

	_					
		AQQ Svincele	Tiburting			
	L					
	Ir	itervento di potenzian		SVINCOIO		
		"Centrale del Latte"	allo svinco	lo A24		
		2ª fase fun	zionale			
	P	ROGETTO DEFINITIVO)		COD.	RM105
	PROGETTAZIONE:	R.T.I.: PROGIN S.p.A. (capogruppo ma	andataria)		
		CREW Cremonesi Works	shop S.r.l - TH	ECNOSISTEM	S.p.A	
		ART Risorse Ambiente T	erritorio S.r.l	- ECOPLAME	S.r.l.	
RESPO	NSABILE INTEGRAZIONE PI	RESTAZIONI SPECIALISTICHE:	CAPOGRUPPC	MANDATARIA:		
Dott. In	g. Antonio GRIMALDI (Progin	S.p.A.)	PROGE	TAZIONE	Direttore Tecnico:	:
			INFRAS	GRANDI TRUTTURE	Dott. Ing. Lorenzo) INFANTE
IL GEO	DLOGO:	nhianta Disarsa a Tarritaria S.r.1.)	PRO	GINspa		
Dott. G	eoi. Giovanni CARRA (ART Al	indiente Kisorse e Termorio S.r.i.)	MANDANTI:			
IL COO	RDINATORE PER LA SICURI	EZZA IN FASE DI PROGETTAZIONE				
Dott. In	g. Michele CURIALE (Progin S	.p.A.)	GRUMO MEDICINE DELLO STATIO ITALIANE			
			Direttore Tecnico:		Direttore Tecnico:	
VISTO:	: IL RESPONSABILE DEL PRO	OCEDIMENTO:	ant		FCO	
Dott. In	g. Achille DEVITOFRANCES	CHI	ambiente risorse territorio	, ,	ambiente	e paesaggio
DROTO		DATA	Direttore Tecnico:		Direttore Tecnico	
PROTO	COLLO	201	Dott. Ing. Ivo FRESIA		Dott. Arch. Pasquale PISANO	
	PROGETTO INF	RASTRUTTURA – VI05 - VIAD	OTTO ANIEN	IE CARREGGIA	ATA ESTERNA	
		Relazione di calcolo ir	npalcato e spa	lle		
CODIC	E PROGETTO	NOME FILE			REVISIONE	SCALA:
		T00VI05STRRE01A			KE VISIONE	Benten.
	D P R M 1 0 5	D 2 0 CODICE T 0 0	V I 0 5 S	T R R E 0 1	Α	-
						1
А	Prim	a emissione	Giugno 2021	R. Grimaldi	A. Grimaldi	L. Infante
REV.	DES	SCRIZIONE	DATA	REDATTO	VERIFICATO	APPROVATO

Sommario

1	PRE	EMESSA	5
	1.1	Descrizione dell'opera	7
	1.2	Unità di misura	9
2	NO	RMATIVA DI RIFERIMENTO	10
3	CAI	RATTERISTICHE DEI MATERIALI IMPIEGATI	10
	3.1	Calcestruzzi	10
	3.2	Classi di esposizione e copriferri	11
	3.3	Acciaio in barre ad aderenza migliorata B450C	11
	3.4	Acciaio per carpenteria metallica S355	11
	3.5	Saldature	12
	3.6	Bullonature	12
	3.7	Piolature	12
4	AN	ALISI DEI CARICHI	12
	4.1	Peso proprio della struttura (G1)	12
	4.2	Carichi permanenti portati (G2)	13
	4.3	Ritiro del calcestruzzo (E2.1)	13
	4.4	Viscosità del calcestruzzo (E2.2)	14
	4.5	Variazione termica (E3)	16
	4.6	Carichi stradali sulla soletta	17
	4.7	Carichi dovuti all'urto di un veicolo in svio (Q8)	19
	4.8	Azioni da traffico per verifiche a fatica (Q2)	21
	4.9	Azione di frenamento ed avviamento (Q3)	22
	4.10	Azione centrifuga (Q4)	22
	4.11	Azione del vento (Q5)	22
	4.12	Vento a ponte scarico	24
	4.13	Vento a ponte carico	24
	4.14	Azioni sismiche (Q6)	24
5	CO	MBINAZIONI DI CARICO	27

	5.1	Gruppi di carico	. 27
	5.2	Combinazioni agli SLU	. 28
	5.3	Combinazioni agli SLE	. 29
6	MOE	DELLI DI CALCOLO E METODO DI ANALISI	. 30
	6.1	Origine e caratteristiche dei codici di calcolo	. 30
	6.2	Affidabilità dei codici di calcolo	. 30
	6.3	Giudizio motivato di accettabilità dei risultati	. 30
	6.4	Modelli di calcolo globale per analisi statica e sismica	. 30
	6.5	Modello Plate	. 32
	6.6	Effetti del ritiro e della viscosità	. 35
	6.7	Metodo di analisi globale e classificazione delle sezioni	. 36
7	Meto	di di verifica	. 40
	7.1	Verifiche agli Stati Limite Ultimi della soletta	. 43
	7.2	Verifica di deformabilità	. 45
	7.3	Verifiche dei dispositivi di appoggio	. 45
	7.3.1	Verifiche di resistenza	. 45
	7.3.2	Verifica della corsa massima	. 45
	7.3.3	Verifiche dei giunti	.46
	7.3.4	Verifica delle spalle	.46
	7.3	3.4.1 Condizioni statiche	.46
	7.3	3.4.2 Condizioni sismiche	.46
8	RISU	JLTATI DELL'ANALISI STRUTTURALE	. 50
	8.1	Risultati in fase di getto	. 50
	8.2	Risultati a too	. 54
	8.3	Risultati in fase finale	. 60
	Stato	limite ultimo (SLU)	. 60
	Risul	tati per Azioni Sismiche (SLV)	. 67
	Stato	limite d'esercizio (SLE)	.72
9	VER	IFICHE DELLA CARPENTERIA IN ACCIAIO	. 79
	9.1	Verifiche delle Travature Reticolari	. 80
	9.1.1	Verifiche di Resistenza allo SLU	. 80

9.1	1.2 Verifica dell'Instabilità per Imbozzamento dei pannelli d'anima	
9.1	1.3 Verifiche per Instabilità Globale	94
9.1	1.4 Verifiche allo Stato Limite Ultimo di Fatica	
9.2	Verifiche dei Traversi Inferiori	
9.2	2.1 Verifiche di Resistenza allo SLU	
9.2	2.2 Verifiche dell'instabilità per compressione delle piattabande compresse	
9.3	Verifica delle Predalles in acciaio	104
9.3	3.1 Verifiche di Resistenza allo SLU	104
9.4	Verifica della Soletta in c.l.s.	
9.4	4.1 Verifiche di Resistenza allo SLU	
9.4	4.2 Verifiche agli SLE	
10	Verifiche delle spalle	107
11	VERIFICA DELLE SPALLE	
11.1	2.1 Muro frontale/paraghiaia	
11.2	Muri laterali	119
11.3	Plinto di fondazione	
11.4	Pali di fondazione	
11.5	Verifiche geotecniche di capacità portante	
12	VERIFICA DI RESISTENZA E DI DEFORMABILITÀ DEI DISPOSITIVI DI APPOGGIO	
12.1	Verifica dei giunti	

1 PREMESSA

Nell'ambito della progettazione definitiva dell'intervento di potenziamento del GRA dallo svincolo "Centrale del latte" allo svincolo A24 (2° fase funzionale), è prevista la realizzazione del ponte di scavalco del fiume Aniene in corrispondenza della complanare esterna. La selezione della tipologia strutturale per tale opera risulta condizionata dai vincoli plano-altimetrci di tracciato, dai vincoli geometrici derivanti dalla presenza delle sottostrutture del viadotto di scavalco esistente e dal vincolo idraulico sul livello di piena duecentennale del fiume Aniene.

In ragione di tali condizioni al contorno è stato adotattato uno schema, a campata unica, a trave reticolare estradossata rispetto alla piattaforma stradale con luce in asse appoggi pari a 78.0 m.

Nelle immagini a seguire sono riportate una planimetria di localizzazione e inquadramento dell'opera, la pianta fondazioni e il profilo longitudinale.

Figura 1 – Inquadramento planimetrico dell'opera

Figura 2 – Planimetria di progetto in corrispondenza del fiume Aniene

Figura 3: Prospetto del ponte sulla complanare esterna

1.1 Descrizione dell'opera

La sezione trasversale è caratterizzata da una piattaforma stradale di 12.25 m di larghezza, con cordoli laterali per l'alloggiamento delle barriere di sicurezza di 1.0 m di larghezza ciascuno, per un ingombro totale netto dell'impalcato pari a 14.25 m.

La struttura è costituita da due travature reticolari realizzate tramite profili scatolari in lamiera saldata, di altezza complessiva pari a 6.2 m. Tutti gli elementi di ciascuna travatura hanno larghezza, nel piano trasversale, pari a 0.7 m. La carpenteria delle travature reticolari è composta da conci di nodo (dove convergono i puntoni) a livello dei correnti superiori e inferiori, dai correnti superiori e inferiori stessi e dai diagonali. I correnti inferiori hanno un'altezza complessiva pari a 2.0 m, di cui 0.7 m estradossati rispetto alla piattaforma stradale (quota pavimentazione) con una sezione trasversale pari quindi a 700 mm x 2000 mm. I correnti superiori hanno un'altezza di 1.0 m con sezione trasversale pari a 700 mm x 1000 mm e i diagonali hanno sezione 700 mm x 700 mm. Gli spessori delle lamiere che compongono le sezioni scatolari sono variabili da 20 mm a 50 mm. Gli elementi principali sono irrigiditi trasversalmente tramite piatti forati dello spessore di 20 mm e, solo nel caso del corrente inferiore, da un irridimento longitudinale pieno posto a metà altezza anch'esso dello spessore di 20 mm.

La struttura di impalcato è costituita dai traversi, posti ad interasse longitudinale di 3.250 m, realizzati tramite profili a doppio T di 1.0 m di altezza con piattabande 700 mm. I traversi sono allineati a quota intradosso all'intradosso dei correnti inferiori e a quota estradosso all'irrigidimento longitudinale interno agli stessi.

La soletta, di 20 cm di spessore, è gettata su predalles in acciaio (spessore 20 mm) irrigidite in direzione longitudinale da profili a V posti a 1.2 m di interasse in direzione trasversale.

Figura 4: Carpenteria

Figura 5: sezione longitudinale della trave reticolare

Figura 6: Sezione trasversale

L'impalcato è isolato tramite dispositivi elasomerici posti in asse alle travature reticolari in corrispondenza dei traversi di testata.

I dispositivi sono progettati per uno spostamento massimo sotto azioni sismiche allo SLC pari a 150 mm.

Le caratteristiche dei dispositivi di isolamento utilizzate ai fini di calcolo e dimensionamento sono riepilogate nella tabella a seguire.

SI-H	V kN	Fzd kN	Ke kN/mm	Kv kN/mm	Dg mm	te mm	h mm	H mm	Z mm	W kg
SI-H 300/76	970	3060	1.30	768	300	76	152	202	350	92
SI-H 350/75	1590	3510	1.80	1033	350	75	143	193	400	118
SI-H 400/75	2450	4680	2.35	1518	400	75	143	193	450	153
SI-H 450/78	4220	7510	2.86	1794	450	78	154	204	500	202
SI-H 500/78	5820	9380	3.52	2406	500	78	154	204	550	247
SI-H 550/77	6440	9820	4.32	2868	550	77	147	197	600	287
SI-H 600/80	7060	10310	4.95	3209	600	80	147	197	650	335
SI-H 650/81	7690	10830	5.74	3646	650	81	145	195	700	384
SI-H 700/80	8310	11370	6.74	4209	700	80	151	211	750	508
SI-H 800/80	11470	14990	8.80	6096	800	80	151	211	850	659
SI-H 900/84	16810	21220	10.60	7093	900	84	158	218	950	848
SI-H 1000/84	18360	22590	13.09	8508	1000	84	164	244	1050	1252
SI-H 1100/84	22800	27460	15.84	11052	1100	84	164	244	1150	1509
SI-H 1200/96	24240	28700	16.49	11203	1200	96	176	256	1250	1807

Legenda	
V	Carico verticale massimo agente sull'isolatore in presenza di sisma corrispondente allo SLC
F _{zd}	Carico verticale massimo agente sull'isolatore in assenza di sisma (SLU), concomitante con rotazione 0 e spostamento orizzontale 10 mm
K _e	Rigidezza orizzontale equivalente
Kv	Rigidezza verticale
Dg	Diametro elastomero
te	Spessore totale gomma
h	Altezza escluse piastre di ancoraggio
Н	Altezza totale incluse piastre di ancoraggio
Z	Lato piastre di ancoraggio
w	Peso isolatore escluse zanche

Le spalle S01 e S02 presentano un plinto di fondazione di altezza pari a 2 metri, larghezza pari a 7.50 m e lunghezza pari a circa 17.95 m, su 8 pali di fondazione di diametro pari a 1500 mm e lunghezza pari a 40 m.

Figura 7: Pianta delle fondazioni

1.2 Unità di misura

Nel seguito si adotteranno le seguenti unità di misura:

- per le lunghezze
- per i carichi

- $\Rightarrow m, mm$ $\Rightarrow kN, kN/m^2, kN/m^3$
- per le azioni di calcolo \Rightarrow kN, kNm
- per le tensioni \Rightarrow Mpa

2 NORMATIVA DI RIFERIMENTO

Nella redazione del progetto esecutivo si è fatto riferimento ai seguenti documenti normativi.

D.M. 17/01/2018. Norme tecniche per le costruzioni (NTC).

- Circolare del 11/02/2019. Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. del 17/01/2018.
- UNI EN1993 -1-1. EUROCODICE 3, parte 1.3. Progettazione delle strutture in acciaio. Regole generali e regole per gli edifici.
- UNI EN1993 -1-5. EUROCODICE 3, Parte 1.5. Progettazione delle strutture in acciaio. Elementi strutturali a lastra.
- UNI EN1993 -1- 8. EUROCODICE 3, Parte 1.8. Progettazione delle strutture in acciaio. Progettazione dei collegamenti.
- UNI EN1993-1-9. EUROCODICE 3. Parte 1.9. Progettazione delle strutture in acciaio. Fatica.

UNI EN1993 -1-2. EUROCODICE 3. Parte 2. Progettazione delle strutture in acciaio. Ponti di acciaio.

- UNI EN1994 -1-1. EUROCODICE 4. Parte 1.1. Progettazione delle strutture composte acciaio– cls. Regole generali e regole per gli edifici.
- UNI EN1994 -2. EUROCODICE 4. Parte 2. Progettazione delle strutture composte acciaio- cls. Regole generali e regole per i ponti.

CNR-UNI 10011/97. Costruzioni in acciaio. Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione. CNR 10030/87. Anime irrigidite di travi a parete piena.

3 CARATTERISTICHE DEI MATERIALI IMPIEGATI

Si riportano di seguito le caratteristiche e le resistenze di progetto dei materiali strutturali.

3.1 Calcestruzzi

Ai fini della valutazione del comportamento e della resistenza delle strutture in calcestruzzo, questo viene identificato mediante la classe di resistenza contraddistinta dai valori caratteristici delle resistenze cilindrica e cubica a compressione uniassiale, misurate rispettivamente su provini cilindrici e cubici, espressa in MPa. Con riferimento alla normativa vigente si riportano le caratteristiche dei materiali utilizzati.

Calcestruzzo per soletta C35/45	
Rck = 45 MPa	resistenza caratteristica cubica a 28 giorni
fck = 35 MPa	resistenza caratteristica cilindrica a 28 giorni
fcm = fck + 8 = 43 MPa	resistenza cilindrica valore medio
$fctm = 0.30 \cdot fck2/3 = 3.21 MPa$	resistenza media a trazione semplice (assiale)
$fctk = 0.7 \cdot fctm = 2.25 MPa$	resistenza caratteristica a trazione
Ecm = 22000 [fcm/10]0.3 = 34077 MPa	modulo elastico
$\gamma = 25.0 \text{ kN/m3}$	peso per unità di volume
Resistenze di progetto allo SLU	
$f_{cd} = 0.85 \cdot f_{ck} / \gamma_c = 19.8 \text{ MPa}; \gamma_c = 1.50$	resistenza di progetto a compressione
$f_{ctd} = f_{ctk}/\gamma_c = 1.50 \text{ MPa}$	resistenza di progetto a trazione

Resistenze di progetto allo SLE

$\sigma_{c,r}=0.60{\cdot}f_{ck}=21.00~\text{MPa}$	tensione limite in combinazione caratteristica (rara)
$\sigma_{c,qp}=0.45{\cdot}f_{ck}=15.8~\text{MPa}$	tensione limite in combinazione quasi permanente
$\sigma_t = f_{ctm}/1.2 = 2.68 \text{ MPa}$	tensione limite di fessurazione (trazione)

3.2 Classi di esposizione e copriferri

In accordo con il D.M. 17/01/2018 (Tabella 4.1.III), in funzione delle condizioni ambientali si definiscono la classe di esposizione del calcestruzzo:

Solette, cordoli e baggioli: XC3+XD1

I copriferri da adottare sono per le barre di armatura sono i seguenti:

Solette, cordoli e baggioli: 35 mm

Considerando un'armatura poco sensibile ai fenomeni di corrosione (acciaio ordinario), i valori limite di apertura delle fessure da rispettare, in accordo con le Tabelle 4.2.III e 4.1.IV, sono riportati nella seguente tabella:

Tabella 1: Limiti di apertura delle fessure

Elemento strutturale	Classe di esposizione	Condizioni ambientali	Combinazioni di carico		coni ambientali	ico
			Frequenti	Quasi permanenti		
Solette, cordoli, baggioli	XC3+XD1	Aggressive	0.3 mm	0.2 mm		

In ogni caso il rapporto acqua cemento (A/C) non dovrà essere superiore a 0.50.

3.3 Acciaio in barre ad aderenza migliorata B450C

L'acciaio da armatura è del tipo B450 C (controllato in stabilimento)

$f_{yk} = 450 \text{ MPa}$	resistenza caratteristica di snervamento
$f_{tk} = 540 \text{ MPa}$	resistenza caratteristica a rottura
$E_s = 210000 \text{ MPa}$	modulo elastico
Resistenza di progetto allo SLU	
$f_{yd}=f_{yk}/\gamma_s=391~\text{MPa}\qquad ; \gamma_s=1.15$	resistenza di progetto a compressione
Resistenza di progetto allo SLE	
$\sigma_{s,r}=0.80{\cdot}f_{yk}=360~\text{MPa}$	tensione limite in combinazione caratteristica (rara)

3.4 Acciaio per carpenteria metallica S355

Di seguito si riportano le caratteristiche e le resistenze di progetto per le lamiere, per le saldature e per gli elementi di collegamento.

Travi principali e orditure secondarie

Acciaio con caratteristiche meccaniche rispondenti alla EN 10025, come indicato dal D.M. 17/01/2018.

$f_{tk} = 510 \text{ MPa}$	tensione caratteristica di rottura
$f_{yk} = 355 \text{ MPa}$	tensione caratteristica di snervamento
$f_{yd} = f_{yk} / \square_{M0} = 338 \text{ MPa}; \gamma_{M0} = 1.05$	tensione di progetto per le verifiche di resistenza;
$f_{yd} = f_{yk} / \square_{M1} = 322 \text{ MPa}; \ \square_{M1} = 1.1$	0 tensione di progetto per le verifiche di stabilità;
Elementi saldati e coprigiunti:	
Spessore t \leq 20 mm: S355J0W	

Spessore t \leq 40 mm: S355J2W+N Spessore t > 40 mm: S355K2W+N Elementi non saldati e piastre sciolte: S355J0W

3.5 Saldature

Saldature da realizzare in accordo alle prescrizioni contenute nel D.M. 17/01/2018. Saldature con i procedimenti codificati secondo ISO 4063 e prescrizioni della EN 1011 e EN 29692. Controlli secondo la EN 12062

3.6 Bullonature

Secondo UNI EN 20898: Giunzioni ad attrito $\mu \ge 0.30$ (in caso di sabbiatura $\mu \ge 0.45$) Viti classe 8.8 o 10.9 (UNI 5712); Dadi classe 10 (UNI 5713) Rosette in acciaio C50 UNI EN 10083-2 (HRC 32-40) (UNI 5714)

3.7 Piolature

Secondo UNI-EN 10025 (Norma di riferimento EN ISO 13918). Pioli tipo NELSON in acciaio ex ST 37-3K (S235J2G3+C450) (3/4)"19 h=150mm $f_{yk} > 350$ MPa $f_{tk} > 450$ MPa

4 ANALISI DEI CARICHI

4.1 Peso proprio della struttura (G1)

I pesi propri strutturali sono stati valutati considerando un peso specifico dell'acciaio pari 78.5 kN/mc e un peso specifico del calcestruzzo pari a 25 kN/mc.

Il peso proprio della carpenteria in acciaio (G1.1) è stato calcolato in automatico dal software di calcolo. Il peso degli elementi di carpenteria principale, è stato incrementato del 15% per tener conto del peso dei vari elementi secondari (piatti di irrigidimento trasversali e longitudinali, bullonature etc.).

Nella tabella di seguito, sono riportati i pesi degli elementi strutturali e la relativa incidenza sulla superficie complessiva dell'impalcato.

G1 1	Peso acciaio impalcato (comprensivo di irrigidimenti, traversi e predalles nervate)	7020 kN
61.1	Incidenza totale acciaio impalcato	6.3 kN/m ²
C1 2	Peso soletta (spessore 20 cm)	5560 kN
G1.2	Incidenza totale soletta impalcato	5.0 kN/m ²

Complessivamente quindi il peso G1 del viadotto è pari a:

G1 = 7020 kN + 5560 = 12580 kN

4.2 Carichi permanenti portati (G2)

Pavimentazione (G2.1)		
G2.1 = 0.1 m x 18 x 1	2.25 kN/m	= 22.05 kN/m;
Marciapiede (G2.2)		
$G2.2 = 2 \times 1.0 \times 0.17$	x 25 kN/m	= 8.50 kN/m.
Guard Rail (G2.3)		
$G2.3 = 2 \times 2.0 \text{ kN/m}$	= 4.00	kN/m;

Complessivamente quindi il peso G2 dei carichi permanenti portati è pari a: G2 = 34.55 kN/m x 78 m = 2695 kN

Il peso complessivo dell'impalcato è quindi pari a:

G = 12580 kN + 2695 kN = 15275 kN

4.3 Ritiro del calcestruzzo (E2.1)

Il calcolo delle deformazioni da ritiro nella soletta è stato eseguito secondo quanto specificato nel Decreto Ministeriale 17 gennaio 2018.

La deformazione totale da ritiro è data dalla somma della deformazione per ritiro da essiccamento e della deformazione da ritiro autogeno.

Tabella 2 – Deformazione da ritiro

Valutazione della deformazione da ritiro a 10000 gg.		
Ac =	2.85	mq
u = perimetro di calcestruzzo esposto all'aria =	12.25	m
k = 2 Ac/u =	0.465	m
U = umidità relativa =	75.0	%
R _{ck} =	37	Мра
ф10000gg =	-3.2E-04	(EN 1992-1, Classe S, t0 = 10 gg.)

Figura 8 - Andamento della deformazione da ritiro nel tempo

La valutazione riportata indica che a 10.000 gg, la deformazione da ritiro raggiunge il valore 0.265‰. Gli effetti del ritiro impedito, che si sviluppano nel tempo, si traducono in una forza di trazione nella soletta e in una forza assiale di compressione e di momento flettente agenti sulla carpenteria in acciaio.

4.4 Viscosità del calcestruzzo (E2.2)

Di seguito si riporta il calcolo del coefficiente di viscosità per il calcestruzzo della soletta secondo quanto specificato nel Decreto Ministeriale 17 gennaio 2018.

	O	P
Valutazione dei G		riscosita a 10000 gg.
Ac =	2.85	mq
u = perimetro di calcestruzzo esposto all'aria =	12.25	m
k = 2 Ac/u =	0.465	m
U = umidità relativa =	75.0	%
Rck =	37	Мра
¢too,t0) =	2.52	(EN 1992-1, Classe N, t0 = 3 gg.)
¢too,t0) =	1.63	(EN 1992-1, Classe N, t0 = 30 gg.)

Tabella 3 – Coefficienti di Viscosità

Il coefficiente di viscosità viene modellato come una funzione che si evolve nel tempo t e il cui valore dipende dall'età del cls, in giorni, t_0 , al momento dell'applicazione del carico. Nella tabella precedente sono stati valutati i coefficienti di viscosità per t = 10000 gg e per t_0 pari rispettivamente a 3 gg. (età del cls al momento dell'attivazione delle azioni da ritiro) e a 30 gg. (età presunta del cls al momento di applicazione dei carichi permanenti portati). L'evolversi nel tempo del coefficiente di viscosità è diagrammato nelle figure seguenti.

Figura 9 – Andamento del coefficiente di viscosità nel tempo per t0 = 3 gg. e per t0 = 30 gg.

4.5 Variazione termica (E3)

L'azione della variazione termica è valutata, in termini di temperatura massima estiva e minima invernale dell'aria nel sito della costruzione, con periodo di ritorno di 50 anni, attraverso le indicazioni fornite dalla Normativa di riferimento. In particolare, è stata considerata una differenza di temperatura di 5°C con andamento a farfalla tra la soletta in calcestruzzo e la trave in acciaio. Si è inoltre considerata una variazione termica uniforme pari a +/-20°C lungo tutto lo sviluppo dell'opera.

Azioni variabili da traffico (Q1)

Coerentemente con quanto indicato al punto 5.1.3.3.3 del DM 17/01/18 per l'analisi globale del ponte si fa riferimento allo Schema di Carico 1.

Figura 10 - Schema di carico 1

Nel caso in oggetto si impiegano quattro corsie di carico costituite da:

- una colonna di carichi (ingombro = 3 m) costituita da un automezzo convenzionale Q1k = 600 kN dotato di 2 assi di 2 ruote ciascuno, distanti 1.20 m in senso longitudinale e con interasse ruote in senso trasversale di 2.00 m; un carico ripartito q1k = 9 kN/m² uniformemente distribuito;
- una seconda colonna di carichi (ingombro = 3 m), analoga alla precedente, ma con carichi pari rispettivamente a Q2k = 400 kN e q2k = 2.5 kN/m² e posta ad interasse di 3.00 m. da essa;
- una terza colonna di carichi (ingombro = 3 m), analoga alla precedente, ma con carichi pari rispettivamente a Q3k = 200 kN e q2k = 2.5 kN/m² e posta ad interasse di 3.00 m. da essa;
- una colonna di carico (ingombro = 3.25 m) qrk = 2.5 kN/m² nella zona di carreggiata non impegnata dai carichi precedenti (area rimanente).

Carichi da traffico - Impalcato esistente							
C.C.		L [m]	e _{trasv} [m]				
Q _{1k} + q _{1k}	Corsia 1	3.00	-4.625				
Q _{2k} + q _{2k}	Corsia 2	3.00	-1.625				
Q _{3k} + q _{1k}	Corsia 3	3.00	1.375				
q _{rk}	Corsia r	1.50	4.500				

Tabella 4 – Sezione tipo esistente in rettilineo: Carichi da Traffico

4.6 Carichi stradali sulla soletta

La valutazione della diffusione all'interno della soletta degli effetti dei carichi concentrati è stata sviluppata tenendo conto dello spessore della pavimentazione e dello spessore della soletta. In dettaglio, la diffusione del carico attraverso la pavimentazione e la soletta è assunta, a partire dall'impronta dei pneumatici di lato 40 cm, con inclinazione a 45° fino al piano medio della soletta, come illustrato nella seguente figura.

Figura 11 - Diffusione dei carichi concentrati nelle solette

Nel caso in esame quindi la ripartizione avviene secondo lo schema di seguito rappresentato:

Figura 12 - Diffusione dei carichi stradali in senso longitudinale e trasversale – Schema di carico 1

$L_{impronta} = 800 \ mm$

Come illustrato nell'immagine precedente, la diffusione a 45° fino al piano medio della soletta permette di applicare il carico su una superficie pari a 0.80 x 0.80 m².

I carichi diffusi corrispondenti agli assi dei carichi tandem considerati sono pertanto pari a:

Corsia 1: $Q_1 = 150 / (0.80 \times 0.80) = 234.75 \text{ KN/m/m};$ Corsia 2: $Q_2 = 100 / (0.80 \times 0.80) = 156.25 \text{ KN/m/m};$ Corsia 3: $Q_3 = 50 / (0.80 \times 0.80) = 78.125 \text{ KN/m/m}.$

Ai carichi concentrati, così diffusi, si sovrappongono i carichi distribuiti su tutta la lunghezza della soletta paria a:

Corsia 1: $q1 = 9kN/m^2$ Corsia 2: $q2 = 2.5kN/m^2$ Corsia 3: $q3 = 2.5kN/m^2$

Area rimanente: q area rimanente = 2.5kN/m²

Allo scopo di massimizzare le sollecitazioni, l'analisi dell'impalcato è stata condotta considerando tre Condizioni per i carichi concentrati e distribuiti:

 $Condizione \ 1 \ (flessionale) - 3 \ colonne \ di \ carichi \ concentrati \ in \ L/2 + carichi \ distribuiti \ su \ tutte \ le \ corsie \ e \ sull'intera \ luce;$

 $Condizione \ 2 \ (flessionale) - 3 \ colonne \ di \ carichi \ concentrati \ in \ L/4 \ + \ carichi \ distribuiti \ su \ tutte \ le \ corsie \ su \ L/2;$

 $Condizione \ 3 \ (torsionale) - 2 \ colonne \ di \ carichi \ concentrati \ in \ L/2 + carichi \ distribuiti \ su \ due \ corsie \ e \ sull'intera \ luce.$

Figura 13 – Condizione 1 / Sezione Trasversale: Carichi Concentrati (a sinistra) e Distribuiti (a destra)

Figura 14 – Condizione 1 / Pianta: Carichi Concentrati (in alto) e Distribuiti (in basso)

Figura 15 – Condizione 2 / Sezione Trasversale: Carichi Concentrati (a sinistra) e Distribuiti (a destra)

1111111111		
24105460055		
1. Martin Balles		
10000088		
1.096/09/mildisks		
	2 9 9 5	
	9 9 9 5 9 9 9 5	
96999699999999999999999999999999999999	 a da a c	
00000000000000000000000000000000000000	9494 2955 9494 9494 9494 9494 9494 9494	
	999 c	
	5455	
	2010 c	
	Set Set <th></th>	
	Side Side	
	Stas Stas Stas Stas Stas Stas Stas Stas	
	Selection Selection <t< th=""><th></th></t<>	
	A S S A S S <td< th=""><th></th></td<>	

Figura 16 – Condizione 2 / Pianta: Carichi Concentrati (in alto) e Distribuiti (in basso)

Figura 17 – Condizione 3 / Sezione Trasversale: Carichi Concentrati (a sinistra) e Distribuiti (a destra)

Figura 18 – Condizione 3 / Pianta: Carichi Concentrati (in alto) e Distribuiti (in basso)

4.7 Carichi dovuti all'urto di un veicolo in svio (Q8)

In ottemperanza a quanto prescritto dalla normativa vigente al paragrafo 5.1.3.10, nella verifica dell'impalcato deve essere considerata una particolare combinazione di carico nella quale al sistema di forze orizzontali, equivalenti all'effetto

dell'azione dell'urto sulla barriera di sicurezza stradale, si associa un carico verticale isolato sulla sede stradale costituito dallo Schema di Carico 2, posizionato in adiacenza alla barriera stessa e disposto nella posizione più gravosa.

Figura 19: Carichi da traffico - Schema di carico 2

Analogamente a quanto sopra esplicitato, i carichi concentrati relativi allo schema 2 sono stati diffusi come di seguito illustrato.

Figura 20: Diffusione dei carichi stradali in senso longitudinale e trasversale – Schema di carico 2

La diffusione a 45° fino al piano medio della soletta permette quindi di applicare il carico su una superficie pari a 0.75 x 1.0 m².

I carichi diffusi corrispondenti sono pertanto pari a:

Q1 = 200 / (0.75 x 1.0) = 266.7 KN/m/m;

In corrispondenza di tale schema di carichi mobili è stata applicata l'azione d'urto. L'azione d'urto, come definita dai quaderni Anas, può essere schematizzata da quattro forze orizzontali di 90 kN (già amplificate di un coefficiente di 1.5) posizionate in corrispondenza delle barriere di sicurezza ad un'altezza di 1 m dalla pavimentazione del cordolo e ad un interasse longitudinale di 1.5 m.

Per tener conto della distribuzione delle azioni all'interno del cordolo e della soletta, queste sono state applicate come carichi distribuiti (pressioni/depressioni) su un'area di soletta determinata dall'area della piastra di ancoraggio della barriera (0.4 m) ampliata per tener conto di una distribuzione a 45° dei carichi attraverso lo spessore del cordolo e di metà soletta (0.27 m)

La disposizione dei carichi d'urto è rappresenta nella figura a seguire.

Azione d'urto applicate in mezzeria - carichi verticali Q8

Azione d'urto applicate in mezeria – carichi orizzontali e momenti flettenti

4.8 Azioni da traffico per verifiche a fatica (Q2)

Si utilizza il modello di carico di fatica 1, costituito: dallo schema di carico 1 con valore dei carichi concentrati ridotti del 30% e con valore dei carichi distribuiti ridotti del 70%.

Figura 21 – Modello di carico a fatica: schema di carico 1

4.9 Azione di frenamento ed avviamento (Q3)

In accordo con il D.M. 17/01/2018 al paragrafo 5.1.3.5, l'azione longitudinale di frenamento è stata calcolata come funzione del carico verticale totale agente sulla corsia convenzionale n. 1, ed è uguale a:

 $180 \, kN \le q_3 = 0.6 \left(2 \cdot Q_{1k} \right) + 0.1 \cdot q_{1k} \cdot w_1 \cdot L \le 900 \, kN$

Nel caso in oggetto risulta:

$Q_3 = 570 \text{ kN}$

L'azione di frenamento viene considerata nel modello di calcolo come un carico uniformemente distribuito sulla soletta pari a:

 $q_3 = 570 \text{ kN} / (W \text{ x L}) = 50 \text{ kN} / (12.25 \text{ m x } 78 \text{ m}) = 0.67 \text{ kN/mq}.$

applicato convenzionalmente a quota pavimentazione.

4.10 Azione centrifuga (Q4)

In accordo al par. 5.1.3.6 del DM 17/01/2018 l'azione centrifuga totale risulta pari a:

R < 200 m	$Q4=0.2\ x\ Q_v$
$200 \le R \le 1500 \text{ m}$	$Q4=40\;Q_v/R$
R > 1500 m	Q4 = 0
Dove $Q_v = \sum i 2 Q_{1k}$	

4.11 Azione del vento (Q5)

Calcolo della pressione del vento

Si valuta la pressione del vento in accordo con il paragrafo 3.3 del DM. 17/01/2018. La pressione del vento è data dall'espressione:

 $p = q_r \cdot c_e \cdot c_p \cdot c_d$

dove:

 $q_r = \dot{e}$ la pressione cinetica di riferimento;

 $c_e = \grave{e}$ il coefficiente di esposizione;

 $c_p = \dot{e}$ il coefficiente di forma o aerodinamico;

 $c_d = \dot{e}$ il coefficiente dinamico.

con:

 $q_r = \rho \cdot (v_b)^2/2 = 456 \text{ N/m}^2;$

dove v_b è stato desunto ρ dalla tabella 3.3.I, zona 3 (Lazio) e ρ è la densità dell'aria, assunta pari a 1.25 kg/m³.

Tab. 3.	3.I -Valori dei parametri $v_{b,0'} a_{0'} k_s$			
Zona	Descrizione	v _{b,0} [m/s]	a ₀ [m]	k _s
1	Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della pro- vincia di Trieste)	25	1000	0,40
2	Emilia Romagna	25	750	0,45
3	Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)	27	500	0,37
4	Sicilia e provincia di Reggio Calabria	28	500	0,36
5	Sardegna (zona a oriente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	750	0,40
6	Sardegna (zona a occidente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	500	0,36
7	Liguria	28	1000	0,54
8	Provincia di Trieste	30	1500	0,50
9	Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto	31	500	0,32

Considerando una classe di rugosità B (tabella 3.3.III), dalla figura 3.3.2 si evince che la struttura si trova in categoria di esposizione III e dunque, in accordo con la tabella 3.3.II si assumono i seguenti parametri:

 $k_r = 0.20$

 $z_0=0.1\ m$

 $z_{min}=5\ m$

quindi ipotizzando che l'opera abbia altezza z ≈ 10 m dal suolo risulta:

 $c_e(z) = k^2 c_t \ln(z/z_0) [7+c_t \ln(z/z_0)] = 2.14.$

Secondo le indicazioni della Circolare del 21/01/2019 "Istruzioni per l'applicazione delle Norme tecniche per le costruzioni" di cui al D.M. del 17/01/2018" (par. C3.3.8.6), si determina il coefficiente aerodinamico per l'impalcato in esame:

$$c_p = 2 - \frac{4}{3} \phi$$
 per $0 \le \phi < 0.3$
 $c_p = 1.6$ per $0.3 \le \phi \le 0.8$
 $c_p = 2.4 - \phi$ per $0.8 < \phi \le 1$

essendo per travi reticolari $\varphi = Sp/S$ dove Sp è la superficie piena della trave ed S la superficie totale. Nel caso in esame Sp = 276.85 mg e S= 454.5 mg. Pertanto $\varphi = 0.6$ e quindi:

 $c_p = 1.6$

Si considera un coefficiente dinamico (c_d) cautelativamente pari a 1 (par. 3.3.8 D.M. 17/01/2018). Procedendo al calcolo della pressione si ottiene:

 $p = q_r \cdot c_e \cdot c_p \cdot c_d = 456 \text{ N/m}^2 \text{ x } 2.14 \text{ x } 1.6 \text{ x } 1 = 1.56 \text{ kN/m}^2$

Nel caso di più travi multiple (C3.3.8.6.2), disposte parallelamente a distanza d non maggiore del doppio dell'altezza h $(d/h \le 2)$, il valore della pressione sull'elemento successivo sarà pari a quello sull'elemento precedente moltiplicato per un coefficiente di riduzione dato da:

$$\mu = 1 - 1.2\phi \qquad \text{per } \phi \leq 2/3$$

$$\mu = 0.2 \qquad \qquad \text{per } \phi > 2/3$$

Per d/h \ge 5 gli elementi vengono considerati come isolati (μ = 1).

Per 2 < d/h < 5 si procede all'interpolazione lineare tra μ e 1.

Nel caso in esame risulta

 $\mu = 0.48$

Sulla trave sotto vento viene quindi applicato il 48% del carico da vento applicato sulla trave precedente.

4.12 Vento a ponte scarico

I valori della pressione del vento applicati alle due travature reticolari sono:

qw,1 = 1.56 kN/mq

qw,2 = 0.48 x qw,1 = 0.75 kN/mq

4.13 Vento a ponte carico

A ponte carico, la pressione del vento va considerata agente sulla superficie esposta della struttura e sui carichi transitanti, assimilati ad una parete rettangolare continua dell'altezza di 3.0 m a partire dal piano stradale.

Il valore, aggiuntivo, dell'azione del vento sulla parete di mezzi in transito, considerando che i correnti inferiori sono estradossati rispetto alla piattaforma stradale per un'altezza pari a 0.7m, è quindi pari a:

 $qw,1 = (3.00 - 0.7) \times 1.56 \text{ kN/m} = 3.6 \text{ kN/m}.$

L'azione di cui sopra agisce con un'eccentricità verticale rispetto all'estradosso della soletta pari a ez = 0.7 + (3.0 - 0.7)/2m = 1.85 m.

4.14 Azioni sismiche (Q6)

Il ponte in oggetto è progettato per una vita nominale VN pari a 50 anni. Gli si attribuisce inoltre una classe d'uso IV ("Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità.") ai sensi del D. Min. 17/01/2018, da cui scaturisce un coefficiente d'uso CU = 2.0.

L'azione sismica di progetto è valutata a partire dalla pericolosità sismica di base del sito su cui l'opera insiste, descritta in termini geografici e temporali:

attraverso i valori di accelerazione orizzontale di picco a_g (attesa in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale) e le espressioni che definiscono le ordinate del relativo spettro di risposta elastico in accelerazione Se(T);

in corrispondenza del punto del reticolo che individua la posizione geografica dell'opera;

con riferimento a prefissate probabilità di eccedenza PVR

in particolare, la forma spettrale prevista dalla normativa è definita, su sito di riferimento rigido orizzontale, in funzione di tre parametri:

ag, accelerazione orizzontale massima del terreno

F₀, valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale

T_C*, periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I suddetti parametri sono calcolati come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento che contiene il punto caratterizzante la posizione dell'opera, utilizzando come pesi gli inversi delle distanze tra il punto in questione ed i quattro vertici.

In particolare, si può notare come F_0 descriva la pericolosità sismica locale del sito su cui l'opera insiste. Infatti, da quest'ultimo, attraverso le espressioni fornite dalla normativa, sono valutati i valori d'amplificazione stratigrafica e topografica. Di seguito sono riassunti i valori dei parametri assunti per l'opera in oggetto.

Vita nominale V _N	= 50 anni;
Classe d'uso	= IV;
Coefficiente d'uso C _u	= 2.0;
Periodo di riferimento V _R	= 100 anni;
T _{R,SLV}	= 949 anni;
Comune	= Roma;
I parametri di progetto utilizzati per la valu	tazione degli spettri di risposta sono riepilogati di seguito
a _{g,SLV}	= 0.191 g;
F _{0,SLV}	= 2.559;
$T^{*}_{c,SLV} = 0.288$	sec.
Lo spettro di risposta elastico per la descrizi	ione della componente orizzontale del moto sismico è infine costruito a partire
dai parametri seguenti.	
Categoria di suolo	= C;
Categoria topografica	= T1;
S _s , fattore stratigrafico	= 1.41;
S _T , fattore topografico	= 1.00;
Cc, fattore correttivo del periodo TC*	= 1.58.

Si riportano nell'immagine seguente, a titolo di riferimento, gli spettri elastici allo SLV e allo SLC in accelerazione in direzione orizzontale e verticale.

La presenza degli isolatori elastomerici permette di ridurre le ordinate spettrali del per tener conto della capacità di dissipazione viscosa propria degli isolatori e pari al 15%.

Figura 22 – SLV ed SLC: Spettri elastici in accelerazione (q = 1) e smorzamento al 5% e al 15%

In particolare, in funzione dell'elemento strutturale oggetto di verifica, si utilizza:

per la verifica di resistenza e di deformazione dei dispositivi di isolamento, si usa lo spettro allo stato limite di collasso SLC con q = 1 e smorzamento viscoso dell'apparecchio al 15 %.

per la valutazione dell'escursione dei giunti si usa lo spettro allo stato limite di salvaguardia della vita SLV con q = 1 e smorzamento viscoso dell'apparecchio al 15 %;

per le verifiche di resistenza delle strutture e per le verifiche geotecniche delle fondazioni si utilizza lo spettro allo stato limite di salvaguardia della vita SLV con q = 1 e smorzamento viscoso dell'apparecchio al 15 %.

La riduzione delle ordinate spettrali deve interessare soltanto il campo di periodi in cui si collocano i modi di vibrare che coinvolgono deformazioni a livello dell'interfaccia di isolamento, ovvero i modi di vibrare dell'impalcato in direzione orizzontale (longitudinale e trasversale). I modi a frequenza superiore, ovvero a periodo inferiore, non risentono dello smorzamento aggiuntivo degli isolatori, e sono caratterizzati da un coefficiente di smorzamento viscoso pari a quello della struttura a base fissa (5%). Per definire lo spettro di progetto da utilizzare per le verifiche delle sottostrutture del modello isolato, è stata preventivamente svolta l'analisi modale per individuare le coordinate spettrali (periodi propri corrispondenti ai modi traslazionali dell'impalcato) a partire dalle quali è possibile applicare lo smorzamento.

L'isolamento introduce una discontinuità tra le forme modali relative al solo impalcato e quelle che coinvolgono le sottostrutture: nel caso in esame pertanto periodi maggiori di 2.0 sec. corrispondono a modi di traslazione rigida dei singoli impalcati per i quali è lecito considerare gli effetti dello smorzamento viscoso dei dispositivi di isolamento.

Gli spettri di progetto da utilizzare per le verifiche strutturali e geotecniche delle sottostrutture del modello isolato sono quindi rappresentati nella figura seguente.

Figura 23 – SLV ed SLC: : Spettri orizzontali elastici smorzati in accelerazione (q = 1)

5 COMBINAZIONI DI CARICO

Le combinazioni di carico considerate sono stabilite in conformità a quanto prescritto al Cap. 2 del D.M.17/01/2018.

5.1 Gruppi di carico

Nella tabella seguente, in accordo a quanto specificato in tabella **5.1.IV** del D.M.17/01/2018, sono esplicitati i gruppi di carico considerati per i carichi accidentali da traffico.

		Carichi su marciapiedi e piste ciclabili				
	Carichi verticali Carichi orizzontali				Carichi verticali	
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q ₄	Carico uniformemente. distribuito
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m ²
2 a	Valore frequente			Valore caratteristico		
2 b	Valore frequente				Valore caratteristico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				
^(*) Ponti di 3 ^(**) Da cons	^a categoria iderare solo se richies	sto dal particola	re progetto (ad es	s. ponti in zona	urbana)	•

Tabella 5 – Valori caratteristici delle azioni da traffico

Coerentemente nel seguito si fa riferimento ai gruppi di azioni da traffico 1 e 2a essendo nel caso in esame, in assenza di azione centrifuga, il gruppo 2b privo di significato.

Coefficienti parziali e di combinazione

Si utilizzano i coefficienti parziali di sicurezza e i coefficienti di combinazione di seguito riportati.

Tabella 6 – Coefficienti parziali di sicurezza agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γqi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	$\gamma_{\epsilon 1}$	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	γε2, γε3, γε4	0,00 1,20	0,00 1,20	0,00 1,00
⁽¹⁾ Equilibrio che non coinvolga i parametri di valori di GEO.	deformabilità	a e resistenza d	el terreno; a	ltrimenti si a	applicano i

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti. ⁽³⁾ 1.30 per instabilità in strutture con precompressione esterna
 ⁽⁴⁾ 1.20 per effetti locali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente \U0 di combinazione	Coefficiente ¥1 (valori frequenti)	Coefficiente ψ 2 (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
A-ioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	Vento a ponte scarico			
	SLU e SLE	0,6	0,2	0,0
Vento q_5	Esecuzione	0,8		0,0
	Vento a ponte carico	0,6		
Nava a	SLU e SLE	0,0	0,0	0,0
Iveve q_5	esecuzione	0,8	0,6	0,5
Temperatura	T _k	0,6	0,6	0,5

Tabella 7 – Coefficienti di combinazione

Combinazioni agli SLU 5.2

Di seguito si esplicitano i coefficienti utilizzati per le singole combinazioni di carico rilevanti per le verifiche strutturali dell'impalcato agli SLU.

L'espressione per le combinazioni di verifica strutturali (A1 - STR) è:

$$\sum_{j\geq 1} \gamma_{G,j} G_{\mathbf{k},j} "+" \gamma_{\mathbf{P}} P "+" \gamma_{\mathbf{Q},1} Q_{\mathbf{k},1} "+" \sum_{i>1} \gamma_{\mathbf{Q},i} \psi_{0,i} Q_{\mathbf{k},i}$$

Mentre quella per le combinazioni sotto SISMA o ECCEZIONALI è:

$$\sum_{j\geq 1} G_{k,j} + P' + A_{\rm Ed} + \sum_{i\geq 1} \psi_{2,i} Q_{k,i}$$

Tabella 8 - Coefficienti nelle combinazioni di carico agli SLU

, , , ,	1			0	I I I I I I I I I I I I I I I I I I I	-		-
	G1	G2	E2	E3	Gr.1	Gr.2a	Q5	Q6
Gr.1	1.35	1.35	1.2	0.72	1.35	0	0.9	0
Gr.2a	1.35	1.35	1.2	0.72	0	1.35	0.9	0
Q5	1.35	1.35	1.2	0.72	1.35 ψ (*)0	0	1.5	0
SLV Z	1	1	1	0.5	0		0	1, 0.3x,0.3y
SLV X	1	1	1	0.5	0		0	1, 0.3y,0.3z
SLV Y	1	1	1	0.5	0		0	1, 0.3x,0.3z
	Gr.1 Gr.2a Q5 SLV Z SLV X SLV Y	Image: Graph of the state of the s	G1 G2 Gr.1 1.35 1.35 Gr.2a 1.35 1.35 Q5 1.35 1.35 SLV Z 1 1 SLV X 1 1 SLV Y 1 1	G1 G2 E2 Gr.1 1.35 1.35 1.2 Gr.2a 1.35 1.35 1.2 Q5 1.35 1.35 1.2 SLV Z 1 1 1 SLV X 1 1 1 SLV Y 1 1 1	G1 G2 E2 E3 Gr.1 1.35 1.35 1.2 0.72 Gr.2a 1.35 1.35 1.2 0.72 Q5 1.35 1.35 1.2 0.72 SLV Z 1 1 1 0.5 SLV X 1 1 1 0.5 SLV Y 1 1 1 0.5	G1 G2 E2 E3 Gr.1 Gr.1 1.35 1.35 1.2 0.72 1.35 Gr.2a 1.35 1.35 1.2 0.72 0 Q5 1.35 1.35 1.2 0.72 1.35\u00educuuuu SLV Z 1 1 1 0.5 0 SLV X 1 1 1 0.5 0 SLV Y 1 1 1 0.5 0	G1 G2 E2 E3 Gr.1 Gr.2a Gr.1 1.35 1.35 1.2 0.72 1.35 0 Gr.2a 1.35 1.35 1.2 0.72 0 1.35 Q5 1.35 1.35 1.2 0.72 0.72 0 SLV Z 1 1 1 0.5 0 0 SLV X 1 1 1 0.5 0 0 SLV Y 1 1 1 0.5 0 0	G1 G2 E2 E3 Gr.1 Gr.2a Q5 Gr.1 1.35 1.35 1.2 0.72 1.35 0 0.9 Gr.2a 1.35 1.35 1.2 0.72 0 1.35 0.9 Q5 1.35 1.35 1.2 0.72 0 1.35 0.9 Q5 1.35 1.35 1.2 0.72 0.70 1.35 0.9 Q5 1.35 1.35 1.2 0.72 0.70 0 1.5 SLV Z 1 1 1 0.5 0 0 0 SLV X 1 1 1 0.5 0 0 0 SLV Y 1 1 1 0.5 0 0 0

(*) per schema di carico 1, $\psi_0 = 0.75$ per i carichi tandem e $\psi_0 = 0.40$ per i carichi distribuiti

5.3 Combinazioni agli SLE

Di seguito si esplicitano i coefficienti utilizzati per le singole combinazioni di carico rilevanti per le verifiche dell'impalcato agli SLE.

L'espressione per le combinazioni di verifica RARE è:

$$\sum_{j\geq 1}G_{k,j}+P+Q_{k,1}+\sum_{i\geq 1}\psi_{0,i}\cdot Q_{k,i}$$

L'espressione per le combinazioni di verifica FREQUENTI è:

$$\sum_{j\geq 1}G_{k,j}+P+\psi_{1,1}\cdot Q_{k,1}+\sum_{i>1}\psi_{2,i}\cdot Q_{k,i}$$

L'espressione per le combinazioni di verifica QUASI PERMANENTI è:

$$\sum_{j\geq 1}G_{k,j}+P+\sum_{i>1}\psi_{2,i}\cdot Q_{k,i}$$

Combinazione		G1	G2	E2	E3	Gr.1	Gr.2a	Gr.2b	Q5
RARA	Gr.1	1	1	1	0.6	1	0	0	0.6
	Gr.2a	1	1	1	0.6	0	1	0	0.6
	Q5	1	1	1	0.6	ψ	0	0	1
FREO	Gr.1	1	1	1	0.6	Ψ	0	0	0
THEQ.	Q5	1	1	1	0.6	0	0	0	0.2
Q.P.	-	1	1	1	0.6	0	0	0	0

Tabella 9 - Combinazioni agli SLE

(*) per schema di carico 1, $\psi 0 = \psi 1 = 0.75$ per i carichi tandem e $\psi 0 = \psi 1 = 0.40$ per i carichi distribuiti

6 MODELLI DI CALCOLO E METODO DI ANALISI

Le analisi sono state condotte mediante l'ausilio del MIDAS/CIVIL 2019 v2.2. Il software è stato impiegato per la modellazione dell'intera opera, finalizzata all'analisi strutturale. Dai modelli sono state dedotte, per le combinazioni di calcolo statiche e sismiche descritte in precedenza, le sollecitazioni complessive al fine di procedere con le verifiche di sicurezza previste dalle normative di riferimento.

Dai modelli di calcolo globale sono state ricavate le sollecitazioni agenti sulle sottostrutture necessarie ai fini delle verifiche geotecniche del sistema terreno-fondazione e delle verifiche strutturali, entrambe riportate nella specifica relazione di calcolo e pertanto non contenute nel presente documento.

6.1 Origine e caratteristiche dei codici di calcolo

Nell'ambito del presente paragrafo si riporta una descrizione delle caratteristiche dei software utilizzati per l'esecuzione delle analisi e verifiche strutturali esposte ai precedenti paragrafi.

Nello specifico, l'analisi del comportamento globale delle strutture d'impalcato è stato effettuato con l'ausilio del software MIDAS/CIVIL 2019 v2.2, distribuito in Italia dalla CSPFea (Padova).

Si è inoltre ricorso a fogli di calcolo elettronici auto-prodotti, per l'automatizzazione di ulteriori verifiche effettuate quali elementi in acciaio e/o elementi strutturali secondari.

6.2 Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo dei software impiegati ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore dei software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. Le stesse società produttrici hanno verificato l'affidabilità e la robustezza dei codici di calcolo attraverso un numero significativo di casi prova in cui i risultati sono contenuti in apposita documentazione fornita a corredo dell'acquisto del prodotto, che per brevità espositiva si omette di allegare al presente documento.

6.3 Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni esposte nel documento sono state inoltre sottoposte a controlli dal sottoscritto utente del software.

Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali, che per brevità espositiva si omette dall'allegare al presente documento.

Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, Il Progettista dichiara pertanto che l'elaborazione è corretta ed idonea al caso specifico, validando conseguentemente i risultati dei calcoli esposti nella presente relazione.

6.4 Modelli di calcolo globale per analisi statica e sismica

Modello Beam + Plate

Il ponte è stato modellato con elementi monodimensionali (beam) rappresentativi rispettivamente:

dei correnti inferiori e superiori e dei diagonali che compongono le due travi reticolari;

dei traversi;

degli irrigidimenti a v longitudinali.

mentre sono stati utilizzati elementi bidimensionali (plate) rappresentativi delle predalles in acciaio e della soletta in c.a. Predalles e soletta sono modellati come due layer distinti di elementi plate sovrapposti, di spessore rispettivamente 10 mm e 200 mm, resi solidali tra loro tramite rigid link.

Il riferimento di assi globali è orientato come segue:

- X = asse longitudinale impalcato;
- Y = asse trasversale impalcato;
- Z = asse verticale impalcato.

Gli assi locali degli elementi di carpenteria principale sono orientati in maniera analoga al riferimento globale. Nelle figure seguenti sono rappresentate alcune viste del modello utilizzato.

Figura 26 - Modello FE vista laterale

Figura 27 - Modello FE vista longitudinale

Nel modello sono utilizzati le seguenti condizioni di vincolo:

bracci rigidi tra le predalles e la soletta;

appoggi all'estremità dei correnti inferiori delle travi.

Gli elementi di trave sono appoggiati sulle spalle tramite vincoli elastici (*elastic link*) che simulano appoggi di tipo elastomerico con le seguenti rigidezze:

 $K_{h}\!\!=3.52 \text{ kN/mm} \qquad \qquad \text{rigidezza orizzontale in direzione longitudinale e trasversale sugli appoggi di estremità;}$

 $K_z = 2406 \text{ kN/mm}$ rigidezza verticale.

6.5 Modello Plate

Al fine di verificare le concentrazioni locali di tensione negli elementi che costituiscono le travature reticolari (profili scatolari e irrigidimenti) e negli elementi di carpenteria secondaria (traversi e irrigidimenti longitudinali), è stato sviluppato un modello interamente costituito da elementi plate.

Tale modello è rappresentativo del semi-impalcato è pertanto è stato utilizzato con riferimento alle sole condizioni di carico simmetriche rispetto all'asse di mezzeria del ponte.

La geometria dei singoli elementi principali e dei raccordi circolari tra i differenti profili scatolari, la geometria la posizione degli irrigidimenti, nonché la carpenteria secondaria di impalcato rispecchia fedelmente gli elaborati grafici di progetto.

Analogamente al caso precedente tanto lepredalles come la soletta in cls sono state modellate tramite elementi plate con le rispettive eccentricità e vincolati reciprocamente tramite rigid link verticali.

Figura 32

Figura 33

6.6 Effetti del ritiro e della viscosità

Gli effetti della viscosità possono essere messi in conto tramite un'analisi esatta, che tenga conto dello sviluppo nel tempo delle deformazioni anelastiche del calcestruzzo, oppure tramite metodo semplificato, che utilizzi differenti coefficienti di omogenizzazione – definiti dalla normativa vigente – per i diversi tipi di azioni applicate alla struttura. L'analisi sviluppata è basata sul "Metodo Esatto".

Il software utilizzato consente di discretizzare nel tempo gli effetti delle deformazioni anelastiche del calcestruzzo. Gli effetti del ritiro sono valutati come effetti di *n* incrementi di deformazione anelastica da ritiro che si sviluppa nel tempo secondo la funzione rappresentata in **Errore. L'origine riferimento non è stata trovata.**: ad ognuno di questi incrementi è associato lo sviluppo di una deformazione anelastica viscosa, variabile nel tempo. Ambedue le componenti di deformazione anelastica sono modellate come azioni equivalenti, "primary effects", applicate alla struttura nel suo insieme e tramite i relativi effetti, "secondary effects". Tali componenti sono esplicitate di seguito. Le azioni equivalenti, "primary effects", associate alla contrazione impedita da ritiro sono:

sforzi di compressione $F_{xx}(t,t_0)$ ed $F_{yy}(t,t_0)$ applicati baricentricamente agli elementi di soletta; dove:

 $F_{xx}(t,t_0) = F_{yy}(t,t_0)A_c \ x \ Ec \ x \ \varepsilon_r(t,t_0) \ con \ A_c \ area \ per unità di larghezza/lunghezzadella soletta, E_c modulo istantaneo del calcestruzzo, <math>\varepsilon_r(t,t_0)$ deformazione da ritiro al tempo t e $t_0 = 3gg$.

Tali azioni sono ripartite, imponendo l'equilibrio e la congruenza, tra soletta e strutture in acciaio e si traducono in azioni di sforzo normale baricentrico e momento flettente, "secondary effects", sulle predalles e sulle membrature principali (travi reticolari) e secondarie (traversi).

Analogamente le azioni equivalenti, "primary effects", associate alle deformazioni viscose sono:

una sollecitazione assiale $\Delta N_{\phi,ij}(t,t_i)$ e/o flettente $\Delta M_{\phi,ij}(t,t_i)$ applicata baricentricamente sulla soletta;

dove:

 $\Delta N_{\phi,ij}(t,t_i) \in \Delta M_{\phi,ij}(t,t_i)$ sono le sollecitazioni generalizzate associate a variazioni $\Delta \epsilon_{\phi,ij}(t,t_i)$ di deformazione viscosa al tempo t dovuta a un incremento di tensione $\Delta \sigma_{ij}(t_i)$ uniforme ovvero lineare sullo spessore della soletta applicata all'istante t_i .

Tali azioni sono ripartite, imponendo l'equilibrio e la congruenza, tra soletta e carpenteria metallica e si traducono in azioni di sforzo normale baricentrico e momento flettente, "secondary effects".

Fasi di calcolo

I modelli studiati e le fasi di calcolo e di verifica considerano le fasi di montaggio, maturazione e gli effetti differiti conseguenti alle varie età della struttura. Si distinguono le seguenti fasi di riferimento:

fase 1.a: corrispondente al varo dell'impalcato sulle sottostrutture. In questa fase, l'impalcato è soggetto al solo peso proprio della carpenteria metallica;

fase 1.b: corrispondente al getto della soletta. In questa fase sono presenti il peso proprio della carpenteria metallica e il peso della soletta non ancora collaborante applicata come carico distribuito sulle travi;

fase 2.a: impalcato in esercizio completo con soletta collaborante, di durata pari a 30 gg., considera gli effetti dovuti al ritiro iniziale e alla relativa viscosità del calcestruzzo variabili nel tempo.

fase 2.b: impalcato in esercizio completo con soletta collaborante e carichi permanenti portati, di durata pari a 10 000 gg., considera gli effetti dovuti ai carichi applicati, al ritiro a lungo termine e alla relativa viscosità del calcestruzzo variabili nel tempo.

fase 3 (fase finale): impalcato in esercizio per carichi di breve durata, quali quelli mobili, variazioni di temperatura, vento. In questa fase la sezione resistente risulta composta, ovvero acciaio + soletta collaborante, con modulo elastico istantaneo non ridotto.

6.7 Metodo di analisi globale e classificazione delle sezioni

Il DM 2018 prevede per le strutture in acciaio e in acciaio calcestruzzo la possibilità di utilizzare i seguenti metodi di analisi globale:

elastica;

plastica;

elasto-plastica.

Tali metodi di analisi sono associati al metodo di valutazione della resistenza delle sezioni trasversali e alle classi di appartenenza delle sezioni come definite al punto 4.2.3.1 del DM 2018.

Nel caso in esame si adotta un metodo di verifica globale elastico. La verifica in campo elastico è ammessa per tutti i tipi di sezione, con l'avvertenza di tenere conto degli effetti di instabilità locale per le sezioni di classe 4. Pertanto di seguito viene riportata la classificazione delle sezioni condotta per le membrature che costituiscono il ponte in esame.

A seguire si riporta la classificazione delle piattabande e delle pareti laterali per le nervature principali compresse (correnti superiori e diagonali). La denominazione e le caratteristiche dei conci sono rappresentate in figura.

Figura 34 - Conci

Tabella 10 – Classificazione delle sezioni scatolari chiuse

	Concio	Parte	Н	B_{sup}	t _{sup}	\mathbf{B}_{inf}	t _{inf}	t _w	h _w	С	3	42 ε	C/t	Classe
			mm	mm	mm	mm	mm	mm	mm	mm	-	-	-	-
Correnti	rrenti periori Nodo 1	Pareti	1000	700	30	700	30	30	940	940	0.81	34.02	31.33	3
superiori		Laterali												
		(Interna												
		Compressa)												

A90 Svincolo Tiburtina: Intervento di potenziamento dallo svincolo "Centrale del Latte" allo svincolo A24 – 2º fase funzionale

		Piattabande (Interna Compressa)	700	1000	30	1000	30	30	640	640	0.81	34.02	21.33	3
	1 e 2	Pareti Laterali (Interna Compressa)	1000	700	30	700	30	30	940	940	0.81	34.02	31.33	3
		Piattabande (Interna Compressa)	700	1000	30	1000	30	30	640	640	0.81	34.02	21.33	3
	3	Pareti Laterali (Interna Compressa)	1000	700	50	700	50	50	900	900	0.81	34.02	18.00	3
	5	Piattabande (Interna Compressa)	700	1000	50	1000	50	50	600	600	0.81	34.02	12.00	3
	Concio		н	B _{sup}	t _{sup}	Binf	t _{inf}	tw	h _w	Cinf	3	42 ε	C/t	Classe
			mm	mm	mm	mm	mm	mm	mm	mm	-	-	-	-
Diagonali	-	Pareti Laterali (Interna Compressa)	700	700	20	700	20	20	660	660	0.81	34.02	33	3
		Piattabande (Interna Compressa)	700	700	20	1000	20	20	660	660	0.81	34.02	33	3

Gli elementi compressi ricadono pertanto tutti in Classe 3.

Per quanto riguarda i traversi di impalcato questi presentano le seguenti caratteristiche geometriche:

H = 1000 mm

 $t_{\rm H}=14\ mm$

 $B_{sup} = B_{inf} = 700 \ mm$

 $t_{sup}\,{=}\,t_{inf}\,{=}\,24~mm$

Nelle tabelle seguenti si riportano pertanto le classificazioni dei pannelli d'anima e delle piattabande dei traversi.

Traversi		=	Pannelli d'Anima	Piattabande
Н	mm	=	1000	700
t _{f,sup}	mm	=	24	24
t _{f,inf}	mm	=	24	24
ta	mm	=	14	14
ha	mm	=	952	-
t	mm	=	14	24
h _{ysup}	mm	=	476	-
h _{yinf}	mm	=	476	-

3		=	0.81	
14 ε		=		11.34
124 ε		=	100.44	
С	mm	=	952	343
C/t		=	68	14.291667
Classe Pannello		=	3	4

I pannelli d'anima risultano pertanto in Classe 3, mentre le piattabande inferiori, non vincolate alle predalles e alla soletta in c.a., risultano in Classe 4. Si segnala tuttavia che le piattabande inferiori risultano quasi ovunque tese. Ciò nondimeno le verifiche per queste ultime saranno condotte tenendo conto degli effetti di instabilità locale per le sezioni di Classe 4, con le modalità previste al punto C.4.2.4.1.3.4.2 in 0.

Modello di calcolo della soletta

L'analisi e la verifica della soletta sono sviluppate sul modello globale, nel quale la stessa è modellata tramite elementi plate quadrangolari di dimensioni massime pari a circa 65 cm x 105.

I carichi vengono applicati in corrispondenza della mezzeria dello spessore degli elementi plate della soletta come pressioni.

Il modello della soletta è vincolato tramite rigid link alle predalles con un'eccentricità verticale pari 105 mm, ovvero pari alla distanza fra i piani medi di soletta e predalles rispettivamente.

Sono state applicate le seguenti condizioni di carico:

pavimentazione: applicata come pressione uniforme pari a 2.0 kN/m2;

carico aggiuntivo dei marciapiedi: applicata come pressione pari a 4.25 kN/m² sull'ingombro del cordolo di larghezza pari a 1 m per lato;

i carichi accidentali da traffico, sono stati calcolati e posizionati come illustrato al precedente paragrafo 4.6.1.

I carichi eccezionali sono stati applicati, come illustrato al precedente paragrafo 4.7., associando al sistema di forze orizzontali dovute all'urto, un carico verticale isolato sulla sede stradale costituito dallo Schema di Carico 2 e il corrispondente carico orizzontale.

L'azione orizzontale d'urto è stata modellata con:

quattro forze orizzontali F=90 kN ad interasse longitudinale di 1.50 m, applicate in asse alla soletta;

quattro coppie M = Fxd = 90x1.27 = 114.3 KNm, dove d è la distanza tra la il punto di applicazione della forza e l'asse della soletta.

I carichi da traffico, corrispondenti allo schema di carico 2, sono stati applicati in affiancamento alle azioni d'urto.

7 Metodi di verifica

Premessa

Le verifiche degli elementi strutturali in acciaio sono condotte con metodo tensionale in campo elastico.

Si svolgono nel seguito le verifiche di resistenza delle nervature, le verifiche per instabilità a taglio dei pannelli d'anima, le verifiche a fatica e le verifica di resistenza della soletta.

Si svologono inoltre verifiche di stabilità globali, flessionale e flesso-torsionale, delle travature tramite analisi di buckling globale della struttura.

Verifiche agli Stati Limite Ultimi degli elementi in acciaio

Verifiche di resistenza

Le verifiche si svolgono in campo elastico in accordo a quanto previsto al punto 4.2.4.1.2 e 4.3.4.2.1.1 del DM 2018. Le verifiche sono pertanto svolte come verifiche tensionali, nei seguenti punti.

Figura 35 - Punti di verifica per sezioni chiuse e aperte

Per le nervature in acciaio la verifica viene svolta sulla tensione ideale ricavata dallo stato tensionale dell'elemento allo stato limite ultimo:

$$\sigma_{id}^2 = \sigma_n^2 + 3\tau^2 \le \left(\frac{f_{yk}}{\gamma_{M0}}\right)^2$$

pertanto per acciaio S355:

 $\sigma_{id} \leq 338$ MPa per t ≤ 40 mm;

Per il calcestruzzo della soletta la verifica viene svolta sulla tensione normale minima (verifica a compressione). $\sigma_{cd} \leq f_{cd} = \alpha cc \ f_{ck} / \gamma_M = 19.8 \ N/mm^2$

Presso o Tenso Flessione bi-assiale e Taglio

Per le sezioni scatolari (tutte almeno di Classe 3) che costituiscono inoltre le membrature delle travature reticolari vengono inoltre condotte le verifiche nei confronti delle Resistenze a Trazione e Compressione, Flessione e Taglio

La Resistenza di calcolo a Trazione è calcolata mediante la seguente espressione:

$$N_{pl,Rd} = \frac{Af_y}{\gamma_{M0}}$$

La Resistenza di calcolo a Compressione (per le sezioni di classe 1, 2 e 3) è data da:

$$N_{c,Rd} = \frac{Af_y}{\gamma_{M0}}$$

La Resistenza di calcolo a Flessione retta vale, per le sezioni di classe 3,

$$M_{c,Rd} = M_{el,Rd} = \frac{W_{el,min}f_y}{\gamma_{M0}}$$

dove W_{el,min} è il modulo resistente elastico minimo della sezione in acciaio.

Per le sezioni di classe 3, la **verifica a presso o tenso-flessione biassiale** è quindi condotta in termini tensionali utilizzando le verifiche elastiche, ovvero verificando la seguente disuguaglianza:

$$\frac{N_{Ed}}{N_{Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \le 1$$

La Resistenza di calcolo a Taglio, in assenza di torsione è pari a:

$$V_{c,Rd} = \frac{A_v (f_y / \sqrt{3})}{\gamma_{M0}}$$

Dove Av è l'area resistente a taglio che è calcolata in accordo a quanto indicato dalla 6.2.6 (3) della EN1993-1. In presenza di torsione, la resistenza a taglio del profilo viene opportunamente ridotta.

Verifiche per instabilità dei pannelli soggetti a compressione e taglio

Si evdenzia che nel caso in esame, relativamente agli elementi in lamiera saldata che compongono le travature reticoalri principali, le sollecitazioni di taglio negli elementi compressi (correnti superiori e diagonali) sono nulle o trascurabili, mentre le pareti dei correnti inferiori sono ovunque tese: si trascurano quindi gli effetti dell'instabilità per taglio sui pannelli d'anima degli elementi costituenti le travature reticolari.

Relativamente ai traversi di impalcato, questi sono caratterizzati da flessioni positive, con flange inferiori tese e flange superiori – vincolate alla soletta – compresse, in campata e da flessioni negative, con flange inferiori compresse e flange superiori tese, in prossimità dell'attacco con i correnti inferiori delle travi reticolari. Poiché le piattabande compresse ricadono in Classe 4, con riferimento a tali elementi si svolgono le verifiche per instabilità a compressione.

La verifica è prevista al punto C4.2.4.1.3.4.2 della Circolare del 11-02-2019.

La valutazione della resistenza all'instabilità delle piattabande compresse libere lungo un lato (piattabande in sezioni aperte) viene svolta utilizzando un'area efficace ridotta e pari a:

$$A_{c,eff} = \rho A_c$$

Dove ρ è funzione della snellezza del pannello compresso λ_p :

$$\lambda_{p} = \frac{c}{28.4 \cdot t \cdot \varepsilon \cdot \sqrt{k_{\sigma}}}$$

$$\rho = 1 \text{ se } \lambda_{p} \le 0.748$$

$$\rho = \frac{\lambda_{p} - 0.188}{\lambda_{p}^{2}} \text{ se } \lambda_{p} > 0.748$$

 $con k_{\sigma} = 0.43$ desunto da tabella C.4.2.IX con riferimento al caso di piatti uniformemente compressi ($\psi = 1$). Verifica dell'instabilità per Imbozzamento dei pannelli d'anima

I pannelli d'anima, indipendentemente dalla classe della sezione, sono stati verificati anche nei confronti dell'imbozzamento per effetto dell'azione combinata di taglio momento e sforzo normale. La verifica per imbozzamento è stata condotta secondo il metodo fornito al par. 7.6.2.1 dalla norma CNR-10011.

Verifiche per instabilità globale

E' stata effettuata un analisi di buckling per la determinazione del moltiplicatore critico dei carichi accidentali.

L'analisi di buckling lineare viene utilizzata per calcolare il moltiplicatore critico dei carichi e il corrispondente modo di buckling della struttura. L'analisi comporto che le equazioni di equilibrio per la struttura sotto carico siano espresse in corrispondenza della configurazione deformata come:

$$K \cdot U + K_G \cdot U = F$$

Dove:

K è la matrice di rigidezza elastic;

K_G è la matrice di rigidezza geometrica;

U è il vettore degli spostamenti nodali; e

F è il vettore dei carichi nodali.

Essendo la matrice di rigidezza geometrica funzione delle sollecitazioni nella struttura, la ricerca del moltiplicatore critico dei carichi esterni viene convenzionalmente ricondotto a un problema agli autovalori esprimendo sia la matrice di rigidezza geometrica che il vettore dei carichi nodali in funzione del vettore base dei carichi applicati F_0 e del moltiplicatore dei carichi λ .

$$(K + \lambda \cdot K_G(F_0)) \cdot U = \lambda \cdot F_0$$

Il moltiplicatore critico dei carichi, λ_{cr} , e il modo critico, U_{cr} , saranno quindi il più piccolo degli autovalori dell'equazione precedente e il corrispondente autovettore.

Verifiche allo Stato Limite Ultimo di Fatica

Le verifiche a fatica sono svolte per vita illimitata, facendo riferimento a dettagli caratterizzati da limiti di fatica ad ampiezza costante sul massimo delta di tensione ideale $\Delta \sigma_{max} = (\sigma_{max} - \sigma_{min})$ e tangenziale $\Delta \tau_{max} = (\tau_{max} - \tau_{min})$.

Nel caso in esame si fa riferimento ai seguenti dettagli:

saldature di composizione delle membrature principali;

giunto trasversale saldato delle membrature principali;

La classe di dettaglio definisce le classi di resistenza a fatica in termini di range tensionali, $\Delta\sigma_C e \Delta\tau_C$ espressi in MPa per N = 2 x 10⁶ cicli, e i limiti a fatica ad ampiezza costante, $\Delta\sigma_D e \Delta\tau_D$ espressi in MPa per N = 5 x 10⁶ cicli e per N = 1 x 10⁸ cicli rispettivamente.

La verifica consiste quindi nel soddisfare i seguenti criteri:

 $\Delta \sigma_{max} \leq \Delta \sigma_D / \gamma_{Mf};$

 $\Delta\tau_{max} \leq \Delta\tau_{D}$ / $\gamma_{Mf}.$

Le classi di dettaglio a cui si fa riferimento sono riepilogate nel seguito.

✓ saldature a completa penetrazione di composizione delle travi principali $\Delta\sigma_{\rm C} = 100$ MPa (ref. Circolare del 11/02/2019, Tab. C4.2.XIII, dettaglio 6);

 $\Delta \sigma_D = 0.737 \text{ x } \Delta \sigma_C = 73.7 \text{ MPa}$

 $\gamma_{Mf}=1.35$

✓ giunto trasversale saldato delle membrature principali

 $\Delta\sigma C = 71$ MPa (ref. Circolare del 11/02/2019, Tab. C4.2.XIV, dettaglio 13); $\Delta\sigma D =$

- $0.737 \text{ x} \Delta \sigma C \text{ x} 1.000 = 52.33 \text{ MPa per t} = 20 \text{ mm};$

- $0.737 \text{ x} \Delta \sigma C \text{ x} 0.964 = 50.45 \text{ MPa per } t = 30 \text{ mm};$

- $0.737 \text{ x} \Delta \sigma \text{C} \text{ x} 0.910 = 47.60 \text{ MPa per t} = 30 \text{ mm};$

 $\gamma Mf = 1.35.$

7.1 Verifiche agli Stati Limite Ultimi della soletta

Verifiche di resistenza a flessione

Sulla soletta sono state condotte verifiche a flessione delle sezioni in cemento armato in corrispondenza in corrispondenza delle campate. È stato verificato che nei punti più sollecitati della soletta fosse verificata la seguente condizione:

$$\frac{M_{Ed,c}}{M_{Rd,c}} \le 1$$

Le verifiche flessionali allo SLU sono state eseguite adottando le seguenti ipotesi:

Conservazione delle sezioni piane;

Perfetta aderenza tra acciaio e calcestruzzo;

Resistenza a trazione del calcestruzzo nulla;

Rottura del calcestruzzo determinata dal raggiungimento della sua capacità deformativa ultima a compressione;

Rottura dell'armatura tesa determinata dal raggiungimento della sua capacità deformativa ultima;

Le tensioni nel calcestruzzo e nell'armatura sono state dedotte a partire dalle deformazioni utilizzando i rispettivi diagrammi tensione-deformazione.

Per quanto attiene la legge σ - ϵ del calcestruzzo si è utilizzata una curva parabola-rettangolo, considerando solo la porzione compressa e con $\epsilon c2=0,2\%$ ed $\epsilon cu=0,35\%$.

Per quanto riguarda l'acciaio si è assunto un diagramma bilineare elastico-perfettamente plastico indefinito.

Verifiche di resistenza a taglio

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dalla NTC2018 al 4.1.2.3.5. Per il calcolo della capacità degli elementi strutturali non dotati di specifiche armature trasversali resistenti a taglio si adotta la seguente formulazione:

$$V_{Rd} = \max\left\{ \left[0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{\frac{1}{3}} / \gamma_c + 0.15 \cdot \sigma_c \right] \cdot b_w \cdot d; \left(v_{min} + 0.15 \cdot \sigma_{cp} \right) \cdot b_w \cdot d \right\}$$

con:

 f_{ck} è espresso in MPa;

$$k = 1 + (200/d)^{1/2} \le 2$$
$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{-1/2}$$

In cui:

d: altezza utile della sezione (in mm);

 $\rho_1 = A_{sl}/(b_w \cdot d)$: rapporto geometrico di armature longitudinale tesa (≤ 0.02); $\sigma_{cp} = N_{Ed}/A_c \ [MPa]$: tensione media di compressione nella sezione ($\leq 0.2 \ f_{cd}$); b_w : larghezza minima della sezione (in mm);

Per il calcolo della capacità degli elementi strutturali dotati di specifiche armature trasversali resistenti a taglio si adotta la schematizzazione a traliccio mediante le seguenti formule:

 $V_{Rd} = \min(V_{Rsd}, V_{Rcd})$

Con riferimento all'armatura trasversale, la resistenza di progetto a "taglio trazione" V_{Rsd} si calcola come:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot sin\alpha$$

Con riferimento al calcestruzzo, la resistenza di progetto a "taglio compressione" V_{Rcd} si calcola come:

$$V_{\rm Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot v f_{cd} \frac{(ctg\alpha + ctg\theta)}{(1 + ctg^2\theta)}$$

In cui:

d: altezza utile della sezione (in mm);

 $\sigma_{cp} = N_{Ed}/A_c [MPa]$: tensione media di compressione nella sezione ($\leq 0.2 \text{ f}_{cd}$);

 b_w : larghezza minima della sezione (in mm);

 A_{sw} : area dell'armatura trasversale;

s : interasse tra due armature trasversali consecutive;

 α : angolo di inclinazione dell'armatura trasversale rispetto all'asse;

 $v f_{cd}$: resistenza a compressione ridotta del calcestruzzo d'anima (v= 0.5);

 α_c : coefficiente maggiorativo pari a:

1 per membrature non compresse

 $1{+}\sigma_{cp}{/}f_{cd} \qquad \qquad per \; 0 \leq \sigma_{cp} \leq 0.25 \; f_{cd}$

1.25 per $0.25 f_{cd} \le \sigma_{cp} \le 0.50 f_{cd}$

2.5 (1-
$$\sigma_{cp}/f_{cd}$$
) per 0.5 $f_{cd} \le \sigma_{cp} \le f_{cd}$

θ: inclinazione dei puntoni di calcestruzzo rispetto all'asse della trave;

Il valore dell'angolo ϑ deve rispettare i seguenti limiti:

$$1 \le ctg\vartheta \le 2.5$$

Implementando le formule esplicitate sopra, il valore del taglio resistente è stato calcolato attraverso un apposito foglio di calcolo.

Verifiche allo Stato Limite di Esercizio

Le verifiche svolte sotto combinazioni di carico di esercizio sono:

- inflessione dell'impalcato nel piano verticale;
- verifica di limitazione delle tensioni in esercizio negli elementi in c.a;
- verifiche a fessurazione della soletta.

7.2 Verifica di deformabilità

La verifica allo stato limite di deformazione è stata condotta imponendo dei limiti massimi in relazione alle esigenze del traffico, all'aspetto della struttura, nonchè dei vincoli e dei dispositivi di giunto previsti in progetto. Per le verifiche di deformabilità si è assunto come limite per il rapporto freccia/luce il valore 1/500 in combinazione caratteristica sotto carichi variabili da traffico.

Verifica di limitazione delle tensioni di esercizio

La massima tensione di compressione del cls deve rispettare la limitazione:

 $\sigma_c < 0.60 \ f_{ck} \qquad \ \ \text{per combinatione caratteristica;}$

 $\sigma_c < 0.45 \ f_{ck} \qquad \ \ \text{per combinatione quasi permanente.}$

La massima tensione dell'acciaio deve rispettare la limitazione:

 $\sigma_s < 0.8 \ f_{yk} \qquad \ \ \text{per combinatione caratteristica.}$

Verifiche a fessurazione della soletta

Conformemente a quanto premesso nel Par. 3.2 le verifiche a fessurazione della soletta vengono svolto verificando i seguenti limiti per l'apertura delle fessure:

Condizione SLE Frequente	$w_k \leq 0.3 \text{ mm}$
Condizione SLE Quasi Permanente	$w_k \leq 0.2 \text{ mm}$

7.3 Verifiche dei dispositivi di appoggio

7.3.1 Verifiche di resistenza

Per le verifiche di resistenza dei dispositivi di appoggio si fa riferimento alle resistenze di progetto individuate dal fornitore, ovvero:

V = carico verticale massimo ammissibile sotto combinazione sismica allo SLC;

Fzd = carico verticale massimo ammissibile sotto combinazione statica allo SLU e spostamento orizzontale massimo pari a 10 mm.

7.3.2 Verifica della corsa massima

La corsa massima del dispositivo di appoggio, da confrontarsi con la corsa massima ammissibile per l'isolatore, è valutata come la somma delle seguenti aliquote:

 $\Delta c = dE(r+v) + 0.5 \ dE\Delta T + dESLC$

Dove:

dE(r+v) è l'aliquota di spostamento permanente dovuta al ritiro e alla viscosità, ove presenti;

 $dE\Delta T$ è l'aliquota di spostamento dovuto alla deformazione termica uniforme pari a 20°, cautelativamente considerato nella combinazione allo SLC con un fattore di 0.5;

dESLC = è lo spostamento dovuto alle azioni sismiche nella direzione longitudinale;

7.3.3 Verifiche dei giunti

Per il dimensionamento dei giunti si adotta il valore:

 $L = (+ / -) 2 x \Delta c$

7.3.4 Verifica delle spalle

Le sollecitazioni globali che le spalle ricevono dall'impalcati, sono ottenute dai modelli di calcolo globali implementati in Midas Civil. A tali sollecitazioni sono aggiunti i pesi propri degli elementi strutturali, del terreno di riempimento della spalla, le spinte del terreno di rilevato e, in condizioni sismiche, le masse.

Per i muri verticali delle spalle sono stati adottati modelli a trave con vincolo a mensola per il muro frontale e i muri andatori. Per le platee di fondazione, si è utilizzato un modello a piastra, discretizzato mediante elementi shell.

I pesi propri e le masse sono esplicitate nelle tabelle riportate nei paragrafi seguenti.

Le spinte del terreno di rilevato, invece, sono state valutate come segue, con riferimento alle seguenti caratteristiche fisico meccaniche del terreno di rilevato.

 $\varphi = 38^{\circ}$ angolo d'attrito;

c = 0 coesione interna;

 $\gamma = 20 \text{ kN/mc}$ peso specifico.

7.3.4.1 Condizioni statiche

La spinta del terreno del rilevato in condizioni statiche, viene valutata in termini di spinta a riposo, adottando un coefficiente di spinta pari a:

$$K_o = (1 - sen \phi)$$

Ne consegue che la spinta statica agente su un metro di parete con altezza H è pari a:

$$\mathsf{S}_{stat} = \frac{1}{2} \, \gamma \cdot \mathsf{H}^2 \cdot \mathsf{k}_{o}$$

La spinta così calcolata è applicata ad una altezza pari a H/3.

In condizioni statiche si considera un sovraccarico accidentale pari a $Q = 20.0 \text{ KN/m}^2$.

La presenza del sovraccarico Q genera una spinta pari a:

$$S_q = Q \cdot H \cdot K_o$$

Tale spinta è applicata ad una altezza pari a H/2.

7.3.4.2 Condizioni sismiche

Conformemente alle indicazioni fornite dalle seguenti norme:

D.M 14/01/2008;

UNI EN 1997-2005-Progettazione Geotecnica

Le azioni indotte dal terreno in condizioni sismiche sulle strutture della spalla sono valutate con le seguenti modalità.

Le azioni sismiche orizzontali e verticali che si interessano le strutture delle spalle ed il terreno di riempimento tra i muri andatori sono state valutate in accordo alle specifiche fornite dal DM 14/01/08 per la verifica sismica delle opere di sostegno (prg *7.11.6.2.1 Metodi di analisi*).

Nello specifico, le azioni le forze di inerzia orizzontali (F_h) e verticali (F_v) da considerare nell'ambito delle verifiche con metodi pseudo statici, si ottengono applicando ai pesi propri e permanenti i seguenti coefficienti sismici

Nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni

$$k_h = \beta_m \cdot \frac{a_{max}}{g} \tag{7.11.6}$$

$$k_{\rm v} = \pm 0.5 \cdot k_{\rm h}$$
 (7.11.7)

dove

 $a_{\rm max}$ = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{\max} = S \cdot a_g = S_S \cdot S_T \cdot a_g \tag{7.11.8}$$

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T), di cui al § 3.2.3.2;

 a_{σ} = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nella precedente espressione, il coefficiente β_m assume i valori riportati nella Tab. 7.11-II.

Per muri che non siano in grado di subire spostamenti relativi rispetto al terreno, il coefficiente β_m assume valore unitario.

Nel caso di muri di sostegno liberi di traslare o di ruotare intorno al piede, si può assumere che l'incremento di spinta dovuta al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di specifici studi si deve assumere che tale incremento sia applicato a metà altezza del muro.

	Categoria di sottosuolo		
	А	B, C, D, E	
	βm	βm	
$0,2 \le a_g(g) \le 0,4$	0,31	0,31	
$0, 1 \le a_g(g) \le 0, 2$	0,29	0,24	
$a_{g}(g) \le 0,1$	0,20	0,18	

 Tabella 7.11.II - Coefficienti di riduzione dell'accelerazione massima attesa al sito.

Figura 36 – Coefficienti sismici (estratto D.M. 14/01/2008 p.to 7.11.6.2.1)

Con riferimento al valore da assegnare al coefficiente β m, si è fatto riferimento alle indicazioni di cui alla Tabella 7.1.II riportata nella stessa sezione della norma, tenendo tuttavia conto della specifica che prescrive, nel caso di muri che non siano in grado di subire spostamenti (quale è il caso delle spalle del viadotto in questione che in virtù della elevata rigidezza sia del sistema di fondazione che della parte in elevazione, è interessata da spostamenti trascurabili durante l'evento sismico) un valore del coefficiente β_m pari ad 1.0. Assumendo tale valore si considera che, cautelativamente, il terreno di riempimento è rigidamente connesso alla spalla e non subisce deformazioni o movimenti relativi rispetto ad essa.

La forza di calcolo E_d è da considerare come la risultante delle spinte statiche e dinamiche del terreno.

In assenza di uno studio più dettagliato che prenda in considerazione la rigidezza relativa, il tipo di movimento e la massa dell'opera di sostegno, si assume che la forza dovuta alla spinta dinamica del terreno sia applicata a metà altezza del muro ed agisca con un'inclinazione rispetto alla normale al muro uguale a zero.

La spinta totale di progetto E_d esercitata dal terrapieno ed agente sull'opera di sostegno in condizioni sismiche e data da:

$$E_{d} = \frac{1}{2}\gamma(1\pm k_{v})KH^{2} + E_{ws}$$

dove:

H è l'altezza del muro;

 E_{ws} è la spinta idrostatica;

 γ è il peso specifico del terreno (definito ai punti seguenti);

K è il coefficiente di spinta del terreno (statico + dinamico).

Il coefficiente di spinta del terreno può essere calcolato mediante la formula di Mononobe e Okabe.

Per stati di spinta attiva:

$$\beta \leq \phi \cdot \theta : \mathsf{K} = \frac{\operatorname{sen}^{2} (\psi + \phi \cdot \theta)}{\operatorname{cos}\theta \operatorname{sen}^{2} \psi \operatorname{sen} (\phi \cdot \theta \cdot \delta) \left[1 + \sqrt{\frac{\operatorname{sen} (\phi + \delta) \operatorname{sen} (\phi - \beta \cdot \theta)}{\operatorname{sen} (\phi - \theta \cdot \delta) \operatorname{sen} (\psi + \beta)}}\right]^{2}$$

$$\beta > \phi - \theta : \mathsf{K} = \frac{\mathsf{sen}^2 \left(\psi + \phi - \theta \right)}{\mathsf{cos}\theta \, \mathsf{sen}^2 \psi \, \mathsf{sen} \left(\psi - \theta - \delta \right)}$$

Nelle precedenti equazioni vengono usati i seguenti valori:

 $\varphi = 38^{\circ}$ angolo di resistenza a taglio del terreno in condizioni di sforzo efficace;

 $\psi = 90^{\circ}$ angolo d'inclinazione rispetto all'orizzontale della parete del muro di monte;

 $\beta = 0^{\circ}$ angolo d'inclinazione rispetto all'orizzontale della superficie del terrapieno;

 $\delta/\phi = 0.66$ rapporto angolo di attrito terra-muro e angolo di resistenza a taglio

 $\tan \theta = \frac{k_h}{1 + k_v}$

In particolare, per il calcolo della spinta statica esercitata sul muro frontale e sui muri laterali dal terreno contenuto nella spalla, si è fatto riferimento, per la fase statica, ad una situazione di spinta a riposo (K_0); per quanto riguarda invece la fase sismica, si sommano agli effetti di una situazione di spinta attiva, gli incrementi di spinta esercitati dal terreno in fase sismica ottenuti convenzionalmente come differenza tra spinta attiva valutata in condizioni sismiche (K'_a , calcolato con l'espressione di Mononobe-Okabe) ed in fase statica.

Infine, nel caso specifico non essendo presente la falda, la spinta idrostatica è nulla.

8 RISULTATI DELL'ANALISI STRUTTURALE

Si utilizza un'analisi lineare elastica per gli effetti delle azioni tenendo in conto fenomeni differiti quali la viscosità e ritiro, gli effetti delle azioni termiche e le fasi costruttive.

In questa sezione sono rappresentati alcuni risultati dell'analisi condotta sul modello globale, in termini di sollecitazioni (kN, kNm) e spostamenti (mm), in forma grafica e per le sole nervature principali.

8.1 Risultati in fase di getto

Si riportano di seguito le sollecitazioni nella fase 1.b, in presenza della sola carpenteria di acciaio come elemento resistente e di tutti i pesi propri strutturali come carichi applicati.

CS: SUMMATION LAST MAX: 1315 MIN: 3566 FILE: PONTE COM~ UNIT: kN DATE: 06/15/2021

Figura 37 – G1.1+G1.2 – Travi reticolari: Sforzo Normale N (kN)

Figura 38 – G1.1+G1.2 – Travi reticolari:Momento flettente My (kNm)

Figura 40 – G1.1+G1.2 – Traversi inferiori:Momento flettente My (kNm)

Figura 42 - G1.1+G1.2 – Predalles:Sforzi Fxx (kN/m)

Figura 44 - G1.1+G1.2 – Spostamenti (mm) (da modello 1 beam + plate)

8.2 Risultati a too

Si riportano di seguito le sollecitazioni al termine della fase 3, sulla carpenteria in acciaio e sulla soletta, dove i carichi applicati sono:

- pesi propri (G1);
- carichi permanenti portati (G2);

effetti del ritiro e della viscosità (E1, E2).

Figure 1 – G1+G2+E2 – Travi reticolari: Sforzo Normale N (kN)

Figure 3 – G1+G2+E2 – Travi reticolari: Taglio Fz (kN)

Figure 4 – G1+G2+E2 – Traversi Inferiori: Momento Flettente My (kNm)

Figure 5 – G1+G2+E2 – Traversi Inferiori: Taglio Fz (kN)

Figure 6 – G1+G2+E2 - Soletta: Sforzi Trasversali Fyy (KN/m)

Figure 7 – G1+G2+E2 - Soletta: Momenti Flettenti Longitudinali Mxx (KNm/m)

Figure 10 – G1+G2+E2 - Soletta: Tagli Trasversali Vyy (KN/m)

-7.85513e+000 -1.30921e+001 -1.83290e+001 -2.35660e+001 -2.88029e+001

STAGE:Fase 2b CS: SUMMATION AVG NODAL LAST MAX : 11128 MIN : 9088 FILE: PONTE COM~ UNIT: kN/m DATE: 06/15/2021

8.3 Risultati in fase finale

Stato limite ultimo (SLU)

Si riportano di seguito i diagrammi delle sollecitazioni per la combinazione più gravosa degli SLU.

Figure 11 – SLU STR GR1,1 – Travi reticolari: Sforzo Normale N (kN)

Figure 12 – SLU STR GR1,1 – Travi reticolari: Momento Flettente My (kNm)

Figure 13 – SLU STR GR1,1 – Travi reticolari: Taglio Fz (KN)

Figure 14 – SLU STR GR1,1 – Traversi: Momento My (KNm)

Figure 16 – SLU STR Gr1,1 Predalles: Sforzi assiali in direzione longitudinale Fxx (KN/m)

Figure 17 – SLU STR Gr1,1 Predalles: Sforzi assiali in direzione trasversale Fyy (KN/m)

Figure 18 – SLU STR Gr1,1 Soletta: Sforzi assiali in direzione longitudinale Fxx (KN/m)

Figure 19 – SLU STR Gr1,1 Soletta: Sforzi assiali in direzione Trasversale Fyy (KN/m)

Figure 20 – SLU STR Gr1,1 Soletta: Momenti flettenti in direzione longitudinale Mxx (KNm/m)

Figure 21 – SLU STR Gr1,1 Soletta: Momenti flettenti in direzione trasversale Myy (KNm/m)

Figure 22 – SLU STR Gr1,1 Soletta: Tagli in direzione longitudinale Vxx (KN/m)

Figure 23 – SLU STR Gr1,1 Soletta: Tagli in direzione trasversale Vyy (KN/m)

Risultati per Azioni Sismiche (SLV)

Si riportano a seguire i periodi e le masse partecipanti, in forma tabellare, per i primi 20 modi di vibrare della struttura e, anche in grafico, per i 3 modi traslazionali significativi.

Mode No	TRAI	N-X	TRAN	1-Y	TRA	N-Z
	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)
1	0.00	0.00	99.97	99.97	0.00	0.00
2	100.00	100.00	0.00	99.97	0.00	0.00
3	0.00	100.00	0.00	99.97	0.00	0.00
4	0.00	100.00	0.00	99.97	81.71	81.71
5	0.00	100.00	0.03	100.00	0.00	81.71
6	0.00	100.00	0.00	100.00	0.00	81.71
7	0.00	100.00	0.00	100.00	0.00	81.71
8	0.00	100.00	0.00	100.00	0.00	81.71
9	0.00	100.00	0.00	100.00	0.00	81.71
10	0.00	100.00	0.00	100.00	0.00	81.71
11	0.00	100.00	0.00	100.00	8.43	90.14
12	0.00	100.00	0.00	100.00	0.00	90.14
13	0.00	100.00	0.00	100.00	0.00	90.14
14	0.00	100.00	0.00	100.00	0.00	90.14
15	0.00	100.00	0.00	100.00	0.52	90.66
16	0.00	100.00	0.00	100.00	3.79	94.45

	Tabella 11 –	Modi e	Periodi	Propri d	li Vibrazione
--	--------------	--------	---------	----------	---------------

A90 Svincolo Tiburtina: Intervento di potenziamento dallo svincolo "Centrale del Latte" allo svincolo A24 – 2º fase funzionale

Mode No	TRAN-X		TRAI	N-Y	TRAN-Z	
	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)
17	0.00	100.00	0.00	100.00	0.00	94.45
18	0.00	100.00	0.00	100.00	0.00	94.45
19	0.00	100.00	0.00	100.00	0.00	94.45
20	0.00	100.00	0.00	100.00	0.00	94.45

	PostCS
MODE	2
MAX .	20192
MIN :	20242
FILE:	PONTE COM~
UNIT:	N, mm
DATE:	06/15/2021

Figura 50 - Modo 2: traslazionale lungo X (massa 99.99%)

Figura 51 - Modo 2: traslazionale lungo Z (massa 81.70%)

Nelle immagini a seguire si riportano gli spostamenti e le sollecitazioni nelle combinazioni agli SLV con componenti dominanti X ed Y rispettivamente.

Figure 24 – SLV Simsa X: spostamenti nel piano XY (mm)

Figure 26 – SLV Sisma X: Sforzi assiali (KN)

Figure 27 – SLV Sisma X: Momenti flettenti My (KNm)

Figure 28 – SLV Sisma Y: Sforzi assiali (KN)

Figure 29 – SLV Sisma Y: Momenti flettenti My (KNm)

Stato limite d'esercizio (SLE)

Sollecitazioni nella soletta

Nelle figure a seguire si riportano le sollecitazioni nelle combinazioni carattarestiche (rare, frequenti e quasi permanenti) agli SLE negli elementi in cls (soletta).

Combinazione Rara

Figure 30 – SLE Rara - Soletta: Sforzi assiali Fxx (KN/m)

Figure 31 – SLE Rara - Soletta: Sforzi assiali Fyy (KN/m)

Figure 32 – SLE Rara - Soletta: Momenti flettenti Mxx (KNm/m)

Combinazione Frequente

Figure 34 – SLE Frequente - Soletta: Sforzi assiali Fxx (KN/m)

Figure 35 – SLE Frequente - Soletta: Sforzi assiali Fyy (KN/m)

Figure 36 – SLE Frequente - Soletta: Momenti flettenti Mxx (KNm/m)

Figure 37 – SLE Frequente - Soletta: Momenti flettenti Myy (KNm/m)

Combinazione Quasi Permanente

Figure 38 – SLE Quasi Permanente - Soletta: Sforzi assiali Fxx (KN/m)

UNIT: kN/m

Figure 39 – SLE Quasi Permanente – Soletta: Sforzi assiali Fyy (KN/m)

Figure 40 – SLE Quasi Permanente – Soletta: Momenti flettenti Mxx (KNm/m)

Figure 41 – SLE Quasi Permanente – Soletta: Momenti flettenti Myy (KNm/m)

Spostamenti per effetto dei carichi di esercizio

Si riportano nel seguito gli spostamenti verticali della struttura per effetto dei carichi di esercizio.

Figure 42 – Carichi accidentali da traffico: Spostamento verticale max = 60 mm (L/500 = 156 mm) (da modello 1 beam + plate)

Figura 52 - - Carichi accidentali da traffico: Spostamento verticale max = 60 mm (L/500 = 156 mm) (da modello 2 plate)

9 VERIFICHE DELLA CARPENTERIA IN ACCIAIO

Nella seguente sezione vengono mostrate le verifiche di resistenza, fatica e deformabilità eseguite secondo i criteri esposti al capitolo 7.

9.1 Verifiche delle Travature Reticolari

9.1.1 Verifiche di Resistenza allo SLU

Le tensioni nei singoli elementi sono ottenute considerando:

- i valori di tensione normale ottenuti direttamente dal programma di calcolo
- le tensioni tangenziali da taglio e da torsione calcolate in funzione dei risultati in termini di sollecitazioni, precedentemente esposti.

Le tensioni tangenziali τ sono costituite da una componente dovuta al taglio, τ_v , e una componente dovuta alla torsione, τ_{Mt} . La componente dovuta al taglio viene valutata in ciascun punto come valore medio nelle anime, mentre la tensione tangenziale a torsione τ_{Mt} viene valutata alla Bredt:

$$\tau_V = \frac{V_{Ed}}{2 \cdot t_w \cdot h_w}$$
$$\tau_{Mt} = \frac{M_{t,Ed}}{2 \cdot A_{sw} \cdot t_w}$$

dove:

- V_{Ed} e M_{t,Ed} sono rispettivamente le sollecitazioni di taglio e momento torcente;
- t_w e h_w sono rispettivamente lo spessore e l'altezza dei piatti;
- A_{sw} è l'area racchiusa dalla linea media della sezione sottile

Si riportano, nei diagrammi a seguire, le tensioni normali, le tensioni tangenziali e le tensioni ideali nei punti di verifica da P1 a P8 (cfr. par. 0) allo stato limite ultimo negli elementi della trave reticolare più sollecitata.

La combinazione di verifica è la più gravosa, ovvero la combinazione A1 STR _ Gr1_1 (con disposizione dei carichi concentrate in mezzeria).

Gli elementi che compongono i correnti inferiori sono numerati da 1 a 120;

Gli elementi che compongono i correnti inferiori sono numerati da 121 a 200;

Gli elementi che compongono i diagonali sono numerati da 201 a 296;

Correnti Inferiori

Figure 44 - Tensioni Tangenziali da Taglio e Torsione nei Correnti Inferiori (punti da P5 a P8) [Mpa]

Figure 45 - Tensioni Ideali nei Correnti Inferiori (punti da P1 a P8) [Mpa]

Come si evince dal grafico le tensioni ideali, nei diversi punti di verifica, sono inferiori alla resistenza di progetto f_{yd} dell'acciaio utilizzato, per cui le verifiche sono soddisfatte.

Figure 46 – Correnti Inferiori Verifiche a Presso/TensoFlessione BiAssiale: rapporto tra sollecitazioni di progetto e sollecitazioni resistenti

Steel Code Checking Result Ratio.(Shear-z)

Figure 47 – Correnti Inferiori Verifiche a Taglio Vz: rapporto tra sollecitazioni di progetto e sollecitazioni resistenti

Figure 48 – Tensioni Normali nei Correnti Superiori (punti da P1 a P4) [Mpa]

Figure 50 - Tensioni ideali nei Correnti Superiori (punti da P1 a P8) [Mpa]

Steel Code Checking Result Ratio. (Combined)

Figure 51 – Correnti Superiori Verifiche a Presso/TensoFlessione BiAssiale: rapporto tra sollecitazioni di progetto e sollecitazioni resistenti

0.022 -0.02 0.018 -0.016-Ratio.(Shear-z) 0.014-0.012-0.01-0.008-0.006-0.004-0.002 • 149-147. Member No

Steel Code Checking Result Ratio. (Shear-z)

Figure 52 - Correnti Superiori Verifiche a Taglio Vz: rapporto tra sollecitazioni di progetto e sollecitazioni resistenti

Figure 53 – Tensioni Normali nei Diagonali (punti da P1 a P4) [Mpa]

Figure 54 – Tensioni tangenziali nei diagonali (Punti da P5 a P8) [MPa]

Figure 55 – Tensioni ideali nei diagonali (Punti da P1 a P8) [MPa]

Steel Code Checking Result Ratio.(Combined)

Figure 56 – Diagonali Verifiche a Presso/TensoFlessione BiAssiale: rapporto tra sollecitazioni di progetto e sollecitazioni resistenti

Steel Code Checking Result Ratio.(Shear-z)

Figure 57 - Diagonali Verifiche a Taglio Vz: rapporto tra sollecitazioni di progetto e sollecitazioni resistenti

9.1.2 Verifica dell'Instabilità per Imbozzamento dei pannelli d'anima

A seguire si riportano le verifiche ad imbozzamento per gli elementi maggiormente sollecitati.

Tabella 12 – Verifica dei Correnti Inferiori – Concio 1

	VERIFICA ALL'IMBOZZAMENTO SECONDO NORMA UNI - 10011				
		Concio In	feriore 1		
Acciaio :	S	355			
s _{amm} =		322.7	Мра		
t _{amm} =		186.3	Мра		
		CARATTERISTICHE GEO	METRICHE PANNELLO		
	H (cm) =	200			
	a (cm) =	265			
	h (cm) =	100			
	s(mm) =	20	(spessore)		
	a =	2.650			
		DETERMINAZIONE COEFFIC	CIENTI DI IMBOZZAMENTO		
	s ¹ _{sup} (MPa)=	-100.00	COMPRESSIONE	+	
	s ¹ inf(MPa) =	-80.00	TRAZIONE	-	
	y ₁ =	1.3			
	Condizior	ne di carico di riferimento per tensio	oni normali (I - II -III)	II	
	Ks =	8.8			
	Kt =	5.9			

VERIFICA ALL'IMBOZZAMENTO SECONDO NORMA UNI - 10011				
	Concio Inferior	e 1		
	TENSIONI IDEALI DI IMBO	DZZAMENTO		
s _{cr,0} (Mpa)=	74.5			
s _{cr} (Mpa)=	655.09			
t cr(Mpa)=	440.15			
	TENSIONI DI RIFERIMENTO	PER VERIFICA		
s 1(Mpa)=	-100.00	s	0.00	
		s _М (Мра)=	-100.00	
T(KN)=	1200			
At(mm ²)=	40000			
t (Mpa)=	30.0			
s crit id(Mpa)=	11790.2			
s _{cr,red} (Mpa)=	354.97			
$q_{r,id} / (q^2 + 3 \tau^2)^{1/2}$	=	3.15		
b=	1.0			
n=	1			
bn=	1.00			
	VERIFICATO			

Tabella 13 – Verifica dei Correnti Superiori – Concio 1

VERIFICA ALL'IMBOZZAMENTO SECONDO NORMA UNI - 10011							
	Concio Superiore 1						
Acciaio :	S	355					
S amm =		322.7	Мра				
t _{amm} =		186.3	Мра				
		CARATTERISTICHE GEON	IETRICHE PANNELLO				
	H (cm) =	100					
	a (cm) =	435					
	h (cm) =	100					
	s(mm) =	30	(spessore)				
	a =	4.350					
		DETERMINAZIONE COEFFICI	ENTI DI IMBOZZAMENTO				
	s¹ _{sup} (MPa)=	180.00	COMPRESSIONE	+			
	s ¹ _{inf} (MPa) =	211.00	TRAZIONE	-			
	y ₁ =	0.9					
	Condizio	one di carico di riferimento per tensic	ni normali (I - II -III)	l I			
	Ks =	7.6					
	Kt =	5.6					
		TENSIONI IDEALI DI	MBOZZAMENTO				
	s _{cr,0} (Mpa)=	167.6					
	s _{cr} (Mpa)=	1279.70					

A90 Svincolo Tiburtina: Intervento di potenziamento dallo svincolo "Centrale del Latte" allo svincolo A24 – 2º fase funzionale

VERI	FICA ALL'IMBOZZAMENTO SECOND	O NORMA UNI - 10011	
	Concio Superiore 1		
t cr(Mpa)=	930.30		
	TENSIONI DI RIFERIMENTO PE	R VERIFICA	
s ₁ (Mpa)=	180.00	s _N (Мра)=	0.00
		s м(Мра)=	180.00
T(KN)=	237		
At(mm ²)=	60000		
t (Mpa)=	4.0		
s _{crit id} (Mpa)=	1279.5		
s _{cr,red} (Mpa)=	352.26		
ær,id / (a ² + 3 2) ^{1/2}	=	1.96	
b=	1.0		
n=	1		
bn=	1.00		
	VERIFICATO		

Tabella 14 – Verifica dei Correnti Superiori – Concio 3

	VERIFICA ALL'IMBOZZAMENTO SECONDO NORMA UNI - 10011					
		Concio Sup	periore 3			
Acciaio :	S	355				
s _{amm} =		322.7	Мра			
t _{amm} =		186.3	Мра			
		CARATTERISTICHE GEON	METRICHE PANNELLO			
	H (cm) =	100				
	a (cm) =	435				
	h (cm) =	100				
	s(mm) =	40	(spessore)			
	a =	4.350				
	DETERMINAZIONE COEFFICIENTI DI IMBOZZAMENTO					
	s¹ _{sup} (MPa)=	280.00	COMPRESSIONE	+		
	s ¹ _{inf} (MPa) =	215.00	TRAZIONE	-		
	y ₁ =	1.3				
	Condizio	one di carico di riferimento per tensio	oni normali (I - II -III)	II		
	Ks =	9.8				
	Kt =	5.6				
	TENSIONI IDEALI DI IMBOZZAMENTO					
	s _{cr,0} (Mpa)=	297.9				
	s _{cr} (Mpa)=	2920.58				
	t _{cr} (Mpa)=	1653.87				
	TENSIONI DI RIFERIMENTO PER VERIFICA					

A90 Svincolo Tiburtina: Intervento di potenziamento dallo svincolo "Centrale del Latte" allo svincolo A24 – 2º fase funzionale

VERIFICA ALL'IMBOZZAMENTO SECONDO NORMA UNI - 10011							
	Concio Superiore 3						
s 1(Mpa)=	280.00	s м(Мра)=	0.00				
		s м(Мра)=	280.00				
T(KN)=	170						
At(mm ²)=	80000						
t (Mpa)=	2.1						
s _{crit id} (Mpa)=	2920.2						
s _{cr,red} (Mpa)=	354.47						
$\sigma_{r,id} / (\sigma^2 + 3 \tau^2)^{1/2}$	=	1.27					
b=	1.0						
n=	1						
bn=	1.00						
	VERIFICATO						

Tabella 15 – Verifica dei Diagonali Superiori – Concio 3

VERIFICA ALL IMBOZZAMENTO SECONDO NORMA UNI - 10011				
		Diagonale La	aterale	
Acciaio :	S	355		
S _{amm} =		322.7	Мра	
t _{amm} =		186.3	Мра	
		CARATTERISTICHE GEOME	ETRICHE PANNELLO	
	H (cm) =	70		
	a (cm) =	281		
	h (cm) =	70		
	s(mm) =	30	(spessore)	
	a =	4.014		
		DETERMINAZIONE COEFFICIE	INTI DI IMBOZZAMENTO	
	s ¹ _{sup} (MPa)=	55.00	COMPRESSIONE	+
	s¹ _{inf} (MPa) =	190.00	TRAZIONE	-
	y ₁ =	0.3		
	Condizi	one di carico di riferimento per tensic	oni normali (I - II -III)	l I
	Ks =	7.6		
	Kt =	5.6		
		TENSIONI IDEALI DI IN	/IBOZZAMENTO	
	s _{cr,0} (Mpa)=	342.0		
	s _{cr} (Mpa)=	2611.64		
	t cr(Mpa)=	1911.17		
		TENSIONI DI RIFERIMEN	TO PER VERIFICA	
	s ₁ (Mpa)=	55.00	s _N (Mpa)=	0.00
			s м(Мра)=	55.00
	T(KN)=	240		

VERIFICA ALL'IMBOZZAMENTO SECONDO NORMA UNI - 10011

VERIFICA ALL IMBOZZAMENTO SECONDO NORMA UNI - 10011							
	Diagonale Laterale						
At(mm ²)=	42000						
t (Mpa)=	5.7						
s _{crit id} (Mpa)=	2615.1						
s _{cr,red} (Mpa)=	354.35						
$a_{r,id} / (a^2 + 3 \tau^2)^{1/2}$	=	6.34					
b=	1.0						
n=	1						
bn=	1.00						
	VERIFICATO						

9.1.3 Verifiche per Instabilità Globale

Come anticipato, è stata effettuata un'analisi di buckling per la determinazione del moltiplicatore critico dei.

Caso 1: Carichi Permanenti Costanti e Carichi Accidentali Variabili

I carichi permanenti sono applicati come costanti, mentre i carichi accidentali: da traffico e da vento sono applicati come variabili, con coefficienti base pari sipettivamente ad 1.0 e a 0.6.

Nell'immagine seguente è rappresentato il primo modo di buckling globale con relativo moltiplicatore critico dei carichi accidentali.

Figure 58 – 1° Modo di Buckling

Il moltiplicatore critico è pari a 22.5, e pertanto l'instabilizzazione globale dell'impalcato insorge oltre il limite elastico, quando l'acciaio è già in fase di snervamento.

Caso 2: Carichi Permanenti Variabili e Carichi Accidentali Variabili

I carichi permanenti e i carichi accidentali sono applicati come variabili con coefficienti base pari sipettivamente ad 1.0, 1.0 e a 0.6.

Nell'immagine seguente è rappresentato il primo modo di buckling globale con relativo moltiplicatore critico dei carichi totali.

Figure 59 - Caso 2: 1° Modo di Buckling

Il moltiplicatore critico è pari a 35, e pertanto l'instabilizzazione globale dell'impalcato insorge oltre il limite elastico, quando l'acciaio è già in fase di snervamento.

9.1.4 Verifiche allo Stato Limite Ultimo di Fatica

Si riportano di seguito i risultati dell'analisi ottenuti utilizzando il modello di carico 1 previsto dalla normativa per le verifiche a fatica.

Figure 60 – Tensioni normali sulla piattabanda superiore (Modello di carico a fatica 1)

✓ piattabande superiori / pannelli d'anima saldature longitudinali a completa penetrazione di composizione: il valore limite è:

$$\Delta \sigma_{\text{D,R}} = 0.737 \text{ x } \Delta \sigma_{\text{C}} = 73.7 \text{ MPa}$$

la variazione massima lungo le piattabande superiori è:

$$\Delta \sigma_{D,SLF} = 12 \text{ MPa} < \Delta \sigma_{D,R} / \gamma_{Mf} = 54.59$$

✓ piattabande superiori: giunto trasversale saldato

il valore limite è:

$$\Delta\sigma_{D,R}\,{=}\,{=}\,0.737\;x\;\Delta\sigma_{C}\,{=}\,47.6\;MPa$$

la variazione massima lungo le piattabande superiori è:

$$\Delta \sigma_{D,SLF} = 12 \text{ MPa} < \Delta \sigma_{D,R} / \gamma_{Mf} = 35.2 \text{ MPa per } t = 40 \text{ mm};$$

Figure 61 – Tensioni normali sulla piattabanda inferiore (Modello di carico a fatica 1)

✓ piattabande superiori / pannelli d'anima saldature longitudinali a completa penetrazione di composizione: il valore limite è:

$$\Delta \sigma_{\text{D,R}} = 0.737 \text{ x } \Delta \sigma_{\text{C}} = 73.7 \text{ MPa}$$

la variazione massima lungo le piattabande superiori è:

 $\Delta \sigma_{D,SLF} = 10 \text{ MPa} < \Delta \sigma_{D,R} / \gamma_{Mf} = 54.59$

✓ piattabande superiori: giunto trasversale saldato

il valore limite è:

 $\Delta \sigma_{D,R} = = 0.737 \text{ x} \Delta \sigma_C = 47.6 \text{ MPa}$

la variazione massima lungo le piattabande superiori è:

 $\Delta \sigma_{D,SLF} = 10 \text{ MPa} < \Delta \sigma_{D,R} / \gamma_{Mf} = 35.2 \text{ MPa per } t = 40 \text{ mm.}$

9.2 Verifiche dei Traversi Inferiori

9.2.1 Verifiche di Resistenza allo SLU

Le tensioni nei singoli elementi sono ottenute considerando:

- i valori di tensione normale ottenuti direttamente dal programma di calcolo
- le tensioni tangenziali da taglio e da torsione calcolate in funzione dei risultati in termini di sollecitazioni, precedentemente esposti.

Le tensioni tangenziali τ sono costituite da una componente dovuta al taglio, τ_v , e una componente dovuta alla torsione, τ_{Mt} . La componente dovuta al taglio viene valutata in ciascun punto come valore medio nell'anima, mentre la tensione tangenziale a torsione τ_{Mt} viene valutata come:

$$\tau_V = \frac{V_{Ed}}{t_w \cdot h_w}$$
$$\tau_{Mt} = \frac{3 t_w M_{t,Ed}}{\sum_i a_i t_i^3}$$

dove:

V_{Ed} e M_{t,Ed} sono rispettivamente le sollecitazioni di taglio e momento torcente;

tw e hw sono rispettivamente lo spessore e l'altezza dei piatti d'anima;

ai e ti sono gli sviluppi delle linee medie e gli spessori dei piatti che compongono la sezione.

Si riportano, nei diagrammi a seguire, le tensioni normali, le tensioni tangenziali e le tensioni ideali nei punti di verifica da P1 a P7 (cfr. par. 0) allo stato limite ultimo negli elementi della trave reticolare più sollecitata.

La combinazione di verifica è la più gravosa, ovvero la combinazione A1 STR _ Gr1_1 (con disposizione dei carichi concentrate in mezzeria).

Figure 62 – Tensioni normali nei traversi (Mpa)

I traversi più sollecitati risultano essere quelli ad L/4 e ad L/2

- Gli elementi che compongono il traverso ad L/4 sono numerati da 1085 a 1105;
- Gli elementi che compongono il traverso ad L/2 sono numerati da 1295 a 1315;

Figure 63 – Tensioni Normali nel Traverso ad L/4 (punti da P1 a P4) [Mpa]

Figure 64 – Tensioni Tangenziali nel Traverso ad L/4 (punti da P5 a P7) [Mpa]

Come si evince dal grafico le tensioni ideali, nei diversi punti di verifica, sono inferiori alla resistenza di progetto f_{yd} dell'acciaio utilizzato, per cui le verifiche sono soddisfatte.

Steel Code Checking Result Ratio. (Combined)

Figure 66 – Traversi Inferiori (L/4) Verifiche a Presso/TensoFlessione BiAssiale: rapporto tra sollecitazioni di progetto e sollecitazioni resistenti

Figure 67 – Traversi Inferiori (L/4) Verifiche a Taglio Vz: rapporto tra sollecitazioni di progetto e sollecitazioni resistenti

Figure 68 – Tensioni Normali nel Traverso ad L/2 (punti da P1 a P4) [Mpa]

Traverso L/2

Figure 70 – Tensioni Ideali nel Traverso ad L/2 (punti da P1 a P7) [Mpa]

Figure 71 – Traversi Inferiori (L/2) Verifiche a Presso/TensoFlessione BiAssiale: rapporto tra sollecitazioni di progetto e sollecitazioni resistenti

Steel Code Checking Result Ratio. (Shear-z)

Figure 72 – Traversi Inferiori (L/4) Verifiche a Taglio Vz: rapporto tra sollecitazioni di progetto e sollecitazioni resistenti

9.2.2 Verifiche dell'instabilità per compressione delle piattabande compresse

La valutazione della resistenza all'instabilità delle piattabande compresse libere lungo un lato (piattabande in sezioni aperte) viene svolta utilizzando un'area efficace ridotta e pari a (vedi 0):

$$A_{c,eff} = \rho A_c$$

Nel caso in esame il coefficiente di riduzione e l'area efficace sono valutati a seguire.

Tabella 16 – Verifica all'instabilità	per compressione delle	piattabande inferiori in classe 4

k _σ	=	0.43	
С	=	343.00	mm
t	=	24.00	mm
ε	=	0.81	
λ	=	0.95	
ρ	=	0.85	
$A_{c,eff}$	=	16800	mmq
A _{c,eff}	=	14214	mmq
Q,el.	=	120	Мра
Q,eff.	=	142	Мра

9.3 Verifica delle Predalles in acciaio

9.3.1 Verifiche di Resistenza allo SLU

Le verifiche vengono condotte sulle tensioni idelai in accord a quanto specificato al Par. 0. Nelle immagini seguenti sono quindi rappresentate le mappe delle tensioni ideali (Top e Bottom) in corrispondenza della combinazione di carico più gravosa ovvero la per la combinazione SLU STR Gr1,1.

Figure 73 – SLU STR Gr1,1: tensioni ideali nelle predalles / estradosso (Mpa)

Figure 74 – SLU STR Gr1,1: tensioni ideali nelle predalles / intradosso (Mpa)

Come si evince dalle immagini precedenti le tensioni ideali sono ovunque inferiori al limite ammissibile pari a 338 Mpa.

9.4 Verifica della Soletta in c.l.s.

La soletta in cls di classe C35/45, di spessore 200 mm, è armata con φ 24/10 superiori e inferiori e inferiori in direzione longitudinale e φ 22/20 superiori e inferiori in direzione trasversale. Il Copriferro minimo è pari a 35 mm.

9.4.1 Verifiche di Resistenza allo SLU

Verifiche a presso-flessione e taglio in direzione longitudinale

Le sollecitazioni massime di progetto sono:

- $F_{xx} = 2500 \text{ kN/m}$ (trazione)
- $M_{xx} = 55 \text{ kNm/m}$

• $V_{xx} = 25 \text{ kN/m}$

Per l'armatura considerate il rapporto sollecitazioni flettenti resistenti (a parità di sforzo normale) e sollecitazioni di progetto è c.s.min = 1.03

Il taglio resistente è $V_{Rd} = 160 \text{ kN/m}$

Verifiche a presso-flessione e taglio in direzione trasversale

Le sollecitazioni massime di progetto sono:

- $F_{yy} = -500 \text{ kN/m}$ (compressione)
- $M_{yy} = 40 \text{ kNm/m}$
- $V_{yy} = 130 \text{ kN/m}$

Per l'armatura considerate il rapporto sollecitazioni flettenti resistenti (a parità di sforzo normale) e sollecitazioni di progetto è c.s.min = 1.38

Il taglio resistente è $V_{Rd} = 136$ kN/m

9.4.2 Verifiche agli SLE

Combinazione Rara - Verifica delle tensioni nel cls e nell'acciaio

Le sollecitazioni massime di progetto sono:

- $F_{xx} = 1500 \text{ kN/m}$ (trazione)
- $M_{xx} = 40 \text{ kNm/m}$

Le tensioni di progetto sono:

- $\sigma_f = 247$ MPa (trazione)
- $\sigma_c = o$ MPa (sezione tesa)

Combinazione Frequente - Verifica a fessurazione

Le sollecitazioni massime di progetto sono:

- $F_{xx} = 1300 \text{ kN/m}$ (trazione)
- $M_{xx} = 32 \text{ kNm/m}$

Il valore caratteristico di apertura delle fessure è $w_k = 0.164 \text{ mm} < w_{k,lim} = 0.3 \text{ mm}$

Combinazione Quasi Permanente - Verifica delle tensioni nel cls e verifica a fessurazione

Le sollecitazioni massime di progetto sono:

- $F_{xx} = 1200 \text{ kN/m}$ (trazione)
- $M_{xx} = 12 \text{ kNm/m}$

Le tensioni di progetto sono:

• $\sigma_c = 0$ MPa (sezione tesa)

Il valore caratteristico di apertura delle fessure è $w_k = 0.10 \text{ mm} < w_{k,lim} = 0.2 \text{ mm}$

10 Verifiche delle spalle

La verifica delle spalle viene effettuata sulla spalla maggiormente sollecitata, ovvero la spalla S2 del viadotto in esame. Il modello a mensola utilizzato per il calcolo e la verifica dell'elevazione delle spalle considera sconnessi tutti i muri fra loro per la valutazione delle sollecitazioni alla base. Tale schema pur risultando cautelativo, non fornisce sovrastime eccessive nel calcolo dei quantitativi di armatura previsti.

Per quanto riguarda la platea si è considerato un modello a piastra con distretizzazione degli elementi di tipo shell.

Di seguito si riportano le modalità di calcolo delle sollecitazioni e le verifiche di resistenza nei diversi elementi.

Muro frontale/paraghiaia

Il muro paraghiaia è sollecitato dalla spinta a riposo del rilevato, dalla spinta dei sovraccarichi accidentali, dai sovraccarichi mobili agenti sulla mensola del muro e dall'azione di frenatura.

Nella tabella che segue sono indicati parametri geometrici, meccanici e di carico utilizzati nell'analisi.

Il modello di calcolo utilizzato è quello di mensola incastrata al plinto

Tabella 17 – Valutazioni pesi e spinte agenti sul muro frontale/paraghiaia

MURO FRONTALE/PARAGHIAIA		
Peso Muro Paraghiaia	32	KN/m
Altezza Muro Paraghiaia	2.55	m
Spessore Muro Paraghiaia	0.5	m
Luce mensola del muro paraghiaia	0.70	m
Spessore medio mensola del muro paraghiaia	0.40	m
Peso Mensola Paraghiaia	7	kN
Peso Mensola Paraghiaia	0.390	kN/m
Distanza baricentri (Mensola- Paraghiaia)	0.60	m
Coefficiente di spinta a riposo Ko	0.384	
Coefficiente di spinta attiva Ka	0.238	
Peso Specifico Terreno di Rilevato	20.0	kN/mc
Sovraccarico accidentale da traffico	20.0	kN/mq
Angolo di Attrito Terreno di Rilevato	38.0	
Spinta a riposo	48.7	kN/m
Spinta attiva	27.8	kN/m
Coefficiente di spinta attiva con sismiche K'a	0.48	
Incr. spinta attiva in condizione sismiche	18.3	kN/m
Inerzia del Muro Paraghiaia /m	8.7	kN/m

Tabella 18 – Geometria sezione e armatura del muro frontale/paraghiaia

Mano	Sezione di verifica		Armatura		
WIUTO	Base [m]	Altezza [m]	Tesa	Compressa	Taglio
Paraghiaia	1.0	0.5	1φ16/20	1φ16/20	1φ12/40x40

VERIFICHE DI ESERCIZIO						
Combinazione	Ν	М	V	σ	σs	Wk
	KN/m	kNm/m	KN/m	Мра	Мра	mm
SLE_RARA	32	54	49	-3.2	104	0

Tabella 19 – Verifiche del muro frontale/paraghiaia

VERIFICA DI RESISTENZA ALLO SLU/SLV						
Combinazione	Ν	N M V		C.S.	C.S.	
Combinazione	KN/m	kNm/m	KN/m	(NRd, MRd)	(VRd)	
SLU	43	72	66	2.61	4.2	
SLV	32	63	55	2.95	5.0	

Muri laterali

In questo paragrafo si riporta il calcolo deI muri laterali della spalla. Tali muri sono sollecitati essenzialmente dalle spinte del terreno di riempimento all'interno della spalla e dei sovraccarichi presenti su di esso in condizioni statiche e sismiche. Nella tabella che segue sono indicati i parametri geometrici, meccanici e di carico utilizzati nell'analisi. Il modello di calcolo utilizzato è quello di mensola incastrata al muro frontale.

MURI LATERALI		
Muro laterale H1		m
Muro laterale s1		m
Altezza totale muri laterali		m
Spessore medio Muri Laterali		m
Lunghezza Massima muri laterali		m
Peso Muro laterale (singolo)	74	kN
Peso totale Muri laterali		kN
Spinta a riposo (con 100% sovraccarichi)		kN/m
Spinta a riposo (con 50% sovraccarichi)		
Spinta attiva		kN/m
Coefficiente di spinta attiva con sismiche K'a	0.48	
Incr. spinta attiva in condizione sismiche		kN/m
Inerzia del Muro laterale /m		kN/m

Tabella 21 – Geometria sezione e armatura dei muri late	rali	
---	------	--

Muro	Sezione di verifica		Armatura			
	Base [m]	Altezza [m]	Tesa	Compressa	Taglio	
Laterale	1.0	0.5	1φ16/20	1φ16/20	Φ12/40x40	

Tabella 22 – Verifiche dei muri laterali

VERIFICA DI RESISTENZA ALLO SLU/SLV						
Quota sez. di	Combinazione	Ν	М	V	C.S.	C.S.
verifica [m]		KN/m	kNm/m	KN/m	(NRd, MRd)	(VRd)
0.00	SLU	49	86	80	2.25	3.42
0.00	SLV	36	81	67	2.35	4.05

VERIFICHE DI ESERCIZIO							
Orrete con di monifice [m]	Combinations	Ν	М	V	σc	σs	Wk
Quota sez. di verinca [m]	Compinazione	KN/m	kNm/m	KN/m	Мра	Мра	mm
0.00	SLE_RARA	36	66	48	3.82	126	0

Plinto di fondazione

In questo paragrafo si riporta la determinazione delle sollecitazioni in quota testa pali che si ottengono sommando, alle azioni provenienti dall'impalcato, la risultante e il momento risultante dei pesi della struttura, del terreno interno alla spalla e delle spinte dovute al rilevato rispetto al baricentro del plinto. In condizioni sismiche si è tenuto conto dell'incremento di spinta delle inerzie

Nella tabella che segue sono indicati i parametri geometrici, meccanici e di carico del plinto utilizzati nell'analisi per il calcolo della risultante e momento risultante rispetto al baricentro del plinto di fondazione.

Tabella 23 – Valutazioni	nesi e s	spinte agenti s	sul nlinto di	fondazione
1 uvenu 2 J - vunululoni	pesies	<i>ыртые идени</i> з	sai punio ai	Jonuuzione

PLINTO DI FONDAZIONE	
Eccentricità long Muri laterali -Plinto	3m
Ecc. Long. Muro Frontale - Plinto	-1.96m
Ecc.Appoggi Plinto	0.00m
Peso Muro Paraghiaia	698m
Ecc. Long. Muro Paraghiaia - Plinto	-1.96kN
Peso Terreno Interno	1911kN
Peso Accidentali	695kN
Eccentricità long Terreno -Plinto	3m
Spessore Plinto	2m
Lunghezza plinto	7.5m
Larghezza plinto	17.95m
Peso plinto di fondazione	6731
Altezza Rilevato+H plinto	4.75m
Spinta a riposo rilevato	1557kN
Spinta a riposo sovraccarichi	655kN
Spinta attiva rilevato	1369kN

Incremento spinta sismica	981kN
Inerzia dei muri laterali (H)	40kN
Inerzia dei muri laterali (V)	20kN
Inerzia plinto di fondazione (H)	1813kN
Inerzia plinto di fondazione (V)	906kN
Inerzia rilevato interno(H)	515kN
Inerzia rilevato interno (V)	257kN

SOLLECITAZIONI A QUOTA TESTA PALI (BARICENTRO PLINTO)								
		Taglio impalc	cato concorde con	n le spinte				
Combinazioni	Ν	Mlong	Mtrasv	Tlong	Ttrasv			
	KN	kNm	kNm	KN	KN			
SLU_Gr1_A1_1	31501.1	12176.7	-6605.6	3112.5	426.1			
SLU_Gr1_A1_2	31246.3	12161.8	-6522.4	3105.0	393.6			
SLU_Gr1_A1_3	30308.9	11641.7	-9299.3	2886.4	393.4			
SLU_Gr2_A1_1	29479.5	11937.8	-3225.0	3034.5	426.1			
SLU_Gr2_A1_2	29519.3	11944.6	-3587.4	3037.9	393.5			
SLU_Gr2_A1_3	29049.2	11942.3	-4391.5	3036.8	393.4			
SLU_Q5_A1_1	29480.6	11633.6	-3045.7	2882.4	710.2			
SLU_Q5_A1_2	29520.4	11626.7	-3434.7	2879.0	655.8			
SLU_Q5_A1_3	29050.3	11629.1	-4172.1	2880.1	710.2			
SLV_Sisma X	14188.3	15549.9	1535.9	5730.8	1003.9			
SLV_Sisma Y	14235.8	9628.7	5118.2	2701.5	3345.7			
SLV_Sisma Z	15394.5	9624.6	1536.1	2700.2	1003.9			
SLE_RARA_Gr1_1	20587.1	9002.7	-4913.0	2297.0	284.1			
SLE_RARA_Gr1_2	20398.4	8991.6	-4848.4	2291.4	262.4			
SLE_RARA_Gr1_3	19877.8	8995.5	-6878.6	2129.5	284.1			
SLE_RARA_Gr2_1	19263.4	9249.1	-2408.8	2256.3	284.1			
SLE_RARA_Gr2_2	19292.9	9254.2	-2674.3	2258.9	262.3			
SLE_RARA_Gr2_3	18944.7	9252.5	-3243.2	2258.0	284.1			
SLE_RARA_Q5_1	19264.2	8989.5	-2289.3	2126.5	473.5			
SLE_RARA_Q5_2	19293.7	8984.4	-2572.5	2124.0	437.2			
SLE_RARA_Q5_3	18945.5	8986.1	-3123.7	2124.8	473.5			
SLE_FREQ_Gr1_1	19090.5	8600.3	-2588.2	2126.5	0.0			
SLE_FREQ_Q5	17858.5	8586.7	26.1	2119.7	66.6			
SLE_QPER	17337.3	7419.3	0.0	1628.2	0.0			

Tabella 24 – Sollecitazioni ad intradosso	o plinto (quota testa pali)
---	-----------------------------

Per la valutazione delle sollecitazioni nel plinto di fondazione, è necessario valutare preventivamente le sollecitazioni agenti nei pali di fondazione. Tali sollecitazioni sono state valutate mediate una ripartizione rigida delle sollecitazioni agenti a base plinto. Nel calcolo degli sforzi nei pali si è tenuto del parametro α per la valutazione del momento flettente agente in testa al palo (MEd = α VEd). La situazione peggiore risulta essere sempre quella sismica.

Si riportano nel seguito le coordinate dei pali di fondazione e per ogni combinazione di carico, le solletazioni nei pali sollecitati dal massimo e dal minimo sforzo normale.

Pali								
	1	2	3	4	5	6	7	8
Z	-2.25	2.25	-2.25	2.25	-2.25	2.25	-2.25	2.25
У	7.50	7.50	2.98	2.98	-2.98	-2.98	-7.50	-7.50
z ²	5.06	5.06	5.06	5.06	5.06	5.06	5.06	5.06
y^2	56.25	56.25	8.88	8.88	8.88	8.88	56.25	56.25
Wy	34.74	34.74	87.42	87.42	-87.42	-87.42	-34.74	-34.74
Wz	-18.00	18.00	-18.00	18.00	-18.00	18.00	-18.00	18.00

Tabella 25 – Numero di pali e coordinate rispetto al baricentro del plinto

SFORZI MASSIMI E MINIMI NEI PALI							
Combo	1	Nmin	N _{max}		V _{max}	M _{max}	
Combo	Palo	[kN]	Palo	[kN]	[kN]	[kNm]	
SLU_Gr1_A1_1	7	-4804	2	-3071	393	1060	
SLU_Gr1_A1_2	7	-4769	2	-3042	391	1056	
SLU_Gr1_A1_3	7	-4703	2	-2874	364	983	
SLU_Gr2_A1_1	7	-4441	2	-2929	383	1034	
SLU_Gr2_A1_2	7	-4457	2	-2923	383	1034	
SLU_Gr2_A1_3	7	-4421	2	-2841	383	1033	
SLU_Q5_A1_1	7	-4419	2	-2951	371	1002	
SLU_Q5_A1_2	7	-4435	2	-2945	369	997	
SLU_Q5_A1_3	7	-4397	2	-2865	371	1001	
SLV_Sisma X	7	-2682	2	-865	727	1964	
SLV_Sisma Y	7	-2462	2	-1097	538	1451	
SLV_Sisma Z	7	-2503	2	-1345	360	972	
SLE_RARA_Gr1_1	7	-3215	2	-1932	289	781	
SLE_RARA_Gr1_2	7	-3189	2	-1911	288	778	
SLE_RARA_Gr1_3	7	-3182	2	-1787	269	725	
SLE_RARA_Gr2_1	7	-2991	2	-1825	284	768	
SLE_RARA_Gr2_2	7	-3003	2	-1821	284	767	
SLE_RARA_Gr2_3	7	-2975	2	-1761	284	768	
SLE_RARA_Q5_1	7	-2973	2	-1843	272	735	
SLE_RARA_Q5_2	7	-2985	2	-1839	271	732	
SLE_RARA_Q5_3	7	-2957	2	-1779	272	735	
SLE_FREQ_Gr1_1	7	-2939	2	-1834	266	718	
SLE_FREQ_Q5	7	-2710	2	-1755	265	716	
SLE_QPER	1	-2579	2	-1755	204	550	

Tabella 26 – Massime e minime sollecitazioni nei pali di fondazione

A conferma della corretta ripartizione delle sollecitazioni, si sono confrontate le sollecitazioni ottenute dalla ripartizione rigida con quelle ottenute da un modello a piastra del plinto, vincolato con molle di rigidezza pari a 400000 kN/m, nella combinazione quasi permanente.

Figura 53- Modello a piastra del plinto

Di seguito le reazioni dei pali con la modellazione sopra menzionata, che corrisponde ad una ripartizione rigida delle sollecitazioni attraverso il plinto.

Figura 54- Reazioni nei pali in combinazione quasi permanente

Dunque si può fare affidamento ad una distribuzione rigida delle sollecitazioni attraverso la piastra di base.Di conseguenza si procede con la verifica a flessione ed a taglio del plinto nella combinazione SLU Di seguito si riportano le sollecitazioni nel plinto

Figura 55- Momento trasversale nel plinto allo SLU

Figura 56- Momento longitudinale nel plinto allo SLU

Figura 57- Taglio trasversale nel plinto allo SLU

Figura 58- Taglio longitudinale nel plinto allo SLU

Dunque di seguito la verifica del plinto

Tabella 27 – Geometria sezione e armatura del plinto

Muno	Sezione di verifica		Armatura			
Muro	Base [m]	Altezza [m]	inferiore	superiore	Taglio	
Laterale	1.0	2.0	2xφ26/10	1φ26/10	Φ22/40x20	

Tabella 28 – Verifiche del plinto di fondazione

VERIFICA DI RESISTENZA ALLO SLU/SLV						
Combinazione	N M		V	C.S.	C.S.	
Combinazione	KN/m	kNm/m	KN/m	(NRd, MRd)	(VRd)	

Pali di fondazione

Le sollecitazioni agenti nei pali di fondazione, sono state valutate mediante una ripartizione rigida delle sollecitazioni globali agenti a quota testa pali e in corrispondenza del baricentro del plinto di fondazione. Il valore del momento flettente agente in testa ai pali, è stato ottenuto moltiplicando il taglio in testa per il parametro " α ".

Si riportano di seguito le sollecitazioni e le verifiche di resistenza per le varie combinazioni di carico, e per i pali soggetti al massimo e al minimo sforzo normale.

L'individuazione dei pali a cui corrispondono tali sollecitazioni può essere effeutata mediante le tabelle riportate nel paragrafo precedente. Confrontando il massimo sforzo di compressione agente nei pali con i valori riportate nelle curve di capacità portante dei pali (vedi Relazione Geotecnica Generale sulle Opere all'aperto e Gallerie Artificiali), si è scelto di utilizzare dei pali aventi lunghezza pari a 40 m.

Le armature longitudinali consistono in una gabbia costituita da uno strato di $20\varphi 30$ longitudinali e da una spirale $\varphi 14/10$ prevedendo una opportuna riduzione lungo il fusto del palo.

Tabella 29 – Verifica dei pali di fondazione

D.1.	Sezione di verifica	Armatura				
Palo	D [m]	Armatura longitudinale	Taglio			
Φ1500	1.5	20φ30	Spirale q14/20			

PALO - Verifiche allo SLU										
Combinazioni		Ν	Mlong	Tlong	C.S.	C.S.				
		kN	kNm	kN	(NRd, MRd)	(VRd)				
Max N	SLU_Gr1_A1_1	-4804	1060	393	4.16	4.3				
Min N	SLV_Sisma X	-865	1964	727	1.86	2.3				
Max VL	SLV_Sisma X	-865	1964	727	1.86	2.3				

	PALO - Verifiche allo SLE									
Combinazioni		Ν	Mlong	Tlong	σc	σs	Wk			
	Combinazioni		kNm	kN	Мра	Мра	mm			
RARA	SLE_RARA_Gr1_1	-3215	781	289	-3.90	1.75	-			
iu iu i	SLE_RARA_Gr2_3	-1761	768	284	-3.70	15.30	-			
FREO	SLE_FREQ_Gr1_1	-2939	735	266	-3.69	2.05	-			
The	SLE_FREQ_Q5	-1755	716	265	-3.47	12.05	-			
QP	SLE_QPER	-2579	550	204	-2.94	-4.70	-			

Verifiche geotecniche di capacità portante

Confrontando il massimo sforzo di compressione agente nei pali con i valori riportate nelle curve di capacità portante dei pali (vedi Relazione Geotecnica Generale sulle Opere all'aperto e Gallerie Artificiali), si è scelto di utilizzare dei pali aventi le seguenti lunghezze:

	PALI VALLONE - SPALLE P						PORTA	NZA VE	RTICAL	E - CON	/IB. A1-N	11-R3						
SPALLA	D _{pali}	n°pali	L _{pali}	N _{max,SLU}	N _{max,SLV}	N _{max,SLE}	N _{min,SLU}	N _{min,SLV}	N _{min}	N _{max}	V _{max}	M _{max}	Qd,c	FS	QLL	FS	Qd,t	FS
	[m]	[-]	[m]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kN]	[-]	[kN]	[-]	[kN]	[-]
S1 nord	1.50	8	35	-4804	-2682	-3215	-2841	-865	-865	-4804	727	1964	4901	1.02	8314	2.59	4901	-
S2 sud	1.50	8	40	-4804	-2682	-3215	-2841	-865	-865	-4804	727	1964	5350	1.11	9019	2.81	5350	-

11 VERIFICA DELLE SPALLE

La verifica delle spalle viene effettuata sulla spalla maggiormente sollecitata, ovvero la spalla S2 del viadotto in esame. Il modello a mensola utilizzato per il calcolo e la verifica dell'elevazione delle spalle considera sconnessi tutti i muri fra loro per la valutazione delle sollecitazioni alla base. Tale schema pur risultando cautelativo, non fornisce sovrastime eccessive nel calcolo dei quantitativi di armatura previsti.

Per quanto riguarda la platea si è considerato un modello a piastra con distretizzazione degli elementi di tipo shell. Di seguito si riportano le modalità di calcolo delle sollecitazioni e le verifiche di resistenza nei diversi elementi.

11.1 2.1 Muro frontale/paraghiaia

Il muro paraghiaia è sollecitato dalla spinta a riposo del rilevato, dalla spinta dei sovraccarichi accidentali, dai sovraccarichi mobili agenti sulla mensola del muro e dall'azione di frenatura.

Nella tabella che segue sono indicati parametri geometrici, meccanici e di carico utilizzati nell'analisi.

Il modello di calcolo utilizzato è quello di mensola incastrata al plinto.

Tabella 30 – Valutazioni pesi e	spinte agenti sul muro	frontale/paraghiaia
---------------------------------	------------------------	---------------------

MURO FRONTALE/PARAGHIAIA		
Peso Muro Paraghiaia	32	KN/m
Altezza Muro Paraghiaia	2.55	m
Spessore Muro Paraghiaia	0.5	m
Luce mensola del muro paraghiaia	0.70	m
Spessore medio mensola del muro paraghiaia	0.40	m
Peso Mensola Paraghiaia	7	kN
Peso Mensola Paraghiaia	0.390	kN/m
Distanza baricentri (Mensola- Paraghiaia)	0.60	m
Coefficiente di spinta a riposo Ko	0.384	
Coefficiente di spinta attiva Ka	0.238	
Peso Specifico Terreno di Rilevato	20.0	kN/mc
Sovraccarico accidentale da traffico	20.0	kN/mq
Angolo di Attrito Terreno di Rilevato	38.0	
Spinta a riposo	48.7	kN/m
Spinta attiva	27.8	kN/m
Coefficiente di spinta attiva con sismiche K'a	0.48	

A90 Svincolo Tiburtina: Intervento di potenziamento dallo svincolo "Centrale del Latte" allo svincolo A24 – 2º fase funzionale

Incr. spinta attiva in condizione sismiche	18.3	kN/m
Inerzia del Muro Paraghiaia /m	8.7	kN/m

Tahella 31 🗕	Geometria sezione	e armatura del	l muro frontala	/naraohiaia
I ab cina SI	Ocomen in segione	c un manana aci	i mini o fi omuni	paragnan

Muno	Sezione di verif	ïca	Armatura				
wiuro	Base [m]	Altezza [m]	Tesa	Compressa	Taglio		
Paraghiaia	1.0	0.5	1φ16/20	1φ16/20	1φ12/40x40		

Tabella 32 – Verifiche del muro frontale/paraghiaia

VERIFICHE DI ESERCIZIO									
Combinations	N	М	v	σ	σs Wk				
Combinazione	KN/m	kNm/m	KN/m	Мра	Мра	mm			
SLE_RARA 32 54 49 -3.2 104 0									

VERIFICA DI RESISTENZA ALLO SLU/SLV							
Combinations	N	М	v	C.S.	C.S.		
Combinazione	KN/m	kNm/m	KN/m	(NRd, MRd)	(VRd)		
SLU	43	72	66	2.61	4.2		
SLV	32	63	55	2.95	5.0		

11.2 Muri laterali

In questo paragrafo si riporta il calcolo deI muri laterali della spalla. Tali muri sono sollecitati essenzialmente dalle spinte del terreno di riempimento all'interno della spalla e dei sovraccarichi presenti su di esso in condizioni statiche e sismiche. Nella tabella che segue sono indicati i parametri geometrici, meccanici e di carico utilizzati nell'analisi. Il modello di calcolo utilizzato è quello di mensola incastrata al muro frontale.

TT 11 22	T7 1 / ·	• •	• ,		• 1 / 1•
Tabella 33 -	Valutazio	ni nesi i	sninte	agenti sui	muri laterali
a ao cina oo	1 41114,10	ne pose c	spine	agenne sur	mun r mrci an

MURI LATERALI		
Muro laterale H1	2.90	m
Muro laterale s1	0.50	m
Altezza totale muri laterali	2.90	m
Spessore medio Muri Laterali	0.50	m
Lunghezza Massima muri laterali	2.05	m
Peso Muro laterale (singolo)	74	kN
Peso totale Muri laterali	149	kN
Spinta a riposo (con 100% sovraccarichi)	59.2	kN/m
Spinta a riposo (con 50% sovraccarichi)	48.1	
Spinta attiva	34.0	kN/m
Coefficiente di spinta attiva con sismiche K'a	0.48	
Incr. spinta attiva in condizione sismiche	23.3	kN/m
Inerzia del Muro laterale /m	10	kN/m

Muro	Sezione di verifica		Armatura		
	Base [m]	Altezza [m]	Tesa	Compressa	Taglio
Laterale	1.0	0.5	1φ16/20	1φ16/20	Φ12/40x40

Tabella 34 – Geometria sezione e armatura dei muri laterali

Tabella 35 – Verifiche dei muri laterali

VERIFICA DI RESISTENZA ALLO SLU/SLV							
Quota sez. di verifica [m]	Combinazione	N	м	v	C.S.	C.S.	
	Combinazione	KN/m	kNm/m	KN/m	(NRd, MRd)	(VRd)	
0.00	SLU	49	86	80	2.25	3.42	
0.00	SLV	36	81	67	2.35	4.05	

VERIFICHE DI ESERCIZIO							
		N	М	v	σ	σs	Wk
Quota sez. di verifica [m]	Combinazione	KN/m	kNm/m	KN/m	Мра	Мра	mm
0.00	SLE_RARA	36	66	48	3.82	126	0

11.3 Plinto di fondazione

In questo paragrafo si riporta la determinazione delle sollecitazioni in quota testa pali che si ottengono sommando, alle azioni provenienti dall'impalcato, la risultante e il momento risultante dei pesi della struttura, del terreno interno alla spalla e delle spinte dovute al rilevato rispetto al baricentro del plinto. In condizioni sismiche si è tenuto conto dell'incremento di spinta delle inerzie

Nella tabella che segue sono indicati i parametri geometrici, meccanici e di carico del plinto utilizzati nell'analisi per il calcolo della risultante e momento risultante rispetto al baricentro del plinto di fondazione.

Tabella 36 – Valutazioni pesi e spinte agenti sul plinto di fondazione

PLINTO DI FONDAZIONE	
Eccentricità long Muri laterali -Plinto	3m
Ecc. Long. Muro Frontale - Plinto	-1.96m
Ecc.Appoggi Plinto	0.00m
Peso Muro Paraghiaia	698m
Ecc. Long. Muro Paraghiaia - Plinto	-1.96kN
Peso Terreno Interno	1911kN
Peso Accidentali	695kN
Eccentricità long Terreno -Plinto	3m
Spessore Plinto	2m
Lunghezza plinto	7.5m
Larghezza plinto	17.95m
Peso plinto di fondazione	6731
Altezza Rilevato+H plinto	4.75m
Spinta a riposo rilevato	1557kN
Spinta a riposo sovraccarichi	655kN
Spinta attiva rilevato	1369kN
Incremento spinta sismica	981kN

Inerzia dei muri laterali (H)	40kN
Inerzia dei muri laterali (V)	20kN
Inerzia plinto di fondazione (H)	1813kN
Inerzia plinto di fondazione (V)	906kN
Inerzia rilevato interno(H)	515kN
Inerzia rilevato interno (V)	257kN

SOLLECITAZIONI A QUOTA TESTA PALI (BARICENTRO PLINTO)									
	Taglio impalcato concorde con le spinte								
Combinazioni	N	Mlong	Mtrasv	Tlong	Ttrasv				
	KN	kNm	kNm	KN	KN				
SLU_Gr1_A1_1	31501.1	12176.7	-6605.6	3112.5	426.1				
SLU_Gr1_A1_2	31246.3	12161.8	-6522.4	3105.0	393.6				
SLU_Gr1_A1_3	30308.9	11641.7	-9299.3	2886.4	393.4				
SLU_Gr2_A1_1	29479.5	11937.8	-3225.0	3034.5	426.1				
SLU_Gr2_A1_2	29519.3	11944.6	-3587.4	3037.9	393.5				
SLU_Gr2_A1_3	29049.2	11942.3	-4391.5	3036.8	393.4				
SLU_Q5_A1_1	29480.6	11633.6	-3045.7	2882.4	710.2				
SLU_Q5_A1_2	29520.4	11626.7	-3434.7	2879.0	655.8				
SLU_Q5_A1_3	29050.3	11629.1	-4172.1	2880.1	710.2				
SLV_Sisma X	14188.3	15549.9	1535.9	5730.8	1003.9				
SLV_Sisma Y	14235.8	9628.7	5118.2	2701.5	3345.7				
SLV_Sisma Z	15394.5	9624.6	1536.1	2700.2	1003.9				
SLE_RARA_Gr1_1	20587.1	9002.7	-4913.0	2297.0	284.1				
SLE_RARA_Gr1_2	20398.4	8991.6	-4848.4	2291.4	262.4				
SLE_RARA_Gr1_3	19877.8	8995.5	-6878.6	2129.5	284.1				
SLE_RARA_Gr2_1	19263.4	9249.1	-2408.8	2256.3	284.1				
SLE_RARA_Gr2_2	19292.9	9254.2	-2674.3	2258.9	262.3				
SLE_RARA_Gr2_3	18944.7	9252.5	-3243.2	2258.0	284.1				
SLE_RARA_Q5_1	19264.2	8989.5	-2289.3	2126.5	473.5				
SLE_RARA_Q5_2	19293.7	8984.4	-2572.5	2124.0	437.2				
SLE_RARA_Q5_3	18945.5	8986.1	-3123.7	2124.8	473.5				
SLE_FREQ_Gr1_1	19090.5	8600.3	-2588.2	2126.5	0.0				
SLE_FREQ_Q5	17858.5	8586.7	26.1	2119.7	66.6				
SLE_QPER	17337.3	7419.3	0.0	1628.2	0.0				

Tabella 37 – Sollecitazioni ad intradosso plinto (quota testa pali)

Per la valutazione delle sollecitazioni nel plinto di fondazione, è necessario valutare preventivamente le sollecitazioni agenti nei pali di fondazione. Tali sollecitazioni sono state valutate mediate una ripartizione rigida delle sollecitazioni agenti a base plinto. Nel calcolo degli sforzi nei pali si è tenuto del parametro α per la valutazione del momento flettente agente in testa al palo (MEd = α VEd). La situazione peggiore risulta essere sempre quella sismica.

Si riportano nel seguito le coordinate dei pali di fondazione e per ogni combinazione di carico, le solletazioni nei pali sollecitati dal massimo e dal minimo sforzo normale.

Tabella 38 – Numero di pali e coordinate rispetto al baricentro del plinto

	Pali										
	1	2	3	4	5	6	7	8			
z	-2.25	2.25	-2.25	2.25	-2.25	2.25	-2.25	2.25			
У	7.50	7.50	2.98	2.98	-2.98	-2.98	-7.50	-7.50			
z ²	5.06	5.06	5.06	5.06	5.06	5.06	5.06	5.06			

A90 Svincolo Tiburtina: Intervento di potenziamento dallo svincolo "Centrale del Latte" allo svincolo A24 – 2º fase funzionale

y ²	56.25	56.25	8.88	8.88	8.88	8.88	56.25	56.25
Wy	34.74	34.74	87.42	87.42	-87.42	-87.42	-34.74	-34.74
Wz	-18.00	18.00	-18.00	18.00	-18.00	18.00	-18.00	18.00
		T 1	1 20 16 1		11			

Tabella 39 – Massime e minime sollecitazioni nei pali di fondazione

SFORZI MASSIMI E MINIMI NEI PALI							
Combo	N _{min}		N _{max}		V _{max}	M _{max}	
Combo	Palo	[kN]	Palo	[kN]	[kN]	[kNm]	
SLU_Gr1_A1_1	7	-4804	2	-3071	393	1060	
SLU_Gr1_A1_2	7	-4769	2	-3042	391	1056	
SLU_Gr1_A1_3	7	-4703	2	-2874	364	983	
SLU_Gr2_A1_1	7	-4441	2	-2929	383	1034	
SLU_Gr2_A1_2	7	-4457	2	-2923	383	1034	
SLU_Gr2_A1_3	7	-4421	2	-2841	383	1033	
SLU_Q5_A1_1	7	-4419	2	-2951	371	1002	
SLU_Q5_A1_2	7	-4435	2	-2945	369	997	
SLU_Q5_A1_3	7	-4397	2	-2865	371	1001	
SLV_Sisma X	7	-2682	2	-865	727	1964	
SLV_Sisma Y	7	-2462	2	-1097	538	1451	
SLV_Sisma Z	7	-2503	2	-1345	360	972	
SLE_RARA_Gr1_1	7	-3215	2	-1932	289	781	
SLE_RARA_Gr1_2	7	-3189	2	-1911	288	778	
SLE_RARA_Gr1_3	7	-3182	2	-1787	269	725	
SLE_RARA_Gr2_1	7	-2991	2	-1825	284	768	
SLE_RARA_Gr2_2	7	-3003	2	-1821	284	767	
SLE_RARA_Gr2_3	7	-2975	2	-1761	284	768	
SLE_RARA_Q5_1	7	-2973	2	-1843	272	735	
SLE_RARA_Q5_2	7	-2985	2	-1839	271	732	
SLE_RARA_Q5_3	7	-2957	2	-1779	272	735	
SLE_FREQ_Gr1_1	7	-2939	2	-1834	266	718	
SLE_FREQ_Q5	7	-2710	2	-1755	265	716	
SLE_QPER	1	-2579	2	-1755	204	550	

A conferma della corretta ripartizione delle sollecitazioni, si sono confrontate le sollecitazioni ottenute dalla ripartizione rigida con quelle ottenute da un modello a piastra del plinto, vincolato con molle di rigidezza pari a 400000 kN/m, nella combinazione quasi permanente.

Figura 59- Modello a piastra del plinto

Di seguito le reazioni dei pali con la modellazione sopra menzionata, che corrisponde ad una ripartizione rigida delle sollecitazioni attraverso il plinto.

Figura 60- Reazioni nei pali in combinazione quasi permanente

Dunque si può fare affidamento ad una distribuzione rigida delle sollecitazioni attraverso la piastra di base. Di conseguenza si procede con la verifica a flessione ed a taglio del plinto nella combinazione SLU Di seguito si riportano le sollecitazioni nel plinto

Figura 61- Momento trasversale nel plinto allo SLU

Figura 62- Momento longitudinale nel plinto allo SLU

Figura 63- Taglio trasversale nel plinto allo SLU

Figura 64- Taglio longitudinale nel plinto allo SLU

Dunque di seguito la verifica del plinto

Tabella 40 – Geometria sezione e armatura del plinto

Muro	Sezione di verifie	ca	Armatura			
	Base [m]	Altezza [m]	inferiore	superiore	Taglio	
Laterale	1.0	2.0	2xφ26/10	1φ26/10	Φ22/40x20	

VERIFICA DI RESISTENZA ALLO SLU/SLV								
Combinazione	N	М	V	C.S.	C.S.			
	KN/m	kNm/m	KN/m	(NRd, MRd)	(VRd)			
SLU	-	4614	4818	1.32	1.25			

Tabella 41 – Verifiche del plinto di fondazione

11.4 Pali di fondazione

Le sollecitazioni agenti nei pali di fondazione, sono state valutate mediante una ripartizione rigida delle sollecitazioni globali agenti a quota testa pali e in corrispondenza del baricentro del plinto di fondazione. Il valore del momento flettente agente in testa ai pali, è stato ottenuto moltiplicando il taglio in testa per il parametro " α ".

Si riportano di seguito le sollecitazioni e le verifiche di resistenza per le varie combinazioni di carico, e per i pali soggetti al massimo e al minimo sforzo normale.

L'individuazione dei pali a cui corrispondono tali sollecitazioni può essere effeutata mediante le tabelle riportate nel paragrafo precedente. Confrontando il massimo sforzo di compressione agente nei pali con i valori riportate nelle curve di capacità portante dei pali (vedi Relazione Geotecnica Generale sulle Opere all'aperto e Gallerie Artificiali), si è scelto di utilizzare dei pali aventi lunghezza pari a 40 m.

Le armature longitudinali consistono in una gabbia costituita da uno strato di $20\varphi 30$ longitudinali e da una spirale $\varphi 14/10$ prevedendo una opportuna riduzione lungo il fusto del palo.

Tabella 42 – T	Verifica d	lei pali	di fondazione
----------------	------------	----------	---------------

Palo	Sezione di verifica	Armatura					
	D [m]	Armatura longitudinale	Taglio				
Φ1500	1.5	20φ30	Spirale ϕ 14/20				

PALO - Verifiche allo SLU										
	Combinazioni	N	Mlong	Tlong	C.S.	C.S.				
	Combinazioni	kN	kNm	kN	(NRd, MRd)	(VRd)				
Max N	SLU_Gr1_A1_1	-4804	1060	393	4.16	4.3				
Min N	SLV_Sisma X	-865	1964	727	1.86	2.3				
Max VL	SLV_Sisma X	-865	1964	727	1.86	2.3				

PALO - Verifiche allo SLE											
Combinationi		N	Mlong	Tlong	σ	σs	Wk				
	Combinazioni	kN	kNm	kN	Мра	Мра	mm				
	SLE_RARA_Gr1_1	-3215	781	289	-3.90	1.75	-				
KAKA	SLE_RARA_Gr2_3	-1761	768	284	-3.70	15.30	-				
	SLE_FREQ_Gr1_1	-2939	735	266	-3.69	2.05	-				
FREQ	SLE_FREQ_Q5	-1755	716	265	-3.47	12.05	-				
QP	SLE_QPER	-2579	550	204	-2.94	-4.70	-				

11.5 Verifiche geotecniche di capacità portante

Confrontando il massimo sforzo di compressione agente nei pali con i valori riportate nelle curve di capacità portante dei pali (vedi Relazione Geotecnica Generale sulle Opere all'aperto e Gallerie Artificiali), si è scelto di utilizzare dei pali aventi le seguenti lunghezze:

A90 Svincolo Tiburtina: Intervento di potenziamento dallo svincolo "Centrale del Latte" allo svincolo A24 – 2° fase funzionale

PALI SPALLE								PORTAI	NZA VE	RTICALE	- COM	B. A1-M	1-R3					
SPALLA	D_{pali}	n°pali	L_{pali}	$N_{\text{max,SLU}}$	$N_{\text{max,SLV}}$	$N_{\text{max,SLE}}$	$N_{\text{min,SLU}}$	$N_{\text{min,SLV}}$	N_{min}	N_{max}	V_{max}	M_{max}	Qd,c	FS	QLL	FS	Qd,t	FS
	[m]	[-]	[m]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kN]	[-]	[kN]	[-]	[kN]	[-]
S1 nord	1.50	8	35	-4804	-2682	-3215	-2841	-865	-865	-4804	727	1964	4901	1.02	8314	2.59	4901	-
S2 sud	1.50	8	40	-4804	-2682	-3215	-2841	-865	-865	-4804	727	1964	5350	1.11	9019	2.81	5350	-

12 VERIFICA DI RESISTENZA E DI DEFORMABILITÀ DEI DISPOSITIVI DI APPOGGIO

Le sollecitazioni di verifica nei dispositivi di isolamento sono riepilogate a seguire.

Appoggi spalle					
Fz,ed, SLU =	9375	kN	<	FzdMIN = 9380	kN
Ved,SLU =	213	kN			
Fz,ed, SLC =	2184	kN	<	VMIN = 5820	kN
Ved,SLC =	460	kN			

Tabella 43–Dispositivi di isolamento: verifiche di resistenza

La corsa massima ammissibile per i dispositivi di isolamento individuati è pari 150 mm.

La corsa massima valutata agli SLC come specificato al paragrafo 7.3.2 è:

 $\Delta c = 0.5 \ dE(r+v) + 0.5 \ dE\Delta T + dESLC$

Di seguito si riporta lo spostamento massimo ottenuto dal modello di calcolo per la spalla 2:

	dx		d ritiro	dy		d ritiro			
	SLCX	dx ΔT	X	SLCX	dy ΔT	1	dx tot	dy tot	D tot
Spalla 2	139	4	0	40		0	143	40	148

	dx		d ritiro	dy		d ritiro			
	SLCY	dx AT	X	SLCY	dy ΔT	1	dx tot	dy tot	D tot
Spalla 2	46	4		134			50	132	141

Si nota che lo spostamento complessivo è sempre inferiore a 150 mm

12.1 Verifica dei giunti

L'ampiezza di progetto dei varchi è pari a + / - 2 Δc = + / - 150 mm.