COMMITTENTE:	
GRUPPO FERRO	RF/ TE FERROVIARIA ITALIANA OVIE DELLO STATO ITALIANE
PROGETTAZIONE:	TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE
S. O. COORDINAMENTO TERRITORIALE	SUD
PROGETTO DEFINITIVO	
LINEA TARANTO-BRINDISI NUOVA STAZIONE DI TARANTO NASISI FABBRICATO VIAGGIATORI Relazione di Calcolo	
	SCALA:
COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISC I A 8 E 0 0 D 7 8 C L F V 0 1	
C.Soave A Torio	Data Approvato Data Autorizzato Data S. Lestingi Lug 2021 Lug 2021 D. Tiberti Lug 2021
File: IA8E00D78CLFV0100001A	n. Elab.:

PROGETTO DEFINITIVO

Linea Taranto – Brindisi Nuova stazione di Nasisi

IA8E

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO

00

CODIFICA DOCUMENTO REV.

D 78 CL FV0100 001 A

FOGLIO

A 2 DI 124

Sommario

1	PREMESSA	4
2	DOCUMENTAZIONE, NORMATIVE E BIBLIOGRAFIA DI RIFERIMENTO	6
	1.1 Normative e raccomandazioni	6
	1.2 DOCUMENTI DI PROGETTO	6
3	GENERALITÀ	7
4	CARATTERISTICHE DEI MATERIALI	10
	4.1 CALCESTRUZZO ARMATO	10
	Calcestruzzo	11
5	TERRENO DI FONDAZIONE	14
6	SOFTWARE DI CALCOLO E CONVENZIONI GENERALI	15
7	ANALISI DEI CARICHI	18
	7.1 PESO PROPRIO STRUTTURE (G1)	18
	7.2 CARICHI PERMANENTI NON STRUTTURALI (G2)	18
	7.3 SOVRACCARICHI VARIABILI (Q1)	19
	7.4 AZIONE DELLA NEVE (Q2)	20
	7.5 AZIONE DEL VENTO (W)	21
	7.6 AZIONI TERMICHE (TK)	24
	7.7 AZIONE SISMICA (E)	24
	7.8 EFFETTI AERODINAMICI ASSOCIATI AL PASSAGGIO DEI CONVOGLI	35
8	COMBINAZIONI DI CARICO	36
	8.1 COMBINAZIONI DI CARICO	38
9	DESCRIZIONE DEL MODELLO DI CALCOLO	44
10	RISULTATI DELLE ANALISI	50
	10.1 Analisi modale	50
	10.2 SOLLECITAZIONI	52
	10.3 Spostamenti nodali estremi	60
	10.4 REAZIONI NODALI ESTREME	61

PROGETTO DEFINITIVO

Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO

REV.

FOGLIO

IA8E 00 D 78 CL FV0100 001 3 DI 124 A

	10.5 Pressioni massime sul terreno	63
	10.6 SPOSTAMENTI DI INTERPIANO ESTREMI	64
	10.7 Verifica effetti secondo ordine	66
11	VERIFICHE STRUTTURALI	67
	11.1 SOLAIO DI COPERTURA	69
	11.2 TraviTrasversali	74
	11.3 Travi Longitudinali	79
	11.4 Pilastri	
	Pilastri d'angolo	
12	VERIFICHE GEOTECNICHE E DELLE FONDAZIONI	99
	12.1 TRAVI DI FONDAZIONE	103
	Travi Trasversali - sez. 60x120 Travi rovesce - sez. 150x120	
	12.2 Pressioni terreno in SLU	112
	12.3 Pressioni terreno in SLV/SLVF/SLUECC	115
	12.4 Pressioni terreno in SLE/SLD.	118
13	INCIDENZE ARMATURE	121
14	VERIFICA ELEMENTI SECONDARI	122

1 PREMESSA

Il presente documento ha per oggetto il progetto e le verifiche del fabbricato viaggiatori pertinente agli interventi volti alla nuova configurazione della stazione Taranto-Nasisi della linea Taranto-Brindisi.

La località ferroviaria di Taranto Nasisi, posta al km 4 della linea Taranto-Brindisi, è oggi dotata di un solo binario e non è più abilitata a servizio viaggiatori, ma la sua posizione prossima al Quartiere «Paolo VI» la rende ideale per l'interscambio tra i servizi ferroviari e i numerosi servizi automobilistici extraurbani che penetrano nella città di Taranto da est. Pertanto, l'Accordo Quadro Regione Puglia-RFI prevede il prolungamento dei servizi Bari-Taranto sino a Nasisi e il potenziamento della stazione in oggetto. In particolare, l'intervento prevede la realizzazione di una stazione di n. 3 binari con modulo pari a 250 m e itinerari a 60 km/h, n. 2 marciapiedi a standard H55, un sottopasso con rampe di scale e ascensori, un nuovo fabbricato viaggiatori e un parcheggio ad esso antistante con capacità di 50 stalli per auto e 4 per bus.

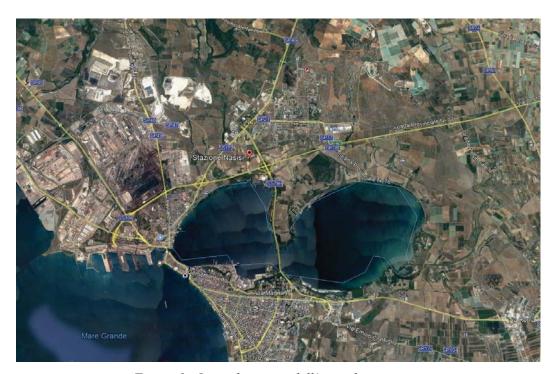


Figura 1 - Inquadramento dell'area di intervento

Figura 2– Stazione di Taranto-Nasisi

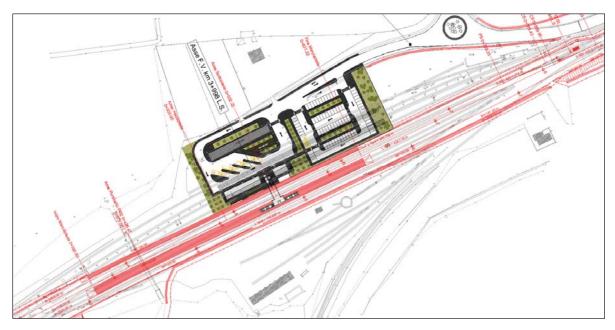


Figura 3– Configurazione di progetto (in rosso)

Il presente documento di caratterizzazione geotecnica è stato redatto sulla base sia dei risultati delle indagini, in sito e di laboratorio, svolte a cura di Italferr.

2 DOCUMENTAZIONE, NORMATIVE E BIBLIOGRAFIA DI RIFERIMENTO

1.1 Normative e raccomandazioni

- [1] Decreto Ministeriale del 17 gennaio 2018: "Aggiornamento delle Norme Tecniche per le Costruzioni", Supplemento Ordinario alla G.U. n.42 del 20.2.2018.
- [2] Circolare 21 gennaio 2019 n.7 "Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018"
- [3] Regolamento (UE) N° 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 776/2019 della Commissione del 16 maggio 2019;
- [4] RFI-DTC-SI-MA-IFS-001-E: "Manuale di progettazione delle opere civili"
- [5] RFI-DTC-SI-SP-IFS-001-E: "Capitolato Generale di Appalto delle Opere Civili"

1.2 Documenti di progetto

Fabbricato Viaggiatori																					
FV01 - Relazione di calcolo fabbricato viaggiatori	-1	Α	8	Е	0	0	D	7	8	С	L	F	V	0	1	0	0	0	0	1	Α
FV01- Carpenteria fondazione, solaio di copertura e pilastri	-1	Α	8	П	0	0	D	7	8	В	Z	F	V	0	1	0	0	0	0	1	Α
FV01 - Pianta scavi	-	Α	8	Е	0	0	D	7	8	В	Z	F	V	0	1	0	0	0	0	2	Α

GEOTECNICA																		
Relazione geotecnica	Е	0	0	О	7	8	R	Н	G	Е	0	0	0	6	0	0	1	Α

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO Linea Tarai Nuova stazi	nto – Brir	ndisi		
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 7 DI 124

3 GENERALITÀ

Tra gli interventi in progetto riguardanti la Stazione di Tranto Nasisi, è prevista la realizzazione di un nuovo fabbricato viaggiatori.

La struttura, a pianta rettangolare, ha dimensioni 7.54 m x 23.15 m, al netto delle finiture esterne. Il sistema strutturale è caratterizzato da un telaio spaziale monopiano, realizzato con travi e pilastri in calcestruzzo armato e avente copertura piana. Il telaio è costituito, in direzione trasversale, da una campata di luce 6.80 m e, in direzione longitudinale, da 2 campate di luce pari a 6.10 m. L'edificio presenta un interpiano strutturale netto di 5.05 m.

Il solaio di copertura è del tipo semiprefabbricato a prédalles, con getto in opera dei travetti e della caldana superiore. Lo spessore totale del solaio di copertura è di 22 cm e comprende 4 cm di prédalles, 12 cm di nervature e 4 cm di caldana superiore. Le lastre in c.a. hanno larghezza 120 cm e presentano tre tralicci metallici di irrigidimento ed elementi di alleggerimento delimitanti le nervature intermedie. Il solaio è ordito secondo la direzione longitudinale del fabbricato in modo da essere poggiato direttamente sui telai trasversali. I pilastri hanno dimensione in pianta di 40x50 cm, le travi perimetrali longitudinali hanno dimensioni 40x60 cm, le travi trasversali hanno dimensioni 40x60 cm. Il sistema di fondazione è realizzato in opera mediante un graticcio di travi rovesce poste perimetralmente e collegate tra loro trasversalmente mediante dei cordoli (per le caratteristiche dimensionali della fondazione si rimanda agli elaborati grafici specifici).

Si riportano, nelle figure che seguono, pianta e sezioni della struttura in oggetto.

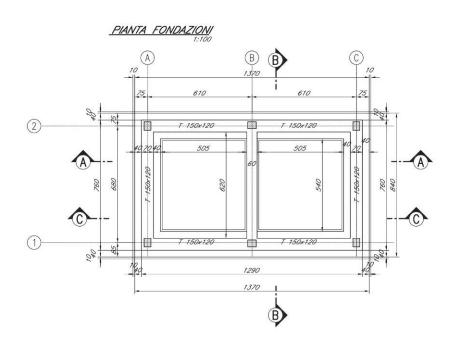


Figura 4 – Pianta delle fondazioni

CARPENTERIA COPERTURA

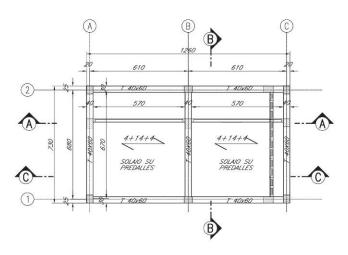


Figura 5 – Carpenteria della copertura

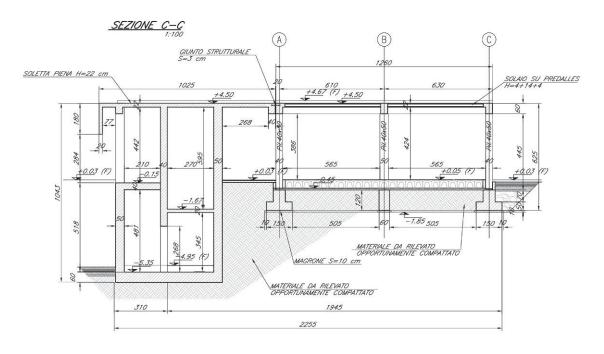


Figura 6 – Sezione Longitudinale

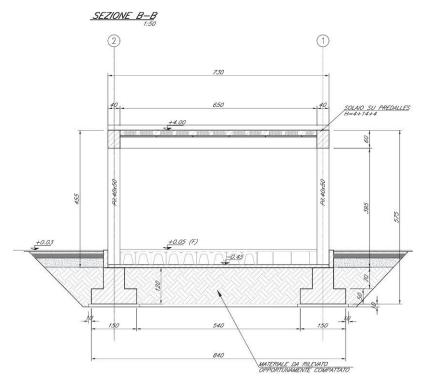


Figura 7 – Sezione Trasversale


Longitudinalmente il fabbricato viaggiatori è in continuità con la caopertura dell'atrio di ingresso al sottopasso. Strutturalmente i due corpi sono seprati da giunto.

Il presente documento riporta le principali calcolazioni e verifiche delle strutture in elevazione e in fondazione del fabbricato viaggiatori in oggetto.

Si attribuisce una vita nominale $V_N = 50$ anni e la Classe d'uso III con coefficiente d'uso Cu=1.5, in conformità ai seguenti riferimenti normativi:

- DM 14/01/2018 par. 2.4;
- Circ. 21/01/2019, n. 7 par. C2.4.1 e C2.4.2;
- Decreto 21/10/2003 P.C.M. Dipartimento della Prot. Civile (all.1);
- RFI-DTC-SI-MA-IFS-001-E: "Manuale di progettazione delle opere civili"

Il periodo di riferimento da considerare per il calcolo dell'azione sismica sarà quindi $V_R = C_u \, x \, V_N = 75$ anni.

4 CARATTERISTICHE DEI MATERIALI

4.1 Calcestruzzo armato

Calcestruzzo

Si riportano di seguito due tabelle riepilogative del tipo e delle caratteristiche del calcestruzzo adottato per i diversi elementi strutturali:

CLS SOLA	AIO ED ELE	VAZIONE	C 32/40	CLS SOLA	AIO ED ELE	VAZIONE	C 25/30		
Pe	eso per uni	ità di volur	ne	Pe	eso per uni	tà di volur	ne		
γ	25	kN/m³		γ	25	kN/m³			
Res	sistenza a (compression	one	Resistenza a compressione					
R_{ck}	40,00	MPa		R _{ck}	30,00	MPa			
f_{ck}	32,00	MPa		f_{ck}	25,00	MPa			
f _{cm}	40,00	MPa		f _{cm}	33,00	MPa			
f_{cd}	18,13	MPa		f_{cd}	14,17	MPa			
f _{cu}	15,41	MPa		f_{cu}	12,04	MPa			
f _{ctm}	3,02	MPa		f_{ctm}	2,56	MPa			
f _{ctk}	2,12	MPa		f_{ctk}	1,80	MPa			
f _{ctd}	1,41	MPa		f_{ctd}	1,20	MPa			
f_{cfm}	3,63	MPa		f_{cfm}	3,08	MPa			
Res	sistenza a (compression	one	Resistenza a compressione					
$\sigma_{c,max}$	19,2	MPa	c. rara	$\sigma_{c,max}$	15,0	MPa	c. rara		
$\sigma_{c,\text{max}}$	14,4	MPa	c. q.p.	$\sigma_{c,\text{max}}$	11,3	MPa	c. q.p.		
Modulo e	lastico e co	efficienti	di Poisson	Modulo e	lastico e co	efficienti	di Poisson		
Ecm	33346	MPa		Ecm	31476	MPa			
U _{fessurato}	0			U _{fessurato}	0				
U _{non fess.}	0,20			U _{non fess.}	0,20				
G	randezze (deformativ	e e	G	randezze d	deformativ	re e		
ϵ_{cd}	0,07%			ϵ_{cd}	0,07%				
ϵ_{cu}	0,35%			ε _{cu}	0,35%				

Dove:

 R_{ck} = Resistenza cubica caratteristica a compressione

 $f_{ck} = 0.83 \cdot R_{ck} = Resistenza \ cilindrica \ caratteristica$

 $f_{\text{cm}} = f_{\text{ck}} + 8 \; (\text{N/mm}^2) = \text{Resistenza}$ cilindrica media a compressione

 α_{cc} = Coefficiente per effetti a lungo termine e sfavorevoli: $\alpha_{cc} \, (t > 28 gg) = 0.85$

 $\gamma_{\rm c} = 1.5;$

$$f_{cd} = \frac{\alpha_{cc} \cdot f_{ck}}{\gamma_c} \ = \text{Resistenza di calcolo a compressione}$$

Coefficiente di Poisson:

Secondo quanto prescritto al punto 11.2.10.4 della NTC18, per il coefficiente di Poisson può adottarsi, a seconda dello stato di sollecitazione, un valore compreso tra 0 (calcestruzzo fessurato) e 0.2 (calcestruzzo non fessurato).

Coefficiente di dilatazione termica:

In sede di progettazione, o in mancanza di una determinazione sperimentale diretta, per il coefficiente di dilatazione termica del calcestruzzo può assumersi un valore medio pari a 10 x 10⁻⁶ °C⁻¹ (NTC18 – 11.2.10.5).

Acciaio d'armatura in barre tonde ad aderenza migliorata

Si adotta acciaio tipo B450C come previsto al punto 11.3.2.1 delle NTC18, per il quale si possono assumere le seguenti caratteristiche:

Resistenza a trazione – compressione:

 $f_{tk} = 540 \text{ N/mm}^2 = \text{Resistenza caratteristica di rottura}$

 $f_{yk} = 450 \text{ N/mm}^2 = \text{Resistenza caratteristica a snervamento}$

$$f_{yd} = \frac{f_{yk}}{\gamma_s} = 391.3 \text{ N/mm}^2 = \text{Resistenza di calcolo}$$

dove:

 $\gamma_s=1.15$ = Coefficiente parziale di sicurezza relativo all'acciaio.

Modulo Elastico:

 $Es = 210000 \text{ N/mm}^2$

Classi di esposizione (UNI EN 206-1)

	Solaio in lastre predalles	Struttura in elevazione	Fondazioni
Classe di resistenza	C32/40	C32//40	C25/30
Classe di esposizione	XS1	XS1	XC2

Condizioni ambientali	aggressive	aggressive	ordinarie
Rapporto acqua/cemento	0,50	0,50	0,60

Con riferimento al punto 4.1.6.1.3 delle NTC, al fine della protezione delle armature dalla corrosione il valore minimo dello strato di ricoprimento di calcestruzzo (copriferro) deve rispettare quanto indicato nella tabella C4.1.IV della Circolare 2.2.2019, riportata di seguito, nella quale sono distinte le tre condizioni ambientali di Tabella 4.1.III delle NTC.

Copriferro

			barre d	a c.a.	barre d		cavi da	c.a.p	cavi da c.a.p		
Cmin	Co	ambiente	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<>	C≥Co	Cmin≤C <co< td=""></co<>	
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35	
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45	
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50	

Ai valori riportati nella tabella vanno aggiunte le tolleranze di posa, pari a 10 mm. Si riportano di seguito i copriferri adottati, determinati in funzione della classe del cls e delle condizioni ambientali.

	Ambiente	Copriferro minimo	Tolleranza di posa	Copriferro nominale
Struttura in elevazione	aggressivo	35	10	45
Lastre predalles	aggressivo	30	0	30
Fondazioni	Ordinario	25	10	35

In definitiva si prescrive che in fondazione il copriferro netto non deve essere inferiore a 40mm.

Si prescrive, inoltre, che in elevazione, tranne che per le lastre predalles, la distanza minima dall'asse della barra al filo della carpenteria non deve essere inferiore a 45 mm.

Il valore complessivo del copriferro pari a 45 mm è costituito da 35 mm legato alle prestazioni della struttura in termini di durabilità a cui si sommano ulteriori 10 mm per garantire una classe R120 nel locale GE e R90 nei restanti ambienti, operando in coerenza con le prescrizioni del D.M. 16 febbraio 2007 Classificazione di- resistenza al fuoco di prodotti ed elementi costruttivi di opere da costruzione - Allegato D.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI					
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 13 DI 124	

Prove sui materiali

La costruzione delle strutture dovrà essere eseguita nel rispetto delle specifiche d'istruzione tecnica RFI-DTC-SI-MA-IFS-001-E: "Manuale di progettazione delle opere civili"

5 TERRENO DI FONDAZIONE

In riferimento alla relazione geotecnica - IA8E00D78RHGE0006001A - è statto adottato il seguente modello geotecnico di riferimento

Unità litologiche da p.c.	da m da PC.	a m da PC	γ kN/m³	Φ' _k (°)	c' _k kPa	E _{op}
Riporti	0	0.5	18.0	-	-	-
Sabbie medio-fini limose da poco a mediamente addensate	0.5	2	19.5	32	-	-
Argille limose deb. Sabbiose ed argille limose e/o con limo con sporadiche lamine sabbiose e, talora, rare screziature organiche. Da consistente a molto consistente	2	7.5	19.5	24	5	80

Tabella 1 - Stratigrafia geotecnica di riferimento.

La falda si trova a -13 metri dal p.c., ad una profondità tale da non interessare le opere in oggetto.

Il suolo è classificato tipo C

6 SOFTWARE DI CALCOLO E CONVENZIONI GENERALI

Per la modellazione strutturale agli elementi finiti si utilizza il programma di calcolo "Sismicad 12.16", sviluppato dalla Concrete s.r.l. su piattaforma Windows.

Descrizione del programma Sismicad

Si tratta di un programma di calcolo strutturale che nella versione più estesa è dedicato al progetto e verifica degli

elementi in cemento armato, acciaio, muratura e legno di opere civili. Il programma utilizza come analizzatore e solutore del modello strutturale un proprio solutore agli elementi finiti tridimensionale fornito col pacchetto. Il programma è sostanzialmente diviso in tre moduli: un pre processore che consente l'introduzione della geometria e dei carichi e crea il file dati di input al solutore; il solutore agli elementi finiti; un post processore che a soluzione avvenuta elabora i risultati eseguendo il progetto e la verifica delle membrature e producendo i grafici ed i tabulati di output.

Specifiche tecniche

Il programma schematizza la struttura attraverso l'introduzione nell'ordine di fondazioni, poste anche a quote diverse, platee, platee nervate, plinti e travi di fondazione poggianti tutte su suolo elastico alla Winkler, di elementi verticali, pilastri e pareti in c.a. anche con fori, di orizzontamenti costituiti da solai orizzontali e inclinati (falde), e relative travi di piano e di falda; è ammessa anche l'introduzione di elementi prismatici in c.a. di interpiano con possibilità di collegamento in inclinato a solai posti a quote diverse. I nodi strutturali possono essere connessi solo a travi, pilastri e pareti, simulando così impalcati infinitamente deformabili nel piano, oppure a elementi lastra di spessore dichiarato dall'utente simulando in tal modo impalcati a rigidezza finita. I nodi appartenenti agli impalcati orizzontali possono essere connessi rigidamente ad uno o più nodi principali giacenti nel piano dell'impalcato; generalmente un nodo principale coincide con il baricentro delle masse. Tale opzione, oltre a ridurre significativamente i tempi di elaborazione, elimina le approssimazioni numeriche connesse all'utilizzo di elementi lastra quando si richiede l'analisi a impalcati infinitamente rigidi. Per quanto concerne i carichi, in fase di immissione dati, vengono definite, in numero a scelta dell'utente, condizioni di carico elementari le quali, in aggiunta alle azioni sismiche e variazioni termiche, vengono combinate attraverso coefficienti moltiplicativi per fornire le combinazioni richieste per le verifiche successive. L'effetto di disassamento delle forze orizzontali, indotto ad esempio dai torcenti di piano per costruzioni in zona sismica, viene simulato attraverso l'introduzione di eccentricità planari aggiuntive le quali costituiscono ulteriori condizioni elementari di carico da cumulare e combinare secondo i criteri del paragrafo precedente. Tipologicamente sono ammessi sulle travi e sulle pareti carichi uniformemente distribuiti e carichi trapezoidali; lungo le aste e nei nodi di incrocio delle membrature sono anche definibili componenti di forze e coppie concentrate comunque dirette nello spazio. Sono previste distribuzioni di temperatura, di intensità a scelta dell'utente, agenti anche su singole porzioni di struttura. Il calcolo delle sollecitazioni si basa sulle seguenti ipotesi e modalità: - travi e pilastri deformabili a sforzo normale, flessione deviata, taglio deviato e momento torcente. Sono previsti coefficienti riduttivi dei momenti di inerzia a scelta dell'utente per considerare la riduzione della rigidezza flessionale e torsionale per effetto della fessurazione del conglomerato cementizio. E' previsto un moltiplicatore della rigidezza assiale dei pilastri per

considerare, se pure in modo approssimato, l'accorciamento dei pilastri per sforzo normale durante la costruzione. - le travi di fondazione su suolo alla Winkler sono risolte in forma chiusa tramite uno specifico elemento finito; - le pareti in c.a. sono analizzate schematizzandole come elementi lastra-piastra discretizzati con passo massimo assegnato in fase di immissione dati; - le pareti in muratura possono essere schematizzate con elementi lastra-piastra con spessore flessionale ridotto rispetto allo spessore membranale.- I plinti su suolo alla Winkler sono modellati con la introduzione di molle verticali elastoplastiche. La traslazione orizzontale a scelta dell'utente è bloccata o gestita da molle orizzontali di modulo di reazione proporzionale al verticale. - I pali sono modellati suddividendo l'asta in più aste immerse in terreni di stratigrafia definita dall'utente. Nei nodi di divisione tra le aste vengono inserite molle assialsimmetriche elastoplastiche precaricate dalla spinta a riposo che hanno come pressione limite minima la spinta attiva e come pressione limite massima la spinta passiva modificabile attraverso opportuni coefficienti. - i plinti su pali sono modellati attraverso aste di di rigidezza elevata che collegano un punto della struttura in elevazione con le aste che simulano la presenza dei pali;- le piastre sono discretizzate in un numero finito di elementi lastrapiastra con passo massimo assegnato in fase di immissione dati; nel caso di platee di fondazione i nodi sono collegati al suolo da molle aventi rigidezze alla traslazione verticale ed richiesta anche orizzontale.- La deformabilità nel proprio piano di piani dichiarati non infinitamente rigidi e di falde (piani inclinati) può essere controllata attraverso la introduzione di elementi membranali nelle zone di solaio. - I disassamenti tra elementi asta sono gestiti automaticamente dal programma attraverso la introduzione di collegamenti rigidi locali.- Alle estremità di elementi asta è possibile inserire svincolamenti tradizionali così come cerniere parziali (che trasmettono una quota di ciò che trasmetterebbero in condizioni di collegamento rigido) o cerniere plastiche.- Alle estremità di elementi bidimensionali è possibile inserire svincolamenti con cerniere parziali del momento flettente avente come asse il bordo dell'elemento.- Il calcolo degli effetti del sisma è condotto, a scelta dell'utente, con analisi statica lineare, con analisi dinamica modale o con analisi statica non lineare, in accordo alle varie normative adottate. Le masse, nel caso di impalcati dichiarati rigidi sono concentrate nei nodi principali di piano altrimenti vengono considerate diffuse nei nodi giacenti sull'impalcato stesso. Nel caso di analisi sismica vengono anche controllati gli spostamenti di interpiano.

REV.

FOGLIO

16 DI 124

Verifiche delle membrature in cemento armato

Nel caso più generale le verifiche degli elementi in c.a. possono essere condotte col metodo delle tensioni ammissibili (D.M. 14-1-92) o agli stati limite in accordo al D.M. 09-01-96, al D.M. 14-01-08, al D.M. 17-01-18 o secondo Eurocodice 2. Le travi sono progettate e verificate a flessione retta e taglio; a richiesta è possibile la verifica per le sei componenti della sollecitazione. I pilastri ed i pali sono verificati per le sei componenti della sollecitazione. Per gli elementi bidimensionali giacenti in un medesimo piano è disponibile la modalità di verifica che consente di analizzare lo stato di verifica nei singoli nodi degli elementi. Nelle verifiche (a presso flessione e punzonamento) è ammessa la introduzione dei momenti di calcolo modificati in base alle direttive dell'EC2, Appendice A.2.8. I plinti superficiali sono verificati assumendo lo schema statico di mensole con incastri posti a filo o in asse pilastro. Gli ancoraggi delle armature delle membrature in c.a. sono calcolati sulla base della effettiva tensione normale che ogni barra assume nella sezione di verifica distinguendo le zone di ancoraggio in zone di buona o cattiva aderenza. In particolare il programma valuta la tensione normale che ciascuna barra può assumere in una sezione sviluppando l'aderenza sulla superficie cilindrica posta a sinistra o a destra della sezione considerata; se in una sezione una barra assume per effetto

dell'aderenza una tensione normale minore di quella ammissibile, il suo contributo all'area complessiva viene ridotto dal programma nel rapporto tra la tensione normale che la barra può assumere per effetto dell'aderenza e quella ammissibile. Le verifiche sono effettuate a partire dalle aree di acciaio equivalenti così calcolate che vengono evidenziate in relazione. A seguito di analisi inelastiche eseguite in accordo a OPCM 3431 o D.M. 14-01-08, al D.M. 17-01-18 vengono condotte verifiche di resistenza per i meccanismi fragili (nodi e taglio) e verifiche di deformabilità per i meccanismi duttili.

7 ANALISI DEI CARICHI

Come prescritto dalle NTC18, sono state considerate agenti sulla struttura le seguenti condizioni di carico elementari, combinate tra loro in modo da determinare gli effetti più sfavorevoli ai fini delle verifiche dei singoli elementi strutturali:

- peso proprio strutture;
- carichi permanenti non strutturali;
- sovraccarico variabile;
- azione sismica;
- azione del vento;
- azione della neve;
- variazioni termiche;
- effetti aerodinamici associati al passaggio dei convogli.

7.1 Peso proprio strutture (G1)

Per tutti gli elementi strutturali in c.a. si è assunto un peso di volume di 25 kN/m³.

Per quanto concerne il solaio di copertura a lastra predalles si è fatto riferimento alla seguente analisi dei carichi.

• Solaio di copertura

Analisi pesi propri						
	Ripetizioni	Spessore	Larghezza Area Lungh	ezza Volume	p(KN/mc-mq)	Peso (kN/m)
soletta superiore	1	0.04	1	0.04	25	1.0
nervature	1	0.14	1	0.14	10	1.4
soletta inferiore	1	0.04	1	0.04	25	1.0
sommano permanenti						3.4

• Solaio terra

Analisi pesi propri				
	Ripetizioni Spessore Larghezza Area Lunghezza	Volume	p(KN/mc-mq)	Peso (kN/m)
soletta	1 0.15 1	0.15	25	3.8
sommano permanenti				3.8

7.2 Carichi permanenti non strutturali (G2)

<u>Tamponamenti</u>

Il rivestimento esterno è ottenuto mediante muratura armata in blocchi, costituita da blocchi cavi prefabbricati in conglomerato normale di cemento vibrocompresso (sp.40cm) tipo poroton per l'ancoraggio della sottostruttura dei pannelli di rivestimento +

isolante esterno in poliuretano (sp.8cm). Il suo peso si è assunto pari a 4.60 kN/m² (peso muratura 4.2 kN/mq + peso pannello isolante 0.4 kN/mq).

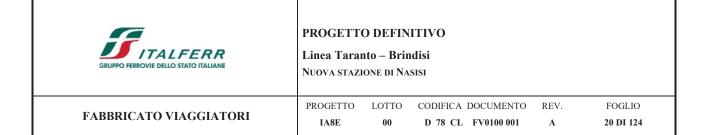
Il peso a metro lineare del tamponamento, ottenuto moltiplicando il peso per unità di superficie per l'altezza totale del singolo pannello h=3.95 m, trascurando le eventuali aperture, è pari a 18.2 kN/m.

Il rivestimento interno è costituito da muratura realizzata con blocchi cavi prefabbricati in conglomerato normale di cemento vibrocompresso lisciati e trattati su entrambe le facce (sp.20cm), il cui peso è assunto pari a 2.10 kN/mq, ossia 8.3 kN/m.

Carichi permanenti non strutturali agenti in copertura

I pesi degli elementi non strutturali gravanti sul solaio di copertura sono riassunti nella tabella presente. Il peso complessivo è pari a 2.8 kN/mq.

Analisi permanenti portati							
	Ripetizioni	Spessore	Larghezza Ar	ea Lunghezza	Volume	p(KN/mc-mc	p) Peso (kN/m)
intonaco	1	0.015	1		0.015	20	0.30
massetto delle pendenze in congl.cem.sp.6cm	1	0.06	1		0.06	24	1.50
barriera al vapore	1		1		1	0.002	0.002
isolamento in lana di roccia sp.8cm	1	0.08	1		0.08	1.5	0.12
impermeabilizzazione guaina.bitum. 2str. 4+4mm	2	0.004	1		0.008	10.5	0.084
allettamento per copertura/ghiaia di protezione	1	0.01	1		0.01	15	0.15
copertura in quattrotti	1	0.025	1		0.025	24	0.60
tamponature	0		1		0	25	0.00
sommano permanenti							2.8


Il peso del muretto perimetrale, comprensivo di lamiera in acciaio inox per scossalina, gronda e carter di bordo, (sp.8/10 mm) è assunto pari 5.5 kN/m.

Carichi permanenti non strutturali terra

Analisi permanenti portati							
	Ripetizioni	Spessore	Larghezza	Area Lunghezza	Volume	p(KN/mc-mq)	Peso (kN/m)
Pavimento sopraelevato	1	0.034	1		0.034	18.4	0.63
massetto delle pendenze in congl.cem.sp.6cm	1	0.06	1		0.06	24	1.44
impermeabilizzazione guaina.bitum. 2str. 4+4mm	2	0.004	1		0.008	10.5	0.08
sommano permanenti							2.15

7.3 Sovraccarichi variabili (Q1)

Il sovraccarico variabile in copertura è pari a 0.50 kN/m², corrispondente a una copertura accessibile per sola manutenzione (Categoria H, secondo Tab. 3.1.II delle NTC18).

7.4 Azione della neve (Q2)

Le azioni della neve sono definite al capitolo 3.4 delle NTC18. Il carico provocato dalla neve sulle coperture è definito dall'espressione seguente:

$$q_s = \mu_i C_e C_t q_{sk}$$

dove:

μ_i - Coefficiente di forma della copertura;

C_e - Coefficiente di esposizione;

Ct - Coefficiente termico;

q_{sk} - Valore di riferimento del carico neve al suolo.

Per la valutazione di q_{sk} si è fatto riferimento ad un sito posto in zona III, con altezza sul livello del mare assunta pari a 15 metri s.l.m., periodo di ritorno Tr = 50 anni:

$$q_{sk} = 0.60 \text{ kN/m}^2$$

Il coefficiente di esposizione C_e può essere utilizzato per modificare il valore del carico neve in copertura in funzione delle caratteristiche specifiche dell'area in cui sorge l'opera. Valori del coefficiente di esposizione per diverse classi di topografia sono forniti in tabella 3.4.I. NTC18. Per il caso in esame, essendo un tipologico, si assume $C_e = 1.0$.

Il coefficiente termico C_t può essere utilizzato per tener conto della riduzione del carico neve a causa dello scioglimento della stessa, causata dalla perdita di calore della costruzione. Tale coefficiente tiene conto delle proprietà di isolamento termico del materiale utilizzato in copertura. In assenza di uno specifico e documentato studio, deve essere utilizzato $C_t = 1.0$ (3.4.4 – NTC18).

Il coefficiente di forma della copertura dipende dall'angolo di inclinazione della falda, i valori proposti dalla normativa vigente vengono riportati nella Tab.3.4.II (DM 14 Gennaio 2008):

Coefficiente di forma	0° ≤ α ≤ 30°	30° < α < 60°	α≥60°
μι	0,8	$0.8 \cdot \frac{(60 - \alpha)}{30}$	0,0

Nel caso in esame si ha $\alpha = 0^{\circ}$ circa, pertanto:

$$\mu_1 (0^{\circ}) = 0.8$$

Nel caso del fabbricato in esame, tuttavia, in virtù della presenza della tamponatura aggettante di 0.30 m rispetto al piano finito della copertura, si tiene conto del fatto che la neve sia impedita di scivolare e, pertanto, si assume:

$$\mu_1 (0^{\circ}) = 1.0$$

In definitiva, il carico da neve per la copertura piana risulta pari a:

$$q_s = 1 \cdot 0.60 \cdot 0.80 \cdot 1.00 = 0.48 \text{ kN/m}^2$$
.

7.5 Azione del vento (W)

Il vento, la cui direzione si considera generalmente orizzontale, esercita sulle costruzioni azioni che variano nel tempo e nello spazio provocando, in generale, effetti dinamici. Per le costruzioni usuali tali azioni sono convenzionalmente ricondotte alle azioni statiche equivalenti definite al punto 3.3.3 – NTC18.

Per il calcolo dell'azione statica equivalente dovuta al vento, si è fatto riferimento alla zona 3, con altezza sul livello del mare pari $a_s < a_0 = 500$ m e precisamente pari a 15 m.s.l.m.

Pressione del vento:

La pressione del vento, considerata come azione statica agente normalmente alle superfici, è data dall'espressione:

$$p = q_b \cdot c_e \cdot c_p \cdot c_d$$

dove

- q_b Pressione cinetica di riferimento
- c_e Coefficiente di esposizione
- c_p Coefficiente di forma (o coefficiente aerodinamico)
- c_d Coefficiente dinamico che si assume unitario.

Pressione cinetica di riferimento:

La pressione cinetica di riferimento q_b in (N/m²) è data dall'espressione:

$$q_b = \frac{1}{2} \cdot \rho \cdot v_b^2$$

dove:

- v_b Velocità di riferimento del vento;
- ρ Densità dell'aria assunta convenzionalmente costante e pari a 1.25 kg/m³.

In mancanza di indagini statistiche adeguate, la velocità di riferimento del vento $v_b(T_R)$ riferita ad un generico periodo di ritorno T_R può essere valutata, nel campo compreso tra 10 e 500 anni, con l'espressione:

$$V_b(T_R) = \alpha \cdot v_b$$

dove:

v_b - Velocità di riferimento del vento associata ad un periodo di ritorno di 50 anni;

α_R – Coefficiente posto in un diagramma in funzione di T_R espresso in anni.

Per la valutazione della velocità di riferimento del vento si è assunto un periodo di ritorno T_R pari a 100 anni.

Coefficiente di esposizione:

Il coefficiente d'esposizione c_e dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno, e dalla categoria di esposizione del sito ove sorge la costruzione. Per il caso in esame considerando la zona 3, classe di rugosità del terreno D e categoria d'esposizione del sito I, il coefficiente di esposizione, risulta pari a

Ce = 2.37

avendo approssimato per eccesso l'altezza massima della costruzione a 5.0 m.

Coefficiente di pressione:

il coefficiente di pressione, per un'altezza massima del fabbricato di 5.00 m, per le pareti sopravento, sottovento e laterali risulta esplicitato nella tabella seguente. Cautelativamente si è assunto il rapporto h/d che conduce alla massima azione di spinta per la singola parete, cioè h/d = 5/7.54 m = 0.663 (si ha, infatti: h/d longitudinale = 0.663; h/d trasversale 0.174).

Sopravento	laterali	Sottovento
0.70+0.1*h/d	-0.9	-0.3-0.2*h/d
0.766	-0.90	-0.433

Per quanto concerne la copertura si è assunto CPe = -0.8 e +- 0.20 in coerenza con le indicazioni di cui al C3.3.8.1.2 delle NTC18.

Coefficiente dinamico:

Il coefficiente dinamico tiene conto degli effetti riduttivi associati alla non contemporaneità delle massime pressioni locali e degli effetti amplificativi dovuti alla risposta dinamica della struttura. Esso è assunto cautelativamente pari ad 1.

Azione tangenziale del vento:

L'azione tangente per unità di superficie parallela alla direzione del vento è data dall'espressione:

 $p_f = q_b \cdot c_e \cdot c_f$

dove:

q_b, c_e sono stati definiti precedentemente;

c_f - Coefficiente d'attrito, funzione della scabrezza della superficie sulla quale il vento esercita l'azione tangente.

PROGETTO DEFINITIVO

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV.

IA8E 00 D 78 CL FV0100 001 A

FOGLIO

23 DI 124

Dati i coefficienti d'attrito riportati in tabella C3.3.I (Circolare 2009) si assume un valore di 0.02, relativo a superficie scabra (cemento a faccia scabra...). Pertanto sviluppando l'espressione relativa all'azione tangenziale del vento si ottiene un valore ampiamente trascurabile rispetto alle altre azioni in gioco:

Azione Tangenziale Vento					
q_{b}	0.46	kN/m ²			
Ce	2.37				
$c_{ m f}$	0.02				
p_f	0.02	kN/m²			

Pressione del vento

Zona vento = 3

Velocità base della zona, Vb.o = 27 m/s (Tab. 3.3.I)

Altitudine base della zona, Ao = 500 m (Tab. 3.3.I)

Altitudine del sito, As = 15 m

Velocità di riferimento, Vb = 27,00 m/s ($Vb = Vb.o \text{ per } As \leq Ao$)

Periodo di ritorno, Tr = 50 anni

Cr = 1 per Tr = 50 anni

Velocità riferita al periodo di ritorno di progetto, Vr = Vb Cr = 27,00 m/s

Classe di rugosità del terreno: D

[Aree prive di ostacoli o con al di più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,..)]

Categoria esposizione: (Mare entro 2 km dalla costa) tipo I

(Kr = 0.17; Zo = 0.01 m; Zmin = 2 m)

Pressione cinetica di riferimento, qb = 46 daN/mq

Coefficiente di forma, Cp = 1,00

Coefficiente dinamico, Cd = 1,00

Coefficiente di esposizione, Ce = 2,37

Coefficiente di esposizione topografica, Ct = 1,00

Altezza dell'edificio, h = 5,00 m

Pressione del vento, p = qb Ce Cp Cd = 108 daN/mq

7.6 Azioni termiche (Tk)

Nel caso in cui la temperatura non costituisca azione fondamentale per la sicurezza o per la efficienza funzionale della struttura è consentito tener conto, per gli edifici, della sola componente ΔT u, ricavandola direttamente dalla Tab. 3.5.II delle NTC 2018 che viene riportata nel seguito.

Nel caso in cui la temperatura costituisca, invece, azione fondamentale per la sicurezza o per la efficienza funzionale della struttura, l'andamento della temperatura T nelle sezioni degli elementi strutturali deve essere valutato più approfonditamente studiando il problema della trasmissione del calore.

Tabella 3.5.II - Valori di ΔT_u per gli edifici

Tipo di struttura	ΔT_{u}
Strutture in c.a. e c.a.p. esposte	± 15 °C
Strutture in c.a. e c.a.p. protette	± 10 °C
Strutture in acciaio esposte	± 25 °C
Strutture in acciaio protette	± 15 °C

Nel caso in esame, si tiene conto della sola componente ΔT_u e in particolare si assume $\Delta T_u = \pm 10$ °C per tutta la struttura.

7.7 Azione sismica (E)

Per la definizione dell'azione sismica sono necessarie delle valutazioni preliminari relative alle seguenti caratteristiche proprie della costruzione (2.4 – NTC18):

- Vita Nominale (V_N);
- Classe d'uso (Cu);
- Periodo di Riferimento (VR).

Si attribuisce una vita nominale $V_N = 50$ anni e la classe d'uso III con coefficiente d'uso $C_u=1.5$, in conformità ai seguenti riferimenti normativi:

- DM 14/01/2018 par. 2.4;
- Circ. 21/01/2019, n. 7 par. C2.4.1 e C2.4.2;
- Decreto 21/10/2003 P.C.M. Dipartimento della Prot. Civile (all.1);
- RFI-DTC-SI-MA-IFS-001-E: "Manuale di progettazione delle opere civili"

Il periodo di riferimento da considerare per il calcolo dell'azione sismica sarà quindi $V_R = C_u \times V_N = 75$ anni.

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione, ai sensi dell'Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003. La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g , nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente, con riferimento a prefissata probabilità di eccedenza P_{VR} nel periodo di riferimento V_R (3.2 – NTC18).

La normativa NTC18 definisce le forme spettrali, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR} , a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

- ag Accelerazione orizzontale massima al sito;
- F0 Valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- TC* Periodo d'inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale mediante specifiche analisi. In assenza di tali analisi, per la definizione dell'azione sismica si può far riferimento a un approccio semplificato, che si basa sull'individuazione di categorie di sottosuolo di riferimento (Tab. 3.2.II e 3.2.III – NTC18).

Il terreno su cui insiste la costruzione è stato assimilato ad un sottosuolo di categoria C.

Nel caso in esame si può assumere una categoria topografica T_1 (Superficie pianeggiante, pendii e rilievi isolati con inclinazione media $i \le 15^{\circ}$).

Lo spettro di risposta elastico in accelerazione è espresso da una forma spettrale (spettro normalizzato) riferita ad uno smorzamento convenzionale del 5%, moltiplicata per il valore dell'accelerazione orizzontale massima a_g su sito di riferimento rigido orizzontale. Sia la forma spettrale che il valore di a_g variano al variare della probabilità di superamento nel periodo di riferimento P_{VR} .

Lo spettro di risposta elastico orizzontale è descritto dalle seguenti espressioni, riportate al punto 3.2.3.2.1 – NTC18:

$$0 \leq T \leq T_{B}$$

$$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{0} \cdot \left[\frac{T}{T_{B}} + \frac{1}{\eta \cdot F_{0}} \cdot \left(1 - \frac{T}{T_{B}} \right) \right]$$

$$T_{B} \leq T < T_{C}$$

$$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{0}$$

$$T_{C} \leq T < T_{D}$$

$$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{0} \cdot \left(\frac{T_{c}}{T} \right)$$

$$T_{D} \leq T$$

$$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{0} \cdot \left(\frac{T_{c} \cdot T_{D}}{T^{2}} \right)$$

Poiché il fabbricato è dotato di solai e travi in c.a. che presentano luce inferiore a 20 m, non è stata considerata la componente verticale dell'azione sismica, come stabilito al punto 7.2.2 delle NTC18.

Agli stati limite ultimi le capacità dissipative delle strutture possono essere considerate attraverso una riduzione delle forze elastiche, tenendo conto in modo semplificato della capacità dissipativa anelastica della struttura, della sua sovraresistenza, dell'incremento del suo periodo proprio a seguito delle plasticizzazioni.

In tal caso lo spettro di progetto da utilizzare, sia per le componenti orizzontali, sia per la componente verticale, è lo spettro elastico corrispondente riferito alla probabilità di superamento nel periodo di riferimento P_{VR} considerata con le ordinate ridotte sostituendo nelle formule 3.2.4 - NTC18 η con 1/q, dove q è il fattore di struttura.

Il valore del fattore di struttura q da utilizzare per ciascuna direzione dell'azione sismica, dipende dalla tipologia strutturale, dal suo grado di iperstaticità e dai criteri di progettazione adottati e prende in conto le non linearità di materiale. Esso può essere calcolato mediante la seguente espressione:

$$q = q_0 \cdot K_R$$

dove:

qo è il valore massimo del fattore di struttura

 K_R è un fattore che dipende dalle caratteristiche di regolarità in altezza della costruzione.

Osservando le tipologie strutturali riportate al §7.3.1 delle NTC18, si evince che l'edificio in esame è riconducibile ad un sistema a telaio, per cui il valore base del coefficiente di comportamento q₀, che risulta legato alla tipologia strutturale ed al livello di duttilità attesa, è dato da:

$$q_0 = 3.0 \alpha_u / \alpha_1$$

stabilendo di progettare il fabbricato per un comportamento strutturale dissipativo caratterizzato da Classe di Duttilità bassa (CD"B").

La struttura risulta regolare in altezza e in pianta, in quanto il rapporto tra i lati dell'edificio è inferiore a 4:

B/L = 28.45/7.30 = 3.9

Pertanto, con riferimento al §7.4.3.2 delle NTC18, si adotta:

 α_u / α_1 = 1.1

Pertanto il fattore di struttura al quale si può fare riferimento per la definizione dello spettro di progetto è: q = 3.3

Tuttavia dal momento che un tale valore determinerebbe dei valori dell'ordinata spettrale SLV leggermente inferiori ai corrispondenti valori SLD, si considera un valore di q ridotto, pari a:

q = 3.00

Per gli stati limite di esercizio lo spettro di progetto da utilizzare è lo spettro elastico corrispondente, riferito alla probabilità di superamento nel periodo di riferimento P_{VR}.

Per una costruzione di Classe IV, devono essere effettuate le verifiche riportate nella seguente tabella, estrapolata dalla tabella 7.3.III:

Stato limite	Descrizione della prestazione
SLO	Contenimento del danno degli elementi non strutturali (spostamenti di interpiano)
SLD	Resistenza degli elementi strutturali
	Resistenza delle strutture
SLV	Duttilità delle strutture
SL v	Assenza di collasso fragile ed espulsione di elementi non strutturali

Fabbricato Viaggiatori, pensiline, sottopasso ed opere strutturali annesse

Le opere in oggetto previste nella stazione sono classificate come "costruzione con livelli di prestazioni ordinarie" e caratterizzate da una vita nominale di 50 anni. In relazione alle conseguenze di un'interruzione di operatività o di un eventuale collasso, l'opera appartiene alla classe d'uso III: "Costruzioni il cui uso preveda affollamenti significativi, industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso".

Pertanto, il coefficiente d'uso C_U è pari a 1.50 ed il periodo di riferimento $V_R = V_N * C_U = 50 * 1.5 = 75.0$ anni.

Figura 8- Parametri sismici di progetto: determinazione dell'azione di progetto

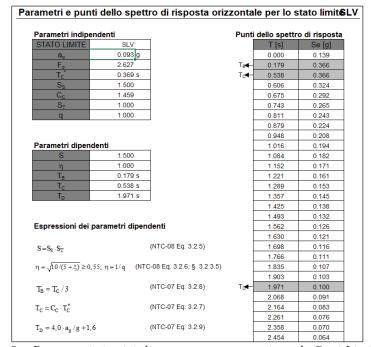


Figura 9 – Parametri sismici di progetto: parametri per lo Stati Limite SLV

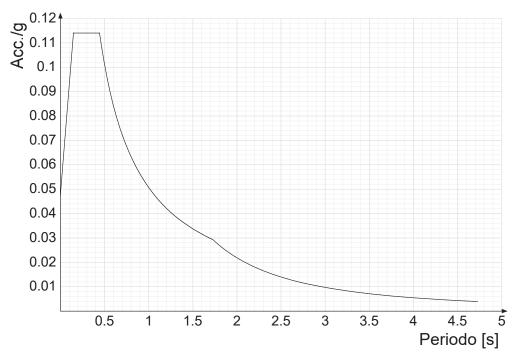
I parametri spettrali di riferimento per lo scenario in esame sono richiamati di seguito.

 $a_{g}(g)(SLV)$ 0.093

Risposta Sismica Locale

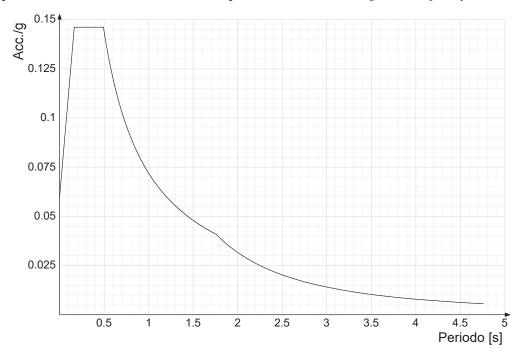
Coefficiente di amplificazione stratigrafica Ss 1.5

Coefficiente di amplificazione topografica St 1.0

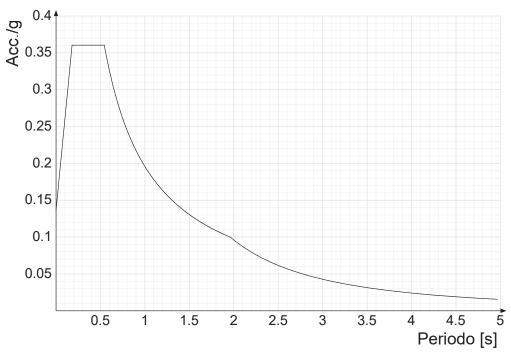

Accelerazione massima attesa al suolo

$$\mathbf{a}_{\max}(\mathbf{g}) \left(a_{\max} = S \cdot a_{g} = S_{S} \cdot S_{T} \cdot a_{g} \right)$$
 0.1395g

Per il fabbricato viaggiatori in progetto, gli spettri di risposta di progetto agli stati limite SLO, SLD e SLV sono riportati nelle figure seguenti.

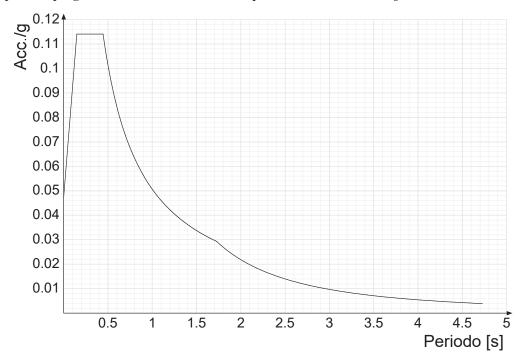

Acc./g: Accelerazione spettrale normalizzata ottenuta dividendo l'accelerazione spettrale per l'accelerazione di gravità. Periodo: Periodo di vibrazione.

Spettro di risposta elastico in accelerazione delle componenti orizzontali SLO § 3.2.3.2.1 [3.2.2]

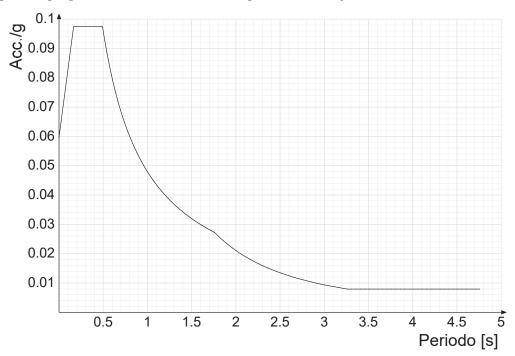


GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI				
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 30 DI 124

Spettro di risposta elastico in accelerazione delle componenti orizzontali SLD § 3.2.3.2.1 [3.2.2]

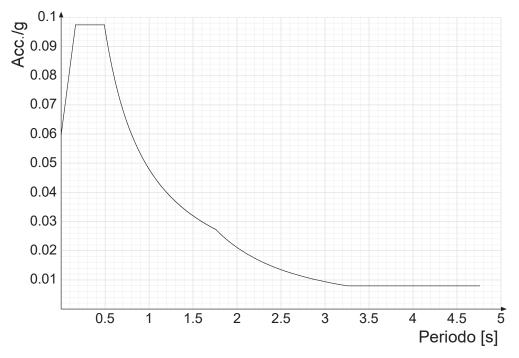


Spettro di risposta elastico in accelerazione delle componenti orizzontali SLV \S 3.2.3.2.1 [3.2.2]

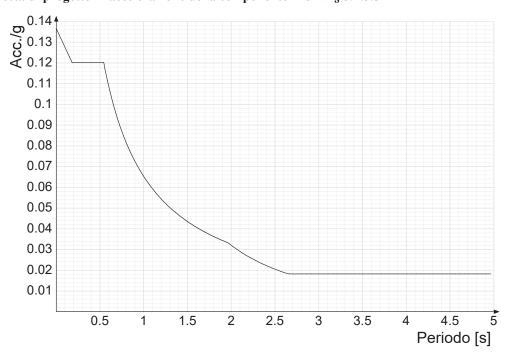


GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI				
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 31 DI 124

Spettro di risposta di progetto in accelerazione delle componenti orizzontali SLO § 3.2.3.4



Spettro di risposta di progetto in accelerazione della componente X SLD § 3.2.3.5



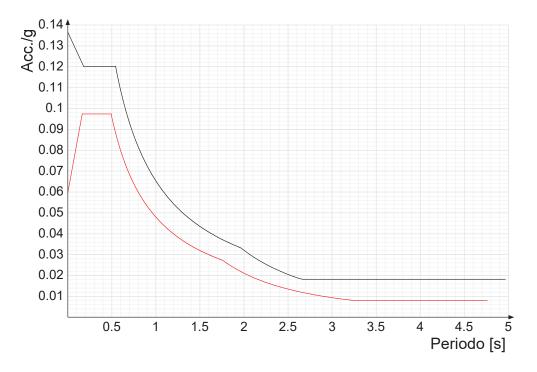
GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI					
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 32 DI 124	

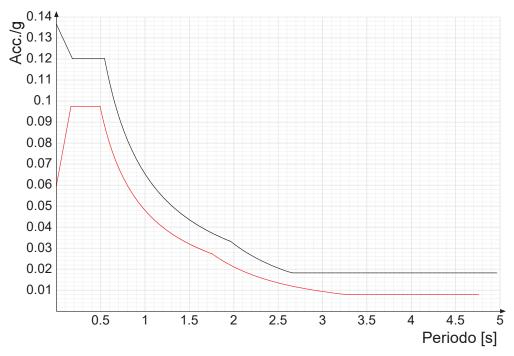
Spettro di risposta di progetto in accelerazione della componente Y SLD § 3.2.3.5



Spettro di risposta di progetto in accelerazione della componente X SLV § 3.2.3.5

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI					
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 33 DI 124	

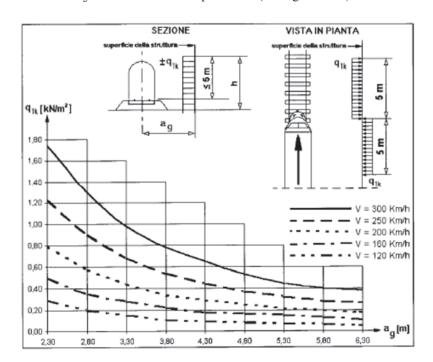

Spettro di risposta di progetto in accelerazione della componente Y SLV \S 3.2.3.5


Confronti spettri SLV-SLD

Vengono confrontati lo spettro Spettro di risposta di progetto in accelerazione della componente X SLD § 3.2.3.5 (di colore rosso) e Spettro di risposta di progetto in accelerazione della componente X SLV § 3.2.3.5 (di colore nero).

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI					
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 34 DI 124	

Vengono confrontati lo spettro Spettro di risposta di progetto in accelerazione della componente Y SLD § 3.2.3.5 (di colore rosso) e Spettro di risposta di progetto in accelerazione della componente Y SLV § 3.2.3.5 (di colore nero).



7.8 Effetti aerodinamici associati al passaggio dei convogli

In accordo con quanto previsto nelle RFI-DTC-SI-MA-IFS-001-E: "Manuale di progettazione delle opere civili" si considera l'effetto aerodinamico associato al passaggio dei treni. Tali prescrizioni si riscontrano anche al punto 5.2 della NTC18 relativo ai ponti ferroviari. Le azioni possono essere schematizzate mediante carichi equivalenti agenti nelle zone prossime alla testa ed alla coda del treno, il cui valore viene determinato con riferimento alla seguente situazione:

Superfici verticali parallele al binario (5.2.2.7.1 – NTC18):

il valore caratteristico dell'azione ±q_{1k} agente ortogonalmente alla superficie verticale di facciata del fabbricato viene valutato in funzione della distanza a_g dall'asse del binario più vicino (cfr. figura sotto).

Le curve in grafico si riferiscono a treni con forme aerodinamiche sfavorevoli.

Nel caso in esame

V = 120 km/h;

 $a_g > 6.30 \text{ m}$

pertanto la suddetta azione si ritiene trascurabile.

8 COMBINAZIONI DI CARICO

Le combinazioni di carico sono state determinate in riferimento ai par. 5.1.3.12 e 2.5.3 del D.M. 17/01/2018 e di seguito riportate:

Combinazione fondamentale (SLU), generalmente impiegata per gli stati limite ultimi:

$$\sum_{i=1}^{3} \gamma_{gi} \cdot g_i + \sum_{i=1}^{4} \gamma_{\varepsilon i} \cdot \varepsilon_i + \gamma_{Q} \cdot q_1 + \sum_{i=2}^{7} \gamma_{qi} \cdot \psi_{0i} \cdot q_i$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili

$$\sum_{i=1}^{3} g_{i} + \sum_{i=1}^{4} \varepsilon_{i} + q_{1} + \sum_{i=2}^{7} \psi_{0i} \cdot q_{i}$$

Combinazione frequente (SLE), generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$\sum_{i=1}^{3} g_{i} + \sum_{i=1}^{4} \varepsilon_{i} + \psi_{11} \cdot q_{1} + \sum_{i=2}^{7} \psi_{2i} \cdot q_{i}$$

Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$\sum_{i=1}^{3} g_{i} + \sum_{i=1}^{4} \varepsilon_{i} + \sum_{i=2}^{7} \psi_{2i} \cdot q_{i}$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + \sum_{i=1}^{3} g_i + \sum_{i=1}^{4} \varepsilon_i + \sum_{i=2}^{7} \psi_{2i} \cdot q_i$$

Combinazione eccezionale, impiegata per gli stati limite ultimi connessi agli urti ed altre azioni eccezionali

$$\sum_{i=1}^{3} g_{i} + \sum_{i=1}^{4} \varepsilon_{i} + q_{8/9} + \sum_{i=2}^{7} \psi_{2i} \cdot q_{i}$$

dove:

- a) Azioni Permanenti (G);
- b) Azioni Variabili (Q);
- c) Azioni di Precompressione (P);
- d) Azioni Eccezionali (A);
- e) Azioni Sismiche (E);

Per le verifiche agli Stati Limite Ultimi si adottano i coefficienti parziali γ indicati nella tabella 2.6.I e i coefficienti di combinazione ψ definiti nella tabella 2.5.I delle NTC18 e riportati di seguito.

Tab. 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente	EQU	A1	A2
		$\gamma_{\mathtt{F}}$			
Carishi manmananti C	Favorevoli	24	0,9	1,0	1,0
Carichi permanenti G1	Sfavorevoli	γ_{G_1}	1,1	1,3	1,0
Conidi normani non strutturali C (1)	Favorevoli	24	0,8	0,8	0,8
Carichi permanenti non strutturali G ₂ ⁽¹⁾	Sfavorevoli	γ ₆₂	1,5	1,5	1,3
A minution with the C	Favorevoli	2/	0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli	ΥQi	1,5	1,5	1,3

Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Tab. 2.5.I - Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψοϳ	ψ_{ij}	ψ_{2j}
Categoria A - Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B - Uffici	0,7	0,5	0,3
Categoria C - Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D - Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E – Aree per immagazzinamento, uso commerciale e uso industriale Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F - Rimesse , parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso \leq 30 kN)	0,7	0,7	0,6
Categoria G – Rimesse, parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H - Coperture accessibili per sola manutenzione	0,0	0,0	0,0
Categoria I – Coperture praticabili	da val	utarsi ca	so per
Categoria K – Coperture per usi speciali (impianti, eliporti,)]	caso	
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

Per quanto concerne la combinazione delle altre azioni con l'azione sismica è necessario garantire il rispetto degli stati limite, quali definiti al punto 2.5.3 – NTC18, effettuando opportune verifiche di sicurezza. Ciascuna di esse garantisce, per ogni stato limite, quindi per il corrispettivo livello di azione sismica, il raggiungimento di una data prestazione da parte della costruzione nel suo complesso. Le verifiche di sicurezza da effettuare sono riepilogate in funzione della classe d'uso nella tabella C7.3.I – Circolare 2019.

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA8E 00 D 78 CL FV0100 001 A 38 DI 124

Si riportano, nelle tabelle seguenti, le combinazioni di carico considerate per l'analisi strutturale, con riferimento ai carichi elementari descritti nel paragrafo precedente. Per la valutazione degli effetti più gravosi ai fini delle verifiche, laddove sussistono più scenari di carico possibili (carico su copertura, termica, etc.) è stato di volta in volta effettuato il numero rilevante di combinazioni di carico (che qui non si riportano per brevità) e valutato il caso peggiore.

8.1 Combinazioni di carico

Nome: E' il nome esteso che contraddistingue la condizione elementare di carico.

Nome breve: E' il nome compatto della condizione elementare di carico, che viene utilizzato altrove nella relazione.

Pesi: Pesi strutturali

Port.: Permanenti portati

Variabile H: Variabile H

Neve: Neve

Vento: Vento

ΔΤ: ΔΤ

X SLO: Sisma X SLO

Y SLO: Sisma Y SLO

Z SLO: Sisma Z SLO

EY SLO: Eccentricità Y per sisma X SLO

EX SLO: Eccentricità X per sisma Y SLO

Tr x SLO: Terreno sisma X SLO

Tr y SLO: Terreno sisma Y SLO

Tr z SLO: Terreno sisma Z SLO

X SLD: Sisma X SLD

Y SLD: Sisma Y SLD

Z SLD: Sisma Z SLD

EY SLD: Eccentricità Y per sisma X SLD

EX SLD: Eccentricità X per sisma Y SLD

Tr x SLD: Terreno sisma X SLD

Tr y SLD: Terreno sisma Y SLD

Tr z SLD: Terreno sisma Z SLD

X SLV: Sisma X SLV

Y SLV: Sisma Y SLV

Z SLV: Sisma Z SLV

EY SLV: Eccentricità Y per sisma X SLV

EX SLV: Eccentricità X per sisma Y SLV

Tr x SLV: Terreno sisma X SLV

Tr y SLV: Terreno sisma Y SLV

Tr z SLV: Terreno sisma Z SLV

R Ux: Rig. Ux

R Uy: Rig. Uy

R Rz: Rig. Rz

Tutte le combinazioni di carico vengono raggruppate per famiglia di appartenenza. Le celle di una riga contengono i coefficienti moltiplicatori della i-esima combinazione, dove il valore della prima cella è da intendersi come moltiplicatore associato alla prima condizione elementare, la seconda cella si riferisce alla seconda condizione elementare e così via.

Famiglia SLU

Il nome compatto della famiglia è SLU.

Nome	Nome breve	Pesi	Port.	Variabile H	Neve	Vento	ΔΤ
1	SLU 1	1	0.8	0	0	0	0
2	SLU 2	1	0.8	0	0	1.5	0
3	SLU 3	1	0.8	0	0.75	1.5	0
4	SLU 4	1	0.8	0	1.5	0	0
5	SLU 5	1	0.8	0	1.5	0.9	0
6	SLU 6	1	0.8	1.5	0	0	0

Nome	Nome breve	Pesi	Port.	Variabile H	Neve	Vento	ΔΤ
7	SLU 7	1	0.8	1.5	0	0.9	0
8	SLU 8	1	0.8	1.5	0.75	0	0
9	SLU 9	1	0.8	1.5	0.75	0.9	0
10	SLU 10	1	1.5	0	0	0	0
11	SLU 11	1	1.5	0	0	1.5	0
12	SLU 12	1	1.5	0	0.75	1.5	0
13	SLU 13	1	1.5	0	1.5	0	0
14	SLU 14	1	1.5	0	1.5	0.9	0
15	SLU 15	1	1.5	1.5	0	0	0
16	SLU 16	1	1.5	1.5	0	0.9	0
17	SLU 17	1	1.5	1.5	0.75	0	0
18	SLU 18	1	1.5	1.5	0.75	0.9	0
19	SLU 19	1.3		0	0	0	0
20	SLU 20	1.3	0.8	0	0	1.5	0
21	SLU 21	1.3	0.8	0	0.75	1.5	0
22	SLU 22	1.3	0.8	0	1.5	0	0
23	SLU 23	1.3	0.8	0	1.5	0.9	0
24	SLU 24	1.3	0.8	1.5	0	0	0
25	SLU 25	1.3	0.8	1.5	0	0.9	0
26	SLU 26	1.3	0.8	1.5	0.75	0	0
27	SLU 27	1.3	0.8	1.5	0.75	0.9	0
28	SLU 28	1.3	1.5	0	0	0	0
29	SLU 29	1.3	1.5	0	0	1.5	0
30	SLU 30	1.3	1.5	0	0.75	1.5	0
31	SLU 31	1.3	1.5	0	1.5	0	0
32	SLU 32	1.3	1.5	0	1.5	0.9	0
33	SLU 33	1.3	1.5	1.5	0	0	0
34	SLU 34	1.3	1.5	1.5	0	0.9	0
35	SLU 35	1.3	1.5	1.5	0.75	0	0
36	SLU 36	1.3	1.5	1.5	0.75	0.9	0

Famiglia SLE rara

Il nome compatto della famiglia è SLE RA.

Nome	Nome breve	Pesi	Port.	Variabile H	Neve	Vento	ΔΤ
1	SLE RA 1	1	1	0	0	0	0
2	SLE RA 2	1	1	0	0	1	0
3	SLE RA 3	1	1	0	0.5	1	0
4	SLE RA 4	1	1	0	1	0	0
5	SLE RA 5	1	1	0	1	0.6	0
6	SLE RA 6	1	1	1	0	0	0
7	SLE RA 7	1	1	1	0	0.6	0
8	SLE RA 8	1	1	1	0.5	0	0
9	SLE RA 9	1	1	1	0.5	0.6	0

Famiglia SLE frequente

Il nome compatto della famiglia è SLE FR.

Nome	Nome breve	Pesi	Port.	Variabile H	Neve	Vento	ΔΤ
1	SLE FR 1	1	1	0	0	0	0
2	SLE FR 2	1	1	0	0	0.2	0
3	SLE FR 3	1	1	0	0.2	0	0

Famiglia SLE quasi permanente

Il nome compatto della famiglia è SLE QP

Nome	Nome breve	Pesi	Port.	Variabile H	Neve	Vento	ΔΤ
1	SLE QP 1	1	1	0	0	0	0

Famiglia SLO

Il nome compatto della famiglia è SLO. Poiché il numero di condizioni elementari previste per le combinazioni di questa famiglia è cospicuo, la tabella verrà spezzata in più parti.

Nome	Nome breve	Pesi	Port.	Variabile H	Neve	Vento	ΔΤ	X SLO
1	SLO 1	1	1	0	0	0	0	-1

Nome	Nome breve	Pesi	Port.	Variabile H	Neve	Vento	ΔΤ	X SLO
2	SLO 2	1	1	0	0	0	0	-1
3	SLO 3	1	1	0	0	0	0	-1
4	SLO 4	1	1	0	0	0	0	-1
5	SLO 5	1	1	0	0	0	0	-0.3
6	SLO 6	1	1	0	0	0	0	-0.3
7	SLO 7	1	1	0	0	0	0	-0.3
8	SLO 8	1	1	0	0	0	0	-0.3
9	SLO 9	1	1	0	0	0	0	0.3
10	SLO 10	1	1	0	0	0	0	0.3
11	SLO 11	1	1	0	0	0	0	0.3
12	SLO 12	1	1	0	0	0	0	0.3
13	SLO 13	1	1	0	0	0	0	1
14	SLO 14	1	1	0	0	0	0	1
15	SLO 15	1	1	0	0	0	0	1
16	SLO 16	1	1	0	0	0	0	1

Nome	Nome breve	Y SLO	Z SLO	EY SLO	EX SLO	Tr x SLO	Tr y SLO	Tr z SLO
1	SLO 1	-0.3	0	-1	0.3	-1	-0.3	0
2	SLO 2	-0.3	0	1	-0.3	-1	-0.3	0
3	SLO 3	0.3	0	-1	0.3	-1	0.3	0
4	SLO 4	0.3	0	1	-0.3	-1	0.3	0
5	SLO 5	-1	0	-0.3	1	-0.3	-1	0
6	SLO 6	-1	0	0.3	-1	-0.3	-1	0
7	SLO 7	1	0	-0.3	1	-0.3	1	0
8	SLO 8	1	0	0.3	-1	-0.3	1	0
9	SLO 9	-1	0	-0.3	1	0.3	-1	0
10	SLO 10	-1	0	0.3	-1	0.3	-1	0
11	SLO 11	1	0	-0.3	1	0.3	1	0
12	SLO 12	1	0	0.3	-1	0.3	1	0
13	SLO 13	-0.3	0	-1	0.3	1	-0.3	0
14	SLO 14	-0.3	0	1	-0.3	1	-0.3	0
15	SLO 15	0.3	0	-1	0.3	1	0.3	0
16	SLO 16	0.3	0	1	-0.3	1	0.3	0

Famiglia SLD

Il nome compatto della famiglia è SLD.

Poiché il numero di condizioni elementari previste per le combinazioni di questa famiglia è cospicuo, la tabella verrà spezzata in più parti.

Nome	Nome breve	Pesi	Port.	Variabile H	Neve	Vento	ΔΤ	X SLD
1	SLD 1	1	1	0	0	0	0	-1
2	SLD 2	1	1	0	0	0	0	-1
3	SLD 3	1	1	0	0	0	0	-1
4	SLD 4	1	1	0	0	0	0	-1
5	SLD 5	1	1	0	0	0	0	-0.3
6	SLD 6	1	1	0	0	0	0	-0.3
7	SLD 7	1	1	0	0	0	0	-0.3
8	SLD 8	1	1	0	0	0	0	-0.3
9	SLD 9	1	1	0	0	0	0	0.3
10	SLD 10	1	1	0	0	0	0	0.3
11	SLD 11	1	1	0	0	0	0	0.3
12	SLD 12	1	1	0	0	0	0	0.3
13	SLD 13	1	1	0	0	0	0	1
14	SLD 14	1	1	0	0	0	0	1
15	SLD 15	1	1	0	0	0	0	1
16	SLD 16	1	1	0	0	0	0	1

Nome	Nome breve	Y SLD	Z SLD	EY SLD	EX SLD	Tr x SLD	Tr y SLD	Tr z SLD
1	SLD 1	-0.3	0	-1	0.3	-1	-0.3	0
2	SLD 2	-0.3	0	1	-0.3	-1	-0.3	0
3	SLD 3	0.3	0	-1	0.3	-1	0.3	0
4	SLD 4	0.3	0	1	-0.3	-1	0.3	0
5	SLD 5	-1	0	-0.3	1	-0.3	-1	0
6	SLD 6	-1	0	0.3	-1	-0.3	-1	0
7	SLD 7	1	0	-0.3	1	-0.3	1	0
8	SLD 8	1	0	0.3	-1	-0.3	1	0
9	SLD 9	-1	0	-0.3	1	0.3	-1	0

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA8E 00 D 78 CL FV0100 001 A 42 DI 124

Nome	Nome breve	Y SLD	Z SLD	EY SLD	EX SLD	Tr x SLD	Tr y SLD	Tr z SLD
10	SLD 10	-1	0	0.3	-1	0.3	-1	0
11	SLD 11	1	0	-0.3	1	0.3	1	0
12	SLD 12	1	0	0.3	-1	0.3	1	0
13	SLD 13	-0.3	0	-1	0.3	1	-0.3	0
14	SLD 14	-0.3	0	1	-0.3	1	-0.3	0
15	SLD 15	0.3	0	-1	0.3	1	0.3	0
16	SLD 16	0.3	0	1	-0.3	1	0.3	0

Famiglia SLV

Il nome compatto della famiglia è SLV.

Poiché il numero di condizioni elementari previste per le combinazioni di questa famiglia è cospicuo, la tabella verrà spezzata in più parti.

Nome	Nome breve	Pesi	Port.	Variabile H	Neve	Vento	ΔΤ	X SLV
1	SLV 1	1	1	0	0	0	0	-1
2	SLV 2	1	1	0	0	0	0	-1
3	SLV 3	1	1	0	0	0	0	-1
4	SLV 4	1	1	0	0	0	0	-1
5	SLV 5	1	1	0	0	0	0	-0.3
6	SLV 6	1	1	0	0	0	0	-0.3
7	SLV 7	1	1	0	0	0	0	-0.3
8	SLV 8	1	1	0	0	0	0	-0.3
9	SLV 9	1	1	0	0	0	0	0.3
10	SLV 10	1	1	0	0	0	0	0.3
11	SLV 11	1	1	0	0	0	0	0.3
12	SLV 12	1	1	0	0	0	0	0.3
13	SLV 13	1	1	0	0	0	0	1
14	SLV 14	1	1	0	0	0	0	1
15	SLV 15	1	1	0	0	0	0	1
16	SLV 16	1	1	0	0	0	0	1

Nome	Nome breve	Y SLV	Z SLV	EY SLV	EX SLV	Tr x SLV	Tr y SLV	Tr z SLV
1	SLV 1	-0.3	0	-1	0.3	-1	-0.3	0
2	SLV 2	-0.3	0	1	-0.3	-1	-0.3	0
3	SLV 3	0.3	0	-1	0.3	-1	0.3	0
4	SLV 4	0.3	0	1	-0.3	-1	0.3	0
5	SLV 5	-1	0	-0.3	1	-0.3	-1	0
6	SLV 6	-1	0	0.3	-1	-0.3	-1	0
7	SLV 7	1	0	-0.3	1	-0.3	1	0
8	SLV 8	1	0	0.3	-1	-0.3	1	0
9	SLV 9	-1	0	-0.3	1	0.3	-1	0
10	SLV 10	-1	0	0.3	-1	0.3	-1	0
11	SLV 11	1	0	-0.3	1	0.3	1	0
12	SLV 12	1	0	0.3	-1	0.3	1	0
13	SLV 13	-0.3	0	-1	0.3	1	-0.3	0
14	SLV 14	-0.3	0	1	-0.3	1	-0.3	0
15	SLV 15	0.3	0	-1	0.3	1	0.3	0
16	SLV 16	0.3	0	1	-0.3	1	0.3	0

Famiglia SLV fondazioni

Il nome compatto della famiglia è SLV FO.

Poiché il numero di condizioni elementari previste per le combinazioni di questa famiglia è cospicuo, la tabella verrà spezzata in più parti.

Nome	Nome breve	Pesi	Port.	Variabile H	Neve	Vento	ΔΤ	X SLV
1	SLV FO 1	1	1	0	0	0	0	-1.1
2	SLV FO 2	1	1	0	0	0	0	-1.1
3	SLV FO 3	1	1	0	0	0	0	-1.1
4	SLV FO 4	1	1	0	0	0	0	-1.1
5	SLV FO 5	1	1	0	0	0	0	-0.33
6	SLV FO 6	1	1	0	0	0	0	-0.33
7	SLV FO 7	1	1	0	0	0	0	-0.33
8	SLV FO 8	1	1	0	0	0	0	-0.33

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO

FOGLIO

REV.

IA8E 00 D 78 CL FV0100 001 A 43 DI 124

Nome	Nome breve	Pesi	Port.	Variabile H	Neve	Vento	ΔΤ	X SLV
9	SLV FO 9	1	1	0	0	0	0	0.33
10	SLV FO 10	1	1	0	0	0	0	0.33
11	SLV FO 11	1	1	0	0	0	0	0.33
12	SLV FO 12	1	1	0	0	0	0	0.33
13	SLV FO 13	1	1	0	0	0	0	1.1
14	SLV FO 14	1	1	0	0	0	0	1.1
15	SLV FO 15	1	1	0	0	0	0	1.1
16	SLV FO 16	1	1	0	0	0	0	1.1

Nome	Nome breve	Y SLV	Z SLV	EY SLV	EX SLV	Tr x SLV	Tr y SLV	Tr z SLV
1	SLV FO 1	-0.33	0	-1.1	0.33	-1.1	-0.33	0
2	SLV FO 2	-0.33	0	1.1	-0.33	-1.1	-0.33	0
3	SLV FO 3	0.33	0	-1.1	0.33	-1.1	0.33	0
4	SLV FO 4	0.33	0	1.1	-0.33	-1.1	0.33	0
5	SLV FO 5	-1.1	0	-0.33	1.1	-0.33	-1.1	0
6	SLV FO 6	-1.1	0	0.33	-1.1	-0.33	-1.1	0
7	SLV FO 7	1.1	0	-0.33	1.1	-0.33	1.1	0
8	SLV FO 8	1.1	0	0.33	-1.1	-0.33	1.1	0
9	SLV FO 9	-1.1	0	-0.33	1.1	0.33	-1.1	0
10	SLV FO 10	-1.1	0	0.33	-1.1	0.33	-1.1	0
11	SLV FO 11	1.1	0	-0.33	1.1	0.33	1.1	0
12	SLV FO 12	1.1	0	0.33	-1.1	0.33	1.1	0
13	SLV FO 13	-0.33	0	-1.1	0.33	1.1	-0.33	0
14	SLV FO 14	-0.33	0	1.1	-0.33	1.1	-0.33	0
15	SLV FO 15	0.33	0	-1.1	0.33	1.1	0.33	0
16	SLV FO 16	0.33	0	1.1	-0.33	1.1	0.33	0

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI				
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 44 DI 124

9 DESCRIZIONE DEL MODELLO DI CALCOLO

Per il calcolo delle sollecitazioni agenti sugli elementi strutturali è stato è stato implementato un modello agli elementi finiti.

Il modello globale tridimensionale della struttura è stato realizzato facendo uso di elementi finiti monodimensionali di tipo *frame*. Essi presentano caratteristiche geometriche e meccaniche in accordo con le proprietà reali dei materiali e delle sezioni che li rappresentano. Ciascuna asta è stata posizionata in corrispondenza dell'asse baricentrico degli elementi strutturali.

L'analisi e le verifiche di sicurezza della struttura sono state condotte coerentemente con quanto indicato nel paragrafo §7.2.5 delle NTC18; in particolare è stato definito un primo modello della sola struttura in elevazione incastrata alla base, utilizzato per il calcolo e la verifica di tutti gli elementi strutturali in elevazione e delle fondazioni.

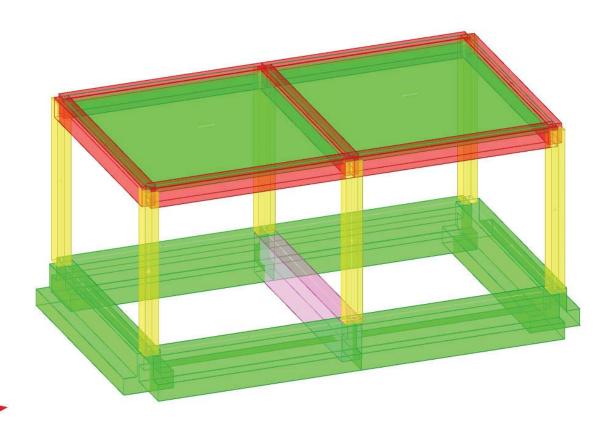


Figura 10 – Vista assonometrica della struttura del modello

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI				
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 45 DI 124

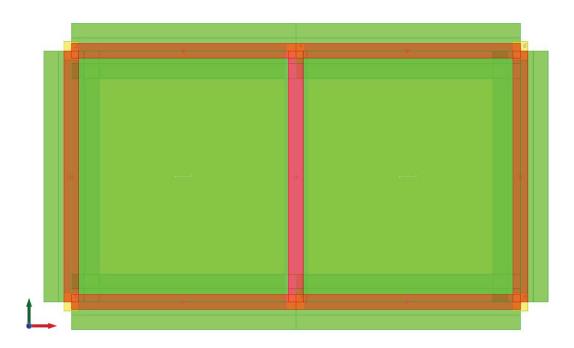


Figura 11 – Struttura modello – Sistema di riferimento

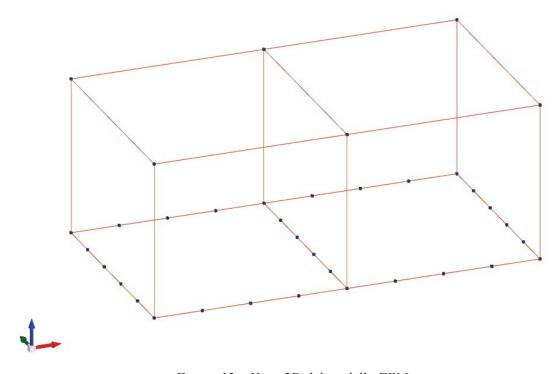


Figura 12 – Vista 3D del modello FEM

Il programma schematizza la struttura attraverso l'introduzione nell'ordine di fondazioni, poste anche a quote diverse, platee, platee nervate, plinti e travi di fondazione poggianti tutte su suolo elastico alla Winkler, di elementi verticali, pilastri e pareti in

c.a. anche con fori, di orizzontamenti costituiti da solai orizzontali e inclinati (falde), e relative travi di piano e di falda; è ammessa anche l'introduzione di elementi prismatici in c.a. di interpiano con possibilità di collegamento in inclinato a solai posti a quote diverse. I nodi strutturali possono essere connessi solo a travi, pilastri e pareti, simulando così impalcati infinitamente deformabili nel piano, oppure a elementi lastra di spessore dichiarato dall'utente simulando in tal modo impalcati a rigidezza finita. I nodi appartenenti agli impalcati orizzontali possono essere connessi rigidamente ad uno o più nodi principali giacenti nel piano dell'impalcato; generalmente un nodo principale coincide con il baricentro delle masse. Tale opzione, oltre a ridurre significativamente i tempi di elaborazione, elimina le approssimazioni numeriche connesse all'utilizzo di elementi lastra quando si richiede l'analisi a impalcati infinitamente rigidi. Per quanto concerne i carichi, in fase di immissione dati, vengono definite, in numero a scelta dell'utente, condizioni di carico elementari le quali, in aggiunta alle azioni sismiche e variazioni termiche, vengono combinate attraverso coefficienti moltiplicativi per fornire le combinazioni richieste per le verifiche successive. L'effetto di disassamento delle forze orizzontali, indotto ad esempio dai torcenti di piano per costruzioni in zona sismica, viene simulato attraverso l'introduzione di eccentricità planari aggiuntive le quali costituiscono ulteriori condizioni elementari di carico da cumulare e combinare secondo i criteri del paragrafo precedente. Tipologicamente sono ammessi sulle travi e sulle pareti carichi uniformemente distribuiti e carichi trapezoidali; lungo le aste e nei nodi di incrocio delle membrature sono anche definibili componenti di forze e coppie concentrate comunque dirette nello spazio. Sono previste distribuzioni di temperatura, di intensità a scelta dell'utente, agenti anche su singole porzioni di struttura. Il calcolo delle sollecitazioni si basa sulle seguenti ipotesi e modalità: - travi e pilastri deformabili a sforzo normale, flessione deviata, taglio deviato e momento torcente. Sono previsti coefficienti riduttivi dei momenti di inerzia a scelta dell'utente per considerare la riduzione della rigidezza flessionale e torsionale per effetto della fessurazione del conglomerato cementizio. E' previsto un moltiplicatore della rigidezza assiale dei pilastri per considerare, se pure in modo approssimato, l'accorciamento dei pilastri per sforzo normale durante la costruzione. - le travi di fondazione su suolo alla Winkler sono risolte in forma chiusa tramite uno specifico elemento finito; - le pareti in c.a. sono analizzate schematizzandole come elementi lastra-piastra discretizzati con passo massimo assegnato in fase di immissione dati; - le pareti in muratura possono essere schematizzate con elementi lastra-piastra con spessore flessionale ridotto rispetto allo spessore membranale.- I plinti su suolo alla Winkler sono modellati con la introduzione di molle verticali elastoplastiche. La traslazione orizzontale a scelta dell'utente è bloccata o gestita da molle orizzontali di modulo di reazione proporzionale al verticale. - I pali sono modellati suddividendo l'asta in più aste immerse in terreni di stratigrafia definita dall'utente. Nei nodi di divisione tra le aste vengono inserite molle assialsimmetriche elastoplastiche precaricate dalla spinta a riposo che hanno come pressione limite minima la spinta attiva e come pressione limite massima la spinta passiva modificabile attraverso opportuni coefficienti. - i plinti su pali sono modellati attraverso aste di di rigidezza elevata che collegano un punto della struttura in elevazione con le aste che simulano la presenza dei pali;- le piastre sono discretizzate in un numero finito di elementi lastrapiastra con passo massimo assegnato in fase di immissione dati; nel caso di platee di fondazione i nodi sono collegati al suolo da molle aventi rigidezze alla traslazione verticale ed richiesta anche orizzontale.- La deformabilità nel proprio piano di piani dichiarati non infinitamente rigidi e di falde (piani inclinati) può essere controllata attraverso la introduzione di elementi membranali nelle zone di solaio. - I disassamenti tra elementi asta sono gestiti automaticamente dal programma attraverso la introduzione di collegamenti rigidi locali.- Alle estremità di elementi asta è possibile inserire svincolamenti tradizionali così come cerniere parziali (che trasmettono una quota di ciò che trasmetterebbero in condizioni di collegamento rigido) o cerniere plastiche.- Alle estremità di elementi bidimensionali è possibile inserire svincolamenti con cerniere parziali del momento flettente avente come asse il bordo dell'elemento.- Il calcolo degli effetti del sisma è condotto, a scelta dell'utente, con analisi statica lineare, con analisi dinamica modale o con analisi statica non lineare, in accordo alle varie normative adottate. Le masse, nel caso di impalcati dichiarati rigidi sono concentrate nei nodi principali di piano altrimenti vengono considerate diffuse nei nodi giacenti sull'impalcato stesso. Nel caso di analisi sismica vengono anche controllati gli spostamenti di interpiano.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI				
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 47 DI 124

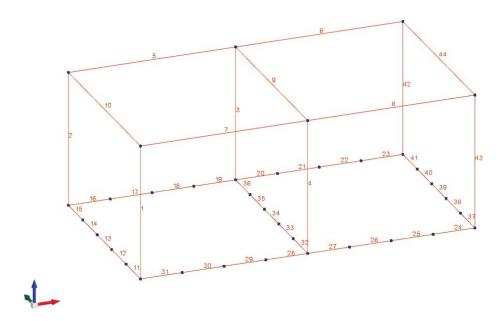


Figura 13 – Modello elevazione – Numerazione aste

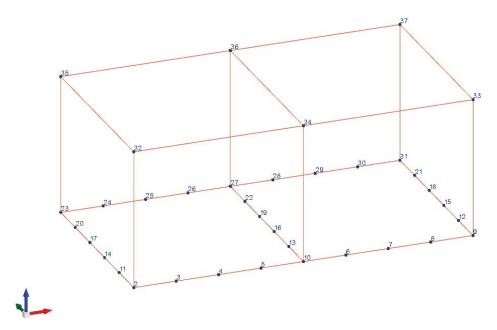
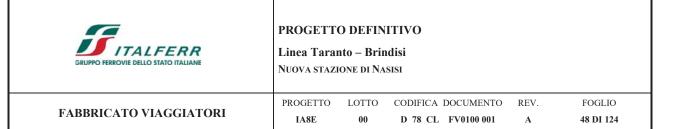



Figura 14 - Modello elevazione – Numerazione nodi

L'interazione tra terreno e struttura è stata studiata ipotizzando un comportamento elastico del terreno. L'intera struttura è vincolata a terra su un letto di molle alla Winkler la cui rigidezza viene assegnata per unità di lunghezza di elemento. La costante di sottofondo (coefficiente di Winkler) adottato nel modello è pari a:

Descrizione breve	Stratigrafia	Angolo pendio	K verticale Limite compressione
FT1	Modello GTC Nasisii : 0	0	Da Stratigrafia Da Stratigrafia (23784) (1649.4)
FT2	Modello GTC Nasisii : 0	0	Da Stratigrafia Da Stratigrafia (24087) (1662.2)
FT3	Modello GTC Nasisii : 0	0	Da Stratigrafia Da Stratigrafia (24088) (1662.2)
FT4	Modello GTC Nasisii : 0	0	Da Stratigrafia Da Stratigrafia (46542) (1420.1)
FT5	Modello GTC Nasisii : 0	0	Da Stratigrafia Da Stratigrafia (23784) (1649.4)
FT6	Modello GTC Nasisii : 0	0	Da Stratigrafia Da Stratigrafia (24087) (1662.2)

Descrizione breve: descrizione breve usata nelle tabelle dei capitoli delle travi di fondazione.

Stratigrafia: stratigrafia del terreno nel punto medio in pianta dell'elemento.

Angolo pendio: angolo del pendio rispetto l'orizzontale; il valore deve essere positivo per opere in sommità di un pendio mentre deve essere negativo per opere al piede di un pendio. [deg]

K verticale: coefficiente di sottofondo verticale del letto di molle. [daN/m³]

Limite compressione: pressione limite di plasticizzazione a compressione del letto di molle. [daN/m²]

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI					
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 49 DI 124	

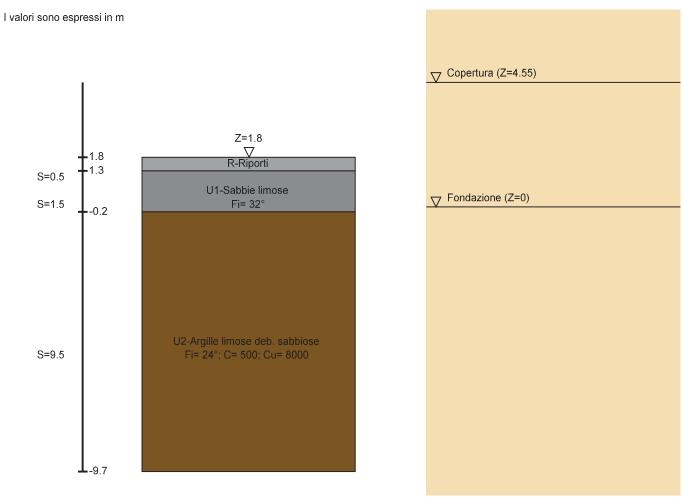


Figura 15 - Modello geotecnico: GTC Nasisi

10 RISULTATI DELLE ANALISI

10.1 Analisi modale

Si riportano di seguito il periodo e la partecipazione di massa dei modi significativi della struttura.

Modo	Periodo	Massa X	Massa Y	Massa Z	Massa rot. X	Massa rot. Y	Massa rot. Z	Massa sX	Massa sY
1	0.250749403	0	0.891869086	0	0.97093824	0	0.410805499	0	0.891869086
2	0.232676125	0.918572717	0	0	0	0.999999899	0.131456385	0.918572717	0
3	0.002315484	0.078427023	0.000000002	0	0.000000002	0.000000093	0.003072108	0.078427023	0.000000002

Modo: identificativo del modo di vibrare.

Periodo: periodo. [s]

Massa X: massa partecipante in direzione globale X. Il valore è adimensionale.

Massa Y: massa partecipante in direzione globale Y. Il valore è adimensionale.

Massa Z: massa partecipante in direzione globale Z. Il valore è adimensionale.

Massa rot. X: massa rotazionale partecipante attorno la direzione globale X. Il valore è adimensionale. **Massa rot. Y**: massa rotazionale partecipante attorno la direzione globale Y. Il valore è adimensionale.

Massa rot. Z: massa rotazionale partecipante attorno la direzione globale Z. Il valore è adimensionale.

Massa sX: massa partecipante in direzione Sisma X. Il valore è adimensionale. **Massa sY**: massa partecipante in direzione Sisma Y. Il valore è adimensionale.

Totale masse partecipanti:

Traslazione X: 0.919375

Traslazione Y: 0.890111

Traslazione Z: 0

Rotazione X: 0.9715

Rotazione Y: 0.999998

Rotazione Z: 0.654665

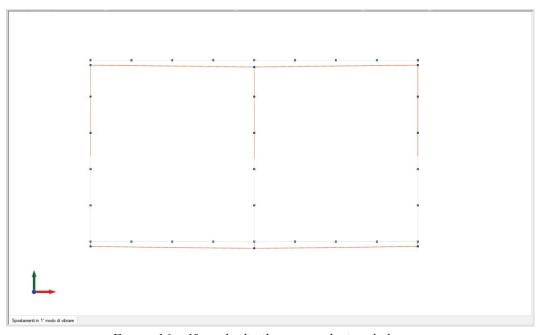


Figura $16-1^{\circ}$ modo di vibrare: traslazionale lungo y

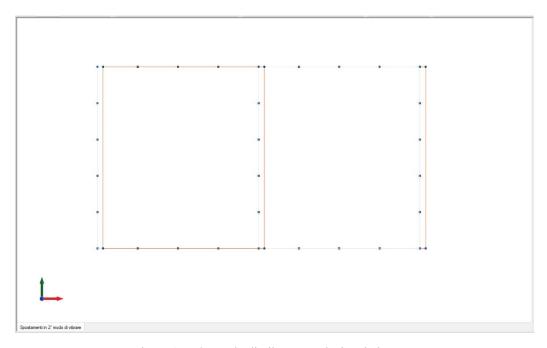


Figura $17-2^{\circ}$ modo di vibrare: traslazionale lungo x

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO Linea Taranto – Brindisi Nuova stazione di Nasisi				
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 52 DI 124

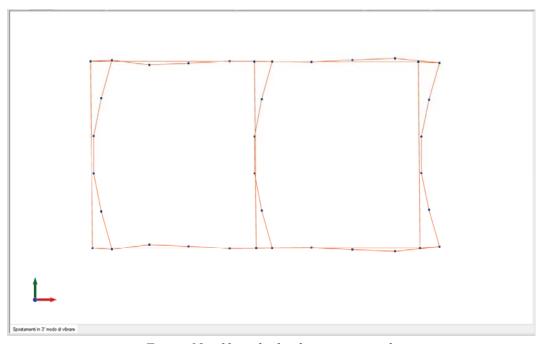


Figura $18 - 3^{\circ}$ modo di vibrare: torsionale

10.2 Sollecitazioni

Nel presente paragrafo si riportano i diagrammi delle caratteristiche di sollecitazione di sforzo normale, momento flettente e taglio negli elementi strutturali. Per brevità, vengono esposti gli inviluppi delle sollecitazioni.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI				
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 53 DI 124

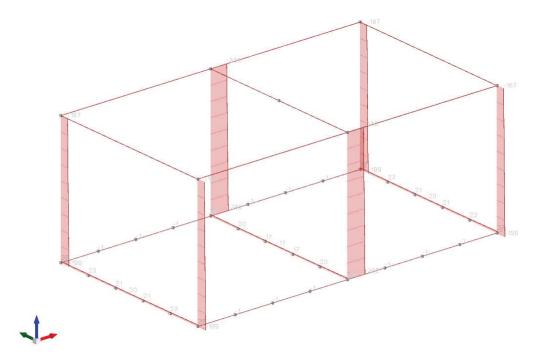


Figura 19 – Sforzo Assiale N - INV SLU

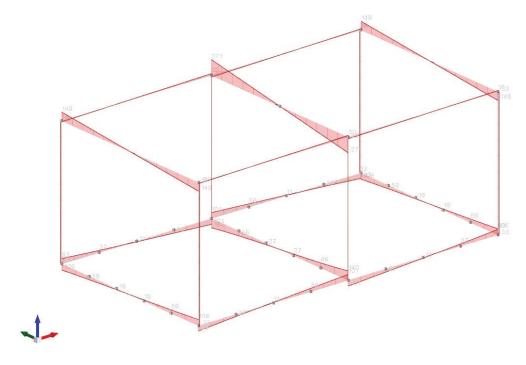


Figura 20 – Taglio V2 - INV SLU

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI				
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 54 DI 124

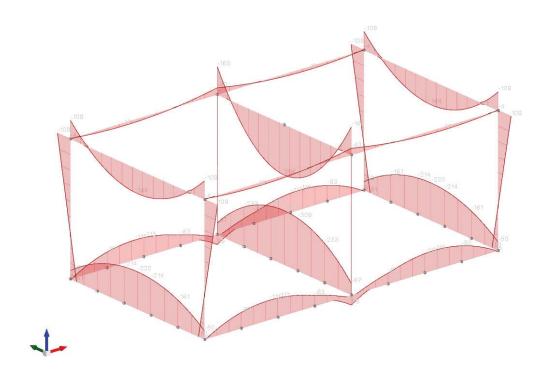


Figura 21 – Flessione M3 - INV SLU

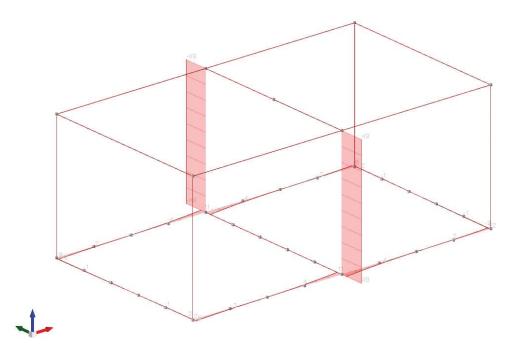


Figura $22 - Taglio\ V3 - INV\ SLU$

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI				
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 55 DI 124

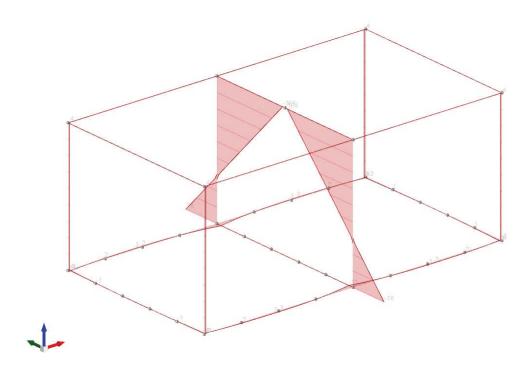


Figura 23 – Momento M2 - INV SLU

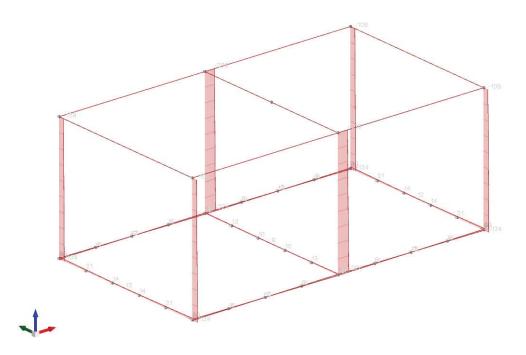


Figura 24 – Sforzo Assiale N - INV SISMICA

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI				
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 56 DI 124

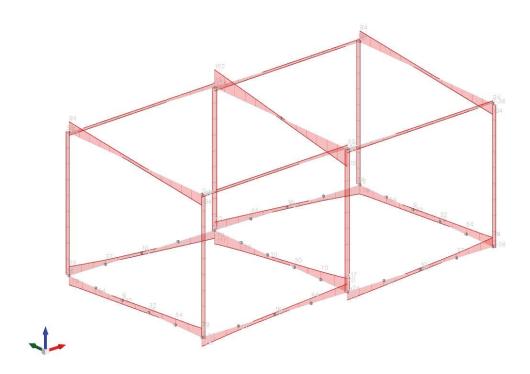


Figura 25 – Taglio V2 - INV SISMICA

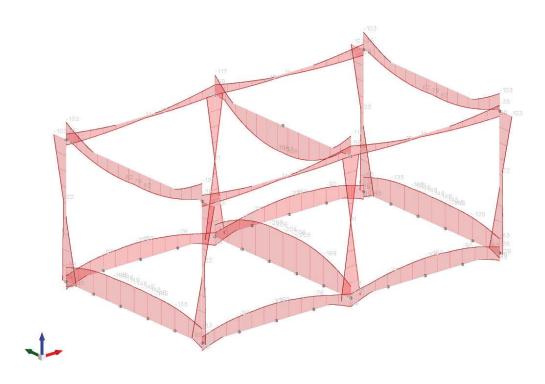


Figura 26 – Flessione M3 - INV SISMICA

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI				
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 57 DI 124

Figura 27 – Taglio V3 - INV SISMICA

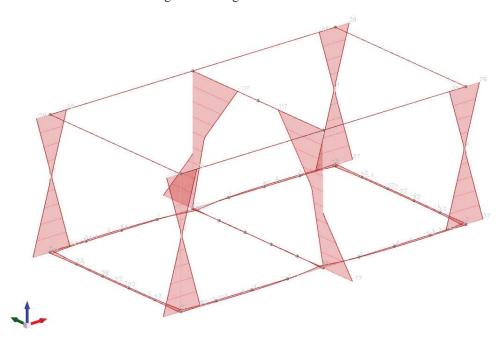


Figura 28 – Flessione M2 - INV SISMICA

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI				
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 58 DI 124

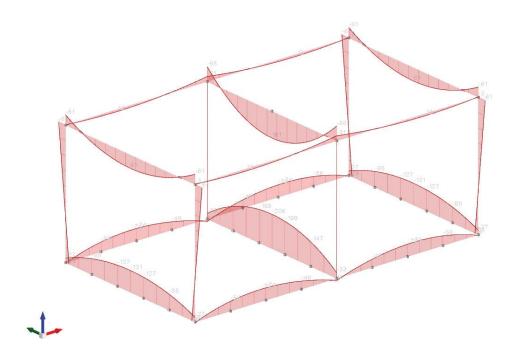


Figura 29 – Flessione M3 - INV SLE RARA

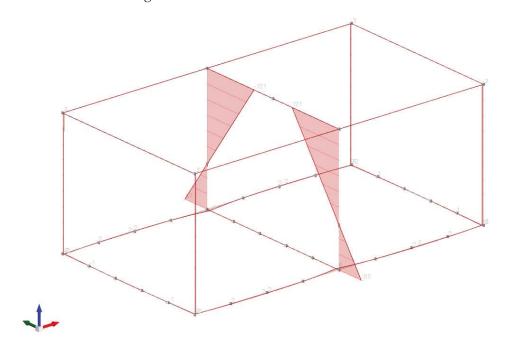


Figura 30 – Flessione M2 - INV SLE RARA

Figura 31 – Flessione M3 - INV SLE FREQUENTE

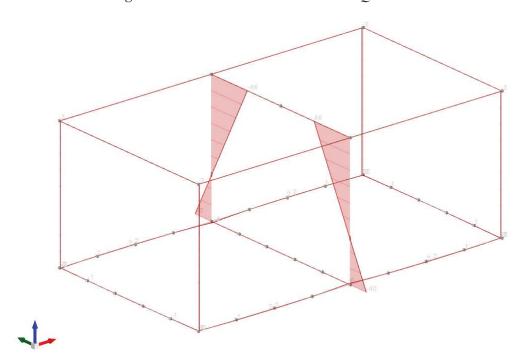


Figura 32 – Flessione M2 - INV SLE FREQUENTE

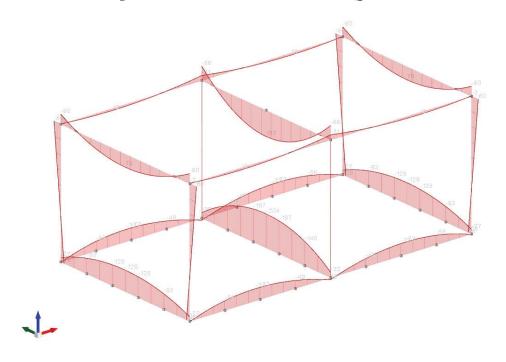


Figura 33 – Flessione M3 - INV SLE QUASI PERMANENTE

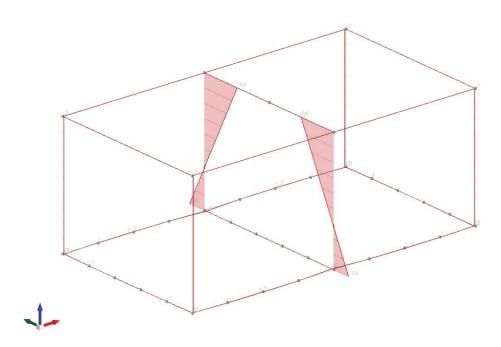


Figura 34 – Flessione M2 - INV SLE QUASI PERMANENTE

Si riportano di seguito i risultati numerici del modello

10.3 Spostamenti nodali estremi

Nodo: nodo interessato dallo spostamento.

Ind.: indice del nodo.

Cont.: condizione o combinazione di carico a cui si riferisce lo spostamento.

N.br.: nome breve della condizione o combinazione di carico.

Spostamento: spostamento traslazionale del nodo.

ux: componente X dello spostamento del nodo. [m]

uy: componente Y dello spostamento del nodo. [m]

uz: componente Z dello spostamento del nodo. [m]

Rotazione: spostamento rotazionale del nodo.

rx: componente X della rotazione del nodo. [deg]

ry: componente Y della rotazione del nodo. [deg]

rz: componente Z della rotazione del nodo. [deg]

Spostamenti nodali con componente Ux minima

Vengono mostrati i soli 5 nodi più sollecitati.

Nodo	Cont.		Spostamento		Rotazione		
Ind.	N.br.	ux	uy	uz	rx	ry	rz
37	SLV FO 1	-0.0017795	-0.0005129	-0.0016696	0.0321	-0.0136	0.0013
33	SLV FO 3	-0.0017794	0.000513	-0.0016696	-0.0321	-0.0136	-0.0013
35	SLV FO 3	-0.0017794	0.0004983	-0.0020182	0.0251	-0.0057	0.0012
32	SLV FO 1	-0.0017794	-0.0004983	-0.0020182	-0.0251	-0.0057	-0.0012

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV.

FOGLIO

IA8E 00 D 78 CL FV0100 001 A 61 DI 124

Nodo	Cont.		Spostamento Rotazione				
Ind.	N.br.	ux	uy	uz	rx	rz	
36	SLV FO 3	-0.0017787	0.0007039	-0.0017561	0.0604	-0.0067	0

Spostamenti nodali con componente Ux massima

Vengono mostrati i soli 5 nodi più sollecitati.

Nodo	Cont.		Spostamento			Rotazione	
Ind.	N.br.	ux	uy	uz	rx	ry	rz
2	MVBR 3	0.0037878	-0.0002328	-0.000207	0.0007	-0.0036	0.0684
9	MVBR 3	0.0037878	0.0002328	0.0002069	-0.0007	-0.0036	0.0684
23	MVBR 3	0.0037874	0.0002328	-0.0002421	-0.0013	-0.0041	-0.0683
31	MVBR 3	0.0037874	-0.0002328	0.0002421	0.0013	-0.0041	-0.0683
3	MVBR 3	0.0031417	0.0005916	-0.0001273	0.0003	-0.0023	-0.0001

Spostamenti nodali con componente Uy minima

Vengono mostrati i soli 5 nodi più sollecitati.

Nodo	Cont.		Spostamento			Rotazione	
Ind.	N.br.	ux	uy	uz	rx	ry	rz
36	SLV FO 5	-0.0005336	-0.0023916	-0.0016124	0.0772	-0.002	0
34	SLV FO 5	-0.0005336	-0.0023706	-0.0018333	-0.0513	-0.002	0
35	SLV FO 9	0.0005358	-0.0016924	-0.001632	0.0409	0.0072	-0.0042
37	SLV FO 5	-0.0005359	-0.0016923	-0.0016319	0.0409	-0.0072	0.0042
32	SLV FO 5	-0.0005359	-0.0016777	-0.0020559	-0.0162	0.0007	-0.0042

Spostamenti nodali con componente Uy massima

Vengono mostrati i soli 5 nodi più sollecitati.

Nodo	Cont.	Cont. Spostamento				Rotazione	
Ind.	N.br.	ux	uy	uz	rx	ry	rz
34	SLV FO 11	0.0005336	0.0023917	-0.0016123	-0.0772	0.002	0
36	SLV FO 11	0.0005336	0.0023707	-0.0018334	0.0513	0.002	0
33	SLV FO 7	-0.0005359	0.0016924	-0.0016319	-0.0409	-0.0072	-0.0042
32	SLV FO 11	0.0005359	0.0016924	-0.001632	-0.0409	0.0072	0.0042
37	SLV FO 11	0.0005358	0.0016777	-0.0020559	0.0162	-0.0007	-0.0042

Spostamenti nodali con componente Uz minima

Vengono mostrati i soli 5 nodi più sollecitati.

_		*								
Nodo	Cont.		Spostamento			Rotazione				
Ind.	N.br.	ux	uy	uz	rx	ry	rz			
32	SLU 27	0	0.0000134	-0.0026385	-0.0518	0.0055	0.0001			
35	SLU 27	0	-0.0000134	-0.0026385	0.0518	0.0055	-0.0001			
37	SLU 27	0	-0.0000134	-0.0026385	0.0518	-0.0055	0.0001			
33	SLU 27	0	0.0000135	-0.0026384	-0.0518	-0.0055	-0.0001			
2	SLU 27	0.0000002	-0.0000019	-0.0025145	0.0071	-0.0051	0			

Spostamenti nodali con componente Uz massima

Vengono mostrati i soli 5 nodi più sollecitati.

Nodo	Cont.		Spostamento		Rotazione			
Ind.	N.br.	ux	uy	uz	rx	ry	rz	
37	MVBR 3	-0.000178	-0.0000372	0.0002563	-0.0027	-0.0225	0.0013	
31	MVBR 3	0.0037874	-0.0002328	0.0002421	0.0013	-0.0041	-0.0683	
33	MVBR 3	0.0001761	-0.000017	0.0002198	0.0033	-0.0205	0.0016	
21	MVBR 3	0.0018198	-0.0001373	0.000213	0.0011	-0.0021	-0.0829	
9	MVBR 3	0.0037878	0.0002328	0.0002069	-0.0007	-0.0036	0.0684	

10.4 Reazioni nodali estreme

Nodo: Nodo sollecitato dalla reazione vincolare.

Ind.: indice del nodo.

Cont.: Contesto a cui si riferisce la reazione vincolare.

N.br.: nome breve della condizione o combinazione di carico.

Reazione a traslazione: reazione vincolare traslazionale del nodo.

x: componente X della reazione vincolare del nodo. [daN]

y: componente Y della reazione vincolare del nodo. [daN]

z: componente Z della reazione vincolare del nodo. [daN] Reazione a rotazione: reazione vincolare rotazionale del nodo.

x: componente X della reazione a rotazione del nodo. [daN*m]

y: componente Y della reazione a rotazione del nodo. [daN*m]

z: componente Z della reazione a rotazione del nodo. [daN*m]

Reazioni Fx minime

Vengono mostrati i soli 5 nodi più sollecitati.

Nodo	Cont.		Reazione a traslazione		Reazione a rotazione				
Ind.	N.br.	Х	у	Z	Х	у	z		
27	SLV FO 15	-8.64	-8.71	151.24	-12.2657	-0.3151	-0.7942		
10	SLV FO 13	-8.64	8.71	151.23	12.2588	-0.3157	0.7939		
2	SLV FO 13	-5.51	4.78	106.64	17.9478	-22.4248	1.6295		
23	SLV FO 15	-5.51	-4.78	106.64	-17.9476	-22.4247	-1.6295		
31	SLV FO 13	-5.32	-0.84	114.27	-19.5658	23.4619	-0.595		

Reazioni Fx massime

Vengono mostrati i soli 5 nodi più sollecitati.

Nodo	Cont.		Reazione a traslazione		Reazione a rotazione				
Ind.	N.br.	х	у	z X		у	Z		
27	SLV FO 1	8.64	-4.48	145.78	-12.2241	0.3137	0.7942		
10	SLV FO 3	8.64	4.48	145.77	12.2174	0.3131	-0.7939		
9	SLV FO 1	5.52	4.78	106.64	17.9471	22.4255	-1.6295		
31	SLV FO 3	5.51	-4.78	106.64	-17.9473	22.4252	1.6295		
23	SLV FO 1	5.32	-0.84	114.27	-19.5661	-23.4614	0.595		

Reazioni Fy minime

Vengono mostrati i soli 5 nodi più sollecitati.

Nodo	Cont.		Reazione a traslazione		Reazione a rotazione				
Ind.	N.br.	x	у	z	х	у	z		
27	SLV FO 11	-2.59	-13.64	157.62	-12.3142	-0.095	-0.2383		
31	SLV FO 7	2.04	-9.15	118.14	-19.5332	24.5884	1.9066		
23	SLV FO 11	-2.04	-9.15	118.14	-19.5335	-24.5879	-1.9067		
20	SLV FO 11	0.36	-6.58	91.46	-2.1171	0.4712	0.1258		
21	SLV FO 7	-0.36	-6.58	91.46	-2.117	-0.4712	-0.1258		

Reazioni Fy massime

Vengono mostrati i soli 5 nodi più sollecitati.

_							
Nodo	Cont.		Reazione a traslazione			Reazione a rotazione	
Ind.	N.br.	x	У	z	x	У	z
10	SLV FO 9	-2.59	13.64	157.61	12.3071	-0.0957	0.2382
9	SLV FO 5	2.04	9.15	118.14	19.533	24.5887	-1.9067
2	SLV FO 9	-2.04	9.15	118.14	19.5338	-24.588	1.9066
12	SLV FO 5	-0.36	6.58	91.45	2.1171	-0.4713	0.1258
11	SLV FO 9	0.36	6.58	91.46	2.1171	0.4713	-0.1258

Reazioni Fz minime

Vengono mostrati i soli 5 nodi più sollecitati.

Nodo	Cont.		Reazione a traslazione		Reazione a rotazione			
Ind.	N.br.	х	у	z	х	у	z	
2	Y SLV	0.31	-5.74	-8.82	-1.0185	1.7986	-1.0546	
9	Y SLV	-0.31	-5.74	-8.82	-1.0184	-1.7986	1.0546	
10	Y SLV	0	-6.4	-8.28	-0.0627	0.0001	0	
8	Y SLV	-0.4	-2.74	-7.54	0.3949	-0.0103	-0.2555	

Linea Taranto - Brindisi NUOVA STAZIONE DI NASISI

FABBRICATO VIAGGIATORI

PROGETTO LOTTO

00

CODIFICA DOCUMENTO REV. FOGLIO

IA8E

D 78 CL FV0100 001

63 DI 124

Nodo	Cont.		Reazione a traslazione		Reazione a rotazione			
Ind.	N.br.	х у		z	x	у	Z	
3	Y SLV	0.4	-2.74	-7.54	0.3949	0.0103	0.2555	

Reazioni Fz massime

Vengono mostrati i soli 5 nodi più sollecitati.

Nodo	Cont.		Reazione a traslazione		Reazione a rotazione				
Ind.	N.br.	Х	у	Z	Х	у	Z		
27	SLU 27	0	-12.79	212.93	-17.0392	-0.001	0		
10	SLU 27	0	12.79	212.92	17.0292	-0.0019	0		
31	SLU 27	0.19	-5.13	156.61	-26.3707	32.5837	0.9464		
2	SLU 27	-0.19	5.13	156.61	26.3712	-32.583	0.9464		
23	SLU 27	-0.19	-5.13	156.61	-26.3711	-32.5831	-0.9464		

10.5 Pressioni massime sul terreno

Nodo: Nodo che interagisce col terreno.

Ind.: indice del nodo.

Pressione minima: situazione in cui si verifica la pressione minima nel nodo.

Cont.: nome breve della condizione o combinazione di carico a cui si riferisce la pressione minima.

uz: spostamento massimo verticale del nodo. [m]

Valore: pressione minima sul terreno del nodo. [daN/m²]

Pressione massima: situazione in cui si verifica la pressione massima nel nodo.

Cont.: nome breve della condizione o combinazione di carico a cui si riferisce la pressione massima.

uz: spostamento minimo verticale del nodo. [m]

Valore: pressione massima sul terreno del nodo. [daN/m²]

Compressione estrema massima -106.014 al nodo di indice 27, di coordinate x = 6.1, y = 6.8, z = 0, nel contesto SLU 27.

Spostamento estremo minimo -0.0025145 al nodo di indice 2, di coordinate x = 0, y = 0, z = 0, nel contesto SLU 27.

Spostamento estremo massimo -0.0012158 al nodo di indice 16, di coordinate x = 6.1, y = 2.72, z = 0, nel contesto SLV fondazioni 11.

Nodo		Pressione minima			Pressione massima	
Ind.	Cont.	uz	Valore	Cont.	uz	Valore
2	SLU 27	-0.0025145	-60.567	SLV FO 11	-0.0015681	-37.77
3	SLU 27	-0.0023867	-57.488	SLV FO 11	-0.0015204	-36.621
4	SLU 27	-0.0023039	-55.492	SLV FO 11	-0.001488	-35.841
5	SLU 27	-0.0022764	-54.831	SLV FO 11	-0.0014785	-35.613
6	SLU 27	-0.0022764	-54.834	SLV FO 7	-0.0014785	-35.615
7	SLU 27	-0.0023038	-55.494	SLV FO 7	-0.0014879	-35.842
8	SLU 27	-0.0023866	-57.49	SLV FO 7	-0.0015203	-36.622
9	SLU 27	-0.0025144	-60.568	SLV FO 7	-0.001568	-37.771
10	SLU 27	-0.0022777	-106.006	SLV FO 11	-0.0014852	-69.125
11	SLU 27	-0.0023639	-56.224	SLV FO 15	-0.0015543	-36.968
12	SLU 27	-0.0023638	-56.222	SLV FO 3	-0.0015543	-36.967
13	SLU 27	-0.0019189	-89.307	SLV FO 11	-0.001314	-61.156
14	SLU 27	-0.0022776	-54.17	SLV FO 15	-0.0015309	-36.411
15	SLU 27	-0.0022775	-54.169	SLV FO 3	-0.0015309	-36.41
16	SLU 27	-0.0017132	-79.733	SLV FO 11	-0.0012158	-56.585
17	SLU 27	-0.0022776	-54.17	SLV FO 13	-0.0015309	-36.411
18	SLU 27	-0.0022775	-54.169	SLV FO 1	-0.0015309	-36.41
19	SLU 27	-0.0017132	-79.735	SLV FO 9	-0.0012158	-56.585
20	SLU 27	-0.0023639	-56.224	SLV FO 13	-0.0015543	-36.968
21	SLU 27	-0.0023639	-56.223	SLV FO 1	-0.0015543	-36.967
22	SLU 27	-0.0019189	-89.311	SLV FO 9	-0.0013141	-61.158
23	SLU 27	-0.0025145	-60.567	SLV FO 9	-0.0015681	-37.77
24	SLU 27	-0.0023867	-57.488	SLV FO 9	-0.0015204	-36.621

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV.

EV. FOGLIO

BRICATO VIAGGIATORI IASE 00 D 78 CL FV0100 001 A 64 DI 124

Nodo		Pressione minima		Pressione massima				
Ind.	Cont.	uz	Valore	Cont.	uz	Valore		
25	SLU 27	-0.0023039	-55.493	SLV FO 9	-0.001488	-35.841		
26	SLU 27	-0.0022765	-54.833	SLV FO 9	-0.0014786	-35.614		
27	SLU 27	-0.0022778	-106.014	SLV FO 9	-0.0014853	-69.129		
28	SLU 27	-0.0022765	-54.834	SLV FO 5	-0.0014786	-35.615		
29	SLU 27	-0.0023039	-55.495	SLV FO 5	-0.001488	-35.842		
30	SLU 27	-0.0023867	-57.489	SLV FO 5	-0.0015204	-36.622		
31	SLU 27	-0.0025145	-60.568	SLV FO 5	-0.0015681	-37.771		

•

10.6 Spostamenti di interpiano estremi

Nodo inferiore: nodo inferiore.

I.: numero dell'elemento nell'insieme che lo contiene.

Pos.: coordinate del nodo.

X: coordinata X. [m]

Y: coordinata Y. [m]

Z: coordinata Z. [m]

Nodo superiore: nodo superiore.

I.: numero dell'elemento nell'insieme che lo contiene.

Pos.: coordinate del nodo.

Z: coordinata Z. [m]

Spost. rel.: spostamento relativo. Il valore è adimensionale.

Comb.: combinazione.

N.b.: nome breve o compatto della combinazione di carico. **Spostamento inferiore**: spostamento in pianta del nodo inferiore.

X: coordinata X. [m]

Y: coordinata Y. [m]

Spostamento superiore: spostamento in pianta del nodo superiore.

X: coordinata X. [m]

Y: coordinata Y. [m]

S.V.: si intende non verificato qualora lo spostamento relativo sia superiore al valore limite espresso nelle preferenze di analisi.

Questo capitolo mostra gli spostamenti estremi per ogni interpiano in ognuna delle combinazioni di carico.

Per spostamenti estremi si intendono i primi 5 spostamenti massimi tra tutti gli interpiani che condividono la stessa quota iniziale e la stessa quota finale.

limite = 0,003333

Nodo inferiore				Nodo superiore		Spost. rel.	Comb.	Spostamen	to inferiore	Spostament	S.V.	
I.		Pos.		I.	Pos.		N.b.	Х	Υ	Х	Υ	
	Х	Υ	Z		Z							
27	6.1	6.8	0	36	4.94	0.000335	SLO 1	0	0	-0.00153	-0.00063	si
10	6.1	0	0	34	4.94	0.000333	SLO 1	0	0	-0.00153	-0.00061	si

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV.

IA8E 00 D 78 CL FV0100 001 A 65 DI 124

FOGLIO

Nodo inferiore			Nodo superiore		Spost. rel. Comb.		Spostamento inferiore	Spostamento superiore		S.V.	
l.		Pos.		I.	Pos.		N.b.	X Y	Х	Y	
21	X	Y	Z	27	Z	0.000333	SLO 1		0.00153	0.00044	
23	12.2	6.8	0	37 35	4.94	0.000323	SLO 1	0 0		-0.00044	si si
2	0	0.0	0	32	4.94	0.000323	SLO 1	0 0		-0.00044	si
27	6.1	6.8	0	36	4.94	0.000335	SLO 2	0 0		-0.00063	si
10	6.1	0	0	34	4.94	0.000333	SLO 2	0 0		-0.00061	si
31	12.2	6.8	0	37	4.94	0.000323	SLO 2	0 0	-0.00153	-0.00044	si
23	0	6.8	0	35	4.94	0.000323	SLO 2	0 0		-0.00044	si
2	0	0	0	32	4.94	0.000322	SLO 2	0 0		-0.00043	si
10	6.1	0	0	34	4.94	0.000335	SLO 3	0 0		0.00063	si
27 9	6.1 12.2	6.8	0	36 33	4.94	0.000333	SLO 3 SLO 3	0 0		0.00061	si si
2	0	0	0	32	4.94	0.000323	SLO 3	0 0		0.00044	si
23	0	6.8	0	35	4.94	0.000322	SLO 3	0 0		0.00043	si
10	6.1	0	0	34	4.94	0.000335	SLO 4	0 0	-0.00153	0.00063	si
27	6.1	6.8	0	36	4.94	0.000333	SLO 4	0 0		0.00061	si
9	12.2	0	0	33	4.94	0.000323	SLO 4	0 0	-0.00153	0.00044	si
2	0	0	0	32	4.94	0.000323	SLO 4	0 0		0.00044	si
23	0	6.8	0	35	4.94	0.000322	SLO 4	0 0		0.00043	si
27 10	6.1	6.8	0	36 34	4.94	0.000428	SLO 5 SLO 5	0 0		-0.00206 -0.00204	si si
31	12.2	6.8	0	37	4.94	0.000423	SLO 5	0 0		-0.00204	si
23	0	6.8	0	35	4.94	0.00031	SLO 5	0 0		-0.00146	si
2	0	0	0	32	4.94	0.000307	SLO 5	0 0		-0.00145	si
27	6.1	6.8	0	36	4.94	0.000428	SLO 6	0 0	-0.00046	-0.00206	si
10	6.1	0	0	34	4.94	0.000423	SLO 6	0 0		-0.00204	si
31	12.2	6.8	0	37	4.94	0.00031	SLO 6	0 0		-0.00146	si
23	0	6.8	0	35	4.94	0.00031	SLO 6	0 0		-0.00146 -0.00145	si
10	0	0	0	32 34	4.94	0.000307	SLO 6 SLO 7	0 0		0.00206	si
27	6.1	6.8	0	36	4.94	0.000428	SLO 7	0 0		0.00204	si si
9	12.2	0.0	0	33	4.94	0.000423	SLO 7	0 0		0.00204	si
2	0	0	0	32	4.94	0.00031	SLO 7	0 0		0.00146	si
23	0	6.8	0	35	4.94	0.000307	SLO 7	0 0		0.00145	si
10	6.1	0	0	34	4.94	0.000428	SLO 8	0 0	-0.00046	0.00206	si
27	6.1	6.8	0	36	4.94	0.000423	SLO 8	0 0		0.00204	si
9	12.2	0	0	33	4.94	0.00031	SLO 8	0 0		0.00146	si
2	0	0	0	32	4.94	0.00031	SLO 8	0 0		0.00146	si
23	6.1	6.8	0	35 36	4.94	0.000307	SLO 8 SLO 9	0 0		0.00145 -0.00206	si si
10	6.1	0.0	0	34	4.94	0.000428	SLO 9	0 0		-0.00204	si
23	0.1	6.8	0	35	4.94	0.00031	SLO 9	0 0		-0.00146	si
31	12.2	6.8	0	37	4.94	0.00031	SLO 9	0 0		-0.00146	si
9	12.2	0	0	33	4.94	0.000307	SLO 9	0 0	0.00046	-0.00145	si
27	6.1	6.8	0	36	4.94	0.000428	SLO 10	0 0	0.00046	-0.00206	si
10	6.1	0	0	34	4.94	0.000423	SLO 10	0 0		-0.00204	si
23	0	6.8	0	35	4.94	0.00031	SLO 10	0 0		-0.00146	si
31	12.2	6.8	0	37 33	4.94	0.00031	SLO 10 SLO 10	0 0		-0.00146 -0.00145	si
10	6.1	0	0	34	4.94	0.000307	SLO 10	0 0		0.00206	si si
27	6.1	6.8	0	36	4.94	0.000423	SLO 11	0 0		0.00204	si
2	0	0	0	32	4.94	0.00031	SLO 11	0 0		0.00146	si
9	12.2	0	0	33	4.94	0.00031	SLO 11	0 0	0.00046	0.00146	si
31	12.2	6.8	0	37	4.94	0.000307	SLO 11	0 0		0.00145	si
10	6.1	0	0	34	4.94	0.000428	SLO 12	0 0		0.00206	si
27	6.1	6.8	0	36	4.94	0.000423	SLO 12	0 0		0.00204	si
9	12.2	0	0	32 33	4.94	0.00031	SLO 12 SLO 12	0 0		0.00146	si
31	12.2	6.8	0	33	4.94	0.00031	SLO 12 SLO 12	0 0		0.00146	si si
27	6.1	6.8	0		4.94	0.000335	SLO 12	0 0		-0.00063	si
10	6.1	0	0	34	4.94	0.000333	SLO 13	0 0		-0.00061	si
23	0	6.8	0		4.94	0.000323	SLO 13	0 0		-0.00044	si
31	12.2	6.8	0	37	4.94	0.000323	SLO 13	0 0		-0.00044	si
9	12.2	0	0	33	4.94	0.000322	SLO 13	0 0		-0.00043	si
27	6.1	6.8	0	36	4.94	0.000335	SLO 14	0 0		-0.00063	si
10 23	6.1	6.8	0	34 35	4.94	0.000333	SLO 14	0 0		-0.00061 -0.00044	si
31	12.2	6.8	0	35	4.94	0.000323	SLO 14 SLO 14	0 0		-0.00044	si si
9	12.2	0.0	0		4.94	0.000323	SLO 14	0 0		-0.00044	si
10	6.1	0	0	34	4.94	0.000335	SLO 15	0 0		0.00063	si
27	6.1	6.8	0	36	4.94	0.000333	SLO 15	0 0		0.00061	si
2	0	0	0	32	4.94	0.000323	SLO 15	0 0		0.00044	si
9	12.2	0	0	33	4.94	0.000323	SLO 15	0 0		0.00044	si
31	12.2	6.8	0	37	4.94	0.000322	SLO 15	0 0		0.00043	si
10	6.1	0	0	34	4.94	0.000335	SLO 16	0 0		0.00063	si
27	6.1	6.8	0	36 32	4.94	0.000333	SLO 16 SLO 16	0 0		0.00061	si si
9	12.2	0	0	33	4.94	0.000323	SLO 16	0 0		0.00044	si
31	12.2	6.8	0	37	4.94	0.000323	SLO 16	0 0		0.00044	si
							* *				

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA8E 00 D 78 CL FV0100 001 A 66 DI 124

10.7 Verifica effetti secondo ordine

Quota inf.: quota inferiore esprimibile come livello, falda, piano orizzontale alla Z specificata, espressa con notazione breve. esprimibile come livello, falda, piano orizzontale alla Z specificata. [m]

Quota sup.: quota superiore esprimibile come livello, falda, piano orizzontale alla Z specificata, espressa con notazione breve. esprimibile come

livello, falda, piano orizzontale alla Z specificata. [m]

Comb.: combinazione.

N.b.: nome breve o compatto della combinazione di carico.

Carico verticale: carico verticale. [daN]

Spostamento: spostamento medio di interpiano. [m] **Forza orizzontale totale**: forza orizzontale totale. [daN]

Altezza del piano: altezza del piano. [m]

Theta: coefficiente Theta formula [7.3.3] § 7.3.1. Il valore è adimensionale.

Quota inf. Quota sup		Comb.	Carico verticale	Spostamento	Forza orizzontale totale	Altezza del piano	Theta	
		N.b.						
L1	L2	SLV 1	759.9	0.00957	104.66	4.94	0.014	
L1	L2	SLV 2	759.9	0.00957	104.66	4.94	0.014	
L1	L2	SLV 3	759.9	0.00957	104.66	4.94	0.014	
L1	L2	SLV 4	759.9	0.00957	104.66	4.94	0.014	
L1	L2	SLV 5	759.9	0.00968	104.65	4.94	0.014	
L1	L2	SLV 6	759.9	0.00968	104.65	4.94	0.014	
L1	L2	SLV 7	759.9	0.00968	104.65	4.94	0.014	
L1	L2	SLV 8	759.9	0.00968	104.65	4.94	0.014	
L1	L2	SLV 9	759.9	0.00968	104.65	4.94	0.014	
L1	L2	SLV 10	759.9	0.00968	104.65	4.94	0.014	
L1	L2	SLV 11	759.9	0.00968	104.65	4.94	0.014	
L1	L2	SLV 12	759.9	0.00968	104.65	4.94	0.014	
L1	L2	SLV 13	759.9	0.00957	104.66	4.94	0.014	
L1	L2	SLV 14	759.9	0.00957	104.66	4.94	0.014	
L1	L2	SLV 15	759.9	0.00957	104.66	4.94	0.014	
L1	L2	SLV 16	759.9	0.00957	104.66	4.94	0.014	

11 VERIFICHE STRUTTURALI

Di seguito si riportano le verifiche relative agli elementi strutturali principali della struttura.

Per le travi, si considereranno le sollecitazioni di calcolo, per gli elementi maggiormente sollecitati, in corrispondenza della sezione d'appoggio e della sezione di mezzeria (convenzione sui segni: compressione negativa (-), momento flettente che tende le fibre superiori negativo (-)).

Verranno considerate le sollecitazioni minime e massime per gli SLU, SLV, SLD, SLE rara, SLE frequente e SLE quasi permanente.

Stati Limite Ultimi

La verifica agli Stati Limite Ultimi sugli elementi viene condotta calcolando il momento resistente massimo della sezione in presenza o meno di sforzo assiale di compressione. Il calcolo si basa sull'assunzione dei diagrammi di calcolo a tensione-deformazione del calcestruzzo e dell'acciaio previsti dalla normativa.

Con riferimento alla sezione presso inflessa, sotto rappresentata assieme ai diagrammi di deformazione e di sforzo così come dedotti dalle ipotesi e dai modelli σ - ε di definiti ai paragrafi 4.1.2.1.2.2 e 4.1.2.1.2.3 del D.M.14/01/18, la verifica di resistenza (SLU) si esegue controllando che:

 $M_{Rd} = M_{Rd} (N_{Ed}) \ge M_{Ed}$

dove:

N_{Ed} è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed};

M_{Ed} è il valore di calcolo della componente flettente dell'azione.

Per la verifica nello stato limite ultimo a taglio si valuta inizialmente la resistenza $VRd_1dell'elemento$ privo di armatura trasversale. Qualora risulti inferiore alla sollecitazione di taglio V_{Ed} agente nella sezione, si predispone un'armatura trasversale e si valuta il taglio resistente V_{Rd} dell'elemento ricorrendo alla schematizzazione a traliccio ideale.

Per gli elementi senza armature trasversali resistenti a taglio la resistenza si valuta con l'espressione 4.1.14 delle DM14.01.18 di seguito riportata:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} \, / \, \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \\ \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} + \, 0.15 \cdot \, \sigma_{cp} \right) \cdot b_w d = \left(v_{min} +$$

in cui

Linea Taranto - Brindisi NUOVA STAZIONE DI NASISI

IA8E

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO 00

REV.

D 78 CL FV0100 001

FOGLIO 68 DI 124

 $k = 1 + (200/d)^{0.5} \le 2$

$$v_{min} = 0.035 \ k^{3/2} \ f_{ck}{}^{0.5}$$

altezza utile della sezione

 $r_l = A_{sl} / (b_w d)$ rapporto geometrico di armatura longitudinale (≤ 0.02)

 $s_{cp} = N_{Ed} / Ac$ tensione media di compressione nella sezione (≤ 0.2fcd) assunta pari a 0

bw larghezza sezione

Per gli elementi dotati di specifica armatura a taglio la verifica di resistenza diventa

 $V_{Rd} \ge V_{Ed}$

La resistenza a taglio della trave è pari a

 $V_{Rd} = min(V_{Rsd}; V_{Rcd})$

in cui con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" è pari a

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg \,\alpha + ctg \,\theta) \cdot \sin \alpha$$

E con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" si calcola con

$$V_{Rcd} = 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f_{cd} \cdot \frac{\left(ctg \alpha + ctg \theta\right)}{\left(1 + ctg^{2} \theta\right)}$$

dove d, b_w e σ_{cp} hanno il significato già visto e inoltre si è posto:

 $A_{\rm sw}$ area dell'armatura trasversale;

interasse tra due armature trasversali consecutive;

angolo di inclinazione dell'armatura trasversale rispetto all'asse della trave; α

f'cd resistenza a compressione ridotta del calcestruzzo d'anima ($f'_{cd} = 0.5 f_{cd}$);

coefficiente maggiorativo assunto pari a 1 α_{c}

L'inclinazione θ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti: $1 \le \text{ctg }\theta \le 2,5$.

Stati Limite di Esercizio

Le verifiche nei confronti degli stati limite di esercizio degli elementi strutturali si effettuano in termini di:

- verifica di fessurazione;
- verifica delle tensioni di esercizio.
 - Verifiche di fessurazione:

Per assicurare la funzionalità e la durata della struttura è necessario:

- realizzare un sufficiente ricoprimento delle armature con calcestruzzo di buona qualità e compattezza, bassa porosità e bassa permeabilità;
- non superare uno stato limite di fessurazione adeguato alle condizioni ambientali, alle sollecitazioni ed alla sensibilità delle armature alla corrosione;
- tener conto delle esigenze estetiche.

Avendo adottato acciai ordinari si rientra nel gruppo di armature poco sensibili alla corrosione. Pertanto sulla base della tabella 4.1.IV – NTC18 è possibile definire lo stato limite di fessurazione in funzione delle condizioni ambientali (ordinarie) e dell'armatura (poco sensibile), prendendo in considerazione le combinazioni quasi permanenti e frequenti. Nel caso in esame lo stato limite di fessurazione da considerare è lo *stato limite di apertura delle fessure*. La verifica consiste nell'accertarsi che il valore di calcolo di apertura delle fessure (w_d) non supera il valore limite fissato per la combinazione considerata. In particolare:

- per la combinazione di carico frequente bisogna accertarsi che risulti: $w_d < w_3 = 0.4$ mm;
- per la combinazione di carico quasi permanente bisogna accertarsi che risulti: $w_d < w_2 = 0.3$ mm.

b) Verifiche delle tensioni di esercizio:

Per completare il quadro delle verifiche agli stati limite di esercizio (SLE) si controllano le tensioni di esercizio, in accordo con quanto riportato al punto 4.1.2.2.5 delle NTC18. In particolare bisogna verificare che:

• Per il calcestruzzo compresso:

 $\sigma_c < 0.60 \ f_{ck}$ (per combinazione caratteristica rara); $\sigma_c < 0.45 \ f_{ck}$ (per combinazione quasi permanente);

• Per l'acciaio:

 $\sigma_s < 0.80 \; f_{yk}$ (per combinazione caratteristica rara).

Di seguito si riportano le tensioni di esercizio determinate in corrispondenza della combinazione che produce il valore di tensione più gravoso distinguendo tra combinazioni rare e quasi permanenti. Dalle tabelle seguenti, nelle quali accanto a ciascun valore di tensione viene indicato il corrispondente valore limite, si evince che le verifiche delle tensioni di esercizio risultano soddisfatte.

11.1 Solaio di copertura

Si prevede di realizzare l'impalcato di copertura utilizzando lastre prefabbricate tipo prédalles, creando un solaio di spessore 4+14+4, la cui sezione tipica è riportata nella figura seguente.

SEZIONE TIPO SOLAIO H=4+14+4

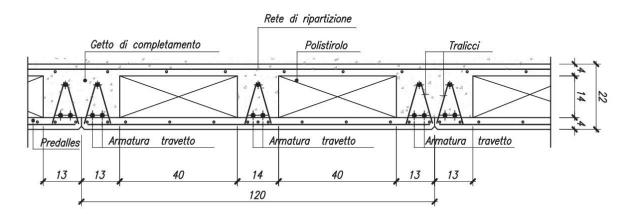
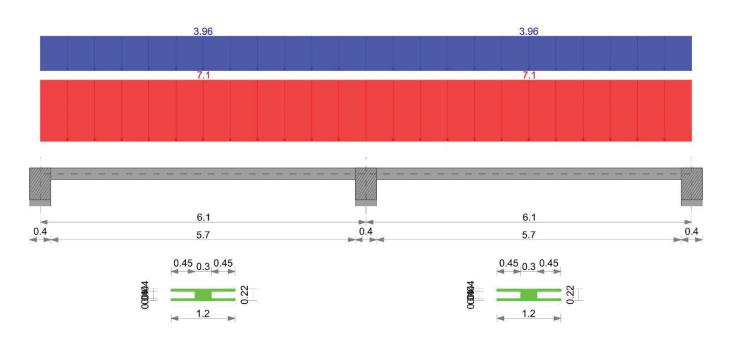
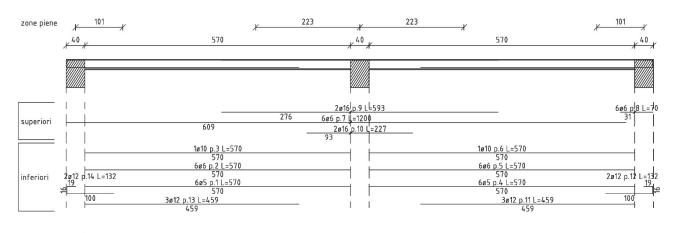


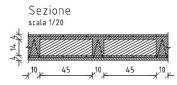
Figura 35 – Solaio copertura – Sezione tipica

I carichi agenti sono quelli riportati nel paragrafo 7 della presente relazione.


Di seguito sono riportati nel dettaglio i calcoli e le verifiche condotte per i solai, con riferimento a ciascuno schema di calcolo significativo.

Per il calcolo delle sollecitazioni sul solaio si assume uno schema di trave continua su 3 appoggi.


Verifica di solaio condotta secondo D.M. 17-01-18 (N.T.C.).


Geometria

Elenco delle sezioni

N°	Descrizione	Tipo	Int.	B anima	Altezza	Н сарра	H lastra	C. sup.	C. inf.	C. inf. agg.	Peso
1	Pre 30x(4+14+4)/120	Predalle	1.2	0.3	0.22	0.04	0.04	0.01	0.02	0.04	2.88

Campata 1 tra gli appoggi ascissa 20 - ascissa 630

Luce: 6.1; sezione n° 1 - Pre 30x(4+14+4)/120

Ampiezza senza alleggerimento sx: 1.013

Ampiezza senza alleggerimento dx: 2.233

Campata 2 tra gli appoggi ascissa 630 - ascissa 1240

Luce: 6.1; sezione n° 1 - Pre 30x(4+14+4)/120

Ampiezza senza alleggerimento sx: 2.233

Ampiezza senza alleggerimento dx: 1.013

Elenco degli appoggi

N°	Descrizione	Larghezza inferiore	Larghezza superiore	Sfalsamento	Rigidezza appoggio	Appoggio diretto
1		0.4	0	0		diretto
2		0.4	0	0		diretto
3		0.4	0	0		diretto

Elenco dei carichi

Il peso proprio è compreso nei carichi in elenco.

Campata 1

Carico uniforme: permanente 7.1; permanente portato 0; variabile 3.96

Campata 2

Carico uniforme: permanente 7.1; permanente portato 0; variabile 3.96

Diagramma verifica stato limite ultimo flessione

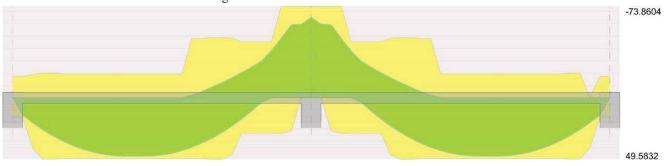
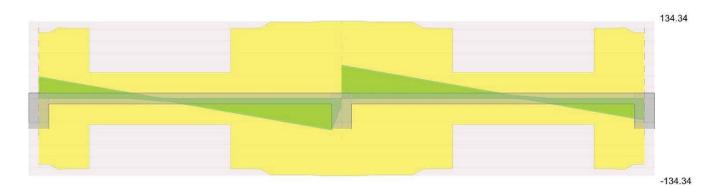
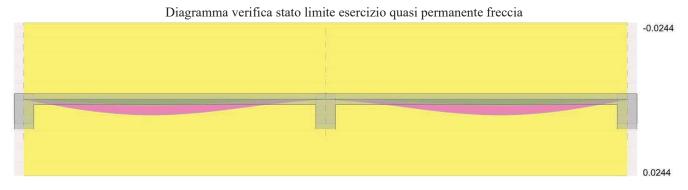




Diagramma verifica stato limite ultimo taglio

Output campate

Campata 1

Verifiche a flessione in famiglia SLU

			_										
х	A sup.	C.b. sup.	A inf.	C.b. inf.	M+ela	M+des	M+ult	x/d	M-ela	M-des	M-ult	x/d	Verifica
0	0.00017	0.013	0.000226	0.046	0	0	15.5901	0.048	0	0	-17.2377	0.045	Si
0.2	0.00017	0.013	0.000226	0.046	7.2546	13.859	15.5902	0.048					Si
2.44	0.00017	0.013	0.000705	0.034	47.035	47.035	49.1004	0.097					Si
3.05	0.00017	0.013	0.000705	0.034	44.6771	46.0603	49.1004	0.097					Si
5.9	0.000974	0.017	0	0					-59.316	-59.316	-73.8347	0.112	Si
6.1	0.000974	0.017	0	0					-70.5836	-64.7981	-73.8347	0.112	Si

Verifiche a taglio in famiglia SLU

х	Asl	Vela	Vdes	Vrd	Verifica
0	0.00017	37.79	37.79	114.55	Si
0.2	0.000226	34.76	34.76	114.55	Si
3.05	0.000705	-11.57	-11.57	-45.31	Si
3.86	0.000705	-23.91	-23.91	-45.31	Si
5.9	0.000974	-54.82	-54.82	-134.34	Si
6.1	0.000974	-11.57	-11.57	-134.34	Si

Verifiche delle tensioni in esercizio

Х			Rara					Qu	asi perman	ente			Verifica
	Mela	Mdes	σς	σc lim.	σf.	σflim.	Mela	Mdes	σς	σclim.	σ FRP	σ FRP	
												lim.	
0	0	0	0	18426	0	360000							Si
0.2	5.1424	9.8116	978	18426	14697	360000	3.108	5.9131	2003	13820	0	+∞	Si
3.05	30.3354	31.49	6090	14741	282644	360000	16.5212	17.4554	3376	11056	0	+∞	Si
5.9	-43.2464	-43.2464	6652	18426	249383	360000	-27.7677	-27.7677	4271	13820	0	+∞	Si
6.1	-51.4614	-47.2433	7267	18426	272431	360000	-33.0425	-30.3341	4666	13820	0	+∞	Si

Verifica di apertura delle fessure

X	Bordo		Rara			Frequente			Quasi perman	ente	Verifica
		Dmax	Esm	Wd	Dmax	Esm	Wd	Dmax	Esm	Wd	
2.24	inferiore	0.169	0.00108	0.000183	0.169	0.0007	0.000119	0.169	0.00058	0.000099	Si
3.05	inferiore	0.169	0.00103	0.000175	0.169	0.00066	0.000111	0.169	0.00054	0.000091	Si
5.9	superiore	0.083	0.00088	0.000073	0.083	0.00065	0.000053	0.083	0.00056	0.000046	Si

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV.

FOGLIO

IA8E 00 D 78 CL FV0100 001 A 74 DI 124

х	Bordo		Rara			Frequente	1		Quasi perman	ente	Verifica
		Dmax	Esm	Wd	Dmax	Esm	Wd	Dmax	Esm	Wd	
6.1	superiore	0.083	0.001	0.000082	0.083	0.00073	0.00006	0.083	0.00063	0.000052	Si

Verifica di deformabilità

x		F	Rara			Fre	quente			Qı	uasi permane	nte		Verifica
	Elastica+	Elastica-	Fess.+	Fess	Elastica+	Elastica-	Fess.+	Fess	Elastica+	Elastica-	Fess.	Fess.	I/f	
											viscosa+	viscosa-		
0.2	0.00043	0.00017	0.00048	0.00016	0.00028	0.00022	0.00026	0.00021	0.00024	0.00024	0.00062	0.00062	9908	Si
2.64	0.00363	0.00116	0.00428	0.00117	0.00222	0.00173	0.00213	0.00167	0.00187	0.00187	0.005	0.005	1219	Si
3.05	0.00356	0.00105	0.00417	0.00106	0.00215	0.00165	0.00206	0.0016	0.0018	0.0018	0.00482	0.00482	1265	Si
5.9	0.00016	-0.0001	0.00022	-0.00007	0.00005	0	0.00007	0.00002	0.00002	0.00002	0.00012	0.00012	9999	Si
6.1	0	0	0	0	0	0	0	0	0	0	0	0	9999	Si

Campata 2

Verifiche a flessione in famiglia SLU

х	A sup.	C.b. sup.	A inf.	C.b. inf.	M+ela	M+des	M+ult	x/d	M-ela	M-des	M-ult	x/d	Verifica
0	0.000974	0.017	0	0					-70.5836	-64.7981	-73.8347	0.112	Si
0.2	0.000974	0.017	0	0					-59.316	-59.316	-73.8347	0.112	Si
3.05	0.00017	0.013	0.000705	0.034	44.6771	46.0604	49.1004	0.097					Si
3.66	0.00017	0.013	0.000705	0.034	47.0351	47.0351	49.1004	0.097					Si
5.9	0.00017	0.013	0.000226	0.046	7.2546	13.859	15.5902	0.048					Si
6.1	0.00017	0.013	0.000226	0.046	0	0	15.5901	0.048	0	0	-17.2377	0.045	Si

Verifiche a taglio in famiglia SLU

х	Asl	Vela	Vdes	Vrd	Verifica
0	0.000974	57.86	57.86	134.34	Si
0.2	0.000974	54.82	54.82	134.34	Si
2.24	0.000705	23.91	23.91	45.31	Si
3.05	0.000705	11.57	11.57	45.31	Si
5.9	0.000226	-34.76	-34.76	-114.55	Si
6.1	0.00017	-37.79	-37.79	-114.55	Si

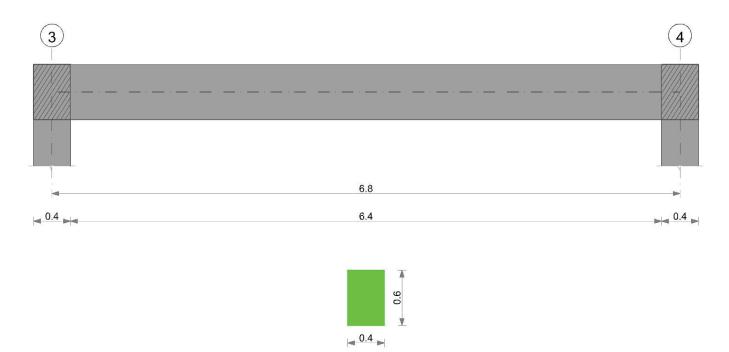
Verifiche delle tensioni in esercizio

x			Rara					Qu	asi perman	ente			Verifica
	Mela	Mdes	σς	σc lim.	σf.	σflim.	Mela	Mdes	σς	σc lim.	σ FRP	σ FRP	
												lim.	
0	-51.4614	-47.2433	7267	18426	272431	360000	-33.0425	-30.3341	4666	13820	0	+∞	Si
0.2	-43.2464	-43.2464	6652	18426	249383	360000	-27.7677	-27.7677	4271	13820	0	+∞	Si
3.05	30.3355	31.49	6090	14741	282644	360000	16.5212	17.4555	3376	11056	0	+∞	Si
5.9	5.1425	9.8116	978	18426	14697	360000	3.108	5.9131	2003	13820	0	+∞	Si

Verifica di apertura delle fessure

х	Bordo		Rara			Frequente			Quasi perman	ente	Verifica
		Dmax	Esm	Wd	Dmax	Esm	Wd	Dmax	Esm	Wd	
0	superiore	0.083	0.001	0.000082	0.083	0.00073	0.00006	0.083	0.00063	0.000052	Si
0.2	superiore	0.083	0.00088	0.000073	0.083	0.00065	0.000053	0.083	0.00056	0.000046	Si
3.05	inferiore	0.169	0.00103	0.000175	0.169	0.00066	0.000111	0.169	0.00054	0.000091	Si
3.86	inferiore	0.169	0.00108	0.000183	0.169	0.0007	0.000119	0.169	0.00058	0.000099	Si

Verifica di deformabilità


Х		F	Rara			Fre	quente			Qı	iasi permane	nte		Verifica
	Elastica+ Elastica- Fess.+ Fess		Fess	Elastica+	Elastica-	Fess.+	Fess	Elastica+	Elastica-	Fess.	Fess.	I/f		
											viscosa+	viscosa-		
0.2	0.00016	-0.0001	0.00022	-0.00007	0.00005	0	0.00007	0.00002	0.00002	0.00002	0.00012	0.00012	9999	Si
3.05	0.00356	0.00105	0.00417	0.00106	0.00215	0.00165	0.00206	0.0016	0.0018	0.0018	0.00482	0.00482	1265	Si
3.46	0.00363	0.00116	0.00428	0.00117	0.00222	0.00173	0.00213	0.00167	0.00187	0.00187	0.005	0.005	1219	Si
5.9	0.00043	0.00017	0.00048	0.00016	0.00028	0.00022	0.00026	0.00021	0.00024	0.00024	0.00062	0.00062	9900	Si

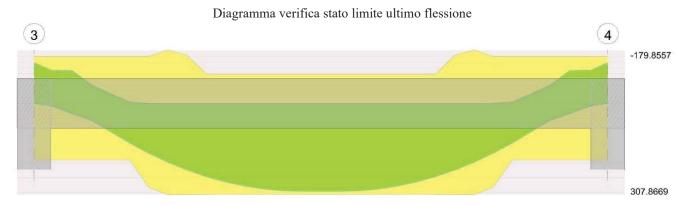
11.2 Travi Trasversali

Si riporta la verifica della trave più sollecitata

Geometria

Elenco delle sezioni

[N°	Descrizione	Tipo	Base	Altezza	Copriferro sup.	Copriferro inf.	Copriferro lat.
ſ	1	R 40x60	Rettangolare	0.4	0.6	0.035	0.035	0.035



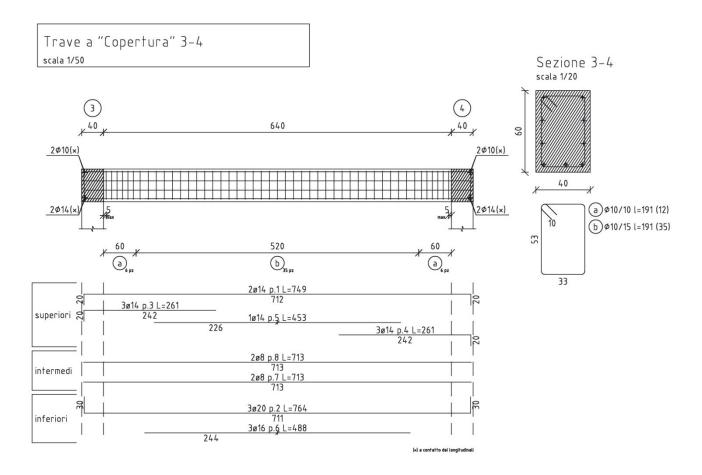


Diagramma verifica stato limite ultimo taglio

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO Linea Taran NUOVA STAZI	nto – Brir	ndisi		
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 76 DI 124

Output campate

Campata 1 tra i fili 3 - 4, sezione R 40x60, asta 9; campata a comportamento dissipativo

Verifiche a flessione in famiglia SLU

х	A sup.	C.b.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
		sup.													
0	0.00077	0.052	0.000942	0.055						-164.4359	SLU 27	-137.5426	-158.5721	0.1	Si
0.2	0.00077	0.052	0.000942	0.055						-112.0317	SLU 27	-112.0317	-158.5721	0.1	Si
3.4	0.000462	0.052	0.001546	0.054	296.3441	SLU 27	296.3441	307.1402	0.156						Si
6.6	0.00077	0.052	0.000942	0.055						-112.0277	SLU 27	-112.0277	-158.5721	0.1	Si
6.8	0.00077	0.052	0.000942	0.055						-164.4317	SLU 27	-137.5387	-158.5721	0.1	Si

Verifiche a flessione in famiglia SLV

х	A sup.	C.b.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
		sup.													
0	0.00077	0.052	0.000942	0.055						-125.653	SLV 9	-110.287	-158.5721	0.1	Si
0.2	0.00077	0.052	0.000942	0.055	-21.3813	SLV 7	7.8407	191.092	0.105	-95.6512	SLV 9	-95.6512	-158.5721	0.1	Si
3.4	0.000462	0.052	0.001546	0.054	157.1944	SLV 7	158.7431	307.1402	0.156						Si
6.6	0.00077	0.052	0.000942	0.055	-21.3786	SLV 5	7.8431	191.092	0.105	-95.6483	SLV 11	-95.6483	-158.5721	0.1	Si
6.8	0.00077	0.052	0.000942	0.055						-125.6498	SLV 11	-110.2841	-158.5721	0.1	Si

Verifiche SLD Resistenza a flessione

х	A sup.	C.b.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
0	0.00077	sup.	0.000942	0.055						-118.183	SLD 9	-103.0368	_150 5721	0.1	Si
0.2			0.000942		-28.4118	SLD 7	1.3529	191.092	0.105	-88.6207				0.1	Si
	0.000462		0.000542		157.1944		158.2451	307.1402		00.0207	020 7	00.0207	130.3721	0.1	Si
6.6			0.000942		-28.4091		1.3554		0.105	-88.6178	SLD 11	-88 6178	-158.5721	0 1	Si
	0.00077		0.000942							-118.1799		-103.0339		0.1	Si

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA8E 00 D 78 CL FV0100 001 A 78 DI 124

Verifiche a taglio in famiglia SLU

х	A st	A sl	A sag	Vela	Comb.	Vdes	Vrd	Vrcd	Vrsd	Vult	cotgθ	Verifica
0	0	0.00077	0	271.04	SLU 27	271.04	93.22	858.28	0	93.22	1	Si
0.2	0.0000157	0.00077	0	255.11	SLU 27	255.11	93.22	858.28	303.15	303.15	1	Si
3.4	0.0000106	0.001546	0	0	Ger.	0	117.38	854.81	203.23	203.23	1	Si
6.6	0.0000157	0.00077	0	-255.11	SLU 27	-255.11	-93.22	-858.28	-303.15	-303.15	1	Si
6.8	0	0.00077	0	-271.05	SLU 27	-271.05	-93.22	-858.28	0	-93.22	1	Si

Verifiche a taglio in famiglia SLV

х	A st	A sl	A sag	Vela	Comb.	Vdes	Vrd	Vrcd	Vrsd	Vult	cotgθ	Verifica
0	0	0.00077	0	154.77	Ger.	203.27	93.22	858.28	0	93.22	1	Si
0.2	0.0000157	0.00077	0	146.36	Ger.	194.85	93.22	858.28	303.15	303.15	1	Si
3.4	0.0000106	0.001546	0	11.61	Ger.	60.1	117.38	854.81	203.23	203.23	1	Si
3.4	0.0000106	0.001546	0	-11.6	Ger.	-60.1	-117.38	-854.81	-203.23	-203.23	1	Si
6.6	0.0000157	0.00077	0	-146.36	Ger.	-194.85	-93.22	-858.28	-303.15	-303.15	1	Si
6.8	0	0.00077	0	-154.78	Ger.	-203.28	-93.22	-858.28	0	-93.22	1	Si

Verifiche SLD Resistenza a taglio

х	A st	A sl	A sag	Vela	Comb.	Vdes	Vrd	Vrcd	Vrsd	Vult	cotgθ	Verifica
0	0	0.00077	0	152.58	SLD 5	152.58	93.22	858.28	0	93.22	1	Si
0.2	0.0000157	0.00077	0	144.16	SLD 5	144.16	93.22	858.28	303.15	303.15	1	Si
3.4	0.0000106	0.001546	0	9.41	SLD 5	9.41	117.38	854.81	203.23	203.23	1	Si
3.4	0.0000106	0.001546	0	-9.41	SLD 11	-9.41	-117.38	-854.81	-203.23	-203.23	1	Si
6.6	0.0000157	0.00077	0	-144.16	SLD 11	-144.16	-93.22	-858.28	-303.15	-303.15	1	Si
6.8	0	0.00077	0	-152.58	SLD 11	-152.58	-93.22	-858.28	0	-93.22	1	Si

Verifiche delle tensioni in esercizio

х			R	ara						Quasi pe	rmanente				Verifica
	Mela	Comb.	Mdes	σς	σc lim.	σf.	σf lim.	Mela	Comb.	Mdes	σς	σc lim.	σ FRP	σ FRP	
														lim.	
0	-121.1169	9	-101.2939	5723	18426	262862	360000	-86.197	1	-71.9915	4067	13820	0	+∞	Si
0.2	-82.49	9	-82.49	4660	18426	214065	360000	-58.5162	1	-58.5162	3306	13820	0	+∞	Si
3.4	218.522	9	218.522	10466	18426	293366	360000	157.1944	1	157.1944	7529	13820	0	+∞	Si
6.6	-82.4869	9	-82.4869	4660	18426	214057	360000	-58.5134	1	-58.5134	3306	13820	0	+∞	Si
6.8	-121.1136	9	-101.291	5723	18426	262854	360000	-86.194	1	-71.9887	4067	13820	0	+∞	Si

Verifica di apertura delle fessure

	-													
х	Bordo		Rai	ra			Frequ	ente			Quasi per	manente		Verifica
		Dmax	Esm	Wd	Comb	Dmax	Esm	Wd	Comb	Dmax	Esm	Wd	Comb	
0	superiore	0.314	0.00077	0.00024	9	0.314	0.00056	0.000175	2	0.314	0.00054	0.000171	1	Si
3.4	inferiore	0.262	0.00099	0.00026	9	0.262	0.00076	0.000199	2	0.262	0.00074	0.000193	1	Si
6.8	superiore	0.314	0.00077	0.00024	9	0.314	0.00056	0.000175	2	0.314	0.00054	0.000171	1	Si

Verifica di deformabilità

Х		R	ara			Fred	quente				Quasi	permane	ente			Verifica
	Elastica+	Elastica-	Fess.+	Fess	Elastica+	Elastica-	Fess.+	Fess	Elastica+	Elastica-	Fess.	Comb.	Fess.	Comb.	I/f	
											viscosa+		viscosa-			
0.2	0.00032	0.00023	0.00062	0.00033	0.00024	0.00023	0.00034	0.00033	0.00023	0.00023	0.00079	1	0.00079	1	8649	Si
3.4	0.00404	0.00291	0.00814	0.00431	0.00297	0.00291	0.00451	0.00431	0.00291	0.00291	0.01022	1	0.01022	1	666	Si
6.6	0.00032	0.00023	0.00062	0.00033	0.00024	0.00023	0.00034	0.00033	0.00023	0.00023	0.00079	1	0.00079	1	8649	Si

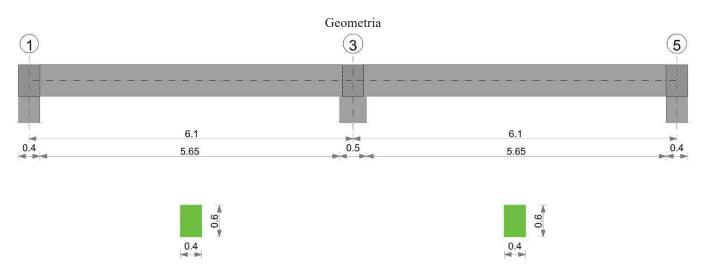
Verifiche taglio ciclico nel piano Circolare 7 21-01-19 §C8.7.2.3.5, [C8.7.2.8]

Ascissa	Lv	Х	h	ρ,tot	θ,m	θ,y	μΔ,pl	Vrd	VRcd(cotθ=1)	VRsd	Vw	Vr	Vu	Ved	Ned	Comb.	Verifica
0.4	0.93	0.055	0.6	0.008	0.00044	0.00767	0	93.22	858.28	303.15	303.15	342.71	342.71	194.85	-25.19	SLV 9	Si
6.8	0.93	0.055	0.6	0.008	0.00042	0.00767	0	93.22	858.28	303.15	303.15	342.71	342.71	- 194.85	-25.18	SLV 11	Si

Valutazione dei tagli secondo gerarchia delle resistenze

Х		taglio n	egativo			taglio p	ositivo	
	contr. grav.	Vdes	contr. mom. res.	Vela	contr. grav.	Vdes	contr. mom. res.	Vela
0	143.17	0	-54.64	131.56	143.17	271.04	54.64	271.04
0.2	134.75	0	-54.64	123.15	134.75	255.11	54.64	255.11
3.4	0	-60.1	-54.64	-11.6	0	60.1	54.64	11.61
6.6	-134.75	-255.11	-54.64	-255.11	-134.75	0	54.64	-123.15
6.8	-143.18	-271.05	-54.64	-271.05	-143.18	0	54.64	-131.57

Momenti resistenti a filo appoggi


campata	X	appoggio	momento positivo	momento negativo
1	0.2	3	191.092	-158.5721

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO Linea Tarai NUOVA STAZI	nto – Brin	ndisi		
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 79 DI 124

campata	x	appoggio	momento positivo	momento negativo
1	6.6	4	191.092	-158.5721

11.3 Travi Longitudinali

Si riporta la verifica della trave longitudinale più sollecitata

Elenco delle sezioni

N°	Descrizione	Tipo	Base	Altezza	Copriferro sup.	Copriferro inf.	Copriferro lat.
1	R 40x60	Rettangolare	0.4	0.6	0.035	0.035	0.035

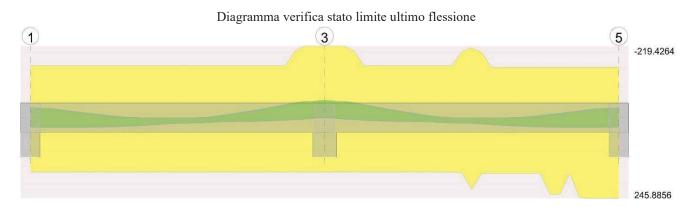
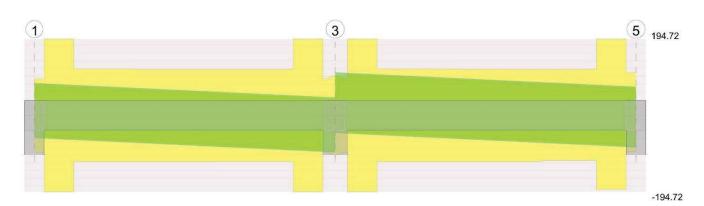
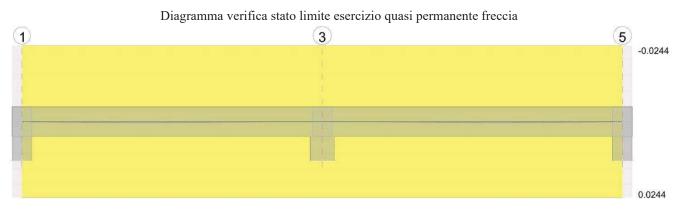
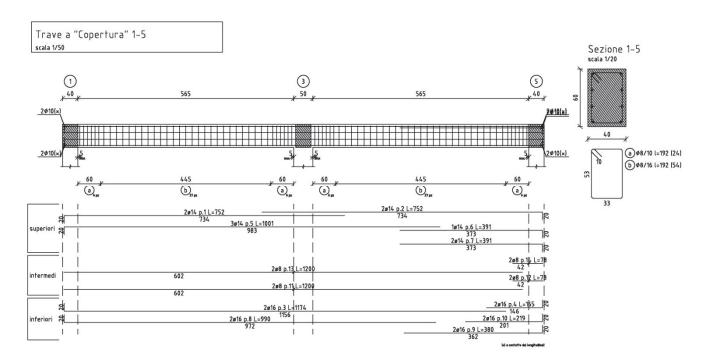





Diagramma verifica stato limite ultimo taglio

Campata 1 tra i fili 1 - 3, sezione R 40x60, asta 7; campata a comportamento dissipativo

Verifiche a flessione in famiglia SLU

x	A sup.	C.b. sup.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
0	0.00077		0.000804	0.051						-3.6286	SLU 27	-1.8309	-159.0381	0.095	Si
0.2	0.00077	0.05	0.000804	0.051	-0.0122	SLU 1	3.7469	165.5033	0.095	-0.1867	SLU 27	-0.1867	-159.0381	0.095	Si
3.05	0.00077	0.05	0.000804	0.051	15	SLU 27	16.8255	165.5033	0.095						Si
5.85	0.001078	0.05	0.000804	0.051						-32.5139	SLU 19	-32.5139	-219.4264	0.109	Si
6.1	0.001078	0.05	0.000804	0.051						-39.6747	SLU 19	-35.9864	-219.4264	0.109	Si

Verifiche a flessione in famiglia SLV

х	A sup.	C.b.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
		sup.													
0	0.00077	0.05	0.000804	0.051	27.6484	SLV 13	27.6484	165.5033	0.095	-32.9205	SLV 3	-30.6101	-159.0381	0.095	Si
0.2	0.00077	0.05	0.000804	0.051	28.3933	SLV 13	28.9667	165.5033	0.095	-28.4177	SLV 3	-28.4177	-159.0381	0.095	Si
3.05	0.00077	0.05	0.000804	0.051	13.1138	SLV 15	16.2781	165.5033	0.095						Si
5.29	0.00077	0.05	0.000804	0.051	5.4809	SLV 3	7.4005	165.5033	0.095	-33.2844	SLV 13	-40.2541	-159.0381	0.095	Si
5.85	0.001078	0.05	0.000804	0.051	-0.3356	SLV 3	2.4313	165.4817	0.094	-49.6857	SLV 13	-49.6857	-219.4264	0.109	Si
6.1	0.001078	0.05	0.000804	0.051						-57.5427	SLV 13	-53.5314	-219.4264	0.109	Si

Verifiche SLD Resistenza a flessione

х	A sup.	C.b.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
		sup.													
0	0.00077	0.05	0.000804	0.051	21.9148	SLD 13	21.9148	165.5033	0.095	-27.1869	SLD 3	-25.0544	-159.0381	0.095	Si
0.2	0.00077	0.05	0.000804	0.051	23.0154	SLD 13	24.0283	165.5033	0.095	-23.0399	SLD 3	-23.0399	-159.0381	0.095	Si
3.05	0.00077	0.05	0.000804	0.051	12.7761	SLD 15	15.5165	165.5033	0.095						Si
5.29	0.00077	0.05	0.000804	0.051	1.8113	SLD 3	4.1704	165.5033	0.095	-29.6148	SLD 13	-36.1451	-159.0381	0.095	Si
5.85	0.001078	0.05	0.000804	0.051						-45.0141	SLD 13	-45.0141	-219.4264	0.109	Si
6.1	0.001078	0.05	0.000804	0.051						-52.4265	SLD 13	-48.6375	-219.4264	0.109	Si

Verifiche a taglio in famiglia SLU

Х	A st	A sl	A sag	Vela	Comb.	Vdes	Vrd	Vrcd	Vrsd	Vult	cotgθ	Verifica
0	0	0.00077	0	18	SLU 27	18	93.38	861.42	0	93.38	1	Si
0.2	0.0000101	0.00077	0	16.44	SLU 27	16.44	93.38	861.42	194.72	194.72	1	Si
3.05	0.0000061	0.000804	0	-5.94	SLU 19	-5.94	-94.68	-859.85	-117.93	-117.93	1	Si
5.85	0.0000101	0.00077	0	-27.78	SLU 19	-27.78	-93.38	-861.42	-194.72	-194.72	1	Si
5.9	0	0.00077	0	-28.15	SLU 19	-28.15	-93.38	-861.42	0	-93.38	1	Si
6.1	0	0.000997	0	-29.73	SLU 19	-29.73	-101.8	-861.42	0	-101.8	1	Si

Verifiche a taglio in famiglia SLV

Х	A st	A sl	A sag	Vela	Comb.	Vdes	Vrd	Vrcd	Vrsd	Vult	cotgθ	Verifica
0	0	0.00077	0	23.12	Ger.	81.48	93.38	861.42	0	93.38	1	Si
0	0	0.000804	0	4.33	Ger.	-56.64	-94.68	-859.85	0	-94.68	1	Si
0.2	0.0000101	0.00077	0	21.92	Ger.	80.28	93.38	861.42	194.72	194.72	1	Si
0.2	0.0000101	0.000804	0	3.13	Ger.	-57.84	-94.68	-859.85	-194.37	-194.37	1	Si
3.05	0.0000061	0.000804	0	4.82	Ger.	63.18	94.68	859.85	117.93	117.93	1	Si
3.05	0.0000061	0.000804	0	-13.97	Ger.	-74.94	-94.68	-859.85	-117.93	-117.93	1	Si
5.85	0.0000101	0.00077	0	-11.98	Ger.	46.38	93.38	861.42	194.72	194.72	1	Si
5.85	0.0000101	0.00077	0	-30.77	Ger.	-91.74	-93.38	-861.42	-194.72	-194.72	1	Si
5.9	0	0.00077	0	-12.26	Ger.	46.1	93.38	861.42	0	93.38	1	Si
5.9	0	0.00077	0	-31.05	Ger.	-92.02	-93.38	-861.42	0	-93.38	1	Si
6.1	0	0.000997	0	-13.48	Ger.	44.88	101.8	861.42	0	101.8	1	Si
6.1	0	0.000997	0	-32.27	Ger.	-93.24	-101.8	-861.42	0	-101.8	1	Si

Verifiche SLD Resistenza a taglio

			_									
Х	A st	A sl	A sag	Vela	Comb.	Vdes	Vrd	Vrcd	Vrsd	Vult	cotgθ	Verifica
0	0	0.00077	0	21.35	SLD 3	21.35	93.38	861.42	0	93.38	1	Si
0.2	0.0000101	0.00077	0	20.15	SLD 3	20.15	93.38	861.42	194.72	194.72	1	Si
3.05	0.0000061	0.000804	0	3.05	SLD 3	3.05	94.68	859.85	117.93	117.93	1	Si
3.05	0.0000061	0.000804	0	-12.19	SLD 13	-12.19	-94.68	-859.85	-117.93	-117.93	1	Si
5.85	0.0000101	0.00077	0	-28.99	SLD 13	-28.99	-93.38	-861.42	-194.72	-194.72	1	Si
5.9	0	0.00077	0	-29.27	SLD 13	-29.27	-93.38	-861.42	0	-93.38	1	Si
6.1	0	0.000997	0	-30.49	SLD 13	-30.49	-101.8	-861.42	0	-101.8	1	Si

Verifiche delle tensioni in esercizio

Х			R	ara						Quasi pe	rmanente				Verifica
	Mela	Comb.	Mdes	σς	σclim.	σf.	σflim.	Mela	Comb.	Mdes	σς	σc lim.	σ FRP	σ FRP	
														lim.	
0	-2.7705	9	-1.3893	79	18426	3587	360000	-2.636	1	-1.2651	72	13820	0	+∞	Si
0.2	-0.1261	9	-0.1261	7	18426	325	360000	-0.0122	1	-0.0122	1	13820	0	+∞	Si
3.05	11.5107	9	12.4104	700	18426	30756	360000	11.33	1	12.2552	691	13820	0	+∞	Si
5.85	-25.0107	1	-25.0107	1260	18426	46652	360000	-25.0107	1	-25.0107	1260	13820	0	+∞	Si
6.1	-30.519	1	-27.6819	1395	18426	51634	360000	-30.519	1	-27.6819	1395	13820	0	+∞	Si

Verifica di apertura delle fessure

La campata non presenta apertura delle fessure

Verifica di deformabilità

Х	Rara Frequente									Quasi	permane	nte			Verifica	
	Elastica+	Elastica-	Fess.+	Fess	Elastica+	Elastica-	Fess.+	Fess	Elastica+	Elastica-	Fess.	Comb.	Fess.	Comb.	I/f	
											viscosa+		viscosa-			
0.2	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00004	1	0.00004	1	9999	Si
2.44	0.00015	0.00015	0.00013	0.00013	0.00015	0.00015	0.00013	0.00013	0.00015	0.00015	0.00033	1	0.00033	1	9999	Si
3.05	0.00014	0.00014	0.00012	0.00012	0.00014	0.00014	0.00012	0.00012	0.00014	0.00014	0.00031	1	0.00031	1	9999	Si
5.85	0	0	0	0	0	0	0	0	0	0	-0.00001	1	-0.00001	1	9999	Si

Verifiche taglio ciclico nel piano Circolare 7 21-01-19 §C8.7.2.3.5, [C8.7.2.8]

Ascissa	Lv	Х	h	ρ,tot	θ,m	θ,у	μΔ,pl	Vrd	VRcd(cotθ=1)	VRsd	Vw	Vr	Vu	Ved	Ned	Comb.	Verifica
0.4	4.098	0.052	0.6	0.007	0.00033	0.01304	0	94.68	859.85	194.37	194.37	186.92	194.37	80.28	2.68	SLV 9	Si
6.05	2.258	0.06	0.6	0.009	0.00065	0.01504	0	93.38	861.42	194.72	194.72	213.42	213.42	-91.74	0.74	SLV 13	Si

Valutazione dei tagli secondo gerarchia delle resistenze

Х		taglio n	egativo			taglio p	ositivo	
	contr. grav.	Vdes	contr. mom. res.	Vela	contr. grav.	Vdes	contr. mom. res.	Vela
0	18.3	-56.64	-68.13	4.33	18.3	81.48	57.44	23.12
0.2	17.1	-57.84	-68.13	3.13	17.1	80.28	57.44	21.92
3.05	0	-74.94	-68.13	-13.97	0	63.18	57.44	4.82
5.85	-16.8	-91.74	-68.13	-30.77	-16.8	46.38	57.44	-11.98
6.1	-18.3	-93.24	-68.13	-32.27	-18.3	44.88	57.44	-13.48

Campata 2 tra i fili 3 - 5, sezione R 40x60, asta 8; campata a comportamento dissipativo

Verifiche a flessione in famiglia SLU

х	A sup.	C.b.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
		sup.													
0	0.001078	0.05	0.000804	0.051						-39.6743	SLU 19	-35.9864	-219.4264	0.109	Si
0.25	0.001078	0.05	0.000804	0.051						-32.5135	SLU 19	-32.5135	-219.4264	0.109	Si
3.05	0.001069	0.059	0.001058	0.051	15.0002	SLU 27	16.8255	218.2617	0.117						Si
5.9	0.00077	0.066	0.001206	0.051	-0.0123	SLU 1	3.7468	245.8856	0.135	-0.1868	SLU 27	-0.1868	-154.2044	0.097	Si
6.1	0.00077	0.066	0.001206	0.051						-3.6287	SLU 27	-1.8311	-154.2044	0.097	Si

Verifiche a flessione in famiglia SLV

х	A sup.	C.b.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
		sup.													
0	0.001078	0.05	0.000804	0.051						-57.5424	SLV 1	-53.5311	-219.4264	0.109	Si
0.25	0.001078	0.05	0.000804	0.051	-0.3353	SLV 15	2.4316	165.4817	0.094	-49.6854	SLV 1	-49.6854	-219.4264	0.109	Si
0.81	0.00077	0.05	0.000804	0.051	5.4811	SLV 15	7.4008	165.5033	0.095	-33.2842	SLV 1	-40.2539	-159.0381	0.095	Si
3.05	0.001069	0.059	0.001058	0.051	13.1139	SLV 3	16.2782	218.2617	0.117						Si
5.9	0.00077	0.066	0.001206	0.051	28.3932	SLV 1	28.9667	245.8856	0.135	-28.4178	SLV 15	-28.4178	-154.2044	0.097	Si
6.1	0.00077	0.066	0.001206	0.051	27.6483	SLV 1	27.6483	245.8856	0.135	-32.9206	SLV 15	-30.6102	-154.2044	0.097	Si

Verifiche SLD Resistenza a flessione

x	A sup.	C.b.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
		sup.													
0	0.001078	0.05	0.000804	0.051						-52.4262	SLD 1	-48.6372	-219.4264	0.109	Si
0.25	0.001078	0.05	0.000804	0.051						-45.0139	SLD 1	-45.0139	-219.4264	0.109	Si
0.81	0.00077	0.05	0.000804	0.051	1.8115	SLD 15	4.1706	165.5033	0.095	-29.6146	SLD 1	-36.1448	-159.0381	0.095	Si
3.05	0.001069	0.059	0.001058	0.051	12.7762	SLD 3	15.5165	218.2617	0.117						Si
5.9	0.00077	0.066	0.001206	0.051	23.0153	SLD 1	24.0283	245.8856	0.135	-23.04	SLD 15	-23.04	-154.2044	0.097	Si
6.1	0.00077	0.066	0.001206	0.051	21.9148	SLD 1	21.9148	245.8856	0.135	-27.187	SLD 15	-25.0545	-154.2044	0.097	Si

Verifiche a taglio in famiglia SLU

х	A st	A sl	A sag	Vela	Comb.	Vdes	Vrd	Vrcd	Vrsd	Vult	cotgθ	Verifica
0	0	0.000997	0	29.73	SLU 19	29.73	101.8	861.42	0	101.8	1	Si
0.2	0	0.00077	0	28.15	SLU 19	28.15	93.38	861.42	0	93.38	1	Si
0.25	0.0000101	0.00077	0	27.78	SLU 19	27.78	93.38	861.42	194.72	194.72	1	Si
3.05	0.0000061	0.000804	0	5.94	SLU 19	5.94	94.68	859.85	117.93	117.93	1	Si
5.9	0.0000101	0.00077	0	-16.44	SLU 27	-16.44	-92.08	-836.36	-189.06	-189.06	1	Si
6.1	0	0.00077	0	-18	SLU 27	-18	-92.08	-836.36	0	-92.08	1	Si

Verifiche a taglio in famiglia SLV

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA8E 00 D 78 CL FV0100 001 A 83 DI 124

x	A st	A sl	A sag	Vela	Comb.	Vdes	Vrd	Vrcd	Vrsd	Vult	cotgθ	Verifica
0	0	0.000997	0	32.27	Ger.	108.89	101.8	861.42	0	101.8	1	Si
0	0	0.000997	0	13.48	Ger.	-43.94	-101.8	-861.42	0	-101.8	1	Si
0.2	0	0.00077	0	31.05	Ger.	107.67	93.38	861.42	0	93.38	1	Si
0.2	0	0.00077	0	12.26	Ger.	-45.16	-93.38	-861.42	0	-93.38	1	Si
0.25	0.0000101	0.00077	0	30.77	Ger.	107.39	93.38	861.42	194.72	194.72	1	Si
0.25	0.0000101	0.00077	0	11.98	Ger.	-45.44	-93.38	-861.42	-194.72	-194.72	1	Si
3.05	0.0000061	0.000804	0	13.97	Ger.	90.59	94.68	859.85	117.93	117.93	1	Si
3.05	0.0000061	0.000804	0	-4.82	Ger.	-62.24	-94.68	-859.85	-117.93	-117.93	1	Si
5.9	0.0000101	0.001196	0	-3.13	Ger.	73.49	108.06	859.85	194.37	194.37	1	Si
5.9	0.0000101	0.00077	0	-21.92	Ger.	-79.34	-92.08	-836.36	-189.06	-189.06	1	Si
6.1	0	0.001206	0	-4.33	Ger.	72.29	108.38	859.85	0	108.38	1	Si
6.1	0	0.00077	0	-23.12	Ger.	-80.54	-92.08	-836.36	0	-92.08	1	Si

Verifiche SLD Resistenza a taglio

х	A st	A sl	A sag	Vela	Comb.	Vdes	Vrd	Vrcd	Vrsd	Vult	cotgθ	Verifica
0	0	0.000997	0	30.49	SLD 1	30.49	101.8	861.42	0	101.8	1	Si
0.2	0	0.00077	0	29.27	SLD 1	29.27	93.38	861.42	0	93.38	1	Si
0.25	0.0000101	0.00077	0	28.99	SLD 1	28.99	93.38	861.42	194.72	194.72	1	Si
3.05	0.0000061	0.000804	0	12.19	SLD 1	12.19	94.68	859.85	117.93	117.93	1	Si
3.05	0.0000061	0.000804	0	-3.05	SLD 15	-3.05	-94.68	-859.85	-117.93	-117.93	1	Si
5.9	0.0000101	0.00077	0	-20.15	SLD 15	-20.15	-92.08	-836.36	-189.06	-189.06	1	Si
6.1	0	0.00077	0	-21.35	SLD 15	-21.35	-92.08	-836.36	0	-92.08	1	Si

Verifiche delle tensioni in esercizio

x			R	ara						Quasi pe	rmanente				Verifica
	Mela	Comb.	Mdes	σς	σc lim.	σf.	σf lim.	Mela	Comb.	Mdes	σς	σ c lim.	σ FRP	σ FRP	
														lim.	
0	-30.5187	1	-27.6819	1395	18426	51634	360000	-30.5187	1	-27.6819	1395	13820	0	+∞	Si
0.25	-25.0104	1	-25.0104	1260	18426	46651	360000	-25.0104	1	-25.0104	1260	13820	0	+∞	Si
3.05	11.5108	9	12.4105	615	18426	23626	360000	11.3301	1	12.2553	607	13820	0	+∞	Si
5.9	-0.1262	9	-0.1262	7	18426	348	360000	-0.0123	1	-0.0123	1	13820	0	+∞	Si
6.1	-2.7706	9	-1.3894	78	18426	3831	360000	-2.6361	1	-1.2652	71	13820	0	+∞	Si

Verifica di apertura delle fessure

La campata non presenta apertura delle fessure

Verifica di deformabilità

Х		R	ara			Fred	uente				Quasi	permane	nte			Verifica
	Elastica+	Elastica-	Fess.+	Fess	Elastica+	Elastica-	Fess.+	Fess	Elastica+	Elastica-	Fess.	Comb.	Fess.	Comb.	I/f	
											viscosa+		viscosa-			
0.25	0	0	0	0	0	0	0	0	0	0	-0.00001	1	-0.00001	1	9999	Si
3.05	0.00014	0.00014	0.00012	0.00012	0.00014	0.00014	0.00012	0.00012	0.00014	0.00014	0.00031	1	0.00031	1	9999	Si
3.66	0.00015	0.00015	0.00013	0.00013	0.00015	0.00015	0.00013	0.00013	0.00015	0.00015	0.00033	1	0.00033	1	9999	Si
5.9	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00004	1	0.00004	1	9999	Si

Verifiche taglio ciclico nel piano Circolare 7 21-01-19 §C8.7.2.3.5, [C8.7.2.8]

Ascissa	Lv	Х	h	ρ,tot	θ,m	θ,у	μΔ,pl	Vrd	VRcd(cotθ=1)	VRsd	Vw	Vr	Vu	Ved	Ned	Comb.	Verifica
6.55	2.258	0.06	0.6	0.009	0.00053	0.01346	0	93.38	861.42	194.72	194.72	213.43	213.43	107.39	0.74	SLV 1	Si
12.2	3.842	0.074	0.6	0.009	0.00099	0.01292	0	108.06	859.85	194.37	194.37	191.19	194.37	-79.34	0.74	STAV 1	Si

Valutazione dei tagli secondo gerarchia delle resistenze

х		taglio n	egativo			taglio p	ositivo	
	contr. grav.	Vdes	contr. mom. res.	Vela	contr. grav.	Vdes	contr. mom. res.	Vela
0	18.3	-43.94	-56.58	13.48	18.3	108.89	82.36	32.27
0.25	16.8	-45.44	-56.58	11.98	16.8	107.39	82.36	30.77
3.05	0	-62.24	-56.58	-4.82	0	90.59	82.36	13.97
5.9	-17.1	-79.34	-56.58	-21.92	-17.1	73.49	82.36	-3.13
6.1	-18.3	-80.54	-56.58	-23.12	-18.3	72.29	82.36	-4.33

Momenti resistenti a filo appoggi

campata	x	appoggio	momento positivo	momento negativo
1	0.2	1	165.5033	-159.0381
1	5.85	3	165.4817	-219.4264
2	0.25	3	165.4817	-219.4264
2	5.9	5	245.8856	-154.2044

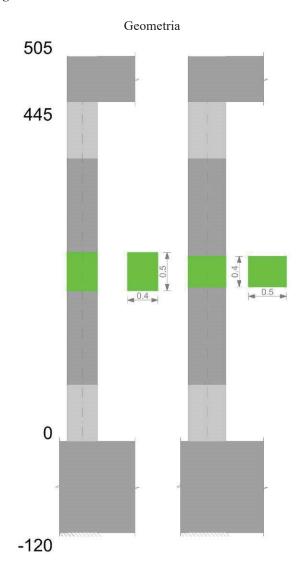
Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI

FABBRICATO VIAGGIATORI

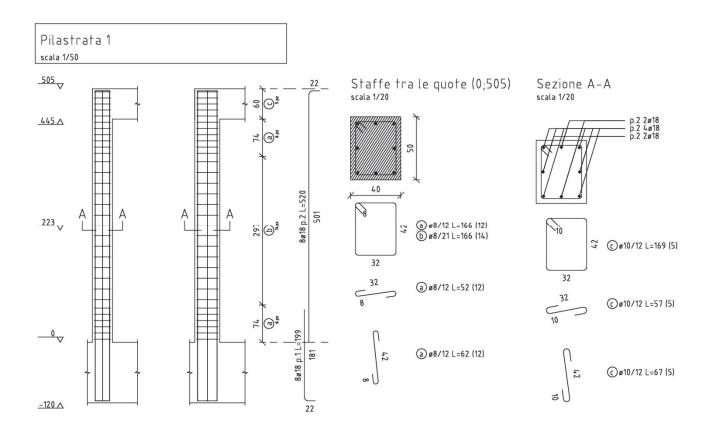
PROGETTO LOTTO CODIFICA DOCUMENTO IA8E 00 D 78 CL FV0100 001

84 DI 124

REV.


A

FOGLIO



11.4 Pilastri

Pilastri d'angolo

Dati della pilastrata

Campate costituenti la pilastrata

Q.inf.	Q.sup.	Sezione	Esistente	Secondaria	Dissipativa	Interna a parete	Sovraresistenza	Materiale CLS	Materiale Acciaio	FC
0	4.45	PTL 40x50	No	No	Si	No		C32/40	B450C	

Disposizione delle armature longitudinali

Posizione	Х	Y	Diametro	Area	Q.inf.	Q.sup.	Sezione	Materiale
p.1	-0.1428	-0.1928	0.018	0.0002545	-0.6	0	PIL 40x50	B450C
p.1	0.1428	-0.1928	0.018	0.0002545	-0.6	0	PIL 40x50	B450C
p.1	0.1428	0.1928	0.018	0.0002545	-0.6	0	PIL 40x50	B450C
p.1	-0.1428	0.1928	0.018	0.0002545	-0.6	0	PIL 40x50	B450C
p.1	0	-0.196	0.018	0.0002545	-0.6	0	PIL 40x50	B450C
p.1	0	0.196	0.018	0.0002545	-0.6	0	PIL 40x50	B450C
p.1	-0.146	0	0.018	0.0002545	-0.6	0	PIL 40x50	B450C
p.1	0.146	0	0.018	0.0002545	-0.6	0	PIL 40x50	B450C
p.2	-0.1428	-0.1928	0.018	0.0002545	0	4.538	PIL 40x50	B450C
p.2	0.1428	-0.1928	0.018	0.0002545	0	4.538	PIL 40x50	B450C
p.2	0.1428	0.1928	0.018	0.0002545	0	4.538	PIL 40x50	B450C
p.2	-0.1428	0.1928	0.018	0.0002545	0	4.538	PIL 40x50	B450C
p.2	0	-0.196	0.018	0.0002545	0	4.538	PIL 40x50	B450C
p.2	0	0.196	0.018	0.0002545	0	4.538	PIL 40x50	B450C
p.2	-0.146	0	0.018	0.0002545	0	4.538	PIL 40x50	B450C
p.2	0.146	0	0.018	0.0002545	0	4.538	PIL 40x50	B450C

Controlli geometrici NTC18

Nessuna anomalia

Verifiche delle sezioni

Verifica a pressoflessione in SLU

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA8E 00 D 78 CL FV0100 001 A 87 DI 124

Quota	As	%	At	Pos.	Mx	My	N	MRdx	MRdy	Comb.	Coeff.s.	Verifica
0	0.002036	2	0	1,2	51.123	-5.3207	-198.91	303.7236	-31.6106	SLU 27	5.941	Si
0.3	0.002036	2	0	1,2	41.4915	-5.2691	-196.98	308.8679	-39.2241	SLU 27	7.444	Si
0.59	0.002036	2	0	1,2	31.86	-5.2175	-195.05	295.7975	-48.4413	SLU 27	9.284	Si
0.89	0.002036	1	0	2	22.2285	-5.166	-193.12	262.1582	-60.9264	SLU 27	11.794	Si
1.19	0.002036	1	0	2	12.597	-5.1144	-191.19	191.4623	-77.7338	SLU 27	15.199	Si
1.48	0.002036	1	0	2	5.0628	-5.0628	-189.26	91.8307	-91.8307	SLU 27	18.138	Si
1.78	0.002036	1	0	2	-6.666	-5.0112	-187.34	-118.1892	-88.8494	SLU 27	17.73	Si
2.08	0.002036	1	0	2	-16.2975	-4.9596	-185.41	-229.1691	-69.7404	SLU 27	14.062	Si
2.37	0.002036	1	0	2	-25.929	-4.9081	-183.48	-283.4595	-53.6555	SLU 27	10.932	Si
2.67	0.002036	1	0	2	-35.5605	-4.8565	-181.55	-306.4334	-41.8494	SLU 27	8.617	Si
2.97	0.002036	1	0	2	-45.192	-4.8049	-179.62	-305.1134	-32.4401	SLU 27	6.751	Si
3.26	0.002036	1	0	2	-54.8235	-4.7533	-177.69	-290.8912	-25.2208	SLU 27	5.306	Si
3.56	0.002036	1	0	2	-64.455	-4.7017	-175.77	-278.3465	-20.3042	SLU 27	4.318	Si
3.86	0.002036	1	0	2	-74.0865	-4.6501	-173.84	-266.1368	-16.7044	SLU 27	3.592	Si
4.15	0.002036	1	0	2	-83.718	-4.5986	-171.91	-254.3177	-13.9694	SLU 27	3.038	Si
4.45	0.002036	1	0	2	-93.1872	-4.5478	-170.01	-243.3816	-11.8778	SLU 27	2.612	Si

Verifica a pressoflessione in SLV con sollecitazioni da gerarchia secondo formula [C7.4.3]

Quota	As	%	At	Pos.	α,x	α,у	Mx	Му	N	MRdx	MRdy	Comb.	C.S.	Nmin	Nlim	Comb.Nmin	Ver.
0	0.002036	2	0	1,2			73.4482	-15.5586	-127.02	221.563	-46.934	SLV 9	3.017	132.56	2262.3	SLV 5	Si
0.3	0.002036	2	0	1,2	1	1	-77.6193	5.4127	-125.54	-231.551	16.1469	SLV 9-	2.983	131.07	2262.3	SLV 5	Si
												Ger.					
0.59	0.002036	2	0	1,2	1	1	-77.6193	5.4127	-124.05		16.0779	SLV 9-	2.97	129.59	2262.3	SLV 5	Si
										230.5616		Ger.					
0.89	0.002036	1	0	2	1	1	-77.6193	5.4127	-122.57		16.0095	SLV 9-	2.958	128.11	2262.3	SLV 5	Si
L					_					229.5807		Ger.					
1.19	0.002036	1	0	2	1	1	-77.6193	5.4127	-121.09	-	15.9416	SLV 9-	2.945	126.62	2262.3	SLV 5	Si
1 40	0.000000	-	0	0	1	1	77 (100	F 4107	110.6	228.6081	15 0744	Ger.	0.000	105 14	0060 0	0777 5	0.1
1.48	0.002036	1	0	2	1	1	-77.6193	5.4127	-119.6	227.6436	15.8744	SLV 9- Ger.	2.933	125.14	2262.3	SLV 5	Si
1 70	0.002036	1	0	2	1	1	-77.6193	5.4127	-118.12		15.8077	SLV 9-	2.921	123.66	2262.3	SLV 5	Si
1./0	0.002036	1	U		1	1	-//.0193	5.412/	-110.12	226.6873		Ger.	2.921	123.00	2202.3	SEV 3	51
2 08	0.002036	1	0	2	1	1	-77.6193	5.4127	-116.64		15.7406	SLV 9-	2.908	122.17	2262.3	SLV 5	Si
2.00	0.002030	_	U		_	_	77.0193	3.4127	110.04	225.7255		Ger.	2.300	122.17	2202.5	211/ 2	ÜΤ
2 37	0.002036	1	0	2	1	1	-77.6193	5.4127	-115.15		15.6728	SLV 9-	2.896	120.69	2262.3	SLV 5	Si
2.07	0.002000	_	Ŭ	_	_	_	77.0130	0.1127	110.10	224.7525		Ger.	2.030	120.03	2202.0	021 0	01
2.67	0.002036	1	0	2	1	1	-77.6193	5.4127	-113.67	_	15.6055	SLV 9-	2.883	119.21	2262.3	SLV 5	Si
										223.7878		Ger.					
2.97	0.002036	1	0	2	1	1	-77.6193	5.4127	-112.19	-	15.5388	SLV 9-	2.871	117.72	2262.3	SLV 5	Si
										222.8314		Ger.					
3.26	0.002036	1	0	2	1	1	-77.6193	5.4127	-110.7	-	15.4727	SLV 9-	2.859	116.24	2262.3	SLV 5	Si
										221.8832		Ger.					
3.56	0.002036	1	0	2	1	1	-77.6193	5.4127	-109.22	-	15.4071	SLV 9-	2.846	114.76	2262.3	SLV 5	Si
										220.9429		Ger.					
3.86	0.002036	1	0	2	1	1	-77.6193	5.4127	-107.74		15.3421	SLV 9-	2.834	113.27	2262.3	SLV 5	Si
										220.0106		Ger.					
4.15	0.002036	1	0	2	1	1	-77.6193	5.4127	-106.25	-	15.2776	SLV 9-	2.823	111.79	2262.3	SLV 5	Si
L					ļ					219.0862		Ger.					
4.45	0.002036	1	0	2	1	1	-77.6193	5.4127	-104.8		15.2139	SLV 9	2.811	110.33	2262.3	SLV 5	Si
							<u> </u>			218.1717							

Verifica a pressoflessione in SLD

Quota	As	%	At	Pos.	Mx	My	N	MRdx	MRdy	Comb.	Coeff.s.	Verifica
0	0.002036	2	0	1,2	64.7798	-13.0901	-125.73	228.8414	-46.2421	SLD 9	3.533	Si
0.3	0.002036	2	0	1,2	55.6101	-11.9567	-124.25	237.7947	-51.1284	SLD 9	4.276	Si
0.59	0.002036	2	0	1,2	46.4403	-10.8234	-122.77	249.6327	-58.1795	SLD 9	5.375	Si
0.89	0.002036	1	0	2	37.2705	-9.69	-121.28	261.3535	-67.9499	SLD 9	7.012	Si
1.19	0.002036	1	0	2	28.1007	-8.5567	-119.8	267.356	-81.4101	SLD 9	9.514	Si
1.48	0.002036	1	0	2	7.137	-16.3141	-107.65	95.3579	-217.9746	SLD 13	13.361	Si
1.78	0.002036	1	0	2	-17.2788	-5.0003	-101.32	-275.6955	-79.7834	SLD 11	15.956	Si
2.08	0.002036	1	0	2	-18.6716	-4.2053	-99.83	-288.6467	-65.0103	SLD 11	15.459	Si
2.37	0.002036	1	0	2	-20.0644	-3.4103	-98.35	-300.3304	-51.0464	SLD 11	14.968	Si
2.67	0.002036	1	0	2	-21.4573	-2.6153	-96.87	-308.1605	-37.56	SLD 11	14.362	Si
2.97	0.002036	1	0	2	-25.7937	-5.2508	-115.2	-290.4527	-59.1273	SLD 1	11.261	Si
3.26	0.002036	1	0	2	-36.1864	-4.168	-113.91	-284.2674	-32.742	SLD 5	7.856	Si
3.56	0.002036	1	0	2	-45.3166	-4.9769	-112.42	-264.2445	-29.0207	SLD 5	5.831	Si
3.86	0.002036	1	0	2	-54.4469	-5.7858	-110.94	-246.9242	-26.2396	SLD 5	4.535	Si
4.15	0.002036	1	0	2	-63.5771	-6.5948	-109.46	-233.7309	-24.2446	SLD 5	3.676	Si
4.45	0.002036	1	0	2	-72.6122	3.8911	-103.51	-222.595	11.9282	SLD 9	3.066	Si

Verifica di duttilità secondo D.M. 17-01-18 NTC §7.4.6.2.2

Quota	α,n	α,s	α	ω,wd	αω,wd	v,d	Ac	lim. [7.4.29]	coeff. [7.4.29]	comb. [7.4.29]	Verifica
0	0.7176	0.6897	0.4949	0.102	0.0505	0.057	0.1344	0.0147	3.437	SLV 1	Si

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA8E 00 D 78 CL FV0100 001 A 88 DI 124

					Direzion	e X							Direzione	Y				Verifica
Quota	Staffe	V	N	Comb.	VRd	VRsd	VRcd	Cot	c.s.	٧	N	Comb.	VRd	VRsd	VRcd	Cot	c.s.	
0	3X/3Y	0	-	SLU 6	98.02	371.63	487.49	2.5	1000	-32.47	-	SLU 27	101.27	479.03	509.28	2.5	14.76	Si
	ø8/12.4		151.44								198.91							
0.3	3X/3Y	0	-	SLU 6	97.82	371.63	487.29	2.5	1000	-32.47	-	SLU 27	101.01	479.03	509.01	2.5	14.76	Si
	ø8/12.4		149.96								196.98							
0.59	3X/3Y	0	-	SLU 6	97.63	371.63	487.09	2.5	1000	-32.47	-	SLU 27	100.75	479.03	508.74	2.5	14.76	Si
	ø8/12.4		148.48								195.05							
0.89	2X/2Y	0		SLU 6	97.44	144.52	486.89	2.5	1000	-32.47	-	SLU 27	100.49	186.29	508.48	2.5	5.74	Si
	ø8/21.2		146.99								193.12							
1.19	2X/2Y	0		SLU 6	97.25	144.52	486.69	2.5	1000	-32.47		SLU 27	100.23	186.29	508.21	2.5	5.74	Si
	ø8/21.2		145.51								191.19							
1.48	2X/2Y	0		SLU 6	97.05	144.52	486.49	2.5	1000	-32.47	-	SLU 27	99.98	186.29	507.94	2.5	5.74	Si
	ø8/21.2		144.03								189.26							
1.78	2X/2Y	0		SLU 6	96.86	144.52	486.3	2.5	1000	-32.47		SLU 27	99.72	186.29	507.67	2.5	5.74	Si
	ø8/21.2		142.54								187.34							
2.08	2X/2Y	0		SLU 6	96.67	144.52	486.1	2.5	1000	-32.47	-	SLU 27	99.46	186.29	507.41	2.5	5.74	Si
	ø8/21.2		141.06								185.41							
2.37	2X/2Y	0		SLU 6	96.48	144.52	485.9	2.5	1000	-32.47	-	SLU 27	99.2	186.29	507.14	2.5	5.74	Si
	ø8/21.2		139.58								183.48							
2.67	2X/2Y	0		SLU 6	96.28	144.52	485.7	2.5	1000	-32.47		SLU 27	98.94	186.29	506.87	2.5	5.74	Si
	ø8/21.2		138.09								181.55							
2.97	2X/2Y	0		SLU 6	96.09	144.52	485.5	2.5	1000	-32.47		SLU 27	98.69	186.29	506.61	2.5	5.74	Si
0.06	ø8/21.2		136.61		05.0	444.50	405.0	0.5	4000	00.45	179.62		00.40	405.00	505.04	0.5	5 5 4	
3.26	2X/2Y Ø8/21.2	0		SLU 6	95.9	144.52	485.3	2.5	1000	-32.47	177.69	SLU 27	98.43	186.29	506.34	2.5	5.74	Si
2.56	,	0	135.13	07.77	05.71	144 50	405.1	0.5	1000	20.47	1//.09	07.17. 0.7	00 17	106.00	506.03	0.5	F 74	0.1
3.56	2X/2Y Ø8/21.2	0	133.64	SLU 6	95./1	144.52	485.1	2.5	1000	-32.47	175.77	SLU 27	98.17	186.29	506.07	2.5	5.74	Si
2.06	,	0		07.77	05.51	271 62	404.0	0.5	1000	20.47	1/5.//	07.17. 0.7	07.01	470.00	505.81	0.5	14.76	0.1
3.86	3X/3Y Ø8/12.4	0	132.16	SLU 6	95.51	371.63	484.9	2.5	1000	-32.47	173.84	SLU 27	97.91	479.03	505.81	2.5	14.76	Si
4.15	3X/3Y	0		SLU 6	05 22	371.63	484.7	2.5	1000	-32.47		SLU 27	07 65	479.03	505 54	2.5	14.76	Si
4.13	Ø8/12.4	0	130.68	9 DTC	93.32	3/1.03	404./	2.5	1000	-32.47	171.91	SEU 27	5/.00	4/9.03	505.54	2.5	14./0	21
4.45	3X/3Y	0		SLU 6	05 12	371.63	101 51	2.5	1000	-32.47		SLU 27	07.4	470 O2	505.28	2.5	14.76	Si
4.45	3A/3Y	U	-	2TO 6	90.13	3/1.63	404.51	4.5	T000	-32.4/	1 -1	2TO 71	97.4	4/9.03	303.28	2.5	14./6	51

Verifica a taglio in famiglia SLV

					Direzione	X							Direzione	Υ				Verifica
Quota	Staffe	V	N	Comb.	VRd	VRsd	VRcd	Cot	c.s.	٧	N	Comb.	VRd	VRsd	VRcd	Cot	c.s.	
0	3X/3Y	72.04	-	SLV 5-	95.57	371.63	484.96	2.5	5.16	93.34	-	SLV 5-	92.39	479.03	500.09	2.5	5.13	Si
	ø8/12.4		132.56	Ger.							132.56	Ger.						
0.3	3X/3Y	72.04	-	SLV 5-	95.37	371.63	484.76	2.5	5.16	93.34	-	SLV 5-	92.19	479.03	499.89	2.5	5.13	Si
	ø8/12.4		131.07	Ger.							131.07	Ger.						
0.59	3X/3Y	72.04		SLV 5-	95.18	371.63	484.56	2.5	5.16	93.34		SLV 5-	91.99	479.03	499.68	2.5	5.13	Si
	ø8/12.4		129.59	Ger.							129.59	Ger.						
0.89	2X/2Y	72.04		SLV 5-	94.99	144.52	484.36	2.5	2.01	93.34		SLV 5-	91.79	186.29	499.48	2.5	2	Si
	ø8/21.2		128.11	Ger.							128.11							
1.19	2X/2Y	72.04		SLV 5-	94.8	144.52	484.16	2.5	2.01	93.34		SLV 5-	91.59	186.29	499.27	2.5	2	Si
	ø8/21.2		126.62								126.62	Ger.						
1.48	2X/2Y	72.04	-	SLV 5-	94.6	144.52	483.96	2.5	2.01	93.34		SLV 5-	91.4	186.29	499.07	2.5	2	Si
	ø8/21.2		125.14	Ger.							125.14	Ger.						
1.78	2X/2Y	72.04		SLV 5-	94.41	144.52	483.76	2.5	2.01	93.34		SLV 5-	91.2	186.29	498.86	2.5	2	Si
	ø8/21.2		123.66	Ger.							123.66	Ger.						
2.08	2X/2Y	72.04		SLV 5-	94.22	144.52	483.56	2.5	2.01	93.34		SLV 5-	91	186.29	498.66	2.5	2	Si
	ø8/21.2		122.17								122.17	Ger.						
2.37	2X/2Y	72.04		SLV 5-	94.03	144.52	483.36	2.5	2.01	93.34		SLV 5-	90.8	186.29	498.45	2.5	2	Si
	ø8/21.2		120.69	Ger.							120.69	Ger.						
2.67	2X/2Y	72.04		SLV 5-	93.83	144.52	483.16	2.5	2.01	93.34		SLV 5-	90.6	186.29	498.24	2.5	2	Si
	ø8/21.2		119.21								119.21	Ger.						
2.97	2X/2Y	72.04		SLV 5-	93.64	144.52	482.96	2.5	2.01	93.34		SLV 5-	90.4	186.29	498.04	2.5	2	Si
	ø8/21.2		117.72								117.72							
3.26	2X/2Y	72.04		SLV 5-	93.45	144.52	482.77	2.5	2.01	93.34		SLV 5-	90.2	186.29	497.83	2.5	2	Si
	ø8/21.2		116.24								116.24	Ger.						
3.56	2X/2Y		-	SLV 5-	93.26	144.52	482.57	2.5	2.01	93.34	-	SLV 5-	90.01	186.29	497.63	2.5	2	Si
	ø8/21.2		114.76								114.76	Ger.						
3.86	3X/3Y	72.04		SLV 5-	93.06	371.63	482.37	2.5	5.16	93.34		SLV 5-	89.81	479.03	497.42	2.5	5.13	Si
	ø8/12.4		113.27								113.27	Ger.						
4.15	3X/3Y	72.04		SLV 5-	92.87	371.63	482.17	2.5	5.16	93.34		SLV 5-	89.61	479.03	497.22	2.5	5.13	Si
	ø8/12.4		111.79								111.79	Ger.						
4.45	3X/3Y	72.04		SLV 5-	92.68	371.63	481.97	2.5	5.16	93.34		SLV 5-	89.41	479.03	497.02	2.5	5.13	Si
	ø8/12.4		110.33	Ger.							110.33	Ger.						

Tagli plastici secondo §7.4.4.2.1 [7.4.5] in combinazione SLV

Q.inf.	Q.sup.	Luce	γRd	MRdx,inf	MRdy,inf	N,inf	MRdx,sup	MRdy,sup	N,sup	Vpl,x	VpI,y	Comb.
0	4.45	4.45	1.1	191.59849		-132.558	185.99243		-110.333	72.043		SLV 5
0	4.45	4.45	1.1		147.9115	-132.558		143.53472	-110.333		93.337	SLV 5

Verifica a taglio in famiglia SLD Resistenza

					Direzione	X						1	Direzione	Y				Verifica
Quota	Staffe	V	N	Comb.	VRd	VRsd	VRcd	Cot	c.s.	٧	N	Comb.	VRd	VRsd	VRcd	Cot	c.s.	
0	3X/3Y	-	-	SLD 3	94.63	371.63	483.99	2.5	33.46	-	-	SLD 9	91.47	479.03	499.15	2.5	15.5	Si
	ø8/12.4	11.11	125.37							30.91	125.73							

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA8E 00 D 78 CL FV0100 001 A 89 DI 124

					Direzione	X							Direzione	Y				Verifica
Quota	Staffe	٧	N	Comb.	VRd	VRsd	VRcd	Cot	c.s.	٧	N	Comb.	VRd	VRsd	VRcd	Cot	c.s.	
0.3	3X/3Y	-	- 1	SLD 3	94.44	371.63	483.79	2.5	33.46	-	-	SLD 9	91.28	479.03	498.94	2.5	15.5	Si
	ø8/12.4	11.11	123.89							30.91	124.25							
0.59	3X/3Y	-	-	SLD 3	94.25	371.63	483.59	2.5	33.46	-	-	SLD 9	91.08	479.03	498.74	2.5	15.5	Si
	ø8/12.4	11.11	122.41							30.91	122.77							
0.89	2X/2Y	-	-	SLD 3	94.06	144.52	483.39	2.5	13.01	-	-	SLD 9	90.88	186.29	498.53	2.5	6.03	Si
	Ø8/21.2	11.11	120.92							30.91	121.28							
1.19	2X/2Y	-	-	SLD 3	93.86	144.52	483.19	2.5	13.01	-	-119.8	SLD 9	90.68	186.29	498.33	2.5	6.03	Si
	ø8/21.2	11.11	119.44							30.91								
1.48	2X/2Y	-	-	SLD 3	93.67	144.52	483	2.5	13.01	-	-	SLD 9	90.48	186.29	498.12	2.5	6.03	Si
	ø8/21.2	11.11	117.96							30.91	118.32							
1.78	2X/2Y	-	-	SLD 3	93.48	144.52	482.8	2.5	13.01	-	-	SLD 9	90.28	186.29	497.92	2.5	6.03	Si
	ø8/21.2	11.11	116.47							30.91	116.83							
2.08	2X/2Y	-	-	SLD 3	93.29	144.52	482.6	2.5	13.01	-	-	SLD 9	90.09	186.29	497.71	2.5	6.03	Si
	ø8/21.2	11.11	114.99							30.91	115.35							
2.37	2X/2Y	-	-	SLD 3	93.09	144.52	482.4	2.5	13.01	-	-	SLD 9	89.89	186.29	497.51	2.5	6.03	Si
	ø8/21.2	11.11	113.51							30.91	113.87							
2.67	2X/2Y	-	-	SLD 3	92.9	144.52	482.2	2.5	13.01	-	-	SLD 9	89.69	186.29	497.3	2.5	6.03	Si
	ø8/21.2	11.11	112.02							30.91	112.38							
2.97	2X/2Y			SLD 3	92.71	144.52	482	2.5	13.01	-	-110.9	SLD 9	89.49	186.29	497.09	2.5	6.03	Si
	ø8/21.2	11.11	110.54							30.91								
3.26	2X/2Y	-		SLD 3	92.52	144.52	481.8	2.5	13.01	-		SLD 9	89.29	186.29	496.89	2.5	6.03	Si
0.55	ø8/21.2	11.11	109.06	0	00.00	444.50	101 6	0.5	40.04	30.91	109.42	0	00.00	400.00	40.5 50	0.5		
3.56	2X/2Y		107 57	SLD 3	92.32	144.52	481.6	2.5	13.01	20 01	107.00	SLD 9	89.09	186.29	496.68	2.5	6.03	Si
0.00	ø8/21.2	11.11	107.57	0	00.40	0.04 60	101 1	0.5	00.46	30.91	107.93	0	00.00	400.00	406 40	0.5	45.5	
3.86	3X/3Y Ø8/12.4	11 11	100 00	SLD 3	92.13	371.63	481.4	2.5	33.46	20 01	106 45	SLD 9	88.89	479.03	496.48	2.5	15.5	Si
4 15		11.11	106.09	27.0.2	01 04	271 62	401 0	0.5	22.46	30.91	106.45	27.0	00.7	470.00	406 07	0 5	15.5	0.1
4.15	3X/3Y Ø8/12.4	11 11	104 (1	SLD 3	91.94	371.63	481.2	2.5	33.46	20 01	104 07	SLD 9	88./	479.03	496.27	2.5	15.5	Si
4.45		11.11	104.61	SLD 3	91.75	371.63	401 01	2.5	33.46	30.91	104.97	SLD 9	88.5	479.03	496.07	2.5	15.5	Si
4.45	3X/3Y	11 11	102 15	SLD 3	91./5	3/1.63	481.01	2.5	33.46	20 01	102 51	SLD 9	88.5	4/9.03	496.0/	2.5	15.5	51
	ø8/12.4	11.11	103.15							30.91	103.51							

Verifica delle tensioni in combinazioni rara

Tensione limite del calcestruzzo 18426 kN/m²

Tensione limite dell'acciaio 360000 kN/m²

Coefficiente di omogeneizzazione impiegato 15

Quota	Mx	Му	N	Comb.	σc,max	Mx	My	N	Comb.	σf,max	Verifica
0	37.7703	-2.7549	-148.63	SLE RA 9	-3533	37.7703	-2.7549	-148.63	SLE RA 9	44908	Si
0.3	30.6477	-2.7559	-147.15	SLE RA 9	-2338	30.6477	-2.7559	-147.15	SLE RA 9	-29082	Si
0.59	23.5252	-2.7568	-145.67	SLE RA 9	-1977	23.5252	-2.7568	-145.67	SLE RA 9	-24889	Si
0.89	16.4027	-2.7577	-144.18	SLE RA 9	-1617	16.4027	-2.7577	-144.18	SLE RA 9	-20697	Si
1.19	9.2801	-2.7587	-142.7	SLE RA 9	-1256	9.2801	-2.7587	-142.7	SLE RA 9	-16504	Si
1.48	2.1576	-2.7596	-141.22	SLE RA 9	-896	2.1576	-2.7596	-141.22	SLE RA 9	-12311	Si
1.78	-4.9649	-2.7605	-139.73	SLE RA 9	-1029	-4.9649	-2.7605	-139.73	SLE RA 9	-13830	Si
2.08	-12.0875	-2.7615	-138.25	SLE RA 9	-1377	-12.0875	-2.7615	-138.25	SLE RA 9	-17831	Si
2.37	-19.21	-2.7624	-136.77	SLE RA 9	-1724	-19.21	-2.7624	-136.77	SLE RA 9	-21832	Si
2.67	-26.3325	-2.7634	-135.28	SLE RA 9	-2072	-26.3325	-2.7634	-135.28	SLE RA 9	-25833	Si
2.97	-33.4551	-2.7643	-133.8	SLE RA 9	-2420	-33.4551	-2.7643	-133.8	SLE RA 9	-29834	Si
3.26	-40.5776	-2.7652	-132.32	SLE RA 9	-3817	-40.5776	-2.7652	-132.32	SLE RA 9	59016	Si
3.56	-47.7002	-2.7662	-130.83	SLE RA 9	-4459	-47.7002	-2.7662	-130.83	SLE RA 9	79431	Si
3.86	-54.8227	-2.7671	-129.35	SLE RA 9	-5091	-54.8227	-2.7671	-129.35	SLE RA 9	100248	Si
4.15	-61.9452	-2.7681	-127.87	SLE RA 9	-5715	-61.9452	-2.7681	-127.87	SLE RA 9	121288	Si
4.45	-68.9477	-2.769	-126.41	SLE RA 9	-6323	-68.9477	-2.769	-126.41	SLE RA 9	142105	Si

Verifica delle tensioni sul calcestruzzo in combinazioni quasi permanenti

Tensione limite del calcestruzzo 13820 kN/m²

Coefficiente di omogeneizzazione impiegato 15

Quota	Mx	Му	N	Comb.	σc,max	Verifica
0	27.6622	-2.52	-120.22	SLE QP 1	-2058	Si
0.3	22.4006	-2.5269	-118.74	SLE QP 1	-1790	Si
0.59	17.1391	-2.5339	-117.25	SLE QP 1	-1522	Si
0.89	11.8776	-2.5409	-115.77	SLE QP 1	-1255	Si
1.19	6.6161	-2.5478	-114.29	SLE QP 1	-987	Si
1.48	1.3545	-2.5548	-112.8	SLE QP 1	-719	Si
1.78	-3.907	-2.5618	-111.32	SLE QP 1	-840	Si
2.08	-9.1685	-2.5688	-109.84	SLE QP 1	-1096	Si
2.37	-14.4301	-2.5757	-108.35	SLE QP 1	-1352	Si
2.67	-19.6916	-2.5827	-106.87	SLE QP 1	-1607	Si
2.97	-24.9531	-2.5897	-105.39	SLE QP 1	-1863	Si
3.26	-30.2147	-2.5966	-103.9	SLE QP 1	-2119	Si
3.56	-35.4762	-2.6036	-102.42	SLE QP 1	-3380	Si

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO

O REV.

FOGLIO **90 DI 124**

IA8E 00 D 78 CL FV0100 001 A

Quota	Mx	Му	N	Comb.	σc,max	Verifica
3.86	-40.7377	-2.6106	-100.94	SLE QP 1	-3852	Si
4.15	-45.9992	-2.6175	-99.45	SLE QP 1	-4318	Si
4.45	-51.1721	-2.6244	-97.99	SLE QP 1	-4771	Si

Verifica di apertura delle fessure nella famiglia di combinazioni frequente

Fessurazione non presente

Verifica di apertura delle fessure nella famiglia di combinazioni quasi permanente

Fessurazione non presente

Verifiche nodi trave colonna

Riepilogo dei dati per le diverse tipologie di verifica eseguite per i nodi

Pilastrata	Q.Nodo	Escluso	Confinato	Segnalazioni
Pilastrata 1	-0.6	Si	No	
Pilastrata 1	4.75	No	No	

Verifiche nodi trave colonna in combinazioni SLD

Parametri generali per la verifica secondo il D.M. 17-01-18 NTC §7.4.4.3

Pilastrata	Q.Nodo	Angolo	Staffe	Coperto	fywd	fcd	fctd	bc	hc	bw	bj	hjc	hjw	η	Ag	Ash	As1	As2	fyd
		travatura																	
Pilastrata	4.75	0	3X/3Y	Si	391304	20473	1373	0.5	0.4	0.4	0.5	0.292	0.499	0.421	0.2	0.00118	0.00077	0.0008	391304
1			ø10/12																l l
Pilastrata	4.75	90	3X/3Y	Si	391304	20473	1373	0.4	0.5	0.4	0.4	0.392	0.499	0.421	0.2	0.00118	0.00077	0.0008	391304
1			ø10/12																1

Riepilogo dei dati per la verifica del nodo secondo §7.4.4.3

Pilastro	1	Angolo	Tipo verifica	Vc	Vn	Vjbd	Vjhd	т,7.4.10	N	v,d	Vr	т,res,7.4.10	c.s.	Comb.	Segnalazioni	Verifica
		travatura														
Pilastrata 1	4.75	0	Compressione	0		331.301			0	0	1258.564		3.8	SLD 1		Si
			7.4.8													
Pilastrata 1	4.75	0	Trazione	0		331.301		1467	-	0.02		1848	1.26	SLD 11		Si
			7.4.10						87.967							
Pilastrata 1	4.75	0	Trazione	0			340.227		-	0.02	461.013	ĺ	1.36	SLD 11		Si
			7.4.11 0						87.967							
			7.4.12													
Pilastrata 1	4.75	90	Compressione	0		331.301			0	0	1351.62		4.08	SLD 1		Si
			7.4.8													
Pilastrata 1	4.75	90	Trazione	0		331.301		1090	-	0.02		2310	2.12	SLD 11		Si
			7.4.10						87.967							
Pilastrata 1	4.75	90	Trazione	0			340.227		-	0.02	460.995	ĺ	1.35	SLD 11		Si
			7.4.11 0						87.967							
			7.4.12													

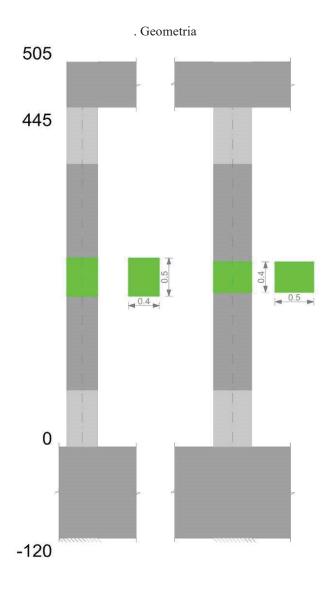
Verifiche nodi trave colonna in combinazioni SLV

Parametri generali per la verifica secondo il D.M. 17-01-18 NTC §7.4.4.3

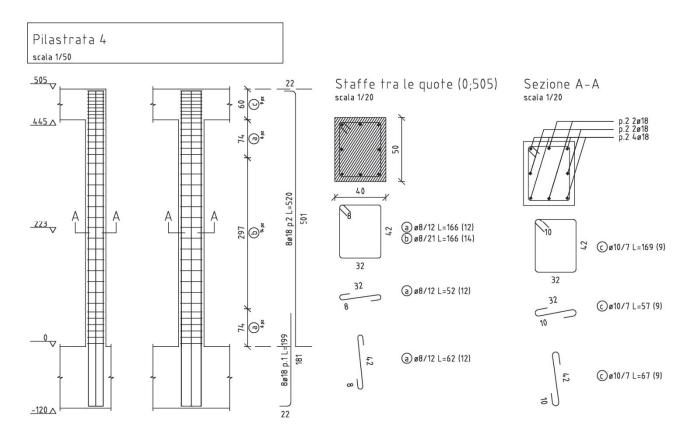
Pilastrata		Angolo travatura	Staffe	Coperto	fywd	fcd	fctd	bc	hc	bw	bj	hjc	hjw	η	Ag	Ash	As1	As2	fyd
Pilastrata	4.75	0	3X/3Y	Si	391304	20473	1373	0.5	0.4	0.4	0.5	0.292	0.499	0.421	0.2	0.00118	0.00077	0.0008	391304
1			ø10/12																
Pilastrata	4.75	90	3X/3Y	Si	391304	20473	1373	0.4	0.5	0.4	0.4	0.392	0.499	0.421	0.2	0.00118	0.00077	0.0008	391304
1			ø10/12																

Riepilogo dei dati per la verifica del nodo secondo §7.4.4.3

Pilastro		Angolo travatura		Vc	Vn	Vjbd	Vjhd	т,7.4.10	N	v,d	Vr	т,res,7.4.10	c.s.	Comb.	Segnalazioni	Verifica
Pilastrata 1	4.75	0	Compressione 7.4.8	0		331.301			0	0	1258.564		3.8	SLV 1		Si
Pilastrata 1	4.75	0	Trazione 7.4.10	0		331.301		1486	85.631	0.02		1848	1.24	SLV 11		Si
Pilastrata 1	4.75	0	Trazione 7.4.11 o 7.4.12	0			340.385		85.631	0.02	461.013		1.35	SLV 11		Si
Pilastrata 1	4.75	90	Compressione 7.4.8	0		331.301			0	0	1351.62		4.08	SLV 1		Si
Pilastrata 1	4.75	90	Trazione 7.4.10	0		331.301		1106	85.631	0.02		2310	2.09	SLV 11		Si


Pilastro	Q.Nodo	Angolo travatura	Tipo verifica	Vc	Vn	Vjbd	Vjhd	т,7.4.10	N	v,d	Vr	т,res,7.4.10	c.s.	Comb.	Segnalazioni	Verifica
Pilastrata 1	4.75	90	Trazione	0			340.385		-	0.02	460.995		1.35	SLV 11		Si
			7.4.11 0						85.631							1 1
			7.4.12													1

Verifiche di gerarchia delle resistenze nei nodi trave pilastro


Verifiche di gerarchia delle resistenze nei nodi trave pilastro non presenti in quanto la verifica è non necessaria per la pilastrata.

Pilastri interni

Dati della pilastrata

Campate costituenti la pilastrata

Q.inf.	Q.sup.	Sezione	Esistente	Secondaria	Dissipativa	Interna a	Sovraresistenza	Materiale CLS	Materiale Acciaio	FC
						parete				
0	4.45	PIL 40x50	No	No	Si	No		C32/40	B450C	

Disposizione delle armature longitudinali

Posizione	Х	Y	Diametro	Area	Q.inf.	Q.sup.	Sezione	Materiale
p.1	-0.1428	-0.1928	0.018	0.0002545	-0.6	0	PIL 40x50	B450C
p.1	0.1428	-0.1928	0.018	0.0002545	-0.6	0	PIL 40x50	B450C
p.1	0.1428	0.1928	0.018	0.0002545	-0.6	0	PIL 40x50	B450C
p.1	-0.1428	0.1928	0.018	0.0002545	-0.6	0	PIL 40x50	B450C
p.1	-0.146	0	0.018	0.0002545	-0.6	0	PIL 40x50	B450C
p.1	0.146	0	0.018	0.0002545	-0.6	0	PIL 40x50	B450C
p.1	0	-0.196	0.018	0.0002545	-0.6	0	PIL 40x50	B450C
p.1	0	0.196	0.018	0.0002545	-0.6	0	PIL 40x50	B450C
p.2	-0.1428	-0.1928	0.018	0.0002545	0	4.538	PIL 40x50	B450C
p.2	0.1428	-0.1928	0.018	0.0002545	0	4.538	PIL 40x50	B450C
p.2	0.1428	0.1928	0.018	0.0002545	0	4.538	PIL 40x50	B450C
p.2	-0.1428	0.1928	0.018	0.0002545	0	4.538	PIL 40x50	B450C
p.2	-0.146	0	0.018	0.0002545	0	4.538	PIL 40x50	B450C
p.2	0.146	0	0.018	0.0002545	0	4.538	PIL 40x50	B450C
p.2	0	-0.196	0.018	0.0002545	0	4.538	PIL 40x50	B450C
p.2	0	0.196	0.018	0.0002545	0	4.538	PIL 40x50	B450C

Controlli geometrici NTC18

Nessuna anomalia

Verifiche delle sezioni

Verifica a pressoflessione in SLU

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA8E 00 D 78 CL FV0100 001 A 94 DI 124

Quota	As	%	At	Pos.	Mx	Му	N	MRdx	MRdy	Comb.	Coeff.s.	Verifica
0	0.002036	2	0	1,2	9.6916	77.2142	-362.3	29.4586	234.6999	SLU 27	3.04	Si
0.3	0.002036	2	0	1,2	9.64	62.7296	-360.37	37.2412	242.3363	SLU 27	3.863	Si
0.59	0.002036	2	0	1,2	9.5884	48.2451	-358.45	46.9978	236.4739	SLU 27	4.902	Si
0.89	0.002036	1	0	2	9.5369	33.7606	-356.52	60.048	212.5705	SLU 27	6.296	Si
1.19	0.002036	1	0	2	9.4853	19.2761	-354.59	78.007	158.5266	SLU 27	8.224	Si
1.48	0.002036	1	0	2	9.4337	9.4337	-352.66	91.8307	91.8307	SLU 27	9.734	Si
1.78	0.002036	1	0	2	9.3821	-9.693	-350.73	91.386	-94.414	SLU 27	9.74	Si
2.08	0.002036	1	0	2	9.3305	-24.1775	-348.8	70.7904	-183.4339	SLU 27	7.587	Si
2.37	0.002036	1	0	2	9.2789	-38.662	-346.88	53.9122	-224.6329	SLU 27	5.81	Si
2.67	0.002036	1	0	2	9.2274	-53.1465	-344.95	41.9148	-241.4156	SLU 27	4.542	Si
2.97	0.002036	1	0	2	9.1758	-67.6311	-343.02	32.4097	-238.8792	SLU 27	3.532	Si
3.26	0.002036	1	0	2	-9.1242	-82.1156	-341.09	-25.2696	-227.4208	SLU 27	2.77	Si
3.56	0.002036	1	0	2	-9.0726	-96.6001	-339.16	-20.3691	-216.8792	SLU 27	2.245	Si
3.86	0.002036	1	0	2	-9.021	-111.0846	-337.23	-16.8039	-206.9221	SLU 27	1.863	Si
4.15	0.002036	1	0	2	-8.9694	-125.5691	-335.31	-14.0476	-196.6611	SLU 27	1.566	Si
4.45	0.002036	1	0	2	-8.9187	-139.8095	-333.41	-12.0224	-188.462	SLU 27	1.348	Si

Verifica a pressoflessione in SLV con sollecitazioni da gerarchia secondo formula [C7.4.3]

Quota	As	%	At	Pos.	α,x	α,y	Mx	My	N	MRdx	MRdy	Comb.	C.S.	Nmin	Nlim	Comb.Nmin	Ver.
0	0.002036	2	0	1,2			18.5219	86.9323	-226.32	40.3861	189.5515	SLV 9	2.18	226.32	2262.3	SLV 5	Si
0.3	0.002036	2	0	1,2	1	1		-				SLV 9-	1.731	224.84	2262.3	SLV 5	Si
								104.1396			180.2194	Ger.					
0.59	0.002036	2	0	1,2	1	1		-		-21.4394		SLV 9-	1.726	223.35	2262.3	SLV 5	Si
								104.1396			179.7719						
0.89	0.002036	1	0	2	1	1		-		-21.3861		SLV 9-	1.722	221.87	2262.3	SLV 5	Si
4 4 6						-		104.1396		04 000	179.3247		4 540	000.00	00.00		
1.19	0.002036	1	0	2	1	1					170 0707		1.718	220.39	2262.3	SLV 5	Si
1 40	0.002036	1	0	2	1	1		104.1396			178.8797	Ger. SLV 9-	1.713	218.9	2262.3	SLV 5	Si
1.40	0.002036	1	U		1	1		104.1396			178.4368		1./13	210.9	2202.3	SEV 3	21
1 70	0.002036	1	0	2	1	1		104.1396				SLV 9-	1 700	217.42	2262.3	SLV 5	Si
1.70	0.002036	1	U	2	1	1		104.1396			177.9961		1.709	217.42	2202.3	STA 2	SΤ
2 08	0.002036	1	0	2	1	1							1.705	215.94	2262.3	SLV 5	Si
2.00	0.002000	_	Ü	_	_	_		104.1396			177.5576		11,700	210.51	2202.0	021	"-
2.37	0.002036	1	0	2	1	1					-		1.701	214.45	2262.3	SLV 5	Si
								104.1396			177.1213						
2.67	0.002036	1	0	2	1	1	-12.4196	-	-212.97	-21.0715	-	SLV 9-	1.697	212.97	2262.3	SLV 5	Si
								104.1396			176.6871	Ger.					1
2.97	0.002036	1	0	2	1	1	-12.4196	-	-211.49	-21.02	-176.255	SLV 9-	1.692	211.49	2262.3	SLV 5	Si
								104.1396				Ger.					
3.26	0.002036	1	0	2	1	1		-		-20.9687	-175.825	SLV 9-	1.688	210	2262.3	SLV 5	Si
								104.1396				Ger.					
3.56	0.002036	1	0	2	1	1					-		1.684	208.52	2262.3	SLV 5	Si
								104.1396			175.3971						
3.86	0.002036	1	0	2	1	1	-12.4196	-		-20.8669		SLV 9-	1.68	207.04	2262.3	SLV 5	Si
4 4 5						_	40 4405	104.1396		00.04.54	174.9713		4 68 6	0.05 55	0050 0		
4.15	0.002036	1	0	2	1	1				-20.8164	-		1.676	205.55	2262.3	SLV 5	Si
4 45	0.00000	- 1	0	0	1	1		104.1396		00 7660	174.5476		1 670	004 00	0060 0	0777 5	0.1
4.45	0.002036	1	0	2	1	1	-12.4196	104.1396		-20.7669	174.1328		1.6/2	204.09	2262.3	SLV 5	Si
					Щ_		L	104.1396	l		1/4.1328	l					

Verifica a pressoflessione in SLD

Quota	As	%	At	Pos.	Mx	My	N	MRdx	MRdy	Comb.	Coeff.s.	Verifica
0	0.002036	2	0	1,2	15.0154	77.7721	-223.91	37.7786	195.6742	SLD 9	2.516	Si
0.3	0.002036	2	0	1,2	13.3413	66.0184	-222.43	41.6669	206.1865	SLD 9	3.123	Si
0.59	0.002036	2	0	1,2	11.6671	54.2647	-220.95	47.0097	218.6456	SLD 9	4.029	Si
0.89	0.002036	1	0	2	9.993	42.511	-219.46	54.423	231.5196	SLD 9	5.446	Si
1.19	0.002036	1	0	2	8.3189	30.7573	-217.98	62.7445	231.9847	SLD 9	7.542	Si
1.48	0.002036	1	0	2	6.6447	19.0036	-216.5	71.299	203.9107	SLD 9	10.73	Si
1.78	0.002036	1	0	2	4.9706	-19.8785	-194.41	54.7411	-218.9229	SLD 11	11.013	Si
2.08	0.002036	1	0	2	3.2965	-23.0791	-192.92	33.3466	-233.4657	SLD 11	10.116	Si
2.37	0.002036	1	0	2	1.6223	-26.2797	-191.44	15.0863	-244.3759	SLD 11	9.299	Si
2.67	0.002036	1	0	2	0.0519	-29.4802	-189.96	0.4435	-251.6815	SLD 7	8.537	Si
2.97	0.002036	1	0	2	1.726	-39.765	-209.08	10.6726	-245.8898	SLD 5	6.184	Si
3.26	0.002036	1	0	2	-3.4	-51.5187	-207.6	-15.038	-227.8626	SLD 9	4.423	Si
3.56	0.002036	1	0	2	-5.0741	-63.2724	-206.11	-17.0497	-212.6018	SLD 9	3.36	Si
3.86	0.002036	1	0	2	-6.7483	-75.0261	-204.63	-17.7761	-197.6316	SLD 9	2.634	Si
4.15	0.002036	1	0	2	-8.4224	-86.7798	-203.15	-18.0982	-186.474	SLD 9	2.149	Si
4.45	0.002036	1	0	2	-10.0683	-98.3355	-201.69	-18.1338	-177.1099	SLD 9	1.801	Si

Verifica di duttilità secondo D.M. 17-01-18 NTC $\S7.4.6.2.2$

Quota	α,n	α,s	α	ω,wd	αω,wd	v,d	Ac	lim. [7.4.29]	coeff. [7.4.29]	comb. [7.4.29]	Verifica
0	0.7176	0 6897	0 4949	0.102	0.0505	0.093	0 1344	0.0466	1 082	SLV 1	Si

Linea Taranto – Brindisi NUOVA STAZIONE DI NASISI

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

00 D 78 CL FV0100 001 95 DI 124 IA8E

					Direzione	Χ							Direzione	Υ				Verifica
Quota	Staffe	V	N	Comb.	VRd	VRsd	VRcd	Cot	c.s.	٧	N	Comb.	VRd	VRsd	VRcd	Cot	c.s.	
0	3X/3Y	-48.82	-362.3	SLU 27	125.38	371.63	515.79	2.5	7.61	0	-	SLU 1	103.23	479.03	511.31	2.5	1000	Si
	ø8/12.4										213.61							
0.3	3X/3Y	-48.82		SLU 27	125.12	371.63	515.53	2.5	7.61	0	-	SLU 1	103.03	479.03	511.11	2.5	1000	Si
	ø8/12.4		360.37								212.13							
0.59	3X/3Y	-48.82	-	SLU 27	124.87	371.63	515.27	2.5	7.61	0	-	SLU 1	102.84	479.03	510.9	2.5	1000	Si
	ø8/12.4		358.45								210.64							
0.89	2X/2Y	-48.82		SLU 27	124.62	144.52	515.02	2.5	2.96	0	-	SLU 1	102.64	186.29	510.7	2.5	1000	Si
	ø8/21.2		356.52								209.16							
1.19	2X/2Y	-48.82		SLU 27	124.37	144.52	514.76	2.5	2.96	0		SLU 1	102.44	186.29	510.49	2.5	1000	Si
	ø8/21.2		354.59								207.68							
1.48	2X/2Y	-48.82		SLU 27	124.12	144.52	514.5	2.5	2.96	0	- 10	SLU 1	102.24	186.29	510.28	2.5	1000	Si
4 50	ø8/21.2	40.00	352.66		400.00	444.50	544.04	0.5	0.00		206.19		400.04	406.00	540.00	0.5	4000	
1.78	2X/2Y Ø8/21.2	-48.82	350.73	SLU 27	123.87	144.52	514.24	2.5	2.96	0	204.71	SLU 1	102.04	186.29	510.08	2.5	1000	Si
2.08	2X/2Y	-48.82		SLU 27	100 00	144.52	E12 00	2.5	2.96	0	204.71	SLU 1	101 04	186.29	E00 07	2.5	1000	Si
2.00	Ø8/21.2	-40.02	-340.0	SEU 27	123.02	144.JZ	313.90	2.5	2.90	U	203.23	210 1	101.04	100.23	309.07	2.5	1000	21
2.37	2X/2Y	-48.82	_	SLU 27	123 37	144.52	513 72	2.5	2.96	Λ	203.23	SLU 1	101 65	186.29	509 67	2.5	1000	Si
2.57	Ø8/21.2	10.02	346.88	010 27	123.37	111.02	313.72	2.5	2.50	0	201.74	010 1	101.00	100.23	303.07	2.5	1000	01
2.67	2X/2Y	-48.82	-	SLU 27	123 12	144.52	513 46	2.5	2.96	0		SLU 1	101 45	186 29	509.46	2.5	1000	Si
	ø8/21.2		344.95							-	200.26							
2.97	2X/2Y	-48.82	-	SLU 27	122.87	144.52	513.2	2.5	2.96	0	_	SLU 1	101.25	186.29	509.26	2.5	1000	Si
	ø8/21.2		343.02								198.78							
3.26	2X/2Y	-48.82	-	SLU 27	122.62	144.52	512.95	2.5	2.96	0	=	SLU 1	101.05	186.29	509.05	2.5	1000	Si
	ø8/21.2		341.09								197.29							
3.56	2X/2Y	-48.82		SLU 27	122.37	144.52	512.69	2.5	2.96	0	-	SLU 1	100.85	186.29	508.85	2.5	1000	Si
	ø8/21.2		339.16								195.81							
3.86	3X/3Y	-48.82		SLU 27	122.12	371.63	512.43	2.5	7.61	0	-	SLU 1	100.65	479.03	508.64	2.5	1000	Si
	ø8/12.4		337.23								194.33							
4.15	3X/3Y	-48.82	-	SLU 27	121.87	371.63	512.17	2.5	7.61	0	-	SLU 1	100.45	479.03	508.44	2.5	1000	Si
	ø8/12.4		335.31		ļ						192.84		ļ					
4.45	3X/3Y	-48.82	-	SLU 27	121.63	371.63	511.91	2.5	7.61	0	-	SLU 1	100.26	479.03	508.23	2.5	1000	Si
	ø8/12.4		333.41								191.38							

Verifica a taglio in famiglia SLV

					Direzione	Х							Direzione	Υ				Verifica
Quota	Staffe	V	N	Comb.	VRd	VRsd	VRcd	Cot	c.s.	V	N	Comb.	VRd	VRsd	VRcd	Cot	c.s.	
0	3X/3Y	78.69	-	SLV 5-	107.73	371.63	497.54	2.5	4.72	101.88	-	SLV 5-	104.93	479.03	513.07	2.5	4.7	Si
	ø8/12.4		226.32	Ger.							226.32	Ger.						
0.3	3X/3Y	78.69		SLV 5-	107.54	371.63	497.34	2.5	4.72	101.88		SLV 5-	104.73	479.03	512.86	2.5	4.7	Si
	Ø8/12.4		224.84	Ger.							224.84	Ger.						
0.59	3X/3Y	78.69		SLV 5-	107.35	371.63	497.14	2.5	4.72	101.88		SLV 5-	104.54	479.03	512.66	2.5	4.7	Si
	ø8/12.4		223.35	Ger.							223.35	Ger.						
0.89	2X/2Y	78.69		SLV 5-	107.15	144.52	496.94	2.5	1.84	101.88		SLV 5-	104.34	186.29	512.45	2.5	1.83	Si
	ø8/21.2		221.87	Ger.							221.87	Ger.						
1.19	2X/2Y	78.69		SLV 5-	106.96	144.52	496.74	2.5	1.84	101.88		SLV 5-	104.14	186.29	512.25	2.5	1.83	Si
	ø8/21.2		220.39	Ger.							220.39	Ger.						
1.48	2X/2Y	78.69	-218.9	SLV 5-	106.77	144.52	496.54	2.5	1.84	101.88	-218.9	SLV 5-	103.94	186.29	512.04	2.5	1.83	Si
	ø8/21.2			Ger.								Ger.						
1.78	2X/2Y	78.69		SLV 5-	106.58	144.52	496.35	2.5	1.84	101.88		SLV 5-	103.74	186.29	511.84	2.5	1.83	Si
	ø8/21.2		217.42	Ger.							217.42	Ger.						
2.08	2X/2Y	78.69		SLV 5-	106.38	144.52	496.15	2.5	1.84	101.88		SLV 5-	103.54	186.29	511.63	2.5	1.83	Si
0.00	ø8/21.2	DO 60	215.94	Ger.	406.40	4 4 4 5 5	105 05	0.5		404 00	215.94	Ger.	400.05	406.00	544 40	0.5	4 00	
2.37	2X/2Y	78.69		SLV 5-	106.19	144.52	495.95	2.5	1.84	101.88		SLV 5-	103.35	186.29	511.43	2.5	1.83	Si
0.67	ø8/21.2	78.69	214.45	Ger.	100	144.52	495.75	2.5	1 0 4	101.88	214.45	Ger.	100 15	106.00	511.22	2.5	1 00	Si
2.67	2X/2Y ø8/21.2	78.69	212.97	SLV 5- Ger.	106	144.52	495.75	2.5	1.84	101.88	212.97	SLV 5- Ger.	103.15	186.29	511.22	2.5	1.83	Sl
2.97	2X/2Y	78.69		SLV 5-	105 01	144 50	495.55	2.5	1 0 4	101.88		SLV 5-	100 05	106 20	511.02	2.5	1.83	Si
2.97	Ø8/21.2	/8.69	211.49	Ger.	103.81	144.52	495.55	2.5	1.04	101.00	211.49	Ger.	102.95	100.29	511.02	2.5	1.03	51
3.26	2X/2Y	78.69		SLV 5-	105 61	1/// 52	495.35	2.5	1 9/	101.88		SLV 5-	102 75	186 20	510.81	2.5	1.83	Si
3.20	Ø8/21.2	70.05	210	Ger.	103.01	144.52	433.33	2.5	1.04	101.00	210	Ger.	102.75	100.23	310.01	2.5	1.00	31
3.56	2X/2Y	78.69		SLV 5-	105 /2	1/// 52	495.15	2.5	1 9/	101.88		SLV 5-	102 55	186 20	510.61	2.5	1.83	Si
3.30	Ø8/21.2	70.03	208.52	Ger.	103.42	111.02	450.10	2.5	1.04	101.00	208.52	Ger.	102.55	100.23	310.01	2.0	1.00	01
3.86	3X/3Y	78.69		SLV 5-	105.23	371.63	494.95	2.5	4.72	101.88		SLV 5-	102.35	479.03	510.4	2.5	4.7	Si
2.00	Ø8/12.4		207.04	Ger.			1				207.04	Ger.						
4.15	3X/3Y	78.69		SLV 5-	105.04	371.63	494.75	2.5	4.72	101.88		SLV 5-	102.15	479.03	510.2	2.5	4.7	Si
	Ø8/12.4		205.55	Ger.				"			205.55	Ger.						
4.45	3X/3Y	78.69	-	SLV 5-	104.85	371.63	494.56	2.5	4.72	101.88	-	SLV 5-	101.96	479.03	509.99	2.5	4.7	Si
	Ø8/12.4		204.09	Ger.							204.09	Ger.						

Tagli plastici secondo §7.4.4.2.1 [7.4.5] in combinazione SLV

Q.inf.	Q.sup.	Luce	γRd	MRdx,inf	MRdy,inf	N,inf	MRdx,sup	MRdy,sup	N,sup	VpI,x	Vpl,y	Comb.
0	4.45	4.45	1.1	208.92231		-226.319	203.23553		-204.094	78.692		SLV 5
0	4.45	4.45	1.1		161.41834	-226.319		156.92647	-204.094		101.882	SLV 5

Verifica a taglio in famiglia SLD Resistenza

					Direzione	Χ							Direzione	Υ				Verifica
Quota	Staffe	V	N	Comb.	VRd	VRsd	VRcd	Cot	c.s.	٧	N	Comb.	VRd	VRsd	VRcd	Cot	c.s.	
0	3X/3Y	-	-	SLD 9	107.42	371.63	497.22	2.5	9.38	-	-216.7	SLD 13	103.65	479.03	511.74	2.5	25.47	Si
	ø8/12.4	39.62	223.91		l					18.81								

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA8E 00 D 78 CL FV0100 001 A 96 DI 124

					Direzione	X							Direzione	Y				Verifica
Quota	Staffe	V	N	Comb.	VRd	VRsd	VRcd	Cot	c.s.	V	N	Comb.	VRd	VRsd	VRcd	Cot	c.s.	
0.3	3X/3Y	-	-	SLD 9	107.23	371.63	497.02	2.5	9.38	-	-	SLD 13	103.45	479.03	511.53	2.5	25.47	Si
	Ø8/12.4	39.62	222.43							18.81	215.22							
0.59	3X/3Y	-	-	SLD 9	107.03	371.63	496.82	2.5	9.38	-	-	SLD 13	103.25	479.03	511.33	2.5	25.47	Si
	ø8/12.4	39.62	220.95							18.81	213.73							
0.89	2X/2Y	-	-	SLD 9	106.84	144.52	496.62	2.5	3.65	-	-	SLD 13	103.05	186.29	511.12	2.5	9.9	Si
	ø8/21.2	39.62	219.46							18.81	212.25							
1.19	2X/2Y	-	-	SLD 9	106.65	144.52	496.42	2.5	3.65	1	-	SLD 13	102.85	186.29	510.92	2.5	9.9	Si
	ø8/21.2	39.62	217.98								210.77							
1.48	2X/2Y	-	-216.5	SLD 9	106.46	144.52	496.22	2.5	3.65		-	SLD 13	102.65	186.29	510.71	2.5	9.9	Si
	ø8/21.2	39.62									209.28							
1.78	2X/2Y	-	-	SLD 9	106.26	144.52	496.02	2.5	3.65		-207.8	SLD 13	102.46	186.29	510.51	2.5	9.9	Si
	ø8/21.2	39.62	215.01							18.81								
2.08	2X/2Y	-	-	SLD 9	106.07	144.52	495.82	2.5	3.65		-	SLD 13	102.26	186.29	510.3	2.5	9.9	Si
	ø8/21.2	39.62	213.53								206.32							
2.37	2X/2Y	-	-	SLD 9	105.88	144.52	495.62	2.5	3.65		-	SLD 13	102.06	186.29	510.1	2.5	9.9	Si
	ø8/21.2	39.62	212.05								204.83							
2.67	2X/2Y	-	-	SLD 9	105.69	144.52	495.43	2.5	3.65	1	-	SLD 13	101.86	186.29	509.89	2.5	9.9	Si
	ø8/21.2	39.62	210.56								203.35							
2.97	2X/2Y	-	-	SLD 9	105.49	144.52	495.23	2.5	3.65		-	SLD 13	101.66	186.29	509.69	2.5	9.9	Si
	ø8/21.2	39.62	209.08								201.87							
3.26	2X/2Y	-	-207.6	SLD 9	105.3	144.52	495.03	2.5	3.65	1	-	SLD 13	101.46	186.29	509.48	2.5	9.9	Si
	ø8/21.2	39.62									200.38							
3.56	2X/2Y	-	-	SLD 9	105.11	144.52	494.83	2.5	3.65		-198.9	SLD 13	101.26	186.29	509.28	2.5	9.9	Si
	ø8/21.2	39.62	206.11							18.81								
3.86	3X/3Y	-	-	SLD 9	104.92	371.63	494.63	2.5	9.38		-	SLD 13	101.07	479.03	509.07	2.5	25.47	Si
	Ø8/12.4	39.62	204.63								197.42							
4.15	3X/3Y	-	-	SLD 9	104.72	371.63	494.43	2.5	9.38	l	-	SLD 13	100.87	479.03	508.86	2.5	25.47	Si
	ø8/12.4	39.62	203.15								195.93							
4.45	3X/3Y		-	SLD 9	104.54	371.63	494.23	2.5	9.38	l	-	SLD 13	100.67	479.03	508.66	2.5	25.47	Si
	ø8/12.4	39.62	201.69		1		1	1		18.81	194.48		1	1	1	l	l	

Verifica delle tensioni in combinazioni rara

Tensione limite del calcestruzzo 18426 kN/m²

Tensione limite dell'acciaio 360000 kN/m²

Coefficiente di omogeneizzazione impiegato 15

Quota	Mx	Му	N	Comb.	σc,max	Mx	Му	N	Comb.	σf,max	Verifica
0	0.0006	56.6159	-270.02	SLE RA 9	-6329	0.0006	56.6159	-270.02	SLE RA 9	85110	Si
0.3	0.0006	45.9626	-268.53	SLE RA 9	-5067	0.0006	45.9626	-268.53	SLE RA 9	-56228	Si
0.59	0.0005	35.3093	-267.05	SLE RA 9	-3407	0.0005	35.3093	-267.05	SLE RA 9	-41997	Si
0.89	0.0004	24.656	-265.57	SLE RA 9	-2722	0.0004	24.656	-265.57	SLE RA 9	-34472	Si
1.19	0.0004	14.0027	-264.08	SLE RA 9	-2037	0.0004	14.0027	-264.08	SLE RA 9	-26947	Si
1.48	0.0003	3.3494	-262.6	SLE RA 9	-1352	0.0003	3.3494	-262.6	SLE RA 9	-19422	Si
1.78	0.0003	-7.3039	-261.12	SLE RA 9	-1598	0.0003	-7.3039	-261.12	SLE RA 9	-22083	Si
2.08	0.0002	-17.9572	-259.63	SLE RA 9	-2270	0.0002	-17.9572	-259.63	SLE RA 9	-29415	Si
2.37	0.0002	-28.6105	-258.15	SLE RA 9	-2942	0.0002	-28.6105	-258.15	SLE RA 9	-36747	Si
2.67	0.0001	-39.2638	-256.67	SLE RA 9	-4296	0.0001	-39.2638	-256.67	SLE RA 9	-48998	Si
2.97	0	-49.9171	-255.18	SLE RA 9	-5554	0	-49.9171	-255.18	SLE RA 9	68311	Si
3.26	0	-60.5704	-253.7	SLE RA 9	-6820	0	-60.5704	-253.7	SLE RA 9	105687	Si
3.56	-0.0001	-71.2237	-252.22	SLE RA 9	-8077	-0.0001	-71.2237	-252.22	SLE RA 9	144688	Si
3.86	-0.0001	-81.877	-250.73	SLE RA 9	-9324	-0.0001	-81.877	-250.73	SLE RA 9	184514	Si
4.15	-0.0002	-92.5303	-249.25	SLE RA 9	-10562	-0.0002	-92.5303	-249.25	SLE RA 9	224805	Si
4.45	-0.0002	-103.004	-247.79	SLE RA 9	-11774	-0.0002	-103.004	-247.79	SLE RA 9	264695	Si

Verifica delle tensioni sul calcestruzzo in combinazioni quasi permanenti

Tensione limite del calcestruzzo 13820 kN/m²

Coefficiente di omogeneizzazione impiegato 15

Quota	Mx	Му	N	Comb.	σc,max	Verifica
0	0.0006	38.5485	-213.61	SLE QP 1	-4265	Si
0.3	0.0005	31.0713	-212.13	SLE QP 1	-2899	Si
0.59	0.0005	23.5942	-210.64	SLE QP 1	-2416	Si
0.89	0.0004	16.1171	-209.16	SLE QP 1	-1934	Si
1.19	0.0004	8.6399	-207.68	SLE QP 1	-1451	Si
1.48	0.0003	1.1628	-206.19	SLE QP 1	-968	Si
1.78	0.0003	-6.3143	-204.71	SLE QP 1	-1290	Si
2.08	0.0002	-13.7915	-203.23	SLE QP 1	-1760	Si
2.37	0.0001	-21.2686	-201.74	SLE QP 1	-2230	Si
2.67	0.0001	-28.7458	-200.26	SLE QP 1	-2699	Si
2.97	0	-36.2229	-198.78	SLE QP 1	-4011	Si
3.26	0	-43.7	-197.29	SLE QP 1	-4901	Si
3.56	-0.0001	-51.1772	-195.81	SLE QP 1	-5787	Si

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA8E 00 D 78 CL FV0100 001 A 97 DI 124

Quota	Mx	Му	N	Comb.	σc,max	Verifica
3.86	-0.0001	-58.6543	-194.33	SLE QP 1	-6666	Si
4.15	-0.0002	-66.1314	-192.84	SLE QP 1	-7539	Si
4.45	-0.0002	-73.4826	-191.38	SLE QP 1	-8392	Si

Verifica di apertura delle fessure nella famiglia di combinazioni frequente

Valore limite di controllo 0,400 mm

Coefficiente di viscosità Fi = 1.7

Coefficiente di omogeneizzazione impiegato 15

Quota	Mx	My	N	Comb.	Mx,sr	My,sr	N,sr	σs	Ac,eff	ρ,eff	Sm	Wk	Fessurata	Verifica
0	0.0006	39.6074	-216.92										No	Si
0.3	0.0005	31.9441	-215.43										No	Si
0.59	0.0005	24.2808	-213.95										No	Si
0.89	0.0004	16.6175	-212.47										No	Si
1.19	0.0004	8.6399	-207.68										No	Si
1.48	0.0003	1.1628	-206.19										No	Si
1.78	0.0003	-6.3143	-204.71										No	Si
2.08	0.0002	-13.7915	-203.23										No	Si
2.37	0.0001	-21.6989	-205.05										No	Si
2.67	0.0001	-29.3622	-203.57										No	Si
2.97	0	-37.0255	-202.08										No	Si
3.26	0	-44.6888	-200.6										No	Si
3.56	-0.0001	-52.3521	-199.12										No	Si
3.86	-0.0001	-60.0153	-197.63	SLE FR 2	-0.0001	-59.5579	-5955.79	128768	0.04113	0.0309	0.2519	0.000094	Si	Si
4.15	-0.0002	-67.6786	-196.15	SLE FR 2	-0.0001	-57.5623	-5756.23	157785	0.04227	0.0301	0.2547	0.000117	Si	Si
4.45	-0.0002	-75.2128	-194.69	SLE FR 2	-0.0002	-56.088	-5608.8	186563	0.04311	0.0295	0.2567	0.000139	Si	Si

Verifica di apertura delle fessure nella famiglia di combinazioni quasi permanente

Valore limite di controllo 0,300 mm

Coefficiente di viscosità Fi = 1.7

Coefficiente di omogeneizzazione impiegato 15

Quota	Mx	My	N	Comb.	Mx,sr	My,sr	N,sr	σs	Ac,eff	ρ,eff	Sm	Wk	Fessurata	Verifica
0	0.0006	38.5485	-213.61										No	Si
0.3	0.0005	31.0713	-212.13										No	Si
0.59	0.0005	23.5942	-210.64										No	Si
0.89	0.0004	16.1171	-209.16										No	Si
1.19	0.0004	8.6399	-207.68										No	Si
1.48	0.0003	1.1628	-206.19										No	Si
1.78	0.0003	-6.3143	-204.71										No	Si
2.08	0.0002	-13.7915	-203.23										No	Si
2.37	0.0001	-21.2686	-201.74										No	Si
2.67	0.0001	-28.7458	-200.26										No	Si
2.97	0	-36.2229	-198.78										No	Si
3.26	0	-43.7	-197.29										No	Si
3.56	-0.0001	-51.1772	-195.81										No	Si
3.86	-0.0001	-58.6543	-194.33										No	Si
4.15	-0.0002	-66.1314	-192.84	SLE QP 1	-0.0001	-57.6495	-5764.95	153616	0.04222	0.0301	0.2545	0.000114	Si	Si
4.45	-0.0002	-73.4826	-191.38	SLE QP 1	-0.0002	-56.1622	-5616.22	181702	0.04307	0.0295	0.2566	0.000136	Si	Si

Verifiche nodi trave colonna

Riepilogo dei dati per le diverse tipologie di verifica eseguite per i nodi

Pilastrata	Q.Nodo	Escluso	Confinato	Segnalazioni
Pilastrata 3	-0.6	Si	No	
Pilastrata 3	4.75	No	No	

Verifiche nodi trave colonna in combinazioni SLD

Parametri generali per la verifica secondo il D.M. 17-01-18 NTC §7.4.4.3

	0									U									
Pilastrata	Q.Nodo	Angolo	Staffe	Coperto	fywd	fcd	fctd	bc	hc	bw	bj	hjc	hjw	η	Ag	Ash	As1	As2	fyd
		travatura																	
Pilastrata	4.75	90	3X/3Y	Si	391304	20473	1373	0.4	0.5	0.4	0.4	0.392	0.499	0.526	0.2	0.00212	0.00108	0.0008	391304
3			ø10/6.7																
Pilastrata	4.75	270	3X/3Y	Si	391304	20473	1373	0.4	0.5	0.4	0.4	0.392	0.499	0.526	0.2	0.00212	0.00108	0.0008	391304
3			ø10/6.7																

Pilastrata	Q.Nodo	Angolo	Staffe	Coperto	fywd	fcd	fctd	bc	hc	bw	bj	hjc	hjw	η	Ag	Ash	As1	As2	fyd
		travatura																	
Pilastrata	4.75	360	3X/3Y	Si	391304	20473	1373	0.5	0.4	0.4	0.5	0.292	0.493	0.421	0.2	0.00212	0.00077	0.00094	391304
3			ø10/6.7																

Riepilogo dei dati per la verifica del nodo secondo §7.4.4.3

Pilastro		Angolo travatura	Tipo verifica	Vc	Vn	Vjbd	Vjhd	т,7.4.10	N	v,d	Vr	т,res,7.4.10	c.s.	Comb.	Segnalazioni	Verifica
Pilastrata 3	4.75			0		809.998			0	0	1689.61		2.09	SLD 1		Si
Pilastrata 3	4.75	90	Trazione 7.4.11 o 7.4.12	0			809.998		0	0	829.823		1.02	SLD 1		Si
Pilastrata 3	4.75	270	Compressione 7.4.8	0		809.998			0	0	1689.61		2.09	SLD 1		Si
Pilastrata 3	4.75	270	Trazione 7.4.11 o 7.4.12	0			809.998		0	0	829.823		1.02	SLD 1		Si
Pilastrata 3	4.75	360	Compressione 7.4.8	0		331.301			0	0	1258.524		3.8	SLD 1		Si
Pilastrata 3	4.75	360	Trazione 7.4.10	0		331.301		887	- 181.055	0.04		3366	3.79	SLD 11		Si
Pilastrata 3	4.75	360	Trazione 7.4.11 o 7.4.12	0			391.325		181.055	0.04	829.79		2.12	SLD 11		Si

Verifiche nodi trave colonna in combinazioni SLV

Parametri generali per la verifica secondo il D.M. 17-01-18 NTC §7.4.4.3

	0									U									
Pilastrata	Q.Nodo	Angolo	Staffe	Coperto	fywd	fcd	fctd	bc	hc	bw	bj	hjc	hjw	η	Ag	Ash	As1	As2	fyd
		travatura																	
Pilastrata	4.75	90	3X/3Y	Si	391304	20473	1373	0.4	0.5	0.4	0.4	0.392	0.499	0.526	0.2	0.00212	0.00108	0.0008	391304
3			ø10/6.7															1 !	
Pilastrata	4.75	270	3X/3Y	Si	391304	20473	1373	0.4	0.5	0.4	0.4	0.392	0.499	0.526	0.2	0.00212	0.00108	0.0008	391304
3			ø10/6.7															1 !	
Pilastrata	4.75	360	3X/3Y	Si	391304	20473	1373	0.5	0.4	0.4	0.5	0.292	0.493	0.421	0.2	0.00212	0.00077	0.00094	391304
3	l		ø10/6 7	l														1 1	

Riepilogo dei dati per la verifica del nodo secondo §7.4.4.3

Pilastro	Q.Nodo	Angolo	Tipo verifica	Vc	Vn	Vjbd	Vjhd	т,7.4.10	N	v,d	Vr	т,res,7.4.10	c.s.	Comb.	Segnalazioni	Verifica
		travatura														
Pilastrata 3	4.75	90	Compressione 7.4.8	0		809.998			0	0	1689.61		2.09	SLV 1		Si
Pilastrata 3	4.75	90	Trazione 7.4.11 o 7.4.12	0			809.998		0	0	829.823		1.02	SLV 1		Si
Pilastrata 3	4.75	270	Compressione 7.4.8	0		809.998			0	0	1689.61		2.09	SLV 1		Si
Pilastrata 3	4.75	270	Trazione 7.4.11 o 7.4.12	0			809.998		0	0	829.823		1.02	SLV 1		Si
Pilastrata 3	4.75	360	Compressione 7.4.8	0		331.301			0	0	1258.524		3.8	SLV 1		Si
Pilastrata 3	4.75	360	Trazione 7.4.10	0		331.301		899	178.649	0.04		3366	3.74	SLV 11		Si
Pilastrata 3	4.75	360	Trazione 7.4.11 o 7.4.12	0			391.516		- 178.649	0.04	829.79		2.12	SLV 11		Si

Verifiche di gerarchia delle resistenze nei nodi trave pilastro

Verifiche di gerarchia delle resistenze nei nodi trave pilastro non presenti in quanto la verifica è non necessaria per la pilastrata.

12 VERIFICHE GEOTECNICHE E DELLE FONDAZIONI

Le travi di fondazione sono modellate tramite uno specifico elemento finito che gestisce il suolo elastico alla Winkler. Le fondazioni a plinto superficiale sono modellate con un numero elevato di molle verticali elastiche agenti su nodi collegati rigidamente al nodo centrale. Le fondazioni a platea sono modellate con l'inserimento di molle verticali elastiche agenti nei nodi delle mesh.

Verifica di scorrimento

La verifica di scorrimento della fondazione superficiale viene eseguita considerando le caratteristiche del terreno immediatamente sottostante al piano di posa della fondazione, ricavato in base alla stratigrafia associata all'elemento, e trascurando, a favore di sicurezza, l'eventuale spinta passiva laterale.

Qualora l'elemento in verifica sia formato da parti non omogenee tra loro, ad esempio una travata in cui le singole travi di fondazione siano associate ad un differente sondaggio, verranno condotte verifiche geotecniche distinte sui singoli tratti.

Lo scorrimento di una fondazione avviene nel momento in cui le componenti delle forze parallele al piano di contatto tra fondazione e terreno vincono l'attrito e la coesione terreno-fondazione e, qualora fosse presente, la spinta passiva laterale.

Il coefficiente di sicurezza a scorrimento si ottiene dal rapporto tra le forze stabilizzanti di progetto (Rd) e quelle instabilizzanti (Ed):

$$Rd = (N \cdot Tan(\varphi) + c_a \cdot B \cdot L + \alpha \cdot S_p) / \gamma_{Rs}$$
$$|Ed = \sqrt{T_x^2 + T_y^2}$$

dove:

N = risultante delle forze normali al piano di scorrimento;

Tx, Ty = componenti delle forze tangenziali al piano di scorrimento;

tan(phi) = coefficiente di attrito terreno-fondazione;

ca = aderenza alla base, pari alla coesione del terreno di fondazione o ad una sua frazione;

B, L = dimensioni della fondazione;

alpha = fattore di riduzione della spinta passiva;

Sp = spinta passiva dell'eventuale terreno laterale;

gamma rs = fattore di sicurezza parziale per lo scorrimento;

Le normative prevedono che il fattore di sicurezza a scorrimento FS=Rd/Ed sia non minore di un prefissato limite.

Verifica di capacità portante

La verifica di capacità portante della fondazione superficiale viene eseguita mediante formulazioni di letteratura geotecnica considerando le caratteristiche dei terreni sottostanti al piano di posa della fondazione, ricavati in base alla stratigrafia associata all'elemento.

Qualora l'elemento in verifica sia formato da parti non omogenee tra loro, ad esempio una travata in cui le singole travi di fondazione siano associate ad un differente sondaggio, verranno condotte verifiche geotecniche distinte sui singoli tratti.

La verifica viene fatta raffrontando la portanza di progetto (Rd) con la sollecitazione di progetto (Ed); la prima deriva dalla portanza calcolata con metodi della letteratura geotecnica, ridotta da opportuni fattori di sicurezza parziali; la seconda viene valutata ricavando la risultante della sollecitazione scaricata al suolo con una integrazione delle pressioni nel tratto di calcolo. Le normative prevedono che il fattore di sicurezza alla capacità portante, espresso come rapporto tra il carico ultimo di progetto della fondazione (Rd) ed il carico agente (Ed), sia non minore di un prefissato limite.

La portanza di una fondazione rappresenta il carico ultimo trasmissibile al suolo prima di arrivare alla rottura del terreno. Le formule di calcolo presenti in letteratura sono nate per la fondazione nastriforme indefinita ma aggiungono una serie di termini correttivi per considerare le effettive condizioni al contorno della fondazione, esprimendo la capacità portante ultima in termini di pressione limite agente su di una fondazione equivalente soggetta a carico centrato.

La determinazione della capacità portante ai fini della verifica è stata condotta secondo il metodo di Vesic, che viene descritto nei paragrafi successivi.

Metodo di Vesic

La capacità portante valutata attraverso la formula di Vesic risulta, nel caso generale:

$$Q_{\text{lim}} = c \cdot N_c \cdot s_c \cdot d_c \cdot i_c \cdot b_c \cdot g_c + q \cdot N_q \cdot s_q \cdot d_q \cdot i_q \cdot b_q \cdot g_q + \frac{1}{2} \gamma \cdot B \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \cdot i_\gamma \cdot b_\gamma \cdot g_\gamma$$

Nel caso di terreno eminentemente coesivo (phi = 0) tale relazione diventa:

$$Q_{\text{lim}} = (2+\pi) \cdot c_u \cdot (1+s'_c+d'_c-i'_c-b'_c-g'_c)+q$$

dove:

gamma' = peso di volume efficace dello strato di fondazione; = larghezza efficace della fondazione (B = Bf - 2e); В L = lunghezza efficace della fondazione (L = Lf - 2e); = coesione dello strato di fondazione; = coesione non drenata dello strato di fondazione; cu = sovraccarico del terreno sovrastante il piano di fondazione; q Nc, Nq, Ny = fattori di capacità portante; = fattori di forma della fondazione; sc, sq, sy dc, dq, dy = fattori di profondità del piano di posa della fondazione;

ic, iq, iy = fattori di inclinazione del carico;

bc, bq, by = fattori di inclinazione della base della fondazione;

= fattori di inclinazione del piano campagna; gc, gq, gy

Nel caso di piano di campagna inclinato (beta > 0) e phi = 0, Vesic propone l'aggiunta, nella formula sopra definita, del termine 0.5 * gamma * B * N gamma con N gamma = -2 * sen beta

00

IA8E

D 78 CL FV0100 001

FOGLIO

101 DI 124

Per la teoria di Vesic i coefficienti sopra definiti assumono le espressioni che seguono:

$$\begin{split} N_c &= \left(N_q - 1\right) \cdot ctg\phi \, ; \quad N_q = tg^2 \bigg(45^o + \frac{\phi}{2}\bigg) \cdot e^{(\pi \cdot tg\phi)} \, ; \quad N_\gamma = 2 \cdot \left(N_q + 1\right) \cdot tg\phi \\ s_c &= 1 + \frac{B}{L} \cdot \frac{N_q}{N_c} \, ; \quad s'_c = 0.2 \cdot \frac{B}{L} \, ; \quad s_q = 1 + \frac{B}{L} \cdot tg\phi \, ; \quad s_\gamma = 1 - 0.4 \cdot \frac{B}{L} \\ d_c &= 1 + 0.4 \cdot k \, ; \quad d'_c = 0.4 \cdot k \, ; \quad d_q = 1 + 2 \cdot k \cdot tg\phi \cdot \left(1 - \sin\phi\right)^2 \, ; \quad d_\gamma = 1 \\ i_c &= i_q - \frac{1 - i_q}{N_q - 1} \, ; \quad i'_c = \frac{m \cdot H}{B \cdot L \cdot c_a \cdot N_c} \, ; \quad i_q = \bigg(1 - \frac{H}{V + B \cdot L \cdot c_a \cdot ctg\phi}\bigg)^m \, ; \\ i_\gamma &= \bigg(1 - \frac{H}{V + B \cdot L \cdot c_a \cdot ctg\phi}\bigg)^{m+1} \\ g_c &= 1 - \frac{\beta^o}{147^o} \, ; \quad g'_c = \frac{\beta^o}{147^o} \, ; \quad g_q = \left(1 - tg\beta\right)^2 \, ; \quad g_\gamma = g_q \\ b_c &= 1 - \frac{\eta^o}{147^o} \, ; \quad b'_c = \frac{\eta^o}{147^o} \, ; \quad b_q = \left(1 - \eta \cdot tg\phi\right)^2 \, ; \quad b_\gamma = b_q \\ k &= \frac{D}{B_f} \quad (\text{se } \frac{D}{B_f} \leq 1) \, ; \quad k = arctg\bigg(\frac{D}{B_f}\bigg) \quad (\text{se } \frac{D}{B_f} > 1) \, ; \quad m = \frac{2 + \frac{B}{L}}{1 + \frac{B}{L}} \end{split}$$

nelle quali si sono considerati i seguenti dati:

phi = angolo di attrito dello strato di fondazione;

ca = aderenza alla base della fondazione;

nu = inclinazione del piano di posa della fondazione sull'orizzontale (nu = 0 se orizzontale);

beta = inclinazione del pendio;

H = componente orizzontale del carico trasmesso sul piano di posa della fondazione;

V = componente verticale del carico trasmesso sul piano di posa della fondazione;

D = profondità del piano di posa della fondazione dal piano campagna;

Influenza degli strati sulla capacità portante

Le formulazioni utilizzate per la portanza prevedono la presenza di uno stesso terreno nella zona interessata dalla potenziale rottura. In prima approssimazione lo spessore di tale zona è pari a:

$$H = \frac{1}{2} \cdot B \cdot Tan(45^{\circ} + \phi/2)$$

In presenza di stratificazioni di terreni diversi all'interno di tale zona, il calcolo diventa più complesso; non esiste una metodologia univoca per questi casi, differenti autori hanno proposto soluzioni diverse a seconda dei casi che si possono presentare. In prima approssimazione, nel caso di stratificazioni, viene trovata una media delle caratteristiche dei terreni, pesata sullo spessore degli strati interessati. Nel caso in cui il primo strato incontrato sia coesivo viene anche verificato che la compressione media agente sulla fondazione non superi la tensione limite di espulsione, circostanza che provocherebbe il rifluimento del terreno da sotto la fondazione, rendendo impossibile la portanza.

La tensione limite di espulsione qult per terreno coesivo viene calcolata come:

$$q_{ult} = 4c + q$$

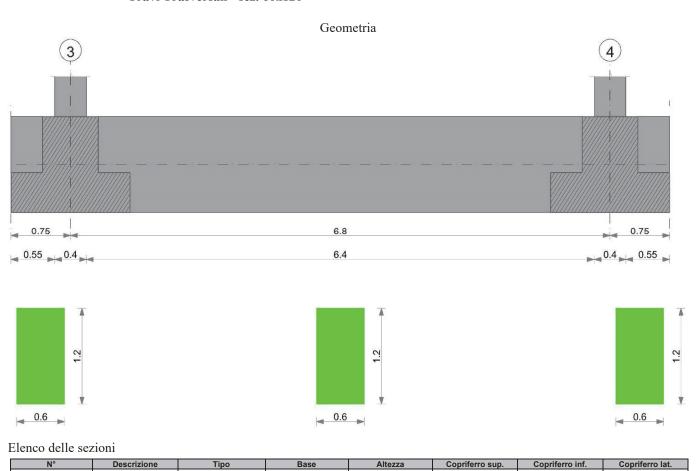
dove c è la coesione e q è il sovraccarico agente sul piano di posa.

Influenza del sisma sulla capacità portante

La capacità portante nelle combinazioni sismiche viene valutata mediante l'estensione di procedure classiche al caso di azione sismica.

L'effetto inerziale prodotto dalla struttura in elevazione sulla fondazione può essere considerato tenendo conto dell'effetto dell'inclinazione (rapporto tra forze T parallele al piano di posa e carico normale N) e dell'eccentricità (rapporto tra momento M e carico normale N) delle azioni in fondazione, e produce variazioni di tutti i coefficienti di capacità portante del carico limite, oltre alla riduzione dell'area efficace.

L'effetto cinematico si manifesta per effetto dell'inerzia delle masse del suolo sotto la fondazione come una riduzione della resistenza teorica calcolata in condizioni statiche; tale riduzione è in funzione del coefficiente sismico orizzontale kh, cioè dell'accelerazione normalizzata massima attesa al suolo, e delle caratteristiche del suolo. L'effetto è più marcato su terreni granulari, mentre nei suoli coesivi è poco rilevante.


Per tener conto nella determinazione del carico limite di tali effetti inerziali vengono introdotti nelle combinazioni sismiche anche i fattori correttivi e (earthquake), valutati secondo **Paolucci** e **Pecker**:

$$e_{q} = \left(1 - \frac{k_{h}}{tg\phi}\right)^{0.35}$$
; $e_{c} = 1 - 0.32 \cdot k_{h}$; $e_{\gamma} = e_{q}$

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO Linea Tarai Nuova stazi	nto – Brir	ndisi		
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 103 DI 124

12.1 TRAVI DI FONDAZIONE

Travi Trasversali - sez. 60x120

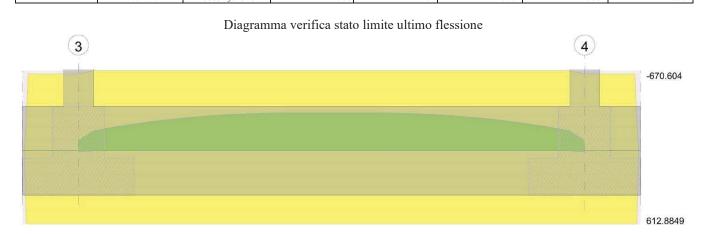
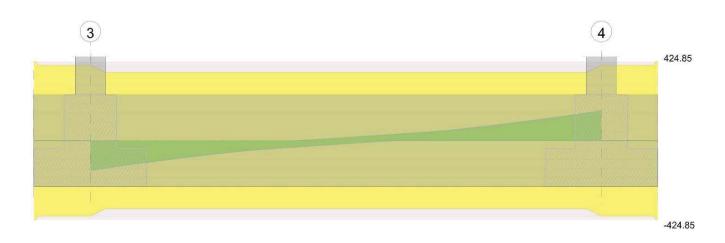
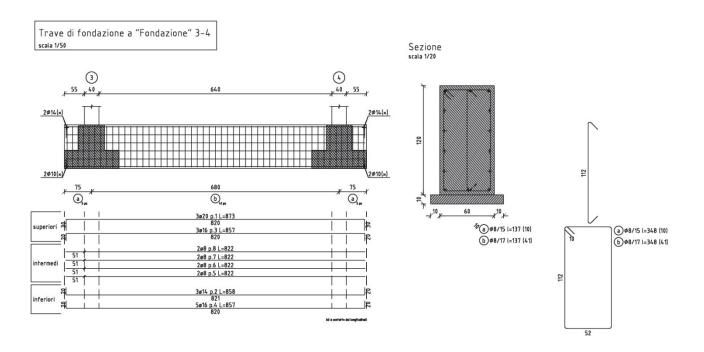




Diagramma verifica stato limite ultimo taglio

Output campate

Campata 2 tra i fili 3 - 4, sezione R 60x120, aste 32, 33, 34, 35, 36

Verifiche a flessione in famiglia SLU

x	A sup.	C.b.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
		sup.													
0	0.001546	0.057	0.001467	0.056						-66.9457	SLU 27	-66.9457	-670.604	0.058	Si
0.2	0.001546	0.057	0.001467	0.056						-97.781	SLU 27	-166.3286	-670.604	0.058	Si
2.95	0.001546	0.057	0.001467	0.056						-313.5748	SLU 27	-317.6312	-670.604	0.058	Si
3.4	0.001546	0.057	0.001467	0.056						-317.6312	SLU 27	-317.6312	-670.604	0.058	Si
6.6	0.001546	0.057	0.001467	0.056						-97.8022	SLU 27	-166.3482	-670.604	0.058	Si
6.8	0.001546	0.057	0.001467	0.056		·				-66.969	SLU 27	-66.969	-670.604	0.058	Si

Verifiche a flessione in famiglia SLV (domini sostanzialmente elastici)

La struttura oppure parte di essa, è stata dichiarata come non dissipativa pertanto la verifica a pressoflessione, per tutte o solo alcune sezioni, viene eseguita calcolando i momenti resistenti in campo sostanzialmente elastico secondo D.M. 17-01-2018 §7.4.1

Le dilatazioni ultime utilizzate sono le seguenti: $\epsilon c2=0.002$, $\epsilon yd=0.0019$

x	A sup.	C.b.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
		sup.													
0	0.001546	0.057	0.001467	0.056	19.4396	SLV FO 7	7.4014	612.8849	0.174	-83.6604	SLV FO 9	-83.6604	-643.2627	0.179	Si
0.2	0.001546	0.057	0.001467	0.056						-102.2451	SLV FO 5	-142.2228	-643.2627	0.179	Si
3.4	0.001546	0.057	0.001467	0.056						-203.4407	SLV FO 7	-208.2927	-643.2627	0.179	Si
3.85	0.001546	0.057	0.001467	0.056						-208.221	SLV FO 7	-208.4855	-643.2627	0.179	Si
6.6	0.001546	0.057	0.001467	0.056						-102.2538	SLV FO 7	-142.232	-643.2627	0.179	Si
6.8	0.001546	0.057	0.001467	0.056	19.4321	SLV FO 5	7.3948	612.8849	0.174	-83.6701	SLV FO	-83.6701	-643.2627	0.179	Si
											11				

Verifiche SLD Resistenza a flessione (domini sostanzialmente elastici)

La struttura oppure parte di essa, è stata dichiarata come non dissipativa pertanto la verifica a pressoflessione, per tutte o solo alcune sezioni, viene eseguita calcolando i momenti resistenti in campo sostanzialmente elastico secondo D.M. 17-01-2018 §7.4.1

Le dilatazioni ultime utilizzate sono le seguenti: εc2= 0.002, εyd= 0.0019

x	A sup.	C.b.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
		sup.													
0	0.001546	0.057	0.001467	0.056	5.8809	SLD 7	5.8531	612.8849	0.174	-70.1017	SLD 9	-70.1017	-643.2627	0.179	Si
0.2	0.001546	0.057	0.001467	0.056						-89.3133	SLD 5	-131.0618	-643.2627	0.179	Si
3.4	0.001546	0.057	0.001467	0.056						-203.4403	SLD 7	-206.2299	-643.2627	0.179	Si
6.6	0.001546	0.057	0.001467	0.056						-89.3217	SLD 7	-131.0706	-643.2627	0.179	Si
6.8	0.001546	0.057	0.001467	0.056	5.8731	SLD 5	5.8599	612.8849	0.174	-70.1111	SLD 11	-70.1111	-643.2627	0.179	Si

Verifiche a taglio in famiglia SLU

x	A st	A sl	A sag	Vela	Comb.	Vdes	Vrd	Vrcd	Vrsd	Vult	cotgθ	Verifica
0	0.00001	0.001546	0	-160.31	SLU 27	-160.31	-207.4	-2176.83	-404.46	-404.46	1	Si
0.2	0.0000091	0.001546	0	-148.25	SLU 27	-148.25	-207.4	-2176.83	-365.93	-365.93	1	Si
3.4	0.0000091	0.001546	0	0	SLU 27	0	-207.4	-2176.83	-365.93	-365.93	1	Si
6.6	0.0000091	0.001546	0	148.25	SLU 27	148.25	207.4	2176.83	365.93	365.93	1	Si
6.8	0.0000101	0.001546	0	160.31	SLU 27	160.31	207.4	2176.83	404.59	404.59	1	Si

Verifiche a taglio in famiglia SLV

	0	8										
х	A st	A sl	A sag	Vela	Comb.	Vdes	Vrd	Vrcd	Vrsd	Vult	cotgθ	Verifica
0	0.00001	0.001467	0	-120.5	SLV FO 7	-120.5	-203.97	-2179.75	-405.01	-405.01	1	Si
0.2	0.0000091	0.001546	0	-113.14	SLV FO 7	-113.14	-207.4	-2176.83	-365.93	-365.93	1	Si
3.4	0.0000091	0.001546	0	16.72	SLV FO 5	16.72	207.4	2176.83	365.93	365.93	1	Si
3.4	0.0000091	0.001546	0	-16.72	SLV FO 11	-16.72	-207.4	-2176.83	-365.93	-365.93	1	Si
6.6	0.0000091	0.001546	0	113.14	SLV FO 5	113.14	207.4	2176.83	365.93	365.93	1	Si
6.8	0.0000101	0.001467	0	120.5	SLV FO 5	120.5	203.97	2179.75	405.14	405.14	1	Si

Verifiche SLD Resistenza a taglio

			_									
х	A st	A sl	A sag	Vela	Comb.	Vdes	Vrd	Vrcd	Vrsd	Vult	cotgθ	Verifica
0	0.00001	0.001467	0	-117.46	SLD 7	-117.46	-203.97	-2179.75	-405.01	-405.01	1	Si
0.2	0.0000091	0.001546	0	-109.91	SLD 7	-109.91	-207.4	-2176.83	-365.93	-365.93	1	Si
3.4	0.0000091	0.001546	0	12.32	SLD 5	12.32	207.4	2176.83	365.93	365.93	1	Si
3.4	0.0000091	0.001546	0	-12.32	SLD 11	-12.32	-207.4	-2176.83	-365.93	-365.93	1	Si
6.6	0.0000091	0.001546	0	109.91	SLD 5	109.91	207.4	2176.83	365.93	365.93	1	Si
6.8	0.0000101	0.001467	0	117.46	SLD 5	117.46	203.97	2179.75	405.14	405.14	1	Si

Verifiche delle tensioni in esercizio

Х			R	ara						Quasi pe	rmanente				Verifica
	Mela	Comb.	Mdes	σς	σclim.	σf.	σflim.	Mela	Comb.	Mdes	σς	σclim.	σFRP	σ FRP lim.	
0	-48.9119	9	-48.9119	519	14940	29669	360000	-32.1104	1	-32.1104	341	11205	0	+∞	Si
0.2	-72.2645	9	-124.191	1318	14940	75333	360000	-53.0788	1	-99.7892	1059	11205	0	+∞	Si
3.4	-238.8793	9	-238.8793	2536	14940	144902	360000	-203.439	1	-203.439	2159	11205	0	+∞	Si
6.6	-72.2796	9	-124.205	1318	14940	75342	360000	-53.0865	1	-99.7966	1059	11205	0	+∞	Si
6.8	-48.9285	9	-48.9285	519	14940	29680	360000	-32.119	1	-32.119	341	11205	0	+∞	Si

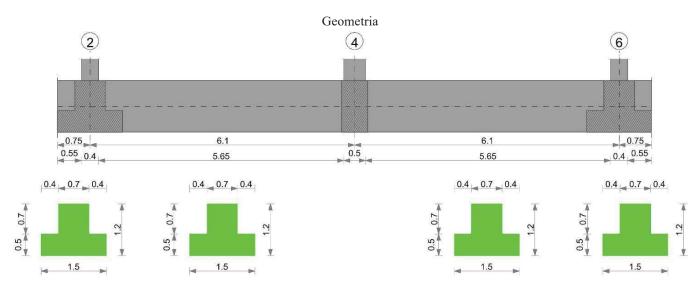
Verifica di apertura delle fessure

La campata non presenta apertura delle fessure

Verifiche geotecniche

Verifiche geotecniche di capacità portante sul piano di posa

Aste	Size X	Size Y	Comb	Type	Cond	γR	Rd	Ed	Rd/Ed	Verifica
32,33,34,35,36	6.8	0.8	SLU 27	ST	BT	2.3	1099.93	-497.41	2.21	Si
32,33,34,35,36	6.8	0.8	SLV FO 3	SIS	BT	2.3	999.25	-353.89	2.82	Si
32,33,34,35,36	6.8	0.8	SLD 3	SIS	BT	2.3	1025.72	-353.89	2.9	Si

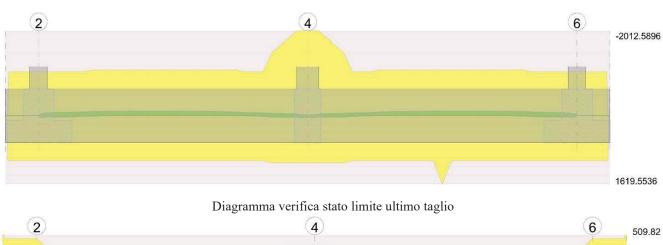

Verifiche geotecniche di capacità portante - parametri utilizzati nel calcolo di Rd

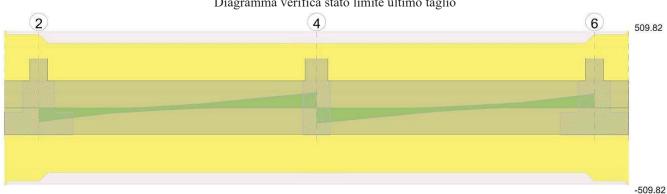
Fx	Fy	Fz	Mx	My	Inc.x	Inc.y	Ecc.x	Ecc.y	B'	Ľ,	qd	γs	Fi	Coes	Amax
0	0	-497.41	0	0.0208	0	0	0	0	0.8	6.8	24	0	0	60	0
4.89	8.59	-353.89	-10.4733	13.2435	0	1	0.04	-0.03	0.74	6.72	24	0	0	60	0.04
3.6	6.32	-353.89	-7.6977	9.7635	0	1	0.03	-0.02	0.76	6.74	24	0	0	60	0.02

Verifiche geotecniche di capacità portante - fattori utilizzati nel calcolo di Rd

	N			S			D			- 1			В			G			Р			E	
Nq	Nc	Ng	Sq	Sc	Sg	Dq	Dc	Dg	Iq	lc	lg	Bq	Bc	Bg	Gq	Gc	Gg	Pq	Pc	Pg	Eq	Ec	Eg
1	5	0	0	0.02	0	0	0.41	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0
1	5	0	0	0.02	0	0	0.41	0	0	0.01	0	0	0	0	0	0	0	1	1	1	0	0	0
1	5	0	0	0.02	0	0	0.41	0	0	0.01	0	0	0	0	0	0	0	1	1	1	0	0	0

Travi rovesce - sez. 150x120




Elenco delle sezioni

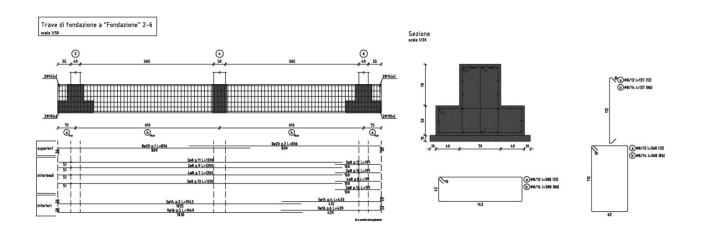

0.7	1.2		0.5	0.4	0.4	0.04	0.04	0.04
	0.7	0.7	0.7	0.7	0.7 1.2 0.5 0.4	0.7 1.2 0.5 0.4 0.4	0.7 1.2 0.5 0.4 0.4 0.04	0.7 1.2 0.5 0.4 0.4 0.04 0.04

Diagramma verifica stato limite ultimo flessione

Output campate

Campata 2 tra i fili 2 - 4, sezione TR (40+40+70)x120, aste 16, 17, 18, 19

Verifiche a flessione in famiglia SLU

Х	A sup.	C.b.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
		sup.													
0	0.002513	0.058	0.002579	0.056	5.1512	SLU 27	4.1234	1112.9541	0.066						Si

х	A sup.	C.b.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
		sup.													
0.2	0.002513	0.058	0.002579	0.056						-12.6301	SLU 27	-51.2501	-	0.063	Si
													1082.7915		
2.44	0.002513	0.058	0.002579	0.056						-113.6252	SLU 27	-114.5395		0.063	Si
													1082.7915		
3.05	0.002513	0.058	0.002579	0.056						-112.5315	SLU 27	-114.5395	1	0.063	Si
													1082.7915		
5.85	0.005027	0.058	0.002579	0.056	34.8141	SLU 27	34.8141	1112.9009	0.059	0.1439	SLU 1	-29.4096	-	0.107	Si
													2143.7863		
6.1	0.005027	0.058	0.002579	0.056	59.1449	SLU 27	46.5225	1112.9009	0.059						Si

Verifiche a flessione in famiglia SLV (domini sostanzialmente elastici)

La struttura oppure parte di essa, è stata dichiarata come non dissipativa pertanto la verifica a pressoflessione, per tutte o solo alcune sezioni, viene eseguita calcolando i momenti resistenti in campo sostanzialmente elastico secondo D.M. 17-01-2018 §7.4.1

Le dilatazioni ultime utilizzate sono le seguenti: εc2= 0.002, εyd= 0.0019

х	A sup.	C.b.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
		sup.													
0	0.002513	0.058	0.002579	0.056	44.1325	SLV FO	37.549	1065.505	0.207	-36.9402	SLV FO 1	-36.9402	-	0.204	Si
						15							1038.8293		
0.2	0.002513	0.058	0.002579	0.056	31.8238	SLV FO	31.8238	1065.505	0.207	-46.4735	SLV FO 3	-69.66	-	0.204	Si
						13							1038.8293		
2.44	0.002513	0.058	0.002579	0.056						-99.7907	SLV FO 7	-100.7245	-	0.204	Si
													1038.8293		
3.05	0.002513	0.058	0.002579	0.056						-99.7482	SLV FO 7	-100.7245	-	0.204	Si
													1038.8293		
5.85	0.005027	0.058	0.002579	0.056	32.0291	SLV FO 1	32.0291	1076.3163	0.189	-31.7412	SLV FO	-47.8823	-	0.289	Si
											15		2012.5896		
6.1	0.005027	0.058	0.002579	0.056	47.7416	SLV FO 1	39.6571	1076.3163	0.189	-22.2764	SLV FO	-22.2764	-	0.289	Si
											15		2012.5896		

Verifiche SLD Resistenza a flessione (domini sostanzialmente elastici)

La struttura oppure parte di essa, è stata dichiarata come non dissipativa pertanto la verifica a pressoflessione, per tutte o solo alcune sezioni, viene eseguita calcolando i momenti resistenti in campo sostanzialmente elastico secondo D.M. 17-01-2018 §7.4.1

Le dilatazioni ultime utilizzate sono le seguenti: cc2= 0.002, eyd= 0.0019

					_			•							
х	A sup.	C.b.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
		sup.													
0	0.002513	0.058	0.002579	0.056	33.4705	SLD 15	27.1222	1065.505	0.207	-26.2783	SLD 1	-26.2783	-	0.204	Si
													1038.8293		
0.2	0.002513	0.058	0.002579	0.056	21.5268	SLD 13	21.5268	1065.505	0.207	-36.1766	SLD 3	-59.5406	-	0.204	Si
													1038.8293		
2.44	0.002513	0.058	0.002579	0.056						-92.4632	SLD 7	-93.5269	-	0.204	Si
													1038.8293		
3.05	0.002513	0.058	0.002579	0.056						-92.7344	SLD 7	-93.5269	-	0.204	Si
													1038.8293		
5.85	0.005027	0.058	0.002579	0.056	23.6426	SLD 1	23.6426	1076.3163	0.189	-23.3548	SLD 15	-41.2385	-	0.289	Si
													2012.5896		
6.1	0.005027	0.058	0.002579	0.056	38.5335	SLD 1	30.8553	1076.3163	0.189	-13.0683	SLD 15	-13.0683	-	0.289	Si
													2012.5896		

Verifiche a taglio in famiglia SLU

	0	8										
х	A st	A sl	A sag	Vela	Comb.	Vdes	Vrd	Vrcd	Vrsd	Vult	cotgθ	Verifica
0	0.0000121	0.002579	0	-92.79	SLU 27	-92.79	-272.81	-2543	-486.16	-486.16	1	Si
0.2	0.0000106	0.002513	0	-85.07	SLU 27	-85.07	-270.19	-2537.9	-427.52	-427.52	1	Si
3.05	0.0000106	0.002513	0	11.16	SLU 27	11.16	270.19	2537.9	427.52	427.52	1	Si
5.85	0.0000106	0.002579	0	93.67	SLU 27	93.67	272.81	2543	428.38	428.38	1	Si
6.1	0.0000106	0.002579	0	101	SLU 27	101	272.81	2543	428.38	428.38	1	Si

Verifiche a taglio in famiglia SLV

X	A st	A sl	A sag	Vela	Comb.	Vdes	Vrd	Vrcd	Vrsd	Vult	cotgθ	Verifica
0	0.0000121	0.002579	0	-75.67	SLV FO 11	-75.67	-272.81	-2543	-486.16	-486.16	1	Si
0.2	0.0000106	0.002579	0	-69.97	SLV FO 11	-69.97	-272.81	-2543	-428.38	-428.38	1	Si
3.05	0.0000106	0.002513	0	16.55	SLV FO 1	16.55	270.19	2537.9	427.52	427.52	1	Si
3.05	0.0000106	0.002513	0	-9.79	SLV FO 15	-9.79	-270.19	-2537.9	-427.52	-427.52	1	Si
5.85	0.0000106	0.002579	0	68.06	SLV FO 3	68.06	272.81	2543	428.38	428.38	1	Si
6.1	0.0000106	0.002579	0	72.34	SLV FO 3	72.34	272.81	2543	428.38	428.38	1	Si

Verifiche SLD Resistenza a taglio

х	A st	A sl	A sag	Vela	Comb.	Vdes	Vrd	Vrcd	Vrsd	Vult	cotgθ	Verifica
0	0.0000121	0.002579	0	-70.74	SLD 11	-70.74	-272.81	-2543	-486.16	-486.16	1	Si
0.2	0.0000106	0.002579	0	-65.33	SLD 11	-65.33	-272.81	-2543	-428.38	-428.38	1	Si
3.05	0.0000106	0.002513	0	13.08	SLD 1	13.08	270.19	2537.9	427.52	427.52	1	Si
3.05	0.0000106	0.002513	0	-6.33	SLD 15	-6.33	-270.19	-2537.9	-427.52	-427.52	1	Si
5.85	0.0000106	0.002579	0	62.89	SLD 3	62.89	272.81	2543	428.38	428.38	1	Si
6.1	0.0000106	0.002579	0	67.08	SLD 3	67.08	272.81	2543	428.38	428.38	1	Si

Verifiche delle tensioni in esercizio

х			R	ara						Quasi pe	rmanente				Verifica
	Mela	Comb.	Mdes	σς	σc lim.	σf.	σflim.	Mela	Comb.	Mdes	σς	σc lim.	σ FRP	σ FRP lim.	
														11111.	
0	3.9136	9	3.028	23	14940	1107	360000	3.5961	1	2.0933	16	11205	0	+∞	Si
0.2	-9.3967	9	-38.3249	200	14940	14157	360000	-7.3249	1	-31.1864	163	11205	0	+∞	Si
3.05	-84.7653	9	-86.0978	450	14940	31805	360000	-73.0819	1	-73.4156	383	11205	0	+∞	Si
5.85	23.2286	9	23.2286	152	14940	8405	360000	0.1439	1	0.1439	1	11205	0	+∞	Si
6.1	41.1276	9	31.8407	208	14940	11521	360000	12.7326	1	6.1925	40	11205	0	+∞	Si

Verifica di apertura delle fessure

La campata non presenta apertura delle fessure

Campata 3 tra i fili 4 - 6, sezione TR (40+40+70)x120, aste 20, 21, 22, 23

Verifiche a flessione in famiglia SLU

х	A sup.	C.b.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
		sup.													
0	0.005027	0.058	0.002579	0.056	59.1449	SLU 27	46.5225	1112.9009	0.059						Si
0.25	0.005027	0.058	0.002579	0.056	34.8124	SLU 27	34.8124	1112.9009	0.059	0.1427	SLU 1	-29.4138	=	0.107	Si
													2143.7863		
3.05	0.002513	0.058	0.003996	0.056						-112.5412	SLU 27	-114.5488	=	0.059	Si
													1083.7965		
3.46	0.002513	0.058	0.002579	0.056						-114.5488	SLU 27	-114.5488	=	0.063	Si
													1082.7915		
5.9	0.002513	0.058	0.002579	0.056						-12.6301	SLU 27	-51.2529	-	0.063	Si
													1082.7915		
6.1	0.002513	0.058	0.002579	0.056	5.1519	SLU 27	4.1227	1112.9541	0.066						Si

Verifiche a flessione in famiglia SLV (domini sostanzialmente elastici)

La struttura oppure parte di essa, è stata dichiarata come non dissipativa pertanto la verifica a pressoflessione, per tutte o solo alcune sezioni, viene eseguita calcolando i momenti resistenti in campo sostanzialmente elastico secondo D.M. 17-01-2018 §7.4.1

Le dilatazioni ultime utilizzate sono le seguenti: $\varepsilon c2 = 0.002$, $\varepsilon yd = 0.0019$

х	A sup.	C.b.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
		sup.													
0	0.005027	0.058	0.002579	0.056	47.7418	SLV FO	39.6569	1076.3163	0.189	-22.2765	SLV FO 3	-22.2765	-	0.289	Si
						13							2012.5896		
0.25	0.005027	0.058	0.002579	0.056	32.0283	SLV FO	32.0283	1076.3163	0.189	-31.7428	SLV FO 3	-47.8859	-	0.289	Si
						13							2012.5896		
3.05	0.002513	0.058	0.003996	0.056						-99.7552	SLV FO	-100.7313	-	0.193	Si
											11		1045.4234		
3.25	0.002513	0.058	0.002579	0.056						-100.7114	SLV FO	-100.7313	-	0.204	Si
											11		1038.8293		
5.9	0.002513	0.058	0.002579	0.056	31.8236	SLV FO 1	31.8236	1065.505	0.207	-46.4733	SLV FO	-69.6617	-	0.204	Si
											15		1038.8293		
6.1	0.002513	0.058	0.002579	0.056	44.1329	SLV FO 3	37.5492	1065.505	0.207	-36.9397	SLV FO	-36.9397	-	0.204	Si
											13		1038.8293		

Verifiche SLD Resistenza a flessione (domini sostanzialmente elastici)

La struttura oppure parte di essa, è stata dichiarata come non dissipativa pertanto la verifica a pressoflessione, per tutte o solo alcune sezioni, viene eseguita calcolando i momenti resistenti in campo sostanzialmente elastico secondo D.M. 17-01-2018 §7.4.1

Le dilatazioni ultime utilizzate sono le seguenti: cc2= 0.002, cyd= 0.0019

								-							
х	A sup.	C.b. sup.	A inf.	C.b. inf.	M+ela	Comb.	M+des	M+ult	x/d	M-ela	Comb.	M-des	M-ult	x/d	Verifica
0	0.005027		0.002579	0.056	38.5336	SLD 13	30.855	1076.3163	0.189	-13.0684	SLD 3	-13.0684	2012.5896	0.289	Si
0.25	0.005027	0.058	0.002579	0.056	23.6417	SLD 13	23.6417	1076.3163	0.189	-23.3562	SLD 3	-41.242	- 2012.5896	0.289	Si
2.85	0.002513	0.058	0.002579	0.056						-91.086	SLD 11	-93.5338	1038.8293	0.204	Si
3.05	0.002513	0.058	0.003996	0.056						-92.7413	SLD 11	-93.5338	1045.4234	0.193	Si
5.9	0.002513	0.058	0.002579	0.056	21.5267	SLD 1	21.5267	1065.505	0.207	-36.1764	SLD 15	-59.5424	1038.8293	0.204	Si
6.1	0.002513	0.058	0.002579	0.056	33.471	SLD 3	27.1225	1065.505	0.207	-26.2778	SLD 13	-26.2778	1038.8293	0.204	Si

Verifiche a taglio in famiglia SLU

Х	A st	A sl	A sag	Vela	Comb.	Vdes	Vrd	Vrcd	Vrsd	Vult	cotgθ	Verifica
0	0.0000106	0.002579	0	-101.01	SLU 27	-101.01	-272.81	-2543	-428.38	-428.38	1	Si
0.25	0.0000106	0.002579	0	-93.68	SLU 27	-93.68	-272.81	-2543	-428.38	-428.38	1	Si
3.05	0.0000106	0.002513	0	-11.16	SLU 27	-11.16	-270.19	-2537.9	-427.52	-427.52	1	Si
5.9	0.0000106	0.002513	0	85.07	SLU 27	85.07	270.19	2537.9	427.52	427.52	1	Si
6.1	0.0000121	0.002579	0	92.8	SLU 27	92.8	272.81	2543	486.16	486.16	1	Si

Verifiche a taglio in famiglia SLV

х	A st	A sl	A sag	Vela	Comb.	Vdes	Vrd	Vrcd	Vrsd	Vult	cotgθ	Verifica
0	0.0000106	0.002579	0	-72.34	SLV FO 15	-72.34	-272.81	-2543	-428.38	-428.38	1	Si
0.25	0.0000106	0.002579	0	-68.07	SLV FO 15	-68.07	-272.81	-2543	-428.38	-428.38	1	Si
3.05	0.0000106	0.002513	0	9.79	SLV FO 3	9.79	270.19	2537.9	427.52	427.52	1	Si
3.05	0.0000106	0.002513	0	-16.55	SLV FO 13	-16.55	-270.19	-2537.9	-427.52	-427.52	1	Si
5.9	0.0000106	0.002579	0	69.98	SLV FO 7	69.98	272.81	2543	428.38	428.38	1	Si
6.1	0.0000121	0.002579	0	75.67	SLV FO 7	75.67	272.81	2543	486.16	486.16	1	Si

Verifiche SLD Resistenza a taglio

х	A st	A sl	A sag	Vela	Comb.	Vdes	Vrd	Vrcd	Vrsd	Vult	cotgθ	Verifica
0	0.0000106	0.002579	0	-67.08	SLD 15	-67.08	-272.81	-2543	-428.38	-428.38	1	Si
0.25	0.0000106	0.002579	0	-62.89	SLD 15	-62.89	-272.81	-2543	-428.38	-428.38	1	Si
3.05	0.0000106	0.002513	0	6.33	SLD 3	6.33	270.19	2537.9	427.52	427.52	1	Si
3.05	0.0000106	0.002513	0	-13.08	SLD 13	-13.08	-270.19	-2537.9	-427.52	-427.52	1	Si
5.9	0.0000106	0.002579	0	65.33	SLD 7	65.33	272.81	2543	428.38	428.38	1	Si
6.1	0.0000121	0.002579	0	70.74	SLD 7	70.74	272.81	2543	486.16	486.16	1	Si

Verifiche delle tensioni in esercizio

Х			R	ara						Quasi pe	rmanente)			Verifica
	Mela	Comb.	Mdes	σс	σclim.	σf.	σf lim.	Mela	Comb.	Mdes	σς	σclim.	σ FRP	σ FRP	
														lim.	
0	41.1276	9	31.8407	208	14940	11521	360000	12.7326	1	6.1925	40	11205	0	+∞	Si
0.25	23.2273	9	23.2273	152	14940	8404	360000	0.1427	1	0.1427	1	11205	0	+∞	Si
3.05	-84.7726	9	-86.1049	427	14940	31725	360000	-73.0887	1	-73.4223	364	11205	0	+∞	Si
5.9	-9.3967	9	-38.327	200	14940	14158	360000	-7.3248	1	-31.1884	163	11205	0	+∞	Si
6.1	3.9141	9	3.0275	23	14940	1107	360000	3.5966	1	2.0929	16	11205	0	+∞	Si

Verifica di apertura delle fessure

La campata non presenta apertura delle fessure

Funzionamento trasversale della suola di fondazione

Campata 2 tra i fili 2 - 4, sezione TR (40+40+70)x120, aste 16, 17, 18, 19

Verifiche di resistenza della suola di fondazione

x	d	Af	M	Comb	x/d	Mult	V	Comb	Vult	Verifica
0	0.46	0.0004	5.54	SLU 27	0.032	70.84	22	SLU 27	189	Si
0.2	0.46	0.0004	5.49	SLU 27	0.029	62.5	22	SLU 27	171	Si
3.05	0.46	0.0004	4.91	SLU 27	0.029	62.5	20	SLU 27	171	Si
5.85	0.46	0.0004	4.83	SLU 27	0.029	62.5	19	SLU 27	171	Si
6.1	0.46	0.0004	4.83	SLU 27	0.029	62.5	19	SLU 27	171	Si

Verifiche delle tensioni di esercizio

					Ra	ıra				Quasi per	rmanente		Verifica
х	d	Af	M	Comb	σς	σ c limite	σf	σ f limite	M	Comb	σς	σ c limite	
0	0.46	0.00000402	4.2	SLE RA 9	101	14940	1510	360000	3.77	SLE QP 1	90	11205	Si
0.2	0.46	0.00000354	4.15	SLE RA 9	100	14940	1496	360000	3.73	SLE QP 1	90	11205	Si
3.05	0.46	0.00000354	3.71	SLE RA 9	89	14940	1336	360000	3.3	SLE QP 1	79	11205	Si
5.85	0.46	0.00000354	3.65	SLE RA 9	88	14940	1313	360000	3.21	SLE QP 1	77	11205	Si
6.1	0.46	0.00000354	3.65	SLE RA 9	88	14940	1313	360000	3.21	SLE QP 1	77	11205	Si

Verifiche di apertura delle fessure

La campata non presenta apertura delle fessure nella suola

Campata 3 tra i fili 4 - 6, sezione TR (40+40+70)x120, aste 20, 21, 22, 23

Verifiche di resistenza della suola di fondazione

х	d	Af	M	Comb	x/d	Mult	V	Comb	Vult	Verifica
0	0.46	0.0004	4.83	SLU 27	0.029	62.5	19	SLU 27	171	Si
0.25	0.46	0.0004	4.83	SLU 27	0.029	62.5	19	SLU 27	171	Si
3.05	0.46	0.0004	4.91	SLU 27	0.029	62.5	20	SLU 27	171	Si
5.9	0.46	0.0004	5.49	SLU 27	0.029	62.5	22	SLU 27	171	Si
6.1	0.46	0.0004	5.54	SLU 27	0.032	70.84	22	SLU 27	189	Si

Verifiche delle tensioni di esercizio

					Ra	ıra			Verifica				
х	d	Af	M	Comb	σς	σ c limite	σf	σ f limite	M	Comb	σς	σ c limite	
0	0.46	0.00000354	3.65	SLE RA 9	88	14940	1313	360000	3.21	SLE QP 1	77	11205	Si
0.25	0.46	0.00000354	3.65	SLE RA 9	88	14940	1313	360000	3.21	SLE QP 1	77	11205	Si
3.05	0.46	0.00000354	3.71	SLE RA 9	89	14940	1336	360000	3.3	SLE QP 1	79	11205	Si
5.9	0.46	0.00000354	4.15	SLE RA 9	100	14940	1496	360000	3.73	SLE QP 1	90	11205	Si
6.1	0.46	0.00000402	4.2	SLE RA 9	101	14940	1510	360000	3.77	SLE QP 1	90	11205	Si

Verifiche di apertura delle fessure

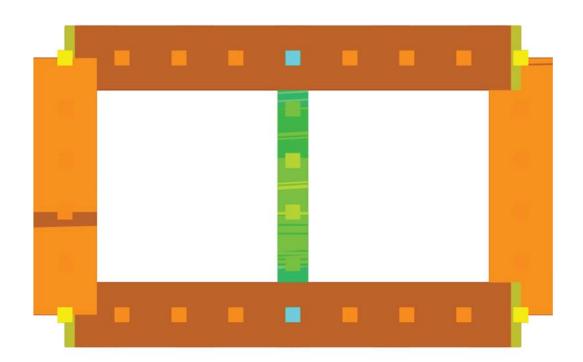
La campata non presenta apertura delle fessure nella suola

Verifiche geotecniche

Verifiche geotecniche di capacità portante sul piano di posa

Aste	Size X	Size Y	Comb	Type	Cond	γR	Rd	Ed	Rd/Ed	Verifica
16,17,18,19,20,21,22,23	12.2	1.7	SLU 27	ST	BT	2.3	4303.16	-	3.48	Si
								1235.32		1
16,17,18,19,20,21,22,23	12.2	1.7	SLV FO 11	SIS	BT	2.3	4124.09	-931.45	4.43	Si
16,17,18,19,20,21,22,23	12.2	1.7	SLD 11	SIS	BT	2.3	4185.93	-915.45	4.57	Si

Verifiche geotecniche di capacità portante - parametri utilizzati nel calcolo di Rd


Fx	Fy	Fz	Mx	My	Inc.x	Inc.y	Ecc.x	Ecc.y	B'	L'	qd	γs	Fi	Coes	Amax
0	34.49	-1235.32	-55.375	0.0377	0	2	0	-0.04	1.61	12.2	24	0	0	71	0
12.15	44.11	-931.45	-65.2526	45.4937	0	3	0.05	-0.07	1.56	12.1	24	0	0	71	0.04
8.93	37.28	-915.45	-56.0689	33.4977	0	2	0.04	-0.06	1.58	12.13	24	0	0	71	0.02

Verifiche geotecniche di capacità portante - fattori utilizzati nel calcolo di Rd

	N			S			D			I			В			G			Р			Е	
Nq	Nc	Ng	Sq	Sc	Sg	Dq	Dc	Dg	lq	lc	lg	Bq	Bc	Bg	Gq	Gc	Gg	Pq	Pc	Pg	Eq	Ec	Eg
1	5	0	0	0.03	0	0	0.31	0	0	0.01	0	0	0	0	0	0	0	1	1	1	0	0	0
1	5	0	0	0.03	0	0	0.31	0	0	0.01	0	0	0	0	0	0	0	1	1	1	0	0	0
1	5	0	0	0.03	0	0	0.31	0	0	0.01	0	0	0	0	0	0	0	1	1	1	0	0	0

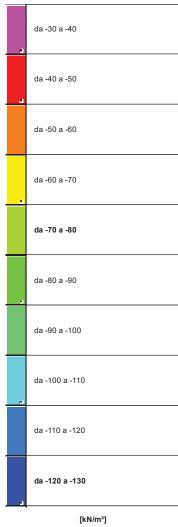
GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO Linea Taran NUOVA STAZI	nto – Brir	ndisi		
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 112 DI 124

12.2 Pressioni terreno in SLU

PROGETTO DEFINITIVO

Linea Taranto - Brindisi NUOVA STAZIONE DI NASISI

FABBRICATO VIAGGIATORI


PROGETTO LOTTO CODIFICA DOCUMENTO

REV.

FOGLIO

00 D 78 CL FV0100 001 IA8E \mathbf{A}

113 DI 124

Rappresentazione in pianta delle massime compressioni sul terreno in famiglia SLU.

Nodo: Nodo che interagisce col terreno.

Ind.: indice del nodo.

Pressione minima: situazione in cui si verifica la pressione minima nel nodo.

Cont.: nome breve della condizione o combinazione di carico a cui si riferisce la pressione minima.

uz: spostamento massimo verticale del nodo. [m]

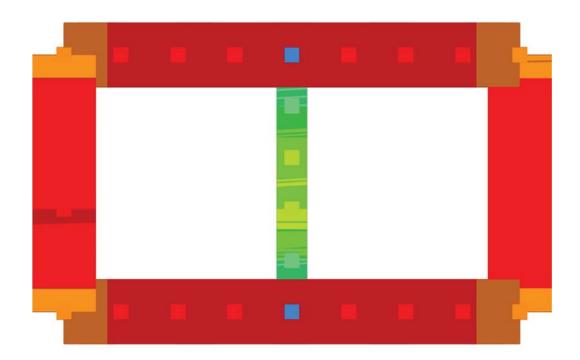
Valore: pressione minima sul terreno del nodo. [kN/m²]

Pressione massima: situazione in cui si verifica la pressione massima nel nodo.

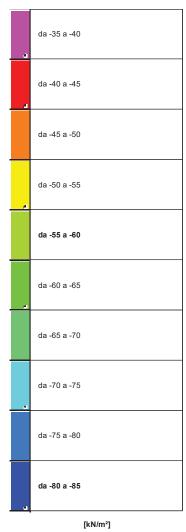
Cont.: nome breve della condizione o combinazione di carico a cui si riferisce la pressione massima.

uz: spostamento minimo verticale del nodo. [m]

Valore: pressione massima sul terreno del nodo. [kN/m²]



Compressione estrema massima -106.014 al nodo di indice 27, di coordinate x = 6.1, y = 6.8, z = 0, nel contesto SLU 27. Spostamento estremo minimo -0.0025145 al nodo di indice 2, di coordinate x = 0, y = 0, z = 0, nel contesto SLU 27. Spostamento estremo massimo -0.0012285 al nodo di indice 16, di coordinate x = 6.1, y = 2.72, z = 0, nel contesto SLU 1.


Nodo		Pressione minima			Pressione massima	
Ind.	Cont.	uz	Valore	Cont.	uz	Valore
2	SLU 27	-0.0025145	-60.567	SLU 1	-0.0017708	-42.654
3	SLU 27	-0.0023867	-57.488	SLU 1	-0.0016797	-40.458
4	SLU 27	-0.0023039	-55.492	SLU 1	-0.0016165	-38.935
5	SLU 27	-0.0022764	-54.831	SLU 1	-0.0015895	-38.285
6	SLU 27	-0.0022764	-54.834	SLU 1	-0.0015895	-38.287
7	SLU 27	-0.0023038	-55.494	SLU 1	-0.0016164	-38.936
8	SLU 27	-0.0023866	-57.49	SLU 1	-0.0016796	-40.459
9	SLU 27	-0.0025144	-60.568	SLU 1	-0.0017708	-42.655
10	SLU 27	-0.0022777	-106.006	SLU 1	-0.0015862	-73.826
11	SLU 27	-0.0023639	-56.224	SLU 1	-0.0016832	-40.034
12	SLU 27	-0.0023638	-56.222	SLU 1	-0.0016832	-40.033
13	SLU 27	-0.0019189	-89.307	SLU 1	-0.0013597	-63.284
14	SLU 27	-0.0022776	-54.17	SLU 1	-0.0016328	-38.835
15	SLU 27	-0.0022775	-54.169	SLU 1	-0.0016328	-38.834
16	SLU 27	-0.0017132	-79.733	SLU 1	-0.0012285	-57.175
17	SLU 27	-0.0022776	-54.17	SLU 1	-0.0016328	-38.835
18	SLU 27	-0.0022775	-54.169	SLU 1	-0.0016328	-38.835
19	SLU 27	-0.0017132	-79.735	SLU 1	-0.0012285	-57.176
20	SLU 27	-0.0023639	-56.224	SLU 1	-0.0016832	-40.034
21	SLU 27	-0.0023639	-56.223	SLU 1	-0.0016832	-40.033
22	SLU 27	-0.0019189	-89.311	SLU 1	-0.0013598	-63.287
23	SLU 27	-0.0025145	-60.567	SLU 1	-0.0017708	-42.654
24	SLU 27	-0.0023867	-57.488	SLU 1	-0.0016797	-40.458
25	SLU 27	-0.0023039	-55.493	SLU 1	-0.0016165	-38.935
26	SLU 27	-0.0022765	-54.833	SLU 1	-0.0015895	-38.286
27	SLU 27	-0.0022778	-106.014	SLU 1	-0.0015863	-73.83
28	SLU 27	-0.0022765	-54.834	SLU 1	-0.0015895	-38.287
29	SLU 27	-0.0023039	-55.495	SLU 1	-0.0016165	-38.936
30	SLU 27	-0.0023867	-57.489	SLU 1	-0.0016796	-40.458
31	SLU 27	-0.0025145	-60.568	SLU 1	-0.0017708	-42.654

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO Linea Taran NUOVA STAZI	nto – Brir	ndisi		
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 115 DI 124

12.3 Pressioni terreno in SLV/SLVf/SLUEcc

Rappresentazione in pianta delle massime compressioni sul terreno in famiglie SLV/SLVf/SLUEcc.

Nodo: Nodo che interagisce col terreno.

Ind.: indice del nodo.

Pressione minima: situazione in cui si verifica la pressione minima nel nodo.

Cont.: nome breve della condizione o combinazione di carico a cui si riferisce la pressione minima.

uz: spostamento massimo verticale del nodo. [m]

Valore: pressione minima sul terreno del nodo. [kN/m²]

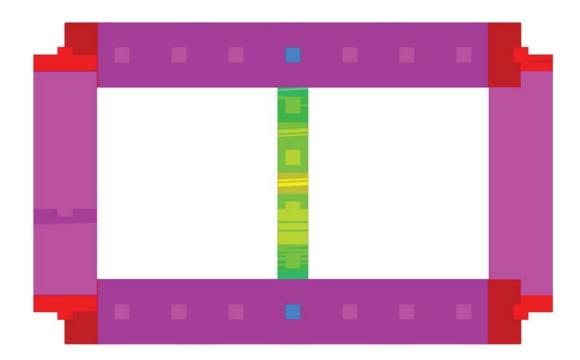
Pressione massima: situazione in cui si verifica la pressione massima nel nodo.

Cont.: nome breve della condizione o combinazione di carico a cui si riferisce la pressione massima.

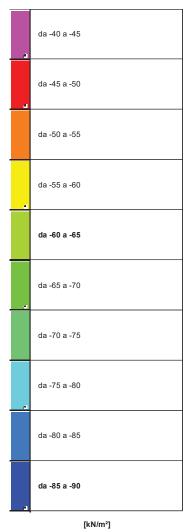
uz: spostamento minimo verticale del nodo. [m]

Valore: pressione massima sul terreno del nodo. [kN/m²]

Compressione estrema massima -78.531 al nodo di indice 27, di coordinate x = 6.1, y = 6.8, z = 0, nel contesto SLV fondazioni 7


Spostamento estremo minimo -0.0019736 al nodo di indice 2, di coordinate x = 0, y = 0, z = 0, nel contesto SLV fondazioni 5.

Spostamento estremo massimo -0.0012158 al nodo di indice 16, di coordinate x = 6.1, y = 2.72, z = 0, nel contesto SLV fondazioni 11.


Nodo		Pressione minima			Pressione massima	
Ind.	Cont.	uz	Valore	Cont.	uz	Valore
2	SLV FO 5	-0.0019736	-47.537	SLV FO 11	-0.0015681	-37.77
3	SLV FO 5	-0.001839	-44.294	SLV FO 11	-0.0015204	-36.621
4	SLV FO 5	-0.0017449	-42.029	SLV FO 11	-0.001488	-35.841
5	SLV FO 5	-0.0017004	-40.958	SLV FO 11	-0.0014785	-35.613
6	SLV FO 9	-0.0017004	-40.96	SLV FO 7	-0.0014785	-35.615
7	SLV FO 9	-0.0017449	-42.031	SLV FO 7	-0.0014879	-35.842
8	SLV FO 9	-0.0018389	-44.296	SLV FO 7	-0.0015203	-36.622
9	SLV FO 9	-0.0019735	-47.538	SLV FO 7	-0.001568	-37.771
10	SLV FO 5	-0.0016872	-78.526	SLV FO 11	-0.0014852	-69.125
11	SLV FO 1	-0.0018121	-43.1	SLV FO 15	-0.0015543	-36.968
12	SLV FO 13	-0.0018121	-43.099	SLV FO 3	-0.0015543	-36.967
13	SLV FO 5	-0.0014054	-65.412	SLV FO 11	-0.001314	-61.156
14	SLV FO 1	-0.0017347	-41.26	SLV FO 15	-0.0015309	-36.411
15	SLV FO 13	-0.0017347	-41.259	SLV FO 3	-0.0015309	-36.41
16	SLV FO 5	-0.0012412	-57.766	SLV FO 11	-0.0012158	-56.585
17	SLV FO 3	-0.0017347	-41.26	SLV FO 13	-0.0015309	-36.411
18	SLV FO 15	-0.0017347	-41.259	SLV FO 1	-0.0015309	-36.41
19	SLV FO 7	-0.0012412	-57.767	SLV FO 9	-0.0012158	-56.585
20	SLV FO 3	-0.0018121	-43.1	SLV FO 13	-0.0015543	-36.968
21	SLV FO 15	-0.0018121	-43.099	SLV FO 1	-0.0015543	-36.967
22	SLV FO 7	-0.0014055	-65.415	SLV FO 9	-0.0013141	-61.158
23	SLV FO 7	-0.0019736	-47.537	SLV FO 9	-0.0015681	-37.77
24	SLV FO 7	-0.001839	-44.294	SLV FO 9	-0.0015204	-36.621
25	SLV FO 7	-0.0017449	-42.03	SLV FO 9	-0.001488	-35.841
26	SLV FO 7	-0.0017005	-40.959	SLV FO 9	-0.0014786	-35.614
27	SLV FO 7	-0.0016873	-78.531	SLV FO 9	-0.0014853	-69.129
28	SLV FO 11	-0.0017005	-40.96	SLV FO 5	-0.0014786	-35.615
29	SLV FO 11	-0.0017449	-42.03	SLV FO 5	-0.001488	-35.842
30	SLV FO 11	-0.0018389	-44.295	SLV FO 5	-0.0015204	-36.622
31	SLV FO 11	-0.0019736	-47.538	SLV FO 5	-0.0015681	-37.771

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO Linea Taran NUOVA STAZI	nto – Brir	ndisi		
FABBRICATO VIAGGIATORI	PROGETTO IA8E	LOTTO 00	CODIFICA DOCUMENTO D 78 CL FV0100 001	REV.	FOGLIO 118 DI 124

12.4 Pressioni terreno in SLE/SLD

Rappresentazione in pianta delle massime compressioni sul terreno in famiglie SLE/SLD.

Nodo: Nodo che interagisce col terreno.

Ind.: indice del nodo.

Pressione minima: situazione in cui si verifica la pressione minima nel nodo.

Cont.: nome breve della condizione o combinazione di carico a cui si riferisce la pressione minima.

uz: spostamento massimo verticale del nodo. [m]


Valore: pressione minima sul terreno del nodo. [kN/m²]

Pressione massima: situazione in cui si verifica la pressione massima nel nodo.

Cont.: nome breve della condizione o combinazione di carico a cui si riferisce la pressione massima.

uz: spostamento minimo verticale del nodo. [m]

Valore: pressione massima sul terreno del nodo. [kN/m²]

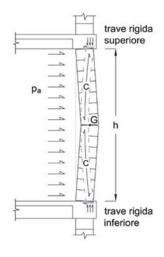
Compressione estrema massima -80.52 al nodo di indice 27, di coordinate x = 6.1, y = 6.8, z = 0, nel contesto SLE rara 9. Spostamento estremo minimo -0.0019457 al nodo di indice 2, di coordinate x = 0, y = 0, z = 0, nel contesto SLO 5. Spostamento estremo massimo -0.0012175 al nodo di indice 16, di coordinate x = 6.1, y = 2.72, z = 0, nel contesto SLO 11.

Nodo		Pressione minima		Pressione massima						
Ind.	Cont.	uz	Valore	Cont.	uz	Valore				
2	SLO 5	-0.0019457	-46.865	SLO 11	-0.001596	-38.443				
3	SLO 5	-0.001817	-43.766	SLO 11	-0.0015423	-37.149				
4	SLE RA 9	-0.0017514	-42.186	SLO 11	-0.0015057	-36.267				
5	SLE RA 9	-0.0017295	-41.659	SLO 11	-0.0014938	-35.981				
6	SLE RA 9	-0.0017295	-41.661	SLO 7	-0.0014938	-35.983				
7	SLE RA 9	-0.0017514	-42.188	SLO 7	-0.0015056	-36.268				
8	SLO 9	-0.001817	-43.767	SLO 7	-0.0015423	-37.15				
9	SLO 9	-0.0019456	-46.866	SLO 7	-0.0015959	-38.444				
10	SLE RA 9	-0.0017299	-80.514	SLO 11	-0.0014991	-69.773				
11	SLE RA 9	-0.0018004	-42.82	SLO 15	-0.0015721	-37.39				
12	SLE RA 9	-0.0018003	-42.819	SLO 3	-0.001572	-37.389				
13	SLE RA 9	-0.0014605	-67.976	SLO 11	-0.0013203	-61.449				
14	SLE RA 9	-0.0017361	-41.292	SLO 15	-0.0015449	-36.745				
15	SLE RA 9	-0.001736	-41.29	SLO 3	-0.0015449	-36.744				
16	SLE RA 9	-0.0013059	-60.779	SLO 11	-0.0012175	-56.666				
17	SLE RA 9	-0.0017361	-41.291	SLO 13	-0.0015449	-36.745				
18	SLE RA 9	-0.0017361	-41.291	SLO 1	-0.0015449	-36.744				
19	SLE RA 9	-0.0013059	-60.78	SLO 9	-0.0012175	-56.667				
20	SLE RA 9	-0.0018004	-42.82	SLO 13	-0.0015721	-37.39				
21	SLE RA 9	-0.0018003	-42.82	SLO 1	-0.001572	-37.39				
22	SLE RA 9	-0.0014606	-67.979	SLO 9	-0.0013203	-61.451				
23	SLO 7	-0.0019457	-46.865	SLO 9	-0.001596	-38.442				
24	SLO 7	-0.001817	-43.766	SLO 9	-0.0015423	-37.149				
25	SLE RA 9	-0.0017515	-42.187	SLO 9	-0.0015057	-36.267				
26	SLE RA 9	-0.0017296	-41.66	SLO 9	-0.0014938	-35.982				
27	SLE RA 9	-0.0017301	-80.52	SLO 9	-0.0014992	-69.776				
28	SLE RA 9	-0.0017296	-41.661	SLO 5	-0.0014938	-35.983				
29	SLE RA 9	-0.0017514	-42.188	SLO 5	-0.0015057	-36.268				
30	SLO 11	-0.001817	-43.767	SLO 5	-0.0015423	-37.15				
31	SLO 11	-0.0019456	-46.865	SLO 5	-0.001596	-38.443				

13 INCIDENZE ARMATURE

Sulla base del dimensionamento delle sezioni maggiormente sollecitate, si riporta di seguito il prospetto sintetico relativo all'incidenza di armatura per i singoli elementi strutturali.

Elemento strutturale	Incidenza armature
	(kg/mc)
Travi di fondazione	60
Travi di copertura	100
Pilastri	151


14 VERIFICA ELEMENTI SECONDARI

METODOLOGIA DI VERIFICA

In base a quanto riportato al §7.2.3 delle vigenti NTC 2018, anche gli elementi non strutturali vanno verificati per evitare che gli stessi provochino danni a persone.

Nel caso degli elementi di tamponatura dunque va verificato che non siano soggetti a ribaltamenti fuori piano in presenza di azioni sismiche corrispondenti a ciascuno degli stati limite considerati. Nello stesso paragrafo sopra citato, la norma fornisce le formulazioni per valutare gli effetti dell'azione sismica (equazioni 7.2.1 e 7.2.2).

Si verificano gli elementi a pressoflessione e per cinematismo delle tamponature: il metodo consiste nel confronto tra i momenti sollecitanti indotti dal sisma con i momenti resistenti, secondo tre ipotesi, due basate sulla resistenza a pressoflessione della tamponatura ed una basata sul cinematismo a seguito della formazione di tre cerniere plastiche sulla tamponatura.

Progettazione elementi strutturali secondari - D.M. 17.01.2018 NTC - §7.2.3

Localizzazione della struttura:

Comune: TARANTO

Provincia: TARANTO

Regione: PUGLIA

Coordinate: Lat. 40,4590 N, Long. 17,2460 E

Dati di progetto:

Classe d'uso: III

Categoria del suolo: C (Ss = 1,50)

PROGETTO DEFINITIVO

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA8E 00 D 78 CL FV0100 001 A 123 DI 124

Categoria topografica: T1 (St = 1,00)

Altezza dell'edificio H = 455,0 cm

Periodo proprio dell'edificio $T_1 = 0.2337 s$

Fattore di struttura qa = 2,00

Caratteristiche della parete:

Resistenza caratteristica a compressione fk = 50.00 daN/cmq

Resistenza di progetto a compressione fd = 25.00 daN/cmq

Massa volumica = 0.00110 kg/cmc

Modulo elastico Em = 46600,0 daN/cmq

Le verifiche vengono effettuate su una striscia di parete larga un metro, perciò le dimensioni dell'elemento risultano:

altezza tamponatura h = 335,0 cm, larghezza L = 100,0 cm, spessore t = 40,0 cm

Quota del baricentro dell'elemento Z = 167,0 cm

Peso elemento non strutturale Wa = 1474,00 daN

Periodo proprio della parete Ta = 0,0304 s

Azioni sismiche per combinazioni SLV:

Ag = 0.086 g, Fo = 2.680, Tc* = 0.390 s

Accelerazione massima

Sa =
$$\alpha$$
 S [(3 (1 + Z / H)) / (1 + (1 - Ta / T₁)²) - 0,5] = 0,24

Forza sismica orizzontale agente nel baricentro dell'elemento strutturale:

Fa = (Sa Wa) / qa = 173,20

Verifica a pressoflessione e per cinematismo delle tamponature.

La verifica confronta i momenti sollecitanti indotti dal sisma con i momenti resistenti, secondo tre ipotesi, due basate sulla resistenza a pressoflessione della tamponatura ed una basata sul cinematismo a seguito della formazione di tre cerniere plastiche sulla tamponatura.

(rif. Ufficio di Vigilanza sulle Costruzioni, Provincia di Terni)

Prima ipotesi: trave appoggiata con carico concentrato in mezzeria

Momento sollecitante Med = Fa h / 4 = 14505,08

Tens. normale media nella sez. orizzontale $\sigma o = 0,1843$

PROGETTO DEFINITIVO

Linea Taranto – Brindisi Nuova stazione di Nasisi

FABBRICATO VIAGGIATORI

PROGETTO LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA8E 00 D 78 CL FV0100 001 A 124 DI 124

Momento resistente Mrd = (L t^2 σ o / 2) [1 – (σ o / 0.85 fd)] = 14612,20

Verifica Med / Mrd = 0,99 < 1 Ok

Seconda ipotesi: trave appoggiata con carico distribuito

Momento sollecitante Med = $(Fa / h) h^2 / 8 = 7252,54$

Momento resistente Mrd = (L $t^2 \sigma o / 2$) [1 – ($\sigma o / 0.85 fd$)] = 14612,20

Verifica Med / Mrd = 0,50 < 1 Ok

Terza ipotesi: cinematismo con formazione di cerniere plastiche in appoggio e mezzeria

Momento ribaltante Med = (Fa h / 8) + (Wa t / 4) = 21992,54

Momento stabilizzante Mrd = (Wa / 2)[t - Wa / (4 0.85 fd L)] = 29352,20

Verifica Med / Mrd = 0,75 < 1 Ok