COMMITTENTE:

PROGETTAZIONE:

File: RS3H.0.2.D.78.CL.VI.02.0.4.001.A

n. Elab.:

			GRUPPO FERRO	VIE DELLO STATO ITALIANE
DIRETTRICE FERRONODO DI CATANIA		SINA-CATANIA	A-PALERMO	
U.O. INFRASTRUT	TURE SUD			
PROGETTO DEFIN	IITIVO			
INTERRAMENTO LI DELL'AEROPORTO TRATTO DI LINEA MACROFASE LOTTO 2 Bretella CT-SR e Fascio Ponti Ferroviari - VI02 Po	O DI FONTANA INTERESSATO FUNZIONAL A-P di prima fase	AROSSA E PEI O. _E 1 e Collegamento Fa	scio A-P-Interporto	- OPERE CIVILI
				SCALA:
COMMESSA LOTTO FASE	ENTE TIPO DOC. 78 CL	OPERA/DISCIPLINA	PROGR. RE	A
Rev. Descrizione A Emissione esecutiva	Redatto Data L.Nani Marzo 2020	Verificato Data G.Giustino Marzo 2026	Approvato Data S.Vanfiori Marzo 202	Autorizzato Data D.Tiberti Marza 2020 E E E E E E E E E E E E E E E E E

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02

COMMESSA

RS3H

LOTTO CODIFICA

D 78 CL

02

DOCUMENTO VI 02 04 001 REV. FOGLIO

A 2 di 102

Relazione di calcolo Spalla

INDICE

1	PRE	MESSA	5
	1.1	DESCRIZIONE DELL'OPERA	5
	1.1.1	Aspetti legati alle opere di fondazione	5
2	RIFE	RIMENTI NORMATIVI	7
3	МАТ	`ERIALI	8
4	CAR	ATTERIZZAZIONE GEOTECNICA	9
	4.1	Stratigrafia	10
5	VER	IFICA S.L.E.	11
	5.1.1	Verifiche alle tensioni	11
	5.1.2	Verifiche a fessurazione	11
6	ANA	LISI E VERIFICHE SPALLA	13
	6.1	Generalità	13
	6.2	MODELLI A MENSOLA PER LA VERIFICA DELLE SPALLE	13
	6.3	CONDIZIONI ELEMENTARI E COMBINAZIONI DI CARICO	13
	6.4	SISTEMI DI RIFERIMENTO ED UNITÀ DI MISURA	17
	6.5	GEOMETRIA DELLA SPALLA	18
	6.6	Analisi dei carichi	21
	6.6.1	Peso proprio elementi strutturali	21
	6.6.2	Carichi trasmessi dall'impalcato	21
	6.6.3	Azione del Vento	22
	6.6.4	Carichi da traffico verticali	23
	6.6.5	Effetti dinamici	24
	6.6.6	Carichi da traffico orizzontali	24
	6.6.7	Spinta statica del terrapieno	25

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3H
 02
 D 78 CL
 VI 02 04 001
 A
 3 di 102

Relazione di calcolo Spalla

1		· · · · · · · · · · · · · · · · · · ·	
<u> </u>	6.6.8	Sovraccarico sul terrapieno	
	6.6.9	Spinta del sovraccarico accidentale condizioni statiche	27
	6.6.10	Azione sismica	27
	6.6.11	Incremento di spinta del terrapieno	33
	6.6.12	Inerzie strutturali	33
	6.6.13	Calcolo delle sollecitazioni in testa pali	33
	6.6.14	Riepilogo risultati	34
	6.7	SOLLECITAZIONI	39
	6.7.1	Muro paraghiaia	39
	6.7.2	Muro frontale	41
	6.7.3	Plinto di fondazione	43
	6.8	VERIFICHE DEGLI ELEMENTI STRUTTURALI	45
	6.8.1	Paraghiaia	48
	6.8.2	Muro frontale	54
	6.8.3	Zattera di fondazione	60
7	PALI	DI FONDAZIONE	63
	7.1	SCARICHI PER SCALZAMENTO	64
	7.2	MODULO DI REAZIONE ORIZZONTALE DEL TERRENO	64
	7.3 N	MOMENTO ADIMENSIONALE LUNGO IL PALO	66
	7.4	CONTROLLO DELLA MOBILITAZIONE DELLA SPINTA ATTIVA IN CONDIZIONI SISMICHE	67
	7.5	CALCOLO CAPACITÀ PORTANTE	68
	7.6 Y	VERIFICA A CARICO LIMITE ORIZZONTALE DEI PALI	69
8	VERI	FICHE GEOTECNICHE	72
	8.1	CONTROLLO DELLA MOBILITAZIONE DELLA SPINTA ATTIVA IN CONDIZIONI SISMICHE	72
	8.2 I	DETERMINAZIONE DEL MOMENTO ADIMENSIONALE	73

MACROFASE FUNZIONALE 1

Viadotto VI02

LOTTO 02 COMMESSA RS3H

LOTTO

02

CODIFICA D 78 CL

DOCUMENTO VI 02 04 001

REV.

Α

FOGLIO 4 di 102

Relazione di calcolo Spalla

8.3	AZIONI DI CALCOLO	76
8.4	VERIFICA DI CAPACITÀ PORTANTE	79
8.5	VERIFICA A CARICO ORIZZONTALE	84
8.5.1	l Verifica statica CD	85
8.5.2	2 Verifica statica CND	88
8.5.3	3 Verifica sismica CND	9
8.6	Verifica strutturale	93

GRUPPO FERROVIE DELLO STATO ITALIANE	INTERRAMEN AEROPORTO INTERESSAT	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO. MACROFASE FUNZIONALE 1					
Viadotto VI02	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
	RS3H	02	D 78 CL	VI 02 04 001	Α	5 di 102	
Relazione di calcolo Spalla							

PREMESSA

La presente relazione ha per oggetto il dimensionamento e le verifiche di resistenza secondo il metodo semiprobabilistico agli Stati Limite (S.L.) di una delle spalle del ponte ferroviario a travi incorporate VI02 della tratta ferroviaria Catania-Siracusa, opera prevista nell'ambito del progetto definitivo del Nodo di Catania. In particolare si tratterà la spalla A che presenta l'altezza del paramento maggiore e l'ipotesi di appoggi "fissi" dell'impalcato.

Le analisi strutturali e le verifiche di sicurezza sono state effettuate secondo il DM 17 gennaio 2018.

1.1 Descrizione dell'opera

Il viadotto VI02 attraversa un canale, con un'altezza del p.f. rispetto al terreno di circa 5m.

Il viadotto è previsto a singolo binario dal km 2+947.08 (asse giunto spalla A) al km 2+926.58 per uno sviluppo complessivo di 20.40m ed è costituito da un'unica campata isostatica di luce teorica 19.60m.

Per poter rispettare il franco idraulico è stato utilizzato un impalcato a travi metalliche incorporate nel getto di calcestruzzo. Le spalle sono realizzate in c.a. gettato in opera. La campata è realizzata con 12 travi metalliche HEM1000 di lunghezza 20.10 metri e poste ad interasse di 42 cm. La quota relativa al P.F.-sottotrave è pari a 1960mm. Gli apparecchi d'appoggio saranno del tipo ad acciaio-teflon.

1.1.1 Aspetti legati alle opere di fondazione

Le fondazioni sono realizzate con plinti su pali di grande diametro, nello specifico la zattera di fondazione hadimensioni 12x16.50 metri, spesore 2.25 metri e poggia su 12 pali $\Phi1500$.

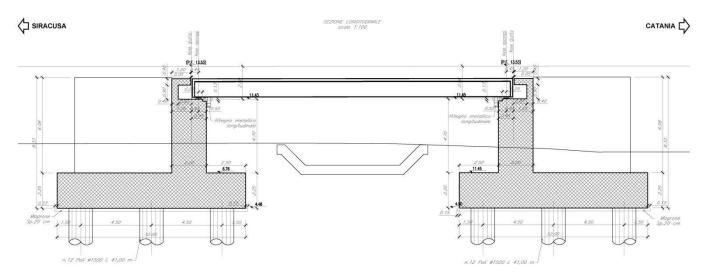


Figura 1 - Sezione longitudinale

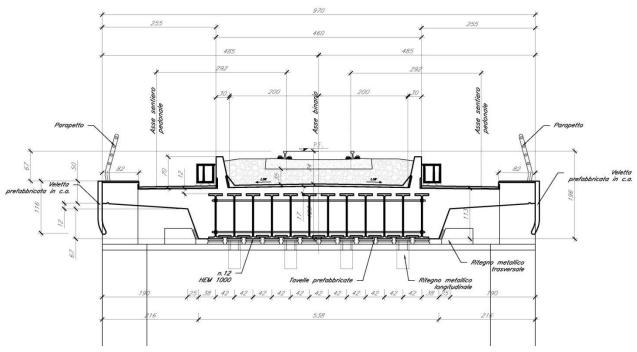


Figura 2 - Sezione trasversale

2 RIFERIMENTI NORMATIVI

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- Norme Tecniche per le Costruzioni D.M. 17-01-18 (NTC-2018).
- Circolare n. 7 del 21 gennaio 2019 Istruzioni per l'Applicazione dell'aggiornamento delle Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale 17 gennaio 2018.
- Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019
- Eurocodici EN 1991-2: 2003/AC:2010 Eurocodice 1 Parte 2
- RFI DTC SI MA IFS 001 C del 21-12-18 Manuale di Progettazione delle Opere Civili

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02

LOTTO COMMESSA

02

RS3H

CODIFICA D 78 CL

DOCUMENTO VI 02 04 001

REV. **FOGLIO** Α 8 di 102

Relazione di calcolo Spalla

MATERIALI

Le caratteristiche dei materiali previsti le sottostrutture sono le seguenti:

- Calcestruzzo magro e getto di livellamento
- CLASSE DI RESISTENZA MINIMA C12/15
- CLASSE DI ESPOSIZIONE AMBIENTALE : XO
 - Calcestruzzo pali di fondazione, cordoli, opere provvisionali, calcestruzzo fondazioni
- CLASSE DI RESISTENZA MINIMA C25/30
- CLASSE MINIMA DI CONSISTENZA : \$4 CLASSE DI ESPOSIZIONE AMBIENTALE : XC2
- COPRIFERRO MINIMO = 60 mm
- DIAMETRO MASSIMO INERTI : 25 mm
 - Calcestruzzo fondazioni armate
- CLASSE DI RESISTENZA MINIMA C25/30

- CLASSE DI RESISTENZA MINIMA C23/30
 TIPO CEMENTO CEM III÷V
 RAPPORTO A/C : ≤ 0.60
 CLASSE MINIMA DI CONSISTENZA : S4
 CLASSE DI ESPOSIZIONE AMBIENTALE : XC2
- COPRIFERRO MINIMO = 40mm
- IAMETRO INERTI: 25 mm
 - Calcestruzzo elevazione pile (compresi pulvini, baggioli e ritegni), spalle
- CLASSE DI RESISTENZA MINIMA C32/40
- CLASSE MINIMA DI CONSISTENZA : S4
- CLASSE DI ESPOSIZIONE AMBIENTALE: XC4, XS1*
 COPRIFERRO = 50 mm (**)
- DIAMETRO MASSIMO INERTI : 25 mm
 - Acciaio ordinario per calcestruzzo armato

TIPO B450C saldabile che presenta le seguenti caratteristiche :

Tensione di snervamento caratteristica

 $fyk \ge 450 \text{ N/mm}^2$ $ftk \ge 540 \text{ N/mm}^2$

Tensione caratteristica a rottura

 $1.15 \le ftk/fyk < 1.35$

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO. MACROFASE FUNZIONALE 1 LOTTO 02					
Viadotto VI02	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3H	02	D 78 CL	VI 02 04 001	Α	9 di 102
Relazione di calcolo Spalla						

4 CARATTERIZZAZIONE GEOTECNICA

Nel presente capitolo si riporta la caratterizzazione geotecnica per il viadotto in esame, valutata sulla base dell'interpretazione delle indagini geotecniche svolte in prossimità dell'opera.

La stratigrafia di riferimento finalizzata al dimensionamento delle palificate di fondazione è rappresentata nel profilo stratigrafico longitudinale, riportato nella seguente figura:

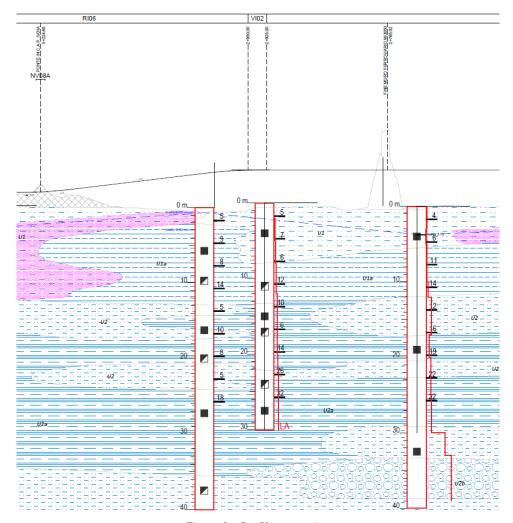


Figura 1 _ Profilo geotecnico.

Per maggiori dettagli sulla caratterizzazione geotecnica si rimanda alla Relazione geotecnica generale.

4.1 Stratigrafia

La stratigrafia lungo lo sviluppo del viadotto è indicata nella tabella sottostante:

Profondità·da·p.c.·[m]¤	Unità∙geotecnica¤
Da·0.0·a·7.5¤	Unità∙U1¤
Da·7.5·a·13.0·¤	Unità·U1a¤
Da·13.0·a·22.0¤	Unità∙U2a¤
Da·22.0·a·23.5¤	Unità∙U2¤
Da·23.5·a·34.0¤	Unità∙U2a¤
Da·34.0·a·50.0¤	Unità∙U2¤

Tabella 1 _ Stratigrafia terreno.

mentre i parametri meccanici delle unità geotecniche sono i seguenti:

Unità∙geotecnica¤	γ·(kN/m³)¤	φ. (°)	(N _{SPT}) _m ¤	cu·(kN/m²)¤
Unità·U1¤	18.5¤	28¤	13¤	- ¤
Unità∙U1a¤	19.0□	21¤	14¤	45¤
Unità·U2a¤	19.5¤	20¤	25¤	40 ¤
Unità·U2¤	19.5¤	29 ¤	30¤	¤

Tabella 2 _ Caratteristiche meccaniche unità geotecniche.

La falda è posta a 1.5 m al di sotto del piano campagna.

GRUPPO FERROVIE DELLO STATO ITALIANE	INTERRAMEN AEROPORTO INTERESSATO	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO. MACROFASE FUNZIONALE 1					
Viadotto VI02	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
	RS3H	02	D 78 CL	VI 02 04 001	Α	11 di 102	
Relazione di calcolo Spalla							

5 VERIFICA S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

5.1.1 Verifiche alle tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente a trazione" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario RFI DTC INC PO SP IFS 001 A del 2019 ", ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 fek;
- per combinazioni di carico quasi permanente: 0,40 f_{ek};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{sk}$.

5.1.2 Verifiche a fessurazione

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 3 – Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Gruppi di esigenza		Combinazione di azione	Armatura				
	Condizioni ambientali		Sensibile	Poco sensibile			
			Stato limite	wd	Stato limite	wd	
a	Ordinarie	frequente	ap. fessure	\leq w ₂	ap. fessure	≤w ₃	

INTERESSATO.

MACROFASE FUNZIONALE 1

Viadotto VI02

COMMESSA RS3H

LOTTO CODIFICA

02 D 78 CL

DOCUMENTO VI 02 04 001 REV.

FOGLIO 12 di 102

Relazione di calcolo Spalla

		quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂
b	Aggressive	frequente	ap. fessure	$\leq w_1$	ap. fessure	\leq w ₂
	Aggicssive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$
С	Molto Aggressive	frequente	formazione fessure	-	ap. fessure	$\leq w_1$
		quasi permanente	decompressione	-	ap. fessure	\leq w ₁

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Risultando:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Data la maggior restrittività, alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel DM 17.1.2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

Combinazione Caratteristica (Rara)

$$\delta_f \leq w_1 = 0.2 \ mm$$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è utilizzata la procedura riportata al C4.1.2.2.4.5 della Circolare n. 7/19.

6 ANALISI E VERIFICHE SPALLA

6.1 Generalità

La spalla presentano una configurazione a paramento di spessore 2.20 m e muri di risvolto per il contenimento del rilevato retrostante di spessore 1.00 m. L'altezza della spalla A (escluso paraghiaia) è pari a 4.70 m.

Entrambe le spalle hanno in testa un paraghiaia di spessore 0.4 m ed altezza di circa 1.40 cm dalla testa muro frontale.

Le fondazioni sono realizzate da una platea di spessore 2.25 m su 12 pali di diametro Φ 1.50m lunghezza 41 m disposti ad un interasse di 4.5 metri su 3 file con quota testa palo a 3 m dal piano campagna.

Il calcolo è stato effettuato per la spalla A, con altezza di paramento maggiore estendendo i risultati anche all'altra.

Per le verifiche dei singoli elementi della spalla (pali, platea di fondazione ed elevazioni) è stata effettuata un'analisi dei carichi agenti sul piano appoggi e allo spiccato della fondazione; l'analisi viene riportata nelle pagine seguenti.

6.2 Modelli a mensola per la verifica delle spalle

Le sollecitazioni di verifica della spalla sono state determinate a partire dai valori delle risultanti delle azioni trasmesse dagli impalcati alla quota degli apparecchi di appoggio alle quali vanno combinate le azioni determinate dalle spinte del terreno di riempimento e del sovraccarico in condizioni sia statiche che sismiche e le azioni date dalle forze di inerzia e dal peso proprio delle sottostrutture.

Tutti i muri sono considerati sconnessi fra loro per la valutazione delle sollecitazioni alla base e quindi le azioni provenienti dall'impalcato sono applicate solamente al muro frontale. Tale schema pur risultando cautelativo, non fornisce sovrastime eccessive nel calcolo dei quantitativi di armatura previsti.

Il modello della struttura è stato implementato in un foglio di calcolo appositamente realizzato per la valutazione delle azioni agenti sulle singole parti della struttura, quali muro paraghiaia e muro frontale che vengono tutti modellati come delle mensole incastrate alla base.

Per il plinto di fondazione, si è utilizzato un modello tirante-puntone per l'analisi e la verifica dello zoccolo anteriore al muro frontale.

Per quanto riguarda invece le sollecitazioni sui pali di fondazione a partire dalle azioni risultanti nel baricentro del plinto alla quota di intradosso, sono stati calcolati, per ciascuna combinazione di carico, gli sforzi assiali e di taglio in testa ai pali di fondazione utilizzando il classico modello a piastra rigida.

6.3 Condizioni elementari e combinazioni di carico

Le verifiche di sicurezza strutturali e geotecniche sono state condotte utilizzando combinazioni di carico definite in ottemperanza alle NTC18, secondo quanto riportato nei paragrafi 2.5.3, 5.1.3.12. Di seguito sono mostrati i

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3H
 02
 D 78 CL
 VI 02 04 001
 A
 14 di 102

Relazione di calcolo Spalla

coefficienti parziali di sicurezza utilizzati allo SLU ed i coefficienti di combinazione adoperati per i carichi variabili nella progettazione delle strutture da ponte.

2.5.3 COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
(2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

Nelle combinazioni per SLE, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02 DOCUMENTO COMMESSA LOTTO CODIFICA REV. **FOGLIO** RS3H 02 D 78 CL VI 02 04 001 Α 15 di 102

Relazione di calcolo Spalla

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	$\gamma_{\rm P}$	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori

Azioni		Ψο	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80(1)	-
carico	gr ₃	0,80(2)	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti. Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente

nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

⁽f) 1,30 per instabilità in strutture con precompressione esterna (7) 1,20 per effetti locali

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

MACROFASE FUNZIONALE 1 LOTTO 02

 Viadotto VI02
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3H
 02
 D 78 CL
 VI 02 04 001
 A
 16 di 102

Relazione di calcolo Spalla

	Azioni	Ψo	ψ_1	Ψ2
	Treno di carico LM 71	0,80 ⁽³⁾	(1)	0,0
Azioni	Treno di carico SW /0	0,80 ⁽³⁾	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00 ⁽³⁾	-	-
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

- (1) 0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.
- (2) Si usano gli stessi coefficienti ψ adottati per i carichi che provocano dette azioni.
- (3) Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

Nel seguito si riportano le azioni considerate ai fini della valutazione delle sollecitazioni agenti sulle sottostrutture e, quindi , alle verifiche strutturali.

	A2-SLU-N max gr.1	A2 - SLU - MT max gr.1	A2-SLU-MI max gr.1	A2 - SLU - N max gr.3	A2 - SLU - MT max gr.3	A2 - SLU - ML max gr.3	A2 - SLU - Vento ponte scarico	A2 - SLU Gmin - N max gr.1	A2 - SLU Gmin - MT max 8r.1	A2 - SLU Gmin - MI max gr.1	A2 - SLU Gmin - N max 8r.3	A2 - SLU Gmin - MT max gr.3	A2 - SLU Gmin - ML max gr.3	A2 - SLU G min - Vento ponte scarico	A1-SLU-N max gr.1	A1-SLU-MT max gr.1	A1-SLU-MI max gr.1	A1-SLU-N max gr.3	A1-SLU-MT max gr.3	A1-SLU-MI max gr.3	A1 - SLU - Vento ponte scarico	A1 - SLU Gmin - N max 8r.1	A1-SLU Gmin-MT max gr.1	A1-SLU Gmin-ML max gr.1	A1-SLU Gmin-N max gr.3	A1-SLU Gmin-MT max gr.3	A1-SLU Gmin - ML max 8r.3	A1 - SLU G min - Vento ponte scarico
Peso proprio gl	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35			1.00	1.00				1.00
Permanenti G2	1.30	1.30	1.30	1.30	1.30	1.30	1.30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.50	1.50	1.50	1.50	1.50	1.50	1.50	0.00	0.00	0.00	0.00			0.00
Ballast	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.00	1.00	1.00	1.00			1.00
Comb. Nmax Qv	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45	0.00	0.00	1.45			0.00
Comb. Nmax Q frenatura	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00		0.00
Comb. Nmax Q centrifuga	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00
Comb. Nmax Q serpeggio	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00
Comb. MTmax Qv	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00
Comb. MTmax Q frenatura	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00
Comb. MTmax Q centrifuga	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00
Comb. MTmax Q serpeggio	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00
Comb. MLmax Qv	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00	0.00	0.00	1.45	0.00	0.00	1.45	0.00
Comb. MLmax Q frenatura	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.63	0.00	0.00	1.25	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00	0.00	0.00	0.73	0.00	0.00	1.45	0.00
Comb. MLmax Q centrifuga	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00
Comb. MLmax Q serpeggio	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.25	0.00	0.00	0.63	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00	0.00	0.00	1.45	0.00	0.00	0.73	0.00
Vento Ponte Scarico	0.00	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	1.30	0.00	0.00	0.00	0.00	0.00	0.00	1.50	0.00	0.00	0.00	0.00	0.00	0.00	1.50
Vento Ponte Carico	0.78	0.78	0.78	0.78	0.78	0.78	0.00	0.78	0.78	0.78	0.78	0.78	0.78	0.00	0.90	0.90	0.90	0.90	0.90	0.90	0.00	0.90	0.90	0.90	0.90	0.90	0.90	0.00
Attrito permanente	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.00
Attrito carichi mobili	1.25	1.25	1.25	1.25	1.25	1.25	0.00	1.25	1.25	1.25	1.25	1.25	1.25	0.00	1.45	1.45	1.45	1.45	1.45	1.45	0.00	1.45	1.45	1.45	1.45	1.45	1.45	0.00
Sisma longitudinale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma trasversale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sisma verticale	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MACROFASE FUNZIONALE 1 LOTTO 02

Relazione di calcolo Spalla

SLE rara - N max gr.1	Erara - MT max gr.1	E rara - ML max gr.1	SLE rara - N max gr.3	E rara - MT max gr.3	E rara - ML max gr.3	LE rara - Vento ponte scarico	SLE freq N max gr.1	E freq MT max gr.1	SLE freq ML max gr.1	SLE freq N max gr.3	E freq MT max gr.3	E freq ML max gr.3	SLE freq Vento ponte scarico	LE quasi permanente	SLV - N max	SLV - MT max	SLV - ML max	SLV - MT max	SLV - ML max	SLV - N min	
	SIE	SE		318	SIE	S	-"	SE			SIE	SIE	-	S							
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Peso proprio gl
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Permanenti G2
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Ballast
1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Qv
0.50	0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Q frenatura
1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Q centrifuga
1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.00		Comb. Nmax Q serpeggio
0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Qv
0.00	0.50	0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Q frenatura
0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Q centrifuga
0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20	0.00		Comb. MTmax Q serpeggio
0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.80	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Qv
0.00	0.00	0.50	0.00	0.00	1.00	0.00	0.00	0.00	0.40	0.00	0.00	0.80	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q frenatura
0.00	0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q centrifuga
0.00	0.00	1.00	0.00	0.00	0.50	0.00	0.00	0.00	0.80	0.00	0.00	0.40	0.00	0.00	0.00	0.00	0.20	0.00	0.20		Comb. MLmax Q serpeggio
0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00		Vento Ponte Scarico
0.60	0.60	0.60	0.60	0.60	0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		Vento Ponte Carico
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.50	0.50	0.50	0.50	0.50		Attrito permanente
1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.80	0.80	0.80	0.80	0.80	0.80	0.00	0.00	0.20	0.20	0.20	0.20	0.20		Attrito carichi mobili
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	0.30	1.00	0.30	1.00		Sisma longitudinale
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	1.00	0.30	1.00	0.30		Sisma trasversale
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.30	0.30	-0.30	-0.30	-1.00	Sisma verticale

Gli scarichi agli appoggi, riportati nei paragrafi seguenti, fanno riferimento alla seguente terna di assi:

- asse X coincidente con l'asse longitudinale del ponte;
- asse Y coincidente con l'asse trasversale del ponte;
- asse Z coincidente con l'asse verticale del ponte;

Per quanto riguarda la risposta alle diverse componenti dell'azione sismica, poiché si è adottata un'analisi in campo lineare, essa può essere calcolata separatamente per ciascuna delle componenti. Gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc) sono combinate successivamente applicando l'espressione

$$1.00 \cdot Ex + 0.30 \cdot Ey + 0.30 \cdot Ez$$

con rotazione dei coefficienti moltiplicativi e conseguente individuazione degli effetti più gravosi.

Occorre precisare che con il segno negativo verranno indicate le azioni aventi direzione positiva delle Z (ovvero dirette verso l'alto).

6.4 Sistemi di riferimento ed unità di misura

- Asse X parallelo all'asse longitudinale dell'impalcato
- Asse Y ortogonale all'asse longitudinale dell'impalcato
- Asse Z verticale
- Lunghezze = m

GRUPPO FERROVIE DELLO STATO ITALIANE	INTERRAMEN AEROPORTO INTERESSAT									
Viadotto VI02	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO				
	RS3H	02	D 78 CL	VI 02 04 001	Α	18 di 102				
Relazione di calcolo Spalla										

Forze = kN

6.5 Geometria della spalla

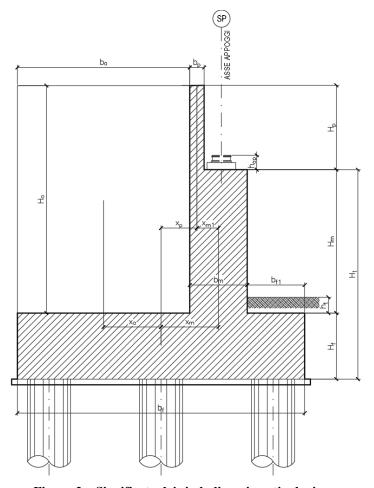


Figura 2 – Significato dei simboli: sezione tipologica

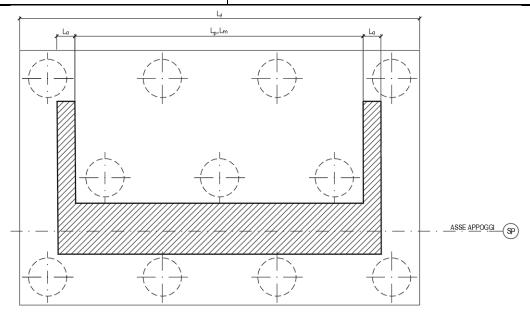


Figura 3 – Significato dei simboli: pianta tipologica

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3H
 02
 D 78 CL
 VI 02 04 001
 A
 20 di 102

Relazione di calcolo Spalla

Paraghiaia		_	
Altezza	H _p	1.40	m
Lunghezza lungo asse X	b _p	0.4	m
Lunghezza lungo asse Y	L_p	8.10	m
Distanza tra i muri andatori dir. Y		8.10	m
Coordinata X del baricentro rispetto fondazione	Хp	1.20	m
Muro frontale			
Altezza	H _m	4.70	m
Lunghezza lungo asse X	b _m	2.20	m
Lunghezza lungo asse Y	L _m	7.70	m
Coordinata X del baricentro rispetto fondazione	X _m	2.40	m
Coordinata X del baricentro rispetto paraghiaia	X _{ml}	-1.20	m
Distanza asse baggioli- asse muro frontale		0.60	m
Plinto			
Altezza	$H_{\rm f}$	2.25	m
Lunghezza lungo asse X	b_f	12.00	m
Lunghezza lungo asse Y	$L_{\rm f}$	16.50	m
Mensola anteriore plinto	$b_{\rm fl}$	2.50	m
Spessore ricoprimento medio	h _t	1.00	m
Distanza asse baggioli - baricentro plinto		3.00	m
Muro andatore			
Altezza	Ha	6.10	m
Lunghezza di un singolo muro lungo asse Y	L_{a}	1.00	m
Lunghezza di un singolo muro lungo asse X	b _a	7.30	m
Coordinata X del baricentro rispetto fondazione	Xa	-2.35	m
Terreno			
Angolo d'attrito interno (φ)		38	0
Coefficiente per il calcolo della spinta a riposo	•	Ko= 0.384	
Sisma			
S _s		1.230	
ag]	0.330	
Coefficiente riduttivo	1	1.00	
Coefficiente sismico orizzontale	k _h	0.406	
Mononobe e Okabe	K _{AE}	0.653	
Coefficiente per sisma verticale	k _v	0.203	
Taballa 4 Dati Alika			

Tabella 4 – Dati di input

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO. MACROFASE FUNZIONALE 1 LOTTO 02								
Viadotto V102	COMMESSA RS3H	LOTTO 02	CODIFICA D 78 CL	DOCUMENTO VI 02 04 001	REV.	FOGLIO 21 di 102			
Relazione di calcolo Spalla									

6.6 Analisi dei carichi

6.6.1 Peso proprio elementi strutturali

> Peso proprio strutture

I pesi degli elementi strutturali sono calcolati utilizzando un peso di volume del calcestruzzo pari a 25 kN/m³.

Impalcato											
Nº Binari		1									
Lunghezza	L	20.5	m								
Peso Proprio	G1	355	kN/m								
Permanenti portati	G2	0	kN/m								
Ballast	G2	0	kN/m								
n° totale appoggi sulla spalla	n	4									
Reazione appoggio i = (G1*L/2)/n	Ri	909.7	kN								
Reazione appoggio i = (G2*L/2)/n	Ri	0.0	kN								
Reazione appoggio i = (G2*L/2)/n (ballast)	Ri	0	kN								

6.6.2 Carichi trasmessi dall'impalcato

Gli scarichi agli appoggi dedotti dall'analisi dell'impalcato vengono ripartiti con il metodo Courbon sul singolo appoggio forniscono i risultati in tabella seguente:

Appoggio		A			В			C			D		
Descrizione carico	FZ	FX	FY	biz									
Descrizione canco	[kN]	[m]											
Peso proprio g1	910			910			910			910			
Permanenti G2													
Ballast													
Comb. Nmax Qv	470			470			470			470			
Comb. Nmax Q frenatura								744					2.00
Comb. Nmax Q centrifuga													
Comb. Nmax Q serpeggio								55					2.00
Comb. MTmax Qv													
Comb. MTmax Q frenatura													
Comb. MTmax Q centrifuga													
Comb. MTmax Q serpeggio													
Comb. MLmax Qv													
Comb. MLmax Q frenatura													
Comb. MLmax Q centrifuga													
Comb. MLmax Q serpeggio													
Vento Ponte Scarico									50				3.50
Vento Ponte Carico									153				4.00
Attrito permanente		27	27		27	27		27	27		27	27	
Attrito carichi mobili		14	14		14	14		14	14		14	14	
Sisma longitudinale		815			815			815			815		1.50
Sisma trasversale			408			408			408			408	1.50
Sisma verticale	204			204			204			204			

(per esigenza di calcolo i 12 appoggi sono stati accorpati in gruppi di 3, sommando le rispettive reazioni)

MACROFASE FUNZIONALE 1 LOTTO 02

02

Viadotto VI02

COMMESSA RS3H

LOTTO CODIFICA

D 78 CL

DOCUMENTO VI 02 04 001 REV. Fo

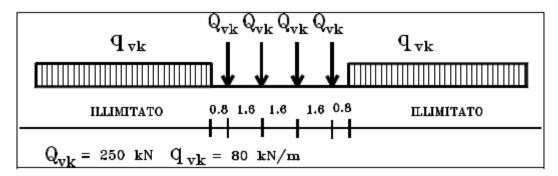
FOGLIO 22 di 102

Relazione di calcolo Spalla

6.6.3 Azione del Vento

Azione del Vento - generale -	NTC e EC 1-1-4:2005
-------------------------------	---------------------

Condizione (ponte carico o scarico)		scarico	carico	
Altitudine sul livello del mare	as	250	250	m
Zona	Z	4	4	
Parametri	Vb,0	28	28	m/s
Parametri	a0	500	500	m
Parametri	ks	0.36	0.36	1/s
Velocità di riferimento (Tr=50anni)	vb=vb0 * (1+ks(as/ao-1)	28	28	m/s
Periodo di ritorno considerato	TR	112.5	112.5	anni
	αR	1.05	1.05	
Velocità di riferimento	Vb(TR)	29.28	29.28	m/s
Densità dell'aria	ρ	1.25	1.25	kg/mc
Pressione cinetica di riferimento	qb=0.5*p*vb²	0.54	0.54	kN/mq
Classe di rugostità del terreno		D	D	
Distanza dalla costa		>10	>10	km
Altitudine sul livello del mare		<750	<750	m
Categoria di esposizione del sito	Cat	п	п	
3 1				
Vento su impalcato				
Parametri	kr	0.19	0.19	
Parametri	z0	0.05	0.05	m
Parametri	zmin	4	4	m
Altezza di riferimento per l'impalcato (EC punto 8.3.1(6))	z	10	10	m
Coefficiente di topografia	ct	1	1	
Coefficiente di esposizione (z)	ce(z)	2.35	2.35	
Larghezza impalcato	b	9.7	9.7	m
Altezza impalcato	h1	1.2	1.9	m
Altezza treno o parapetto	h2	1.5	4	m
Altezza totale impalcato (comprese le barriere o treno)	đtot	2.7	5.9	m
Rapporto di forma	b/dtot	3.59	1.64	
Coefficiente di forza (figura 8.3 EC)	cfx	1.42	2.01	
Dianilaga				
Riepilogo Pressione cinetica di riferimento	qb	0.54	0.54	kN/mq
Coefficiente di esposizione	ce	2.35	2.35	pinvina
Coefficiente di forza	cfx	1.42	2.01	
Altezza di riferimento (EC punto 8.3.1 (4) e (5))	d	2.7	5.9	m
Forza statica equivalente a m/l	f=prodotto	4.8	14.9	kN/m
Pressione statica equivalente	p=f/d	1.79	2.53	kN/ma
Pressione statica equivalente (minima considerata)	pmin	1.5	1.5	kN/mq
Forza statica equivalente a m/l considerata	f	4.8	14.9	kN/m
1 oza statea equivalente a mi constatuata	•	4.0	24.5	ice viii
Vento impalcato a ponte scarico				
Forza statica equivalente	f	4.8		kN/m
Luce impalcato	L	20.5		m
Forza trasversale al piano appoggi	FT=f*L/2	50		kN/m
Vento impalcato a ponte carico				
Forza statica equivalente	f	14.9		kN/m
Luce impalcato	L	20.5		m
Forza trasversale al piano appoggi	FT=f*L/2	153		kN/m


6.6.4 Carichi da traffico verticali

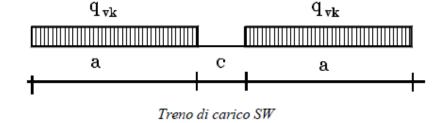
L'opera è stata progettata considerando le sollecitazioni dovute al carico da traffico ferroviario, considerando i modelli LM71 e/o SW/2.

Si riportano di seguito le caratteristiche dei modelli di traffico presi in esame.

➤ Modello di carico LM71

Sia le istruzioni RFI che le NTC 2018 (par. 5.2.2.2.1.1), definiscono questo modello di carico tramite carichi concentrati e carichi distribuiti, riferiti all'asse dei binari.

Treno di carico LM 71


Carichi concentrati: quattro assi da 250 kN disposti ad interasse di 1,60 m;

<u>Carico distribuito</u>: 80 kN/m in entrambe le direzioni, a partire da 0,8 m dagli assi d'estremità e per una lunghezza illimitata

Per questo modello di carico è prevista un'eccentricità del carico rispetto all'asse del binario.

➤ Modello di carico SW/2

Sia le istruzioni RFI che le NTC 2018 (par. 5.2.2.2.1.2), definiscono questo modello di carico tramite solo carichi distribuiti.

Tipo di Carico	$q_{vk}[kN/m]$	a [m]	c [m]		
SW/0	133	15,0	5,3		
SW/2	150	25,0	7,0		

In questo modello di carico non è prevista alcuna eccentricità del carico ferroviario.

Le azioni di entrambi i modelli dovranno essere moltiplicate per un coefficiente di adattamento definito dalla seguente tabella (tab. 2.5.1.4.1.1 - RFI DTC SI PS MA IFS 001 A).

MODELLO DI CARICO	COEFFICIENTE "α"
LM71	1,10
SW/0	1,10
SW/2	1,00

6.6.5 Effetti dinamici

Per la definizione del coefficiente dinamico si segue quanto contenuto nel par.5.2.2.2.3 del DM 17.1.2018 che per l'opera in esame riporta:

[....] Pile con snellezza $\lambda \le 30$, spalle, fondazioni, muri di sostegno e spinte del terreno possono essere calcolate assumendo coefficienti dinamici unitari.

6.6.6 Carichi da traffico orizzontali

Frenatura								
L	20.5	m						
Lcalc	20.5	per Treno LM 71						
	15.2	per Treno SW/0						
	20.5	per SW/2						
Qlb,k	451	per Treno LM 71						
Qlb,k	334.4	per Treno SW/0						
Qlb,k	717.5	per SW/2						
Qlb,k (filtrata)per Treno LM 71	451	kN						
Qlb,k (filtrata)per Treno SW/0	334	kN						
Qlb,k(filtrata)per SW/2	718	kN						

Avviamento							
L	20.5	m					
Leale	20.5	per Treno LM 71					
	15.2	per Treno SW/0					
	20.5	per SW/2					
Qla,k	744.15	per Treno LM 71					
Qla,k	551.76	per Treno SW/0					
Qla,k	676.5	per SW/2					
Qla,k (filtrata)per Treno LM 71	744	kN					
Qla,k (filtrata)per Treno SW/0	552	kN					
Qla,k(filtrata)per SW/2	677	kN					

DOCUMENTO

VI 02 04 001

CODIFICA

D 78 CL

REV.

Α

FOGLIO

25 di 102

MACROFASE FUNZIONALE 1 LOTTO 02

LOTTO

02

kN

50

Viadotto VI02

Relazione di calcolo Spalla

<u>Serpeggio</u>									
50	kN*m								
_									
1.1									
55	kN								
1.1									
55	kN								
1									
	50 1.1 55 1.1 55								

COMMESSA

RS3H

6.6.7 Spinta statica del terrapieno

A tergo della spalla, applicato sulla zattera posteriore, viene considerato un carico pari al peso del rinterro calcolato con un peso di volume pari a $\gamma = 20 \text{ kN/m}^3$

L'espressione della spinta esercitata da un terrapieno di peso specifico γ, su una parete di altezza H, risulta:

$$S_o = 1/2 * \gamma * H^2 * K_o$$
 (spinta per metro lineare di spalla)

FT*α

l'utilizzo di Ko è determinato dall'impossibilità, da parte della spalla, di subire spostamenti; si assume K_o = 1 - sen ϕ .

Il punto di applicazione della spinta si trova in corrispondenza del baricentro del diagramma delle pressioni (1/3 H rispetto alla base della parete).

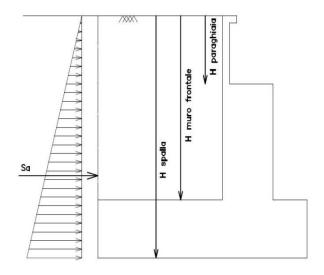
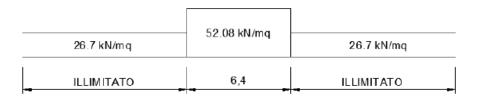


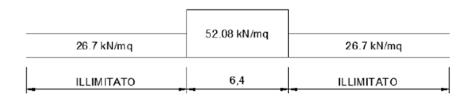
Fig. 1 Spinta statica terreno di rinterro

Per il terreno di riempimento si considera lo standard per rilevati ferroviari e si assegnano le seguenti caratteristiche meccaniche:

$$\gamma = 20 \text{ kN/m}^3$$
 $\phi' = 38^\circ$ $c' = 0$


6.6.8 Sovraccarico sul terrapieno

Nell'analisi delle azioni è stato inoltre considerato il contributo, in termini di sovraccarico verticale in fondazione e di spinta, del sovraccarico accidentale eventualmente presente a tergo spalla.


$$q = 58 \text{ kN/ m}^2$$

 $S_q = 58 * 0.384 = 22.3 \text{ kN/m}^2$

Il valore del sovraccarico è determinate come di seguito descritto:

Considerando la distribuzione trasversale dei carichi su una larghezza di 3.0 m secondo quanto previsto da EN 1991 – 2:2003/AC:2010, si ricava il carico equivalente unitario agente alla quota della piattaforma ferroviaria:

A tali carichi si deve applicare il coefficiente α . Nel caso in esame, il coefficiente α è pari ad 1.1

Risulta dunque:

Q=52.08*1.1=57.3 kN/m². Applicato su una larghezza di 3 metri.

Tale carico è conforme anche alle specifiche delle NTC18 cap.5.2.2.2.1.5.

In favore di sicurezza, tale carico, viene esteso su tutta l'impronta del rilevato.

6.6.9 Spinta del sovraccarico accidentale condizioni statiche

In aggiunta in condizioni statiche si considera un sovraccarico accidentale pari a $Q = 58 \text{ kN/m}^2$ gravante sulla spalla e sul cuneo di spinta a tergo di essa

La presenza del sovraccarico Q genera una spinta pari a:

$$S_q = Q \cdot H \cdot K_o$$

Tale spinta è applicata ad una altezza pari a H/2.

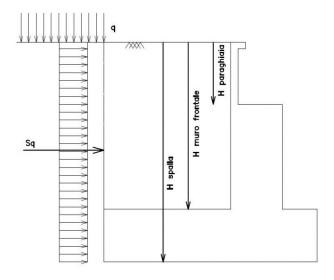


Fig. 2: Spinta statica sovraccarico accidentale

6.6.10 Azione sismica

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17 gennaio 2018 e relativa circolare applicativa.

Azioni sismiche sulla Spalla

Per la valutazione dell'azione sismica associata ai carichi fissi propri e permanenti /accidentali agenti sulle spalle si utilizza il metodo dell'analisi pseudostatica in cui il sisma è rappresentato da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k_h (coefficiente sismico orizzontale) o k_v (coefficiente sismico verticale) secondo quanto di seguito indicato:

Forza sismica orizzontale $F_h = k_h W$

Forza sismica verticale $F_v = k_v W$

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3H
 02
 D 78 CL
 VI 02 04 001
 A
 28 di 102

Relazione di calcolo Spalla

Nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni

$$k_h = \beta_m \cdot \frac{a_{max}}{g} \tag{7.11.6}$$

$$k_{\rm v} = \pm 0.5 \cdot k_{\rm h}$$
 (7.11.7)

dove

 a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{\text{max}} = S \cdot a_{g} = S_{S} \cdot S_{T} \cdot a_{g} \tag{7.11.8}$$

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) , di cui al § 3.2.3.2;

 a_g = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nella precedente espressione, il coefficiente β_m assume i valori riportati nella Tab. 7.11-II.

Per muri che non siano in grado di subire spostamenti relativi rispetto al terreno, il coefficiente β_m assume valore unitario.

Con riferimento al valore da assegnare al coefficiente β_m , si è fatto riferimento alle indicazioni di cui alla Tabella 7.1.II riportata nella stessa sezione della norma, tenendo tuttavia conto della specifica che prescrive, nel caso di muri che non siano in grado di subire spostamenti (quale è il caso delle spalle del viadotto in questione che in virtù della elevata rigidezza sia del sistema di fondazione che della parte in elevazione, è interessata da spostamenti trascurabili durante l'evento sismico) un valore del coefficiente β_m pari ad 1.0.

Assumendo tale valore si considera che, cautelativamente, il terreno di riempimento è rigidamente connesso alla spalla e non subisce deformazioni o movimenti relativi rispetto ad essa.

Sovraspinta sismica del terreno

Per il calcolo della spinta del terreno sulle opere di sostegno, occorre tenere presente che la mobilitazione della spinta attiva avviene per spostamenti di entità contenuta, come si evince dalla seguente tabella desunta dall'EC7 - Parte 1 - Annesso C (C.3 "Movements to mobilise limit earth pressures):

MACROFASE FUNZIONALE 1

02

Viadotto VI02

LOTTO 02 COMMESSA

RS3H

LOTTO CODIFICA

D 78 CL

DOCUMENTO VI 02 04 001 REV. FOGLIO

A 29 di 102

Relazione di calcolo Spalla

Table C.1 — Ratios v_a/h

Kind	l of	v _a /h	v _a /h
	movement	loose soil	dense soil
******	movement	%	%
a)	V _a	0,4 to 0,5	0,1 to 0,2
b)	V _a	0,2	0,05 to 0,1
c)	V _a	0,8 to 1,0	0,2 to 0,5
d)	Va ====================================	0,4 to 0,5	0,1 to 0,2
where v _s	is the wall motion to mobilise act is the height of the wall	ive earth pressure	

In condizioni sismiche, l'entità degli spostamenti dipende principalmente dall'intensità dell'azione sismica e dalla rigidezza del sistema pali-terreno; pertanto, la possibilità di ammettere la mobilitazione della spinta attiva è subordinata alla valutazione degli spostamenti dell'opera e potrà essere valutata caso per caso. Cautelativamente, la valutazione degli spostamenti, da effettuarsi calcolando le spinte come somma della spinta attiva in condizioni statiche e dell'incremento di spinta attiva in condizioni sismiche, sarà riferita alla base dell'opera (i.e. alla sommità della palificata) e il confronto con i valori di riferimento per la mobilitazione della spinta attiva sarà effettuato in accordo con lo schema b) della tabella estratta dall'EC7 per terreni addensati (rilevati stradali e ferroviari). L'altezza *h* rispetto alla quale effettuare la verifica corrisponde all'altezza totale dell'opera su cui agisce la spinta del terreno, comprensiva dello spessore della fondazione.

Qualora, a seguito della verifica dell'entità degli spostamenti, non ricorressero le condizioni di spinta attiva, si procederà al calcolo delle spinte considerando la somma della spinta statica a riposo e dell'incremento di spinta sismica valutata con la teoria di Wood, secondo le indicazioni contenute nell'EC8 – Parte 5 – Annesso E (E.9 "Force due to earth pressure for rigid structures"):

 $\Delta S_S = (a_{max}/g) \cdot \gamma \cdot H^2$

Tale risultante è applicata ad un'altezza pari ad H/2.

Qualora, a seguito della verifica dell'entità degli spostamenti, ricorressero le condizioni di spinta attiva, si confermerà la correttezza dell'ipotesi di calcolo delle spinte come somma della spinta attiva in condizioni statiche e dell'incremento di spinta attiva in condizioni sismiche.

Per la valutazione del coefficiente di spinta attiva in condizioni statiche si farà in generale riferimento alla formulazione di Muller – Breslau:

$$k_a = \frac{\cos^2(\alpha + \phi)}{\cos^2\alpha \cdot \cos(\alpha - \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta)}{\cos(\alpha - \delta) \cdot \cos(\alpha + \beta)}}\right]^2}$$

$$\alpha = \text{inclinazione del paramento di monte rispetto alla verticale}$$

$$\beta = \text{inclinazione del pendio di monte rispetto al piano orizzontale}$$

- angolo di attrito interno del terreno

- δ = angolo di attrito terra-muro

Per la valutazione del coefficiente di spinta attiva in condizioni sismiche si farà riferimento alla formulazione di Mononobe-Okabe:

$$k_a = \frac{\cos^2(\phi - \alpha - \mathcal{G})}{\cos \mathcal{G} \cdot \cos^2 \alpha \cdot \cos(\delta + \alpha + \mathcal{G}) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta - \mathcal{G})}{\cos(\delta + \alpha + \mathcal{G}) \cdot \cos(\beta - \alpha)}}\right]^2} \qquad \text{se } \beta \leq \phi - \theta$$

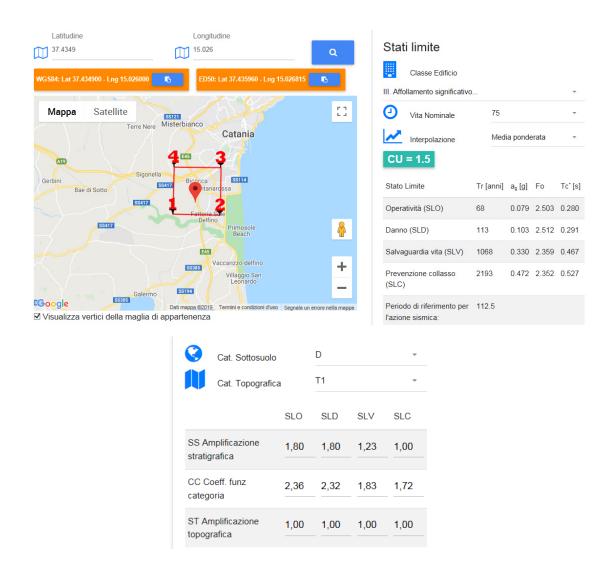

$$k_a = \frac{\cos^2(\phi - \alpha - \theta)}{\cos \theta \cdot \cos^2(\alpha \cdot \cos(\delta + \alpha + \theta))}$$
 se $\beta > \phi - \theta$

dove θ = angolo sismico, definito secondo la seguente espressione (in assenza di falda) in funzione dei coefficienti sismici k_h e k_v :

$$\tan \theta = k_h / (1 \pm k_v)$$

Nella determinazione dei coefficienti sismici k_h e k_v , per le spalle di ponti e viadotti ferroviari fondate su pali si porrà $\beta_m = 1$ in accordo con l'EC8-5.

Le forze di inerzia agenti sulla massa della struttura e del terreno presente sulla sua fondazione saranno valutate applicando l'accelerazione massima al suolo ag S.


La spinta totale di progetto Ed esercitata dal terrapieno ed agente sull'opera di sostegno in condizioni sismiche è dunque data dalla somma della spinta a riposo, della spinta sismica e della spinta statica data dal sovraccarico accidentale combinata al 20% così come riportato nella Tabella 5.2.V delle NTC2018.

$$E_d = S_{stat} + 0.2 \cdot S_q + \Delta S_s$$

Infine, nel caso specifico non essendo presente la falda a tergo dell'opera, la spinta idrostatica è nulla.

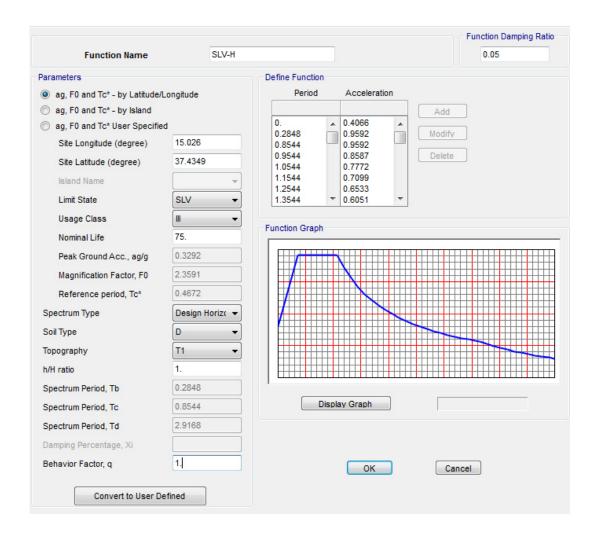
> Valori di progetto

La pericolosità sismica di base è stata definita sulla base delle coordinate geografiche del sito di realizzazione dell'opera. I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.

Spettri di progetto

Di seguito si forniscono gli spettri di risposta elastici per lo SLV

LOTTO 2 - Zona 3


Lat 37.434882 Long 15.025984

Categora di sottosuolo tipo D

Classe d'uso: III

Vita nominale VN = 75 anni

q = 1

6.6.11 Incremento di spinta del terrapieno

Avendo valutato preliminarmente l'entità dello spostamento della struttura in fase sismica nel capitolo dei pali di fondazione, e ricorrendo le condizioni sovra descritte (EC7 - Parte 1 - Annesso C), l'incremento di spinta del terrapieno viene valutato secondo la teoria di Mononobe-Okabe.

Mononobe e Okabe								
Inclinazione Paramento	α	90.0						
Angolo d'attrito interno	φ	38.0	0					
Coefficiente sismico orizzontale	$\mathbf{k}_{\mathtt{h}}$	0.406						
Coefficiente per sisma verticale	\mathbf{k}_{v}	0.203						
θ (+k _v)		18.6						
θ (- k_v)		27.0						
Mononobe e Okabe (+k _v)	K _{AE}	0.463						
Mononobe e Okabe (-k _v)	K _{AE}	0.653						

6.6.12 Inerzie strutturali

Si valutano le inerzie legate alla massa degli elementi strutturali con la seguente formula:

$$F_i = k_h \cdot W_{str}$$

6.6.13 Calcolo delle sollecitazioni in testa pali

Le sollecitazioni agenti in testa palo vengono calcolate nell'ipotesi di platea di fondazione infinitamente rigida, attraverso la relazione

$$R(x,y) = \frac{N}{n} + \frac{M_l}{J_l} \cdot y + \frac{M_t}{J_t} \cdot x$$

dove

 N, M_1, M_t sono lo sforzo normale e i momenti flettenti longitudinale e trasversale agenti al baricentro della palificata, $n \in I$ numero di pali e II, II sono le inerzie longitudinale e trasversale della palificata

$$J_l = \sum y_i^2 \qquad \qquad J_t = \sum x_i^2$$

Per quanto riguarda le sollecitazioni orizzontali in testa palo, si assume che le azioni di taglio di ripartiscano uniformemente tra i pali, risultando

$$T(x,y) = \frac{\sqrt{H_l^2 + H_t^2}}{n}$$

dove H₁, H_t sono le forze orizzontali longitudinale e trasversale agenti al baricentro della palificata.

6.6.14 Riepilogo risultati

Il foglio automatico, sulla base di calcoli sviluppati nei fogli successivi, restituisce, per ciascuna combinazione i risultati del controllo di verifica.

Per ciascuna combinazione vengono riassunti:

- Le sollecitazioni al livello del piano di fondazione in termini di sforzo normale N, forza orizzontale T e momento ribaltante M.
- Per i carichi sui pali in termini di N_{max}, N_{min}, T ed M.

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3H
 02
 D 78 CL
 VI 02 04 001
 A
 35 di 102

Relazione di calcolo Spalla

Fase statica

PARAGHIAIA

AZIONI SU SPALLA [kN,m]

cond statica

Descrizione carico		Fz	F_X	F_{Y}	b _{ix}	b _{iy}	b _{iz}	M _x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	113			0.00	0.00	0.70	0	0
Rinterro	g3		61		0.00	0.00	0.47	0	28
					0.00	0.00	1.40	0	0
Sovr. acc. sul rilevato			231		0.00	0.00	0.70	0	162

SPICCATO MURO FRONTALE

AZIONI SU SPALLA [kN,m]

cond statica

Descrizione carico		Fz	F_X	$\mathbf{F}_{\mathbf{Y}}$	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	113	0	0	-1.20		5.40	0	-136
Muro frontale	g1	2507	0	0			2.35	0	0
Totale Permanenti		2621	0	0				0	-136
Rinterro	g3		1387	0			2.03	0	2821
Sovr. acc. sul rilevato			1006	0			3.05	0	3070

FONDAZIONE

AZIONI SU SPALLA [kN,m]

cond statica

Descrizione carico		FZ	F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
	canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	113			1.20	0.00	7.65	0	136
Muro frontale	g1	2507			2.40	0.00	4.60	0	6018
Plinto	gı	11138			0.00	0.00	1.13	0	0
Muri andatori	g1	2227			-2.35	0.00	5.30	0	-5232
Totale Permanenti		15985						0	922
Rinterro	g3	6858			-2.35	0.00	5.30	0	-16115
Ricop. Plinto	g3	2117			2.35	0.00	2.75	0	4975
Sovr. acc. sul rilevato		3134			-2.35	0.00	8.35	0	-7365

* Il sovraccarico a	ccidentale a terg	go della spalla è da co	nsiderarsi p	resente in	tutte 1	e combi	inazioni	
Rinterro	g3	259	9	-2.35	0.00	2.78	0	7235
Sovr. acc. sul rileva	ato	137	8	0.00	0.00	4.18	0	5752

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

02

Viadotto $V\overline{102}$

COMMESSA RS3H

LOTTO CODIFICA

D 78 CL

DOCUMENTO VI 02 04 001 REV. FO

FOGLIO 36 di 102

Relazione di calcolo Spalla

Fase sismica Mononobe-Okabe / ka

PARAGHIAIA

AZIONI SU SPALLA [kN,m]

on			

Descrizione carico		Fz	F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	113			0.00	0.00	0.70	0	0
Rinterro	g3		38		0.00	0.00	0.47	0	18
					0.00	0.00	1.40	0	0
Sovr. acc. sul rilevato			143		0.00	0.00	0.70	0	100

cond sismica x

Deceminions	Descrizione carico		F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizione canco		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q6	0	46	0	0.00	0.00	0.70	0	32
Rinterro	Inerzia		672				0.70	0	470
	Sovraspinta		79				0.47	0	37
Rinterro [totale]			751					0	507
Sovr. acc. sul rilevato			143		0.00	0.00	0.70	0	100
Totale generale			940					0	640

cond sismica y

Descrizione carico		Fz	F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	qб	0	0	46	0.00	0.00	0.70	32	0

cond sismica vert

Descrizione carico		Fz	F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	qб	23	0	0	0.00	0.00	0.70	0	0

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

02

Viadotto VI02

COMMESSA

RS3H

LOTTO CODIFICA

D 78 CL

DOCUMENTO VI 02 04 001 REV. FOGLIO

Α

37 di 102

Relazione di calcolo Spalla

SPICCATO MURO FRONTALE

AZIONI SU SPALLA [kN,m]

cond	

Descrizione carico		Fz	F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	113	0	0	-1.20		5.40	0	-136
Muro frontale	g1	2507	0	0		2.35		0	0
Totale	e Permanenti	2621	0	0				0	-136
Rinterro	g3		859	0	2.03		0	1746	
Sovr. acc. sul rilevato			623	0			3.05	0	1900

cond sismica x

Description	Descrizione carico		FX	Fy	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizione canco		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q6		46		-1.20	0.00	5.40	0	249
Muro frontale	q6		1018		0.00	0.00	2.35	0	2392
Rinterro	Inerzia		2784				3.05	0	8490
	Sovraspinta		1498				2.03	0	3046
Rinterro [totale]			4281					0	11535
Sovr. acc. sul rilevato			623				3.05	0	1900
Totale generale			5968	·				0	16076

cond sismica y

Descrizione carico		F_Z	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_{y}
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q6			46	-1.20	0.00	5.40	249	0
Muro frontale q6				1018	0.00	0.00	2.35	2392	0
Rinterro					0.00	0.00	0.00	0	0
Totale generale				1064				2640	0

cond sismica vert

Descrizione carico		Fz	F_X	Fy	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
		[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q6	23			-1.20	0.00	5.40	0	-28
Muro frontale q6		509			0.00	0.00	2.35	0	0
Totale generale		532						0	-28

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

 $Viadotto \ \overline{VI02}$

COMMESSA

LOTTO CODIFICA

DOCUMENTO

REV. FOGLIO

Α

RS3H

02 D 78 CL

VI 02 04 001

38 di 102

Relazione di calcolo Spalla

FONDAZIONE

AZIONI SU SPALLA [kN,m]

cond statica

Descrizione	o comico	Fz	F_X	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizione	canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	g1	113			1.20	0.00	7.65	0	136
Muro frontale	g1	2507			2.40	0.00	4.60	0	6018
Plinto	gı	11138			0.00	0.00	1.13	0	0
Muri andatori	2227			-2.35	0.00	5.30	0	-5232	
Tota	le Permanenti	15985						0	922
Rinterro	g3	6858			-2.35	0.00	5.30	0	-16115
Ricop. Plinto	g3	2117			2.35	0.00	2.75	0	4975
Sovr. acc. sul rileva	ito	3134			-2.35	0.00	8.35	0	-7365
* Il sovraccarico ac	cidentale a terg	o della spa	lla è da con	siderarsi pr	esente in	tutte 1	e comb	inazioni	
Rinterro		1609		-2.35	0.00	2.78	0	4478	
Sovr. acc. sul rileva	Rinterro g3 Sovr. acc. sul rilevato				0.00	0.00	4.18	0	3560

AZIONI SU SPALLA [kN,m]

cond sismica x

Descrizion	o comico	Fz	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizion	le canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q 6		46		1.20	0.00	7.65	0	352
Muro frontale	q 6		1018		2.40	0.00	4.60	0	4682
Plinto	q 6		4521		0.00	0.00	1.13	0	5086
Muri andatori	q ₆		904		-2.35	0.00	5.30	0	4790
Rinterro	Inerzia		2784		-2.35	0.00	5.30	0	14753
	Sovraspinta		2807		-2.35	0.00	2.78	0	7812
Rinterro [totale]			5590				5.30	0	22564
Sovr. acc. sul rilevato			853		-2.35		5.30	0	3560
	·	12931						41034	

cond sismica y

Descrizione carico		Fz	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizion	le Carico	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	q ₆			46	1.20	0.00	7.65	352	0
Muro frontale	q ₆			1018	2.40	0.00	4.60	4682	0
Plinto	Q 6			4521	0.00	0.00	1.13	5086	0
Muri andatori	Q 6			904	-2.35	0.00	5.30	4790	0
Rinterro	Inerzia			2784	0.00		5.30	14753	0
	Sovraspinta			425			2.78	1183	0
Rinterro [totale]				3209				15936	0
Sovr. acc. sul rilevato				853	-2.35		8.35	7120	0
	Totale generale			10550				37966	0

cond sismica vert

Descrizione carico		Fz	FX	F _Y	b _{ix}	b _{iy}	b _{iz}	M_x	M_y
Descrizio	ne canco	[kN]	[kN]	[kN]	[m]	[m]	[m]	[kNm]	[kNm]
Paraghiaia	Q 6	23			1.20	0.00	7.65	0.00	28
Muro frontale	q ₆	509			2.40	0.00	4.60	0.00	1221
Plinto	q 6	2260			0.00	0.00	1.13	0.00	0
Muri andatori	q 6	452			-2.35	0.00	5.30	0.00	-1062
Rinterro	q 6	1392			-2.35	0.00	5.30	0.00	-3271
Ricop. Plinto	Q 6	430			2.35	0.00	2.75	0.00	1010
	Totale generale	5066						0.00	-2074

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	INTERRAMEN AEROPORTO INTERESSATO	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO. MACROFASE FUNZIONALE 1 LOTTO 02					
Viadotto VI02	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
	RS3H	02	D 78 CL	VI 02 04 001	Α	39 di 102	
Relazione di calcolo Spalla							

6.7 Sollecitazioni

6.7.1 Muro paraghiaia

In condizioni statiche il muro paraghiaia è sollecitato dalla spinta del rilevato, dalla spinta dei sovraccarichi accidentali, dai sovraccarichi mobili agenti sulla mensola del muro e dall'azione di frenatura. In condizioni sismiche il muro paraghiaia è sollecitato dalla spinta sismica del rilevato, dalle masse del muro. Il modello di calcolo utilizzato è quello di mensola incastrata al muro frontale.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02

COMMESSA

LOTTO CODIFICA

DOCUMENTO

REV. FOGLIO Α

RS3H

02 D 78 CL VI 02 04 001

40 di 102

Relazione di calcolo Spalla

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA ALLA BASE DEL PARACHIAIA

INTERNA AL	LA BASE D	EL PARAC	GHIAIA		
	Nz	Tx	Ту	Mx	Му
A2 - SLU - N max gr.1	113	368	0	0	239
A2 - SLU - MT max gr.1	113	368	0	0	239
A2 - SLU - ML max gr.1	113	368	0	0	239
A2 - SLU - N max gr.3	113	368	0	0	239
A2 - SLU - MT max gr.3	113	368	0	0	239
A2 - SLU - ML max gr.3	113	368	0	0	239
A2 - SLU - Vento ponte scarico	113	79	0	0	37
A2 - SLU Gmin - N max gr.1	113	289	0	0	202
A2 - SLU Gmin - MT max gr.1	113	289	0	0	202
A2 - SLU Gmin - ML max gr.1	113	289	0	0	202
A2 - SLU Gmin - N max gr.3	113	289	0	0	202
A2 - SLU Gmin - MT max gr.3	113	289	0	0	202
A2 - SLU Gmin - ML max gr.3	113	289	0	0	202
A2 - SLU Gmin - Vento ponte scarico	113	0	0	0	0
	 				
A1 - SLU - N max gr.1	153	426	0	0	277
A1 - SLU - MT max gr.1	153	426	0	0	277
A1 - SLU - ML max gr.1	153	426	0	0	277
A1 - SLU - N max gr.3	153	426	0	0	277
A1 - SLU - MT max gr.3	153	426	0	0	277
A1 - SLU - ML max gr.3	153	426	0	0	277
A1 - SLU - Vento ponte scarico	153	92	0	0	43
A1 - SLU Gmin - N max gr.1	113	335	0	0	234
A1 - SLU Gmin - MT max gr.1	113	335	0	0	234
A1 - SLU Gmin - ML max gr.1	113	335	0	0	234
A1 - SLU Gmin - N max gr.3	113	335	0	0	234
A1 - SLU Gmin - MT max gr.3	113	335	0	0	234
A1 - SLU Gmin - ML max gr.3	113	335	0	0	234
A1 - SLU Gmin - Vento ponte scarico	113	0	0	0	0
SLE rara - N max gr.1	113	292	0	0	190
SLE rara - MT max gr.1	113	292	0	0	190
SLE rara - ML max gr.1	113	292	0	0	190
SLE rara - N max gr.3	113	292	0	0	190
SLE rara - MT max gr.3	113	292	0	0	190
SLE rara - ML max gr.3	113	292	0	0	190
SLE rara - Vento ponte scarico	113	292	0	0	190
SLE freq N max gr.1	113	292	0	0	190
SLE freq MT max gr.1	113	292	0	0	190
SLE freq ML max gr.1	113	292	0	0	190
SLE freq N max gr.3	113	292	0	0	190
SLE freq MT max gr.3	113	292	0	0	190
SLE freq ML max gr.3	113	292	0	0	190
SLE freq Vento ponte scarico	113	61	0	0	28
SLE quasi permanente	113	61	0	0	28
SLV - N max	136	305	14	10	199
SLV - MT max gr.1	120	305	46	32	199
SLV - ML max gr.1	120	863	14	10	577
SLV - MT max gr.3	106	305	46	32	199
SLV - ML max gr.3	106	863	14	10	577
SLV - NiL max gr.3 SLV - N min	90	305	14	10	199
DLV - IV IIIII	9 0	303	14	10	199

Tabella 5 – Sollecitazioni alla base del muro paraghiaia

6.7.2 Muro frontale

Le sollecitazioni riportate nella seguente tabella sono state ottenute dal modello di calcolo descritto nei paragrafi precedenti.

Per la verifica del muro frontale, a quota spiccato, tali azioni possono essere considerate uniformemente distribuite in quanto l'altezza del muro frontale è tale che nell' ipotesi di ripartizione a 45°, tali scarichi si ripartiscono uniformemente alla base del muro

Ai carichi prima riportati, si aggiungono il peso proprio del muro frontale, del muro paraghiaia e la spinta del terreno e del sovraccarico sul rilevato a tergo.

Si ottengono quindi le seguenti sollecitazioni, con riferimento alle combinazioni maggiormente significative.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3H
 02
 D 78 CL
 VI 02 04 001
 A
 42 di 102

Relazione di calcolo Spalla

CARATTERISTICHE DELLA SOLLECITAZIONE

INTERNA ALLA BASE DEL MURO FRONTALE							
	Nz	Tx	Ту	Mx	Му		
A2 - SLU - N max gr.1	8611	3775	299	2002	15668		
A2 - SLU - MT max gr.1	6261	3241	299	2002	10468		
A2 - SLU - ML max gr.1	6261	3241	299	2002	10468		
A2 - SLU - N max gr.3	8611	4206	299	2002	18726		
A2 - SLU - MT max gr.3	6261	3241	299	2002	10468		
A2 - SLU - ML max gr.3	6261	3241	299	2002	10468		
A2 - SLU - Vento ponte scarico	6261	1913	174	1116	6272		
A2 - SLU Gmin - N max gr.1	8611	1972	299	2002	12001		
A2 - SLU Gmin - MT max gr.1	6261	1438	299	2002	6802		
A2 - SLU Gmin - ML max gr.1	6261	1438	299	2002	6802		
A2 - SLU Gmin - N max gr.3	8611	2402	299	2002	15059		
A2 - SLU Gmin - MT max gr.3	6261	1438	299	2002	6802		
A2 - SLU Gmin - ML max gr.3	6261	1438	299	2002	6802		
A2 - SLU Gmin - Vento ponte scarico	6261	109	174	1116	2605		
A1 - SLU - N max gr.1	11178	4389	367	2422	18647		
A1 - SLU - MT max gr.1	8452	3769	367	2422	12616		
A1 - SLU - ML max gr.1	8452	3769	367	2422	12616		
A1 - SLU - N max gr.3	11178	4889	367	2422	22199		
A1 - SLU - MT max gr.3	8452	3769	367	2422	12616		
A1 - SLU - ML max gr.3	8452	3769	367	2422	12616		
A1 - SLU - Vento ponte scarico	8452	2228	222	1397	7748		
A1 - SLU Gmin - N max gr.1	8987	2308	367	2422	13700		
A1 - SLU Gmin - MT max gr.1	6261	1689	367	2422	7668		
A1 - SLU Gmin - ML max gr.1	6261	1689	367	2422	7668		
A1 - SLU Gmin - N max gr.3	8987	2808	367	2422	17251		
A1 - SLU Gmin - MT max gr.3	6261	1689	367	2422	7668		
A1 - SLU Gmin - ML max gr.3	6261	1689	367	2422	7668		
A1 - SLU Gmin - Vento ponte scarico	6261	109	184	1202	2605		
SLE rara - N max gr.1	8141	2986	257	1680	12943		
SLE rara - MT max gr.1	6261	2559	257	1680	8783		
SLE rara - ML max gr.1	6261	2559	257	1680	8783		
SLE rara - N max gr.3	8141	3331	257	1680	15389		
SLE rara - MT max gr.3	6261	2559	257	1680	8783		
SLE rara - ML max gr.3	6261	2559	257	1680	8783		
SLE rara - Vento ponte scarico	6261	2503	159	987	8495		
SLE freq N max gr.1	7765	2890	154	787	12053		
SLE freq MT max gr.1	6261	2548	154	787	8725		
SLE freq ML max gr.1	6261	2548	154	787	8725		
SLE freq N max gr.3	7765	3165	154	787	14010		
SLE freq MT max gr.3	6261	2548	154	787	8725		
SLE freq ML max gr.3	6261	2548	154	787	8725		
SLE freq Vento ponte scarico	6261	1496	134	772	5426		
SLE quasi permanente	6261	1496	109	557	5426		
SLV - N max	7984	3790	874	4356	17039		
SLV - MT max gr.1	6665	3631	2760	13735	15356		
SLV - ML max gr.1	6665	9654	874	4356	40341		
SLV - MT max gr.3	5857	3631	2760	13735	15079		
SLV - ML max gr.3	5857	9654	874	4356	40064		
SLV - N min	5290	3790	874	4356	16116		

Tabella 6 – Sollecitazioni alla base del muro frontale

Le sollecitazioni in direzione trasversale risultano trascurabili rispetto a quelle in direzione longitudinale, tenuto anche conto della geometria della sezione del muro frontale.

GRUPPO FERROVIE DELLO STATO ITALIANE	INTERRAMEN AEROPORTO INTERESSAT	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO. MACROFASE FUNZIONALE 1 LOTTO 02						
Viadotto VI02	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
	RS3H	02	D 78 CL	VI 02 04 001	Α	43 di 102		
Relazione di calcolo Spalla								

6.7.3 Plinto di fondazione

In questo paragrafo si riporta la determinazione delle sollecitazioni in quota testa pali che si ottengono sommando, alle azioni provenienti dall'impalcato, la risultante e il momento risultante dei pesi della struttura, del terreno interno alla spalla e delle spinte dovute al rilevato rispetto al baricentro del plinto. In condizioni sismiche si è tenuto conto dell'incremento di spinta delle inerzie.

Nella tabella che segue sono indicati la risultante e momento risultante rispetto al baricentro del plinto di fondazione.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3H
 02
 D 78 CL
 VI 02 04 001
 A
 44 di 102

Relazione di calcolo Spalla

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA INTRADOSSO FONDAZIONE

INTERNA INTRADOSSO FONDAZIONE							
	Nz	Tx	Ту	Mx	Му		
A2 - SLU - N max gr.1	37559	5815	299	2675	18110		
A2 - SLU - MT max gr.1	35209	5281	299	2675	6069		
A2 - SLU - ML max gr.1	35209	5281	299	2675	6069		
A2 - SLU - N max gr.3	37559	6245	299	2675	22136		
A2 - SLU - MT max gr.3	35209	5281	299	2675	6069		
A2 - SLU - ML max gr.3	35209	5281	299	2675	6069		
A2 - SLU - Vento ponte scarico	31292	3488	174	1508	7567		
A2 - SLU Gmin - N max gr.1	25892	2436	299	2675	23187		
A2 - SLU Gmin - MT max gr.1	23542	1902	299	2675	11147		
A2 - SLU Gmin - ML max gr.1	23542	1902	299	2675	11147		
A2 - SLU Gmin - N max gr.3	25892	2866	299	2675	27214		
A2 - SLU Gmin - MT max gr.3	23542	1902	299	2675	11147		
A2 - SLU Gmin - ML max gr.3	23542	1902	299	2675	11147		
A2 - SLU Gmin - Vento ponte scarico	19625	109	174	1508	12644		
A1 - SLU - N max gr.1	47226	6745	367	3248	23441		
A1 - SLU - MT max gr.1	44500	6126	367	3248	9474		
A1 - SLU - ML max gr.1	44500	6126	367	3248	9474		
A1 - SLU - N max gr.3	47226	7245	367	3248	28119		
A1 - SLU - MT max gr.3	44500	6126	367	3248	9474		
A1 - SLU - ML max gr.3	44500	6126	367	3248	9474		
A1 - SLU - Vento ponte scarico	39955	4046	222	1897	11211		
A1 - SLU Gmin - N max gr.1	26895	2846	367	3248	25155		
A1 - SLU Gmin - MT max gr.1	24169	2227	367	3248	11188		
A1 - SLU Gmin - ML max gr.1	24169	2227	367	3248	11188		
A1 - SLU Gmin - N max gr.3	26895	3346	367	3248	29833		
A1 - SLU Gmin - MT max gr.3	24169	2227	367	3248	11188		
A1 - SLU Gmin - ML max gr.3	24169	2227	367	3248	11188		
A1 - SLU Gmin - Vento ponte scarico	19625	109	184	1616	12644		
SLE rara - N max gr.1	33613	4570	257	2259	17173		
SLE rara - MT max gr.1	31733	4143	257	2259	7540		
SLE rara - ML max gr.1	31733	4143	257	2259	7540		
SLE rara - N max gr.3	33613	4914	257	2259	20394		
SLE rara - MT max gr.3	31733	4143	257	2259	7540		
SLE rara - ML max gr.3	31733	4143	257	2259	7540		
SLE rara - Vento ponte scarico	31733	4086	159	1345	7126		
SLE freq N max gr.1	33237	4473	154	1134	15164		
SLE freq MT max gr.1	31733	4131	154	1134	7458		
SLE freq ML max gr.1	31733	4131	154	1134	7458		
SLE freq N max gr.3	33237	4749	154	1134	17740		
SLE freq MT max gr.3	31733	4131	154	1134	7458		
SLE freq ML max gr.3	31733	4131	154	1134	7458		
SLE freq Vento ponte scarico	28599	2709	134	1074	8739		
SLE quasi permanente	28599	2709	109	803	8739		
SLV - N max	35483	6607	3515	14493	27794		
SLV - MT max gr.1	30990	6447	11563	47180	24912		
SLV - ML max gr.1	30990	17184	3515	14493	71340		
SLV - MT max gr.3	27462	6447	11563	47180	24689		
SLV - ML max gr.3	27462	17184	3515	14493	71117		
SLV - Nriin	23722	6607	3515	14493	27051		
OLV - IV IIIII	23122	000/	2212	14493	27031		

Tabella 7 – Sollecitazioni ad intradosso del baricentro fondazione

6.8 Verifiche degli elementi strutturali

Per tutti gli elementi strutturali della spalla (muro frontale, muro paraghiaia, ...) vengono svolte le seguenti verifiche:

- verifiche a rottura (pressoflessione e taglio) per le combinazioni allo stato limite ultimo (SLU).
- verifiche tensionali per le combinazioni rare, frequenti e quasi permanenti (SLE)
- verifiche a fessurazione per le combinazioni rara (SLE)

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA ALLA BASE DEL PARAGHIAIA							
			Nz,A [kN]	Tx,A [kN]	Ty,A [kN]	Mxx [kNm]	Myy [kNm]
	Nz,A _{max}	A2 - SLU - N max gr.1	113	368	0	0	239
EO	Tx,A _{max}	A2 - SLU - N max gr.1	113	368	0	0	239
SLU GEO	Ty,A _{max}	A2 - SLU - N max gr.1	113	368	0	0	239
25	Mxx max	A2 - SLU - N max gr.1	113	368	0	0	239
	Myy max	A2 - SLU - N max gr.1	113	368	0	0	239
	Nz,A _{max}	A1 - SLU - N max gr.1	153	426	0	0	277
抚	Tx,A _{max}	A1 - SLU - N max gr.1	153	426	0	0	277
SLU STR	Ty,A _{max}	A1 - SLU - N max gr.1	153	426	0	0	277
35	Mxx max	A1 - SLU - N max gr.1	153	426	0	0	277
	Myy max	A1 - SLU - N max gr.1	153	426	0	0	277
	Nz,A _{max}	SLE rara - N max gr.1	113	292	0	0	190
IRA	Tx,Amax	SLE rara - N max gr.1	113	292	0	0	190
SLE RARA	Ty,A _{max}	SLE rara - N max gr.1	113	292	0	0	190
SLE	Mxx max	SLE rara - N max gr.1	113	292	0	0	190
	Myy max	SLE rara - N max gr.1	113	292	0	0	190
TE	Nz,A _{max}	SLE freq N max gr.1	113	292	0	0	190
SLE FREQENTE	Tx,A _{max}	SLE freq N max gr.1	113	292	0	0	190
E E	Ty,A _{max}	SLE freq N max gr.1	113	292	0	0	190
E F	Mxx max	SLE freq N max gr.1	113	292	0	0	190
52	Myy max	SLE freq N max gr.1	113	292	0	0	190
SLE Q.P.		SLE quasi permanente	113	61	0	0	28
	Nz,A _{max}	SLV - N max	136	305	14	10	199
	Tx,A _{max}	SLV - ML max gr.1	120	863	14	10	577
SLV	Ty,A _{max}	SLV - MT max gr.1	120	305	46	32	199
	Mxx max	SLV - MT max gr.1	120	305	46	32	199
	Myy max	SLV - ML max gr.1	120	863	14	10	577

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02

COMMESSA RS3H

LOTTO CODIFICA

DOCUMENTO

REV. FOGLIO

02 D 78 CL VI 02 04 001

A 46 di 102

Relazione di calcolo Spalla

CARATTERISTICHE DELLA SOLLECITAZIONE

INTERNA ALLA BASE DEL MURO FRONTALE							
			Nz,A [kN]	Tx,A [kN]	Ty,A [kN]	Mxx [kNm]	Myy [kNm]
	Nz,A _{max}	A2 - SLU - N max gr.1	8611	3775	299	2002	15668
8	Tx,A _{max}	A2 - SLU - N max gr.3	8611	4206	299	2002	18726
SLU GEO	$Ty,\!A_{\text{max}}$	A2 - SLU - N max gr.1	8611	3775	299	2002	15668
\mathbf{z}	Mxx max	A2 - SLU - N max gr.1	8611	3775	299	2002	15668
	Myy max	A2 - SLU - N max gr.3	8611	4206	299	2002	18726
	Nz, A_{max}	A1 - SLU - N max gr.1	11178	4389	367	2422	18647
T.	Tx , A_{max}	A1 - SLU - N max gr.3	11178	4889	367	2422	22199
SLU STR	Ty,A _{max}	A1 - SLU - N max gr.1	11178	4389	367	2422	18647
\mathbf{z}	Mxx max	A1 - SLU - N max gr.1	11178	4389	367	2422	18647
	Myy max	A1 - SLU - N max gr.3	11178	4889	367	2422	22199
	Nz,A _{max}	SLE rara - N max gr.1	8141	2986	257	1680	12943
R.A	Tx,A _{max}	SLE rara - N max gr.3	8141	3331	257	1680	15389
SLE RARA	Ty,A _{max}	SLE rara - N max gr.1	8141	2986	257	1680	12943
SE	Mxx max	SLE rara - N max gr.1	8141	2986	257	1680	12943
	Myy max	SLE rara - N max gr.3	8141	3331	257	1680	15389
TE	Nz, A_{max}	SLE freq N max gr.1	7765	2890	154	787	12053
EΝ	Tx,A _{max}	SLE freq N max gr.3	7765	3165	154	787	14010
Æ	Ty,A _{max}	SLE freq N max gr.1	7765	2890	154	787	12053
SLE FREQENTE	Mxx max	SLE freq N max gr.1	7765	2890	154	787	12053
53	Myy max	SLE freq N max gr.3	7765	3165	154	787	14010
SLE Q.P.		SLE quasi permanente	6261	1496	109	557	5426
	Nz, A_{max}	SLV - N max	7984	3790	874	4356	17039
~	Tx , A_{max}	SLV - ML max gr.1	6665	9654	874	4356	40341
SLV	Ty, A_{max}	SLV - MT max gr.1	6665	3631	2760	13735	15356
	Mxx max	SLV - MT max gr.1	6665	3631	2760	13735	15356
	Myy_{max}	SLV - ML max gr.1	6665	9654	874	4356	40341

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

02

 $Viadotto \ \overline{VI02}$

COMMESSA RS3H

LOTTO CODIFICA

D 78 CL

DOCUMENTO VI 02 04 001 REV. F

Α

FOGLIO 47 di 102

Relazione di calcolo Spalla

CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA INTRADOSSO FONDAZIONE

INTERNA INTRADOSSO FONDAZIONE							
			Nz,A	Tx,A	Ty,A	Mxx	Myy
			[kN]	[kN]	[kN]	[kNm]	[kNm]
_	Nz,A _{max}	A2 - SLU - N max gr.1	37559	5815	299	2675	18110
EO	Tx,A _{max}	A2 - SLU - N max gr.3	37559	6245	299	2675	22136
SLU GEO	Ty,A _{max}	A2 - SLU - N max gr.1	37559	5815	299	2675	18110
22	Mxx max	A2 - SLU - N max gr.1	37559	5815	299	2675	18110
\Box	Myy max	A2 - SLU Gmin - N max gr.3	25892	2866	299	2675	27214
	Nz , A_{max}	A1 - SLU - N max gr.1	47226	6745	367	3248	23441
TR	Tx,A _{max}	A1 - SLU - N max gr.3	47226	7245	367	3248	28119
SLU STR	$Ty,\!A_{max}$	A1 - SLU - N max gr.1	47226	6745	367	3248	23441
S	Mxx_{max}	A1 - SLU - N max gr.1	47226	6745	367	3248	23441
	Myy max	A1 - SLU Gmin - N max gr.3	26895	3346	367	3248	29833
	Nz,A _{max}	SLE rara - N max gr.1	33613	4570	257	2259	17173
SLE RARA	Tx,A _{max}	SLE rara - N max gr.3	33613	4914	257	2259	20394
, R.	Ty,A _{max}	SLE rara - N max gr.1	33613	4570	257	2259	17173
SLE	Mxx max	SLE rara - N max gr.1	33613	4570	257	2259	17173
	Myy max	SLE rara - N max gr.3	33613	4914	257	2259	20394
TE	Nz , A_{max}	SLE freq N max gr.1	33237	4473	154	1134	15164
SLE FREQENTE	Tx,A _{max}	SLE freq N max gr.3	33237	4749	154	1134	17740
Æ	Ty,A _{max}	SLE freq N max gr.1	33237	4473	154	1134	15164
H H	Mxx max	SLE freq N max gr.1	33237	4473	154	1134	15164
S	Myy max	SLE freq N max gr.3	33237	4749	154	1134	17740
SLE Q.P.		SLE quasi permanente	28599	2709	109	803	8739
	Nz,A _{max}	SLV - N max	35483	6607	3515	14493	27794
	Tx,A _{max}	SLV - ML max gr.1	30990	17184	3515	14493	71340
SLV	Ty,A _{max}	SLV - MT max gr.1	30990	6447	11563	47180	24912
	Mxx max	SLV - MT max gr.1	30990	6447	11563	47180	24912
	Myy_{max}	SLV - ML max gr.1	30990	17184	3515	14493	71340

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL'

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

Viadotto VI02 COMMESS

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3H
 02
 D 78 CL
 VI 02 04 001
 A
 48 di 102

Relazione di calcolo Spalla

6.8.1 Paraghiaia

Viene verificata la sezione di incastro con lo spiccato del muro frontale. Nella determinazione dei momenti flettenti di verifica il muro paraghiaia viene considerato come una mensola incastrata allo spiccato del muro frontale, trascurando a favore di sicurezza gli effetti dovuti alla eventuale presenza dei muri di risvolto.

Caratteristiche della sezione:

Sezione rettangolare 40x810 cm

Armatura verticale

 $A_s = \phi 16/10$ (lato controterra)

 $A'_s = \phi 16/20$ (lato esterno)

Armatura orizzontale

 $A_s = \phi 12/20$

 $A'_{s} = \phi 12/20$

La verifica a taglio è soddisfatta come elemento non armato a taglio. Si prevede comunque un minimo di armatura a taglio costituita da spilli $9\varnothing 8/m^2$

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Normativa di riferimento: N.T.C.

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.800	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	182.60	daN/cm²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	
	Coeff. Aderenza istantaneo ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3H 02 49 di 102 D 78 CL VI 02 04 001 Α

Relazione di calcolo Spalla

Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del D Classe Congl	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	0.0	0.0
2	0.0	810.0
3	40.0	810.0
4	40.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	8.0	8.0	16
2	8.0	802.0	16
3	32.0	802.0	16
4	32.0	8.0	16

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazione Diametro in mm delle barre della generazione N°Barre

Ø

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	2	78	16
2	3	4	39	16

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My Vy Vx		Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia con verso positivo se tale da comprimere il lembo sup. della sez. Momento flettente [kNm] intorno all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [kN] parallela all'asse princ.d'inerzia y Componente del Taglio [kN] parallela all'asse princ.d'inerzia x				
N°Comb.	N	Mx	My	Vy	Vx	
1	153.00	0.00	277.00	0.00	426.00	
2	153.00	0.00	277.00	0.00	426.00	
3	153.00	0.00	277.00	0.00	426.00	
4	153.00	0.00	277.00	0.00	426.00	
5	153.00	0.00	277.00	0.00	426.00	
6	136.00	10.00	199.00	14.00	305.00	
7	120.00	10.00	577.00	14.00	863.00	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione							
N°Comb.	N	Mx	My					
1	113.00	0.00	190.00					
2	113.00	0.00	190.00					
3	113.00	0.00	190.00					
4	113.00	0.00	190.00					
5	113.00	0.00	190.00					

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx My	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo destro della sezione							
N°Comb.	N	Mx	Му					
1	113.00	0.00 (0.00)	190.00 (795.73)					
2	113.00	0.00 (0.00)	190.00 (795.73)					
3	113.00	0.00 (0.00)	190.00 (795.73)					
4	113.00	0.00 (0.00)	190.00 (795.73)					
5	113.00	0.00 (0.00)	190.00 (795.73)					

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 113.00 0.00 (0.00) 28.00 (1034.75)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 8.5 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

02

Viadotto VI02

COMMESSA

RS3H

LOTTO CODIFICA

D 78 CL

DOCUMENTO VI 02 04 001 REV. FOGLIO

A 51 di 102

Relazione di calcolo Spalla

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic.	As Tesa
1	S	153.00	0.00	277.00	152.74	0.03	1798.49	6.48 1	60.8(58.0)
2	S	153.00	0.00	277.00	152.74	0.03	1798.49	6.48 1	60.8(58.0)
3	S	153.00	0.00	277.00	152.74	0.03	1798.49	6.48 1	60.8(58.0)
4	S	153.00	0.00	277.00	152.74	0.03	1798.49	6.48 1	60.8(58.0)
5	S	153.00	0.00	277.00	152.74	0.03	1798.49	6.48 1	60.8(58.0)
6	S	136.00	10.00	199.00	136.18	95.34	1793.19	8.98 1	60.8(58.0)
7	S	120.00	10.00	577.00	120.10	30.73	1792.80	3.10 1	60.8(58.0)
8	S	120.00	32.00	199.00	119.97	286.86	1787.35	8.96 1	60.8(58.0)
9	S	120.00	32.00	199.00	119.97	286.86	1787.35	8.96 1	60.8(58.0)
10	S	120.00	10.00	577.00	120.10	30.73	1792.80		60.8(58.0)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del conglomerato a compressione
x/d	Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
4	0.00000	0.004	40.0	040.0	0.00000	00.0	000.0	0.00400	0.0	0.0
1	0.00092	0.321	40.0	810.0	0.00020	32.0	802.0	-0.00196	8.0	8.0
2	0.00092	0.321	40.0	810.0	0.00020	32.0	802.0	-0.00196	8.0	8.0
3	0.00092	0.321	40.0	810.0	0.00020	32.0	802.0	-0.00196	8.0	8.0
4	0.00092	0.321	40.0	810.0	0.00020	32.0	802.0	-0.00196	8.0	8.0
5	0.00092	0.321	40.0	810.0	0.00020	32.0	802.0	-0.00196	8.0	8.0
6	0.00091	0.318	40.0	810.0	0.00020	32.0	802.0	-0.00196	8.0	8.0
7	0.00092	0.319	40.0	810.0	0.00020	32.0	802.0	-0.00196	8.0	8.0
8	0.00091	0.318	40.0	810.0	0.00020	32.0	802.0	-0.00196	8.0	8.0
9	0.00091	0.318	40.0	810.0	0.00020	32.0	802.0	-0.00196	8.0	8.0
10	0.00092	0.319	40.0	810.0	0.00020	32.0	802.0	-0.00196	8.0	8.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeπ. a, b, c neil'eq. dell'asse neutro ax+bY+c=u nei rit. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 $N^{\circ}Comb$ a b c x/d C.Rid.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL'

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

V	iadotto VI02	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
		RS3H	02	D 78 CL	VI 02 04 001	Α	52 di 102
L	1 . 1. 1 . 1 . 1 . 1						

Relazione di calcolo Spalla

1	0.000090025	0.000000000	-0.002676698	0.321	0.841
2	0.000090025	0.000000000	-0.002676698	0.321	0.841
3	0.000090025	0.000000000	-0.002676698	0.321	0.841
4	0.000090025	0.000000000	-0.002676698	0.321	0.841
5	0.000090025	0.000000000	-0.002676698	0.321	0.841
6	0.000088802	0.00000036	-0.002667205	0.318	0.838
7	0.000089552	0.00000012	-0.002673013	0.319	0.839
8	0.000088172	0.00000057	-0.002662333	0.318	0.837
9	0.000088172	0.00000057	-0.002662333	0.318	0.837
10	0.000089552	0.00000012	-0.002673013	0.319	0.839

METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (\$ 4.1.2.1.3.1 NTC)

Ver S = comb.verificata a taglio/ N = comb. non verificata
Ved Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)

Vwct Taglio trazione resistente [kN] in assenza di staffe [formula (4.1.23)NTC]

d Altezza utile sezione [cm]

bw Larghezza minima sezione [cm]
Ro Rapporto geometrico di armatura lo

Ro Rapporto geometrico di armatura longitudinale [<0.02] Scp Tensione media di compressione nella sezione [Mpa]

N°Comb	Ver	Ved	Vwct	d	bw	Ro	Scp
1	S	426.00	1545.16	32.0	810.0	0.0062	0.05
2	S	426.00	1545.16	32.0	810.0	0.0062	0.05
3	S	426.00	1545.16	32.0	810.0	0.0062	0.05
4	S	426.00	1545.16	32.0	810.0	0.0062	0.05
5	S	426.00	1545.16	32.0	810.0	0.0062	0.05
6	S	305.01	1543.14	32.0	810.0	0.0062	0.04
7	S	863.00	1541.20	32.0	810.0	0.0062	0.04
8	S	305.03	1541.23	32.0	810.0	0.0062	0.04
9	S	305.03	1541.23	32.0	810.0	0.0062	0.04
10	S	863.00	1541.20	32.0	810.0	0.0062	0.04

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)

Ac eff.

Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre

As eff.

Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.45	40.0	810.0	-38.4	8.0	48.2	7290	160.8
2	S	1.45	40.0	810.0	-38.4	8.0	48.2	7290	160.8
3	S	1.45	40.0	810.0	-38.4	8.0	48.2	7290	160.8
4	S	1.45	40.0	810.0	-38.4	8.0	48.2	7290	160.8
5	S	1.45	40.0	810.0	-38.4	8.0	48.2	7290	160.8

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL'

AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

LOTTO 02 Viadotto VI02

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** RS3H 02 D 78 CL VI 02 04 001 Α 53 di 102

Relazione di calcolo Spalla

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] k2

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Copriferro [mm] netto calcolato con riferimento alla barra più tesa Cf

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00027	0	0.500	16.0	72	0.00012 (0.00012)	368	0.042 (0.20)	0.00	795.73
2	S	-0.00027	0	0.500	16.0	72	0.00012 (0.00012)	368	0.042 (0.20)	0.00	795.73
3	S	-0.00027	0	0.500	16.0	72	0.00012 (0.00012)	368	0.042 (0.20)	0.00	795.73
4	S	-0.00027	0	0.500	16.0	72	0.00012 (0.00012)	368	0.042 (0.20)	0.00	795.73
5	S	-0.00027	0	0.500	16.0	72	0.00012 (0.00012)	368	0.042 (0.20)	0.00	795.73

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.45	40.0	810.0	-38.4	8.0	48.2	7290	160.8
2	S	1.45	40.0	810.0	-38.4	8.0	48.2	7290	160.8
3	S	1.45	40.0	810.0	-38.4	8.0	48.2	7290	160.8
4	S	1.45	40.0	810.0	-38.4	8.0	48.2	7290	160.8
5	S	1 45	40 O	810 0	-38 4	8.0	48.2	7290	160.8

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00027	0	0.500	16.0	72	0.00012 (0.00012)	368	0.042 (0.20)	0.00	795.73
2	S	-0.00027	0	0.500	16.0	72	0.00012 (0.00012)	368	0.042 (0.20)	0.00	795.73
3	S	-0.00027	0	0.500	16.0	72	0.00012 (0.00012)	368	0.042 (0.20)	0.00	795.73
4	S	-0.00027	0	0.500	16.0	72	0.00012 (0.00012)	368	0.042 (0.20)	0.00	795.73
5	S	-0.00027	0	0.500	16.0	72	0.00012 (0.00012)	368	0.042 (0.20)	0.00	795 73

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff. 40.0 810.0 8.0 791.9 6480 S 0.21 -2.8 160.8 1

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00002	0	0.500	16.0	72	0.00001 (0.00001)	354	0.003 (0.20)	0.00	1034.75

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

LOTTO 02

 Viadotto V102
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3H
 02
 D 78 CL
 VI 02 04 001
 A
 54 di 102

Relazione di calcolo Spalla

6.8.2 Muro frontale

Viene verificata la sezione di incastro con la platea di fondazione. Nella determinazione dei momenti flettenti di verifica il muro frontale viene considerato come una mensola incastrata nella platea di fondazione, trascurando a favore di sicurezza gli effetti dovuti alla eventuale presenza dei muri di risvolto.

Caratteristiche della sezione:

Sezione rettangolare 220x770 cm

Armatura verticale

 $A_s = \phi 26/10 + \phi 26/20$ (lato controterra)

 $A'_s = \phi 26/10$ (lato esterno)

Armatura orizzontale

 $A_s = \phi 20/20 + \phi 20/20$ (lato controterra)

 $A'_s = \phi 20/20 (lato \ esterno)$

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Normativa di riferimento: N.T.C.

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	18.800	MPa
	Resis. compr. ridotta fcd':	9.400	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
	Coeff. Omogen. S.L.E.:	15.00	
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Frequenti:	182.60	daN/cm²
	Ap.Fessure limite S.L.E. comb. Freque	nti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA

INTERESSATO. MACROFASE FUNZIONALE 1

Viadotto VI02 COMMESSA

LOTTO 02

RS3H

LOTTO CODIFICA

D 78 CL

02

DOCUMENTO VI 02 04 001

REV. **FOGLIO** Α

55 di 102

Relazione di calcolo Spalla

Resist. ultima di progetto ftd: 391.30 MPa

Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef 2000000

daN/cm² Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

Sf limite S.L.E. Comb. Rare: 337.50 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	0.0	0.0
2	0.0	770.0
3	220.0	770.0
4	220.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	9.0	9.0	26
2	9.0	761.0	26
3	211.0	761.0	26
4	211.0	9.0	26
5	15.0	9.0	26
6	15.0	761.0	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione N°Barra Ini. N°Barra Fin.

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	2	74	26
2	3	4	74	26
3	5	6	37	26

ARMATURE A TAGLIO

Ν

Mx

Diametro staffe: 8 mm Passo staffe: 1.8 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baric. (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia

con verso positivo se tale da comprimere il lembo sup. della sez.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02

My

My

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3H
 02
 D 78 CL
 VI 02 04 001
 A
 56 di 102

Relazione di calcolo Spalla

			, ,	
	Componente o	del Taglio [kN] parallo	ela all'asse princ.d'ii	nerzia x
N	Mx	Му	Vy	Vx
11178.00	2422.00	18647.00	367.00	4389.00
11178.00	2422.00	22199.00	367.00	4889.00
11178.00	2422.00	18647.00	367.00	4389.00
11178.00	2422.00	18647.00	367.00	4389.00
11178.00	2422.00	22199.00	367.00	4889.00
7984.00	4356.00	17039.00	874.00	3790.00
6665.00	4356.00	40341.00	874.00	9654.00
6665.00	13735.00	15356.00	2760.00	3631.00
6665.00	13735.00	15356.00	2760.00	3631.00
6665.00	4356.00	40341.00	874.00	9654.00
	11178.00 11178.00 11178.00 11178.00 11178.00 7984.00 6665.00 6665.00 6665.00	Con verso pos Componente o N Mx 11178.00 2422.00 11178.00 2422.00 11178.00 2422.00 11178.00 2422.00 11178.00 2422.00 11178.00 2422.00 7984.00 4356.00 6665.00 4356.00 6665.00 13735.00 6665.00 13735.00	con verso positivo se tale da comp Componente del Taglio [kN] paralle Componente del Taglio [kN] paralle N Mx My 11178.00 2422.00 18647.00 11178.00 2422.00 22199.00 11178.00 2422.00 18647.00 11178.00 2422.00 18647.00 11178.00 2422.00 22199.00 7984.00 4356.00 17039.00 6665.00 4356.00 40341.00 6665.00 13735.00 15356.00 6665.00 13735.00 15356.00	11178.00 2422.00 18647.00 367.00 11178.00 2422.00 22199.00 367.00 11178.00 2422.00 18647.00 367.00 11178.00 2422.00 18647.00 367.00 11178.00 2422.00 22199.00 367.00 7984.00 4356.00 17039.00 874.00 6665.00 4356.00 40341.00 874.00 6665.00 13735.00 15356.00 2760.00 6665.00 13735.00 15356.00 2760.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	8141.00	1680.00	12943.00
2	8141.00	1680.00	15389.00
3	8141.00	1680.00	12943.00
4	8141.00	1680.00	12943.00
5	8141.00	1680.00	15389.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
My	Managata flattanta flattanta filalizatana alliagas y mina alliagania (tra managta)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	7765.00	787.00 (2041.84)	12053.00 (31271.07)
2	7765.00	787.00 (1683.56)	14010.00 (29970.39)
3	7765.00	787.00 (2041.84)	12053.00 (31271.07)
4	7765.00	787.00 (2041.84)	12053.00 (31271.07)
5	7765.00	787.00 (1683.56)	14010.00 (29970.39)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Barice	ntro (+ se di compressione)
--	-----------------------------

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA
INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL'
AEROPORTO DI FONTANA POSSA E DER LA MESSA A STI DEI TRATTO DI LINEA

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

Viadotto VI02

LOTTO 02 COMMESSA

RS3H

LOTTO CODIFICA

D 78 CL

DOCUMENTO VI 02 04 001 REV. FOGLIO

57 di 102

Α

Relazione di calcolo Spalla

con verso positivo se tale da comprimere il lembo destro della sezione

Mx

N°Comb. N

My

02

1

6261.00 557.00 (4290.87)

5426.00 (41799.39)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.7 cm Interferro netto minimo barre longitudinali: 3.4 cm Copriferro netto minimo staffe: 6.9 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r.Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	11178.00	2422.00	18647.00	11177.98	6867.71	53622.77	2.851014.1(508.2)
2	S	11178.00	2422.00	22199.00	11178.05	6002.74	53798.53	2.411014.1(508.2)
3	S	11178.00	2422.00	18647.00	11177.98	6867.71	53622.77	2.851014.1(508.2)
4	S	11178.00	2422.00	18647.00	11177.98	6867.71	53622.77	2.851014.1(508.2)
5	S	11178.00	2422.00	22199.00	11178.05	6002.74	53798.53	2.411014.1(508.2)
6	S	7984.00	4356.00	17039.00	7983.86	12615.71	49775.67	2.901014.1(508.2)
7	S	6665.00	4356.00	40341.00	6665.27	5470.75	50147.49	1.241014.1(508.2)
8	S	6665.00	13735.00	15356.00	6665.08	37996.54	42828.25	2.771014.1(508.2)
9	S	6665.00	13735.00	15356.00	6665.08	37996.54	42828.25	2.771014.1(508.2)
10	S	6665.00	4356.00	40341.00	6665.27	5470.75	50147.49	1.241014.1(508.2)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform, unit, massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00082	220.0	770.0	0.00070	211.0	761.0	-0.00196	9.0	9.0
2	0.00081	220.0	770.0	0.00070	211.0	761.0	-0.00196	9.0	9.0
3	0.00082	220.0	770.0	0.00070	211.0	761.0	-0.00196	9.0	9.0
4	0.00082	220.0	770.0	0.00070	211.0	761.0	-0.00196	9.0	9.0

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

					LU11U 02					
Viado	otto VI02				COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
					RS3H	02	D 78 CL	VI 02 04 001	Α	58 di 102
Relaz	ione di calcolo Spalla									
5	0.00081	220.0	770.0	0.00070	211.0	761.0	-0.00196	9.0	9.0	
6	0.00080	220.0	770.0	0.00069	211.0	761.0	-0.00196	9.0	9.0	
7	0.00074	220.0	770.0	0.00063	211.0	761.0	-0.00196	9.0	9.0	
8	0.00091	220.0	770.0	0.00081	211.0	761.0	-0.00196	9.0	9.0	
9	0.00091	220.0	770.0	0.00081	211.0	761.0	-0.00196	9.0	9.0	
10	0.00074	220.0	770.0	0.00063	211.0	761.0	-0.00196	9.0	9.0	

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000012588	0.00000153	-0.002071171		
2	0.000012636	0.00000134	-0.002071429		
3	0.000012588	0.00000153	-0.002071171		
4	0.000012588	0.00000153	-0.002071171		
5	0.000012636	0.00000134	-0.002071429		
6	0.000012032	0.000000288	-0.002067385		
7	0.000012333	0.00000126	-0.002068629		
8	0.000010405	0.000000882	-0.002058084		
9	0.000010405	0.000000882	-0.002058084		
10	0.000012333	0.00000126	-0.002068629		

VERIFICHE A TAGLIO

Ver	S = comb. verificata a taglio / N = comb. non verificata
Ved	Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro
Vcd	Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]
Vwd	Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]
d z	Altezza utile media pesata sezione ortogonale all'asse neutro Braccio coppia interna [cm]
	Vengono prese nella media le strisce con almeno un estremo compresso.
	l pesi della media sono costituiti dalle stesse lunghezze delle strisce.
bw	Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro
	E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.
Ctg	Cotangente dell'angolo di inclinazione dei puntoni di conglomerato
Acw	Coefficiente maggiorativo della resistenza a taglio per compressione
Ast	Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff	Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
	Tra parentesi è indicata la quota dell'area relativa alle sole legature.
	L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proietta-
	ta sulla direz. del taglio e d max= massima altezza utile nella direz.del taglio.
	ta dana and a taging a a_max madding different

$N^{\circ}Comb$	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	4393.15	48238.29	10208.83210.9	9 186.9	769.5	2.500	1.035	24.0	55.9(0.0)
2	S	4892.61	48232.38	10210.31210.9	9 186.9	769.2	2.500	1.035	26.8	55.9(0.0)
3	S	4393.15	48238.29	10208.83210.9	9 186.9	769.5	2.500	1.035	24.0	55.9(0.0)
4	S	4393.15	48238.29	10208.83210.9	9 186.9	769.5	2.500	1.035	24.0	55.9(0.0)
5	S	4892.61	48232.38	10210.31210.9	9 186.9	769.2	2.500	1.035	26.8	55.9(0.0)
6	S	3809.83	47994.94	10265.86210.8	8 187.9	768.8	2.500	1.025	20.7	55.9(0.0)
7	S	9662.44	47970.41	10296.36210.9	9 188.5	769.2	2.500	1.021	52.4	55.9(0.0)
8	S	3851.07	47925.67	10323.26210.6	6 188.9	766.5	2.500	1.021	20.8	55.9(0.0)
9	S	3851.07	47925.67	10323.26210.6	6 188.9	766.5	2.500	1.021	20.8	55.9(0.0)
10	S	9662.44	47970.41	10296.36210.9	9 188.5	769.2	2.500	1.021	52.4	55.9(0.0)

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02 com

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3H
 02
 D 78 CL
 VI 02 04 001
 A
 59 di 102

Relazione di calcolo Spalla

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [Mpa]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [Mpa]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.02	220.0	770.0	-59.3	9.0	9.0	24602	610.6
2	S	3.55	220.0	770.0	-79.3	9.0	9.0	24475	610.6
3	S	3.02	220.0	770.0	-59.3	9.0	9.0	24602	610.6
4	S	3.02	220.0	770.0	-59.3	9.0	9.0	24602	610.6
5	S	3.55	220.0	770.0	-79.3	9.0	9.0	24475	610.6

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver. Esito della verifica
e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

kt = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

k3 = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

e sm - e cm Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm]
My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00032	0	0.500	26.0	77	0.00018 (0.00018)	440	0.078 (0.20)	3919.78	30198.61
2	S	-0.00042	0	0.500	26.0	77	0.00024 (0.00024)	439	0.104 (0.20)	3163.15	28974.79
3	S	-0.00032	0	0.500	26.0	77	0.00018 (0.00018)	440	0.078 (0.20)	3919.78	30198.61
4	S	-0.00032	0	0.500	26.0	77	0.00018 (0.00018)	440	0.078 (0.20)	3919.78	30198.61
5	S	-0.00042	0	0.500	26.0	77	0.00024 (0.00024)	439	0.104 (0.20)	3163.15	28974.79

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
	•	0.74	000.0	770.0	50.4	0.0		00057	040.0
1	S	2.74	220.0	770.0	-53.1	9.0	9.0	23857	610.6
2	S	3.16	220.0	770.0	-69.0	9.0	9.0	23578	610.6
3	S	2.74	220.0	770.0	-53.1	9.0	9.0	23857	610.6
4	S	2.74	220.0	770.0	-53.1	9.0	9.0	23857	610.6
5	S	3.16	220.0	770.0	-69.0	9.0	9.0	23578	610.6

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA
INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL'
AEROPORTO DI FONTANA POSSA E PER LA MESSA A STI DEI TRATTO DI UNICA

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

Viadotto VI02	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3H	02	D 78 CL	VI 02 04 001	Α	60 di 102

Relazione di calcolo Spalla

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00029	0	0.500	26.0	77	0.00016 (0.00016)	435	0.069 (0.20)	2041.84	31271.07
2	S	-0.00037	0	0.500	26.0	77	0.00021 (0.00021)	432	0.089 (0.20)	1683.56	29970.39
3	S	-0.00029	0	0.500	26.0	77	0.00016 (0.00016)	435	0.069 (0.20)	2041.84	31271.07
4	S	-0.00029	0	0.500	26.0	77	0.00016 (0.00016)	435	0.069 (0.20)	2041.84	31271.07
5	S	-0.00037	0	0.500	26.0	77	0.00021 (0.00021)	432	0.089 (0.20)	1683.56	29970.39

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	1.26	220.0 770.0	-11.4	9.0	9.0	20398	610.6

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00006	0	0.500	26.0	77	0.00003 (0.00003)	409	0.014 (0.20)	4290.87	41799.39

Per la verifica a taglio della sezione si considera l'area di ferro necessaria, come indicata dal codice di calcolo,e si assegna una armatura equivalente; in particolare si utilizzeranno:

Spille $9\phi 10/mq$.

6.8.3 Zattera di fondazione

Per la valutazione delle sollecitazioni nel plinto di fondazione, è necessario valutare preventivamente le sollecitazioni agenti nei pali di fondazione. Tali sollecitazioni sono state valutate mediate una ripartizione rigida delle sollecitazioni agenti a base plinto.

Si vedano i paragrafi precedenti da cui risulta:

 $N_{max} = 4789 \text{ kN (CC. SLU)}$

 $T_{\text{max}} = 605 \text{ kN (CC. SLU)}$

 $N_{max} = 4886 \text{ kN (CC. SLV)}$

 $T_{max} = 1462 \text{ kN (CC. SLV)}$

6.8.3.1 <u>Unghia anteriore platea fondazione</u>

Il tacco anteriore del plinto di fondazione è stato verificato ipotizzando un meccanismo di tirante puntone. Si riporta di seguito la verifica. La larghezza di diffusione è stata valutata in corrispondenza del filo anteriore del muro frontale, mediante una diffusione a 45° a partire dal piano medio del palo (vedi figura seguente), mentre l'altezza della biella compressa è stata valutata pari a $0.2 d_p$ (con d_p altezza utile della sezione del plinto).

La verifica è stata eseguita in corrispondenza del palo più sollecitato.

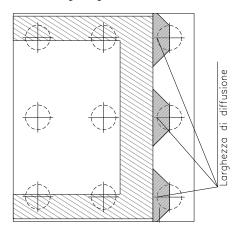
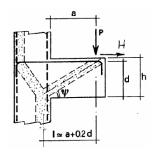



Figura 4 - Diffusione delle azioni dal palo al muro frontale

Di seguito si riportano i risultati delle verifiche strutturali del plinto di fondazione, condotte con riferimento al metodo usualmente utilizzato per la verifica delle mensole tozze, ovvero il metodo del tirante-puntone, di cui nel seguito si riporta lo schema e di verifica generale e relative formulazioni proposte a riguardo al C4.1.2.1.5 dalla Circolare Ministeriale n° 7/19.

VERIFICA - MECCANISMO TIRANTE PUNTONE.

P,H: Carichi Esterni di Progetto (PED, HED)

Pr : Portanza mensola in termini di resistenza dell'armatura metallica

$$P_{\text{R}} = P_{\text{Rs}} = \left(A_{\text{s}} f_{\text{yd}} - H_{\text{Ed}}\right) \frac{1}{\lambda} \qquad \lambda = \text{ctg} \psi \cong 1/(0.9 d).$$

Pr: Portanza mensola in termini di resistenza della Biella compressa

$$P_{Rc} = 0,4bdf_{cd} \frac{c}{1+\lambda^2} \ge P_{Rs}$$

CONDIZIONI DI VERIFICA

- $_{\text{1}} \quad P_{\text{R}} \geq P_{Ed}$
- $2 \quad P_{\text{Rc}} \geq P_{\text{Rs}}$

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA

INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02

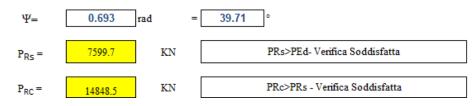
COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3H 02 D 78 CL 62 di 102 VI 02 04 001 Α

Relazione di calcolo Spalla

Dati di progetto

b(m)=	3.00	m	dimensione trasversale verifica
P_{Ed} (KN) =	4886.00	KN	Carico complessivo VERTICALE sulla fascia di dimensione b
H_{Ed} (KN) =	1462.00	KN	Carico complessivo ORIZZONTALE sulla fascia di dimensione b
a(m) =	1.90	m	distanza P da incastro
h(m) =	2.25	m	spessore mensola
$\delta(m) =$	0.10	m	copriferro riferito al baricentro delle armature complessive in trazione
d (m) =	2.15	m	altezza utile
1(m) =	2.33	m	a+0,2d
λ =	1.20		$\lambda = \operatorname{ctg} \psi \cong 1/(0,9d)$.

Tipo di mensola (Valutazione coefficiente c)


Caratteristiche Materiali

fcd=	14.1	MPa	Calcestruzzo
fvd=	391.0	MPa	Acciaio

Caratteristiche Armature di Progetto

Registro tipo	R1				
n° R1=	1	φ1(mm) =	24.0	p1(cm) = 10.0	$\theta 1^{\circ} = 0.0$
Αφ i (mm²) =	452.39	nb tot 1=	30.0	$A\phi TOT (mm^2) = 13571.67$	Aφ CAL(mm ²) = 13571.67
Registro tipo	R2				
n° R2=	1	φ2(mm) =	24.0	p2(cm) = 10.0	$\theta 2^{\circ} = 0.0$
Αφ i (mm²) =	452.39	nb tot 2 =	30.0	$A\phi$ TOT (mm ²) = 13571.67	Aφ CAL(mm ²) = 13571.67
Registro tipo	R3				
n° R3=	0	φ3(mm) =	26.0	p3(cm) = 10.0	θ3° = 0.0
Αφ i (mm²) =	530.93	nb tot 3 =	0.0	$A\phi TOT (mm^2) = 0.00$	$A\phi$ CAL(mm ²) = 0.00

Verifiche di resistenza

7 PALI DI FONDAZIONE

Le sollecitazioni risultanti sono riportati nelle seguenti tabelle:

SOLL. TOTALI NEL BARICE	SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA									
C.C.	N	T _x	T _y	M_x	M_{y}	$N_{\rm max/palo}$	$N_{\min/palo}$	T _{/palo}		
n°	kN	kN	kN	kNm	kNm	kN	kN	kN		
Al - SLU - N max gr.1	47226	6745	367	3248	23441	4659	3212	563		
Al - SLU - MT max gr.1	44500	6126	367	3248	9474	4044	3373	511		
Al - SLU - ML max gr.1	44500	6126	367	3248	9474	4044	3373	511		
A1 - SLU - N max gr.3	47226	7245	367	3248	28119	4789	3082	605		
A1 - SLU - MT max gr.3	44500	6126	367	3248	9474	4044	3373	511		
A1 - SLU - ML max gr.3	44500	6126	367	3248	9474	4044	3373	511		
A1 - SLU - Vento ponte scarico	39955	4046	222	1897	11211	3683	2976	338		
A1 - SLU Gmin - N max gr.1	26895	2846	367	3248	25155	3012	1470	239		
A1 - SLU Gmin - MT max gr.1	24169	2227	367	3248	11188	2397	1631	188		
A1 - SLU Gmin - ML max gr.1	24169	2227	367	3248	11188	2397	1631	188		
A1 - SLU Gmin - N max gr.3	26895	3346	367	3248	29833	3142	1340	281		
A1 - SLU Gmin - MT max gr.3	24169	2227	367	3248	11188	2397	1631	188		
A1 - SLU Gmin - ML max gr.3	24169	2227	367	3248	11188	2397	1631	188		
A1 - SLU Gmin - Vento ponte scarico	19625	109	184	1616	12644	2023	1248	18		

Tabella 8 – Sollecitazioni massime sul singolo palo C.C. SLU

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA										
C.C.	N	T _x	T_{y}	M_x	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}		
n°	kN	kN	kN	kNm	kNm	kN	kN	kN		
SLV - N max	35483	6607	3515	14493	27794	4051	1863	624		
SLV - MT max gr.1	30990	6447	11563	47180	24912	4323	842	1103		
SLV - ML max gr.1	30990	17184	3515	14493	71340	4886	279	1462		
SLV - MT max gr.3	27462	6447	11563	47180	24689	4023	554	1103		
SLV - ML max gr.3	27462	17184	3515	14493	71117	4586	-9	1462		
SLV - N min	23722	6607	3515	14493	27051	3050	903	624		

Tabella 9 – Sollecitazioni massime sul singolo palo C.C. SLV

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA									
C.C.	N	T_x	T_{y}	M_x	M_{y}	N _{max/palo}	N _{min/palo}	T _{/palo}	
n°	kN	kN	kN	kNm	kNm	kN	kN	kN	
SLE rara - N max gr.1	33613	4570	257	2259	17173	3328	2274	381	
SLE rara - MT max gr.1	31733	4143	257	2259	7540	2904	2385	346	
SLE rara - ML max gr.1	31733	4143	257	2259	7540	2904	2385	346	
SLE rara - N max gr.3	33613	4914	257	2259	20394	3418	2184	410	
SLE rara - MT max gr.3	31733	4143	257	2259	7540	2904	2385	346	
SLE rara - ML max gr.3	31733	4143	257	2259	7540	2904	2385	346	
SLE rara - Vento ponte scarico	31733	4086	159	1345	7126	2872	2417	341	

Tabella 10 – Sollecitazioni massime sul singolo palo C.C. SLE

7.1 Scarichi per scalzamento

Per la verifica a scalzamento si devono considerare gli scarichi sui singoli pali prodotti dalla combinazione eccezionale G1+G2+0.8Q.

A scopo cautelativo ed in favore di sicurezza si considera la combinazione di carico SLERARA per cui gli scarichi massimi sul singolo palo per la verifica a scalzamento sono:

SCARICHI PALI - SPALLA VIO2									
N= 3418 KN									
V= 410 KN									

Per la verifica a scalzamento si rimanda a specifica relazione di calcolo: elaborato RS3H.0.2.D.78.RH.GE.00.0.5.006.A.

Nel presente capitolo si riportano le procedure di calcolo dei pali per l'opera in esame.

7.2 Modulo di reazione orizzontale del terreno

Lo studio dell'interazione tra palo soggetto ai carichi orizzontali ed il terreno viene effettuato ricorrendo alla teoria di Matlock e Reese che si basa sul noto modello di suolo alla Winkler (elastico-lineare), caratterizzato da un modulo di reazione orizzontale del terreno (E_{MR}) definito come il rapporto fra la reazione del terreno per unità di lunghezza del palo (p) ed il corrispondente spostamento orizzontale (y): $E_{MR} = p / y$.

Definito il coefficiente di sottofondo alla Winkler (K_W) , per un palo di diametro D, si ha questa relazione con il modulo di reazione orizzontale palo-terreno:

$$E_{MR} = K_W \cdot D$$

L'andamento del modulo di reazione orizzontale con la profondità è funzione principalmente del tipo di terreno.

Per i terreni incoerenti si assume in genere una legge di variazione lineare caratterizzata dai seguenti parametri:

$$k_h = n_h \cdot z/D$$
 [FL⁻³]

dove:

kh = coefficiente di reazione del terreno:

z = profondità a partire dalla sommità del palo.

C4-4 11	G - 1-14 -	M - 12 -	D
Stato addensamento	Sciolto	Medio	Denso

Tabella 11 _ Valori caratteristici di n_h.

Per i terreni coesivi si assume in genere una legge del tipo:

 $k_h = \xi \cdot \text{cu/D}$, con $\xi = 400$,

corrispondenti a valori secanti del modulo E_{MR} per pali isolati con basse deformazioni.

Per le fondazioni dei viadotti in esame si considera:

 $n_h = 5000 \text{ kN/m}^3$

testa palo a 3 m dal p.c.

7.3 Momento adimensionale lungo il palo

Per ricavare il momento adimensionalizzato lungo il fusto del palo si ricorre al metodo di Matlock e Reese (1956) che, utilizzando il metodo delle differenze finite, hanno risolto il problema del palo soggetto ad un carico orizzontale, mediante l'impiego di parametri adimensionali.

Nel caso in esame, considerando l'andamento del modulo di reazione orizzontale palo-terreno (E_{MR}, che verrà definito nel seguente paragrafo), si ricorre al metodo degli elementi finiti, adimensionalizzando la soluzione come segue:

$$M_0 = \alpha_m \cdot H_0$$

$$M(z) = M_0 \cdot M_{ad}(z)$$

essendo:

Ho = azione tagliante in testa palo [F];

Mo = azione flettente, conseguente ad Ho, in testa al palo;

 α_m = rapporto momento taglio in testa palo nell'ipotesi di rotazione impedita [L];

M_{ad} = momento flettente adimensionale lungo il fusto del palo.

Per terreni coesivi dove si considera kh costante con la profondità, la lunghezza caratteristica vale:

$$\lambda = \sqrt[4]{\frac{4EJ}{k_h \cdot D}}$$

Mentre per terreni incoerenti dove si considera k_h variabile con la profondità, la lunghezza caratteristica vale :

$$\lambda = \sqrt[5]{\frac{EJ}{n_h}}$$

7.4 Controllo della mobilitazione della spinta attiva in condizioni sismiche

Per il calcolo della spinta attiva del terreno sulle opere di sostegno, occorre tenere presente che la mobilitazione della spinta attiva avviene per spostamenti di entità contenuta, come si evince dalla seguente tabella desunta dall'EC7 - Parte 1 – Annesso C:

Kind of V_a/h V_a/h wall movement loose soil dense soil 0.4 to 0.5 0.1 to 0.2 a) b) 0,2 0,05 to 0,1 0.8 to 1,0 0.2 to 0.5 c) d) 0,4 to 0,5 0,1 to 0,2 where: is the wall motion to mobilise active earth pressure is the height of the wall

Table C.1 — Ratios v_a/h

Tabella 12 _ Valori limite di spostamento minimo in testa al palo.

In condizioni statiche, per i muri di sostegno e per le spalle di ponti e viadotti fondati su pali, si ipotizza che gli spostamenti siano di entità inferiore alla mobilitazione della spinta attiva e si procederà al calcolo delle spinte adottando il coefficiente di spinta a riposo:

$$k0 = 1 - \text{sen } \varphi$$
.

In condizioni sismiche, l'entità degli spostamenti dipende principalmente dall'intensità dell'azione sismica e dalla rigidezza del sistema pali – terreno; pertanto, la possibilità di ammettere la mobilitazione della spinta attiva è subordinata alla valutazione degli spostamenti dell'opera. Il confronto con i valori di riferimento per la mobilitazione della spinta attiva sarà effettuato in accordo con lo schema b della tabella estratta dall'EC7 per

terreni addensati. l'altezza h rispetto alla quale effettuare la verifica corrisponde all'altezza totale dell'opera su cui agisce spinta del terreno, comprensiva dello spessore di fondazione.

Nel caso in cui si ha la mobilitazione della spinta attiva, viene effettuato il calcolo della spinta attiva in condizioni sismiche con la Teoria di Mononobe – Okabe.

7.5 Calcolo capacità portante

La capacità portante per le fondazioni del viadotto è stata valutata per pali di grande diametro, considerando l'Approccio 2 (A1+M1+R3) di normativa e quindi con i seguenti coefficienti parziali sulle resistenze di base e laterale:

N. 1 verticale di indagine, da cui $\xi_3 = 1.70$,

 F_{SL} = fattore di sicurezza per la portata laterale a compressione (= $\xi_3 \cdot \gamma_s = 1.96$).

 $F_{SL,t}$ = fattore di sicurezza per la portata laterale a trazione (= $\xi_3 \cdot \gamma_{st}$ = 2.13).

 $F_{SB}=$ fattore di sicurezza per la portata di base (= $\xi_3 \cdot \gamma_b = 2.3$).

Resistenza	Simbolo	Pali infissi	Pali trivellati	Pali ad elica continua		
	Ϋ́R	(R3)	(R3)	(R3)		
Base	γb	1,15	1,35	1,3		
Laterale in compressione	Ϋ́s	1,15	1,15	1,15		
Totale (*)	γ	1,15	1,30	1,25		
Laterale in trazione	Υst	1,25	1,25	1,25		

[&]quot;da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Tabella 13 _ Coefficienti parziali y da applicare alle resistenze caratteristiche a carico verticale dei pali.

$$R_{c,k} = Min \left\{ \frac{\left(R_{c,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{c,cal}\right)_{min}}{\xi_4} \right\}$$

$$R_{t,k} = Min \left\{ \frac{\left(R_{t,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{t,cal}\right)_{min}}{\xi_4} \right\}$$

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ_4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Tabella 14 _ Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali d'indagine.

Quindi per la verifica di capacità portante del palo si dovranno verificare le seguenti due condizioni:

 $N_{max,SLU} < Q_d$, la massima sollecitazione assiale (sia statica, che sismica) allo SLU dovrà essere inferiore alla portata di progetto del palo;

 $N_{max,SLE} < Q_{ll}$ / 1.25 la massima sollecitazione assiale allo SLE RARA dovrà essere inferiore alla portata laterale limite del palo con un fattore di sicurezza di 1.25.

7.6 Verifica a carico limite orizzontale dei pali

Per la verifica del carico limite orizzontale si fa riferimento alla teoria di Broms per il caso di pali con rotazione in testa impedita.

Le equazioni con cui si determina il carico limite a forze orizzontali dei pali sono definite di seguito al variare del tipo di meccanismo considerato. Per tenere conto degli effetti di gruppo per la verifica a carico limite orizzontale si assuma un coefficiente pari a 0.8.

In terreni coesivi si ha:

$$\begin{array}{ll} \underline{\textit{Palo corto:}} & \qquad \qquad H = 9c_ud^2 \bigg(\frac{L}{d} - 1.5\bigg) \\ \\ \underline{\textit{Palo intermedio:}} & \qquad \qquad H = -9c_ud^2 \bigg(\frac{L}{d} + 1.5\bigg) + 9c_ud^2 \sqrt{2\bigg(\frac{L}{d}\bigg)^2 + \frac{4}{9}\frac{M_y}{c_ud^3} + 4.5} \\ \\ \underline{\textit{Palo lungo:}} & \qquad \qquad H = -13.5c_ud^2 + c_ud^2 \sqrt{182.25 + 36\frac{M_y}{c_ud^3}} \end{array}$$

dove:

H = carico limite orizzontale del palo;

cu = resistenza non drenata del terreno;

My = momento di plasticizzazione del palo;

L = lunghezza del palo;

d = diametro del palo.

In terreni incoerenti si ha (vedasi figura seguente):

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

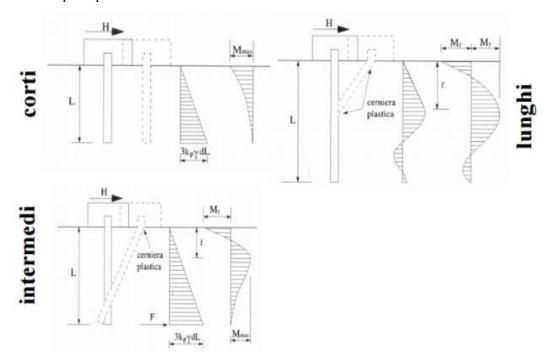
MACROFASE FUNZIONALE 1

Viadotto VI02

LOTTO 02

COMMESSA LOTTO CODIFICA DOCUMENTO REV **FOGLIO** RS3H 02 D 78 CL VI 02 04 001 Α 70 di 102

Relazione di calcolo Spalla


$$\label{eq:palocorto:} \textit{H} = 1.5k_p \gamma d^3 \left(\frac{L}{d}\right)^2$$

Palo intermedio:
$$H = \frac{1}{2} k_p \gamma d^3 \left(\frac{L}{d} \right)^2 + \frac{M_y}{L}$$

$$\begin{aligned} & \underline{\textit{Palo intermedio:}} & & H = \frac{1}{2} k_p \gamma d^3 \left(\frac{L}{d}\right)^2 + \frac{M_y}{L} \\ & \underline{\textit{Palo lungo:}} & & H = k_p \gamma d^3 \sqrt[3]{\left(3.676 \, \frac{M_y}{k_p \gamma d^4}\right)^2} \end{aligned}$$

Dove, oltre ai termini già definiti,

kp = coefficiente di spinta passiva.

Il valore di H dovrà essere confrontato con il massimo valore del taglio agente sul palo al variare delle combinazioni (Vpd); il valore determinato con la teoria di Broms dovrà essere ridotto secondo quanto prevede la normativa vigente.

$$H \lim = \frac{H}{\xi \cdot \gamma_T} \ge Vpd$$

dove:

H = valore limite in funzione del meccanismo attivato;

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	INTERRAMEN AEROPORTO INTERESSAT	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO. MACROFASE FUNZIONALE 1				
Viadotto VI02	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3H	02	D 78 CL	VI 02 04 001	Α	71 di 102
Relazione di calcolo Spalla						

 $[\]xi$ = fattore di correlazione in funzione delle verticali indagate**Errore.** L'origine riferimento non è stata trovata.;

 $\gamma_{T}\!\!=\!$ fattore di resistenza laterale secondo la tabella di seguito riportata.

Resistenze Caratteristiche (R)	R1	R2	R3
Resistenza laterale:	1.00	1.60	1.30

Tabella 15 _ Coefficienti di sicurezza resistenza laterale.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA	
INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO	

MACROFASE FUNZIONALE 1

02

Viadotto VI02

LOTTO 02 COMMESSA RS3H

LOTTO CODIFICA

D 78 CL

DOCUMENTO VI 02 04 001

REV. FOGLIO Α

72 di 102

Relazione di calcolo Spalla

VERIFICHE GEOTECNICHE

8.1 Controllo della mobilitazione della spinta attiva in condizioni sismiche

Dall'analisi svolta sulla spalla, si ottiene un taglio sul palo pari ad 1462 kN.

Essendo il terreno più superficiale appartenente all'unità U1, corrispondente a un terreno incoerente, kh varia linearmente con la profondità, secondo la seguente formula:

$$k_h = n_h \cdot z/D$$

Per le fondazioni del viadotto in esame si considera:

 $n_h = 5000 \text{ kN/m}^3$

testa palo a 3 m dal p.c.

Lo spostamento risultante alla testa del palo risulta essere pari ad v_a= 14.32mm.

Essendo l'altezza totale dell'opera pari a 8.0 m, si ottiene:

va/h = 0.18% > 0.05% (EC7 – Parte 1 – annesso C)

Pertanto la condizione di spinta attiva risulta verificata, e si procederà ad un'analisi simica secondo la Teoria di Monobe-Okabe.

Caso di terreno con modulo variabile con la profondità

Caratteristiche palo							
tipologia (p=palo; m=micropalo)		р					
diametro (m)		1.50					
lunghezza (m)	L	41.0					
modulo elastico cls (kPa)	Ec	3.122E+07					
modulo elastico acciaio (kPa)							
modulo elastico di calcolo (kPa	E	3.122E+07					
momento d'inerzia (m4)	- 1	0.249					
resist. caratt. Cls (MPa)	Rck	30					
tratto scalzato (m)	1	0					

coeff. modulo orizzontale (kN/m³)	n _h	5000
fattore di rigidezza (m)	Т	4.35
L/T	λ	9.43
coeff. di profondità max	Z_{max}	9.4

Carichi agenti					
Vt	1462.0				
Mt	-5,910.0				
	Vt				

Risultati									
z/T	z (m)	y (mm)	v∂ (rad)	M (kNm)	V (kN)	P (kN/m)			
0.0	0	14.32	1.60E-05	-5910.04	1462.00	0.00			
-0.1	-0.43	14.26	3.38E-05	-5274.55	1455.44	30.99			
-0.2	-0.87	14.08	8.72E-05	-4645.86	1450.36	60.92			
-0.3	-1.30	13.76	1.76E-04	-4025.31	1403.43	89.81			
-0.4	-1.74	13.36	2.94E-04	-3424.71	1357.25	116.06			
-0.5	-2.17	12.88	4.50E-04	-2851.31	1303.24	140.10			
-0.6	-2.61	12.33	6.18E-04	-2292.84	1235.87	160.63			
-0.7	-3.04	11.70	8.21E-04	-1768.37	1162.55	178.07			
-0.8	-3.48	11.05	1.04E-03	-1277.46	1082.03	192.13			
-0.9	-3.91	10.36	1.28E-03	-826.45	997.32	202.55			
-1.0	-4.35	9.65	1.53E-03	-415.36	907.17	209.71			
-1.2	-5.22	8.21	2.07E-03	293.91	722.26	213.84			
-1.4	-6.09	6.81	2.62E-03	839.86	538.13	206.85			
-1.6	-6.95	5.48	3.16E-03	1230.18	366.39	190.13			
-1.8	-7.82	4.25	3.67E-03	1479.80	211.52	166.57			
-2.0	-8.69	3.21	4.14E-03	1603.21	77.60	138.98			
-3.0	-13.04	0.12	5.65E-03	1081.16	-207.47	7.82			
-4.0	-17.39	-0.37	5.91E-03	248.22	-178.09	-32.57			
-5.0	-21.73	-0.14	5.88E-03	-56.05	-20.42	-16.10			
-6.0	-26.08	0.00	5.79E-03	0.00	0.00	0.00			

8.2 Determinazione del momento adimensionale

Nella tabella seguente si riportano i valori di α_{M} e il momento adimensionale lungo il palo per pali D = 1500 mm in terreni non liquefacibili, considerando il caso di terreni incoerenti, presenti per la maggior parte per il viadotto VI02.

Palo	$lpha_{_m}$ [m]
D=1500mm	4.04

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto $\overline{VI02}$

COMMESSA RS3H

LOTTO CODIFICA 02 D 78 CL

DOCUMENTO VI 02 04 001

REV. FOGLIO Α

74 di 102

Relazione di calcolo Spalla

Calcolo della deformata e delle sollecitazioni agenti in un palo soggetto a forza orizzontale Metodo di Matlock & Reese

Caso di terreno con modulo variabile con la profondità

Caratteristiche palo

	р
	1.50
L	41.0
Ec	3.122E+07
E	3.122E+07
1	0.249
Rck	30
1	0
	E _c

Caratteristiche terreno

coeff. modulo orizzontale (kN/m³)	n _h	5000
fattore di rigidezza (m)	Т	4.35
L/T	λ	9.43
coeff. di profondità max	Z_{max}	9.4

Carichi agenti

carico orizzontale (kN)	Vt	0.2	
momento di incastro (kNm)	Mt	-1.0	

z/T	z (m)	y (mm)	ϑ (rad)	M (kNm)	V (kN)	P (kN/m)
0.0	0	0.00	2.63E-09	-0.97	0.24	0.00
-0.1	-0.43	0.00	5.55E-09	-0.87	0.24	0.01
-0.2	-0.87	0.00	1.43E-08	-0.76	0.24	0.01
-0.3	-1.30	0.00	2.89E-08	-0.66	0.23	0.01
-0.4	-1.74	0.00	4.82E-08	-0.56	0.22	0.02
-0.5	-2.17	0.00	7.39E-08	-0.47	0.21	0.02
-0.6	-2.61	0.00	1.01E-07	-0.38	0.20	0.03
-0.7	-3.04	0.00	1.35E-07	-0.29	0.19	0.03
-0.8	-3.48	0.00	1.71E-07	-0.21	0.18	0.03
-0.9	-3.91	0.00	2.10E-07	-0.14	0.16	0.03
-1.0	-4.35	0.00	2.52E-07	-0.07	0.15	0.03
-1.2	-5.22	0.00	3.39E-07	0.05	0.12	0.04
-1.4	-6.09	0.00	4.29E-07	0.14	0.09	0.03
-1.6	-6.95	0.00	5.18E-07	0.20	0.06	0.03
-1.8	-7.82	0.00	6.03E-07	0.24	0.03	0.03
-2.0	-8.69	0.00	6.80E-07	0.26	0.01	0.02
-3.0	-13.04	0.00	9.28E-07	0.18	-0.03	0.00
-4.0	-17.39	0.00	9.70E-07	0.04	-0.03	-0.01
-5.0	-21.73	0.00	9.66E-07	-0.01	0.00	0.00
-6.0	-26.08	0.00	9.51E-07	0.00	0.00	0.00

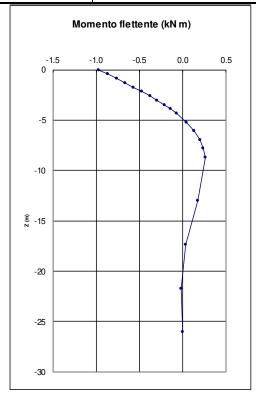


Figura 5 _ Andamento del momento flettente lungo lo sviluppo del palo.

MACROFASE FUNZIONALE 1 LOTTO 02

02

Viadotto VI02

COMMESSA RS3H

LOTTO CODIFICA

D 78 CL

DOCUMENTO VI 02 04 001 REV. FOGLIO

A 76 di 102

Relazione di calcolo Spalla

8.3 Azioni di calcolo

Si riporta di seguito una tabella riassuntiva delle azioni di calcolo agenti in testa ai pali provenienti dalle varie combinazioni:

SLU

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA									
C.C.	N	T_x	Ty	$\mathbf{M}_{\mathbf{x}}$	M_{y}	N _{max/palo}	N _{min/palo}	T/palo	
n°	kN	kN	kN	kNm	kNm	kN	kN	kN	
A1 - SLU - N max gr.1	47226	6745	367	3248	23441	4659	3212	563	
A1 - SLU - MT max gr.1	44500	6126	367	3248	9474	4044	3373	511	
A1 - SLU - ML max gr.1	44500	6126	367	3248	9474	4044	3373	511	
A1 - SLU - N max gr.3	47226	7245	367	3248	28119	4789	3082	605	
A1 - SLU - MT max gr.3	44500	6126	367	3248	9474	4044	3373	511	
A1 - SLU - ML max gr.3	44500	6126	367	3248	9474	4044	3373	511	
A1 - SLU - Vento ponte scarico	39955	4046	222	1897	11211	3683	2976	338	
A1 - SLU Gmin - N max gr.1	26895	2846	367	3248	25155	3012	1470	239	
A1 - SLU Gmin - MT max gr.1	24169	2227	367	3248	11188	2397	1631	188	
A1 - SLU Gmin - ML max gr.1	24169	2227	367	3248	11188	2397	1631	188	
A1 - SLU Gmin - N max gr.3	26895	3346	367	3248	29833	3142	1340	281	
A1 - SLU Gmin - MT max gr.3	24169	2227	367	3248	11188	2397	1631	188	
A1 - SLU Gmin - ML max gr.3	24169	2227	367	3248	11188	2397	1631	188	
A1 - SLU Gmin - Vento ponte scarico	19625	109	184	1616	12644	2023	1248	18	
						4789	1248	605	

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto V102

COMMESSA LOTTO

CODIFICA

DOCUMENTO

REV. FOGLIO

Α

RS3H

02

D 78 CL

VI 02 04 001

77 di 102

Relazione di calcolo Spalla

SLV

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA											
C.C.	N	T_x	Ty	$\mathbf{M}_{\mathbf{x}}$	$\mathbf{M}_{\mathbf{y}}$	Nmax/palo	Nmin/palo	T/palo			
n°	kN	kN	kN	kNm	kNm	kN	kN	kN			
SLV - N max	35483	6607	3515	14493	27794	4051	1863	624			
SLV - MT max gr.1	30990	6447	11563	47180	24912	4323	842	1103			
SLV - ML max gr.1	30990	17184	3515	14493	71340	4886	279	1462			
SLV - MT max gr.3	27462	6447	11563	47180	24689	4023	554	1103			
SLV - ML max gr.3	27462	17184	3515	14493	71117	4586	-9	1462			
SLV - N min	23722	6607	3515	14493	27051	3050	903	624			
						4886	-9	1462			

SLE

SOLL. TOTALI NEL BARICENTRO DELLA PALIFICATA										
c.c.	N	$\mathbf{T}_{\mathbf{x}}$	Ty	M _x	$\mathbf{M}_{\mathbf{y}}$	Nmax/palo	Nmin/palo	T/palo		
n°	kN	kN	kN	kNm	kNm	kN	kN	kN		
SLE rara - N max gr.1	33613	4570	257	2259	17173	3328	2274	381		
SLE rara - MT max gr.1	31733	4143	257	2259	7540	2904	2385	346		
SLE rara - ML max gr.1	31733	4143	257	2259	7540	2904	2385	346		
SLE rara - N max gr.3	33613	4914	257	2259	20394	3418	2184	410		
SLE rara - MT max gr.3	31733	4143	257	2259	7540	2904	2385	346		
SLE rara - ML max gr.3	31733	4143	257	2259	7540	2904	2385	346		
SLE rara - Vento ponte scarico	31733	4086	159	1345	7126	2872	2417	341		
						3418	2184	410		

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02

COMMESSA RS3H

LOTTO CODIFICA

02 D 78 CL

DOCUMENTO VI 02 04 001 REV. FOGLIO
A 78 di 102

Relazione di calcolo Spalla

8.4 Verifica di capacità portante

La capacità portante dei pali del viadotto è stata valutata con riferimento a quota testa palo a 3 m da p.c. e falda a 3 m da p.c. e con la stratigrafia media cautelativa di seguito riportata.

Capacità portante in condizioni statiche

N = 4789 kN

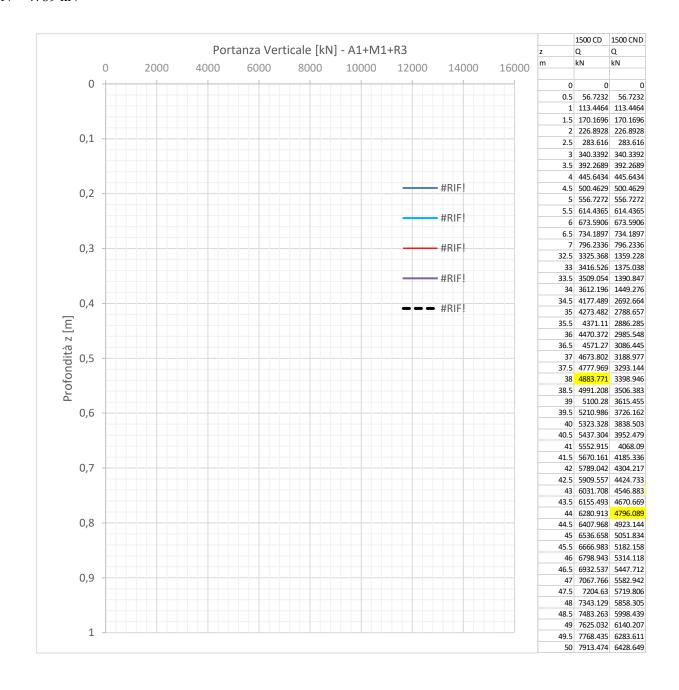


Figura 6 _ Curva di capacità portante.

Capacità portante in condizioni sismiche

N = 4886 kN

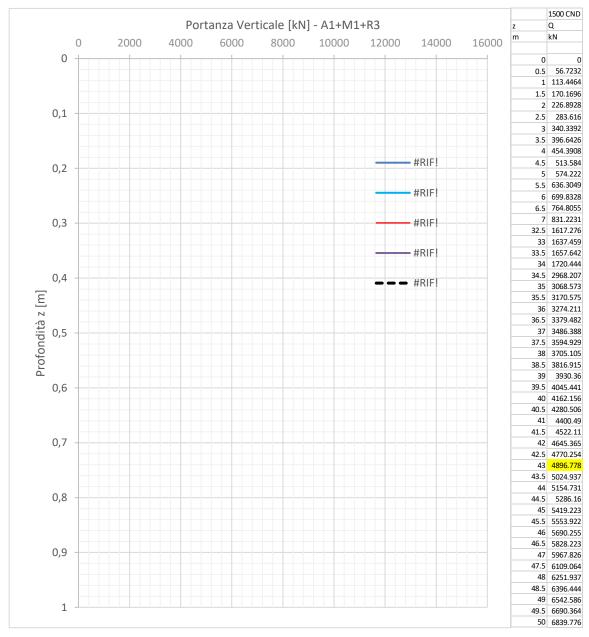


Figura 7 _ Curva di capacità portante.

GRUPPO FERROVIE DELLO STATO ITALIANE	INTERRAMEN	TO LINEA DI FONTAN D.	PER IL PROLUN NAROSSA E PEI	CATANIA – PALERN IGAMENTO DELLA R LA MESSA A STI I	PISTA DEL	L'
Viadotto VI02	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3H	02	D 78 CL	VI 02 04 001	Α	82 di 102
Relazione di calcolo Spalla						

Capacità portante laterale - SLE

N = 3418 kN

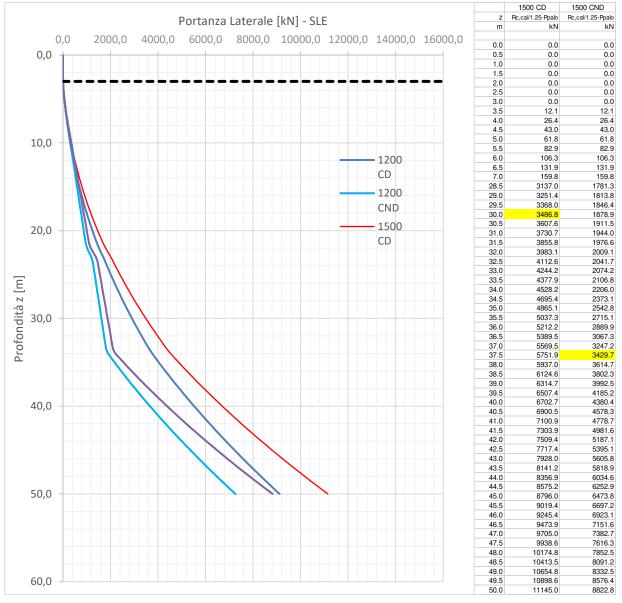


Figura 8 _ Curva di capacità portante.

GRUPPO FERROVIE DELLO STATO ITALIANE	INTERRAMEN	ITO LINEA DI FONTAI O.	PER IL PROLUN NAROSSA E PEI	CATANIA – PALERN NGAMENTO DELLA R LA MESSA A STI I	PISTA DEL	L'
Viadotto VI02	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3H	02	D 78 CL	VI 02 04 001	Α	83 di 102
Relazione di calcolo Spalla						

Le lunghezze effettive dei pali che si ottengono dalle curve di capacità portante, depurando le altezze dai primi 3 metri relativi alla quota testa palo, sono:

	LUNGHEZZA PALI										
	Nmax	φ1500 CD									
SLU	[kN]	[m]									
	4789		41								
	Nmax	φ150									
SLV	[kN]	[m]									
	4886	35									
	Nmax	φ1500 CD	φ1500 CND								
SLE	[kN]	[m]	[m]								
	3418	27									

Tabella 16 _ Valori effettivi della lunghezza del palo.

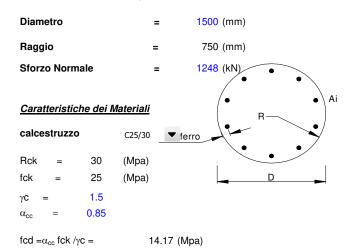
Pertanto si considera una lunghezza dei pali di fondazione della spalla del viadotto VI02 pari a 41 m.

8.5 Verifica a carico orizzontale

Si riportano di seguito i valori dello sforzo assiale e del taglio agenti in testa al palo, sia in condizioni statiche che sismiche:

SI	.U
Nmin	Tmax
[kN]	[kN]
1248	605

SI	V
Nmin	Tmax
[kN]	[kN]
-9	1462


Vengono eseguite le verifiche a carico limite orizzontale in tre differenti condizioni:

- Verifica statica in condizioni drenate;
- Verifica statica in condizioni non drenate;
- Verifica sismica in condizioni non drenate;

8.5.1 Verifica statica CD

Calcolo del momento di plasticizzazione di una sezione circolare

Acciaio

Armature

numero	C	liametro (mm))	area (mm²)	copriterro (mm)
42	ф	32		33778.40	98
40	ф	32		32169.91	162
0	ф	0		0.00	0

Momento di Plasticizzazione

My = 12279.0 (kN m)

MACROFASE FUNZIONALE 1 LOTTO 02

02

Viadotto VI02

COMMESSA RS3H

LOTTO CODIFICA

D 78 CL

DOCUMENTO

REV. FOGLIO

VI 02 04 001 A 86 di 102

Relazione di calcolo Spalla

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02 com

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3H
 02
 D 78 CL
 VI 02 04 001
 A
 87 di 102

H minimo

Relazione di calcolo Spalla

opera

	coefficienti parziali			1	M	R	
	Metodo di calcolo		permanenti	variabili	27 .		24-
Metodo di Calcolo			γg	γq	$\gamma_{\phi'}$	You	γт
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.00	1.60
S	A1+M1+R3	0	1.30	1.50	1.00	1.00	1.30
	SISMA	0	1.00	1.00	1.00	1.00	1.30
DM88		0	1.00	1.00	1.00	1.00	1.00
definiti dal progettista		•	1.00	1.00	1.00	1.00	1.30

r	1
quota strato 1	
q. falda	
quota strato	
prog.	
1.00	
1.00	

Н

n	1 •	2	3	4 ○	5 ()	7	≥10 ○	T.A.	prog.
ξ_3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ ₄	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

									D	
						Parametri m	edi	Par	ametri minii	mi
strati terreno	descrizione	quote	γ	γ'	φ	k_p	C _u	φ	k _p	Cu
		(m)	(kN/m ³)	(kN/m^3)	(°)		(kPa)	(°)		(kPa)
p.c.=strato 1	U1	97.00	18.5	8.5	28	2.77		28	2.77	
✓ strato 2	U1a	89.50	19	9	21	2.12		21	2.12	
✓ strato 3	U2a	84.00	19.5	9.5	20	2.04		20	2.04	
✓ strato 4	U2	63.00	19.5	9.5	29	2.88		29	2.88	
☐ strato 5						1.00			1.00	
☐ strato 6						1.00			1.00	

 Quota falda
 98.5
 (m)

 Diametro del palo D
 1.50
 (m)

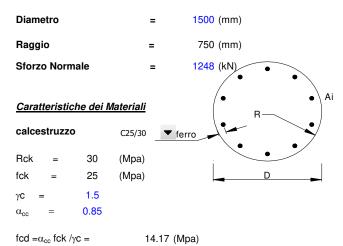
 Lunghezza del palo L
 41.00
 (m)

 Momento di plasticizzazione palo My
 12278.96
 (kNm)

 Step di calcolo
 0.2
 (m)

H medio

C palo libero


		meane							
Palo lungo		4113.7	(kN)				4113.7	(kN)	
Palo intermedio		19705.5	(kN)				19705.5	(kN)	
Palo corto		80082.7	(kN)				80082.7	(kN)	
	\mathbf{H}_{med}	4113.7	(kN)	Palo lungo		\mathbf{H}_{\min}	4113.7	(kN)	Palo lungo
		= Min(H _{med}	•••	. •		2419.	-	(kN)	
		ENZA E de d = E·H _κ /γ _τ	ı gruppo	o di pali		0.80 1489.		(kN)	
	Carico Assi	iale Permar	nente (G):	G =	605	j	(kN)	
	Carico Assi	iale variabil	e (Q):		Q =	0		(kN)	
	F _d = G	i· γ _G + Q · γ	Q =			605.0	00	(kN)	
	FS	= Hd / Fd	=			2.46	6		

palo impedito di ruotare

8.5.2 Verifica statica CND

Calcolo del momento di plasticizzazione di una sezione circolare

Acciaio

tipo d	di accia	io	B450C	•
fyk	=			450 (Mpa)
γs	=			1.15
fyd =	fyk /γs	/γE =	3	91.3 (Mpa)
Es	=	210000	(Mpa)	
ε _{ys} ε _{uk}	=	0.186%		

Armature

numero	C	liametro (mm))	area (mm²)	copriterro (mm)
42	ф	32		33778.40	98
40	ф	32		32169.91	162
0	ф	0		0.00	0

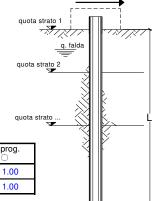
Momento di Plasticizzazione

My = 12279.0 (kN m)

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 RS3H
 02
 D 78 CL
 VI 02 04 001

Relazione di calcolo Spalla

opera

	coefficienti parziali		1	4	M		R
	Metodo di calcolo		permanenti γ _G	variabili γο	$\gamma_{\phi'}$	γ _{cu}	γт
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.00	1.60
S	A1+M1+R3		1.30	1.50	1.00	1.00	1.30
	SISMA	0	1.00	1.00	1.00	1.00	1.30
DM88		0	1.00	1.00	1.00	1.00	1.00
definiti d	al progettista	•	1.00	1.00	1.00	1.00	1.30

Н

REV.

Α

FOGLIO

89 di 102

n	1	2 ()	3	4 ○	5 ()	7	≥10 ○	T.A. ()	prog.
ξ_3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ_4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

									ſОĮ	
						Parametri m	edi	Pai	ametri minii	mi
strati terreno	descrizione	quote	γ	γ'	φ	k_p	Cu	φ	k_p	c _u
		(m)	(kN/m ³)	(kN/m^3)	(°)		(kPa)	(°)		(kPa)
p.c.=strato 1	U1	97.00	18.5	8.5	28	2.77		28	2.77	
✓ strato 2	U1a	89.50	19	9		1.00	45		1.00	45
✓ strato 3	U2a	84.00	19.5	9.5		1.00	40		1.00	40
✓ strato 4	U2	63.00	19.5	9.5	29	2.88		29	2.88	
□ strato 5						1.00			1.00	
☐ strato 6						1.00			1.00	

 Quota falda
 98.5
 (m)

 Diametro del palo D
 1.50
 (m)

 Lunghezza del palo L
 41.00
 (m)

 Momento di plasticizzazione palo My
 12278.96
 (kNm)

 Step di calcolo
 0.2
 (m)

O palo libero

	<u>H</u>	medio				<u>H</u>	minimo		
Palo lungo		4113.4	(kN)			_	4113.4	(kN)	
Palo intermedio		10812.4	(kN)				10812.4	(kN)	
Palo corto		49072.5	(kN)				49072.5	(kN)	
	\mathbf{H}_{med}	4113.4	(kN)	Palo lungo		\mathbf{H}_{\min}	4113.4	(kN)	Palo lungo
	H _k :	= Min(H _{med}	/ξ₃ ; R _{mi}	_n / ξ ₄)		2419.	63	(kN)	
		ENZA E de	l gruppo	o di pali		0.80			
	Н	$_{d} = \mathbf{E} \cdot \mathbf{H}_{k} / \gamma_{T}$				1489.	00	(kN)	
	Carico Assi	ale Permar	nente (G)):	G =	605	i	(kN)	
	Carico Assi	ale variabil	e (Q):		Q =	0		(kN)	
	F _d = G	· γ _G + Q · γ	Q =			605.0	00	(kN)	
	FS	= Hd / Fd :	=			2.46	6		

nalo impedito di ruotare

MACROFASE FUNZIONALE 1 LOTTO 02

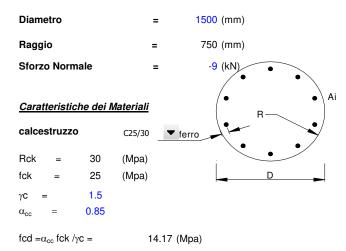
02

Viadotto VI02

COMMESSA RS3H

LOTTO CODIFICA

D 78 CL


DOCUMENTO VI 02 04 001 REV. FOGLIO
A 90 di 102

Relazione di calcolo Spalla

8.5.3 Verifica sismica CND

Calcolo del momento di plasticizzazione di una sezione circolare

Acciaio

tipo d	di accia	io	B450C	•	
fyk	=			450 (Mpa))
γs	=			1.15	
fyd =	fyk /γs	/γE =	3	91.3 (Mpa))
Es	=	210000	(Mpa)		
ε _{ys} ε _{uk}	=	0.186%			

Armature

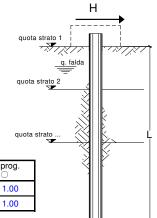
numero	(diametro (mm) area (mm²)	copriterro (mm)
42	ф	32	33778.40	98
40	ф	32	32169.91	162
0	ф	0	0.00	0

Momento di Plasticizzazione

My = 12018.1 (kN m)

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02


Viadotto VI02

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3H
 02
 D 78 CL
 VI 02 04 001
 A
 92 di 102

Relazione di calcolo Spalla

	coefficienti parziali		1	4	M		R
	Metodo di calcolo		permanenti γ _G	variabili γα	$\gamma_{\phi'}$	γ _{cu}	γт
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.00	1.60
S	A1+M1+R3		1.30	1.50	1.00	1.00	1.30
	SISMA	0	1.00	1.00	1.00	1.00	1.30
DM88	•	0	1.00	1.00	1.00	1.00	1.00
definiti d	lal progettista	•	1.00	1.00	1.00	1.00	1.30

n	1	2 ()	3	4 ○	5 (7 0	≥10 ○	T.A. ()	prog.
ξ_3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00
ξ ₄	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00

									D	
						Parametri m	edi	Pa	rametri mini	mi
strati terreno	descrizione	quote	γ	γ'	φ	k_p	Cu	φ	k_p	Cu
		(m)	(kN/m ³)	(kN/m^3)	(°)		(kPa)	(°)		(kPa)
p.c.=strato 1	U1	97.00	18.5	8.5	28	2.77		28	2.77	
✓ strato 2	U1a	89.50	19	9		1.00	45		1.00	45
✓ strato 3	U2a	84.00	19.5	9.5		1.00	40		1.00	40
✓ strato 4	U2	63.00	19.5	9.5	29	2.88		29	2.88	
□ strato 5						1.00			1.00	
☐ strato 6						1.00			1.00	

 Quota falda
 98.5
 (m)

 Diametro del palo D
 1.50
 (m)

 Lunghezza del palo L
 41.00
 (m)

 Momento di plasticizzazione palo My
 12018.08
 (kNm)

 Step di calcolo
 0.2
 (m)

O palo libero

	<u>H</u>	medio				<u>H</u>	minimo		
Palo lungo		4113.4	(kN)			_	4113.4	(kN)	
Palo intermedio		10812.4	(kN)				10812.4	(kN)	
Palo corto		49072.5	(kN)				49072.5	(kN)	
	\mathbf{H}_{med}	4113.4	(kN)	Palo lungo		\mathbf{H}_{\min}	4113.4	(kN)	Palo lungo
	H _k =	= Min(H _{med}	/ξ₃ ; R _{mi}	_n / ξ ₄)		2419.	63	(kN)	
		ENZA E de	l gruppo	o di pali		0.80			
	Н	$_{d} = \mathbf{E} \cdot \mathbf{H}_{k} / \gamma_{T}$				1489.	00	(kN)	
	Carico Assi	ale Permar	nente (G)):	G =	1462	2	(kN)	
	Carico Assi	ale variabile	e (Q):		Q =	0		(kN)	
	F _d = G	· γ _G + Q · γ _G	Q =			1462.	00	(kN)	
	FS	= Hd / Fd :	=			1.02	2		

nalo impedito di ruotare

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02

Relazione di calcolo Spalla

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3H 02 D 78 CL VI 02 04 001 A 93 di 102

8.6 Verifica strutturale

Viene verificata la sezione di incastro con la platea di fondazione.

Il momento flettente agente in testa palo viene derivato dal taglio in testa palo nell'ipotesi di elasticità lineare sia per il palo che per il terreno. Risulta

$$M = T * \alpha$$

 $\alpha = 4.04$ (vedi relazione geotecnica)

COMBO SLU

$N_{max} = 4789 \text{ kN}$	T = 605 kN	M = 605 * 4.04 = 2444 kNm
$N_{\rm min}=1248\;kN$	T = 605 kN	M = 605 * 4.04= 2444 kNm
COMBO SLE		
$N_{\text{max}} = 3418 \ kN$	T = 410 kN	M = 410 * 4.04 = 1656 kNm
$N_{\rm min}=2184\;kN$	T = 410 kN	M = 410 * 4.04 = 1656 kNm
COMBO SLV		
$N_{\text{max}} = 4886 \; kN$	T = 1462 kN	M = 1462 * 4.04= 5907 kNm
$N_{min} = -9 \text{ kN}$	T = 1462 kN	M = 1462 * 4.04= 5907 kNm

Caratteristiche della sezione:

Sezione circolare Ø 150 cm

 $A_s = 42 + 40 \ \phi 32$

staffe \(\phi 12//20 \)

La lunghezza del palo è pari a L = 41.00m

MACROFASE FUNZIONALE 1

LOTTO 02

Relazione di calcolo Spalla

CALCOLO COPRIFERRO - § C4.1.6.1.3 ISTRUZIONI NTC

Dati Assegnati:

Diametro (o diametro equivalente) barre longitudinali: 32 [mm]
Diametro staffe: 12 [mm]
Classe Calcestruzzo: C25/30

Classe Calcestruzzo: C25/30 Condizioni ambientali: Ordinarie

Vita nominale costruzione: 75 [anni] Incremento di 10 mm rispetto a vita nominale di 50 anni

Tolleranza di posa: 10 [mm]

Copriferro staffe:

Copriferro nominale Netto Staffe: 70 [mm]

Copriferro barre longitudinali:

Copriferro nominale Netto barre longitudinali: 82 [mm]

Copriferro nominale dal Baricentro della Barra longitudinale: 98 [mm] Dato da assegnare nell'input delle sezioni

SLU

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: palo_spalla

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione:
Condizioni Ambientali:
Riferimento Sforzi assegnati:
A Sforzo Norm. costante
Poco aggressive
Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30
----------------	---------	--------

Resis. compr. di progetto fcd:

Resis. compr. ridotta fcd':

Def.unit. max resistenza ec2:

Def.unit. ultima ecu:

Diagramma tensione-deformaz.:

Modulo Flastico Normalo Fc:

31475 0

Modulo Elastico Normale Ec:31475.0MPaResis. media a trazione fctm:2.560MPaCoeff. Omogen. S.L.E.:15.00Coeff. Omogen. S.L.E.:15.00

Sc limite S.L.E. comb. Frequenti: 150.00 daN/cm²
Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm
Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa
Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.300 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.00

MPa

391.30

MPa

391.30

MPa

0.068

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

LOTTO 02

COMMESSA

RS3H

LOTTO CODIFICA

1 000

DOCUMENTO

REV. FOGLIO

02 D 78 CL VI 02 04 001 A 95 di 102

Relazione di calcolo Spalla

Viadotto VI02

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

Sf limite S.L.E. Comb. Rare:

Bilineare finito

1.00

0.50

MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 75.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro

Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate
Ycentro

Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre generate
Raggio

Raggio [cm] della circonferenza lungo cui sono disposte le barre generate
N°Barre

Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

N°Gen. Xcentro Ycentro **N°Barre** Ø Raggio 0.0 1 0.0 65.2 42 32 2 0.0 0.0 58.8 40 32

ARMATURE A TAGLIO

Diametro staffe: 12 mm Passo staffe: 20.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	My	Vy	Vx
1	4789.00	2444.00	0.00	605.00	0.00
2	1248.00	2444.00	0.00	605.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

MACROFASE FUNZIONALE 1

02

Viadotto VI02

LOTTO 02 COMMESSA

RS3H

LOTTO CODIFICA

D 78 CL

DOCUMENTO VI 02 04 001

REV. **FOGLIO** Α

96 di 102

Relazione di calcolo Spalla

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	3418.00	1656.00	0.00
2	2184.00	1656.00	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)

Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

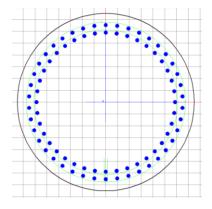
Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	3418.00	1656.00 (2674.44)	0.00 (0.00)
2	2184.00	1656.00 (2085.45)	0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)


Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb.	N	Mx	Му
1	3418.00	1656.00 (2674.44)	0.00 (0.00)
2	2184.00	1656.00 (2085.45)	0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: cm Interferro netto minimo barre longitudinali: 3.2 cm Copriferro netto minimo staffe: 7.0 cm

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

IIVI LI ILOO/ (I O.

Viadotto VI02

MACROFASE FUNZIONALE 1

LOTTO 02 COMMESSA

RS3H

LOTTO CODIFICA

D 78 CL

02

DOCUMENTO VI 02 04 001 REV.

FOGLIO 97 di 102

Relazione di calcolo Spalla

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls. (positivo se di compre

MX Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	My	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	4789.00	2444.00	0.00	4789.16	12787.47	0.00	5.23 659.5(53.0)
2	S	1248.00	2444.00	0.00	1247.92	12252.54	0.00	5.01 659.5(53.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.0	75.0	0.00297	0.0	65.2	-0.00411	0.0	-65.2
2	0.00350	0.0	75.0	0.00289	0.0	65.2	-0.00517	0.0	-65.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

C.Rid.	x/d	С	b	а	N°Comb
		-0.000568369	0.000054245	0.000000000	1
		-0.001138355	0.000061845	0.000000000	2

VERIFICHE A TAGLIO

Diam. Staffe: 12 mm

Passo staffe: 20.0 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso.

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

D 78 CL

MACROFASE FUNZIONALE 1

Viadotto VI02

hw

LOTTO 02

RS3H

COMMESSA LOTTO **CODIFICA** 02

DOCUMENTO VI 02 04 001

REV. **FOGLIO**

98 di 102

Α

Relazione di calcolo Spalla

I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Acw Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Ast Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] A Fff Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	605.00	3863.17	2037.33117	.7 96.8	137.2	2.500	1.191	6.4	21.5(0.0)
2	S	605.00	3513.63	2104.13118	.1i 100.0	137.1	2.500	1.050	6.2	21.5(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Sf min Minima tensione (negativa se di trazione) nell'acciaio [Mpa]

 ${\rm Xs\;min,\;Ys\;min}$ Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	4.33	0.0	0.0	-26.5	0.0	-65.2	1105	64.3
2	S	4.08	0.0	0.0	-41.4	0.0	-65.2	1609	112.6

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Ver Esito della verifica

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 k1

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] k2

= 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali k4

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø

Copriferro [mm] netto calcolato con riferimento alla barra più tesa Cf

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00016	0	0.500	32.0	82	0.00008 (0.00008)	372	0.030 (990.00)	2674.44	0.00
2	S	-0.00024	0	0.500	32.0	82	0.00012 (0.00012)	357	0.044 (990.00)	2085.45	0.00

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

LOTTO 02

Viadotto VI02

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

RS3H 02 D 78 CL VI 02 04 001 A 99 di 102

Relazione di calcolo Spalla

S 4.33 0.0 0.0 -26.5 0.0 -65.2 1105 64.3 2 S 112.6 4.08 0.0 0.0 -41.4 0.0 -65.2 1609

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	-0.00016	0	0.500	32.0	82	0.00008 (0.00008)	372	0.030 (0.40)	2674.44	0.00
2	S	-0.00024	0	0.500	32.0	82	0.00012 (0.00012)	357	0.044 (0.40)	2085.45	0.00

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	4.33	0.0	0.0	-26.5	0.0	-65.2	1105	64.3
2	S	4.08	0.0	0.0	-41.4	0.0	-65.2	1609	112.6

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	-0.00016	0	0.500	32.0	82	0.00008 (0.00008)	372	0.030 (0.30)	2674.44	0.00
2	S	-0.00024	0	0.500	32.0	82	0.00012 (0.00012)	357	0.044 (0.30)	2085.45	0.00

SLV

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: palo_spalla - SISMICO

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30	
	Resis. compr. di progetto fcd:	14.160	MPa
	Resis. compr. ridotta fcd':	7.080	MPa
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	31475.0	MPa
	Resis. media a trazione fctm:	2.560	MPa
ACCIAIO -	Tipo:	B450C	
71001/110	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMONODO DI CATANIA INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL'

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3H
 02
 D 78 CL
 VI 02 04 001
 A
 100 di 102

Relazione di calcolo Spalla

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 75.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate
Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre generate
Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate
N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

N°Gen. Xcentro Ycentro N°Barre Ø Raggio 0.0 0.0 65.2 42 32 1 2 0.0 0.0 58.8 40 32

ARMATURE A TAGLIO

Diametro staffe: 12 mm Passo staffe: 20.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [kNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [kN] parallela all'asse princ.d'inerzia y
Vx Componente del Taglio [kN] parallela all'asse princ.d'inerzia x

N°Comb.	N	Mx	Му	Vy	Vx
1	4886.00	5907.00	0.00	1462.00	0.00
2	-9.00	5907.00	0.00	1462.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.2 cm Interferro netto minimo barre longitudinali: 3.2 cm Copriferro netto minimo staffe: 7.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DELTRATTO DI LINEA

INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto VI02

COMMESSA LOTTO DOCUMENTO REV. **FOGLIO CODIFICA** RS3H 02 D 78 CL VI 02 04 001 Α 101 di 102

Relazione di calcolo Spalla

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Му N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Mx Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia My Res Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	4886.00	5907.00	0.00	4885.87	10033.23	0.00	1.70 659.5(53.0)
2	S	-9.00	5907.00	0.00	-8.97	8507.28	0.00	1.44 659.5(53.0)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrispi a es max (sistema rif X Y O sez)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00195	0.0	75.0	0.00168	0.0	65.2	-0.00196	0.0	-65.2
2	0.00149	0.0	75.0	0.00125	0.0	65.2	-0.00196	0.0	-65.2

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a. b. c x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

C.Rid.	x/d	С	b	а	N°Comb
		-0.000139552	0.000027867	0.000000000	1
		-0.000352057	0.000024608	0.000000000	2

VERIFICHE A TAGLIO

bw

Diam. Staffe: 12 mm

20.0 cm [Passo massimo di normativa = 25.0 cm] Passo staffe:

S = comb. verificata a taglio / N = comb. non verificata Ver

Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Ved Vcd Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC]

Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC] Vwd

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] d|z

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Acw Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Ast

MACROFASE FUNZIONALE 1 LOTTO 02

Viadotto $\overline{VI02}$

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3H
 02
 D 78 CL
 VI 02 04 001
 A
 102 di 102

Relazione di calcolo Spalla

A.Eff

Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
Tra parentesi è indicata la quota dell'area relativa alle sole legature.
L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	1462.00	3784.76	1993.2811	7.5 94.7	136.9	2.500	1.195	15.8	21.5(0.0)
2	S	1462.00	3297.92	2067.0611	7.7 98.2	137.5	2.500	1.000	15.2	21.5(0.0)