Impianto di pompaggio "PESCOPAGANO"

Opere di connessione alla RTN PTO connessione utente

Comuni di Calitri (AV) e di Pescopagano (PZ)

COMMITTENTE

PROGETTAZIONE

GEOTECH S.r.I.

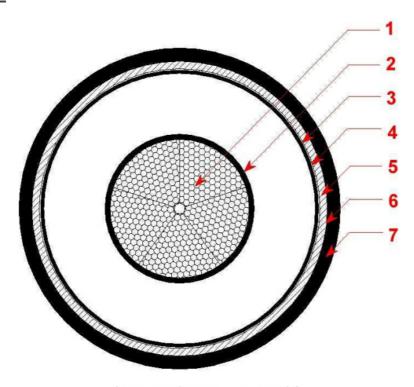
SOCIETA' DI INGEGNERIA Via T.Nani, 7 Morbegno (SO) Tel. +39 0342610774 E-mail: info@geotech-srl.it Sito: www.geotech-srl.it

Progettista: Ing. Pietro Ricciardini

Relazione elementi tecnici di impianto

REV.	DESCRIZIONE	DATA	REDATTO	VERIFICATO	APPROVATO			
00	PROGETTO DEFINITIVO	25/10/2021	Geotec S.r.l.	Geotec S.r.l	Geotec S.r.I			
<u> </u>	Outline and the Control of the Contr							

Codice commessa: G829 | Codifica documento: G829_DEF_R_017_Conn_rel_el_tecnici_1-1_REV00



Sommario

1	CAV	/O XLPE	2
2	CAV	/I OTTICI A 48 FIBRE, DIELETTRICI, TAMPONATI, PER POSA IN TUBAZIONI	3
	2.1	CARATTERISTICHE DIMENSIONALI E MECCANICHE DEL CAVO	4
	2.2	CARATTERISTICHE COSTRUTTIVE DEL CAVO	4
	2.2.	1 Strutture a tubetti cordati	4
	2.2.	2 Nucleo scanalato	4
	2.3	COLORI	5
	2.3.	1 Codice dei colori dei tubetti e delle fibre	5
	2.3.	2 Codice dei colori delle cave e delle fibre	5
	2.4	CARATTERISTICHE COSTRUTTIVE E TRASMISSIONE DELLE FIBRE	6
	2.5	IMBALLO E PEZZATTURE	7
	2.6	MARCATURA	7
	2.7	PRESCRIZIONE PER IL COLLAUDO	
3	SEG	NALAZIONE LINEE IN CAVO (UX LK10)	9
4	МО	PRSETTO A 90° CORDA AL Ø 36 – CODOLO	2
5	МО	PRSETTO DRITTO PER CORDA AL Ø 36 – CODOLO1	3
6	CAS	SSETTE DI SEZIONAMENTO – <i>ESEMPIO TIPO</i>	4
7	TER	MINALI PER ESTERNO	7
8	GIU	INTO – ESEMPIO TIPO 1	8

1 CAVO XLPE

(Disegno indicativo - Non in scala)

1 Conduttore Corda rotonda	(tamponata) a fili di rame
----------------------------	----------------------------

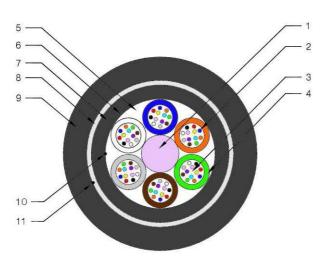
2 Schermo semiconduttivo

3 Isolamento XLPE

4 Schermo semiconduttivo 5 Tamponamento longitudinale

6 Schermo metallico Nastro di alluminio saldato longitudinalmente

7 Guaina esterna Polietilene


- Tensione nominale d'isolamento (Uo/U) 220/380 kV

- Tensione massima permanente di esercizio (Um) 420 kV

- Norme di rispondenza IEC 62067

2 CAVI OTTICI A 48 FIBRE, DIELETTRICI, TAMPONATI, PER POSA IN TUBAZIONI

- 1. Elemento centrale dielettrico in vetroresina
- 2. Fibre ottiche

(contenute in tubetti o in alternativa all'interno di nuclei scanalati)

- 3. Tamponante interno (solo per tubetti)
- 4. Tubetto loose (in alternativa nucleo scanalato in materiale termoplastico)
- 5. Dry Core waterproof (in alternativa tamponante sintetico gel)
 (in alternativa ai componenti 4 e 5: nucleo scanalato in materiale termoplastico)
- 6. Legatura o fasciatura
- 7. Guaina interna in PE
- 8. Rinforzo con filati vetrosi (o in alternativa filati aramidici e ulteriore fasciatura con nastri sintetici)
- 9. Guaina esterna in PE HD
- 10. Filo taglia quaina interno
- 11. Filo taglia guaina esterno

La figura viene riportata solo a titolo indicativo e si riferisce alla disposizione delle fibre ottiche in tubetti. Nelle strutture a 48 fibre, qui utilizzate, al posto dei tubetti sono presenti 2 riempitivi dielettrici. Le fibre sono di tipo monomodali. La sezione del cavo è una rappresentazione non è in scala.

2.1 CARATTERISTICHE DIMENSIONALI E MECCANICHE DEL CAVO

		Caratteristiche di progetto	Caratteristiche specifiche del Costruttore
Disegno schematico			•
Diametro esterno nominale	(mm)	≤16,5	
Guaina esterna	Materiale	PE HD nero	
	Spessore medio (mm)	≥ 1,5	
Filati vetrosi			Indicare dTex
Filati aramidici			Indicare dTex
Gel e polveri			Indicare marca e tipologia
Legatura o fasciatura	Materiale	Non metallico	
Guaina interna	Materiale	PE nero	
	Spessore medio (mm)	≥ 0,9	
Tubetti loose con fibre ottic	he Materiale	Non metallico	
	Interstizi	Tamponati o dry core	
	Tipo di tamponante	Block water	
	Drop point tamponante	150°C	
	Numero tubetti	<u><</u> 6	
	Diametro esterno (mm)		
	Spessore (mm)		
	Disposizione degli elementi nel cavo	Ad elica chiusa o aperta	
		(SZ)	
In alternativa ai tubetti: Nuc		7,5÷8 mm	
Elemento di supporto	Materiale	Non metallico	
centrale	Diametro (mm)	<u>></u> 1,7	
Fibre ottiche	Numero	48	
	Modularità	12	
Peso unitario del cavo com	pleto (g/m)	≤ 190	
Carico massimo applicabile	durante la posa (daN)	300	
Raggio di curvatura dinami	со	≤ 20 x diametro ext.	
Raggio di curvatura statico		≤ 15 x diametro ext.	

^(*) Nella tabella sono riportati i valori delle caratteristiche di progetto del cavo, vincolanti per tutti i Costruttori, e l'elenco di quelle caratteristiche e quegli elementi del cavo di cui ciascun Costruttore deve fornire i relativi dati e informazioni. Con riferimento a ciascuna specifica soluzione presentata dal Costruttore

2.2 CARATTERISTICHE COSTRUTTIVE DEL CAVO

2.2.1 Strutture a tubetti cordati

Nel caso di fibre ottiche contenute disposte in tubetti, il cavo sarà costituito come da figura riportata nella pagina precedente. In particolare i tubetti dovranno essere cordati ad elica chiusa o aperta (SZ) sopra l'elemento centrale dielettrico di supporto in vetroresina ed ogni tubetto dovrà essere tamponato internamente con grasso sintetico. Il cavo sarà costituito come di seguito rappresentato:

- Legatura con filati o nastrini sintetici o fasciatura protettiva con nastri sintetici;
- Guaina interna in polietilene di colore nero (dotata di filo taglia guaina);
- Doppia armatura di filati aramidici o vetrosi;
- Legatura con filati o fasciatura con nastro sintetico;
- Guaina esterna di polietilene ad alta densità di colore nero (dotata di filo taglia guaina).

2.2.2 Nucleo scanalato

Nel caso di fibre ottiche contenute in nuclei scanalati, il cavo sarà costituito come di seguito rappresenato:

• Elemento dielettrico centrale di supporto in vetroresina;

- Struttura scanalata a elica a cave in polietilene o polipropilene. I profili delle cave devono essere uniformi tra loro e di dimensioni tali da consentire un alloggiamento lasco delle fibre. Struttura scanalata ed elemento centrale devono essere solidali tra loro.
- Tamponatura delle cave a base di grasso siliconico o sintetico
- Legatura con filati o nastrini sintetici
- Fasciatura protettiva con nastri sintetici
- Guaina interna in polietilene di colore nero (dotata di filo taglia guaina)
- Doppia armatura di filati aramidici o vetrosi
- Fasciatura con nastro sintetico
- Guaina esterna di polietilene ad alta densità di colore nero (dotata di filo taglia guaina)

2.3 COLORI

2.3.1 Codice dei colori dei tubetti e delle fibre

I tubetti dovranno avere la colorazione seguente:

- Pilota = rosso;
- Direzionale = verde:
- Ricorrente = naturale.

Le fibre dovranno avere la colorazione seguente:

1° fibra: colore blu;	7° fibra: colore rosso;
2° fibra: colore arancio;	8° fibra: colore nero;
3° fibra: colore verde;	9° fibra: colore giallo;
4° fibra: colore marrone;	10° fibra: colore violetto;
5° fibra: colore grigio;	11° fibra: colore rosa;
6° fibra: colore bianco;	12° fibra: colore turchese.

I 12 colori devono essere usati per ciascun tubetto.

Ciascuna colorazione deve essere mantenuta costante per tutte le pezzature per facilitare la individuazione delle fibre alle estremità della singola pezzatura.

2.3.2 Codice dei colori delle cave e delle fibre

Per la struttura scanalata l'identificazione delle cave sarà realizzata colorando due creste adiacenti:

- cresta rossa = cresta pilota;
- cresta gialla = cresta direzionale.

La cava n° 1 è quella compresa tra la cresta pilota e la cresta direzionale.

Le fibre saranno colorate come segue:

1° fibra: colore rosso; 7° fibra: colore rosa;

2° fibra: colore verde; 8° fibra: colore arancio;

3° fibra: colore giallo; 9° fibra: colore grigio;

4° fibra: colore marrone; 10° fibra: colore nero;

5° fibra: colore blu; 11° fibra: colore turchese;

6° fibra: colore violetto; 12° fibra: colore bianco.

Per il cavo a nucleo scanalato le fibre devono essere distinguibili in sottogruppi di 12 fibre mediante opportuna marcatura differenziata delle fibre stesse. Fibre con identica marcatura devono essere posizionate in un'unica cava o in due cave contigue.

Ciascuna colorazione deve essere mantenuta costante per tutte le pezzature per la individuazione delle fibre alle estremità della singola pezzatura.

2.4 CARATTERISTICHE COSTRUTTIVE E TRASMISSIONE DELLE FIBRE

Le fibre ottiche devono avere le caratteristiche costruttive, dimensionali, meccaniche e trasmissive indicate nelle seguenti Tabella 1, Tabella 2, Tabella 3 e Tabella 4. Tali caratteristiche devono essere conformi a quanto specificato nelle Norme IEC riportate nelle suddette tabelle.

Tabella 1 - Caratteristiche costruttive

Tipo di fibra	monomodale	CEI EN 60793-2	
Materiale costituente	silice/silice drogata	CEI EN 60793-2-50	
Protezione primaria	doppio strato acrilico	CEI EN 60793-2-50	

Tabella 2 - Caratteristiche dimensionali

Diametro della protezione primaria	250±15 μm	CEI EN 60793-2-50	
Diametro del mantello	125±0,7 μm	CEI EN 60793-2-50	
errore di circolarità	≤ 1,0 %	CEI EN 60793-2-50	
Errore di concentricità mantello / campo modale	≤ 0,5 μm	CEI EN 60793-2-50	

Tabella 3 - Caratteristiche meccaniche

Le fibre ottiche devono essere state sottoposte ad una prova di trazione, di durata di circa 1s, che ne abbia causato un allungamento minimo del 1 %.	CEI EN 60793-2-50
---	-------------------

Tabella 4 - Caratteristiche trasmissive delle fibre ottiche in cavo (SM-R)

Tipo di fibra	Single Mode Reduced (SM-R)	Norma di riferimento
Attenuazione (*) $\lambda = 1310 \text{ nm}$ $\lambda = 1550 \text{ nm}$	≤ 0,36 dB/km ≤ 0,22 dB/km	CEI EN 60793-2-50
Centri di scattering	nessuno	
Numero massimo di centri di attenuazione concentrata (singola fibra / pezzatura): relativo valore massimo: $\lambda = 1310 \text{ nm} \\ \lambda = 1550 \text{ nm}$	1 0,05 dB 0,1 dB	IEC 60794-3
Uniformità longitudinale di retrodiffusione: $\lambda = 1310 \text{ nm}$ $\lambda = 1550 \text{ nm}$	±0,05 dB ±0,05 dB	doc. TERNA LIN_000C4005
Diametro del campo modale (Petermann II): $\lambda = 1310 \text{ nm}$ $\lambda = 1550 \text{ nm}$	9 ± 0,4 mm 10,1 ± 0,5 mm	CEI EN 60793-2-50
Dispersione cromatica: $\lambda = 1285 \div 1330 \text{ nm}$ $\lambda = 1525 \div 1575 \text{ nm}$	≤ 3,5 ps/nm⋅km ≤ 20 ps/nm⋅km	CEI EN 60793-2-50
Lunghezza d'onda di taglio (λcc)	≤ 1260 nm	CEI EN 60794-3

^(*) Valore massimo assoluto

NOTE:

- a) Per "centri di scattering" si intendono le anomalie concentrate che appaiono sulla traccia OTDR il cui valore picco-picco supera i limiti previsti per la linearità della caratteristica di attenuazione.
- b) La lunghezza di taglio λc della fibra con il solo rivestimento primario è compresa tra 1150 e 1330 nm se misurata con il metodo di riferimento previsto da ITU; come prova di routine viene eseguita la misura di λc garantendo in ogni caso per la λcc il valore sopra indicato.

2.5 IMBALLO E PEZZATTURE

La lunghezza nominale delle pezzature è di 3100 ± 80 m salvo diversa prescrizione in sede d'ordine. Nel caso di pezzature con lunghezza imposta, si accettano tolleranze sulla lunghezza stessa di -0%, +3%

Il cavo deve essere avvolto su bobine di legno di grandezza opportuna.

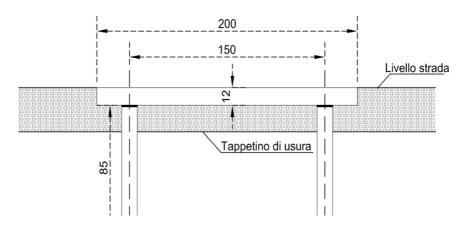
Il Committente, previo accordo con il Costruttore potrà ordinare pezzature di lunghezza differente con le relative tolleranze.

2.6 MARCATURA

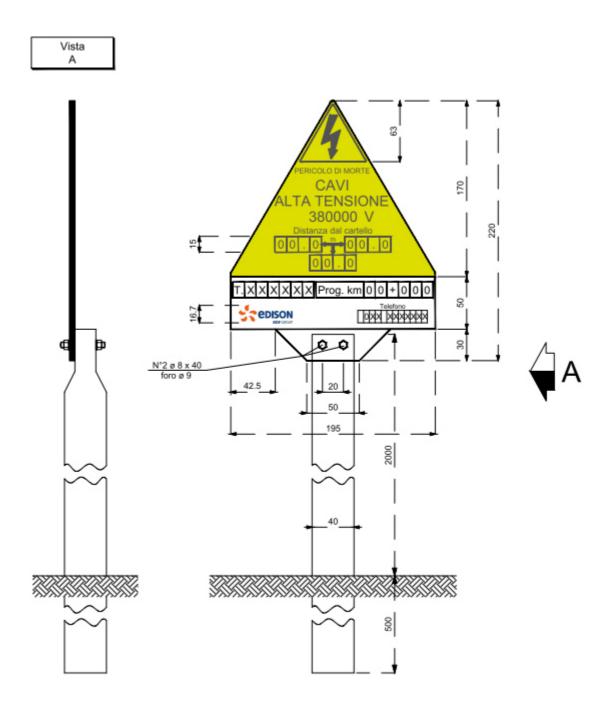
Sulla guaina di ogni pezzatura deve essere impressa in maniera indelebile, ad intervalli di 1 metro e senza arrecare deformazioni o danneggiamenti al cavo, la seguente marcatura:

XXXXXX - "CAVO OTTICO DIELETTRICO" - YY "FO" - "TERNA" - (MESE - ANNO) - WWWW - ZZZZ dove X indica il nome o il marchio del costruttore, Y il numero delle fibre, W il numero identificativo di pezzatura di produzione, Z la marcatura metrica seguenziale il cui inizio può essere diverso da zero.

Il metodo di marcatura deve essere scelto dal Fornitore, e deve essere tale da superare la prova di resistenza all'abrasione delle marcature secondo il metodo 503 A della norma CEI EN 60794-1-2 Metodo E2A.


2.7 PRESCRIZIONE PER IL COLLAUDO

Per il collaudo si veda documento Terna LIN_000C4005.

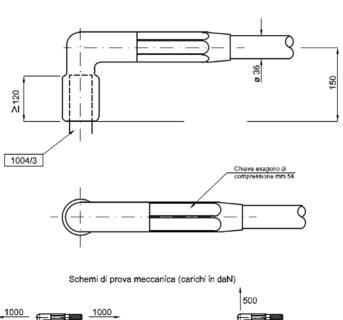

3 SEGNALAZIONE LINEE IN CAVO (UX LK10)

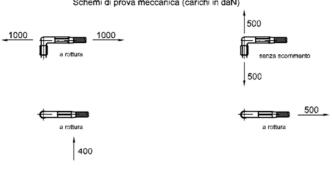
Esempio Borchia in ghisa da posarsi su sede stradale o marciapiede ogni 50mt



Cartello di segnalazione linea in cavo AT

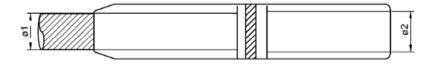
Dimensione e spaziatura caratteri

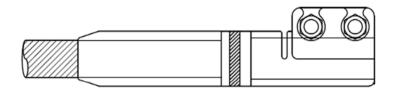



- II Cartello di segnalazione linea in cavo a basso impatto visivo è da utilizzarsi in alternativa al cartello di cui alla Scheda Tecnica UX LK10 e comunque dietro esplicita richiesta della Direzione Lavori.
- 1) Materiale cartello: lamiera di alluminio resistente alla corrosione, doppia faccia, con spessore 25/10 mm;
- 2) Materiale struttura: tubolare in acciaio zincato a caldo del diametro di 40 mm con spessore minimo 3 mm;
- Colorazione: fondo "giallo traffico" RAL 1023, fondo "bianco" RAL9010, logo Terna "Blu Ultramarino" RAL 5002 e scritte "nero traffico" RAL 9017 su entrambi i lati;
- 4) Fissaggio: nel terreno vegetale con blocco di fondazione delle dimensioni di 20x20 cm e profondità 50 cm; in roccia con blocco cilindrico delle diametro necessario e profondità 50 cm con le superfici del blocco di fondazione leggermente fuori terra e spioventi; fissaggio del cartello alla struttura mediante viti M8x40 in acciaio inox AISI 304, dadi M8 UNI 5580 e rondella piana in acciaio inox AISI304;
- 5) Posizionamento: deve essere tale da garantire la visibilità del cartello precedente e successivo, e comunque mai oltre i 50 m di distanza tra gli stessi, in caso di cavi posati in trincee diverse va utilizzata comunque una segnalazione per ogni trincea, posizionando i cartelli in modo affiancato e non alternato, così da evidenziare in modo inequivocabile la presenza del doppio tracciato;
- 6) Prescrizioni per la costruzione ed il collaudo: LS10095;
- 7) Unità di misura: per esprimere la quantità è il numero degli esemplari (n).

ISC - Uso INTERNO

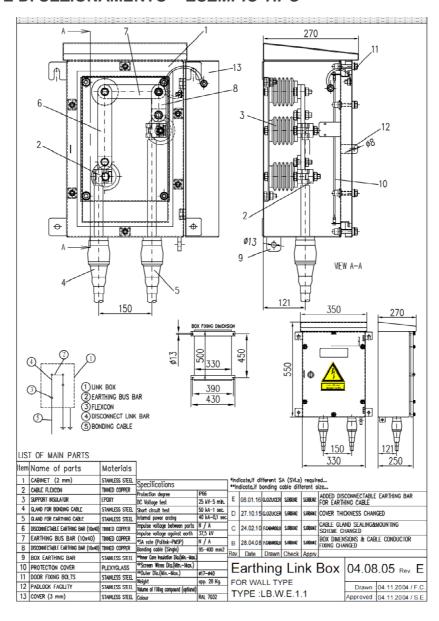
4 MORSETTO A 90° CORDA AL Ø 36 – CODOLO

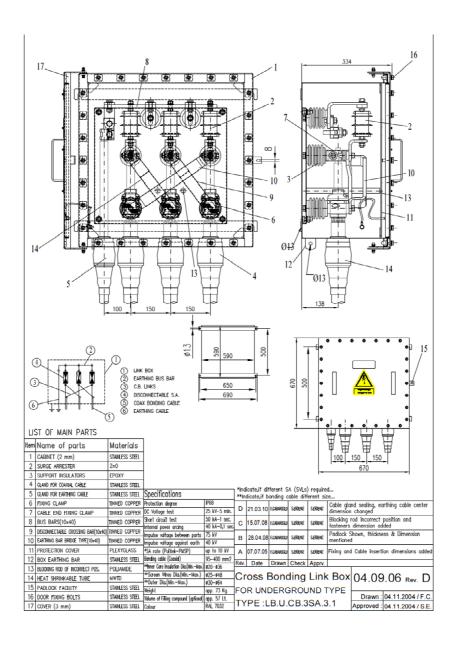


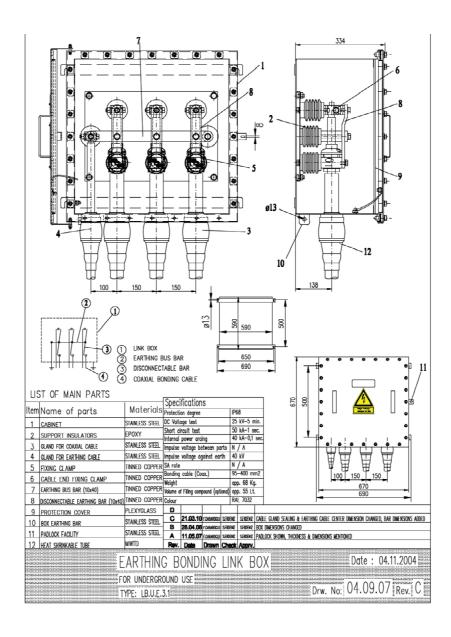

- N. matricola 20 86 53
- Materiale :
 Alluminio e loga di alluminio
 Bulloni di serraggio in acciato (nossidabile o lega di alluminio
- Corrente nominale 1000 A
 Corrente di breve durata (1 sec.) 50 kA
 Su ciascun esemplare dovrà essere marcata la sigla o il marchio di fabbrica della ditta fornitrice, il diametro del conduttore e la coppia di serraggio dei bulloni
- Prescrizioni:
 per la costruzione LM 2007
 per la fornitura LM 2011
 per il collaudo LM 2002
- 5 Livello di radiodisturbo ammeseo: 75 dB a 155 kV
- 6 Unità di misura: numero esemplari (n)

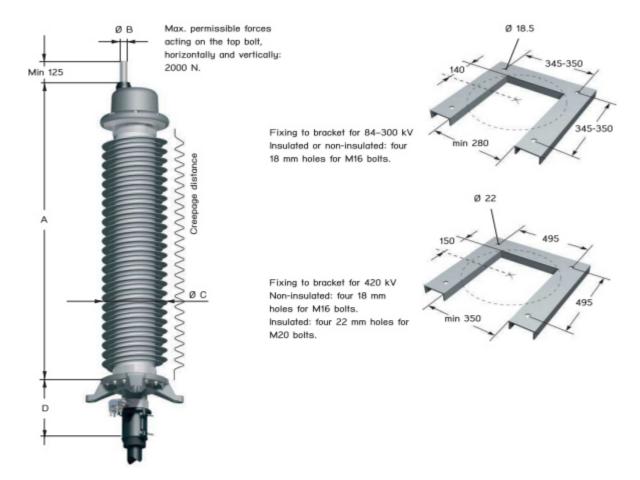
Designazione abbreviata M·O·R·S·E·T·T·O· 9 0 G·R· C·3·6·/·C·O·D· U·E·

MORSETTO DRITTO PER CORDA AL Ø 36 – CODOLO

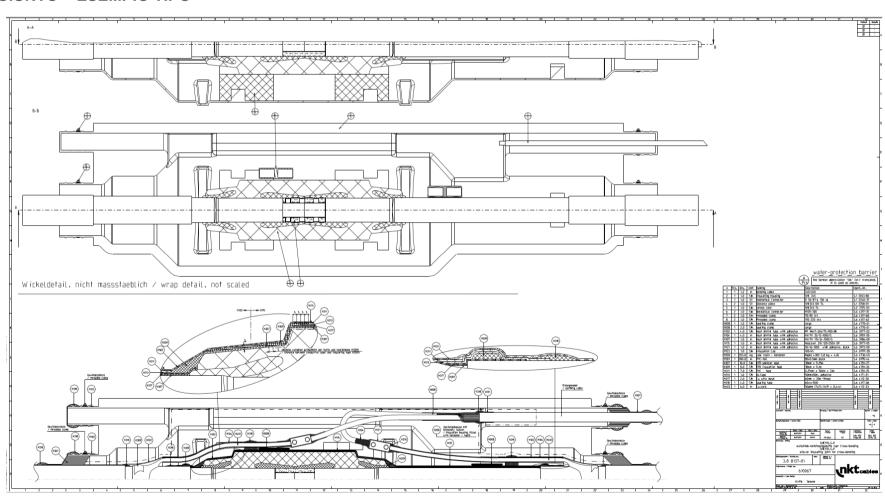



Codīce SAP	Típo	ø1 (mm)	ø2 (mm)	Tensione prova RIV (kV)	Portata (A)	l breve durata (kA)
1011815	M 1020/2	36	40	270	1450	50
1011816	M 1020/3	36	30	270	1000	31,5


6 CASSETTE DI SEZIONAMENTO – ESEMPIO TIPO



7 TERMINALI PER ESTERNO



Voltage	Insulator	Designation*	Diameter			Creepage distance		
			A ØB		ØC	D	min	weight
kV				mm		min	kg/item	
84	Composite	APECB 841 P	1320	40/50/54/60	359	235	2820	100
145	Composite	APECB 1452 P	1620	40/50/54/60	359	235	3750	105
170	Composite	APECB 1703 P	1820	40/50/54/60	359	235	4500	110
170	Composite	APECB 1704 P	2140	40/50/54/60	359	235	5950	120
170	Composite	APECB 1705 P	2720	40/50/54/60	359	235	8000	135
245	Composite	APECB 2456 P	3030	40/50/54/60	490	235	9360	290
300	Composite	APECB 3006 P	3030	40/50/54/60	490	235	9360	290
420	Composite	APECB 4201 P	4600	40/50/54/60	600	395	14900	600

^{*} When the coble diameter is larger than 120 mm, add: Ø 170 at the end of the designation (e.g. APECB 841 P Ø 170).

Sede: via T. Nani, 7 23017 Morbegno (SO) Tel 0342 6107 74 - mail: info@geotech-srl.it - Sito web: www.geotech-srl.it

8 GIUNTO - ESEMPIO TIPO

