COMMITTENTE:

PROGETTAZIONE:

CUP: J64H17000140001

U.O. GEOLOGIA TECNICA, DELL'AMBIENTE E DEL TERRITORIO

PROGETTO DEFINITIVO

RADDOPPIO PONTE S.PIETRO – BERGAMO - MONTELLO

LOTTO 9: Opere Civili e Impianti Tecnologici di Piazzale per il completamento del raddoppio della linea Ponte SP – Bergamo e per lo spostamento provvisorio della linea Treviglio - Bergamo

RELAZIONE

INDAGINI GEOFISICHE

							SC/	ALA:
COM	MESSA LOTTO FAS	E ENTE	TIPO DOC	. OPERA/I	DISCIPLIN	A PROG	R. RE	V.
N B 1 R 0 9 D 6 9 I G G E 0 0 0 1 0 0 1 A								
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
А	Emissione esecutiva	D. Roverselli	Febbraio 2021	F. Paolucci	Febbraio 2021	M. Berlingieri	Febbraio 2021	M. Comedini Febbraio 2021
				0 1			MB	
								I

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO RADDOPPIO PONTE S.PIETRO – BERGAMO – MONTELLO LOTTO 9: Opere Civili e Impianti Tecnologici di Piazzale per i completamento del raddoppio della linea Ponte SP – Bergamo e per la spostamento provvisorio della linea Treviglio - Bergamo					
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	09 D 69	IG	GE0001 001	Α	2 di 89

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO RADDOPPIO PONTE S.PIETRO – BERGAMO – MONTELLO LOTTO 9: Opere Civili e Impianti Tecnologici di Piazzale pe completamento del raddoppio della linea Ponte SP – Bergamo e pe spostamento provvisorio della linea Treviglio - Bergamo					LLO zale per il no e per lo
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	09 D 69	IG	GE0001 001	Α	3 di 89

1 NORMATIVA DI RIFERIMENTO

Il presente documento è stato redatto ai sensi delle seguenti normative:

- Norme tecniche per le costruzioni 2018 (NTC 2018), D.M. del 14.01.08 aggiornato con D.M. del 17.01.18.
- Circolare del Ministero delle infrastrutture e dei trasporti 21 gennaio 2019, n.7 del Consiglio superiore dei lavori Pubblici recante "Istruzioni per l'applicazione dell'Aggiornamento delle "Norme tecniche per le costruzioni" di cui al decreto ministeriale 17 gennaio 2018".

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo – Montello					
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	4 di 89

2 PREMESSA

Il presente documento riporta i risultati delle prospezioni geofisiche eseguite a supporto del Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo – Montello, durante la campagna 2019-2020.

In particolare, le indagini hanno interessato la porzione di linea ferroviaria che va da Curno fino alle porte della stazione di Bergamo. Sono state eseguite indagini anche ad Albano Sant'Alessandro (BG) e Montello (BG), <u>ma</u> considerato che lo Studio Geologico per il Lotto 9 (Sottofase 1) è esteso tra Ponte San Pietro e Bergamo, saranno analizzate e riportate solo le indagini ricadenti nell'area suddetta.

Le indagini geofisiche sono state eseguite lungo l'asse del tracciato ferroviario esistente, in posizione sia settentrionale che meridionale o trasversale ad esso a seconda delle condizioni logistiche dei settori d'indagine.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo – Montello					
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A	5 di 89

3 INQUADRAMENTO TERRITORIALE

Le ubicazioni dei profili, aree e punti d'indagine sono inseriti negli Allegati. Per ragioni di rappresentazione cartografica, le indagini geofisiche sono state suddivise in n. 4 settori (da C a F - Fig.):

Fig. 3-1 – Suddivisione inquadramento territoriale indagini geofisiche in n. 4 settori (da C a F). Nel riquadro giallo sono evidenziati le aree degli interventi di progetto della Sottofase 1.

- Settore C Zona Stazione Fs di Bergamo;
- Settore D ed E Zona Bergamo Ovest;
- Settore F Zona Curno (BG) e Ponte San Pietro (BG).

L'attività si è articolata in differenti metodologie geofisiche strutturate in:

- N. 15 Rilievi Tomografici Elettrici in acquisizione 3D, denominati con sigla E3D_xxxx (n. progr. in m del tracciato di raddoppio in progetto); i profili sono costituiti da n. 72 o n. 96 elettrodi posizionati rispettivamente mediante n. 3 e n. 4 stendimenti sub-paralleli ad interasse di circa 5.0 m e ciascuno costituito da n. 24 elettrodi equispaziati ogni 5.0 m. Per ragioni di continuità di rappresentazione grafica dei risultati, i singoli profili sono stati raggruppati in n. 5 aree (da E3D_A a E3D_E) in base alle condizioni logistiche e dei limiti fisiografici dei luoghi; i profili sono in scala 1:5.000;
- N. 10 Rilievi Tomografici Elettrici in acquisizione 2D, denominati con sigla **E2D_xxxx** (n. progr. in m del tracciato di raddoppio in progetto); i profili sono costituiti da un minimo di n. 25 a un massimo di n. 96 elettrodi a seconda delle condizioni logistiche dei settori d'indagine, con passo regolare ogni 5.0m; i profili sono in scala 1:5.000;
- N. 13 stendimenti sismici con acquisizione prove di tipo Re.Mi./MASW, denominate con sigla Mxx finalizzate alla determinazione del parametro Vs_{eq} ed alla definizione della categoria sismica dei suoli di fondazione ai sensi delle NTC 2018; gli stendimenti sono costituiti da n. 19 (M12) e n. 24 geofoni posizionati ad intervalli regolari di 2.5 m (da M4 a M16); gli stendimenti con l'indicazione del punto centrale di riferimento rappresentativo del volume di terreno indagato sono posizionati su foto aerea nella relativa scheda monografica nello specifico capitolo dedicato; gli stessi in scala 1.5.000;
- N. 3 Prove Down-Hole in foro, denominate da DH-1 a DH-3 per la definizione dei profili di velocità Vp, Vs, Vs_{eq} ai sensi delle NTC 2018 e dei moduli dinamici dei terreni carotati, eseguite nei fori di sondaggio L1-S14, L1-S16 e L1-S5; le prove sono ubicate negli Allegati 2 e 4 a scala 1:5000.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo – Montello					
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	6 di 89

Per una corretta e precisa mappatura planimetrica ed areale delle stese elettriche e sismiche si è provveduto alla realizzazione di rilievi topografici delle stesse, battendo ogni singolo elettrodo/geofono, mediante strumentazione GPS **"Trimble R2"** dotata di "GNSS Receiver" e di "TSC3 Controller". Di seguito vengono descritte le singole attività svolte con le relative interpretazioni dei dati geofisici acquisiti e specifica documentazione fotografica.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo – Montello					
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A	7 di 89

3.1 Report fotografico attività svolte

INDAGINE TOMOGRAFICA ELETTRICA – Particolare di uno Stendimento 3D (a sinistra) e 2D (a destra).

INDAGINE SISMICA Prova Re.Mi/MASW e HVSR (Energizzazione prova MASW a sinistra e Tromografo a destra).

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo – Montello					
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	8 di 89

INDAGINE SISMICA IN FORO - DOWN-HOLE - (Energizzazione onde Vp a sinistra e onde Vs a destra).

INDAGINE SISMICA Profilo Sismico a Rifrazione P e S (Energizzazione Onde P a sinistra e Onde S a destra).

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Def Montello	initivo del	Raddoppio f	erroviario Ponte	San Pietro	– Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A	9 di 89

RILIEVO TOPOGRAFICO – Strumentazione.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo – Montello					
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	10 di 89

4 RILIEVI TOMOGRAFICI ELETTRICI

L'esecuzione dei rilievi tomografici elettrici, finalizzata alla ricostruzione volumetrica o bidimensionale dei rapporti tra le unità elettrostratigrafiche, si è articolata in acquisizioni di tipo sia bidimensionale sia tridimensionale.

In Figura 4-1 si riporta l'area coperta dalle indagini geoelettriche rispetto l'andamento del tracciato ferroviario.

Figura 4-1 - Area coperta dalle indagini geoelettriche (riquadro giallo) rispetto l'andamento del tracciato ferroviario (linea blu).

Le configurazioni elettrodiche utilizzate per i rilievi tomografici elettrici sono state la Dipolo-Dipolo per i rilievi 3D e Schlumberger e Wenner-Schlumberger per i rilievi 2D.

Per l'acquisizione dei dati sono stati usati due georesistivimetri del tipo AMBROGEO MANGUSTA SYSTEM MC 96/E (Rilievi 2D e 3D) e A.G.I. SUPER STING R8/IP (Rilievi 2D). La successiva elaborazione dei dati è avvenuta attraverso l'utilizzo dei software RES2DINV 4.9, RES2DMOD e GOLDEN SOFTWARE – SURFER per i rilievi 2D, mentre RES3DINV 2.16 e CTECH – EARTH VOLUMETRIC STUDIO per i rilievi 3D.

In **Errore. L'origine riferimento non è stata trovata.** si riassumono le estensioni metriche lineari dei profili 2D e 3D in riferimento inoltre alle progressive del progetto di raddoppio ferroviario.

Tipo di rilievo	Codifica	Progressive (m)	Estensione lineare (m)
2D	E2D_1065	da 1065 a 1235	170
2D	E2D_1270	da 1270 a 1440	170
2D	E2D_1470	da 1470 a 1705	235
2D	E2D_1735	da 1735 a 2210	475
3D	E3D_D (E3D_2220 e E3D_2360)	da 2220 a 2475	255
2D	E2D_2445	da 2445 a 2590	145
2D	E2D_2605	da 2605 a 2825	220
3D	E3D_C (E3D_2965, E3D_3035, E3D_3095 e E3D_3150)	da 2965 a 3265	300
2D	E2D_2990	da 2990 a 3110	120
3D	E3D_B (E3D_3340, E3D_3385 e E3D_3445)	da 3340 a 3560	220
3D	E3D_A (E3D_3615, E3D_3675, E3D_3735, E3D_3795 e E3D_3855)	da 3615 a 3970	355
2D	E2D_4000	da 4000 a 4235	235
2D	E2D_4255	da 4255 a 4430	175
3D	E3D_E (E3D_4310)	da 4310 a 4425	115
2D	E2D_4395	da 4395 a 4630	235
		Totale (m)	3425

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo – Montello					
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	11 di 89

4.1 ANALISI DEI DATI

Le procedure di lavoro descritte hanno consentito di acquisire dati di un elevato livello qualitativo e pertanto il successivo processo d'inversione per l'elaborazione delle sezioni finali, ha raggiunto livelli minimi di scostamento tra dati acquisiti e modello teorico. Inoltre la ricostruzione volumetrica del modello di resistività del terreno è conforme ai dati in ingresso, questo grazie all'algoritmo "Kriging" implementato in maniera robusta / consistente nel programma di elaborazione 3D utilizzato, che permette diverse possibilità di parametrizzazione del processo di calcolo e un robusta valutazione del variogramma in base ai dati di ingresso.

Le sezioni e i modelli volumetrici allegati, nei quali, tramite le diverse gradazioni di colore, è stata rappresentata la distribuzione dei valori di resistività elettrica, mostrano il miglior modello bidimensionale e tridimensionale calcolato e consentono di evidenziare la presenza di differenti unità geofisiche ed i reciproci rapporti stratigrafici.

Fig. 1 – Scale colorimetriche dei valori di resistività elettrica per l'analisi 2D (sopra) e 3D (sotto).

Facendo riferimento ai litotipi geologici presenti nella zona e all'assetto geologico strutturale dell'area, è possibile descrivere tre tipologie di unità geofisiche:

- Unità **resistive** (rho>80 ohm.m colore arancione-rosso), riferibili a materiali grossolani prevalentemente ghiaiosi sabbiosi e/o ad elementi litoidi più o meno cementati;
- Unità **conduttive** (rho<40 ohm.m colore azzurro-blu) rappresentative dei materiali a granulometria fine, rientranti nel campo delle argille e dei limi;
- Unità **intermedie mediamente resistive** (40 < rho < 80 ohm.m colore verde-giallo), riferibile in genere a situazioni di transizione presenti tra le unità precedenti.

La seguente sequenza di rappresentazione dei risultati è fornita in base alle progressive metriche crescenti del progetto, ovvero con direzione da est a ovest.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Def Montello	initivo del	Raddoppio f	erroviario Ponte	San Pietro	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A	12 di 89

4.1.1 Tomografia Elettrica 3D

I profili tomografici elettrici, in particolare quelli eseguiti in acquisizione 3D, per ragioni di continuità di rappresentazione grafica dei risultati, sono stati raggruppati in n. 5 aree (da A a E) in base alle condizioni logistiche e dei limiti fisiografici dei luoghi; la suddivisione è riportata negli Allegati a scala 1:5000 e su foto aerea in Figura 4-2.

Fig. 4-2 – Ubicazione e suddivisione in n. 5 settori (da A a E) dei profili tomografici elettrici 3D su foto aerea.

Nella tabella sottoriportata si riassumono le estensioni metriche lineari e dell'intero stendimento 3D dei settori (da A a E) interessati dai rilievi tomografici elettrici tridimensionali, in riferimento inoltre alle progressive chilometriche.

Tipo di rilievo	Codifica Settore	Codifica Profilo	Progressive (m)	Estensione lineare (m)	Numero Elettrodi	Estensione stendimento 3D (m)
3D	E3D_D	E3D_2220	da 2220 a 2335	115	72	345
3D	E3D_D	E3D_2360	da 2360 a 2475	115	72	345
3D	E3D_C	E3D_2965	da 2965 a 3080	115	72	345
3D	E3D_C	E3D_3035	da 3035 a 3150	115	72	345
3D	E3D_C	E3D_3095	da 3095 a 3210	115	72	345
3D	E3D_C	E3D_3150	da 3150 a 3265	115	72	345
3D	E3D_B	E3D_3340	da 3340 a 3455	115	72	345
3D	E3D_B	E3D_3385	da 3385 a 3500	115	72	345
3D	E3D_B	E3D_3445	da 3445 a 3560	115	96	460
3D	E3D_A	E3D_3615	da 3615 a 3730	115	96	460
3D	E3D_A	E3D_3675	da 3675 a 3790	115	96	460
3D	E3D_A	E3D_3735	da 3735 a 3850	115	96	460
3D	E3D_A	E3D_3795	da 3795 a 3910	115	96	460
3D	E3D_A	E3D_3855	da 3855 a 3970	115	96	460
3D	E3D_E	E3D_4310	da 4310 a 4425	115	72	345
			Totale (m)	1725		5865

Nella relazione geologica sono interpretati i risultati riportati negli Allegati al presente documento.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo – Montello						
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	13 di 89	

4.1.2 Tomografia Elettrica 2D

I profili tomografici elettrici 2D, sono stati eseguiti nei settori dove per ragioni logistiche e areali non è stato possibile eseguire i rilievi tomografici elettrici 3D; l'ubicazione planimetrica è riportata negli Allegati a scala 1:5000 e su foto aerea in Figura 4-3.

Figura 4-3 - Ubicazione dei profili tomografici elettrici 2D su foto aerea.

Nella tabella sottoriportata si riassumono le estensioni metriche lineari dei rilievi tomografici elettrici 2D, in riferimento inoltre alle progressive chilometriche.

Tipo di rilievo	Codifica	Progressive (m)	Estensione lineare (m)
2D	E2D_1065	da 1065 a 1235	170
2D	E2D_1270	da 1270 a 1440	170
2D	E2D_1470	da 1470 a 1705	235
2D	E2D_1735	da 1735 a 2210	475
2D	E2D_2445	da 2445 a 2590	145
2D	E2D_2605	da 2605 a 2825	220
2D	E2D_2990	da 2990 a 3110	120
2D	E2D_4000	da 4000 a 4235	235
2D	E2D_4255	da 4255 a 4430	175
2D	E2D_4395	da 4395 a 4630	235
		Totale (m)	2180

Nella relazione geologica sono interpretati i risultati riportati negli Allegati al presente documento.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Def Montello	initivo del	Raddoppio fe	rroviario Ponte	San Pietro	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α	14 di 89

5 INDAGINI SISMICHE MASW/RE.MI.

Per la determinazione del parametro $V_{s_{eq}}$ e la classificazione della categoria sismica dei suoli di fondazione ai sensi delle NTC 2018 sono state eseguite n.138 prove sismiche di tipo MASW/Re.Mi, denominate con sigla da **M31** a **M16**; le ubicazioni planimetriche sono riportate negli Allegati in scala 1:5.000.

La Figura 5-1 riporta su foto aerea, le tracce delle prove MASW/Re.Mi con il punto centrale rappresentativo del volume di terreno investigato.

Fig. 5-1 - Inquadramento territoriale delle prove MASW/Re.Mi. – Zona Bergamo, Curno e Ponte San Pietro. Nel riquadro giallo l'area degli interventi di Sottofase 1.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo – Montello						
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α	15 di 89	

5.1 MODALITÀ ESECUTIVE DELL'INDAGINE

In considerazione delle particolari condizioni logistiche locali, per poter definire con una discreta certezza il dato medio di Vs_{eq} , si è proceduto ad acquisire sia profili sismici di tipo "MASW" che "Re.Mi." impiegando geofoni da 4.5 Hz ed acquisitore digitale a 24 canali della Geometrics tipo "Geode" con dinamica a 24bit.

Per quanto riguarda le prove sismiche attive MASW sono state effettuate molteplici registrazioni energizzando agli estremi dello stendimento sismico (minimo n.3 per estremo) a distanze diverse dal geofono iniziale o finale; i film e gli spettri delle registrazioni, effettivamente utilizzate per il "processing", sono riportati negli Allegati.

Per le prove sismiche passive (Re.Mi.) in ogni punto d'indagine sono state effettuate molteplici acquisizioni con l'intento di ottenere statisticamente un migliore dato da processare, negli Allegati sono graficizzati gli "spettri medi" ottenuto dall'elaborazione congiunta delle singole registrazioni. Nello stesso paragrafo sono riportati anche gli "spettri medi" delle prove MASW acquisite secondo lo schema descritto precedentemente.

5.2 ELABORAZIONE DATI

I dati delle prove "MASW" sono stati elaborati con il software "WinMasw - Eliosoft".

Per la metodologia "Re.Mi." per l'elaborazione dei dati si è utilizzato il pacchetto software SeisOpt Re.Mi. 5.0 prodotto dalla Optim Software LLC.

Come prima fase è stata eseguita un'analisi spettrale di più sismogrammi che ha consentito di elaborare un'immagine della distribuzione media del segnale di velocità sismica in funzione delle diverse frequenze che lo compongono. Da tale elaborazione è stata estrapolata la curva di attenuazione del segnale caratteristico e in funzione del suo andamento (curva di dispersione) si è risaliti alla stratigrafia sismica in termini di velocità delle onde di taglio (Vs). Il risultato finale dell'elaborazione è consistito, quindi, nella rappresentazione grafica del profilo di velocità.

La velocità delle onde di taglio, essendo legata alle caratteristiche dello scheletro del materiale, costituisce un parametro di grande rilevanza per la definizione delle caratteristiche geomeccaniche dei materiali. Risulta evidente che a velocità elevate corrispondono materiali con buone caratteristiche geomeccaniche, viceversa a bassi valori corrispondono materiali con scadenti caratteristiche geotecniche.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Def Montello	initivo del	Raddoppio fe	rroviario Ponte S	San Pietro	– Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A	16 di 89

La tabella seguente sintetizza i valori di Vs_{eq} calcolati e conseguente categoria di suolo sismico:

Sigla Prova	Vs _{eq} (m/sec)	H _{rif}	Categoria suolo
M3	462	21	В
M4	443	30	В
M5	445	30	В
M6	405	30	В
M7	432	30	В
M8	365	30	В
M9	359	30	С
M10	414	30	В
M11	387	30	В
M12	412	30	В
M13	464	30	В
M14	429	30	В
M15	555	30	В
M16	429	30	В

Tabella 5.2 - Vs_{eq} con relativa profondità di riferimento e rispettiva categoria di suolo sismico per ognuna delle prove MASW/Re.Mi eseguite.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Def Montello	initivo del	Raddoppio fe	rroviario Ponte S	San Pietro	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	17 di 89

6 PROVE DOWN-HOLE

Per la definizione dei valori di Vp, Vs e Vs_{eq} ai sensi delle NTC 2018 e dei moduli dinamici dei terreni carotati, in corrispondenza dei sondaggi L1-S5, L1-S14 e L1-S16, opportunamente attrezzati, sono stati effettuate n.3 prove Down-Hole denominate DH-1 (L1-S14), DH-2 (L1-S16) e DH-3 (L1-S5) delle quali ne è riportata l'ubicazione planimetrica negli Allegati a scala 1:5.000.

In Figura 6-1 e Figura se ne riporta l'ubicazione su foto aerea.

Figura 6-1 – Ubicazione territoriale delle prove Down-Hole DH-1 e DH-2 su foto aerea – Zona Ponte San Pietro.

Figura 6-2 - Ubicazione territoriale della prova Down-Hole DH-3 su foto aerea – Zona Bergamo.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo – Montello						
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α	18 di 89	

6.1 ELABORAZIONE E RESTITUZIONE DEI DATI

Dai sismogrammi registrati sono stati "letti" i tempi di arrivo (picking) delle onde sismiche P e delle onde S, ad ogni intervallo di profondità raggiunto dal geofono. Il calcolo delle velocità sismiche infatti è stato realizzato attraverso la misura della differenza di tempi fra posizioni differenti del geofono ed il punto di energizzazione.

I grafici riportati negli Allegati visualizzano i sismogrammi acquisiti con il relativo "picking", l'andamento delle velocità sismiche Vp e Vs calcolate per ciascun intervallo e le tabelle di sintesi dei dati elaborati, unitamente ai moduli dinamici, calcolati sulla base dei parametri sismici e degli specifici valori di peso di volume (y) delle litologie presenti.

In dettaglio sono riportati:

- Velocità Onde P= Vp;
- Velocità Onde S= Vs;
- Rapporto Vp/Vs;
- Rapporto di Poisson σ ;
- Modulo di taglio G din;
- Modulo di Young E din;
- Modulo di compressione Ev.

Concludendo, l'analisi dei dati relativi alla velocità delle onde di taglio (Vs) ha consentito inoltre di definire la categoria sismica del suolo:

Down-Hole DH-1: valore di Vseq pari a 468 m/s (Hrif=da 0 a 28 m da p.c.) definisce un suolo di Categoria B.

Down-Hole DH-2: valore di Vseq pari a 364 m/s (H_{rif}=da 0 a 25 m da p.c.) definisce un suolo di Categoria B.

Down-Hole DH-3: valore di Vs_{eq} pari a 438 m/s (H_{rif}=da 2 a 30 m da p.c.) definisce un suolo di Categoria B.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Def Montello	initivo del	Raddoppio fe	rroviario Ponte	San Pietro	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A	19 di 89

ALLEGATI

TOMOGRAFIE ELETTRICHE 3D

TOMOGRAFIE ELETTRICHE 2D

MASW

DOWN HOLE

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Def Montello	initivo del	Raddoppio fe	erroviario Ponte	San Pietro	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	20 di 89

TOMOGRAFIE ELETTRICHE 3D

TOMOGRAFIE ELETTRICHE 2D

	GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Del Montello	finitivo del	Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –			
	RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	O REV. FOGLIO				
	INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α				
					250.					
	*248 0248.1	8.4	G24 M4 G1	249.8 L1-S3						
		- +	2	49.1 +	252.8	CAVAZZI				
MALZALE CONTROLOGY NARCONT	di Bergamo	248.6 <u>±_VIA</u>			To Ale	SAVALL!	256.6			
	247.400		1)			AQ.				
241 0 241 0 0 0 240 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	247.9			1 A	251.6	1.				
	247.5	+248	249.6		7/15:3/°					
	42.5 -		XA	、周夕	~250,3	•	251, 1			
247.2				\$`Y	249.3 m	°249.7	A A			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	245 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AN	Ĩ	7	Ì		*** B/256			
239.9 246.7 247.0			¥./	•	~~~ 					
		100 A8			248.0	248.6	ALL'S			
					31					

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Def Montello	initivo del	Raddoppio fe	rroviario Ponte S	San Pietro	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	25 di 89

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Def Montello	finitivo de	I Raddoppio	ferroviario Ponte	San Pietro	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A	
2340 • 2,340 • 2,320 • 2,260 2,70 2,7	2,220 2,240 2,220	ş.				
,350 1,550,400 1,550,450	<u><u> </u></u>	ST				

ESTRATTO PLANIMETRICO - TRACCIA SEZIONE ELETTRICA

Profili tomografici sismici o geoelettrici 2D

$\mathsf{Profilo} \ E3D_D$

AII. 6

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo – Montello										
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO					
NDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А						

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo – Montello										
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO						
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A							

ESTRATTO PLANIMETRICO - TRACCIA SEZIONE ELETTRICA

Area B - Isovolume < 40 ohm.m - Vista da Sud-Est

Legenda

Profilo $E3D_B$

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo – Montello										
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO					
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А						

1,549,100

 $\mathsf{Profilo}\ E3D_A$

AII. 9

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo – Montello											
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO						
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A							

ESTRATTO PLANIMETRICO - TRACCIA SEZIONE ELETTRICA

Profilo E3D_E

AII. 10

ITALFERR NB1R

ESTRATTO PLANIMETRICO - TRACCIA SEZIONE ELETTRICA

Legenda

Profilo E2D_1065

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello
RELAZIONE	COMMESSA
NDAGINI GEOFISICHE	NB1R

ESTRATTO PLANIMETRICO - TRACCIA SEZIONE ELETTRICA

ITALFERR COMMESSA NB1R

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE RELAZIONE COMMESSA INDAGINI GEOFISICHE NB1R

ESTRATTO PLANIMETRICO - TRACCIA SEZIONE ELETTRICA

-	-			14 14	-	a 94	24 3		 -	-	200 0	- e	-	 = 7	-	Ŧ			***			**		 -	-	-			199	-	-
1												11,51	2																		1
					1.1.1				 				1.1.1	 		1.1.1		1.1	-			1.1.1	11	 11	114		-	1		id.	1
	500	1.000		-	-			0			-		.(Y.	-			1.	2				5.			- 1				-	
		4	-						-	•					-				1.			-			-	- 10	11	/			
•		1	1				÷ •	• •			-	-	24 · 4	-	-		-	-		-	-		-	 -		-		*			^

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE RELAZIONE INDAGINI GEOFISICHE NB1R

ESTRATTO PLANIMETRICO - TRACCIA SEZIONE ELETTRICA

	Programa (secure) (rd)	
ni ang ng n	11,58 parties	1
GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	
--------------------------------------	-------------------------	
RELAZIONE	COMMESSA	
INDAGINI GEOFISICHE	NB1R	

-			1						1	1	Í		1
1890	1880	1870	1860	1850	1840	1830	1820	1810	1800	1790	1780	1770	176
1000	1000	1010	1000	1000	1040	1000	1020	1010	1000	1100	1100	1110	110

ESTRATTO PLANIMETRICO - TRACCIA SEZIONE ELETTRICA

All. 15c

-																			-	-					_	-													-
÷.	- 100	14	10 1			1.4	 					 	38	-	298	-			-	44				-	-	-	-	-				-	-		~ .		-	198	-
ř.																41	59																						1
			R. H. / H.	SW .												-	alanti																						-
-								1.0	1	1	200		1.1	1.1	1.1	1.1	1.1.1	-	1.1	1.1-	1.115	1 1 1	1.10	1	1.1.1	1.1	1.1	1.1.1	1.1	1.1.1	and of	- dela		101	and a	1.1.1	1	100	-
			and a second	-	2	-					-					11				11						1								6		ALC: NO	6	-	1
-						<u> </u>			-		1		1.0		-		-							1									1			10			-
			4	1							÷.,			S							- 9	******			-	1						- 19	-1		-	-			
-	4			1	-			-	12				-			-	-		÷.	-		-				-						-			-	-			-
			- 2	1															Pagence	and the second																			

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	el Raddoppio f	ferroviario Ponte	San Pietro	o – Bergamo
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A	

ESTRATTO PLANIMETRICO - TRACCIA SEZIONE ELETTRICA

Legenda

Profilo E2D_2445

All. 16

Progetto De Montello ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE COMMESSA RELAZIONE INDAGINI GEOFISICHE NB1R

отто	CODIFICA	DOCUMENTO	REV.	FOGLIO
00	D 69 IG	GE 0000 001	А	

Profilo E2D_2605

All. 17

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	I Raddoppio 1	ferroviario Ponte	San Pietro	o – Bergamo
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	

ESTRATTO PLANIMETRICO - TRACCIA SEZIONE ELETTRICA

Legenda

AII. 18

	ALFER DELLO STATO ITALI			Progetto De Montello	finitivo de	I Raddop	pio ferroviario Po	nte San Pietro) – Bergamo –
RELAZIONE				COMMESSA	LOTTO	CODIFIC	A DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFIS	SICHE			NB1R	00	D 69 IG	GE 0000 001	A	
Progre 4130	ssive traccia 4120	to (m) 4110	4100	4090	Lege	enda	Elettrodi Punti di misura		Curve di isoresistività in ohm.m
							Resistiv	∕ità ohm.m	
					8		- 40 - 30	- 70	- 100
100 99 8782 78 72 82 87 91 96 100	25 25		29 29		S8 (pro	B_PZ iettato)	Sondaggi geognostici		0
110 Prog	120 ressive sezione	(m) s ESTRATION	140 scala 1:5 O PLANIME	150 500 ETRICO - TR	RACCIA S	SEZION			HIRE DOWN
							Pro	filo E2	D_4000

All. 19

ITALFERR COMMESSA NB1R

ESTRATTO PLANIMETRICO - TRACCIA SEZIONE ELETTRICA

All. 20

ITALFERR COMMESSA NB1R

Progetto De Montello TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE RELAZIONE COMMESSA INDAGINI GEOFISICHE NB1R

LOTTO	CODIEICA	DOCUMENTO	PEV	FOGLIO
LOITO	CODITION	DOCOMENTO	KLY.	1 OOLIO

All. 22

Progetto De Montello ALFERR GRUPPO FERROVIE DELLO STATO ITALIANE RELAZIONE COMMESSA INDAGINI GEOFISICHE NB1R

ro Rev.	DOCUMENTO	CODIFICA	LOTTO
	CE 0000 001	D 69 IG	00

All. 23

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietr	ro – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α	46 di 89

MASW

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pieti	ro – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α	47 di 89

SPETTRI, CURVE DI DISPERSIONE, PROFILI DI VELOCITÀ ONDE S E TRACCE SISMICHE

 ${\rm Prova}\;{\rm Masw}/{\rm Re.Mi.}-M3$

PROVA REMI - Spettro medio

Ubicazione prova

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietro	⊃ – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	48 di 89

 ${\rm Prova}\;{\rm Masw}-{\rm Acquisizioni}\;{\rm elaborate}\;{\rm per}\;M3$

Tracce utilizzate per l'elaborazione dello spettro MASW medio (energizzazione a inizio e fine stendimento, distanze varie).

Spettri delle tracce utilizzate per l'elaborazione dello spettro MASW medio.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	49 di 89

${\rm Prova\;Masw/Re.Mi.-M4}$

PROVA REMI - Spettro medio

PROVA MASW - Spettro medio

Ubicazione prova

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	50 di 89

${\it Prova}\;{\it Masw}-{\it Acquisizioni}\;{\it elaborate}\;{\it per}\;M4$

Tracce utilizzate per l'elaborazione dello spettro MASW medio (energizzazione a inizio e fine stendimento, distanze varie).

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α	51 di 89

${\rm Prova\;Masw/Re.Mi.-M5}$

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	52 di 89

 ${\it Prova}\ Masw-Acquisizioni\ elaborate\ per\ M5$

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α	53 di 89

${\rm Prova}\;{\rm Masw}/{\rm Re.Mi.}-M6$

PROVA MASW - Spettro medio

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	54 di 89

${\rm Prova}\ {\rm Masw}-{\rm Acquisizioni}\ {\rm elaborate}\ {\rm per}\ M6$

Tracce utilizzate per l'elaborazione dello spettro MASW medio (energizzazione a inizio e fine stendimento, distanze varie).

Spettri delle tracce utilizzate per l'elaborazione dello spettro MASW medio.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A	55 di 89

${\rm Prova}\;{\rm Masw}/{\rm Re.Mi.}-M7$

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietro	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α	56 di 89

 ${\it Prova}\;{\it Masw}-{\it Acquisizioni}\;{\it elaborate}\;{\it per}\;M7$

Tracce utilizzate per l'elaborazione dello spettro MASW medio (energizzazione a inizio e fine stendimento, distanze varie).

frequency (Hz) Spettri delle tracce utilizzate per l'elaborazione dello spettro MASW medio.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	I Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A	57 di 89

${\rm Prova\;Masw/Re.Mi.-M8}$

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo del	l Raddoppio fe	erroviario Ponte	San Pietro	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	58 di 89

${\rm Prova}\;{\rm Masw}-{\rm Acquisizioni}\;{\rm elaborate}\;{\rm per}\;M8$

Tracce utilizzate per l'elaborazione dello spettro MASW medio (energizzazione a inizio e fine stendimento, distanze varie).

Spettri delle tracce utilizzate per l'elaborazione dello spettro MASW medio.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietro	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	59 di 89

${\rm Prova}\;{\rm Masw}/{\rm Re.Mi.}-M9$

Averaged ReMi Spectral Ratio

0.0

Ubicazione prova

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietro	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α	60 di 89

Prova Masw – Acquisizioni elaborate per M9

Tracce utilizzate per l'elaborazione dello spettro MASW medio (energizzazione a inizio e fine stendimento, distanze varie).

Spettri delle tracce utilizzate per l'elaborazione dello spettro MASW medio.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α	61 di 89

${\rm Prova\;Masw/Re.Mi.-M10}$

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	initivo del	l Raddoppio fe	erroviario Ponte	San Pietro	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	62 di 89

Prova Masw – Acquisizioni elaborate per M10

Tracce utilizzate per l'elaborazione dello spettro MASW medio (energizzazione a inizio e fine stendimento, distanze varie).

Spettri delle tracce utilizzate per l'elaborazione dello spettro MASW medio.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A	63 di 89

${\rm Prova\;Masw/Re.Mi.-M11}$

-30

35

2.06

2.07

900 1000 Vs (m/s)

604

600 700 800

400 500

636

30

35 0

100 200 300

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	64 di 89

 ${\rm Prova}\ {\rm Masw}-{\rm Acquisizioni}\ {\rm elaborate}\ {\rm per}\ M11$

Traccia utilizzata per l'elaborazione dello spettro MASW medio.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietro	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A	65 di 89

${\rm Prova\;Masw/Re.Mi.-M12}$

-30

35

2.19

900 1000 Vs (m/s)

658

500 600 700 800

30

35 0

100 200 300 400

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo del	Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	66 di 89

 ${\it Prova}\ {\it Masw}-{\it Acquisizioni}\ {\it elaborate}\ {\it per}\ M12$

Tracce utilizzate per l'elaborazione dello spettro MASW medio (energizzazione a inizio e fine stendimento, distanze varie).

Spettri delle tracce utilizzate per l'elaborazione dello spettro MASW medio.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A	67 di 89

${\sf Prova\ Masw/Re.Mi.-M13}$

PROVA MASW - Spettro medio

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo del	Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	68 di 89

 ${\rm Prova}\ {\rm Masw}-{\rm Acquisizioni}\ {\rm elaborate}\ {\rm per}\ M13$

Tracce utilizzate per l'elaborazione dello spettro MASW medio (energizzazione a inizio e fine stendimento, distanze varie).

Spettri delle tracce utilizzate per l'elaborazione dello spettro MASW medio.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A	69 di 89

${\rm Prova\;Masw/Re.Mi.-M14}$

phase velocity (m/s)

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo – Montello						
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α	70 di 89	

${\rm Prova}\ {\rm Masw}-{\rm Acquisizioni}\ {\rm elaborate}\ {\rm per}\ M14$

Tracce utilizzate per l'elaborazione dello spettro MASW medio (energizzazione a inizio e fine stendimento, distanze varie). ZVF-PHASE-spectrum_02cl

Spettri delle tracce utilizzate per l'elaborazione dello spettro MASW medio.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietro	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	71 di 89

${\rm Prova\;Masw/Re.Mi.-M15}$

PROVA REMI - Spettro medio

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo – Montello						
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A	72 di 89	

 ${\rm Prova}\,\,{\rm Masw}-{\rm Acquisizioni}\,\,{\rm elaborate}\,\,{\rm per}\,\,M15$

Tracce utilizzate per l'elaborazione dello spettro MASW medio (energizzazione a inizio e fine stendimento, distanze varie).

Spettri delle tracce utilizzate per l'elaborazione dello spettro MASW medio.
GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	I Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A	73 di 89

${\rm Prova\;Masw/Re.Mi.-M16}$

PROVA MASW - Spettro medio

PROVA REMI - Spettro medio

Ubicazione prova

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Del Montello	initivo del	Raddoppio fe	rroviario Ponte S	San Pietro	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α	74 di 89

${\rm Prova}\,\,{\rm Masw}-{\rm Acquisizioni}\,\,{\rm elaborate}\,\,{\rm per}\,\,M16$

Tracce utilizzate per l'elaborazione dello spettro MASW medio (energizzazione a inizio e fine stendimento, distanze varie).

Spettri delle tracce utilizzate per l'elaborazione dello spettro MASW medio.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo del	Raddoppio f	erroviario Ponte	San Pietro	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α	75 di 89

DOWN HOLE

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Def Montello	finitivo del	Raddoppio fe	erroviario Ponte	San Pietro	9 – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	76 di 89

COMMENTO, SISMOGRAMMI VP/VS, GRAFICI DI VELOCITÀ VP/VS E TABELLA PARAMETRI DELLE PROVE DOWN-HOLE

Documentazione fotografica Down-Hole DH-1

Piazzola

Ubicazione territoriale

Energizzazione onde P

Energizzazione onde S

Commento

Relativamente alle velocità sismiche **Vp** nei primi 8.0m di spessore si registrano velocità progressivamente crescenti che tuttavia non superano i 900 m/s, dopo tale intervallo le velocità incrementano superando abbondantemente i 1000

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A	77 di 89

m/s fino a 1500 m/s a profondità di -11.0 m dal p.c.. Al di sotto di tale profondità si registra un marcato incremento di velocità con alternanze di valori complessivamente compresi tra 1900 e 2300 m/s fino a -25.0m dal p.c. Tra -26.0 e - 31.0 m dal p.c. si registra un ulteriore deciso incremento delle velocità **Vp**, con alternanze di valori superiori a 2600 m/s senza mai oltrepassare i 3000 m/s. Da -32.0 m dal p.c. fino a fondo foro le velocità **Vp** si attestano complessivamente su valori superiori a 3000 m/s.

Per le velocità delle **Vs** si descrive complessivamente un progressivo aumento dei valori senza mai superare i 500 m/s fino a -10.0m da p.c., segue un leggero incremento di velocità con un'alternanza di valori che tuttavia nei valori massimi non raggiungono gli 800 m/s fino -28.0 m dal p.c. Al di sotto le velocità **Vs** oltrepassano e si mantengono superiori agli 800 m/s che con un'alternanza dei valori, in prossimità del fondo foro, raggiungono i 1000 m/s.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	I Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α	78 di 89

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	79 di 89

Documentazione fotografica Down-Hole DH-2

Piazzola

55342

Energizzazione onde P

Energizzazione onde S

Commento

Relativamente alle velocità sismiche **Vp** si registra dapprima un progressivo aumento e poi un'alternanza dei valori che raggiungono massimo i 1000 m/s sino a -10.0 m dal p.c., al di sotto di tale intervallo segue un incremento con alternanza dei valori di **Vp** che rimangono compresi tra 1100 m/s e 1750 m/s fini a -23.0 m dal p.c. Da -24.0 m dal p.c. si registra un marcato incremento di velocità con valori abbondantemente superiori a 2000 m/s fino a 2900 m/s a -26.0 m dal p.c. Dopo tale intervallo e fino a fondo foro le velocità si mantengono complessivamente su valori medi di 3000 m/s.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietro	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α	80 di 89

Per le velocità **Vs** si descrivono complessivamente valori progressivamente crescenti senza mai superare i 500 m/s fino a -21.0 m dal p.c. Al di sotto si registra un più marcato incremento dei valori, che oltrepassano i 500 m/s fino a valori massimi di poco superiori a 700 m/s sino a -25.0 m dal p.c. Da -26.0 m dal p.c. le velocità **Vs** superano gli 800 m/s raggiungendo i 930 m/s a fondo foro.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α	81 di 89

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Del Montello	finitivo de	Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	82 di 89

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Del Montello	finitivo del	Raddoppio fe	erroviario Ponte S	San Pietro	9 – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	83 di 89

												LIN
Prof. (m)	TP letti (ms)	TP corretti (ms)	VP (m/s)	TSH letti (ms)	TSH corretti (ms)	VSH (m/s)	VP/VSH	Rapporto di Poisson	Mod. taglio G Gdin (MPa)	Mod. Young E Edin (MPa)	Mod. Comp. Vol. Ev (MPa)	Densità (t/m3)
0			354			145	2.44	0.40	3.7E+01	1.0E+02	1.7E+03	1.7
-1	6.317	2.825	354	15.421	6.897	145	2.44	0.40	3.7E+01	1.0E+02	1.7E+03	1.7
-2	7.891	5.580	363	19.119	13.519	151	2.40	0.40	4.0E+01	1.1E+02	1.8E+03	1.7
-3	8.887	7.395	551	21.686	18.044	221	2.49	0.40	8.5E+01	2.4E+02	4.1E+03	1.7
-4	9.653	8.634	807	24.425	21.846	263	3.07	0.44	1.2E+02	3.6E+02	1.0E+04	1.7
-5	10.390	9.647	987	27.205	25.259	293	3.37	0.45	1.5E+02	4.5E+02	1.5E+04	1.7
-6	11.289	10.710	941	29.782	28.253	334	2.82	0.43	2.0E+02	5.7E+02	1.3E+04	1.7
-7	12.346	11.871	861	32.461	31.212	338	2.55	0.41	2.0E+02	5.8E+02	1.1E+04	1.7
-8	13.318	12.920	953	34.958	33.915	370	2.58	0.41	2.4E+02	6.9E+02	1.3E+04	1.7
-9	14.249	13.909	1011	37.198	30.313	41/	2.42	0.40	3.2E+02	0.9E+02	1.5E+04	1.8
-10	15.210	14.914	995	39.443	30.077	423	2.35	0.39	3.3E+02	9.1E+02	1.4E+04	1.8
-11	16.015	15.757	1202	41.511	40.841	402	2.57	0.41	3.90+02	1.10	2.12+04	1.0
-12	17 607	17.400	1203	45.042	45.049	453	2.00	0.42	3.8E+02	1.1E+03	175+04	1.0
-13	18 492	18 206	12/3	45.769	45.257	457	2.42	0.40	4 0E+02	1.1E+03	235+04	1.0
-14	10.402	10.290	1245	47.009	47.570	407	2.00	0.42	4.0E+02	1.1E+03	3.0E+04	1.0
-16	19.100	19.020	1300	52 004	51 602	473	2.32	0.43	4.1E+02	1.2E+03	2 6E+04	1.0
-17	20 596	20 455	1503	54 142	53 771	461	3.26	0.42	4.0E+02	1.2E+03	3.7E+04	1.0
-18	21.180	21.051	1678	56,238	55.894	471	3.56	0.46	4.2E+02	1.2E+03	4.8E+04	1.8
-19	21.785	21,666	1626	58,285	57,965	483	3.37	0.45	4.4E+02	1.3E+03	4.4E+04	1.8
-20	22.442	22.331	1503	60.297	59.997	492	3.05	0.44	4.6E+02	1.3E+03	3.7E+04	1.8
-21	23.095	22.991	1515	62.306	62.026	493	3.07	0.44	4.6E+02	1.3E+03	3.7E+04	1.8
-22	23.774	23.676	1459	64.262	63.998	507	2.88	0.43	4.9E+02	1.4E+03	3.4E+04	1.8
-23	24.339	24.248	1750	66.042	65.793	557	3.14	0.44	6.0E+02	1.7E+03	5.1E+04	1.9
-24	24.767	24.681	2307	67.409	67.177	723	3.19	0.45	1.0E+03	3.0E+03	9.2E+04	1.9
-25	25.210	25.130	2231	68.851	68.632	687	3.25	0.45	9.4E+02	2.7E+03	8.6E+04	1.9
-26	25.540	25.465	2981	70.042	69.836	831	3.59	0.46	1.4E+03	4.1E+03	1.6E+05	2.0
-27	25.867	25.797	3015	71.205	71.011	851	3.54	0.46	1.5E+03	4.3E+03	1.7E+05	2.0
-28	26.199	26.132	2981	72.410	72.226	823	3.62	0.46	1.4E+03	4.0E+03	1.6E+05	2.0
-29	26.524	26.461	3041	73.502	73.328	907	3.35	0.45	1.7E+03	4.9E+03	1.7E+05	2.0
-30	26.845	26.786	3081	74.565	74.400	933	3.30	0.45	1.8E+03	5.2E+03	1.7E+05	2.0
				-								
				-								

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	I Raddoppio f	erroviario Ponte	San Pietro	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	84 di 89

Documentazione fotografica Down-Hole DH-3

Piazzola

Ubicazione territoriale

Energizzazione onde P

Energizzazione onde S

Commento

Le velocità $\mathbf{Vp} \in \mathbf{Vs}$ non sono state considerate nei primi 2.1 m di spessore, in quanto tra 0.7 e 2.1 m è presente una fondazione in cemento armato e quindi non influente ai fini della caratterizzazione sismica dei terreni carotati.

Relativamente alle velocità sismiche **Vp** si registra a partire da -3.0 m dal p.c., un'alternanza di valori che rimangono compresi tra 1150 e 1600 m/s fino a -24.0 m dal p.c.. Segue un progressivo incremento di velocità **Vp** dapprima fino a 2000 m/s, successivamente da -27.0 m dal p.c. i valori **Vp** crescono ulteriormente attestandosi mediamente a 2500 m/s in prossimità del fondo foro.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo Montello						
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	A	85 di 89	

Per le velocità **Vs** si descrive, da -3.0 fino a -24.0 m dal p.c., un'omogeneità dei valori che rimangono compresi tra 330 e 450 m/s. Al di sotto le velocità tendono progressivamente ad incrementare, attestandosi in prossimità del fondo foro a circa 700 m/s.

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto De Montello	finitivo de	l Raddoppio f	erroviario Ponte	San Pietr	o – Bergamo –
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α	86 di 89

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo Montello						
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	А	87 di 89	

GRUPPO FERROVIE DELLO STATO ITALIANE	Progetto Definitivo del Raddoppio ferroviario Ponte San Pietro – Bergamo Montello						
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
INDAGINI GEOFISICHE	NB1R	00	D 69 IG	GE 0000 001	Α	88 di 89	

Image: Constraint of the system of the sy	Mod. omp. ol. Ev VPa) 1E+04 1.70 0E+04 1.75 0E+04 1.75 0E+04 1.75 8E+04 1.75 9E+04 1.75
0 Fondazione in c.a. da 0.70 a 2.10m Image: constraint of the state in c.a. da 0.70 a 2.10m Image: constraint of the state in c.a. da 0.70 a 2.10m -2	1E+04 1.70 0E+04 1.75 0E+04 1.75 3E+04 1.75 0E+04 1.75 8E+04 1.75 9E+04 1.75
-1 Fondazione in c.a. da 0.70 a 2.10m in c.a. da 0.70 a 2.10m in c.a. da 0.70 a 2.10m -2 in c.a. da 0.70 a 2.10m in c.a. da 0.70 a 2.10m in c.a. da 0.70 a 2.10m -3 5.031 4.186 1173 13.235 11.012 332 3.53 0.46 1.9E+02 5.6E+02 2 -4 5.504 4.923 1357 15.525 13.886 348 3.90 0.46 2.2E+02 6.3E+02 3 -5 6.098 5.662 1353 18.199 16.898 332 4.08 0.47 2.0E+02 5.8E+02 3 -6 6.709 6.365 1423 20.773 19.707 356 4.00 0.47 2.3E+02 6.6E+02 3 -7 7.378 7.094 1371 23.169 22.277 389 3.52 0.46 2.7E+02 7.9E+02 3 -8 8.093 7.851 1321 25.834 25.063 359 3.68 0.46 2.3E+02 6.7E+02 2 -9 8.806 8.597 1341 28.458 27.7	1E+04 1.70 0E+04 1.75 0E+04 1.75 3E+04 1.75 0E+04 1.75 8E+04 1.75 9E+04 1.75
-2 -2 -2 -2 -3 5.031 4.186 1173 13.235 11.012 332 3.53 0.46 1.9E+02 5.6E+02 2 -4 5.504 4.923 1357 15.525 13.886 348 3.90 0.46 2.2E+02 6.3E+02 3 -5 6.098 5.662 1353 18.199 16.898 332 4.08 0.47 2.0E+02 5.8E+02 3 -6 6.709 6.365 1423 20.773 19.707 356 4.00 0.47 2.3E+02 6.6E+02 3 -7 7.378 7.094 1371 23.169 22.277 389 3.52 0.46 2.7E+02 7.9E+02 3 -8 8.093 7.851 1321 25.834 25.063 359 3.68 0.46 2.3E+02 6.7E+02 2 -9 8.806 8.597 1341 28.458 27.780 368 3.64 0.46 2.4E+02 7.1E+02 2 -10 9.544 9.358 1313 31.179<	1E+04 1.70 0E+04 1.75 0E+04 1.75 3E+04 1.75 0E+04 1.75 8E+04 1.75 9E+04 1.75
-3 5.031 4.186 1173 13.235 11.012 332 3.53 0.46 1.9E+02 5.6E+02 2 -4 5.504 4.923 1357 15.525 13.886 348 3.90 0.46 2.2E+02 6.3E+02 3 -5 6.098 5.662 1353 18.199 16.898 332 4.08 0.47 2.0E+02 5.8E+02 3 -6 6.709 6.365 1423 20.773 19.707 356 4.00 0.47 2.3E+02 6.6E+02 3 -7 7.378 7.094 1371 23.169 22.277 389 3.52 0.46 2.7E+02 7.9E+02 3 -8 8.093 7.851 1321 25.834 25.063 359 3.68 0.46 2.3E+02 6.7E+02 2 -9 8.806 8.597 1341 28.458 27.780 368 3.64 0.46 2.4E+02 7.1E+02 2 -10 9.544 9.358 1313 31.179 30.574 358 3.67	1E+04 1.70 0E+04 1.75 0E+04 1.75 3E+04 1.75 0E+04 1.75 8E+04 1.75 9E+04 1.75
-4 5.504 4.923 1357 15.525 13.886 348 3.90 0.46 2.2E+02 6.3E+02 3 -5 6.098 5.662 1353 18.199 16.898 332 4.08 0.47 2.0E+02 5.8E+02 3 -6 6.709 6.365 1423 20.773 19.707 356 4.00 0.47 2.3E+02 6.6E+02 3 -7 7.378 7.094 1371 23.169 22.277 389 3.52 0.46 2.7E+02 7.9E+02 3 -8 8.093 7.851 1321 25.834 25.063 359 3.68 0.46 2.3E+02 6.7E+02 2 -9 8.806 8.597 1341 28.458 27.780 368 3.64 0.46 2.4E+02 7.1E+02 2 -10 9.544 9.358 1313 31.179 30.574 358 3.67 0.46 2.4E+02 6.7E+02 2 -11 10.272 10.106 1337 33.844 33.298 367 3.64	0E+04 1.75 0E+04 1.75 3E+04 1.75 0E+04 1.75 8E+04 1.75 9E+04 1.75
5 6.098 5.662 1353 18.199 16.898 332 4.08 0.47 2.0E+02 5.6E+02 3 -6 6.709 6.365 1423 20.773 19.707 356 4.00 0.47 2.3E+02 6.6E+02 3 -7 7.378 7.094 1371 23.169 22.277 389 3.52 0.46 2.7E+02 7.9E+02 3 -8 8.093 7.851 1321 25.834 25.063 359 3.68 0.46 2.3E+02 6.7E+02 2 -9 8.806 8.597 1341 28.458 27.780 368 3.64 0.46 2.4E+02 7.1E+02 2 -10 9.544 9.358 1313 31.179 30.574 358 3.67 0.46 2.4E+02 6.7E+02 2 -11 10.272 10.106 1337 33.844 33.298 367 3.64 0.46 2.4E+02 7.0E+02 2	0E+04 1.75 3E+04 1.75 0E+04 1.75 8E+04 1.75 9E+04 1.75
-6 6.709 6.365 1423 20.773 19.707 336 4.00 0.47 2.3E+02 6.0E+02 3 -7 7.378 7.094 1371 23.169 22.277 389 3.52 0.46 2.7E+02 7.9E+02 3 -8 8.093 7.851 1321 25.834 25.063 359 3.68 0.46 2.3E+02 6.7E+02 2 -9 8.806 8.597 1341 28.458 27.780 368 3.64 0.46 2.4E+02 7.1E+02 2 -10 9.544 9.358 1313 31.179 30.574 358 3.67 0.46 2.3E+02 6.7E+02 2 -11 10.272 10.106 1337 33.844 33.298 367 3.64 0.46 2.4E+02 7.0E+02 2	0E+04 1.75 8E+04 1.75 9E+04 1.75
-8 8.093 7.851 1321 25.834 25.063 359 3.68 0.46 2.7E102 6.7E+02 2 -9 8.806 8.597 1341 28.458 27.780 368 3.64 0.46 2.4E+02 6.7E+02 2 -10 9.544 9.358 1313 31.179 30.574 358 3.67 0.46 2.4E+02 6.7E+02 2 -11 10.272 10.106 1337 33.844 33.298 367 3.64 0.46 2.4E+02 7.0E+02 2	8E+04 1.75 9E+04 1.75
-9 8.806 8.597 1341 28.458 27.780 368 3.64 0.46 2.4E+02 7.1E+02 2 -10 9.544 9.358 1313 31.179 30.574 358 3.67 0.46 2.3E+02 6.7E+02 2 -11 10.272 10.106 1337 33.844 33.298 367 3.64 0.46 2.4E+02 7.0E+02 2	9E+04 1.75
-10 9.544 9.358 1313 31.179 30.574 358 3.67 0.46 2.3E+02 6.7E+02 2 -11 10.272 10.106 1337 33.844 33.298 367 3.64 0.46 2.4E+02 7.0E+02 2	
-11 10.272 10.106 1337 33.844 33.298 367 3.64 0.46 2.4E+02 7.0E+02 2	8E+04 1.75
	9E+04 1.75
-12 11.052 10.901 1258 36.705 36.205 344 3.66 0.46 2.1E+02 6.2E+02 2	5E+04 1.75
-13 11.795 11.658 1321 39.450 38.991 359 3.68 0.46 2.3E+02 6.7E+02 2	8E+04 1.75
-14 12.553 12.427 1301 42.281 41.856 349 3.73 0.46 2.2E+02 6.4E+02 2	7E+04 1.75
-15 13.280 13.164 1357 44.983 44.588 366 3.71 0.46 2.4E+02 7.0E+02 3	0E+04 1.75
-16 14.015 13.907 1345 47.758 47.390 357 3.77 0.46 2.3E+02 6.7E+02 2	9E+04 1.75
-17 14.712 14.611 1421 50.380 50.035 378 3.76 0.46 2.6E+02 7.7E+02 3	4E+04 1.80
-18 <u>15.398</u> <u>15.304</u> <u>1443</u> <u>52.950</u> <u>52.626</u> <u>386</u> <u>3.74</u> <u>0.46</u> <u>2.7E+02</u> <u>8.0E+02</u> <u>3</u>	5E+04 1.80
-19 16.022 15.934 1587 55.191 54.888 442 3.59 0.46 3.7E+02 1.1E+03 4	3E+04 1.85
-20 16.696 16.613 1473 57.656 57.370 403 3.66 0.46 3.1E+02 9.0E+02 3	7E+04 1.85
-21 <u>17.380</u> <u>17.302</u> <u>1451</u> <u>60.245</u> <u>59.974</u> <u>384</u> <u>3.78</u> <u>0.46</u> <u>2.8E+02</u> <u>8.2E+02</u> <u>3</u>	6E+04 1.85
-22 18.054 17.980 1475 62.757 62.499 396 3.72 0.46 3.0E+02 8.7E+02 3	7E+04 1.85
-23 18.694 18.624 1553 65.142 64.897 417 3.72 0.46 3.3E+02 9.6E+02 4	1E+04 1.85
-24 19.311 19.245 1611 67.445 67.212 432 3.73 0.46 3.6E+02 1.1E+03 4	5E+04 1.90
-25 19.842 19.779 1871 69.309 69.088 533 3.51 0.46 5.5E+02 1.6E+03 6	0E+04 1.90
-26 20.334 20.274 2021 70.944 70.735 607 3.33 0.45 7.3E+02 2.1E+03 7	1E+04 1.95
-27 20.742 20.685 2431 72.470 72.272 651 3.73 0.46 8.7E+02 2.5E+03 1	1E+05 2.00
-28 21.133 21.079 2541 73.852 73.064 718 3.54 0.46 1.1E+03 3.1E+03 1	2E+05 2.00
-29 21.518 21.407 2577 75.265 75.087 703 3.67 0.46 1.0E+03 2.9E+03 1	2E+05 2.00
	22+03 2.00

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO RADDOPPIO PONTE S.PIETRO – BERGAMO – MONTELLO LOTTO 9: Opere Civili e Impianti Tecnologici di Piazzale per il completamento del raddoppio della linea Ponte SP – Bergamo e per lo spostamento provvisorio della linea Treviglio - Bergamo							
RELAZIONE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
INDAGINI GEOFISICHE	NB1R	09 D 69	IG	GE0001 001	A	89 di 89		