COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NODO DI CATANIA

		_					 	
		<i>(</i>)	11		V C	10	IIDL	. CHIN
ı	J.	U.	111	IC I	ΑJ		 URE	SUD

PROGETTO DEFINITIVO

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL'AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

LOTTO 2

Bretella CT-SR e Fascio A-P di prima fase e Collegamento Fascio A-P-Interporto - OPERE CIVILI CVF e ponti stradali - NW01 Ponte NV08 su canale - Relazione di calcolo Spalle

								SCALA:
								-
COMMESSA	LOTTO FASI	E ENTE T	IPO DOC.	OPERA/DI	SCIPLINA	PROG	R. REV	' -
RS3F	H 02 D	78	CL	NW0	104	0 0	1 A	
Rev	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione esecutiva	L.Nani	Marzo 2020	G.Giustino	Marzo 2020	S.Vanfiori Boulton	Marzo 2020	D.Tiberti
				7 9				National Party of the Party of
								The state of the s
								11 50 0 Hall

File: RS3H.0.2.D.78.CL.NW.01.0.4.001.A

INDICE

1	PREMESSA					
2	NOI	RMATIVA DI RIFERIMENTO	5			
3	MA	TERIALI	6			
	3.1	CALCESTRUZZO SPALLE, SETTI, SOLETTE E MASSETTO PENDENZE (PUNTO 2.6.2.7.6 MDP)	6			
	3.2	CALCESTRUZZO PALI DI FONDAZIONE E PLINTO DI FONDAZIONE	6			
	3.3	ACCIAIO PER C.A. (ARMATURA ORDINARIA)	7			
4	CAF	RATTERIZZAZIONE SISMICA DEL SITO	9			
	4.1	VITA NOMINALE E CLASSE D'USO	9			
	4.2	PARAMETRI DI PERICOLOSITÀ SISMICA	9			
	4.2.1	1 Combinazione degli effetti dell'azione sismica	12			
	4.2.2	2 Combinazione dell'azione sismica con le altre azioni	12			
5	DES	SCRIZIONE DELL'OPERA	14			
	5.1	ESECUZIONE DEL MANUFATTO	15			
6	ANA	ALISI DEI CARICHI	16			
	6.1	PESO PROPRIO (G1)	16			
	6.2	PERMANENTI (G2)	16			
	6.3	AZIONI VARIABILI (Q)	16			
	6.3.	1 Carico mobile stradale	16			
	6.4	AZIONI CLIMATICHE	16			
	6.4.	1 Variazione termica uniforme (ε3)	17			
	6.4.2	2 Variazione termica differenziale(ε3)	17			
	6.5	AZIONE DEL VENTO (Q5)	17			
	6.6	AZIONE DELLA NEVE	17			
	6.7	RITIRO E VISCOSITÀ	18			
	6.8	SPINTE DEL TERRENO (G3)	19			
	6.9	FORZE INERZIALI DOVUTE AL SISMA	23			
	6.10	SPINTA DA SOVRACCARICO ACCIDENTALE	24			
	6.11	SCARICHI TRASMESSI DA IMPALCATO	25			
	6.12	SCARICHI PER SCALZAMENTO	28			

7	CO	MBINAZIONI DI CARICO	28
8	МО	DDELLAZIONE NUMERICA	34
8	8.1	CODICE DI CALCOLO	34
8	8.2	TIPO DI ANALISI SVOLTA (PARAGRAFO 10.2 DEL DM 17-01-18)	34
8	8.3	AFFIDABILITÀ DEI CODICI DI CALCOLO	35
8	8.4	GIUDIZIO MOTIVATO DI ACCETTABILITÀ DEI RISULTATI	35
8	8.5	PARAMETRI MODELLO GEOTECNICO NW01	36
	8.5.	.1 Rigidezza delle molle orizzontali dei pali	36
9	SPC	OSTAMENTI IN TESTA AI PALI	38
10	AN.	ALISI MODALE	40
1	10.1	CRITERI DI VERIFICA	43
11	AN.	ALISI DEI RISULTATI	48
12	VEI	RIFICHE DI RESISTENZA	67
1	12.1	PARAMENTO SP 1.80 M	67
	12.1	1.1 VERIFICA A TAGLIO	69
	12.1	1.2 VERIFICA A FLESSIONE - M22 - ARMATURA VERTICALE	72
	12.1	1.3 VERIFICA A FLESSIONE - M11 - ARMATURA ORIZZONTALE	77
1	12.2	MURO PARAGHIAIA	82
	12.2	2.1 VERIFICA A TAGLIO	84
	12.2	2.2 VERIFICA A FLESSIONE - M22 - ARMATURA VERTICALE	87
	12.2	2.3 VERIFICA A FLESSIONE - M11 - ARMATURA ORIZZONTALE	92
1	12.3	MURI D'ALA LATERALI SP. 1.30M	97
	12.3	3.1 VERIFICA A TAGLIO	99
	12.3	3.2 VERIFICA A FLESSIONE - M22 - ARMATURA VERTICALE	102
	12.3	3.3 VERIFICA A FLESSIONE - M11 - ARMATURA ORIZZONTALE	107
1	12.4	SOLETTA DI FONDAZIONE	113
	12.4	4.1 VERIFICA A TAGLIO	115
	12.4	4.2 VERIFICA A FLESSIONE - M22	118
	12.4	4.3 VERIFICA A FLESSIONE - M11	123
1	12.5	PALI DI FONDAZIONE	128
	12.5	5.1 INQUADRAMENTO GEOTECNICO	128

12.	2.5.2 VERIFICHE AGLI STATI LIMITE ULTIMI	128
12.6	VERIFICA PALI	129
12.	2.6.1 VERIFICA STRUTTURALE	129
12.	2.6.2 ANALISI DEI CARICHI	129
12.	2.6.3 VERIFICA A CARICO LIMITE VERTICALE	140
12.	2.6.4 VERIFICA A CARICO LIMITE ORIZZONTALE	142

1 PREMESSA

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo, delle opere d'arte e delle opere interferite relative al Nodo di Catania ed in particolare al progetto definitivo di Interramento linea dal km 231+631, tra le stazioni di Catania Acquicella e Bicocca, al km 237+139, tra le stazioni di Bicocca e Lentini Diramazione, per il prolungamento della pista dell'aeroporto Vincenzo Bellini di Catania-Fontanarossa

In particolare, ha per oggetto le verifiche secondo il metodo semiprobabilistico agli Stati Limite (S.L.) delle strutture che costituiscono la "Spalla" del ponte di prima categoria del viadotto NW01 che presenta l'altezza del paramento maggiore e l'ipotesi di appoggi "fissi" dell'impalcato.

Le analisi strutturali e le verifiche di sicurezza sono state effettuate in accordo con le disposizioni vigenti in Italia e con riferimento alla nuova classificazione sismica del territorio nazionale, secondo il DM 17 gennaio 2018.

L'opera in oggetto è progettata per una vita nominale VN pari a 50 anni. Gli si attribuisce inoltre una classe d'uso III ai sensi del DM 17 gennaio 2018 da cui scaturisce un coefficiente d'uso CU=1.5.

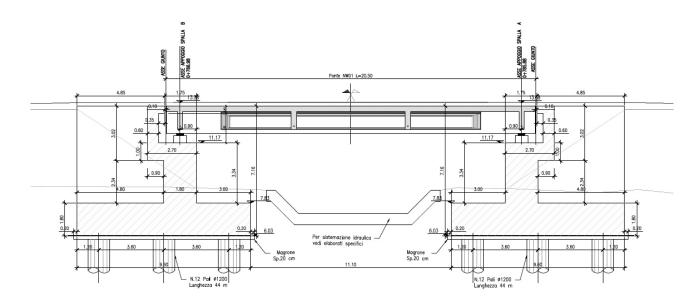


Figura 1 – Viadotto NW01

2 NORMATIVA DI RIFERIMENTO

Le analisi strutturali e le verifiche di sicurezza sono state effettuate in accordo con le prescrizioni contenute nelle seguenti normative ed è conforme alle normative vigenti nonché alle istruzioni dell'Ente FF.SS:

Normativa di riferimento:

- [N.1]. Norme Tecniche per le Costruzioni D.M. 17-01-18 (NTC-2018);
- [N.2]. Circolare n. 7 del 21gennaio 2019 Istruzioni per l'Applicazione dell'aggiornamento delle Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale 17 gennaio 2018;
- [N.3]. [Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019
- [N.4]. Eurocodici EN 1991-2: 2003/AC:2010 Eurocodice 1 Parte 2
- [N.5]. RFI DTC SI MA IFS 001 C del 21-12-18 Manuale di Progettazione delle Opere Civili

3 MATERIALI

Si riportano di seguito i materiali previsti per la realizzazione delle strutture, suddivisi per elemento costruttivo.

3.1 Calcestruzzo spalle, setti, solette e massetto pendenze (punto 2.6.2.7.6 mdp)

Classe	C32/40			
$R_{ck} =$	40		MPa	resistenza caratteristica cubica
$f_{ck} =$	32		MPa	resistenza caratteristica cilindrica
$f_{cm} =$	40		MPa	valor medio resistenza cilindrica
$\alpha_{cc}=$	0,85			coeff. rid. Per carichi di lunga durata
$\gamma_{\rm M} =$	1,5		-	coefficiente parziale di sicurezza SLU
$f_{cd} =$	18,13		MPa	resistenza di progetto
$f_{ctm} =$	3,02		MPa	resistenza media a trazione semplice
$f_{cfm} =$	3,63		MPa	resistenza media a trazione per flessione
$f_{ctk} =$	2,12		MPa	valore caratteristico resistenza a trazione
$E_{cm} =$	33346		MPa	Modulo elastico di progetto
$\nu =$	0,2			Coefficiente di Poisson
$G_c =$	13894		MPa	Modulo elastico Tangenziale di progetto
c=	50		mm	Copriferro minimo
XC4				Classe di esposizione
σ _c <0.60×	$f_{ck}=$	19.2	MPa	Tensione massima di compressione in esercizio per combinazioni RARE
σ _c <0.45×	f _{ck} =	14.4	MPa	Tensione massima di compressione in esercizio per combinazioni QUASI PERMANENTI
$\sigma_t = f_{ctm}/1$.	2 =	2.52	MPa	Tensione limite di fessurazione

3.2 Calcestruzzo pali di fondazione e plinto di fondazione

Classe	C25/30		
$R_{ck} =$	30	MPa	resistenza caratteristica cubica
$f_{ck} =$	25	MPa	resistenza caratteristica cilindrica
$f_{cm} =$	33	MPa	valor medio resistenza cilindrica
α_{cc} =	0,85		coeff. rid. Per carichi di lunga durata
$\gamma_{M}=$	1,5	-	coefficiente parziale di sicurezza SLU
$f_{cd} =$	14,17	MPa	resistenza di progetto
$f_{ctm} =$	2,56	MPa	resistenza media a trazione semplice
$f_{cfm} =$	3,08	MPa	resistenza media a trazione per flessione
$f_{ctk} =$	1.79	MPa	valore caratteristico resistenza a trazione

$E_{cm} =$	31476	MPa	Modulo elastico di progetto
$\nu =$	0,2		Coefficiente di Poisson
$G_c =$	13462	MPa	Modulo elastico Tangenziale di progetto
c=	60/40	mm	Copriferro minimo pali/plinto di fondazione
XC2			Classe di esposizione
σ_c <0.60× f_{ck} =	19.2		massima di compressione in per combinazioni RARE
$\sigma_c < 0.45 \times f_{ck} =$	14.4	Tensione esercizio PERMAN	massima di compressione in per combinazioni QUASI NENTI
$\sigma_t = f_{ctm} / 1.2 =$	2.52	Tensione	limite di fessurazione

3.3 Acciaio per c.a. (armatura ordinaria)

B450C		
$f_{yk} \ge$	450 MPa	tensione caratteristica di snervamento
$f_{tk} \ge$	540 MPa	tensione caratteristica di rottura
$(f_t/f_y)_k \ge$	1,15	
$(f_t/f_y)_k <$	1,35	
γ_s =	1,15 -	coefficiente parziale di sicurezza SLU
$f_{yd} =$	391,3 MPa	tensione caratteristica di snervamento
$E_s =$	200000 MPa	Modulo elastico di progetto
ε_{yd} =	0,196%	deformazione di progetto a snervamento
$\varepsilon_{uk} = (A_{gt})_k$	7,50%	deformazione caratteristica ultima
$\sigma_s < 0.80 \times f_{yk} =$	360 MPa Te	ensione massima di trazione

Per il calcestruzzo si adotta il diagramma parabola rettangolo definito da un arco di parabola con la seguente equazione:

$$\sigma_{c} = f_{cd} \cdot \left[2 \cdot \left(\frac{\epsilon_{c}}{\epsilon_{0}} \right) - \left(\frac{\epsilon_{c}}{\epsilon_{0}} \right)^{2} \right]; \qquad \text{per: } \epsilon_{c} \leq \epsilon_{c2}$$

$$\sigma_{_{\text{\tiny C}}} = 0.85 \cdot f_{_{\text{\tiny Cd}}}; \qquad \qquad \text{per: } \epsilon_{c2} \ \underline{\leq} \epsilon_{c2} \underline{\epsilon}_{cu2}$$

in cui ϵ_{c2} e ϵ_{cu2} assumono i seguenti valori:

deformazione in corrispondenza del valore massimo della tensione $\epsilon_{c2} = 2.0\%$

deformazione unitaria a rottura

 $\epsilon_{cu2}=3.5\%$

Per l'acciaio B450C Si adotta il diagramma elastico perfettamente plastico considerando, in favore di sicurezza, un limite della deformazione unitaria ultima " ϵ_{ud} " pari a: deformazione unitaria ultima $\epsilon_{ud} = 0.9 \times \epsilon_{uk} = 6.75\%$.

4 CARATTERIZZAZIONE SISMICA DEL SITO

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17 gennaio 2018 e relativa circolare applicativa

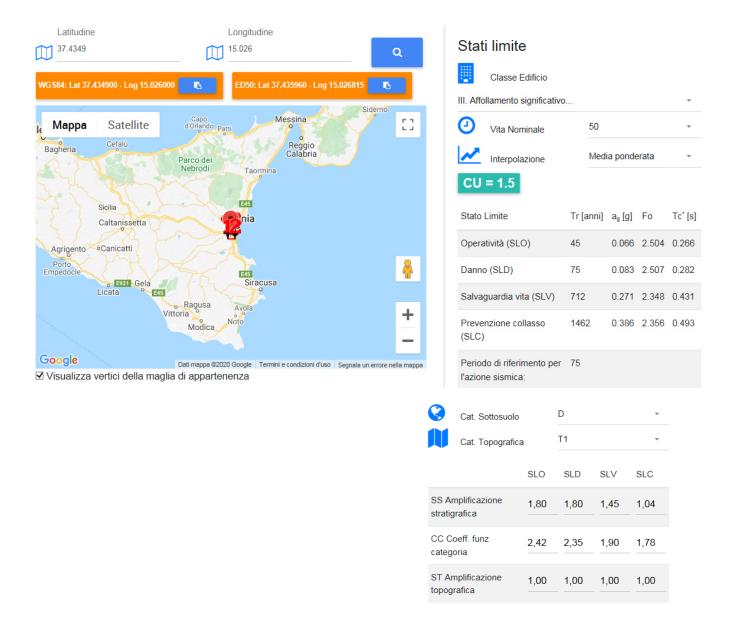
4.1 Vita nominale e classe d'uso

Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (VN), intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (CU)

Per l'opera in oggetto si considera una vita nominale: VN = 50 anni. Riguardo invece la Classe d'Uso, all' opera in oggetto corrisponde una Classe III a cui è associato un coefficiente d'uso pari a (NTC – Tabella 2.4.II): $C_u = 1.5$.

I parametri di pericolosità sismica vengono quindi valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_R per il coefficiente d'uso C_R 0, ovvero:

$$V_R = V_N \cdot C_U$$


Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a $V_R = 50x1.5 = 75$ anni

4.2 Parametri di pericolosità sismica

La valutazione dei parametri di pericolosità sismica, che ai sensi del D.M. 17-01-2018, costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali) dipendono, come già in parte anticipato in precedenza, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (Periodo di riferimento per valutazione azione sismica / VR) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

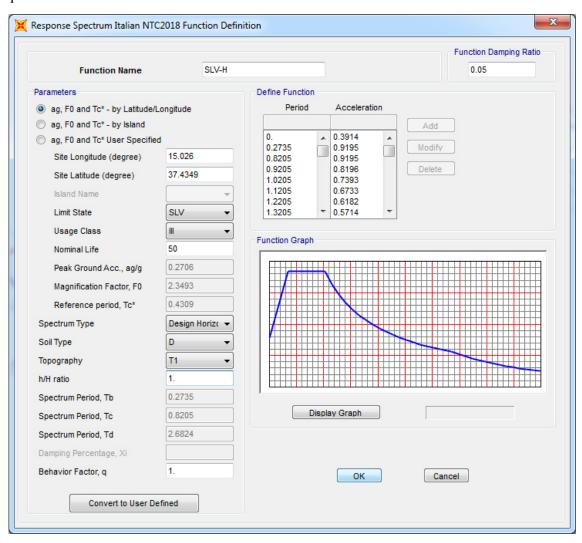
- Categoria sottosuolo **D**

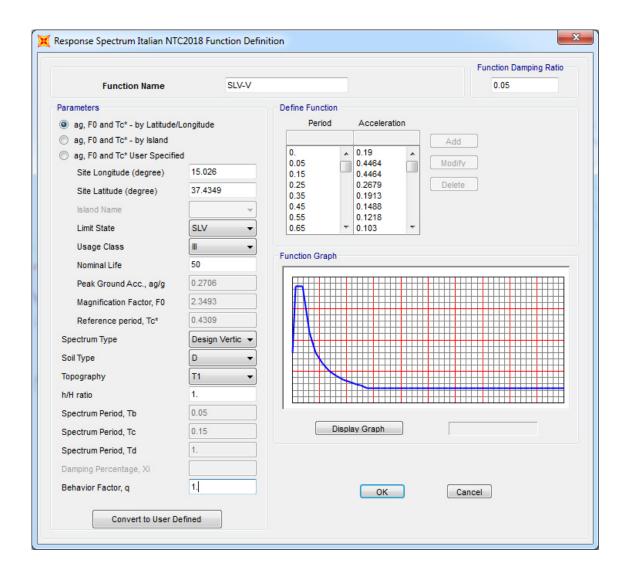
I valori delle caratteristiche sismiche (a_g, F_0, T^*_C) per gli stati limite di normativa sono dunque:

- a_g→ accelerazione orizzontale massima del terreno, espressa come frazione dell'accelerazione di gravità;
- $F_0 \rightarrow$ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T^{*}_C→ periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;
- $S \to \text{coefficiente}$ che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) .

Spettri di progetto

Di seguito si forniscono gli spettri di risposta elastici per lo SLV


Lat 37.434882 Long 15.025984


Categora di sottosuolo tipo D

Classe d'uso: III

Vita nominale VN = 50 anni

q = 1

4.2.1 Combinazione degli effetti dell'azione sismica

In accordo con il paragrafo 7.3.5. del D.M. 14.01.2018, gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc.) sono combinati secondo le seguenti espressioni:

- Sisma in direzione longitudinale "X" \Rightarrow 1.0×E_X + 0.3×E_Y + 0.3×E_Z;

- Sisma in direzione trasversale "Y" \Rightarrow 0.3×E_X + 1.0×E_Y + 0.3×E_Z;

- Sisma in direzione verticale "Z" $\Rightarrow 0.3 \times E_X + 0.3 \times E_Y + 1.0 \times E_Z$.

Per ciascuna delle precedenti relazioni, gli effetti del sisma sono stati combinati facendo variare opportunamente il segno delle singole sollecitazioni al fine di massimizzare gli sforzi nella struttura.

4.2.2 Combinazione dell'azione sismica con le altre azioni

In accordo con il D.M. 14/01/2018 paragrafo 3.2.4, i carichi sismici vanno combinati con le altre azioni secondo la seguente espressione:

$$\boldsymbol{G_1} + \boldsymbol{G_2} + \boldsymbol{E} + \sum\nolimits_{j} \! \boldsymbol{\Psi_{2j}} \cdot \boldsymbol{Q_{kj}}$$

dove:

 $G_1 \implies peso \ proprio \ degli \ elementi \ strutturali \ e \ non \ strutturali;$

 $G_2 \implies$ carichi permanenti portati;

E ⇒ azioni derivanti dai terremoti;

 $Q_{kj} \ \, \Rightarrow azioni \ variabili \ sulla \ struttura.$

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$\boldsymbol{G}_1 + \boldsymbol{G}_2 + \sum\nolimits_j \! \boldsymbol{\Psi}_{2j} \cdot \boldsymbol{Q}_{kj}$$

Nel caso in esame per i carichi dovuti al transito dei mezzi si assumerà Ψ_{2j} = 0.0.

5 DESCRIZIONE DELL'OPERA

La Spalla del viadotto NW01 oggetto della presente relazione è realizzata in cemento armato ordinario. È una spalla composta da un elevazione dello spessore di $1.80~\mathrm{m}$, da una fondazione di spessore $1.80~\mathrm{m}$ e due muri d'ala di spessore $1.30~\mathrm{m}$. Il paraghiaia ha spessore $0.60~\mathrm{m}$. Le fondazioni sono su $12~\mathrm{pali}$ di diametro $1.20~\mathrm{m}$ e lunghezza $44~\mathrm{m}$.

Nelle figure seguenti si riportano alcuni stralci di planimetrie e sezioni della spalla.

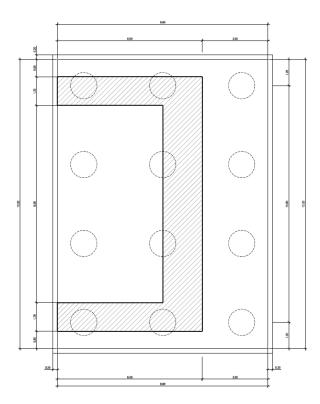


Figura 2 – Piante della spalla

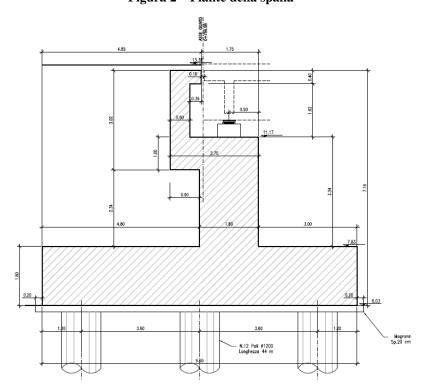


Figura 3 – Sezione trasversale della spalla

Figura 4 – Sezione longitudinale della spalla

5.1 Esecuzione del manufatto

La spalla in cemento armato viene realizzata in due fasi di getto: fondazione ed elevazione.

6 ANALISI DEI CARICHI

L'analisi dei carichi che interessa la spalla è stata effettuata considerando le azioni provenienti dall' impalcato e quelle direttamente applicate sulla spalla. I carichi trasmessi dall' impalcato sono relativi alle condizioni di carico elementari, opportunamente combinate secondo le vigenti normative, analizzate nel dettaglio nella relazione dell'impalcato, a cui si rimanda per maggiori approfondimenti.

6.1 Peso proprio (G1)

Il peso proprio della struttura è calcolato automaticamente dal software di calcolo impiegato.

Paraghiaia (kN/mq)	15.00
Fondazione (kN/mq)	45.00
Elevazione (kN/mq)	45.00
Muri d'ala (kN/mq)	32.50

6.2 Permanenti (G2)

Sono stati considerati i seguenti contributi da applicare alle travi di competenza.

-	Pavimentazione 9 cm	$20 \cdot 0.10 = 2.0 \text{ kN/m}^2$
-	Riempimento a tergo h=5.35m	$20*5.35 = 107.0 \text{ kN/m}^2$
_	Rinterro a valle h=80 cm	$20*0.80=16$ kN/ m^2

6.3 Azioni variabili (Q)

6.3.1 Carico mobile stradale

In accordo con la normativa vigente (Circolare 2019 C5.1.3.3.5.1), ai fini del calcolo delle spalle, dei muri d'ala e delle altre parti del ponte a contatto con il terreno, sul rilevato o sul terrapieno si considera applicato lo schema di carico 1 in cui, per semplicita, i carichi tandem possono essere sostituiti da carichi uniformemente distribuiti equivalenti, applicati su una superficie rettangolare larga 3,0 m e lunga 2,20 m.

Schema di carico 1

6.4 Azioni climatiche

6.4.1 Variazione termica uniforme (ε3)

La variazione termica uniforme è valutata secondo il § 5.2.2.5.2 delle NTC18. Si prevede una variazione termica pari a ± 15 °C. La variazione termica uniforme non produce effetti globali in termini di tensione sulla spalla.

6.4.2 Variazione termica differenziale(\varepsilon3)

È stata considerata una differenza di temperatura sull'elevazione della spalla pari a ±5°C.

6.5 Azione del Vento (Q5)

L'azione del vento è considerata trascurabile.

6.6 Azione della Neve

Poichè l'azione della neve non è concomitante con i carichi da traffico è considerata trascurabile.

6.7 Ritiro e Viscosità

Ritiro elevazione paramento

	second II EN 199	o Eurocodice 2 92-1-1	
Calcolo dell'azione prodotta da ritiro			
	Rck	40	
	f _{ck}	33.20 N/mm ²	
resistenza a compressione media	f _{cm}	41.20 N/mm ²	
modulo elastico secante	E _{cm}	33642.78 N/mm ²	
coefficiente di dilatazione termica	α	0.00001	
classe del cemento	cls tipo	R	
età del cls all'inizio del ritiro	t _s	2 gg	
età del cls al momento del carico	t _o	2 gg	
età del cls	t	25550 gg	
larghezza sezione	В	1160 cm	
altezza sezione	Н	180 cm	
sezione trasversale dell'elemento	A _c	20880000 mmq	
perimetro a contatto con l'atmosfera	u	26800 mm	
dimensione convenz. elemento di cls	h ₀ =2A _c /u	1558.21 mm	
umidità relativa percentuale	RH	75 %	
Calcolo del modulo elastico			
coeff. del tipo di cemento	α	1	
tempo t ₀ corretto in funz del tipo di cem	t_0	6.19 gg	> 0.5
coeff. della resistenza del cls	$\beta_{c}(f_{cm})$	2.62	
coeff. della viscosità nel tempo	$b_c(t_0)$	0.65	
coeff. della resistenza del cls	a ₁	0.89	
coeff. della resistenza del cls	α_2	0.968	
coeff. della resistenza del cls	α_3	0.922	
coeff. che tiene conto dell'umidità relativa	β_{H}	1382.537	
coeff. della variabilità viscosità nel tempo	$\beta_{c}(t,t_{0})$	0.984	
coeff. che tiene conto dell'umidità	φ_{RH}	1.186	
coeff. nominale della viscosità	φ_{0}	2.016	
coeff. di viscosità	$\varphi(t,t_0)$	1.98	
Modulo elastico al tempo t	$E_{cm} \left(t, t_{0} \right)$	11272.1 N/mm ²	
Calcolo della deformazione di ritiro			
parametro fuzione di h ₀	k_h	0.7	PROSPETTO 3.3
coeff. variabilità deformazione nel tempo	$\beta_{ \rm cs}({\rm t,t_s})$	0.912	
def. di ritiro per essiccamento	$\varepsilon_{cd}(t)$	0.000272	
deformazione di base	$\varepsilon_{\rm cd,0}$	0.000426	
coeff. per il tipo di cemento	$\alpha_{\sf ds1}$	6	
coeff. per il tipo di cemento	$\alpha_{\sf ds2}$	0.11	
	β_{RH}	0.896094	
	$\beta_{as}(t)$	1	
deformazione dovuta al ritiro autogeno	ε _{ca oo} ε _{ca}	0.000058 5.8E-05	
deformazione di ritiro	$\varepsilon_{s}(t,t_{0})$	0.00033	
Variazione termica uniforme	ΔT_{ritiro}	- 11.1 °C	

Ritiro muro d'ala

	o secondo	o Eurocodice 2 02-1-1	
Calcolo dell'azione prodotta da ritiro		,_ , ,	
	Rck	40	
	f _{ck}	33.20 N/mm ²	
resistenza a compressione media	f _{cm}	41.20 N/mm ²	
modulo elastico secante	E _{cm}	33642.78 N/mm ²	
coefficiente di dilatazione termica	α	0.00001	
classe del cemento	cls tipo	R	
età del cls all'inizio del ritiro	t _s	2 gg	
età del cls al momento del carico	t ₀	2 gg	
età del cls	t	25550 gg	
arghezza sezione	В	660 cm	
altezza sezione	Н	130 cm	
sezione trasversale dell'elemento	A_c	8580000 mmq	
perimetro a contatto con l'atmosfera	u	15800 mm	
dimensione convenz. elemento di cls	$h_0=2A_c/u$	1086.08 mm	
umidità relativa percentuale	RH	75 %	
Calcolo del modulo elastico			
coeff. del tipo di cemento	α	1	
tempo t ₀ corretto in funz del tipo di cem	t_0	6.19 gg	> 0.5
coeff. della resistenza del cls	$\beta_{c}(f_{cm})$	2.62	
coeff. della viscosità nel tempo	$b_c(t_0)$	0.65	
coeff. della resistenza del cls	a ₁	0.89	
coeff. della resistenza del cls	α_2	0.968	
coeff. della resistenza del cls	α_3	0.922	
coeff. che tiene conto dell'umidità relativa	β_{H}	1382.537	
coeff. della variabilità viscosità nel tempo	$\beta_{c}(t,t_{0})$	0.984	
coeff. che tiene conto dell'umidità	$\varphi_{\rm RH}$	1.210	
coeff. nominale della viscosità	φ_{0}	2.057	
coeff. di viscosità	φ (t,t ₀)	2.02	
Modulo elastico al tempo t	$E_{cm}\left(t,t_{0}\right)$	11123.7 N/mm ²	
Calcolo della deformazione di ritiro			
parametro fuzione di h ₀	\mathbf{k}_{h}	0.7	PROSPETTO 3.3
coeff. variabilità deformazione nel tempo	$\beta_{ \rm cs}({\rm t,t_s})$	0.947	
def. di ritiro per essiccamento	$\varepsilon_{cd}(t)$	0.000282	
deformazione di base	$\varepsilon_{\rm cd,0}$	0.000426	
coeff. per il tipo di cemento	$\alpha_{\rm ds1}$	6	
coeff. per il tipo di cemento	$\alpha_{\sf ds2}$	0.11	
	β_{RH} $\beta_{as}(t)$	0.896094 1	
	ε ca 00	0.000058	
deformazione dovuta al ritiro autogeno	- ca oo ^ε ca	5.8E-05	
deformazione di ritiro	$\varepsilon_s(t,t_0)$	0.00034	

6.8 SPINTE DEL TERRENO (G3)

Per il calcolo della spinta del terreno sulle opere di sostegno, occorre tenere presente che la mobilitazione della spinta attiva avviene per spostamenti di entità contenuta, come si evince dalla seguente tabella desunta dall'EC7 - Parte 1 - Annesso C (C.3 "Movements to mobilise limit earth pressures):

Table C.1 — Ratios v₃/h

Kind	l of movement	v _a /h loose soil %	v₃/h dense soil %
a)	V _a	0,4 to 0,5	0,1 to 0,2
b)	V ₃	0,2	0,05 to 0,1
c)	V _q	0,8 to 1,0	0,2 to 0,5
d)	V ₂	0,4 to 0,5	0,1 to 0,2
where v _a	is the wall motion to mobilise act is the height of the wall	ive earth pressure	

In condizioni statiche, per i muri di sostegno e per le spalle di ponti e viadotti fondati su pali, si ipotizza che gli spostamenti siano di entità inferiore alla mobilitazione della spinta attiva e si procederà al calcolo delle spinte adottando il coefficiente di spinta a riposo:

$$k_0 = 1 - sen\phi$$

 $La \; spinta \; statica \; esercitata \; dal \; terreno \; a \; tergo \; della \; spalla \; si \; calcola \; secondo \; l'espressione: \; S_a = 1/2 \cdot \gamma \cdot k_0 \cdot H^2$

Risulta quindi:

CARATTERISTICHE GEOMETRICHE SPALLA		
Altezza muro d'ala (m)	5.35 Spessore paraghiaia (m)	0.60
Altezza paramento spalla (m)	5.35 Spessore fondazione (m)	1.80
Altezza totale spalla (m)	7.15 Spessore elevazione (m)	1.80
Altezza paraghiaia (m)	2.00 Spessore muri d'ala (m)	1.30
Larghezza paramento (m)	11.60 Larghezza muri d'ala (m)	5.40
Spessore pavimentazione (m)	0.10 Spessore riempimento a tergo (m)	5.35
Larghezza max fondazione (m)	13.20 Spessore rinterro fondazione (m)	0.80

Angolo attrito terreno ricoprimento (°)	35
Peso specifico ricoprimento (kN/mc)	20.00
Peso specifico pavimentazione (kN/mc)	20.00
Angolo attrito terreno laterale (°)	35
Peso specifico terreno laterale (kN/mc)	19.00
Coeff. spinta in quiete Ko	0.426
Coeff. spinta attiva Ka	0.271
Coeff. spinta sismica Kae	0.698
CLS RcK (MPa) =	40

SPINTA RIPOSO SULLE PARETI DOVUTA AL TERRENO ED AL CARICO SOVRASTANTE

Spinta parete in corrispondenza testa paraghiaia (kN/mq) Spinta parete in corrispondenza linea d'asse soletta di fondo (kN/mq)

0.77 58.70

In condizioni sismiche, l'entità degli spostamenti dipende principalmente dall'intensità dell'azione sismica e dalla rigidezza del sistema pali-terreno; pertanto, la possibilità di ammettere la mobilitazione della spinta attiva è subordinata alla valutazione degli spostamenti dell'opera e potrà essere valutata caso per caso. Cautelativamente, la valutazione degli spostamenti, da effettuarsi calcolando le spinte come somma della spinta attiva in condizioni statiche e dell'incremento di spinta attiva in condizioni sismiche, sarà riferita alla base dell'opera (i.e. alla sommità della palificata) e il confronto con i valori di riferimento per la mobilitazione della spinta attiva sarà effettuato in accordo con lo schema b) della tabella estratta dall'EC7 per terreni addensati (rilevati stradali e ferroviari). L'altezza h rispetto alla quale effettuare la verifica corrisponde all'altezza totale dell'opera su cui agisce la spinta del terreno, comprensiva dello spessore della fondazione.

Qualora, a seguito della verifica dell'entità degli spostamenti, non ricorressero le condizioni di spinta attiva, si procederà al calcolo delle spinte considerando la somma della spinta statica a riposo e dell'incremento di spinta sismica valutata con la teoria di Wood, secondo le indicazioni contenute nell'EC8 – Parte 5 – Annesso E (E.9 "Force due to earth pressure for rigid structures"):

$$\Delta S = k_h \gamma H^2 \qquad \text{con } k_h = a_g S$$

Qualora, a seguito della verifica dell'entità degli spostamenti, ricorressero le condizioni di spinta attiva, si confermerà la correttezza dell'ipotesi di calcolo delle spinte come somma della spinta attiva in condizioni statiche e dell'incremento di spinta attiva in condizioni sismiche.

La spinta statica esercitata dal terreno a tergo della spalla, nell'ipotesi che il terreno stesso si trovi in condizioni di equilibrio limite attivo, si calcola secondo l'espressione: $S_a = 1/2 \cdot \gamma \cdot k_a \cdot H^2$

Per la valutazione del coefficiente di spinta attiva in condizioni statiche si farà in generale riferimento alla formulazione di Muller – Breslau:

$$k_a = \frac{\cos^2(\alpha + \phi)}{\cos^2\alpha \cdot \cos(\alpha - \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta)}{\cos(\alpha - \delta) \cdot \cos(\alpha + \beta)}}\right]^2}$$

$$\alpha = \text{inclinazione del paramento di monte rispetto alla verticale}$$

 ϕ = angolo di attrito interno del terreno

 β = inclinazione del pendio di monte rispetto al piano orizzontale

 δ = angolo di attrito terra-muro

Per la determinazione del coefficiente di spinta attiva si è considerata un'inclinazione nulla del terreno a monte ($\beta = 0$).

La spinta sismica esercitata dal terreno a tergo della spalla, nell'ipotesi che il terreno stesso si trovi in condizioni di equilibrio limite attivo, si calcola secondo l'espressione:

$$S_{aE} = 1/2 \cdot \gamma \cdot k_{aE} \cdot (1 - k_v) \cdot H^2$$

Per la valutazione del coefficiente di spinta attiva in condizioni sismiche si farà riferimento alla formulazione di Mononobe-Okabe:

$$k_{ae} = \frac{\cos(\phi - \alpha - \theta)}{\cos\theta \cdot \cos^2\alpha \cdot \cos(\delta + \alpha + \theta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta - \theta)}{\cos(\delta + \alpha + \theta) \cdot \cos(\beta - \alpha)}}\right]^2} \qquad \text{se } \beta \le \phi - \theta$$

$$k_{ae} = \frac{\cos^2(\phi - \alpha - \theta)}{\cos \theta \cdot \cos^2 \alpha \cdot \cos(\delta + \alpha + \theta)}$$
 se $\beta > \phi - \theta$

 ϕ = angolo di attrito interno del terrapieno;

 ψ = angolo di inclinazione rispetto all'orizzontale della parete interessata del muro;

 β = angolo di inclinazione rispetto all'orizzontale del profilo del terrapieno;

 δ = angolo di attrito terrapieno = 0

dove θ = angolo sismico, definito secondo la seguente espressione (in assenza di falda) in funzione dei coefficienti sismici kh e kv:

$$\tan \theta = \frac{k_h}{1 \mp k_y}$$

I valori dei coefficienti sismici orizzontale k_h e verticale k_v sono stati valutati mediante le espressioni:

$$k_h = \beta_m \cdot a_{max}/g$$

$$k_v = \pm 0.5 \cdot k_h$$

dove

 β_m = coefficiente di riduzione dell'accelerazione massima attesa al sito;

 a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S \cdot a_g = S_S \cdot S_T \cdot a_g$$

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) di cui al paragrafo 3.2.3.2 delle NTC18.

Nella determinazione dei coefficienti sismici kh e kv, per le spalle di ponti e viadotti ferroviari fondate su pali si porrà $\beta_m = 1$ in accordo con l'EC8-5.

Risulta quindi:

Dati per analisi sismic	a NTC:	
Sottosuolo tipo	D	
Categoria topografica	T1	
S -	1.45	
O _s =		
$S_s = S_T =$	1.00	
β_{m} =	1.00	
$a_g/g =$	0.271	
η =	1.000	
F0 =	2.348	
TC* = Cc =	0.431 s	
Cc =	1.90	
TB =	0.273 s	

AZIONE SISMICA SUL TERRENO

Spostamento in testa al palo us = 8.70 mm Primo periodo prorpio T1 = 0.04000 s

 $T1 \le 0.05 \text{ s}$ OK Kh = 0.392 Kv = 0.196

SPINTA ATTIVA SULLE PARETI DOVUTA AL TERRENO ED AL CARICO SOVRASTANTE	
Spinta parete in corrispondenza testa paraghiaia (kN/mq)	0.49
Spinta parete in corrispondenza linea d'asse soletta di fondo (kN/mq)	37.30

Determinata secondo la teoria di Coulomb	us > 0.1% H	verificato		
Incremento spinta paramento (kN/mq)			$\Delta S_{E} =$	29.0
Incremento spinta muro d'ala (kN/mg)			$\Delta S_{F} =$	29.0

6.9 FORZE INERZIALI DOVUTE AL SISMA

Nel caso dei muri di sostegno e delle spalle connesse all'impalcato mediante appoggi scorrevoli, le forze di inerzia agenti sulla massa della struttura e del terreno presente sulla sua fondazione saranno valutate applicando l'accelerazione massima al suolo **ag S**.

Nel caso delle spalle connesse all'impalcato mediante appoggi fissi, qualora non venga effettuata un'analisi di interazione fra spalla, terreno e impalcato, le forze di inerzia agenti possono essere assunte pari al prodotte delle masse per l'accelerazione massima al suolo **ag/g*S** nel caso in cui il sistema costituito da spalla, terreno e impalcato sia considerabile come infinitamente rigido (periodo proprio inferiore a 0,05s); altrimenti, si dovrà fare riferimento all'accelerazione valutata con lo spettro di progetto in corrispondenza del periodo TB (**ag/g* S*F0**).

Le forze d'inerzia legate alla massa strutturale della spalla sono state definite:

- in direzione orizzontale x e y moltiplicando le masse strutturali per il coefficiente sissmico ag/g*S
- in direzione verticale z attraverso la funzione Gravity Multipliers di SAP2000, assegnando al moltiplicatore della gravità il valore a_max(T=0) SLV-V.

Le forze d'inerzia legate al terreno tra i muri d'ala e al di fuori dei muri d'ala presente sulla fondazione della spalla sono state valutate moltiplicando il peso proprio W_t per ag/g*S.

Risulta quindi:

AZIONE SISMICA SU STRUTTURA		
Forza orizzontale su paramento (KN/mg)	17.7	
Forza orizzontale su paraghiaia (kN/mg)	5.9	
Forza orizzontale su muri d'ala (kN/mq)	12.8	
Forza orizzontale su fondazione (KN/m)	31.8	
Inerzia verticale su elevazione (gravity)	0.196	
Forza orizzontale riempimento a tergo (kN/mq)	42.7	
Forza verticale riempimento su fondazione all'interno dei muri d'ala (kN/mq)	21.0	
Forza verticale riempimento su fondazione all'esterno dei muri d'ala (kN/mq)	3.14	

6.10 SPINTA DA SOVRACCARICO ACCIDENTALE

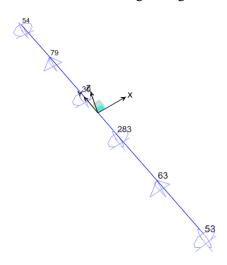
Ai fini del calcolo delle spalle, dei muri d'ala e delle altre parti del ponte a contatto con il terreno, sul rilevato o sul terrapieno si considera applicato lo schema di carico 1 in cui, per semplicita, i carichi tandem possono essere sostituiti da carichi uniformemente distribuiti equivalenti, applicati su una superficie rettangolare larga 3,0 m e lunga 2,20 m.

Schema di carico 1

Pertanto si considera la presenza di un sovraccarico accidentale a tergo della spalla uniformemente distribuito e di intensità pari q=42.60 kPa.

Il valore della spinta risultante al metro è dunque pari ad:

$$S = k_o \cdot q$$


SPINTA SULLE PARETI DOVUTA AL SOVRACCARICO ACCIDENTALE (circolare 2019 C5.1.3.3.5.1)			
Carico stradale concentrato Q1k (kN)	600		
Lunghezza di ripartizione lungo x (m) =	2.20		
Larghezza di ripartizione lungo y (m)	3.00		
Carico stradale distribuito Q1k (kN/mq)	90.91		
Carico stradale q1k (kN/mq)	9.00		
Spinta (kN/mq)	42.60		

6.11 SCARICHI TRASMESSI DA IMPALCATO

Il collegamento tra le spalle e l'impalcato avviene mediante due apparecchio di appoggio fissi e quattro apparecchi di appoggio mobili multidirezionali.

Di seguito si riportano i carichi trasmessi dall' impalcato analizzato in altra relazione di calcolo.

Con riferimento alla figura seguente si riportano gli scarichi massimi dell'impalcato agenti sulla spalla fissa:

FASE 1

TABLE: Joint Reactions SLU-01						
Joint	OutputCase	CaseType	F1	F2	F3	
Text	Text	Text	KN	KN	KN	
30	SLU-01	Combination	0	0	487.425	
53	SLU-01	Combination	0	0	541.841	
54	SLU-01	Combination	0	0	541.841	
63	SLU-01	Combination	0	0	495.212	
79	SLU-01	Combination	0	0	495.212	
283	SLU-01	Combination	0	0	487.425	

TABLE: Joint Reactions SLE							
Joint	OutputCase	CaseType	F1	F2	F3		
Text	Text	Text	KN	KN	KN		
30	SLE	Combination	0	0	342.02		
53	SLE	Combination	0	0	377.184		
54	SLE	Combination	0	0	377.184		
63	SLE	Combination	0	0	347.327		
79	SLE	Combination	0	0	347.327		
283	SLE	Combination	0	0	342.02		

TABLE: Joint Reactions INV SLU STR								
Joint	OutputCase	CaseType	StepType	F1	F2	F3		
Text	Text	Text	Text	KN	KN	KN		
30	INV SLU STR	Combination	Max	0	0	1038.024		
30	INV SLU STR	Combination	Min	0	0	29.778		
53	INV SLU STR	Combination	Max	0	0	866.561		
53	INV SLU STR	Combination	Min	0	0	109.16		
54	INV SLU STR	Combination	Max	0	0	481.566		
54	INV SLU STR	Combination	Min	0	0	64.189		
63	INV SLU STR	Combination	Max	975.02	80.177	1696.753		
63	INV SLU STR	Combination	Min	-904.179	-267.122	-40.9		
79	INV SLU STR	Combination	Max	904.179	117.511	1003.385		
79	INV SLU STR	Combination	Min	-975.02	-199.346	-39.692		
283	INV SLU STR	Combination	Max	0	0	1033.476		
283	INV SLU STR	Combination	Min	0	0	18.96		

FASE 1 + FASE 2

TABLE: Joint Reactions								
Joint	OutputCase	F1	F2	F3				
Text	Text	KN	KN	KN				
30	G1+G2	0.0	0.0	-381.9				
53	G1+G2	0.0	0.0	-469.5				
54	G1+G2	0.0	0.0	-469.5				
63	G1+G2	0.0	0.0	-372.6				
79	G1+G2	0.0	0.0	-372.6				
283	G1+G2	0.0	0.0	-381.9				

SOMMA F3	PESO TOT	a_max	N° FISSI	F1 MAX	F2 MAX
2448.0	4896.0	0.3914	2	958.1	479.1

TABLE: Joint Reactions INV SLU SISMICO								
Joint	OutputCase	CaseType	StepType	F1	F2	F3		
Text	Text	Text	Text	KN	KN	KN		
30	INV SLU SISMICO	Combination	Max	0	0	146.292		
30	INV SLU SISMICO	Combination	Min	0	0	-66.548		
53	INV SLU SISMICO	Combination	Max	0	0	219.756		
53	INV SLU SISMICO	Combination	Min	0	0	-35.029		
54	INV SLU SISMICO	Combination	Max	0	0	219.754		
54	INV SLU SISMICO	Combination	Min	0	0	-35.026		
63	INV SLU SISMICO	Combination	Max	958.143	479.071	133.261		
63	INV SLU SISMICO	Combination	Min	-958.143	-479.071	-82.807		
79	INV SLU SISMICO	Combination	Max	958.143	479.071	133.259		
79	INV SLU SISMICO	Combination	Min	-958.143	-479.071	-82.806		
283	INV SLU SISMICO	Combination	Max	0	0	146.293		
283	INV SLU SISMICO	Combination	Min	0	0	-66.549		

TABLE: Joint Reactions INV-SLERA								
Joint	OutputCase	CaseType	StepType	F1	F2	F3		
Text	Text	Text	Text	KN	KN	KN		
30	INV-SLERA	Combination	Max	0	0	763.153		
30	INV-SLERA	Combination	Min	0	0	21.443		
53	INV-SLERA	Combination	Max	0	0	630.071		
53	INV-SLERA	Combination	Min	0	0	106.44		
54	INV-SLERA	Combination	Max	0	0	344.773		
54	INV-SLERA	Combination	Min	0	0	35.605		
63	INV-SLERA	Combination	Max	722.328	59.624	1253.052		
63	INV-SLERA	Combination	Min	-669.671	-197.533	-34.098		
79	INV-SLERA	Combination	Max	669.671	87.794	739.357		
79	INV-SLERA	Combination	Min	-722.328	-146.814	-33.293		
283	INV-SLERA	Combination	Max	0	0	760.121		
283	INV-SLERA	Combination	Min	0	0	8.628		

TABLE: Joint Reactions INV-SLEFRE								
Joint	OutputCase	CaseType	StepType	F1	F2	F3		
Text	Text	Text	Text	KN	KN	KN		
30	INV-SLEFRE	Combination	Max	0	0	573.4		
30	INV-SLEFRE	Combination	Min	0	0	17.117		
53	INV-SLEFRE	Combination	Max	0	0	485.087		
53	INV-SLEFRE	Combination	Min	0	0	92.364		
54	INV-SLEFRE	Combination	Max	0	0	270.332		
54	INV-SLEFRE	Combination	Min	0	0	38.456		
63	INV-SLEFRE	Combination	Max	542.354	48.457	939.353		
63	INV-SLEFRE	Combination	Min	-501.646	-144.487	-26.01		
79	INV-SLEFRE	Combination	Max	501.646	69.495	553.478		
79	INV-SLEFRE	Combination	Min	-542.354	-106.537	-26.01		
283	INV-SLEFRE	Combination	Max	0	0	573.4		
283	INV-SLEFRE	Combination	Min	0	0	9.779		

TABLE: Joint Reactions INV-SLEQP								
Joint	OutputCase	CaseType	StepType	F1	F2	F3		
Text	Text	Text	Text	KN	KN	KN		
30	INV-SLEQP	Combination	Max	0	0	39.872		
30	INV-SLEQP	Combination	Min	0	0	39.872		
53	INV-SLEQP	Combination	Max	0	0	92.364		
53	INV-SLEQP	Combination	Min	0	0	92.364		
54	INV-SLEQP	Combination	Max	0	0	92.364		
54	INV-SLEQP	Combination	Min	0	0	92.364		
63	INV-SLEQP	Combination	Max	-0.00451	0.826	25.227		
63	INV-SLEQP	Combination	Min	-0.00451	0.065	25.227		
79	INV-SLEQP	Combination	Max	0.004509	-0.067	25.227		
79	INV-SLEQP	Combination	Min	0.004509	-0.827	25.227		
283	INV-SLEQP	Combination	Max	0	0	39.872		
283	INV-SLEQP	Combination	Min	0	0	39.872		

FASE 1 + FASE 2

TABLE: Joint Reactions								
Joint	OutputCase	F1	F2	F3				
Text	Text	KN	KN	KN				
30	INV SLU STR	0.0	0.0	-1525.4				
53	INV SLU STR	0.0	0.0	-1408.4				
54	INV SLU STR	0.0	0.0	-1023.4				
63	INV SLU STR	975.0	267.1	-2192.0				
79	INV SLU STR	975.0	199.3	-1498.6				
283	INV SLU STR	0.0	0.0	-1520.9				

TABLE: Joint Reactions									
Joint	OutputCase	F1	F2	F3					
Text	Text	KN	KN	KN					
30	INV SLU SISMICO	0.0	0.0	-488.3					
53	INV SLU SISMICO	0.0	0.0	-596.9					
54	INV SLU SISMICO	0.0	0.0	-596.9					
63	INV SLU SISMICO	958.1	479.1	-480.6					
79	INV SLU SISMICO	958.1	479.1	-480.6					
283	INV SLU SISMICO	0.0	0.0	-488.3					

TABLE: Joint Reactions								
Joint	OutputCase	F1	F2	F3				
Text	Text	KN	KN	KN				
30	INV-SLERA	0.0	0.0	-1105.2				
53	INV-SLERA	0.0	0.0	-1007.3				
54	INV-SLERA	0.0	0.0	-722.0				
63	INV-SLERA	722.3	197.5	-1600.4				
79	INV-SLERA	722.3	146.8	-1086.7				
283	INV-SLERA	0.0	0.0	-1102.1				

TABLE: Joint Reactions								
Joint	OutputCase	F1	F2	F3				
Text	Text	KN	KN	KN				
30	INV-SLEFRE	0.0	0.0	-915.4				
53	INV-SLEFRE	0.0	0.0	-862.3				
54	INV-SLEFRE	0.0	0.0	-647.5				
63	INV-SLEFRE	542.4	144.5	-1286.7				
79	INV-SLEFRE	542.4	106.5	-900.8				
283	INV-SLEFRE	0.0	0.0	-915.4				

TABLE: Joint Reactions								
Joint	OutputCase	F1	F2	F3				
Text	Text	KN	KN	KN				
30	INV-SLEQP	0.0	0.0	-381.9				
53	INV-SLEQP	0.0	0.0	-469.5				
54	INV-SLEQP	0.0	0.0	-469.5				
63	INV-SLEQP	0.0	0.8	-372.6				
79	INV-SLEQP	0.0	0.8	-372.6				
283	INV-SLEQP	0.0	0.0	-381.9				

6.12 SCARICHI PER SCALZAMENTO

IMPALCATO

Per la verifica a scalzamento si devono considerare gli scarichi sui singoli pali prodotti dalla combinazione eccezionale G1+G2+0.8Q.

A scopo cautelativo ed in favore di sicurezza si considera la combinazione di carico SLERARA sia per l'impalcato che per la spalla:

СОМВО	SLER
G1	1
G2	1
C1-SCHEMA-1	1
C2-SCHEMA-2	1
C3-SCHEMA-3	1
C1-FRE	1
C2-FRE	1
C3-FRE	1
Q5	1
Qw	0.6
TEMP	0.6
Ritiro	0.6

СОМВО	SLER	SPALLA	NW01
DEAD	1		
PERM	1		
SPT_STAT KO	1		
SPQ_STAT	1		
REAZ_IMP_SLER	1		
TERMICO	0.6		
RITIRO	1		

SCARICHI PALI - SPALLA NW01				
N=	3154	KN		
V=	529	KN		

Per la verifica a scalzamento si rimanda a specifica relazione di calcolo: elaborato RS3H.0.2.D.78.RH.GE.00.0.5.006.A.

7 COMBINAZIONI DI CARICO

Si riportano di seguito le combinazioni di carico utilizzate nei calcoli. Ai fini delle verifiche agli stati limite, in accordo con le NTC18, si definiscono le seguenti combinazioni di:

- Combinazione FONDAMENTALE, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} G_1 + \gamma_{G2} G_2 + \gamma_{G3} G_3 + \gamma_{P} \cdot P + \gamma_{Q1} Q_{k1} + \Psi_{02} \cdot \gamma_{Q2} \cdot Q_{k2} + \Psi_{03} \cdot \gamma_{Q3} \cdot Q_{k3} + \dots$$

- Combinazione RARA, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + G_3 + P + Q_{k1} + \Psi_{02} \cdot Q_{k2} + \Psi_{03} \cdot Q_{k3} + \dots$$

- Combinazione FREQUENTE, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + G_3 + P + \Psi_{11} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} + \dots$$

- Combinazione QUASI PERMANENTE, generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + G_3 + P + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} + \dots$$

- Combinazione SISMICA, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica:

$$E + G_1 + G_3 + P + \Psi_{21} \cdot Q_{k1} + \Psi_{22} \cdot Q_{k2} + \Psi_{23} \cdot Q_{k3} + \dots$$

Nelle combinazioni per le verifiche allo stato limite di esercizio (SLE), ovvero quelle rare, frequenti e quasi permanenti, si intende che vengono omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 . Le verifiche agli stati limite ultimi sono eseguite facendo riferimento

allo stato limite ultimo di tipo strutturale STR ovvero per il raggiungimento della resistenza ultima negli elementi strutturali.

Come anticipato precedentemente gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 \text{+} G_2 \text{+} \textstyle \sum_i \! \psi_{2i} \text{\times} Q_{ki}.$$

Il valore assunto per il coefficiente ψ_{2i} per i carichi mobili è pari a ψ_{2i} = 0.0.

Le combinazioni allo stato limite ultimo SLU fanno riferimento in questa relazione al solo gruppo denominato STR poiché le verifiche riguardano solo l'impalcato.

I coefficienti di combinazione γ_G , γ_Q e Ψ sono ricavati dalle tabelle delle NTC 18 (tabella 5.I.V e tabella 5.I.VI di NTC18).

Tabella 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	$\gamma_{\rm G2}$	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2},\gamma_{\epsilon 3},\gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

(3) 1,30 per instabilità in strutture con precompressione esterna
(4) 1,20 per effetti locali

	nation Definitions			nation Definitions	
ComboName	CaseName	ScaleFactor	ComboName		ScaleFactor
SLU1	DEAD	1.35	SLV2	TERMICO	0.5
SLU1	PERM	1.35	SLV3	DEAD	1
SLU1	SPT_STAT KO	1.35	SLV3	PERM	1
SLU1	SPQ_STAT	1.35	SLV3	SPT_STAT Ka	1
SLU1	REAZ_IMP_SLU STAT	1	SLV3	SPT_SISM_x_+	0.3
SLU1	TERMICO	1.5	SLV3	SPT_SISM_y_+	1
SLU1	RITIRO	1.2	SLV3	SPT_SISM_y	0
SLU2	DEAD	1.35	SLV3	SPQ_SISM_x_+	0.3
SLU2	PERM	1.35	SLV3	SPQ_SISM_y_+	1
SLU2	SPT_STAT KO	1.35	SLV3	SPQ_SISM_y	0
SLU2	SPQ_STAT	1.35	SLV3	INERZIAT_SISM_z	-0.3
SLU2	REAZ_IMP_SLU STAT	1	SLV3	INERZIAT_SISM_x	0.3
SLU2	TERMICO	1.5	SLV3	INERZIAT_SISM_y_+	1
SLU2	RITIRO	0	SLV3	INERZIAS_SISM_z	-0.3
SLV1	DEAD	1	SLV3	INERZIAS_SISM_x	0.3
SLV1	PERM	1	SLV3	INERZIAS_SISM_y_+	1
SLV1	SPT_STAT Ka	1	SLV3	REAZ_IMP_SISM_Z	-0.3
SLV1	SPT_SISM_x_+	1	SLV3	REAZ_IMP_SISM_X	0.3
SLV1	SPT_SISM_y_+	0.3	SLV3	REAZ_IMP_SISM_Y	1
SLV1	SPT_SISM_y	0.5	SLV3	TERMICO	0.5
SLV1	SPQ_SISM_x_+	1	SLV4	DEAD	1
SLV1	SPQ_SISM_y_+	0.3	SLV4	PERM	1
			SLV4	SPT_STAT Ka	1
SLV1	SPQ_SISM_y	0	SLV4	SPT_SISM_x_+	0.3
SLV1	INERZIAT_SISM_z	-0.3	SLV4	SPT_SISM_y_+	0
SLV1	INERZIAT_SISM_x	1	SLV4	SPT_SISM_y	1
SLV1	INERZIAT_SISM_y_+	0.3	SLV4	SPQ_SISM_x_+	0.3
SLV1	INERZIAS_SISM_z	-0.3	SLV4	SPQ_SISM_y_+	0
SLV1	INERZIAS_SISM_x	1	SLV4	SPQ_SISM_y	1
SLV1	INERZIAS_SISM_y_+	0.3	SLV4	INERZIAT_SISM_z	0.3
SLV1	REAZ_IMP_SISM_Z	-0.3	SLV4	INERZIAT_SISM_x	0.3
SLV1	REAZ_IMP_SISM_X	1	SLV4	INERZIAT_SISM_y	1
SLV1	REAZ_IMP_SISM_Y	0.3	SLV4	INERZIAS_SISM_z	0.3
SLV1	TERMICO	0.5	SLV4	INERZIAS SISM x	0.3
SLV2	DEAD	1	SLV4	INERZIAS_SISM_y	1
SLV2	PERM	1	SLV4	REAZ_IMP_SISM_Z	0.3
SLV2	SPT_STAT Ka	1	SLV4	REAZ_IMP_SISM_X	0.3
SLV2	SPT_SISM_x_+	1	SLV4	REAZ_IMP_SISM_Y	-1
SLV2	SPT_SISM_y_+	0	SLV4	TERMICO	0.5
SLV2	SPT_SISM_y	0.3	SLV5	DEAD	1
SLV2	SPQ_SISM_x_+	1	SLV5	PERM	1
SLV2	SPQ_SISM_y_+	0	SLV5	SPT_STAT Ka	1
SLV2	SPQ_SISM_y	0.3	SLV5	SPT_SISM_x_+	0.3
SLV2	INERZIAT_SISM_z	0.3	SLV5	SPT_SISM_y_+	0.3
SLV2	INERZIAT_SISM_x	1	SLV5	SPT_SISM_y	0.5
SLV2	INERZIAT_SISM_y	0.3	SLV5	SPQ_SISM_x_+	0.3
SLV2	INERZIAS_SISM_z	0.3	SLV5	SPQ_SISM_y_+	0.3
SLV2	INERZIAS_SISM_x	1	SLV5	SPQ_SISM_y	0.5
SLV2	INERZIAS_SISM_y	0.3	SLV5	INERZIAT_SISM_z	-1
SLV2	REAZ IMP SISM Z	0.3	SLV5	INERZIAT_SISM_Z	0.3
	REAZ_IMP_SISM_X	1			0.3
SLV2 SLV2	REAZ_IMP_SISM_X REAZ_IMP_SISM_Y	0.3	SLV5 SLV5	INERZIAT_SISM_y_+ INERZIAS_SISM_z	-1
			at va	INTERZIAN NINTER	-1

TABLE: Combin	nation Definitions					
ComboName	CaseName	ScaleFactor		nbination Definitions		
SLV5	INERZIAS_SISM_z	-1	ComboNar		ScaleFactor	
SLV5	INERZIAS_SISM_x	0.3	SLEF2	REAZ_IMP_SLEF	1	
SLV5	INERZIAS_SISM_y_+	0.3	SLEF2	TERMICO	0.6	
SLV5	REAZ_IMP_SISM_Z	-1	SLEF2	RITIRO	0	
SLV5	REAZ_IMP_SISM_X	0.3	SLV10	DEAD	1	
SLV5	REAZ_IMP_SISM_Y	0.3	SLV10	PERM	1	
SLV5	TERMICO	0.5	SLV10	SPT_STAT Ka	1	
SLV6	DEAD	1	SLV10	SPT_SISM_x_+	0.3	
SLV6	PERM	1	SLV10	SPT_SISM_y_+	0	
SLV6	SPT_STAT Ka	1	SLV10	SPT_SISM_y	1	
SLV6	SPT_SISM_x_+	0.3	SLV10	SPQ_SISM_x_+	0.3	
SLV6	SPT_SISM_y_+	0	SLV10	SPQ_SISM_y_+	0	
SLV6	SPT_SISM_y	0.3	SLV10	SPQ_SISM_y	1	
SLV6	SPQ_SISM_x_+	0.3	SLV10	INERZIAT_SISM_z	0.3	
SLV6	SPQ_SISM_y_+	0	SLV10	INERZIAT_SISM_x	0.3	
SLV6	SPQ_SISM_y	0.3	SLV10	INERZIAT_SISM_y	1	
SLV6	INERZIAT SISM z	1	SLV10	INERZIAS_SISM_z	0.3	
SLV6	INERZIAT SISM x	0.3	SLV10	INERZIAS_SISM_x	0.3	
SLV6	INERZIAT SISM y -	0.3	SLV10	INERZIAS_SISM_y	1	
SLV6	INERZIAS_SISM_z	1	SLV10	REAZ_IMP_SISM_Z	0.3	
SLV6	INERZIAS_SISM_x	0.3	SLV10	REAZ_IMP_SISM_X	0.3	
SLV6	INERZIAS_SISM_y	0.3	SLV10	REAZ_IMP_SISM_Y	-1	
SLV6	REAZ IMP SISM Z	1	SLV10	TERMICO	0.5	
SLV6	REAZ_IMP_SISM_X	0.3	SLV7	DEAD	1	
SLV6	REAZ_IMP_SISM_Y	0.3	SLV7	PERM	1	
SLV6	TERMICO	0.5	SLV7	SPT_STAT Ka	1	
SLER1	DEAD	1	SLV7	SPT_SISM_x_+	1	
SLER1	PERM	1	SLV7	SPT_SISM_y_+	0.3	
SLER1	SPT_STAT KO	1	SLV7	SPT_SISM_y	0	
SLER1	SPQ_STAT	1	SLV7	SPQ_SISM_x_+	1	
SLER1	REAZ_IMP_SLER	1	SLV7	SPQ_SISM_y_+	0.3	
SLER1	TERMICO	1	SLV7	SPQ_SISM_y	0	
SLER1	RITIRO	1	SLV7	INERZIAT_SISM_z	-0.3	
SLER2		1	SLV7	INERZIAT_SISM_x	1	
SLER2	DEAD PERM	1	SLV7	INERZIAT_SISM_y_+	0.3	
			SLV7	INERZIAS_SISM_z	-0.3	
SLER2	SPT_STAT KO	1	SLV7	INERZIAS_SISM_x	1	
SLER2	SPQ_STAT	1	SLV7	INERZIAS_SISM_y_+	0.3	
SLER2	REAZ_IMP_SLER	1	SLV7	REAZ_IMP_SISM_Z	-0.3	
SLER2	TERMICO	1	SLV7	REAZ_IMP_SISM_X	1	
SLER2	RITIRO	0	SLV7	REAZ_IMP_SISM_Y	0.3	
SLEF1	DEAD	1	SLV7	TERMICO	0.5	
SLEF1	PERM	1	SLV8	DEAD	1	
SLEF1	SPT_STAT KO	1	SLV8	PERM	1	
SLEF1	SPQ_STAT	0.75	SLV8	SPT_STAT Ka	1	
SLEF1	REAZ_IMP_SLEF	1	SLV8	SPT_SISM_x_+	1	
SLEF1	TERMICO	0.6	SLV8	SPT_SISM_y_+	0	
SLEF1	RITIRO	1	SLV8	SPT_SISM_y	0.3	
SLEF2	DEAD	1	SLV8	SPQ_SISM_x_+	1	
SLEF2	PERM	1	SLV8	SPQ_SISM_y_+	0	
SLEF2	SPT_STAT KO	1	SLV8	SPQ_SISM_y	0.3	
SLEF2	SPQ_STAT	0.75	SLV8	INERZIAT_SISM_z	0.3	
SLEF2	REAZ_IMP_SLEF	1	SLV8	INERZIAT_SISM_x	1	
SLEF2	TERMICO	0.6	SLV8	INERZIAT_SISM_y	0.3	

	nation Definitions			nation Definitions	
ComboName		ScaleFactor	ComboName		ScaleFactor
SLV8	INERZIAT_SISM_x	1	SLV12	SPT_SISM_y_+	0
SLV8	INERZIAT_SISM_y	0.3	SLV12	SPT_SISM_y	0.3
SLV8	INERZIAS_SISM_z	0.3	SLV12	SPQ_SISM_x_+	0.3
SLV8	INERZIAS_SISM_x	1	SLV12	SPQ_SISM_y_+	0
SLV8	INERZIAS_SISM_y	0.3	SLV12	SPQ_SISM_y	0.3
SLV8	REAZ_IMP_SISM_Z	0.3	SLV12	INERZIAT_SISM_z	1
SLV8	REAZ_IMP_SISM_X	1	SLV12	INERZIAT_SISM_x	0.3
SLV8	REAZ_IMP_SISM_Y	-0.3	SLV12	INERZIAT_SISM_y	0.3
SLV8	TERMICO	0.5	SLV12	INERZIAS_SISM_z	1
SLV9	DEAD	1	SLV12	INERZIAS_SISM_x	0.3
SLV9	PERM	1	SLV12	INERZIAS_SISM_y	0.3
SLV9	SPT_STAT Ka	1	SLV12	REAZ_IMP_SISM_Z	1
SLV9	SPT_SISM_x_+	0.3	SLV12	REAZ_IMP_SISM_X	0.3
SLV9	SPT_SISM_y_+	1	SLV12	REAZ_IMP_SISM_Y	-0.3
SLV9	SPT_SISM_y	0	SLV12	TERMICO	0.5
SLV9	SPQ_SISM_x_+	0.3	SLER3	DEAD	1
SLV9	SPQ_SISM_y_+	1	SLER3	PERM	1
SLV9	SPQ_SISM_y	0	SLER3	SPT_STAT KO	1
SLV9	INERZIAT_SISM_z	-0.3	SLER3	SPQ_STAT	1
SLV9	INERZIAT_SISM_x	0.3	SLER3	REAZ_IMP_SLER	1
SLV9	INERZIAT_SISM_y_+	1	SLER3	TERMICO	0
SLV9	INERZIAS_SISM_z	-0.3	SLER3	RITIRO	1
SLV9	INERZIAS_SISM_x	0.3	SLER4	DEAD	1
SLV9	INERZIAS_SISM_y_+	1	SLER4	PERM	1
SLV9	REAZ_IMP_SISM_Z	-0.3	SLER4	SPT_STAT KO	1
SLV9	REAZ_IMP_SISM_X	0.3	SLER4	SPQ_STAT	1
SLV9	REAZ_IMP_SISM_Y	1	SLER4	REAZ IMP SLER	1
SLV9	TERMICO	0.5	SLER4	TERMICO	0
SLV11	DEAD	1	SLER4	RITIRO	0
SLV11	PERM	1	SLEF3	DEAD	1
SLV11	SPT_STAT Ka	1	SLEF3	PERM	1
SLV11	SPT_SISM_x_+	0.3	SLEF3	SPT_STAT KO	1
SLV11	SPT_SISM_y_+	0.3	SLEF3	SPQ_STAT	0.75
SLV11	SPT_SISM_y	0	SLEF3	REAZ_IMP_SLEF	1
SLV11	SPQ_SISM_x_+	0.3	SLEF3	TERMICO	0
SLV11	SPQ_SISM_y_+	0.3	SLEF3	RITIRO	1
SLV11	SPQ_SISM_y	0	SLEF4	DEAD	1
SLV11	INERZIAT_SISM_z	-1	SLEF4	PERM	1
SLV11	INERZIAT_SISM_x	0.3	SLEF4	SPT_STAT_K0	1
SLV11	INERZIAT_SISM_y_+	0.3	SLEF4	SPQ_STAT	0.75
SLV11	INERZIAS_SISM_z	-1	SLEF4	REAZ_IMP_SLEF	1
SLV11	INERZIAS_SISM_x	0.3	SLEF4	TERMICO	0
SLV11	INERZIAS_SISM_y_+	0.3	SLEF4	RITIRO	0
SLV11	REAZ IMP SISM Z	-1	SLU3	DEAD	1.35
SLV11	REAZ_IMP_SISM_X	0.3	SLU3	PERM	1.35
SLV11	REAZ_IMP_SISM_Y	0.3			
SLV11	TERMICO	0.5	SLU3	SPT_STAT KO	1.35
SLV11	DEAD	1	SLU3	SPQ_STAT	1.35
SLV12	PERM	1	SLU3	REAZ_IMP_SLU STAT	1
SLV12	SPT_STAT Ka	1	SLU3	TERMICO	0
	SPT_SISM_x_+	0.3	SLU3	RITIRO	1.2
SI V/12		0.5	SLU4	DEAD	1.35
SLV12 SLV12	SPT_SISM_y_+	0	SLU4	PERM	1.35

TABLE: Combination Definitions				
ComboName	CaseName	ScaleFactor		
SLU4	SPT_STAT KO	1.35		
SLU4	SPQ_STAT	1.35		
SLU4	REAZ_IMP_SLU STAT	1		
SLU4	TERMICO	0		
SLU4	RITIRO	0		
SLU5	DEAD	1		
SLU5	PERM	1		
SLU5	SPT_STAT KO	1		
SLU5	SPQ_STAT	0		
SLU5	REAZ_IMP_SLU STAT	1		
SLU6	DEAD	1		
SLU6	PERM	1		
SLU6	SPT_STAT KO	1		
SLU6	SPQ_STAT	1		
SLU6	REAZ_IMP_SLU STAT	1		
SLEQP1	DEAD	1		
SLEQP1	PERM	1		
SLEQP1	SPT_STAT KO	1		
SLEQP1	SPQ_STAT	0		
SLEQP1	REAZ_IMP_SLEQP	1		
SLEQP1	TERMICO	0.5		
SLEQP1	RITIRO	1		
SLEQP2	DEAD	1		
SLEQP2	PERM	1		
SLEQP2	SPT_STAT KO	1		
SLEQP2	SPQ_STAT	0		
SLEQP2	REAZ_IMP_SLEQP	1		
SLEQP2	TERMICO	0.5		
SLEQP2	RITIRO	0		
SLEQP3	DEAD	1		
SLEQP3	PERM	1		
SLEQP3	SPT_STAT KO	1		
SLEQP3	SPQ_STAT	0		
SLEQP3	REAZ_IMP_SLEQP	1		
SLEQP3	TERMICO	0		
SLEQP3	RITIRO	1		
SLEQP4	DEAD	1		
SLEQP4	PERM	1		
SLEQP4	SPT_STAT KO	1		
SLEQP4	SPQ_STAT	0		
SLEQP4	REAZ_IMP_SLEQP	1		
SLEQP4	TERMICO	0		
SLEQP4	RITIRO	0		

8 MODELLAZIONE NUMERICA

Il calcolo della struttura è stato svolto utilizzando il programma di calcolo SAP 2000 V. 21, schematizzando l'intera struttura con un modello tridimensionale agli elementi finiti.

Tutti gli elementi strutturali della spalla sono stati descritti come elementi bidimensionali a shell, mentre la palificata di sostegno è stata descritta con elementi monodimensionali a trave (frame). Al fine di schematizzare l'interazione terreno – struttura, si sono assegnate, ai nodi di estremità dei frame dei pali, molle elastiche alla Winkler in entrambe le direzioni orizzontali, x e y, per tutto lo sviluppo dei pali.

Nella figura di seguito riportata si evidenzia il modello tridimensionale implementato.

Gli assi di riferimento adottati sono:

- x = asse longitudinale rispetto all'asse del viadotto
- y = asse trasversale rispetto all'asse del viadotto
- z = asse verticale

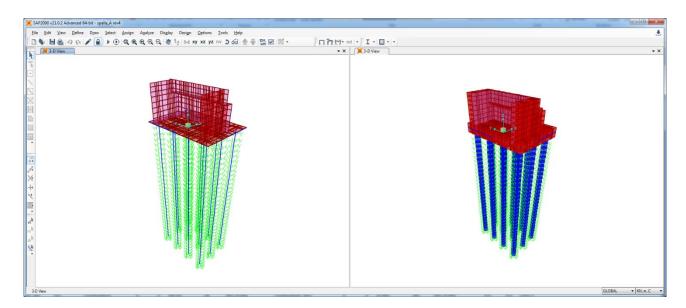


Figura 5: Modellazione tridimensionale agli Elementi Finiti - Spalla

8.1 Codice di calcolo

L'analisi della struttura è stata condotta con un programma agli elementi finiti:

Titolo SAP2000

Versione 21.0.2 advanced

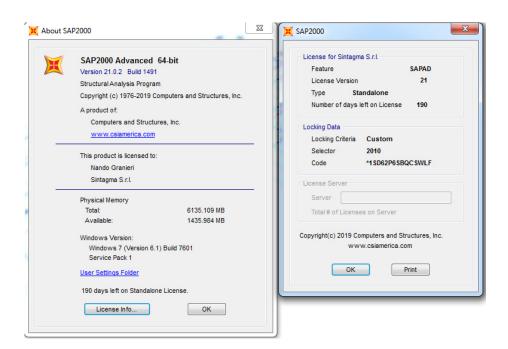
Distributore CSI Italia

8.2 Tipo di analisi svolta (paragrafo 10.2 del DM 17-01-18)

L'analisi strutturale è condotta con l'ausilio di un codice di calcolo automatico SAP 2000 v21.1.0.

Gli elementi costituenti la struttura delle spalle sono stati modellati utilizzando elementi bididimensionali (shell) mentre per i pali degli elementi *frame* e sono stati definiti avvalendo l'ipotesi di materiale elastico lineare isotropo in un campo di piccoli spostamenti e deformazioni.

Il calcolo statico della struttura e la verifica delle strutture è stato eseguito secondo *i metodi della scienza e della tecnica delle costruzioni*.


L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica lineare con forze equivalenti secondo le disposizioni del capitolo 7 del DM 2018.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Il codice di calcolo SAP è fornito dalla C.S.I. Italia e correttamente licenziato nella versione 21.1.0

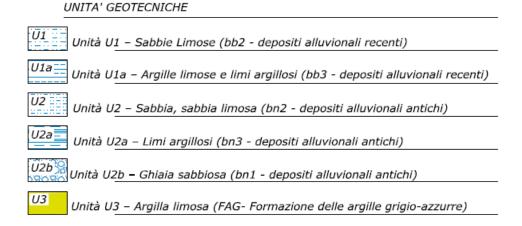
8.3 Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche. degli algoritmi impiegati e l'individuazione dei campi d'impiego. Come detto, per la risoluzione del modello di calcolo si e' fatto uso del programma di calcolo SAP2000 NL. Di seguito si riporta una schermata con tutte le informazioni del programma, del produttore e della licenza d'uso:

Il produttore fornisce idonea documentazione utile al corretto uso del programma. Sul sito del produttore e' inoltre possibile scaricare la necessaria documentazione utile alla validazione del programma.

8.4 Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli. eseguiti con metodi tradizionali.


Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

8.5 Parametri modello geotecnico NW01

La tabella che segue fornisce la stratigrafia di riferimento per il dimensionamento delle opere.

PK 0-	+766,98	PK 0+	785,88
	NW	01**	
Pa	rallelo a VI02	(Bretella CT-	SR)
	strati	grafia	
	-		
U1	7.5		
U1a	5.5		
U2a	9		
U2	1.5		
U2a	4.5		
U2	10		
	sono	laggi	
nome	PK (CT-SR)	Q.ta	D ASSE
SD22	3+007,61	8.57	28 dx
SD35	2+927,67	9.16	1 dx
SH1	2+937,72	10.33	23 sx
S2e	2+994,12	8.60	1 dx

Tabella 1 – Stratigrafia di riferimento NW01

8.5.1 Rigidezza delle molle orizzontali dei pali

La rigidezza delle molle è stata valutata secondo le indicazioni contenute in Viggiani (1999).

Per la valutazione degli spostamenti dei pali di fondazione, ai fini del controllo dell'attivazione della condizione di spinta attiva del terreno, è stato determinato il valore del coefficiente k_h .

Per terreni coesivi, Broms suggerisce di correlare il valore di k_h al modulo secante E_{50} , che a sua volta può essere correlato alla coesione non drenata c_u . Si ha quindi:

 $k_h = 400 c_u/d$

Nel caso di terreni non coesivi l'andamento del modulo di reazione orizzontale varia linearmente con la profondità secondo la seguente espressione

 $k_h = n_h z/d$

dove n_h per sabbie immerse caratterizzate da uno stato di addensamento medio, è pari a 5000 kN/m³.

I valori della rigidezza del terreno sono applicati sui pali tenedo conto delle distanza tra due nodi consecutivi dell'elemento frame (1.0 m) con cui è stato schamtizzato il palo nella modellazione.

d (m)	1.2	
n _h (kN/m³)	5000	U1 -U2 - U2B
cu (kN/m2)	45	U1A
cu (kN/m2)	40	U2A

	z (m)	k _h (kN/m³)	k _h (kN/m)
	0	0	0
	1	5000	3000
	2	10000	12000
	3	15000	18000
U1	4	20000	24000
	5	25000	30000
	6	30000	36000
	7	35000	42000
	8	15000	18000
	9	15000	18000
	10	15000	18000
U1A	11	15000	18000
	12	15000	18000
	13	15000	18000
	14	13333	16000
	15	13333	16000
	16	13333	16000
	17	13333	16000
U2A	18	13333	16000
	19	13333	16000
	20	13333	16000
	21	13333	16000
	22	13333	16000
	23	115000	138000
U2	24	120000	144000
	25	13333	16000
	26	13333	16000
U2A	27	13333	16000
	28	13333	16000
	29	13333	16000
	30	150000	180000
	31	155000	186000
	32	160000	192000
	33	165000	198000
	34	170000	204000
U2	35	175000	210000
	36	180000	216000
	37	185000	222000
	38	190000	228000
	39	195000	234000
	40	200000	240000

9 SPOSTAMENTI IN TESTA AI PALI

Per il calcolo della spinta del terreno sulla spalla, occorre tenere presente che la mobilitazione della spinta attiva avviene per spostamenti di entità contenuta, come si evince dalla seguente tabella desunta dall'EC7 - Parte 1 - Annesso C (C.3 "Movements to mobilise limit earth pressures):

Kind of V_a/h V_a/h wall movement loose soil dense soil % % 0,4 to 0,5 0,1 to 0,2 0,05 to 0,1 b) 0,2 0,8 to 1,0 0,2 to 0,5 0,4 to 0,5

Table C.1 — Ratios v_a/h

Di seguito si riportano gli spostamenti lungo X (in direzione 1) in testa ai pali della spalla considerando le forze agenti sul modello in direzione X come riportato nella seguente tabella:

is the height of the wall

	DEAD	1
	PERM	1
	PESO IMPALCATO	1
Combo testa palo	SPT_STAT Ka	1
Combo testa paio	SPT_SISM_x_+	1
	SPQ_SISM_x_+	1
	INERZIAT_SISM_x	1
	INERZIAS_SISM_x	1

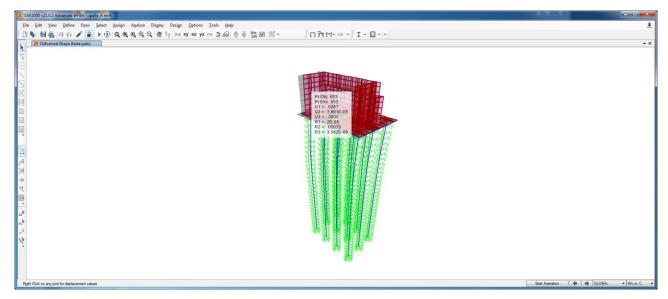


Figura 6 – Spostmanto in testa ai pali

TABLE: Joint Displacements			minU1	Н	Ulim=0.1%H		
Joint	OutputCase	CaseType	U1	mm	m	mm	
Text	Text	Text	m	8.70	7.15	7.15	verificato
653	testa palo	Combination	0.008695				
682	testa palo	Combination	0.008707				
711	testa palo	Combination	0.008707				
740	testa palo	Combination	0.008695				
769	testa palo	Combination	0.008731				
798	testa palo	Combination	0.008731				
827	testa palo	Combination	0.008745				
856	testa palo	Combination	0.008745				
885	testa palo	Combination	0.008769				
914	testa palo	Combination	0.008775				
943	testa palo	Combination	0.008775				
972	testa palo	Combination	0.008769				
711 740 769 798 827 856 885 914 943	testa palo	Combination	0.008707 0.008695 0.008731 0.008745 0.008745 0.008769 0.008775 0.008775				

Come si può vedere lo spostamento minimo in testa ai pali è sempre maggiore del limite richiesto.

10 ANALISI MODALE

Per l'analisi modale della spalla si considera il modello di calcolo precedente senza il contributo dei pali di fondazione al posto dei quali si inseriscono degli appoggi fissi. Le masse provenienti dall'impalcato coerentemente allo schema di vincoli degli apparecchi di appoggio tra spalla e impalcato. Con lo schema di vincoli degli apparecchi di appoggio della spalla fissa riportato di seguito le masse applicate ai nodi sono quelle della seguente tabella:

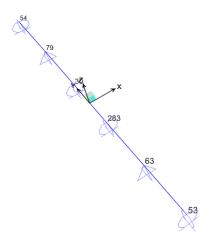


Figura 7 – Nodi impalcato

FASE 1

TABLE: Joint Reactions SLU-01							
Joint	OutputCase	CaseType	F1	F2	F3		
Text	Text	Text	KN	KN	KN		
30	G1+G2	Combination	0	0	342.02		
53	G1+G2	Combination	0	0	377.184		
54	G1+G2	Combination	0	0	377.184		
63	G1+G2	Combination	0	0	347.327		
79	G1+G2	Combination	0	0	347.327		
283	G1+G2	Combination	0	0	342.02		

FASE 2

TABLE: Joint Reactions INV SLU STR							
Joint	OutputCase	CaseType	F1	F2	F3		
Text	Text	Text	KN	KN	KN		
30	G1+G2	LinStatic	0	0	39.872		
53	G1+G2	LinStatic	0	0	92.364		
54	G1+G2	LinStatic	0	0	92.364		
63	G1+G2	LinStatic	0	0	25.227		
79	G1+G2	LinStatic	0	0	25.227		
283	G1+G2	LinStatic	0	0	39.872		

FASE 1 + FASE 2

TABLE: Joint Reactions							
Joint	OutputCase	F1	F2	F3			
Text	Text	KN	KN	KN			
30	G1+G2	0.0	0.0	-381.9			
53	G1+G2	0.0	0.0	-469.5			
54	G1+G2	0.0	0.0	-469.5			
63	G1+G2	0.0	0.0	-372.6			
79	G1+G2	0.0	0.0	-372.6			
283	G1+G2	0.0	0.0	-381.9			

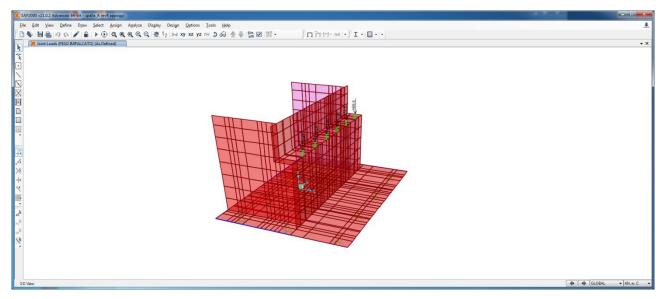


Figura 8 – Masse concentrate ai nodi degli apparecchi di appoggio

Le masse associate al peso proprio della struttura sono automaticamente calcolate dal software agli elementi finiti. La massa dei pali non è considerata nei calcoli.

Si riportano i risultati dell'analisi modale con la deformata modale dei primi 3 modi.

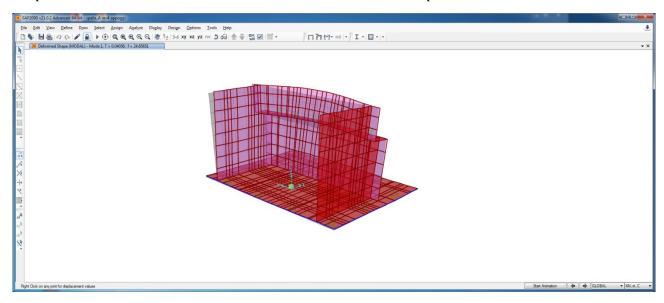


Figura 9 - Modo 1 T1 = 0.04056s

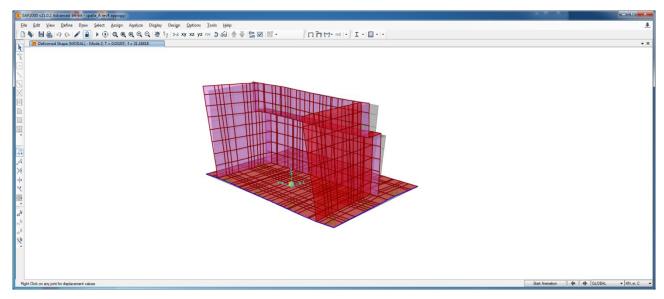


Figura 10 - Modo 2 T2 = 0.03207s

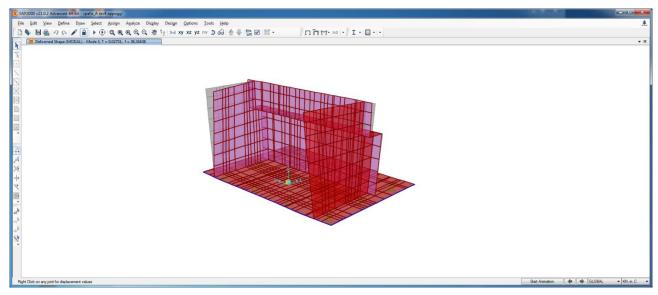


Figura 11 - Modo 3 T3 = 0.02751s

TABLE: Moda	TABLE: Modal Participating Mass Ratios								
OutputCase	StepType	StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
MODAL	Mode	1	0.040557	0.27219	3.297E-08	0.00018	0.27219	3.297E-08	0.00018
MODAL	Mode	2	0.032068	5.55E-08	0.18387	5.265E-08	0.27219	0.18387	0.00018
MODAL	Mode	3	0.027515	0.011	1.571E-09	0.00022	0.28319	0.18387	0.0004
MODAL	Mode	4	0.025932	1.616E-08	0.01037	4.575E-10	0.28319	0.19423	0.0004
MODAL	Mode	5	0.0204	9.147E-08	0.14232	2.776E-07	0.28319	0.33656	0.0004
MODAL	Mode	6	0.020095	0.02449	9.279E-07	0.11037	0.30768	0.33656	0.11077
MODAL	Mode	7	0.016052	0.01459	4.587E-08	0.58684	0.32227	0.33656	0.6976
MODAL	Mode	8	0.013853	8.211E-09	0.01307	5.001E-09	0.32227	0.34962	0.6976
MODAL	Mode	9	0.013225	0.00169	0.00001048	0.12857	0.32396	0.34963	0.82617
MODAL	Mode	10	0.013018	6.795E-07	0.04911	0.00012	0.32396	0.39874	0.82628
MODAL	Mode	11	0.012986	0.00016	0.00011	0.01138	0.32412	0.39886	0.83766
MODAL	Mode	12	0.012693	0.01169	5.594E-07	0.00061	0.33581	0.39886	0.83828
MODAL	Mode	13	0.01079	0.00264	0.00000161	0.00621	0.33844	0.39886	0.84449
MODAL	Mode	14	0.010524	5.623E-07	0.00087	8.658E-07	0.33845	0.39973	0.84449
MODAL	Mode	15	0.01046	0.00075	8.782E-10	0.000003861	0.33919	0.39973	0.8445
MODAL	Mode	16	0.010017	0.02951	3.204E-07	0.00386	0.36871	0.39973	0.84836
MODAL	Mode	17	0.009609	3.569E-08	0.01513	0.0000033	0.36871	0.41486	0.84836
MODAL	Mode	18	0.009441	6.447E-07	0.0555	5.285E-07	0.36871	0.47036	0.84836
MODAL	Mode	19	0.009239	0.00804	6.183E-07	0.00689	0.37674	0.47036	0.85525
MODAL	Mode	20	0.009214	0.00001211	0.14345	8.558E-08	0.37676	0.61381	0.85525
MODAL	Mode	21	0.009009	0.46082	0.000003768	0.00124	0.83757	0.61381	0.85649
MODAL	Mode	22	0.008782	1.544E-07	0.02914	1.499E-08	0.83757	0.64295	0.85649
MODAL	Mode	23	0.008592	0.03628	0.000004954	0.00157	0.87385	0.64296	0.85805
MODAL	Mode	24	0.008389	5.652E-09	0.0000945	0.000003367	0.87385	0.64305	0.85806
MODAL	Mode	25	0.008264	0.0002	0.000001763	0.00051	0.87406	0.64306	0.85856

10.1 Criteri di verifica

Si riportano di seguito i criteri di verifica per il dimensionamento degli elementi strutturali che compongono la spalla.

ELEMENTI IN C.A.

Verifiche allo slu

Verifiche a pressoflessione

Le verifiche a pressoflessione vengono condotte confrontando le resistenze ultime e le sollecitazioni massime agenti, valutando il corrispondente fattore di sicurezza (CS) come rapporto tra la sollecitazione resistente e la massima agente.

Le verifiche flessionali allo SLU sono state eseguite adottando le seguenti ipotesi:

- Conservazione delle sezioni piane;
- Perfetta aderenza tra acciaio e calcestruzzo:
- Resistenza a trazione del calcestruzzo nulla;
- Rottura del calcestruzzo determinata dal raggiungimento della sua capacità deformativa ultima a compressione;
- Rottura dell'armatura tesa determinata dal raggiungimento della sua capacità deformativa ultima;

Le tensioni nel calcestruzzo e nell'armatura sono state dedotte a partire dalle deformazioni utilizzando i rispettivi diagrammi tensione-deformazione.

Per quanto attiene la legge σ - ϵ del calcestruzzo si è utilizzata una curva parabola-rettangolo, considerando solo la porzione compressa e con ϵ c2=0,2% ed ϵ cu=0,35%.

Per quanto riguarda l'acciaio si è assunto un diagramma bilineare elastico-perfettamente elastico finito con εcu=1,0%.

Verifiche a taglio

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dalla norma UNI EN 1992-1-1:2005, per elementi con armatura a taglio verticali.

Si fa, pertanto, riferimento ai seguenti valori della resistenza di calcolo:

- $V_{\text{Rd,e}} = \max \left\| C_{\text{Rd,e}} \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{\text{ek}} \right)^{1/3} + k_1 \cdot \sigma_{\text{ep}} \right\| \cdot b_w \cdot d; \left(v_{\text{min}} + k_1 \cdot \sigma_{\text{ep}} \right) \cdot b_w \cdot d \right\|, \text{ resistenza di calcolo dell'elemento privo di armatura a taglio}$
- $V_{\text{Rds}} = \frac{A_{\text{sw}}}{s} \cdot z \cdot f_{\text{ywd}} \cdot \cot \theta$, valore di progetto dello sforzo di taglio che può essere sopportato dall'armatura a taglio alla tensione di snervamento
- $V_{Rdmax} = \frac{\alpha_{ow} \cdot b_{w} \cdot z \cdot v_{1} \cdot f_{od}}{\cot \theta + \tan \theta}, \text{ valore di progetto del massimo sforzo di taglio che può essere sopportato dall'elemento, limitato dalla rottura delle bielle compresse.}$

Nelle espressioni precedenti, i simboli hanno i seguenti significati:

$$k = 1 + \sqrt{\frac{200}{d}} \le 2.0$$
 con d in mm

$$\label{eq:rho_loss} \blacksquare \quad \rho_{_{I}} = \frac{A_{_{sl}}}{b_{_{w}} \cdot d} \leq 0,\!02$$

- A_s è l'area dell'armatura tesa
- lacktriangle b_w è la larghezza minima della sezione in zona tesa

$$\label{eq:sigma_cp} \bullet \quad \sigma_{cp} = \frac{N_{Ed}}{A_c} < 0.2 \cdot f_{cd}$$

- N_{Ed} è la forza assiale nella sezione dovuta ai carichi
- A_c è l'area della sezione di calcestruzzo

$$C_{Rd,c} = \frac{0.18}{\gamma_c}$$

$$k_1 = 0.15$$

$$v_{min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$

- V = 0,5 per calcestruzzi fino a C70/85
- 1 ≤ cot 9 ≤ 2,5
- A w è l'area della sezione trasversale dell'armatura a taglio
- s è il passo delle staffe
- f_{vwd} è la tensione di snervamento di progetto dell'armatura a taglio
- $\mathbf{v}_1 = \mathbf{v}$ è il coefficiente di riduzione della resistenza del calcestruzzo fessurato per taglio
- α_{cw} è un coefficiente che tiene conto dell'interazione tra la tensione nel corrente compresso e qualsiasi tensione di compressione assiale.

Verifiche allo sle

OPERE EXTRA LINEA (ad esempio fabbricati, scatolari di approccio ai ponti e cvf stradali, ponti ed opere minori della viabilità non interferenti con la linea ferroviaria):

Verifiche tensionali par. 4.1.2.2.5NTC2018

4.1.2.2.5 Stato limite di limitazione delle tensioni

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si deve verificare che tali tensioni siano inferiori ai massimi valori consentiti di seguito riportati.

4.1.2.2.5.1 Tensione massima di compressione del calcestruzzo nelle condizioni di esercizio

La massima tensione di compressione del calcestruzzo $\sigma_{c,max}$, deve rispettare la limitazione seguente:

$$\sigma_{c,max} \le 0.60 f_{ck}$$
 per combinazione caratteristica [4.1.15]

$$\sigma_{c,max} \le 0.45 f_{ck}$$
 per combinazione quasi permanente. [4.1.16]

Nel caso di elementi piani (solette, pareti, ...) gettati in opera con calcestruzzi ordinari e con spessori di calcestruzzo minori di 50 mm i valori limite sopra prescritti vanno ridotti del 20%.

4.1.2.2.5.2 Tensione massima dell'acciaio in condizioni di esercizio

La tensione massima, $\sigma_{s,max}$, per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

$$\sigma_{s,max} \le 0.8 \ f_{vk}$$
 [4.1.17]

Verifiche a fessurazione par. 4.1.2.2.4 NTC2018

4.1.2.2.4 Stato limite di fessurazione

In ordine di severità decrescente, per la combinazione di azioni prescelta, si distinguono i seguenti stati limite:

- a) stato limite di decompressione, nel quale la tensione normale è ovunque di compressione ed al più uguale a 0;
- b) stato limite di formazione delle fessure, nel quale la tensione normale di trazione nella fibra più sollecitata è:

$$\sigma_{t} = \frac{f_{\text{ctm}}}{1.2} \tag{4.1.13}$$

dove f_{ctm} è definito nel § 11.2.10.2;

c) stato limite di apertura delle fessure, nel quale il valore limite di apertura della fessura calcolato al livello considerato è pari ad uno dei seguenti valori nominali:

$$w_1 = 0.2 \text{ mm}$$
 $w_2 = 0.3 \text{ mm}$ $w_3 = 0.4 \text{ mm}$

Lo stato limite di fessurazione deve essere fissato in funzione delle condizioni ambientali e della sensibilità delle armature alla corrosione, come descritto nel seguito.

4.1.2.2.4.1 Combinazioni di azioni

Si prendono in considerazione le seguenti combinazioni:

- combinazioni quasi permanenti;
- combinazioni frequenti.

4.1.2.2.4.2 Condizioni ambientali

Ai fini della protezione contro la corrosione delle armature metalliche e della protezione contro il degrado del calcestruzzo, le condizioni ambientali possono essere suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato nella Tab. 4.1.III con riferimento alle classi di esposizione definite nelle Linee Guida per il calcestruzzo strutturale emesse dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici nonché nella UNI EN 206:2016.

Tab. 4.1.III – Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione		
Ordinarie	X0, XC1, XC2, XC3, XF1		
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3		
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4		

4.1.2.2.4.3 Sensibilità delle armature alla corrosione

Le armature si distinguono in due gruppi:

- armature sensibili;
- armature poco sensibili.

Appartengono al primo gruppo gli acciai da precompresso.

Appartengono al secondo gruppo gli acciai ordinari.

Per gli acciai zincati e per quelli inossidabili, si può tener conto della loro minor sensibilità alla corrosione sulla base di documenti di comprovata validità.

4.1.2.2.4.4 Scelta degli stati limite di fessurazione

Nella Tab. 4.1.IV sono indicati i criteri di scelta dello stato limite di fessurazione con riferimento alle esigenze sopra riportate.

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

pi ize	Condizioni	Combinazione di	Armatura			
Gruppi di Esigenze	ambientali	azioni	Sensibile		Poco sensibile	
Gr Esi			Stato limite	$\mathbf{w_k}$	Stato limite	$\mathbf{w_k}$
	0-1:	frequente	apertura fessure	≤ w ₂	apertura fessure	≤ w ₃
A	A Ordinarie	quasi permanente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂
В	A	frequente	apertura fessure	≤ w ₁	apertura fessure	≤ w ₂
В	Aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁
С	Molto	frequente	formazione fessure	-	apertura fessure	≤ w ₁
C	aggressive	quasi permanente	decompressione	-	apertura fessure	≤ w ₁

 w_1 , w_2 , w_3 sono definiti al § 4.1.2.2.4, il valore w_k è definito al § 4.1.2.2.4.5.

4.1.2.2.4.5 Verifica dello stato limite di fessurazione

Stato limite di decompressione e di formazione delle fessure

Le tensioni sono calcolate in base alle caratteristiche geometriche e meccaniche della sezione omogeneizzata non fessurata.

Stato limite di apertura delle fessure

Il valore caratteristico di apertura delle fessure (w_k) non deve superare i valori nominali w_1 , w_2 , w_3 secondo quanto riportato nella Tab. 4.1.IV.

L'ampiezza caratteristica delle fessure w_k è calcolata come 1,7 volte il prodotto della deformazione media delle barre d'armatura ϵ_{sm} per la distanza media tra le fessure Δ_{sm} :

$$w_k = 1.7 \, \varepsilon_{\rm sm} \, \Delta_{\rm sm} \qquad [4.1.14]$$

Per il calcolo di ϵ_{sm} e Δ_{sm} vanno utilizzati criteri consolidati riportati in documenti di comprovata validità.

La verifica dell'ampiezza di fessurazione può anche essere condotta senza calcolo diretto, limitando la tensione di trazione nell'armatura, valutata nella sezione parzializzata per la combinazione di carico pertinente, ad un massimo correlato al diametro delle barre ed alla loro spaziatura.

11 ANALISI DEI RISULTATI

Nei paragrafi seguenti si riportano i risultati delle analisi condotte per il modello implementato, con le indicazioni dei valori massimi delle sollecitazioni flettenti e taglianti. I valori del momento M11 e M22, del taglio V13 e V23 e eel carico assiale F22 riportati nelle figure seguenti, sono opportunamente tagliati sullo spessore delle pareti e della soletta di fondo.

PARAMENTO + PARAGHIAIA

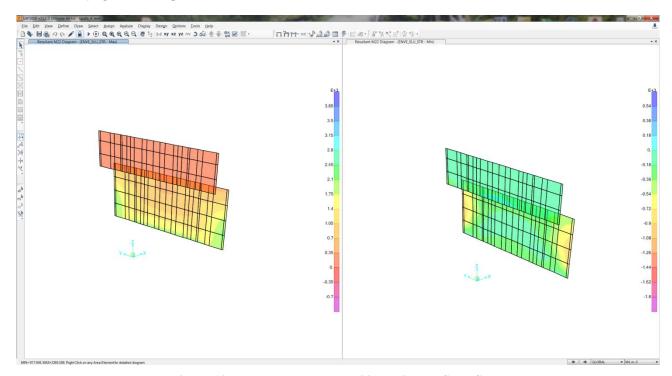


Figura 12: Momento Flettente M22 - Inviluppo SLU_STR

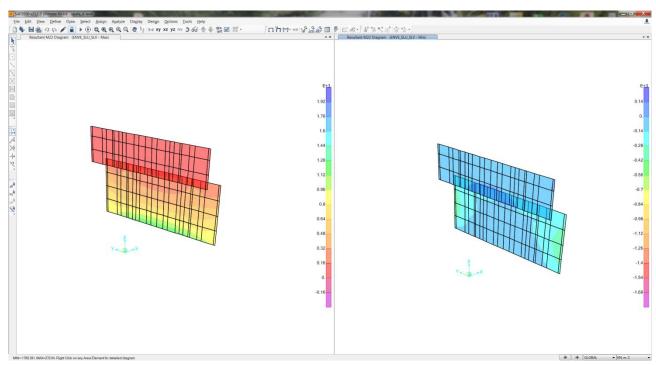


Figura 13: Momento Flettente M22 - Inviluppo SLU_SLV



Figura 14: Momento Flettente M11 - Inviluppo SLU_STR

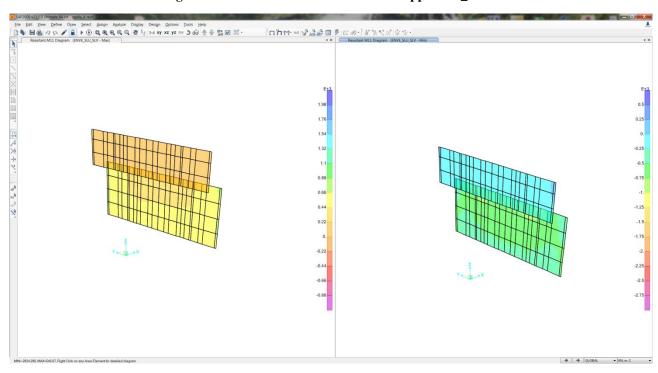


Figura 15: Momento Flettente M11 - Inviluppo SLU_SLV

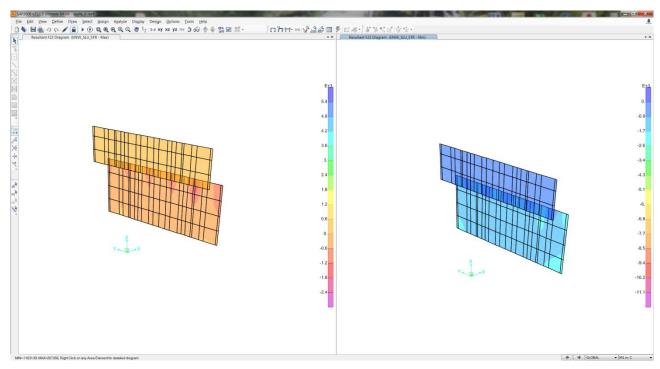


Figura 16: Sforzo assiale F22 - Inviluppo SLU_STR

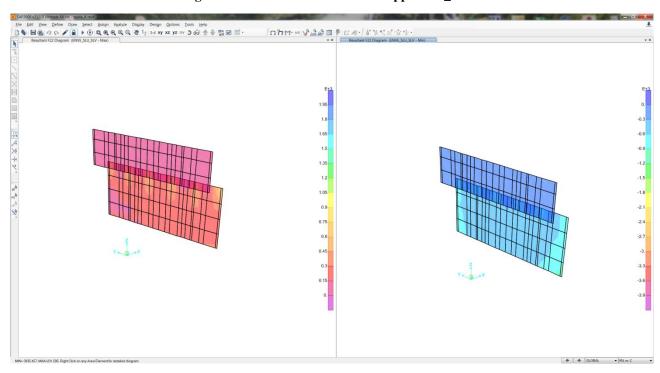


Figura 17: Sforzo assiale F22 - Inviluppo SLU_SLV

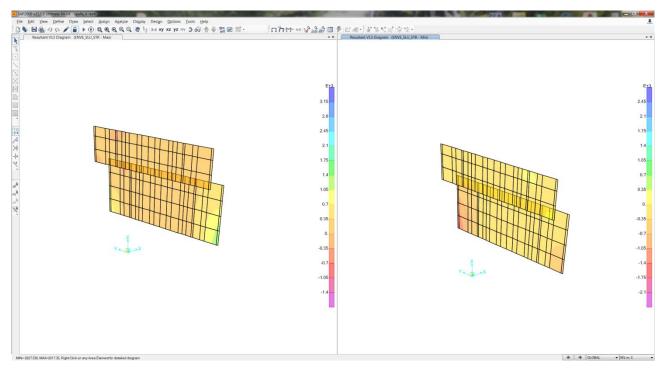


Figura 18: Sollecitazioni Taglianti V13 - Inviluppo SLU

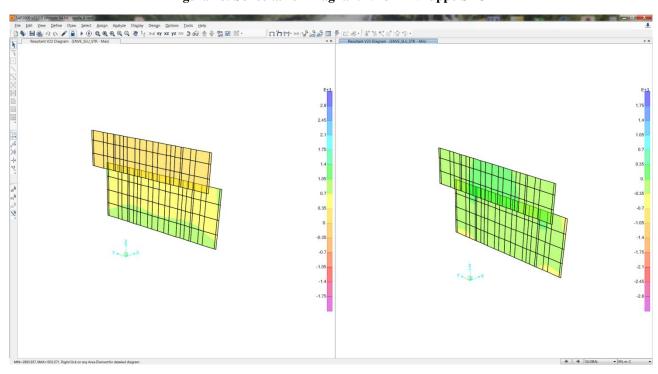


Figura 19: Sollecitazioni Taglianti V23 - Inviluppo SLU

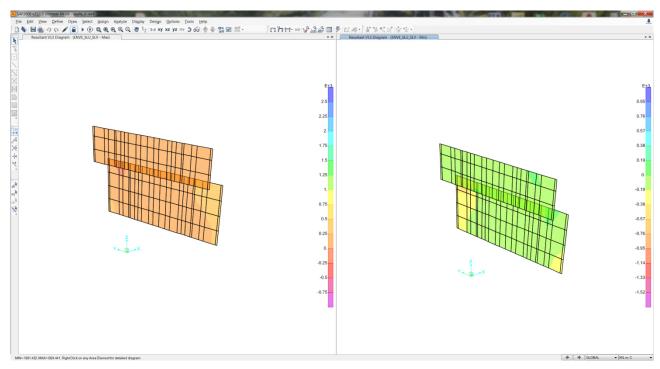


Figura 20: Sollecitazioni Taglianti V13 - Inviluppo SLU_SLV

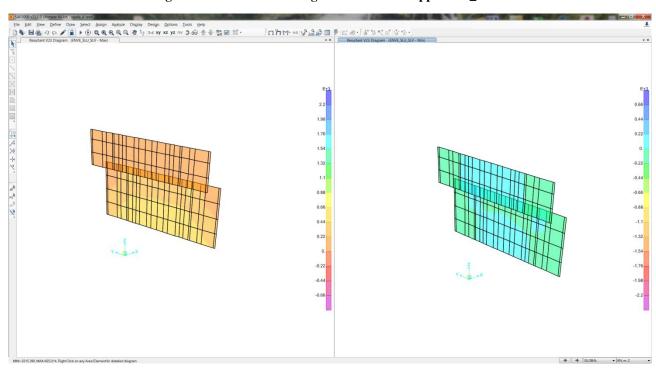


Figura 21: Sollecitazioni Taglianti V23 - Inviluppo SLU_SLV

MURO D'ALA

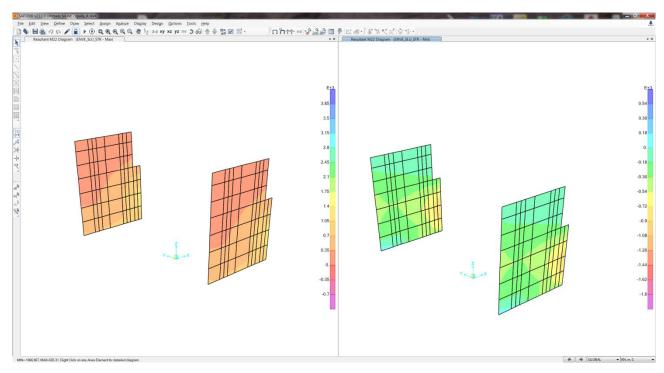


Figura 22: Momento Flettente M22 - Inviluppo SLU_STR

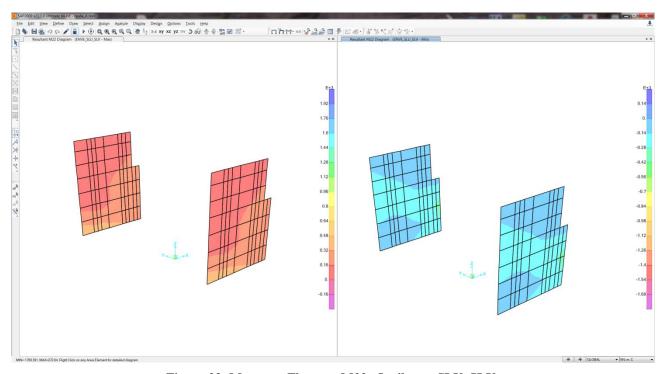


Figura 23: Momento Flettente M22 - Inviluppo SLU_SLV

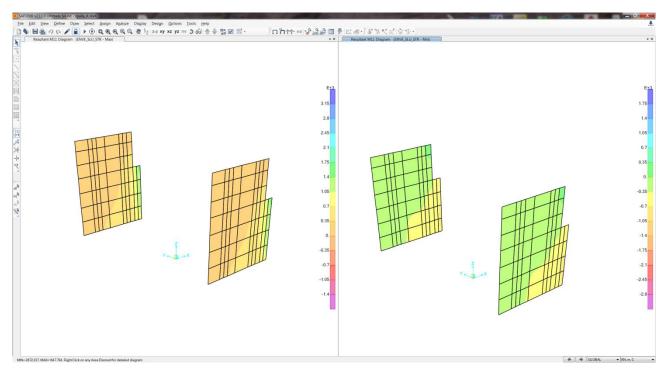


Figura 24: Momento Flettente M11 - Inviluppo SLU_STR

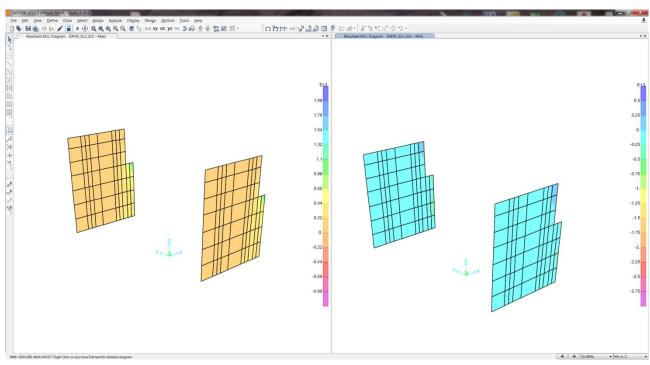


Figura 25: Momento Flettente M11 - Inviluppo SLU_SLV

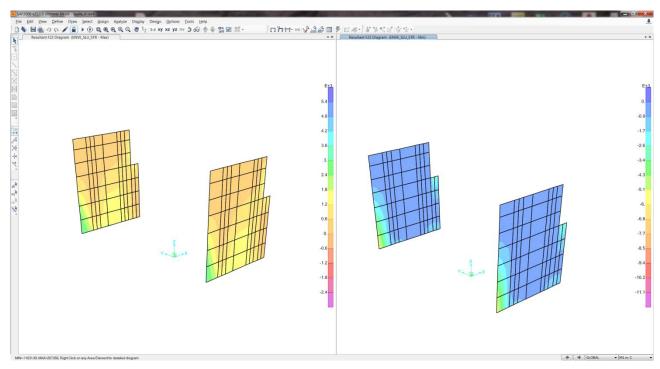


Figura 26: Sforzo assiale F22 - Inviluppo SLU_STR

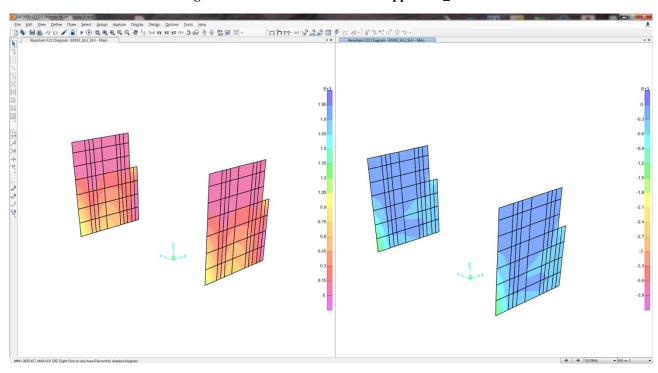


Figura 27: Sforzo assiale F22 - Inviluppo SLU_SLV

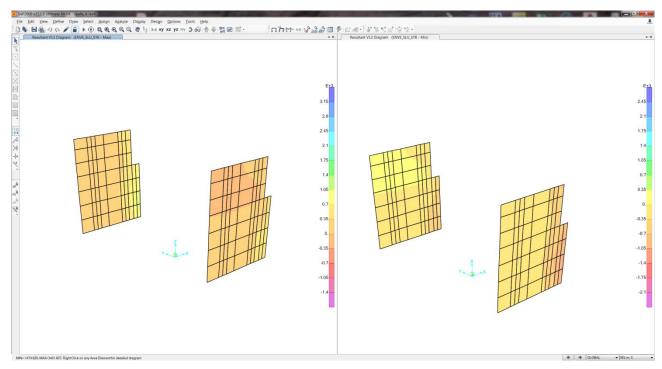


Figura 28: Sollecitazioni Taglianti V13 - Inviluppo SLU_STR

Figura 29: Sollecitazioni Taglianti V23 - Inviluppo SLU_STR

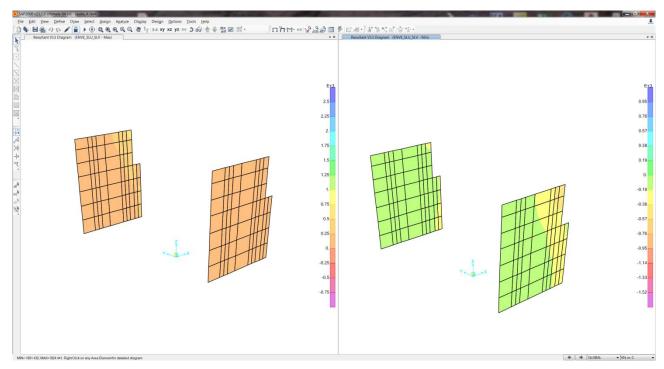


Figura 30: Sollecitazioni Taglianti V13 - Inviluppo SLU_SLV

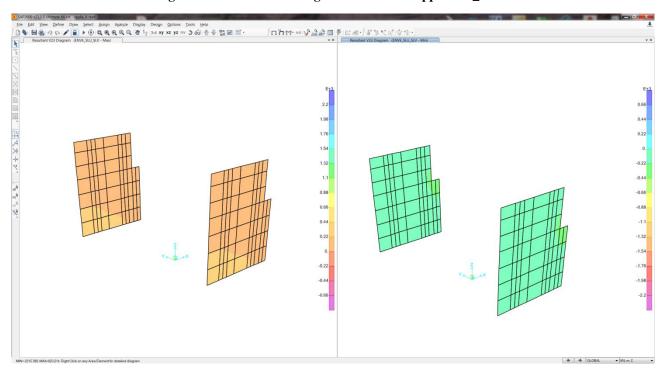


Figura 31: Sollecitazioni Taglianti V23 - Inviluppo SLU_SLV

SOLETTA FONDAZIONE

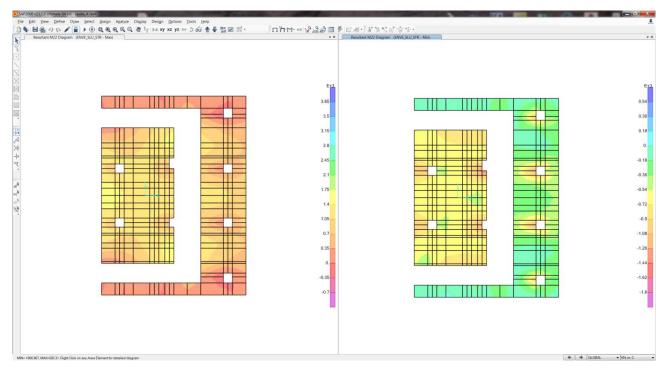


Figura 32: Momento Flettente M22 - Inviluppo SLU_STR

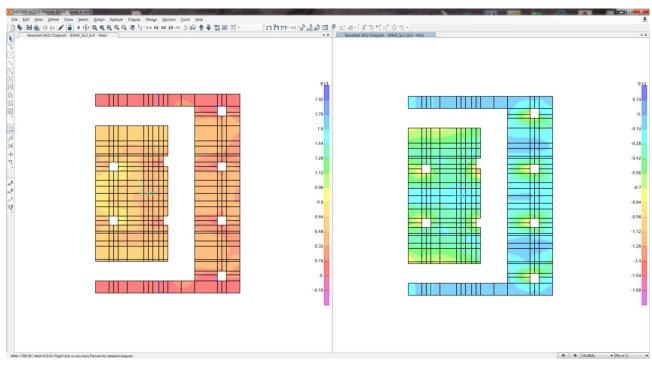


Figura 33: Momento Flettente M22 - Inviluppo SLU_SLV

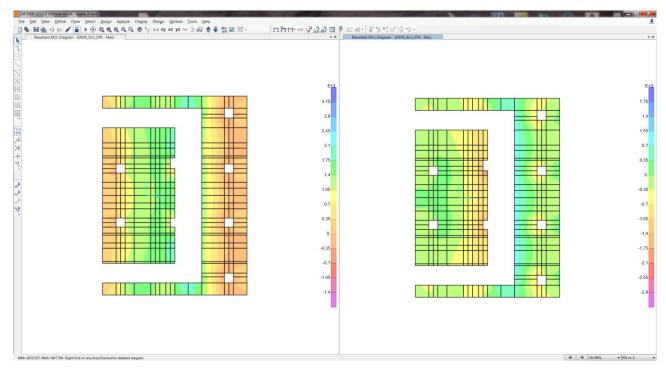


Figura 34: Momento Flettente M11 - Inviluppo SLU_STR

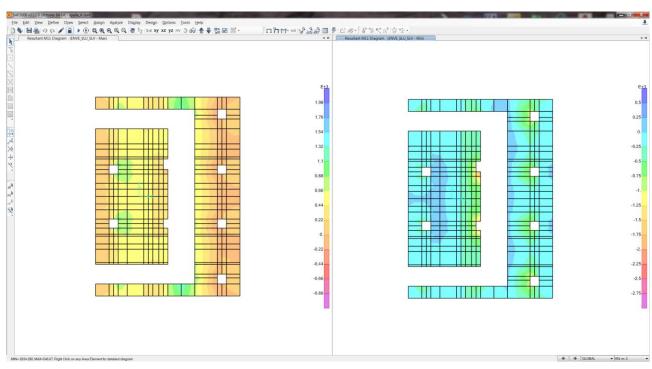


Figura 35: Momento Flettente M11 - Inviluppo SLU_SLV

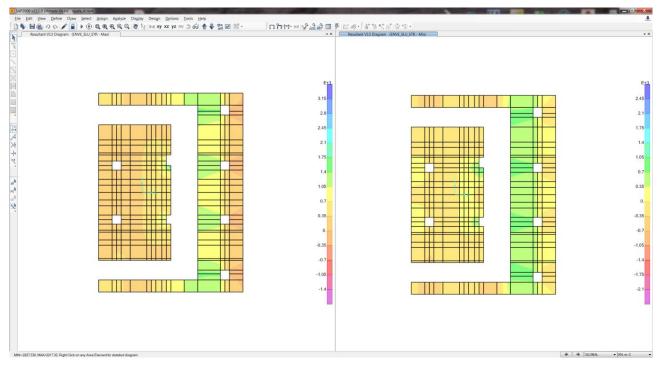


Figura 36: Sollecitazioni Taglianti V13 - Inviluppo SLU_STR

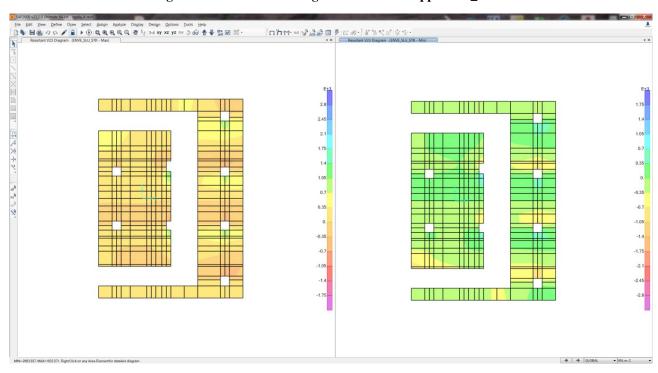


Figura 37: Sollecitazioni Taglianti V23 - Inviluppo SLU_STR

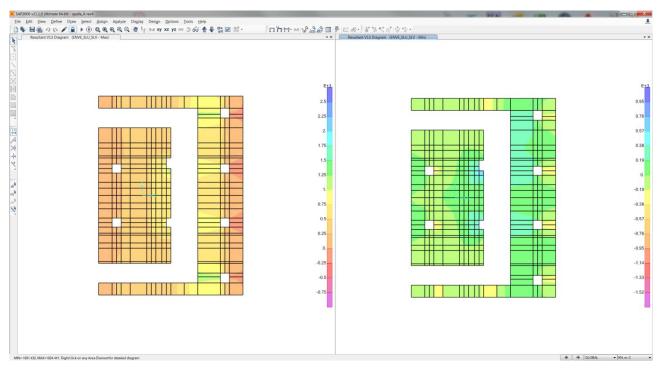


Figura 38: Sollecitazioni Taglianti V13 - Inviluppo SLU_SLV

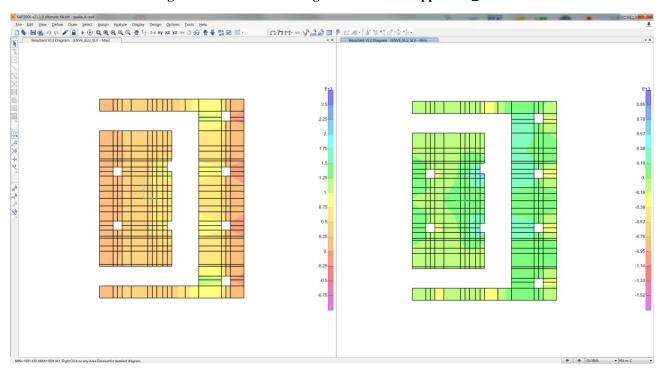


Figura 39: Sollecitazioni Taglianti V23 - Inviluppo SLU_SLV

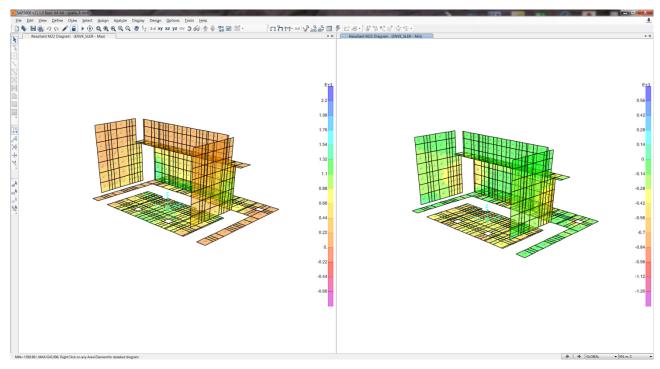


Figura 40: Momento Flettente M22 - Inviluppo SLER

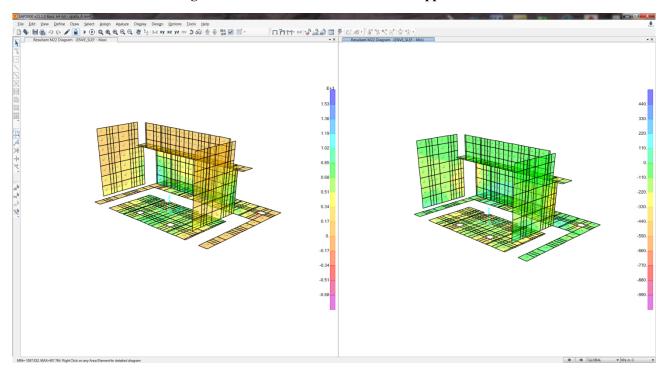


Figura 41: Momento Flettente M22 - Inviluppo SLEF

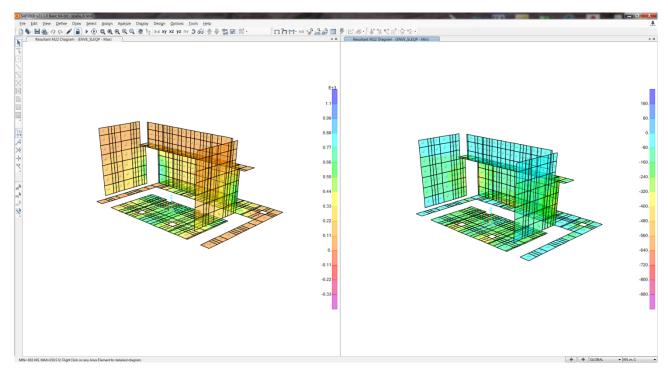


Figura 42: Momento Flettente M22 - Inviluppo SLEQP

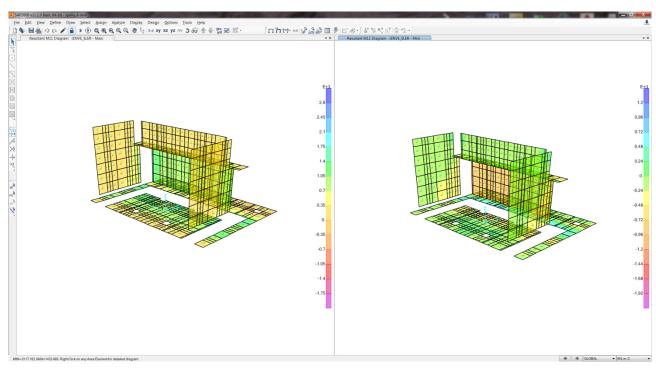


Figura 43: Momento Flettente M11 - Inviluppo SLER

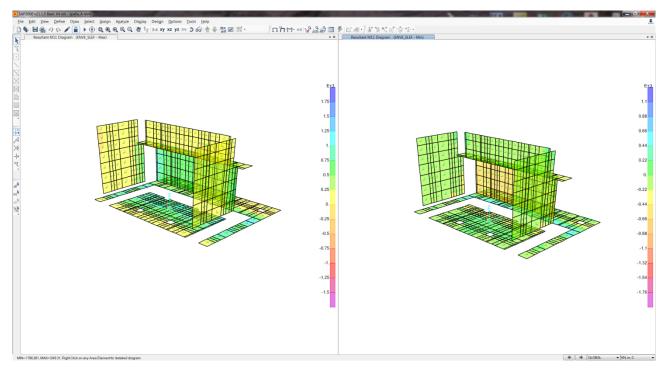


Figura 44: Momento Flettente M11 - Inviluppo SLEF

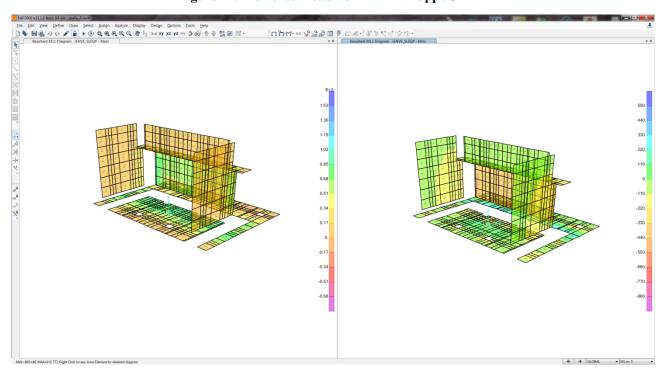


Figura 45: Momento Flettente M11 - Inviluppo SLEQP

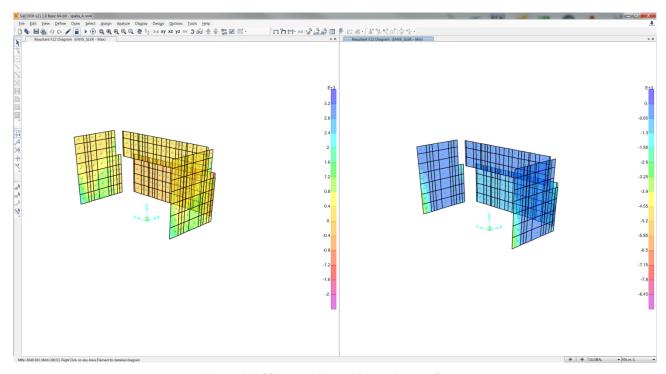


Figura 46: Sforzo assiale F22 - Inviluppo SLER

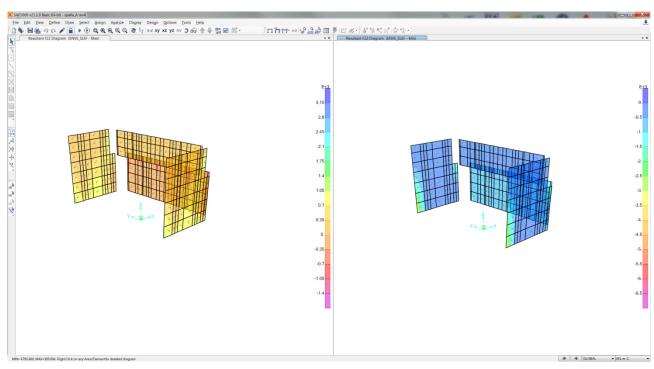


Figura 47: Sforzo assiale F22 - Inviluppo SLEF

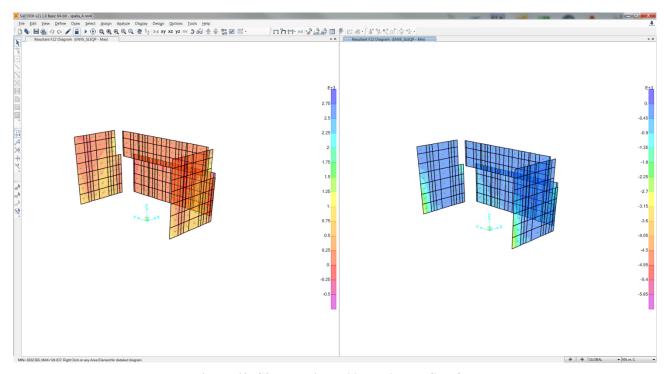


Figura 48: Sforzo assiale F22 - Inviluppo SLEQP

12 VERIFICHE DI RESISTENZA

Nel seguito si riporta la verifica eseguita con il software RC-SEC della Geostru per le condizioni di carico più gravose.

12.1 PARAMENTO SP 1.80 M

Sollecitazioni di verifica:

Area	OutputCase	Р	M11
Text	Text	KN	KNm
225	ENVE_SLU_STR	647.8	2296.2
206	ENVE_SLU_STR	3253.9	-2143.7

Area	OutputCase	Р	M22
Text	Text	KN	KNm
261	ENVE_SLU_STR	702.8	2301.3
209	ENVE SLU STR	1450.0	-1022.2

V13	V23	
KN	KN	
1700	993	

Area	OutputCase	Р	M11
Text	Text	KN	KNm
190	ENVE_SLU_SLV	-432.9	754.3
206	ENVE_SLU_SLV	781.4	-1347.2

Area	OutputCase	Р	M22
Text	Text	KN	KNm
654	ENVE_SLU_SLV	-242.0	1272.2
213	ENVE_SLU_SLV	688.1	-401.4

V13	V23
KN	KN
549	614

Area	OutputCase	Р	M11
Text	Text	KN	KNm
225	ENVE_SLER	495.5	1631.6
206	ENVE_SLER	2372.5	-1483.2

Area	OutputCase	Р	M22
Text	Text	KN	KNm
261	ENVE_SLER	546.9	1642.0
209	ENVE_SLER	1026.0	-668.3

Area	OutputCase	Р	M11
Text	Text	KN	KNm
225	ENVE_SLEF	496.2	1181.5
206	ENVE_SLEF	1911.0	-965.7

Area	OutputCase	Р	M22
Text	Text	KN	KNm
261	ENVE_SLEF	553.7	1211.2
209	ENVE_SLEF	817.0	-371.3

Area	OutputCase	Р	M11
Text	Text	KN	KNm
247	ENVE_SLEQP	166.2	1017.8
259	ENVE_SLEQP	530.0	-523.3

Area	OutputCase	Р	M22
Text	Text	KN	KNm
259	ENVE_SLEQP	228.2	915.9
267	ENVE_SLEQP	436.5	-387.3

Si riassume di seguito l'armatura verticale adottata.

 $As = 1\Phi 24/10$

 $As' = 1\Phi 24/10$

Si riassume di seguito l'armatura orizzontale adottata.

 $As = 1\Phi 24/10$

 $As' = 1\Phi 24/10$

Staffe: Φ14/20 a 4 bracci

La sezione risulta verificata con l'armatura prevista.

12.1.1 VERIFICA A TAGLIO

Taglio V13

Verifica elementi senza armature trasversali resistenti a taglio

È consentito l'impiego di solai, piastre e membrature a comportamento analogo, sprovviste di armature trasversali resistenti a taglio. La resistenza a taglio V_{Rd} di tali elementi deve essere valutata, utilizzando formule di comprovata affidabilità, sulla base della resistenza a trazione del cls.

$$\begin{array}{l} \text{valutata, utilizzando formule di comprovata affidabilità, sulla base della resistenza a trazione del cls.} \\ V_{Rd} \geq V_{Ed} \\ V_{Rd} = \begin{cases} 0.18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3} \\ \gamma_c \end{cases} + 0.15 \cdot \sigma_{cp} \end{cases} \cdot b_w \cdot d \geq \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d \\ V_{Ed} & 1700 \text{ kN} \\ N_{Ed} & 0 \text{ kN} \end{cases}$$
 Sollecitazioni Agenti:
$$\begin{array}{l} V_{Ed} & 1700 \text{ kN} \\ N_{Ed} & 0 \text{ kN} \\ \end{array}$$
 Calcestruzzo
$$\begin{array}{l} C32/40 & R_{ck} & 40 \text{ N/mm}^2 \\ f_{ck} & 33.2 \text{ N/mm}^2 \\ \end{array}$$
 Resistenza di calcolo a compressione del calcestruzzo
$$\begin{array}{l} f_{cd} & 18.81 \text{ N/mm}^2 \\ \end{array}$$
 Coefficiente parziale di sicurezza relativo al calcestruzzo
$$\begin{array}{l} \gamma_c & 1.5 \\ \end{array}$$
 Altezza sezione
$$\begin{array}{l} h & 1800 \text{ mm} \\ \text{Copriferro} & c & 86 \text{ mm} \\ \text{Larghezza minima della sezione (in mm)} & b_w & 1000 \text{ mm} \\ \end{array}$$
 Altezza utile della sezione (in mm)
$$\begin{array}{l} d & 1714 \text{ mm} \\ \text{Area Calcestruzzo} & A_c & 1800000 \text{ mm}^2 \\ \text{Armatura longitudinale tesa} & n & 10 & 0 & 24 \text{ mm} \\ \text{Agiporto geometrico di armatura longitudinale} & \rho_1 & 0.0026 ? 0.02 \text{ ok} \\ \text{Tensione media di compressione nella sezione} & \sigma_{cp} & 0.0000 ? 0.2 f_{cd} \text{ ok} \\ k & 1.34 ? 2 \text{ ok} \\ \hline V_{min} & 0.25 \\ \hline V_{min} & 0.25 \\ \hline V_{Rd} & 568.79 \text{ kN} \\ \hline \end{array}$$

Taglio V23

Verifica elementi senza armature trasversali resistenti a taglio È consentito l'impiego di solai, piastre e membrature a comportamento analogo, sprovviste di armature trasversali resistenti a taglio. La resistenza a taglio V_{Rd} di tali elementi deve essere valutata, utilizzando formule di comprovata affidabilità, sulla base della resistenza a trazione del cls. $V_{Rd} \ge V_{Ed}$ $V_{Rd} = \left\{ \frac{0.18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c} + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \ge \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d$ Sollecitazioni Agenti: N_{Ed} 0 kN Calcestruzzo C32/40 R_{ck} 40 N/mm² 33.2 N/mm² 18.81 N/mm² Resistenza di calcolo a compressione del calcestruzzo f_{cd} Coefficiente parziale di sicurezza relativo al calcestruzzo 1.5 $\gamma_{\rm c}$ Altezza sezione 1800 mm Copriferro 110 mm С Larghezza minima della sezione (in mm) 1000 mm Altezza utile della sezione (in mm) 1690 mm d Area Calcestruzzo 1800000 mm² 10 24 mm Ø n Armatura longitudinale tesa 4521.6 mm² 0.0027 ? 0.02 Rapporto geometrico di armatura longitudinale ok ρ_1 Tensione media di compressione nella sezione $0.0000 ? 0.2 f_{cd}$ ok σ_{cp} $k = 1 + (200/d)^{1/2} \le 2$ 1.34 ? 2 ok k $v_{min} = 0.035k^{3/2}f_{ck}^{-1/2}$ 0.25 V_{min} V_{Rd} 564.48 kN $V_{Rd} > V_{Fd}$ Verifica: **NON VERIFICATA**

Di seguito si riportano i relativi diagrammi di ricoprimento del taglio V13 e V23

Figura 49: Ricoprimento taglio V13

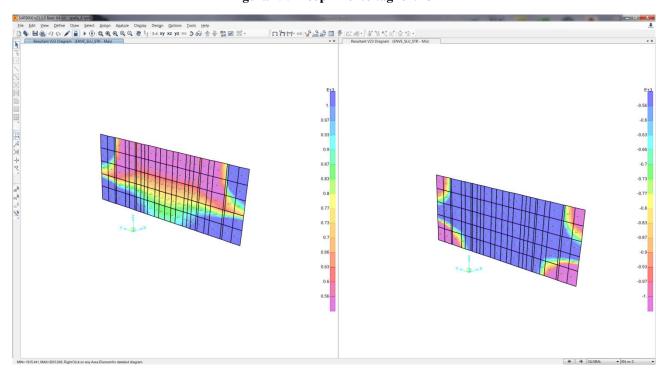


Figura 50: Ricoprimento taglio V23

Come si può vedere dai diagrammi sopra riportati il valore del taglio limite non viene mai superato tranne che nelle zone evidenziate dove occorre inserire una idonea armatura a taglio.

Il valora del taglio massimo non coperto evidenziato in figura risulta pari a V13max =1700 KN/m e V23max =993 KN/m. Si effettua di seguito il calcolo dell'armatura a taglio.

Verifica elementi con armature trasversali resistenti al taglio

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati.

$$\begin{split} &V_{Rd} \geq V_{Ed} \\ &V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg \, \alpha + ctg \, \theta) \cdot \sin \alpha \\ &V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \cdot (ctg \, \alpha + ctg \, \theta) / (1 + ctg^2 \theta) \\ &V_{Rd} = \min(V_{Rsd}; V_{Rcd}) \end{split}$$

Acciaio	В 450 С	f_{yd}	391.3 N/mm ²
Coefficiente parziale di sicurezza	relativo all'acciaio	γ_{s}	1.15
Inclinazione dei puntoni di cls risp	etto all'asse della trave	?	45 ° 0.79 rad
diametro staffe		Ø	14 mm
numero bracci staffe		n	4
Area dell'armatura trasversale		A_{sw}	615.75 mm ²
Interasse tra due armature trasve	rsali consecutive	S	200 mm
Angolo di inclinazione dell'armatu	ra trasversale	α	90 °
			1.57 rad
Resistenza a compressione ridotta	a del calcestruzzo d'anima	f'cd	9.41 N/mm ²
Coefficiente maggiorativo		α_{c}	1
		\mathbf{V}_{Rsd}	1858.40 kN
		V_{Rcd}	7255.36 kN
		\mathbf{V}_{Rd}	1858.40 kN
Verifica:	$V_{Rd} > V_{Ed}$		VERIFICATA

12.1.2 VERIFICA A FLESSIONE - M22 - ARMATURA VERTICALE

ENVE SLU STATICO

CALCOLO COPRIFERRO - § C4.1.6.1.3 ISTRUZIONI NTC

Dati Assegnati:

Diametro (o diametro equivalente) barre longitudinali: [mm] Diametro staffe: 24 [mm] C32/40 Classe Calcestruzzo: Condizioni ambientali: Aggressive Vita nominale costruzione: 75 [anni] Incremento di 10 mm rispetto a vita nominale di 50 anni Tolleranza di posa: 10 [mm] Copriferro staffe: Copriferro nominale Netto Staffe: 60 [mm] Copriferro barre longitudinali: Copriferro nominale Netto barre longitudinali: [mm] Copriferro nominale dal Baricentro della Barra longitudinale: 110 [mm] Dato da assegnare nell'input delle sezioni

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: muro frontale M22

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -C32/40 Classe: Resistenza compress. di progetto fcd:

> Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33345.8 MPa Resis. media a trazione fctm: 3.023 MPa Coeff.Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 19.200 MPa Sc limite S.L.E. comb. Frequenti: 19.200 MPa Ap.Fessure limite S.L.E. comb. Frequenti: 0.300 mm Sc limite S.L.E. comb. Q.Permanenti: 14.400 MPa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

18.13

MPa

ACCIAIO -Tipo: B450C

> Resist. caratt. a snervamento fyk: 450.00 MPa Resist. caratt. a rottura ftk: 450.00 MPa Resist. a snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa

Diagramma tensioni-deformaz.: Bilineare finito Coeff. Aderenza istant. ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

Comb.Rare - Sf Limite: 360.00 MPa

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

100.0 Base: cm Altezza: 180.0 cm (45.2 cm²) Barre inferiori: 10Ø24 Barre superiori: 10Ø24 (45.2 cm²) Coprif.Inf.(dal baric. barre): 11.0 cm Coprif.Sup.(dal baric. barre): 11.0 cm Coprif.Lat. (dal baric.barre): 5.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Mx Momento flettente [kNm] intorno all'asse x baric. della sezione con verso positivo se tale da comprimere il lembo sup. della sezione VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale

MT Momento torcente [kN m]

N°Comb.	N	Mx	Vy	MT
1	702.80	2301.30	0.00	0.00
2	1450.00	-1022.20	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.) N

1642.00

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx

546.90

1

2 1026.00 -668.30

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N°Comb.
 N
 Mx

 1
 553.70
 1211.20 (2254.55)

 2
 817.00
 -371.30 (-6866.03)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx

1 228.20 915.90 (2087.28)
2 436.50 -387.30 (-3038.87)

RISULTATI DEL CALCOLO

NºComb Vor

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 9.8 cm Interferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale baricentrico assegnato [kN] (positivo se di compressione)
Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.)

Mx rd Momento resistente ultimo [kNm] riferito all'asse x baricentrico
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx)

Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx) Verifica positiva se tale rapporto risulta >=1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

N1 ...d

x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

1.4.

IN COMID	vei	IN	IVIX	IN IU	IVIX I'U	IVIIS.SIC.	111	X/U	C.Riu.	
1	S	702.80	2301.30	702.75	3458.82	1.503	166.8	0.08	0.70	45.2 (29.5)
2	S	1450.00	-1022.20	1450.04	-4045.73	3.958	15.6	0.09	0.70	45.2 (29.5)

My rd Mia Cia

√/4 C D:4

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

ec max Deform. unit. massima del conglomerato a compressione

Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

es min Deform. unit. minima nell'acciaio (negativa se di trazione)

Ys min es max Ys max	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Deform. unit. massima nell'acciaio (positiva se di compressione) Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)									
N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max				
1	0.00350	180.0	0.00059	169.0	-0.04123	11.0				
2	0.00350	0.0	0.00103	11.0	-0.03444	169.0				

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione di compress.(+) nel conglom. in fase fessurata ([Mpa]
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sc min	Minima tensione di compress.(+) nel conglom. in fase fessurata ([Mpa]
Yc min	Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)
Sf min	Minima tensione di trazione (-) nell'acciaio [Mpa]
Ys min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Dw Eff.	Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre
Ac eff.	Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
As eff.	Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)
Dharro	Distanza in om tra la barra tosa officaci

(D barre = 0 indica spaziatura superiore a $5(c+\emptyset/2)$ e nel calcolo di fess. si usa la (C4.1.11)NTC/(7.14)EC2)

N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	4.64	180.0	0.00	132.3	-176.8	169.0	27.5	2750	45.2	8.7
2	S	1.80	0.0	0.00	109.2	-14.9	11.0	23.7	2369	45.2	8.7

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)

COMBINA	COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EGZ)											
Ver e1 e2 K2 Kt e sm srm wk M fess												
N°Comb	Ver	e1	e2		K2	Kt		e sm	srm		wk	M Fess.
1 2	S S	-0.00096 -0.00009	0.00035 0.00014		0.50 0.50	0.60 0.60	0.000531 (0.000045 (,	581 547		(990.00) (990.00)	2151.69 -3856.37
COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI												
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ad	e Eff.	As Eff.	D barre
1 2	S S	3.44 1.03	180.0 0.0	0.00 0.00	128.0 147.8	-116.2 -2.3	169.0 11.0	27.5 10.9		2750 1090	45.2 45.2	8.7 8.7
COMBINA	AZION	II FREQUEN	ITI IN ESERC	izio - Verii	FICA APER	TURA FESS	URE (NTC/EC	(2)				
N°Comb	Ver	e1	e2		K2	Kt		e sm	srm		wk	M Fess.
1 2	S S	-0.00064 -0.00002	0.00026 0.00008		0.50 0.50	0.60 0.60	0.000349 (0.000007 (581 431		03 (0.30) 03 (0.30)	2254.55 -6866.03
COMBINA	AZION	II QUASI PE	RMANENTI II	N ESERCIZIO	- VERIFIC	CA MASSIME	TENSIONI N	IORMALI				
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ad	e Eff.	As Eff.	D barre
1 2	S S	2.57 1.07	180.0 0.0	0.00 0.00	135.0 84.3	-106.1 -16.5	169.0 11.0	27.5 27.5		2750 2750	45.2 45.2	8.7 8.7

N°Comb	Ver	e1	e2	K2	Kt	e sm	srm	wk	M Fess.
1	S	-0.00058	0.00019	0.50	0.400.00	00318 (0.000318	581	0.185 (0.20)	2087.28
2	S	-0.00009	80000.0	0.50	0.400.00	0.00049	581	0.029 (0.20)	-3038.87

ENVE SLU SISMICO

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: muro frontale M22 SISMICO

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -C32/40 Classe:

> Resistenza compress. di progetto fcd: 18.13 MPa Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33345.8 MPa Resis. media a trazione fctm: 3.023 MPa

ACCIAIO -Tipo: B450C

> 450.00 Resist. caratt. a snervamento fyk: MPa Resist. caratt. a rottura ftk: 450.00 MPa Resist. a snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa Diagramma tensioni-deformaz.: Bilineare finito

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

100.0 Base: cm Altezza: 180.0 cm 10Ø24 (45.2 cm²) Barre inferiori: Barre superiori: 10Ø24 (45.2 cm²) Coprif.Inf.(dal baric. barre): 11.0 cm Coprif.Sup.(dal baric. barre): 11.0 cm Coprif.Lat. (dal baric.barre): 5.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Momento flettente [kNm] intorno all'asse x baric. della sezione Mx con verso positivo se tale da comprimere il lembo sup. della sezione VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale MT

Momento torcente [kN m]

N°Comb.	N	Mx	Vy	MT
1	-242.00	1272.20	0.00	0.00
2	688.10	-401.40	0.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 9.8 cm Interferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale baricentrico assegnato [kN] (positivo se di compressione) Ν Momento flettente assegnato [kNm] riferito all'asse x baricentrico Мх

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.) Momento resistente sostanzialmente elastico [kNm] riferito all'asse x baricentrico Mx re

Misura sicurezza = rapporto vettoriale tra (N re,Mx re) e (N,Mx) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Yn

x/d

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

N°Comb	Ver	N	Mx	N re	Mx re	Mis.Sic.	Yn	x/d	C.Rid.	
1	S	-242.00	1272.20			2.048	147.7	0.19	0.70	45.2 (29.5)
2	S	688.10	-401.40			8.171	40.7	0.24	0.74	45.2 (29.5)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

ec max	Deform. unit. massima del conglomerato a compressione
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max
1	0.00046	180.0	0.00031	169.0	-0.00196	11.0
2	0.00062	0.0	0.00045	11.0	-0.00196	169.0

12.1.3 VERIFICA A FLESSIONE - M11 - ARMATURA ORIZZONTALE

ENVE SLU STATICO

CALCOLO COPRIFERRO - § C4.1.6.1.3 ISTRUZIONI NTC

Dati Assegnati:

Diametro (o diametro equivalente) barre longitudinali: 24 [mm] Diametro staffe: 14 [mm] Classe Calcestruzzo: C32/40 Condizioni ambientali: Aggressive

Vita nominale costruzione: Incremento di 10 mm rispetto a vita nominale di 50 anni 75 [anni]

Tolleranza di posa: 10 [mm]

Copriferro staffe:

Copriferro nominale Netto Staffe: 60 [mm]

Copriferro barre longitudinali:

Copriferro nominale Netto barre longitudinali: 74 [mm]

Copriferro nominale dal Baricentro della Barra longitudinale: 86 Dato da assegnare nell'input delle sezioni [mm]

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: muro frontale M11

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

A Sforzo Norm. costante Percorso sollecitazione: Moderat. aggressive Condizioni Ambientali: Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resistenza compress. di progetto fcd:	18.13	MPa

Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 33345.8 MPa Resis. media a trazione fctm: 3.023 MPa Coeff.Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 19.200 MPa Sc limite S.L.E. comb. Frequenti: 19.200 MPa Ap.Fessure limite S.L.E. comb. Frequenti: 0.300 mm Sc limite S.L.E. comb. Q.Permanenti: 14.400 MPa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO -Tipo: B450C

Resist. caratt. a snervamento fyk: 450.00 MPa Resist. caratt. a rottura ftk: 450.00 MPa Resist. a snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa Diagramma tensioni-deformaz.: Bilineare finito Coeff. Aderenza istant. §1*§2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

360.00

MPa

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 100.0 Altezza: 180.0 cm Barre inferiori: (45.2 cm²) 10Ø24 Barre superiori: 10Ø24 (45.2 cm²) Coprif.Inf.(dal baric. barre): 8.6 cm Coprif.Sup.(dal baric. barre): 8.6 cm Coprif.Lat. (dal baric.barre): 5.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Comb.Rare - Sf Limite:

Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Mx Momento flettente [kNm] intorno all'asse x baric. della sezione con verso positivo se tale da comprimere il lembo sup. della sezione V٧

Taglio [kN] in direzione parallela all'asse Y del riferim. generale

MT Momento torcente [kN m]

N°Comb. Ν Mx Vy MT 647.80 2296.20 0.00 0.00 3253.90 -2143.70 0.00 0.00 2

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.) Ν

Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx 495.50 1631.60

2372.50

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

-1483.20

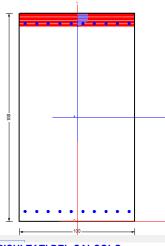
Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx

1181.50 (2246.35) 496.20 1 2 1911.00 -965.70 (-5593.94)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA


Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx

1017.80 (2044.86) 166.20 2 -523.30 (-2908.17) 530.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale baricentrico assegnato [kN] (positivo se di compressione) Ν

Mx

Momento flettente assegnato [kNm] riferito all'asse x baricentrico
Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.)
Momento resistente ultimo [kNm] riferito all'asse x baricentrico N Ult

Mx rd Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Yn

x/d

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

N°Comb	Ver	N	Mx	N rd	Mx rd	Mis.Sic.	Yn	x/d	C.Rid.	
1	S	647.80	2296.20	648.02	3474.02	1.513	168.7	0.07	0.70	45.2 (29.9)
2	S	3253.90	-2143.70	3254.06	-5510.42	2.571	22.2	0.13	0.70	45.2 (29.9)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max
1	0.00350	180.0	0.00084	171.4	-0.04954	8.6
2	0.00350	0.0	0.00214	8.6	-0.02356	171.4

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione di compress.(+) nel conglom. in fase fessurata ([Mpa]
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sc min	Minima tensione di compress.(+) nel conglom. in fase fessurata ([Mpa]
Yc min	Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)

Sf min Minima tensione di trazione (-) nell'acciaio [Mpa]

Ys mir Dw Ef Ac eff. As eff. D barr	f.	Spesso Area di Area Ba Distanz	a in cm della ba re di conglome congl. [cm²] in : arre tese di acci a in cm tra le ba e = 0 indica spa	rato [cm] in zor zona tesa ader aio [cm²] ricade arre tese effica	na tesa considente alle barrente nell'area ci.	lerata aderente e (verifica fess efficace(verific)	(C4.1.11)NTC	C/(7.14)EC	2)		
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac	Eff.	As Eff.	D barre
1 2	S S	4.46 3.95	180.0 0.0	0.00 0.00	133.0 114.5	-176.8 -29.6	171.4 8.6	21.5 21.5		150 150	45.2 45.2	9.2 9.2
COMBINA	AZION	II RARE IN E	SERCIZIO -	VERIFICA A	PERTURA	FESSURE (N	ITC/EC2)					
Ver e1 e2 K2 Kt e sm srm wk M fess	e1 Minima deformazione unitaria (trazione: segno -) nel calcestruzzo in sez. fessurata e2 Massima deformazione unitaria (compress.: segno +) nel calcestruzzo in sez. fessurata K2 = 0.5 per flessione; =(e1 + e2)/(2*e2)in trazione eccentrica per la (7.13)EC2 e la (C4.1.11)NTC Kt fattore di durata del carico di cui alla (7.9) dell'EC2 e sm Deformazione media acciaio tra le fessure al netto di quella del cls. Tra parentesi il valore minimo = 0.6 Ss/Es srm Distanza massima in mm tra le fessure											
N°Comb	Ver	e1	e2		K2	Kt		e sm	srm		wk	M Fess.
1 2	S S	-0.00095 -0.00017	0.00033 0.00030		0.50 0.50	0.60 0.60	0.000531 (0.000089 (0.236 (9 0.040 (9		2150.35 -4105.38
COMBINA	AZION	II FREQUEN	TI IN ESERC	izio - Veri	FICA MASS	IME TENSIO	NI NORMALI					
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac	Eff.	As Eff.	D barre
1 2 COMBINA	S S AZION	3.26 2.60 II FREQUEN	180.0 0.0 TI IN ESERC	0.00 0.00 IZIO - VERI	128.9 138.2 FICA APER	-115.1 -9.9 TURA FESS	171.4 8.6 JRE (NTC/EC	21.5 14.4		150 436	45.2 45.2	9.2 9.2
N°Comb	Ver	e1	e2		K2	Kt		e sm	srm		wk	M Fess.
1 2 COMBINA	S S AZION	-0.00062 -0.00006	0.00024 0.00020 RMANENTI II	N ESERCIZIO	0.50 0.50 • VERIFIC	0.60 0.60 CA MASSIME	0.000345 (0.000030 (ETENSIONI N	0.000030)	446 381		4 (0.30) 1 (0.30)	2246.35 -5593.94
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac	Eff.	As Eff.	D barre
1 2	S S	2.73 1.43	180.0 0.0	0.00 0.00	137.5 78.9	-124.2 -25.7	171.4 8.6	21.5 21.5	2	150 150	45.2 45.2	9.2 9.2
				N ESERCIZIO			RA FESSURE					
N°Comb	Ver	e1	e2		K2	Kt		e sm	srm		wk	M Fess.
1 2	S S	-0.00066 -0.00014	0.00020 0.00011		0.50 0.50	0.40 0.40	0.000373 (0.000077 (446 446		6 (0.20) 4 (0.20)	2044.86 -2908.17

ENVE SLU SISMICO

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: muro frontale M11 SISMICO

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -Classe: C32/40

> Resistenza compress. di progetto fcd: 18.13 MPa Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33345.8 MPa

> Resis. media a trazione fctm: 3.023 MPa

ACCIAIO -B450C Tipo:

> Resist, caratt, a snervamento fvk: 450.00 MPa 450.00 Resist. caratt. a rottura ftk: MPa Resist. a snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa

Diagramma tensioni-deformaz.: Bilineare finito

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

100.0 Base: cm Altezza: 180.0 cm 10Ø24 Barre inferiori: (45.2 cm²) Barre superiori: 10Ø24 (45.2 cm²) Coprif.Inf.(dal baric. barre): 8.6 cm Coprif.Sup.(dal baric. barre): 8.6 cm Coprif.Lat. (dal baric.barre): 5.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Momento flettente [kNm] intorno all'asse x baric. della sezione Mx con verso positivo se tale da comprimere il lembo sup. della sezione

۷Y Taglio [kN] in direzione parallela all'asse Y del riferim. generale

MT Momento torcente [kN m]

N°Comb. MT Mx ۷v -432.90 754.30 0.00 0.00 1 781.40 -1347.20 0.00 0.00 2

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

S = combinazione verificata / N = combin. non verificata Ver

N Sforzo normale baricentrico assegnato [kN] (positivo se di compressione) Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.) Momento resistente sostanzialmente elastico [kNm] riferito all'asse x baricentrico Misura sicurezza = rapporto vettoriale tra (N re,Mx re) e (N,Mx) Mx re

Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez. Yn

Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC] C.Rid.

N°Comb	Ver	N	Mx	N re	Mx re	Mis.Sic.	Yn	x/d	C.Rid.	
1	S	-432.90	754.30			3.330	149.8	0.18	0.70	45.2 (29.9)
2	S	781.40	-1347.20			2.523	41.5	0.24	0.74	45.2 (29.9)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

ec max	Deform. unit. massima del conglomerato a compressione
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max Yc max es min Ys min es max Ys max

12.2 MURO PARAGHIAIA

Sollecitazioni di verifica:

Area	OutputCase	Р	M11
Text	Text	KN	KNm
87	ENVE_SLU_STR	-106.0	251.8
172	ENVE_SLU_STR	50.4	-157.0

Area	OutputCase	Р	M22
Text	Text	KN	KNm
87	ENVE_SLU_STR	-106.0	377.1
89	ENVE_SLU_STR	526.5	-319.4

V13	V23
KN	KN
318	407

Area	OutputCase	Р	M11
Text	Text	KN	KNm
161	ENVE_SLU_SLV	-28.8	123.5
172	ENVE_SLU_SLV	21.3	-96.4

Area	OutputCase	Р	M22
Text	Text	KN	KNm
634	ENVE_SLU_SLV	-42.1	148.2
87	ENVE_SLU_SLV	56.9	-122.9

V13	V23
KN	KN
215	172

Area	OutputCase	Р	M11	
Text	Text	KN	KNm	
87	ENVE_SLER	-70.0	186.6	
172	ENVE_SLER	33.8	-107.8	

Area	OutputCase	Р	M22	
Text	Text	KN	KNm	
87	87 ENVE_SLER		272.5	
89	ENVE_SLER	419.8	-216.1	

Area	OutputCase	Р	M11
Text	Text	KN	KNm
87	ENVE_SLEF	-37.8	150.1
172	ENVE_SLEF	22.0	-69.5

Area	OutputCase	Р	M22	
Text	Text	KN	KNm	
87	ENVE_SLEF	-37.8	207.4	
89	ENVE_SLEF	392.1	-134.4	

Area	OutputCase	Р	M11
Text	Text	KN	KNm
87	ENVE_SLEQP	-23.8	121.5
159	ENVE_SLEQP	31.7	-53.7

Area	OutputCase	Р	M22
Text	Text	KN	KNm
89	ENVE_SLEQP	-23.8	214.2
89	ENVE_SLEQP	390.7	-90.8

Si riassume di seguito l'armatura verticale adottata.

As = $1\Phi 24/10$ lato controterra

As' = $1\Phi 20/10$ lato opposto

Si riassume di seguito l'armatura orizzontale adottata.

 $As = 1\Phi 20/10$

 $As' = 1\Phi 20/10$

Staffe: Φ14/20 a 4 bracci

La sezione risulta verificata con l'armatura prevista.

12.2.1 VERIFICA A TAGLIO

Taglio V13

Verifica elementi senza armature trasversali resistenti a taglio

È consentito l'impiego di solai, piastre e membrature a comportamento analogo, sprovviste di armature trasversali resistenti a taglio. La resistenza a taglio V_{Rd} di tali elementi deve essere valutata, utilizzando formule di comprovata affidabilità, sulla base della resistenza a trazione del cls.

$$\begin{array}{c} \text{valutata, utilizzando formule di comprovata affidabilità, sulla base della resistenza a trazione del cls.} \\ V_{\textit{RJ}} \geq V_{\textit{Ed}} \\ V_{\textit{Rd}} = \begin{cases} 0.18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3} \\ \gamma_c \end{cases} + 0.15 \cdot \sigma_{cp} \end{cases} \cdot b_w \cdot d \geq \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d \end{cases} \\ \text{Sollecitazioni Agenti:} \\ V_{\text{Ed}} & 318 \text{ kN} \\ N_{\text{Ed}} & 0 \text{ kN} \end{cases}$$

$$\begin{array}{c} \text{Calcestruzzo} \\ \text{Resistenza di calcolo a compressione del calcestruzzo} \\ \text{Resistenza di calcolo a compressione del calcestruzzo} \\ \text{Resistenza di sicurezza relativo al calcestruzzo} \\ \text{Coefficiente parziale di sicurezza relativo al calcestruzzo} \\ \text{Coefficiente parziale$$

Verifica:

Verifica elementi senza armature trasversali resistenti a taglio È consentito l'impiego di solai, piastre e membrature a comportamento analogo, sprovviste di armature trasversali resistenti a taglio. La resistenza a taglio V_{Rd} di tali elementi deve essere valutata, utilizzando formule di comprovata affidabilità, sulla base della resistenza a trazione del cls. $V_{Rd} \geq V_{Ed}$ $V_{Rd} = \left\{ \frac{0.18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c} + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \ge \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d$ Sollecitazioni Agenti: N_{Ed} 0 kN Calcestruzzo C32/40 R_{ck} 40 N/mm² f_{ck} 33.2 N/mm² Resistenza di calcolo a compressione del calcestruzzo f_{cd} 18.81 N/mm² Coefficiente parziale di sicurezza relativo al calcestruzzo 1.5 $\gamma_{\rm c}$ Altezza sezione 600 mm h Copriferro C 104 mm Larghezza minima della sezione (in mm) 1000 mm Altezza utile della sezione (in mm) 496 mm 600000 mm² Area Calcestruzzo 10 Ø 24 mm n Armatura longitudinale tesa 4521.6 mm² A_{s1} Rapporto geometrico di armatura longitudinale 0.0091 ? 0.02 ρ_1 Tensione media di compressione nella sezione $0.0000 ? 0.2 f_{cd}$ ok σ_{cp} $k = 1 + (200/d)^{1/2} \le 2$ 1.64 ? 2 k $v_{min} = 0.035k^{3/2}f_{ck}^{1/2}$ 0.28 V_{min} V_{Rd} 303.27 kN $V_{Rd} > V_{Ed}$

NON VERIFICATA

Di seguito si riportano i relativi diagrammi di ricoprimento del taglio V13 e V23

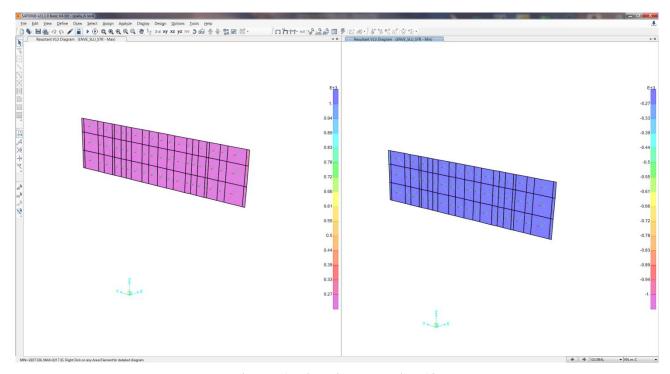


Figura 51: Ricoprimento taglio V13

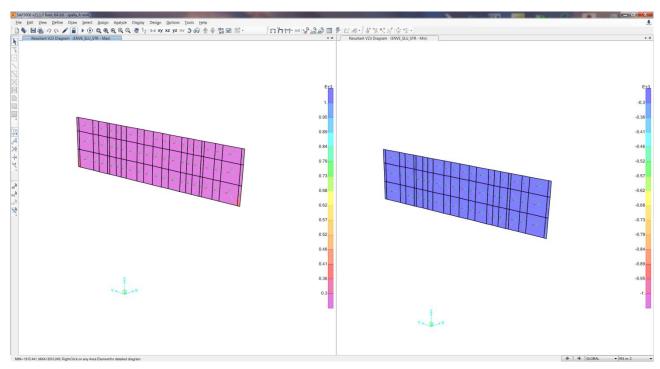


Figura 52: Ricoprimento taglio V23

Come si può vedere dai diagrammi sopra riportati il valore del taglio limite non viene mai superato tranne che nelle zone evidenziate dove occorre inserire una idonea armatura a taglio.

Il valora del taglio massimo non coperto evidenziato in figura risulta pari a V13= 318 kN/m V23max =407 KN/m. Si effettua di seguito il calcolo dell'armatura a taglio.

Verifica elementi con armature trasversali resistenti al taglio

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati.

$$\begin{split} &V_{Rd} \geq V_{Ed} \\ &V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg \, \alpha + ctg \, \theta) \cdot \sin \alpha \\ &V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \cdot (ctg \, \alpha + ctg \, \theta) / (1 + ctg^2 \theta) \\ &V_{Rd} = \min(V_{Rsd}; V_{Rcd}) \end{split}$$

Acciaio	B 450 C	f_{yd}	391.3 N/mm ²
Coefficiente parziale di sicurezza re	alativo all'acciaio	γ_{s}	1.15
Coefficiente parziale di sicurezza re	ciativo ali acciaio	/ S	1.13
Inclinazione dei puntoni di cls rispe	tto all'asse della trave	?	45 °
			0.79 rad
diametro staffe		Ø	14 mm
numero bracci staffe		n	4
Area dell'armatura trasversale		A_{sw}	615.75 mm ²
Interasse tra due armature trasvers	sali consecutive	S	200 mm
Angolo di inclinazione dell'armatura	a trasversale	α	90 °
			1.57 rad
Resistenza a compressione ridotta	del calcestruzzo d'anima	f' _{cd}	9.41 N/mm ²
Coefficiente maggiorativo		α_{c}	1
		V	537.79 kN
		V_{Rsd}	
		V_{Rcd}	2099.57 kN
		V_{Rd}	537.79 kN
Verifica:	$V_{Rd} > V_{Ed}$		VERIFICATA

12.2.2 VERIFICA A FLESSIONE - M22 - ARMATURA VERTICALE

ENVE SLU STATICO

CALCOLO COPRIFERRO - § C4.1.6.1.3 ISTRUZIONI NTC

Dati Assegnati:

Diametro (o diametro equivalente) barre longitudinali:	20	[mm]	
Diametro staffe:	20	[mm]	
Classe Calcestruzzo:	C32/40		
Condizioni ambientali:	Aggressive		
Vita nominale costruzione:	75	[anni]	Incremento di 10 mm rispetto a vita nominale di 50 anni
Tolleranza di posa:	10	[mm]	
Copriferro staffe:			
Copriferro nominale Netto Staffe:	60	[mm]	
Copriferro barre longitudinali:			
Copriferro nominale Netto barre longitudinali:	94	[mm]	
Copriferro nominale dal Baricentro della Barra longi	tudinale: 104	[mm]	Dato da assegnare nell'input delle sezioni

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A. NOME SEZIONE: paraghiaia M22

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

A Sforzo Norm. costante Percorso sollecitazione: Condizioni Ambientali: Moderat. aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -Classe: C32/40 Resistenza compress. di progetto fcd:

> Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33345.8 MPa Resis. media a trazione fctm: 3.023 MPa Coeff.Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 19.200 MPa Sc limite S.L.E. comb. Frequenti: 19.200 MPa Ap.Fessure limite S.L.E. comb. Frequenti: 0.300 Sc limite S.L.E. comb. Q.Permanenti: 14.400 MPa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

18.13

MPa

ACCIAIO -B450C

> Resist. caratt. a snervamento fyk: 450.00 MPa Resist. caratt. a rottura ftk: 450.00 MPa Resist. a snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa Diagramma tensioni-deformaz.: Bilineare finito Coeff. Aderenza istant. ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 360.00 MPa Comb.Rare - Sf Limite:

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 100.0 cm Altezza: 60.0 cm Barre inferiori: 10Ø24 (45.2 cm²) (31.4 cm²) Barre superiori: 10Ø20 Coprif.Inf.(dal baric. barre): 11.0 cm Coprif.Sup.(dal baric. barre): 10.4 cm Coprif.Lat. (dal baric.barre): 5.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Momento flettente [kNm] intorno all'asse x baric. della sezione Mx con verso positivo se tale da comprimere il lembo sup. della sezione VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale

MT Momento torcente [kN m]

N°Comb.	N	Mx	Vy	MT
1	-106.00	377.10	0.00	0.00
2	526.50	-319.40	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione) My

con verso positivo se tale da comprimere il lembo superiore della sezione

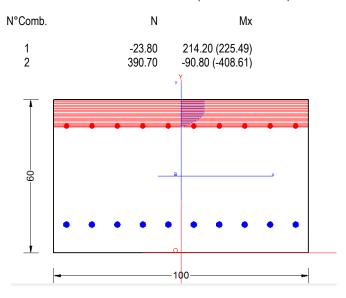
N°Comb. Ν Mx -70.00 272.50 2 419.80 -216.10

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.) Ν

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione


N°Comb. Mx 207.40 (223.91) -37.80 2 392.10 -134.40 (-320.46)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.) Mx

Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 9.4 cm Interferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale baricentrico assegnato [kN] (positivo se di compressione) N

Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.)

Momento resistente ultimo [kNm] riferito all'asse x baricentrico Mx rd Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez. Yn

Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

N-Comb	ver	N	IVIX	IN ra	IVIX ra	IVIIS.SIC.	YN	X/a	C.RIa.	
1	S	-106.00	377.10	-105.88	756.16	2.014	49.2	0.22	0.72	45.2 (8.6)
2	S	526.50	-319.40	526.78	-679.13	2.139	11.3	0.23	0.73	31.4 (8.7)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max	Ordinata in cm della barra corrisp, a es max (sistema rif, X,Y,O sez.)

N°Comb		e	ec max	Yc max	es mi	n Ysmi	in (es max	Ys max		
1 2			.00350 .00350	60.0 0.0	0.0001 0.0001			.01239 .01182	11.0 49.6		
	ΔΖΙΩΙ			- VERIFICA N				.01102	43.0		
Ver Sc ma Yc ma Sc mi Yc mi Sf mir Ys mi Dw Et Ac eff As eff D bar	ax n n n n ff.	S = cor Massim Ordinat Minima Ordinat Minima Ordinat Spesso Area di Area Ba Distanz	mbinazione veri na tensione di co na in cm della fil tensione di ton na in cm della fil tensione di tra. na in cm della ba ore di conglome congl. [cm²] in arre tese di acc na tense di acc na in cm tra le b	ficata / N = com compress.(+) nel cora corrisp. a So mpress.(+) nel co cora corrisp. a So zione (-) nell'acc arra corrisp. a So rato [cm] in zon zona tesa adere iaio [cm²] ricade arre tese efficada aziatura superio	bin. non verification of the conglom. In factor of the conglom	ata se fessurata (rif. X,Y,O) e fessurata ([M rif. X,Y,O) rif. X,Y,O) rata aderente ((verifica fess.) fficace(verifica	[Mpa] Ipa] alle barre fess.)	a (C4.1.11)NT	°C/(7.14)EC2)		
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac E	ff. As Eff.	D barre
1 2	S S	5.68 5.04	60.0 0.0	0.00 0.00	42.3 22.0	-150.9 -95.6	49.6 11.0	14.1 12.7	141 127		8.7 8.7
COMBINA	AZION	II RARE IN E	SERCIZIO -	VERIFICA A	PERTURA F	ESSURE (N	TC/EC2)				
Ver e1 e2 K2 Kt e sm srm wk M fess	S.	Massim = 0.5 per fattore e Deform Distanz Apertur	deformazione na deformazione er flessione; =(e di durata del ca azione media a ca massima in n ca delle fessure	unitaria (trazion e unitaria (comp e1 + e2)/(2*e2)iu rico di cui alla (acciaio tra le fes mm tra le fessur in mm fornito di surazione [kNm]	oress.: segno + n trazione ecce 7.9) dell'EC2 sure al netto di e alla (7.8)EC2 e) nel calcestru entrica per la (7 i quella del cls.	zzo in sez. fe: 7.13)EC2 e la . Tra parentes	ssurata (C4.1.11)NTC si il valore mini	mo = 0.6 Ss/l		
N°Comb	Ver	e1	e2		K2	Kt		e sm	srm	wk	M Fess.
1 2	S S	-0.00102 -0.00066	0.00043 0.00038		0.50 0.50	0.60 0.60		(0.000453) (0.000287)		208 (990.00) 131 (990.00)	222.27 -278.23
COMBINA	AZION	II FREQUEN	ITI IN ESERC	IZIO - VERIF	FICA MASSII	ME TENSION	NI NORMAL	I			
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac E	ff. As Eff.	D barre
1 2	S S	4.35 3.09	60.0 0.0	0.00 0.00	42.1 26.2	-113.2 -41.7	49.6 11.0	14.0 11.3	140 113		8.7 8.7
COMBINA	AZION	II FREQUEN	ITI IN ESERC	IZIO - VERIF	FICA APERT	URA FESSU	IRE (NTC/E	C2)			
N°Comb	Ver	e1	e2		K2	Kt		e sm	srm	wk	M Fess.
1 2	S S	-0.00077 -0.00030	0.00033 0.00023		0.50 0.50	0.60 0.60		(0.000339) (0.000125)	460 442	0.156 (0.30) 0.055 (0.30)	223.91 -320.46
COMBINA	AZION	II QUASI PE	RMANENTI I	N ESERCIZIO	- VERIFIC	A MASSIME	TENSIONI	NORMALI			
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac E	ff. As Eff.	D barre
1 2	S	4.50	60.0	0.00	41.9	-115.2	49.6	14.0	139 87		8.7
2	S	2.03	0.0	0.00	33.8	-14.3	11.0	8.8	01	6 31.4	8.7
				N ESERCIZIO						0 31.4	8.7

S -0.00078 S -0.00012

1

0.00034 0.00015

0.50

0.50

0.40

0.40

0.000353 (0.000345) 0.000043 (0.000043)

459

414

0.162 (0.20) 0.018 (0.20)

225.49 -408.61

ENVE SLU SISMICO

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: paraghiaia M22 SISMICO

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C32/40

Resistenza compress. di progetto fcd:

Deform. unitaria max resistenza ec2:

Deformazione unitaria ultima ecu:

Diagramma tensioni-deformaz.:

Modulo Elastico Normale Ec:

Resis. media a trazione fctm:

18.13

MPa

0.0020

Parabola-Rettangolo

MPa

MPa

33345.8

MPa

Resis. media a trazione fctm:

3.023

ACCIAIO - Tipo: B450C

Resist. caratt. a snervamento fyk: 450.00 MPa Resist. caratt. a rottura ftk: 450.00 MPa Resist. a snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa Diagramma tensioni-deformaz.: Bilineare finito

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 100.0 cm Altezza: 60.0 cm Barre inferiori: (45.2 cm²) 10Ø24 Barre superiori: 10Ø20 (31.4 cm²) Coprif.Inf.(dal baric. barre): 9.0 cm Coprif.Sup.(dal baric. barre): 10.4 cm Coprif.Lat. (dal baric.barre): 5.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (posit. se di compress.)

Mx Momento flettente [kNm] intorno all'asse x baric. della sezione
con verso positivo se tale da comprimere il lembo sup. della sezione
VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale
MT Momento torcente [kN m]

 N°Comb.
 N
 Mx
 Vy
 MT

 1
 -42.10
 148.20
 0.00
 0.00

 2
 56.90
 -122.90
 0.00
 0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 9.4 cm Interferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale baricentrico assegnato [kN] (positivo se di compressione)
Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.)
Mx re Momento resistente sostanzialmente elastico [kNm] riferito all'asse x baricentrico

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N re,Mx re) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez. Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Yn

x/d

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

N°Comb	Ver	N	Mx	N re	Mx re	Mis.Sic.	Yn	x/d	C.Rid.	
1	S	-42.10	148.20			5.241	41.9	0.35	0.88	45.2 (8.9)
2	S	56.90	-122.90			4.478	14.9	0.30	0.82	31.4 (8.7)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

ec max	Deform. unit. massima del conglomerato a compressione
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max
1	0.00107	60.0	0.00045	49.6	-0.00196	9.0
2	0.00084	0.0	0.00034	9.0	-0.00196	49.6

12.2.3 VERIFICA A FLESSIONE - M11 - ARMATURA ORIZZONTALE

ENVE SLU STATICO

CALCOLO COPRIFERRO - § C4.1.6.1.3 ISTRUZIONI NTC

Dati Assegnati:

Diametro (o diametro equivalente) barre longitudinali: 20 [mm] Diametro staffe: 14 [mm] C32/40 Classe Calcestruzzo: Condizioni ambientali: Aggressive Vita nominale costruzione: 75 [anni] Tolleranza di posa: [mm] 10

Incremento di 10 mm rispetto a vita nominale di 50 anni

Copriferro staffe: Copriferro nominale Netto Staffe: 60 [mm] Copriferro barre longitudinali: Copriferro nominale Netto barre longitudinali: 74 [mm]

Copriferro nominale dal Baricentro della Barra longitudinale: 84 [mm] Dato da assegnare nell'input delle sezioni

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: paraghiaia M11

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive Assi x,y principali d'inerzia Riferimento Sforzi assegnati: Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -C32/40 Classe:

> Resistenza compress. di progetto fcd: 18.13 MPa Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33345.8 MPa Resis. media a trazione fctm: 3.023 MPa Coeff.Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Rare:	19.200	MPa
Sc limite S.L.E. comb. Frequenti:	19.200	MPa
Ap.Fessure limite S.L.E. comb. Frequenti:	0.300	mm
Sc limite S.L.E. comb. Q.Permanenti:	14.400	MPa
Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm

ACCIAIO -B450C Tipo:

> Resist. caratt. a snervamento fyk: 450.00 MPa Resist. caratt. a rottura ftk: MPa 450.00 Resist. a snerv. di progetto fyd: MPa 391.30 Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa Diagramma tensioni-deformaz.: Bilineare finito Coeff. Aderenza istant. ß1*ß2: 1.00

Coeff. Aderenza differito ß1*ß2: 0.50

Comb.Rare - Sf Limite: 360.00 MPa

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

100.0 Altezza: 60.0 (31.4 cm²) Barre inferiori: 10Ø20 Barre superiori: 10Ø20 (31.4 cm²) Coprif.Inf.(dal baric. barre): 8.4 cm Coprif.Sup.(dal baric. barre): 8.4 cm Coprif.Lat. (dal baric.barre): 5.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Mx Momento flettente [kNm] intorno all'asse x baric. della sezione con verso positivo se tale da comprimere il lembo sup. della sezione ۷Y Taglio [kN] in direzione parallela all'asse Y del riferim. generale

MT Momento torcente [kN m]

N°Comb.	N	Mx	Vy	MT
1	-106.00	251.80	0.00	0.00
2	50.40	-157.00	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Mx -70.00 186.60 1 33.80 -107.80

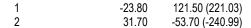
COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

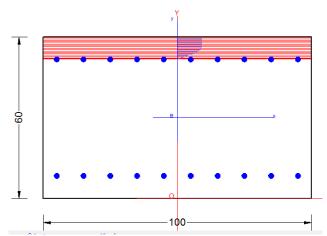
Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx 150.10 (219.74) -37.80 2 22.00 -69.50 (-233.64)


COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA


Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx

RISULTATI DEL CALCOLO

Sezione verificata

Copriferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 8.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale baricentrico assegnato [kN] (positivo se di compressione)

Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.)

Mx rd Momento resistente ultimo [kNm] riferito all'asse x baricentrico Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

N°Comb	Ver	N	Mx	N rd	Mx rd	Mis.Sic.	Yn	x/d	C.Rid.	
1	S	-106.00	251.80	-106.01	568.04	2.256	51.9	0.16	0.70	62.8 (9.0)
2	S	50.40	-157.00	50.68	-602.70	3.839	8.5	0.17	0.70	31.4 (9.0)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,

Yc max
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min
Deform. unit. minima nell'acciaio (negativa se di trazione)

Ys min
ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max
Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max Yc max es min Ys min es max Ys max 0.00350 60.0 -0.00011 51.6 -0.01869 8.4 1 0.00350 0.0 0.00005 8.4 -0.01771 51.6

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver S = combinazione verificata / N = combin. non verificata

Sc max

Massima tensione di compress.(+) nel conglom. in fase fessurata ([Mpa]
Yc max

Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sc min

Minima tensione di compress.(+) nel conglom. in fase fessurata ([Mpa]
Yc min

Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)

Sf min Minima tensione di trazione (-) nell'acciaio [Mpa]

Ys min Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)

Dw Eff. Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre Ac eff. Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
As eff. Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)

D barre Distanza in cm tra le barre tese efficaci.

(D barre = 0 indica spaziatura superiore a $5(c+\emptyset/2)$ e nel calcolo di fess. si usa la (C4.1.11)NTC/(7.14)EC2)

N°Comb Ver Sc max Yc max Sc min Yc min Sf min Ys min Dw Eff. Ac Eff. As Eff. D barre

2	S	2.33	0.0	0.00	17.2	-70.1	8.4	14.3		1430	31.4	9.2
COMBINA	AZION	II RARE IN I	ESERCIZIO -	VERIFICA A	PERTURA	FESSURE (N	NTC/EC2)					
Ver		Esito v			,							
e1 e2				unitaria (trazion e unitaria (comp								
K2				e unitana (comp e1 + e2)/(2*e2)i								
Kt				rico di cui alla (sonaroa por la ((7.10)202014 (01.1.11/1110				
e sm				acciaio tra le fes		di quella del cls	s. Tra parentesi	il valore minim	no = 0.6 S	Ss/Es		
srm				nm tra le fessur								
wk				in mm fornito d		e dalla (C4.1.7	7)NTC. Tra pare	ntesi è indicat	o il valore	e limite.		
M fess	S .	Momer	nto di prima fesi	surazione [kNm]	J							
N°Comb	Ver	e1	e2		K2	Kt		e sm	srm		wk	M Fess.
1	S	-0.00087	0.00029		0.50	0.60	0.000424 (414		5 (990.00)	216.94
2	S	-0.00044	0.00017		0.50	0.60	0.000210 (406	0.085	(990.00)	-233.56
COMBINA	AZION	II FREQUEN	ITI IN ESERC	IZIO - VERII	FICA MASS	IME TENSIO	NI NORMALI					
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	A	c Eff.	As Eff.	D barre
1	S	3.15	60.0	0.00	44.6	-110.8	51.6	14.9		1486	31.4	9.2
2	S	1.50	0.0	0.00	17.2	-45.2	8.4	14.3		1429	31.4	9.2
COMBINA	AZION	II FREQUEN	ITI IN ESERC	IZIO - VERII	FICA APER	TURA FESSI	URE (NTC/EC	;2)				
N°Comb	Ver	e1	e2		K2	Kt		e sm	srm		wk	M Fess.
1	C	-0.00068	0.00024		0.50	0.60	0.000222	n nnnaaa)	440	0.4	27 (0 20)	219.74
1	S S	-0.0008	0.00024 0.00011		0.50 0.50	0.60 0.60	0.000332 (0.000136 (412 406		137 (0.30) 055 (0.30)	-233.64
_				N ESERCIZIO					400	0.0	155 (0.50)	-233.04
COMBINA	4ZIOI	II QUASI FE	RWANENIII	N ESERCIZIO) - VERIFIC	JA WAJOWE	LIENSIONIN	IORWALI				
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	A	c Eff.	As Eff.	D barre
1	S	2.56	60.0	0.00	44.4	-88.6	51.6	14.8		1481	31.4	9.2
2	S	1.17	0.0	0.00	18.1	-32.7	8.4	14.0		1400	31.4	9.2
COMBINA	AZION	II QUASI PE	RMANENTII	N ESERCIZIO) - VERIFIC	CA APERTU	RA FESSURE	(NTC/EC2)				
N°Comb	Ver	e1	e2		K2	Kt		e sm	srm		wk	M Fess.
1	S	-0.00055	0.00019		0.50	0.40	0.000266 (0.000266)	412	0.1	09 (0.20)	221.03
2	S	-0.00020	0.00009		0.50	0.40	0.000200 (403)40 (0.20)	-240.99
=	-						,				- ()	

ENVE SLU SISMICO

S

3.89

60.0

0.00

44.9

-141.3

51.6

15.0

1498

31.4

9.2

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: paraghiaia M11 SISMICO

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C32/40

Resistenza compress. di progetto fcd:

Deform. unitaria max resistenza ec2:

Deformazione unitaria ultima ecu:

Diagramma tensioni-deformaz.:

Modulo Elastico Normale Ec:

Resis. media a trazione fctm:

18.13

MPa

0.0020

Parabola-Rettangolo

MPa

MPa

33345.8

MPa

Resis. media a trazione fctm:

3.023

ACCIAIO - Tipo: B450C

Resist. caratt. a snervamento fyk: 450.00 MPa Resist. caratt. a rottura ftk: 450.00 MPa Resist. a snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa

Diagramma tensioni-deformaz.: Bilineare finito

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

100.0 Base: cm Altezza: 60.0 cm Barre inferiori: 10Ø20 (31.4 cm²) Barre superiori: 10Ø20 (31.4 cm²) Coprif.Inf.(dal baric. barre): 8.4 cm Coprif.Sup.(dal baric. barre): cm Coprif.Lat. (dal baric.barre): 5.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (posit. se di compress.)

Mx Momento flettente [kNm] intorno all'asse x baric. della sezione
con verso positivo se tale da comprimere il lembo sup. della sezione
VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale

MT Momento torcente [kN m]

N°Comb. N Mx Vy MT

1 -28.80 123.50 0.00 0.00
2 21.30 -96.40 0.00 0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 8.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale baricentrico assegnato [kN] (positivo se di compressione)

Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.)

Mx re Momento resistente sostanzialmente elastico [kNm] riferito all'asse x baricentrico

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N re,Mx re) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

N°Comb	Ver	N	Mx	N re	Mx re	Mis.Sic.	Yn	x/d	C.Rid.	
1	S	-28.80	123.50			4.497	44.8	0.29	0.81	31.4 (9.0)
2	S	21.30	-96.40			5.875	15.5	0.30	0.81	31.4 (9.0)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

ec max	Deform, unit, massima dei congiomerato a compressione
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

es min Deform. unit. minima nell'acciaio (negativa se di trazione)

Ys min
es max
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max
1	0.00082	60.0	0.00037	51.6	-0.00196	8.4
2	0.00084	0.0	0.00038	8.4	-0.00196	51.6

12.3 MURI D'ALA LATERALI SP. 1.30M

Sollecitazioni di verifica:

Area	OutputCase	Р	M11
Text	Text	KN	KNm
725	ENVE_SLU_STR	-749.5	1734.2
795	ENVE_SLU_STR	571.5	-828.8

Area	OutputCase	Р	M22
Text	Text	KN	KNm
792	ENVE_SLU_STR	399.8	1284.6
795	ENVE SLU STR	571.5	-871.3

V13	V23
KN	KN
1139	685

Area	OutputCase	Р	M11
Text	Text	KN	KNm
725	ENVE_SLU_SLV	-382.0	1094.7
725	ENVE_SLU_SLV	433.5	-334.8

Area	OutputCase	Р	M22
Text	Text	KN	KNm
842	ENVE_SLU_SLV	-1143.2	527.0
794	ENVE SLU SLV	358.7	-329.1

V13	V23
KN	KN
569	425

Area	OutputCase	Р	M11
Text	Text	KN	KNm
725	ENVE_SLER	-492.6	1206.8
795	ENVE_SLER	408.4	-538.6

Area	OutputCase	Р	M22
Text	Text	KN	KNm
792	ENVE_SLER	305.0	921.0
795	ENVE_SLER	408.4	-581.1

Area	OutputCase	Р	M11
Text	Text	KN	KNm
725	ENVE_SLEF	-246.1	823.5
793	ENVE_SLEF	1631.0	-313.2

Area	OutputCase	Р	M22
Text	Text	KN	KNm
727	ENVE_SLEF	120.9	686.9
728	ENVE_SLEF	378.7	-356.6

Area	OutputCase	Р	M11
Text	Text	KN	KNm
795	ENVE_SLEQP	60.0	535.0
725	ENVE_SLEQP	1568.9	-551.9

Area	OutputCase	Р	M22
Text	Text	KN	KNm
727	ENVE_SLEQP	68.8	623.8
795	ENVE_SLEQP	252.3	-299.1

Si riassume di seguito l'armatura verticale adottata.

 $As = 1\Phi 26/10$

 $As' = 1\Phi 26/10$

Si riassume di seguito l'armatura orizzontale adottata.

 $As = 1\Phi 26/10$

 $As' = 1\Phi 26/10$

Staffe: Φ14/20 a 4 bracci

La sezione risulta verificata con l'armatura prevista.

12.3.1 VERIFICA A TAGLIO

Taglio V13

Verifica elementi senza armature trasversali resistenti a taglio

È consentito l'impiego di solai, piastre e membrature a comportamento analogo, sprovviste di armature trasversali resistenti a taglio. La resistenza a taglio V_{Rd} di tali elementi deve essere valutata, utilizzando formule di comprovata affidabilità, sulla base della resistenza a trazione del cls.

$$\begin{array}{l} \text{valutata, utilizzando formule di comprovata affidabilità, sulla base della resistenza a trazione del cls.} \\ V_{\textit{RJ}} \geq V_{\textit{Ed}} \\ V_{\textit{RJ}} = \begin{cases} 0.18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3} \\ \gamma_c \end{cases} + 0.15 \cdot \sigma_{cp} \end{cases} \cdot b_w \cdot d \geq \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d \end{cases} \\ \text{Sollecitazioni Agenti:} \\ V_{\text{Ed}} & 1139 \text{ kN} \\ N_{\text{Ed}} & 0 \text{ kN} \end{cases}$$

$$\begin{array}{l} \text{Calcestruzzo} \\ \text{Calcestruzzo} \\ \text{Calcestruzzo} \\ \text{Calcestruzzo} \\ \text{Calcestruzzo} \end{cases} \\ \text{Resistenza di calcolo a compressione del calcestruzzo} \\ \text{Resistenza di calcolo a compressione del calcestruzzo} \\ \text{Resistenza di sicurezza relativo al calcestruzzo} \end{cases} \\ \text{Coefficiente parziale di sicurezza relativo al calcestruzzo} \\ \text{Altezza sezione} \\ \text{Copriferro} \\ \text{Calcestruzzo} \\ \text{Copriferro} \\ \text{Calcestruzzo} \end{cases} \\ \text{Coefficiente della sezione (in mm)} \\ \text{Altezza utile della sezione (in mm)} \\ \text{Altezza operato geometrico di armatura longitudinale} \\ \text{Alteze operator operator operator operator nella sezione} \\ \text{Alteze operator operator operator nella di compressione nella sezione} \\ \text{Alteze operator operator operator operator operator nella sezione} \\ \text{Alteze operator opera$$

Verifica:

Verifica elementi senza armature trasversali resistenti a taglio È consentito l'impiego di solai, piastre e membrature a comportamento analogo, sprovviste di armature trasversali resistenti a taglio. La resistenza a taglio V_{Rd} di tali elementi deve essere valutata, utilizzando formule di comprovata affidabilità, sulla base della resistenza a trazione del cls. $V_{Rd} \geq V_{Ed}$ $V_{Rd} = \left\{ \frac{0.18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c} + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \ge \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d$ Sollecitazioni Agenti: N_{Ed} 0 kN Calcestruzzo C32/40 R_{ck} 40 N/mm² f_{ck} 33.2 N/mm² Resistenza di calcolo a compressione del calcestruzzo f_{cd} 18.81 N/mm² Coefficiente parziale di sicurezza relativo al calcestruzzo 1.5 $\gamma_{\rm c}$ Altezza sezione 1300 mm h Copriferro C 113 mm Larghezza minima della sezione (in mm) 1000 mm Altezza utile della sezione (in mm) 1187 mm 1300000 mm² Area Calcestruzzo 10 Ø 26 mm n Armatura longitudinale tesa 5306.6 mm² A_{s1} Rapporto geometrico di armatura longitudinale 0.0045 ? 0.02 ρ_1 Tensione media di compressione nella sezione $0.0000 ? 0.2 f_{cd}$ ok σ_{cp} $k = 1 + (200/d)^{1/2} \le 2$ 1.41 ? 2 k $v_{min} = 0.035k^{3/2}f_{ck}^{1/2}$ 0.25 V_{min} V_{Rd} 493.74 kN

Di seguito si riportano i relativi diagrammi di ricoprimento del taglio V13 e V23

 $V_{Rd} > V_{Ed}$

NON VERIFICATA

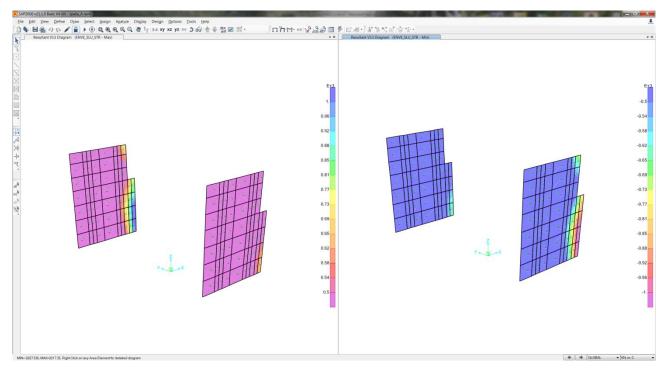


Figura 53: Ricoprimento taglio V13

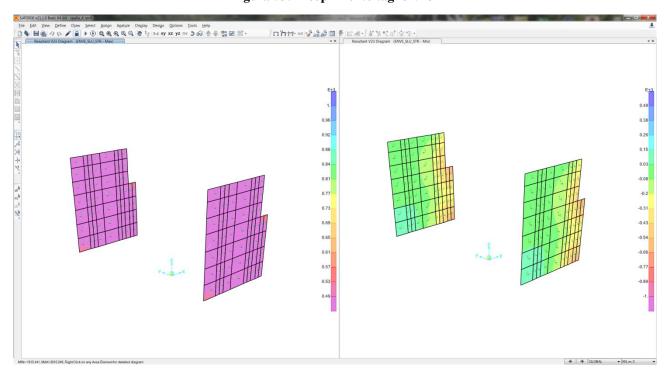


Figura 54: Ricoprimento taglio V23

Come si può vedere dai diagrammi sopra riportati il valore del taglio limite non viene mai superato tranne che nelle zone evidenziate dove occorre inserire una idonea armatura a taglio.

Il valora del taglio massimo non coperto evidenziato in figura risulta pari a V13max =1139 KN/m e V23max =685 KN/m. Si effettua di seguito il calcolo dell'armatura a taglio.

Verifica elementi con armature trasversali resistenti al taglio

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati.

$$\begin{split} &V_{Rd} \geq V_{Ed} \\ &V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg \, \alpha + ctg \, \theta) \cdot \sin \alpha \\ &V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \cdot (ctg \, \alpha + ctg \, \theta) / (1 + ctg^2 \theta) \\ &V_{Rd} = \min(V_{Rsd}; V_{Rcd}) \end{split}$$

Acciaio	В 450 С	f_{yd}	391.3 N/mm ²
Coefficiente parziale di sicurezza re	lativo all'acciaio	γ_{s}	1.15
Inclinazione dei puntoni di cls rispet	to all'asse della trave	?	45 °
diametro staffe		Ø	0.79 rad <mark>14</mark> mm
numero bracci staffe		n	4
Area dell'armatura trasversale		A_{sw}	615.75 mm ²
Interasse tra due armature trasvers	ali consecutive	s	200 mm
Angolo di inclinazione dell'armatura	trasversale	α	90 °
			1.57 rad
Resistenza a compressione ridotta d	del calcestruzzo d'anima	f' _{cd}	9.41 N/mm ²
Coefficiente maggiorativo		$\alpha_{\rm c}$	1
		\mathbf{V}_{Rsd}	1315.19 kN
		V_{Rcd}	5134.63 kN
		V_{Rd}	1315.19 kN
Verifica:	$V_{Rd} > V_{Ed}$		VERIFICATA

12.3.2 VERIFICA A FLESSIONE - M22 - ARMATURA VERTICALE

ENVE SLU STATICO

CALCOLO COPRIFERRO - § C4.1.6.1.3 ISTRUZIONI NTC

Dati Assegnati:

Diametro (o diametro equivalente) barre longitudinali:	26	[mm]	
Diametro staffe:	26	[mm]	
Classe Calcestruzzo:	C32/40		
Condizioni ambientali:	Aggressive		
Vita nominale costruzione:	75	[anni]	Incremento di 10 mm rispetto a vita nominale di 50 anni
Tolleranza di posa:	10	[mm]	
Copriferro staffe:			
Copriferro nominale Netto Staffe:	60	[mm]	
Copriferro barre longitudinali:			
Copriferro nominale Netto barre longitudinali:	100	[mm]	
Copriferro nominale dal Baricentro della Barra long	itudinale: 113	[mm]	Dato da assegnare nell'input delle sezioni

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: muro ala M22

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -C32/40 Classe: Resistenza compress. di progetto fcd:

Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33345.8 MPa Resis. media a trazione fctm: 3.023 MPa Coeff.Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 19.200 MPa Sc limite S.L.E. comb. Frequenti: 19.200 MPa Ap.Fessure limite S.L.E. comb. Frequenti: 0.300 mm Sc limite S.L.E. comb. Q.Permanenti: 14.400 MPa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

18.13 MPa

ACCIAIO -B450C Tipo:

> Resist. caratt. a snervamento fyk: 450.00 MPa Resist. caratt. a rottura ftk: 450.00 MPa Resist. a snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa Diagramma tensioni-deformaz.: Bilineare finito Coeff. Aderenza istant. ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Comb.Rare - Sf Limite: 360.00 MPa

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

100.0 Base: Altezza: 130.0 cm Barre inferiori: 10Ø26 (53.1 cm²) Barre superiori: 10Ø26 (53.1 cm²) Coprif.Inf.(dal baric. barre): 11.3 cm Coprif.Sup.(dal baric. barre): 11.3 cm Coprif.Lat. (dal baric.barre): 5.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Momento flettente [kNm] intorno all'asse x baric. della sezione Mx con verso positivo se tale da comprimere il lembo sup. della sezione VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale

MT Momento torcente [kN m]

N°Comb.	N	Mx	Vy	MT
1	399.80	1284.60	0.00	0.00
2	571.50	-871.30	0.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

МΥ Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx
1	305.00	921.00
2	408.40	-581.10

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

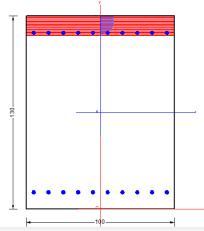
Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx

120.90 686.90 (1112.36) -356.60 (-1432.35) 2 378.70

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA


Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν

68.80 623.80 (1094.23) 252.30 -299.10 (-1337.49) 2

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 10 cm Interferro netto minimo barre longitudinali: 7.4 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

S = combinazione verificata / N = combin. non verificata Ver

Sforzo normale baricentrico assegnato [kN] (positivo se di compressione) Momento flettente assegnato [kNm] riferito all'asse x baricentrico Mx

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.)

Momento resistente ultimo [kNm] riferito all'asse x baricentrico Mx rd Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez. Yn

x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

N°Comb	Ver	N	Mx	N rd	Mx rd	Mis.Sic.	Yn	x/d	C.Rid.	
1	S	399.80	1284.60	399.82	2558.51	1.992	116.8	0.11	0.70	53.1 (20.7)
2	S	571.50	-871.30	571.53	-2650.79	3.042	13.7	0.12	0.70	53.1 (20.7)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

Deform. unit. massima del conglomerato a compressione ec max

Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max

Deform. unit. minima nell'acciaio (negativa se di trazione) es min

Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min

es ma Ys m			n. unit. massir ta in cm della									
N°Comb		e	ec max	Yc max	es m	nin Ys m	in e	es max	Ys max			
1 2			00350 00350	130.0 0.0	0.0008			.02794 .02690	11.3 118.7			
COMBIN	AZION	II RARE IN	ESERCIZIO -	· VERIFICA I	MASSIME T	ENSIONI NO	RMALI					
Ver Sc ma Yc ma Sc mii Yc mii Yc mii Sf mir Ys mii Dw Ef Ac eff As eff D barn	n n n n n f	Massim Ordinat Minima Ordinat Minima Ordinat Spesso Area di Area Ba Distanz	nbinazione verii na tensione di ci a in cm della fib tensione di cor a in cm della fib tensione di traz a in cm della ba re di conglome congl. [cm²] in arre tese di acci a in cm tra le bi e = 0 indica spa	ompress.(+) nel compress.(+) nel compress.(+) nel compress.(+) nel compress.(+) nell'accione (-) nell'accione (-) nell'accione (cm] in zon zona tesa aderriaio [cm²] ricade arre tese efficade arre tese efficade	I conglom. in for max (sistems conglom. in fact min (sistema ciaio [Mpa] of min (sistema a tesa considente alle barreente nell'area ci.	fase fessurata (a rif. X,Y,O) se fessurata ([Na rif. X,Y,O) a rif. X,Y,O) erata aderente e (verifica fess.) efficace(verifica	Mpa] alle barre a fess.)	a (C4.1.11)NTO	C/(7.14)EC	2)		
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac	Eff.	As Eff.	D barre
1 2	S S	4.17 2.71	130.0 0.0	0.00 0.00	92.3 51.0	-134.5 -66.7	118.7 11.3	28.3 28.3		825 825	53.1 53.1	8.6 8.6
COMBINA	AZION	I RARE IN E	SERCIZIO -	VERIFICA A	PERTURA	FESSURE (N	TC/EC2)					
Ver Esito verifica e1 Minima deformazione unitaria (trazione: segno -) nel calcestruzzo in sez. fessurata e2 Massima deformazione unitaria (compress.: segno +) nel calcestruzzo in sez. fessurata K2 = 0.5 per flessione; =(e1 + e2)/(2*e2)in trazione eccentrica per la (7.13)EC2 e la (C4.1.11)NTC K1 fattore di durata del carico di cui alla (7.9) dell'EC2 e sm Deformazione media acciaio tra le fessure al netto di quella del cls. Tra parentesi il valore minimo = 0.6 Ss/Es srm Distanza massima in mm tra le fessure wk Apertura delle fessure in mm fomito dalla (7.8)EC2 e dalla (C4.1.7)NTC. Tra parentesi è indicato il valore limite. M fess. Momento di prima fessurazione [kNm]												
N°Comb	Ver	e1	e2		K2	Kt		e sm	srm		wk	M Fess.
1 2	S S	-0.00077 -0.00038	0.00031 0.00020		0.50 0.50	0.60 0.60		(0.000404) (0.000200)			990.00) 990.00)	1157.65 -1282.76
COMBINA	AZION	I FREQUEN	TI IN ESERC	izio - Verif	FICA MASS	IME TENSIO	NI NORMAL	I				
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac	Eff.	As Eff.	D barre
1 2	S S	3.06 1.68	130.0 0.0	0.00 0.00	94.9 52.9	-109.4 -31.7	118.7 11.3	28.3 25.8		825 581	53.1 53.1	8.6 8.6
COMBINA	AZION	I FREQUEN	TI IN ESERC	izio - Verif	FICA APER	TURA FESSI	JRE (NTC/E	C2)				
N°Comb	Ver	e1	e2		K2	Kt		e sm	srm		wk	M Fess.
1 2	S S	-0.00062 -0.00019	0.00023 0.00013		0.50 0.50	0.60 0.60		(0.000328) (0.000095)	575 555		9 (0.30) 3 (0.30)	1112.36 -1432.35
COMBINA	AZION	I QUASI PE	RMANENTI II	N ESERCIZIO	- VERIFIC	CA MASSIME	TENSIONI I	NORMALI				
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac	Eff.	As Eff.	D barre
1 2	S S	2.76 1.39	130.0 0.0	0.00 0.00	96.0 53.9	-102.9 -31.1	118.7 11.3	28.3 27.3		825 735	53.1 53.1	8.6 8.6
			RMANENTI II								20.1	0.0
N°Comb	Ver	e1	e2		K2	Kt		e sm	srm		wk	M Fess.
1 2	S S	-0.00058 -0.00018	0.00021 0.00011		0.50 0.50	0.40 0.40		(0.000309) (0.000093)	575 568		8 (0.20) 3 (0.20)	1094.23 -1337.49

ENVE SLU SISMICO

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: muro ala M22 SISMICO

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C32/40

Resistenza compress. di progetto fcd:
Deform. unitaria max resistenza ec2:
Deformazione unitaria ultima ecu:
Diagramma tensioni-deformaz.:
Modulo Elastico Normale Ec:

18.13
MPa
0.0020
Parabola-Rettangolo
MPa

Modulo Elastico Normale Ec: 33345.8 MPa Resis. media a trazione fctm: 3.023 MPa

ACCIAIO - Tipo: B450C

Resist. caratt. a snervamento fyk:

Resist. caratt. a rottura ftk:

450.00 MPa
Resist. a snerv. di progetto fyd:

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

450.00 MPa
391.30 MPa
391.30 MPa
0.068

Modulo Elastico Ef: 200000.0 MPa Diagramma tensioni-deformaz.: Bilineare finito

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

100.0 Base: cm Altezza: 130.0 cm Barre inferiori: 10Ø26 (53.1 cm²) Barre superiori: 10Ø26 (53.1 cm²) Coprif.Inf.(dal baric. barre): 11.3 cm Coprif.Sup.(dal baric. barre): 11.3 cm Coprif.Lat. (dal baric.barre): 5.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (posit. se di compress.)

Mx Momento flettente [kNm] intorno all'asse x baric. della sezione
con verso positivo se tale da comprimere il lembo sup. della sezione
VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale

MT Momento torcente [kN m]

N°Comb.	N	Mx	Vy	MT
1	-1143.20	527.00	0.00	0.00
2	358.70	-329.10	0.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 10 cm Interferro netto minimo barre longitudinali: 7.4 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale baricentrico assegnato [kN] (positivo se di compressione)

Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.)
Mx re Momento resistente sostanzialmente elastico [kNm] riferito all'asse x baricentrico

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N re,Mx re) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

N°Comb	Ver	N	Mx	N re	Mx re	Mis.Sic.	Yn	x/d	C.Rid.	
1	S	-1143.20	527.00			3.128	109.2	0.18	0.70	53.1 (20.7)
2	S	358.70	-329.10			7.368	32.6	0.27	0.78	53.1 (20.7)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

ec max	Deform. unit. massima del conglomerato a compressione
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max
1	0.00042	130.0	0.00019	118.7	-0.00196	11.3
2	0.00074	0.0	0.00048	11.3	-0.00196	118.7

12.3.3 VERIFICA A FLESSIONE - M11 - ARMATURA ORIZZONTALE

CALCOLO COPRIFERRO - § C4.1.6.1.3 ISTRUZIONI NTC

Dati Assegnati:

Diametro (o diametro equivalente) barre longitudinali: 26 [mm] Diametro staffe: 14 [mm] Classe Calcestruzzo: C32/40 Condizioni ambientali: Aggressive Vita nominale costruzione: [anni] Incremento di 10 mm rispetto a vita nominale di 50 anni 75 Tolleranza di posa: 10 [mm] Copriferro staffe: Copriferro nominale Netto Staffe: 60 [mm] Copriferro barre longitudinali: Copriferro nominale Netto barre longitudinali: [mm] Copriferro nominale dal Baricentro della Barra longitudinale: 87 Dato da assegnare nell'input delle sezioni [mm]

ENVE SLU STATICO

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: muro ala M11

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

Percorso sollecitazione:

Condizioni Ambientali:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

A Sforzo Norm. costante

Moderat. aggressive

Assi x,y principali d'inerzia

Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C32/40

Resistenza compress. di progetto fcd: 18.13 MPa

Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33345.8 MPa Resis. media a trazione fctm: 3.023 MPa 15.00 Coeff.Omogen. S.L.E.: Sc limite S.L.E. comb. Rare: 19.200 MPa Sc limite S.L.E. comb. Frequenti: 19.200 MPa Ap.Fessure limite S.L.E. comb. Frequenti: 0.300 mm Sc limite S.L.E. comb. Q.Permanenti: 14.400 MPa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. a snervamento fyk: 450.00 MPa Resist. caratt. a rottura ftk: 450.00 MPa Resist. a snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Éf: 200000.0 MPa Diagramma tensioni-deformaz.: Bilineare finito Coeff. Aderenza istant. ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Comb.Rare - Sf Limite: 360.00 MPa

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

100.0 Base: Altezza: 130.0 cm Barre inferiori: 10Ø26 (53.1 cm²) Barre superiori: 10Ø26 (53.1 cm²) Coprif.Inf.(dal baric. barre): 8.7 cm Coprif.Sup.(dal baric. barre): 8.7 cm Coprif.Lat. (dal baric.barre): 5.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (posit. se di compress.)

Mx Momento flettente [kNm] intorno all'asse x baric. della sezione
con verso positivo se tale da comprimere il lembo sup. della sezione
VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale

MT Momento torcente [kN m]

 N°Comb.
 N
 Mx
 Vy
 MT

 1
 -749.50
 1734.20
 0.00
 0.00

 2
 571.50
 -828.80
 0.00
 0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx 1 -492.60 1206.80 2 408.40 -538.60

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

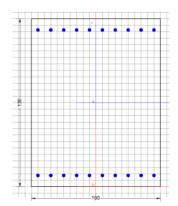
N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx

1 -246.10 823.50 (1011.82)
2 1631.00 -313.20 (0.00)


Sfor	zo	non	ma	ale	[kN]	apı	olicato	nel	bar	icen	tro	(positivo	se	di c	comp	ress.)	

Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	M

1 60.00 535.00 (1117.13) 2 1568.90 -551.90 (-3620.97)

Mx

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.4 cm Interferro netto minimo barre longitudinali: 7.4 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver	S = combinazione verificata / N = combin, non verificata
-----	--

Sforzo normale baricentrico assegnato [kN] (positivo se di compressione) Ν

Mx

Momento flettente assegnato [kNm] riferito all'asse x baricentrico Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.) N Ult

Momento resistente ultimo [kNm] riferito all'asse x baricentrico Mx rd Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC] x/d

C.Rid.

N°Comb	Ver	N	Mx	N rd	Mx rd	Mis.Sic.	Yn	x/d	C.Rid.	
1	S	-749.50	1734.20	-749.80	1982.21	1.143	121.2	0.07	0.70	53.1 (21.2)
2	S	571.50	-828.80	571.80	-2727.10	3.290	11.6	0.10	0.70	53.1 (21.2)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max
1	0.00350	130.0	0.00004	121.3	-0.04480	8.7
2	0.00350	0.0	0.00089	8.7	-0.03295	121.3

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione di compress.(+) nel conglom. in fase fessurata ([Mpa]
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sc min	Minima tensione di compress.(+) nel conglom. in fase fessurata ([Mpa]
Yc min	Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)

Minima tensione di trazione (-) nell'acciaio [Mpa] Sf min

Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O) Ys min

Dw Eff.	Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre
Ac eff.	Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
As eff.	Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)
D h =	Distance in our trade have to a efficient

D barre Distanza in cm tra le barre tese efficaci.

(D barre = 0 indica spaziatura superiore a 5(c+Ø/2) e nel calcolo di fess. si usa la (C4.1.11)NTC/(7.14)EC2)

N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	4.51	130.0	0.00	104.0	-248.2	121.3	21.8	2175	53.1	9.2
2	S	2.41	0.0	0.00	52.7	-57.6	8.7	21.8	2175	53.1	9.2

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)

COMBIN	12101	II IVAILE IIV I	-OLIKOIZIO -	VEIGH TOAP	LICIONA	I LOUGINE (II	110/202)					
Ver		Esito v	erifica									
e1			Minima deformazione unitaria (trazione: segno -) nel calcestruzzo in sez. fessurata									
e2			Massima deformazione unitaria (compress.: segno +) nel calcestruzzo in sez. fessurata									
K2			= 0.5 per flessione; =(e1 + e2)/(2*e2)in trazione eccentrica per la (7.13)EC2 e la (C4.1.11)NTC									
Kt			fattore di durata del carico di cui alla (7.9) dell'EC2 Deformazione media acciaio tra le fessure al netto di quella del cls. Tra parentesi il valore minimo = 0.6 Ss/Es									
e sm srm			iazione media a za massima in n			ai quella del cis	s. Tra parentesi	ii vaiore minin	10 = 0.6 8	S/ES		
wk			ra delle fessure			e dalla (C4 1 7	NTC Tra pare	ntesi è indicat	o il valore	e limite		
M fess	S.	Momer	nto di prima fess	surazione [kNm]	o dana (o i.i.i	jiti o. Ha para	moor o mana	o ii valore	,		
			·	•	•							
N°Comb	Ver	e1	e2		K2	Kt		e sm	srm		wk	M Fess.
1	S	-0.00135	0.00034		0.50	0.60	0.000815 (433		(990.00)	987.07
2	S	-0.00032	0.00018		0.50	0.60	0.000173 (0.000173)	433	0.075	5 (990.00)	-1335.67
COMPINATION EDPONENT IN ECEPOIZIO - VERIEIOA MACCIME TENCIONI NORMALI												
COMBINA	COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI											
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac	Eff.	As Eff.	D barre
						• • • • • • • • • • • • • • • • • • • •						
1	S	3.17	130.0	0.00	102.4	-161.3	121.3	21.8	2	2175	53.1	9.2
2	S	1.99	0.0	0.25	130.0	5.4	8.7	0.0		0	0.0	0.0
COMBINA	AZION	II FREQUEN	ITI IN ESERC	IZIO - VERI	FICA APER	TURA FESSI	JRE (NTC/EC	2)				
NIO I-	1/	-4	-0		1/0	174						МБ
N°Comb	Ver	e1	e2		K2	Kt		e sm	srm		wk	M Fess.
1	S	-0.00088	0.00024		0.50	0.60	0.000484 (0 000484)	433	0.2	209 (0.30)	1011.82
2	S	0.00015	0.00021				0.000101			0.2		0.00
_	Ū	0.00010	0.00002									0.00
COMBINA	AZION	II QUASI PE	RMANENTI I	N ESERCIZIO	- VERIFIC	CA MASSIME	TENSIONI N	IORMALI				
N00 1		•	.,		.,	01 .		D		-"		5.
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac	Eff.	As Eff.	D barre
1	S	2.23	130.0	0.00	95.8	-85.6	121.3	21.8	,	2175	53.1	9.2
2	S	2.23	0.0	0.00	105.2	-6.3	8.7	8.4	4	839	53.1	9.2
2	J	2.00	0.0	0.00	100.2	-0.0	0.7	0.4		000	55.1	J.Z
COMBINA	AZION	II QUASI PE	RMANENTI I	N ESERCIZIO	- VERIFIC	CA APERTUR	RA FESSURE	(NTC/EC2)				
N°Comb	Ver	e1	e2		K2	Kt		e sm	srm		wk	M Fess.
1	S	-0.00047	0.00017		0.50	0.40	0.000257 (0.000257)	433	0.1	11 (0.20)	1117.13
_	_		1 1111		1 11			: - :				

ENVE SLU SISMICO

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: muro ala M11 SISMICO

S -0.00005 0.00020

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

0.50

0.40

0.000019 (0.000019)

321

0.006 (0.20)

-3620.97

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -C32/40 Classe:

Resistenza compress. di progetto fcd: 18.13 MPa Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensioni-deformaz.: Modulo Elastico Normale Ec: 33345.8 MPa Resis. media a trazione fctm: 3.023 MPa

ACCIAIO -B450C Tipo:

Resist. caratt. a snervamento fyk: 450.00 MPa Resist. caratt. a rottura ftk: 450.00 MPa Resist. a snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa

Diagramma tensioni-deformaz.: Bilineare finito

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 100.0 Altezza: 130.0 cm Barre inferiori: 10Ø26 (53.1 cm²) Barre superiori: 10Ø26 (53.1 cm²) Coprif.Inf.(dal baric. barre): 8.7 cm Coprif.Sup.(dal baric. barre): 8.7 cm Coprif.Lat. (dal baric.barre): 5.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Mx Momento flettente [kNm] intorno all'asse x baric. della sezione con verso positivo se tale da comprimere il lembo sup. della sezione Taglio [kN] in direzione parallela all'asse Y del riferim. generale VY

MT Momento torcente [kN m]

N°Comb. MT Ν Mx Vy 1094.70 0.00 0.00 -382.00 -334.80 2 433.50 0.00 0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

7.4 Copriferro netto minimo barre longitudinali: cm Interferro netto minimo barre longitudinali: 7.4 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale baricentrico assegnato [kN] (positivo se di compressione) Ν

Momento flettente assegnato [kNm] riferito all'asse x baricentrico Mx

Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.) N Ult Mx re Momento resistente sostanzialmente elastico [kNm] riferito all'asse x baricentrico

Misura sicurezza = rapporto vettoriale tra (N re,Mx re) e (N,Mx) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez. Yn

x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

N°Comb	Ver	N	Mx	N re	Mx re	Mis.Sic.	Yn	x/d	C.Rid.	
	-	-382.00 433.50	1094.70 -334.80			1.933 7.558	102.6 33.1			53.1 (21.2) 53.1 (21.2)

ec max	Deform. unit. massima del conglomerato a compressione
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max
1	0.00057	130.0	0.00039	121.3	-0.00196	8.7
2	0.00073	0.0	0.00054	8.7	-0.00196	121.3

12.4 SOLETTA DI FONDAZIONE

Sollecitazioni di verifica:

Area	OutputCase	Р	M11
Text	Text	KN	KNm
46	ENVE_SLU_STR	0.0	2858.5
342	ENVE_SLU_STR	0.0	-2641.5

Area	OutputCase	Р	M22
Text	Text	KN	KNm
615	ENVE_SLU_STR	0.0	1670.9
342	ENVE SLU STR	0.0	-1596.0

V13	V23
KN	KN
1823	1618

Area	OutputCase	Р	M11
Text	Text	KN	KNm
46	ENVE_SLU_SLV	0.0	1647.1
342	ENVE_SLU_SLV	0.0	-2292.5

Area	OutputCase	Р	M22
Text	Text	KN	KNm
242	ENVE_SLU_SLV	0.0	1119.2
342	ENVE_SLU_SLV	0.0	-1492.5

V13	V23
KN	KN
1289	924

Area	OutputCase	Р	M11
Text	Text	KN	KNm
46	ENVE_SLER	0.0	2040.2
342	ENVE_SLER	0.0	-1884.9

Area	OutputCase	Р	M22
Text	Text	KN	KNm
615	ENVE_SLER	0.0	1192.3
342	ENVE_SLER	0.0	-1128.2

Area	OutputCase	Р	M11
Text	Text	KN	KNm
46	ENVE_SLEF	0.0	1600.6
342	ENVE_SLEF	0.0	-1452.6

Area	OutputCase	Р	M22
Text	Text	KN	KNm
615	ENVE_SLEF	0.0	892.8
342	ENVE_SLEF	0.0	-857.1

Area	OutputCase	Р	M11
Text	Text	KN	KNm
574	ENVE_SLEQP	0.0	982.8
342	ENVE SLEQP	0.0	-887.2

Area	OutputCase	Р	M22
Text	Text	KN	KNm
615	ENVE_SLEQP	0.0	793.5
342	ENVE_SLEQP	0.0	-596.3

Si riassume di seguito l'armatura orizzontale adottata in entrambe le direzioni.

 $As = 1\Phi 24/10$

 $As' = 1\Phi 24/10$

staffe Φ14/20 a 4 bracci

La sezione risulta verificata con l'armatura prevista.

12.4.1 VERIFICA A TAGLIO

Taglio V13

Verifica elementi senza armature trasversali resistenti a taglio

È consentito l'impiego di solai, piastre e membrature a comportamento analogo, sprovviste di armature trasversali resistenti a taglio. La resistenza a taglio V_{Rd} di tali elementi deve essere valutata, utilizzando formule di comprovata affidabilità, sulla base della resistenza a trazione del cls.

$$\begin{array}{c} \text{valutata, utilizzando formule di comprovata affidabilità, sulla base della resistenza a trazione del cls.} \\ V_{Rd} \geq V_{Ed} \\ V_{Rd} = \begin{cases} 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} \\ \gamma_c \end{cases} + 0.15 \cdot \sigma_{cp} \end{cases} \cdot b_w \cdot d \geq \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d \end{cases} \\ \text{Sollecitazioni Agenti:} \\ V_{Ed} \\ 0 \text{ kN} \\ \text{Sollecitazioni Agenti:} \\ V_{Ed} \\ 0 \text{ kN} \\ \text{Sollecitazioni Agenti:} \\ V_{Ed} \\ 0 \text{ kN} \\ \text{Sollecitazioni Agenti:} \\ V_{Ed} \\ 0 \text{ kN} \\ \text{Sollecitazioni Agenti:} \\ V_{Ed} \\ 0 \text{ kN} \\ \text{Sollecitazioni Agenti:} \\ V_{Ed} \\ 0 \text{ kN} \\ \text{Sollecitazioni Agenti:} \\ V_{Ed} \\ 0 \text{ kN} \\ \text{Sollecitazioni Agenti:} \\ V_{Ed} \\ 0 \text{ kN} \\ \text{Sollecitazioni Agenti:} \\ V_{Ed} \\ 0 \text{ kN} \\ \text{Sollecitazioni Agenti:} \\ V_{Ed} \\ 0 \text{ kN} \\ \text{Sollecitazioni Agenti:} \\ V_{Ed} \\ 0 \text{ kN} \\ \text{Sollecitazioni Agenti:} \\ V_{Ed} \\ 0 \text{ kN} \\ \text{Sollecitazioni Agenti:} \\ V_{Ed} \\ \text{Sollecitazioni Agent$$

Verifica:

Verifica elementi senza armature trasversali resistenti a taglio È consentito l'impiego di solai, piastre e membrature a comportamento analogo, sprovviste di armature trasversali resistenti a taglio. La resistenza a taglio V_{Rd} di tali elementi deve essere valutata, utilizzando formule di comprovata affidabilità, sulla base della resistenza a trazione del cls. $V_{Rd} \geq V_{Ed}$ $V_{Rd} = \left\{ \frac{0.18 \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c} + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \ge \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d$ Sollecitazioni Agenti: N_{Ed} 0 kN Calcestruzzo C25/30 R_{ck} 30 N/mm² 24.9 N/mm² f_{ck} Resistenza di calcolo a compressione del calcestruzzo f_{cd} 14.11 N/mm² Coefficiente parziale di sicurezza relativo al calcestruzzo 1.5 $\gamma_{\rm c}$ Altezza sezione 1800 mm h Copriferro 76 mm C Larghezza minima della sezione (in mm) 1000 mm Altezza utile della sezione (in mm) 1724 mm 1800000 mm² Area Calcestruzzo 10 Ø 24 mm n Armatura longitudinale tesa 4521.6 mm² A_{s1} Rapporto geometrico di armatura longitudinale 0.0026 ? 0.02 ρ_1 Tensione media di compressione nella sezione $0.0000 ? 0.2 f_{cd}$ ok σ_{cp} $k = 1 + (200/d)^{1/2} \le 2$ 1.34 ? 2 k $v_{min} = 0.035k^{3/2}f_{ck}^{1/2}$ 0.21 V_{min}

 V_{Rd}

 $V_{Rd} > V_{Ed}$

518.41 kN

NON VERIFICATA

Di seguito si riportano i relativi diagrammi di ricoprimento del taglio V13 e V23

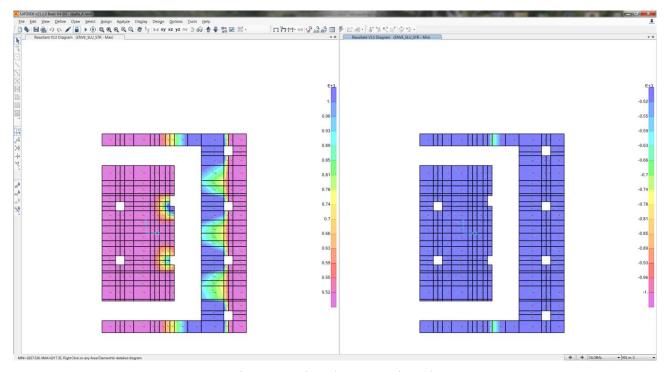


Figura 55: Ricoprimento taglio V13

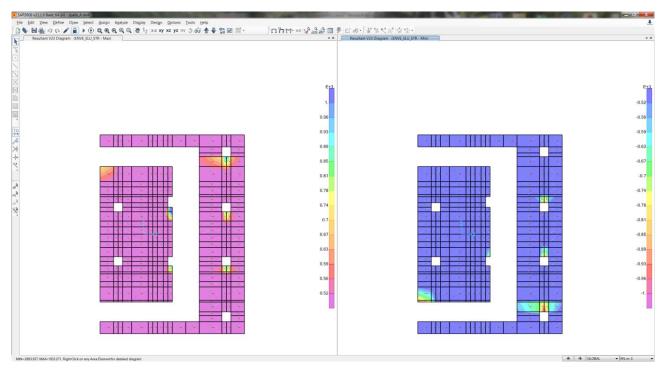


Figura 56: Ricoprimento taglio V23

Come si può vedere dai diagrammi sopra riportati il valore del taglio limite non viene mai superato tranne che nelle zone evidenziate dove occorre inserire una idonea armatura a taglio.

Il valora del taglio massimo non coperto evidenziato in figura risulta pari a V13max =1823 KN/m e V23max =1618 KN/m. Si effettua di seguito il calcolo dell'armatura a taglio.

Verifica elementi con armature trasversali resistenti al taglio

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati.

$$\begin{split} &V_{Rd} \geq V_{Ed} \\ &V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg \, \alpha + ctg \, \theta) \cdot \sin \alpha \\ &V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \cdot (ctg \, \alpha + ctg \, \theta) / (1 + ctg^2 \theta) \\ &V_{Rd} = \min(V_{Rsd}; V_{Rcd}) \end{split}$$

Acciaio	В 450 С	f_{yd}	391.3 N/mm ²
Coefficiente parziale di sicurezza re	lativo all'acciaio	γs	1.15
		, 3	-
Inclinazione dei puntoni di cls rispet	to all'asse della trave	?	45 °
			0.79 rad
diametro staffe		Ø	14 mm
numero bracci staffe		n	4
Area dell'armatura trasversale		A_{sw}	615.75 mm ²
Interasse tra due armature trasvers	ali consecutive	S	200 mm
Angolo di inclinazione dell'armatura	trasversale	α	90 °
			1.57 rad
Resistenza a compressione ridotta	del calcestruzzo d'anima	f'cd	7.06 N/mm ²
Coefficiente maggiorativo		$\alpha_{\rm c}$	1
		V_Rsd	1843.22 kN
		\mathbf{V}_{Rcd}	5397.08 kN
		V_{Rd}	1843.22 kN
Verifica:	$V_{Rd} > V_{Ed}$		VERIFICATA

12.4.2 VERIFICA A FLESSIONE - M22

ENVE SLU STATICO

CALCOLO COPRIFERRO - § C4.1.6.1.3 ISTRUZIONI NTC

Dati Assegnati:

Diametro (o diametro equivalente) barre longitudinali:	24	[mm]
Diametro staffe:	14	[mm]
Classe Calcestruzzo:	C25/30	
Condizioni ambientali:	Ordinarie	
Vita nominale costruzione:	75	[anni]
Tolleranza di posa:	10	[mm]
Copriferro staffe:		
Copriferro nominale Netto Staffe:	50	[mm]
Copriferro barre longitudinali:		
Copriferro nominale Netto barre longitudinali:	64	[mm]
Copriferro nominale dal Baricentro della Barra longito	udinale: 76	[mm]

Incremento di 10 mm rispetto a vita nominale di 50 anni

Dato da assegnare nell'input delle sezioni

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: fondazione M22

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Normativa di riferimento:

Tipologia sezione: Sezione predefinita di trave di fondazione in combinazione sismica

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive Assi x,y principali d'inerzia

Riferimento Sforzi assegnati: Riferimento alla sismicità: Zona non sismica

Sezione appartenente a trave di fondazione (arm.minima ex §7.2.5NTC)

14.16

MPa

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -C25/30 Classe: Resistenza compress. di progetto fcd:

> Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 31475.0 MPa Resis. media a trazione fctm: 2.560 MPa Coeff.Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 15.000 MPa Sc limite S.L.E. comb. Frequenti: 15.000 MPa Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm Sc limite S.L.E. comb. Q.Permanenti: 11.250 MPa Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.300 mm

ACCIAIO -Tipo: B450C

> 450.00 Resist. caratt. a snervamento fyk: MPa Resist, caratt, a rottura ftk: 450.00 MPa Resist. a snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa Diagramma tensioni-deformaz.: Bilineare finito Coeff. Aderenza istant. ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Comb.Rare - Sf Limite: 360.00 MPa

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

100.0 Base: Altezza: 180.0 cm Barre inferiori: 10Ø24 (45.2 cm²) Barre superiori: (45.2 cm²) 10Ø24 Coprif.Inf.(dal baric. barre): 7.6 cm Coprif.Sup.(dal baric. barre): 7.6 cm Coprif.Lat. (dal baric.barre): 5.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Momento flettente [kNm] intorno all'asse x baric. della sezione Mx con verso positivo se tale da comprimere il lembo sup. della sezione \/Y Taglio [kN] in direzione parallela all'asse Y del riferim. generale

MT Momento torcente [kN m]

N°Comb. MT Ν Mx Vy 0.00 1670.90 0.00 0.00 0.00 -1596.00 0.00 0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione) My

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx 0.00 1192.30 2 0.00 -1128.20

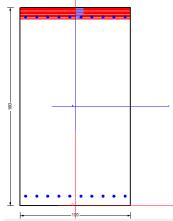
COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx 0.00 892.80 (1644.51) 0.00 -857.10 (-1644.51) 2


COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. 0.00 793.50 (1644.51) 1 0.00 -596.30 (-1644.51) 2

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: cm Interferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale baricentrico assegnato [kN] (positivo se di compressione) N Momento flettente assegnato [kNm] riferito all'asse x baricentrico

Mx

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.) Momento resistente sostanzialmente elastico [kNm] riferito all'asse x baricentrico Misura sicurezza = rapporto vettoriale tra (N re,Mx re) e (N,Mx) Mx re

Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez. Yn y/d

Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

N°Comb	Ver	N	Mx	N re	Mx re	Mis.Sic.	Yn	x/d	C.Rid.	
1	S	0.00	1670.90			1.701	141.8	0.22	0.72	45.2 (36.0)
2	S	0.00	-1596.00			1.781	38.2	0.22	0.72	45.2 (36.0)
DEFORM		LIBUTABLE		NUMBER OF	OTANIZIA	LAKENITE E	LACTICO			

DEFORMAZIONI UNITARIE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

ec max	Deform. unit. massima del conglomerato a compressione
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform, unit, massima nell'acciaio (positiva se di compressione)

Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb		е	ec max	Yc max	es min	Ys mi	in es	s max `	Ys max		
1 2			00056 00056	180.0 0.0	0.00045 0.00045			00196 00196	7.6 172.4		
COMBIN	AZION	NI RARE IN E	ESERCIZIO -	· VERIFICA I	MASSIME TEN	NSIONI NOI	RMALI				
Ver Sc ma Yc ma Sc mii Yc mii Sf mir Ys mii Dw Ef Ac eff As eff D barr	n n n n m ff.	Massim Ordinata Minima Ordinata Minima Ordinata Spesso Area di Area Ba Distanz	na tensione di co a in cm della fib tensione di con a in cm della fib tensione di traz a in cm della si are di conglomer congl. [cm²] in : arre tese di acci ta in cm tra le ba	ompress.(+) nel compress.(+) nel compress.(+) nel compress.(+) nel compress.(+) nell'accione (-) nell'accione (-) nell'accione (cm] in zon zona tesa aderriaio [cm²] ricade arre tese efficade arre tese efficade arre tese efficade compressione (cm²) ricade (cm²)	of min (sistema r a tesa considera ente alle barre (ente nell'area eff	se fessurata ((inf. X,Y,O)) fessurata ((inf. X,Y,O)) fessurata ((inf. X,Y,O)) fissurata aderente averifica fess.) ficace(verifica	Ipa] alle barre fess.)	(C4.1.11)NT0	C/(7.14)EC2)		
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1 2	S S	3.06 2.89	180.0 0.0	0.00 0.00	142.3 37.7	-163.8 -155.0	172.4 7.6	19.0 19.0	1900 1900	45.2 45.2	9.4 9.4
COMBINA	AZION	I RARE IN E	SERCIZIO -	VERIFICA A	PERTURA FE	ESSURE (N	TC/EC2)				
e2 K2 Kt		= 0.5 pe	er flessione; =(e	e1 + e2)/(2*e2)ii	oress.: segno +) n trazione eccer	nei caicestru ntrica per la (7	zzo in sez. iess 7.13)EC2 e la ((surata C4 1 11)NTC			
e sm srm wk M fess		Deforma Distanza Apertura Momena	azione media a la massima in m la delle fessure to di prima fess	nm tra le fessur in mm fornito d	7.9) dell'EC2 sure al netto di de e alla (7.8)EC2 e d	quella del cls. dalla (C4.1.7)	. Tra parentesi	il valore minii			
srm wk	s. Ver	Deforma Distanz Apertura Moment e1	azione media a a massima in m a delle fessure to di prima fess e2	cciaio tra le fes nm tra le fessur in mm fornito d	7.9) dell'EC2 sure al netto di c e alla (7.8)EC2 e	quella del cls.	. Tra parentesi	il valore minii	mo = 0.6 Ss/Es	wk	M Fess.
srm wk M fess		Deforma Distanza Apertura Momena	azione media a la massima in m la delle fessure to di prima fess	cciaio tra le fes nm tra le fessur in mm fornito d	7.9) dell'EC2 sure al netto di de e alla (7.8)EC2 e K2	quella del cls. dalla (C4.1.7)	. Tra parentesi	il valore minir ntesi è indica e sm 0.000491)	mo = 0.6 Ss/Es to il valore limite srm 389 0.19		M Fess. 1644.51 -1644.51
srm wk M fess N°Comb	Ver S S	Deformation Distanzianzia Apertura Momenti e 1 -0.00086 -0.00082	azione media a la massima in n la delle fessure to di prima fess e2 0.00023 0.00022	cciaio tra le fes nm tra le fessur in mm fornito d surazione [kNm]	7.9) dell'EC2 sure al netto di de e alla (7.8)EC2 e K2	quella del cls. dalla (C4.1.7) Kt 0.60 0.60	O.000491 (0.000465 (0.0004	il valore minir ntesi è indica e sm 0.000491)	mo = 0.6 Ss/Es to il valore limite srm 389 0.19	wk 1 (990.00)	1644.51
srm wk M fess N°Comb	Ver S S	Deformation Distanzianzia Apertura Momenti e 1 -0.00086 -0.00082	azione media a la massima in n la delle fessure to di prima fess e2 0.00023 0.00022	cciaio tra le fes nm tra le fessur in mm fornito d surazione [kNm]	7.9) dell'EC2 sure al netto di de e alla (7.8)EC2 e d K2 0.50 0.50	quella del cls. dalla (C4.1.7) Kt 0.60 0.60	O.000491 (0.000465 (0.0004	il valore minir ntesi è indica e sm 0.000491)	mo = 0.6 Ss/Es to il valore limite srm 389 0.19	wk 1 (990.00)	1644.51
srm wk M fess N°Comb 1 2	Ver S S	Deformation Distanzian Apertura Momentura e 1 -0.00086 -0.00082	azione media a la massima in m la delle fessure to di prima fess e2 0.00023 0.00022 TI IN ESERC	cciaio tra le fes nm tra le fessur in mm fornito d surazione [kNm]	7.9) dell'EC2 sure al netto di de e alla (7.8)EC2 e d K2 0.50 0.50	quella del cls. dalla (C4.1.7) Kt 0.60 0.60	0.000491 (0.000465 (0.000MALI	il valore minin ntesi è indica e sm 0.000491) 0.000465)	mo = 0.6 Ss/Es to il valore limite srm 389 0.19 389 0.18	wk 1 (990.00) 1 (990.00)	1644.51 -1644.51
srm wk M fess N°Comb 1 2 COMBINA N°Comb 1 2	Ver S S AZION Ver S S	Deformation Distanzia Apertura Momentura e 1 -0.00086 -0.00082 II FREQUEN Sc max 2.29 2.20	azione media a la massima in m la delle fessure to di prima fess e2 0.00023 0.00022 TI IN ESERC Yc max 180.0 0.0	cciaio tra le fes nm tra le fessur in mm fornito d surazione [kNm]	7.9) dell'EC2 sure al netto di de e alla (7.8)EC2 e de l K2 0.50 0.50 FICA MASSIM Yc min	quella del cls. dalla (C4.1.7) Kt 0.60 0.60 Sf min -122.6 -117.7	0.000491 (0.000465 (0.000465) NI NORMALI Ys min 172.4 7.6	e sm 0.000491) 0.000465) Dw Eff. 19.0	mo = 0.6 Ss/Es to il valore limite srm 389 0.19 389 0.18 Ac Eff. 1900	wk 1 (990.00) 1 (990.00) As Eff. 45.2	1644.51 -1644.51 D barre
srm wk M fess N°Comb 1 2 COMBINA N°Comb 1 2	Ver S S AZION Ver S S AZION	Deformation Distanzia Apertura Momentura e 1 -0.00086 -0.00082 II FREQUEN Sc max 2.29 2.20	azione media a la massima in m la delle fessure to di prima fess e2 0.00023 0.00022 TI IN ESERC Yc max 180.0 0.0	cciaio tra le fes nm tra le fessur in mm fornito d surazione [kNm]	7.9) dell'EC2 sure al netto di de e alla (7.8)EC2 e de l K2 0.50 0.50 FICA MASSIM Yc min 142.3 37.7	quella del cls. dalla (C4.1.7) Kt 0.60 0.60 Sf min -122.6 -117.7	0.000491 (0.000465 (0.000465) NI NORMALI Ys min 172.4 7.6	e sm 0.000491) 0.000465) Dw Eff. 19.0	mo = 0.6 Ss/Es to il valore limite srm 389 0.19 389 0.18 Ac Eff. 1900	wk 1 (990.00) 1 (990.00) As Eff. 45.2	1644.51 -1644.51 D barre
srm wk M fess N°Comb 1 2 COMBINA N°Comb 1 2 COMBINA N°Comb 1 2 1 2	Ver S S AZION Ver S S AZION Ver S	Deformation Distanz Apertura Apertura Moment e1 -0.00086 -0.00082 II FREQUEN Sc max 2.29 2.20 II FREQUEN e1 -0.00065 -0.00062	azione media a la massima in m la delle fessure to di prima fess e2 0.00023 0.00022 TI IN ESERC YC max 180.0 0.0 TI IN ESERC e2 0.00017 0.00016	cciaio tra le fes nm tra le fessur in mm fornito d surazione [kNm] IZIO - VERIF Sc min 0.00 0.00	7.9) dell'EC2 sure al netto di de e alla (7.8)EC2 e d K2 0.50 0.50 FICA MASSIM Yc min 142.3 37.7 FICA APERTU	quella del cls. dalla (C4.1.7) Kt 0.60 0.60 IE TENSION Sf min -122.6 -117.7 JRA FESSU Kt 0.60 0.60	0.000491 (i 0.000465 (i NI NORMALI Ys min 172.4 7.6 RE (NTC/EC	e sm 0.000491) 0.000465) Dw Eff. 19.0 19.0 2) e sm 0.000368) 0.000353)	mo = 0.6 Ss/Es to il valore limite srm 389 0.19 389 0.18 Ac Eff. 1900 1900 srm 389 0.7	wk 1 (990.00) 1 (990.00) As Eff. 45.2 45.2	1644.51 -1644.51 D barre 9.4 9.4
srm wk M fess N°Comb 1 2 COMBINA N°Comb 1 2 COMBINA N°Comb 1 2 COMBINA	Ver S S AZION Ver S S AZION Ver S	Deformation Distanz Apertura Apertura Moment e1 -0.00086 -0.00082 II FREQUEN Sc max 2.29 2.20 II FREQUEN e1 -0.00065 -0.00062	azione media a la massima in m la delle fessure to di prima fess e2 0.00023 0.00022 TI IN ESERC YC max 180.0 0.0 TI IN ESERC e2 0.00017 0.00016	cciaio tra le fes nm tra le fessur in mm fornito d surazione [kNm] IZIO - VERIF Sc min 0.00 0.00	7.9) dell'EC2 sure al netto di de e alla (7.8)EC2 e de la la la (7.8)EC2 e de la la la (7.8)ECA MASSIM YC min 142.3 37.7 FICA APERTU K2 0.50 0.50	quella del cls. dalla (C4.1.7) Kt 0.60 0.60 IE TENSION Sf min -122.6 -117.7 JRA FESSU Kt 0.60 0.60	0.000491 (i 0.000465 (i NI NORMALI Ys min 172.4 7.6 RE (NTC/EC	e sm 0.000491) 0.000465) Dw Eff. 19.0 19.0 2) e sm 0.000368) 0.000353)	mo = 0.6 Ss/Es to il valore limite srm 389 0.19 389 0.18 Ac Eff. 1900 1900 srm 389 0.7	wk 1 (990.00) 1 (990.00) As Eff. 45.2 45.2 wk	1644.51 -1644.51 D barre 9.4 9.4 M Fess. 1644.51
srm wk M fess N°Comb 1 2 COMBINA N°Comb 1 2 COMBINA N°Comb 1 2 COMBINA	Ver S S AZION Ver S S AZION Ver S S AZION	Deformation Distanz Apertura Apertura Moment e1 -0.00086 -0.00082 H FREQUEN e1 -0.00065 -0.00065 -0.00062 H QUASI PEI	azione media a la massima in m la delle fessure to di prima fess le e2 le o.00023 le o.00022 TI IN ESERC YC max le o.0 TI IN ESERC le e2 le o.00017 le o.00016 RMANENTI II	cciaio tra le fes nm tra le fessur in mm fornito d surazione [kNm] IZIO - VERIF Sc min 0.00 0.00 IZIO - VERIF	7.9) dell'EC2 sure al netto di de e alla (7.8)EC2 e de la la	quella del cls. dalla (C4.1.7) Kt 0.60 0.60 Sf min -122.6 -117.7 JRA FESSU Kt 0.60 0.60 MASSIME	0.000491 (0 0.000465 (0 NI NORMALI Ys min 172.4 7.6 RE (NTC/EC	il valore minin ntesi è indica e sm 0.000491) 0.000465) Dw Eff. 19.0 19.0 2) e sm 0.000368) 0.000353)	mo = 0.6 Ss/Es to il valore limite srm 389 0.19 389 0.18 Ac Eff. 1900 1900 srm 389 0.6	wk 1 (990.00) 1 (990.00) As Eff. 45.2 45.2 wk 143 (0.40) 137 (0.40)	1644.51 -1644.51 D barre 9.4 9.4 M Fess. 1644.51 -1644.51

M Fess.

1644.51 -1644.51

e sm

srm

389 389 0.127 (0.30) 0.096 (0.30)

N°Comb Ver e1 e2 K2 Kt

2

 S
 -0.00058
 0.00015
 0.50
 0.40
 0.000327 (0.000327)

 S
 -0.00043
 0.00011
 0.50
 0.40
 0.000246 (0.000246)

ENVE SLU SISMICO

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: fondazione M22 SISMICO

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave di fondazione in combinazione sismica

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Zona non sismica

Sezione appartenente a trave di fondazione (arm.minima ex §7.2.5NTC)

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C25/30

Resistenza compress. di progetto fcd: 14.16 MPa
Deform. unitaria max resistenza ec2: 0.0020
Deformazione unitaria ultima ecu: 0.0035
Diagramma tensioni-deformaz.: Parabola-Rettangolo
Modulo Elastico Normale Ec: 31475.0 MPa
Resis. media a trazione fctm: 2.560 MPa

ACCIAIO - Tipo: B450C

Resist. caratt. a snervamento fyk: 450.00 MPa Resist. caratt. a rottura ftk: 450.00 MPa Resist, a snery, di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa Diagramma tensioni-deformaz.: Bilineare finito

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 100.0 cm Altezza: 180.0 cm Barre inferiori: 10Ø24 (45.2 cm²) Barre superiori: 10Ø24 (45.2 cm²) Coprif.Inf.(dal baric. barre): 7.6 cm Coprif.Sup.(dal baric. barre): 7.6 cm Coprif.Lat. (dal baric.barre): 5.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (posit. se di compress.)
Mx Momento flettente [kNm] intorno all'asse x baric. della sezione
con verso positivo se tale da comprimere il lembo sup. della sezione
VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale

MT Momento torcente [kN m]

 N°Comb.
 N
 Mx
 Vy
 MT

 1
 0.00
 1119.20
 0.00
 0.00

 2
 0.00
 -1492.50
 0.00
 0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.4 cm Interferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale baricentrico assegnato [kN] (positivo se di compressione)
Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.)

Mx re Momento resistente sostanzialmente elastico [kNm] riferito all'asse x baricentrico

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N re,Mx re) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000
Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez. Yn

Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

N°Comb	Ver	N	Mx	N re	Mx re	Mis.Sic.	Yn	x/d	C.Rid.	
1	S	0.00	1119.20			2.540	141.8	0.22	0.72	45.2 (36.0)
2	S	0.00	-1492.50			1.905	38.2	0.22	0.72	45.2 (36.0)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

ec max	Deform. unit. massima del conglomerato a compressione
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max
1	0.00056	180.0	0.00045	172.4	-0.00196	7.6
2	0.00056	0.0	0.00045	7.6	-0.00196	172.4

12.4.3 VERIFICA A FLESSIONE - M11

ENVE SLU STATICO

CALCOLO COPRIFERRO - § C4.1.6.1.3 ISTRUZIONI NTC

Dati Assegnati:

Diametro (o diametro equivalente) barre longitudinali: 24 [mm] Diametro staffe: 14 [mm] C25/30 Classe Calcestruzzo: Condizioni ambientali: Ordinarie Vita nominale costruzione: 75 [anni]

Incremento di 10 mm rispetto a vita nominale di 50 anni

Tolleranza di posa: 10 [mm] Copriferro staffe: Copriferro nominale Netto Staffe: 50 [mm] Copriferro barre longitudinali:

Copriferro nominale Netto barre longitudinali: 88 [mm]

Copriferro nominale dal Baricentro della Barra longitudinale: 100 [mm] Dato da assegnare nell'input delle sezioni

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: fondazione M11

Descrizione Sezione:

Stati Limite Ultimi Metodo di calcolo resistenza:

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave di fondazione in combinazione sismica

Rettangolare Forma della sezione:

A Sforzo Norm. costante Percorso sollecitazione: Condizioni Ambientali: Poco aggressive Assi x,y principali d'inerzia Riferimento Sforzi assegnati: Riferimento alla sismicità: Zona non sismica

Sezione appartenente a trave di fondazione (arm.minima ex §7.2.5NTC)

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -C25/30 Classe:

Resistenza compress. di progetto fcd: 14.16 MPa Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: Resis. media a trazione fctm: Coeff.Omogen. S.L.E.: Sc limite S.L.E. comb. Rare: Sc limite S.L.E. comb. Frequenti: Ap.Fessure limite S.L.E. comb. Frequenti:	31475.0 2.560 15.00 15.000 0.400	MPa MPa MPa MPa mm
Ap.Fessure limite S.L.E. comb. Frequenti:	0.400	mm
Sc limite S.L.E. comb. Q.Permanenti:	11.250	MPa
Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.300	mm

ACCIAIO - Tipo: B450C

Resist. caratt. a snervamento fyk: 450.00 MPa Resist. caratt. a rottura ftk: 450.00 MPa Resist. a snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa Diagramma tensioni-deformaz.: Bilineare finito

Coeff. Aderenza istant. ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

Comb.Rare - Sf Limite: 360.00 MPa

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base:	100.0	cm
Altezza:	180.0	cm
Barre inferiori:	10Ø24	(45.2 cm ²)
Barre superiori:	10Ø24	(45.2 cm ²)
Coprif.Inf.(dal baric. barre):	10.0	cm
Coprif.Sup.(dal baric. barre):	7.6	cm
Coprif.Lat. (dal baric.barre):	5.0	cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (posit. se di compress.)

Mx Momento flettente [kNm] intorno all'asse x baric. della sezione
con verso positivo se tale da comprimere il lembo sup. della sezione
VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale
MT Momento torcente [kN m]

 N°Comb.
 N
 Mx
 Vy
 MT

 1
 0.00
 2858.50
 0.00
 0.00

 2
 0.00
 -2641.50
 0.00
 0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx 1 0.00 2040.20 2 0.00 -1884.90

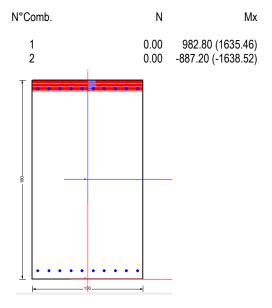
COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx


1 0.00 1600.60 (1635.46)
2 0.00 -1452.60 (-1638.52)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.8 cm Interferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale baricentrico assegnato [kN] (positivo se di compressione) Momento flettente assegnato [kNm] riferito all'asse x baricentrico Ν

Mx

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.) Mx rd Momento resistente ultimo [kNm] riferito all'asse x baricentrico

Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx) Verifica positiva se tale rapporto risulta >=1.000 Mis.Sic.

Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez. Yn

Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC] x/d

C.Rid.

N°Comb	Ver	N	Mx	N rd	Mx rd	Mis.Sic.	Yn	x/d	C.Rid.	
1	S	0.00	2858.50	-0.11	2914.38	1.020	170.4	0.06	0.70	45.2 (36.0)
2	S	0.00	-2641.50	-0.17	-2943.47	1.114	11.6	0.07	0.70	45.2 (36.0)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

ec max	Deform, unit, massima dei congiomerato a compressione
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max
1	0.00350	180.0	0.00074	172.4	-0.05831	10.0
2	0.00350	0.0	0.00049	10.0	-0.04847	172.4

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione di compress.(+) nel conglom, in fase fessurata ([Mpa]
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sc min	Minima tensione di compress.(+) nel conglom. in fase fessurata ([Mpa]
Yc min	Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)
Sf min	Minima tensione di trazione (-) nell'acciaio [Mpa]
Ys min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Dw Eff.	Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre
Ac eff.	Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
As eff.	Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)

D barr	е		a in cm tra le ba e = 0 indica spa			e nel calcolo d	li fess. si usa la	ı (C4.1.11)NTC	C/(7.14)E	C2)		
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ad	e Eff.	As Eff.	D barre
1 2	S S	5.34 4.90	180.0 0.0	0.00 0.00	142.6 38.0	-284.3 -259.9	172.4 10.0	25.0 19.0		2500 1900	45.2 45.2	8.9 8.9
COMBINA	AZION	II RARE IN E	SERCIZIO -	VERIFICA A	PERTURA	FESSURE (N	ITC/EC2)					
Ver e1 e2 K2 Kt e sm srm wk M fess	3 .	Massim = 0.5 profestore Deform Distanz Apertur	erifica deformazione u na deformazione er flessione; =(e di durata del cai azione media a na massima in m a delle fessure to di prima fess	e unitaria (comp e1 + e2)/(2*e2)i rico di cui alla (cciaio tra le fes nm tra le fessur in mm fornito d	oress.: segno n trazione ecc 7.9) dell'EC2 sure al netto e alla (7.8)EC2	+) nel calcestrucentrica per la (uzzo in sez. fes 7.13)EC2 e la :. Tra parentes	surata (C4.1.11)NTC i il valore minir				
N°Comb	Ver	e1	e2		K2	Kt		e sm	srm		wk	M Fess.
1 2	S S	-0.00153 -0.00137	0.00040 0.00037		0.50 0.50	0.60 0.60		(0.000853) (0.000780)	525 389		(990.00) (990.00)	1635.46 -1638.52
COMBINA	AZION	II FREQUEN	ITI IN ESERC	izio - Verii	FICA MASS	IME TENSIO	NI NORMALI					
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ad	e Eff.	As Eff.	D barre
1 2	S S	4.19 3.78	180.0 0.0	0.00 0.00	142.6 38.0	-223.0 -200.3	172.4 10.0	25.0 19.0		2500 1900	45.2 45.2	8.9 8.9
COMBINA	AZION	II FREQUEN	ITI IN ESERC	izio - Verii	FICA APER	TURA FESSI	JRE (NTC/E	C2)				
N°Comb	Ver	e1	e2		K2	Kt		e sm	srm		wk	M Fess.
1 2	S S	-0.00120 -0.00106	0.00031 0.00028		0.50 0.50	0.60 0.60		(0.000669) (0.000601)	525 389		51 (0.40) 45 (0.40)	1635.46 -1638.52
COMBINA	AZION	II QUASI PE	RMANENTI II	N ESERCIZIO	- VERIFIC	CA MASSIME	TENSIONI I	NORMALI				

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	2.57	180.0	0.00	142.6	-136.9	172.4	25.0	2500	45.2	8.9
2	S	2.31	0.0	0.00	38.0	-122.4	10.0	19.0	1900	45.2	8.9

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	e1	e2	K2	Kt	e sm	srm	wk	M Fess.
1	S	-0.00074	0.00019	0.50	0.40	0.000411 (0.000411)	525	0.216 (0.30)	1635.46
2	S	-0.00065	0.00017	0.50	0.40	0.000367 (0.000367)	389	0.143 (0.30)	-1638.52

ENVE SLU SISMICO

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A. NOME SEZIONE: fondazione M11 SISMICO

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave di fondazione in combinazione sismica

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

Sezione appartenente a trave di fondazione (arm.minima ex §7.2.5NTC)

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C25/30

Resistenza compress. di progetto fcd: 14.16 MPa Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 31475.0 MPa Resis. media a trazione fctm: 2.560 MPa

ACCIAIO - Tipo: B450C

Resist. caratt. a snervamento fyk: 450.00 MPa Resist. caratt. a rottura ftk: 450.00 MPa Resist. a snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa

Diagramma tensioni-deformaz.: Bilineare finito

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 100.0 cm Altezza: 180.0 Barre inferiori: 10Ø24 (45.2 cm²) Barre superiori: 10Ø24 (45.2 cm²) Coprif.Inf.(dal baric. barre): 10.0 cm Coprif.Sup.(dal baric. barre): 10.0 cm Coprif.Lat. (dal baric.barre): 5.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (posit. se di compress.)

Mx Momento flettente [kNm] intorno all'asse x baric. della sezione
con verso positivo se tale da comprimere il lembo sup. della sezione
VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale

MT Momento torcente [kN m]

 N°Comb.
 N
 Mx
 Vy
 MT

 1
 0.00
 1647.10
 0.00
 0.00

 2
 0.00
 -2292.50
 0.00
 0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.8 cm Interferro netto minimo barre longitudinali: 7.6 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata N Sforzo normale baricentrico assegnato [kN] (positivo se di compressione)

Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.)

Mx re Momento resistente sostanzialmente elastico [kNm] riferito all'asse x baricentrico

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N re,Mx re) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

N°Comb	Ver	N	Mx	N re	Mx re	Mis.Sic.	Yn	x/d	C.Rid.	
1	S	0.00	1647.10			1.694	141.8	0.22	0.72	45.2 (36.0)
2	S	0.00	-2292.50			1.217	38.2	0.22	0.72	45.2 (36.0)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

ec max Deform. unit. massima del conglomerato a compressione

Yc max es min Ys min es max Ys max	Ordinata in cm de Deform. unit. mini Ordinata in cm de Deform. unit. mas Ordinata in cm de	ma nell'acciaio (n lla barra corrisp. sima nell'acciaio	egativa se di tra a es min (sistem (positiva se di co	izione) na rif. X,Y,O se ompressione)	, ez.)	
N°Comb	ec max	Yc max	es min	Ys min	es max	Ys max
1 2	0.00057 0.00057	180.0 0.0	0.00042 0.00042	170.0 10.0	-0.00196 -0.00196	10.0 170.0

12.5 PALI DI FONDAZIONE

12.5.1 INQUADRAMENTO GEOTECNICO

La caratterizzazione geotecnica dei terreni che caratterizzano l'opera è stata già riportata al paragrafo 8.5.

12.5.2 VERIFICHE AGLI STATI LIMITE ULTIMI

Nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine. Gli stati limite ultimi delle fondazioni su pali si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione stessa.

Le verifiche delle fondazioni su pali vengono effettuate con riferimento ai seguenti stati limite, accertando che la condizione $E_d \le R_d$ sia soddisfatta per ogni stato limite considerato:

SLU di tipo geotecnico (GEO)

- collasso per carico limite della palificata nei riguardi dei carichi assiali;
- collasso per carico limite della palificata nei riguardi dei carichi trasversali.

SLU di tipo strutturale (STR)

• raggiungimento della resistenza dei pali.

Le verifiche devono essere effettuate secondo l'Approccio 2, con la combinazione (A1 + M1 + R3), tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 5.1.V, 6.2.II, 6.4.II e 6.4.VI delle NTC18. Nelle verifiche nei confronti di SLU di tipo strutturale il coefficiente γ_R non deve essere portato in conto.

12.6 VERIFICA PALI

La fondazione è costituita da 12 pali Φ 1200 di lunghezza L = 44 m.

La testa dei pali si trova alla profondità di 3.00 m da piano campagna.

12.6.1 VERIFICA STRUTTURALE

Si prevede di disporre un'armatura longitudinale costituita da uno strato di $38\phi26$ + un secondo strato composto da $20\phi26$ e staffe $\Phi12/20$

12.6.2 ANALISI DEI CARICHI

I carichi assiali e trasversali agenti in testa ai pali per le varie combinazioni di carico sono riportati nelle tabelle che seguono. Tali valori derivano dal modello di calcolo della spalla, nel quale sono stati inseriti anche i pali di fondazione.

Frame	OutputCase	Р	V2	V3				
Text	Text	KN	KN	KN				
452	ENVE_SLU_STR	-305	-296	82				
665	ENVE_SLU_STR	-4300	-715	25	CARICO OF	RIZZONT	ALF	
						_		
362	ENVE_SLU_STR	-327	-282	98	V1 =	299	KN	
665	ENVE SLU STR	-4254	-715	25	V2 =	715	KN	
					V3 =	299	KN	
362	ENVE_SLU_STR	-327	-282	98	V4 =	656	KN	
452	ENVE_SLU_STR	-1314	-655	-35	Vd =	715	KN	

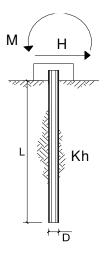
Tabella 2 – Sforzo assiale e taglio sul singolo palo in combinazione SLU.

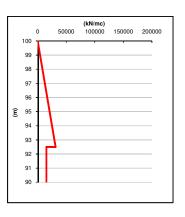
					•		
Frame	OutputCase	Р	V2	V3			
Text	Text	KN	KN	KN			
452	ENVE_SLU_SLV	651	-177	439			
695	ENVE_SLU_SLV	-3247	-788	-298	CARICO O	RIZZONT	ΔIF
					V1 =	473	KN
362	ENVE_SLU_SLV	537	-175	440			
695	ENVE SLU SLV	-3213	-788	-298	V2 =	842	KN
					V3 =	507	KN
392	ENVE_SLU_SLV	147	-239	447	V4 =	867	KN
422	ENVE_SLU_SLV	-1337	-743	-448	Vd =	867	KN

Tabella 3 – Sforzo assiale e taglio sul singolo palo in combinazione SLV.

Frame	OutputCase	Р	V2	V3			
Text	Text	KN	KN	KN			
452	ENVE_SLER	-239	-458	57			
665	ENVE_SLER	-3154	-528	19	CARICO O	RIZZONT	ALE
					V1 =	442	KN
392	ENVE_SLER	-543	-439	49			
665	ENVE SLER	-3120	-528	19	V2 =	529	KN
	_				V3 =	453	KN
362	ENVE_SLER	-254	-448	70	V4 =	485	KN
452	ENVE_SLER	-933	-484	-23	Vd =	529	KN

Tabella 4 – Sforzo assiale e taglio sul singolo palo in combinazione SLE Rara.


Frame	OutputCase	Р	V2	V3			
Text	Text	KN	KN	KN			
452	ENVE_SLEF	-556	-380	36			
665	ENVE_SLEF	-2736	-437	14	CARICO OF	RIZZONT	AI F
						_	
392	ENVE_SLEF	-800	-365	36	V1 =	367	KN
665	ENVE SLEF	-2702	-437	14	V2 =	437	KN
	_				V3 =	376	KN
362	ENVE_SLEF	-564	-373	50	V4 =	398	KN
452	ENVE_SLEF	-1015	-398	-16	Vd =	437	KN


Tabella 5 – Sforzo assiale e taglio sul singolo palo in combinazione SLE Frequente.

Frame	OutputCase	Р	V2	V3			
Text	Text	KN	KN	KN			
362	ENVE_SLEQP	-1189	-134	31			
542	ENVE_SLEQP	-1948	-154	-5	CARICO O	RIZZONT	ALF
422	ENVE_SLEQP	-1389	-124	6	V1 =	125	KN
665	ENVE_SLEQP	-1629	-177	-7	V2 =	177	KN
					V3 =	138	KN
362	ENVE_SLEQP	-1189	-134	31	V4 =	153	KN
452	ENVE_SLEQP	-1590	-150	-31	Vd =	177	KN

Tabella 6 – Sforzo assiale e taglio sul singolo palo in combinazione SLE Quasi Permanente.

I momenti massimi in testa al palo, ottenuti a partire dai massimi valori di taglio per le varie combinazioni di carico, sono pari a:

strati terreno	descrizione	quote	k _h	n_h
Stratt terreno	descrizione	(m)	(kN/m^3)	(kN/m^3)
p.c.=strato 1	U1	100.00	0	5000
✓ strato 2	U1a	92.50	15000	0
✓ strato 3	U2a	83.50	13333	
✓ strato 4	U2	82.00		5000
✓ strato 5	U2a	77.50	13333	
✓ strato 6	U2	70.00		5000

Diametro del palo	1.2	(m)
J palo	0.10179	(m ⁴)
Lunghezza del palo	44	(m)
Forza orizzontale in testa	715	(kN)
Momento in testa	0	(kNm)
E cls	31475.8	(Mpa)
dimensione elementi	0.2	(m)

[•] palo impedito di ruotare • palo impedito di traslare

Combo SLU-STR

	Z	z M(z) T(z		
nodo	quota	(kNm)	(kN)	
	(m)	(KINIII)	(KIN)	
1	100.00	-2401.12	714.75	

Combo SLERARA

C palo libero

Diametro del palo	1.2	(m)
J palo	0.10179	(m ⁴)
Lunghezza del palo	44	(m)
Forza orizzontale in testa	529	(kN)
Momento in testa	0	(kNm)
E cls	31475.8	(Mpa)
dimensione elementi	0.2	(m)

	z M(z)		T(z)	
nodo	quota (kNm)		(kN)	
	(m)	(KINIII)	(KIN)	
1	100.00	-1776.49	528.82	

Combo SLEFREQ

Diametro del palo	1.2	(m)
J palo	0.10179	(m ⁴)
Lunghezza del palo	44	(m)
Forza orizzontale in testa	437	(kN)
Momento in testa	0	(kNm)
E cls	31475.8	(Mpa)
dimensione elementi	0.2	(m)

	z M(z) T(z		T(z)	
nodo	quota	(kNm)	(IANI)	
	(m)	(KINIII)	(kN)	
1	100.00	-1467.54	436.85	

Combo SLEQP

Diametro del palo	1.2	(m)
J palo	0.10179	(m ⁴)
Lunghezza del palo	44	(m)
Forza orizzontale in testa	177	(kN)
Momento in testa	0	(kNm)
E cls	31475.8	(Mpa)
dimensione elementi	0.2	(m)

	z	M(z)	T(z)	
nodo	quota	(kNm)	(kN)	
	(m)	(KINIII)	(KIV)	
1	100.00	-594.40	176.94	

CALCOLO COPRIFERRO - § C4.1.6.1.3 ISTRUZIONI NTC

Dati Assegnati:

Diametro (o diametro equivalente) bar	re longitudinali: 26	[mm]	
Diametro staffe:	12	[mm]	
Classe Calcestruzzo:	C25/30		
Condizioni ambientali:	Ordinarie		
Vita nominale costruzione:	75	[anni]	Incremento di 10 mm rispetto a

Vita nominale costruzione: 75 [anni] Incremento di 10 mm rispetto a vita nominale di 50 anni Tolleranza di posa: 10 [mm]

Copriferro staffe:

Copriferro nominale Netto Staffe: 70 [mm]

Copriferro barre longitudinali:

Copriferro nominale Netto barre longitudinali: 82 [mm]

Copriferro nominale dal Baricentro della Barra longitudinale: 95 [mm] Dato da assegnare nell'input delle sezioni

DATI GENERALI SEZIONE GENERICA IN C.A.

NOME SEZIONE: palo_spalla

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C25/30

Resis. compr. di progetto fcd: 14.160 MPa Resis. compr. ridotta fcd': 7.080 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 31475.0 MPa Resis. media a trazione fctm: 2.560 MPa

 Coeff. Omogen. S.L.E.:
 15.00

 Coeff. Omogen. S.L.E.:
 15.00

Sc limite S.L.E. comb. Frequenti: 150.00 daN/cm²

Ap.Fessure limite S.L.E. comb. Frequenti: 0.400 mm

Sc limite S.L.E. comb. Q.Permanenti: 0.00 Mpa

Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.300 mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

450.00 MPa

Resist. snerv. di progetto fyd:

Resist. ultima di progetto ftd:

391.30 MPa

Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.:

Coeff. Aderenza istantaneo ß1*ß2:

Coeff. Aderenza differito ß1*ß2:

0.50

Sf limite S.L.E. Comb. Rare: 360.00 MPa

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 60.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro
Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate
Ycentro
Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate
Raggio
Raggio [cm] della circonferenza lungo cui sono disposte le barre generate
N°Barre
Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	0.0	0.0	50.5	38	26
2	0.0	0.0	45.3	20	26

ARMATURE A TAGLIO

Му

Diametro staffe: 12 mm Passo staffe: 20.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Momento fletten	te [kNm] intorno al	Baric. (+ se di compre l'asse x princ. d'inerzi	a ´
Му		Momento fletteni	te [kNm] intorno al	rimere il lembo sup. c l'asse y princ. d'inerzi rimere il lembo destro	а
Vy Vx		Componente del	Taglio [kN] paralle	ela all'asse princ.d'ine ela all'asse princ.d'ine	rzia y
N°Comb.	N	Mx	Му	Vy	Vx
1	4254.00	-2401.12	0.00	715.00	0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Ν

Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Му Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mx 1 3120.00 -1776.50 0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione) Мұ

con verso positivo se tale da comprimere il lembo superiore della sezione

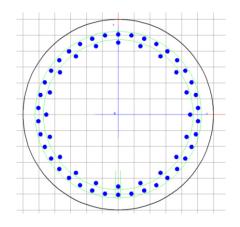
Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione) Му

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. 2702.00 -1467.54 (-957.86) 0.00 (0.00) 1

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)


Mx Momento flettente [kNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

Momento flettente [kNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. Ν Mχ My -594.40 (-1214.43) 1 1629.00 0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.2 cm Interferro netto minimo barre longitudinali: 2.6 cm Copriferro netto minimo staffe: 7.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) N

Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia Mx Му N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia Mx Res My Res Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000
Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa] As Totale

N°Comb My Res Ver Ν Mx N Res Mx Res Mis.Sic. As Totale S 4254.00 -2401.12 0.00 4254.09 -5222.20 0.00 2.17 307.9(33.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.0	-60.0	0.00288	0.0	-50.5	-0.00367	0.0	50.5

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb C.Rid. x/d 0.000000000 -0.000064914 -0.000394857

VERIFICHE A TAGLIO

Diam. Staffe: 12 mm

Passo staffe: 20.0 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Vcd Vwd d z bw Ctg Acw Ast A.Eff		Taglio o Taglio r Altezza Vengor I pesi d Larghe: E' data Cotang Coeffici Area st Tra par L'area o	di progetto [kN] compressione resistente [kN] utile media per no prese nella nella media son zza media resi dal rapporto trente dell'angoliente maggiora affe+legature affe+legature dentesi è indica della legatura è direz. del tagli	resistente [kN] assorbito dalle sata sezione media le strisco o costituiti dal stente a taglio a l'area delle so o di inclinazio titivo della resistettam. nece afficaci nella da la quota de e ridotta col fai	l lato conge staffe [(4) ortogonale e con alm le stesse l [cm] misusopradette ne dei pur stenza a ta essarie a ta irezione dei l'area relattore L/d_r	lomera .1.18) P e all'ass eno un unghez trate pa e strisce aglio pe aglio pe el taglio tiva alle nax cor	to [formul NTC] se neutro estremo ze delle s rallel. all' resistent conglome er compre er metro d d di combi e sole leg n L=lungh	la (4.1.28)NT0 Braccio copponente compresso. strisce. asse neutro is e Dmed. erato ssione li pil.[cm²/m] ature. I.legat.proietta.	pia interna [·	cm]				
N°Comb	Ver	Ved	V	cd Vwo	l d	z	bw	Ctg	Acw	Ast	A.Eff			
1	S	715.00	2502.	99 1574.75	92.3 7	5.0	109.3	2.500	1.250	9.7	21.5(0.0)			
COMBINA	AZIONI	RARE IN E	SERCIZIO	- MASSIME	TENSIO	NI NO	RMALI	ED APERTI	JRA FESS	SURE (I	NTC/EC2)			
Sf min	ax, Yc m n n, Ys mi		Massima tel Ascissa, Oro Minima tens Ascissa, Oro Area di calc	erificata/ N = onsione (positividinata [cm] de ione (negativa dinata [cm] de estruzzo [cm²] cm²] in zona to	a se di co I punto co a se di traz Ila barra c in zona te	mpress rrisp. a rione) n orrisp. a esa con	ione) nel Sc max (ell'acciaid a Sf min (siderata	sistema rif. X o [Mpa] (sistema rif. X aderente alle	,Y,O) ,Y,O) barre					
N°Comb	Ver	Sc max	Xc max Yc	max S	f min Xs	min	Ys min	Ac eff.	As eff.					
1	S	10.22	0.0	0.0 -1	06.6	0.0	50.5	1106	53.1					
COMBINA	AZIONI	FREQUEN	ITI IN ESERC	CIZIO - MA	SSIME T	ENSIC	NI NOR	MALI ED A	PERTURA	FESS	URE (NTC	/EC2)		
N°Comb	Ver	Sc max	Xc max Yc	max S	f min Xs	min	Ys min	Ac eff.	As eff.					
1	S	8.47	0.0	0.0	-84.6	0.0	50.5	1064	53.1					
COMBINA	AZIONI	FREQUEN	ITI IN ESERC	CIZIO - APE	RTURA	FESSU	JRE [§ 7	7.3.4 EC2]						
Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm - sr max wk Mx fes My fes	x ss.	Esito de Massim Minima = 0.8 p = 0.4 = 0.5 p = 3.400 = 0.425 Diamet Coprife Differer Tra par Massim Apertur Compo	one viene assuella verifica na deformazione deformazione ere barre ad ad per comb. qua: per flessione; = (0 Coeff. in eq. (1 Coeff. in eq. (1 Coeff. in eq. (1 Coeff. in eq. (2 Coeff. in eq. (3 Coeff. in eq. (4 Coeff. in eq. (5 Coeff. in eq. (6 Coeff. in eq. (6 Coeff. in eq. (7 In eq. (8 Coeff. in eq. (8	ne unitaria di tra unitaria di tra erenza miglio si permanenti e1 + e2)/(2*e' 7.11) come da 7.11) come da le delle ba le calcolato con mazioni medie minimo = 0.6 s le fessure [mr m calcolata = o di prima fesi	razione nel ciata [eq.(7 /= 0.6 per la) per trazi annessi n annessi riferimento e di acciaio Gmax / Es n] sr max*(e, surazione	I calcest calcestr. 11)EC: comb. come economic aziona caziona caziona compresso alla bio e calco [(7.9)	struzzo (trazzo (traz))))))))))))))))))))) (z) (z) (z) (z) (razione -) valuzione -) valuzione -) valuta [cfr. eq.(7.9) [eq.(7.13)EC2 a efficace Ac esa [(7.8)EC2 e (24.1.8)NTC] 8)EC2 e (C4.	utata in sezion EC2] 2] eff [eq.(7.11 C4.1.7)NTC	one fessu ne fessu I)EC2]	surata rata		ctm	
Comb.	Ver	e1	e2	k2	Ø	Cf		•	e sm - e cn	n sr ma	ax	wk	Mx fess	My fess
1	S	-0.00051	0	0.500	26.0	82		0.0002	5 (0.00025	5) 36	67 0.093	3 (0.40)	-957.86	0.00
COMBINA	AZIONI	QUASI PE	RMANENTI	IN ESERCIZ	IO - MA	SSIMI	E TENSI	IONI NORM	ALI ED AF	PERTU	RA FESSU	RE (NTC	C/EC2)	
N°Comb	Ver	Sc max	Xc max Yc	max S	f min Xs	min	Ys min	Ac eff.	As eff.					
1	S	3.56	0.0	0.0	-21.2	0.0	50.5	691	26.5					
COMBINA	AZIONI	QUASI PE	RMANENTI	IN ESERCIZ	IO - APE	RTUR	A FESS	URE [§ 7.3.	4 EC2]					
Comb.	Ver	e1	e2	k2	Ø	Cf		•	e sm - e cn	n sr ma	ЭX	wk	Mx fess	My fess

0.00

Combo SLU-SLV

S

-0.00014

Diametro del palo	1.2	(m)
J palo	0.10179	(m ⁴)
Lunghezza del palo	44	(m)
Forza orizzontale in testa	867	(kN)
Momento in testa	0	(kNm)
E cls	31475.8	(Mpa)
dimensione elementi	0.2	(m)

	z	M(z)	T(z)
nodo	quota	(kNm)	(kN)
	(m)	(KINIII)	(KN)
1	100.00	-2911.57	866.70

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A. NOME SEZIONE: palo_spalla - sismiche

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

0.500 26.0

82

Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -Classe: C25/30

> Resis. compr. di progetto fcd: 14.160 MPa Resis. compr. ridotta fcd': 7.080 MPa Def.unit. max resistenza ec2: 0.0020 Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo

> Modulo Elastico Normale Ec: 31475.0 MPa

> Resis. media a trazione fctm: 2.560 MPa

ACCIAIO -B450C Tipo:

Resist. caratt. snervam. fyk: 450.00 MPa Resist. caratt. rottura ftk: 450.00 MPa Resist. snerv. di progetto fyd: 391.30 MPa Resist. ultima di progetto ftd: 391.30 MPa Deform. ultima di progetto Epu:

0.068

2000000 Modulo Elastico Ef daN/cm²

Diagramma tensione-deformaz.: Bilineare finito

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare C25/30 Classe Conglomerato:

Raggio circ.: 60.0 cm X centro circ.: $0.0 \ cm$ Y centro circ.: 0.0 cm

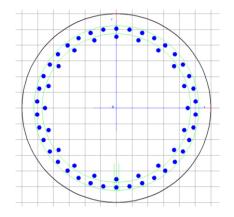
DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Xcentro Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate Numero di barre generate equidist. disposte lungo la circonferenza N°Barre

Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	0.0	0.0	50.5	38	26
2	0.0	0.0	45.3	20	26


ARMATURE A TAGLIO

Diametro staffe: 12 mm Passo staffe: 20.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx				laric. (+ se di compre l'asse x princ. d'inerzi	
Му		Momento flettent	e [kNm] intorno all	rimere il lembo sup. d 'asse y princ. d'inerzia rimere il lembo destro	а
Vy Vx		Componente del	Taglio [kN] paralle	ela all'asse princ.d'ine ela all'asse princ.d'ine	rzia y
N°Comb.	N	Mx	Му	Vy	Vx
1	1337.00	-2911.57	0.00	867.00	0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.2 cm Interferro netto minimo barre longitudinali: 2.6 cm Copriferro netto minimo staffe: 7.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia
My Componente del momento assegnato [kNm] riferito all'asse y princ. d'inerzia
N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
My Res Momento flettente resistente [kNm] riferito all'asse y princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	Му	N Res	Mx Res	My Res	Mis.Sic. As Totale
1	S	1337.00	-2911.57	0.00	1337.03	-3621.54	0.00	1.24 307.9(33.9)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00163	0.0	-60.0	0.00132	0.0	-50.5	-0.00196	0.0	50.5

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb x/d C.Rid.

1 0.000000000 -0.000318449 -0.000032437

VERIFICHE A TAGLIO

bw

Diam. Staffe: 12 mm

Passo staffe: 20.0 cm [Passo massimo di normativa = 25.0 cm]

Ver

S = comb. verificata a taglio / N = comb. non verificata Taglio di progetto [kN] = proiez. di Vx e Vy sulla normale all'asse neutro Ved Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC] Vcd

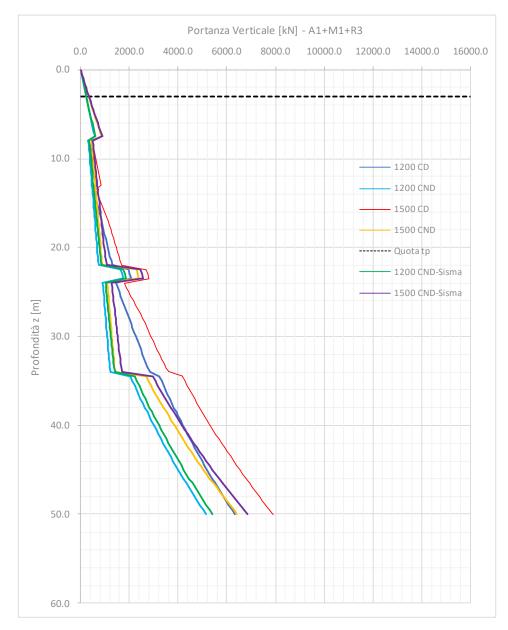
Vwd Taglio resistente [kN] assorbito dalle staffe [(4.1.18) NTC]

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] d|z

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce.

Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Acw Coefficiente maggiorativo della resistenza a taglio per compressione Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Ast Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] A.Eff Tra parentesi è indicata la quota dell'area relativa alle sole legature.


L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb Ver Ved Vcd Vwd A.Eff dlz Cta Acw Ast 2213.39 1605.48 92.6| 76.5 1 S 867.00 109.4 2.500 1.083 11.6 21.5(0.0)

12.6.3 VERIFICA A CARICO LIMITE VERTICALE

La verifica è stata effettuata considerando il valore massimo dello sforzo assiale di compressione agente sul palo.

Per la verifica si considerano le curve di capacita presenti nella relazione geotecnica. Di seguito si riporta il diagramma delle curve.

Dalle curve di capacità precedenti si ottiene:

VERIFICA IN CONDIZIONI DRENATE

Nmax SLU_STR = 4300 KN \Rightarrow L_{palo} = 38 m

VERIFICA IN CONDIZIONI NON DRENATE

Nmax SLU_STR = 4300 KN \Rightarrow L_{palo} = 44 m

VERIFICA IN CONDIZIONI NON DRENATE

Nmax SLU_SLV = 3247 KN \Rightarrow L_{palo} = 38 m

Dalle verifiche precedenti si ottiene una lunghezza dei pali pari a L = 44 m

12.6.4 VERIFICA A CARICO LIMITE ORIZZONTALE

La verifica è stata effettuata considerando il valore massimo dello sforzo trasversale agente sul palo.

VERIFICA IN CONDIZIONI DRENATE

n	n	ra

	coefficier	nti parziali		Δ	1	N	1	R	quota	a strato 1	∏
Metodo di calcolo			permanenti γ _G	ν ν		γт		g, falda	17/1/21		
	A1+M1+R	1	0	1.30	1.50	1.00	1.00	1.00		q. falda	
SLU	A2+M1+R	2	0	1.00	1.30	1.00	1.00	1.60	quota strato 2		
S	A1+M1+R	3	0	1.30	1.50	1.00	1.00	1.30			
	SISMA		0	1.00	1.00	1.00	1.00	1.30]		
88MC			0	1.00	1.00	1.00	1.00	1.00			
definiti da	al progettista	ı	•	1.00	1.00	1.00	1.00	1.30	quota	strato	<u>></u>
									='		
n	1	2	3	4 ○	٥ ء	7	≥10 ○	T.A.	prog.		
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00	1	
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00	1	

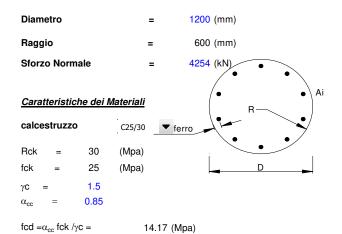
						Parametri m	edi	Par	Parametri minimi		
strati terreno	descrizione	quote	γ	γ'	φ	k_p	Cu	φ	k_p	Cu	
		(m)	(kN/m ³)	(kN/m ³)	(°)		(kPa)	(°)		(kPa)	
p.c.=strato 1	U1	100.00	18.5	8.5	28	2.77		28	2.77		
✓ strato 2	U1a	95.50	19	9	21	2.12	45	21	2.12	45	
✓ strato 3	U2a	90.00	19.5	9.5	20	2.04	40	20	2.04	40	
✓ strato 4	U2	81.00	19.5	9.5	29	2.88		29	2.88		
✓ strato 5	U2a	79.50	19.5	9.5	20	2.04	40	20	2.04	40	
✓ strato 6	U2	75.00	19.5	9.5	29	2.88		29	2.88		

 Quota falda
 98 (m)

 Diametro del palo D
 1.20 (m)

 Lunghezza del palo L
 44.00 (m)

 Momento di plasticizzazione palo My
 5235.76 (kNm)


 Step di calcolo
 0.2 (m)

C palo libero

	<u>H</u>	medio				<u>H</u>	minimo		
Palo lungo		2654.0	(kN)				2654.0	(kN)	
Palo intermedio		4957.0	(kN)				4957.0	(kN)	
Palo corto		13179.6	(kN)				13179.6	(kN)	
	H_{med}	2654.0	(kN)	Palo lungo		\mathbf{H}_{\min}	2654.0	(kN)	Palo lungo
	$H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4)$							(kN)	
		ENZA E de	l gruppo	o di pali		0.80			
	н	$_{d} = \mathbf{E} \cdot \mathbf{H}_{k} / \gamma_{T}$				960.7	72	(kN)	
	Carico Assi	iale Permar	nente (G):	G =	715	5	(kN)	
	Carico Assiale variabile (Q): Q =						0		
	$F_{\sigma} = G \cdot \gamma_G + Q \cdot \gamma_Q =$						00	(kN)	
	FS = Hd / Fd =						1		

oalo impedito di ruotare

Calcolo del momento di plasticizzazione di una sezione circolare

Acciaio

Armature

numero	(diametro (mm	ר)	area (mm²)	copriferro (mm)
38	ф	26		20175.31	95
20	ф	26		10618.58	147
0	ф	0		0.00	0

Momento di Plasticizzazione

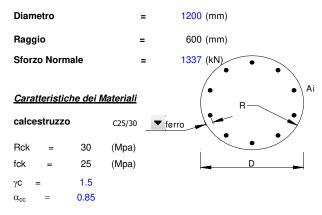
My = 5235.8 (kN m)

opera

	coefficienti parziali		Δ	١	N	M		quota	a strato 1		
Metodo di calcolo			permanenti γ _G	variabili γ _Q	$\gamma_{\phi'}$	γ _{cu}	γт		n falda	1//	
	A1+M1+R	1	0	1.30	1.50	1.00	1.00	1.00	q. falda		
SLU	A2+M1+R	2	0	1.00	1.30	1.00	1.00	1.60			quota
SI	A1+M1+R	3	0	1.30	1.50	1.00	1.00	1.30		\$	
	SISMA		0	1.00	1.00	1.00	1.00	1.30		8	
38MC			0	1.00	1.00	1.00	1.00	1.00			
definiti da	al progettista	l .	•	1.00	1.00	1.00	1.00	1.30	quota	strato	
									-	ı 🥞	II IIKz
n	1	2	3	4 ()	5		≥10	T.A. ()	prog.		į į
ξ_3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00		
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00	1	

Н

D


						Parametri m	edi	Par	Parametri minimi	
strati terreno	descrizione	quote	γ	γ'	φ	k _p	Cu	φ	k_p	Cu
		(m)	(kN/m ³)	(kN/m ³)	(°)		(kPa)	(°)		(kPa)
p.c.=strato 1	U1	100.00	18.5	8.5	28	2.77		28	2.77	
✓ strato 2	U1a	95.50	19	9	21	2.12	45	21	2.12	45
✓ strato 3	U2a	90.00	19.5	9.5	20	2.04	40	20	2.04	40
✓ strato 4	U2	81.00	19.5	9.5	29	2.88		29	2.88	
✓ strato 5	U2a	79.50	19.5	9.5	20	2.04	40	20	2.04	40
✓ strato 6	U2	75.00	19.5	9.5	29	2.88		29	2.88	

Quota falda 98 (m) 1.20 Diametro del palo D (m) Lunghezza del palo L 44.00 (m) 4875.52 (kNm) Momento di plasticizzazione palo My Step di calcolo 0.2 (m)

	<u>H</u>	medio				<u>H</u>	minimo		
Palo lungo		2558.5	(kN)				2558.5	(kN)	
Palo intermedio		4957.0	(kN)				4957.0	(kN)	
Palo corto		13179.6	(kN)				13179.6	(kN)	
	H_{med}	2558.5	(kN)	Palo lungo		H _{min}	2558.5	(kN)	Palo lungo
	$H_k = Min(H_{med}/\xi_3; R_{min}/\xi_4)$)2	(kN)	
		ENZA E de	gruppo	di pali		0.80			
	H,	$_{d} = \mathbf{E} \cdot \mathbf{H}_{k} / \mathbf{\gamma}_{T}$				926.1	7	(kN)	
	Carico Assi	ale Perman	ente (G)):	G =	867		(kN)	
	Carico Assiale variabile (Q): Q =							(kN)	
	$F_d = G \cdot \gamma_G + Q \cdot \gamma_Q =$						0	(kN)	
	FS = Hd / Fd =					1.07			

[•] palo impedito di ruotare • palo libero

Calcolo del momento di plasticizzazione di una sezione circolare

$$fcd = \alpha_{cc} fck / \gamma c = 14.17 (Mpa)$$

Acciaio

Armature

nι	umero	diametro (mm)			area (mm²)	copriferro (mm)
	38	ф	26		20175.31	95
	20	ф	26		10618.58	147
	0	ф	0		0.00	0

Momento di Plasticizzazione

My = 4875.5 (kN m)