COMMITTENTE:

PROGETTAZIONE:

CUP: J64H17000140001

U.O. INFRASTRUTTURE NORD

PROGETTO DEFINITIVO

RADDOPPIO PONTE S. PIETRO – BERGAMO – MONTELLO

LOTTO 9: Opere Civili e Impianti Tecnologici di Piazzale per il completamento del raddoppio della linea Ponte SP – Bergamo e per lo spostamento provvisorio della linea Treviglio - Bergamo.

FABBRICATO TE

Relazione di calcolo

SCALA:

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

N B 1 R 0 9 D 2 6 C L F A 0 6 A 0 0 0 1 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
А	EMISSIONE DEFINITIVA	G.Grimaldi	Febbraio 2021	A. Maran	Febbraio 2021	M. Berlingeri	Febbraio 2021	A. Perego
						, ,		DOTT, NG.
								Sez Settori: a) civila elambientale b) inductant c) dell'informazione A A A A A A A A A A A A A
								MINDO

File: NB1R09D26CLFA06A0001A n. Elab.:

FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 2di 102

INDICE

1 PREMESSA	4
2 NORME DI RIFERIMENTO	5
3 DESCRIZIONE DELLE STRUTTURE	6
4 CARATTERISTICHE GEOTECNICHE DEL TERRENO	10
4.1 Stratigrafia di calcolo	10
5 CARATTERISTICHE DEI MATERIALI	11
5.1 Opere in calcestruzzo armato	11
5.1.1 Magrone	
5.1.2 Struttura in fondazione:	11
5.1.3 Struttura in elevazione e solaio in lastre predalles:	
5.2 Acciaio per calcestruzzo armato	
5.3 Copriferro	13
6 ANALISI DEI CARICHI DI PROGETTO	
6.1 Carichi permanenti	
6.1.1 Solaio copertura	
6.1.2 Facciate e cornicioni:	
6.2 Carichi variabili	15
6.3 Azioni della neve	
6.4 Azioni del vento	16
6.5 Variazione Termica	18
6.6 Azione sismica	18
6.6.1 Vita nominale	
6.6.2 Classe d'uso	20
6.6.3 Periodo di riferimento per l'azione sismica	
6.6.4 Azioni di progetto	21
6.6.5 Categoria di sottosuolo e Condizioni topografiche	
6.6.6 Classe di duttilità	24
6.6.7 Regolarità	
6.6.8 Tipologia strutturale e fattore di struttura	
6.6.9 Spettri di risposta	26
6.6.10 Metodo di analisi	

Fabbricato TE	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIC
Relazione di calcolo	NB1R	09	D 26 CL	FA 06A0 001	Α	3di 102

6.6.10.1 Risposta Modale	29
7 ANALISI DELLA STRUTTURA	33
7.1 Codici di calcolo utilizzati	33
7.1.1 Affidabilità del software	
7.2 Modellazione dell'opera	33
7.2.1 Stratigrafia del terreno	
7.2.1 Definizione del modulo di reazione nel modello di calcolo	
7.2.2 Condizioni di carico e assegnazioni	
7.3 Combinazioni di carico	42
7.3.1 Combinazioni di carico adottate per le verifiche	
8 SOLLECITAZIONI MASSIME	49
9 VERIFICA ELEMENTI STRUTTURALI	56
9.1 Travi elevazione 40x50cm	56
9.2 Pilastri (40x50)	61
9.3 Travi fondazione	68
10 VERIFICA SOLAIO	74
10.1 Premessa	74
10.2 Analisi dei carichi	74
11 VERIFICA DEGLI ELEMENTI STRUTTURALI IN TERMINI DI	CONTENIMENTO
DEL DANNO AGLI ELEMENTI NON STRUTTURALI (SLO)	83
12 VERIFICA DI CAPACITÀ PORTANTE	85

FABBRICATO TE

Fabbricato TE PROGETTO LOTTO CODIFICA DO NB1R 09 D 26 CL F

DOCUMENTO REVISIONE FOGLIO FA 06A0 001 A 4di 102

1.-..PREMESSA

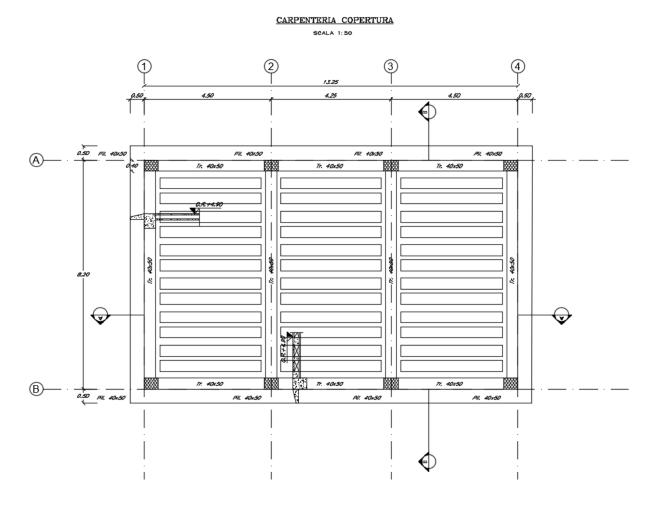
La presente relazione di calcolo riguarda il Progetto Definitivo dell'edificio cabina TE compreso all'interno del piazzale TE da realizzare nell'ambito del LOTTO 9 del progetto di raddoppio ferroviario San Pietro – Bergamo – Montello, in corrispondenza della progressiva 1+230 circa.

FABBRICATO TE

Fabbricato TE PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO Relazione di calcolo NB1R 09 D 26 CL FA 06A0 001 A 5di 102

2.-..NORME DI RIFERIMENTO

- [N.1]. L. n. 64 del 2/2/1974"Provvedimento per le costruzioni con particolari prescrizioni per le zone sismiche".
- [N.2]. L. n. 1086 del 5/11/1971"Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica".
- [N.3]. Decreto del Ministero delle Infrastrutture e dei Trasporti del 17 Gennaio 2018 Aggiornamento delle «Norme tecniche per le costruzioni»;
- [N.4]. Circolare del Ministero delle Infrastrutture e dei Trasporti del 21 Gennaio 2019, n. 7 C.S.LL.PP.
 Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al Decreto Ministeriale 17 Gennaio 2018;
- [N.5]. Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 Maggio 2019.
- [N.6]. Eurocodici EN 1991-2: 2003/AC:2010.
- [N.7]. RFI DTC SI MA IFS 001 B del 22-12-17 Manuale di Progettazione delle Opere Civili.
- [N.8]. RFI DTC SI SP IFS 001 C- Capitolato generale tecnico di Appalto delle opere civili.
- [N.9]. CNR-DT207/2008 Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni.
- [N.10]. UNI 11104: Calcestruzzo: Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1



Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 6di 102

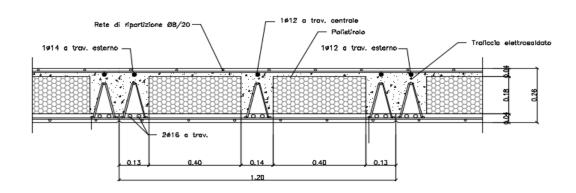
3.-..DESCRIZIONE DELLE STRUTTURE

Il fabbricato in oggetto è costituito da una struttura in c.a. su fondazione diretta a travi rovesce.

La struttura ha pianta rettangolare di dimensioni L x B = 13.25 x 8.2m ed è composta da un telaio spaziale monolivello con copertura piana, costituito da tre campate in direzione longitudinale di luce pari a 4.25 m ed una campata in direzione trasversale.

La parte in elevazione è costituita da travi e pilastri in c.a.. In particolare, i pilastri hanno dimensioni in pianta 0.40m x 0.50m, le travi perimetrali (trasversali e longitudinali) ed interne hanno dimensione 0.40m x 0.50m.

Il solaio di copertura, ordito lungo la direzione longitudinale del fabbricato, è del tipo

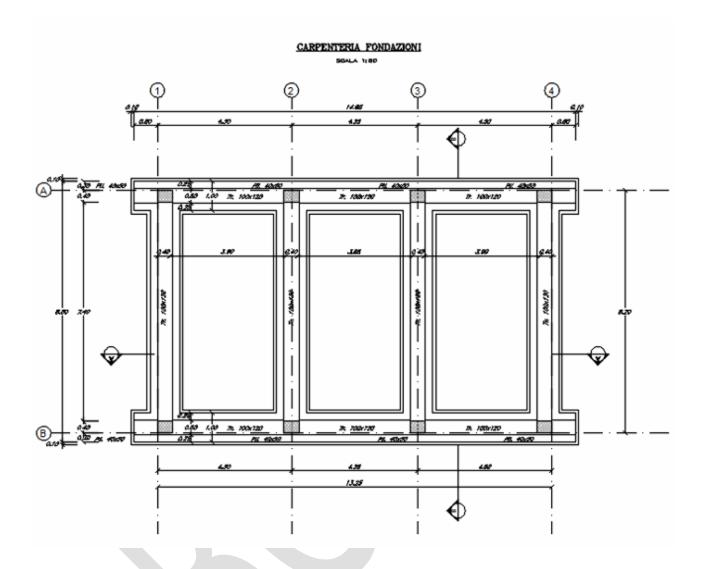


FABBRICATO TE

Fabbricato TE	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
Relazione di calcolo	NB1R	09	D 26 CL	FA 06A0 001	Α	7di 102

semiprefabbricato *a prèdalles*, con getto in opera dei travetti e della caldana superiore. Lo spessore totale del solaio di copertura è di 26 cm e comprende 4 cm di *prèdalles*, 18 cm di nervature e 4 cm di caldana superiore. Le lastre tipo *prèdalles* sono larghe 120 cm e presentano tre tralicci di irrigidimento ed elementi di alleggerimento delimitanti le nervature intermedie.

SEZIONE SOLAIO



Le fondazioni del fabbricato saranno del tipo diretto, costituite da un reticolo di travi a T rovesce di altezza 1.20m con suola di base 1.00m e spessore 0.35m.

LOTTO 9 FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 8di 102

Le caratteristiche geometriche dell'edificio sono le seguenti:

➤ Lunghezza totale L = 13.25 m

➤ Larghezza totale B = 8.2 m

 \triangleright Quota piano posa fondazioni (filo magrone): $H_1 = -2.1 \text{ m}$

 \triangleright Quota piano campagna $H_2 = 0,00 \text{ m}$

 \triangleright Quota piano terra: $H_3 = +0,20 \text{ m}$

 \triangleright Quota copertura: $H_4 = +5.4 \text{ m}$

FABBRICATO TE

Relazione di calcolo	NB1R	09	D 26 CL	FA 06A0 001	Α	9di 102
Fabbricato TE	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO

Per quanto concerne la soletta di ripartizione del solaio di calpestio, questa è scollegata dalla struttura portante a mezzo di un giunto.

Per maggiori approfondimenti sulle geometrie delle diverse parti dell'opera si rimanda agli elaborati grafici di progetto.

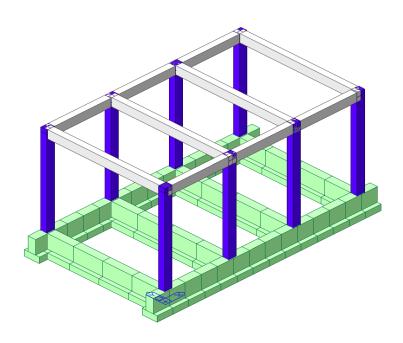


Figure 1 Struttura

4.-..CARATTERISTICHE GEOTECNICHE DEL TERRENO

4.1.-..Stratigrafia di calcolo

Per la caratterizzazione geotecnica del terreno si rimanda alla Relazione Geotecnica.

LOTTO 9 FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 11di 102

5.-.. CARATTERISTICHE DEI MATERIALI

È previsto l'utilizzo dei seguenti materiali dei quali di seguito si riportano le caratteristiche meccaniche:

5.1.-.. Opere in calcestruzzo armato

Per i calcestruzzi si fa riferimento alle normative UNI EN 206-1 (Specificazione, prestazione, produzione e conformità) e UNI 11104 (Istruzioni complementari per l'applicazione della EN 206-1).

5.1.1.-..Magrone

Conglomerato classe di resistenza C12/15 - Rck 15MPa

Resistenza caratteristica cubica: $R_{ck} = 15 \text{ N/mm}^2$ Resistenza caratteristica cilindrica: $f_{ck} = 12 \text{ N/mm}^2$

Classe di esposizione: X0
Classe di consistenza slump: S3

5.1.2.-..Struttura in fondazione:

Conglomerato classe di resistenza C25/30 - Rck 30MPa

Modulo di elasticità longitudinale	Ec	=	31447	[MPa]
Coefficiente di dilatazione termica	α	=	10x10 ⁻⁶	[C ⁻¹]
Coefficiente di Poisson	ν	=	0,20	[-]
Coefficiente parziale di sicurezza	γс	=	1,50	[-]
Coefficiente riduttivo per le resistenze di lunga durat	ta α_{cc}	=	0,85	[-]
Resistenza caratteristica cubica a compressione	R_ck	=	30,0	[MPa]
Resistenza caratteristica cilindrica a compressione	f_{ck}	=	24,9	[MPa]
Resistenza media cilindrica a compressione	f_{cm}	=	32,9	[MPa]
Resistenza media a trazione semplice	f_{ctm}	=	2,56	[MPa]
Resistenza caratteristica a trazione semplice	f_{ctk}	=	1,79	[MPa]
Resistenza media a trazione per flessione	f_{cfm}	=	3,07	[MPa]
Resistenza di calcolo a compressione	f_{cd}	=	14,1	[MPa]
Resistenza di calcolo a trazione semplice	f_{ctd}	=	1,19	[MPa]
Resistenza di calcolo a trazione per flessione	\mathbf{f}_{cfd}	=	1,43	[MPa]
Resistenza di calcolo tangenziale per aderenza	f_{bd}	=	2,69	[MPa]
Coefficiente sicurezza SLU	$\gamma c = 1,5$	0		

•

LOTTO 9 FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 12di 102

Resistenza di calcolo a compressione SLU $f_{cd} = 0.85 f_{ck} / \gamma_C = 15.87 \text{ N/mm}^2$

Resistenza di calcolo a trazione semplice (5%) SLU $f_{ctd} = 0.7 f_{ctk} / \gamma_C = 1.29 N/mm^2$

Coefficiente sicurezza SLE $\gamma_C = 1,00$

combinazione rara $\sigma_{c,ad} = 0,60 \text{ f}_{ck} = 16.80 \text{ N/mm}^2$

combinazione quasi permanente $\sigma_{c,ad} = 0.45 \text{ f}_{ck} = 12.60 \text{ N/mm}^2$

5.1.3.-.. Struttura in elevazione e solaio in lastre predalles:

Conglomerato classe di resistenza C30/37 - Rck 37MPa

Modulo di elasticità longitudinale	Ec	=	32761	[MPa]
Coefficiente di dilatazione termica	α	=	10x10 ⁻⁶	[C ⁻¹]
Coefficiente di Poisson	ν	=	0,20	[-]
Coefficiente parziale di sicurezza	γс	=	1,50	[-]
Coefficiente riduttivo per le resistenze di lunga durata	α_{cc}	=	0,85	[-]
Resistenza caratteristica cubica a compressione	R _{ck}	=	37,0	[MPa]
Resistenza caratteristica cilindrica a compressione	fck	=	30.71	[MPa]
Resistenza media cilindrica a compressione	fcm	=	37.71	[MPa]
Resistenza media a trazione semplice	fctm	=	2.94	[MPa]

Coefficiente sicurezza SLU $\gamma_C = 1,50$

Resistenza di calcolo a compressione SLU $f_{cd} = 0.85 f_{ck} / \gamma_C = 17 \text{ N/mm}^2$

Coefficiente sicurezza SLE $\gamma_C = 1,00$

combinazione rara $\sigma_{c,ad} = 0,60 \text{ f}_{ck} = 18.43 \text{ N/mm}^2$ combinazione quasi permanente $\sigma_{c,ad} = 0,45 \text{ f}_{ck} = 13.82 \text{ N/mm}^2$

5.2.-.. Acciaio per calcestruzzo armato

Acciaio per calcestruzzo armato tipo B 450 C secondo DM 14.01.2008 avente le seguenti caratteristiche:

Modulo di elasticità longitudinale	E_s	=	210000	[MPa]
Coefficiente parziale di sicurezza	γs	=	1,15	[-]
Tensione caratteristica di snervamento	f_{yk}	=	450	[MPa]
Tensione caratteristica di rottura	f_{tk}	=	540	[MPa]
Allungamento	Agt k	≥	7,50%	[-]

FABBRICATO TE

Fabbricato TE	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
Relazione di calcolo	NB1R	09	D 26 CL	FA 06A0 001	Α	13di 102

Resistenza di calcolo $f_{yd} = 391,3$ [MPa]

 $\begin{aligned} & \gamma_S = 1,15 \\ & \text{Resistenza di calcolo SLU} & \text{f}_{yd} = f_{yk} / \gamma_S = 391,30 \text{ N/mm}^2 \\ & \text{Tensione di calcolo SLE} & \sigma_{y,ad} = 0,80 \text{ f}_{yk} = 360 \text{ N/mm}^2 \end{aligned}$

5.3.-..Copriferro

Con riferimento al punto 4.1.6.1.3 delle NTC, al fine della protezione delle armature dalla corrosione, il valore minimo dello strato di ricoprimento di calcestruzzo (copriferro) deve rispettare le indicazioni della tabella C4.1.IV della Circolare, riportata di seguito, in cui sono distinte le tre condizioni ambientali di Tabella 4.1.III delle NTC.

			bai	rre da c.a.	e da c.a. barre da c.a. cavi da c.a		cavi da c.a.p		ca	vi da c.a.p
			eleme	enti a piastra	altr	altri elementi		elementi a piastra		ri elementi
Cmin	Co	ambiente	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<>	C≥Co	Cmin≤C <co< td=""></co<>
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C28/35	C40/50	aggressivo	25	30	30	35	35	40	40	<i>4</i> 5
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

Tabella 1. Copriferro e condizioni ambientali

Nel caso in esame, i copriferri minimi previsti (come da tabella materiali) sono 40 mm per travi pilastri e travi di fondazione e 20 mm per le lastre *predalles*. A tali valori vanno aggiunte le tolleranze di posa pari a 10 mm. Si riporta una tabella riepilogativa dei copriferri:

	Ambiente	Copriferro netto	Tolleranza di posa	Copriferro nominale
Struttura in elevazione	Ordinario	40	10	50
Lastre prédalles	Ordinario	20	5	25
Fondazioni	Ordinario	40	10	50

Tabella 2. Copriferro adottato

La rispondenza dei materiali ai requisiti richiesti sarà valutata mediante le prescritte prove di accettazione.

FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 14di 102

6.-..ANALISI DEI CARICHI DI PROGETTO

I pesi dei materiali utilizzati per le strutture portanti sono conformi alle NTC 18.

Del peso proprio degli elementi strutturali, tiene conto il programma di calcolo che considera il seguente peso specifico del calcestruzzo armato:

calcestruzzo armato

25 kN/m³

Si riportano di seguito le analisi dei carichi unitari agenti sulla struttura.

I valori delle azioni indicati sono stati considerati come valori caratteristici nelle verifiche agli stati limite.

6.1.-.. Carichi permanenti

6.1.1.-..Solaio copertura

G₁ - Peso proprio solaio

Solaio prédalles (h=0.26m)

soletta: $25 \text{ kN/m}^3 \text{ x } 1.20 \text{ m x } 0.04 \text{ m} = 1.20 \text{ kN/m}^2$

travetto: $25 \text{ kN/m}^3 \times 0.40 \text{ m} \times 0.18 \text{ m} = 1.80 \text{ kN/m}^2$

prèdalles: $25 \text{ kN/m}^3 \times 1.20 \text{ m} \times 0.04 \text{ m} = 1.20 \text{ kN/m}^2$

EPS: 0.3 kN/m³ x (1.20-0.4) m x0.18= 0.0432 kN/m²

la somma di tali valori è 4.25 kN/m² riferita ad una fascia larga 1.20 m (larghezza singola *prédalles*), pertanto il carico relativo ad una fascia larga 1.00 m risulta:

3.54 kN/m²

G₂ - Sovraccarichi permanenti

Massetto pendenza: $16 \times 0.10 = 1.60 \text{ kN/m}^2$

Impermeabilizzazione/impianti/pavimenti: 1.50 kN/m²

3.10 kN/m²

FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 15di 102

6.1.2.-..Facciate e cornicioni:

Si considerano tamponature costituite da pannelli prefabbricati di calcestruzzo dello spessore pari a 20 cm (assunti cautelativamente pieni ai fini dell'analisi dei carichi). Si adotta pertanto un peso proprio superficiale dei pannelli di tamponatura laterale pari a 5.00 kN/m². L'azione viene ripartita in parti uguali tra le travi del solaio di copertura e il solettone di fondazione.

L'assunzione di ripartizione delle azioni dovute alle tamponature, in parti uguali tra le travi del solaio di copertura e le strutture di fondazione, risulta senz'altro veritiera in termini di distribuzione delle masse inerziali presenti nel manufatto (e conseguentemente in termini di caratteristiche dinamiche della struttura e delle risultanti attese azioni sismiche).

Pareti prefabbricate (0.20*5.7/2*25): 14.25 kN/m

Cornicione: 1.90 kN/m

6.2.-.. Carichi variabili

Q_{H1} – Sovraccarichi accidentali

Sovraccarico accidentale Cat. H1

0.50 kN/m²

6.3.-..Azioni della neve

Il carico da neve per superficie unitaria di copertura q_s viene valutato attraverso l'espressione:

$$q_s = \mu_i \cdot q_{sk} \cdot C_E \cdot C_t$$

dove:

 μ_1 è il coefficiente di forma della copertura e che nel caso in esame, trattandosi di copertura piana, si assume pari a 0.8;

q_{sk} è il valore caratteristico di riferimento del carico da neve al suolo; in mancanza di adeguate indagini statistiche e specifici studi locali, la norma fornisce un valore minimo di q_{sk} riferito ad un periodo di ritorno pari a 50 anni. Per la zona I (Bergamo) e per una quota del suolo sul livello del mare pari a 240 m, si

LOTTO 9 FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 16di 102

assume $q_{sk} = 1.39[1+a_s/728^2] = 1.54 \text{ kPa};$

- *C_E* è il coefficiente di esposizione che, per classe di topografia "*normale*", assume valore unitario:
- C_t è il coefficiente termico che tiene conto della riduzione del carico da neve a causa dello scioglimento della stessa, dovuto alla perdita di calore della costruzione. In assenza di uno specifico e documentato studio, deve essere utilizzato $C_t = 1$.

Ne consegue che per la struttura in esame si considera un carico da neve uniforme in copertura pari a:

Zona I

Altitudine as 240 m

Area topografica normale

Inclinazione falde 0°

 q_{sk} 1.54 kN/m²

coeff esposizione ce 1.00

coeff termico c_t 1.00

coefficiente di forma µi 0.80

carico neve $q_s = \mu_i * q_{sk} * c_E * c_t = 1.23 \text{ kN/m}^2$

6.4.-..Azioni del vento

L'azione del vento viene convenzionalmente considerata un'azione statica agente in direzione orizzontale.

La pressione normale alle superfici investite dal vento è data dall'espressione:

$$p = q_b \cdot c_e \cdot c_n \cdot c_d$$

i cui coefficienti vengono di seguito determinati.

• pressione cinetica di riferimento q_b

$$q_b = \frac{1}{2} \cdot \rho \cdot v_r^2 = 0.390 \ kN/m^2$$

FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 17di 102

dove:

 ρ è la densità dell'aria assunta convenzionalmente costante e pari a 1.25 kg/m²;

è la velocità di riferimento del vento (che rappresenta il valore caratteristico a 10 m dal suolo su un terreno di categoria di esposizione II, mediata su 10 minuti e riferita a un periodo di ritorno di 50 anni).

Nel caso in esame, per zona 1 (Lombardia) ed $a_s \le 1000$ m si ha $v_b = v_{b,0} = 25$ m/s;

• coefficiente di esposizione ce

$$\begin{aligned} c_e(z) &= c_e(z_{\min}) \\ c_e(z) &= k_r^2 \cdot c_t \cdot \ln(z/z_0) \cdot \left[7 + c_t \cdot \ln(z/z_0)\right] \end{aligned} \quad \text{per } z \leq z_{\min}$$

Nel caso in esame, essendo in zona 1, classe di rugosità del terreno D e quindi categoria di esposizione del sito II, si ha:

$$k_r = 0.19$$
; $z_o = 0.05 \text{ m}$; $z_{min} = 4 \text{ m}$; $c_t = 1$
 $z = 5.40 \text{m}$ $c_e = 1.95$

coefficiente dinamico c_d

In assenza di considerazioni di dettaglio inerenti i fenomeni di natura aeroelastica e di distacco dei vortici, si assume cautelativamente un valore $c_d = 1$.

coefficiente di forma c_p

$$C_p = C_{psopravento} + C_{psottovento}$$

dove:

c_{psopravento} è il coefficiente di forma per elementi sopravento assunto pari a +0.8;

c_{psottovento} è il coefficiente di forma per elementi sottovento assunto pari a -0.4.

per costruzioni che hanno una parete con aperture di superficie minore di 1/3 di quella totale, la pressione interna si assumerà

$$c_{pi} = \pm 0.2$$

FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 18di 102

In sintesi l'azione del vento sarà:

Superfici sopravento: p= 0.608 kN/m²

Superfici sottovento: p= 0.304 kN/m²

Azione tangenziale del vento:

Oltre alla pressione normale va tenuta in conto anche un'azione tangenziale per unità di superficie parallela alla direzione del vento. Tale azione può essere valutata come:

$$p_f = q_b \cdot c_e \cdot c_f$$

dove:

q_b e c_e sono parametri già definiti per il calcolo della pressione normale da vento;

coefficiente d'attrito in funzione della scabrezza della superficie sulla quale il vento esercita l'azione tangente e che, per una generica superficie scabra, può essere assunto pari a 0.02.

In definitiva $q_b = 0.390 \text{ kN/m}^2$, da cui

$$p_{f,max} = 0.007 \text{ kN/m}^2$$
.

6.5.-.. Variazione Termica

Negli edifici in cui la temperatura non costituisca azione fondamentale per la sicurezza o per l'efficienza funzionale della struttura, è consentito tener conto della sola componente uniforme di variazione termica $\Delta T_u = T - T_0$ pari alla differenza tra la temperatura media attuale T e quella iniziale alla data della costruzione T_0 . Nelle modellazioni sono stati considerati i seguenti carichi termici uniformi:

strutture in c.a. protette $\Delta T_u = \pm 10^{\circ} \text{ C}$ strutture in c.a. esposte $\Delta T_u = \pm 15^{\circ} \text{ C}$

6.6.-..Azione sismica

Con riferimento alla normativa vigente (*NTC-2018*), le azioni sismiche di progetto si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione.

Essa costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche.

FOGLIO 19di 102

FABBRICATO TE

Fabbricato TE	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE
Relazione di calcolo	NB1R	09	D 26 CL	FA 06A0 001	Α

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_a in condizioni di campo libero su sito di riferimento rigido, con superficie topografica orizzontale (di categoria A quale definita al § 3.2.2), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza PVR, come definite nel § 3.2.1, nel periodo di riferimento V_R, come definito nel § 2.4

Le forme spettrali sono definite, per ciascuna delle probabilità di superamento nel periodo di riferimento PVR, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

 a_{α} accelerazione orizzontale massima al sito;

F_o valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale.

T_c* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

6.6.1.-..Vita nominale

La vita nominale di un'opera strutturale V_N è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata.

La vita nominale dei diversi tipi di opere è riportata al seguito nella Tab. 2.4.I delle norme tecniche NTC-2018.

Tabella 2.4.I – Vita nominale V_N per diversi tipi di opere

TIPI DI COSTRUZIONE	Vita Nominale V _N (in anni)
1 Opere provvisorie – Opere provvisionali - Strutture in fase costruttiva ¹	≤ 10
2 Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importar normale	nza ≥ 50
3 Grandi opere, ponti, opere infrastrutturali e dighe di grandi dimensioni o di importanza str	ategica ≥ 100

Inoltre, in base alla tabella 2.5.1.1.1-1 del "Manuale di Progettazione delle Opere Civili" Parte II Sezione 2 (rif. RFI DTC SI MA IFS 001 A) si tratta di un'opera nuova infrastrutturale ferroviaria, pertanto la vita nominale risulta $V_N = 50$ anni.

FABBRICATO TE

Fabbricato TE Relazione di calcolo

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
NB1R	09	D 26 CL	FA 06A0 001	Α	20di 102

TIPO DI COSTRUZIONE (I)	Vita Nominale V _N [Anni] (1)
OPERE NUOVE SU INFRASTRUTTURE FERROVIARIE PROGETTATE CON LE NORME VIGENTI PRIMA DEL DM 14/01/2008 A VELOCITÀ CONVENZIONALE (V<250 Km/h)	50
ALTRE OPERE NUOVE A VELOCITÀ V<250 Km/h	75
ALTRE OPERE NUOVE A VELOCITA V ≥ 250 km/h	100
OPERE DI GRANDI DIMENSIONI: PONTI E VIADOTTI CON CAMPATE DI LUCE MAGGIORE DI 150 m	≥ 100 (4)
 La stessa V_N si applica anche ad apparecchi di appoggio, coprigiunti e impermeabilizzazio 	ne delle stesse opere.
Da definirsi per il singolo progetto a cura di FERROVIE.	

Tab. 2.5.1.1.1-1 - Vita nominale delle infrastrutture ferroviarie

6.6.2.-..Classe d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

FOGLIO

21di 102

Α

FABBRICATO TE

PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE Fabbricato TE FA 06A0 001 Relazione di calcolo NB1R 09 D 26 CL

Il fabbricato rientra per le sue funzioni tra le compresi nella classe d'uso IV.

6.6.3.-..Periodo di riferimento per l'azione sismica

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U. Tale coefficiente è funzione della classe d'uso e nel caso specifico assume valore pari a $C_U = 2$ per la classe d'uso IV.

$$V_R = V_N \times C_U = 50 \times 2 = 100 \text{ anni}$$

6.6.4.-..Azioni di progetto

Ai sensi delle NTC 18, le azioni di progetto si ricavano dalle accelerazioni ag e dalle relative forme spettrali.

Le forme spettrali previste dalle NTC 18 sono definite, su sito di riferimento rigido orizzontale, in funzione dei tre parametri:

- ag: accelerazione orizzontale massima al sito;
- F₀: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_C*: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Le forme spettrali previste dalle NTC 18 sono caratterizzate da prescelte probabilità di superamento e dalla vita di riferimento. A tal fine occorre fissare:

- la vita di riferimento V_R della costruzione;
- le probabilità di superamento nella vita di riferimento PVR associate agli stati limite considerati, per individuare infine, a partire dai dati di pericolosità sismica disponibili, le corrispondenti azioni sismiche.

A tal fine, si utilizza come parametro caratterizzante la pericolosità sismica, il periodo di ritorno dell'azione sismica T_R, espresso in anni. Fissata la vita di riferimento V_R, i due parametri T_R e P_{VR} sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante la seguente espressione:

$$T_R = -V_R / \ln (1-P_{VR}) = -100 / \ln (1-10\%) = 949 \text{ anni}$$

La struttura è ubicata alle coordinate geografiche Lat. 45°.68563, Long. 9°.660963

I valori dei parametri a_g, F₀ e T_C* relativi alla pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento sono forniti nelle tabelle riportate nell'Allegato B delle NTC18, in funzione di prefissati valori del periodo di ritorno T_R. L'accelerazione al sito a_g è

FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 23di 102

espressa in g/10, F₀ è adimensionale, T_C* è espresso in secondi.

I punti del reticolo di riferimento sono definiti in termini di Latitudine e Longitudine ed ordinati a latitudine e longitudine crescenti, facendo variare prima la Longitudine e poi la Latitudine.

Qualora l'attuale pericolosità sismica sul reticolo di riferimento non contempli il periodo di ritorno T_R corrispondente alla V_R e alla P_{VR} fissate, il valore del generico parametro p (a_g , F_0 e T_c^*) ad esso corrispondente potrà essere ricavato per interpolazione, a partire dai dati relativi ai T_R previsti nella pericolosità sismica, utilizzando l'espressione seguente:

$$\log(\mathbf{p}) = \log(p_1) + \log\left(\frac{p_2}{p_1}\right) \times \log\left(\frac{T_R}{T_{R1}}\right) \times \left[\log\left(\frac{T_{R2}}{T_{R1}}\right)\right]^{-1}$$

Di seguito si riportano i grafici ed i valori dei parametri a_g, F₀ e T_C* per i periodi di ritorno T_R associati a ciascuno stato limite:

SLATO	T _R	a _g	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	60	0.043	2.451	0.224
SLD	101	0.055	2.433	0.242
SLV	949	0.144	2.460	0.275
SLC	1950	0.183	2.497	0.284

6.6.5.-.. Categoria di sottosuolo e Condizioni topografiche

Categoria sottosuolo

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale mediante specifiche analisi, come indicato nel § 7.11.3 NTC 18. In assenza di tali analisi, per la definizione dell'azione sismica, si può fare riferimento a un approccio semplificato che si basa sull'individuazione di categorie di sottosuolo di riferimento. Nel caso specifico, a vantaggio di sicurezza, si adotta la seguente categoria di sottosuolo:

Categoria C: Depositi di terreni a grana grossa mediamente addensati o terreni

FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 24di 102

a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s

Amplificazione stratigrafica

In condizioni stratigrafiche e morfologiche schematizzabili con un modello monodimensionale e per profili stratigrafici riconducibili alle categorie di cui alla Tab. 3.2.II, il moto sismico alla superficie di un sito è definibile mediante l'accelerazione massima (a_{max}) attesa in superficie ed una forma spettrale ancorata ad essa. Il valore di a_{max} può essere ricavato dalla relazione $a_{max} = S_{sxag}$ dove a_{g} è l'accelerazione massima su sito di riferimento rigido ed S_{s} è il coefficiente di amplificazione stratigrafica. In condizioni stratigrafiche e morfologiche schematizzabili con un modello mono dimensionale e per profili stratigrafici riconducibili alle categorie di cui alla Tab. 3.2.II, il moto sismico alla superficie di un sito è definibile mediante l'accelerazione massima (a_{max}) attesa in superficie ed una forma spettrale ancorata ad essa. Il valore di a_{max} può essere ricavato dalla relazione $a_{max} = S_{sxag}$ dove a_{g} è l'accelerazione massima su sito di riferimento rigido ed S_{s} è il coefficiente di amplificazione stratigrafica.

Condizioni topografiche

Con riferimento alle caratteristiche della superficie topografica inerente l'opera in oggetto, si adotta la seguente categoria topografica:

Categoria topografica T1: Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°.

6.6.6.-..Classe di duttilità

Si considera la struttura non dissipativa con coefficiente di comportamento q=1.5 Tab. 7.3.I DM 17 gennaio 2018. Vengono definite, all'interno del proramma di analisi MIDAS GEN, due funzioni di spettro per le accelerazioni orizzontali una relativa allo spetto inelastico adottando il fattore di comportamento per strutture in classe di duttilità bassa (B), utilizzato per le verifiche in campo plastico degli elementi strutturali, ed una con il

FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 25di 102

coefficiente di comportamento su descritto, per le verifiche in campo elastico degli elementi strutturali

6.6.7.-..Regolarità

La struttura è rispondente a tutti i requisiti di regolarità in pianta ed in elevazione elencati nel §7.2.2 NTC 18.

• Regolare in pianta SI

Regolare in altezza
 SI

6.6.8.-.. Tipologia strutturale e fattore di struttura

Tipologia strutturale

La struttura "sismo resistente in calcestruzzo armato" (§7.4.3.1 NTC 18) è classificabile come:

Struttura a telaio

Fattore di struttura

Il valore del fattore di comportamento q, da utilizzare per ciascuna direzione dell'azione sismica, dipende dalla tipologia strutturale, dal suo grado di iperstaticità e dai criteri di progettazione adottati e prende in conto le non linearità di materiale. Esso può essere calcolato mediante la seguente espressione:

$$q = q_0 \cdot K_R$$

dove:

qo è il valore massimo del fattore di struttura

K_R è un fattore che dipende dalle caratteristiche di regolarità in altezza della costruzione.

La tabella 7.3.Il indica per costruzioni di calcestruzzo, formate da strutture a pendolo inverso intelaiato monopiano in classe di duttilità bassa, il valore di qo =2.5, che considerata la regolarità strutturale del fabbricato, comporta un fattore di comportamento pari a q=2.5. Tuttavia, come precedentemente riportato (par. 6.6.6 della presente relazione) ai sensi del punto 7.3, a favore di sicurezza, si è considerata la

struttura non dissipativa, adottando, pertanto, il coefficiente di comportamento pari a q=1.5 nel rispetto dell'equazione 7.3.2:

$$1 \le q_{ND} = \frac{2}{3} q_{CD''B''} \le 1,5$$

Ciò comporta la verifica anche in campo elastico degli elementi strutturali.

6.6.9.-..Spettri di risposta

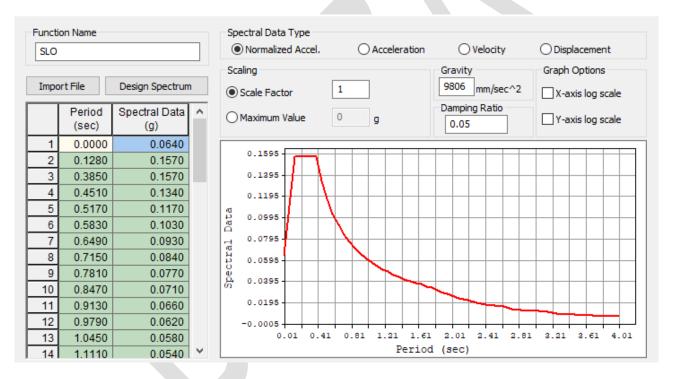



Figure 2 - Funzione dello spettro di risposta elastico allo SLO

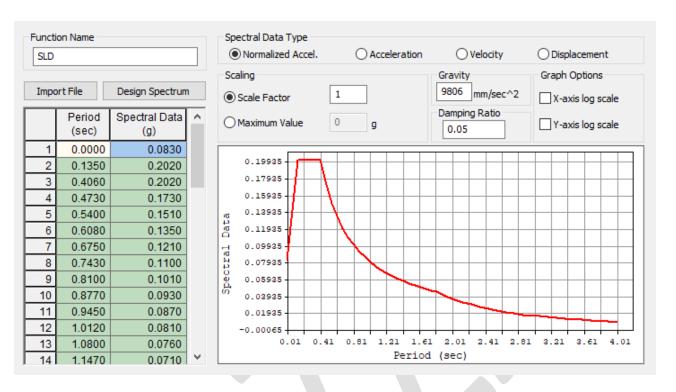


Figure 3 - Funzione dello spettro di risposta elastico allo SLD

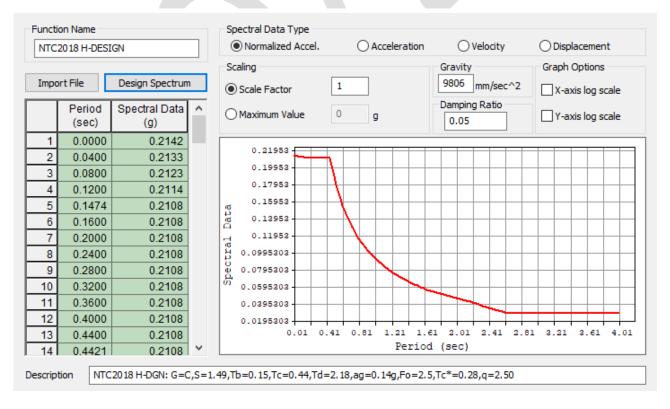
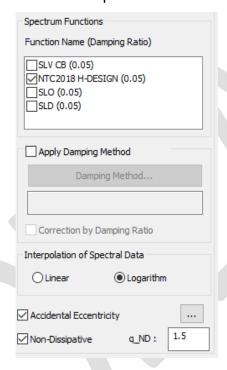



Figure 4 - Funzione dello spettro di risposta inelastico allo SLV

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 28di 102

La funzione sopra rappresentata è relativa allo spettro inelastico abbattuto del fattore di comportamento q=2.5, tuttavia, come precedentemente accennato tale funzione viene automatucamente convertita dal programma di calcolo con il fattore di comportamento q=1.5 per le verifiche per strutture non dissipative.

6.6.10.-..Metodo di analisi

Gli effetti dell'azione sismica vengono valutati tenendo conto delle masse associate ai carichi gravitazionali dovuti al peso proprio (G_1) , ai sovraccarichi permanenti (G_2) e a un'aliquota (ψ_{2j}) dei sovraccarichi accidentali (Q_{kj}) :

$$\boldsymbol{G}_1 + \boldsymbol{G}_2 + \sum\nolimits_{\boldsymbol{i}} \boldsymbol{\psi}_{2\,\boldsymbol{j}} \cdot \boldsymbol{Q}_{k\boldsymbol{j}}$$

I valori dei coefficienti ψ_{2j} sono riportati nella Tabella 2.5.I – NTC2018. Nel caso in esame, le azioni variabili che possono essere sottoposte ad eccitazione sismica sono:

- sovraccarico accidentale in copertura (Q₁): $\psi_{2j} = 0$

- azione della neve in copertura (SL): $\psi_{2i} = 0$

Come metodo di analisi per determinare gli effetti dell'azione sismica si è scelto di utilizzare l'analisi dinamica lineare o analisi modale con spettro di risposta, nella quale l'equilibrio è trattato dinamicamente e l'azione sismica è modellata direttamente attraverso

FABBRICATO TE

PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
NB1R 09 D 26 CL FA 06A0 001 A 29di 102

lo spettro di progetto.

L'analisi dinamica lineare consiste:

Relazione di calcolo

- nella determinazione dei modi di vibrare della costruzione (analisi modale)
- nel calcolo degli effetti dell'azione sismica, rappresentata dallo spettro di risposta di progetto, per ciascuno dei modi di vibrare individuati
- nella combinazione di questi effetti

Come prescritto dalle NTC 2018 al § 7.3.3.1, devono essere considerati tutti i modi di vibrare con massa partecipante significativa. A a tal riguardo, è opportuno considerare tutti i modi con massa partecipante superiore al 5% e comunque un numero di modi la cui massa partecipante totale sia superiore all'85%. Per la combinazione degli effetti relativi ai singoli modi, deve essere utilizzata una combinazione quadratica completa (CQC) degli effetti relativi a ciascun modo, secondo quanto definito al § 7.3.3.1 – NTC2018.

La risposta della struttura viene calcolata separatamente per ciascuna delle due componenti dell'azione sismica orizzontale; gli effetti sulla struttura, in termini di sollecitazioni e spostamenti, sono poi combinati applicando le seguenti espressioni (NTC 2018 - § 7.3.5):

$$1.00 \cdot E_x$$
 "+" $0.30 \cdot E_y$

$$1.00 \cdot E_y$$
 "+" $0.30 \cdot E_x$

6.6.10.1.-.. Risposta Modale

L'analisi a spettro di risposta cerca la risposta più probabile alle equazioni di equilibrio dinamico associate alla risposta della struttura al moto del suolo. L'accelerazione del suolo, dovuta ad un terremoto in ogni direzione, viene espressa come una curva di spettro di risposta della pseudo-accelerazione spettrale in funzione del periodo della struttura.

Anche se le accelerazioni possono essere specificate in 3 direzioni, viene prodotto un unico risultato positivo per ciascuna quantità in risposta; le quantità in risposta comprendono spostamenti, forze e tensioni. Ciascun risultato calcolato rappresenta una misura statistica della grandezza più probabile di quella particolare quantità in risposta. È da attendersi che la vera risposta sia compresa in un intervallo che va dal valore positivo a quello negativo del valore trovato.

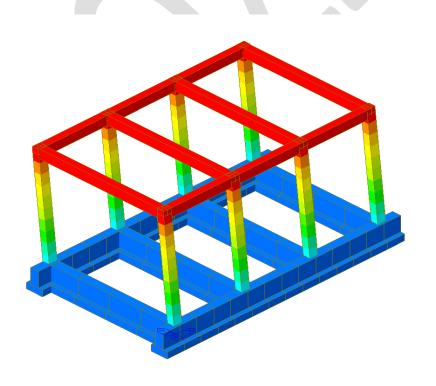
FABBRICATO TE

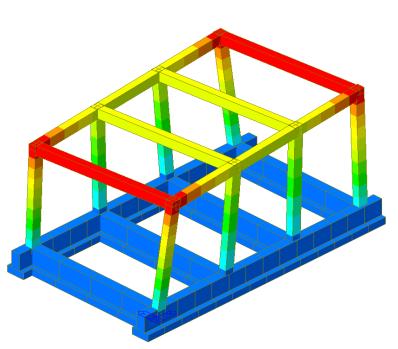
Fabbricato TE	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
Relazione di calcolo	NB1R	09	D 26 CL	FA 06A0 001	Α	30di 102

L'analisi a spettro di risposta viene eseguita usando la sovrapposizione dei modi, ricavati usando l'analisi agli autovettori. Per una data direzione di accelerazione, la risposta modale è calcolata su tutta la struttura per ciascuno dei modi di vibrazione: questi valori modali, per una data quantità in risposta, vengono combinati per produrre un unico risultato positivo per quella data direzione di accelerazione, usando il metodo CQC.

Con i primi tre modi di vibrare si attiva la quasi totalità delle masse partecipanti modali come da tabulato che segue:

Node	Mode	U	х	U	Υ	U	IZ RX RY R		RY		Z								
EIGENVALUE ANALYSIS																			
	Mode		Frequ	iency		Per	iod	Tolor	2000										
	No	(rad/	/sec)	(cycle/sec)		(86	(sec)		Tolerance		Toleratice		Tolerance		Totalice				
	1		18.3423		2.9193	0.3426		0.0000e+000											
	2		22.5963		3.5963	0.2781		0.0000e+000											
	3		23.8326		3.7931	0.2636		0.0000e+000											
					MODA	L PARTICIPA	TION MASSI	S PRINTOUT											
	Mode	TRA	N-X	TRA	N-Y	TRAN-Z		ROTN-X		ROTN-Y		ROTN-Z							
	No	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)						
	1	0.0000	0.0000	99.9992	99.9992	0.0000	0.0000	0.0007	0.0007	0.0000	0.0000	0.0000	0.0000						
	2	0.0000	0.0000	0.0000	99.9992	0.0000	0.0000	0.0000	0.0007	0.0000	0.0000	99.9995	99.9995						
	3	99.9984	99.9984	0.0000	99.9992	0.0000	0.0000	0.0000	0.0007	0.0009	0.0009	0.0000	99.9995						




Figure 5 Primo modo di vibrare

LOTTO 9 FABBRICATO TE

Fabbricato TE PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO Relazione di calcolo NB1R 09 D 26 CL FA 06A0 001 A 31di 102

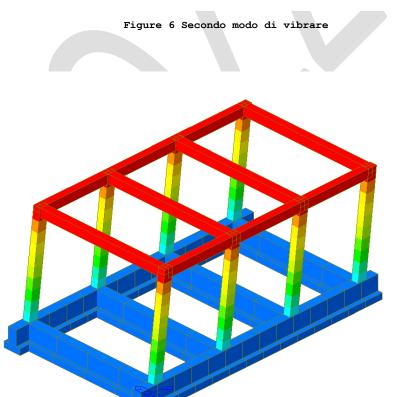


Figure 7 Terzo modo di vibrare

LOTTO 9 FABBRICATO TE

Fabbricato TE PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO Relazione di calcolo NB1R 09 D 26 CL FA 06A0 001 A 32di 102

FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 33di 102

7.-..ANALISI DELLA STRUTTURA

7.1.-..Codici di calcolo utilizzati

Per il calcolo delle sollecitazioni gravanti sugli elementi strutturali, per i modi di vibrare della struttura e per verifiche di resistenza si è fatto ricorso al codice di calcolo FEM MIDAS GEN V. 2021

7.1.1.-.. Affidabilità del software

La documentazione fornita a corredo dei software contiene una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, l'individuazione dei campi d'impiego, nonché casi prova interamente risolti e commentati.

7.2.-.. Modellazione dell'opera

L' edificio in c.a. in oggetto è stato modellato come una struttura a telaio semplice di un piano.

Gli elementi strutturali, travi e pilastri, sono stati schematizzati mediante elementi monodimensionali tipo frame. Essi presentano caratteristiche geometriche e meccaniche in accordo con le proprietà reali dei materiali e delle sezioni che li rappresentano. Ciascuna asta è stata posizionata in corrispondenza dell'asse baricentrico degli elementi strutturali e le sono stati assegnati inoltre gli opportuni *End Lenght Offset* per tener in conto le compenetrazioni delle aste nei nodi.

La soletta di piano viene modellata tramite elementi bidimensionali.

L'analisi degli effetti dovuti all'azione sismica prevede la definizione delle masse strutturali partecipanti all'eccitazione dinamica dovuta al terremoto. Pertanto, nel modello, le masse strutturali coincidono con i carichi caratteristici permanenti strutturali e non strutturali.

Il programma di calcolo permette di differenziare, tramite appositi gruppi, i vincoli della struttura, permettendo di eseguire l'analisi agli autovalori con incastri alla base e lo studio delle sollecitazioni mediante travi su suolo elastico alla winkler.

Relazione di calcolo

PROGETTO DEFINITIVO
RADDOPPIO PONTE SAN PIETRO – BERGAMO – MONTELLO
LOTTO 9
FABBRICATO TE

Fabbricato TE PRO

PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 34di 102

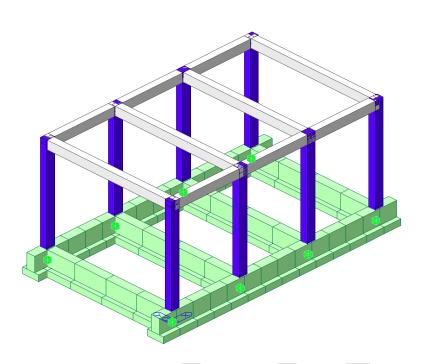


Figure 8 Modello incastrato alla base

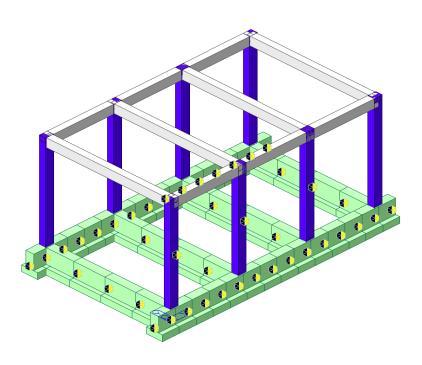


Figure 9 Modello con molle

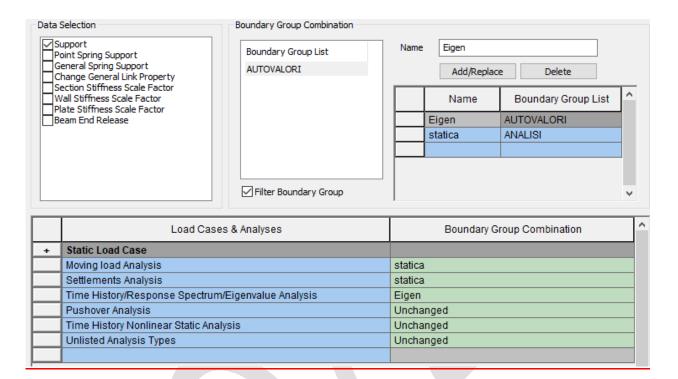


Figure 10 - Impostazione dei criteri di analisi

7.2.1.-..Stratigrafia del terreno

Le strutture in esame, in rapporto alla stabilità globale del complesso fondazione terreno, sono di modesto rilievo e la caratterizzazione geotecnica è stata condotta sia sulla base di notizie e dati sui quali possa responsabilmente essere basata la progettazione sia su indagini in sito. Pertanto, si sono assunti i seguenti parametri meccanici:

Strato	Profondità media	Profondità media	Descrizione				
Strato	Da [m da p.c.]	A [m da p.c.]					
Ug1	0	24.5	S(G), S,G	Sabbia ghiaiosa e sabbia con ghiaia			
Ug3b	24.5	27.8	A(S), A,S	Argilla sabbiosa e argilla con sabbia			
Ug4	27.8	30.2	S(G), S,G	Sabbia ghiaiosa e sabbia con ghiaia			
Ug3b	30.2	32.5	A(S), A,S	Argilla sabbiosa e argilla con sabbia			
Ug4	32.5	-	S(G), S,G	Sabbia ghiaiosa e sabbia con ghiaia			

FOGLIO 36di 102

LOTTO 9 FABBRICATO TE

Fabbricato TE	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE
Relazione di calcolo	NB1R	09	D 26 CL	FA 06A0 001	Α

			Parametri di resistenza			Parametri di deformabilità						
Strato	γn	K ₀	φ'	c'	Cu	G₀	E ₀	E _{op1}	E _{op2}	ν'	k _v ^(*)	
	[kN/m ³]	[-]	[°]	[kPa]	[kPa]	[MPa]	[MPa]	[MPa]	[MPa]	[-]	[m/s]	
Ug1	20	0.42	35	0	-	50 - 120	125 - 300	10 - 30	15 - 40	0.25	1.00E-06	
Ug3b	19	0.60	24	0	100	150	375	30	50	0.25	1.00E-10	
Ug4	20	0.38	38	0	-	220	550	60	80	0.25	1.00E-06	
Ug3b	19	0.60	24	0	110	160	400	40	60	0.25	1.00E-10	
Ug4	20	0.38	38	0	-	250	625	80	100	0.25	1.00E-06	

Note:

- Gli intervalli, dove presenti, fanno riferimento a valori crescenti con la profondità.
- (*) per analisi di cedimento adottare cautelativamente i parametri di permeabilità verticale definiti in tabella; per analisi di stabilità adottare anche i parametri di permeabilità orizzontale k_h = 10 k_v per tutti i materiali tranne Ug1 per cui adottare k_h = k_v.
- I moduli E_{op1} ed E_{op2} sono da adottarsi rispettivamente E_{op1} per problemi di "primo carico" (esempio fondazioni dirette, profonde e rilevati) ed E_{op2} per problemi di scarico e/o di scarico-ricarico (esempio: fronti di scavo sostenuti con opere di sostegno tipo paratie tirantate e non).

7.2.1.-..Definizione del modulo di reazione nel modello di calcolo

Assumendo q_a=257.86 kPa determinato come segue:

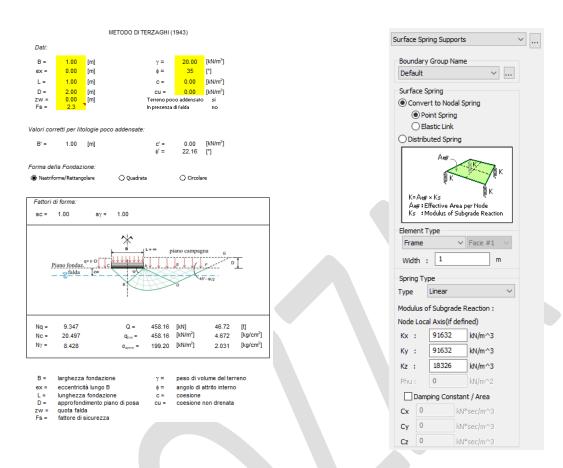


Figura 11 - Definizione della capacità portante del terreno di fondazione.

Considerando il modulo di reazione orizzontale pari a cinque volte il modulo di reazione verticale.

7.2.2.-..Condizioni di carico e assegnazioni

Di seguito si riportano le condizioni elementari di carico:

FABBRICATO TE

Fabbricato TE PRO Relazione di calcolo

PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 38di 102

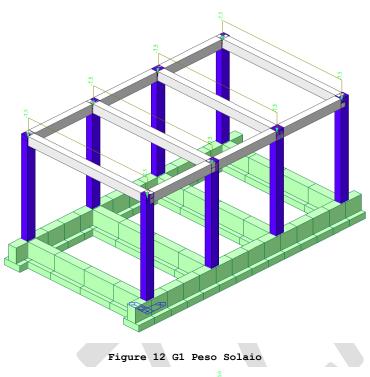


Figure 13 G2 permanenti portati solaio

FABBRICATO TE

Fabbricato TE	PROGET
Relazione di calcolo	NB1R

OGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
NB1R 09 D 26 CL FA 06A0 001 A 39di 102

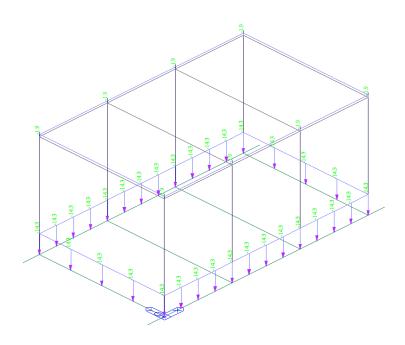


Figure 14 G2 Carichi lineari



Figure 15 QH1 variabili

FOGLIO

40di 102

FABBRICATO TE

Fabbricato TE PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE Relazione di calcolo NB1R 09 D 26 CL FA 06A0 001 A

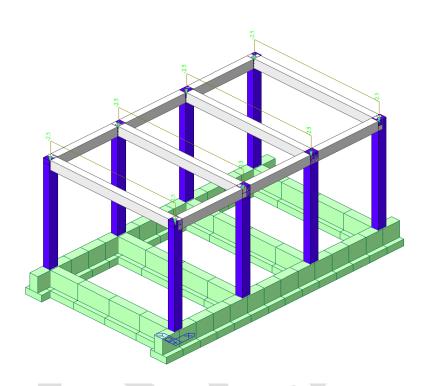


Figure 16 N Neve

FABBRICATO TE

Fabbricato TE	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
Relazione di calcolo	NB1R	09	D 26 CL	FA 06A0 001	Α	41di 102

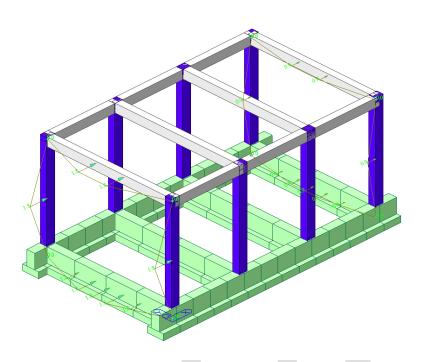


Figure 17 Vx Vento in X

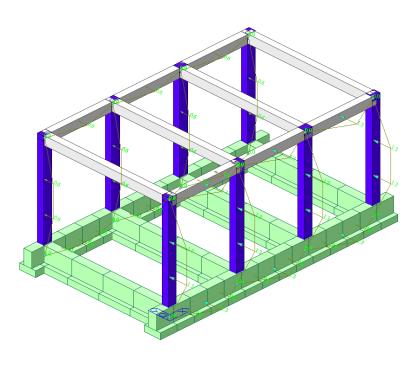


Figure 18 Vy Vento in Y

FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 42di 102

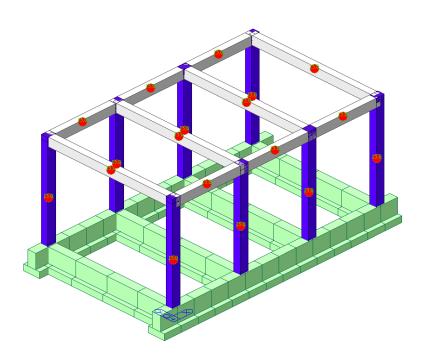


Figure 19 T Variazioni termiche

7.3.-..Combinazioni di carico

Ai fini delle verifiche degli stati limite, si definiscono le seguenti combinazioni delle azioni (§ 2.5.3 NTC 18):

- Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU):
 - $\gamma_{G1} \ G_1 + \gamma_{G2} \ G_2 + \gamma_p \ P + \gamma_{Q1} \ Q_{K1} + \gamma_{Q2} \ \psi_{02} \ Q_{K2} + \gamma_{Q3} \ \psi_{03} \ Q_{K3} + \ldots$
- Combinazione caratteristica (rara), impiegata per gli stati limite di esercizio (SLE) irreversibili (verifiche alle tensioni ammissibili di cui al § 2.7 NTC 18):

$$G_1 + G_2 + P + Q_{K1} + \psi_{02} Q_{K2} + \psi_{03} Q_{K3} + \dots$$

- Combinazione frequente, impiegata per gli stati limite di esercizio (SLE) reversibili:
 - $G_1 + G_2 + P + \psi_{11} Q_{K1} + \psi_{22} Q_{K2} + \psi_{23} Q_{K3} + ...$
- Combinazione quasi permanente (SLE), impiegata per gli effetti a lungo termine:
 - $G_1 + G_2 + P + \psi_{21} Q_{K1} + \psi_{22} Q_{K2} + \psi_{23} Q_{K3} + ...$
- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi

all'azione sismica E:

 $E + G_1 + G_2 + P + \psi_{21} Q_{K1} + \psi_{22} Q_{K2} +$

Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto:

$$G_1 + G_2 + P + A_d + \psi_{21} Q_{K1} + \psi_{22} Q_{K2} + ...$$

Le condizioni elementari di carico sono opportunamente combinate per determinare le condizioni più sfavorevoli per ciascun elemento strutturale. Di seguito, tutte le combinazioni di carico vengono raggruppate per famiglia di appartenenza. In particolare, le celle di una riga contengono i coefficienti moltiplicatori della i-esima combinazione.

Si riportano, con riferimento al § 7.3 della presente, le combinazioni utilizzate.

7.3.1.-..Combinazioni di carico adottate per le verifiche

A seguire si elencano le combinazioni adottate per le verifiche.

Combinazioni SLU

NAME	ACTIVE	ТҮРЕ	G ₁	G2	Q _{H1}	N	Т	V _x	Vy
SLU 1	Strength/Stress	Add	1.3	1.3	1.5		0.9		
SLU 2	Strength/Stress	Add	1.3	1.3			1.5		
SLU 3	Strength/Stress	Add	1.3	1.3	1.5	0.75	0.9		
SLU 4	Strength/Stress	Add	1.3	1.3		0.75	1.5		
SLU 5	Strength/Stress	Add	1.3	1.3		1.5	0.9		
SLU 6	Strength/Stress	Add	1.3	1.3	1.5		0.9	0.9	
SLU 7	Strength/Stress	Add	1.3	1.3	1.5		0.9		0.9
SLU 8	Strength/Stress	Add	1.3	1.3			1.5	0.9	
SLU 9	Strength/Stress	Add	1.3	1.3			1.5		0.9
SLU 10	Strength/Stress	Add	1.3	1.3			0.9	1.5	
SLU 11	Strength/Stress	Add	1.3	1.3			0.9		1.5
SLU 12	Strength/Stress	Add	1.3	1.3	1.5		0.9	-0.9	
SLU 13	Strength/Stress	Add	1.3	1.3	1.5		0.9		-0.9
SLU 14	Strength/Stress	Add	1.3	1.3			1.5	-0.9	

FABBRICATO TE

GRUPPO FERROVIE DELLO STATO TIALIANE												
	Fabbricato T			OGETTO	LOTTO		IFICA	DOCUMENTO FA 06A0 001		REVISIONE	FOGLIO	
	Relazione di ca	IICOIO		NB1R	09	D 20	6 CL	FA (JOAU UU1	Α	44di 102	
SLU 15	Strength/Stress	Add	1.3	1.	3				1.5		-0.9	
SLU 16	Strength/Stress	Add	1.3	1.	3				0.9	-1.5		
SLU 17	Strength/Stress	Add	1.3	1.	3				0.9		-1.5	
SLU 18	Strength/Stress	Add	1.3	1.	3	1.5	0.7	'5	0.9	0.9		
SLU 19	Strength/Stress	Add	1.3	1.	3	1.5	0.7	'5	0.9		0.9	
SLU 20	Strength/Stress	Add	1.3	1.	3		0.7	'5	1.5	0.9		
SLU 21	Strength/Stress	Add	1.3	1.	3		0.7	'5	1.5		0.9	
SLU 22	Strength/Stress	Add	1.3	1.	3		0.7	'5	0.9	1.5		
SLU 23	Strength/Stress	Add	1.3	1.	3		0.7	'5	0.9		1.5	
SLU 24	Strength/Stress	Add	1.3	1.	3	1.5	0.7	'5	0.9	-0.9		
SLU 25	Strength/Stress	Add	1.3	1.	3	1.5	0.7	'5	0.9		-0.9	
SLU 26	Strength/Stress	Add	1.3	1.	3		0.7	' 5	1.5	-0.9		
SLU 27	Strength/Stress	Add	1.3	1.	3		0.7	'5	1.5		-0.9	
SLU 28	Strength/Stress	Add	1.3	1.	3		0.7	' 5	0.9	-1.5		
SLU 29	Strength/Stress	Add	1.3	1.	3		0.7	5	0.9		-1.5	
SLU 30	Strength/Stress	Add	1.3	1.3	3		1	.5	0.9	0.9		
SLU 31	Strength/Stress	Add	1.3	1.	3		1	.5	0.9		0.9	
SLU 32	Strength/Stress	Add	1.3	1.	3		1	.5	0.9	-0.9		
SLU 33	Strength/Stress	Add	1.3	1.	3		1	.5	0.9		-0.9	

Combinazioni SLE rara

NAME	ACTIVE	TYPE	G ₁	G2	Q _{H1}	N	Т	V _x	Vy
RARA 1	Serviceability	Add	1	1	1		0.6		
RARA 2	Serviceability	Add	1	1			1		
RARA 3	Serviceability	Add	1	1	1	0.5	0.6		
RARA 4	Serviceability	Add	1	1		0.5	1		
RARA 5	Serviceability	Add	1	1		1	0.6		
RARA 6	Serviceability	Add	1	1	1		0.6	0.6	
RARA 7	Serviceability	Add	1	1	1		0.6		0.6
RARA 8	Serviceability	Add	1	1			1	0.6	
RARA 9	Serviceability	Add	1	1			1		0.6
RARA 10	Serviceability	Add	1	1	1		0.6	-0.6	
RARA 11	Serviceability	Add	1	1	1		0.6		-0.6
RARA 12	Serviceability	Add	1	1			1	-0.6	
RARA 13	Serviceability	Add	1	1			1		-0.6
RARA 14	Serviceability	Add	1	1			0.6	1	
RARA 15	Serviceability	Add	1	1			0.6		1
RARA 16	Serviceability	Add	1	1			0.6	-1	
RARA 17	Serviceability	Add	1	1			0.6		-1
RARA 18	Serviceability	Add	1	1	1	0.5	0.6	0.6	
RARA 19	Serviceability	Add	1	1	1	0.5	0.6		0.6

GRUPPO FERROVIE DELLO STATO ITALIANE	RADD LOTT	ETTO DEFINITION OPPIO PONTE O 9 RICATO TE	_	IETRO	– BERGAMO	– MONTELL	.0
Fabbricato TE	PROC	SETTO LOTTO	CODIF	ICA	DOCUMENTO	REVISIONE	FOGLIO
Relazione di calcolo	NE	31R 09	D 26	CL	FA 06A0 001	Α	45di 102
RARA 20 Serviceability Add	1	1		0.5	_	0.6	
RARA 21 Serviceability Add	1	1		0.5	1		0.6
RARA 22 Serviceability Add	1	1	1	0.5	0.6	-0.6	
RARA 23 Serviceability Add	1	1	1	0.5	0.6		-0.6

Combinazioni SLE frequente

NAME	ACTIVE	TYPE	G_1	G2	Q_{H1}	N	Т	V_x	Vy
FREQ 1	Serviceability	Add	1	1		0.5	1	-0.6	
FREQ 2	Serviceability	Add	1	1		0.5	1		-0.6
FREQ 3	Serviceability	Add	1	1		0.5	0.6	1	
FREQ 4	Serviceability	Add	1	1		0.5	0.6		1
FREQ 5	Serviceability	Add	1	1		0.5	0.6	-1	
FREQ 6	Serviceability	Add	1	1		0.5	0.6		-1
FREQ 7	Serviceability	Add	1	1		1	0.6	0.6	
FREQ 8	Serviceability	Add	1	1		1	0.6		0.6
FREQ 9	Serviceability	Add	1	1		1	0.6	-0.6	
FREQ 10	Serviceability	Add	1	1		1	0.6		-0.6

Combinazioni SLE quasi permanente

NAME	ACTIVE	TYPE	G ₁	G2	Q _{H1}	N	Т	V _x	Vy
PERM 1	Serviceability	Add	1	1					
PERM 2	Serviceability	Add	1	1			0.5		
PERM 3	Serviceability	Add	1	1		0.2			
PERM 4	Serviceability	Add	1	1				0.2	
PERM 5	Serviceability	Add	1	1					0.2
PERM 6	Serviceability	Add	1	1				-0.2	
NAME	ACTIVE	TYPE	G₁	G2	Q _{H1} N	Т	V _x		Vy
PERM 7	Serviceability		G₁ 1	G2	Q _{H1} N	T	V _x		-0.2
		Add			Q _{H1} N	0.2	V _x	0.2	
PERM 7	Serviceability	Add Add	1	1	Q _{H1} N		V _x	0.2	
PERM 7 PERM 8 PERM 9	Serviceability Serviceability	Add Add Add	1 1	1	Q _{H1} N	0.2	V _x	0.2	-0.2
PERM 7 PERM 8 PERM 9 PERM 10	Serviceability Serviceability Serviceability	Add Add Add Add	1 1 1	1	Q _{H1} N	0.2 0.2	V _x		-0.2

Combinazioni SLV INELASTICO

NAME	ACTIVE	TYPE	G ₁	G2	Q_{H1}	N	T	V_{x}	Vy	SLV X (RS)	SLVY (RS)	SLV X (ES)	SLVY (ES)
SLV1	Strength/Stress	Add	1	1						1	0.3	1	0.3

FABBRICATO TE

	Fabbricato TE Relazione di calcolo					LOTTO 09	CODIFICA D 26 CL	DOCUMENTO FA 06A0 001	REVISIONE A	FOGLIO 46di 102
		-			NB1R					
SLV2	Strength/Stress	Add	1	1			1	0.3	-1	-0.3
SLV3	Strength/Stress	Add	1	1			1	-0.3	1	-0.3
SLV4	Strength/Stress	Add	1	1			1	-0.3	-1	0.3
SLV5	Strength/Stress	Add	1	1			0.3	1	0.3	1
SLV6	Strength/Stress	Add	1	1			0.3	1	-0.3	-1
SLV7	Strength/Stress	Add	1	1			-0.3	1	-0.3	1
SLV8	Strength/Stress	Add	1	1			-0.3	1	0.3	-1
SLV9	Strength/Stress	Add	1	1			1	0.3	1	-0.3
SLV10	Strength/Stress	Add	1	1			1	0.3	-1	0.3
SLV11	Strength/Stress	Add	1	1			1	-0.3	1	0.3
SLV12	Strength/Stress	Add	1	1			1	-0.3	-1	-0.3
SLV13	Strength/Stress	Add	1	1			0.3	1	-0.3	1
SLV14	Strength/Stress	Add	1	1			0.3	1	0.3	-1
SLV15	Strength/Stress	Add	1	1			-0.3	1	0.3	1
SLV16	Strength/Stress	Add	1	1			-0.3	1	-0.3	-1
SLV17	Strength/Stress	Add	1	1			-1	-0.3	-1	-0.3
SLV18	Strength/Stress	Add	1	1			-1	-0.3	1	0.3
SLV19	Strength/Stress	Add	1	1			-1	0.3	-1	0.3
SLV20	Strength/Stress	Add	1	1			-1	0.3	1	-0.3
SLV21	Strength/Stress	Add	1	1			-0.3	-1	-0.3	-1
SLV22	Strength/Stress	Add	1	1			-0.3	-1	0.3	1
SLV23	Strength/Stress	Add	1	1			0.3	-1	0.3	-1
SLV24	Strength/Stress	Add	1	1			0.3	-1	-0.3	1
SLV25	Strength/Stress	Add	1	1			-1	-0.3	-1	0.3
SLV26	Strength/Stress	Add	1	1			-1	-0.3	1	-0.3
SLV27	Strength/Stress	Add	1	1			-1	0.3	-1	-0.3
SLV28	Strength/Stress	Add	1	1			-1	0.3	1	0.3
SLV29	Strength/Stress	Add	1	1			-0.3	-1	0.3	-1
SLV30	Strength/Stress		1	1			-0.3	-1	-0.3	1
SLV31	Strength/Stress		1	1			0.3	-1	-0.3	-1
SLV32	Strength/Stress		1	1			0.3	-1	0.3	1

Combinazioni SLV ELASTICO VERIFICA ND (STRUTTURA NON DISSIPATIVA

NAME	ACTIVE	TYPE	G ₁	G2	SLV X (RS)	SLVY (RS)	SLV X (NRS)	SLVY (NRS)	SLV X (ES)	SLVY (ES)	SLV X (NES)	SLVY (NES)
SLV ND 1	Strength(Elastic)	Add	1	1			1	0.3			1	0.3
SLV ND 2	Strength(Elastic)	Add	1	1			1	0.3			-1	-0.3
SLV ND 3	Strength(Elastic)	Add	1	1			1	-0.3			1	-0.3
SLV ND 4	Strength(Elastic)	Add	1	1			1	-0.3			-1	0.3
SLV ND 5	Strength(Elastic)	Add	1	1			0.3	1			0.3	1
SLV ND 6	Strength(Elastic)	Add	1	1			0.3	1			-0.3	-1

Fabbricato TE

Relazione di calcolo

PROGETTO DEFINITIVO RADDOPPIO PONTE SAN PIETRO – BERGAMO – MONTELLO LOTTO 9

DOCUMENTO REVISIONE FOGLIO

Α

47di 102

FA 06A0 001

CODIFICA

D 26 CL

FABBRICATO TE

PROGETTO LOTTO

09

	rtelazierie	ai oai	00.0							0, 10 00 1		
SLV ND 7	Strength(Elastic)	Add	1	1			-0.3	1			-0.3	1
SLV ND 8	Strength(Elastic)	Add	1	1			-0.3	1			0.3	-1
SLV ND 9	Strength(Elastic)	Add	1	1			1	0.3			1	-0.3
SLV ND 10	Strength(Elastic)	Add	1	1			1	0.3			-1	0.3
SLV ND 11	Strength(Elastic)	Add	1	1			1	-0.3			1	0.3
SLV ND 12	Strength(Elastic)	Add	1	1			1	-0.3			-1	-0.3
SLV ND 13	Strength(Elastic)	Add	1	1			0.3	1			-0.3	1
SLV ND 14	Strength(Elastic)	Add	1	1			0.3	1			0.3	-1
SLV ND 15	Strength(Elastic)	Add	1	1			-0.3	1			0.3	1
SLV ND 16	Strength(Elastic)	Add	1	1			-0.3	1			-0.3	-1
SLV ND 17	Strength(Elastic)	Add	1	1			-1	-0.3			-1	-0.3
SLV ND 18	Strength(Elastic)	Add	1	1			-1	-0.3			1	0.3
SLV ND 19	Strength(Elastic)	Add	1	1			-1	0.3			-1	0.3
SLV ND 20	Strength(Elastic)	Add	1	1			-1	0.3			1	-0.3
SLV ND 21	Strength(Elastic)	Add	1	1			-0.3	-1			-0.3	-1
SLV ND 22	Strength(Elastic)	Add	1	1			-0.3	-1			0.3	1
SLV ND 23	Strength(Elastic)	Add	1	1			0.3	-1			0.3	-1
SLV ND 24	Strength(Elastic)	Add	1	1			0.3	-1			-0.3	1
SLV ND 25	Strength(Elastic)	Add	1	1			-1	-0.3			-1	0.3
SLV ND 26	Strength(Elastic)	Add	1	1			-1	-0.3			1	-0.3
SLV ND 27	Strength(Elastic)	Add	1	1			-1	0.3			-1	-0.3
SLV ND 28	Strength(Elastic)	Add	1	1			-1	0.3			1	0.3
SLV ND 29	Strength(Elastic)	Add	1	1			-0.3	-1			0.3 -0.3	-1
SLV ND 30 SLV ND 31	Strength(Elastic) Strength(Elastic)	Add	1	1			-0.3 0.3	-1			-0.3	1 -1
SLV ND 32		Add	1	1			0.3	-1 -1			0.3	1
SLV ND 33	Strength(Elastic)	Add	1	1	1	0.3	0.5	-1	1	0.3	0.5	1
SLV ND 34	Strength(Elastic)	Add	1	1	1	0.3			-1	-0.3		
SLV ND 35	- '	Add	1	1	1	-0.3			1	-0.3		
SLV ND 36	Strength(Elastic)		1	1	1	-0.3			-1	0.3		
SLV ND 37	Strength(Elastic)	Add	1	1	0.3	1			0.3	1		
SLV ND 38	Strength(Elastic)	Add	1	1	0.3	1			-0.3	-1		
SLV ND 39	Strength(Elastic)	Add	1	1	-0.3	1			-0.3	1		
NAME	ACTIVE	TYPE	G ₁	G2	SLV X (RS)	SLVY (RS)	SLV X (NRS)	SLVY (NRS)	SLV X (ES)	SLVY (ES)	SLV X (NES)	SLVY (NES)
SLV ND 40	Strength(Elastic)	Add	1	1	-0.3	1			0.3	-1		_
SLV ND 41	Strength(Elastic)	Add	1	1	1	0.3			1	-0.3		
SLV ND 42	Strength(Elastic)	Add	1	1	1	0.3			-1	0.3		
SLV ND 43	Strength(Elastic)	Add	1	1	1	-0.3			1	0.3		
SLV ND 44	Strength(Elastic)	Add	1	1	1	-0.3			-1	-0.3		
SLV ND 45	Strength(Elastic)	Add	1	1	0.3	1			-0.3	1		
SLV ND 46	Strength(Elastic)	Add	1	1	0.3	1			0.3	-1		
SLV ND 47	Strength(Elastic)	Add	1	1	-0.3	1			0.3	1		
							47					

Fabbricato TE PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO Relazione di calcolo NB1R 09 D 26 CL FA 06A0 001 A 48di 102

SLV ND 48	Strength(Elastic)	Add	1	1	-0.3	1	-0.3	-1
SLV ND 49	Strength(Elastic)	Add	1	1	-1	-0.3	-1	-0.3
SLV ND 50	Strength(Elastic)	Add	1	1	-1	-0.3	1	0.3
SLV ND 51	Strength(Elastic)	Add	1	1	-1	0.3	-1	0.3
SLV ND 52	Strength(Elastic)	Add	1	1	-1	0.3	1	-0.3
SLV ND 53	Strength(Elastic)	Add	1	1	-0.3	-1	-0.3	-1
SLV ND 54	Strength(Elastic)	Add	1	1	-0.3	-1	0.3	1
SLV ND 55	Strength(Elastic)	Add	1	1	0.3	-1	0.3	-1
SLV ND 56	Strength(Elastic)	Add	1	1	0.3	-1	-0.3	1
SLV ND 57	Strength(Elastic)	Add	1	1	-1	-0.3	-1	0.3
SLV ND 58	Strength(Elastic)	Add	1	1	-1	-0.3	1	-0.3
SLV ND 59	Strength(Elastic)	Add	1	1	-1	0.3	-1	-0.3
SLV ND 60	Strength(Elastic)	Add	1	1	-1	0.3	1	0.3
SLV ND 61	Strength(Elastic)	Add	1	1	-0.3	-1	0.3	-1
SLV ND 62	Strength(Elastic)	Add	1	1	-0.3	-1	-0.3	1
SLV ND 63	Strength(Elastic)	Add	1	1	0.3	-1	-0.3	-1
SLV ND 64	Strength(Elastic)	Add	1	1	0.3	-1	0.3	1

Sono stati omessi i campi con valori $\psi_{2j} = 0$

Relazione di calcolo

PROGETTO DEFINITIVO
RADDOPPIO PONTE SAN PIETRO – BERGAMO – MONTELLO
LOTTO 9

FABBRICATO TE

PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 49di 102

8.-..SOLLECITAZIONI MASSIME

Di seguito si riportano, per il modello di calcolo, la rappresentazione grafica delle principali caratteristiche di sollecitazione, a mezzo di diagrammi di inviluppo associati alle famiglie di combinazioni dei carichi.

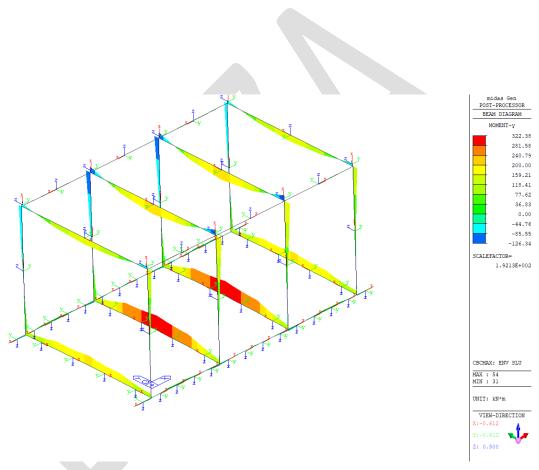


Figure 20 Momenti My inviluppo SLU

FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 50di 102

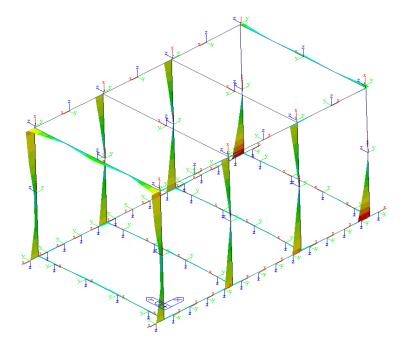
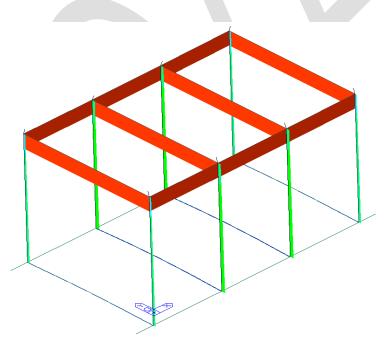



Figure 21 Momenti Mz inviluppo SLU

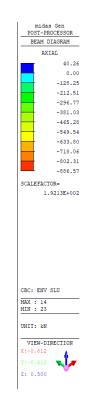
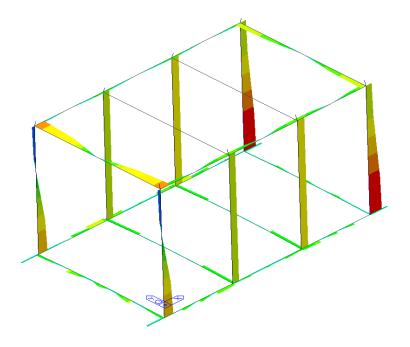



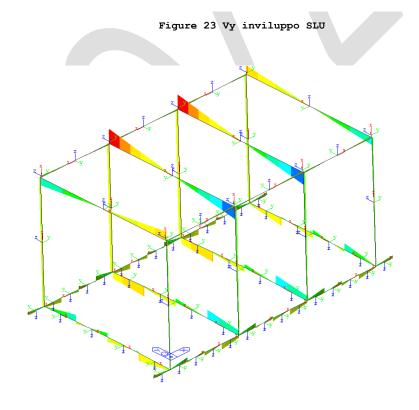
Figure 22 N inviluppo SLU

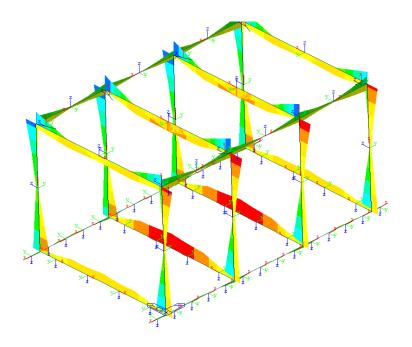
FABBRICATO TE

PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO Fabbricato TE Relazione di calcolo NB1R 09 D 26 CL FA 06A0 001

Α

51di 102




Figure 24 Vz inviluppo SLU

LOTTO 9 FABBRICATO TE

Fabbricato TE	PRO
Relazione di calcolo	N

OGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
NB1R 09 D 26 CL FA 06A0 001 A 52di 102

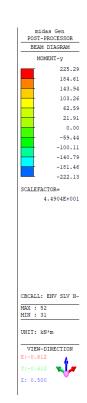


Figure 25 Momenti My Inviluppo SLV ND

FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 53di 102

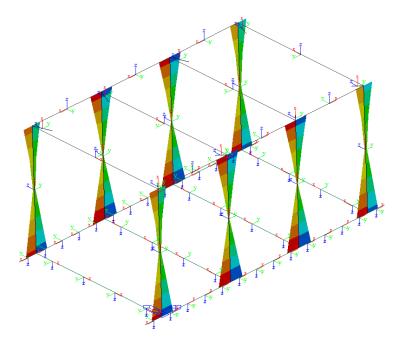
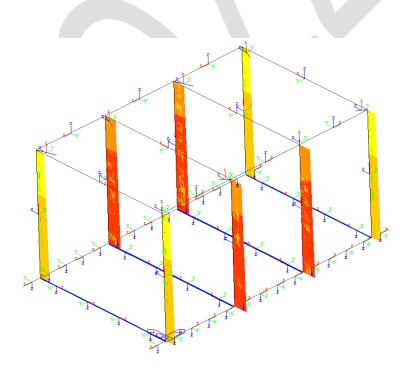


Figure 26 Momenti Mz Inviluppo SLV ND



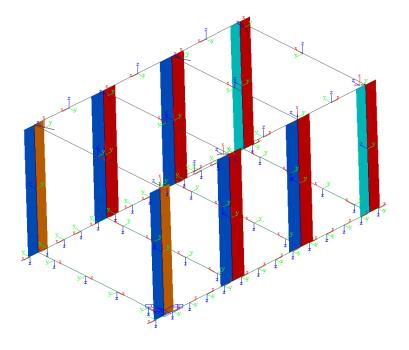
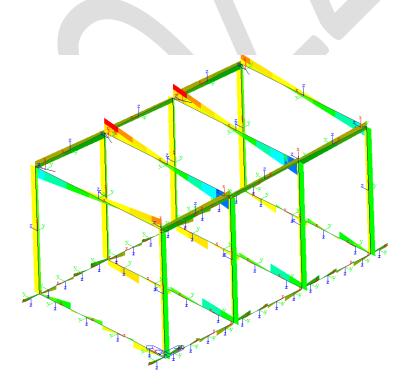


Figure 27 N Inviluppo SLV ND

FABBRICATO TE

PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO Fabbricato TE Relazione di calcolo NB1R 09 D 26 CL FA 06A0 001



Α

54di 102

Figure 28 Vy Inviluppo SLV ND

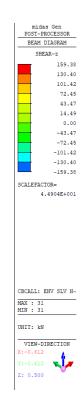


Figure 29 Vz Inviluppo SLV ND

LOTTO 9 FABBRICATO TE

Fabbricato TE	
Relazione di calcolo	

ROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
NB1R	09	D 26 CL	FA 06A0 001	Α	55di 102

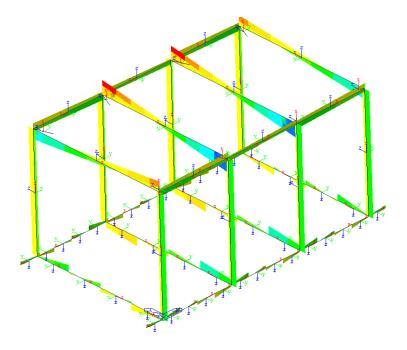


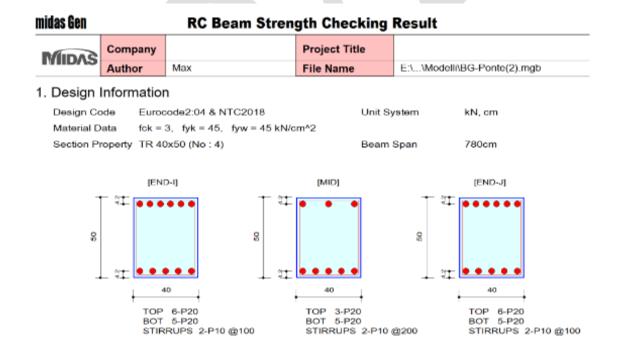
Figure 30 Vz Inviluppo SLV ND

9.-..VERIFICA ELEMENTI STRUTTURALI

La verifica degli elementi strutturali viene eseguita all'interno del programma Midas Gen con l'apposito modulo di progetto e verifica dgli elementi in cemento armato.

REVISIONE

Α


FOGLIO

56di 102

9.1.-..Travi elevazione 40x50cm

Si adotta un'armatura longitudinale composta agli appoggi da 6Φ20 in zona tesa, e 5 Φ20 in zona compressa; in mezzeria, composta da 5Φ20 in zona tesa, e da 3Φ20 in zona compressa. Per le staffe si adotteranno, nelle zone d'appoggio e per un tratto pari ad 0,80 m dal pilastro, staffe Φ10 / 10 cm, mentre nelle zone centrali di campata rimanenti, staffe Φ10/20 cm, nel rispetto dei limiti previsti al punto 7.4.6.2.1 del D.M. 17 gennaio 2018.

Segue in forma grafica il riepilogo delle verifiche effettuate.

Fabbricato TE	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
Relazione di calcolo	NB1R	09	D 26 CL	FA 06A0 001	Α	57di 102

Verifica a flessione allo SLU

2. Bending Moment Capacity

	END-I	MID	END-J
(-) Load Combination No.	131	142	132
Moment (M_Ed)	17561.12	0.00	17561.12
Factored Strength (M_Rd)	31097.49	15931.03	31097.49
Check Ratio (M_Ed/M_Rd)	0.5647	0.0000	0.5647
Neutral Axis (x/d)	0.1367	0.0986	0.1367
(+) Load Combination No.	31	33	33
Moment (M_Ed)	13069.55	22475.74	13173.43
Factored Strength (M_Rd)	26066.19	26091.20	26066.19
Check Ratio (M_Ed/M_Rd)	0.5014	0.8614	0.5054
Neutral Axis (x/d)	0.1187	0.1387	0.1187
Using Rebar Top (As_top)	18.8400	9.4200	18.8400
Using Rebar Bot (As_bot)	15.7000	15.7000	15.7000

Verifica a Taglio allo SLU

3. Shear Capacity

	END-I	MID	END-J
Load Combination No.	126	33	142
Factored Shear Force (V_Ed)	112.69	100.99	112.69
V_Rdc	114.51	107.76	114.51
V_Rds	254.85	127.42	254.85
V_Rdmax	824.40	824.40	824.40
Using Shear Reinf. (Asw)	15.8000	7.9000	15.8000
Using Stirrups Spacing	2-P10 @100	2-P10 @200	2-P10 @100
V_Ed / V_Rdc	0.9841	0.9372	0.9841
V_Ed / min(V_Rds, V_Rdmax)	0.4422	0.7926	0.4422
Check Ratio	0.9841	0.9372	0.9841

Verifica a flessione comportamento elastico

LOTTO 9 FABBRICATO TE

Fabbricato TE	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
Relazione di calcolo	NB1R	09	D 26 CL	FA 06A0 001	Α	58di 102

4. Elastic Bending Moment Capacity

	END-I	MID	END-J
(-) Load Combination No.	173	206	174
Moment (M.Ed)	22213.42	0.00	22213.42
Elastic Strength (M'.yd')	28698.09	14309.93	28698.09
Check Ratio	0.7740	0.0000	0.7740
(+) Load Combination No.	157	206	158
Moment (M.Ed)	14180.55	14681.13	14180.55
Elastic Strength (M.yd')	25019.82	23985.47	25019.82
Check Ratio	0.5668	0.6121	0.5668

Verifica a taglio comportamento elastico

5. Elastic Shear Capacity

	END-I	MID	END-J	
Load Combination No.	190	173	206	
Factored Shear Force (V_Ed)	112.69	94.60	112.69	
V_Rdc	114.51	114.51	114.51	
V_Rds	254.85	127.42	254.85	
V_Rdmax	824.40	824.40	824.40	
Using Shear Reinf. (Asw)	15.8000	7.9000	15.8000	
Using Stirrups Spacing	2-P10 @100	2-P10 @200	2-P10 @100	
V_Ed / V_Rdc	0.9841	0.8261	0.9841	
V_Ed / min(V_Rds, V_Rdmax)	0.4422	0.7424	0.4422	
Check Ratio	0.9841	0.8261	0.9841	

Verifica agli stati limite di esercizio

Verifica tensionale

FABBRICATO TE

Fabbricato TE PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO Relazione di calcolo NB1R 09 D 26 CL FA 06A0 001 A 59di 102

3. Stress Check

	END)-I	MII	D	END	-J
	Concrete	Rebar	Concrete	Rebar	Concrete	Rebar
(-) Load Combination No.	96(F)	96(F)	96(F)	96(F)	96(F)	96(F)
Stress(s)	-0.76	-16.51	-0.96	-32.27	-0.76	-16.51
Allowable Stress(sa)	1.80	36.00	1.80	36.00	1.80	36.00
Stress Ratio(s/sa)	0.4210	0.4586	0.5357	0.8964	0.4210	0.4586
(+) Load Combination No.	98(F)	98(F)	98(F)	98(F)	98(F)	98(F)
Stress(s)	0.60	15.24	0.67	15.37	0.60	15.24
Allowable Stress(sa)	1.80	36.00	1.80	36.00	1.80	36.00
Stress Ratio(s/sa)	0.3323	0.4233	0.3729	0.4269	0.3323	0.4233

3. Check Linear Creep

	END-I	MID	END-J
(-) Load Combination No.	107(Q)	107(Q)	107(Q)
Stress(s)	-0.63	-0.79	-0.63
Allowable Stress(sa)	1.35	1.35	1.35
Stress Ratio(s/sa)	0.4637	0.5867	0.4637
Result	Linear Creep	Linear Creep	Linear Creep
(+) Load Combination No.	109(Q)	109(Q)	109(Q)
Stress(s)	0.50	0.57	0.50
Allowable Stress(sa)	1.35	1.35	1.35
Stress Ratio(s/sa)	0.3702	0.4193	0.3702
Result	Linear Creep	Linear Creep	Linear Creep

Verifica a fessurazione e stato limite di deformazione

FABBRICATO TE

Fabbricato TE	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
Relazione di calcolo	NB1R	09	D 26 CL	FA 06A0 001	Α	60di 102

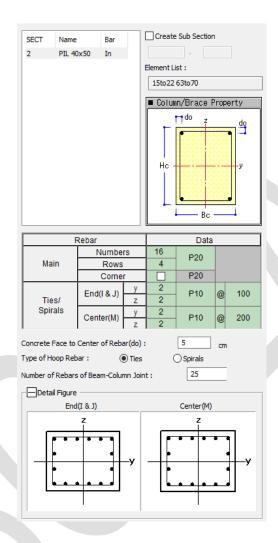
4. Crack Control

	END-I	MID	END-J
(-) Load Combination No.	110(Q)	110(Q)	110(Q)
Crack Width(w)	0.01	0.03	0.01
Allowable Crack Width(wa)	0.03	0.03	0.03
Check Ratio(w/wa)	0.3216	0.9103	0.3216
(+) Load Combination No.	110(Q)	110(Q)	110(Q)
Crack Width(w)	0.01	0.01	0.01
Allowable Crack Width(wa)	0.03	0.03	0.03
Check Ratio(w/wa)	0.3031	0.3072	0.3031

5. Deflection Control

L/250 = 3.120000 > 0.6826 (LCB:70, POS: 390.0cm from END-I)........................ O.K

In allegato tabulato di verifica della trave più sollecitata.



LOTTO 9 FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 61di 102

9.2.-..Pilastri (40x50)

Si dispone la seguente armatura:

1) Lato corto:

- Armatura superiore 4 Φ 20
- Armatura inferiore 4 Φ 20

2) Lato lungo:

- Armatura superiore 4 Φ 20
- Armatura inferiore 4 Φ 20

FABBRICATO TE

Fabbricato TE	
Relazione di calcolo)

PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 62di 102

Si adotteranno staffe Φ 10 / 10 cm alle estremità superiore e inferiore (lunghezza 1 m) del pilastro e staffe Φ 10 / 15 cm per la zona centrale del pilastro.

Verifica snellezza degli elementi compressi

```
[[[*]]] CALCULATE SLENDERNESS RATIOS, MAGNIFIED FORCES/MOMENTS.
midas Gen - RC-Column Checking [ Eurocode2:04 & NTC2018 ]
                                                                                    Gen 2021
      ( ). Factored forces/moments caused by unit load case. Unit : N., mm.
            *.Load combination ID = 125
                                             -----
                                                                               Mzi
           Load Case N_Ed Myi Myj
                                                                                              Μzi
            DL 161115.91 -39998910.73 97019942.07 -410910.74 137481.27

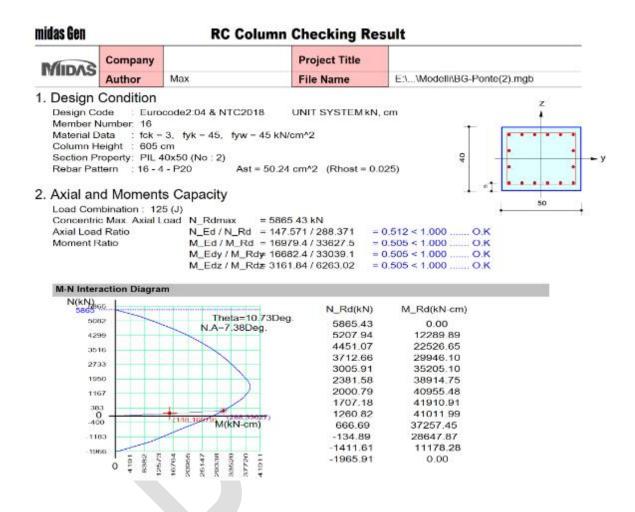
LL -0.00 0.00 0.00 0.00 0.00

DL+LL 161115.91 -39998910.73 97019942.07 -410910.74 137481.27

Others -13545.38 84107767.54 69804255 71 -18331125 55 23755007
            DL+LL+Others 147570.53 44108856.81 166824197.78 -18742036.29 -31618426.23
      ( ). Check slenderness ratios of frame.
            -. Slenderness ratio limits.
               n = N_Ed / (Ac*fcd) =
                                             0.0369
               SRy = 25/\text{sqrt}(n) = 130.158
SRz = 25/\text{sqrt}(n) = 130.158
           -. Radii of gyration.
               iy = Hc / SQRT(12) = 115.470 mm.
iz = Bc / SQRT(12) = 144.338 mm.
           -. Unbraced lengths.
               Loy = 6050.000 \text{ mm}.

Loz = 6050.000 \text{ mm}.
            -. Effective length factors.
           Ky = 1.000

Kz = 1.000


- SLENy = Ky*Loy / iy

- SLENz = Kz*Loz / iz
                                         = 52.395 <= SRy ---> NOT SLENDER.
= 41.916 <= SRz ---> NOT SLENDER.
      ( ). Calculate design moment for slender/non-slender element about major axis.
            -. Minimum moment by eccentricity.
                         =
                                 30.250 mm.
               M Edy min = N_Ed * Emin_y = 4464008.543 N-mm.
           -. Applied design moment.
               M_Edy_app = MAX[M_Edy, M_Edy_min] = 166824197.775 N-mm.
               ---> M_Edy_app is applied for design.
      ( ). Calculate design moment for slender/non-slender element about minor axis.
           -. Minimum moment by eccentricity.
               Emin_z = 30.250 \text{ mm}.
               M_Edz_min = N_Ed * Emin_z = 4464008.543 N-mm.
           -. Applied design moment.
               M Edz app = MAX[ M Edz, M Edz min ] = 31618426.226 N-mm.
               ---> M Edz app is applied for design.
midas Gen - RC-Column Checking [ Eurocode2:04 & NTC2018 ]
                                                                                     Gen 2021
```


Segue in forma grafica il riepilogo delle verifiche effettuate.

Verifica a flessione allo SLU

Verifica a Taglio allo SLU

3. Shear Capacity

orroar oupdony		
[END]	y: 111 (J)	z: 142 (J)
Applied Shear Force (V_Ed)	29.9408 kN	48.9547 kN
V_Ed / V_Rdc	29.9408 / 144.974 = 0.207	48.9547 / 152.496 = 0.321
V_Ed / V_Rds	29.9408 / 250.396 = 0.120	48.9547 / 194.752 = 0.251
V_Ed / V_Rdmax	29.9408 / 810.000 = 0.037	48.9547 / 787.500 = 0.062
Shear Ratio	0.207 < 1.000 O.K	0.321 < 1.000 O.K
Asw-H_use	0.00158 cm^2/m, 2-P10 @100	0.00158 cm^2/m, 2-P10 @100
[MIDDLE]	y: 111 (1/2)	z : 142 (1/2)
Applied Shear Force (V_Ed)	29.9408 kN	48.9547 kN
V_Ed / V_Rdc	29.9408 / 147.016 = 0.204	48.9547 / 154.481 = 0.317
V_Ed / V_Rds	29.9408 / 125.198 = 0.239	48.9547 / 97.3761 = 0.503
V_Ed / V_Rdmax	29.9408 / 810.000 = 0.037	48.9547 / 787.500 = 0.062
Shear Ratio	0.204 < 1.000 O.K	0.317 < 1.000 O.K
Asw-H_use	0.00079 cm^2/m, 2-P10 @200	0.00079 cm^2/m, 2-P10 @200

Verifica dei nodi non confinati

[JOINT]	y: 147 (l)	z: 147 (I)
Ash.req / Ash.use	37.9845 / 39.5000 = 0.962	17.2657 / 39.5000 = 0.437
Joint Ratio	0.962 < 1.000 O.K	0.437 < 1.000 O.K
Ash.jnt	Check Spacing	Check Spacing

La verifica è soddisfatta, viene segnalato dal programma il controllo degli spazi tra le staffe. Midas in fase di input delle armature non permette di diversificare il diametro delle staffe ai nodi, per tanto le 25 staffe a due braccia del diametro di 10 mm verrano sostituire con quattro staffe Φ 20 a quattro braccia di area equivalente.

Verifica a flessione comportamento elastico

4. Elastic Bending Moment Capacity

	y: 148 (J)	z: 148 (J)
Moment (M.Ed)	20650.0 kN-cm	5306.46 kN-cm
Elastic Strength (M'.yd')	25385.7 kN-cm	30066.4 kN-cm
Check Ratio	0.813 < 1.000 O.K	0.176 < 1.000 O.K
Check Combined Ratio (sqrt((M	_Edy/M'_ydy)^2 + (M_Edz/M'_ydz)^2))	0.832 < 1.000 O.K

Verifica a taglio comportamento elastico

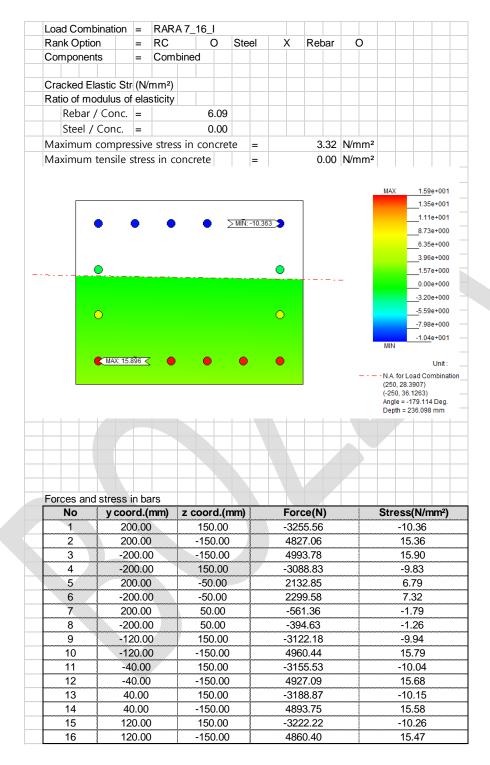
FABBRICATO TE

Relazione di calcolo NB1R 09 D 26 CL FA 06A0 001 A 65di 103	Fabbricato TE	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
	Relazione di calcolo	NB1R	09	D 26 CL	FA 06A0 001	Α	65di 102

5. Elastic Shear Capacity

[END]	y: 143 (J)	z: 174 (J)
Applied Shear Force (V_Ed)	49.9617 kN	66.4926 kN
V_Ed / V_Rdc	49.9617 / 143.787 = 0.347	66.4926 / 153.896 = 0.432
V_Ed / V_Rds	49.9617 / 250.396 = 0.200	66.4926 / 194.752 = 0.341
V_Ed / V_Rdmax	49.9617 / 810.000 = 0.062	66.4926 / 787.500 = 0.084
Shear Ratio	0.347 < 1.000 O.K	0.432 < 1.000 O.K
Asw-H_use	0.00158 cm^2/m, 2-P10 @100	0.00158 cm^2/m, 2-P10 @100
I MIDDLE 1	u · 442/4/3\	7: 474 (472)
[MIDDLE]	y: 143 (1/2)	z: 174 (1/2)
Applied Shear Force (V_Ed)	49.9617 kN	66.4926 kN
V_Ed / V_Rdc	49.9617 / 145.829 = 0.343	66.4926 / 155.881 = 0.427
V_Ed / V_Rds	49.9617 / 125.198 = 0.399	66.4926 / 97.3761 = 0.683
V_Ed / V_Rdmax	49.9617 / 810.000 = 0.062	66.4926 / 787.500 = 0.084
Shear Ratio	0.343 < 1.000 O.K	0.427 < 1.000 O.K
Asw-H_use	0.00079 cm ² /m, 2-P10 @200	0.00079 cm^2/m, 2-P10 @200
[JOINT]	y: 143 (l)	z: 143 (I)
Ash.req / Ash.use	0.00000 / 39.5000 = 0.000	0.00000 / 39.5000 = 0.000
Joint Ratio	0.000 < 1.000 O.K	0.000 < 1.000 O.K
Ash.jnt	2-25 P10	2-25 P10

In allegato tabulato di verifica del pilastrio più sollecitato.

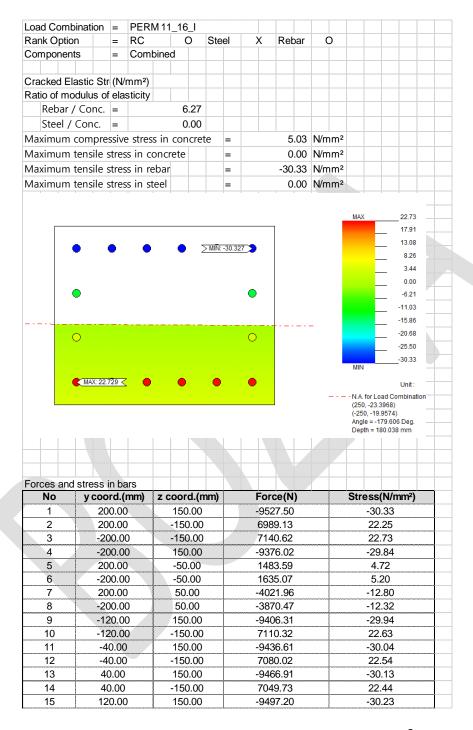

Verifica agli stati limite di esercizio

Tensioni massime nella combinazione caratteristica

LOTTO 9 FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 66di 102

$$\sigma_{c,max} = 6.09 \text{ Mpa} < \sigma_{c,ad} = 0.60 \text{ f}_{ck} = 18.43 \text{ Mpa}$$


 $\sigma_{s, max} = 15.47 \text{ Mpa} < \sigma_{y, ad} = 0.80 \text{ fyk} = 360 \text{ MPa}$

Tensione massima di compressione nella combinazione quasi permanente

LOTTO 9 FABBRICATO TE

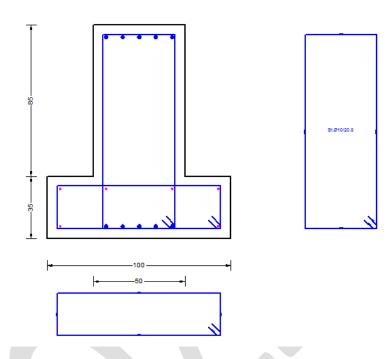
Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 67di 102

 $\sigma_{c,max} = 5.03 \text{ Mpa} < \sigma_{c,ad} = 0.45 \text{ fck} = 13.82 \text{ N/mm}^2$

FABBRICATO TE

NB1R

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA 09


D 26 CL FA 06A0 001

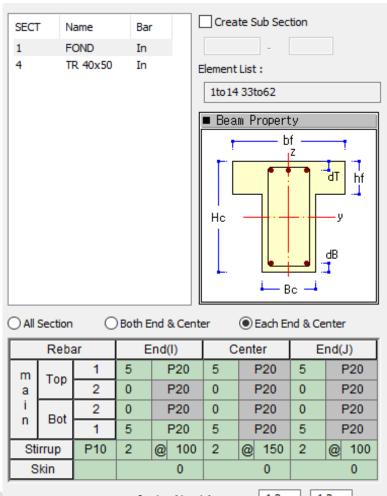
DOCUMENTO REVISIONE Α

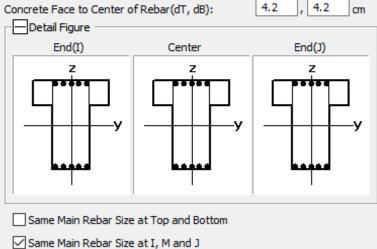
FOGLIO 68di 102

9.3.-..Travi fondazione

In funzione delle sollecitazioni, si è dimensionata opportunamente l'armatura longitudinale della trave tipo:

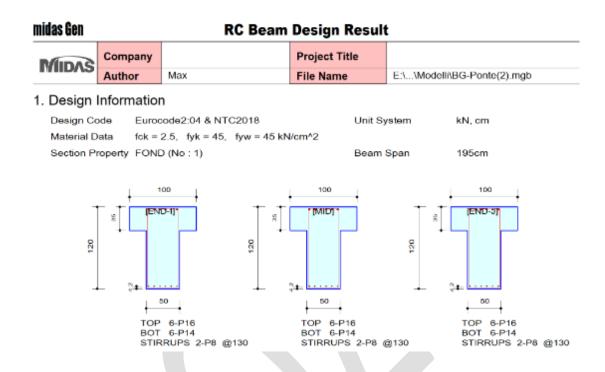
Di dispone un'armatura che rispecchi i minimi di regolamento sia superiormente che inferiormente


- Armatura superiore 5 Φ 20
- Armatura inferiore 5 Ф 20


Si adotteranno staffe Φ10 / 10 cm alla estremità superiore e inferiore (lunghezza 1 m) del pilastro e staffe Φ10 / 15 cm per la zona centrale del pilastro.

LOTTO 9 FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 69di 102



Same Main Rebar Size at Each Layer

Segue in forma grafica il riepilogo delle verifiche effettuate.

Verifica a flessione allo SLU

2. Bending Moment Capacity

	END-I	MID	END-J
(-) Load Combination No.	30	30	30
Moment (M_Ed)	6026.58	5214.89	6026.58
Factored Strength (M_Rd)	68725.33	68725.33	68725.33
Check Ratio (M_Ed/M_Rd)	0.0877	0.0759	0.0877
Neutral Axis (x/d)	0.0479	0.0479	0.0479
(+) Load Combination No.	33	33	33
Moment (M_Ed)	32284.00	30000.63	32284.00
Factored Strength (M_Rd)	69347.95	69347.95	69347.95
Check Ratio (M_Ed/M_Rd)	0.4655	0.4326	0.4655
Neutral Axis (x/d)	0.0374	0.0374	0.0374
Using Rebar Top (As_top)	15.7000	15.7000	15.7000
Using Rebar Bot (As_bot)	15.7000	15.7000	15.7000

LOTTO 9 FABBRICATO TE

Fabbricato TE	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
Relazione di calcolo	NB1R	09	D 26 CL	FA 06A0 001	Α	71di 102

Verifica a Taglio allo SLU

3. Shear Capacity

	END-I	MID	END-J	
Load Combination No.	33	31	31	
Factored Shear Force (V_Ed)	135.30	123.23	135.51	
V_Rdc	186.14	186.14	186.14	
V_Rds	644.35	429.57	644.35	
V_Rdmax	2171.25	2171.25	2171.25	
Using Shear Reinf. (Asw)	15.8000	10.5333	15.8000	
Using Stirrups Spacing	2-P10 @100	2-P10 @150	2-P10@100	
V_Ed / V_Rdc	0.7269	0.6620	0.7280	
V_Ed / min(V_Rds, V_Rdmax)	0.2100	0.2869	0.2103	
Check Ratio	0.7269	0.6620	0.7280	

Verifica a flessione comportamento elastico

4. Elastic Bending Moment Capacity

	END-I	MID	END-J
(-) Load Combination No.	206	206	206
Moment (M.Ed)	3105.61	2628.89	3105.61
Elastic Strength (M'.yd')	66274.11	66274.11	66274.11
Check Ratio	0.0469	0.0397	0.0469
(+) Load Combination No.	206	206	206
Moment (M.Ed)	22528.54	20675.09	22528.54
Elastic Strength (M.yd')	66274.11	66274.11	66274.11
Check Ratio	0.3399	0.3120	0.3399

Verifica a taglio comportamento elastico

5. Elastic Shear Capacity

	END-I	MID	END-J
Load Combination No.	206	206	206
Factored Shear Force (V_Ed)	95.13	85.68	95.13
V_Rdc	186.14	186.14	186.14
V_Rds	644.35	429.57	644.35
V_Rdmax	2171.25	2171.25	2171.25
Using Shear Reinf. (Asw)	15.8000	10.5333	15.8000
Using Stirrups Spacing	2-P10 @100	2-P10 @150	2-P10 @100
V_Ed / V_Rdc	0.5111	0.4603	0.5111
V_Ed / min(V_Rds, V_Rdmax)	0.1476	0.1995	0.1476
Check Ratio	0.5111	0.4603	0.5111

FABBRICATO TE

PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 72di 102

Verifica agli stati limite di esercizio

Relazione di calcolo

Verifica tensionale

3. Stress Check

	END-I		MID		END-J	
	Concrete	Rebar	Concrete	Rebar	Concrete	Rebar
(-) Load Combination No.	110(Q)	110(Q)	110(Q)	110(Q)	110(Q)	110(Q)
Stress(s)	0.03	0.28	0.03	0.28	0.03	0.28
Allowable Stress(sa)	1.50	36.00	1.50	36.00	1.50	36.00
Stress Ratio(s/sa)	0.0217	0.0077	0.0217	0.0077	0.0217	0.0077
(+) Load Combination No.	110(Q)	110(Q)	110(Q)	110(Q)	110(Q)	110(Q)
Stress(s)	0.14	2.29	0.14	2.29	0.14	2.29
Allowable Stress(sa)	1.50	36.00	1.50	36.00	1.50	36.00
Stress Ratio(s/sa)	0.0939	0.0635	0.0939	0.0635	0.0939	0.0635

3. Check Linear Creep

	END-I	MID	END-J
(-) Load Combination No.	110(Q)	110(Q)	110(Q)
Stress(s)	0.03	0.03	0.03
Allowable Stress(sa)	1.12	1.12	1.12
Stress Ratio(s/sa)	0.0289	0.0289	0.0289
Result	Linear Creep	Linear Creep	Linear Creep
(+) Load Combination No.	110(Q)	110(Q)	110(Q)
Stress(s)	0.14	0.14	0.14
Allowable Stress(sa)	1.12	1.12	1.12
Stress Ratio(s/sa)	0.1252	0.1252	0.1252
Result	Linear Creep	Linear Creep	Linear Creep

Verifica a fessurazione e stato limite di deformazione

FABBRICATO TE

Fabbricato TE	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
Relazione di calcolo	NB1R	09	D 26 CL	FA 06A0 001	Α	73di 102

4. Crack Control

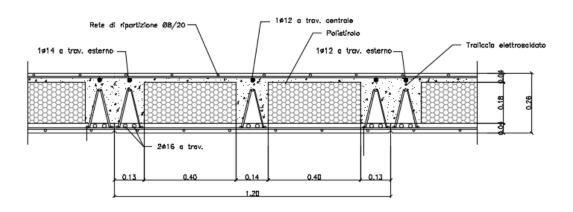
	END-I	MID	END-J
(-) Load Combination No.	110(Q)	110(Q)	110(Q)
Crack Width(w)	0.00	0.00	0.00
Allowable Crack Width(wa)	0.03	0.03	0.03
Check Ratio(w/wa)	0.0062	0.0062	0.0062
(+) Load Combination No.	110(Q)	110(Q)	110(Q)
Crack Width(w)	0.00	0.00	0.00
Allowable Crack Width(wa)	0.03	0.03	0.03
Check Ratio(w/wa)	0.0509	0.0509	0.0509

5. Deflection Control

L/250 = 0.780000 > 0.0032 (LCB:88, POS: 97.5cm from END-I).....................O.K

In allegato tabulato di verifica della trave più sollecitata.

LOTTO 9 FABBRICATO TE


Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 74di 102

10.-..VERIFICA SOLAIO

10.1.-..Premessa

Il solaio è del tipo a predalle di spessore 4+18+4 e nella fase di getto si considera puntellato. Pertanto nei paragrafi successivi si esegue la verifica del solaio nella fase di esercizio.

SEZIONE SOLAIO

10.2.-..Analisi dei carichi

Dai paragrafi precedenti si ricavano le azioni agenti sul solaio di copertura

- Peso proprio (G_1) = 3.54 kN/m²

- Permanenti (G_2) = 3.10 kN/m²

- Accidentale cat. H1 (Q_{H1}) = 0.50 kN/m²

- Neve = 0.80 kN/m^2

Copriferro netto minimo barre longitudinali: 3.4 cm Interferro netto minimo barre longitudinali: 5.2 cm Copriferro netto minimo staffe: 3.4 cm

Modello di calcolo.

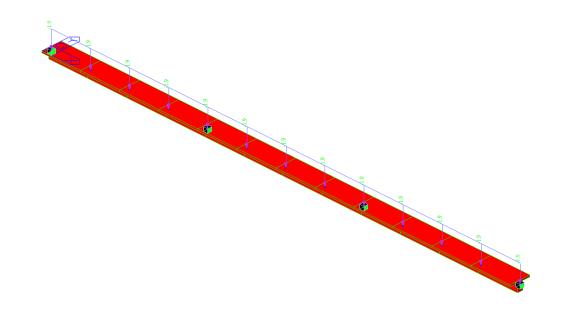


Figure 31 modello

Combinazioni di carico.

Name	Active	Туре	G ₁	G₂	H ₁	H ₂	N ₁	N ₂
cLCB1	Strength/Stress	Add	1.3	1.5	1.5			
cLCB2	Strength/Stress	Add	1.3	1.5		1.5		
cLCB3	Strength/Stress	Add	1.3	1.5	1.5		0.75	0.75
cLCB4	Strength/Stress	Add	1.3	1.5		1.5	0.75	0.75
cLCB5	Strength/Stress	Add	1.3	1.5			1.5	1.5
cLCB6	Serviceability	Add	1	1	1			
cLCB7	Serviceability	Add	1	1		1		
cLCB8	Serviceability	Add	1	1	1		0.5	0.5
cLCB9	Serviceability	Add	1	1		1	0.5	0.5
cLCB10	Serviceability	Add	1	1			1	1
cLCB11	Serviceability	Add	1	1				
cLCB12	Serviceability	Add	1	1			0.2	0.2
cLCB13	Serviceability	Add	1	1				

LOTTO 9 FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 76di 102

Defomazioni in condizioni di carico

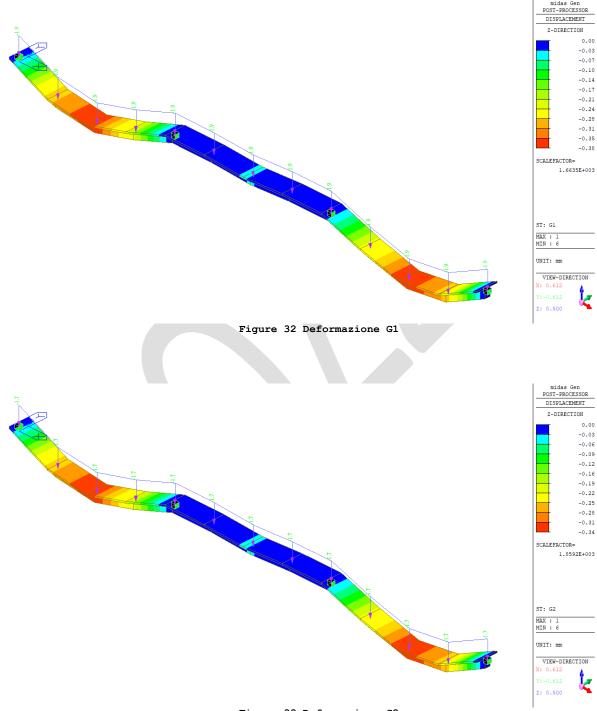


Figure 33 Deformazione G2

Deformazioni in combinazioni di carico

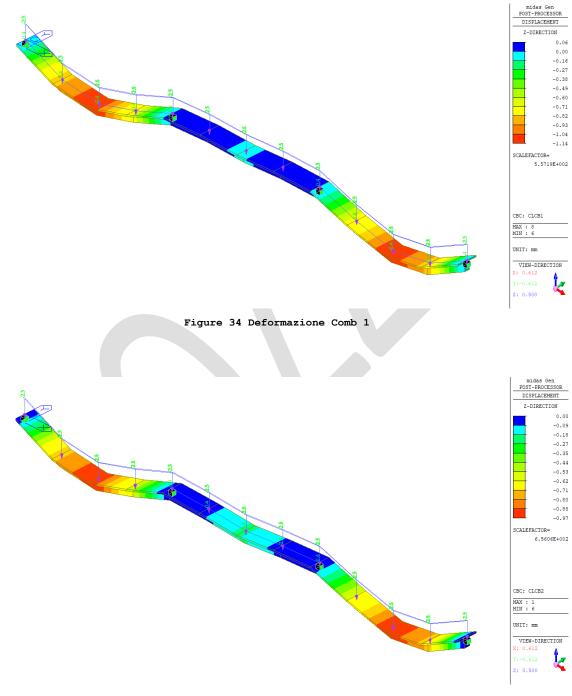
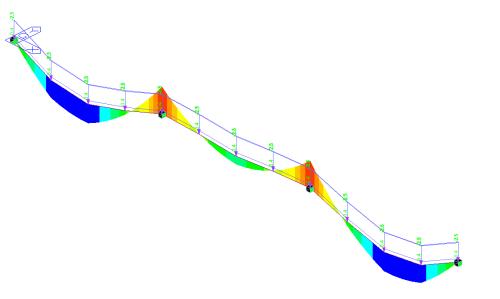


Figure 35 Deformazione Comb2


Sollecitazioni flessionali in combinazioni di carico

LOTTO 9 FABBRICATO TE

Fabbricato TE
Relazione di calcolo

PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
NB1R	09	D 26 CL	FA 06A0 001	Α	79di 102

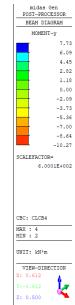


Figure 36 Momenti in comb 4

LOTTO 9 FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO NB1R 09 D 26 CL

FA 06A0 001

TOP 1-P14 BOT 1-P14 STIRRUPS 2-P4 @450

REVISIONE FOGLIO Α

80di 102

Esito delle verifiche

midas Gen **RC Beam Strength Checking Result Project Title** Company MIDAS E:\...\Modelli\solaio.mgb **Author** Max File Name 1. Design Information Design Code Eurocode2:04 & NTC2018 Unit System kN, m Material Data fck = 30000, fyk = 450000, fyw = 450000 KPa Section Property 14x26 (No : 1) Beam Span 1.0625m 0.14 0.14 0.14

TOP 1-P14 BOT 1-P14 STIRRUPS 2-P4 @450

2. Bending Moment Capacity

TOP 1-P14 BOT 1-P14 STIRRUPS 2-P4 @450

	END-I	MID	END-J
(-) Load Combination No.	5	5	5
Moment (M_Ed)	10.68	7.54	10.68
Factored Strength (M_Rd)	12.97	12.97	12.97
Check Ratio (M_Ed/M_Rd)	0.8232	0.5817	0.8232
Neutral Axis (x/d)	0.1377	0.1377	0.1377
(+) Load Combination No.	3	3	3
Moment (M_Ed)	8.66	8.68	8.66
Factored Strength (M_Rd)	14.91	14.91	14.91
Check Ratio (M_Ed/M_Rd)	0.5810	0.5820	0.5810
Neutral Axis (x/d)	0.0615	0.0615	0.0615
Using Rebar Top (As_top)	0.0002	0.0002	0.0002
Using Rebar Bot (As_bot)	0.0002	0.0002	0.0002

3. Shear Capacity

	END-I	MID	END-J
Load Combination No.	5	5	5
Factored Shear Force (V_Ed)	15.09	13.52	15.09
V_Rdc	18.01	18.01	18.01
V_Rds	4.60	4.60	4.60
V_Rdmax	142.38	142.38	142.38
Using Shear Reinf. (Asw)	0.0001	0.0001	0.0001
Using Stirrups Spacing	2-P4 @450	2-P4 @450	2-P4 @450
V_Ed / V_Rdc	0.8380	0.7507	0.8380
V_Ed / min(V_Rds, V_Rdmax)	3.2819	2.9400	3.2819
Check Ratio	0.8380	0.7507	0.8380

Modeling, Integrated Design & Analysis Software http://www.MidasUser.com Gen 2021

Print Date/Time : 02/18/2021 16:57

LOTTO 9 FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 81di 102

0.14

TOP 1-P14 BOT 1-P14 STIRRUPS 2-P4 @450

midas Gen **RC Beam Serviceability Checking Result Project Title** Company MIDAS Max E:\...\Modelli\solaio.mgb **Author** File Name 1. Design Information Design Code Eurocode2:04 & NTC2018 Unit System kN, m fck = 30000, fyk = 450000, fyw = 450000 KPa Material Data Section Property 14x26 (No : 1) 1.0625m Beam Span

0.14

TOP 1-P14 BOT 1-P14 STIRRUPS 2-P4 @450

3. Stress Check

	ENI	D-I	MI	D	END)-J
	Concrete	Rebar	Concrete	Rebar	Concrete	Rebar
(-) Load Combination No.	. 13(Q)	13(Q)	13(Q)	13(Q)	13(Q)	13(Q)
Stress(s)	4020.97	19555.35	4020.97	19555.35	4020.97	19555.35
Allowable Stress(sa)	18000.00	360000.00	18000.00	360000.00	18000.00	360000.00
Stress Ratio(s/sa)	0.2234	0.0543	0.2234	0.0543	0.2234	0.0543
(+) Load Combination No	o. 13(Q)	13(Q)	13(Q)	13(Q)	13(Q)	13(Q)
Stress(s)	1948.68	30735.90	1948.68	30735.90	1948.68	30735.90
Allowable Stress(sa)	18000.00	360000.00	18000.00	360000.00	18000.00	360000.00
Stress Ratio(s/sa)	0.1083	0.0854	0.1083	0.0854	0.1083	0.0854

TOP 1-P14 BOT 1-P14 STIRRUPS 2-P4 @450

3. Check Linear Creep

	END-I	MID	END-J
(-) Load Combination No.	13(Q)	13(Q)	13(Q)
Stress(s)	4020.97	4020.97	4020.97
Allowable Stress(sa)	13500.00	13500.00	13500.00
Stress Ratio(s/sa)	0.2978	0.2978	0.2978
Result	Linear Creep	Linear Creep	Linear Creep
(+) Load Combination No.	13(Q)	13(Q)	13(Q)
Stress(s)	1948.68	1948.68	1948.68
Allowable Stress(sa)	13500.00	13500.00	13500.00
Stress Ratio(s/sa)	0.1443	0.1443	0.1443
Result	Linear Creep	Linear Creep	Linear Creep

LOTTO 9 FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 82di 102

midas Gen

RC Beam Serviceability Checking Result

MIDAS	Company		Project Title	
	Author	Max	File Name	E:\\Modelli\solaio.mgb

4. Crack Control

	END-I	MID	END-J	
(-) Load Combination No.	13(Q)	13(Q)	13(Q)	
Crack Width(w)	0.00	0.00	0.00	
Allowable Crack Width(wa)	0.00	0.00	0.00	
Check Ratio(w/wa)	0.1379	0.1379	0.1379	
(+) Load Combination No.	13(Q)	13(Q)	13(Q)	
Crack Width(w)	0.00	0.00	0.00	
Allowable Crack Width(wa)	0.00	0.00	0.00	
Check Ratio(w/wa)	0.2335	0.2335	0.2335	

5. Deflection Control

Print Date/Time : 02/18/2021 16:57

FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE **FOGLIO** FA 06A0 001 NB1R 09 D 26 CL Α 83di 102

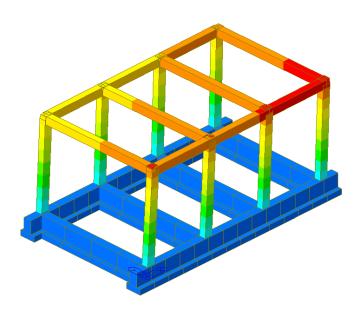
11.-..VERIFICA DEGLI ELEMENTI STRUTTURALI IN TERMINI DI CONTENIMENTO DEL DANNO AGLI ELEMENTI NON STRUTTURALI (SLO)

Per le costruzioni ricadenti in classe d'uso III e IV si deve verificare che l'azione sismica di progetto non produca danni agli elementi costruttivi senza funzione strutturale, tali da rendere temporaneamente non operativa la costruzione.

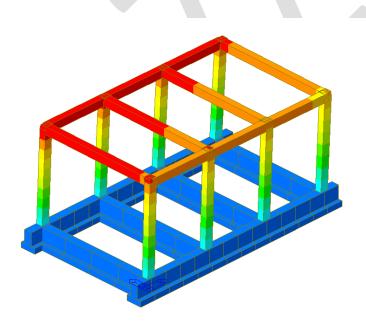
Nel caso delle costruzioni civili e industriali, questa condizione si può ritenere soddisfatta quando gli spostamenti interpiano, ottenuti dall'analisi in presenza dell'azione sismica di progetto relativa allo SLO (v. § 3.2.1 e § 3.2.3.2), siano inferiori a:

per tamponamenti progettati in modo da non subire danni a seguito di spostamenti d'interpiano, per effetto della loro deformabilità intrinseca ovvero dei collegamenti alla struttura:

 $d_r \le 2 \times 0.01 h / 3 = 3.8 cm$


Load Case	Story	Story Height	P-Delta	Allowable	Maximum Drift				
			Incremental Factor	Story Drift Ratio	of All Vertical Elements	Story Drift	Modified Drift (mm)	Story Drift Ratio	Remark
		[mm]	[ad]	[2*0.01/3]	Node	[mm]	[mm]		
SLO 1	1F	6050	1	0.0067	1	3.4792	3.4792	0.0006	ОК
SLO 2	1F	6050	1	0.0067	5	3.4792	3.4792	0.0006	ОК
SLO 3	1F	6050	1	0.0067	1	3.3255	3.3255	0.0005	OK
SLO 4	1F	6050	1	0.0067	5	3.3255	3.3255	0.0005	OK
SLO 5	1F	6050	1	0.0067	1	1.2771	1.2771	0.0002	OK
SLO 6	1F	6050	1	0.0067	5	1.2771	1.2771	0.0002	OK
SLO 7	1F	6050	1	0.0067	8	-1.1831	-1.1831	-0.0002	OK
SLO 8	1F	6050	1	0.0067	4	-1.1831	-1.1831	-0.0002	OK
SLO 9	1F	6050	1	0.0067	4	-3.4792	-3.4792	-0.0006	OK
SLO 10	1F	6050	1	0.0067	8	-3.4792	-3.4792	-0.0006	OK
SLO 11	1F	6050	1	0.0067	4	-3.3255	-3.3255	-0.0005	OK
SLO 12	1F	6050	1	0.0067	8	-3.3255	-3.3255	-0.0005	OK
SLO 13	1F	6050	1	0.0067	4	-1.2771	-1.2771	-0.0002	OK
SLO 14	1F	6050	1	0.0067	8	-1.2771	-1.2771	-0.0002	OK
SLO 15	1F	6050	1	0.0067	5	1.1831	1.1831	0.0002	OK
SLO 16	1F	6050	1	0.0067	1	1.1831	1.1831	0.0002	ОК

Si le deformate relative alle combinazioni SLO 1 e SLO 2


LOTTO 9 FABBRICATO TE

Fabbricato TE	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
Relazione di calcolo	NB1R	09	D 26 CL	FA 06A0 001	Α	84di 102

midas Gen POST-PROCESSOR DISPLACEMENT XY-DIRECTION 4.27 3.50 3.11 2.33 1.94 1.55 1.17 0.39 0.00 SCALEFACTOR= 1.7375E+002 CB: SLO 1 UNIT: mm VIEW-DIRECTION Y:-0.612 Z: 0.500

Figure 37 Deformata XY SLO1

4.03
3.66
3.29
2.93
2.56
2.20
1.83
1.46
1.10
0.73
0.03
7
0.00

SCALEFACTOR=
1.8445E+002

CB: SLO 2
MAX : 17
MIN: 46
UNIT: mm

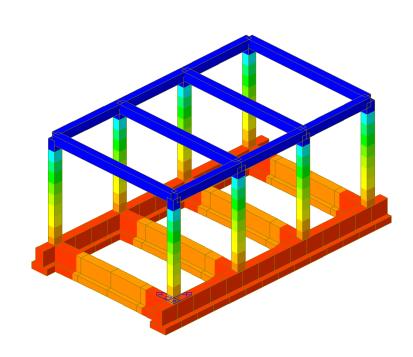
VIEW-DIRECTION
X:-0.612
Y:-0.612

Z: 0.500

midas Gen
POST-PROCESSOR
DISPLACEMENT
XY-DIRECTION

Figure 38 Deformata XY SLO 2

Relazione di calcolo


PROGETTO DEFINITIVO RADDOPPIO PONTE SAN PIETRO – BERGAMO – MONTELLO LOTTO 9

FABBRICATO TE

PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
NB1R 09 D 26 CL FA 06A0 001 A 85di 102

12.-..VERIFICA DI CAPACITÀ PORTANTE

Si rappresentano le massime pressioni, espressi in kg/cmq, attese al suolo nelle combinazioni di carico più gravose.

MINITER | MINITER |

MINITER

Figure 39 Pressioni inviluppo SLU

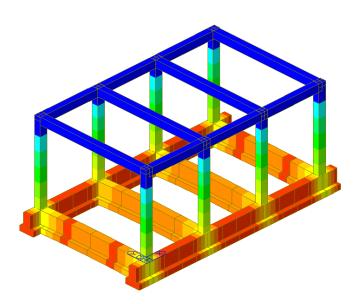
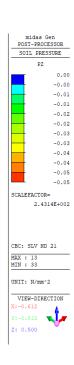



Figure 40 Pressioni SLV ND 21

FOGLIO

86di 102

FABBRICATO TE

Fabbricato TE PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE Relazione di calcolo NB1R 09 D 26 CL FA 06A0 001 A

Avendo adotattato un graticcio di travi le azioni derivanti dai pilastri verranno così suddivise:

- Trave lungo direzione 1 (X) verranno caricate dalle azioni N, Mz ed Fz
- Trave lungo direzione 2 (Y) verranno caricate dalle azioni N, My ed Fy

In cui

Fy= taglio in direzione (y)

Fz= taglio in direzione (z)

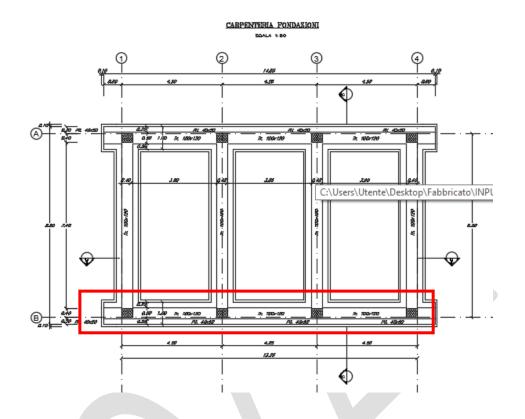
Mz= momento intorno all'asse (X)

My= momento intorno all'asse (Y)

Per il calcolo delle sollecitazioni all'intradosso si ha:

$$M_{ztot}=M_z-F_z*h$$

 $M_{ytot}=M_y+F_y*h$
 $N=Axial+W$


Tutte le reazioni concorrenti su una trave verrano sommate e divise per la lunghezza della stessa, per ottenere un carico unitario per metro di trave.

Trave in direzione (X) L=14.85m

LOTTO 9 FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 87di 102

Elem	Load	Part	Axial	Shear-y	Shear-z	Torsion	Moment-y	Moment-z
			[kN]	[kN]	[kN]	[kN*m]	[kN*m]	[kN*m]
15	ENV SLU(min)	I[1]	-182.31	-10.28	-33.52	-0.02	-67.81	-22.55
16	ENV SLU(min)	I[2]	-278.28	-4.5	-46.7	-0.02	-88.62	-14.52
17	ENV SLU(min)	1[3]	-278.23	-4.21	-46.7	-0.02	-88.62	-13.23
18	ENV SLU(min)	I[4]	-182.6	-3.7	-33.52	-0.03	-67.81	-10.24
17	SLV ND 21	1[3]	-226.94	-18.29	-66.49	-2.18	-188.92	-57.88
16	SLV ND 21	I[2]	-222.85	-18.47	-63.91	-2.17	-180.18	-58.7
15	SLV ND 21	I[1]	-169.99	-16.81	-55.12	-2.17	-160.91	-55.37
18	SLV ND 21	I[4]	-167.55	-13.67	-63.02	-2.18	-187.46	-48.64

p.p	L	W	
[kN/m]	[m]	[kN]	
19.4	14.85	288.09	

Distribuzione delle azioni con inversione di segno

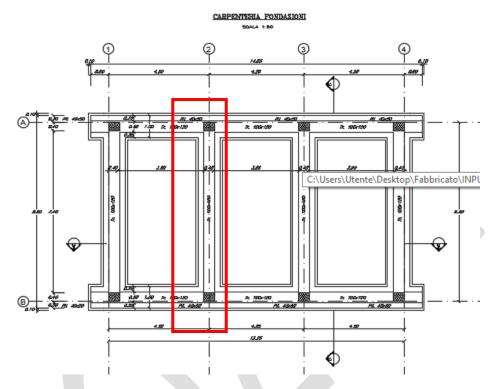
		AZIONI	SLU		
N	Fy	Fz	My	Mz	
		87			

LOTTO 9 FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 88di 102

[kN]	[kN]	[kN]	[kN*m]	[kN*m]
1209.51	22.69	160.44	0.09	505.388
N	Fy	Fz	My	Mz
N [kN/m]	Fy [kN/m]	Fz [kN/m]	My [kN*m/m]	Mz [kN*m/m]

			AZIONI	SLV	
	N	Fy	Fz	My	Mz
	[kN]	[kN]	[kN]	[kN*m]	[kN*m]
	806.73	67.24	248.54	8.7	298.248
	N	Fy	Fz	My	Mz
	[kN/m]	[kN/m]	[kN/m]	[kN*m/m]	[kN*m/m]
	54.33	4.53	16.74	0.59	20.08
			AZIONI SL	V * 1.1	
	N	Fy	Fz	Му	Mz
	[kN/m]	[kN/m]	[kN/m]	[kN*m/m]	[kN*m/m]
_	59.76	1 98	18 //1	0.64	22.09



PROGETTO DEFINITIVO RADDOPPIO PONTE SAN PIETRO – BERGAMO – MONTELLO LOTTO 9 FABBRICATO TE

PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
NB1R 09 D 26 CL FA 06A0 001 A 89di 102

Trave in direzione (Y) L=7.8m

Relazione di calcolo

Elem	Load	Part	Axial	Shear-y	Shear-z	Torsion	Moment-y	Moment-z
			[kN]	[kN]	[kN]	[kN*m]	[kN*m]	[kN*m]
16	ENV SLU(min)	1[2]	-278.28	-4.5	-46.7	-0.02	-88.62	-14.52
21	ENV SLU(min)	I[6]	-280.04	-4.5	19.23	-0.02	26.01	-14.52
16	ENV SLV ND(min)	I[2]	-226.94	-50.14	-66.49	-2.17	-188.92	-159.16
21	ENV SLV ND(min)	I[6]	-226.94	-50.14	-21.2	-2.18	-108.92	-159.16

p.p	L	W
[kN/m]	[m]	[kN]
19.4	7.8	151.32

	AZIONI SLU							
N Fy Fz My M								
	[kN]	[kN]	[kN]	[kN*m]	[kN*m]			
	709.64	9	27.47	0.04	62.61			
	N	Fy	Fz	Му	Mz			
	[kN/m]	[kN/m]	[kN/m]	[kN*m/m]	[kN*m/m]			
	47.79	0.61	1.85	0.00	4.22			

FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 90di 102

AZIONI SLV						
N	Fy	Fz	My	Mz		
[kN]	[kN]	[kN]	[kN*m]	[kN*m]		
473.28	100.28	87.69	4.35	297.84		
N	Fy	Fz	My	Mz		
[kN/m]	[kN/m]	[kN/m]	[kN*m/m]	[kN*m/m]		
31.87	6.75	5.91	0.29	20.06		
		AZIONI SI	.V * 1.1			
N	Fy	Fz	My	Mz		
[kN/m]	[kN/m]	[kN/m]	[kN*m/m]	[kN*m/m]		
35.06	7.43	6.50	0.32	22.06		

Di seguito si riporta la verifica di capacità portante per la combinazione SLU per la trave in direzione (X) con N_{max} e M_{max} :

LOTTO 9 FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 91di 102

Fondazioni Dirette Verifica in tensioni efficaci

 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$

D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

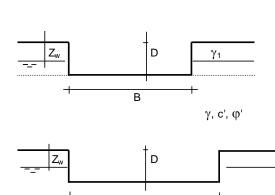
 $e_L = Eccentricità in direzione L (<math>e_L = MI/N$)

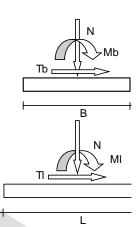
(per fondazione nastriforme $e_L = 0$; $L^* = L$)

 B^* = Larghezza fittizia della fondazione (B^* = $B - 2^*e_B$)

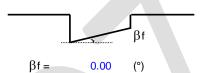
 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)


coefficienti parziali


			azioni		proprietà del terreno		resistenze	
Metodo di calcolo			permanenti	temporanee variabili	tan φ'	c'	qlim	scorr
4)	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	1.00
mite o	A2+M2+R2	0	1.00	1.30	1.25	1.25	1.80	1.00
Stato Limite Ultimo	SISMA	0	1.00	1.00	1.25	1.25	1.80	1.00
Stat L	A1+M1+R3	0	1.30	1.50	1.00	1.00	2.30	1.10
	SISMA	0	1.00	1.00	1.00	1.00	2.30	1.10
Tensioni	Ammissibili	•	1.00	1.00	1.00	1.00	3.00	3.00
Definiti da	al Progettista	0	1.35	1.50	1.00	1.00	1.40	1.00

LOTTO 9 FABBRICATO TE


Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 92di 102

(Per fondazione nastriforme L = 100 m)

L

(°)

AZIONI

		valori d	Valori di	
		permanenti	temporanee	calcolo
N	[kN]	59.76		59.76
Mb	[kNm]	0.64		0.64
MI	[kNm]	22.09		22.09
Tb	[kN]	4.98		4.98
П	[kN]	18.41		18.41
Н	[kN]	19.07	0.00	19.07

Peso unità di volume del terreno

20.00 (kN/mc) (kN/mc) 20.00

Valori caratteristici di resistenza del terreno

Valori di progetto 0.00 (kN/mq) 0.00 (kN/mq) c' 35.00 35.00 (°) φ' φ'

Profondità della falda

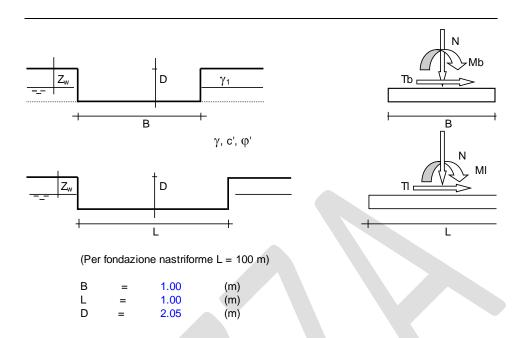
e_B = 0.01 (m) B* = 0.98 (m) $e_L =$ 0.37 (m) L* = 0.26 (m)

q : sovraccarico alla profondità D

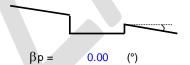
0.00

20.50 (kN/mq) q =

γ : peso di volume del terreno di fondazione


10.00 (kN/mc) $\gamma =$ 92

(m)


LOTTO 9 FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 93di 102

		valori d	Valori di	
		permanenti	temporanee	calcolo
N	[kN]	59.76		59.76
Mb	[kNm]	0.64		0.64
MI	[kNm]	22.09		22.09
Tb	[kN]	4.98		4.98
П	[kN]	18.41		18.41
Н	[kN]	19.07	0.00	19.07

Peso unità di volume del terreno

γ1	=	20.00	(kN/mc)
γ	=	20.00	(kN/mc)

Valori	caratte	eristici di res	istenza del terreno	Valori	di prog	etto	
c'	=	0.00	(kN/mq)	c'	=	0.00	(kN/mq)
φ'	=	35.00	(°)	φ'	=	35.00	(°)

Profondità della falda

Zw	=	0.00	(m)			
e_B	=	0.01	(m)	B* =	0.98	(m)
e_L	=	0.37	(m)	L* =	0.26	(m)

q : sovraccarico alla profondità D

q = 20.50 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma = 10.00 \text{ (kN/mc)}$

LOTTO 9 FABBRICATO TE

Fabbricato TE
Relazione di calcolo

PROGETTO	LOTTO	CODIFICA
NB1R	09	D 26 CL

FA 06A0 001

DOCUMENTO REVISIONE FOGLIO Α

94di 102

Nc, Nq, Nγ : coefficienti di capacità portante

Nq =
$$\tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

 $Nc = (Nq - 1)/tan\phi'$

Nc = 46.12

 $N\gamma = 2*(Nq + 1)*tan\phi'$

Nγ = 48.03

s_c, s_q, s_y : fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

 $s_q = 1 + B*tan\phi' / L*$

1.19

 $s_{\gamma} = 1 - 0.4*B* / L*$

i_c, i_q, i_y : fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

1.79

15.14

 $m_I = (2 + L^* / B^*) / (1 + L^* / B^*)$

 $\theta = arctg(Tb/TI) =$

 $i_q = (1 - H/(N + B^*L^* c' \cot q \phi'))^m$

1 21

1 25

i_q = 0.62

 $i_c = i_q - (1 - i_q)/(Nq - 1)$

i_c = 0.61

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

 $i_{\gamma} = (1 - H/(N + B^*L^* c' \cot g\phi'))^{(m+1)}$

$d_c,\,d_q,\,d_\gamma:$ <u>fattori di profondità del piano di appoggio</u>

$$\begin{split} \text{per D/B*} &\leq 1; \ d_q = 1 \ + 2 \ D \ tan\phi' \ (1 \ - \ sen\phi')^2 \ / \ B^* \\ \text{per D/B*} &> 1; \ d_q = 1 \ + (2 \ tan\phi' \ (1 \ - \ sen\phi')^2) \ ^* \ arctan \ (D \ / \ B^*) \end{split}$$

 $d_q =$ 1.37

 $d_c = d_q - (1 - d_q) / (N_c \tan \varphi)$

d_c = 1.38

 $d_v = 1$

 $d_{\gamma} =$

b_c, b_q, b_y : <u>fattori di inclinazione base della fondazione</u>

$$b_q = (1 - \beta_f \tan \phi')^2$$

 $\beta_f + \beta_p = 0.00$

 $\beta_f + \beta_p < 45^\circ$

1.00 $b_q =$

 $b_c = b_q - (1 - b_q) / (N_c \tan \varphi)$

 $b_c =$ 1.00

 $b_{\gamma}=b_{q}$

 $b_v =$ 1.00 94

LOTTO 9 FABBRICATO TE

Fabbricato TE
Palazione di calcolo

NB1R 09 D 26 CL FA 06A0 001 A	PROGETTO	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	
	NB1R	09	D 26 CL	FA 06A0 001	Α	

g_c, g_q, g_γ : <u>fattori di inclinazione piano di campagna</u>

$$g_q = (1 - tan\beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_q = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c tan\phi')$$

$$g_c = 1.00$$

$$g_{\gamma} = g_{q}$$

$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = 708.72$$
 (kN/m²)

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 234.24 \text{ (kN/m}^2)$$

Verifica di sicurezza capacità portante

$$q_{lim}/\gamma_R =$$

VERIFICA A SCORRIMENTO

Carico agente

$$Hd = 19.07$$
 (kN)

Azione Resistente

$$Sd = N \tan(\phi') + c' B^* L^* + 0.5^*Sp$$
 (si considera al 50% il contributo della spinta passiva)

$$Sd = 66.48$$
 (kN)

Verifica di sicurezza allo scorrimento

Sd /
$$\gamma_R$$
 = 22.16 \geq Hd =

FOGLIO

96di 102

LOTTO 9 FABBRICATO TE

Fabbricato TE PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE Relazione di calcolo NB1R 09 D 26 CL FA 06A0 001 A

Di seguito si riporta la verifica di capacità portante per la combinazione SLV per la trave in direzione (X) con N_{max} e M_{max} :

FOGLIO

97di 102

LOTTO 9 FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE NB1R 09 D 26 CL FA 06A0 001 A

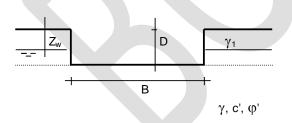
Fondazioni Dirette Verifica in tensioni efficaci

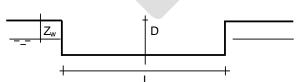
 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$

D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

 $e_L = Eccentricità in direzione L (e_L = MI/N)$ (per fondazione nastriforme $e_L = 0$; $L^* = L$)


 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)


 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

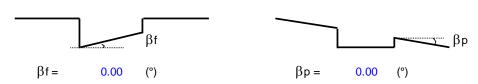
(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

		azioni		proprieta del terreno		resistenze		
Metodo di calcolo		permanenti	temporanee variabili	tan φ'	c'	qlim	scorr	
-	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	1.00
Limite imo	A2+M2+R2	0	1.00	1.30	1.25	1.25	1.80	1.00
Stato Limi Ultimo	SISMA	0	1.00	1.00	1.25	1.25	1.80	1.00
Stat L	A1+M1+R3	0	1.30	1.50	1.00	1.00	2.30	1.10
	SISMA	0	1.00	1.00	1.00	1.00	2.30	1.10
Tensioni	Ammissibili	•	1.00	1.00	1.00	1.00	3.00	3.00
Definiti dal Progettista		1.35	1.50	1.00	1.00	1.40	1.00	

(Per fondazione nastriforme L = 100 m)

B = 1.00 (m)


 $L = 1.00 \quad (m)$

D = 2.05 (m)

LOTTO 9 FABBRICATO TE

Fabbricato TE Relazione di calcolo PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO NB1R 09 D 26 CL FA 06A0 001 A 98di 102

AZIONI

		valori d	Valori di	
		permanenti	temporanee	calcolo
N	[kN]	34.75		34.75
Mb	[kNm]	0.32		0.32
MI	[kNm]	22.06		22.06
Tb	[kN]	2.09		2.09
П	[kN]	6.40		6.40
Н	[kN]	6.73	0.00	6.73

Peso unità di volume del terreno

 $\gamma_1 = 20.00 \text{ (kN/mc)}$ $\gamma = 20.00 \text{ (kN/mc)}$

Valori caratteristici di resistenza del terreno

c' = 0.00 (kN/mq) $\phi' = 35.00 (°)$

Valori di progetto

c' = 0.00 (kN/mq) $\phi' = 35.00 (°)$

Profondità della falda

Zw = 0.00 (m)

 $e_B = 0.01$ (m) $e_L = 0.63$ (m)

$B^* = 0.98$ (m) $L^* = -0.27$ (m)

q : sovraccarico alla profondità D

q = 20.50 (kN/mq)

γ: peso di volume del terreno di fondazione

 $\gamma = 10.00 \text{ (kN/mc)}$

Nc, Nq, Ny: coefficienti di capacità portante

Nq = $\tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$

Nq = 33.30

 $Nc = (Nq - 1)/tan\phi'$

Nc = 46.12

 $N\gamma = 2*(Nq + 1)*tan\phi'$

 $N\gamma = 48.03$

LOTTO 9 FABBRICATO TE

Fabbricato TE PROGETTO LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO Relazione di calcolo NB1R 09 D 26 CL FA 06A0 001 A 99di 102

s_c, s_q, s_γ : fattori di forma

Fabbricato TE Relazione di calcolo

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 0.80$$

$$s_q = 1 + B*tan\phi' / L*$$

$$s_q = 0.81$$

$$s_{\gamma} = 1 - 0.4*B* / L*$$

$$s_{\gamma} = 1.11$$

i_c , i_q , i_γ : fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

2.38 $\theta = \operatorname{arctg}(\mathsf{Tb/TI}) =$

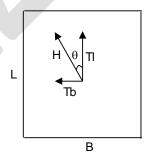
18.09 (°)

$$m_I = (2 + L^* / B^*) / (1 + L^* / B^*)$$

$$m = 0.79$$
 (-)

 $i_q = (1 - H/(N + B^*L^* c' \cot q\phi'))^m$

(m=2 nel caso di fondazione nastriforme e m= $(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)



$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.84$$

$$i_{\gamma} = (1 - H/(N + B^*L^* c' \cot g\phi'))^{(m+1)}$$

$$i_v = 0.68$$

d_c, d_q, d_γ : fattori di profondità del piano di appoggio

$$d_q = -0.94$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi)$$

$$d_c = -1.00$$

$$d_{\gamma} = 1$$

$$d_{v} = 1.00$$

b_c , b_q , b_γ : fattori di inclinazione base della fondazione

$$b_{q} = (1 - \beta_{f} \tan \varphi')^{2}$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_{q} = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi)$$

$$b_c = 1.00$$

$$b_{y} = b_{q}$$

$$b_{\gamma} = 1.00$$

g_c, g_q, g_γ : fattori di inclinazione piano di campagna

$$g_q = (1 - tan\beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_q = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi)$$

$$g_c = 1.00$$

$$g_{\gamma} = g_{q}$$

$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = -484.09 (kN/m^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$(kN/m^2)$$

Verifica di sicurezza capacità portante

$$q_{lim}/\gamma_{P} =$$

$$q_{lim}/\gamma_R = -161.36 < q = -131.29 (kN/m^2)$$

LOTTO 9 FABBRICATO TE

Fabbricato TE PROGETTO LOTTO CODIFICA DO Relazione di calcolo NB1R 09 D 26 CL FA

DOCUMENTO REVISIONE FOGLIO FA 06A0 001 A 102di 102

VERIFICA A SCORRIMENTO

Carico agente

Hd = 6.73 (kN)

Azione Resistente

 $Sd = N \tan(\phi') + c' B^* L^* + 0.5^*Sp$ (si considera al 50% il contributo della spinta passiva)

Sd = 48.97 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 16.32 ≥ **Hd** = 6.73 (kN)