori massimi nei mesi propriamente invernali.

Per quanto riguarda il trend delle medie annuali di NO₂, nel 2019 tutte le stazioni hanno registrato valori leggermente più bassi rispetto agli anni precedenti. Anche nel 2019, come avviene dal 2014, non sono stati rilevati superamenti del valore limite annuale (40 µg/mc).

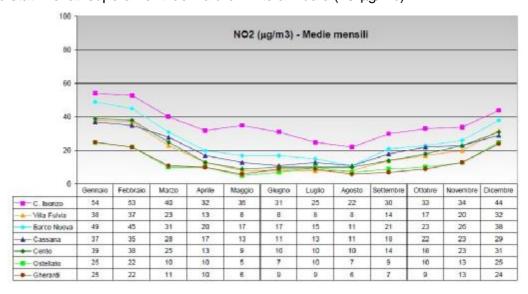


Figura 3-4 – Andamento della concentrazione media mensile anno 2019.

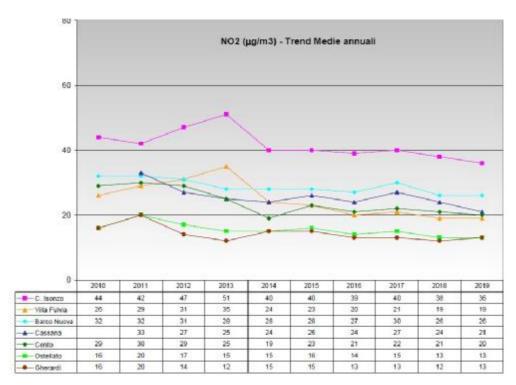


Figura 3-5 – NO₂. Andamento delle concentrazioni medie annuali 2010÷2019. I simboli cavi indicano un rendimento annuale delle misure inferiore al 90%.

3.4 Polveri PM10

Il PM10 viene misurato in tutte le centraline ad eccezione di quella di Ostellato. Nel 2019 il numero dei superamenti del valore limite giornaliero di 50 μ g/m3, da non superare più di 35 volte all'anno, risulta superato in tutte le stazioni ad eccezione di Cassana e Gherardi. I dati relativi al PM10 per le centraline considerate sono riportati in Tabella 3-3.

Tabella 3-3 – Elaborazioni statistiche PM10 [g/m3] per l'anno 2019.

Centralina Tipo	Stazione	% dati validi	Valore Minimo	Media annuale	Valore massimo	N° superamenti valore orario	Superamento valore limite media annua
Corso Isonzo	Traffico	100,00%	3	32	113	60	No
Villa Fulvia	Fondo urbano	100,00%	<3	26	101	44	No
Barco Nuova	Industriale	98,00%	6	31	110	54	No
Cassana	Industriale	95,00%	4	27	111	33	No
Cento	Fondo sub- urbano	93,00%	<3	27	113	41	No
Gherardi	Fondo rurale remoto	97,00%	4	25	94	30	No

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 11 di 121	Rev. 2

Le concentrazioni ottenute per i diversi giorni della settimana tipo mostrano, nel 2019, andamenti molto simili per tutte le centraline, con valori più alti il lunedì, il giovedì, il venerdì e il sabato e valori più bassi il martedì e il mercoledì.

Le medie mensili, riportate in Figura 3-6, confermano l'andamento stagionale dell'inquinante, risultando elevate nei mesi invernali per tutte le centraline; in particolare da gennaio ad aprile e da ottobre a dicembre, con punte nel 2019 nei mesi di gennaio e dicembre.

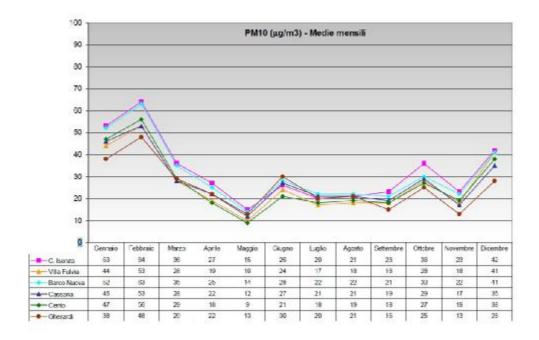


Figura 3-6 - Andamento della concentrazione media mensile.

Nel 2019, come succede dal 2008, la concentrazione media annua è risultata inferiore al valore limite annuale di 40 µg/m3 e in calo, in tutte le stazioni, rispetto all'anno precedente.

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 12 di 121	Rev. 2

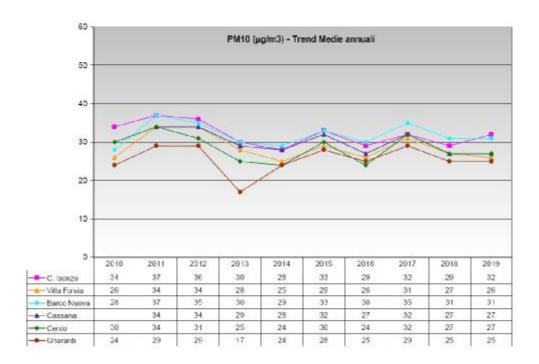


Figura 3-7 – PM10. Andamento della concentrazione media annuale. I simboli cavi indicano un rendimento annuale delle misure inferiore al 90%.

Il numero dei superamenti del valore limite giornaliero nel 2019 risulta in tutte le centraline leggermente più alto rispetto al 2018 ma più basso del 2017, principalmente a causa di condizioni meteo climatiche sfavorevoli alla dispersione degli inquinanti e dunque all'aumento di giorni favorevoli all'accumulo di PM10.

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 13 di 121	Rev. 2

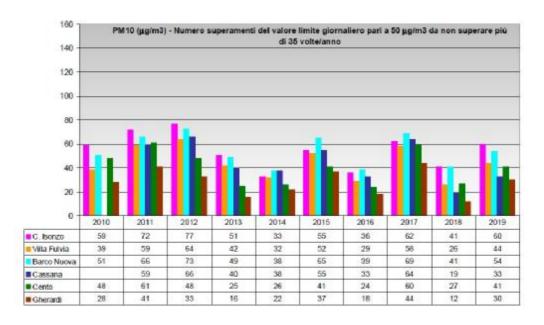


Figura 3-8 – Numero di superamenti della concentrazione limite giornaliera.

3.5 Polveri PM2.5

Il PM2.5, monitorato nelle centraline di Villa Fulvia (fondo urbano), Ostellato (fondo rurale), Gherardi (fondo rurale remoto), Cassana e Barco Nuova (stazioni locali industriali), mostra un andamento abbastanza sovrapponibile al PM10 nei diversi punti di misura. I dati relativi al PM2.5 per le centraline considerate sono riportati in Tabella 3-4.

Centralina % dati Valore Media Valore Superamento valore Stazione Minimo limite media annua Tipo validi annuale massimo Villa Fulvia Fondo urbano 100,00% 17 No <3 88 Barco Nuova Industriale 98,00% 22 94 No <3 95.00% Cassana Industriale <3 18 103 No Ostellato Fondo rurale 93,00% <3 18 87 No Fondo rurale 97,00% Gherardi <3 18 83 No remoto

Tabella 3-4 – Elaborazioni statistiche PM2.5 [g/m3] per l'anno 2019.

Le medie mensili, riportate in Figura 3-8, confermano l'andamento stagionale dell'inquinante, con valori maggiori nei mesi invernali. Nel 2019 tutte le stazioni della provincia hanno rilevato concentrazioni medie inferiori al valore limite pari a 25 μg/m³ e, dal trend annuale, si registra che nel 2019 la concentrazione media annua in quasi tutte le stazioni risulta analoga a quella registrata l'anno precedente ad eccezione della stazione di Ostellato, dove si registra un dato più elevato e CENT.MDT.GG.GEN.09650 REV. 00

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam // V	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 14 di 121	Rev. 2

nella stazione di Cassana, dove si registra un dato lievemente più basso. Anche a livello regionale la media annuale di PM2.5 nel 2019 è stata inferiore ai valore limite della normativa, così come nel 2018; i valori medi su tutte le stazioni sono in leggera diminuzione rispetto all'anno precedente.

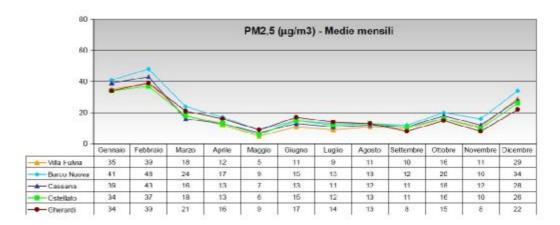


Figura 3-9 – Andamento della concentrazione media mensile.

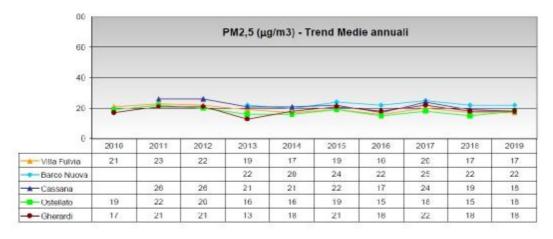
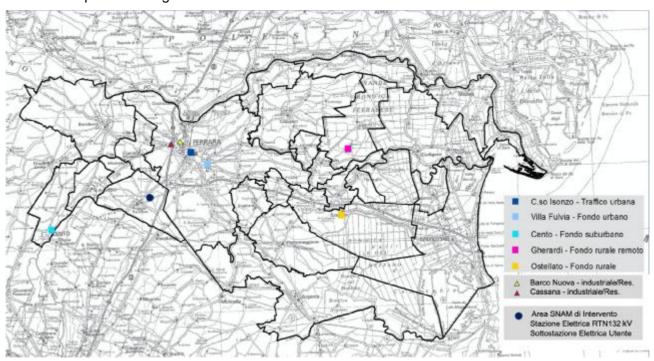


Figura 3-10 – PM2.5. Andamento della concentrazione media annuale. I simboli cavi indicano un rendimento annuale delle misure inferiore al 90%.


snam
V

PROGETTISTA	TEN TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
LOCALITA' POGG	IO RENATICO (FE)	ZA-E-	94710
	TO ENTRALE DI COMPRESSIONE GGIO RENATICO	Fg. 15 di 121	Rev. 2

4 LA QUALITÀ DELL'ARIA SU SCALA LOCALE

Le stazioni di Gherardi e di Ostellato (stazioni di fondo rurale) distano oltre 30 km dalla Centrale SNAM di Poggio Renatico e sono da ritenersi pertanto poco rappresentative della qualità dell'aria su scala locale; la stazione di C. Isonzo è anch'essa da ritenersi poco rappresentativa in quanto stazione di traffico urbano.

Si ritengono più significative, ai fini della determinazione della qualità dell'aria nell'intorno dell'area oggetto di studio, le stazioni industriali di Barco Nuova e Cassana, la stazione di fondo suburbano di Cento e quella di fondo urbano di Villa Fulvia; l'ubicazione delle centraline rispetto all'area oggetto di studio è riportata in Figura 4-1.

Centralina	Distanza [km]	Tipo Stazione	Tipo Zona	Caratteristica Zona
Gherardi	≈36,2	fondo	rurale	agricola
Ostellato	=33,4	fondo	rurale	agricola
Isonzo	≈12,7	traffico	urbana	residenziale/commerciale
Cento	≈17,5	fondo	suburbana	residenziale
Barco Nuova	≈14,1	industriale	urbana	Industriale/residenziale
Cassana	≈11,6	industriale	urbana	Industriale/residenziale
Villa Fulvia	≈13.2	fondo	urbana	residenziale

Figura 4-1 – Ubicazione delle aree di progetto e delle centraline di monitoraggio inquinamento atmosferico della provincia di Ferrara.

La qualità dell'aria su scala locale è stata determinata sulla base dei valori di concentrazione misurati dalle centraline nell'ultimo quinquennio disponibili sul sito dell'Arpa Emilia Romagna.

Si assumono quali valori di fondo per l'area in esame quelli registrati presso la centralina Barco Nuova, che tra tutte presenta i valori medi più elevati per tutti i parametri considerati (CO, NO₂ e

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 16 di 121	Rev. 2

PM); in particolare si assumono i seguenti intervalli di concentrazione per tener conto anche dell'incertezza associata alle possibili variazioni negli anni:

- per il CO un range di 0,4÷0,6 mg/mc come media annua;
- per l'NO₂ un range di 25÷30 μg/mc come media annua;
- per il PM10 un range di 30÷35 μg/m.

I dati relativi ai parametri considerati sono riportati in Tabella 4-1.

PROGETTISTA	T.E.N TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
LOCALITA' POGGIO RENATICO (FE)		ZA-E-94710	
	O NTRALE DI COMPRESSIONE GGIO RENATICO	Fg. 17 di 121	Rev. 2

Tabella 4-1 – Elaborazioni statistiche delle centraline ritenute significative al fine della valutazione della qualità dell'aria nell'intorno dell'impianto. Rapporto annuale sulla qualità dell'aria provincia di Ferrara Dati 2019.

Centralina	Parametro	2014	2015	2016	2017	2018	2019
Villa Fulvia		25	29	26	31	27	26
Barco Nuova	PM10 Media Annua	29	33	30	35	31	31
Cassana	[µg/m³]	28	32	27	32	27	27
Cento		24	30	24	32	27	27
Villa Fulvia	DN 440 V-1	109	194	129	153	83	101
Barco Nuova	PM10 Valore massimo giornaliero	115	102	149	171	90	110
Cassana	[µg/m³]	117	101	137	159	84	111
Cento	ι μ 9/····]	94	109	113	156	91	113
Villa Fulvia	PM10 Numero di	32	52	29	58	26	44
Barco Nuova	superamenti valore	38	65	39	69	41	54
Cassana	giornaliero di 35	38	55	33	64	19	33
Cento	g/m³ [µg/m³]	26	41	24	60	27	41
Villa Fulvia		24	23	20	21	19	19
Barco Nuova	NO₂ Media Annua [μg/m³]	28	28	27	30	26	26
Cassana		24	26	24	27	24	21
Cento		29	23	21	22	21	20
Villa Fulvia		124	104	97	94	88	101
Barco Nuova	NO ₂ Valore massimo	141	126	127	152	118	122
Cassana	orario [µg/m³]	109	109	123	152	105	118
Cento		102	124	98	110	110	124
Villa Fulvia		-	-	-	-	-	-
Barco Nuova	NO ₂ Numero di	-	-	-	-	-	-
Cassana	superamenti valore orario di 200 µg/m³	-	-	-	-	-	-
Cento	orano di 200 pg/m	-	-	-	-	-	-
C. Isonzo	CO Madia Amus	-	0,6	0,6	0,6	0,6	0,4
Barco Nuova	CO Media Annua [mg/m³]	-	0,6	0,6	0,6	0,6	0,5
Cassana	[mg/m]	-	0,6	0,6	0,6	0,6	0,5
C. Isonzo	CO Valana ···· l···	-	3,0	2,5	2,3	2,2	2,2
Barco Nuova	CO Valore massimo orario [mg/m³]	-	2,5	2,5	2,3	2,1	2,7
Cassana	orano [mg/m²]	-	1,5	1,6	1,9	1,4	1,7
C. Isonzo	CO Numero di	-	0	0	0	0	0
Barco Nuova	superamenti valore	-	0	0	0	0	0
Cassana	orario di 10 mg/m ³	-	0	0	0	0	0

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 18 di 121	Rev. 2

5 DESCRIZIONE DEL MODELLO DI SIMULAZIONE

La simulazione numerica della dispersione degli inquinanti emessi dall'impianto, sia nella configurazione attuale che per la futura configurazione di esercizio, è stata eseguita con il sistema modellistico Breeze CALPUFF, realizzato e distribuito dalla Trinity Consultants Inc., una società dedicata alla distribuzione di modelli matematici per la valutazione dell'impatto ambientale di inquinanti atmosferici ed incidenti industriali.

CALPUFF appartiene alla tipologia di modelli descritti al paragrafo 3.1.2 della linea guida RTI CTN_ACE 4/2001 "Linee guida per la selezione e l'applicazione dei modelli di dispersione atmosferica per la valutazione della qualità dell'aria", Agenzia Nazionale per la Protezione dell'Ambiente, Centro Tematico Nazionale – Aria Clima Emissioni, 2001.

Il modello di dispersione CALPUFF, nel modo in cui è impiegato nell'ambito del presente studio, è classificabile nella tipologia 2 della scheda 9 della norma UNI 10796:2000 "Valutazione della dispersione in atmosfera di effluenti aeriformi - Guida ai criteri di selezione dei modelli matematici", ma ha alcune caratteristiche avanzate tali da classificarlo nella tipologia 3 della medesima scheda 9. Da aprile 2003 fino a gennaio 2017, CALPUFF è stato uno dei *preferred models* adottati ufficialmente da US Environmental Protection Agency per la stima della qualità dell'aria, con le seguenti motivazioni (Appendix W to Part 51 - Guideline on Air Quality Models. Federal Register, Vol. 68, No. 72, Tuesday, April 15, 2003 / Rules and Regulations):

- «In some public comments there was a general consensus that the technical basis of the CALPUFF modeling system has merit and provides substantial capabilities to not only address long range transport, but to address transport and dispersion effects in some complex wind situations»;
- «CALPUFF in its current configuration is suitable for regulatory use for long range transport, and on a case-by-case basis for complex wind situations».

Ad oggi, CALPUFF è stato declassato come "alternative model" per applicazioni su larga scala (50 Km). Quindi, mantiene la sua alta affidabilità ed efficienza su media e piccola scala, come il caso studio in esame.

Fra le ragioni che suggeriscono l'impiego di CALPUFF nel caso in esame, si possono elencare le seguenti:

- L'algoritmo principale di CALPUFF implementa un modello di dispersione non stazionario a puff gaussiano. Questo permette la trattazione rigorosa ed esplicita anche dei periodi nei quali il vento è debole o assente, a differenza dei più noti modelli a pennacchio gaussiano (Gaussian plume models);
- I coefficienti di dispersione sono calcolati dai parametri di turbolenza (u*, w*, LMO). La dispersione risulta pertanto descritta da funzioni continue anziché discrete;
- Alle sorgenti emissive possono essere assegnate emissioni variabili nel tempo, ora dopo ora;
- Durante i periodi in cui lo strato limite ha struttura convettiva, la distribuzione delle concentrazioni all'interno di ogni singolo puff è gaussiana sui piani orizzontali, ma asimmetrica sui piani verticali, cioè tiene conto della asimmetria della funzione di distribuzione di probabilità delle velocità verticali. In altre parole, il modello simula gli effetti sulla dispersione dovuti ai moti dell'aria ascendenti (le comunemente dette "termiche") e discendenti tipici delle ore più calde della giornata e dovuti ai vortici di grande scala.

CENT.MDT.GG.GEN.09650 REV. 00

File dati: 000-ZA-E-94710 r2.docx

Documento di proprietà **Snam Rete Gas**. La Società tutelerà i propri diritti in sede civile e penale a termini di legge.

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE) ZA-E		94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 19 di 121	Rev. 2

In sostanza, la scelta del modello è ricaduta su CALPUFF per i seguenti motivi:

- Scala spaziale. Il modello prescelto è in grado di riprodurre efficacemente i fenomeni sia alla scala locale e nelle immediate vicinanze della sorgente (e.g. stack tip down wash e building downwash), sia di trasporto a lunga distanza;
- Scala temporale. Il modello CALPUFF è in grado di simulare valori di concentrazione di inquinanti su diversi intervalli temporali da 1 ora all'intero intervallo temporale di calcolo (1 o più anni), e permette di determinare i parametri di interesse per la normativa vigente (numero di superamenti, percentili, ecc.);
- Complessità dell'area di studio. Il modello meteorologico diagnostico CALMET permette di riprodurre gli effetti dovuti all'orografia del territorio (presenza di rilievi), alle disomogeneità superficiali (presenza di discontinuità terra-mare, città campagna, presenza grandi masse di acqua interne) e alle condizioni meteo diffusive non omogenee (regimi di brezza di montevalle, brezze di mare, inversioni termiche, calme di vento a bassa quota);
- Tipologia di inquinante. Tutti gli inquinanti di interesse per il presente studio (NOx, CO), possono essere efficacemente simulati dal modello di dispersione CALPUFF. Il modello è inoltre in grado di descrivere processi di rimozione (deposizione secca e deposizione umida) specifici per ciascun inquinante, e processi di trasformazione chimica secondo determinati schemi incorporati nel modello stesso;
- Tipologia delle sorgenti. Il modello CALPUFF permette di considerare le emissioni da diverse tipologie di sorgenti: puntuali (o puntiformi), areale, volumetriche. Il modello inoltre descrive fenomeni tipici di queste sorgenti, quali il *plume rise*, lo *stack tip downwash* ed altri.

Il sistema CALPUFF richiede molti più dati di input rispetto ad un tradizionale modello di tipo Gaussiano. Sono necessarie, ad esempio, misure meteorologiche al suolo con risoluzione oraria, almeno un radiosondaggio ogni 12 ore, informazioni sull'orografia e sull'uso del suolo. A fronte di questa maggiore necessità di dati, disponibili per lo studio in oggetto, il sistema modellistico fornisce informazioni molto più dettagliate e precise rispetto a modelli più semplici basati su una meteorologia puntuale.

Per il presente studio è stata utilizzata la versione più avanzata (Versione Exponent 7) del sistema modellistico CALPUFF; le simulazioni sono state condotte sulla base dei seguenti dati di input (descritti nei paragrafi che seguono):

- dati meteorologici;
- dominio di calcolo e griglia dei recettori;
- caratteristiche delle sorgenti e scenari.

5.1 Struttura del modello CALPUFF

Il software CALPUFF include 3 diversi componenti: CALMET, CALPUFF e CALPOST e un set di preprocessori messi a punto per consentire di interfacciare il modello con dataset standard di tipo meteorologico o geofisico (MAKEGEO, READ62, SMERGE, PMERGE). Inoltre, Breeze CALPUFF è provvisto di un ulteriore post-processore particolarmente indicato per la visualizzazione grafica dei risultati: 3D Analyst.

CENT.MDT.GG.GEN.09650 REV. 00

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 20 di 121	Rev. 2

CALMET è un modello meteorologico che sviluppa campi orari tridimensionali delle variabili meteorologiche di interesse sul dominio di calcolo. CALPUFF è un modello di trasporto e dispersione in atmosfera degli inquinanti "a puff" che usa tipicamente (quando possibile, come nel caso in esame) i campi di dati meteorologici e diffusivi prodotti dal preprocessore CALMET. I file di output primari prodotti da CALPUFF contengono dati orari di concentrazione o flussi di deposizione degli inquinanti in corrispondenza della griglia dei recettori. CALPOST è utilizzato per elaborare tali dati, per produrre tabelle con valori statistici significati (massimi, medie su diversi intervalli temporali), numero di superamenti, etc.

Nel seguito viene fornita una descrizione sintetica dei modelli CALMET, CALPUFF e CALPOST.

5.1.1 CALMET

CALMET [Scire et al., 2000] è un modello meteorologico diagnostico, cioè in grado di ricostruire il campo di vento 3D su un dominio di calcolo con orografia complessa a partire da misure al suolo, da almeno un profilo verticale e dai dati di orografia e uso del suolo.

Esso contiene inoltre degli algoritmi per il calcolo di parametri micrometeorologici 2D fondamentali nell'applicazione di modelli di dispersione in atmosfera, come, ad esempio, l'altezza di rimescolamento, la lunghezza di Monin-Obukhov, la velocità di frizione e la velocità convettiva.

Il modulo per la ricostruzione del campo di vento utilizza un approccio costituito da due passi successivi. Nel primo passo modifica il vento iniziale (*Initial Guess Field*) in funzione degli effetti cinematici del terreno e dei venti di pendenza e produce un primo campo di vento. Nel secondo passo questo campo di vento viene modificato tramite una analisi oggettiva che introduce i dati misurati ed utilizza l'equazione di continuità.

L'output di CALMET viene utilizzato in modo diretto dal modello di dispersione Lagrangiano a puff CALPUFF [Scire et al., 2000] e dal modello di dispersione Euleriano fotochimico CALGRID [Yamartino et al., 1989; Yamartino et al., 1992].

Per approfondimenti si rimanda al manuale tecnico di CALMET [Scire et al., 2000].

5.1.2 Descrizione del modello lagrangiano

CALPUFF [Scire et al., 2000] è un modello di dispersione Lagrangiano a puff non stazionario. Esso è in grado di simulare il trasporto, la trasformazione e la deposizione atmosferica di inquinanti in condizioni meteo variabili non omogenee e non stazionarie.

I modelli a puff partono dalle equazioni dei modelli gaussiani, ma partendo da differenti condizioni iniziali, ipotizzano la dispersione di "nuvolette" di inquinante a concentrazione nota e di forma assegnata (gaussiana o "slug"), e permettono di riprodurre in modo semplice la dispersione in atmosfera di inquinanti emessi in condizioni non omogenee e non stazionarie, superando quindi alcune limitazioni dei classici modelli gaussiani, fra cui ISC3. L'emissione viene discretizzata in una serie di singoli puff. Ognuna di queste unità viene trasportata all'interno del dominio di calcolo per un certo intervallo di tempo ad opera del campo di vento in corrispondenza del baricentro del puff in un determinato istante.

La schematizzazione del trasporto dei puff nel modello CALPUFF può essere rappresentata in maniera semplificata come in Figura 5-1:

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 21 di 121	Rev. 2

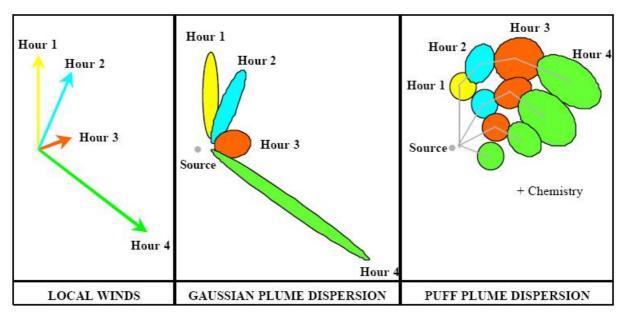


Figura 5-1 – Schema illustrativo che evidenzia la differenza tra un modello gaussiano e un modello a puff non stazionario

I coefficienti di dispersione nelle tre direzioni sono funzione, come nel caso del modello gaussiano, della distanza (o tempo di percorrenza) e delle caratteristiche dispersive dell'atmosfera. Matematicamente, ogni singolo puff è una funzione di distribuzione gaussiana in evoluzione nel tempo e nello spazio. La concentrazione totale ad un certo istante viene calcolata sommando i contributi di ogni singolo puff.

Il campo meteorologico in input a CALPUFF può essere variabile sia nello spazio che nel tempo. Il modello CALPUFF utilizza in maniera diretta l'output prodotto dal modello meteorologico diagnostico CALMET (preprocessore). Oltre a un campo meteorologico tridimensionale complesso, CALPUFF può utilizzare in input anche dati meteo riferiti a singolo punto, tuttavia ciò non permette di usufruire pienamente delle sue capacità di trattare campi meteorologici variabili nello spazio.

CALPUFF può essere utilizzato per simulare la dispersione su diverse scale. Esso, infatti, contiene sia algoritmi per la descrizione di effetti importanti in prossimità della sorgente che algoritmi importanti su scale regionali. Tra i primi ci sono fenomeni come il *building downwash*, legato alla presenza di edifici vicino al camino, il *transitional plume rise* o il *partial plume penetration*, importanti nel caso di emissioni da camini di dimensioni paragonabili a quelle dello strato limite. Tra i secondi invece ci sono fenomeni come la deposizione secca e umida, lo *shear* verticale del vento che provoca il trasporto dell'inquinante con velocità e direzioni diverse in funzione della quota, o la descrizione della dispersione sul mare o vicino alle zone costiere.

Le sorgenti di emissione simulate dal modello possono essere puntuali, areali o volumetriche. Il rateo e gli altri parametri di emissione (velocità di uscita dei fumi, temperatura, ecc.) possono essere costanti o variabili nel tempo.

1.82-3	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE) ZA-		94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 22 di 121	Rev. 2

CALPUFF produce in output, per tutte le specie simulate, valori orari di concentrazione, deposizione secca e deposizione umida e, per applicazioni in cui la visibilità è un parametro di interesse, coefficienti di estinzione.

La trattazione matematica del modello è piuttosto complessa e si rinvia al manuale tecnico di CALPUFF per ulteriori approfondimenti [Scire et al., 2000].

5.1.3 CALPOST

È un post-processore per l'elaborazione dei dati di concentrazione o di flussi di deposizione al suolo di inquinanti prodotti dai modelli CALPUFF o CALGRID (modello Euleriano per il trasporto e la dispersione di inquinanti di tipo fotochimico). Esso permette inoltre di eseguire elaborazioni riguardanti l'impatto sulla visibilità secondo standard statunitensi.

In Figura 5-2 viene riepilogata la struttura del modello, evidenziando gli elementi obbligatori ed opzionali da includere in una simulazione con CALPUFF [Lombardo et al., 2014].

-	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 23 di 121	Rev. 2

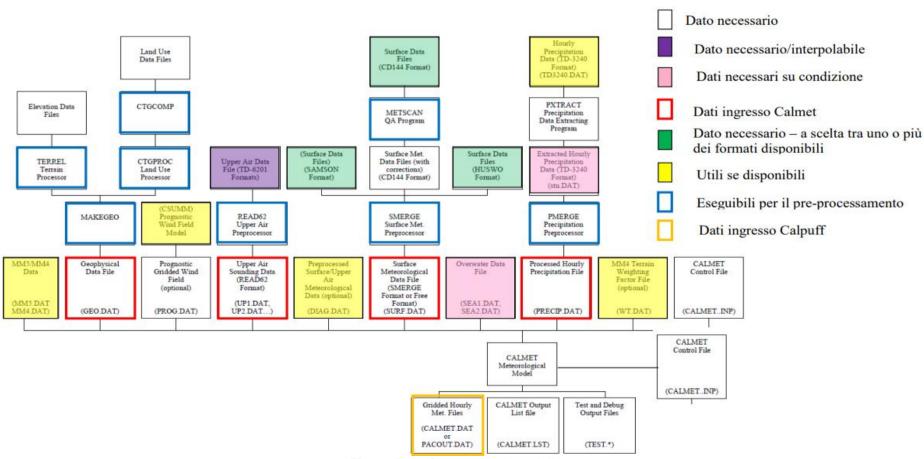


Figura 5-2 - Struttura del modello

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
LOCALITA' POGGIO RENATICO (FE)		ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 24 di 121	Rev. 2

Breeze CALPUFF dispone di un'ulteriore interfaccia di post-processing, 3D Analyst, che consente di elaborare graficamente tutti i dati processati in CALPUFF, sia dal punto di vista grafico che analitico.

Alcune delle potenzialità offerte da questo post-processore sono le seguenti:

- Completa personalizzazione delle mappature di concentrazione;
- Realizzazione di profili tridimensionali;
- Realizzazione di animazioni;
- Estrazione dei profili in determinati punti griglia, non necessariamente denominati in precedenza come recettori;
- Calcolo di medie pesate sulla base delle richieste dell'operatore;
- Calcolo di percentili;
- Calcolo di soglie di sfondamento di determinati limiti.

_	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 25 di 121	Rev. 2

6 IMPOSTAZIONE DEL MODELLO

In questo capitolo si riportano tutte le ipotesi, i dati meteorologici verticali e al suolo, gli inquinanti, le sorgenti e gli scenari definiti per la caratterizzazione del caso studio. Le coordinate sono state ricavate da Google Earth Pro e convertite nel formato UTM, WGS-84, zone 32N.

6.1 DEM e Land Use

I DEM richiesti per il preprocessore MAKEGEO sono stati recuperati da Tinitaly, un DEM Open Source sviluppato dall'Istituto Nazionale di Geofisica e Vulcanologia ad altissima risoluzione (10 metri). La zona simulata è di dimensioni di 8 km x 8 km, ed è visibile nella seguente figura.

La zona è prevalentemente pianeggiante con quote comprese fra gli 5 e gli 13 m s.l.m., si ha quindi un massimo dislivello di 8 metri lungo un percorso di 8.000 m.

In Tabella 6-1 sono riportati gli estremi sud-ovest e nord-est della zona rappresentata.

Tabella 6-1 - Confini dell'area simulata

Sistema di Coordinate di riferimento: EPSG:32632 - WGS 84 / UTM zone 32N

	X [m]	Y [m]
SW	696.000	4.958.000
NE	704.000	4.966.000

Sistema di Coordinate di riferimento: EPSG:32632 - WGS 84 / UTM zone 32N

Per il Land Use è stato utilizzato il Global Land Cover reperibile al sito della European Environmental Agency (reperibili presso il link https://www.eea.europa.eu/data-and-maps/data/global-land-cover-250m). Tale configurazione è implementabile e compatibili con le impostazioni di Breeze CALPUFF.

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 26 di 121	Rev. 2

Figura 6-1 – griglia di calcolo km 8 x 8 km, con passo di 200 m (1600 punti griglia totali).

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 27 di 121	Rev. 2

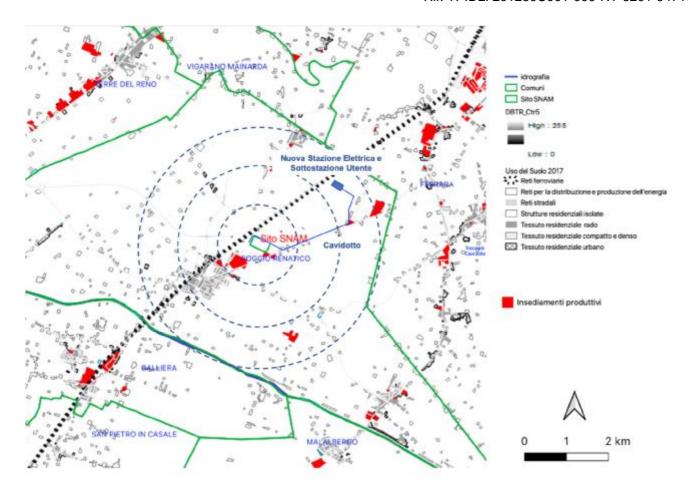


Figura 6-2 – Area di simulazione considerata

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 28 di 121	Rev. 2

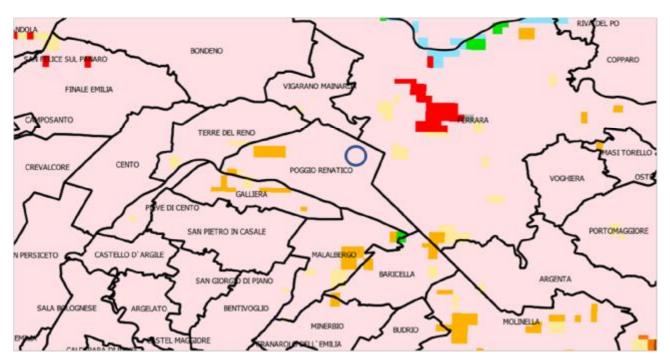


Figura 6-3 – Global Land Cover utilizzato; il cerchio blu indica il contesto territoriale relativo all'area di progetto.

6.2 Analisi dei dati meteorologici

Come noto, la dispersione degli inquinanti in atmosfera è fortemente dipendente dalle condizioni meteorologiche presenti nell'area in esame.

Un ruolo particolarmente significativo è esercitato dalla dinamica meteorologica i cui effetti sulla dispersione possono essere sommariamente distinti in:

- trasporto, ad opera del campo di vento medio;
- diluizione, essenzialmente prodotta dalla turbolenza atmosferica che caratterizza lo strato limite atmosferico (PBL).

Prima di effettuare le simulazioni di dispersione, occorre ricostruire, nel modo più dettagliato possibile, i campi tridimensionali delle principali grandezze meteorologiche del sito.

Il modello CALMET è stato utilizzato per ricostruire l'andamento delle variabili meteorologiche sfruttando un profilo verticale ed una stazione al suolo. Tale ipotesi è consistente considerando la relativamente modesta lunghezza di trasporto considerata (massimo 2 Km dalle sorgenti), ed un profilo orografico praticamente completamente pianeggiante.

I dati meteorologici al livello del suolo richiesti in input da CALMET sono diversi, e sono i seguenti:

- Velocità del vento
- Direzione del vento

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 29 di 121	Rev. 2

- Temperatura
- Umidità Relativa
- Precipitazioni
- Pressione atmosferica
- Copertura nuvolosa
- Altezza delle nubi

ARPA Emilia Romagna rende disponibili molti dati meteorologici rilevati presso la fitta rete di monitoraggio, con dati scaricabili grazie al sistema dext3r (https://simc.arpae.it/dext3r/).

Per ciò che riguarda la centrale SNAM, la stazione più vicina con i dati richiesti per le simulazioni è Ferrara (FE). La stazione dista circa 10 km dalla centrale SNAM e rende quindi i dati applicabili all'impianto presente in Poggio Renatico.

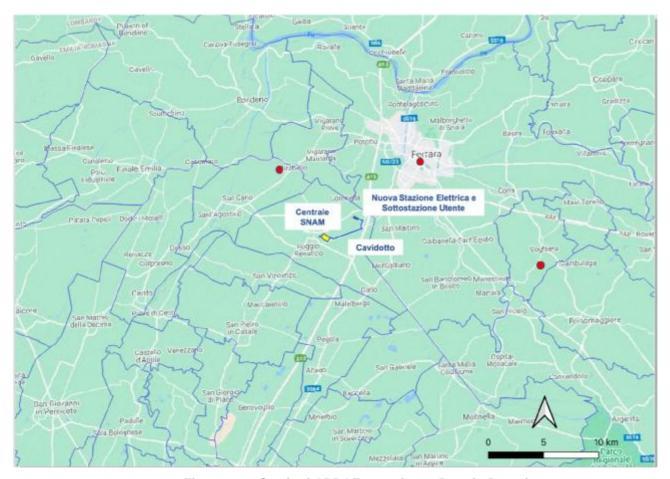


Figura 6-4 - Stazioni ARPAE prossime a Poggio Renatico

PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSION DI POGGIO RENATICO	E Fg. 30 di 121	Rev. 2

La stazione di Ferrara ha a disposizione misurazioni di vento, umidità e precipitazioni, temperatura dell'aria, pressione atmosferica e radiazione globale, su scala oraria. L'anno di rifermento considerato è il 2020.

In Tabella 6-2 sono riportati i dati per singolo parametro non rilevati o non ritenuti validi dal sistema di monitoraggio, da cui si evince che le percentuali sono trascurabili e non inficiano i risultati modellistici. I dati mancanti sono stati ottenuti per interpolazione fra i valori disponibili adiacenti. Tutti i dati sono disponibili con percentuali altamente superiori alle principali indicazioni modellistiche che prevedono la disponibilità di almeno l'80% dati totali annui e di almeno il 70% di quelli mensili.

Tabella 6-2 – Percentuale di dati meteo non validi per le stazioni considerate

Velocità del vento	Direzione del vento	Temperatura	Umidità	Radiazione globale	Precipitazioni	Pressione
0.2 %	0.2%	0.02 %	0.02%	0.01%	0.02%	0%

Per ciò che riguarda la copertura nuvolosa, è stato necessario utilizzare altri repository. Il grado di copertura è recuperabile presso la repository di World Weather Online, che consente di accedere alle medie mensili storiche direttamente a Poggio Renatico (FE). Per questo motivo, è stato necessario utilizzare i valori medi come costanti per ciascun mese di simulazione.

Figura 6-5 – Copertura nuvolosa (%) per il comune di Poggio Renatico da Gennaio 2020 a Gennaio 2021

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	RENATICO (FE) ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 31 di 121	Rev. 2

7 ANALISI METEREOLOGICA

7.1 Analisi dei dati di vento

Si riporta in seguito un'analisi dei venti per il 2020 a Poggio Renatico, tramite presentazione di rose dei venti.

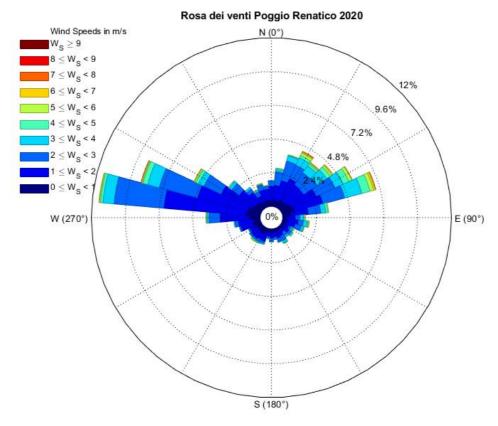


Figura 7-1- Rosa dei venti per il 2020

Dalla rosa dei venti, riportata in Figura 7-1, si notano due direzioni principali dalle quali spirano i venti, da ovest e da nord-est. Per ciò che riguarda i venti da ovest, la parte esposta è principalmente ad uso agricolo, non interessata da centri abitati. Il centro di Poggio Renatico si trova invece lungo la traiettoria dei venti da nord-est e si evidenzia quindi l'importanza dell'effettuare una corretta valutazione dei profili espositivi. Le calme di vento (<1 m/s) hanno una bassa incidenza complessivamente durante l'anno, tipico di regioni pianeggianti a poca distanza da zone marine.

Si completa l'analisi riportando in Figura 7-2 gli andamenti stagionali. Da questo punto di vista, si nota una discreta costanza nell'arco dell'anno in merito alla distribuzione dei venti, con un picco dei venti da nord-est nei periodi più caldi. Da questo si ipotizza un'esposizione del centro abitato di Poggio Renatico concentrata nei periodi caldi e con importanza molto ridotta in quelli freddi, nei quali si ha una prevalenza di venti da ovest.

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 32 di 121	Rev. 2

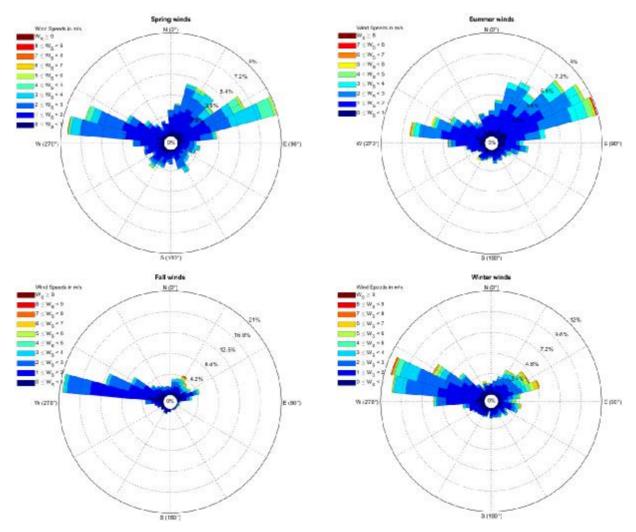


Figura 7-2 – Rappresentazione dei venti stagionali

Infine, si vanno a riportare in Figura 7-3 gli andamenti giornalieri dei venti, divisi per fasce della durata di 6 ore lungo la giornata. Anche in questo caso si nota una dipendenza dalla temperatura delle correnti ventose, con una prevalenza dei venti provenienti dai settori ovest durante le fasi più fredde della giornata.

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 33 di 121	Rev. 2

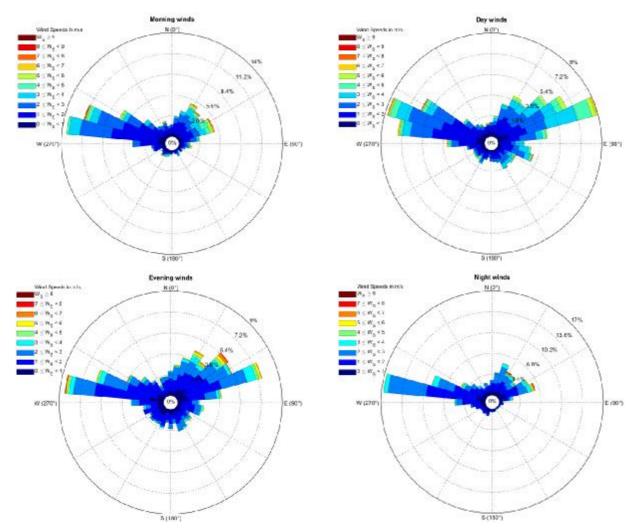


Figura 7-3 - Andamento dei venti giornalieri (Mattina: 6.00-12.00, Giorno 12.00-18.00, Sera 18.00-24.00, Notte 24.00-6.00)

7.2 Temperatura atmosferica

Si riportano le temperature lungo l'anno. L'andamento è regolare, tipico della regione emiliana, con minimi invernali contenuti entro i -5°C e massime sotto i 40°C (registrazioni anno 2020).

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 34 di 121	Rev. 2

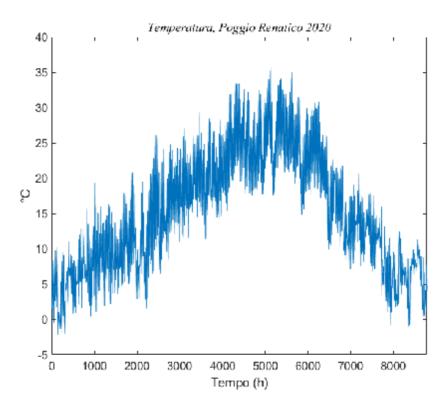


Figura 7-4 - Temperatura a Poggio Renatico per il 2020

7.3 Profili termici atmosferici

Per ciò che riguarda i profili termici verticali, sono stati recuperati i dati di sounding della stazione di San Pietro Capofiume (BO), resi disponibili dalla RAOB (Universal RAwinsonde OBservation program) e scaricabili dal sito https://ruc.noaa.gov/raobs/. I dati sono stati prelevati ed elaborati con il preprocessore READ62. Si è notata tuttavia una forte presenza di misurazioni mancanti (a volte anche di settimane). I dati mancanti sono stati dunque completati sovrascrivendoli con la stazione di radiosondaggio disponibile più vicina (Milano Linate). Un'altra stazione valida è quella di Verona, ma non sono stati trovati dati utilizzabili per il 2020. Gli eventuali rari dati ancora mancanti (circa 10 giorni lungo il periodo di un anno per il 2020) sono stati elaborati copiando i valori del giorno antecedente.

7.4 Conclusioni dell'analisi meteorologica

La Centrale SNAM e le aree su cui verranno realizzate le opere di connessione (Stazione Elettriche RTN e Utente, cavidotto MT e raccordi aerei AT) in esame, si collocano in un territorio la cui la climatologia presenta una certa semplicità e regolarità tipica degli ambienti pianeggianti e lontani da complessi orografici o altri bacini termici in grado di influenzare sia i profili termici verticali sia la circolazione a microscala.

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 35 di 121	Rev. 2

I parametri meteorologici e i relativi regimi anemologici che si vengono a determinare sono alquanto regolari e caratterizzati da una certa ciclicità durante il giorno e lungo i diversi periodi dell'anno. Inoltre, nell'ambito territoriale considerato, i venti al suolo non incontrano particolari ostacoli. Pertanto, si ritiene che l'utilizzo di un modello lagrangiano fornisca risultati alquanto accurati considerato sia la scala dell'ambito sia i regimi di vento caratteristici.

7.5 Condizioni di simulazione – CALPUFF

Sono state effettuate simulazioni su griglie 40 x 40, con passo di 200 m.

CALPUFF è stato impostato utilizzando l'output meteorologico di CALMET per i dati meteo, includendo le opere rappresentate da diversi cantieri previsti e dal traffico stradale generato.

Gli NOx, in modo cautelativo, vengono considerati senza trasformazione chimica e assimilati tutti a NO₂.

I fenomeni di deposizione umida o secca non sono considerati, dato che si simula la dispersione di inquinanti gassosi.

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 36 di 121	Rev. 2

8 EMISSIONI IN FASE DI CANTIERE

In questo capitolo sono illustrate tutte le assunzioni relative alla caratterizzazione delle diverse tipologie di fonti di emissioni che saranno utilizzate per implementare il modello dispersivo in atmosfera.

8.1 Descrizione delle attività di cantiere

L'adeguamento della centrale di compressione SNAM e le relative opere accessorie richiederanno l'allestimento dei seguenti cantieri:

- Cantiere all'interno della Centrale di compressione SNAM;
- Cantiere Appaltatore: base logistica a supporto di tutte le attività da realizzare in un'area esistente a sud della Centrale SNAM;
- Cantiere per la realizzazione dei raccordi in Alta Tensione (AT) alla linea 132 kV "Altedo Ferrara Sud";
- Cantiere la realizzazione di una nuova Stazione Elettrica RTN 132 kV;
- Cantiere la realizzazione di una nuova Sottostazione Elettrica Utente 132/15 kV;
- Cantiere per la realizzazione di un collegamento interrato in Media Tensione (MT) dalla Sottostazione Utente fino alla Centrale di Compressione gas SNAM.

Le attività e le tempistiche associate a ciascun cantiere sono definite secondo un diagramma di GANTT. I dettagli del cronoprogramma delle attività sono riportati negli elaborati 210-ZX-D-02505 "Cronoprogramma lavori"(lavori Centrale SNAM), EUDR21004B2179030 (lavori SE RTN e raccordi AT) e EUDR21004B2179359 (lavori SSE Utente e cavidotto MT) allegati allo SPA.

In questo studio, invece, in Allegato 1 viene riportato un cronoprogramma lavori semplificato con l'indicazione delle fasi considerate ai fini della stima delle emissioni in atmosfera.

Le voci che comportano le principali emissioni possono essere classificate secondo queste categorie:

- Emissioni dai mezzi di movimentazione e trasporto:
- Emissioni di macchinari di cantiere;
- Movimentazione del terreno, formazione e stoccaggio cumuli;
- Erosione da cumuli di terra;
- Risollevamento di inquinamenti da transito di mezzi su strade non asfaltate.

Nei seguenti paragrafi sono dapprima descritti gli approcci metodologici e modellistici per caratterizzare ciascuna delle fonti di emissione considerate. In seguito sono descritti i fattori emissivi associati a ciascun cantiere e infine sono riportate le assunzioni modellistiche e i relativi risultati ottenuti.

5 20-20	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 37 di 121	Rev. 2

8.2 Metodi di stima delle emissioni

8.2.1 Emissioni dai mezzi di movimentazione e trasporto

Gli inquinanti prodotti dai mezzi d'opera (mezzi di movimentazione e trasporto) sono essenzialmente associati ai processi di combustione dei relativi motori endotermici. Per ogni tipologia utilizzata in ciascun cantiere e durante le diverse fase di attività, si stimano i fattori di emissione ricorrendo alle seguenti banche dati:

- SCAB (South Coast Air Basin) Fleet Average Emission Factors per stimare le emissioni dei mezzi di movimentazione in cantiere;
- Database dell'EPA "Average In-Use Emissions from Heavy-Duty Trucks" per gli autocarri. Si considerano autocarri di classe VI, ovvero con un peso fra le 9 e le 16 tonnellate, compatibili con mezzi dalla capacità di 10-12 mc;
- I limiti normativi definiti dalla normativa Euro VI in fatto di emissioni per autobus (10/12 posti) e fuoristrada.

Per i mezzi di cantiere, il fattore di emissione è riportato come grammi di contaminante emesso per ore di attività da cui si può calcolare il fattore emissivo complessivo considerando il numero di mezzi utilizzati e il numero di ore di utilizzo giornaliere.

Per quanto riguarda invece i mezzi di trasporto il parametro emissivo è definito in funzione dei chilometri percorsi. Pertanto questi fattori emissivi sono espressi in g/km. E' quindi necessario ipotizzare la distanza percorsa che è stata stimata assumendo delle velocità di percorrenza medie. Per i mezzi pesanti si considera una velocità media di 15 km/h, mentre per autobus e fuoristrada si è ipotizzata una velocità media di 50 km/h.

8.2.2 Emissioni di macchinari di cantiere

Le emissioni associate a queste classi di macchinari dipendono dalla potenza sviluppata dal motore e non dai chilometri percorsi. I fattori di emissione dipendono quindi in modo più sensibile dal carico movimentato. Tali macchine operatrici compiono infatti minimi spostamenti o addirittura restano ferme, pur mantenendo i motori accesi.

La stima dei fattori di emissione è quindi basata sulla banca dati SCAB già illustrata nel precedente capitolo, utilizzando i valori mediati nel periodo 2010-2020.

8.2.3 Movimentazione del terreno, formazione e stoccaggio cumuli

La presenza di scavi determina dispersioni di polveri sottili associati alla movimentazione di terreni ed allo stoccaggio degli stessi. Il contaminante rilasciato associato a quest'attività è essenzialmente associato alla frazione più fine di polveri in quanto quelle più pesanti si depositano in modo relativamente veloce e in prossimità dei punti di rilascio. Le frazioni più fini come PM10 e PM2,5 oltre ad avere un interesse dal punto di vista della contaminazione ambientale e per gli impatti per la

salute umana, sono in grado di rimanere sospese in aria ed essere trasportate dai processi anemologici locali.

La stima delle emissioni di particolato fine è effettuata facendo riferimento al documento "AP 42 Fifth Edition, Volume I, Chapter 13, Miscellaneous Source", che riporta i riferimenti emissivi in funzione delle tonnellate di terra rimossa. Il coefficiente emissivo viene quindi definito come grammi di polveri sottili rilasciate per tonnellata di terra rimossa. Il fattore di emissione inoltre viene stimato considerando anche gli effetti dovuti all'intensità del vento e al grado di umidità del terreno.

$$E = 0.0016 \cdot k \cdot \frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}$$

E = fattore di emissione espresso in kg di polveri per tonnellata di materiale rimosso;

U = velocità del vento, in m/s;

M = contenuto percentuale di umidità del suolo, variabile da 0,25 a 4,8%;

K = fattore che dipende dalle dimensioni del particolato.

8.2.4 Erosione del vento dai cumuli di terra

Secondo quanto riportato in letteratura, le emissioni derivanti dagli effetti erosivi dovuti all'azione del vento di diversa intensità su cumuli di materiale da scavo sono di bassa entità. Sulla superficie tipicamente si vengono a formare delle coperture vegetali e si forma tipicamente una crosta, cioè uno strato di terreno caratterizzato da un basso grado di umidità, che ne limita le azioni meccaniche del vento. Il potenziale emissivo aumenta però ogni volta che la superficie viene alterata fornendo al cumulo una nuova superficie di materiale erodibile.

In generale il ciclo di stoccaggio di materiale in cumuli prevede che venga periodicamente aggiunto o sottratto del materiale, andando a modificare il vecchio strato superficiale, inattivo dal punto di vista del potenziale emissivo, riattivando la capacità erosiva del vento. Le emissioni giornaliere del cumulo sono pertanto direttamente proporzionali al numero di alterazioni della crosta al giorno. Si può inoltre osservare che la velocità del vento medio atmosferico (anche su base oraria) non è sufficiente a generare una significativa erosione della superficie dei materiali accumulati ed occorre fare pertanto riferimento alle intensità massime delle folate di vento ed alla loro frequenza nel periodo tra un intervento di disturbo ed un altro. In sintesi, le emissioni legate allo spolveramento da parte del cumulo dipendono da fattori quali il numero di disturbi giornaliero, l'età del cumulo, il suo contenuto di umidità, la porzione di aggregati fini e dalle condizioni anemologiche del sito.

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 39 di 121	Rev. 2

Le emissioni per erosione del vento dai cumuli sono caratterizzate nell'AP-42, §13.2.5 "Industrial Wind Erosion" che tratta il potenziale emissivo del singolo cumulo in funzione di una serie di fattori. In particolare, il rateo emissivo orario è dato da:

 $E_i(kg/ora) = EF_i \times a \times movh$

dove

i = la frazione di particolato considerata (PTS, PM₁₀, PM_{2,5});

 $EF_i(kg/m^2)$ = fattore di emissione areale;

 $a(m^2)$ = superficie dell'area movimentata;

movh = numero di movimentazioni/ora.

Per quanto riguarda le aree di cantiere oggetto di questo studio, si può evidenziare che per i cumuli di stoccaggio temporaneo non sono prevedibili movimentazioni giornaliere dal momento della loro formazione a quello del loro impiego o trasferimento.

Dato che il rateo emissivo legato all'azione erosiva del vento sui cumuli di materiale inerte è legato al disturbo giornaliero arrecato dall'aggiunta o sottrazione di materiale al cumulo stesso, nel caso specifico dei cantieri in esame si può ritenere trascurabile il potenziale erosivo da parte del vento sulla superficie dei cumuli. Per limitare l'eventuale spolvero potranno cautelativamente essere adottate eventuali misure di mitigazione come la copertura delle superfici con teli ovvero il bagnamento delle superfici con acqua (wet suppression).

8.2.5 Risollevamento di inquinamenti da transito di mezzi su strade non asfaltate

Nei cantieri in esame, l'unica opera che richiede transito su zone non asfaltata è la realizzazione della sottostazione RTN e la sottostazione d'utente, che dista 300 metri dalla SP8. In aggiunta, il transito di autocarri e macchine operatrici avviene a velocità estremamente contenute, per le quali l'emissione di polveri dal suolo è trascurabile. Inoltre, il transito su strada non asfaltata è contenuto, ed è quindi trascurabile ai fini dei calcoli delle emissioni.

8.3 Cantiere per l'allestimento di una base logistica

Al fine di supportare le attività di realizzazione degli interventi previsti per la Centrale di compressione SNAM, sarà allestita e attrezzata un'area di cantiere temporanea esterna al sito SNAM, di superficie pari a circa 20.000 mq.

In via preliminare è stata individuata come possibile area di utilizzo l'area industriale indicata in Figura 8-1, ubicata a sud-ovest della Centrale, ad una distanza di circa 1,5 km. Tale area non

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 40 di 121	Rev. 2

richiederà particolari interventi che comporteranno emissioni in quanto era già stata utilizzata in passato per analoghi scopi. Quest'area fornirà un supporto di tipo logistico alle maestranze impiegate in quanto sarà attrezzata con locali adibiti ad ufficio, servizi igienici, officina parcheggi e magazzini per il deposito di attrezzature e materiali.

Gli uffici, il magazzino e le officine saranno strutture prefabbricate montate in loco almeno due mesi prima dell'inizio dei lavori.

Pertanto questa area non costituirà una fonte di emissione rilevante e pertanto non viene considerata dal modello dispersivo degli inquinanti.

Figura 8-1 - Area di cantiere temporanea esterna al sito SNAM

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 41 di 121	Rev. 2

8.4 Cantiere per la realizzazione dei raccordi in Alta Tensione (AT) alla linea 132 kV "Altedo – Ferrara Sud"

Questo cantiere prevede la realizzazione di un elettrodotto aereo. Le attività previste sono suddivisibili in tre fasi principali:

- 1) esecuzione delle fondazioni dei sostegni;
- 2) montaggio dei sostegni;
- 3) messa in opera dei conduttori e delle corde di guardia.

Solo la prima fase comporta movimenti di terra.

Oltre agli scavi di fondazione, saranno realizzati dei piccoli scavi in prossimità del sostegno per la posa dei dispersori di terra con successivo rinterro e costipamento.

La realizzazione delle fondazioni di un sostegno prende avvio con l'allestimento dei cosiddetti "microcantieri" relativi alle zone localizzate da ciascun sostegno. Essi sono destinati alle operazioni di scavo, getto in cemento armato delle fondazioni, rinterro ed infine all'assemblaggio degli elementi costituenti la tralicciatura del sostegno.

Le attività di scavo si limitano alla realizzazione di 4 plinti agli angoli dei tralicci (fondazioni a piedini separati). Ognuna delle quattro buche di alloggiamento della fondazione è realizzata utilizzando un escavatore e avrà dimensioni di circa 3x3 m con una profondità non superiore a 4 m, per un volume medio di scavo pari a circa 30 mc; una volta realizzata l'opera, la parte che resterà in vista sarà costituita dalla parte fuori terra dei colonnini di diametro di circa 1 m.

Pulita la superficie di fondo scavo si getta, se ritenuto necessario per un migliore livellamento, un sottile strato di "magrone". Nel caso di terreni con falda superficiale, si procederà all'aggottamento dell'acqua dallo scavo con una pompa.

In seguito, si procede con il montaggio dei raccordi di fondazione e dei piedi, il loro accurato livellamento, la posa dell'armatura di ferro e delle casserature, il getto del calcestruzzo.

Trascorso il periodo di stagionatura dei getti, si procede al disarmo delle casserature. Si esegue quindi il rinterro con il materiale proveniente dagli scavi, se ritenuto idoneo, ripristinando il preesistente andamento naturale del terreno. Il materiale di scavo in eccesso sarà gestito secondo quanto previsto nel piano di utilizzo delle terre e rocce da scavo allegato allo SPA (elaborato 200-ZA-E-94703) cui si rimanda per maggiori dettagli.

Considerata l'entità degli scavi e la durata di questa attività si ritiene che le potenziali emissioni generate possano essere trascurate.

Figura 8-2 - Esempio di scavo per la realizzazione di fondazioni superficiali per un sostegno a traliccio. Si evidenziano le quattro buche, la base del sostegno collegata alla fondazione tramite i "monconi" ed i casseri utilizzati per quattro "colonnini"

8.5 Descrizione delle attività di cantiere della Centrale di Compressione SNAM

Le attività previste per la realizzazione del progetto in esame saranno articolate nelle seguenti Fasi:

- **FASE 0** lavori civili, meccanici, elettro-strumentali e di protezione catodica di installazione EC5 e facilities;
- FASE 1- Esecuzione tie-ins per l'inserimento del nuovo ELC5 e per lo smantellamento del TC1, modifica dei Sistemi esistenti e Pre-commissioning (in fermata impianto) e Commissioning EC5;
- FASE 2 dismissione del TC1 e ripristini.

L'inizio dei lavori in Centrale è previsto a inizio Febbraio 2023, a valle dell'ottenimento di tutte le autorizzazioni previste e del completamento delle forniture e delle gare di appalto per l'esecuzione dei lavori.

La durata complessiva dei lavori in Centrale prevista è di 34 mesi; i lavori termineranno entro Novembre 2025.

PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000	
LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710		
PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 43 di 121	Rev. 2	

8.5.1 Emissioni di mezzi e macchinari di cantiere

I mezzi che si prevede di impiegare in fase di cantiere per la realizzazione delle opere in progetto, il numero medio di ore/giorno di utilizzo e le relative caratteristiche di potenza sono riportati in Tabella 8-1.

Tabella 8-1 – mezzi utilizzati durante le diverse fasi del progetto

Fase – Attività di cantiere	Mezzi	n.	Potenza HP	Ore/giorno
	Pulmino 10/12 posti	2		4
SERVIZI GENERALE DI	Fuori strada	4		2
CANTIERE E LOGISTICA	Gruppo elettrogeno KW 250	1	400 HP	5
	Autovetture	3		3
FASE 0 – SCAVI A MANO	Escavatore cingolato CAT 320 BSV C-225	1	192 HP	3
	Autocarro ribaltabile 10/12 mc.	1	296 HP	8
FASE 0 - INFISSIONE	Battipalo Cingolato L.B.108B	4	116 HP	8
PALANCOLE	Autocarro con gru	1	260 HP	4
FASE 0 - SCAVI DI	Autocarro ribaltabile 10/12 mc.	3	296 HP	8
SBANCAMENTO	Escavatore cingolato CAT 320 BSV C- 225	3	192 HP	8
FASE 0 - SCAVI A SEZIONE	Autocarro ribaltabile 10/12 mc.	1	296 HP	8
OBBLIGATA	Escavatore Cat 225	1	192 HP	4
	Escavatore cingolato CAT 320 BSV C- 225	1	192 HP	6
FASE 0 - ESECUZIONE PALI DI	Autocarro ribaltabile 10/12 mc.	1	296 HP	6
FONDAZIONE TRIVELLATI IN C.A.	Macchina di perforazione pozzi verticali Robins Mod 73	3	320 HP	8
	Autobetoniera	1	296 HP	6
FASE 0 - OPERE IN C.A.				
FABBRICATO	Autogrù gommata 25t	2	143 HP	4
SOTTOSTAZIONE ELCO E POZZETTI IN C.A.	Autobetoniera	2	296 HP	3
	Vibratore a piastra	3	40 HP	4
	Compressore	2	150 HP	5
	Pompa per calcestruzzi	2	450 HP	2
FABBRICATO MEDIA	Autogrù gommata 25t	1	143 HP	4
TENSIONE, FONDAZIONE REFRIGERANTE EA-EC5, FABBRICATO HVAC E FONDAZIONI GRUPPI FRIGO IN C.A.	Autobetoniera	1	296 HP	3
	Pompa per calcestruzzi	1	450 HP	2
	Autogrù gommata 25t	1	290 HP	3

PROGETTISTA	TEN TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
LOCALITA' POGO	GIO RENATICO (FE)	ZA-E-94710	
	ITO CENTRALE DI COMPRESSIONE DGGIO RENATICO	Fg. 44 di 121	Rev. 2

FONDAZIONE ELCO,	Autobetoniera	1	296 HP	3
CABINATO ELCO, SUPPORTI TUBAZIONI E POZZETTI, BLOCCHI DI ANCORAGGIO IN C.A.	Pompa per calcestruzzi	1	450 HP	2
SUPPORTI TUBAZIONI E	Vibratore a piastra	2	40 HP	5
POZZETTI PER VALVOLE,	Compressore	1	150 HP	3
POZZETTI PER CAVI ELE-SMI, MASSSELLI PER PERCORSI	Autobetoniera	1	296 HP	4
CAVI	Pompa per calcestruzzi	1	450 HP	2
FASE 0 - OPERE IN CARPENTERIA METALLICA	Autogrù gommata 25t	1	143 HP	8
(CABINATO)	Motocompressore 9 atm	1	150 HP	5
	Autocarro	1	120 HP	5
FASE 0 - MONTAGGIO LINEE E	Motosaldatrice 400A	2	32HP	5
VALVOLE	Gru' Telescopica Tipo Gommata HYCO RT-135 55t	1	132 HP	4
	Gru cingolata AMERICAN 9310 210 tons	1	310 HP	3
FASE 0 - MONTAGGIO ELCO	Escavatore cingolato CAT 320 BSV C-225	1	192 HP	2
	Autogrù gommata 25t	1	143 HP	5
	Motosaldatrice 400A	2	32 HP	4
FASE 0 – INSTALLAZIONE	Gru cingolata AMERICAN 9310 210 tons	1	310 HP	3
REFRIGERANTE, QUADRI, TRASFORMATORI E FILTRI	Escavatore cingolato CAT 320 BSV C- 225	1	192 HP	2
ARMONICI	Autogrù gommata 25t	1	143 HP	5
	Motosaldatrice 400A	2	32 HP	4
	Escavatore cingolato CAT 320 BSV C-225	2	192 HP	8
FASE 0 - RINTERRI	Autocarro ribaltabile 10/12 mc	2	296 HP	8
	Pala Gommata CAT-966D	1	197 HP	4
	Rullo compattatore	1	150HP	5
FASE 0 - OPERE CIVILI RETI METEORIICHE, FOGNATURE,	Escavatore cingolato CAT 320 BSV C-225	2	192 HP	8
RIPRISTINI ANTINCENDIO,	Autobetoniera	1	296 HP	3
FINITURE PERCORSI CAVI ELE/SMI/PC	Autocarro ribaltabile 10/12 mc.	2	296 HP	8
	Gru' gommata HYCO RT-135 55t	1	132 HP	3
FASE 1 - ESECUZIONE TIE- INS MECCANICI	Escavatore cingolato CAT 320 BSV C-225	1	192 HP	3
INO WEOGANIOI	Motocompressore ATLAS-COP.XA160 9500 lt/m	1	113HP	5

PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 45 di 121	Rev. 2

	T			
	Autocarro	1		5
	Motosaldatrice 400A	2	32 HP	4
	Gru cingolata AMERICAN 9310 210 tons	1	310 HP	3
	Escavatore con Martellone CAT 225	1	192 HP	6
FASE 2 - SMANTELLAMENTO TC-1 E BONIFICA AREA	Autocarro ribaltabile 10/12 mc.	2	296 HP	3
TOTE BONITION AREA	Martello demolitore	1	150 HP	3
	Motocompressore ATLAS- COP.XA160 9500 lt/m	1	113 HP	2
	Autocarro ribaltabile 10/12 mc.	2	296 HP	3
FASE 0 - OPERE STRADALI	Escavatore cingolato CAT 320 BSV C- 225	1	192 HP	6
VARIE	Rullo compattatore	1	150HP	5
	Grader CATERPILLAR 12-G Tipo Gommato	1	135 HP	3
FASE 2 - RISISTEMAZIONI TERRENO E RIPRISTINI	Autocarro	1		

I fattori emissivi vengono presentati in Tabella 8-2. Ogni macchinario viene associata alla corrispondente categoria SCAB.

Tabella 8-2 - fattori emissivi

Mezzi	Potenza HP	CO [g/ora]	NOx [g/ora]	PM [g/ora]
Gruppo elettrogeno KW 250	400	313.9511441	701.428261	26.71214409
Escavatore cingolato CAT 320 BSV C-225	192	302.0819667	336.0394555	18.88898549
Battipalo Cingolato L.B.108B	116	200.0056575	268.5802209	23.79256658
Autocarro con gru	260	127.6825771	383.2851467	13.63689013
Escavatore Cat 225	192	302.0819667	336.0394555	18.88898549
Escavatore cingolato CAT 320 BSV C-225	192	302.0819667	336.0394555	18.88898549
Macchina di perforazione pozzi verticali Robins Mod 73	320	155.6575043	257.7061027	7.779285546
Autobetoniera	296	231.9224176	559.1886405	18.74354555
Autogrù gommata 25t	143	217.8632493	302.5922313	17.26007973
Vibratore a piastra	40	11.94751367	14.27739284	0.57298016
Compressore	150	228.3223708	319.9013612	17.67843679
Pompa per calcestruzzi	450	328.812905	935.3362691	28.40244162
Motocompressore 9 atm	150	228.3223708	319.9013612	17.67843679
Motosaldatrice 400A	32	25.15322788	44.68766968	2.582249578
Gru' Telescopica Tipo Gommata HYCO RT-135 55t	132	161.9043702	220.5502382	18.99227882

PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 46 di 121	Rev. 2

Gru cingolata AMERICAN 9310 210 tons	310	127.6825771	383.2851467	13.63689013
Motosaldatrice 400A	32	25.15322788	44.68766968	2.582249578
Pala Gommata CAT-966D	197	289.8496844	836.9075371	35.1521289
Rullo compattatore	150	181.8686491	250.8324101	20.69815771
Gru' gommata HYCO RT-135 55t	132	217.8632493	302.5922313	17.26007973
Motocompressore ATLAS-COP.XA160 9500 lt/m	113	228.3223708	319.9013612	17.67843679
Escavatore con Martellone CAT 225	192	302.0819667	336.0394555	18.88898549
Martello demolitore	150	328.0173083	452.5291375	26.00544022
Grader CATERPILLAR 12-G Tipo Gommato	135	302.0819667	336.0394555	18.88898549
Gru' gommata HYCO RT-135 55t	132	217.8632493	302.5922313	17.26007973

Per i mezzi di trasporto si utilizzano i riferimenti riportati in Tabella 8-3. Per gli autocarri si considera una classe VI, comparabile con un mezzo da circa 16 tonnellate. Per i mezzi più leggeri si considera la normativa Euro VI.

Tabella 8-3 – dati relativi ai mezzi utilizzati durante le diverse fasi del progetto

Mezzi	Potenza HP	CO [g/ora]	NOx [g/ora]	PM [g/ora]
Pulmino 10/12 posti		0.74	0.125	0.005
Fuori strada		0.5	0.08	0.004
Autocarro ribaltabile 10/12 mc.	296	2.120	7.320	0.25

8.5.2 Movimentazione del terreno, formazione e stoccaggio cumuli

Nell'area della Centrale sono previsti:

- scavi di sbancamento;
- scavi a sezione obbligata;
- scavi a mano.

Gli scavi di sbancamento saranno effettuati in corrispondenza delle seguenti aree:

- Fabbricato di Media Tensione fino alla quota di imposta dei pali di fondazione pari a -2,650 m dalla quota 0.00 impianto;
- Fabbricato HVAC, Refrigerante VFD e Gruppi frigo HVAC fino alla quota di imposta dei pali di fondazione pari a -1,050 m;
- Fabbricato Sottostazione ELCO fino alla quota di imposta dei pali di fondazione pari a -3,550 m;

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 47 di 121	Rev. 2

- Cabinato ELCO fino alla quota di imposta dei pali di fondazione pari a -3,300 m;
- Area impiantistica con profondità pari a -3,000 m.

Le quote sono riferite alla quota impianto 0.00 pari a 8,20 m s.l.m.

Gli scavi a mano saranno realizzati all'interno dell'area sterile dei vent, con la demolizione della pavimentazione stradale in fermo impianto e in corrispondenza dell'installazione delle tubazioni e supporti in c.a. nelle aree interferite da servizi e altre tubazioni in esercizio.

Per maggiori dettagli sulle aree di scavo si rimanda alla Planimetria scavi 200-CB-A-12040 allegata.

Nell'area del TC1 è prevista, dopo la rimozione dei cavi e di tutte le strutture e apparecchiature, la demolizione delle fondazioni in c.a. e il rinterro. In quest'area la pavimentazione sarà ripristinata soltanto per accedere alle valvole di intercetto, la restante area sarà ripristinata a verde. Parte del terreno di scavo sarà riutilizzato nell'area di smantellamento del TC1. Il quantitativo di terreno mobilitato complessivamente è riportato in Tabella 8-4.

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 48 di 121	Rev. 2

Tabella 8-4 – quantitativo di terreno movimentato durante gli scavi

		Volumi di scavo (m³)	Volumi di riutilizzo in sito(m³)	Volumi di riutilizzo presso siti esterni (m³)	Volumi di rifiuto (m³)
Adeguamento Centrale compressione gas	Scavi di sbancamento	33.784	26.612	7.172	-
	Scavo a sezione obbligata	2.592	2.511	81	-
SNAM	Scavo a mano	8.265	7.924	341	-
	Scavo a mano in area TC1	5.787	5.787	-	-
Totale Adeguamento	Centrale SNAM	50.428	42.834	7.594	

Si riportano in Tabella 8-5 le emissioni associate alle movimentazioni. La movimentazione del terreno dovuta agli scavi viene ripresa dalle specifiche tecniche delle opere. La produzione di polvere giornaliera viene stimata sulla base dei GANTT secondo lo schema riportato in Allegato 1 al presente documento.

La tabella 8-5 riporta i valori di emissione di polveri emesse, stimate sulla base delle attività di sbancamento pianificate.

Tabella 8-5 – emissioni associate alle movimentazioni

Riferimento opera di scavo	m³	kg polvere/giorno	Kg polveri totali
SAGGI SCOTICO E INFISSIONE PALANCOLE	8.240	0.00159	0.0477
SCAVI SBANCAMENTO FABBRICATI SOTTOSTAZIONE ELCO ED HVAC	9.064	0.00159	0.0525
SCAVI SBANCAMENTO CABINATO ELCO E PIPING	12.360	0.00159	0.0715
SCAVI SBANCAMENTO FABBRICATO MT	4.120	0.00159	0.0238
SCAVI A SEZIONE OBBLIGATA	2.592	0.000428	0.0150
SCAVI A MANO	14.052	0.00131	0.0813

8.5.3 Erosione del vento dai cumuli di terra

In generale nei cantieri esaminati potranno essere presenti cumuli di materiale di scavo accantonato al momento dello scavo stesso, in attesa del suo successivo eventuale impiego in sito. Analogamente potrà essere necessario accantonare il materiale in esubero proveniente dagli scavi in attesa del suo trasferimento all'esterno a fine lavori. In generale, quindi, si tratterà di cumuli di temporaneo stoccaggio, per i quali non sono prevedibili movimentazioni giornaliere dal momento della sua formazione a quello del suo impiego o trasferimento.

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 49 di 121	Rev. 2

Dato che, come spiegato in precedenza, il rateo emissivo legato all'azione erosiva del vento sui cumuli di materiale inerte è legato al disturbo giornaliero arrecato dall'aggiunta o sottrazione di materiale al cumulo stesso, nel caso specifico dei cantieri in esame si può ritenere trascurabile il potenziale erosivo da parte del vento sulla superficie dei cumuli.

Per limitare l'eventuale spolvero potranno cautelativamente essere adottate eventuali misure di mitigazione come la copertura delle superfici con teli ovvero il bagnamento delle superfici con acqua (wet suppression).

8.5.4 Risollevamento di inquinamenti da transito di mezzi su strade non asfaltate

Non si prevede l'utilizzo di strade o connessioni non asfaltate a servizio di questo cantiere.

8.6 Descrizione delle attività di cantiere delle Stazioni Elettriche RTN e Utente

La realizzazione delle Stazioni Elettriche RTN e Utente è suddivisibile nelle seguenti fasi principali, associabili ai lavori su entrambi i progetti previsti:

- 1) Scavi di scotico dell'area di intervento e di livellamento;
- 2) Realizzazione delle opere di contenimento del rilevato di stazione;
- 3) Sistemazione della strada d'accesso alla stazione elettrica:
- 4) Riporto materiale da cava per realizzazione rilevato di stazione;
- 5) Scavi per le opere di fondazione più profonde (fondazione edificio, fondazioni portali linee aeree, vasche interrate);
- 6) Realizzazione opere civili di stazione (fondazioni apparecchiature);
- 7) Completamento del rilevato di stazione sino a quota -0,1 m rispetto alla quota finita del piazzale di stazione;
- 8) Esecuzione delle piantumazioni esterne;
- 9) Messa in opera delle apparecchiature elettromeccaniche;
- 10) Messa in opera dei sistemi di protezione e controllo.

Non tutte le fasi sopra riportate comportano movimenti terra.

Delimitate le aree interessate alla nuova installazione, si procede allo scotico del terreno superficiale per una profondità dipendente dalla quota finale dell'impianto.

Se necessario, ai fini del consolidamento del terreno e per raggiungere la quota di progetto, si potrà integrare con appositi materiali provenienti da cava.

A partire dallo scavo di sbancamento verranno realizzati gli scavi a sezione per le diverse fondazioni e per le infrastrutture; i materiali provenienti da questi scavi saranno utilizzati per i rinterri e per la formazione dei piazzali.

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 50 di 121	Rev. 2

Il materiale di scavo in eccesso verrà opportunamente depositato in aree individuate all'interno del cantiere in attesa di caratterizzazione e di conferimento presso siti esterni (se idoneo) per il riutilizzo in conformità al DPR 120/2017.

8.6.1 Emissioni di mezzi e macchinari di cantiere

Si prevede l'utilizzo dei seguenti macchinari per ciascuna stazione:

Sistemazione sito

- N. 10 autocarri pesanti da trasporto;
- N. 3 escavatori;
- N. 3 betoniere;
- N. 1 pompa calcestruzzo;
- N. 2 autogrù gommate;
- N. 1 macchina trivellatrice;
- N. 1 compressore
- N. 1 demolitore
- N. 1 gruppo elettrogeno
- N. 1 rullo compressore
- N. 1 vibratore a piastra

Montaggi elettromeccanici ed installazione SA, SG, SAS

- N. 3 autocarri pesanti da trasporto;
- N. 2 autogrù gommate;
- N. 2 cestelli per lavorazioni in elevazione

Si riportano in Tabella 8-6 alcune caratteristiche tecniche dei mezzi presi in considerazione.

Tabella 8-6 – caratteristiche dei mezzi utilizzati durante le diverse fasi del progetto

Descrizione mezzo	Potenza	Peso	Emissioni acustiche	Impiego: n. medio h/giorno
Autocarro	368 kW	16 t (vuoto) 40t (a pieno carico)	83 dB	4
Escavatore	110 kW	240 q	102 dB	4
Betoniera		40 t (pieno carico)	75 dB	2

PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 51 di 121	Rev. 2

Descrizione mezzo	Potenza	Peso	Emissioni acustiche	Impiego: n. medio h/giorno
Pompa calcestruzzo			82 dB (più betoniera)	2
Gru cingolata	116 kW		103 dB	2
Macchina trivellatrice	261 kW		106 dB	4
Compressore	40 kW		97 dB	1
Martellone Demolitore	110 kW	240 q	120 dB	2
Gruppo elettrogeno	125 kW		79 dB	4
Rullo compressore	93kW	15 q	107 dB	2
Vibratore a piastra	10 kW	330 kg	108 dB	2
Argano/freno	10 kW		92 dB	2
Macchina TOC	300 kW		103 dB	4
Macchina Micro tunneling	450kW		103 dB	4

Si riportano in Tabella 8-7 i fattori emissivi associati all'utilizzo di queste macchine operatrici e mezzi.

Tabella 8-7 – fattori emissivi associati all'utilizzo delle macchine operatrici e mezzi

Mezzi	Potenza kW	CO [g/ora]	NOx [g/ora]	PM [g/ora]
Escavatore	110	232.2625458	267.151868	21.4287122
Betoniera		36.50568424	66.82224289	3.510637134
Pompa calcestruzzo		328.812905	935.3362691	28.40244162
Gru cingolata	116	161.9043702	220.5502382	18.99227882
Macchina trivellatrice	261	155.6575043	257.7061027	7.779285546
Compressore	40	108.412474	93.63737206	8.31654311
Martellone Demolitore	110	194.7039632	262.1715085	23.18379497
Gruppo elettrogeno	125	334.2740989	471.3662227	22.23339548
Rullo compressore	93	181.8686491	250.8324101	20.69815771
Vibratore a piastra	10	11.94751367	14.27739284	0.57298016
Cestelli per lavorazioni in elevazione		108.1924528	149.4334051	11.1482107
Argano/freno	10	27.99330123	33.42061192	1.308841412

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 52 di 121	Rev. 2

Per i mezzi di trasporto si utilizzano i riferimenti riportati in Tabella 8-8. Per gli autocarri si considera una classe VI, comparabile con un mezzo da circa 16 tonnellate.

Tabella 8-8 - caratteristiche dei mezzi utilizzati

Mezzi	Potenza HP	CO [g/ora]	NOx [g/ora]	PM [g/ora]
Autocarro pesante.	296	2.19996778	7.31927832	0.25

8.6.2 Movimentazione del terreno, formazione e stoccaggio cumuli

Nella zona momentaneamente occupata da terreni agricoli sono previsti scavi per la creazione delle Stazioni Elettriche RTN e Utente.

	PROGETTISTA	T.EN TECHNIP	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)		ZA-E-94710	
		NTO CENTRALE DI COMPRESSIONE DGGIO RENATICO	Fg. 53 di 121	Rev. 2

Tabella 8-9 – caratteristiche scavi per creazione delle sottostazioni elettriche

		Volumi di scavo (m³)	Volumi di riutilizzo in sito(m³)	Volumi di riutilizzo presso siti esterni (m³)	Volumi di rifiuto (m³)
Opere d connessione	Stazione Elettrica 132 kV RTN	12.000	2.500	9.500	
	Sottostazione Elettrica Utente 132/15 kV	8.946	2.156,25	6.789,75	-
Totale	Opere di connessione	20.946	4656,25	16.289,75	-

Si riportano in seguito le emissioni associate ai cantieri in esame.

Tabella 8-10 - emissioni associate ai cantieri in esame

Riferimento opera di scavo	m³	kg polveri totali	kg polvere/giorno
Scavi Stazione Elettrica 132 kV RTN	12000	0.0694	0.000579
Scavi Sottostazione Elettrica Utente 132/15 kV	8946	0.0517	0.000439

8.6.3 Erosione del vento dai cumuli di terra

In generale, nei cantieri esaminati potranno essere presenti cumuli di materiale di scavo accantonato al momento dello scavo stesso, in attesa del suo successivo eventuale impiego in sito. Analogamente potrà essere necessario accantonare il materiale in esubero proveniente dagli scavi in attesa del suo trasferimento all'esterno a fine lavori. In generale, quindi, si tratterà di cumuli di temporaneo stoccaggio, per i quali non sono prevedibili movimentazioni giornaliere dal momento della sua formazione a quello del suo impiego o trasferimento.

Dato che, come spiegato in precedenza, il rateo emissivo legato all'azione erosiva del vento sui cumuli di materiale inerte è legato al disturbo giornaliero arrecato dall'aggiunta o sottrazione di materiale al cumulo stesso, nel caso specifico dei cantieri in esame si può ritenere trascurabile il potenziale erosivo da parte del vento sulla superficie dei cumuli.

Per limitare l'eventuale spolvero potranno cautelativamente essere adottate eventuali misure di mitigazione come la copertura delle superfici con teli ovvero il bagnamento delle superfici con acqua (wet suppression).

8.6.4 Risollevamento di inquinamenti da transito di mezzi su strade non asfaltate

Durante le attività di costruzione delle Stazioni Elettriche RTN e Utente si prevede di transitare su zone non asfaltate. I percorsi hanno lunghezze massime di 300 metri, e portano dunque a fattori emissivi inferiori di un ordine di grandezza rispetto al contributo degli scavi, legato anche al fatto che il transito su questi percorsi sarà effettuato da macchine operatrici pesanti, le quali, muovendosi a

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 54 di 121	Rev. 2

bassa velocità, determinano una bassa movimentazione di materiale pulverulento. Per questo motivo, è possibile considerare come trascurabile tale contributo.

8.7 Descrizione delle attività di cantiere per la realizzazione del cavidotto di collegamento

La realizzazione di un elettrodotto in cavo è suddivisibile in tre fasi principali:

- 1) esecuzione dello scavo in trincea nelle aree di diversa tipologia;
- 2) posa dei cavi MT e dei cavi in fibra ottica con annesso montaggio dei giunti;
- 3) rinterro completo delle trincee secondo le modalità previste.

La prima e la terza fase comportano movimenti di terra.

Lo scavo della trincea consiste nell'asportare il materiale presente in profondità utilizzando un escavatore con benna, o fresa meccanica di dimensioni adeguate alla larghezza della trincea; tutto il materiale proveniente dagli scavi sarà depositato in sito apposito di cantiere e utilizzato per il rinterro, se ritenuto idoneo ai sensi della normativa vigente, o con materiale differente, ripristinando il preesistente andamento naturale del terreno, secondo quanto previsto nel piano di utilizzo delle terre e rocce da scavo.

8.7.1 Emissioni di mezzi e macchinari di cantiere

Si prevede l'utilizzo delle seguenti macchine operatrici durante la realizzazione del cavidotto.

Realizzazione opere civili

- N. 1 autocarri pesanti da trasporto;
- N. 1 escavatore;
- N. 1 autobetoniera;
- N.1 rullo compressore
- N.1 vibrofinitrice

Realizzazione opere elettriche

- N. 1 autocarri pesanti da trasporto;
- N. 1 autocarro con gru (oppure autogrù o similari);
- N. 1 argani di tiro per stendimento cavi elettrici

Tabella 8-11 – caratteristiche dei mezzi utilizzati durante le diverse fasi del progetto

Descrizione mezzo	Potenza	Peso	Emissioni acustiche	Impiego: n. medio h/giorno
Autocarro	368 kW	16 t (vuoto) 40t (a pieno carico)	83 dB	4
Escavatore	110 kW	240 q	102 dB	4
Betoniera		40 t (pieno carico)	75 dB	2
Gru cingolata	116 kW		103 dB	2
Rullo compressore	93kW	15 q	107 dB	2
Vibratore a piastra	10 kW	330 kg	108 dB	2
Argano/freno	10 kW		92 dB	2

Si riportano in Tabella 8-12 i fattori emissivi associati all'utilizzo di queste macchine operatrici e mezzi.

Tabella 8-12 – emissioni associate ai mezzi utilizzati durante le diverse fasi del progetto

Mezzi	Potenza kW	CO [g/ora]	NOx [g/ora]	PM [g/ora]
Escavatore	110	232.2625458	267.151868	21.4287122
Betoniera		36.50568424	66.82224289	3.510637134
Pompa calcestruzzo		328.812905	935.3362691	28.40244162
Gru cingolata	116	161.9043702	220.5502382	18.99227882
Macchina trivellatrice	261	155.6575043	257.7061027	7.779285546
Vibratore a piastra	10	11.94751367	14.27739284	0.57298016
Argano/freno	10	27.99330123	33.42061192	1.308841412

Per i mezzi di trasporto si utilizzano i riferimenti riportati in

Tabella 8-13. Per gli autocarri si considera una classe VI, comparabile con un mezzo da circa 16 tonnellate.

Tabella 8-13 – caratteristiche autocarri utilizzati

Mezzi	Potenza HP	CO [g/ora]	NOx [g/ora]	PM [g/ora]
Autocarro pesante.	296	2.19996778	7.31927832	0.25

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 56 di 121	Rev. 2

8.7.2 Movimentazione del terreno, formazione e stoccaggio cumuli

Durante le opere sono previsti scavi su cantiere mobile. Si riportano in Tabella 8-14 le movimentazioni complessive previste.

Tabella 8-14 - caratteristiche scavi su cantiere mobile

		Volumi di scavo (m³)	Volumi di riutilizzo in sito(m³)	Volumi di riutilizzo presso siti esterni (m³)	Volumi di rifiuto (m³)
Opere di connessione	Cavidotto interrato 15 kV MT di collegamento SSE Utente - Centrale SNAM	5.314,79	1.930,63	-	3.384,16
Totale	e Opere di connessione	5.314,79	1.930,63	16.419,75	3.384,16

Si riportano in Tabella 8-15 le emissioni associate ai cantieri in esame.

Tabella 8-15 – emissioni associate ai cantieri in esame

Riferimento opera di scavo	m³	kg polveri totali	kg polvere/giorno
Scavi Cavidotto interrato	5314.79	0.0307	0.000236

8.7.3 Erosione del vento dai cumuli di terra

In generale nei cantieri esaminati potranno essere presenti cumuli di materiale di scavo accantonato al momento dello scavo stesso, in attesa del suo successivo eventuale impiego in sito. Analogamente potrà essere necessario accantonare il materiale in esubero proveniente dagli scavi in attesa del suo trasferimento all'esterno a fine lavori. In generale, quindi, si tratterà di cumuli di temporaneo stoccaggio, per i quali non sono prevedibili movimentazioni giornaliere dal momento della sua formazione a quello del suo impiego o trasferimento.

Dato che, come spiegato in precedenza, il rateo emissivo legato all'azione erosiva del vento sui cumuli di materiale inerte è legato al disturbo giornaliero arrecato dall'aggiunta o sottrazione di materiale al cumulo stesso, nel caso specifico dei cantieri in esame si può ritenere trascurabile il potenziale erosivo da parte del vento sulla superficie dei cumuli.

Per limitare l'eventuale spolvero potranno cautelativamente essere adottate eventuali misure di mitigazione come la copertura delle superfici con teli ovvero il bagnamento delle superfici con acqua (wet suppression).

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 57 di 121	Rev. 2

8.7.4 Risollevamento di inquinamenti da transito di mezzi su strade non asfaltate

Non si prevede l'utilizzo di strade o connessioni non asfaltate a servizio di questo cantiere.

8.8 Quadro comparativo

Sulla base di quanto illustrato nei paragrafi precedenti i grafici riportati qui di seguito illustrano gli andamenti delle emissioni di NOx, CO e Polveri in funzione delle attività previste per ciascun cantiere.

Come si può notare il carico ambientale maggiore è associabile al cantiere della Centrale di compressione SNAM (Figura 8-4), mentre il contributo minore è relativo alla realizzazione dei raccordi aerei AT (Figura 8-7).

Le emissioni del cantiere relativo ai raccordi aerei AT sono così contenute, tanto da poter essere trascurate.

Si prevede che il cantiere della Centrale di compressione SNAM comporti emissioni per l'intero periodo di 3 anni. Le emissioni maggiori si registrano principalmente nei primi 18 mesi per poi decrescere significativamente nel rimanente periodo (Figura 8-4).

Per quanto riguarda invece gli altri cantieri le emissioni si concentrano in un più limitato arco temporale.

Considerando le emissioni cumulate, il mese con maggiori rilasci è l'undicesimo mese dall'inizio delle attività di cantiere (Figura 8-3).

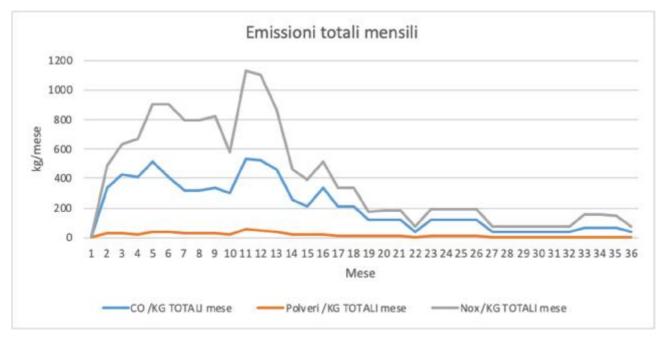


Figura 8-3 – Stima delle emissioni mensili cumulate (somma delle emissioni di tutti i cantieri)

snam	PROGETTISTA	TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA ' POGGI	O RENATICO (FE)	ZA-E-	94710
		TO ENTRALE DI COMPRESSIONE GGIO RENATICO	Fg. 58 di 121	Rev. 2

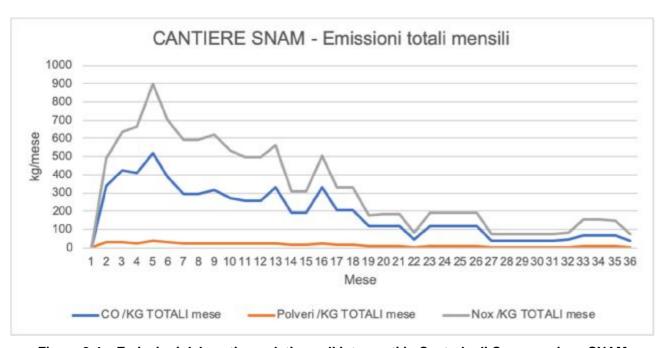


Figura 8-4 – Emissioni del cantiere relativo agli interventi in Centrale di Compressione SNAM

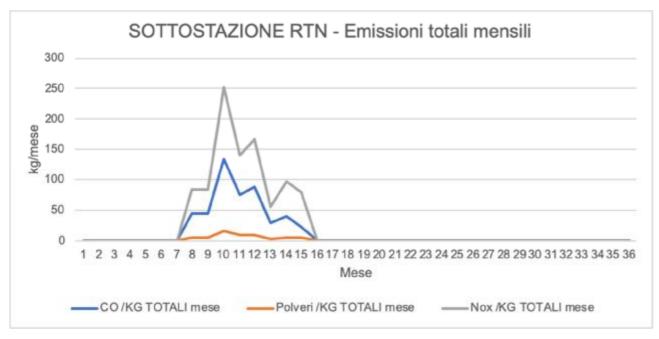


Figura 8-5 – Emissioni del cantiere relativo alla realizzazione della Sottostazione RTN

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 59 di 121	Rev. 2

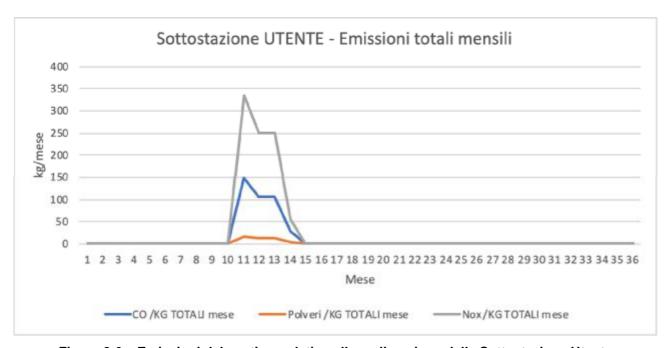


Figura 8-6 – Emissioni del cantiere relativo alla realizzazione della Sottostazione Utente

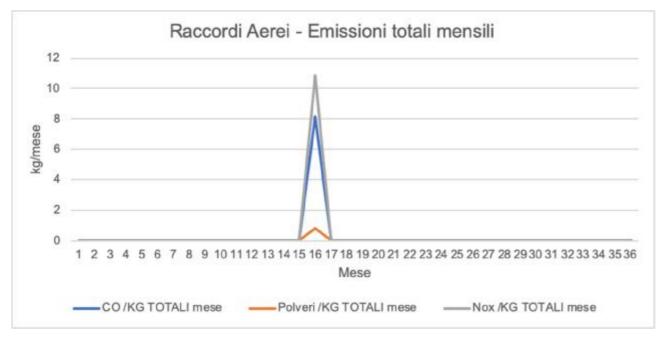


Figura 8-7 - Emissioni del cantiere relativo alla realizzazione del raccordo aereo

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 60 di 121	Rev. 2

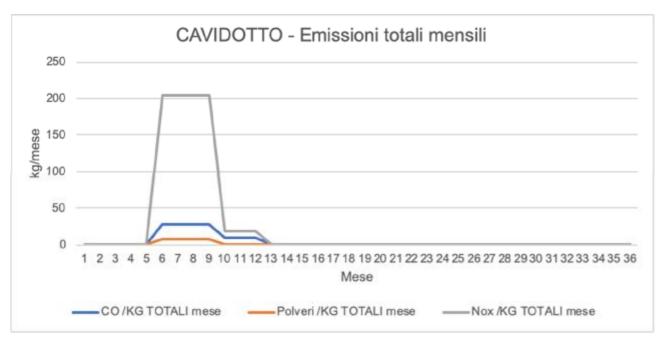


Figura 8-8 - Emissioni del cantiere relativo alla realizzazione del cavidotto

8.9 Assunzioni modellistiche

Una volta stabiliti i tassi di emissioni associabili a ciascuna sorgente associata ai diversi cantieri, così come descritto nei precedenti paragrafi da 8.3 a 8.7, è possibile procedere all'implementazione del modello dispersivo. Il modello tiene conto di tutte le sorgenti e di tutti i contaminanti considerati (NOx, Polveri e CO).

A tal scopo occorre effettuare alcune ipotesi di base:

- le simulazioni saranno effettuate sfruttando lo scenario di massima emissione attesa, considerando la contemporaneità operativa di tutti i cantieri;
- lo scenario sarà identificato sulla base dei cronoprogrammi disponibili, valutando la somma delle emissioni per ogni singolo periodo;
- l'area di scavo per le Stazioni Elettriche RTN e Utente è pari all'impronta del sedime del sito;
- l'area di accumulo temporaneo delle terre di scavo per il cantiere delle Stazioni Elettriche RTN e Utente è prevista all'interno dell'area di cantiere;
- per il cantiere delle Stazioni Elettriche RTN e Utente, i volumi di terra stoccati e la loro ubicazione saranno ipotizzati;
- in mancanza di indicazioni precise sulle caratteristiche e il numero di mezzi utilizzati, saranno effettuate delle assunzioni conservative;
- l'area di supporto logistico prevista a sud della centrale SNAM non sarà considerata;

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 61 di 121	Rev. 2

- le emissioni relative alla realizzazione del traliccio per lo stacco della linea aerea di AT non saranno considerate;
- saranno simulate le emissioni associate ai mezzi in transito all'interno del dominio di calcolo, assumendo che i percorsi si sviluppano lungo la SP8;
- non saranno invece considerate le emissioni associate ai mezzi utilizzati per il trasporto di materiali di risulta (TRS eccedenti che non possono essere riutilizzate in sito e rifiuti originati dalle attività di cantiere) su tragitti di lunga percorrenza (cioè oltre i limiti del dominiodi calcolo).

La caratterizzazione delle esposizioni viene effettuata in due fasi:

- 1) Definizione dello scenario peggiore (su base mensile);
- 2) Rappresentazione e modellazione delle dispersioni dello scenario peggiore (su base mensile).

Tale approccio consente di valutare i massimi livelli di esposizione attesi durante i lavori, ed è quindi estremamente conservativo. Lo scenario di picco viene caratterizzato valutando per ciascun mese gli inquinanti complessivi emessi da tutte le attività. Si sommeranno dunque i contributi legati a:

- macchine operatrici;
- mezzi di trasporto;
- movimentazione di terreno dovuto a scavi:
- dispersioni dovuti alla presenza di cumuli;
- transito su strade non asfaltate.

Ogni singola voce viene valutata secondo le metodologie definite all'interno del capitolo 10.2. Per la valutazione si considererà una partenza simultanea di tutti a cantieri a partire da gennaio 2023. Una volta definito lo scenario peggiore, inteso dunque come quantitativo massimo di CO, PM10 e NOx emessi, si procederà all'implementazione di un codice CALPUFF che meglio rappresenti le diverse fonti emissive presente per il mese in esame. In ovvia mancanza di dati meteorologici per il periodo 2023-2025, si utilizzeranno gli stessi dati presentati all'interno del capitolo 9.

La simulazione richiede necessariamente alcune assunzioni per la rappresentazione delle sorgenti emissive. La centrale SNAM, la nuova stazione RTN e la sottostazione d'utente verranno considerate come sorgenti areali: tutte le emissioni legate ai mezzi presenti nel periodo di riferimento verranno cumulate e ripartite omogeneamente sull'intero cantiere. Il cavidotto e la rete stradale verranno modellati come sorgenti lineari:

Per la rappresentazione delle sorgenti areali si fanno le seguenti supposizioni:

- il fattore emissivo viene calcolato come rapporto fra le emissioni totali (g/s), e l'area sottesa al cantiere
- il calcolo della portata emissiva (g/s) viene effettuata eseguendo la sommatoria dei fattori emissivi per le ore/giorno di funzionamento segnalate, ripartite globalmente su 8 ore/giorno (8.00/12.00, 14.00/18.00).
- eventuali autocarri segnalati verranno modellati considerando il 50% del tempo di lavoro su cantiere ed il restante 50% su strada

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 62 di 121	Rev. 2

Per la rappresentazione del cavidotto si fanno le seguenti supposizioni:

- il fattore emissivo viene calcolato come rapporto fra le emissioni totali (g/s), e la lunghezza del cantiere:
- il calcolo della portata emissiva (g/s) viene effettuata eseguendo la sommatoria dei fattori emissivi per le ore/giorno di funzionamento segnalate, ripartite globalmente su 8 ore/giorno (8.00/12.00, 14.00/18.00).
- trattandosi di un'opera mobile (non si hanno lavori su 5 km contemporaneamente), la lunghezza del cantiere viene calcolata come una proporzione fra i 30 gg del mese di novembre e il periodo totale richiesto per l'esecuzione dei lavori:

Per la rappresentazione dell'inquinamento su strada si fanno le seguenti supposizioni:

- il fattore emissivo viene calcolato come rapporto fra le emissioni totali (g/s), e la lunghezza della strada;
- si considerano come percorsi la strada che parte dalla base logistica (zona industriale a sud-Ovest della centrale SNAM) fino a via Padusa e fino ad Uccellino (SP8), per valutare le possibili tratte di interesse durante i lavori.
- il calcolo della portata emissiva (g/s) viene effettuata eseguendo la sommatoria dei fattori emissivi per le ore/giorno di funzionamento segnalate, ripartite globalmente su 8 ore/giorno (8.00/12.00, 14.00/18.00).

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 63 di 121	Rev. 2

Figura 8-9 - Rappresentazione area di progetto

La Figura 8-10 mostra invece le sorgenti raffigurate sulla mappa (in blu le stazioni, in verde le strade ed in arancione una frazione del cantiere mobile). In giallo si hanno i recettori che sono stati considerati.

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 64 di 121	Rev. 2

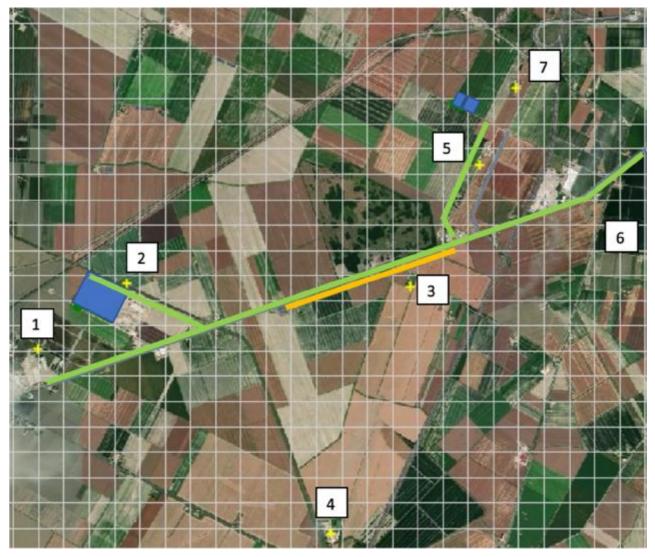


Figura 8-10 – Rappresentazione delle sorgenti di emissione e dei recettori considerati

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 65 di 121	Rev. 2

Tabella 8-16 – Coordinate geografiche dei recettori considerati (sistema di riferimento ED50 / UTM Zone 32N EPSG:23032, quota 1 m.)

ID	Descrizione	X [m]	Y [m]
REC1	Stazione logistica di appoggio	697798	4960617
REC2	Centrale SNAM	698501	4961135
REC3	Abitazione rurale	700749	4961107
REC4	Centro abitato	700120	4959155
REC5	Centro abitato	701295	4962069
REC6	Centro abitato in zona Uccellino	703266	4962754
REC7	Zona rurale	701582	4962680

8.10 Scenario conservativo di picco

Dall'applicazione dei modelli emissivi si ricavano i profili di emissione globali su base mensile. Per la stima si sono considerati 20 giorni lavorativi al mese, in modo da conteggiare unicamente i giorni di lavoro effettivi. La Figura 8-11 rappresenta l'andamento delle emissioni di monossido di carbonio, ossidi di azoto e polveri lungo il periodo di riferimento. Si osserva sin da subito che il periodo più intenso è il primo anno di lavori: tale aspetto è abbastanza prevedibile, per via della coesistenza di opere su tutti i cantieri. Si osserva facilmente che il periodo con lo scenario peggiore è previsto essere il novembre 2023: durante questo periodo ci si aspettano emissioni simultanee da tutte le opere previste, riassunte brevemente in sequito.

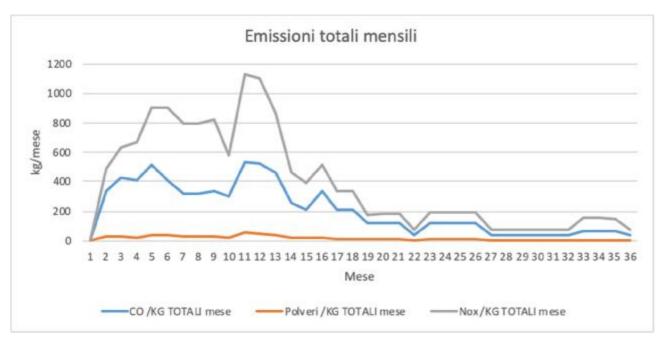


Figura 8-11 - Emissioni totali mensili

La Tabella 8-17 mostra invece tutte le operazioni che ci si aspetta avvengano simultaneamente nel periodo di novembre 2023.

Tabella 8-17 – operazioni Novembre 2023

Adeguamento Centrale Poggio Renatico
Fase 0
Pali, fondazioni e strutture in c.a. e fabbricati
Fondazioni e strutture in c.a. fabbricato sottostazione ELCO
Altre opere civili per piping e percorsi cavi ELE-SMI
Realizzazione pozzetti in c.a. per valvole, misuratore, supporti tubazioni e cunicoli per tubazioni acqua
Realizzazione pozzetti in c.a. ele-smi, fondazioni pali di illuminazione e torri faro e percorsi cavi
Lavori meccanici
Prefabbricazione tubazioni e supporti
Montaggio supporti tubazioni, valvole e apparecchiature e linee servizi
Montaggio cabinato, installazione elco, refrigeranti vfd, quadri vfd, filtri, trasformatori, mcc e scu e pre commissioning
Allestimento cantiere fornitore ELCO
Grouting basamento ELCO

PROGETTISTA	TEN TECHNIP	COMMESSA	UNITA'
	ENERGIES	NC/22011	000
LOCALITA' POGO	GIO RENATICO (FE)	ZA-E-94710	
	ITO CENTRALE DI COMPRESSIONE DGGIO RENATICO	Fg. 67 di 121	Rev. 2

Posizionamento e montaggio cabinato ELCO e installazione carroponte

Stazione elettrica RTN

Fase 3 - realizzazione opere civili di stazione

Finiture fabbricato integrato (serramenti, pitturazioni, lattoneria, impianti sanitari, pavimentazione dei servizi igienici)

Realizzazione rete di terra, rete drenante di stazione, piano di stazione finito a ghiaietto, cordoli...

Fase 4 - montaggi elettromeccanici ed installazione SA, SG, SAS

Montaggio carpenteria ed apparecchiature 132kv

Montaggi SG (impianti di: riscaldamento, condizionamento, ventilazione, telefonico/dati, illuminazione e fm)

Realizzazione dei raccordi aerei alla linea esistente 132kv Altedo-Ferrara sud

Fase 4 - montaggi elettromeccanici ed installazione SA, SG, SAS

Montaggio trasformatori AT/MT (1 settimane per tr)

Montaggi SG (impianti di: riscaldamento, condizionamento, ventilazione, telefonico/dati, illuminazione e fm)

Montaggi SA (montaggio quadri centralizzati negli edifici o e montaggio quadri periferici nei chioschi di stazione)

Realizzazione collegamenti MT

Fase 3 - Realizzazione opere elettriche

Sulla base di queste informazioni, è stato dunque possibile stimare i fattori emissivi per tutte le sorgenti da considerare. Si riportano in Tabella 8-18 i valori di emissione per le sorgenti areali. Come area di riferimento è stata presa l'area associata al perimetro delle centrali.

Tabella 8-18 – valori di emissione per le sorgenti areali

Sorgente	Area [m³]	CO [g/m²/s]	NOx [g/m²/s]	PM [g/m²/s]
Centrale SNAM	76000	6.31E-06	1.21E-05	5.26E-07
Scavi Stazione Elettrica 132 kV RTN	10800	1.12E-05	2.03E-05	1.29E-06
Scavi Sottostazione Elettrica Utente 132/15 kV	4200	2.10E-05	3.82E-05	2.44E-06

Si riportano inoltre in Tabella 8-19 i fattori di emissione per le sorgenti lineari. Le lunghezze vengono valutate con i seguenti criteri: la lunghezza dei percorsi stradali viene misurato tramite Google Earth Pro. La lunghezza del cantiere viene calcolata come rapporto fra la lunghezza totale del cantiere (circa 5 km), e il periodo di riferimento per l'esecuzione dei lavori stessi, pesato sul periodo di un mese. Ne risulta che nel periodo di novembre si ha un cantiere che si protrae per circa 1.5 km.

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000	
snam	POGGIO RENATICO (FE)		ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 68 di 121	Rev. 2	

Tabella 8-19 – valori di emissione per le sorgenti lineari

Sorgente	Lunghezza [m]	CO [g/m/s]	NOx [g/m/s]	PM [g/m/s]
Cavidotto	1400	1.03193E-05	1.68407E-05	1.11348E-06
Strade	7200	1.43499E-05	3.50574E-05	1.1927E-06

8.11 Valutazione delle concentrazioni attese

Si riportano in seguito i risultati delle simulazioni effettuate. In prima istanza si riportano in maniera dettagliata le ricadute assunte considerando lo scenario peggiore mantenuto su lunghi periodi. Dato che tale risultato è estremamente sovrastimato rispetto ad uno scenario più realistico, si riportano infine i confronti fra le curve di isoconcentrazione per tutti gli inquinanti considerati prendendo come riferimento due periodi diversi, novembre 2023 e giugno 2023. Nel periodo di giugno, si hanno emissioni inferiori, che descrivono uno scenario intermedio più vicino alla reale situazione.

8.11.1 Concentrazioni attese di NOx

In Figura 8-12 è rappresentata la distribuzione del 99,8 percentile dei valori orari. I valori orari delle ricadute al suolo utilizzati come base di calcolo per gli indicatori di legge sono stati ottenuti, come spiegato, considerando lo scenario mensile massimo di NOx stimato sulla base dei GANTT di ciascun cantiere riportato in Allegato 1.

Come si può notare in prossimità dei cantieri le concentrazioni sono dell'ordine:

- concentrazione oraria di massima ricaduta in prossimità del cantiere della Centrale di Compressione SNAM:
 - § media oraria: 115,2 μg/mc;
 - § 99,8 percentile: 1.357,2 μg/mc all'interno del cantiere e 1.326,4 μg/m in prossimità del limite a nord-ovest dell'area di cantiere.
- concentrazione oraria di massima ricaduta in prossimità del cantiere della realizzazione della Sottostazione Elettrica e la Sottostazione Utente:
 - § media oraria: 12,56 μg/mc;
 - § 99,8 percentile: 325,9 µg/mc.
- concentrazione oraria di massima ricaduta lungo il tracciato del cavidotto e in prossimità della SP8:
 - § media oraria: 6,2 μg/mc;
 - § 99,8 percentile: 31,6 μg/mc (in prossimità dell'ubicazione del cantiere).

1 8 - 3	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 69 di 121	Rev. 2

Gli NOx sono tipicamente composti da Monossido di Azoto (NO) e il Biossido di Azoto (NO2) e tipicamente la loro emissione è associata a processi di combustione. Le norme vigenti esprimono dei limiti di salvaguardia associati al Biossido di Azoto in quanto tra i due ossidi è quello più tossico.

Gli Ossidi di Azoto, intesi come NO ed NO2, vengono emessi direttamente in atmosfera a seguito dei processi di combustione ad alta temperatura: nel caso specifico dello studio, la loro emissione è legata ai motori a combustione interna dei veicoli e i mezzi di cantiere e commerciali.

In letteratura si trovano numerosi studi che cercano di stimare il rapporto tra questi due ossidi. Il loro rapporto dipende da numerosi fattori associati alle caratteristiche emissive e alle condizioni ambientali, quale la temperatura del gas rilasciato, la velocità del vento e l'ubicazione dei punti di misura rispetto al punto di rilascio.

Durante tali processi, al momento dell'emissione gran parte degli Ossidi di Azoto è in forma di NO, con un rapporto NO/NO2 decisamente a favore del primo. La letteratura fornisce, come dato relativo al contenuto di NO2 nelle emissioni, un valore compreso tra il 5 ed il 10% del totale degli Ossidi di Azoto.

Una volta emessi, gli Ossidi di Azoto (inizialmente costituiti dal 5-10% di NO2 e dal 90-95% di NO) si mescolano con l'aria circostante (dispersione turbolenta) e reagiscono con le altre molecole presenti in aria andando a modificare la proporzionalità iniziale fra NO ed NO2. In particolare, il rapporto iniziale NO2/NOX (pari a ca. 0,05-0,10) tende ad aumentare con la distanza dalla sorgente per effetto delle reazioni chimiche che si innescano. Allo stesso momento però subentrano altri meccanismi quali la diluzione e la miscelazione innescate dai processi di trasporto e dalla turbolenza atmosferica.

Per quanto concerne le valutazione delle emissioni sopra riportate, in modo conservativo si può assumere in prima battuta che tutti gli NOx emessi siano costituiti da NO₂.

Come si evidenzia dalla Figura 8-12, le concentrazioni massime attese al suolo sono essenzialmente associate alle emissioni generate dal cantiere della Centrale di Compressione SNAM. Inoltre si può notare come la concentrazione decresca rapidamente e nei pressi del cantiere di supporto logistico che si trova a sud rispetto alla centrale, la concentrazione media è inferiore a 20 µg/mc (Figura 8-13) mentre il 99,8 percentile della contrazione è inferiore a 100 µg/mc (Figura 8-14).

Se si volesse quindi stimare la concentrazione massima attesa di NO_2 pari a circa un ordine di grandezza inferiore, la concentrazione media sarebbe dell'ordine di 2 μ g/mc mentre il 99,8 percentile della contrazione sarebbe dell'ordine di 10 μ g/mc.

A distanze maggiori poi la concentrazione ottenuta con le simulazioni risulta essere ulteriormente inferiore, compresa tra 5,0 e 1,0 μ g/mc (Figura 8-15), mentre il 99,8 percentile è compreso tra 50 e 25,0 μ g/mc (Figura 8-16). Anche assumendo che a distanze maggiori il rapporto tra NO_2 e NO_x aumenti e sia pari indicativamente pari a 0,5 (valore massimo desunto da letteratura) le concentrazioni che lambiscono i contesti urbanizzati sono dell'ordine di qualche unità.

Dall'esame dei risultati delle simulazioni effettuate, in relazione ai ricettori considerati (da R1 a R7), risulta un unico superamento orario presso il punto R2 (ricettore denominato "Centrale SNAM"). Pertanto, durante l'intero arco temporale relativo alle attività di cantiere, in corrispondenza dei ricettori scelti per le valutazioni oggetto del presente studio, risulta rispettata la soglia di 200 ug/mc intesa come 99,8 percentile della distribuzione annuale in conformità ai limiti previsti dal D.Lgs. 155/2010 e s.m.i.. In altri termini le norme consentono 175 superamenti all'anno mentre le simulazioni identificano un unico superamento in 3 anni associato alle attività di cantiere.

PROGETTISTA	N TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
LOCALITA' POGGIO RENATICO (FE) ZA-E-94710		94710	
PROGETTO / IMPIANTO ADEGUAMENTO CENTR. DI POGGIO		Fg. 70 di 121	Rev. 2

Si precisa, infine, che il punto R2 per il quale è stato rilevato l'unico superamento è relativo ad una zona prossima alla Centrale di Compressione SNAM, dove non sono presenti abitazioni. Gli altri ricettori considerati, dove potrebbero essere presenti persone residenti, non evidenziano invece alcun superamento della soglia prevista per gli NOx, neanche durante il mese a maggiore emissione.

Si può concludere che tutti i ricettori sono esposti a livelli di concentrazione tollerabili e che rispettano le norme (vedi anche Figura 8-12).

Si può quindi concludere che il contributo delle emissioni di NO₂ agli attuali livelli di concentrazione sia trascurabile rispetto agli attuali livelli di fondo generati dall'attuale condizione di esercizio della centrale di compressione. Con analoghe considerazioni si può inoltre affermare che le emissioni associati agli altri cantieri sono irrilevanti.



Figura 8-12 – Concentrazione di NOx al suolo espresso come 99.8 Percentile maggiore di 200 ug/mc, per il periodo di massima emissione (11° mese dall'inizio delle attività) associate a tutti i cantieri.

7	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 71 di 121	Rev. 2

Figura 8-13 - Concentrazione di NOx al suolo espresso come media maggiore di 20 ug/mc, per il periodo di massima emissione (11° mese dall'inizio delle attività) associate al cantiere della Centrale di Compressione SNAM

2.2	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000	
snam	POGGIO RENATICO (FE)		ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 72 di 121	Rev. 2	

Figura 8-14 – Concentrazione di NOx al suolo espresso come 99.8 Percentile maggiore di 100 ug/mc, per il periodo di massima emissione (11° mese dall'inizio delle attività) associate al cantiere della **Centrale di Compressione SNAM**

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 73 di 121	Rev. 2

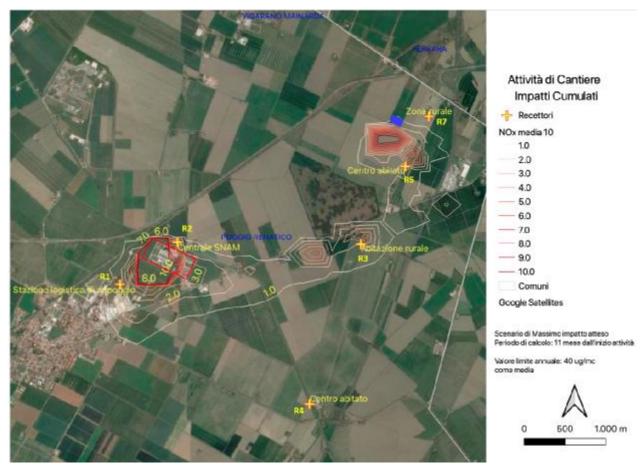


Figura 8-15 – Concentrazione di NOx al suolo espresso come media minore di 10 ug/mc, per il periodo di massima emissione (11° mese dall'inizio delle attività) associate al cantiere della Centrale di Compressione SNAM

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 74 di 121	Rev. 2

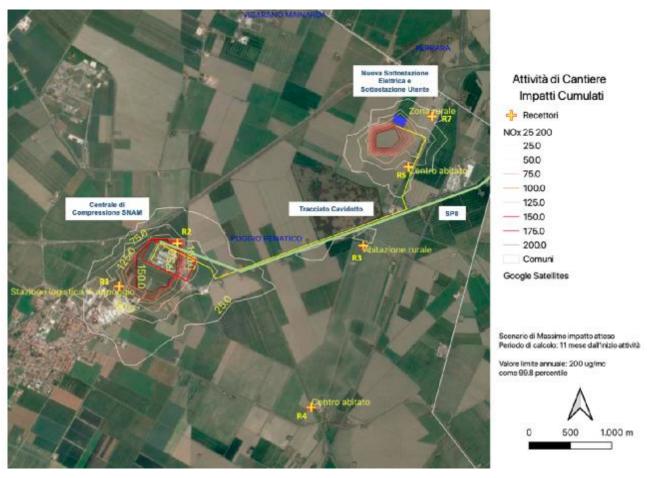


Figura 8-16 – Concentrazione di NOx al suolo espresso come 99.8 Percentile superiore di 25 ug/mc, per il periodo di massima emissione (11° mese dall'inizio delle attività) associate al cantiere della Centrale di Compressione SNAM

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 75 di 121	Rev. 2

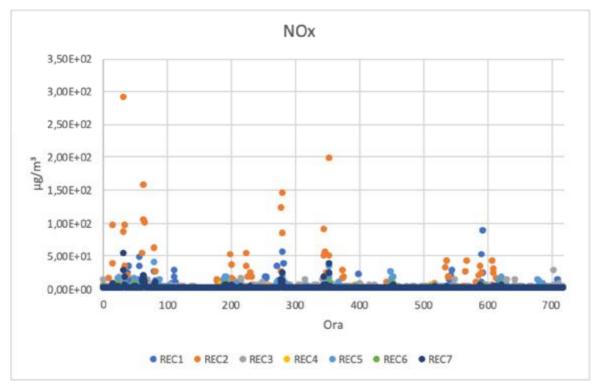


Figura 8-17 – Valutazione dei livelli di esposizione agli NOx dei diversi ricettori per lo scenario mensile massimo

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 76 di 121	Rev. 2

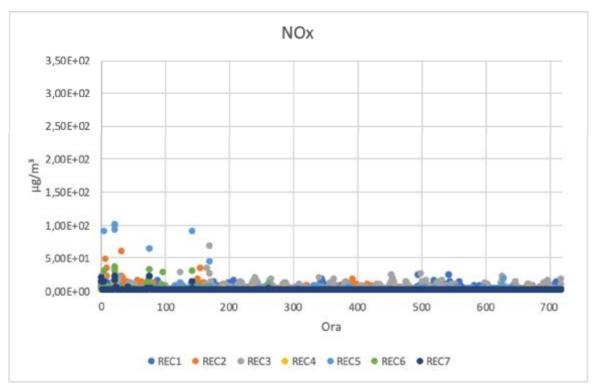


Figura 8-18 – Valutazione dei livelli di esposizione agli NOx dei diversi ricettori per lo scenario mensile intermedio

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 77 di 121	Rev. 2

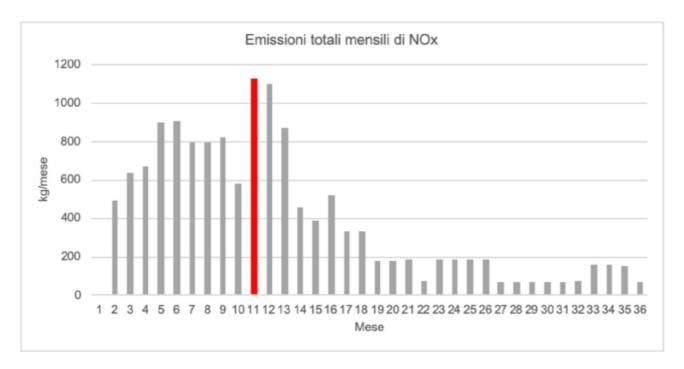


Figura 8-19 – Comparazione delle emissioni complessive assunte di NOx espresse come kg/giorno, e confronto con le emissioni relative a tutti i mezzi di cantiere

8.11.2 Concentrazioni attese di CO

Per quanto riguarda la concentrazione di CO, come si può notare dalle mappe riportate in allegato, in prossimità dei cantieri le concentrazioni sono dell'ordine:

- concentrazione oraria di massima ricaduta in prossimità del cantiere della Centrale di Compressione SNAM:
 - § media oraria: 60,1 μg/mc all'interno del cantiere e 27,7 μg/m all'esterno
 - § concentrazione media di 8 ore sul giorno: 278,5 μg/mc all'interno del cantiere e 138,0 μg/m all'esterno
- concentrazione oraria di massima ricaduta in prossimità del cantiere della realizzazione della Sottostazione Elettrica e la Sottostazione Utente:
 - § media oraria: 6,9 μg/mc
 - § concentrazione media di 8 ore sul giorno: 51,4 μg/mc

snam V/	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 78 di 121	Rev. 2

- concentrazione oraria di massima ricaduta lungo il tracciato del cavidotto e in prossimità della SP8:
 - § media oraria: 2,8 μg/mc
 - § concentrazione media di 8 ore sul giorno: 6,8 μg/mc (in prossimità dell'ubicazione del cantiere)

Per quanto riguarda l'esposizione della popolazione si evidenzia come la concentrazione di CO attesa è almeno 3 ordini di grandezza inferiore rispetto al riferimento di legge per la tutela della salute pubblica.

Considerato che il limite di riferimento imposta dalle norme per il CO è pari a 10 mg/mc, si valuta come la concentrazione di monossido di Carbonio non comporti alcun impatto considerando anche lo scenario più conservativo.

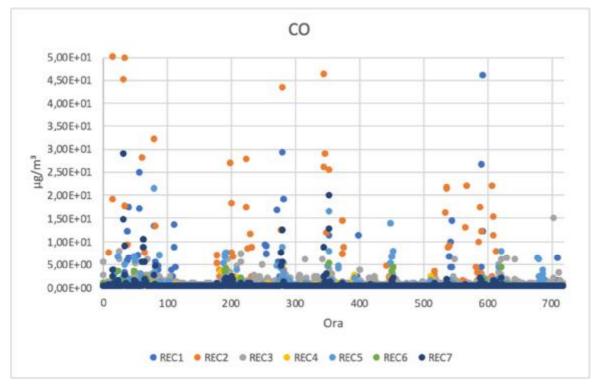


Figura 8-20 – Valutazione dei livelli di esposizione al Monossido di Carbonio dei diversi ricettori per lo scenario mensile massimo

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 79 di 121	Rev. 2

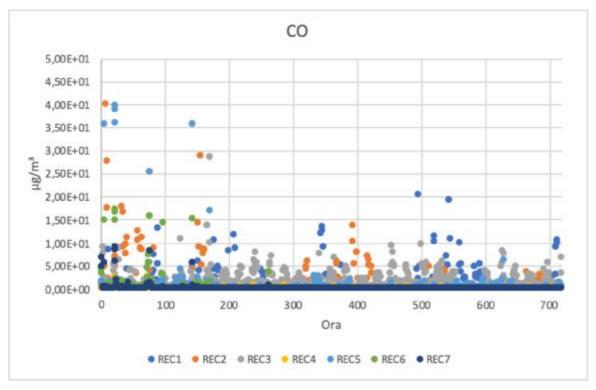


Figura 8-21 – Valutazione dei livelli di esposizione al Monossido di Carbonio dei diversi ricettori per lo scenario mensile intermedio

snam	PROGETTISTA	TEN TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)		ZA-E-94710	
		o :NTRALE DI COMPRESSIONE :GGIO RENATICO	Fg. 80 di 121	Rev. 2

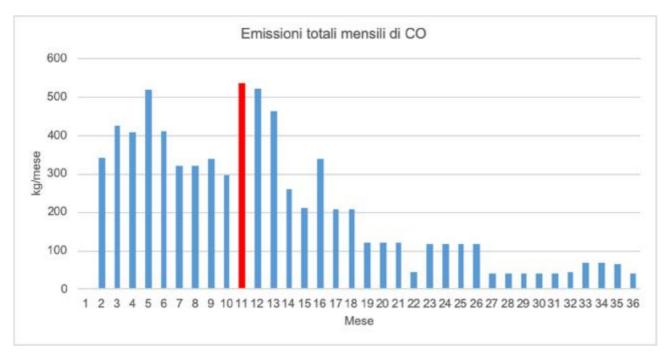


Figura 8-22 – Comparazione delle emissioni complessive assunte di Monossido di Carbonio espresse come kg/giorno, e confronto con le emissioni relative a tutti i mezzi di cantiere

8.11.3 Concentrazioni attese di PM

Per quanto riguarda la concentrazione di polveri, come si può notare dalle mappe riportate in allegato, in prossimità dei cantieri le concentrazioni sono dell'ordine:

- concentrazione oraria di massima ricaduta in prossimità del cantiere della Centrale di Compressione SNAM:
 - § media oraria annua: 5,0 μg/mc all'interno del cantiere e 2,3 μg/m all'esterno;
 - § concentrazione del 90,4 Percentile: 20,8 μg/mc all'interno del cantiere e 8,6 μg/m all'esterno.
- concentrazione oraria di massima ricaduta in prossimità del cantiere della realizzazione della Sottostazione Elettrica e la Sottostazione Utente:
 - § media oraria annua: 0,79 μg/mc
 - § concentrazione del 90,4 Percentile: 1,27 μg/mc

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 81 di 121	Rev. 2

- concentrazione oraria di massima ricaduta lungo il tracciato del cavidotto e in prossimità della SP8:
 - § media oraria annua: 0,25 μg/mc
 - \$ concentrazione del 90,4 Percentile: 0,53 μg/mc (in prossimità dell'ubicazione del cantiere)

Come si può osservare le concentrazioni più alte si riscontrano per il Cantiere della Centrale di Compressione SNAM anche se si evidenzia come la concentrazione decada velocemente approssimandosi al perimetro della centrale. Per quanto riguarda gli altri siti le concentrazioni sono dell'ordine dell'unità.

Pertanto, anche se si considerassero le concentrazioni di fondo, si avrebbe un contributo massimo di qualche punto percentuale per punto di massima ricaduta.

Occorre quindi ricordare che le emissioni di polveri sono state stimate per uno scenario massimo mensile e quindi le ricadute relative agli altri periodi dell'anno saranno significativamente inferiori.

Inoltre occorre considerare che il contesto è prettamente agricolo e anche assumendo la concentrazione di $35~\mu g/mc$ rilevata presso la stazione di monitoraggio di ARPAE nel 2017, non si superebbe la concentrazione limite di $40~\mu g/mc$ per la "Protezione della salute umana" (secondo il D.Lgs.155/10 e s.m.i.) neanche per i punti di massima ricaduta. Analoghe considerazioni valgono per i potenziali ricettori presenti nell'area di studio.

Per quanto riguarda i valori di concentrazione in prossimità dei recettori, si registrano le concentrazioni più alte presso R2. La concentrazione è pari a circa 13 µg/mc mentre per i rimanenti ricettori la concentrazione è inferiore a 5 µg/mc. Se si considera lo scenario intermedio le concentrazioni sono ulteriormente inferiori. Pertanto se si considera che il recettore R2 è stato assunto per valutare i livelli di esposizione degli addetti della centrale, si valuta come la rimanente popolazione sia esposta per brevi periodi a concentrazioni di polveri basse.

A supporto di tali valutazioni, occorre ricordare che allo stato attuale delle conoscenze, secondo il World Health Organization (WHO), non è possibile fissare una soglia di esposizione al di sotto della quale certamente non si verificano nella popolazione degli effetti avversi sulla salute associato alla concentrazione di polveri fini. Per questo motivo, contrariamente alla normativa italiana, l'WHO non fornisce un valore guida di riferimento per le particelle, ma indica delle "funzioni di rischio" per i diversi effetti sulla salute. Tali funzioni quantificano l'eccesso di effetto avverso per la salute che ci si deve aspettare per ogni incremento unitario delle concentrazioni di PM10 o di PM2.5.

Prendendo come riferimento il PM10, è possibile definire un quadro schematico che caratterizzi il livello di inquinamento dovuto a tale inquinante ed i possibili effetti sanitari.

Gli effetti del PM10 sulla salute umana variano sensibilmente in funzione delle caratteristiche individuali e c'è accordo, inoltre, nell'indicare che tali effetti crescono in modo uniforme all'aumentare della concentrazione, senza che sia stata individuata una soglia né per gli effetti di tipo acuto, che si manifestano entro pochi giorni dall'esposizione, né per gli effetti di lungo termine, che si manifestano in seguito all'esposizione cumulata di anni. Anche se quindi da un punto di vista sanitario sarebbe più corretta l'adozione di una scala continua nella comunicazione dei livelli di PM10, il WHO ha scelto di definire cinque livelli di concentrazione di PM10 e di associare ad essi altrettanti commenti specifici.

Si assume come riferimento i riferimenti minimi riportati dal WHO:

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 82 di 121	Rev. 2

PM10: 20 μg//mc (Tabella 8-20)
 PM2.5: 10 μg//mc (Tabella 8-20)

Occorre far notare che Limiti di riferimento definiti dal D.Lgs.155/2010 indicano:

- PM10: 50 μg/mc come valore limite sulle 24 ore per la protezione della salute umana da non superare più di 35 volte all'anno;
- PM10: 40 μg/mc come valore limite annuale per la protezione della salute umana;
- PM2.5: 25 µg/mc come valore limite annuale per la protezione della salute umana.

La ripartizione tra polveri, PM10 e PM2.5 dipende da molteplici fattori della fisica dell'atmosfera e dalle sue condizioni. Tipicamente le PM2.5 sono inferiori alle PM10.

In modo del tutto teorico valutiamo il rischio associato alla massima concentrazione di PM10 e di PM2.5 considerandole uguali e considerandole uguali al Polveri totali PTS simulate.

Sulla base delle simulazioni modellistiche si evince che nel punto di massima ricaduta la concentrazione di polveri attesa è pari a 2,3 µg/mc come media annua, mentre il 90,4 percentile della concentrazione media giornaliera è pari a 8,6 µg/mc.

Come si evince dalla Tabella 8-20 e dalla Tabella 8-21 che riportano i riferimenti del WHO relativamente ai riferimenti di qualità dell'aria, si valuta come il rischio è essenzialmente associabile alle PM2.5 in virtù del fatto che le PM2.5 sono valutate come doppiamente tossiche rispetto al PM10.

Considerando quindi le concentrazioni attese come media giornaliera, si può valutare come il contributo delle emissioni di polveri sia alquanto trascurabile e l'esposizione della popolazione dipenda essenzialmente dai livelli di fondo e non dalle attività di cantiere.

Considerato che l'esposizione è di breve periodo e l'assenza di potenziali recettori, in conclusione si può affermare che i potenziali effetti sulla salute sono da associare ai livelli di fondo e l'incremento di rischio relativo alle emissioni di polveri è trascurabile.

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 83 di 121	Rev. 2

Figura 8-23 – Concentrazione di Polveri al suolo espressa in ug/mc come media annuale, per il periodo di massima emissione (11° mese dall'inizio delle attività) associate al cantiere della Centrale di Compressione SNAM

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 84 di 121	Rev. 2

Figura 8-24 – Concentrazione di Polveri al suolo espressa in ug/mc come 90.4 Percentile, per il periodo di massima emissione (11° mese dall'inizio delle attività) associate al cantiere della Centrale di Compressione SNAM

PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 85 di 121	Rev. 2

Tabella 8-20 - Linee guida sulla qualità dell'aria e obiettivi intermedi per il PM: media annuale

Annual mean level	PM ₁₀ (μg/m³)	PM _{2.5} (μg/m³)	Basis for the selected level
WHO interim target 1 (IT-1)	70	35	These levels are estimated to be associated with about 15% higher long-term mortality than at AQG levels.
WHO interim target 2 (IT-2)	50	25	In addition to other health benefits, these levels lower risk of premature mortality by approximately 6% (2–11%) compared to IT-1.
WHO interim target 3 (IT-3)	30	15	In addition to other health benefits, these levels reduce mortality risk by approximately another 6% (2–11%) compared to IT-2 levels.
WHO air quality guidelines (AQG)	20	10	These are the lowest levels at which total, cardiopulmonary and lung cancer mortality have been shown to increase with more than 95% confidence in response to PM _{2.5} in the ACS study (323). The use of the PM _{2.5} guideline is preferred.

Tabella 8-21 - Linee guida sulla qualità dell'aria e obiettivi intermedi per il PM: media giornaliera

24-hour mean level ^a	PM ₁₀ (μg/m³)	PM _{2.5} (μg/m³)	Basis for the selected level
WHO interim target 1 (IT-1)	150	75	Based on published risk coefficients from multicentre studies and meta-analyses (about 5% increase in short-term mortality over AQG)
WHO interim target 2 (IT-2)	100	50	Based on published risk coefficients from multicentre studies and meta-analyses (about 2.5% increase in short-term mortality over AQG)
WHO interim target 3 (IT-3) ^b	75	37.5	About 1.2% increase in short-term mortality over AQG
WHO air quality guidelines (AQG)	50	25	Based on relation between 24-hour and annual PM levels

 ⁹⁹th percentile (3 days/year).

For management purposes, based on annual average guideline values, the precise number to be determined on the basis of local frequency distribution of daily means.

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 86 di 121	Rev. 2

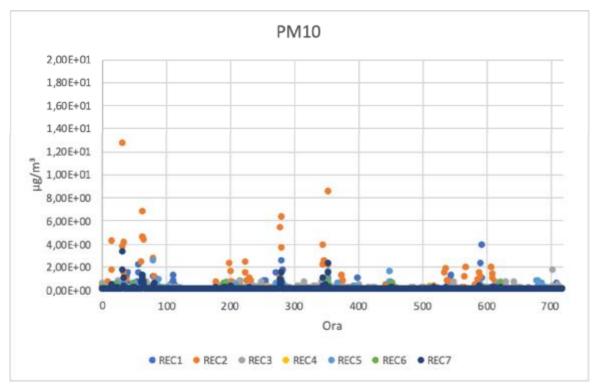


Figura 8-25 – Valutazione dei livelli di esposizione alle Polveri dei diversi ricettori per lo scenario mensile massimo

snam V/	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 87 di 121	Rev. 2

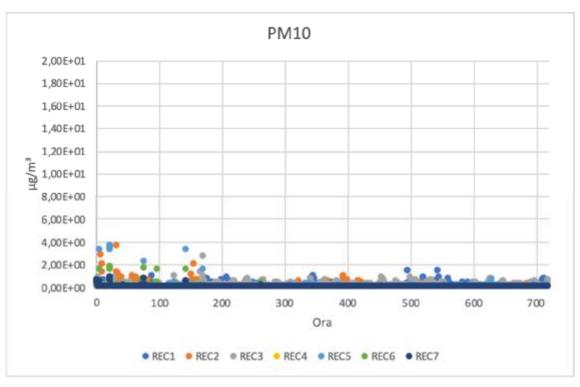


Figura 8-26 – Valutazione dei livelli di esposizione alle Polveri dei diversi ricettori per lo scenario mensile intermedio

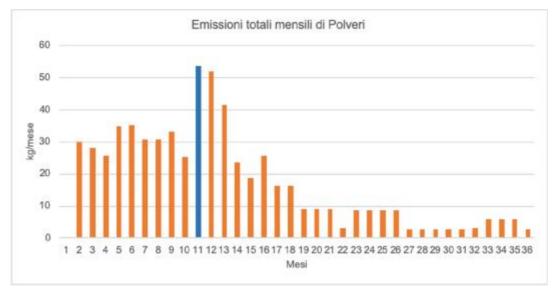
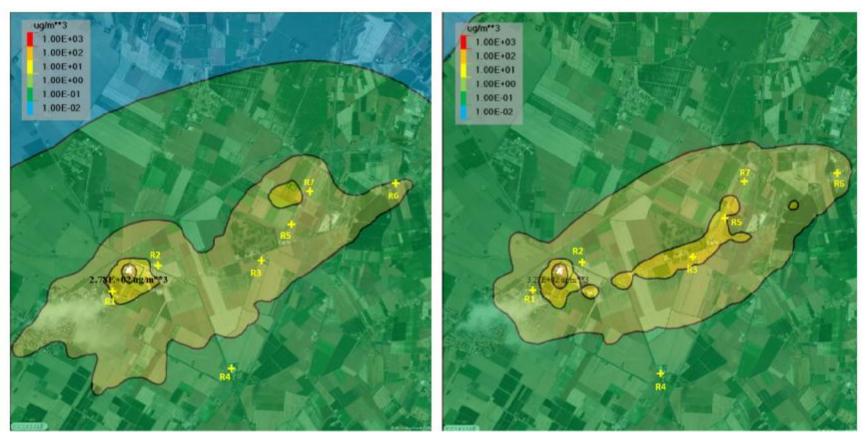



Figura 8-27 – Comparazione delle emissioni complessive assunte di Polveri espresse come kg/giorno, e confronto con le emissioni relative a tutti i messi di cantiere

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 88 di 121	Rev. 2

8.11.4 Confronto fra lo scenario peggiore ed uno intermedio

Si riportano infine in Figura 8-28, Figura 8-29 e Figura 8-30 i confronti fra le simulazioni nel periodo di novembre ed il periodo di giugno. Quest'ultimo è associato ad emissioni inferiori che meglio descrivono l'andamento medio delle emissioni per il primo anno di lavori, che è quello con la maggiore densità di attività di cantiere. Si può osservare dalle curve di isoconcentrazione l'abbassamento di tutti i profili di esposizioni, con riduzione dei valori di picco del 20% circa. Inoltre si osserva un alleggerimento del carico di inquinanti intorno alla centrale SNAM di Poggio Renatico, che è sicuramente la zona maggiormente esposta.


snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 89 di 121	Rev. 2

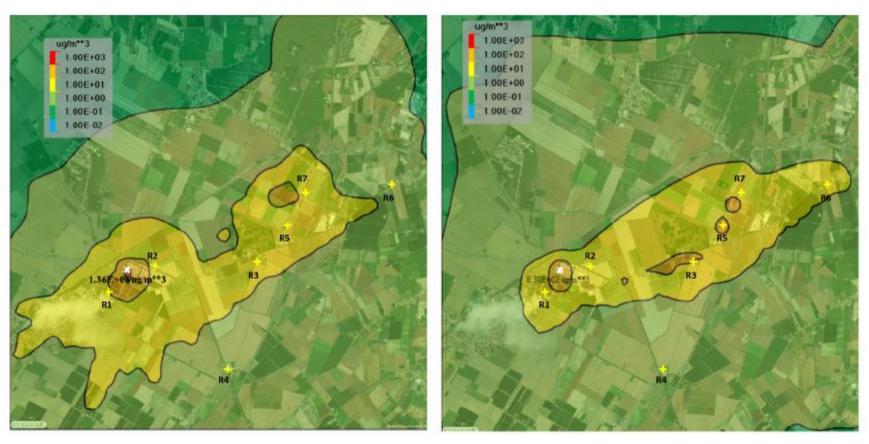
CO media oraria – scenario peggiore

CO media oraria - scenario intermedio


snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 90 di 121	Rev. 2

CO massimo su media mobile ad 8 ore – scenario peggiore CO massimo su media mobile ad 8 ore – scenario intermedio Figura 8-28 – Comparazione delle emissioni di CO nei periodi di novembre e giugno

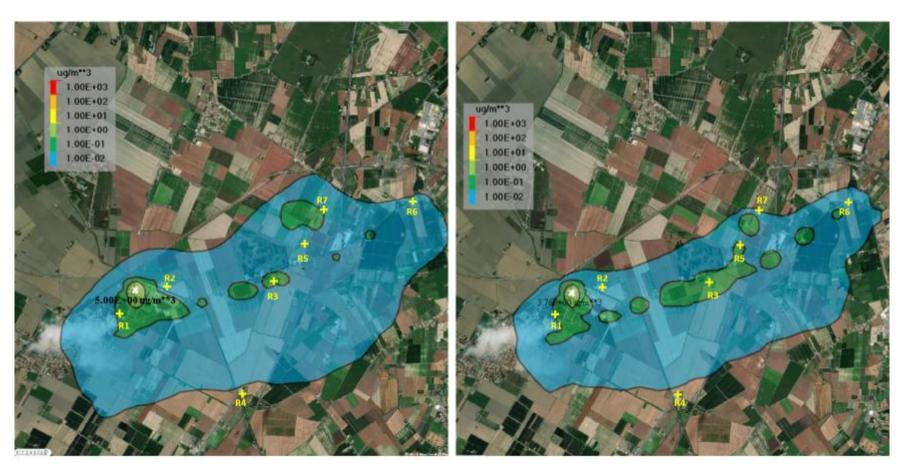
snam V/	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 91 di 121	Rev. 2


Rif. TPIDL: 201280C001-000-RT-6201-94710

NOx media oraria – scenario peggiore

NOx media oraria – scenario intermedio

snam	PROGETTISTA TECHNIP	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 92 di 121	Rev. 2



99.8° percentile NOx media oraria – scenario peggiore

99.8° percentile NOx media oraria – scenario intermedio

Figura 8-29 – Comparazione delle emissioni di NOx nei periodi di novembre e giugno

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 93 di 121	Rev. 2

PM10 media oraria – scenario peggiore

PM10 media oraria – scenario intermedio

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 94 di 121	Rev. 2

90.4° percentil PM10 media oraria – scenario peggiore 90.4° percentil PM10 media oraria – scenario intermedio Figura 8-30 – Comparazione delle emissioni di PM10 nei periodi di novembre e giugno

_	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 95 di 121	Rev. 2

9 CONCLUSIONI

Lo studio modellistico delle ricadute al suolo delle emissioni in atmosfera originate dall'attività di cantiere per l'adeguamento della Centrale di Compressione gas SNAM di Poggio Renatico (FE), è stato implementato considerando i contributi dei seguenti cantieri associati alle seguenti attività:

- sostituzione del Turbocompressore TC1 esistente con un nuovo Elettrocompressore (o ELCO) EC5 di taglia 15 MW;
- realizzazione dell'opera accessoria per la realizzazione dei raccordi in Alta Tensione (AT) alla linea 132 kV "Altedo Ferrara Sud";
- realizzazione dell'opera accessoria costituita da una nuova Stazione Elettrica RTN 132 kV;
- realizzazione dell'opera accessoria costituita da una nuova Sottostazione Elettrica Utente 132/15 kV
- realizzazione dell'opera accessoria costituita da un collegamento interrato in Media Tensione (MT) dalla Sottostazione Utente fino alla Centrale di Compressione gas SNAM.

La simulazione è stata effettuata su di una zona di 64 km², in modo da valutare le ricadute su lunga distanza. Sono stati considerati inoltre 7 recettori dislocati in prossimità di centri abitati, agricoli ed abitazioni nelle prossimità delle zone dedicate ai lavori.

Gli scenari simulati corrispondono alle configurazioni operative ritenute più gravose dal punto di vista emissivo. Sulla base dei programmi temporali di sviluppo di ciascun cantiere sono stati definiti i gli andamenti temporali dei fattori emissivi cumulati. I fattori emissivi sono associati ai gas di scarico dei mezzi e dei macchinari utilizzati, dalle attività movimentazione di terre e scavi e transito di mezzi di supporto. Tutti i fattori utilizzati si basano su dati di letteratura consolidati, o limiti normativi di emissioni di riferimento. È stato dunque valutato il mese più gravoso dal punto di vista delle emissioni lungo il periodo dei 3 anni ed è stato proposto come scenario peggiore da simulare. Il mese con più emissioni risulterebbe essere novembre 2023, durante il quale saranno operative contemporaneamente molte attività cantieristiche, in particolare nella centrale di Poggio Renatico. I risultati ottenuti forniscono delle informazioni relative allo scenario peggiore che si possono verificare soltanto durante un unico mese rispetto all'intero arco temporale.

Dato che i picchi di novembre sono molto maggiori rispetto alle emissioni negli altri periodi di lavoro, si è scelto di confrontare i profili di concentrazione con i risultati della simulazione di uno scenario più rappresentativo di quello che dovrebbe essere uno scenario medio. Si è scelto il mese di giugno 2023.

Gli inquinanti considerati sono NOx, CO e Polveri.

In termini generali, i picchi di concentrazione al suolo si ottengono all'interno del cantiere della Centrale di Compressione SNAM. Considerato che le emissioni sono praticamente al livello del suolo, i livelli di concentrazione degradano velocemente non appena si supera il limite della sede di cantiere.

Lungo la SP8 si sommano gli effetti dei transiti dei mezzi a servizio delle attività e le emissioni associate all'attività per la realizzazione del cavidotto. Questo cantiere è mobile e pertanto, dovendo considerare unicamente un mese, è stato posizionato in modo baricentrico rispetto al tracciato della strada provinciale. Tale assunzione permette di stimare gli impatti relativi a questo cantiere senza

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 96 di 121	Rev. 2

risentire necessariamente delle altre fonti di emissione costituite dagli altri cantieri. Il risultato ottenuto permette quindi di essere esteso lungo tutti il tracciato della SP8.

Più in particolare i risultati modellistici evidenziano quanto segue:

- Ossidi di Azoto: dall'esame dei risultati delle simulazioni effettuate, in relazione ai ricettori considerati (da R1 a R7), risulta un unico superamento orario presso il punto R2 (ricettore denominato "Centrale SNAM"). Pertanto, durante l'intero arco temporale relativo alle attività di cantiere, in corrispondenza dei ricettori scelti per le valutazioni oggetto del presente studio, sarà rispettata la soglia di 200 ug/mc intesa come 99,8 percentile della distribuzione annuale in conformità ai limiti previsti dal D.Lgs. 155/2010 e s.m.i.. In altri termini le norme consentono 175 superamenti all'anno mentre le simulazioni identificano un unico superamento in 3 anni associato alle attività di cantiere. Si precisa, infine, che il punto R2 per il quale è stato rilevato l'unico superamento è relativo ad una zona prossima alla Centrale di Compressione SNAM, dove non sono presenti abitazioni. Gli altri ricettori considerati, dove potrebbero essere presenti persone residenti, non evidenziano invece alcun superamento della soglia prevista per gli NOx, neanche durante il mese a maggiore emissione.
- Monossido di Carbonio: le concentrazioni attese al suolo sono sistematicamente di almeno un ordine di grandezza inferiori alla soglia limite fissata per la tutela della salute umana. Per tanto questo parametro non comporta alcuna criticità;
- Polveri: le concentrazioni attese al suolo sono compatibili con il limite di legge definiti per la tutela della salute umana e pertanto non costituiscono una criticità per nessuno dei cantieri considerati.

Si evidenzia che tutte le valutazioni sono state effettuate considerando il mese di attività con maggiori emissioni. Pertanto i risultati ottenuti costituiscono un riferimento interpretativo che considera come durante l'intero periodo di attività le emissioni saranno necessariamente inferiori. Come si osserva infatti dai confronti fra i profili emissivi con un mese a carico più leggero, le concentrazioni di picco si abbassano del 20-40% per tutti gli inquinanti considerati (in particolare gli NOx).

Inoltre occorre considerare che le ricadute al suolo non espongono i potenziali ricettori presenti nel contesto territoriale preso in considerazione, a livelli significativi di contaminazione. Le concentrazioni che potrebbero coinvolgere i potenziali ricettori, oltre ad essere molto basse sono anche di breve durata, sia perché variano nel corso del giorno in funzione delle ore di attività dei cantieri sia perché cambiano durante le diverse fasi di sviluppo. Sulla base dei risultati ottenuti, si è osservata una sola ora di superamento del limite di 200 µg/m³ di NOx lungo tutto l'arco temporale discusso.

Pertanto, si può concludere che le attività di cantiere relative al progetto di sostituzione del Turbocompressore TC1 con il nuovo Elettrocompressore (o ELCO) EC5 non comporteranno significativi impatti per il contesto territoriale considerato. In particolare, tali impatti possono essere considerati trascurabili e di carattere temporaneo e reversibile: gli effetti delle emissioni in atmosfera e del sollevamento polveri cesseranno al termine delle attività di cantiere, senza determinare perturbazioni permanenti allo stato di qualità dell'aria attuale.

10 BIBLIOGRAFIA

ARPA Lombardia (2018) Indicazioni relative all'utilizzo di tecniche modellistiche per la simulazione della dispersione di inquinanti negli studi di impatto sulla componente atmosfera https://www.arpalombardia.it/sites/DocumentCenter/Documents/ARIA%20-%20Modellistica%20per%20i%20SIA/Indicazioni modelli ottobre%202018.pdf

Lombardo C., Ambrosio G., Buffa P., Caltabellotta G., Gardina M., Palermo G., Raniolo I., Ventura F. (2014) Definizione della metodologia e degli input necessari per l'esecuzione di analisi integrate CALPUFF-CALMET ai fini della valutazione della dispersione di inquinanti radioattivi in atmosfera https://www.enea.it/it/Ricerca_sviluppo/documenti/ricerca-di-sistema-elettrico/sicurezza-nucleare/2014/rds-par2014-136.pdf

Regolamento (CE) n. 595/2009 (Normativa Euro VI)

Scire S. J., Strimaitis D. G., Yamartino R. J. (2000) *A User's guide for the CALPUFF dispersion model (Version 5)* http://www.src.com/calpuff/download/calpuff_usersguide.pdf

Seinfeld J.H., 1986, - "Atmospheric Chemistry and Physics of Air Pollution", Wiley & Sons, Inc.

South Coast AQMD, Off-road Mobile Source Emission Factors, http://www.aqmd.gov/home/rules-compliance/cega/air-quality-analysis-handbook/off-road-mobile-source-emission-factors

U.S. EPA, 2006- "The CALPUFF Modelling System", http://www.src.com/calpuff/calpuff1.htm). U.S. EPA, 2007 - "AP 42, Volume I, Fifth Edition" (http://www.epa.gov/ttn/chief/ap42/).

US EPA, 2008, Office of Transportation and Air Quality Average In-Use Emissions from Heavy-Duty Tracks, Environmental Protection Agency, https://nepis.epa.gov

Yamartino R. J., Scire J.S., Carmichael G. R., Chang Y. S., (1992) *The CALGRID mesoscale photochemical grid model—I. Model formulation, Atmospheric Environment. Part A. General Topics*, Volume 26, Issue 8, Pages 1493-1512, ISSN 0960-1686, https://doi.org/10.1016/0960-1686(92)90134-7. https://www.sciencedirect.com/science/article/pii/0960168692901347

Yamartino R. J., Scire S. J., Hanna S. R. (1989) *CALGRID: A Mesoscale Photochemical Grid Model* https://ww2.arb.ca.gov/sites/default/files/classic/research/apr/past/a049-1.pdf

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000	
snam	LOCALITA' POGGIO RENATICO (FE)	Ξ) ZA-E-94710		
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 98 di 121	Rev. 2	

11 ALLEGATO 1 - CRONOPROGRAMMA LAVORI CON INDICAZIONE DELLE CONSIDERATE AI FINI DELLA STIMA DELLE EMISSIONI

_	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 99 di 121	Rev. 2

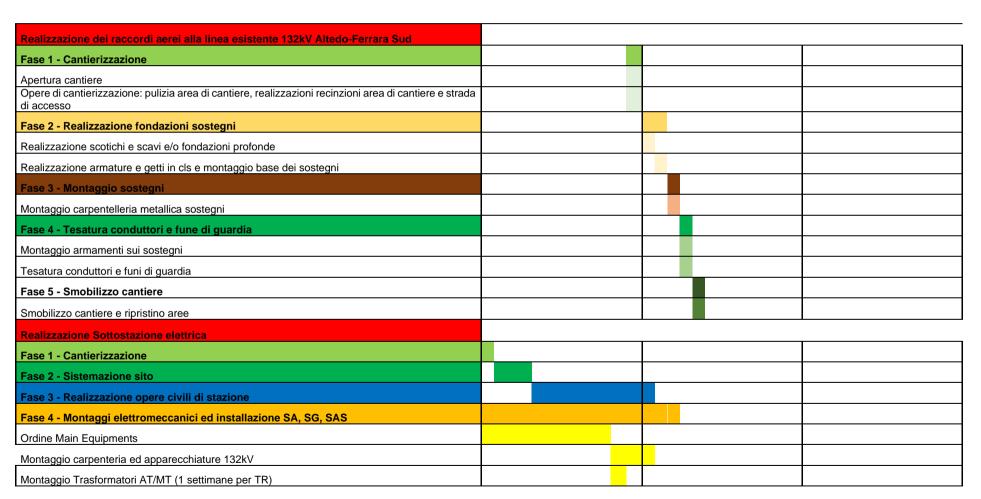
	I		,
	2023	2024	2025
Mese	1 2 3 4 5 6 7 8 9 0 1 2	1 2 3 4 5 6 7 8 9 0 1 2	1 2 3 4 5 6 7 8 9 0 1 2
ADEGUAMENTO CENTRALE POGGIO RENATICO	1 2 0 4 0 0 7 0 0 0 0 1 2	1 2 0 4 0 0 7 0 0 0 1 2	1 2 0 4 0 0 7 0 0 0 1 2
FASE 0			
SCAVI			
SAGGI SCOTICO E INFISSIONE PALANCOLE			
SCAVI SBANCAMENTO FABBRICATI SOTTOSTAZIONE ELCO ED HVAC			
SCAVI SBANCAMENTO CABINATO ELCO E PIPING			
SCAVI SBANCAMENTO FABBRICATO MT			
SCAVI A SEZIONE OBBLIGATA			
SCAVI A MANO			
PALI, FONDAZIONI E STRUTTURE IN C.A. FABBRICATI			
PALI PER FONDAZIONI FABBRICATO SOTTOSTAZIONE ELCO			
PALI PER FONDAZIONI ELCO, CABINATO E BLOCCHI D'ANCORAGGIO			
PALI PER FONDAZIONI FABBRICATO MT E HVAC, GRUPPI FRIGO HVAC E REFRIGERANTI VFD			
FONDAZIONI E STRUTTURE IN C.A. FABBRICATO SOTTOSTAZIONE ELCO			
FONDAZIONI IN C.A. ELCO, CABINATO E BLOCCHI D'ANCORAGGIO			
FONDAZIONI E STRUTTURA IN C.A. FABBRICATI MT E HVAC,FONDAZIONI GRUPPI FRIGO HVAC E REFRIGERANTI VFD			
COMPLETAMENTO FABBRICATI			
TAMPONATURE E FINITURE FABBRICATO MEDIA TENSIONE E HVAC			
TAMPONATURE E FINITURE FABBRICATI SOTTOSTAZIONE ELCO			
ALTRE OPERE CIVILI PER PIPING E PERCORSI CAVI ELE-SMI			

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 100 di 121	Rev. 2

REALIZZAZIONE POZZETTI IN C.A. PER VALVOLE, MISURATORE, SUPPORTI TUBAZIONI E CUNICOLI PER TUBAZIONI ACQUA REALIZZAZIONE POZZETTI IN C.A. ELE-SMI, FONDAZIONI PALI DI ILLUMINAZIONE E TORRI FARO E PERCORSI CAVI RIPRISTINI E COMPLETAMENTI RINTERRI RETI ACQUE METEORITICHE CAPPE IN VETRORESINA E FONOASSORBENTI E PANNELLI, GRIGLIATI, SCALE PASSERELLE RIPRISTINI OPERE STRADALI RIPRISTINI OPERE STRADALI RIPRISTINI E COMPLETAMENTI IMPIANTI HVAC INSTALLAZIONE GRUPPI FRIGO E SERBATOIO INERZIALE, POMPE E COLLETTORI NEL FABBRICATO HVAC E APPARECCHIATURE HVAC NEL FABBRICATO MT INSTALLAZIONE APPARECCHIATURE MIPIANTO HVAC NEL FABBRICATO SOTTOSTAZIONE ELCO E TUBAZIONI ACQUA GLICOLATA NEI CUNICOLI PROVE E COLLAUDI IMPIANTI HVAC LAVORI MECCANICI
REALIZZAZIONE POZZETTI IN C.A. ELE-SMI, FONDAZIONI PALI DI ILLUMINAZIONE E TORRI FARO E PERCORSI CAVI RIPRISTINI E COMPLETAMENTI RINTERRI RETI ACQUE METEORITICHE CAPPE IN VETRORESINA E FONOASSORBENTI E PANNELLI, GRIGLIATI, SCALE PASSERELLE RIPRISTINI OPERE STRADALI RIPRISTINI OPERE STRADALI RIPRISTINI E COMPLETAMENTI IMPIANTI HVAC INSTALLAZIONE GRUPPI FRIGO E SERBATOIO INERZIALE, POMPE E COLLETTORI NEL FABBRICATO HVAC E APPARECCHIATURE HVAC NEL FABBRICATO MT INSTALLAZIONE APPARECCHIATURE IMPIANTO HVAC NEL FABBRICATO SOTTOSTAZIONE ELCO E TUBAZIONI ACQUA GLICOLATA NEI CUNICOLI PROVE E COLLAUDI IMPIANTI HVAC
FARO E PERCORSI CAVI RIPRISTINI E COMPLETAMENTI RINTERRI RETI ACQUE METEORITICHE CAPPE IN VETRORESINA E FONOASSORBENTI E PANNELLI, GRIGLIATI, SCALE PASSERELLE RIPRISTINI OPERE STRADALI RIPRISTINI OPERE STRADALI RIPRISTINI E COMPLETAMENTI IMPIANTI HVAC INSTALLAZIONE GRUPPI FRIGO E SERBATOIO INERZIALE, POMPE E COLLETTORI NEL FABBRICATO HVAC E APPARECCHIATURE HVAC NEL FABBRICATO MT INSTALLAZIONE APPARECCHIATURE IMPIANTO HVAC NEL FABBRICATO SOTTOSTAZIONE ELCO E TUBAZIONI ACQUA GLICOLATA NEI CUNICOLI PROVE E COLLAUDI IMPIANTI HVAC
RINTERRI RETI ACQUE METEORITICHE CAPPE IN VETRORESINA E FONOASSORBENTI E PANNELLI, GRIGLIATI, SCALE PASSERELLE RIPRISTINI OPERE STRADALI RIPRISTINI E COMPLETAMENTI IMPIANTI HVAC INSTALLAZIONE GRUPPI FRIGO E SERBATOIO INERZIALE, POMPE E COLLETTORI NEL FABBRICATO HVAC E APPARECCHIATURE HVAC NEL FABBRICATO MT INSTALLAZIONE APPARECCHIATURE IMPIANTO HVAC NEL FABBRICATO SOTTOSTAZIONE ELCO E TUBAZIONI ACQUA GLICOLATA NEI CUNICOLI PROVE E COLLAUDI IMPIANTI HVAC
RETI ACQUE METEORITICHE CAPPE IN VETRORESINA E FONOASSORBENTI E PANNELLI, GRIGLIATI, SCALE PASSERELLE RIPRISTINI OPERE STRADALI RIPRISTINI E COMPLETAMENTI IMPIANTI HVAC INSTALLAZIONE GRUPPI FRIGO E SERBATOIO INERZIALE, POMPE E COLLETTORI NEL FABBRICATO HVAC E APPARECCHIATURE HVAC NEL FABBRICATO MT INSTALLAZIONE APPARECCHIATURE IMPIANTO HVAC NEL FABBRICATO SOTTOSTAZIONE ELCO E TUBAZIONI ACQUA GLICOLATA NEI CUNICOLI PROVE E COLLAUDI IMPIANTI HVAC
RETI ACQUE METEORITICHE CAPPE IN VETRORESINA E FONOASSORBENTI E PANNELLI, GRIGLIATI, SCALE PASSERELLE RIPRISTINI OPERE STRADALI RIPRISTINI E COMPLETAMENTI IMPIANTI HVAC INSTALLAZIONE GRUPPI FRIGO E SERBATOIO INERZIALE, POMPE E COLLETTORI NEL FABBRICATO HVAC E APPARECCHIATURE HVAC NEL FABBRICATO MT INSTALLAZIONE APPARECCHIATURE IMPIANTO HVAC NEL FABBRICATO SOTTOSTAZIONE ELCO E TUBAZIONI ACQUA GLICOLATA NEI CUNICOLI PROVE E COLLAUDI IMPIANTI HVAC
CAPPE IN VETRORESINA E FONOASSORBENTI E PANNELLI, GRIGLIATI, SCALE PASSERELLE RIPRISTINI OPERE STRADALI RIPRISTINI E COMPLETAMENTI IMPIANTI HVAC INSTALLAZIONE GRUPPI FRIGO E SERBATOIO INERZIALE, POMPE E COLLETTORI NEL FABBRICATO HVAC E APPARECCHIATURE HVAC NEL FABBRICATO MT INSTALLAZIONE APPARECCHIATURE IMPIANTO HVAC NEL FABBRICATO SOTTOSTAZIONE ELCO E TUBAZIONI ACQUA GLICOLATA NEI CUNICOLI PROVE E COLLAUDI IMPIANTI HVAC
PASSERELLE RIPRISTINI OPERE STRADALI RIPRISTINI E COMPLETAMENTI IMPIANTI HVAC INSTALLAZIONE GRUPPI FRIGO E SERBATOIO INERZIALE, POMPE E COLLETTORI NEL FABBRICATO HVAC E APPARECCHIATURE HVAC NEL FABBRICATO MT INSTALLAZIONE APPARECCHIATURE IMPIANTO HVAC NEL FABBRICATO SOTTOSTAZIONE ELCO E TUBAZIONI ACQUA GLICOLATA NEI CUNICOLI PROVE E COLLAUDI IMPIANTI HVAC
RIPRISTINI E COMPLETAMENTI IMPIANTI HVAC INSTALLAZIONE GRUPPI FRIGO E SERBATOIO INERZIALE, POMPE E COLLETTORI NEL FABBRICATO HVAC E APPARECCHIATURE HVAC NEL FABBRICATO MT INSTALLAZIONE APPARECCHIATURE IMPIANTO HVAC NEL FABBRICATO SOTTOSTAZIONE ELCO E TUBAZIONI ACQUA GLICOLATA NEI CUNICOLI PROVE E COLLAUDI IMPIANTI HVAC
INSTALLAZIONE GRUPPI FRIGO E SERBATOIO INERZIALE, POMPE E COLLETTORI NEL FABBRICATO HVAC E APPARECCHIATURE HVAC NEL FABBRICATO MT INSTALLAZIONE APPARECCHIATURE IMPIANTO HVAC NEL FABBRICATO SOTTOSTAZIONE ELCO E TUBAZIONI ACQUA GLICOLATA NEI CUNICOLI PROVE E COLLAUDI IMPIANTI HVAC
INSTALLAZIONE GRUPPI FRIGO E SERBATOIO INERZIALE, POMPE E COLLETTORI NEL FABBRICATO HVAC E APPARECCHIATURE HVAC NEL FABBRICATO MT INSTALLAZIONE APPARECCHIATURE IMPIANTO HVAC NEL FABBRICATO SOTTOSTAZIONE ELCO E TUBAZIONI ACQUA GLICOLATA NEI CUNICOLI PROVE E COLLAUDI IMPIANTI HVAC
FABBRICATO HVAC E APPARECCHIATURE HVAC NEL FABBRICATO MT INSTALLAZIONE APPARECCHIATURE IMPIANTO HVAC NEL FABBRICATO SOTTOSTAZIONE ELCO E TUBAZIONI ACQUA GLICOLATA NEI CUNICOLI PROVE E COLLAUDI IMPIANTI HVAC
INSTALLAZIONE APPARECCHIATURE IMPIANTO HVAC NEL FABBRICATO SOTTOSTAZIONE ELCO E TUBAZIONI ACQUA GLICOLATA NEI CUNICOLI PROVE E COLLAUDI IMPIANTI HVAC
SOTTOSTAZIONE ELCO E TUBAZIONI ACQUA GLICOLATA NEI CUNICOLI PROVE E COLLAUDI IMPIANTI HVAC
PROVE E COLLAUDI IMPIANTI HVAC
LAVORI MECCANICI
PREFABBRICAZIONE TUBAZIONI E SUPPORTI
MONTAGGIO SUPPORTI TUBAZIONI, VALVOLE E APPARECCHIATURE E LINEE SERVIZI
COLLAUDI IDRAULICI E PNEUMATICI, SVUOTAMENTI ESSICCAMENTI E PROVE DI TENUTA
VERNICIATURE E COIBENTAZIONI
LAVORI ELETTRICI E DI PROTEZIONE CATODICA
POSA CAVI ELETTRICI E DI PROTEZIONE CATODICA, APPARECCHIATURE E CABLAGGI IN CAMPO
IMPIANTI FM E LUCE FABBRICATI MT E HVAC, POSIZIONAMENTO PASSERELLE, APPARECCHIATURE, CAVI FABBRICATI HVAC E MT E CABLAGGI
IMPIANTI FM E LUCE FABBRICATI POSIZIONAMENTO PASSERELLE, APPARECCHIATURE, CAVI FABBRICATO SOTTOSTAZIONE ELCO E CABLAGGI

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 101 di 121	Rev. 2

IMPIANTI DI ILLUMINAZIONE STRADALE		
MODIFICHE QUADRI ESISTENTI E A SISTEMA SCRE		
POWER ON QUADRI		
PROVE E COLLAUDI		
LAVORI DI STRUMENTAZIONE, RIVELAZIONE INCENDI E VIDEOSORVEGLIANZA		
POSA CAVI STRUMENTALI APPARECCHIATURE E CABLAGGI IN CAMPO INSTALLAZIONE IMPIANTI F&G FABBRICATI SOTTOSTAZIONE ELCO, MT, CALDAIE E MISURA (A CURA FORNITORE) E CABLAGGI POSIZIONAMENTO PASSERELLE, APPARECCHIATURE, CAVI NEI FABBRICATI HVAC E MT E CABLAGGI POSIZIONAMENTO PASSERELLE, APPARECCHIATURE, CAVI NEL FABBRICATO SOTTOSTAZIONE ELCO E CABLAGGI MODIFICHE HW E SW DEL SISTEMA SCS PROVE E COLLAUDI E LOOP CHECKS MONTAGGIO CABINATO, INSTALLAZIONE ELCO, REFRIGERANTI VFD, QUADRI VFD,		
FILTRI, TRASFORMATORI, MCC E SCU E PRECOMMISSIONING ALLESTIMENTO CANTIERE FORNITORE ELCO		
GROUTING BASAMENTO ELCO		
POSIZIONAMENTO E MONTAGGIO CABINATO ELCO E INSTALLAZIONE CARROPONTE INSTALLAZIONE ELCO EC5, REFRIGERANTI VFD, SKID E SERVIZI AUSILIARI (INTERNO CABINATO) E TUBAZIONI SERVIZI E ACQUA AI VFD INSTALLAZIONE PASSERELLE, APPARECCHIATURE E CAVI IMPIANTI ELE/SMI/VENTILAZIONE /FIRE&GAS/RISCALDAMENTO CABINATO ELCO E RELATIVI CABLAGGI INSTALLAZIONE FILTRI, QUADRI VFD, TRASFORMATORI, MCC E SCU, CAVI E CABLAGGI NEL FABBRICATO SOTTOSTAZIONE ELCO COLLAUDI E PROVE IDRAULICHE, SVUOTAMENTI, SOFFIAGGI ESSICCAMENTI E PROVE DI TENUTA		
COLLAUDI E PROVE (PRE-COMMISSIONING)		


	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 102 di 121	Rev. 2

FASE 1 - ESECUZIONE TIE INS, PRECOMMISSIONING (CENTRALE IN FERMATA) E COMMISSIONING				
FASE 2 - SMANTELLAMENTO TC-1 (CENTRALE IN ESERCIZIO), RIPRISTINI E COMPLETAMENTI				
SMANTELLAMENTI CAVI ELETTRICI E DI STRUMENTAZIONE E APPARECCHIATURE				
SMANTELLAMENTO APPARECCHIATURE DI PROCESSO E PIPING				
SMANTELLAMENTO CARROPONTE E CABINATO TC-1				
SCAVI IN AREA TC1 61				
DEMOLIZIONE DELLE OPERE IN C.A.				
RINTERRI				
RIPRISTINI E RISISTEMAZIONI OPERE STRADALI				
STAZIONE ELETTRICA				
Fase 1 - Cantierizzazione				
Apertura cantiere				
Opere di cantierizzazione				
Fase 2 - Sistemazione sito				
Scotico area di intervento				
Sbancamenti e conferimento dei terreni a discarica				
Realizzazione muri di recinzione perimetrale della stazione				
Formazione di rilevato fino a quota imposta fondazioni				
Fase 3 - Realizzazione opere civili di stazione				
Realizzazione delle fondazioni di stazione (Area fabbricato MT)				
Realizzazione delle fondazioni di stazione (Area fabbricato Edificio Integrato)				
Realizzazione delle fondazioni Gruppo elettrogeno e Serbatoio interrato				

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-	94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 103 di 121	Rev. 2

Realizzazione delle fondazioni di stazione (Area arrivo linea e utente)			
Realizzazione delle fondazioni di stazione (Area apparecchiatura stalli)			
Realizzazione del fabbricato MT			
Realizzazione del fabbricato Integrato			
Finiture fabbricato MT (serramenti, pitturazioni, lattoneria) Finiture fabbricato integrato (serramenti, pitturazioni, lattoneria, impianti sanitari,,pavimentazione dei servizi igienici)			
Realizzazione rete di terra, rete drenante di stazione, piano di stazione finito a ghiaietto, cordoli			
Strade con cordoli e asfaltature, comprese le finiture finali			
Smobilizzo cantiere (civile)			
Fase 4 - Montaggi elettromeccanici ed installazione SA, SG, SAS			
Montaggio carpenteria ed apparecchiature 132kV			
75 gt			
Montaggi SG (impianti di: riscaldamento,condizionamento, ventilazione, telefonico/dati.illuminazione e FM)			
Montaggi SA (Montaggio quadri centralizzati negli edifici o e montaggio quadri periferici nei chioschi di stazione)			
Fornitura e montaggio TR (interno al fabbricato integrato)			
Montaggio GE con serbatoio interrato			
Montaggio quadri MT			
Montaggi SAS			
Collaudi SAS			
Attivazione stazione RTN e sottostazione utente			
Fase 5 - Smobilizzo cantiere			
Smobilizzo cantiere (elettromeccanico)		 	

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 104 di 121	Rev. 2

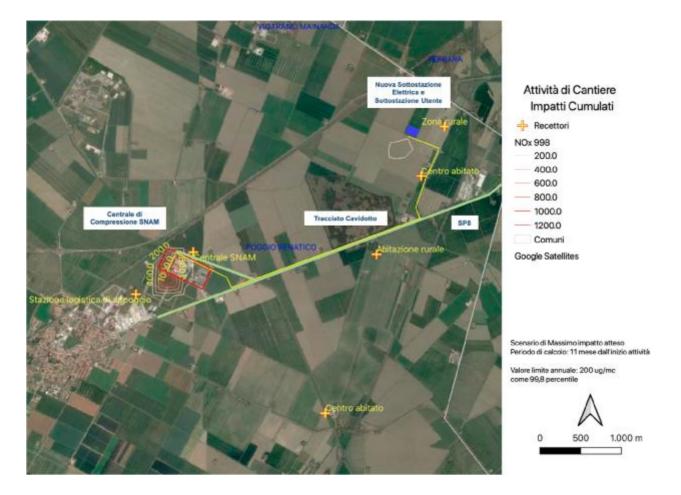
	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000	
snam	LOCALITA' POGGIO RENATICO (FE)		ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 105 di 121	Rev. 2	

Montaggi SG (impianti di: riscaldamento,condizionamento, ventilazione, telefonico/dati.illuminazione e FM)		
Montaggi SA (Montaggio quadri centralizzati negli edifici o e montaggio quadri periferici nei chioschi di stazione)		
Fornitura e montaggio TR (interno al fabbricato integrato)		
Montaggio GE con serbatoio interrato		
Montaggio quadri MT		
Montaggi SAS		
Collaudi SAS		
Attivazione SAS, SA e SG		
Fase 5 - Smobilizzo cantiere		
Realizzazione collegamenti MT		
Fase 1 - Cantierizzazione		
Fase 2 - Realizzazione opere civili		
Fase 3 - Realizzazione opere elettriche		
Fase 3 - Smobilizzo cantiere		

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE) ZA-E-947		94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 106 di 121	Rev. 2

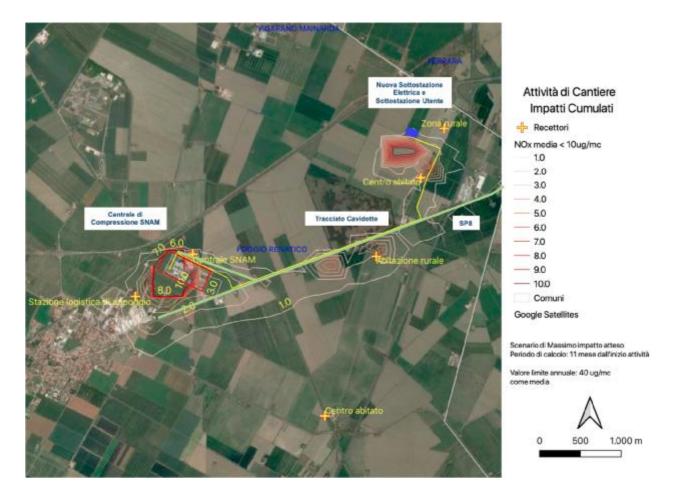
12 ALLEGATO 2 - MAPPE DELLE CONCENTRAZIONI DEGLI INQUINANTI AL SUOLO PER I DIVERSI SCENARI SIMULATI

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE) ZA-E-94		94710
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 107 di 121	Rev. 2

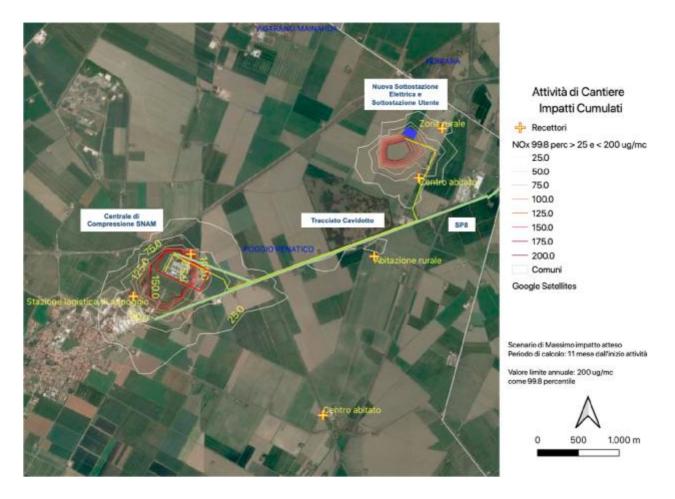

Mappe delle ricadute al suolo relative agli

SCENARI EMISSIVI CUMULATI IN FASE DI CANTIERE

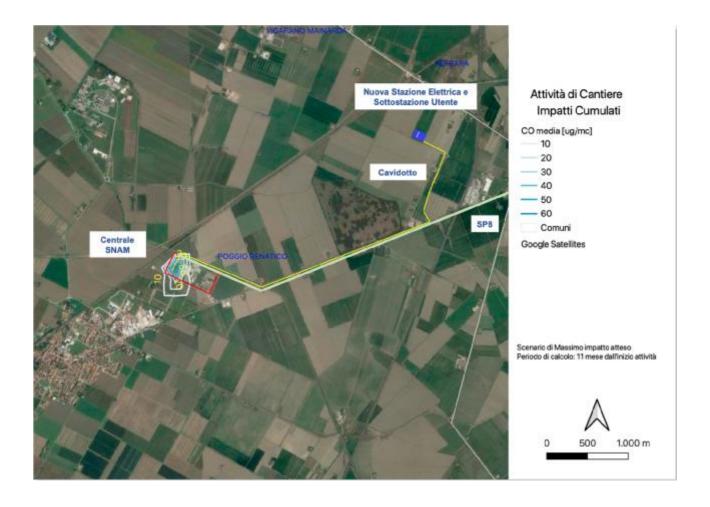
Massima Ricaduta Riferiti all'11° mese di attività di cantiere



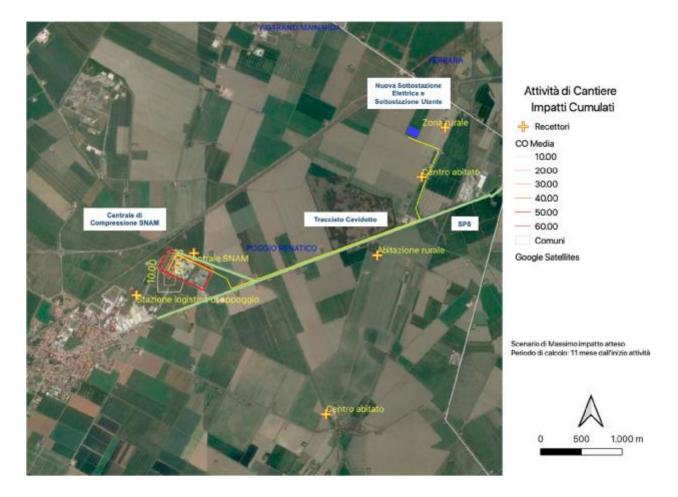
PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000	
LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710		
PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 108 di 121	Rev. 2	



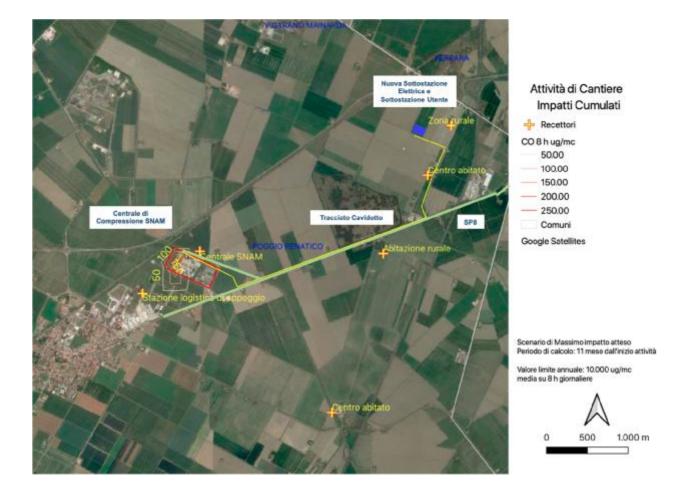
PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 109 di 121	Rev. 2



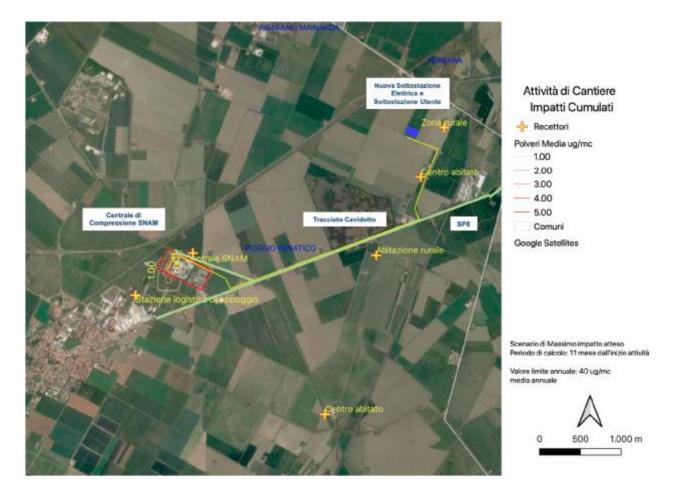
PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000	
LOCALITA' POGGIO RENATICO (FE)	ZA-E-	ZA-E-94710	
PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	NE Fg. 110 di 121 Rev. 2		



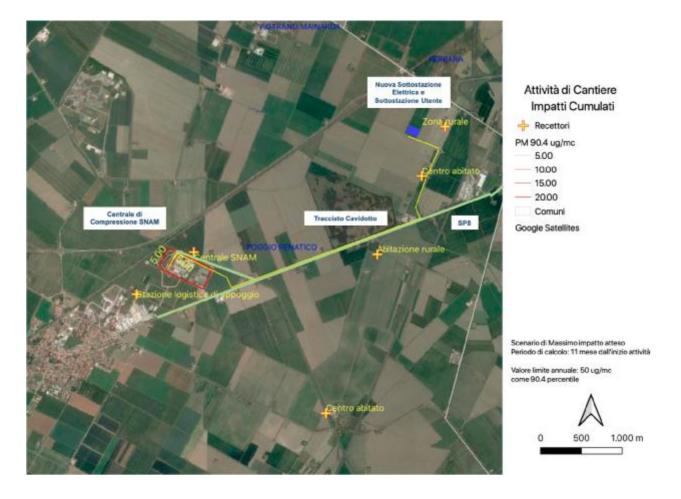
PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000	
LOCALITA' POGGIO RENATICO (FE)	ZA-E-	ZA-E-94710	
PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSION DI POGGIO RENATICO	NE Fg. 111 di 121	Rev. 2	



PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 112 di 121	Rev. 2



PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO Fg. 113 di 121		Rev. 2



PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 114 di 121	Rev. 2

PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO Fg. 115 di 121		Rev. 2

13 ALLEGATO 3 - ASSUNZIONI DELLE VARIABILI MODELLISTICHE DI INPUT

IN OT GROOT T	- General run control parameters
! METRUN = 0	! Control parameter for running all periods in me
! IBYR = 2020	! Starting year of the run
! IBMO = 11	! Starting month of the run
! IBDY = 1	! Starting day of the run
! IBHR = 0	! Starting hour of the run
! IBMIN = 0	! Starting minute of the run
! IBSEC = 0	! Starting second of the run
! IEYR = 2020	! Ending year of the run
! IEMO = 12	! Ending month of the run
! IEDY = 1	! Ending day of the run
! IEHR = 0	! Ending hour of the run
! IEMIN = 0	! Ending minute of the run
! IESEC = 0	! Ending second of the run
! NSECDT = 3600	! Length of modeling time-step
! IOUTU = 1	! Output units for conc. and flux files for Datas
! ABTZ = UTC+0	1100 ! UTC time zone
! NSPEC = 3	! Total number of species modeled
! NSE = 3	! Number of species emitted
! ITEST = 2	! Stop run after setup phase
! MRESTART = 0	! Restart control
! NRESPD = 0	! Number of periods in restart output cycle
! METFM = 1	! Meteorological data format
! MPRFFM = 1	! Meteorological profile data format
! AVET = 60	! Averaging time
! PGTIME = 60	! Averaging time for PG
! END !	
INPUT GROUP: 2	Technical options
! MGAUSS = 1	! Control variable determining the vertical distr
! MCTADJ = 3	! Terrain adjustment method
! MCTSG = 0	! CALPUFF subgrid scale complex terrain module (C
! MSLUG = 0	! Near-field puffs are modeled as elongated 'slugs'
! MTRANS = 1	! Transitional plume rise modeled
! MTIP = 1	! Stack tip downwash modeled
! MRISE = 1	! Plume rise method for point sources not subject
! MTIP_FL = 1	! Stack tip downwash to FLARE sources
! MRISE_FL = 2	! Plume rise method for flare sources not subject

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 117 di 121	Rev. 2

```
! MBDW
                     ! Building downwash method
! MSHEAR
                      ! Vertical wind shear above stack top modeled in ...
! MSPLIT
           = 0
                     ! Puff splitting allowed
! MCHFM
                      ! Chemical mechanism flag
! MAQCHEM = 0
                       ! Compute RADM
! MLWC
                     ! Liquid water content
I MWFT
           = 1
                     1 Wet removal modeled
! MDRY
                     ! Dry deposition modeled
! MDISP
           = 3
                     ! Method used to compute the horizontal and verti...
! MTURBVW = 3
                       ! Sigma-v/sigma-theta, sigma-w measurements used
! MDISP2 = 3
                     ! Back-up method used to compute dispersion when ...
! MROUGH = 0
                      ! PG ay and az adjusted for surface roughness
! MPARTL = 1
                      ! Partial plume penetration of elevated inversion...
! MPARTLBA = 1
                       ! Partial plume penetration of elevated inversion...
! MTINV
          = 0
                    ! Strength of temperature inversion provided in P...
! MPDF
                     ! Probability Distribution Function method used f...
! MSGTIBL = 0
                     ! Subgrid scale TIBL module used for shoreline
! MBCON
                      ! Boundary conditions (concentration) modeled
! MSOURCE = 0
                       ! Configure for source contributions output
! MFOG
           = 0
                     ! Configure for FOG Model output
! MREG
                     ! Check options for regulatory values
IMTIIT = 0
                    ! Gravitational settling (plume tilt)
! MTAULY = 0
                      ! Lagrangian timescale for Sigma-y
! MTAUADV = 0
                      ! Advective-decay timescale for turbulence
! MCTURB = 1
                      ! Computed turbulence profile
! END!
INPUT GROUP: 3a, 3b -- Species list
Subgroup (3a)
! CSPEC
           = NOX!!END!
! CSPEC
          = CO ! !END!
! CSPEC
           = PM10 ! !END!
Species
            Modeled Emitted Dry Dep. Group
       NOX =
                                        0!
        CO =
                  1,
                         1,
                                0,
                                       0!
      PM10 =
                  1,
                         1,
! END!
INPUT GROUP: 4 -- Map projection and grid control parameters
```

	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	RENATICO (FE) ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 118 di 121	Rev. 2

Projection	
 ! PMAP = UTM	! Map projection for all XY coordinates
! FEAST = 0	! False Easting
! FNORTH = 0	! False Northing
! IUTMZN = 32	! UTM zone
! UTMHEM = N	! Hemisphere for UTM projection
* RLAT0 =	* Reference latitude
* RLON0 =	* Reference longitude
* XLAT1 =	* Latitude of 1st standard parallel
* XLAT2 =	* Latitude of 2nd standard parallel
! DATUM = WGS-	84 ! Datum-region for output coordinates
Grid	
! NX = 40	! Number of grid cells in the X direction
! NY = 40	! Number of grid cells in the Y direction
! NZ = 10	! Number of vertical layers
! DGRIDKM = 0.2	! Horizontal grid spacing
! ZFACE = 0, 20,	40, 80, 160, 320, 640, 1200, 2000, 3000, 4000! Cell f
! XORIGKM = 696	! Reference X coordinate of grid
! YORIGKM = 4958	! Reference Y coordinate of grid
! IBCOMP = 1	! X index of lower left corner of the computation
! JBCOMP = 1	! Y index of lower left corner of the computation
! IECOMP = 40	! X index of upper right corner of the computatio
! JECOMP = 40	! Y index of upper right corner of the computatio
! LSAMP = T	! Array of gridded receptors used
! IBSAMP = 1	! X index of lower left comer of the sampling grid
! JBSAMP = 1	! Y index of lower left comer of the sampling grid
! IESAMP = 40	! X index of upper right comer of the sampling grid
! JESAMP = 40	! Y index of upper right comer of the sampling grid
! MESHDN = 1	! Nesting factor of the sampling grid
! END !	
INPUT GROUP: 5 (Output options
! ICON = 1	! Create concentration file
! IDRY = 0	! Create dry flux file
! IWET = 0	! Create wet flux file
! IT2D = 0	! Create 2D temperature file
! IRHO = 0	! Create 2D density file
! IVIS = 0	! Create relative humidity (visibility) file
! LCOMPRS = T	! Data compression of output files

-	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
snam	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 119 di 121	Rev. 2

```
! IQAPLOT = 1
                       ! Create plot files
! IMFLX
                     ! Create mass flux file
! IMBAL
                      ! Create mass balance file
! INRISE = 0
                     ! Create plume properties file
!IPFTRAK = 0
                      ! Puff locations and properties reported to PFTRA...
! ICPRT
           = 0
                     ! Print concentration data to list file
1 IDPRT
           = 0
                     ! Print dry deposition data to list file
! IWPRT
                      ! Print wet deposition data to list file
! ICFRQ
                      ! Printing interval for concentration (hours)
! IDFRQ
                      ! Printing interval for dry deposition (hours)
! IWFRQ
                      ! Printing interval for wet deposition (hours)
! IPRTU
           = 1
                     ! Units for concentration and deposition in list ...
! IMESG
                      ! Write progress messages to screen
! END!
INPUT GROUP: 6a, 6b, & 6c -- Subgrid scale complex terrain inputs
Subgroup (6a)
|NHIII| = 0
                    ! Number of subgrid scale terrain features
! NCTREC = 0
                       ! Number of special subgrid scale complex terrain...
! MHILL = 2
                     ! Terrain and receptor data for CTSG hills input ...
! XHILL2M = 1
                      I Factor to convert horizontal dimensions to meters
! ZHILL2M = 1
                       ! Factor to convert vertical dimensions to meters
|XCTDMKM| = 0
                        ! X-origin of CTDM system relative to CALPUFF coo...
! YCTDMKM = 0
                        ! Y-origin of CTDM system relative to CALPUFF coo...
! END!
INPUT GROUP: 7 -- Chemical parameters for dry deposition of gases
! END!
INPUT GROUP: 8 -- Size parameters for dry deposition of particles
            Geometric mass Geometric std.
            mean diameter deviation
              (microns)
  Species
                             (microns)
      PM10 =
                       48
! END!
INPUT GROUP: 9 -- Miscellaneous dry deposition parameters
! RCUTR
           = 30
                      ! Reference cuticle resistance
! RGR
           = 10
                      ! Reference ground resistance
! REACTR = 8
                     ! Reference pollutant reactivity
! NINT
          = 9
                     ! Number of particle-size intervals
! IVEG
                     ! Vegetation state in unirrigated areas
! END!
```

snam	PROGETTISTA TECHNIP ENERGIES	COMMESSA NC/22011	UNITA ' 000
	LOCALITA' POGGIO RENATICO (FE)	ZA-E-94710	
	PROGETTO / IMPIANTO ADEGUAMENTO CENTRALE DI COMPRESSIONE DI POGGIO RENATICO	Fg. 120 di 121	Rev. 2

```
INPUT GROUP: 10 -- Wet deposition parameters
           Liquid
                     Frozen
 Species
              precip.
                        precip.
      PM10 =
                 .0001.
                           .00003
! END!
INPUT GROUP: 12 -- Misc. dispersion and computational parameters
|SYTDFP| = 550
                      ! Sigma-y at which Heffter curve begins
! MHFTSZ
           = 0
                      ! Use Heffter equation for sigma-z
! JSUP
          = 5
                    ! Stability class above PBL
! CONK1
           = 0.01
                      ! Vertical dispersion constant for stable conditions
! CONK2
           = 0.1
                      ! Vertical dispersion constant for neutral/unstab...
! TBD
          = 0.5
                    ! Factor for determining transition-point from Sc...
! IURB1
          = 10
                     ! Beginning urban land use category
! IURB2
          = 19
                     ! Ending urban land use category
! ILANDUIN = 20
                     ! Land use category for modeling domain
! Z0IN
          = 0.25
                     ! Roughness length for modeling domain
! XLAIIN = 3.0
                     ! Leaf area index for modeling domain
! ELEVIN = 0
                     ! Elevation above sea level
! XLATIN = -999
                      ! Latitude of station
! XLONIN = -999
                       ! Longitude of station
! ANEMHT = 10
                       ! Anemometer height
| ISIGMAV = 1
                     ! Form of lateral turbulence data in CTDM profile...
! IMIXCTDM = 0
                      ! Choice of mixing heights
! XMXLEN = 1
                      ! Maximum length of an emitted slug
                      ! Maximum travel distance of a slug or puff
|XSAMIFN| = 1
! MXNEW
                      ! Maximum number of puffs or slugs released
! MXSAM
           = 99
                      ! Maximum number of sampling steps
! NCOUNT = 2
                      ! Number of iterations used when computing the tr...
! SYMIN
                     ! Minimum sigma-y a new puff or slug
! SZMIN
         = 1
                     ! Minimum sigma-z a new puff or slug
! SZCAP_M = 5.0E06
                        ! Maximum sigma-z allowed
! SVMIN
         = 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.37, 0.37, 0.37, 0.37, 0.37,
0.37!
! SWMIN
          = 0.20, 0.12, 0.08, 0.06, 0.03, 0.016, 0.20, 0.12, 0.08, 0.06,
0.03. 0.016!
! CDIV
                     ! Divergence criterion for dw/dz in met cell
! NLUTIBL = 4
                     ! Search radius for nearest land and water cells
! WSCALM = 0.5
                       ! Minimum wind speed allowed for non-calm conditions
! XMAXZI = 3000
                       ! Maximum mixing height
```



```
! XMINZI
          = 50
                    ! Minimum mixing height
! TKCAT
          = 265., 270., 275., 280., 285., 290., 295., 300., 305., 310., 315. !
! SL2PF
                    ! Slug-to-puff transition criterion factor
! WSCAT
          = 1.54, 3.09, 5.14, 8.23, 10.8! Upper bounds for first 5 wind ...
! PLX0
         = 0.07, 0.07, 0.10, 0.15, 0.35, 0.55! Wind speed profile power...
! PTG0
         = 0.020, 0.035! Potential temperature gradient for stability c...
I PPC
         = 0.5, 0.5, 0.5, 0.5, 0.35, 0.35! Default plume path coefficients
! NSPLIT = 3
                    ! Number of puffs from split (vertical)
                    ! Split allowed if last mix height > (vertical)
! ZISPLIT = 100
! ROLDMAX = 0.25
                       ! Split allowed if mix height ratio < (vertical)
0,0!
! NSPLITH = 5
                     ! Number of puffs from split (horizontal)
! SYSPLITH = 1
                     ! Split allowed if sigma-y > (horizontal)
! SHSPLITH = 2
                     ! Split allowed if puff elongation rate > (horizo...
! CNSPLITH = 0.0000001 ! Split allowed if peak concentration > (horizontal)
! EPSSLUG = 0.0001
                       ! Fractional convergence criterion for numerical ...
! EPSAREA = 0.000001 ! Fractional convergence criterion for numerical ...
! DSRISE = 1
                    ! Trajectory step length for numerical rise integ...
! HTMINBC = 500
                       ! Minimum height to which BC puffs are mixed
! RSAMPBC = 10
                       ! Search radius around receptor for sampling near...
! MDEPBC = 1
                      ! Near-Surface depletion adjustment to concentrat...
! END!
```