

REGIONE AUTONOMA FRIULI VENEZIA GIULIA

DIREZIONE CENTRALE INFRASTRUTTURE, MOBILITA', PIANIFICAZIONE TERRITORIALE E LAVORI PUBBLICI

SOGGETTO DELEGATARIO:

PROGETTAZIONE:

S.p.A. AUTOVIE VENETE

34123 TRIESTE - Via V. Locchi, 19 - tel. 040/3189111 Società soggetta all'attività di direzione e coordinamento da parte di Friulia S.p.A. - Finanziaria Regionale Friuli-Venezia Giulia

CONCESSIONARIA AUTOSTRADE A4 VENEZIA - TRIESTE A23 PALMANOVA - UDINE A28 PORTOGRUARO - CONEGLIANO

COLLEGAMENTO TRA LA S.S. 13 PONTEBBANA E LA A23 TANGENZIALE SUD DI UDINE (II LOTTO)

AGGIORNAMENTO PROGETTO DEFINITIVO dd.14.12.2006

TEMATICA OPERE D'ARTE MINORI Opera n°32: Allargamento ponticello esistente Aggiornamento relazione tecnica e di calcolo N. ALLEGATO e SUB.ALL. 3 2 1 30/08/12 | EMISSIONE DF FA EP **VERIFICATO APPROVATO** REV. DATA DESCRIZIONE **REDATTO** COORDINAMENTO E PROGETTAZIONE GENERALE: IL CAPO COMMESSA: dott. ing. Edoardo PELLA S.p.A. AUTOVIE VENETE: dott. ing. Edoardo PELLA IL DIRETTORE DELL'AREA OPERATIVA: dott. ing. Stefano DI SANTOLO dott. ing. Eprico PROGETTAZIONE SPECIALISTICA: Strutture: dott. ing. Francesco ALESSANDRINI IL RESPONSABILE UNICO DEL PROCEDIMENTO: DATA PROGETTO: NOME FILE: 1207H1401100.doc 30.08.2012 1207H1401100.pdf

CODICE MASTRO

N.PROGETTO REVISIONE

INDICE

1. NOTE GENERALI SULLE ANALISI	2
1.1. DURABILITÀ	
2. CALCOLO SOMMARIO DELL'IMPALCATO	
2.1. ANALISI SOMMARIA DEI CARICHI	د
2.1.1. CARICHI MOBILI VERTICALI	
2.1.2. FRENAMENTO	
2.1.3. VENTO	
2.1.4. URTO CONTRO IMPALCATO	
2.1.5. AZIONE INERZIALE SISMICA	
2.2. ANALISI E VERIFICA DELL'IMPALCATO	4
2.2.1. VERIFICA A FLESSIONE (SLE)	7
2.2.2. TABULATO DI INPUT DELL'ANALISI	<u>C</u>
2.2.3. TABULATO DI VERIFICA DELLA TRAVE (FASE FINALE)	19
2.2.4. VERIFICA DELLA SOLETTA DI IMPALCATO	24
2.2.5. VERIFICA PER AZIONI D'URTO	25
2.2.5.1. Urto contro le barriere di sicurezza	25
2.2.6. CONSIDERAZIONI SUI DISPOSITIVI DI VINCOLO	
O OALOGIO COMMADIO DELLA ODALLA "A"	0.0
3. CALCOLO SOMMARIO DELLA SPALLA "A"	
3.1. AZIONI DIRETTE VERSO IL CANALE	
3.2. AZIONI DIRETTE VERSO IL TERRAPIENO	
3.3. VERIFICHE DI RESISTENZA DELL'ELEVAZIONE	28
3.3.1. VERIFICHE DI RESISTENZA DELLA SOLETTA DI FONDAZIONE	28
3.3.2. VERIFICHE GEOTECNICHE	
4. CALCOLO SOMMARIO DELLA SPALLA "B"	27
4 CALCULO SUMMAKIO DELLA SPALLA "B"	

1. NOTE GENERALI SULLE ANALISI

Il dimensionamento degli elementi strutturali dell'opera in esame è stato condotto, in sede di progettazione definitiva, ai sensi del D.M. 16.01.1996 e dell'O.P.C.M. 3274/03 e succ. modif. ed integrazioni.

L'entrata in vigore delle "Nuove norme tecniche per le costruzioni", di cui al D.M. 14.01.2008 ha modificato in parte l'entità dei carichi di progetto, così come la modalità di esecuzione di alcune verifiche di sicurezza.

Nel seguito si evidenziano i principali aspetti interessati da queste modifiche, e come queste incidano su quanto già dimensionato e verificato.

In particolare si assume per gli elementi strutturali in esame:

Vita nominale 50 anni Classe d'uso IV

Nel seguito sono evidenziati in rosso le grandezze modificate rispetto quanto previsto nella relazione di calcolo.

1.1. DURABILITÀ

Al fine di garantire i requisiti di durabilità i materiali previsti dovranno avere le seguenti caratteristiche:

Calcestruzzo delle strutture di fondazione	C25/30	XC2
Calcestruzzo delle elevazioni delle spalle	C32/40	XC3
Calcestruzzo delle travi prefabbricate	C45/55	XC3

Calcestruzzo della soletta di impalcato C32/40 XF4
Calcestruzzo per cordoli e velette C32/40 XC4 - XF4

Acciaio da c.a. B 450 C

Acciaio da c.a.p. in trefoli a basso rilassamento

Acciaio da carpenteria S 355 J2

2. CALCOLO SOMMARIO DELL'IMPALCATO

Si riporta nel seguito l'analisi strutturale dell'impalcato in travi prefabbricate in c.a.p., e le verifiche della trave maggiormente sollecitata.

L'analisi è condotta col programma di calcolo ENG 8.3 della SigmaC Soft, modulo "Ponti", che permette l'analisi di impalcati da ponte realizzati affiancando travi prefabbricate e collegate in seconda fase da una soletta in c.a., aventi schema statico di asta su 2 appoggi.

2.1. ANALISI SOMMARIA DEI CARICHI

2.1.1. Carichi mobili verticali

Le azioni previste dal D.M. 14.01.2008 (nel seguito NTC08) sono, per il caso in esame:

Corsia 1 carico tandem $Q_{1k} = 600 \text{ kN su 4 impronte}$

Stesa uniforme $q_{1k} = 9 \text{ kN/mq}$

Corsia 2 carico tandem $Q_{2k} = 400 \text{ kN su 4 impronte}$

Stesa uniforme $q_{2k} = 2.5 \text{ kN/mq}$

Corsia 3 carico tandem $Q_{2k} = 200 \text{ kN su 4 impronte}$

Stesa uniforme $q_{2k} = 2.5 \text{ kN/mq}$

Spazio restante Stesa uniforme $q_{rtk} = 2.5 \text{ kN/mq}$

Nel caso specifico si focalizza l'attenzione solo nella zona in allargamento, che impegna una larghezza complessiva di circa 6m: si considerano quindi solo le prime 2 corsie.

2.1.2. Frenamento

L'azione di frenamento è pari a:

 $Q_{3,NTC08} = 0.6*600 + 0.1*9*3*9.2 = 385 \text{ kN}$

L'azione centrifuga è pari a:

 $Q_{4,NTC08} = 0.2*Q_v = 0.2*(600+400) = 200 \text{ kN}$

2.1.3. Vento

L'azione del vento calcolata secondo quanto previsto dalle NTC08 è pari a:

Zona 1 $q_b = 0.39 \text{ kN/mq}$

Classe di rugosità D Classe di esposizione II

Coefficiente di esposizione Ce(z=10m) = 2.35

Coefficiente di forma Cp = 1.4 (travi isolate, $\phi=1$)

Q = 0.39*2.35*1.4 = 1.28 kN/mq

Altezza "parete" = H = 0.65+0.25+0.1+3.0 = 4.0m

Qv = 4.0*1.28 = 5.2 kN/m

2.1.4. Urto contro impalcato

L'impalcato permette lo scavalco di un canale: non è quindi prevista la possibilità di urto contro l'impalcato. Va considerata invece la possibilità di urto contro i dispositivi di ritenuta posti all'estradosso del ponte; l'azione è di 100 kN, applicata al singolo montante, ad un'altezza dal piano viario pari al minimo tra 1.00m e l'altezza massima della barriera.

2.1.5. Azione inerziale sismica

L'azione sismica legata all'inerzia dell'impalcato dipende dal comportamento del sistema terreno-spalla-impalcato.

Nel caso in esame l'impalcato è vincolato longitudinalmente ad una spalla, e trasversalmente ad entrambe. Il comportamento di insieme è sostanzialmente rigido, e si può assumere che la struttura si muova assieme al terreno: la pseudoaccelerazione di progetto è quindi calcolata per q=1, ed è pari ad a_{max} (=0.270g) in direzione trasvresale, mentre in direzione longitudinale si tiene conto della minima flessibilità della spalla.

2.2. ANALISI E VERIFICA DELL'IMPALCATO

Si riportano nel seguito i risultati dell'analisi dell'impalcato, condotto col programma di calcolo ENG 8.3 "Ponti", software che permette la modellazione di impalcati da ponte in travi prefabbricate affiancate, collegate con getto di seconda fase, in cui la ripartizione trasversale è stimata col metodo di Massonet.

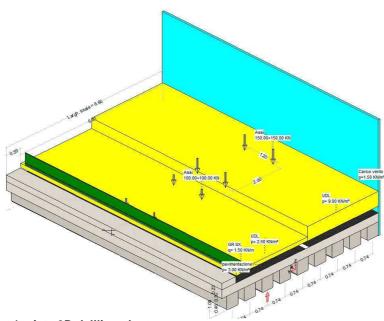


Figura 1: vista 3D dell'impalcato

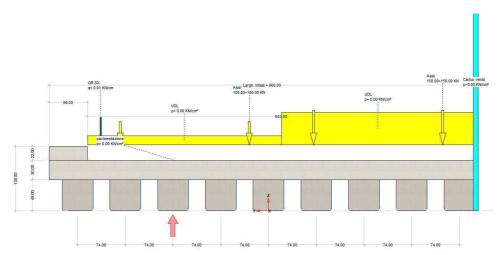


Figura 2: sezione trasvresale dell'impalcato, con evidenziata la trave più sollecitata (oggetto di verifica)

I principali risultati dell'analisi sono riportati nelle figure seguenti.

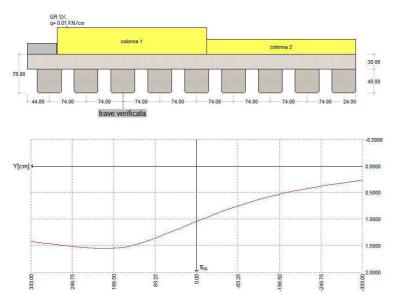


Figura 3: diagramma di ripartizione trasvresale – coefficienti di Massonet

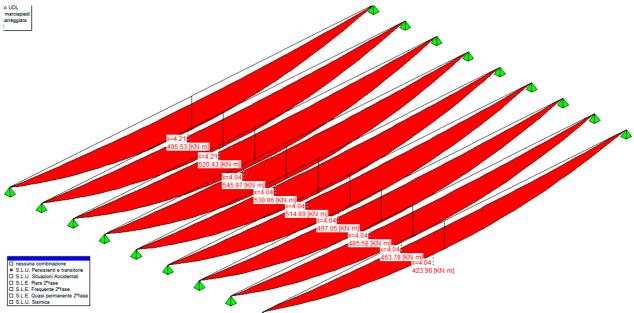


Figura 4: diagramma momento flettente nelle travi, in [kNm], valutato allo SLU

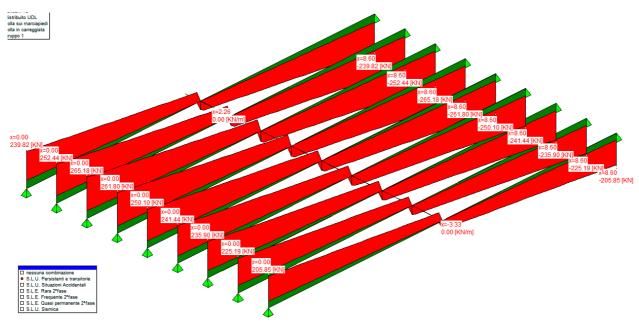


Figura 5: diagramma del taglio nelle travi, espresso in [kN], valutato allo SLU

La trave maggiormente sollecitata è la n. 7, evidenziata nelle figure precedenti. Si riportano nel seguito i principali risultati delle verifiche condotte nelle diverse combinazioni di carico.

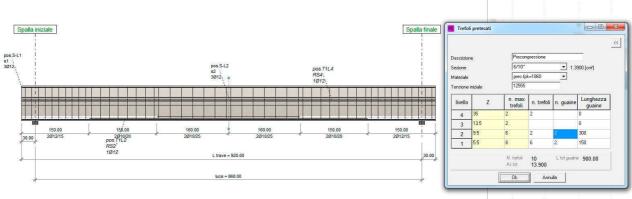


Figura 6: sezione longitudinale della trave, con evidenziati i trefoli presenti

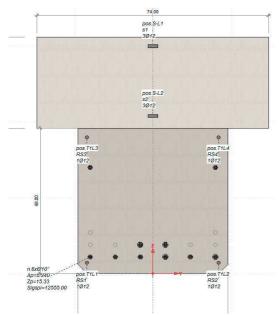


Figura 7: sezione trasvresale della trave, in mezzeria

2.2.1. Verifica a flessione (SLE)

Si riportano nei grafici seguenti le verifiche delle sezioni della trave in esame.

Figura 8: fase 1 – taglio dei trefoli. Tensioni all'intradosso della trave [kN/mq]

Figura 9: fase 1 – taglio dei trefoli. Tensioni all'estradosso della trave [kN/mq]

Figura 10: SLE, c.c. Quasi permanente – tensione all'intradosso della trave

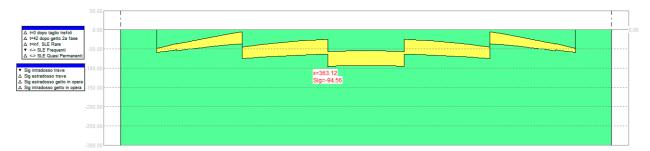


Figura 11: SLE, c.c. Frequente – tensione all'intradosso della trave

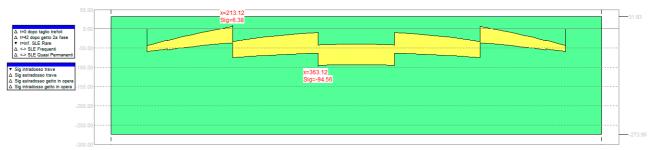


Figura 12: SLE, c.c. Rara – tensione all'intradosso della trave

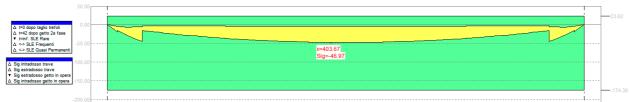


Figura 13: SLE, c.c. Rara – tensione all'estradosso della soletta

Figura 14: SLE, c.c. Rara – spostamento verticale [cm]

Le verifiche allo Stato Limite Ultimo portano ad avere i seguenti risultati:

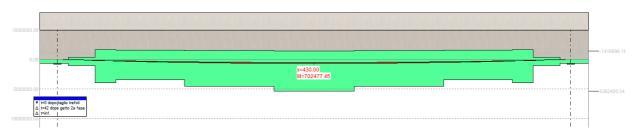


Figura 15: SLU, in fase iniziale (taglio trefoli) – verifica flessionale [kNm]

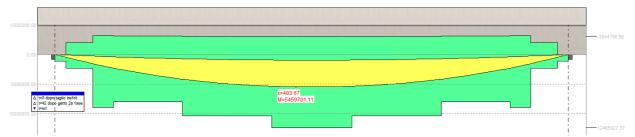


Figura 16: SLU, in fase finale – verifica flessionale [kNm]

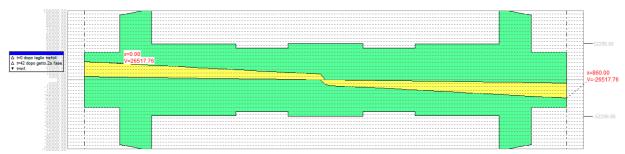


Figura 17: SLU, in fase finale - verifica a taglio [kN]



Figura 18: SLU, in fase finale - verifica combinata a taglio+torsione

Le verifiche risultano quindi soddisfatte; le caratteristiche di armatura della trave esaminata sono mantenute poi per tutte le travi dell'impalcato.

Si riporta nel seguito il tabulato di input dell'analisi ed il tabulato di verifica della trave.

2.2.2. Tabulato di input dell'analisi

AESSE Tangenziale Udine Sud Opera 32

Archivio: Z:\disk_r\1800_1899\1849_Udine Sud\2.Definitivo\Relazioni lavoro\Materiale calcolo\opera 32\impalcato.SIG Data di stampa: 19/10/2012 alle: 13:44:20 CodDoc: SIGMAC ed. 8.3 - 07/2012 - SIGMAc SOFT - programma calcolo ponti Unità correnti: lunghezza= m forza= KN

Dati impalcato

Tipo di impalcato: travi in c.a.p. più soletta collaborante

Dati geometrici	
Luce di calcolo	8.60
Larghezza cordolo sinistro	0.59
Larghezza carreggiata	6.01
Larghezza cordolo destro	0.00
Larghezza fuori tutto impalcato	6.60
Numero travi	9
Tipo trave	H40-*modif.*
Interasse travi	0.74
Larghezza travi	0.48
Lunghezza retrotrave	0.30
Lunghezza ringrosso	0.00
Lunghezza svasatura	0.00
Eccenticità travi-soletta	0.10
Spessore medio soletta	0.30
Spessore minimo soletta	0.30
Luce di calcolo soletta	0.36
Larghezza marciapede sinistro	0.00
Dist. marciapiede sinistro	0.00
Larghezza marciapede destro	0.00
Dist. marciapiede destro	0.00
Spessore medio cordoli	0.22

Trave prefabbricata H40-*modif.*	
Altezza della sezione	0.48
Spessore complessivo anime	7000.00
Area sezione di calcestruzzo	0.23
Ordinata y baricentro	0.24
Ascissa x baricentro	0.00
J baricentro	0.00
Coefficiente torsionale	0.01

Parametri dei materiali

Ritiro differenziale trave - soletta	0.00000
Coeff. omogen. E cls soletta / E cls trave	1.00
E trave/soletta (calcolo frecce)	3E7
Peso specifico trave prefabbricata	24.5250
Peso specifico calcestruzzo getto in opera	24.5250

Normativa di riferimento

DM 14/01/2008 - Norme tecniche per le costruzioni

Carichi applicati Carichi permanenti Distribuiti uniformi

Peso unitario pavimentazione = 3.00 [KN/m²] Peso totale pavimentazione = 155.06 [KN] Peso dei cordoli

	peso lineare [KN/m]	peso totale [KN]
cordolo sinistro	3.18	27.38

Peso totale cordoli = 27.38 Carichi lineari di 2a fase sull'impalcato (extra2)

n.	Descrizione	[KN/m]	Ecc. Y	X'i	Rif.X'i	X'f	Rif.X'f
1	GR SX	1.50	2.60	-0.30	Appoggio iniziale	-0.30	Appoggio finale

Carichi mobili

Categoria ponte : Stradale la categoria

Numero assi per corsia: 2

corsia	Nome	carico asse Q	р	α _Q	α _q
1	Corsia 1	300.00	9.00	1.00	1.00
2	Corsia 2	200.00	2.50	1.00	1.00
3	Corsia 3	100.00	2.50	1.00	1.00

Carico folla sui marciapiedi= $5.00~[KN/m^2]$ Coefficienti di combinazione Stati Limite Ultimi

	γ _{sup} .	Yinf.	
Coeff. sicurezza carichi permanenti strutturali	1.35	1.00	
Coeff. sicurezza carichi permanenti non strutturali	1.50	0.00	
Coeff. sicurezza carichi traffico	1.35	0.00	
Coeff. sicurezza carichi vento	1.50	0.00	

Stati Limite di Esercizio

Stati Bimite di Esercizio				
Carico	Ψ ₀	Ψ1	V ₂	
LM1/UDL	0.40	0.40	0.00	
LM1/TS	0.75	0.75	0.00	
forze orizzontali	0.00	0.00	0.00	
carico pedonale	0.00	0.00	0.00	
LM4 folla	0.00	0.75	0.00	
LM3	0.00	0.00	0.00	
asse singolo LM2	0.00	0.75	0.00	
vento	0.60	0.20	0.00	
termico	0.60	0.60	0.50	

Metodo di Massonnet

L	8.60
В	3.33
L1	1.00
B1	0.74
Ap	0.4495
Dp	0.43
Jp	0.023032
Ср	0.009233
Ae	0.3000
De	0.15
Je	0.002250
Ce	0.002250
Teta	0.747
Radice alfa	0.938

Coefficienti di Massonnet

 0.83
 0.00

 1.671
 1.184

 1.340
 1.034

 1.361
 1.043
 -0.83 -1.67 -2.50 -3.33 0.683 0.244 -0.137 0.414 -0.495 0.320 0.753 0.533 0.380

Y=	3.33	2.50	1.67	0.83	0.00	-0.83	-1.67	-2.50	-3.33
	-0.037	-0.029	-0.015	0.020	0.104	0.020	-0.015	-0.029	-0.037

Applicazione dei carichi alla trave

-TF		
Lunghezza trave in asse	9.20	[m]
Peso trave (sezione filante)	5.63	[KN/m]
Peso totale trave prefabb.	51.78	[KN]
Peso soletta gravante sulla trave	5.44	[KN/m]
Peso pavimentazione sulla trave	1.96	[KN/m]

Striscie per calcolo effetti pavimentazione e folla in carreggiata :

striscia	ecc. Y	Larghezza	K Massonnet
1	2.66	0.30	1.497
2	2.36	0.30	1.528
3	2.06	0.30	1.551
4	1.76	0.30	1.557
5	1.46	0.30	1.531
6	1.16	0.30	1.465
7	0.86	0.30	1.369
8	0.56	0.30	1.258
9	0.26	0.30	1.142
10	-0.04	0.30	1.026
11	-0.35	0.30	0.916
12	-0.65	0.30	0.812
13	-0.95	0.30	0.718
14	-1.25	0.30	0.634
15	-1.55	0.30	0.560
16	-1.85	0.30	0.494

striscia	ecc. Y	Larghezza	K Massonnet
17	-2.15	0.30	0.437
18	-2.45	0.30	0.388
19	-2.75	0.30	0.344
20	-3.05	0.30	0.304

Fase 2: carichi lineari

n.	Descrizione	[KN/m]	Ecc. Y	K Massonnet	□ Massonnet
1	GR SX	1.500	2.60	1.504	-0.030

peso cordoli

Descrizione	[KN/m]	Ecc. Y	K Massonnet	□ Massonnet
cordolo sinistro	3.183	3.10	1.449	-0.035

Disposizione carichi mobili per massimo effetto sulla trave 7

Descrizione	Q.□ [KN]	q.□ [KN/m]	Ecc. Y	Larghezza	Ka
Corsia 1	300.00	27.00	1.30	3.00	1.501
Corsia 2	200.00	7.50	-1.70	3.00	0.525
Zona Rimanente	0.00	0.02	2.81	0.01	1.481

Disposizione carichi mobili per calcolo M max su traverso (sez. Y=0)

Carichi non presenti Disposizione carichi mobili per calcolo M min su traverso (sez. Y=0) Sollecitazioni sulla trave n. 7 Valori caratteristici sollecitazioni Al taglio trefoli ed in opera

Sez.X	Descrizione	peso trave		peso soletta+traversi	
		М	v	м	v
0.00	appoggio	0.00	24.20	0.00	23.41
1.50		29.95	15.76	28.97	15.24
3.00		47.27	7.32	45.73	7.08
4.30	mezzeria	52.04	0.00	50.33	0.00
4.50		51.90	-1.13	50.21	-1.09
6.00		43.89	-9.57	42.45	-9.26
6.55	mezzeria	37.77	-12.66	36.54	-12.25
7.50		23.20	-18.01	22.44	-17.42
8.60	appoggio	0.00	-24.20	0.00	-23.41

Seconda fase - carichi permanenti

Sez.X	Descrizione	peso cordoli			
		М	v	T	
0.00	appoggio	0.00	2.20	2.63	
1.50		2.73	1.43	2.19	
3.00		4.30	0.67	1.12	
4.30	mezzeria	4.74	0.00	0.00	
4.50		4.73	-0.10	-0.18	
6.00		4.00	-0.87	-1.44	
6.55	mezzeria	3.44	-1.15	-1.85	
7.50		2.11	-1.64	-2.39	
8.60	appoggio	0.00	-2.20	-2.63	

Sez.X	Descrizione	permanenti por	permanenti portati		
		М	v	T	
0.00	appoggio	0.00	9.49	-0.12	
1.50		11.74	6.18	-0.11	
3.00		18.54	2.87	-0.07	
4.30	mezzeria	20.40	0.00	0.00	
4.50		20.35	-0.44	0.01	
6.00		17.21	-3.75	0.09	
6.55	mezzeria	14.81	-4.97	0.10	
7.50		9.10	-7.06	0.11	
8.60	appoggio	0.00	-9.49	0.12	

Seconda fase - carichi da traffico

Sez.X	Descrizione	Tandem-TS				
		м	v	T		
0.00	appoggio	0.00	114.80	-13.43		
1.50		139.81	93.28	-13.13		
3.00		215.22	71.75	-9.67		
4.30	mezzeria	228.31	-53.10	-4.73		
4.50		229.36	-55.97	6.02		
6.00		201.41	-77.49	8.24		
6.55	mezzeria	174.94	-85.38	8.16		
7.50		108.83	-99.02	18.09		
8.60	appoggio	0.00	-114.80	13.43		

Sez.X	Descrizione	Distribuito-UDL				
		M	v	T		
0.00	appoggio	0.00	21.26	-1.59		
1.50		26.31	14.49	-0.45		
3.00		41.53	9.02	-0.85		
4.30	mezzeria	45.71	3.93	-1.22		
4.50		45.60	-5.82	1.22		
6.00		38.56	-10.35	0.62		
6.55	mezzeria	33.18	-12.34	0.37		
7.50		20.38	-16.17	0.76		
8.60	appoggio	0.00	-21.26	1.59		

Sez.X	Descrizione	Folla marciapi	Folla marciapiedi		
		M	v	T	
0.00	appoggio	0.00	0.00	0.00	
1.50		0.00	0.00	0.00	
3.00		0.00	0.00	0.00	
4.30	mezzeria	0.00	0.00	0.00	
4.50		0.00	0.00	0.00	

Sez.X	Descrizione	Folla marciapi	Folla marciapiedi			
		м	v	T		
6.00		0.00	0.00	0.00		
6.55	mezzeria	0.00	0.00	0.00		
7.50		0.00	0.00	0.00		
8.60	appoggio	0.00	0.00	0.00		

Sez.X		gruppol (tab. 5.1.IV)				
		М	v	T		
0.00	appoggio	0.00	136.07	-15.02		
1.50		166.12	107.77	-13.58		
3.00		256.75	80.77	-10.52		
4.30	mezzeria	274.03	-49.17	-5.95		
4.50		274.96	-61.79	7.24		
6.00		239.97	-87.84	8.87		
6.55	mezzeria	208.12	-97.72	8.53		
7.50		129.21	-115.19	18.86		
8.60	appoggio	0.00	-136.07	15.02		

Valori di combinazione Combinazioni SLU Al taglio dei trefoli
$$\begin{split} & E_{d} \ = \ E \left\{ \begin{array}{l} \gamma_{\text{G1,sup}} \! \cdot \! \text{G1}_{k,1} \end{array} \right\} \\ & E_{d} \ = \ E \left\{ \begin{array}{l} \gamma_{\text{G1,inf}} \! \cdot \! \text{G1}_{k,1} \end{array} \right\} \end{split}$$

Sez.X	Descrizione	M	v
0.00	appoggio	0.00	32.67
1.50		40.43	21.28
3.00		63.82	9.88
4.30	mezzeria	70.25	0.00
4.50		70.07	-1.52
6.00		59.25	-12.92
6.55	mezzeria	50.99	-17.10
7.50		31.32	-24.32
8.60	appoggio	0.00	-32.67

 $\begin{array}{lll} \text{Al getto soletta} \\ E_{\text{d}} = E \left\{ \begin{array}{ll} \Sigma \ \gamma_{\text{Gl},\text{sup}} \cdot \text{Gl}_{k,i} \ + \ \Sigma \ \gamma_{\text{G2},\text{sup}} \cdot \text{G2}_{k,i} \end{array} \right\} \\ E_{\text{d}} = E \left\{ \begin{array}{ll} \Sigma \ \gamma_{\text{Gl},\text{inf}} \cdot \text{Gl}_{k,i} \ + \ \Sigma \ \gamma_{\text{G2},\text{inf}} \cdot \text{G2}_{k,i} \end{array} \right\} \end{array}$

Sez.X	Descrizione	М	v	
0.00	appoggio	0.00	64.28	
1.50		79.54	41.86	
3.00		125.55	19.43	
4.30	mezzeria	138.20	0.00	
4.50		137.85	-2.99	
6.00		116.56	-25.41	
6.55	mezzeria	100.31	-33.63	
7.50		61.62	-47.84	
8.60	appoggio	0.00	-64.28	

Seconda fase P/T

Sez.X	Descrizione	м	v	T
0.00	appoggio	0.00	265.18	-17.65
1.50		325.10	198.55	-16.15
3.00		505.77	133.67	-13.08
4.30	mezzeria	545.14	-66.38	-8.03
4.50		545.95	-87.21	9.60
6.00		471.73	-150.80	10.53
6.55	mezzeria	408.14	-174.56	9.67
7.50		252.56	-216.15	23.07
8.60	appoggio	0.00	-265.18	17.65

 $\begin{array}{ll} \text{Combinazioni SLE} \\ \text{Al taglio dei trefoli} \\ \text{E}_{\text{d}} = \text{E} \big\{ \text{ Gl}_{\text{k,1}} \big\} \\ \end{array}$

Sez.X	Descrizione	M	v	
0.00	appoggio	0.00	24.20	
1.50		29.95	15.76	
3.00		47.27	7.32	
4.30	mezzeria	52.04	0.00	
4.50		51.90	-1.13	
6.00		43.89	-9.57	
6.55	mezzeria	37.77	-12.66	
7.50		23.20	-18.01	
8.60	appoggio	0.00	-24.20	

Al getto soletta $\mathtt{E}_{\mathtt{d}} \; = \; \mathtt{E} \left\{ \; \; \Sigma \; \; \mathtt{G1}_{\mathtt{k,i}} \; \; + \; \; \Sigma \; \; \mathtt{G2}_{\mathtt{k,i}} \; \; \right\}$

Sez.X	Descrizione	M	v
0.00	appoggio	0.00	47.61
1.50		58.92	31.00
3.00		93.00	14.39
4.30	mezzeria	102.37	0.00
4.50		102.11	-2.21
6.00		86.34	-18.82
6.55	mezzeria	74.30	-24.91
7.50		45.64	-35.43
8.60	appoggio	0.00	-47.61

Seconda fase - S.L.E. Rara 2ªfase

$\mathtt{E_{d}} \ = \ \mathtt{E} \left\{ \ \Sigma \ \mathtt{G1_{k,2}}^{\mathtt{a}}_{\mathtt{fase}} \ + \ \Sigma \ \mathtt{G2_{k,2}}^{\mathtt{a}}_{\mathtt{fase}} \ + \ \mathtt{Q_{k,gruppo}}_{1} \ \right\}$

Sez.X	Descrizione	М	v	T	
0.00	appoggio	0.00	147.76	2.51	
1.50		180.59	115.39	2.08	
3.00		279.59	84.30	1.05	
4.30	mezzeria	299.17	-49.17	0.00	
4.50		300.04	-62.33	7.08	
6.00		261.18	-92.47	7.51	
6.55	mezzeria	226.37	-103.84	6.78	
7.50		140.42	-123.89	16.59	
8.60	appoggio	0.00	-147.76	12.51	

Seconda fase - S.L.E. Frequente 2ªfase ${\tt E_d} \ = \ {\tt E} \left\{ \ \Sigma \ {\tt G1_{k,2}}^a{\tt_{fase}} \ + \ \Sigma \ {\tt G2_{k,2}}^a{\tt_{fase}} \ + \ \psi_1 \cdot {\tt Q_{k,gruppo}} \ _1 \ \right\}$

Sez.X	Descrizione	М	v	T	
0.00	appoggio	0.00	106.30	2.51	
1.50		129.85	83.37	2.08	
3.00		200.87	60.96	1.05	
4.30	mezzeria	214.66	-38.25	0.00	
4.50		215.34	-44.85	4.84	
6.00		187.69	-66.88	5.08	
6.55	mezzeria	162.73	-75.09	4.52	
7.50		100.99	-89.43	11.60	
8.60	appoggio	0.00	-106.30	8.19	

Seconda fase - S.L.E. Quasi permanente 2^a fase E_d = $E\{ \Sigma Gl_{k,2}^a_{fase} + \Sigma G2_{k,2}^a_{fase} + \psi_2 \cdot Q_{k,gruppo\ 1} \}$

Sez.X	Descrizione	М	v	T	
0.00	appoggio	0.00	11.69	2.51	
1.50		14.47	7.61	2.08	
3.00		22.84	3.54	1.05	
4.30	mezzeria	25.14	0.00	0.00	
4.50		25.08	-0.54	-0.16	
6.00		21.21	-4.62	-1.36	
6.55	mezzeria	18.25	-6.12	-1.75	
7.50		11.21	-8.70	-2.27	
8.60	appoggio	0.00	-11.69	-2.51	

Sollecitazioni sulla soletta Valori caratteristici M Effetto globale Carichi permanenti

Sez.	Descrizione	peso cordoli	Perm Portati
-3.33	estremità dx	0.00	0.00
-3.00		-0.05	0.02
-2.00		-0.17	0.09
-1.00		-0.31	0.10
0.00	asse travi	-0.48	0.10
1.00		-0.62	0.16
2.00		-0.55	0.33
3.00		0.29	0.04
3.33	estremità sx	0.00	0.00

Carichi da traffico

Sez.	Descrizione	Tandem-TS	
		Mmax	Mmin
-3.33	estremità dx	0.00	0.00
-3.00		5.18	-2.53
-2.00		18.13	-6.70
-1.00		19.90	-5.19
0.00	asse travi	0.00	5.22
1.00		3.16	-7.65
2.00		8.62	-6.83
3.00		0.00	-1.30
3.33	estremità sx	0.00	0.00

Sez.	Descrizione	Distribuito-UDL	
		Mmax	Mmin
-3.33	estremità dx	0.00	-0.29
-3.00		0.10	-0.69
-2.00		1.28	-1.86
-1.00		1.43	-2.11
0.00	asse travi	0.00	-1.89
1.00		11.65	-2.39
2.00		3.05	-1.65
3.00		0.00	-0.57
3.33	estremità sx	0.00	0.00

Effetto locale

Luce Soletta	0.36
Carico per ruota - schema 2	200.00
Interasse ruote	2.00
Dimensioni impronta ruota LX x BY	0.35x0.60
Larghezza impronta a metà spessore soletta	0.90
Lunghezza influenza	2.00

Momento flettente trasversale [KN·m/m] (positivo tende le fibre inferiori):

nomento riccente crabicipare (ia m/m) (pobrerio cenae re	LIDIC IIIICIIOII,	
	M max	M min
effetto locale permanenti strutturali	0.12	-0.08
effetto locale permanenti non strutturali	0.05	-0.03
effetto locale LM2	1 20	-1 20

M tot. effetto locale	1.37	-1.31

Combinazioni SLU - Effetto globale + effetto locale

Sez.	Descrizione	Mmax	Mmin
-3.33	estremità dx	1.85	-1.78
-3.00		8.97	-6.06
-2.00		27.97	-13.42
-1.00		30.37	-11.95
0.00	asse travi	2.32	-0.64
1.00		21.25	-15.96
2.00		17.35	-13.88
3.00		2.30	-4.08
3.33	estremità sx	1.85	-1.78

Combinazioni SLE - Effetto globale + effetto locale Combinazioni Rare

 E_d = $E\{ \Sigma G1_{k,2}^a_{fase} + \Sigma G2_{k,2}^a_{fase} + Q_{k,gruppo} 1 \}$

Sez.	Descrizione	Mmax	Mmin
-3.33	estremità dx	1.37	-1.31
-3.00		6.63	-4.49
-2.00		20.70	-9.94
-1.00		22.48	-8.86
0.00	asse travi	1.65	-0.49
1.00		15.72	-11.83
2.00		12.81	-10.14
3.00		1.70	-2.96
3.33	estremità sx	1.37	-1.31

Combinazioni Frequenti

 $\mathtt{E_{d}} \ = \ \mathtt{E} \left\{ \ \Sigma \ \mathtt{G1_{k,2}}^{\mathtt{a}}_{\mathtt{fase}} \ + \ \Sigma \ \mathtt{G2_{k,2}}^{\mathtt{a}}_{\mathtt{fase}} \ + \ \psi_{1} \! \cdot \! \mathtt{Q_{k,gruppo}}_{1} \ \right\}$

Sez.	Descrizione	Mmax	Mmin
-3.33	estremità dx	1.07	-1.01
-3.00		4.98	-3.18
-2.00		15.10	-6.86
-1.00		16.35	-5.98
0.00	asse travi	1.78	-0.49
1.00		7.64	-8.18
2.00		8.53	-7.07
3.00		1.39	-1.93
3.33	estremità sx	1.07	-1.01

Combinazioni Quasi Permanenti ${\rm E_d} \ = \ {\rm E} \left\{ \ \Sigma \ {\rm G1_{k,2}}^a_{\rm fase} \ + \ \Sigma \ {\rm G2_{k,2}}^a_{\rm fase} \ + \ \psi_2 \cdot {\rm Q_{k,gruppo}} \ _1 \ \right\}$

Descrizione	Mmax	Mmin
estremità dx	0.17	-0.11
	0.15	-0.13
	0.09	-0.19
	-0.05	-0.33
asse travi	-0.21	-0.49
	-0.29	-0.57
	-0.05	-0.33
	0.49	0.21
estremità sx	0.17	-0.11
	estremità dx asse travi	estremità dx 0.17 0.15 0.09 -0.05 asse travi -0.21 -0.29 -0.05 0.49

Azioni sugli appoggi Forze Orizzontali

Azione del vento :	
Altezza barriera	3.00
Pressione cinetica	1.50
Forza totale sull'impalcato Fyw	55.20
Azione longitudinale di frenamento q3 :	
Forza totale sull'impalcato Fxq	383.22
Azione centrifuga Q4 :	
Raggio di curvatura 100.00	
Forza totale sull'impalcato Fyq 100.00	

Valori caratteristici reazioni verticali Carichi di la fase

Trave	peso trave	peso soletta+traversi
1	25.89	20.65
2	25.89	25.04
3	25.89	25.04
4	25.89	25.04
5	25.89	25.04
6	25.89	25.04
7	25.89	25.04
8	25.89	25.04
9	25.89	27.41

Carichi permanenti di 2a fase

Trave	peso cordoli	permanenti portati+extra2
1	0.24	9.66
2	0.34	9.83
3	0.48	9.97
4	0.72	10.07

Trave	peso cordoli	permanenti portati+extra2
5	1.08	10.14
6	1.61	10.17
7	2.36	10.15
8	3.33	10.05
9	4.45	9.81

Carichi da traffico

Trave	Tandem-TS	Distribuito-UDL	Folla Marciapiedi
1	88.45	10.27	0.00
2	96.80	11.87	0.00
3	102.75	13.58	0.00
4	104.74	15.35	0.00
5	108.46	17.64	0.00
6	114.12	20.12	0.00
7	114.80	21.26	0.00
8	105.74	20.09	0.00
9	95.08	18.39	0.00

Combinazioni

Combinazioni SLU P/T

 $\begin{array}{l} \textbf{E}_{d} = \textbf{E} \left\{ \begin{array}{l} \boldsymbol{\Sigma} \ \gamma_{01, \inf} \cdot \textbf{G1}_{k, i} + \boldsymbol{\Sigma} \ \gamma_{02, \inf} \cdot \textbf{G2}_{k, i} \end{array} \right\} \\ \textbf{E}_{d} = \textbf{E} \left\{ \begin{array}{l} \boldsymbol{\Sigma} \ \gamma_{01, \inf} \cdot \textbf{G1}_{k, i} + \boldsymbol{\Sigma} \ \gamma_{02, \sup} \cdot \textbf{G2}_{k, i} + \gamma_{0, \operatorname{traffice}} \cdot \textbf{Q}_{k, \operatorname{gruppo}} \ 1 + \psi_{0} \cdot \gamma_{\text{N}} \cdot \textbf{W}_{k} \end{array} \right\} \\ \textbf{E}_{d} = \textbf{E} \left\{ \begin{array}{l} \boldsymbol{\Sigma} \ \gamma_{01, \sup} \cdot \textbf{G1}_{k, i} + \boldsymbol{\Sigma} \ \gamma_{02, \sup} \cdot \textbf{G2}_{k, i} + \gamma_{\text{N}} \cdot \textbf{W}_{k} + \psi_{0} \cdot \gamma_{0, \operatorname{craffice}} \cdot \textbf{Q}_{k, \operatorname{gruppo}} \ 1 \end{array} \right\}$

Trave	Rz max	Rz min
1	210.92	77.65
2	230.67	83.96
3	241.41	84.37
4	246.97	84.84
5	255.67	85.43
6	267.42	86.20
7	270.86	87.17
8	258.20	88.33
9	245.86	92.69

Reazione laterale su spalla Ry = 92.34 Reazione longitudinale totale Rx = 517.35 SLE Rare

Trave	Rz max	Rz min
1	155.16	56.44
2	169.78	61.10
3	177.71	61.39
4	181.82	61.72
5	188.26	62.15
6	196.96	62.72
7	199.51	63.45
8	190.14	64.31
9	181.03	67.57

Reazione laterale su spalla Ry = 66.56 Reazione longitudinale totale Rx = 383.22 SLE Frequenti

Trave	Rz max	Rz min
1	126.89	56.44
2	138.45	61.10
3	143.88	61.39
4	146.42	61.72
5	150.56	62.15
6	156.35	62.72
7	158.05	63.45
8	151.65	64.31
9	146.23	67.57

Reazione laterale su spalla Ry = 5.52 Reazione longitudinale totale Rx = 0.00 SLE Quasi permanenti

 $\begin{array}{l} \text{Ed} & = \text{E} \left\{ \begin{array}{l} \Sigma \text{ } \text{Gl}_{k,i} + \Sigma \text{ } \text{G2}_{k,i} + \psi_2 \cdot Q_{k,\text{gruppo } 1} + \psi_{2,W} \cdot W_k \end{array} \right\} \\ \text{E}_d & = \text{E} \left\{ \begin{array}{l} \Sigma \text{ } \text{Gl}_{k,i} + \Sigma \text{ } \text{G2}_{k,i} + \psi_2 \cdot Q_{k,\text{gruppo } 2} + \psi_{2,W} \cdot W_k \end{array} \right\} \end{array}$

Trave	Rz max	Rz min	
1	56.44	56.44	
2	61.10	61.10	
3	61.39	61.39	
4	61.72	61.72	
5	62.15	62.15	
6	62.72	62.72	
7	63.45	63.45	
8	64.31	64.31	
9	67.57	67.57	

Reazione laterale su spalla Ry = 0.00 Reazione longitudinale totale Rx = 0.00

Azione simica

Parametri per la determinazione dell'azione sismica

Categoria di sottosuolo B Categoria topografica T1 Coeff. di combinazione sismica carichi da traffico ψ_{E} = 0.2

Forze orizzontali :

	η	a _g /g	Tc*	F ₀
SLE	1.00	0.250	0.200	2.450
SLU	1.00	0.232	0.349	2.541

Forze verticali :

	η
SLE	0.70
SLU	0.70

Coefficiente di struttura q = 1.50

Dati Spalla

Altezza 1.00 B Trasversale

6.00 B Longitudinale 0.90

Classe calcestruzzo C28/35 E = 32588107.82

Elasse Catestruzzo (2073) E - 32366107.52
Spettro di risposta
L'accelerazione orizzontale degli elementi della struttura soggetti all'azione sismica viene calcolata con un modello a mensola. La mensola è rappresentata dall'insieme spalla-fondazione, alla cui sommità è presente una massa rappresentata dall'impalcato. la massa della spalla-fondazione viene concentrata a metà altezza.
Peso Impalcato 1121.75
Peso Carichi Mobili 1317.63

Aliquota Carichi Mobili Peso Totale Struttura 1385.27 Massa Struttura [Kg massa] 141210.49 Rigidezza 875989.32 Periodo fondamentale [s] 0.0266

Peso spalla 132.44

Massa spalla [Kg massa] 13500.00 Modulo elastico spalla 32588108 Momento d'inerzia trasversale 16.20

Momento d'inerzia longitudinale 0.30

Rigidezza trasversale 1583782039.99

Rigidezza longitudinale 35635095.90

Periodo fondamentale (componente trasversale) [s]0.0019 Periodo fondamentale (componente longitudinale) [s] 0.01: Valore massimo del coeff. di amplificazione topografica $S_{\rm t}$ 1.00

Forze orizzontali

Valori per SLE S_s = 1.155 C_c = 1.518 T_B = 0.101 $T_{C} = 0.304$

 $T_D = 2.600$

Componente trasversale SLE Spettro di risposta elastico in accelerazione $S_{\text{e SLE},\,y}\text{=}$ 0.2967 Forza sismica totale esercitata sugli appoggi F_{E SLE,y}= ±411.01

Componente longitudinale SLE

Spettro di risposta elastico in accelerazione $S_{e~SLE,x}$ = Forza sismica totale esercitata sugli appoggi $F_{E~SLE,x}$ = 0 3417 ±473.39

Valori per SLU

 $S_s = 1.164$ $C_c = 1.358$ $T_B = 0.158$

 $T_{C} = 0.474$

Componente trasversale SLU Spettro di risposta elastico in accelerazione $S_{\text{e SLU},\,y}\text{=}$ 0.2752 Forza sismica totale esercitata sugli appoggi $F_{E \ SLU,y}$ = ±381.16

Componente longitudinale SLU

Componente longitudinale Sho Spettro di risposta elastico in accelerazione $S_{e \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} = Forza sismica totale esercitata sugli appoggi <math>F_{E \; SLU,x} =$ 0.3038 ±420.89

Forze verticali

 $T_B = 0.050$ $T_C = 0.150$

 $T_D = 1.000$

Valori per SLE

 $S_{\rm s}$ = 1.000 Fattore di amplificazione spettrale massima $F_{\rm v}$ = 1.654

Spettro di risposta elastico in accelerazione S_{ve} = 0.2690

Valori per SLU

Valuar per 350 S $_{\rm s}=1.000$ Fattore di amplificazione spettrale massima F $_{\rm v}=1.652$ Spettro di risposta elastico in accelerazione S $_{\rm ve}=0.2484$

Azioni sismiche SLE

Trave 7
Azione sismica caratteristica

Sez.	Descrizione	Mmax	Vmax	Tmax
0.00	appoggio	0.00	23.28	-0.13
1.50		28.68	16.19	-0.17
3.00		44.98	9.17	-0.28
4.30	mezzeria	49.05	-2.65	-0.32
4.50		49.01	-4.07	0.35
6.00		41.84	-11.03	0.11
6.55	mezzeria	36.10	-13.61	-0.01
7.50		22.25	-18.07	0.40
8.60	appoggio	0.00	-23.28	0.13

Sez.	Descrizione	Mmin	Vmin	Tmin
0.00	appoggio	0.00	-15.96	-0.68
1.50		-19.74	-10.39	-0.56
3.00		-31.16	-4.82	-0.28
4.30	mezzeria	-34.30	0.00	0.00
4.50		-34.22	0.74	0.04
6.00		-28.93	6.31	0.36
6.55	mezzeria	-24.90	8.35	0.47
7.50		-15.29	11.87	0.61
8.60	appoggio	0.00	15.96	0.68

Combinazione $\mathbf{E_{d}} = \mathbf{E} \{ \ \Sigma \ \mathsf{G1_{k,2}}^{\mathtt{a}}{}^{\mathtt{a}}{}^{\mathtt{fase}} \ + \ \Sigma \ \mathsf{G2_{k,2}}^{\mathtt{a}}{}^{\mathtt{fase}} \ + \ \psi_{\mathtt{2,E}} \cdot Q_{\mathtt{k,gruppo} \ \mathtt{1}} \ \pm \ \mathbf{E_{SLE}} \ \}$

Sez.	Descrizione	Mmax	Vmax	Tmax
0.00	appoggio	0.00	39.22	2.38
1.50		48.42	26.70	1.91
3.00		76.12	14.51	0.77
4.30	mezzeria	83.33	-2.65	-0.56
4.50		83.21	-5.78	0.43
6.00		70.76	-17.73	-1.24
6.55	mezzeria	60.98	-22.19	-1.76
7.50		37.53	-30.01	-1.87
8.60	appoggio	0.00	-39.22	-2.38

Sez.	Descrizione	Mmin	Vmin	Tmin	
0.00	appoggio	0.00	-4.26	1.84	
1.50		-5.27	-2.77	1.52	
3.00		-8.32	-1.29	0.59	
4.30	mezzeria	-9.16	0.00	0.00	
4.50		-9.14	0.20	-0.12	
6.00		-7.73	1.68	-0.99	
6.55	mezzeria	-6.65	2.23	-1.28	
7.50		-4.08	3.17	-1.66	
8.60	appoggio	0.00	4.26	-1.84	

Traverso Azione sismica caratteristica

Sez.	Descrizione	Mmax	Mmin
-3.33	estremità dx	0.00	0.00
-3.00		0.28	-0.18
-2.00		1.02	-0.48
-1.00		1.09	-0.45
0.00	asse travi	-0.10	0.08
1.00		0.67	-0.67
2.00		0.57	-0.52
3.00		0.09	-0.02
3.33	estremità sx	0.00	0.00

Combinazione ${\rm E_d} \ = \ {\rm E} \left\{ \ \Sigma \ {\rm G1_{k,2}}^a{}_{\rm fase} \ + \ \Sigma \ {\rm G2_{k,2}}^a{}_{\rm fase} \ + \ \psi_{\rm 2,E} \cdot {\rm Q_{k,gruppo}} \ _1 \ \pm \ {\rm E_{\rm SLE}} \ \right\}$

Sez.	Descrizione	Mmax	Mmin
-3.33	estremità dx	0.00	0.00
-3.00		0.28	-0.32
-2.00		1.20	-0.93
-1.00		1.16	-1.09
0.00	asse travi	-0.29	-0.67
1.00		2.54	-1.61
2.00		0.96	-1.10
3.00		0.41	0.17
3.33	estremità sx	0.00	0.00

Appoggi Azione sismica caratteristica

Azione verticale [KN]

	valori massimi		valori minimi	
Trave	Permanenti	Traff. $\psi_E=0.20$	Permanenti	Traff. $\psi_E=0.20$
1	5.15	1.80	-5.15	0.00
2	5.58	1.98	-5.58	0.00
3	5.60	2.12	-5.60	0.00
4	5.63	2.19	-5.63	0.00
5	5.67	2.30	-5.67	0.00
6	5.72	2.45	-5.72	0.00
7	5.79	2.48	-5.79	0.00
8	5.87	2.30	-5.87	0.00
9	6.17	2.07	-6.17	0.00

Azione orizzontale [KN]

trasversale su ogni spalla		longitudinale intero impalcato		
Permanenti		Traff. $\psi_E=0.20$	Permanenti	Traff. Ψ _E =0.20
166.40		64.06	383.32	90.05

Combinazione sismica Azione verticale [KN]

Trave	Rz vert.max	Rz vert. min
1	83.14	51.29
2	90.40	55.53
3	92.38	55.79
4	93.57	56.09
5	95.35	56.48
6	97.74	57.00
7	98.93	57.66

Trave	Rz vert.max	Rz vert. min
8	97.64	58.45
9	98.49	61.40

Azione orizzontale [KN]

	reazioni massime	reazioni minime
Reazione longitudinale totale	473.37	-473.37
Reazione trasversale su ogni pila	230.46	-230.46

Azioni sismiche SLU Trave 7 Azione sismica caratteristica

Sez.	Descrizione	Mmax	Vmax	Tmax
0.00	appoggio	0.00	21.49	-0.12
1.50		26.48	14.94	-0.16
3.00		41.52	8.47	-0.26
4.30	mezzeria	45.28	-2.44	-0.30
4.50		45.25	-3.75	0.32
6.00		38.63	-10.19	0.10
6.55	mezzeria	33.32	-12.56	-0.01
7.50		20.54	-16.68	0.37
8.60	appoggio	0.00	-21.49	0.12

Sez.	Descrizione	Mmin	Vmin	Tmin
0.00	appoggio	0.00	-14.73	-0.62
1.50		-18.23	-9.59	-0.52
3.00		-28.77	-4.45	-0.26
4.30	mezzeria	-31.67	0.00	0.00
4.50		-31.59	0.69	0.04
6.00		-26.71	5.82	0.34
6.55	mezzeria	-22.99	7.71	0.43
7.50		-14.12	10.96	0.56
8.60	appoggio	0.00	14.73	0.62

Combinazione

 $\texttt{E}_{\texttt{d}} \ = \ \texttt{E}\left\{ \ \Sigma \ \texttt{G1}_{\texttt{k,i}} \ + \ \Sigma \ \texttt{G2}_{\texttt{k,i}} \ + \ \psi_{\texttt{2,E}} \boldsymbol{\cdot} \texttt{Q}_{\texttt{k,gruppo} \ \texttt{1}} \ \pm \ \texttt{E}_{\texttt{SLU}} \ \right\}$

Sez.	Descrizione	Mmax	Vmax	Tmax
0.00	appoggio	0.00	85.05	2.39
1.50		105.13	56.46	1.92
3.00		165.67	28.20	0.79
4.30	mezzeria	181.94	-2.44	-0.54
4.50		181.55	-7.68	0.40
6.00		153.89	-35.70	-1.25
6.55	mezzeria	132.51	-46.06	-1.76
7.50		81.47	-64.05	-1.90
8.60	appoggio	0.00	-85.05	-2.39

Sez.	Descrizione	Mmin	Vmin	Tmin
0.00	appoggio	0.00	44.58	1.89
1.50		55.16	29.03	1.56
3.00		87.07	13.48	0.62
4.30	mezzeria	95.84	0.00	0.00
4.50		95.60	-2.07	-0.12
6.00		80.84	-17.62	-1.02
6.55	mezzeria	69.57	-23.33	-1.31
7.50		42.73	-33.17	-1.71
8.60	appoggio	0.00	-44.58	-1.89

Traverso Azione sismica caratteristica

Sez.	Descrizione	Mmax	Mmin
-3.33	estremità dx	0.00	0.00
-3.00		0.26	-0.16
-2.00		0.94	-0.44
-1.00		1.01	-0.42
0.00	mezzeria	-0.09	0.07
1.00		0.62	-0.61
2.00		0.52	-0.48
3.00		0.08	-0.02
3.33	estremità sx	0.00	0.00

 $\texttt{E}_{\texttt{d}} \; = \; \texttt{E} \left\{ \; \; \Sigma \; \; \texttt{G1}_{\texttt{k,i}} \; + \; \Sigma \; \; \texttt{G2}_{\texttt{k,i}} \; + \; \; \psi_{\texttt{2,E}} \cdot Q_{\texttt{k,gruppo} \; \; 1} \; \; \pm \; \; \texttt{E}_{\texttt{SLU}} \; \; \right\}$

Sez.	Descrizione	Mmax	Mmin
-3.33	estremità dx	0.00	0.00
-3.00		0.26	-0.31
-2.00		1.12	-0.90
-1.00		1.08	-1.06
0.00	mezzeria	-0.30	-0.68
1.00		2.49	-1.56
2.00		0.91	-1.06
3.00		0.41	0.17
3.33	estremità sx	0.00	0.00

Appoggi Azione sismica caratteristica

Azione verticale [KN]

	valori massimi		valori minimi	
Trave	Permanenti	Traff. $\psi_E=0.20$	Permanenti	Traff. $\psi_E=0.20$
1	4.64	1.62	-4.64	0.00
2	5.02	1.79	-5.02	0.00
3	5.05	1.91	-5.05	0.00

	valori massimi		valori minimi	
Trave	Permanenti	Traff. ψ _E =0.20	Permanenti	Traff. ψ _E =0.20
4	5.08	1.97	-5.08	0.00
5	5.11	2.07	-5.11	0.00
6	5.16	2.21	-5.16	0.00
7	5.22	2.24	-5.22	0.00
8	5.29	2.07	-5.29	0.00
9	5.56	1.87	-5.56	0.00

Azione orizzontale [KN]

trasversale su ogni spalla		longitudinale intero impalcato		
Permanenti		Traff. Ψ _E =0.20	Permanenti	Traff. Ψ _E =0.20
154.32		59.41	340.81	80.07

Combinazione sismica

Azione verticale [KN]

Trave	Rz vert.max	Rz vert. min
1	82.45	51.80
2	89.65	56.08
3	91.61	56.34
4	92.79	56.65
5	94.56	57.04
6	96.93	57.56
7	98.11	58.23
8	96.84	59.03
9	97.68	62.01

Azione orizzontale [KN]

	reazioni massime	reazioni minime
Reazione longitudinale totale	420.87	-420.87
Reazione trasversale su ogni pila	213.73	-213.73

2.2.3. Tabulato di verifica della trave (fase finale)

AESSE Tangenziale Udine Sud

Verifica elemento precompresso

Codice di calcolo: TCAP ed. 8.3 - 07/2012 - SIGMAc SOFT Unità correnti: lunghezza= cm forza= daN Dati trave Dati geometrici Prima fase

Sbalzo sinistro = 60.00 Sbalzo destro = 60.00 Seconda fase

appoggio	X	luce campata
1	0.00	
2	860.00	860.00

Armature trave prefabbricata Armature di precompressione pretesate

Precompressione trefoli: 6/10" area = 139.000 [mm²] acciaio: prec.fpk=1860 tensione di tesatura = 12555.00

$A_p = 13.900$	$N_p =$	174514.50	[daN]	$Z_{g,p} =$	12.20
----------------	---------	-----------	-------	-------------	-------

quota Z	n. trefoli	n. guaine	L guaine
35.00	2		
13.50			
9.50	2	2	300.00
5.50	6	2	150.00
N. trefoli=	10	L tot guaine=	900.00

Armatura lenta Armatura longitudinale :

pos.		armatura	Y	Z	x iniziale	x finale
T1L1	RS1	1Ø12	-21.00	3.50	18.00	842.00
T1L1	(simmetrica)				18.00	842.00
T1L2	RS2	1Ø12	21.00	3.50	18.00	842.00
T1L2	(simmetrica)				18.00	842.00
T1L3	RS3	1Ø12	-21.00	45.00	18.00	842.00
T1L3	(simmetrica)				18.00	842.00
T1L4	RS4	1Ø12	21.00	45.00	18.00	842.00
T1L4	(simmetrica)				18.00	842.00

Armatura trasversale :

pos.		armatura	X iniziale	X finale	
T1S1		2012/15.00	-30.00	120.00	trave+colleg. con soletta
T1S1	(simmetrica)		740.00	890.00	
T1S2		2Ø10/20.00	120.00	270.00	trave+colleg. con soletta
T1S2	(simmetrica)		590.00	740.00	
T1S3		2010/25.00	270.00	430.00	trave+colleg. con soletta
T1S3	(simmetrica)		430.00	590.00	

armatura longit. appoggio :

n.	barre	Ø	lunghezza	quota Z

n. barre	Ø	lunghezza	quota Z
2	16	192	3

Armature getto in opera Armatura longitudinale:

pos.		armatura	Y	Z	x iniziale	x finale
S-L1	s1	3Ø12	0.00	75.00	18.00	842.00
S-T-2	g2	3Ø12	0.00	52 00	18 00	842 00

Dati dei materiali

Dati	der	illate	trair	
Calce	estri	ızzo	travi	prefabbricate

Calcestruzzo travi prelaporicate	
Calcestruzzo	C45/55
resistenza caratteristica R _{ck28,cub}	550.00
resistenza al taglio dei trefoli R _{cki,cub}	385.00
coefficiente sicurezza verifiche a rottura	1.500
modulo elastico	364161.14
peso specifico	0.0025
ritiro totale	-0.00030
% ritiro prima del taglio trefoli	25.5%
% ritiro taglio trefoli-getto soletta	25.5%
% ritiro da getto soletta a t=inf.	49%
coeff. di viscosità	2.300
% viscosità taglio trefoli-getto soletta	33%
% viscosità da getto soletta a t=inf.	67%

Calcestruzzo getto in opera

carcestrazzo getto in opera	
Calcestruzzo	C28/35
resistenza caratteristica R _{ck28,cub}	350.00
coefficiente sicurezza verifiche a rottura	1.5
modulo elastico	325881.08
peso specifico	0.0025
coeff. di omogeneizzazione con cls travi	0.895

Acciaio per armatura lenta

tipo acciaio	B450C
tensione di snervamento f _{yk}	4500.00
coefficiente sicurezza verifiche a rottura	1.15
modulo elastico	2100000.00
coeff. di omogeneizzazione a cls travi	6

Acciaio per armatura da precompressione

tipo acciaio	prec.fpk=1860
tensione di snervamento f _{vk}	16740.00
coefficiente sicurezza verifiche a rottura	1.15
modulo elastico	2060000.00
coeff. di omogeneizzazione a cls travi	6
% rilassam. prima del taglio trefoli	41.4%
% rilassam. taglio trefoli-getto soletta	25.9%
% rilassam. da getto soletta a t=inf.	32.7%

Sollecitazioni esterne Combinazioni di 2a fase

SLU Persistenti/Transitorie n. 1

SLE Rare n. 1 SLE Frequenti n. 1 SLE Quasi permanenti n. 1 Risultati delle verifiche Deformazioni dell'impalcato

modulo elastico = 364161.14
Prima fase
H40-*modif.* :

	accorciamento	rotaz. testata	rotaz. testata	freccia in
	[cm]	sinistra [rad]	destra [rad]	mezzeria [cm]
al taglio trefoli	-0.1125	0.00239	-0.00239	0.5879
al getto soletta	-0.2167	0.00235	-0.00235	0.5861
dopo maturazione	-0.2176	0.00236	-0.00236	0.5871

Seconda fase
Spostamenti X in asse appoggi [cm] :

	dopo maturazione	postesi e	
	soletta	cambio vincoli	t=inf.
Spalla iniziale	0.0000	0.0000	0.0000
Spalla finale	0.0000	0.0000	-0.0452

Rotazioni in asse appoggi [rad] :

	dopo maturazione	postesi e	
	soletta	cambio vincoli	t=inf.
Spalla iniziale	0.00000	-0.00008	0.00123
Spalla finale	0.00000	0.00008	-0.00123

Frecce in mezzeria [cm] :

campata		dopo maturazione	postesi e	t=inf.	t=inf.
	X	soletta	cambio vincoli	comb. rara max	comb. rara min
1	430.00	0.5871	-0.2735	-0.2735	-0.5840

Verifica sezione X=0.00 -Prima fase: sola trave Sezione di calcolo :

n.	Y	Z
1	-21.00	0.00
2	-24.00	3.00
3	-24.00	48.00

n.	Y	Z
4	24.00	48.00
5	24.00	3.00
6	21.00	0.00

A = 2295.000 $J_f = 437583.8294$ $Z_g = 24.09$

<nessuna armatura di precompressione attiva>

Armature lente longitudinali :

n.	Z	area	
1	3.00	4.021	2016 armatura longit. appoggio

Sezione ideale (n=15.000)	Aid	$J_{f,id}$	Z _{g,id}
	2355.319	463726.2000	23.55

Verifica tensionale

Sollecitazioni	M _{esterno}
prima del getto	0.00
dopo getto 2a fase	0.00

Tensioni sul calcestruzzo	σ _{e,max}	O _{i,max}
prima del getto	0.00	0.00
dopo getto 2a fase	0.00	0.00

Tensioni sugli acciai	$\sigma_{\rm sp}$	$\sigma_{long,inf}$	
prima del getto	11935.74	0.00	
dopo getto 2a fase	11935.74	0.00	

Verifica a rottura per flessione <sollecitazioni flettenti nulle>

Verifica a rottura per taglio

Calcestruzzo:	9 [rad]	b _w	Staffe:	A _{SW}
	0.785	70.00		0.15080

d	K	A _{sl}	ρ1	σ _{cp}	α _c
45.00	1.667	0.000	0.0000	0.00	1.000

V _{Rd}	V _{Rsd}	V _{Rcd}
16027.73	23897.96	183341.80

 $V_{Ed,max} = 6427.90 < 23897.96$

Seconda fase: trave + getto in opera Tensioni sul calcestruzzo dopo 28gg dal getto :

	σ _{e,max}	$\sigma_{i,max}$	
trave prefabbricata	0.00	0.00	
getto in opera	0.00	0.00	

Verifica in esercizio Sezione di calcolo :

n.	Y	Z	
1	-21.00	0.00	
2	-24.00	3.00	
3	-24.00	48.00	
4	24.00	48.00	
5	24.00	3.00	
6	21.00	0.00	fine prefabb.
7	-21.00	0.00	
8	-37.00	78.00	getto in opera
9	37.00	78.00	(m=1.000)
10	37.00	48.00	
11	-37.00	48.00	
12	-37.00	78.00	

 $\begin{array}{ll} | 12 & | -37.00 \\ A = 4515.000 \\ J_f = 2312509.1292 \\ Z_g = 43.22 \end{array}$

<nessuna armatura di precompressione attiva>

Armature lente longitudinali :

n.	Z	area				
1	3.00	4.021	2016 armatura longit. appoggio			
Sezione ideale (n=15.000) A _{id} $J_{f,id}$ $Z_{g,id}$						
			4575 319	2408806 0000	42.69	

Verifica tensionale Cadute di tensione da maturazione soletta a t=inf. :

	%	Δσ _{sp}	$\Delta\sigma_{\rm sp}/\sigma_{\rm spi}$	
ritiro cls	48.9%	301.97	2.4%	
rilassamento acciaio	24.1%	147.33	1.2%	
viscosità cls	100.0%	548.65	4.4%	

Tensioni sul cls - H40-*modif.* :

	O _{e,max}	O _{e,min}	Oi,max	Oi,min
t=infsenza carichi	0.00	0.00	0.00	0.00
t=infSLE Rare	0.00	0.00	0.00	0.00
t=infSLE Frequenti	0.00	0.00	0.00	0.00
t=infSLE Quasi Permanenti	0.00	0.00	0.00	0.00

Tensioni sul cls - getto in opera :

	σ _{e,max}	O _{e,min}	σ _{i,max}	σ _{i,min}
t=infsenza carichi	0.00	0.00	0.00	0.00
t=infSLE Rare	0.00	0.00	0.00	0.00
t=infSLE Frequenti	0.00	0.00	0.00	0.00
t=infSLE Quasi Permanenti	0.00	0.00	0.00	0.00

Tensioni sugli acciai :

	$\sigma_{\rm sp}$	$\sigma_{long,inf}$	
t=infsenza carichi	0.00	0.00	
t=infSLE Rare	0.00	0.00	
t=infSLE Frequenti	0.00	0.00	
t=infSLE Quasi Permanenti	0.00	0.00	

Momenti di rottura per flessione retta <sollecitazioni flettenti nulle>

Verifica rottura per taglio

Calcestruzzo:		estruzzo: 9 [rad] bw		Staffe:	A _{SW}
		0.785	70.00		0.15080
ď	к	Δ.,	01	σ	α_c
	1.516	0.00		0.00	1.000
75.00	1.516	A _{s1}	ρ ₁ 0.0000	0.00	
V _{Rs}		329.93	V _{Rcd}	7.0	

 $V_{Ed,max} = 26517.76 < 39829.93$

Trazione per taglio (V=26517.76) = 13258.88 [daN]

Verifica rottura per torsione

Calcestruzzo:	9 [rad]	f' _{cd}	Staffe parete:	A _{SW}
	0.785	129.34		0.07540

A _k t	min	u _k	σ _{cp}	α _c
	16.15	195.00	0.00	1.000

T_{Rcd}	T _{Rsd}
4931817.00	1393162.00

 $T_{Ed,max} = 176499.40 < 1393162.48$

Trazione per torsione (T=1393162.48) = 57532.12 [daN] Trazione per torsione (T=176499.40) = 7288.73 [daN] Sforzo di precompressione presente = 0.00 [daN] armatura longitudinale minima (T=T $_{\rm Ed,max}$ =176499.40) = 1.863 [cm²]

Verifica a taglio/torsione

 $\begin{array}{lll} T_{Ed}/T_{Rd} + V_{Ed}/V_{Rd} = 33763.68/1393162.48 + 26517.76/39829.93 = 0.690 \\ Verifica sezione X=655.00 - mezzeria \\ Prima fase: sola trave \\ Sezione di calcolo : \end{array}$

n.	Y	Z
1	-21.00	0.00
2	-24.00	3.00
3	-24.00	48.00
4	24.00	48.00
5	24.00	3.00
6	21.00	0.00

A = 2295.000 $J_f = 437583.8294$ $Z_g = 24.09$

Armature di precompressione :

n.	Z	area
1	35.00	2.780
2	9.50	0.000
3	5.50	5.560

 $A_p = 8.340$ $Z_{g,p} = 15.33$

Armature lente longitudinali :

n.	Z	area	
1	3.50	1.131	1Ø12 RS1
2	3.50	1.131	1Ø12 RS2
3	45.00	1.131	1Ø12 RS3
4	45.00	1.131	1Ø12 RS4

Sezione ideale (n=6.000)	A _{id}	$J_{f,id}$	Z _{g,id}
	2372.183	462706.5000	23.91

Verifica tensionale Cadute di tensione prima del taglio trefoli :

	%	Δσ _{sp}	$\Delta \sigma_{\rm sp} / \sigma_{\rm spi}$
ritiro cls	25.5%	157.59	1.3%
rilassamento acciaio	30.6%	187.06	1.5%

Sollecitazioni M _{est}	sterno N _{preco}		up.
---------------------------------	---------------------------	--	-----

Sollecitazioni	M _{esterno}	N _{precomp} .	M _{precomp} .
t=0 dopo taglio trefoli	377694.02	-101834.35	-891749.40
prima del getto	377694.02	-97564.96	-854362.94
dopo getto 2a fase	743045.09	-97545.10	-854189.03

Tensioni sul calcestruzzo	O _{e,max}	O _{i,max}	
t=0 dopo taglio trefoli	-17.13	-68.53	
prima del getto	-17.24	-64.84	
dopo getto 2a fase	-36.26	-45.96	

Tensioni sugli acciai	$\sigma_{\rm sp}$	σ _{long,inf}	O _{long, sup}
t=0 dopo taglio trefoli	11897.70	-388.67	-122.06
prima del getto	11400.65	-368.19	-121.28
dopo getto 2a fase	11441.27	-271.51	-221.21

Cadute di tensione dal taglio trefoli al getto soletta :

	8	$\Delta\sigma_{\rm sp}$	$\Delta\sigma_{\rm sp}/\sigma_{\rm spi}$
ritiro cls	25.5%	157.59	1.3%
rilassamento acciaio	19.1%	117.02	0.9%
viscosità cls	30.2%	237.30	1.9%

Cadute di tensione durante maturazione soletta :

	%	Δσ _{sp}	$\Delta\sigma_{\rm sp}/\sigma_{\rm spi}$
ritiro cls	0.1%	0.85	0.0%
rilassamento acciaio	0.1%	0.42	0.0%
viscosità cls	0.1%	1.11	0.0%

Verifica a rottura per flessione $\Delta \varepsilon$ armature pretese: $\varepsilon_{\text{BD},z=15,33}=0.00568$

ne drindedic	Precede: csp,z=15.33 0.0	0500					
fless.	Z asse neutro	Mr	ε _{sup}	$Z_{\varepsilon sup}$	ϵ_{inf}	Z_{einf}	
(+)	36.53	3702542.00	-0.00347	48.00	0.01000	3.50	
(-)	9.81	-1696807.00	0.01000	45.00	-0.00279	0.00	

$M_{d,max} = 1003110.87 < 3702541.98$

verifica a foccara per cagiro					
	Calcestruzzo:	9 [rad]	b_W	Staffe:	A_{SW}
		0.381	70.00		0.07854

a K	P	A _{sl}	ρ	σ _{cp}	α_c
45.00 1.66	567 5	5.042	0.0016	-42.51	1.164

V _{Rd}	V _{Rsd}	V _{Rcd}
36114.64	31117.08	147222.40

 $V_{Ed,max} = 3363.44 < 36114.64$

Seconda fase: trave + getto in opera Tensioni sul calcestruzzo dopo 28gg dal getto :

	O _{e,max}	Oi,max	
trave prefabbricata	-36.67	-43.14	
getto in opera	-2.16	-0.36	

Verifica in esercizio Sezione di calcolo :

n.	Y	Z	
1	-21.00	0.00	
2	-24.00	3.00	
3	-24.00	48.00	
4	24.00	48.00	
5	24.00	3.00	
6	21.00	0.00	fine prefabb.
7	-21.00	0.00	
8	-37.00	78.00	getto in opera
9	37.00	78.00	(m=0.895)
10	37.00	48.00	
11	-37.00	48.00	
12	-37.00	78.00	

A = 4281.637 $J_f = 2198746.4607$ $J_g = 42.14$

Armature di precompressione :

n.	Z	area
1	35.00	2.780
2	9.50	0.000
3	5.50	5.560

 $A_p = 8.340$ $Z_{g,p} = 15.33$

Armature lente longitudinali :

n.	Z	area		
1	3.50	1.131	1Ø12 RS1	
2	3.50	1.131	1Ø12 RS2	
3	45.00	1.131	1Ø12 RS3	
4	45.00	1.131	1Ø12 RS4	
5	75.00	3.393	3Ø12 s1	
6	52.00	3.393	3Ø12 s2	

Sezione ideale (n=6.000)	A _{id}	$J_{f,id}$	Z _{q,id}
	4399.535	2288516.0000	41.93

Verifica tensionale

Cadute di tensione da maturazione soletta a t=inf. :

	8	$\Delta\sigma_{\rm sp}$	$\Delta\sigma_{\rm sp}/\sigma_{\rm spi}$
ritiro cls	48.9%	301.97	2.4%
rilassamento acciaio	24.1%	147.33	1.2%
viscosità cls	69.7%	548.65	4.4%

Tensioni sul cls - H40-*modif.*:

	O _{e,max}	σ _{e,min}	σ _{i,max}	σ _{i,min}	
t=infsenza carichi	-35.33	-35.33	-37.18	-37.18	
t=infSLE Rare	-35.33	-41.37	4.28	-37.18	
t=infSLE Frequenti	-35.33	-39.68	-7.38	-37.18	
t=infSLE Quasi Permanenti	-35.33	-35.84	-33.85	-37.18	

Tensioni sul cls - getto in opera :

	σ _{e,max}	σ _{e,min}	O _{i,max}	$\sigma_{i,min}$	
t=infsenza carichi	-3.54	-3.54	0.00	0.00	
t=infSLE Rare	-3.54	-35.52	0.00	-4.57	
t=infSLE Frequenti	-3.54	-26.54	0.00	-3.06	
t=infSLE Ouasi Permanenti	-3.54	-6.15	0.00	0.00	

Tensioni sugli acciai :

	σ _{sp}	O _{long,inf}	O _{long, sup}	
t=infsenza carichi	0.00	0.00	0.00	
t=infSLE Rare	11634.22	261.71	-7.53	
t=infSLE Frequenti	11589.85	197.59	-7.53	
t=infSLE Quasi Permanenti	11489.13	52.05	-7.53	

Momenti di rottura per flessione retta presollecitazione nelle armature di precompressione :

	Z cavo risult.	Δε _{sp}	
Precompressione	15.33	0.00557	

fless.	Z asse neutro	Mr	ε _{sup}	Z _{εsup}	ϵ_{inf}	$Z_{\epsilon inf}$
(+)	62.67	8016794.00	-0.00259	78.00	0.01000	3.50
(-)	13.58	-3125927.00	0.01000	75.00	-0.00221	0.00

 $M_{d,max} = 4081359.30 < 8016793.73$

Verifica rottura per taglio

Calcestruzzo:	9 [rad]	b _w	Staffe:	A _{SW}
	0.381	70.00		0.07854

d	K	A _{sl}	ρ1	σ _{cp}	α _c
75.00	1.516	16.257	0.0031	-20.84	1.081

39593.07 51861.89 227713.80	V_{Rd}	V _{Rsd}	V _{Rcd}
	39593.07	51861.89	227713.80

 $V_{Ed,max} = 17456.24 < 51861.89$

Trazione per taglio (V=17456.24) = 21820.30 [daN]

Verifica rottura per torsio	one			
Calcestruzzo:	9 [rad]	f'cd	Staffe parete:	A_{SW}
	0.381	129.34		0.03927

2361.000 16.15 195.00 -20.84 1.081	A _k	tmin	u_k	σ_{cp}	α_c
		16.15	195.00		

T _{Rcd}	T _{Rsd}
3675242.00	1814014.00

 $T_{Ed,max} = 96664.42 < 1814013.65$

Trazione per torsione (T=1814013.65) = 187279.05 [daN] Trazione per torsione (T=96664.42) = 9979.65 [daN] Sforzo di precompressione presente = -89222.15 [daN] <armatura longitudinale non necessaria>

Verifica a taglio/torsione

 $T_{\text{Ed}}/T_{\text{Rd}} \ + \ V_{\text{Ed}}/V_{\text{Rd}} \ = \ -23417.05/1814013.65 \ + \ -17456.24/51861.89 \ = \ 0.349$

2.2.4. Verifica della soletta di impalcato

La soletta di seconda fase funge da collegamento per le travi superiori; di fatto, stante l'interasse delle travi principali, non è soggetta a significative sollecitazioni indotte dai carichi mobili (Schema di carico 2 e 3), che verranno quindi trascurati.

Dall'analisi globale dell'impalcato si possono dedurre le seguenti sollecitazioni (valutate per una striscia di soletta di larghezza unitaria):

Sezione tipo B = 1.00m H = 0.30m As,inf = $\frac{5}{4}$ As,sup = $\frac{5}{4}$

c.c. SLE-Rara $M_{SD} = +22 \text{ kNm/m}$

 $\sigma_{cls} = -3.64 \text{ MPa}$ $\sigma_{acc} = 180 \text{ MPa}$

c.c. SLE-Frequente $M_{SD} = +16 \text{ kNm/m}$

 $\sigma_{cls} = -2.64 \text{ MPa}$ $\sigma_{acc} = 131 \text{ MPa}$

c.c. SLE-Q. Permanente $M_{SD} = +1 \text{ kNm/m}$

 $\sigma_{cls} = -0.17 \text{ MPa}$ $\sigma_{acc} = 9 \text{ MPa}$

La verifica a fessurazione è soddisfatta in quanto la tensione massima nell'acciaio (=131 MPa) è inferiore al limite ammesso per il caso in esame (ambiente aggressivo e armatura poco sensibile), che corrisponde a 160 MPa nella c.c. quasi permanente.

c.c. SLU $M_{SD} = +29 \text{ kNm/m}$ $M_{RD} = +58 \text{ kNm/m}$

2.2.5. Verifica per azioni d'urto

2.2.5.1. Urto contro le barriere di sicurezza

È interessato da tale azione il cordolo posto all'estremità della soletta superiore; la sezione resistente ha larghezza di 0.70m, ed altezza di 0.40m.

Le azioni da applicare al cordolo nella c.c. eccezionale sono:

 $M_{SD,max} = 100*(1+0.10+0.15) = 125 \text{ kNm/m}$ $V_{SD,max} = +100 \text{ kN/m}$

La sezione di incastro ha un'ampiezza minima di (0.2+2*0.25) ed è armata con barre Φ 12/15; la resistenza è pari a:

2.2.6. Considerazioni sui dispositivi di vincolo

Le travi vanno a poggiare su degli appoggi in gomma armata di dimensioni 30x15x3.5cm; i carichi di progetto afferenti a ciascuno di questi sono:

carico permanente caratteristico Pk = 68 kN carico accidentale caratteristico Qk = 137 kN

 $\begin{array}{ll} \text{Massimo carico allo SLE} & \text{N}_{\text{SD,SLE}} = 200 \text{ kN} \\ \text{Massimo carico allo SLU} & \text{N}_{\text{SD,SLU}} = 271 \text{ kN} \\ \text{Rotazione agli appoggi} & 9 = 0.0013 \text{ rad} \end{array}$

Gli appoggi previsti sono del tipo "ALGABLOC NB 150x300", che garantiscono una carico verticale massimo di 530 kN.

Le <u>azioni orizzontali in direzione longitudinale</u> (frenamento, sisma) si scaricano sulla spalla e da lì sul terreno di rilevato.

Frenamento: $Q_3 = 384 \text{ kN}$ Azione inerziale longitudinale: $E_1 = 421 \text{ kN}$ Il trasferimento di queste azioni alla spalla avviene tramite il paraghiaia, diviso dal traverso di testata da un nastro in gomma non armata da 20mm di spessore.

Le <u>azioni orizzontali in direzione trasversale</u> (vento, sisma, urto) si scaricano sulla spalla e da lì sul terreno di rilevato.

Centrifuga: $Q_4 = 200 \text{ kN / spalla}$ Vento: $Q_5 = 28 \text{ kN / spalla}$ Azione inerziale longitudinale: $E_T = 191 \text{ kN / spalla}$

L'azione è trasferita ad dei respingenti laterali in acciaio, ottenuto con un profilo HEM 200 in acciaio S355 J2.

3. CALCOLO SOMMARIO DELLA SPALLA "A"

Si riporta nel seguito l'analisi strutturale della spalla "A", soggetta al nuovo set di azioni trasmesse dall'impalcato e dal terreno retrostante. La spalla è collegata direttamente all'impalcato tramite il paraghiaia, strutturalmente unito alla soletta di impalcato.

L'effetto del carico mobile applicato al terrapieno è ragguagliato ad un sovraccarico uniformemente distribuito di 20 kN/mq, valore questo determinabile considerando la diffusione dell'azione "concentrata" in sommità nel volume del rilevato (come definita dalla Circolare 617/09 al p.to C5.1.3.3.7.1) con la teoria dell'elasticità (Boussinesq).

Opera	32							
	Verifica spalla							
_								
Elementi	largh	lungh	altezza	p.s.	XG	ZG	N _{SK}	M _{o,sk}
	m	m	m	kn/mc	m	m	kN	kNm
muro frontale	6	0.9	0.56	25	1.25	1.18	-76	-95
paraghiaia	6	0.4	0.82	25	1.50	1.31	-49	-74
terreno monte	6	1	1.38	18	2.20	1.59	-149	-328
terreno valle	0	0.8	0	18	0.40	0.90	0	0
terreno lato	0	2.7	0	18	1.35	0.90	0	0
soletta	6	2.7	0.9	25	1.35	0.45	-365	-492
							-638	-988
Dati terreno								
Angolo di attrito d	i calcolo	fi =	35	0			d =	2.28
Coefficiente di spi	inta attiva	Ka =	0.271				=	6
Coefficiente di sp	inta a riposo	K0 =	0.426					
Coeff. di spinta si	smico (M/O)	K =	0.313					
peso di volume		g =	18	kN/mc				
Sovraccarico accid	lentale medio	q =	20	kN/mq				
Sisma	a _{max} =	0.27						
	β _m =	1						
	VI	0.27						

Sisma	a _{max} =	0.27					
	β _m =	1					
	Kh =	0.27					
		V_{Sk}	M _{Sk}				
		kN	kNm				
Spinta del terreno m	onte	114	87				
Spinta del terreno m	onte	0	0				
Spinta del terreno va	alle	-18	-5				
Spinta accidentale		117	133				
Incremento di spinta		54	74	(Seed&Whitman modificato)			
Inerzia spalla		172	150				

Si considerano due situazioni di carico: nella prima le azioni orizzontali longitudinali sono dirette verso il centro del canale, nella seconda sono rivolte verso il terrapieno.

Nel primo caso l'intensità (complessiva) delle azioni va divisa tra le 2 spalle, in virtuù del contrasto presente nella spalla opposta; nel secondo caso invece agisce il carico completo.

3.1. AZIONI DIRETTE VERSO IL CANALE

Carichi da impalo	ato							
	N _{SK}	H _{long,K}	H _{trasv,K}	M _{22,K}	XG	ZG	M _{SK,valle}	
	kN	kN	kN	kNm	m	m	kNm	
peso proprio	-510				1.0	1.46	-510	
mobili	-1080			0	1.0	1.46	-1080	
mobili	0			0	1.0	1.46	0	
frenamento		192		0	1.0	1.46	280	
centrifuga			200	140	1.0	1.46	0	
vento			28	32.2	1.0	1.46	0	
sisma		211	191		1.0	1.46	307	

Approccio 2	Combinazion	e 1				
	DATI RISPET	TO SISTEMA I	DI RIFERIMEN	TO VERTICAL	E	
Massimo	carico vertica	ale	Minimo cari	ico verticale	Sisn	nica
N _{SD} =	-3008	kN	-1148	kN	-1148	kN
H _{long,D} =	553	kN	513	kN	533	kN
H _{trasv,D} =	312	kN	312	kN	243	kN
M _{33,SD} =	-2811	kNm	-1616	kNm	-886	kNm
M _{22,SD} =	237	kNm	237	kNm	45	kNm
E2 _{long} =	0.416	m	-0.057	m	0.579	m
E2 _{trasv} =	-0.079	m	-0.207	m	-0.039	m

3.2. AZIONI DIRETTE VERSO IL TERRAPIENO

Carichi da impale	cato							
	N _{sk}	H _{long,K}	H _{trasv,K}	M _{22,K}	XG	ZG	M _{SK,valle}	
	kN	kN	kN	kNm	m	m	kNm	
peso proprio	-510				1.0	1.46	-510	
mobili	-1080			0	1.0	1.46	-1080	
mobili	0			0	1.0	1.46	0	
frenamento		-384		0	1.0	1.46	-561	
centrifuga			200	140	1.0	1.46	0	
vento			28	32.2	1.0	1.46	0	
sisma		-421	191		1.0	1.46	-615	

Approccio 2	Combinazion	e 1				
	DATI RISPET	TO SISTEMA I	DI RIFERIMEN	TO VERTICALI	E	
Massimo	carico vertica	ale	le Minimo carico verticale		Sisn	nica
N _{SD} =	-3008	kN	-1148	kN	-1148	kN
H _{long,D} =	-225	kN	-265	kN	-98	kN
H _{trasv,D} =	312	kN	312	kN	243	kN
M _{33,SD} =	-3946	kNm	-1994	kNm	-1808	kNm
M _{22,SD} =	237	kNm	237	kNm	45	kNm
E2 _{long} =	0.038	m	-0.387	m	-0.224	m
E2 _{trasv} =	-0.079	m	-0.207	m	-0.039	m

3.3. VERIFICHE DI RESISTENZA DELL'ELEVAZIONE

Le dimensioni della parete in elevazione non subiscono modifiche.

Considerata la geometria della parete, si analizza una striscia verticale di larghezza unitaria, avente schema statico a mensola.

La situazione di carico più gravosa è quella in cui l'azione orizzontale è rivolta verso il canale.

La sezione di incastro ha spessore di 0.90m, ed è armata con (Φ20/20) verso monte, e Φ20/20 verso valle.

Allo SLE si ha:

SLE-rara	$N_{SD} = -286 \text{ kN/m}$	$M_{SD} = 93 \text{ kNm/m}$	$\sigma_{cls} = -1.1 \text{ MPa}$	$\sigma_{acc} = 11 \text{ MPa}$
SLE-freq.	$N_{SD} = -241 \text{ kN/m}$	$M_{SD} = 75 \text{ kNm/m}$	σ_{cls} = -1.0 MPa	$\sigma_{acc} = 31 \text{ MPa}$
SLE-q.perm.	$N_{SD} = -106 \text{ kN/m}$	$M_{SD} = 19 \text{ kNm/m}$	$\sigma_{cls} = -0.3 \text{ MPa}$	σ_{acc} < 0 MPa

La verifica di fessurazione è soddisfatta, in quanto lo stato tensionale nelle barre d'acciaio nelle due combinazioni di carico di controllo è inferiore al limite ammesso per il caso in esame (σ_{acc} < 160 MPa):

Allo SLU si ha:

$$N_{SD,max} = -386 \text{ kN/m}$$
 $M_{SD} = 126 \text{ kNm/m}$ $M_{RD} = 657 \text{ kNm/m}$ $C.S. = 5.2$

 $V_{SD} = 77 \text{ kN/m}$

resistenza a taglio senza armatura trasversale $V_{RD1} = 318 \text{ kN/m} > V_{SD}$

$$N_{SD,min} = -106 \text{ kN/m}$$
 $M_{SD} = 62 \text{ kNm/m}$ $M_{RD} = 547 \text{ kNm/m}$ C.S. = 8.8

 $V_{SD} = 76 \text{ kN/m}$

resistenza a taglio senza armatura trasversale V_{RD1} = 282 kN/m > V_{SD}

Allo SLV si ha:

$$N_{SD max} = -106 \text{ kN/m}$$
 $M_{SD} = 48 \text{ kNm/m}$ $M_{RD} = 547 \text{ kNm/m}$ C.S. > 10

 $V_{SD} = 53 \text{ kN/m}$

resistenza a taglio senza armatura trasversale V_{RD1} = 282 kN/m > V_{SD}

3.3.1. Verifiche di resistenza della soletta di fondazione

Si riportano negli schemi seguenti il calcolo delle sollecitazioni agenti al piede della fondazione nelle 3 combinazioni di carico allo SLU più significative:

- cc1 massimo carico verticale + massima azione orizzontale
- cc2 minimo carico verticale + massima azione orizzontale
- cc3 combinazione di carico sismica

Calcolo pressioni ai vertici							
Larghezza fondazione	B =	2.7	m				
Lunghezza fondazione	L =	6	m				
Spessore fondazione	H =	0.9	m				
Spessore terreno valle	tv =	0	m				
Spessore terreno monte	tm =	1.38	m				
carico N _{SD}	N _{SD} =	-3008	-1148	-1148	kN		
larghezza ridotta B'	B' =	1.869	2.814	1.542	m		
lunghezza ridotta L'	L' =	5.842	5.587	5.922	m		
pressione media massima	p =	-276	-73	-126	kPa		
pres. di calcolo dir long. (valle)	pd =	-253	-51	-103	kPa		
Mensola in direzione longitudir	nale (valle)	L=	0.8	m			
Momento di progetto	M =	-88	kNm/m				
Taglio di progetto	V =	-220	kN/m				
Mensola in direzione longitudir	nale (monte)	L=	1	m			
Momento di progetto	M =	20	-13	22	kNm/m		
Taglio di progetto	V =	1	-17	67	kN/m		

Figura 19: caso di azioni dirette VERSO IL CANALE

Calcolo pressioni ai vertici							
Larghezza fondazione	B =	2.7	m				
Lunghezza fondazione	L =	6	m				
Spessore fondazione	H =	0.9	m				
Spessore terreno valle	tv =	0	m				
Spessore terreno monte	tm =	1.38	m				
carico N _{SD}	N _{SD} =	-3008	-1148	-1148	kN		
larghezza ridotta B'	B' =	2.624	3.473	3.148	m		
lunghezza ridotta L'	L' =	5.842	5.587				
pressione media massima	p =	-196	-59	-62	kPa		
pres. di calcolo dir long. (valle)	pd =	-174	-37	-39	kPa		
Mensola in direzione longitudina	le (valle)	L=	0.8	m			
Momento di progetto	M =	-63	kNm/m				
Taglio di progetto	V =	-157	kN/m				
Mensola in direzione longitudina	le (monte)	L=	1	m			
Momento di progetto	M =	-60	-61	-41	kNm/m		
Taglio di progetto	V =	-134	-41	-42	kN/m		

Figura 20: caso di azioni orizzontale dirette VERSO IL TERRAPIENO

Mensola in direzione longitudinale (valle)

La sezione tipo è armata con Φ 20/20 al lembo inferiore e superiore.

Verifica	a taglio _l	per sezioni re	ettangola	ari secondo	le NTC 2	800		
base	1000	mm					N. barre z	ona tesa
altezza	900	mm	d	840	mm		Ф8 =	
fck	25	MPa	As	1570	mmq		Ф10 =	
fyk	450	MPa	θ	45.00	0		Ф12 =	
fyd	391	MPa					Ф14 =	
γ _c =	1.50		COEFF.	0.9	=0.8 per setti in o	ond sismiche	Ф16 =	
γ _s =	1.15				= 0.9 altrove		Ф 18=	(
							Ф20=	
							Ф22=	
Armatura	staffe	As	110	mmq			Ф24=	
		passo	200	mm			Ф26=	
		n	2.0				Ф30=	
	piegati	As	314	mmq			Ф32=	
		alfa	45	0				
		passo	600	mm				
		n	2.50					
		d,pieg	900	mm				
Carico ass	iale	N=	0	kN				
Resistenza	a SENZA a	rmatura a taglio		V _{RD1} =	266.8	kN	v =	0.318 N/mm

Allo SLE si ha:

SLE-rara	$M_{SD} = -58 \text{ kNm/m}$	$\sigma_{cls} = -0.8 \text{ MPa}$	$\sigma_{acc} = 47 \text{ MPa}$
SLE-freq.	$M_{SD} = -47 \text{ kNm/m}$	σ_{cls} = -0.7 MPa	$\sigma_{acc} = 39 \text{ MPa}$
SLE-q.perm.	$M_{SD} = -18 \text{ kNm/m}$	$\sigma_{cls} = -0.3 \text{ MPa}$	$\sigma_{acc} = 15 \text{ MPa}$

La verifica a fessurazione è soddisfatta in quanto la tensione nelle barre è inferiore al limite ammesso col metodo tabellare (σ_{acc} < 160 MPa)

Mensola in direzione longitudinale - lato monte

La sezione tipo è armata con (Φ20/20) al lembo superiore ed inferiore.

$M_{SD} = -61 \text{ kNm/m}$	$Mrd \approx -0.9*391*(314)$	(0.2)*840 = -464 kNm	C.S. = 7.6
$V_{SD} = 134 \text{ kN/m}$	Vrd1 = 405 kN/m	senza armatura a taglio	

Allo SLE si ha:

SLE-rara	$M_{SD} = 38 \text{ kNm/m}$	$\sigma_{cls} = -0.5 \text{ MPa}$	σ_{acc} = 31 MPa
SLE-freq.	$M_{SD} = 28 \text{ kNm/m}$	$\sigma_{cls} = -0.4 \text{ MPa}$	$\sigma_{acc} = 23 \text{ MPa}$
SLE-q.perm.	$M_{SD} = 1 \text{ kNm/m}$	$\sigma_{cls} = -0.1 \text{ MPa}$	$\sigma_{acc} = 1 \text{ MPa}$

La verifica a fessurazione è soddisfatta in quanto la tensione nelle barre è inferiore al limite ammesso col metodo tabellare (σ_{acc} < 160 MPa)

3.3.2. Verifiche geotecniche

Si riporta nelle schede seguenti il calcolo della capacità portante della soletta di fondazione nelle (3+3) combinazioni di carico considerate.

Azioni dirette verso il canale

Azioni dirette verso il canale

		Terreno di	fondazione					
		Terrene un			KN/m ³	m		
ang.attrito	coesione	coes, non dr	coeff. mat.	coeff. mat.	fondazione			
ang.attrito φ'	coesione c'	cues. Horr ur	angolo attrito	coesione	γ	B B		
35	0	0	1	1	19	6		
0.610865				•	13			
tgφ _d	0.70020754	φ _{d=}	35.00	0	C'd	0	kPa	
315		10			Cud	0	kPa	
		Terreno	laterale		-00			
		remens	laterate		KN/m ³	m	m	
ang.attrito	cnesione	coes, non dr	coeff. mat.	coeff. mat.	laterale		lunghezza	
φ'	c'	cu	angolo attrito	coesione	γ	D	L	
35	0	0	1	1	18	1	2.7	
0.610865								
tgφd	0.70020754		Ψd=	35.00	0	c' _d	0	kPa
						Cud	0	kPa
						-00		
Carico vert	ticale (V)	3008	kN					
	zzontale (H _B)	553	kN	(agente in d	irezione pa	rallela a "B)")	
	zontale (H _L)	312	kN	(agente in d				
	orizzontale	635		(agonto iii a	iroziono pa	lancia aa	- /	
Eccentricit		0.42						
Eccentricit		0.42						
Eccentrici	іа еլ	0.00	m					
Calcolo d	ei coefficien	ti di portanza	e della porta	nza modia	nto Hanco	n		
culcolo u	ci cocincicii	u ui portuiizo	e della port	inza meaia	nte manse			
B'=	5.160	m	m _B =	1.3299				
L'=	2.540	m	m _L =	1.6701				
Α'=	13.106	mg	_					
θ=	60.5685131							
			→ m=	1.412				
a,lat =	9.02	(=e ^{π tg φd})						
a,fond =	9.02	(=e ^{π tg φd})						
			sq	d_q	İq	b_q	g _q	z_q
Nq,lat=	33.30		2.422	1.100	0.715	1.000	1.000	1.00
Nq,fond=	33.30				0.715			
			s _c / s' _c	d _e / d' _e	i _o / i' _o	b _c / b' _c	g _c / g' _c	Zc
Nc,lat=	46.12		2.467	1.067	0.707	1.000	1.000	1.00
Nc,fond=	46.12		0.406	0.067	1.000	0.000	0.000	
			sγ	dγ	İγ	bγ	g _y	Zγ
Nγ,lat=	33.92		0.187	1.000	0.564	1.000	1.000	1.00
Nγ,fond=	33.92							
In condiz	ioni drenate:							
	0 176	contributo coe						
→	1142	contributo terr	eno di fondazio	Jiie				
	1142	Contributo ten	eno iaterale				0.20	
	40.10				P	γ _R =		
q _{ult} =	1318	kPa	Capacità porta			q _{ud} =		kPa
$Q_{ult}=$	17275	kN	Capacità porta	ante di proge	tto	Q _{ud} =	7511	kN

		Terreno di	fondazione					
					KN/m ³	m		
ang.attrito	coesione	coes, non dr	coeff. mat.	coeff. mat.				
φ'	c' c'	cues. non ur	angolo attrito	coesione	γ	B		
35	0	0	1	1	19	6		
0.610865					10			
tgφ _d	0.70020754	φ _{d=}	35.00	0	C'd	0	kPa	
-514		10-			Cud	0	kPa	
		Terreno	laterale		Oud		na u	
		Terreno	laterale		KN/m³		100	
ang.attrito	coosiono	coes, non dr	coeff. mat.	coeff. mat.	laterale	m profondità	m lunghezza	
φ'	cuesione c'	CU CU	angolo attrito	coesione		D	L	
- Ψ 35	0	0	1	1	γ 18	1	2.7	
0.610865					10		2.1	
tgφ _d	0.70020754		φ _{d=}	35.00	0	C'd	0	kPa
1940	0.10020104		Ψ0=	55.00			0	kPa
						C _{ud}	U	кРа
Carico vert	icale (\/)	1148	ĿΝ					
		513		/aganta in di	iroziono no	rollolo o "D	m/	
	zontale (H _B)			(agente in di				
	zontale (H _L)	312		(agente in di	irezione pai	rallela ad "	L")	
	orizzontale	600						
Eccentricit	tà "e _B "	0.06	m					
Eccentricit	tà "e _L "	0.21	m					
Calcolo d	ei coefficien	ti di portanza	e della porta	anza mediai	nte Hansei	n		
B'=	5.880	m	m _B =	1.2794				
L'=	2.280			1.7206				
L - Α'=	13.406		m _L =	1.7200				
θ=	58.6925711							
U=	30.0323711		——→ m=	1.399				
			- "	1.555				
a lat =	9.02	(=e ^π tg φd)						
a,lat =	9.02							
a,lat = a,fond =	9.02 9.02			d		h		
a,fond =	9.02	(=e ^{π tg φd})	Sq 2.806	d _q	iq 0.365	b _q	9q	Z _q
a,fond =	9.02	(=e ^{π tg φd})	s _q 2.806	d _q 1.100	0.355	b _q 1.000	9q 1.000	Z _q 1.00
a,fond =	9.02	(=e ^{π tg φd})	2.806	1.100	0.355 0.355	1.000	1.000	1.00
a,fond = Nq,lat= Nq,fond=	9.02 33.30 33.30	(=e ^{π tg φd})	2.806 s _c /s' _c	1.100 d _c / d' _c	0.355 0.355 i _e / i' _e	1.000 b _c / b' _c	1.000 g _c / g' _c	1.00 Z _c
a,fond = Nq,lat= Nq,fond= Nc,lat=	9.02 33.30 33.30 46.12	(=e ^{π tg φd})	2.806 s _c / s' _c 2.862	1.100 d _e / d' _e 1.067	0.355 0.355 i _o / i' _o 0.335	1.000 b _c / b' _c 1.000	1.000 g _c / g' _c 1.000	1.00
a,fond = Nq,lat= Nq,fond=	9.02 33.30 33.30	(=e ^{π tg φd})	2.806 s _c / s' _c 2.862 0.516	1.100 d _o / d' _o 1.067 0.067	0.355 0.355 i _o /i' _o 0.335 1.000	1.000 b _c / b' _c 1.000 0.000	1.000 g _c / g' _c 1.000 0.000	1.00 Z _c 1.00
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond=	9.02 33.30 33.30 46.12 46.12	(=e ^{π tg φd})	2.806 s _c / s' _c 2.862 0.516 s _Y	1.100 d _c / d' _c 1.067 0.067 d _Y	0.355 0.355 i _e / i' _e 0.335 1.000 i _y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	1.00 Z _c 1.00
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat=	9.02 33.30 33.30 46.12 46.12	(=e ^{π tg φd})	2.806 s _c / s' _c 2.862 0.516	1.100 d _o / d' _o 1.067 0.067	0.355 0.355 i _o /i' _o 0.335 1.000	1.000 b _c / b' _c 1.000 0.000	1.000 g _c / g' _c 1.000 0.000	1.00 Z _c 1.00
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond=	9.02 33.30 33.30 46.12 46.12	(=e ^{π tg φd})	2.806 s _c / s' _c 2.862 0.516 s _Y	1.100 d _c / d' _c 1.067 0.067 d _Y	0.355 0.355 i _e / i' _e 0.335 1.000 i _y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	1.00 z _c 1.00
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	9.02 33.30 33.30 46.12 46.12	(=e ^{π tg φd})	2.806 s _c / s' _c 2.862 0.516 s _Y	1.100 d _c / d' _c 1.067 0.067 d _Y	0.355 0.355 i _e / i' _e 0.335 1.000 i _y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	1.00 z _c 1.00
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	9.02 33.30 33.30 46.12 46.12 33.92 33.92 3001 drenate:	(=e ^{π tg φd})	2.806 s _c / s' _c 2.862 0.516 s _Y -0.032	1.100 d _c / d' _c 1.067 0.067 d _Y	0.355 0.355 i _e / i' _e 0.335 1.000 i _y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	1.00 Z _c 1.00
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	9.02 33.30 33.30 46.12 46.12 33.92 33.92 soni drenate:	(=e ^{π tg φd})	2.806 s _c / s' _c 2.862 0.516 s _Y -0.032	1.100 d _o / d' _o 1.067 0.067 d _Y 1.000	0.355 0.355 i _e / i' _e 0.335 1.000 i _y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	1.00 z _c 1.00
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	9.02 33.30 33.30 46.12 46.12 33.92 33.92 30ni drenate:	(=e ^{π tg φd})	2.806 s _c / s' _c 2.862 0.516 s _Y -0.032	1.100 d _o / d' _o 1.067 0.067 d _Y 1.000	0.355 0.355 i _e / i' _e 0.335 1.000 i _y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	1.00 Z _c 1.00
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	9.02 33.30 33.30 46.12 46.12 33.92 33.92 soni drenate:	(=e ^{π tg φd})	2.806 s _c / s' _c 2.862 0.516 s _Y -0.032	1.100 d _o / d' _o 1.067 0.067 d _Y 1.000	0.355 0.355 i _e / i' _e 0.335 1.000 i _y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y 1.000	1.00 Z _c 1.00 Z _y 1.00
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	9.02 33.30 33.30 46.12 46.12 33.92 33.92 30ni drenate:	(=e ^{π tg φd})	2.806 s _c / s' _c 2.862 0.516 s _Y -0.032	1.100 d _o / d' _o 1.067 0.067 d _Y 1.000	0.355 0.355 i _e / i' _e 0.335 1.000 i _y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	1.00 Z _c 1.00 Z _y 1.00
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	9.02 33.30 33.30 46.12 46.12 33.92 33.92 30ni drenate:	(=e ^{π tg φd})	2.806 s _c / s' _c 2.862 0.516 s _Y -0.032	1.100 d _o / d' _o 1.067 0.067 d _y 1.000	0.355 0.355 i _o /i' _o 0.335 1.000 i _y 0.169	1.000 b _o / b' _o 1.000 0.000 b _Y 1.000	1.000 g _o / g' _o 1.000 0.000 g _Y 1.000	1.00 Z ₀ 1.00 Z _Y 1.00

		Terreno di f	fondazione					
					KN/m ³	m		
ang.attrito	coesione	coes, non dr	coeff. mat.	coeff. mat.	fondazione			
ang.aιτπιο φ'	coesione c'	cues. Horr ur	angolo attrito	coesione	γ	B		
35	0	0	1	1	19	6		
0.610865	Ū	·		•	10			
tgφ _d	0.70020754	φ _{d=}	35.00	0	C'd	0	kPa	
315		10			Cud	0	kPa	
		Terreno	laterale		-00			
		remens	laterare		KN/m ³	m	m	
ang.attrito	coesione	coes, non dr	coeff. mat.	coeff. mat.	laterale		lunghezza	
φ'	c'	cu	angolo attrito	coesione	Y	D	I	
35	0	0	1	1	18	1	2.7	
0.610865		_	-					
tgφ _d	0.70020754		Ψ _d =	35.00	0	c' _d	0	kPa
-314			10-			C _{ud}	0	kPa
						oud	,	
Carico vert	ricale (V)	1148	kN					
	zontale (H _B)	533		(agente in di	iroziono na	rallala a "R	"\	
	zontale (H _I)	243						
	\ -/			(agente in di	rezione pa	rallela ad	L)	
	orizzontale	586						
Eccentricit		0.58						
Eccentricit	tà "e∟"	0.04	m					
Calcolo d	ei coefficien	ti di portanza	e della porta	ınza mediai	nte Hansei	n		
B'=	4.840	m	m _B =	1.3512				
L'=	2.620	m	m _L =	1.6488				
Δ'=	12.681							
ϑ=	65.491286							
_			→ m=	1.402				
a,lat =	9.02	(=e ^{π tg φd})						
	9.02 9.02							
a,lat = a,fond =		- 4	Sa	da	ia	ba	Q _n	Za
a,fond =	9.02	(=e ^{π tg φd})	s _q 2.294	d _q	i _q 0.367	b _q	9q 1,000	Z _q 0.61
a,fond =		(=e ^{π tg φd})		d _q 1.100	0.367 0.367	b _q 1.000	9q 1.000	
a,fond =	9.02	(=e ^{π tg φd})	2.294	1.100	0.367 0.367	1.000	1.000	0.61
a,fond = Nq,lat= Nq,fond=	9.02 33.30 33.30	(=e ^{π tg φd})	2.294 s _c /s' _c	1.100 d _c /d' _c	0.367		1.000 g _c / g' _c	0.61 Z _c
a,fond = Nq,lat= Nq,fond= Nc,lat=	9.02 33.30 33.30 46.12	(=e ^{π tg φd})	2.294 s _c / s' _c 2.334	1.100 d _c / d' _c 1.067	0.367 0.367 i _o / i' _o 0.348	1.000 b _c / b' _c 1.000	1.000 g _c / g' _c 1.000	0.61
a,fond = Nq,lat= Nq,fond=	9.02 33.30 33.30	(=e ^{π tg φd})	2.294 s _c / s' _c 2.334 0.369	1.100 d _o / d' _o 1.067 0.067	0.367 0.367 i _o /i' _o 0.348 1.000	1.000 b _c / b' _c 1.000 0.000	1.000 g _c / g' _c 1.000 0.000	0.61 Z _c 0.91
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond=	9.02 33.30 33.30 46.12 46.12	(=e ^{π tg φd})	2.294 s _c / s' _c 2.334 0.369 s _Y	1.100 d _c / d' _c 1.067 0.067 d _Y	0.367 0.367 i _o / i' _o 0.348 1.000 i _y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	0.61 Z _c 0.91
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat=	9.02 33.30 33.30 46.12 46.12 33.92	(=e ^{π tg φd})	2.294 s _c / s' _c 2.334 0.369	1.100 d _o / d' _o 1.067 0.067	0.367 0.367 i _o /i' _o 0.348 1.000	1.000 b _c / b' _c 1.000 0.000	1.000 g _c / g' _c 1.000 0.000	0.61 Z _c 0.91
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond=	9.02 33.30 33.30 46.12 46.12	(=e ^{π tg φd})	2.294 s _c / s' _c 2.334 0.369 s _Y	1.100 d _c / d' _c 1.067 0.067 d _Y	0.367 0.367 i _o / i' _o 0.348 1.000 i _y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	0.61 Z _c 0.91
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	9.02 33.30 33.30 46.12 46.12 33.92	(=e ^{π tg φd})	2.294 s _c / s' _c 2.334 0.369 s _Y	1.100 d _c / d' _c 1.067 0.067 d _Y	0.367 0.367 i _o / i' _o 0.348 1.000 i _y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	0.61 Z _c 0.91
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	9.02 33.30 33.30 46.12 46.12 33.92 33.92	(=e ^{π tg φd})	2.294 s _c / s' _c 2.334 0.369 s _Y	1.100 d _c / d' _c 1.067 0.067 d _Y	0.367 0.367 i _o / i' _o 0.348 1.000 i _y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	0.61 Z _c 0.91
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	9.02 33.30 33.30 46.12 46.12 33.92 33.92 ioni drenate:	(=e ^{π tg φd})	2.294 s _c / s' _c 2.334 0.369 s _Y 0.261	1.100 d _c / d' _c 1.067 0.067 d _Y	0.367 0.367 i _o / i' _o 0.348 1.000 i _y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	0.61 Z _c 0.91
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	9.02 33.30 33.30 46.12 46.12 33.92 33.92 ioni drenate:	(=e ^{π tg φd})	2.294 s _c / s' _c 2.334 0.369 s _Y 0.261 esivo eno di fondazio	1.100 d _c / d' _c 1.067 0.067 d _Y 1.000	0.367 0.367 i _o / i' _o 0.348 1.000 i _y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	0.61 Z _c 0.91
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	9.02 33.30 33.30 46.12 46.12 33.92 33.92 ioni drenate:	(=e ^{π tg φd})	2.294 s _c / s' _c 2.334 0.369 s _Y 0.261 esivo eno di fondazio	1.100 d _c / d' _c 1.067 0.067 d _Y 1.000	0.367 0.367 i _o / i' _o 0.348 1.000 i _y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	0.61 Z _c 0.91
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	9.02 33.30 33.30 46.12 46.12 33.92 33.92 ioni drenate:	(=e ^{π tg φd})	2.294 s _c / s' _c 2.334 0.369 s _Y 0.261 esivo eno di fondazio	1.100 d _c / d' _c 1.067 0.067 d _Y 1.000	0.367 0.367 i _o / i' _o 0.348 1.000 i _y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	0.61 Z _c 0.91 Z _Y 0.61
a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	9.02 33.30 33.30 46.12 46.12 33.92 33.92 ioni drenate:	(=e ^{π tg φd})	2.294 s _c / s' _c 2.334 0.369 s _Y 0.261 esivo eno di fondazio	1.100 d _o / d' _o 1.067 0.067 d _Y 1.000	0.367 0.367 i _o /i' _o 0.348 1.000 i _y 0.180	1.000 b _o / b' _o 1.000 0.000 b _Y 1.000	1.000 g _o / g' _o 1.000 0.000 g _Y 1.000	0.61 Z _c 0.91 Z _Y 0.61

		Terreno di	fondoriono					
		rerreno di	ondazione		1017 3			
			_	_	KN/m ³	m		
ang.attrito		coes. non dr	coeff. mat.		fondazione	_		
φ'	c'	cu	angolo attrito	coesione	Y	В		
35 0.610865	0	0	1	1	19	6		
	0.70000754		35.00	0		0	LD-	
tgφ _d	0.70020754	φ _d =	35.00		C'd	0	kPa	
					C _{ud}	0	kPa	
		Terreno	laterale					
					KN/m ³	m	m	
ang.attrito		coes. non dr	coeff. mat.	coeff. mat.	laterale	•	lunghezza	
φ'	c'	cu	angolo attrito	coesione	γ	D	L	
35	0	0	1	1	18	1	2.7	
0.610865				25.00	_			. –
tgφ _d	0.70020754		φ _d =	35.00	•	c' _d	0	kPa
						C _{ud}	0	kPa
Carico vert		3008						
Carico oriz	zzontale (H _B)	225	kN	(agente in di	irezione pa	rallela a "B	")	
Carico oriz	zzontale (H _L)	312	kN	(agente in di	irezione pa	rallela ad "l	L")	
Risultante	orizzontale	385	kN					
Eccentricit	tà "e _B "	0.04	m					
Eccentricit		0.08	m					
2000111101		0.00						
Calcolo d	ei coefficien	ti di portanza	e della porta	nza media	nte Hansei	n		
outout u		li di portanza	o dona pona					
B'=	5.920	m	m _B =	1.3002				
L'=	2.540	m	m _L =	1.6998				
Δ'=	15.037							
θ=	35.797403							
			→ m=	1.563				
a,lat =	9.02							
a,fond =	9.02	(=e ^{π tg φd})						
			Sa	d _a	in	b _o	q _n	Zn
Ng.lat=	33.30		s _q 2.632	d _q 1.100	i _q 0.807	b _q	9q 1.000	Z _q
Nq,lat= Nq,fond=	33.30 33.30				i _q 0.807 0.807		9q 1.000	
Nq,lat= Nq,fond=			2.632	1.100	0.807 0.807	1.000	1.000	1.00
Nq,fond=	33.30				0.807			
Nq,fond= Nc,lat=	33.30 46.12		2.632 s _c /s' _c 2.683	1.100 d _c / d' _c 1.067	0.807 0.807 i _c / i' _c 0.801	1.000 b _e / b' _e 1.000	1.000 g _c / g' _c 1.000	1.00 Z _c
Nq,fond=	33.30 46.12		2.632 s _c / s' _c 2.683 0.466	1.100 d _o / d' _o 1.067 0.067	0.807 0.807 i _c / i' _c 0.801 1.000	1.000 b _c / b' _c 1.000 0.000	1.000 g _c / g' _c 1.000 0.000	1.00 Z _c 1.00
Nq,fond= Nc,lat= Nc,fond=	33.30 46.12 46.12		2.632 s _c / s' _c 2.683 0.466 s _Y	1.100 d _o / d' _o 1.067 0.067 d _Y	0.807 0.807 i _c / i' _c 0.801 1.000 i _Y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	1.00 Z _c 1.00
Nq,fond= Nc,lat= Nc,fond= Ny,lat=	33.30 46.12 46.12 33.92		2.632 s _c / s' _c 2.683 0.466	1.100 d _o / d' _o 1.067 0.067	0.807 0.807 i _c / i' _c 0.801 1.000	1.000 b _c / b' _c 1.000 0.000	1.000 g _c / g' _c 1.000 0.000	1.00 Z _c 1.00
Nq,fond= Nc,lat= Nc,fond=	33.30 46.12 46.12		2.632 s _c / s' _c 2.683 0.466 s _Y	1.100 d _o / d' _o 1.067 0.067 d _Y	0.807 0.807 i _c / i' _c 0.801 1.000 i _Y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	1.00 Z _c 1.00
Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	33.30 46.12 46.12 33.92		2.632 s _c / s' _c 2.683 0.466 s _Y	1.100 d _o / d' _o 1.067 0.067 d _Y	0.807 0.807 i _c / i' _c 0.801 1.000 i _Y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	1.00 Z _c 1.00
Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	33.30 46.12 46.12 33.92 33.92		2.632 s _c / s' _c 2.683 0.466 s _Y	1.100 d _o / d' _o 1.067 0.067 d _Y	0.807 0.807 i _c / i' _c 0.801 1.000 i _Y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	1.00 Z _c 1.00
Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	33.30 46.12 46.12 33.92 33.92		2.632 s _c / s' _c 2.683 0.466 s _Y	1.100 d _o / d' _o 1.067 0.067 d _Y	0.807 0.807 i _c / i' _c 0.801 1.000 i _Y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	1.00 Z _c 1.00
Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	33.30 46.12 46.12 33.92 33.92 ioni drenate:	contributo coe	2.632 s _c / s' _c 2.683 0.466 s _Y 0.068	1.100 d _c / d' _c 1.067 0.067 d _Y 1.000	0.807 0.807 i _c / i' _c 0.801 1.000 i _Y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	1.00 Z _c 1.00
Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	33.30 46.12 46.12 33.92 33.92 ioni drenate:	contributo coe	2.632 s _o / s' _o 2.683 0.466 s _y 0.068	1.100 d _c / d' _c 1.067 0.067 d _Y 1.000	0.807 0.807 i _c / i' _c 0.801 1.000 i _Y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	1.00 Z _c 1.00
Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	33.30 46.12 46.12 33.92 33.92 ioni drenate:	contributo coe	2.632 s _o / s' _o 2.683 0.466 s _y 0.068	1.100 d _c / d' _c 1.067 0.067 d _Y 1.000	0.807 0.807 i _c / i' _c 0.801 1.000 i _Y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y 1.000	1.00 Z _c 1.00 Z _y 1.00
Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	33.30 46.12 46.12 33.92 33.92 ioni drenate:	contributo coe	2.632 s _o / s' _o 2.683 0.466 s _y 0.068	1.100 d _c / d' _c 1.067 0.067 d _Y 1.000	0.807 0.807 i _c / i' _c 0.801 1.000 i _Y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	1.00 Z _c 1.00 Z _y 1.00
Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	33.30 46.12 46.12 33.92 33.92 ioni drenate:	contributo coe	2.632 s _o / s' _o 2.683 0.466 s _y 0.068	1.100 d _o / d' _o 1.067 0.067 d _Y 1.000	0.807 0.807 i _o /i' _o 0.801 1.000 i _y 0.704	1.000 b _o / b' _o 1.000 0.000 b _Y 1.000	1.000 g _o / g' _o 1.000 0.000 g _Y 1.000	1.00 Z _c 1.00 Z _y 1.00

ang.attrito φ'	coesione	Terreno di t			KN/m ³	m		
	cooriono		l					
		acce pende	coeff. mat.	acoff mat				
Ψ 1		coes. non dr		coeff. mat.		_		
35	c' 0	cu 0	angolo attrito	coesione	γ 19	B 6		
0.610865	U	U	1	1	19	ь		
	0.70000754		35.00	0		0	LD-	
tgφ _d	0.70020754	φ _{d=}	35.00		C'd	0	kPa	
					Cud	0	kPa	
		Terreno	laterale					
					KN/m ³	m	m	
ang.attrito	coesione	coes. non dr	coeff. mat.	coeff. mat.	laterale	profondità	lunghezza	
φ'	c'	cu	angolo attrito	coesione	γ	D	L	
35	0	0	1	1	18	1	2.7	
0.610865								
tgφd	0.70020754		Ψ _{d=}	35.00	0	C'd	0	kPa
			•			Cud	0	kPa
						~ua	,	
Carico verti	icale (\/)	1148	kN					
	zontale (H _B)	265		(agente in di	iroziono no	rallala a "D	<u>.</u>	
							-	
	zontale (H _L)	312		(agente in d	rezione pa	rallela ad "	L")	
	orizzontale	409						
Eccentricit	:à "e _B "	0.39	m					
Eccentricit	à "e _L "	0.21	m					
Calcolo de	ei coefficien	ti di portanza	e della porta	anza media	nte Hansei	n		
		•	•					
B'=	5.220	m	m _B =	1.3040				
L'=	2.280	m	m _L =	1.6960				
Α'=	11.902							
θ=	40.3432073							
	10.0102010		— m=	1.532				
a,lat =	9.02	(=e ^{π tg φd})						
a,fond =	9.02	(=e ^{π tg φd})						
a,iona –	3.02	(-e -)				L .		
N. 1 .	22.20		Sq	d _q	i _q	b _q	9 _q	Zq
Nq,lat=	33.30		2.603	1.100	0.509	1.000	1.000	1.00
Nq,fond=	33.30				0.509			
			s _c /s' _c	d _c / d' _c	i _c / i' _c	b _c / b' _c	g _c / g' _c	Zc
Nc,lat=	46.12		2.653	1.067	0.494	1.000	1.000	1.00
Nc,fond=	46.12		0.458	0.067	1.000	0.000	0.000	
			sγ	dγ	iγ	bγ	gγ	Zγ
Nγ,lat=	33.92		0.084	1.000	0.327	1.000	1.000	1.00
Nγ,fond=	33.92							
In condizi	ioni drenate:							
	0	contributo coe						
↳	46		eno di fondazio	one				
	873	contributo terr	eno laterale					
						γ _R =	2.30	
q _{ult} =	919	kPa	Capacità porta	ante unitaria	di proaetto	q _{ud} =	400	kPa

		Terreno di 1	fondazione					
		refreno di	ondazione		KN/m ³	m		
ang.attrito	coesione	coes. non dr	coeff. mat.		fondazione			
φ'	c'	cu	angolo attrito	coesione	Y 10	В		
35 0.610865	0	0	1	1	19	6		
	0.70000754		35.00	0		_	LD-	
tgφ _d	0.70020754	φ _{d=}	35.00		C'd	0	kPa	
					Cud	0	kPa	
		Terreno	laterale					
					KN/m ³	m	m	
ang.attrito	coesione	coes. non dr	coeff. mat.	coeff. mat.	laterale	profondità	lunghezza	
φ'	c'	cu	angolo attrito	coesione	γ	D	L	
35	0	0	1	1	18	1	2.7	
0.610865								
tgφ _d	0.70020754		Φ _d =	35.00	0	C'd	0	kPa
						Cud	0	kPa
						-00		
Carico vert	ticale (V/)	1148	kN					
	zontale (H _B)		kN	(agente in di	iroziono na	rollolo o "B	en/	
	, -,						•	
	zzontale (H _L)	243		(agente in di	rezione pa	rallela ad "	L")	
	orizzontale	262						
Eccentricit	tà "e _B "	0.23	m					
Eccentricit	tà "e _L "	0.04	m					
	_							
Calcolo d	ei coefficien	ti di portanza	e della porta	anza mediai	nte Hanse	n		
B'=	5.540	m	m _B =	1.3211				
L'=	2.620	m	m _L =	1.6789				
			1111 -					
Δ'=			111_	1.0700				
A'= ϑ=	14.515	mq		1.0700				
		mq		1.629				
	14.515	mq	_					
ϑ=	14.515 21.9638351	mq •	_					
ϑ= a,lat =	14.515 21.9638351 9.02	mq • (=e ^{π tg φd})	_					
ϑ=	14.515 21.9638351	mq •	→ m=	1.629		h		7
ϑ= a,lat = a,fond =	14.515 21.9638351 9.02 9.02	mq σ (=e ^{π tg φd}) (=e ^{π tg φd})	→ m=	1.629 d _q	iq	bq	9q	Zq
ϑ= a,lat = a,fond = Nq,lat=	14.515 21.9638351 9.02 9.02 33.30	mq σ (=e ^{π tg φd}) (=e ^{π tg φd})	→ m=	1.629	i _q 0.656	bq 1.000	9q 1.000	Z _q 0.61
ϑ= a,lat = a,fond =	14.515 21.9638351 9.02 9.02	mq σ (=e ^{π tg φd}) (=e ^{π tg φd})	→ m= Sq 2.481	1.629 d _q 1.100	i _q 0.656 0.656	1.000	1.000	0.61
ϑ= a,lat = a,fond = Nq,lat= Nq,fond=	14.515 21.9638351 9.02 9.02 33.30 33.30	mq (=e ^{π tg φd}) (=e ^{π tg φd})	s _q 2.481 s _c /s' _c	1.629 d _q 1.100 d _o / d' _o	iq 0.656 0.656 i _o /i' _o	1.000 b _c / b' _c	1.000 g _c / g' _c	0.61 Z _c
a,lat = a,fond = Nq,lat= Nq,fond= Nc,lat=	14.515 21.9638351 9.02 9.02 33.30 33.30 46.12	mq (=e ^{π tg φd}) (=e ^{π tg φd})	s _q 2.481 s _c /s' _c 2.526	1.629 d _q 1.100 d _o / d' _o 1.067	iq 0.656 0.656 i _o /i' _o 0.645	1.000 b _o / b' _o 1.000	1.000 g _c / g' _c 1.000	0.61
ϑ= a,lat = a,fond = Nq,lat= Nq,fond=	14.515 21.9638351 9.02 9.02 33.30 33.30	mq (=e ^{π tg φd}) (=e ^{π tg φd})	s _q 2.481 s _c /s' _c	1.629 d _q 1.100 d _o / d' _o 1.067 0.067	iq 0.656 0.656 i _o /i' _o 0.645 1.000	1.000 b _c / b' _c 1.000 0.000	1.000 g _c / g' _c	0.61 Z _c
a,lat = a,fond = Nq,lat= Nq,fond= Nc,lat=	14.515 21.9638351 9.02 9.02 33.30 33.30 46.12 46.12	mq (=e ^{π tg φd}) (=e ^{π tg φd})	⇒ m= Sq 2.481 S₀/S'₀ 2.526 0.423 Sγ	1.629 d _q 1.100 d _o / d' _o 1.067 0.067 d _y	iq 0.656 0.656 i _o /i' _o 0.645	1.000 b _o / b' _o 1.000	1.000 g _c / g' _c 1.000	0.61 Z _c
ϑ= a,lat = a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat=	14.515 21.9638351 9.02 9.02 33.30 33.30 46.12 46.12	mq (=e ^{π tg φd}) (=e ^{π tg φd})	s _q 2.481 s _c /s' _c 2.526 0.423	1.629 d _q 1.100 d _o / d' _o 1.067 0.067	iq 0.656 0.656 i _o /i' _o 0.645 1.000	1.000 b _c / b' _c 1.000 0.000	1.000 g _c / g' _c 1.000 0.000	0.61 Z _c 0.91
ϑ= a,lat = a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond=	14.515 21.9638351 9.02 9.02 33.30 33.30 46.12 46.12	mq (=e ^{π tg φd}) (=e ^{π tg φd})	⇒ m= Sq 2.481 S₀/S'₀ 2.526 0.423 Sγ	1.629 d _q 1.100 d _o / d' _o 1.067 0.067 d _y	iq 0.656 0.656 i _o / i' _o 0.645 1.000 i _Y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	0.61 z _c 0.91
ϑ= a,lat = a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	14.515 21.9638351 9.02 9.02 33.30 33.30 46.12 46.12 33.92 33.92	mq (=e ^{π tg φd}) (=e ^{π tg φd})	⇒ m= Sq 2.481 S₀/S'₀ 2.526 0.423 Sγ	1.629 d _q 1.100 d _o / d' _o 1.067 0.067 d _y	iq 0.656 0.656 i _o / i' _o 0.645 1.000 i _Y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	0.61 z _c 0.91
a,lat = a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Nγ,lat= Nγ,fond=	14.515 21.9638351 9.02 9.02 33.30 33.30 46.12 46.12	mq (=e ^{π tg φd}) (=e ^{π tg φd})	⇒ m= Sq 2.481 S₀/S'₀ 2.526 0.423 Sγ	1.629 d _q 1.100 d _o / d' _o 1.067 0.067 d _y	iq 0.656 0.656 i _o / i' _o 0.645 1.000 i _Y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	0.61 z _c 0.91
a,lat = a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Nγ,lat= Nγ,fond=	14.515 21.9638351 9.02 9.02 33.30 33.30 46.12 46.12 33.92 33.92	mq (=e ^{π tg φd}) (=e ^{π tg φd})	⇒ m= Sq 2.481 S₀/S'₀ 2.526 0.423 Sγ	1.629 d _q 1.100 d _o / d' _o 1.067 0.067 d _y	iq 0.656 0.656 i _o / i' _o 0.645 1.000 i _Y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	0.61 z _c 0.91
ϑ= a,lat = a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Ny,lat= Ny,fond=	14.515 21.9638351 9.02 9.02 33.30 33.30 46.12 46.12 33.92 33.92 ioni drenate:	mq (=e ^{π tg φd}) (=e ^{π tg φd})	s _q 2.481 s _o /s' _o 2.526 0.423 s _γ 0.154	1.629 d _q 1.100 d _o / d' _o 1.067 0.067 d _y	iq 0.656 0.656 i _o / i' _o 0.645 1.000 i _Y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	0.61 Z _c 0.91
a,lat = a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Nγ,lat= Nγ,fond=	14.515 21.9638351 9.02 9.02 33.30 33.30 46.12 46.12 33.92 33.92 ioni drenate:	mq (=e ^{π tg φd}) (=e ^{π tg φd}) contributo coe	⇒ m= Sq 2.481 S₀/S'₀ 2.526 0.423 Sγ 0.154	1.629 d _q 1.100 d _o / d' _o 1.067 0.067 d _Y 1.000	iq 0.656 0.656 i _o / i' _o 0.645 1.000 i _Y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	0.61 Z _c 0.91
θ= a,lat = a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Nγ,lat= Nγ,fond=	14.515 21.9638351 9.02 9.02 33.30 33.30 46.12 46.12 33.92 33.92 ioni drenate:	mq (=e ^{π tg φd}) (=e ^{π tg φd}) contributo coe contributo terr	sq 2.481 s₀/s'₀ 2.526 0.423 sγ 0.154 esivo	1.629 d _q 1.100 d _o / d' _o 1.067 0.067 d _Y 1.000	iq 0.656 0.656 i _o / i' _o 0.645 1.000 i _Y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	0.61 Z _c 0.91
a,lat = a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Nγ,lat= Nγ,fond=	14.515 21.9638351 9.02 9.02 33.30 33.30 46.12 46.12 33.92 33.92 ioni drenate:	mq (=e ^{π tg φd}) (=e ^{π tg φd}) contributo coe	sq 2.481 s₀/s'₀ 2.526 0.423 sγ 0.154 esivo	1.629 d _q 1.100 d _o / d' _o 1.067 0.067 d _Y 1.000	iq 0.656 0.656 i _o / i' _o 0.645 1.000 i _Y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y	0.61 Z _c 0.91
a,lat = a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Nγ,lat= Nγ,fond=	14.515 21.9638351 9.02 9.02 33.30 33.30 46.12 46.12 33.92 33.92 ioni drenate:	mq (=e ^{π tg φd}) (=e ^{π tg φd}) contributo coe contributo terr	sq 2.481 s₀/s'₀ 2.526 0.423 sγ 0.154 esivo	1.629 d _q 1.100 d _o / d' _o 1.067 0.067 d _Y 1.000	iq 0.656 0.656 i _o / i' _o 0.645 1.000 i _Y	1.000 b _c / b' _c 1.000 0.000 b _Y	1.000 g _o / g' _o 1.000 0.000 g _Y 1.000	0.61 Z _c 0.91 Z _Y 0.61
a,lat = a,fond = Nq,lat= Nq,fond= Nc,lat= Nc,fond= Nγ,lat= Nγ,fond=	14.515 21.9638351 9.02 9.02 33.30 33.30 46.12 46.12 33.92 33.92 ioni drenate:	mq (=e ^{π tg φd}) (=e ^{π tg φd}) contributo coe contributo terr	sq 2.481 s₀/s'₀ 2.526 0.423 sγ 0.154 esivo	1.629 d _q 1.100 d _o / d' _o 1.067 0.067 d _y 1.000	iq 0.656 0.656 i _c / i' _c 0.645 1.000 i _Y 0.506	1.000 b _c / b' _c 1.000 0.000 b _Y 1.000	1.000 g _o / g' _o 1.000 0.000 g _Y 1.000	0.61 Z _c 0.91 Z _Y 0.61

La capacità portante delle fondazioni (Q_{ud}) è quindi sempre superiore al corrispondente valore sollecitante (V).

La combinazione di carico più gravosa per la verifica a scorrimento è quella sismica; si ha quindi:

 $N_{sd,min}$ = 1148 kN $V_{H,max}$ = 533 kN


$$V_{H,attr} = 1148* tan (2/3 * 35) = 495 kN$$

Per il soddisfacimento della verifica a scorrimento si può sfruttare la resistenza passiva del terreno antistante la struttura di contrasto (spalla tipo "B")

Rpass =
$$\frac{1}{2}$$
 * y * H² * Kp (δ =0) * L = 0.5*18*2.3² * 3.68 * 6 = 1051 kN

Rpass,nec =
$$1.1*533 - 495 = 92 \text{ kN}$$
 $\rightarrow \text{K} = 0.09$

Lo spostamento associato a tale richiesta è stimabile con le relazioni presenti in letteratura:

Per Kp = 0.09, in caso di sabbie dense (quale può essere considerato il terreno di riporto che dovrà essere adeguatamente costipato), il rapporto $\Delta H/H$ è praticamente nullo, e quindi non si ha lo sviluppo di significativi spostamenti permanenti al piede.

4. CALCOLO SOMMARIO DELLA SPALLA "B"

La spalla "B" ha le stesse dimensioni della spalla "A" già esaminata, ed è soggetta ad un set di azioni di minore intensità: le verifiche risultano quindi soddisfatte.