

RELAZIONE GEOLOGICA E GEOTECNICA

"Ottemperanza alla prescrizione ambientale A12 di cui al

Decreto di Pronuncia di Compatibilità ambientale n. 139 del 01.06.2017"

Attività specialistiche ed indagini geologiche, geotecniche, idrogeologiche, relative all'elettrodotto aereo 150kV "Lettere – Agerola"

Z					
REVISION					
RE	00	18/01/2021	Prima emissione	M. Longobardi ING-PRE- APRICS	V. Di Dio ING-PRE- APRICS
	N.	DATA	DESCRIZIONE	ESAMINATO	ACCETTATO

NUMERO E DATA ORDINE:	4000076270 / 21.11.2019	
MOTIVO DELL'INVIO:	PER ACCETTAZIONE	▼ PER INFORMAZIONE
	CODIFICA ELABORATO	Terna

REFR19007C2050712

Rete Italia

Questo documento contiene informazioni di proprietà Terna Rete Italia S.p.A. e deve essere utilizzato esclusivamente dal destinatario in relazione alle finalità per le quali è stato ricevuto. È vietata qualsiasi forma di riproduzione o di divulgazione senza l'esplicito consenso di Terna Rete Italia S.p.A.

This document contains information proprietary to Terna Rete Italia S.p.A. and it will have to be used exclusively for the purposes for which it has been furnished. Whichever shape of spreading or reproduction without the written permission of Terna Rete Italia S.p.A. is prohibit.

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

Sommario

1	PR	EMESSA		3
2	RIF	ERIMENTI NORMATIVI		5
3	DO	CUMENTAZIONE E PORTALI CONSULTATI		5
4	DE	SCRIZIONE DELL'INTERVENTO ED INQUADRAMENTO GEOGRAFICO		6
5	INC	QUADRAMENTO GEOLOGICO, GEOMORFOLOGICO E STRUTTURALE		7
	5.1	INQUADRAMENTO GEOLOGICO	9	
6	INC	QUADRAMENTO IDROLOGICO ED IDROGEOLOGICO		13
7	GE	OMORFOLOGIA		16
8	INC	QUADRAMENTO SISMICO		20
į	8.1	PERICOLOSITA' SISMICA DI BASE	24	
9	LE	INDAGINI ESEGUITE		25
	9.1	I SAGGI GEOGNOSTICI ED IL PRELIEVO DI CAMPIONI	25	
	9.2	LE PROVE DI LABORATORIO GEOTECNICO	27	
	9.3	LE PROVE PENETROMETRICHE	29	
	9.4	LE MISURE DI RESISTIVITÀ DEI TERRENI	32	
	9.5	LE INDAGINI SISMICHE	34	
	9.6	LE VIDEO RIPRESE CON DRONE	36	
10	SIN	ITESI DEI RISULTATI		38

ALLEGATI:

- ALLEGATO 1 FASCICOLI DI SINTESI DEI RISULTATI PER CIASCUN SOSTEGNO
- ALLEGATO 2 STRATIGRAFIE DEI SAGGI GEOGNOSTICI
- ALLEGATO 3 GRAFICI E TABULATI DELLE PROVE PENETROMETRICHE
- ALLEGATO 4 CERTIFICATI PROVE DI LABORATORIO GEOTECNICO
- ALLEGATO 5 DOCUMENTAZIONE FOTOGRAFICA
- ALLEGATO 6 TABELLE DEI PARAMETRI GEOTECNICI DETERMINATI DALLE PROVE PENETROMETRICHE
- ALLEGATO 7 ELABORAZIONI DELLE INDAGINI SISMICHE

TECNOIN® GEOSOLUTIONS

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

1 PREMESSA

Nell'ambito del Progetto di potenziamento delle nuova "Interconnessione a 150kV "Sorrento-Vico Equense - Agerola – Lettere" la Società Terna Rete Italia S.p.a. ha incaricato la Tecno In S.p.A. di eseguire una campagna di indagini e di redigere le relazioni Geologiche e Geotecniche, per 3 tratte, di seguito indicate, in cui dovranno essere realizzati nuovi sostegni e/o demoliti e sostituiti gli esistenti, per adeguarli alle nuove caratteristiche elettriche:

- tratta Vico Equense-Agerola (in verde) con 24 tralicci dal VAL 01 al VAL28
- tratta Lettere-Agerola (in rosso), con 23 tralicci dal VAL 29 al VAL 51
- tratta Sorrento-Vico Equense-Castellammare di Stabia (in blu) con 6 tralicci dal FIN 01 al FIN 03 e dal SV 01 al SV03

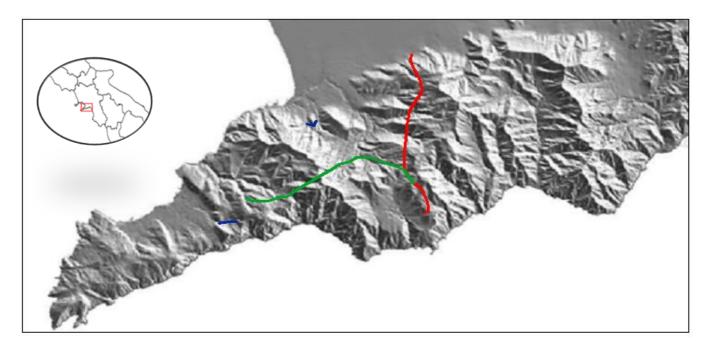


Figura 1-1: Ubicazione dell'area di intervento (in verde la tratta Vico – Agerola, in rosso la Lettere-Agerola, in blu la Sorrento – Vico – Castellammare DTM da LIDAR Tecno In S.p.A.)

A tale scopo è stata effettuata una analisi storico-documentale finalizzata alla caratterizzazione, delle aree oggetto di intervento, sotto il profilo dell'interessamento bellico, oggetto di altro affidamento e per i cui risultati si rimanda alla Relazione Specialistica, e progettata e realizzata una campagna di indagini geognostiche, in sito ed in laboratorio e di prospezioni geofisiche.

Il presente documento è stato redatto in ottemperanza alla prescrizione ambientale A12 che recita: ".......In fase di progettazione esecutiva dovranno essere eseguite indagini geologiche, geotecniche e idrogeologiche con profilli stratigrafici e geotecnici del territorio interessato dall'opera che rappresentino le caratteristiche fisico - meccaniche dei terreni interessati dalla cantierizzazione (cantieri sostegno e piste di accesso). In particolare, in corrispondenza di ogni sostegno dovranno essere realizzate apposite indagini per definire in dettaglio i modelli geolitologici, geotecnici e sismici al fine di:

RELAZIONE GEOLOGICA E GEOTECNICA

 Codifica Elaborato Terna:
 Codifica Elaborato < Fornitore>:

 REFR19007C2050712
 Rev. 00
 R.C. 250/20_Lattari_GV/20
 Rev. 00

a) verificare la stabilità dei versanti ante e post operam, in particolare nelle aree in prossimità di scarpate e/o di aree di frana e definire in dettaglio, laddove necessario, gli interventi di stabiltà dei pendii;

b) ottenere la caratterizzazione sismica dei siti come previsto dalle Norme Tecniche delle Costruzioni 2008 (D.M. del 14/01/2008)......"

In particolare, la presente relazione riguarda il tratto di elettrodotto "Lettere-Agerola" costituito da n. 23 sostegni di da realizzare ex novo; le indagini eseguite sono state le seguenti:

- 1. nº 24 saggi geognostici finalizzati alla definizione della sequenza stratigrafica e al prelievo di campioni da sottoporre alle prove di laboratorio geotecnico
- 2. nº 41 prove di laboratorio geotecnico sui campioni prelevati (n. 34 di terre e n. 7 di rocce)
- 3. nº 36 prove penetrometriche finalizzate alla caratterizzazione geotecnica dei terreni di copertura e all'individuazione della profondità del substrato roccioso.
- 4. n° 23 misure di resistività dei terreni
- 5. nº 23 indagini sismiche per la determinazione delle Vseq e quindi per la definizione della categoria di sottosuolo
- 6. video riprese con drone Skyrobotic APR SF6 ad ala rotante (vettore per il trasporto della camera RGB SONY QX100) per documentare lo stato dei luoghi, con particolare riferimento a quelli meno facilmente accessibili per copertura boschiva e/o pendenze elevate e/o assenza di sentieri, con uno sguardo attento verso alcuni aspetti quali la morfologia dei versanti, gli indizi di instabilità, la presenza di anomalie fisiografiche o geostrutturali, la copertura incoerente.

Inoltre sono stati eseguiti nº 23 saggi per il prelievo di campioni ambientali per la caratterizzazione delle terre e delle rocce da scavo, per i cui risultati si rimanda alla Relazione Specialistica.

Le attività sono state suddivise nelle seguenti fasi:

- ricerca, recupero e studio preliminare della documentazione esistente, ricerca bibliografica e pianificazione delle attività di campo
- rilievi ed indagini in situ con prelievo di campioni
- elaborazione e restituzione dei dati acquisiti

Nel presente documento verranno descritte le caratteristiche geolitologiche, geomorfologiche, idrogeologiche e sismiche dell'area in cui ricade l'intervento in oggetto, nonché le metodologie ed i risultati delle indagini in situ ed in laboratorio eseguite; inoltre, per ciascun sostegno, è stato redatto un "fascicolo" specifico, con l'approfondimento dei dati acquisiti, delle eventuali criticità riscontrate e dei possibili interventi di mitigazione, qualora necessari.

Per una maggiore comprensione degli aspetti geomorfologici è stato utilizzato il DTM elaborato dal LIDAR eseguito dalla scrivente Società, nell'ambito del Progetto CE.CO.SCA.

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna: Codifica Elaborato < Fornitore>:

REFR19007C2050712 Rev. 00 R.C. 250/20_Lattari_GV/20 Rev. 00

2 RIFERIMENTI NORMATIVI

Si riporta, di seguito, l'elenco della normativa di riferimento osservata:

- Norme Tecniche per le Costruzioni "Approvate con Decreto Ministeriale 17 gennaio 2018"
- Allegati alle Norme Tecniche per le Costruzioni "Approvate con Decreto Ministeriale 14.01.2008"
- D.lgs. 152/2006 Norme in materia ambientale
- D.lgs. 4/2008 Ulteriori disposizioni correttive ed integrative del decreto legislativo 3 aprile 2006, n. 152
- D.lgs. 128/2010 Modifiche ed integrazioni al D.lgs. 3 aprile 2006, n. 152, a norma dell'articolo 12 della legge 18 giugno 2009, n. 69
- D.lgs. 42/2004 Codice dei beni culturali e del paesaggio, ai sensi dell'articolo 10 della legge 6 luglio 2002, n. 137
- DGR 63/2013 Regione Campania
- Legge 23 agosto 2004, n. 239 "Riordino del settore energetico, nonché delega al Governo per il riassetto delle disposizioni vigenti in materia di energia";
- Legge 22 febbraio 2001, n. 36, "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici"

3 DOCUMENTAZIONE E PORTALI CONSULTATI

Si riporta, di seguito, l'elenco della documentazione consultata:

- Documentazione della ex Autorità di Bacino Regionale della Campania Centrale e della ex Autorità di Bacino Campania Sud ed interregionale Bacino Idrografico del fiume Sele, confluite nella Autorità di Bacino Distrettuale dell'Appennino Meridionale -ISPRA 2017
- Progetto IFFI (Inventario Fenomeni Franosi in Italia) Presidenza del Consiglio dei Ministri, Dipartimento per i Servizi tecnici Nazionali - Servizio Geologico, 2001
- DTM da LIDAR Tecno In S.p.A.
- Relazione geologica preliminare Terna 2014
- Sistema Informativo Sismotettonico della Regione Campania (SISCam 2.0), © LGC 2009, Laboratorio di Geomatica e Cartografia, Istituto Nazionale Geofisica e Vulcanologia, Osservatorio Vesuviano; Vilardo G., Bronzino G., Terranova C. (2009). URL: http://ipf.ov.ingv.it/siscam.html
- Carta geologica d'Italia (scala 1:100.000): F° 184–Napoli, F°185–Salerno, F°196–Sorrento e F°197–Amalfi
- Carta geologica d'Italia (scala 1:50.000) F°466-485 Sorrento-Termini
- http://esse1.mi.ingv.it/
- www.isprambiente.gov.it

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

4 DESCRIZIONE DELL'INTERVENTO ED INQUADRAMENTO GEOGRAFICO

Il tracciato della nuova linea elettrica in progetto si sviluppa all'interno della penisola Sorrentina con un andamento, prima, sud – ovest nord – est e, poi, sud nord. Interessa i territori dei Comuni di Sorrento, Sant'Agnello, Piano di Sorrento, Meta, Vico Equense, Positano, Pimonte, Agerola, Castellammare di Stabia, Gragnano, Casola di Napoli, Lettere e Sant'Antonio Abate.

L'area interessata dal tracciato in progetto è caratterizzata da quattro sistemi fisiografici principali:

- rilievi montuosi carbonatici con versanti ad elevata pendenza e numerosi salti morfologici;
- fondovalle dei principali corsi d'acqua;
- rilievi collinari con versanti debolmente inclinati;
- piana alluvionale con una morfologia subpianeggiante e un'intensa antropizzazione.

Gran parte del tracciato dell'opera in progetto ricade nel primo e nel secondo sistema attraversando una morfologia montuosa, con crinali allungati, in alcuni casi bordati da scarpate rocciose, e versanti a pendenza variabile. Alle due estremità del tracciato la morfologia è essenzialmente sub pianeggiante con superfici a debole pendenza: l'estremità meridionale ricade nella Piana di Sorrento, quella settentrionale nella Piana di Castellamare di Stabia.

In particolare la tratta Lettere-Agerola, di cui argomenta specificatamente la presente relazione, prevede il collegamento fra il sostegno VAL29 ed il sostegno VAL51, per un totale di 23 tralicci, tracciato che, come mostrato nella figura seguente, ricade, in parte, nei confini dell'Ente Parco Regionale dei Monti Lattari.

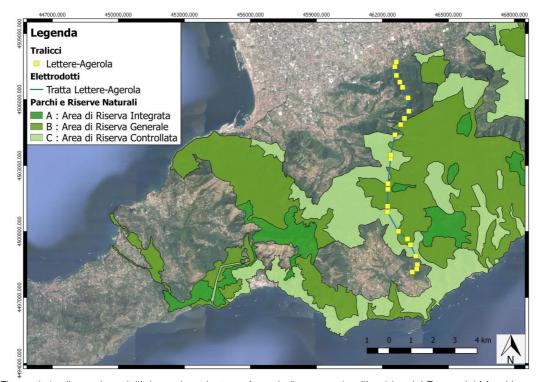


Figura 4-1 – Il tracciato dell'elettrodotto Lettere-Agerola (in azzurro) nell'ambito del Parco dei Monti Lattari

Le quote topografiche variano tra i 66 m del sostegno VAL 51 ed i 1010.2 m del sostegno VAL 29; le campate hanno lunghezza variabile da un minimo di 175 m (tra sostegno VAL 40 ed VAL 41) ad un max di 1150 m (tra sostegno VAL 39 e VAL 40).

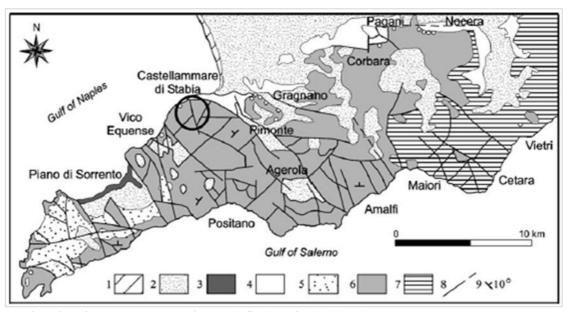
TECNOIN® GEOSOLUTIONS

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712


Rev. 00

R.C. 250/20 Lattari GV/20

Rev. 00

5 INQUADRAMENTO GEOLOGICO, GEOMORFOLOGICO E STRUTTURALE

La penisola sorrentina - amalfitana rappresenta un alto strutturale, disposto, in direzione sud-ovest nord-est trasversalmente alla catena appenninica e separa il Golfo di Salerno da quello di Napoli e dalla piana Campana.

Costituisce, inoltre, il prolungamento verso il mare della dorsale dei Monti Lattari.

Figura 5-1-Mappa geologico-strutturale della Penisola Sorrentina-Monti Lattari, Legenda: 1) depositi da spiaggia; 2) depositi piroclastici da caduta con spessore > 5 m; 3) Ignimbrite Campana; 4) depositi alluvionali; 5) depositi da flysh; 6) calcari mesozoici mantellati da depositi piroclastici (< 5 m di spessore); 7) dolomiti e calcari dolomitici; 8) faglie; 9) orientazione dei letti (da Di Crescenzo & Santo, 1999).

La natura geologica e la storia tettonica della penisola ne hanno fortemente condizionato l'attuale morfologia: la dorsale è rappresentata da una struttura monoclinale immergente verso nord-ovest, dislocata da un sistema di faglie disposte a gradinata, sub parallela alla dorsale sorrentina e che delimitano l'alto strutturale su entrambi i versanti. Questa struttura ha determinato una differente pendenza dei due versanti: quello nord occidentale è caratterizzato da pendii dolci e poco inclinati mentre quello sud orientale da alte scarpate e pendii molto ripidi. Procedendo, inoltre, dai Monti Lattari verso sud-ovest le quote dei rilievi sono sempre più basse. Tale configurazione è stata determinata da alcuni sistemi di faglie dirette che hanno segmentato in blocchi la dorsale sorrentina, determinando il loro abbassamento verso ovest. La dorsale degrada, infatti, passando da nord-est per le cime dei Monti Cerreto (1313 m s.l.m.), Cervigliano (1203 m s.l.m.), Porta di Faito (1222 m s.l.m.), Cerasuolo (1124 m s.l.m.), Comune (877 m s.l.m.), Sataccato (800 m s.l.m.), Vico Alvano (642 m s.l.m.), Tore (528 m s.l.m.), S. Costanzo (427 m s.l.m.) fino a Punta Campanella, posta all'estremità occidentale della penisola.

Il tracciato dei nuovi elettrodotti corre in gran parte lungo la dorsale morfologica sorrentina. Partendo dalla Piana di Sorrento sale in quota sui versanti del Monte Staccato e, proseguendo verso nord-est, si appoggia al Monte Porta di Faito e su una dorsale morfologica di colle Sant'Angelo, in prossimità del Monte Cervigliano (tratta Vico – Agerola).

Su questa dorsale si interseca la tratta Lettere-Agerola, di specifico interesse della presente relazione, che si sviluppo con andamento Nord-Sud. In particolare da tale punto di intersezione scende di quota sia verso sud, in direzione di Monte Murillo, nel Comune di Agerola, sia in direzione nord verso Lettere.

TECNOIN

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

Le morfologie dominanti attraversate sono, pertanto, rappresentate da rilievi con vette di varie quote, separati fra loro da dorsali e da valli strette caratterizzate da versanti con pendenze molto variabili e da scarpate sub verticali. Vi affiorano i termini più antichi dei depositi marini (giurassici - cretacei), con una potente successione di rocce calcaree e calcareo – dolomitiche, in esposizione lungo i principali fossi o sulle scarpate che bordano le sommità delle dorsali e dei rilievi morfologici.

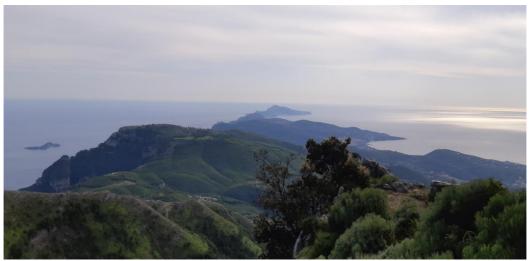


Figura 5-2-Panoramica dei Monti Lattari

E' presente, inoltre, un settore a morfologia essenzialmente subpianeggiante o debolmente pendente verso nord ovest, coincidente con la Piana di Sorrento.

Quest'unità morfologica corrisponde ad una depressione tettonica (graben) parzialmente colmata da depositi recenti di origine vulcanica. La morfologia attuale è stata modificata dall'attività del reticolo idrografico e fortemente condizionata dall'attività antropica.

Tutta la penisola è dissecata da faglie, aventi direzioni sia appenniniche che antiappenniniche, come mostrato a scala regionale nella figura seguente.

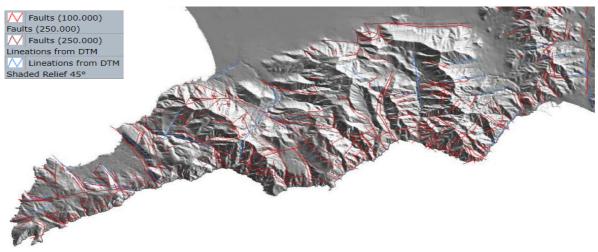


Figura 5-3- Mappa degli elementi strutturali e delle lineazioni strutturali da - Progetto SISCam Vilardo G., Bronzino G., Terranova C. (2009)

TECNOIN® GEOSOLUTIONS

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20 Lattari GV/20

Rev. 00

5.1 Inquadramento geologico

L'area indagata ricade geologicamente all'interno dell''Appennino Campano – Lucano. Vi affiorano essenzialmente i depositi carbonatici di età mesozoica, riferibili all'unità paleogeografica della piattaforma Campano – Lucana, parzialmente ricoperti da terreni miocenici e depositi quaternari.

La Catena Appenninica è formata da una serie di elementi tettonici impilati. In letteratura (D'ARGENIO et alii, 1973; 1986; IPPOLITO et alii, 1975; BRANCACCIO et alii, 1979) propongono uno schema che raggruppa gli elementi tettonici in tre principali gruppi stratigrafico-strutturali con fronti di accavallamento che risultano più recenti spostandosi da ovest verso est.

Il primo gruppo stratigrafico-strutturale deriva dalla deformazione dei domini paleogeografici più esterni (Bacino Molisano, Piattaforma Abruzzese-Campana, Bacino di Lagonegro).

Il secondo deriva dalla deformazione di due grandi domini paleogeografici: il Bacino di Lagonegro e la Piattaforma Campano-Lucana. Fanno parte di questo gruppo le seguenti unità geologiche: Unità Lagonegrese superiore, Unità Monti della Maddalena, derivante dal margine orientale della Piattaforma carbonatica Campano-Lucana, Unità del Monte Foraporta, Unità Alburno-Cervati e Unità Capri-Bulgheria-Verbicaro.

Il terzo gruppo stratigrafico-strutturale è costituito da elementi derivanti dalla deformazione dei domini paleogeografici ubicati ad occidente della Piattaforma carbonatica Campano-Lucana.

Nell'area della penisola sorrentina, affiorano le successioni carbonatiche appartenenti all'Unità Alburno - Cervati. Quest'unità è costituita da circa 4000 metri di rocce carbonatiche comprese tra il Trias ed il Miocene. Sono presenti, in particolare, depositi che vanno dal Giurassico medio al Cretaceo superiore, caratterizzati da calcari, calcari dolomitici e subordinatamente da dolomie. Costituiscono la struttura della penisola sorrentina affiorando in corrispondenza dei principali rilievi morfologici.

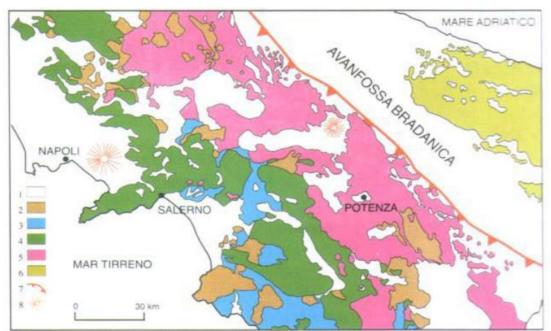


Figura 5-4 - Schema geologico dell'Appennino campano – lucano. 1:depositi clastici plio – quaternari e vulcaniti quaternarie; 2: depositi miocenici; 3: unità liguridi; 4: carbonati meso – cenozoici della Piattaforma Appenninica; 5: unità lagonegresi; 6: carbonati meso – cenozoici della Piattaforma Apula; 7: fronte di sovrascorrimento della catena; 8 Edifici vulcanici

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20 Lattari GV/20

Rev. 00

Sul substrato carbonatico poggiano, in contatto stratigrafico o tettonico, i depositi miocenici. La successione miocenica è caratterizzata da calcareniti seguite da arenarie grossolane stratificate e da argille;il loro affioramento è rilevabile soprattutto sul versante nord occidentale della dorsale sorrentina; infine, a copertura dei terreni di origine marina, vi sono sedimenti piroclastici depositatisi a seguito dell'attività vulcanica dei Campi Flegrei e di Somma – Vesuvio.

Questi depositi, accumulatisi in varie epoche storiche, si rilevano parzialmente sui rilievi calcarei, dove pedogenizzati rappresentano la coltre di terreno vegetale, e in modo dominante nell'area della Piana di Sorrento, dove la depressione strutturale (graben) preesistente è stata colmata dai prodotti delle attività eruttive dei vulcani campani rappresentati, litologicamente, da due litotipi principali: le Piroclastiti sciolte rimaneggiate ed il Tufo Grigio Campano.

Di seguito una breve descrizione dei principali tipi di depositi costituenti l'ossatura dei Monti Lattari:

- 1. depositi marini appenninici
- 2. depositi continentali
- 3. depositi di origine vulcanica

Depositi marini appenninici

I principali depositi appenninici affioranti nell'area di studio, considerandoli dai più antichi ai più recenti, sono i seguenti:

- Complesso calcareo dolomitico (Giurassico medio Cretaceo inf.) dell'Unità Alburno Cervati,
- Alternanza di litotipi calcarei, calcareo dolomitici e dolomiti, ben stratificati e scarsamente tettonizzati. Gli spessore degli strati sono compresi fra i 30 e i 120 cm, con valori medi intorno a 50 70 cm. Lo stato di fratturazione di queste rocce non è particolarmente diffuso. In presenza dei principali sistemi di fratturazione le spaziature sono dell'ordine decimetrico e metrico. Questa successione affiora prevalentemente sul versante meridionale della dorsale sorrentina.
- Complesso calcareo (Cretaceo inferiore) dell'Unità Alburno Cervati.

 Successione di strati e banchi di calcare di colore avana chiaro. Si presenta in esposizione scarsamente tettonizzata con strati da medi a spessi ai quali si intercalano calcari biomicritici.
- Complesso calcareo e calcareo-dolomitico (Cretaceo inferiore Cretaceo superiore) dell'Unità Alburno Cervati Calcari, calcari dolomitici e dolomie in strati da spessi a medi, di color grigio, biancastro e avana con frequenti intercalazioni di dolomie grigie. Gli spessori degli strati sono compresi tra i 30 e i 90 cm.
- Complesso arenaceo (Miocene)

Arenarie arcosiche grigiastre ben stratificate con strati da medi a molto spessi e intercalazioni di siltiti e marne siltose. Quando sono alterate assumono una colorazione bruno – giallastra. Affiorano soprattutto nella porzione più occidentale della dorsale sorrentina.

Depositi continentali

• Complesso delle coperture clastiche antiche (Pliocene ? – Pleistocene)

Questo complesso è rappresentato essenzialmente da depositi di conoide alluvionale e di falde detritiche: E' costituito da brecce e clasti carbonatici eterometrici, a tratti ben cementati e con scarsa matrice. Questi depositi poggiano direttamente sul substrato calcareo e /o miocenico. Si riscontrano su gran parte dei versanti presenti nell'area indagata. Si sono formati a seguito di processi di erosione e/o alterazione del substrato; pertanto la loro natura litologica dipende da quella del substrato. Si presentano in gran parte come detriti sabbioso - ghiaiosi in matrice argillosa con frequenti elementi lapidei polidimensionali. Lo spessore del detrito varia, in funzione della pendenza dei versanti, dai pochi decimetri ad alcuni metri

• Complesso delle coperture clastiche (Olocene – Attuale)

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20 Lattari GV/20

Rev. 00

Detriti di versante e depositi colluviali e di conoide: sono costituiti da terreni incoerenti formati da elementi lapidei di natura prevalentemente calcarea in una matrice arenacea e/o piroclastica e di dimensioni variabile dal cm al m nonchè da materiale di origine piroclastica. Si rilevano essenzialmente lungo le fasce pedemontane, nelle porzioni basse dei versanti dei principali rilievi e lungo le principali depressioni morfologiche presenti sui versanti.

Depositi di frana

Sono presenti soprattutto sui versanti a maggiore pendenza. Sono caratterizzati da terreni privi di coesione, destrutturati e con struttura caotica. La loro litologia è funzione della natura del substrato coinvolto nel dissesto mentre il loro spessore è funzione sia della pendenza del versante, sia della tipologia del dissesto che dei terreni coinvolti.

Depositi di origine vulcanica

Complesso piroclastico

Complesso costituito da due litotipi principali: uno rappresentato da materiali sciolti in giacitura caotica e un altro costituiti dal Tufo Grigio Campano. Quest'ultimo, affiora prevalentemente nella piana di Sorrento, dove è presente con uno spessore di circa 10 m. E' stato messo in posto con un evento vulcanico di circa 35.000 anni fa sotto forma di nube ignimbritica. E' costituito da un ammasso di ceneri, lapilli, pomici e scorie con una discreta lapidificazione. I materiali sciolti sono costituiti da ceneri, pomici e lapilli. SI presentano quasi sempre rimaneggiati con intercalazioni di livelli detritici e alluvionali; si rinvengono alla base ed alla sommità del Tufo Grigio Campano.

Ricoprono gran parte dei rilievi calcarei mascherando la natura del substrato.

L'area in esame ricade nella Carta geologica d'Italia (scala 1:100.000) nei F° 184 – Napoli, F°185 – Salerno, F°196 – Sorrento e F°197 – Amalfi e nella Carta geologica d'Italia (scala 1:50.000) nel F°466-485 Sorrento-Termini; di quest'ultimo si riporta di seguito uno stralcio sul quale sono riportate le 3 tratte di progetto; si specifica che quella oggetto della presente relazione è la tratta Lettere Agerola, segnata in rosso.

Figura 5-5 – Stralcio da Carta geologica d'Italia Foglio 466-485 Sorrento-Termini (scala 1.50.000) - ISPRA

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20 Lattari GV/20

Rev. 00

Deposito vulcanoclastico

Piroclastiti sciolte, talora rimaneggiate, in genere alterate e spesso pedogenizzate. Lo spessore, molto variabile, raggiunge i 20 m (Agerola). La parte più alta dell'unità è spesso rappresentata dalle Piroclastiti di Pompei. Le unità eruttive più antiche si sono formate in seguito ad esplosioni più vecchie di ventimila

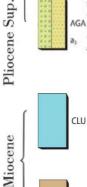
PLEISTOCENE MEDIO (?) - SUPERIORE - OLOCENE

SINTEMA VESUVIANO-FLEGREO (VEF)

Ai piedi dei Monti di Sarno e nella parte orientale dei Monti Lattari il sintema è caratterizzato da due VEF, litofacies la prima è costituita da una successioni alluvionali di conoide prevalentemente ghiaiose ricche in matrice e di intercalazioni piroclastiche. Numerosi sondaggi pregressi consentono di assegnare uno spessore di diverse decine di metri (b); la seconda litofacies è costituita da piroclastiti sciolte più o meno alterate, che ricoprono i rilievi ed i terrazzi della penisola sorrentina con spessore variabile. Provengono da numerose eruzioni esplosive dei centri vulcanici napoletani(I). PLEISTOCENE SUPERIORE p.p. - OLOCENE

SINTEMA DI PIMONTE

Conglomerati alluvionali in facies di conoide, per lo più di tipo "confinato", a clasti carbonatici fino a 50 cm di diametro, per lo più con scarsa matrice rosata o giallastra e cemento calcitico abbondante Localmente includono subordinati passaggi a detrito di versante, anch'esso carbonatico e cementato. Appaiono profondamente reincisi e carsificati.


PLEISTOCENE INFERIORE (?) p.p.- PLEISTOCENE MEDIO p.p.

SINTEMA DI AGEROLA

Complesso epiclastico legato al modellamento del rilievo dopo i primi smebramenti tettonici della Palecsuperficie pliocenica. Comprende due litofacies eteropiche: conglomerati di conoide a clasti carbonatici e raramente anche arenacei, con matrice AGA limo-sabbiosa giallastra nelle facies distali (b); brecce di falda detritica a clasti carbonatici centimetrici e decimetrici, scarsa matrice e cemento calcitico spesso abbondante (a,). PLIOCENE SUPERIORE (?) - PLEISTOCENE INFERIORE

CALCARI E CALCARI DOLOMITICI

Calcari, calcari dolomitici e dolomie in strati molto fratturati, frequentemente ridotti ad una breccia cataclastica, specialmente in prossimità del contatto con l'unità tettonica sottostante. Contenuto fossilifero: Radiolitidae, Accordiella conica FARINACCI, Montcharmontia apenninica (DE CASTRO), Dicyclina schlumbergeri MUNIER-CHALMAS, Pseudocyclarmina sphaeroidea GENDROTT, Cuneolina pavonia D'ORBIGNY, Aeolisaccus kotori RADOICIC, Thaumatoporella parvovesiculifera (RANIERI), Salpingoporella dinarica RADOICIC, Cuneolina laurentii SARTONI & CRESCENTI, Cuneolina scarsellai DE CASTRO, Rotalidae, Nezzazatidae, Orbitolinidae, Miliolidae, Valvulinidae. Spessore circa 250-300 m. BARREMIANO - SANTONIANO

ARENARIE DEL DESERTO

Arenarie arcosiche grigiastre, brune per alterazione, in strati da medi a spessi, intercalate a siltiti e marne siltose, spesso glauconitiche. Sono presenti olistrostromi ed olistoliti (ac) di calcilutiti silicizzate grigie e verdastre, argille variegate, argille marnose verdastre, calcareniti grigie, provenienti dal Complesso Sicilide, di età compresa tra il Cretacico ed il Miocene inferiore. Successione di bacino torbiditico profondo con sequenze di Bouma ben evidenti e spesso complete. Spessore: 200 m.

SERRAVALLIANO (?) - TORTONIANO INFERIORE (?)

CALCARI A RADIOLITIDI

Cretacico Inferiore

Alternanza di dolomie cristalline grigie, calcari micritici e biomicritici avana, grigi e marroni con rare intercalazioni di conglomerati intrabacinali con matrice marnosa verdastra. Tra Punta del Capo e Massalubrense litofacies calcareo dolomitiche intensamente bioturbate, fino a pseudobrecciate, con matrice marnosa verdastra e frequenti slumping. Il contenuto fossilifero è rappresentato da Radiolitidae, Requienidae, gasteropodi (tra cui Nerineidae)

APTIANO SUPERIORE p.p.- SANTONIANO

CALCARI CON REQUIENIE E GASTEROPODI

Alternanza di dolomie cristalline grigie, spesso laminate, calcari micritici grigi o marroni frequentemente laminati e con evidenti strutture da disseccamento e/o dissoluzione, tipo fenestrae, allineate parallelamente alla stratificazione; calcari biomicritici grigi o marroni. Il contenuto fossilifero di questi ultimi è caratterizzato dall'abbondanza, di cuneoline "primitive" e di piccole alghe. Verso l'al passa calcari avana chiaro a Requienidae, Ostreidae e resti di echinodermi, ben stratificati BERRIASIANO p.p.- APTIANO SUPERIORE p. p.

calcari con Campbelliella e Kurnubia

Calcari e calcari dolomitici grigi, avana o biancastri, in strati da medi a spessi, con intercalazioni di dolomie cristalline grigie, spesso laminate, più frequenti nella parte alta. Nella porzione medio-superiore CCM sporadiche intercalazioni lenticolari di conglomerati intrabacinali con matrice marnosa giallastra o verdastra, dello spessore massimo di pochi decimetri. La parte inferiore è caratterizzata da sottili livelli, lateralmente discontinui, di calcari micritici giallastri, parzialmente silicizzati.

KIMMERIDGIANO p.p. - BERRIASIANO p.p.

CALCARI OOLITICI ED ONCOLITICI

Calcari in strati medi, di colore grigio, raramente avana o nocciola, frequentemente oolitici nelle parti inferiore e media, con intercalazioni e corpi irregolari di dolomie cristalline grigie. Nella parte basale sono presenti sottili intercalazioni di marne argillose grigio-verdastre. Il contenuto microfossififero è rappresentato da foraminiferi bentonici, alghe verdi, gasteropodi e coralli, TOARCIANO p.p.-CALLOVIANO p.p.

Figura 5-6 – Stralcio da Legenda della Carta geologica d'Italia (scala 1.50.000) - ISPRA

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

6 INQUADRAMENTO IDROLOGICO ED IDROGEOLOGICO

I principali corsi d'acqua che caratterizzano l'idrografia della Penisola Sorrentina presentano una lunghezza limitata, compresa tra i 2 e i 5 Km. La pendenza media varia tra il 10 e il 13%, e la superficie dei bacini idrografici drenati è dell'ordine di qualche km².

Nella figura seguente l'idrografia lineare derivata dalla banca dati Atlas del Ministero per i Beni e le Attività Culturali. L'idrografia è stata acquisita dalla base cartografica IGMI in scala 1:25.000 tra il 1987 ed il 1990. Le linee rappresentano tutti i corsi d'acqua non stagionali riportati sulle tavolette topografiche

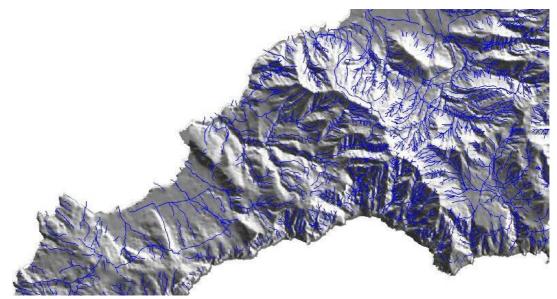


Figura 6-1 – Stralcio da Tematismo idrografia lineare da - Progetto SISCam Vilardo G., Bronzino G., Terranova C. (2009)

Il reticolo idrografico riflette la permeabilità dei terreni affioranti. In gran parte dell'area studiata è presente in reticolo idrografico poco ramificato determinato dalla presenza di terreni con una buona permeabilità primaria e/o secondaria

Le principali aste fluviali del reticolo idrografico interessate dal tracciato sono:

- sul versante meridionale: Vallone Praia, Vallone Penise e Vallone Nocella;
- sul versante settentrionale: Rio Lavinola, Rivo d'Arco, Fosso Gragnano e Vallone Barone.

Nel primo caso i corsi d'acqua e le loro aste secondarie sono brevi e con elevate pendenze. Il loro reticolo idrografico presenta un assetto principale rettilineo con un'orientazione nord-ovest, sud-est, e, quindi, sono controllati dagli allineamenti tettonici.

Si tratta di corsi d'acqua tipicamente a carattere torrentizio.

Nel secondo caso i corsi d'acqua hanno una lunghezza maggiore, presentano sempre un'orientazione che riflette la tettonica distensiva pliocenica e sono caratterizzati da pendenze molto variabili.

Questi due sistemi idrografici sono separati da uno spartiacque che corre in direzione nord – est sud – ovest lungo la dorsale della penisola sorrentina.

L'Unità idrogeologica della dorsale sorrentina è delimitata a nord dalla Piana del Sarno, ad est dalla depressione morfo - tettonica di Vietri – Nocera e per gli altri lati dal mare; è costituito da più complessi idrogeologici come di seguito indicati e mostrato nello stralcio della Carta Idrogeologica della Provincia di Napoli:

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

- Il complesso calcareo
- il complesso arenaceo miocenico
- il complesso detritico
- il complesso piroclastico

Il complesso calcareo è formato dalle successioni carbonatiche che rappresentano per estensione, spessore e permeabilità, le principali rocce serbatoio del massiccio montuoso; sono permeabili per fratturazione

Il complesso arenaceo miocenico è affiorante sui depositi carbonatici; ha permeabilità bassa.

Il complesso detritico è costituito prevalentemente dalle formazioni clastiche generate dal disfacimento dei versanti della morfostruttura carbonatica; permeabilità variabile da bassa ad alta in funzione dell'assortimento granulometrico e del grado di cementazione

Il complesso piroclastico è formato da pomici, lapilli, ceneri e tufi; permeabilità variabile come nel complesso precedente.

CARTA IDROGEOLOGICA DELLA PROVINCIA DI NAPOLI (1/250.000) Corniello A., de Riso R., Ducci D. Detrito di falda ad elementi carbonatici sciolto o poco cementato ed associato a prodotti piroclastici talora presentiin likelli (a) passanti versoil basso a depositi gnialoso-sabbioso-limosi e brecce di conoide (b) Pleistocene medio superiore Permeabilità da media a bassa in (a), più elevata in (t) Filisch argilloso marnoso arenaceo Miocene Permeabilità assai ridotta Calcari dolomitici e calcari Giurassico – Miocene Inferiore Permeabilità in generale alta per fessurazione e talora carsismo

Figura 6-2 – Stralcio da Carta Idrogeologica della provincia di Napoli (scala 1:250.000) Corniello-De Riso-Ducci 2008

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

Le acque di infiltrazione nei terreni carbonatici dell'area percolano verso la falda di base presente alla quota del livello del mare.

La falda di base ha il principale recapito nella spessa coltre detritica affiorante lungo il margine settentrionale del corpo idrico, tra gli abitati di Castellammare di Stabia e Nocera Inferiore.

Lungo questo margine il limite idrogeologico è rappresentato da discontinuità tettoniche che mettono a contatto le rocce carbonatiche dell'Unità Idrogeologica della penisola sorrentina con i depositi detritico – piroclastici, a minore permeabilità relativa. Questo contatto determina un limite di permeabilità per soglia sovrimposta con conseguente travaso idrico nella piana.

L'infiltrazione delle acque nel substrato calcareo è rallentata, in alcuni casi, dalla presenza di interstrati, dalla granulometria molto fine, presenti all'interno della copertura piroclastica.

Nelle aree collinari e montuose la profondità delle falde acquifere è variabile e comunque tale che gli interventi previsti non porteranno a variazioni della preesistente circolazione idrica sotterranea.

Nelle aree di pianura la soggiacenza delle falde è tale da non fare prevedere interferenze con gli interventi previsti.

La vulnerabilità delle falde acquifere è stata definita sulla base delle caratteristiche medie di permeabilità e delle condizioni prevalenti di affioramento ed è rappresentato da un indice di vulnerabilità specifica dei diversi Complessi.

Le classi di vulnerabilità assegnate ai complessi sono riportate nella seguente tabella:

N.	Complesso	Alta	Media	Bassa
1	Detritico	X		
2	Arenaceo		X	
3	Carbonatico	Х		
4	Piroclastico	Χ		

La vulnerabilità della falda acquifera superficiale è pertanto da considerarsi elevata.

La linea elettrica intercetta le aree a maggiore vulnerabilità per l'intero tracciato, però è da sottolineare che i sostegni della linea elettrica aerea rappresentano interventi puntuali sul territorio e, pertanto, non influenti sulle preesistenti condizioni di vulnerabilità degli acquiferi.

Come si legge nella Relazione geologica Preliminare (anno 2014) la sovrapposizione delle ubicazione dei pozzi e sorgenti con i relativi buffer a 200 m sull'elaborato idrogeologico, ha consentito di escludere le interferenze del tracciato in progetto con le zone di rispetto dei punti di captazione (art. 94 comma 6 del D.Lgs 152/2006).

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20 Lattari GV/20

Rev. 00

7 GEOMORFOLOGIA

Per quanto concerne l'assetto geomorfologico di dettaglio, al fine di evidenziare eventuali criticità o anomalie, è stato effettuato un accurato lavoro di sintesi dei dati derivanti da:

- rilevamenti di campagna
- elaborazione delle carte delle pendenze (dal DTM LIDAR eseguito dalla scrivente Società, Progetto CE.CO.SCA) (figura 7-1)
- consultazione delle carte del rischio e pericolosità da frana delle Autorità di Bacino Regionale della Campania
 Centrale e Regionale della Campania Sud ed interregionale del Bacino Idrografico del fiume Sele (figura 7-2)
- consultazione delle carte degli spessori delle coperture dall'Autorità di Bacino Regionale della Campania Centrale (figura 7-3)
- consultazione della banca dati dell'Inventario Frane IFFI
- consultazione delle carte geologiche (progetto CARG)

Tra le varie tipologie di frane presenti nella penisola sorrentina le più diffuse in periodi recenti sono quelle da colata rapida su versanti aperti e incanalate nonché frane da crollo.

Il rilevamento morfologico e la consultazione delle cartografie redatte dalle autorità di bacino ha distinto i seguenti dissesti

- crolli in roccia.
- colate rapide di fango
- colate rapide di detrito
- scorrimenti superficiali

Le frane da crollo si rilevano nelle aree di affioramento delle successioni calcaree e carbonatiche. Si sviluppano lungo le pareti con acclività da molto elevata a sub verticale e interessate da preesistenti discontinuità strutturali.

Si esplicano attraverso il distacco improvviso di volumi variabili di roccia che cadono nel vuoto con caduta libera per poi impattare al piede del pendio e rimbalzare e/o rotolare verso valle.

Tale fenomeno può interessare il singolo blocco di roccia o coinvolgere un ammasso di più blocchi.

Le colate rapide di fango si rilevano sui versanti calcarei e calcareo dolomitici con copertura piroclastica; sono fenomeni improvvisi e sono caratterizzate dalla mobilizzazione istantanea del materiale piroclastico con alto contenuto d'acqua.

Questo materiale, spostandosi verso valle ad elevata velocità, spesso si incanala nei solchi vallivi o torrentizi. Lungo il suo percorso può aumentare di volume per coinvolgimento di materiali erosi direttamente dal versante o da preesistenti vallecole. Queste colate possono interessare tutto il versante fino alle aree pedemontane dove, per le minori pendenze, perdono energia espandendosi sui depositi alluvionali e/o di conoide detritica.

La scarsa resistenza all'erosione dei materiali sabbioso – limosi delle coltri piroclastiche coinvolti in questi dissesti non consentono il facile riconoscimento sui versanti delle morfologie delle colate rapide di fango avvenute nel passato.

Le colate rapide possono evolvesi interamente sul versante oppure incanalarsi in fossi e solchi vallivi e torrentizi.

Le colate rapide di detrito si riscontrano nella parte alta dei versanti carbonatici a maggiore pendenza, in corrispondenza di depositi di detriti di versante a granulometria grossolana.

L'accumulo detritico, parzialmente saturo, viene parzialmente immobilizzato a seguito di un improvviso distacco e coinvolto in un movimento veloce verso valle invadendo le aree pedemontane.

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

Anche in questo caso lo sviluppo longitudinale della colata può verificarsi o interamente sul versante oppure incanalato in fossi e solchi vallivi e torrentizi.

In molti casi associate alle colate rapide detritiche vi sono i fenomeni di crollo.

Il materiale detritico accumulatosi sui versanti molto inclinati, ai piedi delle pareti rocciose, a seguito di fenomeni di crollo, può essere rimobilizzato da una colata rapida di detrito.

Gli scorrimenti si individuano in corrispondenza di litologie rappresentate da terreni a comportamento geotecnico differente.

Essi si verificano al contatto tra materiali di copertura e substrato oppure al contatto tra la porzione intensamente fratturata e quella integra di un ammasso calcareo o calcareo – dolomitico.

Morfologicamente sono caratterizzati da una zona di distacco con scarpata principale ad andamento sub circolare, un terrazzo in contropendenza rispetto all'andamento del versante e blocchi secondari delimitati da fessure longitudinali.

Il corpo di frana può evolvere in colate lente, dando luogo a frane di tipo complesso.

Di seguito si riportano gli stralci delle principali carte tematiche elaborate o consultate.

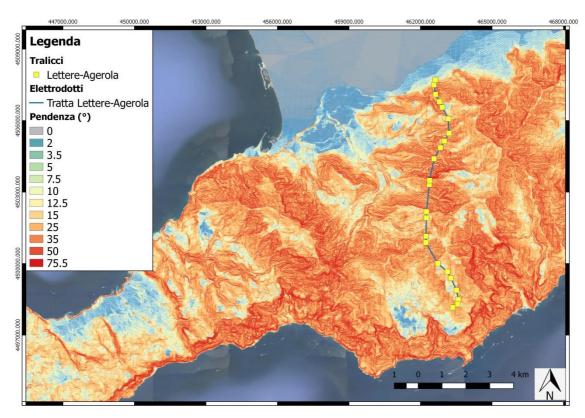


Figura 7-1 – Carta delle pendenze (elaborazione Tecno In S.p.A. da DTM Lidar Tecno In S.p.A.)

TECNOIN

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

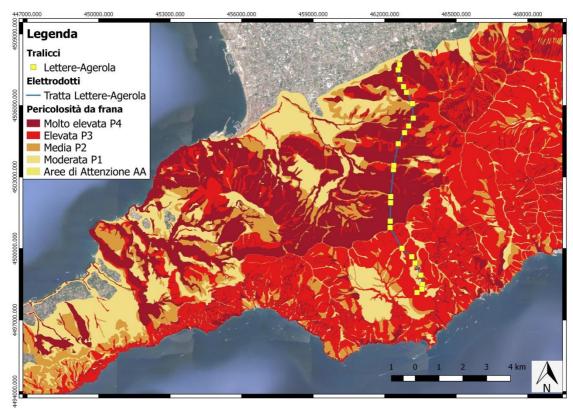
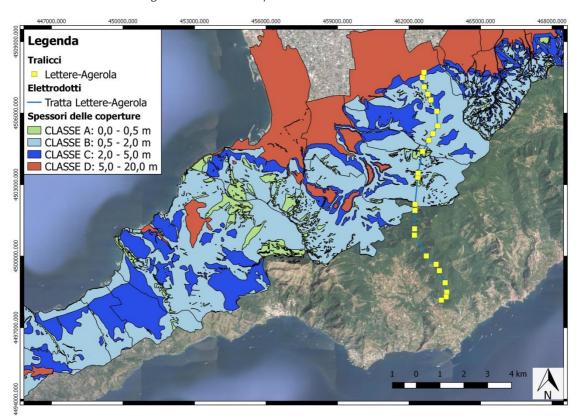



Figura 7-2 -Carta della pericolosità da frana PSAI - ISPRA - 2017

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

Figura 7-3 – Carta delle coperture (Fonte: Autorità di Bacino Regionale della Campania Centrale)

Di seguito una tabella riepilogativa delle principali caratteristiche geomorfologiche dell'area di ciascun sostegno.

ID sostegno		Pericolosita			Pendenza (°)	Spessore coperture da carta Autorità di Bacino (m)	Spessore coperture da indagini (m)	
	P4 molto elevata	P3 elevata	P2 media	P1 bassa				
VAL29				Χ	5°-10°	-	da ca. 3.90 a ca. 6.60	
VAL30		Χ			15°	1	da ca. 6.70 a ca. 10.60	
VAL31				Χ	15°	-	ca. 1.00	
VAL32				Χ	15°	-	da ca. 11.00 a ca. 13.20	
VAL33				X	15°	1	da ca. 2.50 a ca. 11.10	
VAL34		Χ			25°	ı	ca. 2.00	
VAL35		Χ			>15°	ı	ca. 1,00	
VAL36	Х				15°	-	ca. 7.50	
VAL37	X				>15°	ı	ca. 12.00	
VAL38	X				>15°	0.50-2.00	da ca. 2.00 m a ca. 3.30	
VAL39	X				>15°	0-0.50	-	
VAL40	X				>25°	0.50-2.00	ca. 2.00	
VAL41			Χ		>25°	0-0.50	-	
VAL42		Χ			>35°	0-0.50	-	
VAL43		Χ			15°-25°	0.50-2.00	ca. 2.00	
VAL44		Χ			5°-15°	0.50-2.00	ca. 10.00	
VAL45		Χ			>25°	0.50-2.00	ca. 1.00	
VAL46				Х	15°	2.00-5.00	da ca. 3.80 a ca. 7.20	
VAL47		Χ			15°-25°	2.00-5.00	da ca. 3.20 a ca. 4.80	
VAL48		Χ			25°-35°	2.00-5.00	da ca. 3.40 a ca. 4.00	
VAL49	Х				25°-35°	0.50-2.00	ca. 2.00	
VAL50	Х				<15°	2.00-5.00	da ca. 6.00 a ca. 9.00	
VAL51	Х				<15°	5.00-20.00	ca. 15.00	

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

8 INQUADRAMENTO SISMICO

L'attività sismica che interessa la Penisola Sorrentina dipende da due diverse tipologie di sorgenti: quella legata all'evoluzione tettonica della catena appenninica e quella prodotta dall'attività vulcanica del Vesuvio e dei Campi Flegrei.

Per ricostruire la storia dell'attività sismica dell'area indagata è stata svolta una ricerca della sismicità storica sulla base del catalogo parametrico dei terremoti italiani che ha evidenziato che i principali sismi risentiti nell'areale di interesse, sono quelli prodottisi lungo l'arco dell'Appennino meridionale e in particolare nell'area lucana ed avellinese.

I criteri per l'aggiornamento della mappa di pericolosità sismica sono stati definiti nell'Ordinanza del PCM n. 3519/2006, che ha suddiviso l'intero territorio nazionale in quattro zone sismiche sulla base del valore dell'accelerazione orizzontale massima (ag) su suolo rigido o pianeggiante, che ha una probabilità del 10% di essere superata in 50 anni.

Zona sismica	Descrizione	accelerazione con probabilità di superamento del 10% in 50 anni [ag]	accelerazione orizzontale massima convenzionale (Norme Tecniche) [ag]	numero comuni con territori ricadenti nella zona (*)
1	Indica la zona più pericolosa, dove possono verificarsi fortissimi terremoti.	a _g > 0,25 g	0,35 g	703
2	Zona dove possono verificarsi forti terremoti.	$0.15 < a_g \le 0.25 g$	0,25 g	2.225
3	Zona che può essere soggetta a forti terremoti ma rari.	$0.05 < a_9 \le 0.15 \text{ g}$	0,15 g	2.810
4	E' la zona meno pericolosa, dove i terremoti sono rari ed è facoltà delle Regioni prescrivere l'obbligo della progettazione antisismica.	a _g ≤ 0,05 g	0,05 g	2.185

I comuni interessati dal progetto (Agerola, Casola di Napoli, Gragnano, Lettere, Piano di Sorrento, Pimonte, Positano, Sant'Agnello, Sant'Antonio Abate, Sorrento e Vico Equense) ricadono, ai sensi dell' OPCM 3274 del 20/03/2003, in zona sismica 2 e 3, mentre il D.G.R. del 7/11/2002, N. 5447, li classifica tutti in zona 3, come da tabella seguente:

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

REFR19007C2050712

Rev. 00

Codifica Elaborato < Fornitore>:

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

Comune	D.G.R. del 7/11/2002, N. 5447	OPCM 3274 del 20/03/2003
Agerola	3	3
Casola di Napoli	3	2
Gragnano	3	2
Lettere	3	2
Piano di Sorrento	3	3
Pimonte	3	3
Positano	3	3
Sant'Agnello	3	3
Sant'Antonio Abate	3	2
Sorrento	3	3
Vico Equense	3	3

La circolare esplicativa relativa alla disciplina sismica in vigore nella Regione Campania (Prot. n. 1667/SP del 5/11/03) in merito alla riclassificazione sismica operata dall' OPCM/2003, recita : "La classificazione sismica operata dall'Ordinanza in parola cessa quindi di avere effetto quando le Regioni provvederanno alla riclassificazione del proprio territorio, mentre, laddove le Amministrazioni Regionali abbiano già provveduto a tale riclassificazione prima dell'emanazione dell'Ordinanza che si esamina, la classificazione in essa contenuta non entra in vigore"; pertanto la classificazione sismica in vigore in regione Campania è quella del D.G.R. del 7/11/2002, N. 5447, che vede tutti i comuni interessati dal progetto ricadere in zona 3.

Allo scopo di disporre di elementi sulla sismicità del territorio, è stato consultato il Database Macrosismico Italiano DBMI15, che fornisce un set omogeneo di intensità macrosismiche provenienti da diverse fonti, relativo ai terremoti nella finestra temporale 1000-2016.

Effetti		In occasione del terremoto del			
Int.	Anno Me Gi Ho Mi Se	Area epicentrale	NMDP	Io	Mw
6-7	ළ 1694 09 08 11 40	Irpinia-Basilicata	251	10	6.73
5		Penisola sorrentina	9	5-6	4.71
7	යු 1805 07 26 21	Molise	220	10	6.68
7-8	₽ 1857 12 16 21 15	Basilicata	340	11	7.12
5		Irpinia-Basilicata	376	8	5.76
5		Marsica	1041	11	7.08
7	과 1930 07 23 00 08	Irpinia	547	10	6.67
3	යු 1971 05 06 03 45 0	Irpinia	68	6	4.83
F		Appennino campano-lucano	29	5-6	4.75
7	₽ 1980 11 23 18 34 5	Irpinia-Basilicata	1394	10	6.81
5-6		Monti di Avella	85	7-8	4.88
5	යු 1990 05 05 07 21 2	Potentino	1375		5.77
3-4	₽ 1991 05 26 12 25 5	Potentino	597	7	5.08
2		Tirreno meridionale	148		5.82
4-5	₽ 1996 04 03 13 04 3	Irpinia	557	6	4.90
4		Area vesuviana	38	5	3.24
3		Area Nolana	271	5	4.07

Figura 8.1: Eventi sismici catalogati - https://emidius.mi.ingv.it/CPTI15-DBMI15

TECNOIN® GEOSOLUTIONS

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna: Codifica Elaborato <*Fornitore*>:

REFR19007C2050712 Rev. 00 R.C. 250/20_Lattari_GV/20 Rev. 00

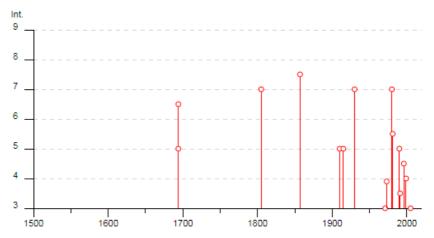


Figura 8.2: Grafico degli eventi sismici catalogati in a rapporto all'intensità - https://emidius.mi.ingv.it/CPTI15-DBMI15

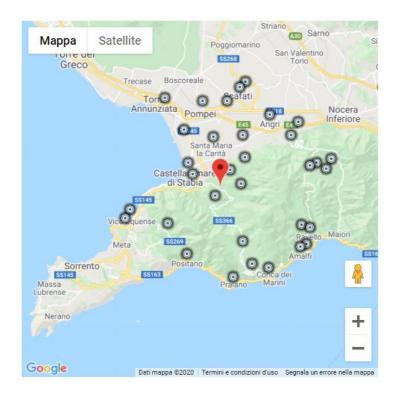


Figura 8.3: Ubicazione degli eventi sismici catalogati nel raggio di 10 km - https://emidius.mi.ingv.it/CPTI15-DBMI15

TECNOIN® GEOSOLUTIONS

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

Località	EQs	Distanza (km)
Casola di Napoli	7	1
Pimonte (Piazza-Tralia)	11	2
Sant'Erasmo	1	2
Scanzano	1	2
Lettere (Piazza Roma)	7	3
Castellammare di Stabia	32	3
Santa Maria la Carità	4	4
Sant'Antonio Abate	6	4
Sarno	1	5
Agerola (Pianillo)	7	6
Moiano	2	6
Scafati	11	7
Pompei	12	7
Angri	14	7
Corbara	4	7
Positano	8	7
Cesarano	1	8
San Pietro	1	8
Furore (San Michele)	3	8
Scala	4	8
Sant'Egidio del Monte Albino	3	8
Vico Equense	12	8
Torre Annunziata	12	8
Pietre	1	9
Santa Maria di Realvalle	1	9
Praiano	3	9
Ravello	7	9
Conca dei Marini	2	9
Seiano	1	9
Amalfi	20	9
Figlino	1	9
Atrani	6	10
Corsano	1	10

Figura 8.4: Elenco eventi sismici rilevati nel raggio di 10 km da Gragnano - https://emidius.mi.ingv.it/CPTI15-DBMI15

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

8.1 Pericolosita' sismica di base

Come riportato nelle NORME TECNICHE PER LE COSTRUZIONI, approvate con Decreto Ministeriale 17 gennaio 2018, che sostituiscono quelle approvate con il Decreto Ministeriale 14 gennaio 2008¹, le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione e sono funzione delle caratteristiche morfologiche e stratigrafiche che determinano la risposta sismica locale.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_0 in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A), come definita al § 3.2.2 delle NTC 2018, nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente S_e (T), con riferimento a prefissate probabilità di eccedenza P_{VR} come definite nel § 3.2.1, nel periodo di riferimento V_R , come definito nel § 2.4 delle suddette norme.

Le forme spettrali previste dalle NTC sono definite, per ciascuna delle probabilità di superamento P_{VR} nel periodo di riferimento VR, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

- ag: accelerazione orizzontale massima al sito;
- Fo: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_c*: valore di riferimento per la determinazione del periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Sul sito web del progetto nazionale S1 (http://esse1-gis.mi.ingv.it) è disponibile la mappa di pericolosità sismica, introdotta dall'OPCM n.3519/2006, in termini di accelerazione massima orizzontale del suolo (a_9), con probabilità di eccedenza del 10% in 50 anni, riferita a suoli rigidi caratterizzati da Vs30 > 800 m/s, dalla quale si rileva un valore di a_9 0.075-0.125.

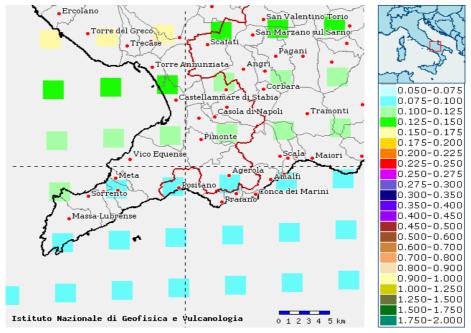


Figura 8.5: Visualizzazione dei valori di pericolosità sismica espressi in termini di accelerazione orizzontale massima del suolo (a_g) con probabilità di eccedenza del 10% in 50 anni, riferita a suoli rigidi (Vs30>800 m/s).

¹ Il riferimenti agli allegati A e B del Decreto del Ministro delle Infrastrutture 14 gennaio 2008, pubblicato nel S.O. alla Gazzetta Ufficiale del 4 febbraio 2008, n.29, ed eventuali successivi aggiornamenti è richiamato nelle nuove Norme Tecniche per le Costruzione del 2018.

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

REFR19007C2050712

Rev. 00

Codifica Elaborato < Fornitore>:

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

9 LE INDAGINI ESEGUITE

9.1 I saggi geognostici ed il prelievo di campioni

Lungo la tratta "Lettere-Agerola" sono stati eseguiti n. 24 saggi geognostici per la definizione della stratigrafia e sono stati prelevati un totale di n. 41 campioni (n. 34 di terre e n. 7 di rocce); per la visione di dettaglio si rimanda alle schede stratigrafiche allegate (ALL.2) ed ai fascicoli di sintesi dedicati a ciascun sostegno.

Di seguito, si riporta una tabella riepilogativa di quanto effettuato, con indicazione della profondità raggiunta e delle profondità di prelievo dei campioni; si specifica che in n. 3 siti , per la presenza di roccia affiorante, si è proceduto solo al prelievo di campioni litoidi superficiali.

ld saggio	Profondità (m)	ld e profondità campioni (m)	Stratigrafia
VAL 29-S1	3.00	CR1:0.50-1.00 CR2: 2.00-3.00	0.00 – 1.30 m suolo vegetale 1.30 – 2.00 m pomici da millimetriche a centimetriche 2.00– 3.00 m sabbia limosa con pomici
VAL 30-S1	3.30	CR1:0.50-1.00 CR2: 2.50-3.00	0.00 – 1.00 m suolo vegetale 1.00– 2.60 m pomici da millimetriche a centimetriche 2.60– 3.30 m sabbia limosa con pomici
VAL 31-S1	0.40	CL1:0.30-0.40	0.00-0.30 m suolo vegetale 0.30-0.40 m calcare bianco
VAL 31-S2	1.00	CR1:0.40-0.90	0.00 – 0.30 m suolo vegetale 0.30– 0.80 m sabbia limosa marrone rossastra 0.80– 1.00 m calcare massivo e/o fratturato
VAL 32-S1	3.00	CR1:0.50-1.00 CR2: 2.00-3.00	0.00 – 1.00 m suolo vegetale 1.00– 3.00 m sabbia limosa con pomici
VAL 33-S1	3.00	CR1:1.00-2.00	0.00 – 0.70 m suolo vegetale 0.70 – 3.00 m pomici e lapilli rimaneggiati da millimetrici a centimetrici in matrice sabbiosa
VAL 34-S1	2.00	CR1:0.50-1.00 CL1:1.80-2.00	0.00 – 0.20 m suolo vegetale 0.20 – 1.80 m pomici e lapilli rimaneggiati da mm a cm in matrice sabbiosa 1.80 – 2.00 m calcare bianco
VAL 35-S1	0.60	CL1:0.50-0.60	0.00 – 0.40 m suolo vegetale 0.40 – 0.60 m breccia calcarea
VAL 36-S1	3.00	CR1:1.00-2.00	0.00 – 0.70 m suolo vegetale 0.70 – 1.00 m sabbia limosa con pomici 1.00– 3.00 m pomici da millimetriche a centimetriche
VAL 37-S1	2.00	CR1:0.50-1.00	0.00 – 0.50 m suolo vegetale 0.50–1.50 m piroclastite umificata, colore bruno con pomici eterometriche
VAL 38-S1	2.50	CR1:0.40-0.80	0 – 0.50 m suolo vegetale 0.50 –2.50 m pomici da millimetriche a centimetriche
VAL 39	-	CL1	Calcari massivi e/o fratturati
VAL 40-S1	2.50	CR1:0.00-0.50 CR2: 0.50-1.00 CR3: 2.00-2.50	0.00 – 0.50 m suolo vegetale 0.50 – 1.50 m pomici da millimetriche a pluricentimetriche (2 cm) 1.50 – 2.00 m suolo a granulometria sabbiosa con pomici 2.00 - 2.50 m cinerite sabbiosa con limo marrone rossastra
VAL 41	-	CL1	Calcari massivi e/o fratturati
VAL 42	-	CL1	Calcari massivi e/o fratturati
VAL 43-S1	2.30	CR1:0.00-0.50 CR2: 1.00-2.00 CR3: 2.00-2.50	0.00 – 0.40 m suolo vegetale 0.40 – 2.00 m pomici da millimetriche a pluricentimetriche (2 cm) 2.00 – 2.50 m sabbia con limo marrone rossastro
VAL 44-S1	4.00	CR1:1.50-2.00 CR2: 2.00-3.00 CR3: 3.00-4.00	0.00 – 0.50 m suolo vegetale 0.50 – 2.00 m pomici da millimetriche a pluricentimetriche (2 cm) 2.00 – 4.00 m sabbia con limo marrone rossastro

TECNOIN® GEOSOLUTIONS

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

ld saggio	Profondità (m)	ld e profondità campioni (m)	Stratigrafia	
VAL 45-S1	0.60	CL1	0.00 - 0.40 suolo vegetale con pomici 0.40 - 0.60 breccia calcarea	
VAL 46-S1	3.00	CR1:1.00-1.50 CR2: 2.00-3.00	0.00 – 1.00 m suolo vegetale 1.00 – 2.00 m pomici da millimetriche a pluricentimetriche (2 cm) 2.00 – 3.00 m sabbia con limo marrone rossastro	
VAL 47-S1	2.00	CR1:0.00-0.50 CR2: 0.50-1.50	0.00 – 0.40 m suolo vegetale 0.40 – 2.00 m pomici da millimetriche a pluricentimetriche (2 cm)	
VAL 48-S1	2.00	CR1:1.50-2.00	0.00 – 0.70 m suolo vegetale 0.70 - 1.50 m sabbia limosa con pomici 1.50 – 2.00 m pomici da millimetriche a pluricentimetriche (2 cm)	
VAL 49-S1	2.00	CR1:0.50-1.00 CR2: 1.00-1.50 CR3: 1.50-2.00	0.00 - 0.20 m suolo vegetale 0.20 - 1.20 m suolo con pomici 1.20 - 2.00 sabbia con limo marrone rossastra	
VAL 50-S1	3.00	CR1:1.00-2.00	0.00 – 0.40 m piroclastite debolmente umificata 0.40 – 3.00 m pomici da millimetriche a pluricentimetriche (2 cm)	
VAL 50-PZ	3.00	PZ1:0.00-0.45	0.00 – 0.30 m piroclastite debolmente umificata 0.30 – 0.45 m pomici da millimetriche a pluricentimetriche (2 cm)	
VAL 51-S1	3.00	CR1:0.10-0.30 CR2: 2.00-3.00	0.00 – 0.30 m suolo vegetale 0.30 – 3.00 m piroclastiti rimaneggiate e/o in sede con pomici	

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

9.2 Le prove di laboratorio geotecnico

Nel corso della campagna di indagini sono stati prelevati n. 41 campioni, di cui n. 34 di terre e n. 7 di rocce che sono stati sottoposti alle seguenti determinazioni:

TERRE

- curva granulometrica
- peso di volume naturale
- peso di volume secco
- contenuto d'acqua
- porosità
- peso specifico
- angolo d'attrito/coesione da prova di taglio diretto CD

ROCCE

- indice di resistenza al carico puntuale corretto medio Is(50) da prova point load
- Resistenza a compressione qu (Mpa), Modulo elastico tangente Et (GPa), Modulo elastico secante Es (GPa),
 Coefficiente di Poisson v da prova compressione monoassiale

Per la visione di dettaglio dei risultati si rimanda ai certificati allegati (ALL.4), mentre, di seguito si riporta una tabella riepilogativa dei risultati:

TERRE

N.	ld aggaig	ld e profondità	Classe granulametrics	Prova di ta	glio diretto
IN.	ld saggio	campioni (m)	Classe granulometrica	00	c (kPa)
1	VAL 29-S1	CR1:0.50-1.00	Sabbia con ghiaia limosa debolmente argillosa	34,33	13.92
2	VAL 29-31	CR2:2.00-3.00	Sabbia con limo debolmente ghiaiosa-argillosa	32,44	15.43
3	VAL 30-S1	CR1:0.50-1.00	Sabbia con ghiaia limosa	34,22	13,33
4	VAL 30-31	CR2:2.50-3.00	Sabbia con limo argillosa	31.77	17.58
5	VAL 31-S2	CR1:0.40-0.90	Sabbia con limo argillosa	31.78	19.17
6	VAL 32-S1	CR1:0.50-1.00	Sabbia con ghiaia limosa	32.85	14.39
7	VAL 32-51	CR2:2.00-3.00	Ghiaia con sabbia debolmente limosa		
8	VAL 33-S1	CR1:1.00-2.00	Ghiaia con sabbia debolmente limosa		
9	VAL 34-S1	CR1:0.50-1.00	Ghiaia con sabbia debolmente limosa		
10	VAL 36-S1	CR1:1.00-2.00	Ghiaia con sabbia debolmente limosa		
11	VAL 37-S1	CR1:0.50-1.00	Ghiaia con sabbia debolmente limosa		
12	VAL 38-S1	CR1:0.40-0.80	Ghiaia con sabbia debolmente limosa		
13		CR1:0.00-0.50	Sabbia con ghiaia debolmente limosa	32.62	14.5
14	VAL 40-S1	CR2:0.50-1.00	Ghiaia con sabbia		
15		CR3:2.00-2.50	Sabbia con limo ghiaiosa	31.8	16.13
16		CR1:0.00-0.50	Ghiaia con sabbia limosa		
17	VAL 43-S1	CR2:1.00-2.00	Ghiaia con sabbia debolmente limosa		
18		CR3:2.00-2.50	Sabbia ghiaiosa limosa	32.21	15.37

TECNOIN® GEOSOLUTIONS

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

N.I.		ld e profondità		Prova di taglio diretto	
N.	ld saggio	campioni (m) Classe granulometrica			c (kPa)
19		CR1:1.50-2.00	Ghiaia sabbiosa		
20	VAL 44-S1	CR2:2.00-3.00	Sabbia limosa debolmente ghiaiosa	31.59	14.68
21		CR3:3.00-4.00	Sabbia limosa	32,94	15.42
22	VAL 45-S1	CR1:0.00-0.60	Ghiaia con sabbia debolmente limosa		
23	VAL 46-S1	CR1:1.00-1.50	Ghiaia sabbiosa		
24	VAL 40-51	CR2:2.00-3.00	Sabbia debolmente limosa	34.27	14.13
25	\/AL 47 C1	CR1:0.00-0.50	Sabbia ghiaiosa limosa	32.59	14.53
26	VAL 47-S1	CR2:0.50-1.50	Ghiaia sabbiosa		
27	VAL 48-S1 CR1:1.50-2.00		Ghiaia con sabbia limosa		
28		CR1:0.50-1.00	Ghiaia con sabbia limosa		
29	VAL 49-S1	CR2:1.00-1.50	Sabbia con limo argillosa	29,90	18.05
30		CR3:1.50-2.00	Sabbia con limo argillosa	30.20	18.23
31	VAL 50-S1	CR1:1.00-2.00	Ghiaia sabbiosa		
32	VAL 50-PZ	PZ1:0.00-0.45	Sabbia con ghiaia debolmente limosa	33.82	13.37
33	\/AL E1 O1	CR1:0.10-0.30	Sabbia con ghiaia debolmente limosa	32.93	15.38
34	· VAL 51-S1	CR2:2.00-3.00	Sabbia con ghiaia debolmente limosa		

ROCCE

	ld saggio Id campioni		Prova point load	Prova compressione monoassiale			
N.		Indice di resistenza al carico puntuale corretto medio Is(50)	Resistenza a compressione qu (Mpa)	Modulo elastico tangente Et (GPa)	Modulo elastico secante Es (GPa)	Coefficiente di Poisson v	
1	VAL 31-S1	CL1	3.11				
2	VAL 34-S1	CL1	3.61				
3	VAL 35-S1	CL1	7.00				
4	VAL 39	CL1	4.14				
5	VAL 41	CL1		62.06	87.89	135.32	0.39
6	VAL 42	CL1	3.52				
7	VAL 45-S1	CL1	4.46				

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

9.3 Le prove penetrometriche

Al fine di fornire una valutazione delle caratteristiche geotecniche delle litologie costituenti i volumi fondali sono state effettuate prove penetrometriche per un totale di n. 36 prove.

Il numero di colpi, registrato nel corso delle prove, è stato convertito in corrispondenti valori di S.P.T. in modo da potere fornire il grado di addensamento (per i terreni incoerenti) o quello di consistenza (per i terreni coesivi) ai sensi della tab. 4.5 delle "Raccomandazioni AGI 1977" e, mediante correlazioni note in letteratura, calcolare i principali parametri geomeccanici, quali angolo d'attrito, densità relativa, coesione, peso di volume naturale, mediante l'utilizzo di un software dedicato GEOSTRU.

Più specificatamente sono state utilizzate le seguenti correlazioni:

- Dr (Densità relativa) formula di Meyerhof 1957
- Ø (Angolo d'attrito) formula di Meyerhof 1965
- Peso unità di volume (kN/m³) formula di Meyerhof ed altri
- Cu (Coesione non drenata) formula di Terzaghi-Peck 1948-1967

Per la visione di dettaglio si rimanda ai grafici ed ai tabulati allegati (ALL.3) ed ai paragrafi dedicati a ciascun sostegno, mentre, di seguito, si riporta una tabella riepilogativa di quanto effettuato, con indicazione della profondità raggiunta.

N.	ID sostegno	Profondità rifiuto strumentale (m)
1		5.60
2	VAL29	6.60
3		3.90
4		6.70
5	VAL30	10.00
6		10.60
7	VAL32	4.90
8		7.30
9		13.20
10	VAL33	11.10
11		2.50
12		3.00
13	VAL34	2.10
14	VAL04	0.90
15		7.10
16	VAL36	2.90
17		3.10

N.	ID sostegno	Profondità rifiuto strumentale (m)
18	VAL37	11.70
19	VALOT	4.30
20	VAL38	2.40
21	VALOO	3.30
22		1.10
23	VAL40	2.00
24		1.60
25		4.00
26	VAL46	7.20
27		3.80
28		4.80
29	VAL47	3.20
30		3.60
31	VAL48	3.40
32	VAL40	4.00
33	VAL50	5.90
34	VALOU	8.60
35	VAL51	1.50
36	VALOT	15.00

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

REFR19007C2050712

Rev. 00

Codifica Elaborato < Fornitore>:

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

I dati sono stati elaborati e raggruppati per intervalli omogenei alla penetrazione, per giungere alla definizione di un modello geotecnico, multistrato, del terreno interessato dalla realizzazione di ciascun sostegno.

Per ogni prova penetrometrica è stata elaborata una tabella riepilogativa (ALL.6) con indicazione dei seguenti parametri:

- profondità dal p.c. e spessore dello strato geotecnico
- Nspt medio
- Peso di volume (kN/m3)
- Dr (%)
- Ø (°)
- Cu (kPa)
- Classificaziione AGI
- Litologia

I valori di Nspt medio e dello stato di addensamento, come da classificazione AGI 1977 (tab 4.5), sono stati riportati su grafico in funzione della profondità del punto medio di ogni strato geotecnico individuato.

Di seguito se ne riporta un esempio relativo al sostegno VAL29.

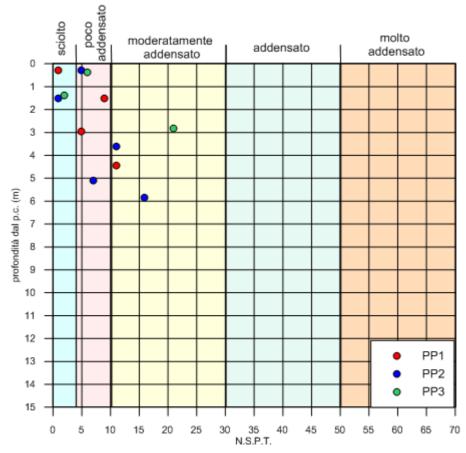


Figura 9.1: Grafico Nspt medio e stato di addensamento in funzione della profondità

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

L'elaborazione delle prove ha evidenziato casi in cui gli strati sono caratterizzati da resistenza alla penetrazione molto bassi, segnalati nella tabella di seguito riportata.

TABELLA PROVE CON VALORI DI N _{SPT} = 1				
ID ID sostegno Prova		Profondità dello strato (m)	Spessore dello strato (m)	
	PP1	0-0.60	0.60	
VAL29	PP2	0.60-2.40	1.80	
	PP3	0.80-2.00	1.20	
	PP2	2.90-9.20	6.30	
VAL30	PP3	3.00-4.80	1.80	
	PP3	5.90-9.20	3.30	
VAL32	PP2	2.60-3.50	0.90	
VAL32	PP3	2.50-13.00	10.50	
VAL34	PP1	0-0.80	0.80	
VAL34	PP2	0-0.60	0.60	
VAL36	PP1	2.60-6.20	3.60	
VAL37	PP1	4.10-9.20	5.10	
VAL38	PP1	0-1.30	1.30	
VAL36	PP2	0-1.20	1.20	
	PP1	0-1.00	1.00	
VAL40	PP2	0-1.40	1.40	
	PP3	0-1.20	1.20	
\/\\ \ \7	PP1	3.00-3.50	0.50	
VAL47	PP2	0-0.70	0.70	
VAL48	PP1	0-0.70	0.70	
VAL40	PP2	1.00-3.20	2.20	
VAL50	PP2	0-1.20	1.20	
VAL51	PP1	0-0,60	0.60	
VALUI	111	11.00-14.40	3.40	

Pertanto, in tali casi, si raccomanda di verificare la possibilità di eventuali cedimenti indotti dai carichi dell'opera.

RELAZIONE GEOLOGICA E GEOTECNICA

 Codifica Elaborato Terna:
 Codifica Elaborato < Fornitore>:

 REFR19007C2050712
 Rev. 00
 R.C. 250/20_Lattari_GV/20
 Rev. 00

9.4 Le misure di resistività dei terreni

Come richiesto dalla Committente è stata misurata la resistività dei terreni attraversati dall'elettrodotto nei punti individuati per la realizzazione di nuovi sostegni.

La maggior parte delle rocce presenta caratteristiche di conducibilità di tipo elettrolitico dato che, con le eccezioni di alcuni minerali metallici, quasi tutti i minerali sono isolanti.

La conducibilità è dovuta, quindi, essenzialmente all'acqua interstiziale ed è in larga misura funzione della porosità, del contenuto d'acqua e della quantità di sali disciolti nell'acqua.

La presenza di fluidi nel sottosuolo fa si che rocce e terreni, attraversati dalla corrente, si comportino relativamente come dei buoni conduttori di elettricità; al contrario le strutture con scarso contenuto di fluidi, come rocce asciutte non fratturate e cavità naturali o di natura antropica, si comportano come dei cattivi conduttori di corrente, se non addirittura come degli isolanti.

Pertanto, le geometrie sepolte rispondono al flusso di corrente artificiale, immessa con diverse modalità, in funzione del parametro fisico che regola tale comportamento: la resistività elettrica ρ (Ohm*m).

La resistività è una proprietà assai variabile, anche all'interno della stessa formazione litologica; ciò è particolarmente vero per i materiali poco consolidati prossimi alla superficie, come detriti e regolite (suolo).

Di seguito, sono forniti alcuni valori indicativi della resistività di rocce e sedimenti. In particolare, si osserva come, per molti litotipi, i valori di resistività spesso si sovrappongono.

Inoltre, per un dato tipo di materiale, esiste un ampio range di variabilità del valore di resistività, a seconda che esso risulti secco o bagnato.

Natura del terreno	Resistività (Ohm*m)
Terreno paludoso	da 0 a 30
Terreno vegetale	da 10 a 150
Torba umida	da 5 a 100
Terreno calcareo o argilla compatta	da 100 a 200
Sabbia argillosa	da 50 a 500
Sabbia silicea	da 200 a 3.000
Deposito cementato affiorante	da 1.500 a 3.000
Deposito cementato con suolo sovrastante	da 300 a 500
Calcare fratturato	da 100 a 300
Calcare compatto	da 1.000 a 5.000
Granito	da 1.500 a 10.000
Granito alterato	da 100 a 600

Figura 9.2: Valori sperimentali della resistività delle più comuni rocce, suoli e minerali.

TECNOIN® GEOSOLUTIONS

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna: Codifica Elaborato Codifica Elaborato Fornitore:

REFR19007C2050712

Rev. 00

Rev. 00

Rev. 00

Di seguito si riporta una tabella riepilogativa dei valori misurati in campo.

N.	ID Sostegno	Resistività del terreno (Ohm*m)
1	VAL 29	255
2	VAL 30	103
3	VAL 31	936
4	VAL 32	44
5	VAL 33	140
6	VAL 34	428
7	VAL 35	392
8	VAL 36	69
9	VAL 37	110
10	VAL 38	55
11	VAL 39	1114
12	VAL 40	931
13	VAL 41	1654
14	VAL 42	2329
15	VAL 43	322
16	VAL 44	205
17	VAL 45	1700
18	VAL 46	809
19	VAL 47	461
20	VAL 48	104
21	VAL 49	236
22	VAL 50	350
23	VAL 51	512

TECNOIN® GEOSOLUTIONS

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20 Lattari GV/20

Rev. 00

9.5 Le indagini sismiche

Sono state effettuate indagini geofisiche sismiche per l'analisi del profilo verticale delle velocità delle onde di taglio finalizzata alla determinaziome della categoria sismica del sottosuolo.

Considerata la logistica dei siti, le misurazioni sono state eseguite mediante un tromografo, con la tecnica di acquisizione passiva basata sul rapporto tra le ampiezze spettrali medie del rumore ambientale, misurato nelle componenti orizzontale (H) e verticale (V) del moto. L'andamento di tale rapporto spettrale, detto funzione HVSR (Horizontal to Vertical Spectral Ratio), è in grado di fornire indicazioni sulle caratteristiche dinamiche del sottosuolo del sito indagato ed è anche alla base del cosiddetto "metodo Nakamura".

Pertanto, la determinazione della V_{seq}, per ciascun sito, è stata effettuata mediante un processo d'inversione dei dati inserendo, in input, il profilo stratigrafico sintetico.

Tale operazione si basa sul presupposto che il rapporto spettrale H/V medio, dopo opportune operazioni di tapering e/o lisciamento, può ritenersi una valida approssimazione dell'ellitticità del modo fondamentale della propagazione delle onde di Rayleigh. Come accennato in precedenza, è stata dunque effettuata una procedura di inversione che ha consentito la definizione del profilo stratigrafico in termini di spessori e velocità dei singoli strati e di conseguenza l'identificazione della V_{seq} .

Nei casi in cui la curva del rapporto spettrale, unitamente agli altri rilievi e indagini, restituiva una condizione stratigrafica definita, il profilo è stato approssimato con un numero di strati pari a tre; nei casi in cui la stratigrafia risultava più articolata, è stato ipotizzato un numero di strati compreso tra quattro e sei.

In tal modo, avvalendosi dell'approccio semplificato riportato nelle "Norme Tecniche per le Costruzioni", approvate con Decreto Ministeriale 17 gennaio 2018, è stata indicata la categoria sismica del sottosuolo (si veda il par. 3.2.2).

Le misurazioni sono state eseguite avvalendosi di un tromografo marca AMBROGEO modello Echo Tromo Hvsr 3, avente le seguenti caratteristiche:

- Convertitore A/D: risoluzione 24 bit;
- Range dinamico: 130 dB@ 1 ms PG = 0 dB oppure 120 dB@ 1 ms PG = 18 dB;
- Cross talk: > 90 dB;
- Preamplify gain: 1-2-4-8-16-32;
- Distorsione (THD): 0.0004%;
- Intervalli di campionamento: 12.8-6.4-3.2-2.4-1.6-0.8 ms;
- Delay: da 0 a 100 sec;
- Range massimo segnale in ingresso: 1Vpp, 0 dB;
- Noise: 0.25 uV, 2 ms 36 dB;
- Formato dei dati: SEG-Y / SAF (SESAME ASCII FORMAT).

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

Figura 9.3 - Indagini sismiche. Tromografo AMBROGEO Echo Tromo Hvsr 3

I dati sono stati elaborati attraverso l'utilizzo dei software WINMASW distribuito dalla Eliosoft e del software EASY HVSR distribuito dalla Geostru e restituiti attraverso un foglio di calcolo per ciascun sostegno (ALL. 7).

Di seguito si riporta una tabella di sintesi dei risultati ottenuti; sono indicate anche le categorie di suolo per la cui trattazione di dettaglio si rimanda al paragrafo dedicato.

N.	ID Sostegno	Vs _{eq} (m/s)	Categoria di suolo (metodo semplificato NTC 2018)
1	VAL 29	302	Е
2	VAL 30	248	E
3	VAL 31	>800	А
4	VAL 32	256	E
5	VAL 33	284	E
6	VAL 34	305	Е
7	VAL 35	235	E
8	VAL 36	220	Е
9	VAL 37	259	Е
10	VAL 38	>800	А
11	VAL 39	>800	А
12	VAL 40	>800	А
13	VAL 41	>800	А
14	VAL 42	>800	А
15	VAL 43	419	В
16	VAL 44	303	E
17	VAL 45	256	Е
18	VAL 46	248	Е
19	VAL 47	224	Е
20	VAL 48	142	Е
21	VAL 49	477	В
22	VAL 50	214	E
23	VAL 51	210	Е

TECNOIN® GEOSOLUTIONS

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

9.6 Le video riprese con Drone

Sono state effettuate video riprese con drone Skyrobotic APR SF6 ad ala rotante da utilizzare come vettore per il trasporto della camera RGB SONY QX100, al fine di documentare lo stato dei luoghi, con particolare riferimento a quelli meno facilmente accessibili per copertura boschiva e/o pendenze elevate e/o assenza di sentieri, con uno sguardo attento verso alcuni aspetti quali la morfologia dei versanti, gli indizi di instabilità, la presenza di anomalie fisiografiche o geostrutturali, la copertura incoerente.

Le immagini più significative sono state inserite nei fascicoli dedicati ad ogni singolo sostegno e forniti in allegato (ALL.1).

Di seguito alcuni esempi del repertorio fotografico.

VAL 35

TECNOIN

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna:

Codifica Elaborato < Fornitore>:

REFR19007C2050712

Rev. 00

R.C. 250/20_Lattari_GV/20

Rev. 00

VAL 35

RELAZIONE GEOLOGICA E GEOTECNICA

Codifica Elaborato Terna: Codifica Elaborato <*Fornitore*>:

REFR19007C2050712 Rev. 00 R.C. 250/20_Lattari_GV/20 Rev. 00

10 SINTESI DEI RISULTATI

Per ogni sostegno è stato redatto un fascicolo con la sintesi dei risultati delle ricerche documentali e delle indagini in situ.

Tali fascicoli sono allegati alla presente relazione (ALL.1).

Napoli, Gennaio 2021

Tecno In S.p.A.

Dott. Geol. Lucio Amato