COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NODO DI CATANIA

		INICO	A 07		CTIIC)	1110
U	J.O.	INFR	A5 I	KU	IIUF	(E 3	սո

PROGETTO DEFINITIVO

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL'AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

LOTTO 2

Bretella CT-SR e Fascio A-P di prima fase e Collegamento Fascio A-P-Interporto - OPERE CIVILI Fabbricati energia tipo E3 - Relazione di calcolo FA05-FA07

					SCALA:
					-
COMMESSA	LOTTO FASE	ENTE TIPO DOC.	OPERA/DISCIPLINA	PROGR. REV	· .
RS3H	02 D	78 CL	FA0500	0 0 1 A	

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione esecutiva	L.Nani	Marzo 2020	G.Giustino	Marzo 2020	S.Vanfiori	Marzo 2020	D.Tiberti
				1				A Service Serv
								A Providence
								TI DO O

File: RS3H.0.2.D.78.CL.FA.05.0.0.001.A n. Elab.:

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 2di 115

INDICE

1 PREMESSA	4
2 NORME DI RIFERIMENTO	5
3 DESCRIZIONE DELLE STRUTTURE	6
4 CARATTERISTICHE GEOTECNICHE DEL TERRENO	9
4.1 Stratigrafia di calcolo	9
5 CARATTERISTICHE DEI MATERIALI	
5.1 Opere in calcestruzzo armato	10
5.1.1 Magrone	
5.1.2 Struttura in fondazione:	
5.1.3 Struttura in elevazione e solaio in lastre predalles:	
5.2 Acciaio per calcestruzzo armato	12
5.3 Copriferro	12
6 ANALISI DEI CARICHI DI PROGETTO	
6.1 Carichi permanenti	14
6.1.1 Solaio copertura	
6.1.2 Facciate e cornicioni:	14
6.2 Carichi variabili	15
6.3 Azioni della neve	
6.4 Azioni del vento	17
6.5 Variazione Termica	22
6.6 Azione sismica	23
6.6.1 Vita nominale	23
6.6.2 Classe d'uso	24
6.6.3 Periodo di riferimento per l'azione sismica	25
6.6.4 Azioni di progetto	25
6.6.5 Categoria di sottosuolo e Condizioni topografiche	28
6.6.6 Classe di duttilità	29
6.6.7 Regolarità	29
6.6.8 Tipologia strutturale e fattore di comportamento	29

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

REVISIONE

Α

FOGLIO

3di 115

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO RS3H 02 D 78 CL FA 0500 001

i di risposta	31
odo di analisi	35
Risposta Modale	36
Eccentricità accidentale delle masse (Ecc.X, Ecc.Y)	39
ELLA STRUTTURA	42
alcolo utilizzati	42
bilità del software	42
one dell'opera	42
zioni di carico e assegnazioni	45
oni di carico	51
llo di calcolo	52
AZIONI MASSIME	54
ELEMENTI STRUTTURALI	58
ia di verifica	58
che elementi tipo trave	58
enti tipo Pilastri	62
e e verifica degli elementi strutturali	65
ria di verifica nodi trave-pilastro	75
odi trave – pilastro	77
SOLAIO	80
	80
ei carichi	80
lelle massime sollecitazioni agenti	80
del solaio	81
DEGLI ELEMENTI STRUTTURALI IN TERMINI DI	
TO DEL DANNO AGLI ELEMENTI NON STRUTTURALI (SLO)	86
	88
	id i risposta odo di analisi

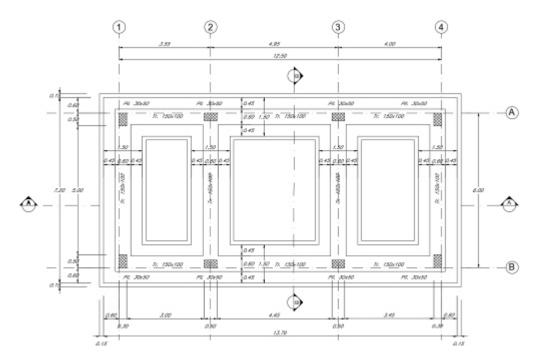
GRUPPO FERROVIE DELLO STATO ITALIANE	INTERRAMENTO	O LINEA PE A E PER LA	ER IL PROLUNG A MESSA A STI I	ATANIA – PALERMO AMENTO DELLA P DEL TRATTO DI LII	ISTA DELL' AER	OPORTO DI
FABBRICATO FA-05 – FA07 - RELAZIONE DI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
CALCOLO	RS3H	02	D 78 CL	FA 0500 001	A	4di 115

1.-..PREMESSA

La presente relazione di calcolo riguarda il Progetto Definitivo dell'edificio tipologico **E3** (denominato FA-05), da realizzare nell'ambito del potenziamento infrastrutturale della linea ferroviaria Catania-Siracusa, in corrispondenza della progressiva al 00+700 circa.

2.-..NORME DI RIFERIMENTO

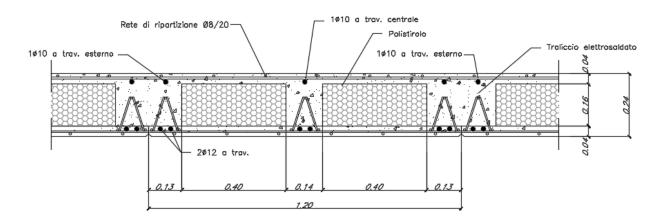
Le analisi strutturali e le verifiche di sicurezza sono state effettuate in accordo con le prescrizioni contenute nelle seguenti normative ed è conforme alle normative vigenti nonché alle istruzioni dell'Ente FF.SS:


- [N.1]. Norme Tecniche per le Costruzioni D.M. 17-01-18 (NTC-2018);
- [N.2]. Circolare n. 7 del 21gennaio 2019 Istruzioni per l'Applicazione dell'aggiornamento delle Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale 17 gennaio 2018;
 - [N.3]. Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019.
- [N.4]. Eurocodici EN 1991-2: 2003/AC:2010 Eurocodice 1 Parte 2
- [N.5]. RFI DTC SI MA IFS 001 C del 21-12-18 Manuale di Progettazione delle Opere Civili
 - [N.6]. CNR-DT207/2008 Istruzioni per la valutazione delle azioni e degli effetti del vento sulle costruzioni.

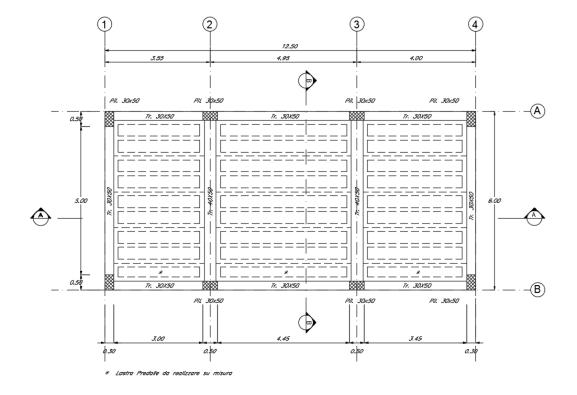
3.-..DESCRIZIONE DELLE STRUTTURE

Il fabbricato in oggetto è costituito da una struttura in c.a. su fondazione diretta a travi rovesce.

La struttura ha pianta rettangolare di dimensioni L x B = 12,50 x 6.00 m, è un telaio spaziale monolivello con copertura piana costituito da una campata in direzione trasversale di luce pari a 5.40m e tre campate in direzione longitudinale.



La parte in elevazione è costituita da travi e pilastri in c.a.. In particolare, i pilastri hanno dimensioni in pianta 0.30m x 0.50m, le travi perimetrali (trasversali e longitudinali) 0.30m x 0.50m e le travi interne hanno dimensioni 0.40m x 0.50m.


Il solaio di copertura, ordito lungo la direzione longitudinale del fabbricato, è del tipo semiprefabbricato a prèdalles, con getto in opera dei travetti e della caldana superiore. Lo spessore totale del solaio di copertura è di 24 cm e comprende 4 cm di prèdalles, 16 cm di nervature e 4 cm di caldana superiore. Le lastre tipo prèdalles sono larghe 120 cm e presentano tre tralicci di irrigidimento ed elementi di alleggerimento delimitanti le

nervature intermedie.

Le fondazioni del fabbricato saranno del tipo diretto, costituite da un reticolo di travi a T rovesce di altezza 1.00m con suola di base 1.50m e spessore 0.40m.

Le caratteristiche geometriche dell' edificio sono le seguenti:

Lunghezza totale

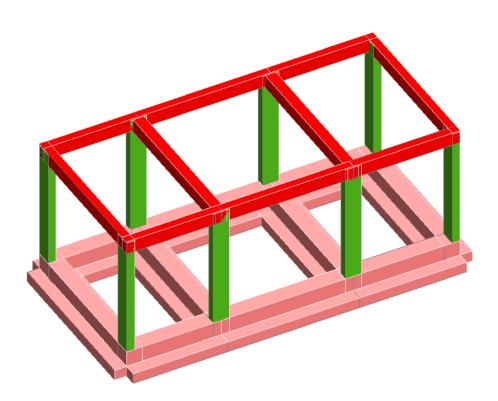
L = 12.50 m

02

B = 6.00 mLarghezza totale

CALCOLO

Quota piano posa fondazioni (filo magrone): $H_1 = -1,50 \text{ m}$


Quota piano campagna $H_2 = 0.00 \text{ m}$

Quota piano terra: $H_3 = +0.25 \text{ m}$

 $H_4 = +4.05 \text{ m}$ Quota copertura:

Per quanto concerne la soletta di ripartizione del solaio di calpestio, questa è scollegata dalla struttura portante a mezzo di un giunto.

Per maggiori approfondimenti sulle geometrie delle diverse parti dell'opera si rimanda agli elaborati grafici di progetto.

4.-..CARATTERISTICHE GEOTECNICHE DEL TERRENO

4.1.-..Stratigrafia di calcolo

Per la caratterizzazione geotecnica del terreno si rimanda alla Relazione Geotecnica e sulle Fondazioni.

Dalla scheda stratigrafica si desume la stratigrafia di progetto con i relativi parametri caratteristici:

Unità U1 - Sabbie Limose (Depositi alluvionali recenti-bb2)

$\gamma = 18 \div 19 \text{ kN/m3}$	peso di volume naturale
$\varphi' = 28 \div 32^{\circ}$	angolo di resistenza al taglio
$c' = 0 \div 10 \text{kPa}$	coesione drenata
$Nspt = 3 \div 23$	numero di colpi da prova SPT
$Go = 20 \div 90MPa$	modulo di deformazione a taglio iniziale
$Eo = 60 \div 225MPa$	modulo di deformazione elastico iniziale
$k = 2 \cdot 10 - 6 \text{ m/s}$	permeabilità(valore medio)

La falda idrica è cautelativamente considerata sempre a 8,50m da p.c..

5.-.. CARATTERISTICHE DEI MATERIALI

E' previsto l'utilizzo dei seguenti materiali dei quali di seguito si riportano le caratteristiche meccaniche:

5.1.-.. Opere in calcestruzzo armato

Per i calcestruzzi si fa riferimento alle normative UNI EN 206-1 (Specificazione, prestazione, produzione e conformità) e UNI 11104 (Istruzioni complementari per l'applicazione della EN 206-1).

5.1.1.-..Magrone

Conglomerato classe di resistenza C12/15 - Rck 15MPa

Resistenza caratteristica cubica: $R_{ck} = 15 \text{ N/mm}^2$ Resistenza caratteristica cilindrica: $f_{ck} = 12 \text{ N/mm}^2$

Classe di esposizione: X0
Classe di consistenza slump: S3

5.1.2.-..Struttura in fondazione:

Conglomerato classe di resistenza C25/30 - Rck 30MPa

Ec	=	31476	[MPa]
α	=	10x10 ⁻⁶	[C ⁻¹]
ν	=	0,20	[-]
γс	=	1,50	[-]
α cc	=	0,85	[-]
R_ck	=	30,0	[MPa]
f_{ck}	=	24,9	[MPa]
f_{cm}	=	32,9	[MPa]
f_{ctm}	=	2,56	[MPa]
f_{ctk}	=	1,79	[MPa]
f_{cfm}	=	3,07	[MPa]
f_{cfk}	=	2,15	[MPa]
f_{bk}	=	4,03	[MPa]
f_{cd}	=	14,1	[MPa]
	α ν γc αcc Rck fcm fctm fctk fcfm	$Ec = \alpha = \alpha = \nu = \gamma c = \alpha c c = R_{ck} = f_{ck} = f_{ctk} = f_{cfk} = f_{cfk} = f_{cfk} = f_{cfk} = f_{cd} = f$	$\begin{array}{rcl} \alpha & = & 10 \times 10^{-6} \\ \nu & = & 0,20 \\ \gamma_c & = & 1,50 \\ \alpha_{cc} & = & 0,85 \\ R_{ck} & = & 30,0 \\ f_{ck} & = & 24,9 \\ f_{cm} & = & 32,9 \\ f_{ctm} & = & 2,56 \\ f_{ctk} & = & 1,79 \\ f_{cfm} & = & 3,07 \\ f_{cfk} & = & 2,15 \\ f_{bk} & = & 4,03 \\ \end{array}$

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 - FA07 - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
RS3H	02	D 78 CL	FA 0500 001	Α	11di 115

Resistenza di calcolo a trazione semplice	$f_{ctd} =$	1,19	[MPa]
Resistenza di calcolo a trazione per flessione	$f_{cfd} =$	1,43	[MPa]
Resistenza di calcolo tangenziale per aderenza	f _{bd} =	2,69	[MPa]
Coefficiente sicurezza SLU	$\gamma_{\rm C} = 1,50$		
Resistenza di calcolo a compressione SLU	$f_{cd} = 0.85 f_{ck} /$	$\gamma_C = 14$,	11 N/mm ²
Resistenza di calcolo a trazione semplice (5%) SLU	$f_{ctd} = 0.7 f_{ctk} /$	$\gamma_{\rm C} = 1.19$	9 N/mm ²
Coefficiente sicurezza SLE	$\gamma_{\rm C} = 1.00$		

 $\sigma_{c,ad} = 0,60 \text{ f}_{ck} = 15.00 \text{ N/mm}^2$ combinazione rara combinazione quasi permanente $\sigma_{c,ad} = 0.45 f_{ck} = 11.25 N/mm^2$

5.1.3.-.. Struttura in elevazione e solaio in lastre predalles:

Conglomerato classe di resistenza C30/37 – Rck 37MPa

Modulo di elasticità longitudinale	Ec =	33019	[MPa]
Coefficiente di dilatazione termica	$\alpha =$	10x10 ⁻⁶	[C ⁻¹]
Coefficiente di Poisson	ν =	0,20	[-]
Coefficiente parziale di sicurezza	γc =	1,50	[-]
Coefficiente riduttivo per le resistenze di lunga durata	$\alpha_{cc} =$	0,85	[-]
Resistenza caratteristica cubica a compressione	R _{ck} =	37,0	[MPa]
Resistenza caratteristica cilindrica a compressione	f _{ck} =	30,7	[MPa]
Resistenza media cilindrica a compressione	$f_{cm} =$	38,7	[MPa]
Resistenza media a trazione semplice	$f_{ctm} =$	2,94	[MPa]
Resistenza caratteristica a trazione semplice	$f_{ctk} =$	2,06	[MPa]
Resistenza media a trazione per flessione	$f_{cfm} =$	3,53	[MPa]
Resistenza caratteristica a trazione per flessione	$f_{cfk} =$	2,47	[MPa]
Resistenza caratteristica tangenziale per aderenza	$f_{bk} =$	5,56	[MPa]
Resistenza di calcolo a compressione	$f_{cd} =$	17,4	[MPa]
Resistenza di calcolo a trazione semplice	$f_{ctd} =$	1,37	[MPa]
Resistenza di calcolo a trazione per flessione	$f_{cfd} =$	1,65	[MPa]
Resistenza di calcolo tangenziale per aderenza	$f_{bd} =$	3,71	[MPa]

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 — FA07 - RELAZIONE DI CALCOLO

COMMINICOSA	LOTTO	CODII ICA	DOCUMENTO	TILVISIONE	I OGLIO
RS3H	02	D 78 CL	FA 0500 001	Α	12di 115

Resistenza di calcolo a compressione SLU

 $f_{cd} = 0.85 f_{ck} / \gamma_C = 17.40 \text{ N/mm}^2$

Resistenza di calcolo a trazione semplice (5%) SLU $f_{ctd} = 0.7 f_{ctk} / \gamma_C = 1.37 \text{ N/mm}^2$

Coefficiente sicurezza SLE $\gamma_C = 1,00$

combinazione rara $\sigma_{c,ad} = 0,60 \text{ f}_{ck} = 18.43 \text{ N/mm}^2$ combinazione quasi permanente $\sigma_{c,ad} = 0,45 \text{ f}_{ck} = 13.82 \text{ N/mm}^2$

5.2.-.. Acciaio per calcestruzzo armato

Acciaio per calcestruzzo armato tipo B 450 C secondo DM 17.01.2018 avente le seguenti caratteristiche:

Modulo di elasticità longitudinale	Es =	210000	[MPa]
Coefficiente parziale di sicurezza	γ_s =	1,15	[-]
Tensione caratteristica di snervamento	fyk =	450	[MPa]
Tensione caratteristica di rottura	$f_{tk} =$		[MPa]
Allungamento	A_{gt} \geq	7,50%	[-]
Resistenza di calcolo	$f_{yd} =$	391,3	[MPa]

Coefficiente sicurezza SLU $\gamma_S = 1,15$

Resistenza di calcolo SLU $f_{yd} = f_{yk} / \gamma_S = 391,30 \text{ N/mm}^2$ Tensione di calcolo SLE $\sigma_{y,ad} = 0,80 \text{ fyk} = 360 \text{ N/mm}^2$

5.3.-..Copriferro

Con riferimento al punto 4.1.6.1.3 delle NTC, al fine della protezione delle armature dalla corrosione il valore minimo dello strato di ricoprimento di calcestruzzo (copriferro) deve rispettare le indicazioni della tabella C4.1.IV della Circolare 21.01.2019, riportata di seguito, in cui sono distinte le tre condizioni ambientali di Tabella 4.1.III delle NTC.

	barre da c.a.		barre da c.a.		cavi da c.a.p		cavi da c.a.p			
			elementi a piastra		altri elementi		elementi a piastra		altri elementi	
Cmin	Co	ambiente	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<>	C≥Co	Cmin≤C <co< td=""></co<>
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	<i>35</i>
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

Tabella 1. Copriferro e condizioni ambientali

Nel caso in esame i copriferri minimi previsti (come da tabella materiali) sono 40 mm per travi pilastri e travi di fondazione e 20 mm per le lastre predalles. A tali valori vanno aggiunte le tolleranze di posa, pari a 10 mm. Si riporta una tabella riepilogativa dei copriferri:

	Ambiente	Copriferro netto	Tolleranza di posa	Copriferro nominale
Struttura in elevazione	Ordinario	40	10	50
Lastre prédalles	Ordinario	20	5	25
Fondazioni	Ordinario	40	10	50

Tabella 2. Copriferro adottato

La rispondenza dei materiali ai requisiti richiesti sarà valutata mediante le prescritte prove di accettazione.

6.-..ANALISI DEI CARICHI DI PROGETTO

I pesi dei materiali utilizzati per le strutture portanti sono conformi alle NTC 18.

Del peso proprio degli elementi strutturali, tiene conto il programma di calcolo che considera il seguente peso specifico del calcestruzzo armato:

calcestruzzo armato

25 kN/m³

Si riportano di seguito le analisi dei carichi unitari agenti sulla struttura.

I valori delle azioni di seguito indicati sono stati considerati come valori caratteristici nelle verifiche agli stati limite.

6.1.-.. Carichi permanenti

6.1.1.-..Solaio copertura

G₁ - Peso proprio solaio

Solaio prédalles (h=0.24m)

soletta: $25 \text{ kN/m}^3 \text{ x } 1.20 \text{ m x } 0.04 \text{ m} = 1.20 \text{ kN/m}^2$ travetto: $25 \text{ kN/m}^3 \text{ x } 0.40 \text{ m x } 0.16 \text{ m} = 1.60 \text{ kN/m}^2$ prèdalles+EPS: $1.15 \text{ kN/m}^3 \text{ x } 1.20 \text{ m} = 1.38 \text{ kN/m}^2$

la somma di tali valori è 4.18 kN/m² riferita ad una fascia larga 1.20 m (larghezza singola prédalles), pertanto il carico relativo ad una fascia larga 1.00 m risulta: 3.48 kN/m²

G₂ - Sovraccarichi permanenti

Massetto pendenza: $16 \times 0.10 = 1.60 \text{ kN/m}^2$ Impermeabilizzazione/impianti/pavimenti: 1.50 kN/m^2 3.10 kN/m^2

6.1.2.-..Facciate e cornicioni:

Si considerano tamponature costituite da blocchi in laterizio tipo Poroton dello spessore pari a 30cm. Si adotta un peso proprio superficiale della stessa di 2.00 kN/m² a cui si

aggiunge il peso dell'intonaco che rivestirà la superficie interna ed esterna stimato in 0.50 kN/m². In corrispondenza del solaio di copertura è stato inoltre considerato un parapetto di altezza complessiva 1,20m (assumendo un pacchetto di finitura di 0,20m si ottiene un'altezza utile di 1m) sempre realizzato nello stesso materiale. L'azione viene ripartita nel seguente modo: il peso del parapetto viene considerato come carico distribuito sulle travi di copertura mentre la tamponatura perimetrale della struttura viene ripartita per metà dell'altezza d'interpiano sulle fondazioni come carico distribuito mentre la restante parte come carico concentrato sui pilastri.

Pertanto si ha:

Carico distribuito del parapetto: $2,50 \text{ kN/m}^2 \text{ x } 1,20 \text{ m} = 2,58 \text{ kN/m}$ Carico sulle travi di fondazioni: $2,50 \text{ kN/m}^2 \text{ x } 2,08 \text{ m} = 5,76 \text{ kN/m}$

Carico sui pilastri: 2,50 kN/m² x A_i

6.2.-..Carichi variabili

Q_{H1} – Sovraccarichi accidentali

Sovraccarico accidentale Cat. H1 0.50 kN/m²

6.3.-..Azioni della neve

Il carico da neve per superficie unitaria di copertura q_s viene valutato attraverso l'espressione:

$$q_s = q_{sk} \cdot \mu_i \cdot C_E \cdot C_t$$

dove:

 q_{sk} è il valore caratteristico di riferimento del carico da neve al suolo; in mancanza di adeguate indagini statistiche e specifici studi locali, la norma fornisce un valore minimo di q_{sk} riferito ad un periodo di ritorno pari a 50 anni. Per la zona III (Catania) e per una quota del suolo sul livello del mare inferiore a 200 m si assume $q_{sk} = 0.60 \text{ kN/m}^2$;

 μ_1 è il coefficiente di forma della copertura e che nel caso in esame, trattandosi di copertura piana si assume pari a 0.8;

- C_E è il coefficiente di esposizione che, per classe di topografia "normale", assume valore unitario;
- C_t è il coefficiente termico che tiene conto della riduzione del carico da neve a causa dello scioglimento della stessa, dovuto alla perdita di calore della costruzione. In assenza di uno specifico e documentato studio, deve essere utilizzato $C_t = 1$.

Ne consegue che per la struttura in esame si considera un carico da neve uniforme in copertura pari a:

Zona III

Altitudine as 20.00 m

Area topografica normale

Inclinazione falde 0°

 q_{sk} 0.60 kN/m²

coeff esposizione c_E 1.00 coeff termico c_t 1.00 coefficiente di forma μ_i 0.80

carico neve q_s= μ_i * q_{sk} * c_E * c_t = 0.48 kN/m²

Considerata la presenza del parapetto si deve considerare anche la condizione di accumulo della neve e per la definizione della suddetta azione si fa riferimento alla circolare 21.01.2019 ed in particolare alla relazione C.3.4.3.3.4 (accumuli in corrispondenza di sporgenze):

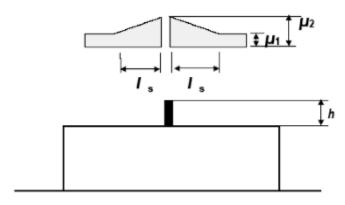


Figura C3.4.6 - Coefficienti di forma per il carico neve in corrispondenza di sporgenze ed ostruzioni

Dove μ_1 e μ_2 sono definiti dalle seguenti relazioni:

$$\mu_1 = 0.8 \text{ e } \mu_2 = \gamma h/q_{sk}$$
, con la limitazione: $0.8 \le \mu_2 \le 2.0$

Con:

γ: e il peso dell'unita di volume della neve, che per il presente calcolo puo essere assunto pari a 2 kN/m3;

h: 1.00m (si considera realizzato il pacchetto di finitura del solaio di copertura);

Nel caso preso in esame pertanto $\mu_2 = 2$ e $l_s = 2$ m. Si considera il valore medio della distribuzione del carico distribuito pertanto si ha:

carico neve q_{s (accumulo)} = 0.78 kN/m²

6.4.-..Azioni del vento

L'azione del vento viene convenzionalmente considerata un'azione statica agente in direzione orizzontale.

La pressione normale alle superfici investite dal vento è data dall'espressione:

$$p = q_b \cdot c_e \cdot c_p \cdot c_d$$

i cui coefficienti vengono di seguito determinati.

pressione cinetica di riferimento q_b

$$q_b = \frac{1}{2} \rho v_r^2 = 0.49 \ kN/m^2$$

dove:

 ρ è la densità dell'aria assunta convenzionalmente costante e pari a 1.25 kg/m²;

 v_b è la velocità di riferimento del vento (che rappresenta il valore caratteristico a 10 m dal suolo su un terreno di categoria di esposizione II, mediata su 10 minuti e riferita ad un periodo di ritorno di 50 anni).

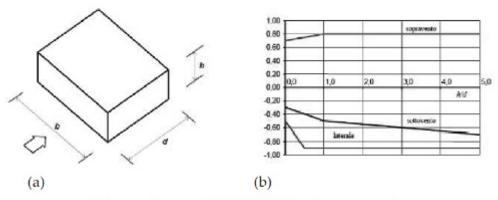
Nel caso in esame, per zona 4 (Sicilia) ed $a_s \le 500$ m si ha $v_b = v_{b,0} = 28$ m/s;

• coefficiente di esposizione ce

$$\begin{split} c_e(z) &= c_e(z_{\min}) \\ c_e(z) &= k_r^2 \cdot c_t \cdot \ln(z/z_0) \cdot \left[7 + c_t \cdot \ln(z/z_0)\right] \\ \end{split} \qquad \qquad \text{per } z < z_{\min} \\ \end{split}$$

Nel caso in esame, essendo in zona 4, classe di rugosità del terreno D e quindi categoria di esposizione del sito II, si ha:

$$k_r = 0.19;$$
 $z_o = 0.05 \text{ m}$; $z_{min} = 4 \text{ m}$; $c_t = 1$
 $z = 5.05 \text{m}$ $c_e = 1.935$


• coefficiente dinamico c_d

In assenza di considerazioni di dettaglio inerenti i fenomeni di natura aeroelastica e di distacco dei vortici si assume cautelativamente un valore $c_d = 1$.

coefficiente di forma c_p

Per la definizione dei coefficienti aerodinamici si fa riferimento alla circolare esplicativa 21.01.2019 e alla CNR DT-207: per edifici a pianta rettangolare con copertura piana si considera il paragrafo C.3.3.8.1. Vengono definiti i coefficienti per il caso di vento ortogonale al lato lungo e ortogonale al lato corto: per le pareti si applicano le seguenti relazioni

a) Parametri caratteristici di edifici a pianta rettangolare,

b) Edifici a pianta rettangolare: cpe per facce sopravento, sottovento e laterali

Figura C3.3.2

Tabella C3.3.I: Edifici a pianta rettangolare: cps per facce sopravento, sottovento e laterali

Faccia sopravento	Facce laterali	Faccia sottovento
$h/d \le 1$: $c_{pe} = 0.7 + 0.1 \cdot h/d$	$h/d \le 0.5$: $c_{pe} = -0.5 - 0.8 \cdot h/d$	$h/d \le 1$: $c_{pe} = -0.3 - 0.2 \cdot h/d$
$h/d > 1$: $c_{pe} = 0.8$	$h/d > 0.5$: $c_{pe} = -0.9$	$1 < h/d \le 5$: $c_{pe} = -0.5 - 0.05 \cdot (h/d-1)$

Mentre per la copertura, considerato che è piana in quanto la sua inclinazione sull'orizzontale è compresa tra -5° e +5°, sono stati scelti i seguenti valori:

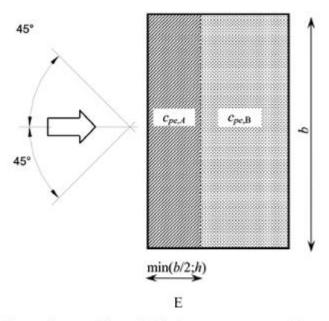


Figura C3.3.5 - Schema di riferimento per coperture piane

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

LOTTO 02

FABBRICATO FA-05 — FA07 - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
RS3H	02	D 78 CL	FA 0500 001	Α	20di 115

Tabella C3.3.III - Edifici rettangolari: cpe per coperture piane.

Fascia sopravento di profondità pari al minimo tra b/2 e h:	c _{pe,A} = -0,80
Restanti zone	c _{pe,B} = ±0,20

Per quanto riguarda invece la pressione interna si è fatto riferimento alla CNR DT-207 al paragrafo G.4.3. nel quale sono stati considerati i seguenti valori dei coefficienti aerodinamici:

 $C_{pi} = +0.2$

 $c_{pi} = -0.3$

Vento perpendicolare al lato lungo del fabbricato.

Considerate le dimensioni del fabbricato:

h = 5.05m

b = 12.50m

d = 6.00m

si ha che il rapporto h/d = 0.84 pertanto per le pareti verticali sono stati assunti i seguenti valori dei coefficienti aerodinamici:

Faccia sopravento: $c_{pe} = 0.784$

Facce laterali: $c_{pe} = -0.90$

Faccia sottovento: $c_{pe} = -0.468$

Per quanto riguarda il coefficiente aerodinamico da assumere in copertura va innanzitutto definita la porzione di copertura sopravento e quella sottovento, tramite la relazione min(b/2;h) si ottiene una profondità di fascia sopravento di 5.05m. Considerata la presenza dei parapetti si assume tutta la copertura in condizione sopravento pertanto il coefficiente aerodinamico risulta uniforme e pari a:

Copertura: $c_{pe} = -0.80$

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA RS3H

LOTTO

CODIFICA DO

DOCUMENTO FA 0500 001 REVISIONE FO

FOGLIO 21di 115

Per combinare i valori dei coefficienti aerodinamici interni ed esterni si considera la condizione più gravosa e pertanto si ottengono le seguenti pressioni

Faccia sopravento: $c_p = 0.784 + 0.2 = +0.984$ $p = +0.933 \text{ kN/m}^2$

Facce laterali: $c_p = -0.90 + (-0.3) = -1.20$ $p = -1.138 \text{ kN/m}^2$

Faccia sottovento: $c_p = -0.468 + (-0.3) = -0.768$ $p = -0.728 \text{ kN/m}^2$

Copertura: $c_p = -0.80 + (-0.3) = -1.10$ $p = -1.043 \text{ kN/m}^2$

Vento perpendicolare al lato corto del fabbricato.

Considerate le dimensioni del fabbricato:

h = 5.05m

b = 6.00 m

d = 12.50m

si ha che il rapporto h/d = 0.404 pertanto per le pareti verticali sono stati assunti i seguenti valori dei coefficienti aerodinamici:

Faccia sopravento: $c_{pe} = 0.740$

Facce laterali: $c_{pe} = -0.823$

Faccia sottovento: $c_{pe} = -0.38$

Per quanto riguarda il coefficiente aerodinamico da assumere in copertura va innanzitutto definita la porzione di copertura sopravento e quella sottovento, tramite la relazione min(b/2;h) si ottiene una profondità di fascia sopravento di 3.00m. I coefficienti risultano pertanto

Fascia sopravento: $c_{pe} = -0.80$

Fascia sottovento: $c_{pe} = \pm 0.20$

Per combinare i valori dei coefficienti aerodinamici interni ed esterni si considera la condizione più gravosa e pertanto si ottengono le seguenti pressioni

Faccia sopravento:	$c_p = 0.74 + 0.20 = 0.94$	$p = +0.891 \text{ kN/m}^2$
Facce laterali:	$c_p = -0.823 + (-0.30) = -1.123$	$p = -1.065 \text{ kN/m}^2$
Faccia sottovento:	$c_p = -0.38 + (-0.30) = -0.68$	$p = -0.645 \text{ kN/m}^2$
Copertura sopravento:	$c_p = -0.80 + (-0.30) = -1.10$	$p = -1.043 \text{ kN/m}^2$
Copertura sottovento:	$c_p = 0.20 + 0.20 = 0.40$	$p = +0.379 \text{ kN/m}^2$

Azione tangenziale del vento

Oltre alla pressione normale va tenuta in conto anche un'azione tangenziale per unità di superficie parallela alla direzione del vento. Tale azione può essere valutata come:

$$p_f = q_b \cdot c_e \cdot c_f$$

dove:

 $q_b \, e \, c_e$ sono quelli già definiti per il calcolo della pressione normale da vento; c_f è il coefficiente d'attrito, funzione della scabrezza della superficie sulla quale il vento esercita l'azione tangente e che per una generica superficie scabra può essere assunto pari a 0.02.

In definitiva $q_b = 0.49 \text{ kN/m}^2$, da cui $p_{f,max} = 0.019 \text{ kN/m}^2$.

6.5.-..Variazione Termica

Negli edifici in cui la temperatura non costituisca azione fondamentale per la sicurezza o per l'efficienza funzionale della struttura è consentito tener conto della sola componente uniforme di variazione termica $\Delta T_u = T - T_0$ pari alla differenza tra la temperatura media attuale T e quella iniziale alla data della costruzione T_0 . Nelle modellazioni sono stati considerati i seguenti carichi termici uniformi:

strutture in c.a. protette $\Delta T_u = \pm 10^{\circ} \text{ C}$ strutture in c.a. esposte $\Delta T_u = \pm 15^{\circ} \text{ C}$

6.6.-..Azione sismica

Con riferimento alla normativa vigente (*NTC-2018*), le azioni sismiche di progetto si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione.

Essa costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa ag in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A quale definita al \S 3.2.2), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente $S_e(T)$, con riferimento a prefissate probabilità di eccedenza P_{VR} , come definite nel \S 3.2.1, nel periodo di riferimento V_R , come definito nel \S 2.4

Le forme spettrali sono definite, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR}, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

ag accelerazione orizzontale massima al sito;

F_o valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale.

 T_c^* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per i fabbricati cautelativamente assumiamo per il calcolo dell'azione sismica la Vr della linea ferroviaria (Vr=112.5 anni).

6.6.1.-..Vita nominale

La vita nominale di un'opera strutturale V_N è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata.

La vita nominale dei diversi tipi di opere è riportata al seguito nella Tab. 2.4.I delle norme tecniche *NTC-2018*.

Tab. 2.4.I – Valori minimi della Vita nominale V_N di progetto per i diversi tipi di costruzioni

TIPI DI COSTRUZIONI		Valori minimi di V _N (anni)
1	Costruzioni temporanee e provvisorie	10
2	Costruzioni con livelli di prestazioni ordinari	50
3	Costruzioni con livelli di prestazioni elevati	100

Inoltre, si riporta la tabella 2.5.1.1.1-1 del "Manuale di Progettazione delle Opere Civili" Parte II Sezione 2 (rif. RFI DTC SI MA IFS 001 A):

TIPO DI COSTRUZIONE (I)	Vita Nominale V _N [Anni] (1)				
OPERE NUOVE SU INFRASTRUTTURE FERROVIARIE PROGETTATE CON LE NORME VIGENTI PRIMA DEL DM 14/01/2008 A VELOCITÀ CONVENZIONALE (V<250 Km/h)	50				
ALTRE OPERE NUOVE A VELOCITÀ V<250 Km/h	75				
ALTRE OPERE NUOVE A VELOCITÁ V $\geq 250 \text{ km/h}$	100				
OPERE DI GRANDI DIMENSIONI: PONTI E VIADOTTI CON CAMPATE DI LUCE MAGGIORE DI 150 m	≥ 100 (2)				
 La stessa V_N si applica anche ad apparecchi di appoggio, coprigiunti e impermeabilizzazione delle stesse opere. 					
(2) - Da definirsi per il singolo progetto a cura di FERROVIE.					

Tab. 2.5.1.1.1-1 - Vita nominale delle infrastrutture ferroviarie

Il fabbricato rientra in costruzioni ordinarie con vita nominale di 50 anni.

6.6.2.-..Classe d'uso

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività

pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Il fabbricato rientra per le sue funzioni tra le compresi nella classe d'uso IV.

6.6.3.-..Periodo di riferimento per l'azione sismica

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_U . Nel caso specifico la V_R che assumiamo è quella relativa alla linea ferroviaria in quanto più cautelativa:

$$V_R = V_N \times C_U = 75 \times 1.5 = 112,5$$
anni

6.6.4.-..Azioni di progetto

Le azioni di progetto si ricavano, ai sensi delle NTC 18, dalle accelerazioni ag e dalle relative forme spettrali.

Le forme spettrali previste dalle NTC 18 sono definite, su sito di riferimento rigido orizzontale, in funzione dei tre parametri:

- ag: accelerazione orizzontale massima al sito;
- F₀: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

 T_C*: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Le forme spettrali previste dalle NTC 18 sono caratterizzate da prescelte probabilità di superamento e da vite di riferimento. A tal fine occorre fissare:

- la vita di riferimento V_R della costruzione;
- le probabilità di superamento nella vita di riferimento P_{VR} associate agli stati limite considerati, per individuare infine, a partire dai dati di pericolosità sismica disponibili, le corrispondenti azioni sismiche.

A tal fine si utilizza come parametro caratterizzante la pericolosità sismica, il periodo di ritorno dell'azione sismica T_R , espresso in anni. Fissata la vita di riferimento V_R , i due parametri T_R e P_{VR} sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante la seguente espressione:

$$T_r = -\frac{V_R}{(1 - P_{VR})} = -\frac{112,5}{(1 - 0.1)} = \sim 1068 \ anni$$

I valori dei parametri a_g , F_0 e T_C^* relativi alla pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento sono forniti nelle tabelle riportate nell'Allegato B delle NTC08, in funzione di prefissati valori del periodo di ritorno T_R . L'accelerazione al sito a_g è espressa in g/10, F_0 è adimensionale, T_C^* è espresso in secondi.

I punti del reticolo di riferimento sono definiti in termini di Latitudine e Longitudine ed ordinati a latitudine e longitudine crescenti, facendo variare prima la Longitudine e poi la Latitudine.

Qualora la attuale pericolosità sismica sul reticolo di riferimento non contempli il periodo di ritorno T_R corrispondente alla V_R e alla P_{VR} fissate, il valore del generico parametro p $(a_g, F_0 \ e\ T_C^*)$ ad esso corrispondente potrà essere ricavato per interpolazione, a partire dai dati relativi ai T_R previsti nella pericolosità sismica, utilizzando l'espressione seguente:

$$\log(\mathbf{p}) = \log(p_1) + \log\left(\frac{p_2}{p_1}\right) \times \log\left(\frac{T_R}{T_{R1}}\right) \times \left[\log\left(\frac{T_{R2}}{T_{R1}}\right)\right]^{-1}$$

Di seguito si riportano i grafici ed i valori dei parametri ag, F₀ e T_C* per i periodi di ritorno T_R associati a ciascuno stato limite:

SLATO	T _R	a _g	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0,080	2,495	0,281
SLD	113	0,103	2,505	0,290
SLV	1068	0,324	2,359	0,467
SLC	2193	0,464	2,352	0,527

6.6.5.-.. Categoria di sottosuolo e Condizioni topografiche

Categoria sottosuolo

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale mediante specifiche analisi, come indicato nel § 7.11.3 NTC 18. In assenza di tali analisi, per la definizione dell'azione sismica si può fare riferimento a un approccio semplificato, che si basa sull'individuazione di categorie di sottosuolo di riferimento. Nel caso specifico si adotta la seguente categoria di sottosuolo:

Categoria C: "Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalenti compresi tra 180 m/s e 360 m/s

Amplificazione stratigrafica

Per sottosuolo di categoria A i coefficienti Ss e Cc valgono 1.

Per le categorie di sottosuolo B,C,D ed E i coefficienti S_s e C_c possono essere calcolati in funzione dei valori F_0 e Tc^* relativi al sottosuolo di categoria A, mediante le espressioni fornite nella tab. 3.2.IV, nelle quali g è l'accelerazione di gravità ed il tempo è espresso in secondi.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	INTERRAMENTO	O LINEA PE A E PER LA	ER IL PROLUNG MESSA A STI I	ATANIA – PALERMO AMENTO DELLA P DEL TRATTO DI LII	ISTA DELL' AER	OPORTO DI
FABBRICATO FA-05 – FA07 - RELAZIONE DI	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
CALCOLO	RS3H	02	D 78 CL	FA 0500 001	A	29di 115

Condizioni topografiche

Con riferimento alle caratteristiche della superficie topografica inerente l'opera in oggetto, si adotta la seguente categoria topografica:

Categoria topografica T1: Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°.

6.6.6.-..Classe di duttilità

La costruzione oggetto della presente relazione, soggetta all'azione sismica, non dotata di appositi dispositivi dissipativi, è stata progettata considerando un comportamento strutturale dissipativo. Nel comportamento strutturale dissipativo, gli effetti combinati delle azioni sismiche e delle altre azioni sono calcolati tenendo conto delle non linearità di comportamento (di materiale sempre, geometriche quando rilevanti). In particolare è stata adottata la "Classe di duttilità media (CD"B")".

6.6.7.-..Regolarità

Si precisa che non sono state effettuate le verifiche in merito alle regolarità in pianta ed in elevazione in quanto è stato considerato un fattore di comportamento q di 2.50 (cautelativo rispetto a quello fissato dalla norma).

6.6.8.-.. Tipologia strutturale e fattore di comportamento

Tipologia strutturale

La struttura "sismo resistente in calcestruzzo armato" (§7.4.3.1 NTC 18) è classificabile come:

♦ Struttura a telaio

Fattore di comportamento

Agli stati limite ultimi le capacità dissipative delle strutture possono essere considerate attraverso una riduzione delle forze elastiche, tenendo conto in modo semplificato della capacità dissipativa anelastica della struttura, della sua sovraresistenza, dell'incremento

del suo periodo proprio a seguito delle plasticizzazioni. In tal caso lo spettro di progetto da utilizzare, sia per le componenti orizzontali, sia per la componente verticale, è lo spettro elastico corrispondente riferito alla probabilità di superamento nel periodo di riferimento P_{VR} considerata con le ordinate ridotte sostituendo nelle formule del § 3.2.3.2.1 - NTC2018 η con 1/q, dove q è il fattore di comportamento.

Il valore del fattore di comportamento q da utilizzare per ciascuna direzione dell'azione sismica, dipende dalla tipologia strutturale, dal suo grado di iperstaticità e dai criteri di progettazione adottati e prende in conto le non linearità di materiale. Esso può essere calcolato mediante la seguente espressione:

$$q = q_0 \cdot K_R$$

dove:

qo è il valore massimo del fattore di comportamento

K_R è un fattore che dipende dalle caratteristiche di regolarità in altezza della costruzione.

Un problema importante è la scelta del valore base del coefficiente di comportamento q₀, che risulta legato alla tipologia strutturale ed al livello di duttilità attesa. Osservando le tipologie strutturali riportate al § 7.3.1 – NTC2018 si evince che l'edificio in esame può essere riconducibile ad un sistema a telaio.

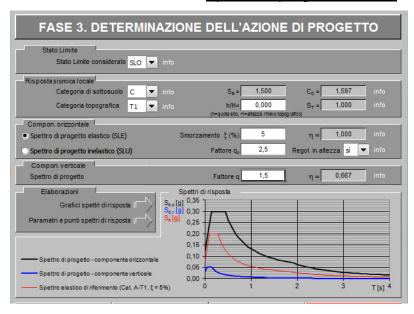
Per quanto riguarda il livello di duttilità attesa, si stabilisce di progettare il fabbricato in accordo con un comportamento strutturale dissipativo caratterizzato da Classe di Duttilità Media (CD "B").

Pertanto, in base alla Tab. 7.3.II delle NTC 2018, il coefficiente di comportamento qo può essere valutato come:

$$q_0 = 3.0 \cdot \frac{\alpha_u}{\alpha_1}$$

Trattandosi di una struttura a telaio ad un solo piano ed una sola campata in direzione trasversale, in accordo con il § 7.4.3.2 – NTC 2018, si assume:

$$\alpha_u / \alpha_1 = 1.1$$


Come precedentemente detto si è scelto di non effettuare le verifiche di regolarità in

pianta ed in elevazione e di utilizzare un fattore di comportamento q = 2.5.

6.6.9.-..Spettri di risposta

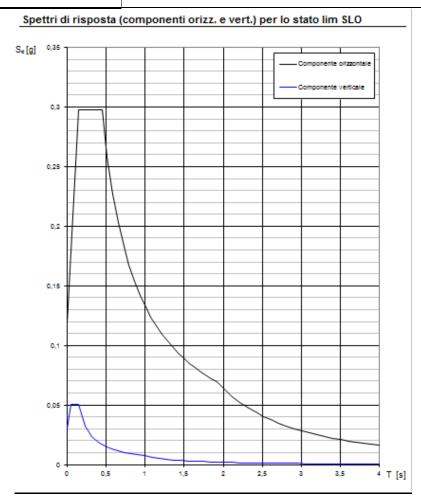
Spettro di progetto elastico

Parametri indipendenti

STATO LIMITE	SLO
a _n	0,080 g
F。	2,495
T _C *	0,281 s
Ss	1,500
СС	1,597
ST	1,000
q	1,000

Parametri dipendenti

i arameni arpenaena		
S	1,500	
η	1,000	
T _B	0,149 s	
T _C	0,448 s	
To	1,918 s	

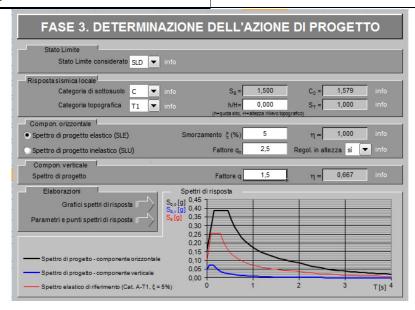


INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO

LOTTO COMMESSA CODIFICA DOCUMENTO REVISIONE FOGLIO RS3H 02 D 78 CL FA 0500 001 32di 115 Α

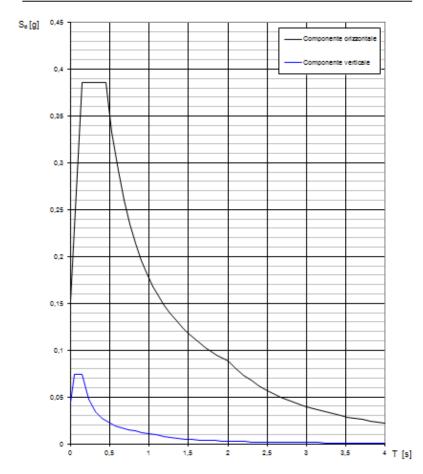


INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

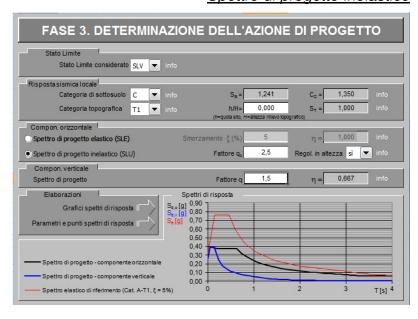
FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
RS3H	02	D 78 CL	FA 0500 001	Α	33di 115


Parametri indipendenti

i didilicai ilidipolidolia	
STATO LIMITE	SLD
an	0,103 g
F _o	2,505
T _C *	0,290 s
Ss	1,500
C _C	1,579
S _T	1,000
q	1,000

Parametri dipendenti


S	1,500
η	1,000
T _B	0,153 s
T _C	0,459 s
TD	2,011 s

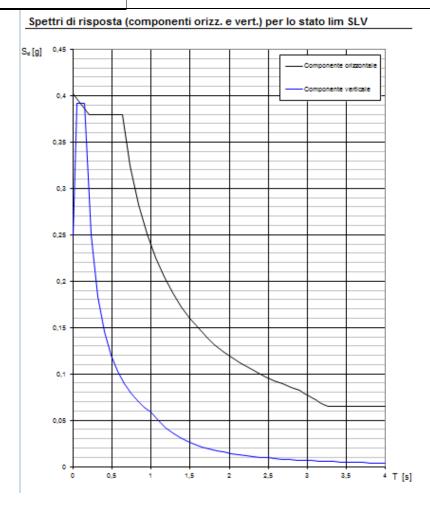
Spettri di risposta (componenti orizz. e vert.) per lo stato lim SLD

Spettro di progetto inelastico

Parametri indipendenti

STATO LIMITE	SLV
a _o	0,324 g
F _o	2,359
T _C *	0,467 s
Ss	1,241
Cc	1,350
S _T	1,000
q	2,500

Parametri dipendenti


S	1,241
η	0,400
T _R	0,210 s
To	0,630 s
Tn	2,897 s

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 35di 115

6.6.10.-..Metodo di analisi

Gli effetti dell'azione sismica vengono valutati tenendo conto delle masse associate ai carichi gravitazionali dovuti al peso proprio (G_1) , ai sovraccarichi permanenti (G_2) e a un'aliquota (ψ_{2j}) dei sovraccarichi accidentali (Q_{kj}) :

$$\boldsymbol{G}_1 + \boldsymbol{G}_2 + \sum\nolimits_j \boldsymbol{\psi}_{2j} \cdot \boldsymbol{Q}_{kj}$$

I valori dei coefficienti ψ_{2j} sono riportati nella Tabella 2.5.I – NTC2018. Nel caso in esame le azioni variabili che possono essere sottoposti ad eccitazione sismica sono:

- sovraccarico accidentale in copertura (Q₁): $\psi_{2j} = 0$

- azione della neve in copertura: $\psi_{2i} = 0$

- azione del vento:

 $\psi_{2i} = 0$

Come metodo di analisi per determinare gli effetti dell'azione sismica si è scelto di utilizzare l'analisi dinamica lineare o analisi modale con spettro di risposta, nella quale l'equilibrio è trattato dinamicamente e l'azione sismica è modellata direttamente attraverso lo spettro di progetto.

L'analisi dinamica lineare consiste:

- nella determinazione dei modi di vibrare della costruzione (analisi modale)
- nel calcolo degli effetti dell'azione sismica, rappresentata dallo spettro di risposta di progetto, per ciascuno dei modi di vibrare individuati
- nella combinazione di questi effetti

Come prescritto dalle NTC 2018 al § 7.3.3.1, devono essere considerati tutti i modi di vibrare con massa partecipante significativa. E' opportuno a tal riguardo considerare tutti i modi con massa partecipante superiore al 5% e comunque un numero di modi la cui massa partecipante totale sia superiore all'85%. Per la combinazione degli effetti relativi ai singoli modi, deve essere utilizzata una combinazione quadratica completa (CQC) degli effetti relativi a ciascun modo, secondo quanto definito al § 7.3.3.1 – NTC2018.

La risposta della struttura viene calcolata separatamente per ciascuna delle due componenti dell'azione sismica orizzontale; gli effetti sulla struttura, in termini di sollecitazioni e spostamenti, sono poi combinati applicando le seguenti espressioni (NTC 2018 - § 7.3.5):

$$1.00 \cdot E_x$$
 "+" $0.30 \cdot E_y$
 $1.00 \cdot E_y$ "+" $0.30 \cdot E_x$

6.6.10.1.-.. Risposta Modale

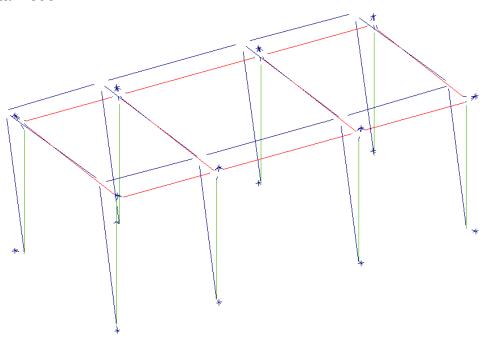
L'analisi a spettro di risposta cerca la risposta più probabile alle equazioni di equilibrio dinamico associate alla risposta della struttura al moto del suolo. L'accelerazione del suolo dovuta ad un terremoto in ogni direzione viene espressa come una curva di

spettro di risposta della pseudo-accelerazione spettrale in funzione del periodo della struttura.

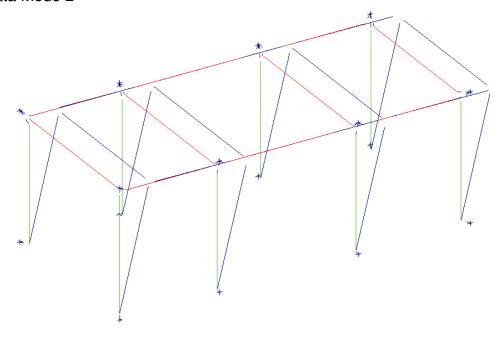
Anche se le accelerazioni possono essere specificate in 3 direzioni, viene prodotto un unico risultato positivo per ciascuna quantità in risposta; le quantità in risposta comprendono spostamenti, forze e tensioni. Ciascun risultato calcolato rappresenta una misura statistica della grandezza più probabile di quella particolare quantità in risposta. È da attendersi che la vera risposta sia compresa in un intervallo che va dal valore positivo a quello negativo del valore trovato.

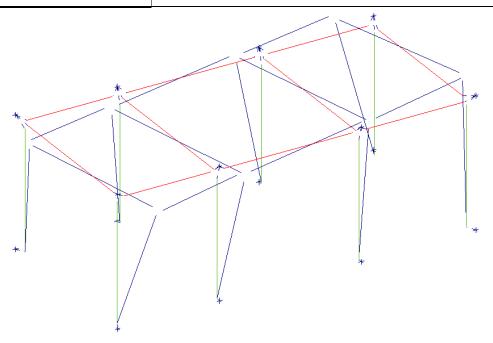
L'analisi a spettro di risposta viene eseguita usando la sovrapposizione dei modi, ricavati usando l'analisi agli autovettori. Per una data direzione di accelerazione, la risposta modale è calcolata su tutta la struttura per ciascuno dei modi di vibrazione: questi valori modali, per una data quantità in risposta, vengono combinati per produrre un unico risultato positivo per quella data direzione di accelerazione, usando il metodo CQC.

Si riportano nella seguente tabella i risultati dell'analisi modale condotta sulla struttura; si riportano i primi 3 modi di vibrare della struttura per i quali sono riepilogati il periodo della struttura e le masse partecipanti:


	PULSAZIONI E MODI DI VIBRAZIONE												
Modo	Pulsazione	Periodo	Smorz	Sd/g	Sd/g	Sd/g	Sd/g	Sd/g	Sd/g	Piano	X	Υ	Rot
N.ro	(rad/sec)	(sec)	Mod(%)	SLÖ	SLD	SLV X	SLVY	SLC X	SLC Y	N.ro	(m)	(m)	(rad)
1	22,731	0,27641	5,0	0,296	0,383	0,379	0,379			1	0,001193	0,100856	0,000398
2	26,025	0,24143	5,0	0,296	0,383	0,379	0,379			1	0,103344	0,000000	0,000000
3	27,382	0,22947	5,0	0,296	0,383	0,379	0,379			1	0,060496	-,127237	0,020165

				FATTORI E F	ORZE DI	PIANO MODALI S.	L.V.						
	SISMA DIREZIONE: 0°												
	Massa eccitata (t): 93.63 Massa totale (t): 93.63 Rapporto:1												
Modo	Fattore	Fmod/Fmax	Massa Mod	Mmod/Mtot	Piano	FX	FY	Mt	Mom.Ecc. 5%				
N.ro	Modale	(%)	Eff. (t)	%	N.ro	(t)	(t)	(t*m)	(t*m)				
1	0,000	0,00	0,00	0,00	1	0,00	0,00	0,00	10,65				
2	9,676	100,00	93,63	100,00	1	35,50	0,00	0,00					
3	0,000	0,00	0,00	0,00	1	0,00	0,00	0,00					


	FATTORI E FORZE DI PIANO MODALI S.L.V.												
	SISMA DIREZIONE: 90°												
	Massa eccitata (t): 93.63 Massa totale (t): 93.63 Rapporto:.99												
Modo	Modo Fattore Fmod/Fmax Massa Mod Mmod/Mtot Piano FX FY Mt Mom.Ecc. 5%												
N.ro	Modale	(%)	Eff. (t)	%	N.ro	(t)	(t)	(t*m)	(t*m)				
1	9,675	100,00	93,60	99,96	1	0,00	35,49	5,20	22,19				
2	2 0,000 0,00 0,00 0,00 1 0,00 0,00 0,00												
3	3 0,191 1,97 0,04 0,04 1 0,00 0,01 -3,58												


Deformata Modo 1

Deformata Modo 2

6.6.10.2.-.. Eccentricità accidentale delle masse (Ecc.X, Ecc.Y)

Per tener conto della variabilità spaziale del moto sismico, nonché di eventuali incertezze nella localizzazione delle masse, al centro di massa deve essere attribuita un'eccentricità accidentale rispetto alla sua posizione quale deriva dal calcolo. Per gli edifici, gli effetti dell'eccentricità accidentale del centro di massa possono essere determinati mediante l'applicazione di carichi statici costituiti da momenti torcenti di valore pari alla risultante orizzontale della forza agente al piano, moltiplicata per l'eccentricità accidentale del baricentro delle masse rispetto alla sua posizione di calcolo. In assenza di più accurate determinazioni l'eccentricità accidentale in ogni direzione non può essere considerata inferiore a 0.05 volte la dimensione dell'edificio misurata perpendicolarmente alla direzione di applicazione dell'azione sismica.

La forza di taglio alla base F_b si determina con la formula definita al § 7.3.3.2 – NTC 2018:

$$F_h = S_d(T_1) \cdot W \cdot \lambda / g$$

dove:

 λ è un fattore di correzione che nel caso in esame può essere assunto pari ad 1 W è il peso totale dell'edificio

 $S_d(T_1)$ è l'ordinata dello spettro di progetto per il periodo T_1

 T_1 è il periodo proprio derivante dall'analisi dinamica modale, relativo al modo di vibrare traslatorio considerato

Dall'analisi modale della struttura si ottengono i seguenti periodi propri, riferiti ai due modi di vibrare traslatori, sono i seguenti:

$$T_1 = 0.276s$$
 $T_2 = 0.241s$

Si determinano quindi le forze di taglio alla base e i corrispondenti momenti torcenti per ciascuna direzione. Si osserva che se il momento torcente è generato dal sisma in direzione x (oppure y) allora anche il sistema di forze equivalente avrà direzione x (oppure y); si riportano di seguito le formule usate per la loro determinazione:

$$M_{ty} = F_h \cdot e_y$$
 $M_{ty} = F_h \cdot e_y$

Dopo aver determinato il momento torcente per ciascuna delle due componenti orizzontali dell'azione sismica, si procede con la determinazione di un sistema di forze equivalente a tale momento. Le forze equivalenti sono state individuate in base alla distanza dei pilastri dal centro geometrico degli stessi: le forze sono applicate su ciascun pilastro, alla quota del baricentro delle travi.

$$H_{kx} = M_{tx} \cdot \frac{y_k}{\sum_k y_k^2} \qquad H_{ky} = M_{ty} \cdot \frac{x_k}{\sum_k x_k^2}$$

dove:

k indica il numero del pilastro considerato

 H_{kx} è la forza in direzione x, data da M_{tx} , agente sul k-esimo pilastro considerato H_{ky} è la forza in direzione y, data da M_{ty} , agente sul k-esimo pilastro considerato x_k e y_k sono le distanze dei pilastri dal centro geometrico della struttura

Gli effetti delle forze equivalenti dovute all'eccentricità accidentale, vengono portati in

conto nella combinazione sismica, sommandoli all'azione sismica che li origina.

7.-..ANALISI DELLA STRUTTURA

7.1.-..Codici di calcolo utilizzati

Per il calcolo delle sollecitazioni gravanti sugli elementi strutturali, per i modi di vibrare della struttura e per verifiche di resistenza si è fatto ricorso al codice di calcolo FEM CDSWin della STS.

7.1.1.-.. Affidabilità del software

La documentazione fornita a corredo dei software contiene una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, l'individuazione dei campi d'impiego, nonché casi prova interamente risolti e commentati.

7.2.-.. Modellazione dell'opera

L' edificio in c.a. in oggetto è stato modellato come una struttura a telaio semplice di un piano.

Gli elementi strutturali, travi e pilastri, sono stati schematizzati mediante elementi monodimensionali tipo frame. Essi presentano caratteristiche geometriche e meccaniche in accordo con le proprietà reali dei materiali e delle sezioni che li rappresentano. Ciascuna asta è stata posizionata in corrispondenza dell'asse baricentrico degli elementi strutturali. La quota del solaio di copertura è stata fissata a 4,55m. A tutti i nodi del solaio è stato assegnato un vincolo di piano rigido.

L'analisi degli effetti dovuti all'azione sismica prevede la definizione delle masse strutturali partecipanti all'eccitazione dinamica dovuta al terremoto. Pertanto nel modello le masse strutturali coincidono con i carichi caratteristici permanenti strutturali e non strutturali.

Vengono utilizzati due modelli di calcolo distinti esclusivamente dal vincolo alla base dei pilastri che in un primo modello, utilizzato per l'analisi modale, è impostato con un incastro alla base dei pilastri. Il secondo modello, dove la trave di fondazione ha le sue effettive dimensioni geometriche, è utilizzato per le verifiche strutturali di tutti gli elementi travi e pilastri e per la verifica geotecnica della portanza delle fondazioni. In

questo secondo modello l'interazione col terreno è assicurata da molle verticali alla Winkler con rigidezza pari a 20000 kN/m³. Per il calcolo della rigidezza delle molle si rimanda alla relazione geotecnica.

Seguono alcune immagini rappresentative del modello di calcolo:

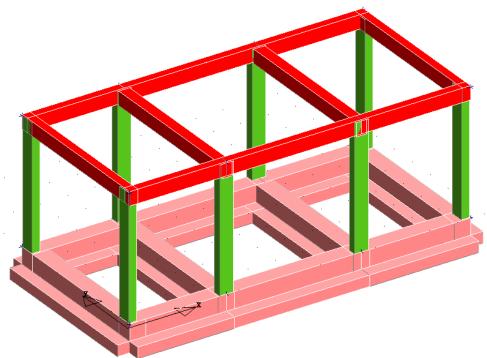


Figura 1: Modello 3D

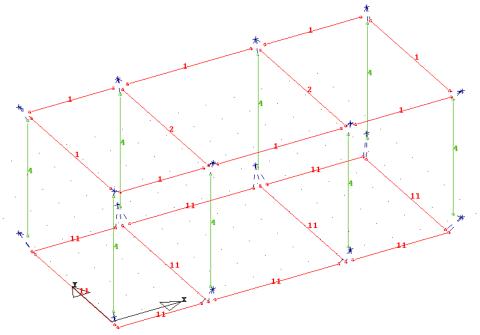


Figura 2: tipologia aste

		AR	CHIVIO SE	ZIONI AS	TE IN C	.A.O.						
	Tipologia I	Rettangolar	e			Tipologia	Rettangola	re				
Sez.	Base	Altezza	Magrone		Sez.	Base	Altezza	Magrone				
N.ro	(cm)	(cm)	(cm)		N.ro	(cm)	(cm)	(cm)				
1	30,0	50,0	0,0		2	40,0	50,0	0,0				
4	30,0	50,0	0,0									

		ARCHI	VIO SEZIO	<u>NI ASTE II</u>	N C.A.O.								
			Tipolog	ia a 'T'									
Sez.													
N.ro	B1	B2	B3	B4	B5	B6	Magrone						
	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)						
11	45,0	60,0	45,0	100,0	40,0	60,0	180,0						

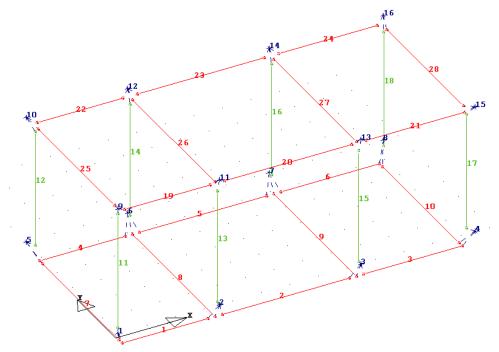


Figura 3: numerazione aste e nodi

7.2.1.-..Condizioni di carico e assegnazioni

Di seguito si riportano le condizioni elementari di carico:

Condizione N.ro 1: G₁ Peso proprio di tutti gli elementi strutturali

Condizione N.ro 2: G2 Peso proprio di tutti gli elementi non strutturali

Condizione N.ro 3: Q_N Carico variabile Neve (a quota < 1000m)

Condizione N.ro 4: QH1 Carico variabile Cat. H (coperture accessibili per sola

manutenzione)

Condizione N.ro 5: Qvx Carico del vento in direzione x Condizione N.ro 6: Qvy Carico del vento in direzione y

	CARICHI DISTRIBUITI ASTE												
	CONDIZIONE DI CARICO N.ro: 1 ALIQUOTA SISMICA: 100												
IDENT. NODO INIZIALE NODO FINALE													
Asta3d Riferi Qx Qy Qz Qx Qy Qz									Pretens				
N.ro	N.ro mento t/ml t/ml t/ml t/ml t/ml t*m/ml t												

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 46di 115

			С	ARICHI DIST	TRIBUITI AS	TE				
		CONDIZIO	ONE DI CAR	ICO N.ro: 1	Α	LIQUOTA SIS	SMICA: 100			
IDENT.		NC	DO INIZIALI	Ε	N	IODO FINAL	E			
Asta3d	Riferi	Qx	Qy	Qz	Qx	Qy	Qz	Mt	Pretens	
N.ro	mento	t/ml	t/ml	t/ml	t/ml	t/ml	t/ml	t*m/ml	t	
1	0	0,000	0,000	-0,520	0,000	0,000	-0,520	0,000	0,00	
2	0	0,000	0,000	-0,520	0,000	0,000	-0,520	0,000	0,00	
3	0	0,000	0,000	-0,520	0,000	0,000	-0,520	0,000	0,00	
4	0	0,000	0,000	-0,520	0,000	0,000	-0,520	0,000	0,00	
5	0	0,000	0,000	-0,520	0,000	0,000	-0,520	0,000	0,00	
6	0	0,000	0,000	-0,520	0,000	0,000	-0,520	0,000	0,00	
7	0	0,000	0,000	-0,520	0,000	0,000	-0,520	0,000	0,00	
10	0	0,000	0,000	-0,520	0,000	0,000	-0,520	0,000	0,00	
19	0	0,000	0,000	-0,300	0,000	0,000	-0,300	0,000	0,00	
20	0	0,000	0,000	-0,300	0,000	0,000	-0,300	0,000	0,00	
21	0	0,000	0,000	-0,300	0,000	0,000	-0,300	0,000	0,00	
22	0	0,000	0,000	-0,300	0,000	0,000	-0,300	0,000	0,00	
23	0	0,000	0,000	-0,300	0,000	0,000	-0,300	0,000	0,00	
24	0	0,000	0,000	-0,300	0,000	0,000	-0,300	0,000	0,00	
25	0	0,000	0,000	-0,853	0,000	0,000	-0,853	0,000	0,00	
26	0	0,000	0,000	-1,311	0,000	0,000	-1,311	0,000	0,00	
27	0	0,000	0,000	-1,388	0,000	0,000	-1,388	0,000	0,00	
28	0	0,000	0,000	-0,853	0,000	0,000	-0,853	0,000	0,00	

	CARICHI DISTRIBUITI ASTE											
		CONDIZIO	ONE DI CAF	RICO N.ro: 2	Al	LIQUOTA SI	SMICA: 100					
IDENT. NODO INIZIALE NODO FINALE												
Asta3d	Mt	Pretens										
N.ro	mento	t/ml	t*m/ml	t								
25	0	0,000	0,000	-0,583	0,000	0,000	-0,583	0,000	0,00			
26	0	0,000	0,000	-1,285	0,000	0,000	-1,285	0,000	0,00			
27	-1,354	0,000	0,00									
28	0,000	0,00										

	CARICHI DISTRIBUITI ASTE												
		CONDIZ	IONE DI CA	RICO N.ro:	3	ALIQUOTA S	ISMICA: 0						
IDENT.	IDENT. NODO INIZIALE NODO FINALE												
Asta3d	Riferi	Qz	Mt	Pretens									
N.ro	mento	t/ml	t*m/ml	t									
25	0	0,000	0,000	-0,147	0,000	0,000	-0,147	0,000	0,00				
26	0	0,000	0,000	-0,323	0,000	0,000	-0,323	0,000	0,00				
27	27 0 0,000 0,000 -0,340 0,000 0,000 -0,340												
28	-0,165	0,000	0,00										

	CARICHI DISTRIBUITI ASTE											
		CONDIZ		RICO N.ro:		ALIQUOTA S	SISMICA: 0					
IDENT.	IDENT. NODO INIZIALE NODO FINALE											
Asta3d	Riferi	Qx	Qy	Qz	Qx	Qy	Qz	Mt	Pretens			
N.ro									t			
25	0	0,000	0,000	-0,094	0,000	0,000	-0,094	0,000	0,00			
26	0	0,000	0,000	-0,207	0,000	0,000	-0,207	0,000	0,00			
27	0	0,000	0,000	-0,218	0,000	0,000	-0,218	0,000	0,00			
28	0	0,000	0,000	-0,105	0,000	0,000	-0,105	0,000	0,00			

	CARICHI DISTRIBUITI ASTE										
	CONDIZIONE DI CARICO N.ro: 5 ALIQUOTA SISMICA: 0										
IDENT.	IDENT. NODO INIZIALE NODO FINALE										
Asta3d	Asta3d Riferi Qx Qy Qz Qx Qy Qz Mt Pretens										

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO

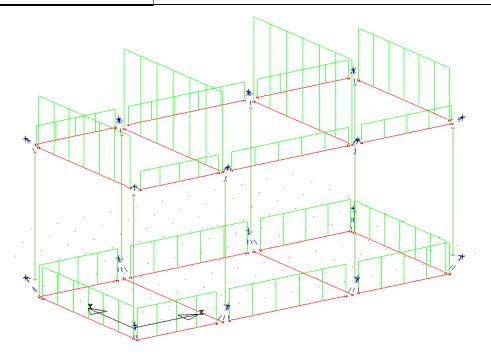
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
RS3H	02	D 78 CL	FA 0500 001	Α	47di 115

N.ro	mento	t/ml	t/ml	t/ml	t/ml	t/ml	t/ml	t*m/ml	t
19	0	0,006	-0,333	0,000	0,006	-0,333	0,000	0,000	0,00
20	0	0,006	-0,333	0,000	0,006	-0,333	0,000	0,000	0,00
21	0	0,006	-0,333	0,000	0,006	-0,333	0,000	0,000	0,00
22	0	0,006	0,333	0,000	0,006	0,333	0,000	0,000	0,00
23	0	0,006	0,333	0,000	0,006	0,333	0,000	0,000	0,00
24	0	0,006	0,333	0,000	0,006	0,333	0,000	0,000	0,00
25	0	0,278	0,000	0,184	0,278	0,000	0,184	0,000	0,00
26	0	0,000	0,000	0,013	0,000	0,000	0,013	0,000	0,00
27	0	0,000	0,000	-0,170	0,000	0,000	-0,170	0,000	0,00
28	0	0,202	0,000	-0,076	0,202	0,000	-0,076	0,000	0,00

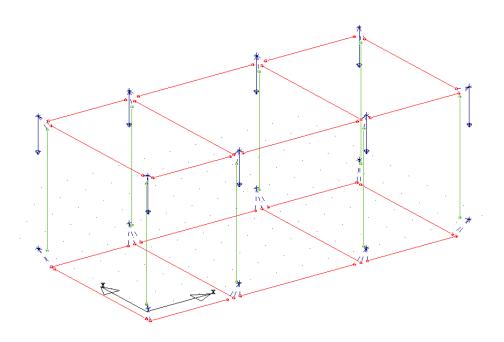
	CARICHI DISTRIBUITI ASTE												
	CONDIZIONE DI CARICO N.ro: 6 ALIQUOTA SISMICA: 0												
IDENT.		NO	DDO INIZIALI	E	1	NODO FINAL	E						
Asta3d N.ro	Riferi mento	Qx t/ml	Qy t/ml	Qz t/ml	Qx t/ml	Qy t/ml	Qz t/ml	Mt t*m/ml	Pretens t				
19	0	0,000	0,292	0,000	0,000	0,292	0,000	0,000	0,00				
20	0	0,000	0,292	0,000	0,000	0,292	0,000	0,000	0,00				
21	0	0,000	0,292	0,000	0,000	0,292	0,000	0,000	0,00				
22	0	0,000	0,228	0,000	0,000	0,228	0,000	0,000	0,00				
23	0	0,000	0,228	0,000	0,000	0,228	0,000	0,000	0,00				
24	0	0,000	0,228	0,000	0,000	0,228	0,000	0,000	0,00				
25	0	-0,356	0,006	0,185	-0,356	0,006	0,185	0,000	0,00				
26	0	0,000	0,000	0,442	0,000	0,000	0,442	0,000	0,00				
27	0	0,000	0,000	0,465	0,000	0,000	0,465	0,000	0,00				
28	0	0,356	0,006	0,208	0,356	0,006	0,208	0,000	0,00				

CARICHI TERMICI/DISTRIBUITI/CONCENTRATI

	CONDIZIO	NE DI CARIC	O N.ro: 1	ALIQUOTA SISMICA:100					
IDENTI	FORZ	E CONCENT	RATE	MOMENTI CONCENTRATI					
Nodo3d	Fx	Fy	Fz	Mx	Му	Mz			
N.ro	(t)	(t)	(t)	t*m	t*m	t*m			
9	0,0000	0,0000	-2,0200	0,0000	0,0000	0,0000			
10	0,0000	0,0000	-2,0200	0,0000	0,0000	0,0000			
11	0,0000	0,0000	-1,9050	0,0000	0,0000	0,0000			
12	0,0000	0,0000	-1,9050	0,0000	0,0000	0,0000			
13	0,0000	0,0000	-2,0200	0,0000	0,0000	0,0000			
14	0,0000	0,0000	-2,0200	0,0000	0,0000	0,0000			
15	0,0000	0,0000	-2,1320	0,0000	0,0000	0,0000			
16	0,0000	0,0000	-2,1320	0,0000	0,0000	0,0000			



INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

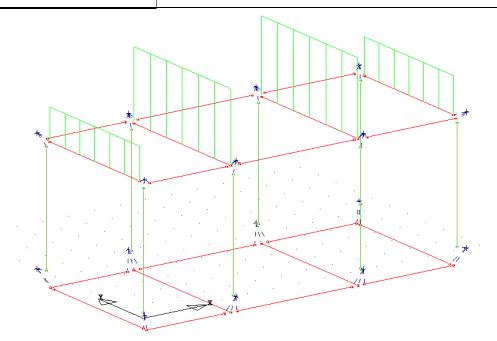

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO

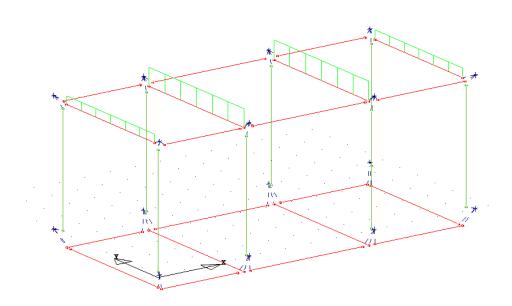
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
RS3H	02	D 78 CL	FA 0500 001	Α	48di 115

G1 - Peso solaio

G1 – Carichi concentrati



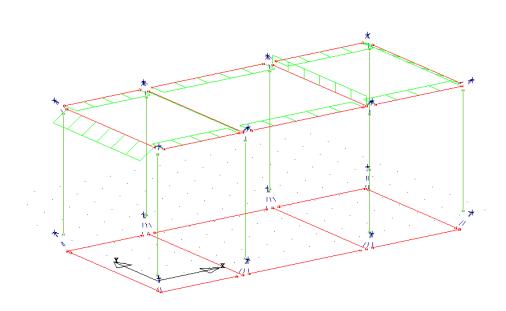
INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.


MACROFASE FUNZIONALE 1 LOTTO 02

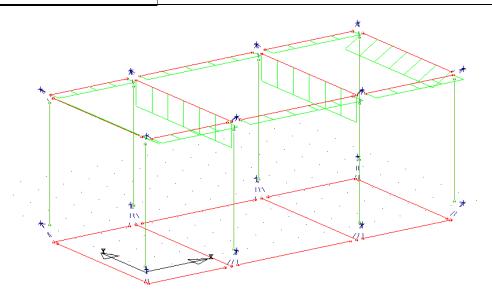
FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
RS3H	02	D 78 CL	FA 0500 001	Α	49di 115

G2 – Permanenti non strutturali



 $Q_N - Neve$


* .	

Q_{H1} – Accidentali (Manutenzione)

Qvx Vento X

Qvy Vento Y

7.3.-..Combinazioni di carico

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni (§ 2.5.3 NTC 18):

- Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU):
 - γ_{G1} G₁ + γ_{G2} G₂ + γ_{p} P + γ_{Q1} QK₁ + γ_{Q2} ψ_{02} QK₂ + γ_{Q3} ψ_{03} QK₃+....
- Combinazione caratteristica (rara), impiegata per gli stati limite di esercizio (SLE) irreversibili:
 - $G_1 + G_2 + P + Q_{K1} + \psi_{02} Q_{K2} + \psi_{03} Q_{K3} + \dots$
- Combinazione frequente, impiegata per gli stati limite di esercizio (SLE) reversibili:
 - $G_1 + G_2 + P + \psi_{11} Q_{K1} + \psi_{22} Q_{K2} + \psi_{23} Q_{K3} +$
- Combinazione quasi permanente (SLE), impiegata per gli effetti a lungo termine: $G_1 + G_2 + P + \psi_{21} Q_{K1} + \psi_{22} Q_{K2} + \psi_{23} Q_{K3} +$
- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:
 - $E + G_1 + G_2 + P + \psi_{21} Q_{K1} + \psi_{22} Q_{K2} + ...$
- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle

azioni eccezionali di progetto:

$$G_1 + G_2 + P + A_d + \psi_{21} Q_{K1} + \psi_{22} Q_{K2} +$$

Le condizioni elementari di carico sono opportunamente combinate per determinare le condizioni più sfavorevoli per ciascun elemento strutturale.

Nelle tabelle sono riportati, per ogni combinazione, i coefficienti parziali per le azioni ed i coefficienti di combinazione.

Di seguito si riportano, con riferimento al § 7.3 della presente, le combinazioni utilizzate.

7.3.1.-.. Modello di calcolo

COMBINAZIONI CARICHI A1 - S.L.V. / S.L.D.															
DESCRIZIONI	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Peso Strutturale	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30
Perm.Non Strutturale	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
Var.Neve h<=1000	0,75	1,50	0,75	0,75	1,50	0,75	0,75	0,75	1,50	0,75	0,75	0,75	1,50	0,75	0,75
Var.Coperture	1,50	0,00	0,00	1,50	0,00	0,00	0,00	1,50	0,00	0,00	0,00	1,50	0,00	0,00	0,00
VENTO X	0,00	0,00	0,00	0,90	0,90	0,90	1,50	0,00	0,00	0,00	0,00	0,90	0,90	0,90	1,50
VENTO Y	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,90	0,90	0,90	1,50	0,00	0,00	0,00	0,00
Corr. Tors. dir. 0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Corr. Tors. dir. 90	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Carico termico	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,90	0,90	0,90	0,90
Sisma direz. grd 0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sisma direz. grd 90	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

	COMBINAZIONI CARICHI A1 - S.L.V. / S.L.D.														
DESCRIZIONI	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Peso Strutturale	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30	1,30
Perm.Non Strutturale	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
Var.Neve h<=1000	0,75	1,50	0,75	0,75	0,75	0,75	0,75	1,50	0,75	0,75	0,75	1,50	0,75	0,75	0,75
Var.Coperture	1,50	0,00	0,00	0,00	0,00	0,00	1,50	0,00	0,00	0,00	1,50	0,00	0,00	0,00	0,00
VENTO X	0,00	0,00	0,00	0,00	0,90	0,00	0,90	0,90	0,90	1,50	0,00	0,00	0,00	0,00	0,90
VENTO Y	0,90	0,90	0,90	1,50	0,00	0,90	0,00	0,00	0,00	0,00	0,90	0,90	0,90	1,50	0,00
Corr. Tors. dir. 0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Corr. Tors. dir. 90	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Carico termico	0,90	0,90	0,90	0,90	1,50	1,50	-0,90	-0,90	-0,90	-0,90	-0,90	-0,90	-0,90	-0,90	-1,50
Sisma direz. grd 0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sisma direz. grd 90	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

				COM	BINAZIOI	NI CARICI	11 A1 - S.L	V. / S.L.I	D.						
DESCRIZIONI	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Peso Strutturale	1,30	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Perm.Non Strutturale	1,50	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Var.Neve h<=1000	0,75	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Var.Coperture	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
VENTO X	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
VENTO Y	0,90	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Corr. Tors. dir. 0	0,00	1,00	-1,00	1,00	-1,00	1,00	-1,00	1,00	-1,00	-1,00	1,00	-1,00	1,00	-1,00	1,00
Corr. Tors. dir. 90	0,00	0,30	0,30	-0,30	-0,30	-0,30	-0,30	0,30	0,30	0,30	0,30	-0,30	-0,30	-0,30	-0,30
Carico termico	-1,50	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sisma direz. grd 0	0,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	-1,00	-1,00	-1,00	-1,00	-1,00	-1,00
Sisma direz, grd 90	0.00	0.30	0.30	0.30	0.30	-0.30	-0.30	-0.30	-0.30	0.30	0.30	0.30	0.30	-0.30	-0.30

COMBINAZIONI CARICHI A1 - S.L.V. / S.L.D.															
DESCRIZIONI	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Peso Strutturale	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Perm.Non Strutturale	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Var.Neve h<=1000	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Var.Coperture	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
VENTO X	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
VENTO Y	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Corr. Tors. dir. 0	-1,00	1,00	0,30	-0,30	0,30	-0,30	0,30	-0,30	0,30	-0,30	-0,30	0,30	-0,30	0,30	-0,30
Corr. Tors. dir. 90	0,30	0,30	1,00	1,00	-1,00	-1,00	-1,00	-1,00	1,00	1,00	1,00	1,00	-1,00	-1,00	-1,00
Carico termico	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sisma direz. grd 0	-1,00	-1,00	0,30	0,30	0,30	0,30	0,30	0,30	0,30	0,30	-0,30	-0,30	-0,30	-0,30	-0,30
Sisma direz. grd 90	-0,30	-0,30	1,00	1,00	1,00	1,00	-1,00	-1,00	-1,00	-1,00	1,00	1,00	1,00	1,00	-1,00

COMBINAZIONI CAR	ICHI A1 - S.L	V. / S.L.D).
DESCRIZIONI	61	62	63
Peso Strutturale	1,00	1,00	1,00
Perm Non Strutturale	1.00	1.00	1.00

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 53di 115

COMBINAZIONI CARIO	CHI A1 - S.L	V. / S.L.C).
DESCRIZIONI	61	62	63
Var.Neve h<=1000	0,00	0,00	0,00
Var.Coperture	0,00	0,00	0,00
VENTO X	0,00	0,00	0,00
VENTO Y	0,00	0,00	0,00
Corr. Tors. dir. 0	0,30	-0,30	0,30
Corr. Tors. dir. 90	-1,00	1,00	1,00
Carico termico	0,00	0,00	0,00
Sisma direz. grd 0	-0,30	-0,30	-0,30
Sisma direz. grd 90	-1,00	-1,00	-1,00

					COMBI	NAZIONI I	RARE - S.	L.E.							
DESCRIZIONI	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Peso Strutturale	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Perm.Non Strutturale	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Var.Neve h<=1000	0,50	1,00	0,50	0,50	1,00	0,50	0,50	0,50	1,00	0,50	0,50	0,50	1,00	0,50	0,50
Var.Coperture	1,00	0,00	0,00	1,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00
VENTO X	0,00	0,00	0,00	0,60	0,60	0,60	1,00	0,00	0,00	0,00	0,00	0,60	0,60	0,60	1,00
VENTO Y	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,60	0,60	0,60	1,00	0,00	0,00	0,00	0,00
Corr. Tors. dir. 0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Corr. Tors. dir. 90	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Carico termico	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,60	0,60	0,60	0,60
Sisma direz. grd 0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sisma direz. grd 90	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

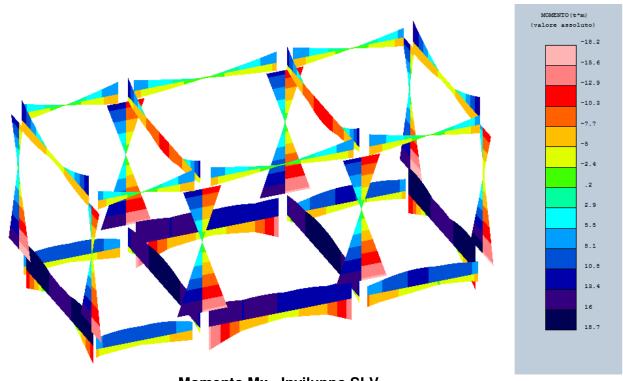
					COMBI	NAZIONI I	RARE - S.	L.E.							
DESCRIZIONI	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Peso Strutturale	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Perm.Non Strutturale	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
Var.Neve h<=1000	0,50	1,00	0,50	0,50	0,50	0,50	0,50	1,00	0,50	0,50	0,50	1,00	0,50	0,50	0,50
Var.Coperture	1,00	0,00	0,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	1,00	0,00	0,00	0,00	0,00
VENTO X	0,00	0,00	0,00	0,00	0,60	0,00	0,60	0,60	0,60	1,00	0,00	0,00	0,00	0,00	0,60
VENTO Y	0,60	0,60	0,60	1,00	0,00	0,60	0,00	0,00	0,00	0,00	0,60	0,60	0,60	1,00	0,00
Corr. Tors. dir. 0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Corr. Tors. dir. 90	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Carico termico	0,60	0,60	0,60	0,60	1,00	1,00	-0,60	-0,60	-0,60	-0,60	-0,60	-0,60	-0,60	-0,60	-1,00
Sisma direz. grd 0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sisma direz. grd 90	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

COMBINAZIONI RARE - S.L.E.

DESCRIZIONI	31
Peso Strutturale	1,00
Perm.Non Strutturale	1,00
Var.Neve h<=1000	0,50
Var.Coperture	0,00
VENTO X	0,00
VENTO Y	0,60
Corr. Tors. dir. 0	0,00
Corr. Tors. dir. 90	0,00
Carico termico	-1,00
Sisma direz. grd 0	0,00
Sisma direz. grd 90	0,00

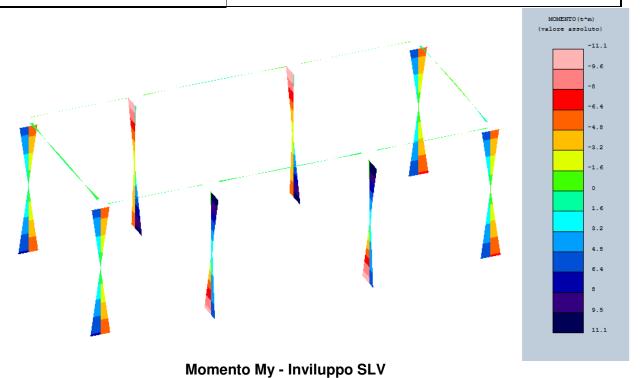
COM	BINAZIONI	FREQUE	NTI - S.L.	E.		
DESCRIZIONI	1	2	3	4	5	6
Peso Strutturale	1,00	1,00	1,00	1,00	1,00	1,00
Perm.Non Strutturale	1,00	1,00	1,00	1,00	1,00	1,00
Var.Neve h<=1000	0,00	0,20	0,00	0,00	0,00	0,00
Var.Coperture	0,00	0,00	0,00	0,00	0,00	0,00
VENTO X	0,00	0,00	0,20	0,00	0,00	0,00
VENTO Y	0,00	0,00	0,00	0,20	0,00	0,00
Corr. Tors. dir. 0	0,00	0,00	0,00	0,00	0,00	0,00
Corr. Tors. dir. 90	0,00	0,00	0,00	0,00	0,00	0,00
Carico termico	0,00	0,00	0,00	0,00	0,50	-0,50
Sisma direz. grd 0	0,00	0,00	0,00	0,00	0,00	0,00
Sisma direz. grd 90	0,00	0,00	0,00	0,00	0,00	0,00

DESCRIZIONI	1
Peso Strutturale	1,00
Perm.Non Strutturale	1,00
Var.Neve h<=1000	0,00
Var.Coperture	0,00
VENTO X	0,00
VENTO Y	0,00
Corr Tors dir 0	0.00


COMBINAZIONI PERMANENTI - S.L.E.

VENTO Y 0,00
Corr. Tors. dir. 0 0,00
Corr. Tors. dir. 90 0,00
Carrico termico 0,000
Sisma direz. grd 0 0,00
Sisma direz. grd 90 0,00

GRUPPO FERROVIE DELLO STATO ITALIANE	INTERRAMENT	O LINEA PE SA E PER LA	ER IL PROLUNG MESSA A STI I	ATANIA – PALERMO AMENTO DELLA P DEL TRATTO DI LII	ISTA DELL' AER	OPORTO DI
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO	RS3H	02	D 78 CL	FA 0500 001	А	54di 115


8.-..SOLLECITAZIONI MASSIME

Di seguito si riportano, per il modello di calcolo, la rappresentazione grafica delle principali caratteristiche di sollecitazione a mezzo di diagrammi di inviluppo associati alle famiglie di combinazioni dei carichi.

Momento Mx - Inviluppo SLV

TASLIO(e)
(yalore arsoluto)

-5.4

-4.6

-3.8

-2.1

-2.2

-1.5

-8

0

1.5

2.3

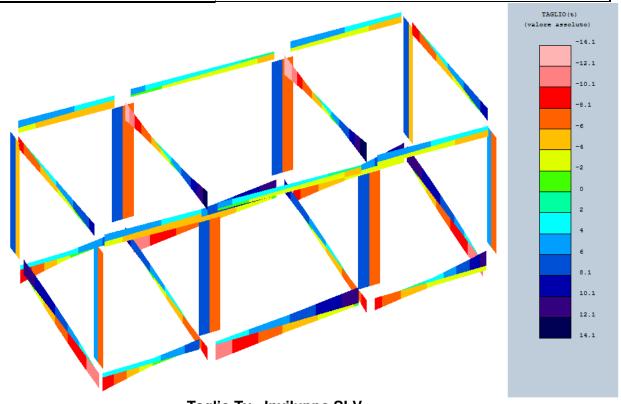
2.1

3.1

4.6

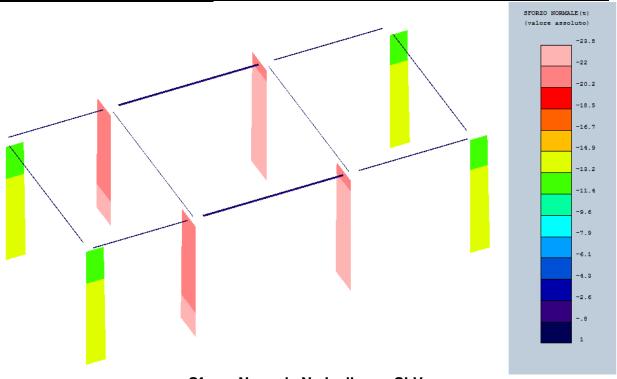
5.4

Taglio Tx - Inviluppo SLV



INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02


FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REVISIONE
 FOGLIO

 RS3H
 02
 D 78 CL
 FA 0500 001
 A
 56di 115

Taglio Ty - Inviluppo SLV

Sforzo Normale N - Inviluppo SLV

9.-..VERIFICA ELEMENTI STRUTTURALI

9.1.-.. Metodologia di verifica

9.1.1.-.. Verifiche elementi tipo trave

Verifica a flessione semplice:

Le verifiche di resistenza a flessione allo SLU (NTC2018 – 4.1.2.3.4) per le sezioni di appoggio e di campata sono state condotte con il supporto del software CDSWin (che svolge in automatico anche il rispetto dei quantitativi minimi di norma) considerando le sollecitazioni riportate nei prospetti precedenti.

> Verifica a taglio:

Al fine di escludere la formazione di meccanismi inelastici dovuti al taglio, le sollecitazioni di taglio di calcolo V_{Ed} si ottengono sommando il contributo dovuto ai carichi gravitazionali agenti sulla trave, considerata incernierata agli estremi, alle sollecitazioni di taglio corrispondenti alla formazione di cerniere plastiche nella trave e prodotte dai momenti resistenti (ultimi) delle due sezioni di plasticizzazione (generalmente quelle di estremità) amplificati del fattore di sovra resistenza γ_{Rd} assunto pari a 1.0 per CDB.

Deve risultare (NTC2018 - 4.1.2.3.5):

$$V_{Rd} > V_{d}$$

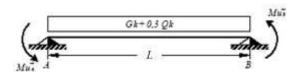
dove:

V_d = Valore di calcolo del taglio agente;

 $V_{Rd} = min (V_{Rsd}, V_{Rcd})$

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" si calcola con:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$$

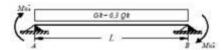

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" si calcola con:

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^2\theta)$$

dove:

- α : Angolo d'inclinazione dell'armatura trasversale rispetto all'asse dell'elemento;
- θ: Angolo d'inclinazione dei puntoni in calcestruzzo rispetto all'asse dell'elemento.

• <u>1° Schema:</u>



Il taglio è variabile linearmente lungo la trave ed è pari a:

$$V_{A} = \gamma_{Rd} \frac{Mu_{A}^{+} + Mu_{B}^{+}}{l_{trave}} + \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

$$V_{B} = \gamma_{Rd} \frac{Mu_{A}^{+} + Mu_{B}^{+}}{l_{trave}} - \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

2° Schema:

Il taglio è variabile linearmente lungo la trave ed è pari a:

$$V_{A} = \gamma_{Rd} \frac{Mu_{A}^{-} + Mu_{B}^{-}}{l_{trave}} + \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

$$V_{B} = \gamma_{Rd} \frac{Mu^{-}_{A} + Mu^{-}_{B}}{l_{trave}} - \frac{(G_{k} + 0.3Q_{k}) \cdot l_{trave}}{2}$$

Verifica limitazioni armatura:

Resta da verificare che l'armatura determinata in funzione delle sollecitazioni agenti rispetti le limitazioni riportate nel punto 7.4.6.2.1 delle NTC2018:

- almeno due barre di diametro non inferiore a 14 mm devono essere presenti superiormente e inferiormente per tutta la lunghezza della trave;
- in ogni sezione della trave, il rapporto geometrico ρ relativo all'armatura tesa, indipendentemente dal fatto che l'armatura tesa sia quella al lembo superiore della sezione A_s o quella al lembo inferiore della sezione A_i, deve essere compreso entro i seguenti limiti:

$$\frac{1,4}{f_{yk}} < \rho < \rho_{comp} + \frac{3,5}{f_{yk}}$$

dove:

 ρ è il rapporto geometrico relativo all'armatura tesa pari ad $A_s/(b\cdot h)$ oppure ad $A_i/(b\cdot h);$

ρ_{comp} è il rapporto geometrico relativo all'armatura compressa; f_{yk} è la tensione caratteristica di snervamento dell'acciaio (in MPa).

l'armatura compressa non deve essere mai inferiore ad un guarto di guella tesa:

$$\rho_{comp} \ge 0.25 \rho$$

nelle zone dissipative della trave, inoltre, deve essere:

$$\rho_{comp} \ge 0.5\rho$$

Le zone dissipative si estendono, per CD"B", per una lunghezza pari a 1 volta l'altezza della sezione della trave, misurata a partire dalla faccia del nodo travepilastro o da entrambi i lati a partire dalla sezione di prima plasticizzazione.

- Nelle zone dissipative devono essere previste staffe di contenimento. La prima staffa di contenimento deve distare non più di 5 cm dalla sezione a filo pilastro; le successive devono essere disposte ad un passo non superiore alla minore tra le grandezze seguenti:
 - un quarto dell'altezza utile della sezione trasversale;
 - 225 mm (per CD"B");
 - 8 volte il diametro minimo delle barre longitudinali considerate ai fini delle verifiche (per CD"B")
 - 24 volte il diametro delle armature trasversali.

Per staffa di contenimento si intende una staffa rettangolare, circolare o a spirale, di diametro minimo 6 mm, con ganci a 135° prolungati per almeno 10 diametri alle due estremità. I ganci devono essere assicurati alle barre longitudinali.

Devono inoltre essere rispettati i limiti previsti per le travi in calcestruzzo in zona non sismica (punto 4.1.6.1.1 delle NTC2018):

l'area dell'armatura longitudinale in zona tesa non deve essere inferiore a

$$A_{s,\text{min}} = 0.26 \frac{f_{ctm}}{f_{yk}} b_t \cdot d$$

e comunque non minore di 0.0013 $b_i \cdot d$

dove:

bt rappresenta la larghezza media della zona tesa;

d è l'altezza utile della sezione;

f_{ctm} è il valore medio della resistenza a trazione assiale;

fyk è il valore caratteristico della resistenza a trazione dell'armatura ordinaria.

- negli appoggi di estremità all'intradosso deve essere disposta un'armatura efficacemente ancorata, calcolata per uno sforzo di trazione pari al taglio;
- al di fuori delle zone di sovrapposizione, l'area di armatura tesa o compressa non deve superare individualmente A_{s,max} = 0,04 A_c, essendo A_c l'area della sezione trasversale di calcestruzzo.

- le travi devono prevedere armatura trasversale costituita da staffe con sezione complessiva non inferiore ad A_{st} = 1,5 b mm²/m essendo b lo spessore minimo dell'anima in millimetri, con un minimo di tre staffe al metro e comunque passo non superiore a 0,8 volte l'altezza utile della sezione;
- in ogni caso almeno il 50% dell'armatura necessaria per il taglio deve essere costituita da staffe.

Per le travi dell'edificio l'armatura a taglio è costituita solamente da staffe.

Verifiche agli stati limite di esercizio - SLO - SLD

Come riportato al 7.3.6 delle NTC2018 vanno effettuate le seguenti verifiche:

- Verifiche di rigidezza per lo Stato limite di Operatività (SLO);
- Verifiche di resistenza per lo Stato limite di Danno (SLD);

Verifiche agli stati limite di esercizio - SLE

Le verifiche nei confronti degli stati limite di esercizio degli elementi strutturali si effettuano in termini di:

- verifica di fessurazione:
- verifica delle tensioni di esercizio.

Verifiche di fessurazione:

Per assicurare la funzionalità e la durata della struttura è necessario:

- realizzare un sufficiente ricoprimento delle armature con calcestruzzo di buona qualità e compattezza, bassa porosità e bassa permeabilità;
- non superare uno stato limite di fessurazione adeguato alle condizioni ambientali, alle sollecitazioni ed alla sensibilità delle armature alla corrosione;
- tener conto delle esigenze estetiche.

Avendo adottato acciai ordinari si rientra nel gruppo di armature poco sensibili alla corrosione. Pertanto sulla base della tabella 4.1.IV – NTC2018 è possibile definire lo stato limite di fessurazione in funzione delle condizioni ambientali (ordinarie) e dell'armatura (poco sensibile), prendendo in considerazione le combinazioni quasi permanenti e frequenti. Nel caso in esame lo stato limite di fessurazione da considerare è lo *stato limite di apertura delle fessure*. La verifica consiste nell'accertarsi che il valore di calcolo di apertura delle fessure (w_d) non supera il valore limite fissato per la combinazione considerata. In particolare:

- per la combinazione di carico frequente bisogna accertarsi che risulti: $w_d < w_3 = 0.4$ mm;
- per la combinazione di carico quasi permanente bisogna accertarsi che risulti: $w_d < w_2 = 0.3$ mm.

Verifiche delle tensioni di esercizio:

La massima tensione di compressione del calcestruzzo $\sigma_{c,max}$ deve rispettare la limitazione seguente:

- $\sigma_{c,max} \le 0.60 f_{ck}$ per combinazione caratteristica (rara)

- $\sigma_{c,max} \le 0.45 f_{ck}$ per combinazione quasi permanente

La massima tensione $\sigma_{S,max}$ per effetto alla cambinazione caratteristica (rara) deve rispettare la limitazione seguente:

- $\sigma_{S,max}$ ≤ 0.80 f_{yk}

9.1.2.-..Elementi tipo Pilastri

Preliminarmente alla verifica di resistenza dei pilastri allo SLU è necessario valutare la stabilità degli elementi snelli. Tali verifiche devono essere condotte attraverso un'analisi del secondo ordine che tenga conto degli effetti flessionali delle azioni assiali sulla configurazione deformata degli elementi stessi. In via approssimativa gli effetti del secondo ordine in pilastri singoli possono essere trascurati se la snellezza λ non supera il valore limite (4.1.2.3.9.2 - NTC2018):

$$\lambda_{lim} = \frac{25}{\sqrt{\nu}}$$

dove:

 $v = N_{Ed} / (A_c \cdot f_{cd})$ è l'azione assiale adimensionale;

E' stata valutata la snellezza λ del pilastro nel piano (YZ) e nel piano ortogonale (XZ):

 $\lambda = Lo / i$ dove:

Lo = β L lunghezza di libera inflessione

 β = 1 coefficiente di vincolo per asta incastrata al piede

L luce netta del pilastro

> Verifica a presso-flessione:

Le verifiche di resistenza a flessione e pressoflessione allo SLU (NTC2018 – 4.1.2.3.4 - 7.4.4.2) sono state condotte con il supporto del software CDSWin considerando le sollecitazioni riportate nei prospetti precedenti.

➤ Verifica a taglio:

Al fine di escludere la formazione di meccanismi inelastici o fragili dovuti al taglio, per quanto concerne la verifica a taglio del pilastro si utilizza il valore massimo tra il taglio di calcolo dedotto dall'output del modello di calcolo e quello che si ottiene dalla condizione di equilibrio del pilastro soggetto all'azione dei momenti resistenti nelle sezioni di estremità superiore ed inferiore $(M^s_{i,d}, M^i_{i,d})$ secondo l'espressione:

$$V_{Ed} \cdot l_p = \gamma_{Rd} \cdot (M^{s}_{i,d} + M^{i}_{i,d})$$

dove:

 γ_{Rd} = 1.10 per strutture in CD"B";

$$M_{i,d} = M_{c,Rd} * \min \left(1, \frac{\sum M_{b,Rd}}{\sum M_{c,Rd}} \right)$$

M_{b,Rd}: capacità flessionale della trave convergente nel nodo;

M_{c,Rd} : capacità flessionale del pilastro convergente nel nodo, calcolata per i livelli di sollecitazione assiale presenti nelle combinazioni sismiche delle azioni;

≻Verifica limitazioni armatura:

Resta da verificare che l'armatura determinata in funzione delle sollecitazioni agenti rispetti le limitazioni riportate nel punto 7.4.6.2.2 delle NTC2018:

- Per tutta la lunghezza del pilastro l'interasse tra le barre non deve essere superiore a 25 cm;
- Nella sezione corrente del pilastro, la percentuale geometrica ρ di armatura longitudinale, con ρ rapporto tra l'area dell'armatura longitudinale e l'area della sezione del pilastro, deve essere compresa entro i seguenti limiti:

$$1\% < \rho < 4\%$$

- Nelle zone critiche devono essere rispettate le condizioni seguenti: le barre disposte sugli angoli della sezione devono essere contenute dalle staffe; almeno una barra ogni due, di quelle disposte sui lati, deve essere trattenuta da staffe interne o legature; le barre non fissate si devono trovare a meno di 20 cm da una barra fissata per CDB.
- Il diametro delle staffe di contenimento e legature deve essere non inferiore a 6 mm ed il loro passo deve essere non superiore alla più piccola delle quantità seguenti:
 - 1/2 del lato minore della sezione trasversale per CDB;
 - 175 mm (per CD"B");
 - 8 volte il diametro minimo delle barre longitudinali che collegano (per CD"B")
- Per quanto riguarda il nodo trave pilastro, lungo le armature longitudinali del pilastro che attraversano i nodi devono essere disposte staffe di contenimento in quantità almeno pari alla maggiore prevista nelle zone adiacenti al nodo del

pilastro inferiore e superiore; nel caso di nodi interamente confinati il passo risultante dell'armatura di confinamento orizzontale nel nodo può essere raddoppiato, ma non può essere maggiore di 15 cm.

Devono inoltre essere rispettati i limiti riportati al punto 4.1.6.1.2 delle NTC2018:

 Nel caso di elementi sottoposti a prevalente sforzo normale, le barre parallele all'asse devono avere diametro maggiore od uguale a 12 mm e non potranno avere interassi maggiori di 300mm. Inoltre la loro area non deve essere inferiore a:

$$A_{s,min} = (0.10 \cdot \frac{N_{Ed}}{f_{vd}})$$

e comunque non minore di 0.003 Ac;

dove:

N_{Ed} rappresenta lo sforzo di compressione assiale di calcolo;

Ac è l'area di calcestruzzo;

f_{yd} è il valore della resistenza di calcolo dell'armatura.

Verifiche agli stati limite di esercizio - SLO - SLD

Come riportato al 7.3.6 delle NTC2018 vanno effettuate le seguenti verifiche:

- Verifiche di rigidezza per lo Stato limite di Operatività (SLO);
- Verifiche di resistenza per lo Stato limite di Danno (SLD);
 - Verifiche agli stati limite di esercizio SLE

Le verifiche nei confronti degli stati limite di esercizio degli elementi strutturali si effettuano in termini di:

- verifica di fessurazione;
- verifica delle tensioni di esercizio.

Verifiche di fessurazione:

In particolare:

- per la combinazione di carico frequente bisogna accertarsi che risulti: $w_d \le w_3 = 0.4$ mm;
- per la combinazione di carico quasi permanente bisogna accertarsi che risulti: $w_d < w_2 = 0.3$ mm.

Verifiche delle tensioni di esercizio:

La massima tensione di compressione del calcestruzzo $\sigma_{c,max}$ deve rispettare la limitazione seguente:

- $\sigma_{c,max} \le 0.60 f_{ck}$ per combinazione caratteristica (rara)

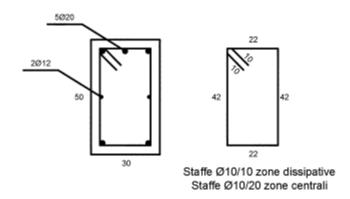
- $\sigma_{c,max} \le 0.45 f_{ck}$ per combinazione quasi permanente

La massima tensione $\sigma_{S,max}$ per effetto alla cambinazione caratteristica (rara) deve rispettare la limitazione seguente:

- σ s,max ≤ 0.80 fyk

9.2.-.. Definizione e verifica degli elementi strutturali

Si procede alla definizione degli elementi che verranno verificati:


• Trave 30cm x 50cm (lato corto fabbricato)

Armatura longitudinale superiore: $3 \emptyset 20$ Armatura longitudinale inferiore: $2 \emptyset 20$

Staffe zone dissipative: \emptyset 10/10cm (I = 50cm)

Staffe zone centrali Ø 10/20cm

Verranno inoltre inseriti 1+1Ø12 di parete fuori calcolo.

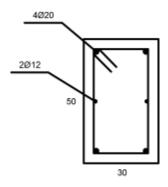
• Trave 30cm x 50cm (lato lungo fabbricato)

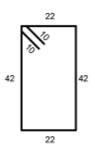
Armatura longitudinale superiore: $2 \emptyset 20$ Armatura longitudinale inferiore: $2 \emptyset 20$

Staffe zone dissipative: \emptyset 10/10cm (I = 50cm)

Staffe zone centrali Ø 10/20cm

Verranno inoltre inseriti 1+1Ø12 di parete fuori calcolo.


INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

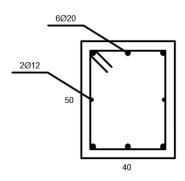

MACROFASE FUNZIONALE 1

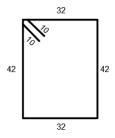
LOTTO 02

FABBRICATO FA-05 - FA07 - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
RS3H	02	D 78 CL	FA 0500 001	Α	66di 115

Staffe Ø10/10 zone dissipative Staffe Ø10/20 zone centrali


Trave 40cm x 50cm


Armatura longitudinale superiore: 3 Ø 20 Armatura longitudinale inferiore: 3 Ø 20

Staffe zone dissipative: \emptyset 10/10cm (I = 50cm)

Staffe zone centrali Ø 10/20cm

Verranno inoltre inseriti 1+1Ø12 di parete fuori calcolo.

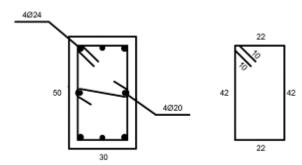
Staffe Ø10/10 zone dissipative Staffe Ø10/20 zone centrali

Pilastro 30cm x 50cm Armatura longitudinale:

4 Ø 24 di spigolo

1+1Ø20 lato lungo

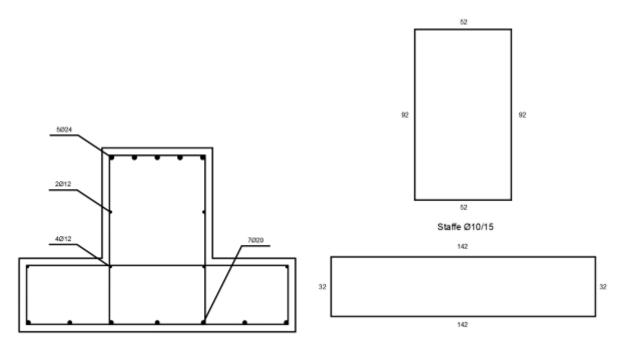
1+1Ø20 lato corto


Staffe zone dissipative:

 \emptyset 10/10cm (I = 90cm inferiore)

 \emptyset 10/10cm (I = 65cm superiore)

Staffe zone centrali \emptyset 10/15cm Staffe all'interno del nodo trave pilastro \emptyset 10/7cm


Staffe Ø10/12 zone dissipative Staffe Ø10/15 zone centrali Staffe Ø10/7 all'interno del nodo

Trave di fondazione 150x100cm

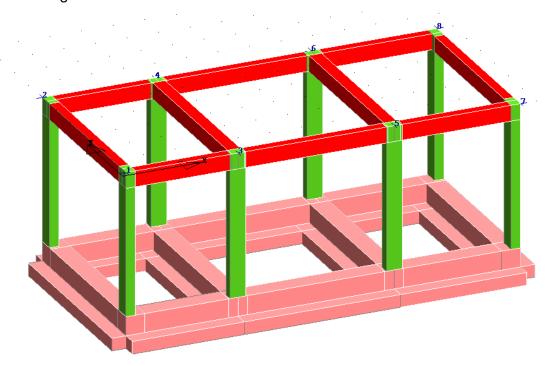
Armatura longitudinale superiore: $5 \emptyset 24$ Armatura longitudinale inferiore: $7 \emptyset 20$

Staffe: Ø 10/15cm

Verranno inoltre inseriti 2+4Ø12 fuori calcolo.

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1


LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO

2011002					
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
RS3H	02	D 78 CL	FA 0500 001	Α	68di 115

Si riportano di segiuto le verifiche SLU e SLE degli elementi strutturali.

Per una maggiore comprensione dei risultati si riporta un'immagine del modello 3D contenente la numerazione dei nodi per l'individuazione degli elementi nelle tabelle riportate di seguito.

Verifiche di resistenza.

Si riporta appresso la spiegazione delle sigle usate nelle tabelle di verifica aste in calcestruzzo per gli stati limite ultimi.

Filo Iniz./Fin. : Sulla prima riga numero del filo del nodo iniziale, sulla seconda quello del nodo finale

 ${\it Cotangente\ Angolo\ del\ puntone\ compresso}$: ${\it Cotangente\ Angolo\ del\ puntone\ compresso}$

Quota : Sulla prima riga quota del nodo iniziale, sulla seconda quota del nodo finale

SgmT : Solo per le travi di fondazione:

Pressione di contatto sul terreno in Kg/cmq calcolata con i valori caratteristici delle

azioni assumendo i coefficienti gamma pari ad uno.

AmpC : Solo per le travi di elevazione:

Coefficiente di amplificazione dei carichi statici per tenere in conto della verifica locale

dell'asta a sisma verticale.

N/Nc : Solo per i pilastri:

Percentuale della resistenza massima a compressione della sezione di solo calcestruzzo.

Tratto : Se una trave è suddivisa in più tratti sulla prima riga è riportato il numero del tratto,

sulla terza il numero di suddivisioni della trave

Sez B/H : Sulla prima riga numero della sezione nell'archivio, sulla seconda base della sezione,

sulla terza altezza. Per sezioni a T è riportato l'ingombro massimo della sezione

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

DOCUMENTO

REVISIONE

FOGLIO

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI RS3H 02 D 78 CL FA 0500 001 A 69di 115 CALCOLO

Concio : Numero del concio

Co Nr : Numero della combinazione e in sequenza sollecitazioni ultime di calcolo che forniscono

LOTTO

la massima deformazione nell'acciaio e nel calcestruzzo per la verifica a flessione

CODIFICA

GamRd : Solo per le travi di fondazione: Coefficiente di sovraresistenza.

COMMESSA

M Exd : Momento ultimo di calcolo asse vettore X (per le travi incrementato dalla traslazione del

diagramma del momento flettente)

M Evd : Momento ultimo di calcolo asse vettore Y

N Ed : Sforzo normale ultimo di calcolo

x/d : Rapporto fra la posizione dell'asse neutro e l'altezza utile della sezione moltiplicato per

100

 $\mathbf{ef}\%\ \mathbf{e}_{\mathbf{C}}\%\ (*100)$: deformazioni massime nell'acciaio e nel calcestruzzo moltiplicate per 10.000. Valore

limite per l'acciaio 100 (1%), valore limite nel calcestruzzo 35 (0,35%)

Area : Area del ferro in centimetri quadri; per le travi rispettivamente superiore ed inferiore,

per i pilastri armature lungo la base e l'altezza della sezione

Co Nr : Numero della combinazione e in sequenza sollecitazioni ultime di calcolo che forniscono

la minore sicurezza per le azioni taglianti e torcenti

V Exd : Taglio ultimo di calcolo in direzione X
V Eyd : Taglio ultimo di calcolo in direzione Y
T sdu : Momento torcente ultimo di calcolo

V Rxd : Taglio resistente ultimo delle staffe in direzione X V Ryd : Taglio resistente ultimo delle staffe in direzione Y T Rd : Momento torcente resistente ultimo delle staffe

T Rld : Momento torcente resistente ultimo dell'armatura longitudinale

Coe Cls : Coefficiente per il controllo di sicurezza del calcestruzzo alle azioni taglianti e torcenti

moltiplicato per 100; la sezione è verificata se detto valore e minore o uguale a 100

Coe Staf : Coefficiente per il controllo di sicurezza delle staffe alle azioni taglianti e torcenti

moltiplicato per 100; la sezione è verificata se detto valore e minore o uguale a 100

Alon : Armatura longitudinale a torsione (nelle travi rettangolari per le quali è stata effettuata

la verifica a momento My in questo dato viene stampata anche l'armatura flessionale

dei lati verticali)

Staffe : Passo staffe e lunghezza del tratto da armare

Moltipl Ultimo : Solo per le stampe di riverifica:

Moltiplicatore dei carichi che porta a collasso la sezione. Il percorso dei carichi seguito e' a sforzo normale costante. Le deformazioni riportate sono determinate dalle

sollecitazioni di calcolo amplificate del moltiplicatore in parola.

Verifiche SI V.

						STAM	PAI	PRO	GE	TTO	S.L.	J	AZIO	NI S.L	V I	FOND	AZIOI	٧E							
Filo Iniz	Quota Iniz.	T		,	VERIFIC	A A PRE	SSO-	FLES	SIONE	=					VER	IFICA	А ТА	GLIO	ЕТО	RSI	ONE				
Fin. Ctgθ	Final	r Sez c a Bas n t Alt c	Co	GamRd	M Exd (t*m)	N Ed (t)		εf% 100		Area sup		Co Nr	V Exd (t)	V Eyd (t)	T Sdu (t*m)	V Rxd (t)	V Ryd (t)	TRd (t*m)	TRId (t*m)		Coe Sta	ALon cmq		staffe s Lun	Fi
1 3 2.5	0,00 0,00	11 1 60 3 100 5	44 3 63 5 63	1,10 1,10 1,10	-10,3 -10,2 -10,1	0,0 0,0 0,0	17 17 17	3 3 3	1 1 1	19,2 19,2 19,2	19,2 19,2 19,2	63 54 44	0,0 0,0 0,0	-10,5 -5,3 7,8	0,0 0,0 0,0	43,6 43,6 43,6	75,9 75,9 75,9	55,4 55,4 55,4	0,0 0,0 0,0	9 4 6	14 7 10	0,0 0,0 0,0	17 17 17	94 112 94	10 10 10
3 5 2.5	0,00 0,00	11 1 60 3 100 5		1,10 1,10 1,10	17,2 -15,1 15,3	0,0 0,0 0,0	27 17 27	4 4 4	2 1 1	19,2 19,2 19,2	19,2 19,2 19,2	38 44 44	0,0 0,0 0,0	-11,9 9,5 11,9	0,0 0,0 0,0	43,6 43,6 43,6	75,9 75,9 75,9	55,4 55,4 55,4	0,0 0,0 0,0	10 8 10	16 12 16	0,0 0,0 0,0	17 17 17	94 257 94	10 10 10
5 7 2.5	0,00 0,00	11 1 60 3 100 5		1,10 1,10 1,10	-11,1 -11,7 -10,6	0,0 0,0 0,0	17 17 17	3 3 3	1 1 1	19,2 19,2 19,2	19,2 19,2 19,2	36 60 60	0,0 0,0 0,0	-9,0 6,1 11,5	0,0 0,0 0,0	43,6 43,6 43,6	75,9 75,9 75,9	55,4 55,4 55,4	0,0 0,0 0,0	7 5 9	12 8 15	0,0 0,0 0,0	17 17 17	94 157 94	10 10 10
2 4 2.5	0,00 0,00	11 1 60 3 100 5	41 3 58 5 58	1,10 1,10 1,10	-10,3 -10,2 -10,1	0,0 0,0 0,0	17 17 17	3 3 3	1 1 1	19,2 19,2 19,2	19,2 19,2 19,2	58 51 41	0,0 0,0 0,0	-10,5 -5,3 7,8	0,0 0,0 0,0	43,6 43,6 43,6	75,9 75,9 75,9	55,4 55,4 55,4	0,0 0,0 0,0	9 4 6	14 7 10	0,0 0,0 0,0	17 17 17	94 112 94	10 10 10
4 6 2.5	0,00 0,00	11 1 60 3 100 5		1,10 1,10 1,10	17,2 -15,1 15,3	0,0 0,0 0,0	27 17 27	4 4 4	2 1 1	19,2 19,2 19,2	19,2 19,2 19,2	35 41 41	0,0 0,0 0,0	-11,9 9,5 11,9	0,0 0,0 0,0	43,6 43,6 43,6	75,9 75,9 75,9	55,4 55,4 55,4	0,0 0,0 0,0	10 8 10	16 12 16	0,0 0,0 0,0	17 17 17	94 257 94	10 10 10

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
RS3H	02	D 78 CL	FA 0500 001	Α	70di 115

																	4 = 1 = 1	_						_	_
						STAMI	PAI	PRO	GE	110	S.L.	U	AZIC	NI S.L	V I	-OND	<u> AZION</u>	VE.							
Filo	Quota			,	VERIFIC/	A A PRE	SSO-	FLES:	SIONE						VER	IFICA	АТА	GLIO	ЕТО	RSI	ONE				
Iniz	lniz.	r Sez c										l										1			
Fin.	Final	a Bas n		GamRd		N Ed		εf%		Area			V Exd	V Eyd			V Ryd	TRd				ALon		staffe	_
Ctgθ		t Alt c	Nr		(t*m)	(t)	/d	100	100	sup	int	Nr	(t)	(t)	(t*m)	(t)	(t)	(t*m)	(t*m)	Cls	Sta	cmq	Pa	s Lun	H
6	0,00	11 1	1 48	1,10	-11,1	0,0	17 17	3	1	19,2	19,2	33	0,0	-9,0	0,0	43,6	75,9	55,4	0,0	7	12	0,0	17 17	94	10
8 2.5	0,00	60 3 100 5	3 48 5 35	1,10 1,10	-11,7 -10,6	0,0 0.0	17	3	1	19,2 19,2	19,2 19,2	57 57	0,0 0.0	6,1 11,5	0,0 0,0	43,6 43,6	75,9 75,9	55,4 55,4	0,0	5 9	8 15	0,0	17	157 94	10 10
2.5		100 5	. 35	1,10	-10,0	0,0	17	3	٠	13,2	13,2	57	0,0	11,5	0,0	43,0	13,9	55,4	0,0	9	13	0,0	17	54	10
1	0,00	11 1	63	1.10	-18,7	0.0	17	5	1	19,2	19,2	42	0.0	-11,5	0,0	43,6	75,9	55,4	0.0	9	15	0,0	17	94	10
2	0,00	60 3		1,10	-18,9	0,0	17	5	1	19,2	19,2	58	0,0	-10,5	0,0	43,6	75,9	55,4	0,0	8	14	0,0	17	312	10
2.5		100 5	5 58	1,10	-18,7	0,0	17	5	1	19,2	19,2	47	0,0	11,5	0,0	43,6	75,9	55,4	0,0	9	15	0,0	17	94	10
3	0,00	11 1 60 3	63	1,10	-16,0	0,0	17	4	1	19,2	19,2	1	0,0	-9,1	0,0	43,6	75,9	55,4	0,0	7	12	0,0	17	94	10
4 2.5	0,00		5 58 5 58	1,10 1,10	-16,1 -16.0	0,0 0.0	17 17	4	1	19,2 19,2	19,2 19,2	58	0,0	-7,2 9.1	0,0 0,0	43,6 43,6	75,9 75,9	55,4 55,4	0,0	6	10 12	0,0	17 17	352 94	10 10
2.5		100 3	, 50	1,10	-10,0	0,0	17	-		10,2	13,2		0,0	3,1	0,0	40,0	75,5	55,4	0,0	,	12	0,0	17	34	10
5	0,00	11 1	53	1,10	-16,2	0,0	17	4	1	19,2	19,2	22	0,0	-9,4	0,0	43,6	75,9	55,4	0,0	8	12	0,0	17	94	10
6	0,00	60 3	3 53	1,10	-16,3	0,0	17	4	1	19,2	19,2	48	0,0	-7,3	0,0	43,6	75,9	55,4	0,0	6	10	0,0	17	352	10
2.5		100 5	48	1,10	-16,2	0,0	17	4	1	19,2	19,2	22	0,0	9,4	0,0	43,6	75,9	55,4	0,0	8	12	0,0	17	94	10
7	0,00	11 1	53	1,10	-19,1	0,0	17	5	1	19,2	19,2	32	0,0	-11,3	0,0	43,6	75,9	55,4	0,0	9	15	0,0	17	94	10
8 2.5	0,00	60 3 100 5		1,10 1.10	-19,3 -19.1	0,0 0.0	17 17	5 5	1	19,2 19.2	19,2 19,2	48 37	0,0 0.0	-10,7 11,3	0,0 0.0	43,6 43,6	75,9 75,9	55,4 55,4	0,0 0.0	9 9	14 15	0,0 0.0	17 17	312 94	10 10
2.5		100 3	, + 0	1,10	-13,1	0,0	17	3		10,2	13,2	37	0,0	11,3	0,0	73,0	13,5	55,4	0,0	9	13	0,0	. /	J4	10

						STAM	PA	PRC	GE	TTO	S.L.	U	AZIC	ONI S.I	L.V	ELEV	AZION	ΙE							
Filo Iniz	Quota Iniz.	T r Sez	С		VERIFICA	A A PRE	SSO-	FLES	SIONE						VER	IFICA	АТА	GLIO	ETC	RSI	ONE				
Fin. Ctgθ	Final AmpC	a Bas t Alt	n Co c mb	M Exd (t*m)	M Eyd (t*m)	N Ed (t)	/d	εf% 100		sup		mb	V Exd (t)	V Eyd (t)	T Sdu (t*m)	(t)	V Ryd (t)	TRd (t*m)	TRId (t*m)	Cls	Coe Sta	ALon cmq		Staffe Lun	Fi
1	4,55	30	1 42	-6,2	0,0	0,0	25	12	5	6,3	6,3	42	0,0	5,2	0,0	28,8	32,0	4,5	0,0	16	9	0,0	10	50	10
3	4,55		3 38	-4,3	0,0	0,0	24	8	3	6,3	6,3	38	0,0	-5,3	0,0	16,1	29,9	4,8	0,0	17	18	0,0	20	200	10
2.5	1,00		5 38	-8,1	0,0	0,0	25	16	6	6,3	6,3	38	0,0	-5,7	0,0	28,8	32,0	4,5	0,0	18	9	0,0	10	50	10
3	4,55	30	1 44	-7,3	0,0	0,0	25	14	6	6,3	6,3	44	0,0	4,3	0,0	28,8	32,0	4,5	0,0	13	7	0,0	10	50	10
5	4,55		3 42	3,0	0,0	0,0	24	6	2	6,3	6,3	32	0,0	-4,0	0,0	16,1	29,9	4,8	0,0	12	13	0,0	20	345	10
2.5	1,00		5 38	-7,4	0,0	0,0	25	14	6	6,3	6,3	32	0,0	-4,3	0,0	28,8	32,0	4,5	0,0	14	7	0,0	10	50	10
5	4,55	30	1 44	-8,0	0,0	0,0	25	16	6	6,3	6,3	44	0,0	5,2	0,0	28,8	32,0	4,5	0,0	16	9	0,0	10	50	10
7	4,55		3 44	-3,7	0,0	0,0	24	7	3	6,3	6,3	44	0,0	4,8	0,0	16,1	29,9	4,8	0,0	15	16	0,0	20	245	10
2.5	1,00		5 32	-6,3	0,0	0,0	25	12	5	6,3	6,3	32	0,0	-4,7	0,0	28,8	32,0	4,5	0,0	15	8	0,0	10	50	10
2	4,55	30	1 47	-6,2	0,0	0,0	25	12	5	6,3	6,3	47	0,0	5,2	0,0	28,8	32,0	4,5	0,0	16	9	0,0	10	50	10
4	4,55		3 35	-4,3	0,0	0,0	24	8	3	6,3	6,3	35	0,0	-5,3	0,0	16,1	29,9	4,8	0,0	17	18	0,0	20	200	10
2.5	1,00		5 35	-8,1	0,0	0,0	25	16	6	6,3	6,3	35	0,0	-5,7	0,0	28,8	32,0	4,5	0,0	18	9	0,0	10	50	10
4	4,55	30	1 41	-7,3	0,0	0,0	25	14	6	6,3	6,3	41	0,0	4,3	0,0	28,8	32,0	4,5	0,0	13	7	0,0	10	50	10
6	4,55		3 47	3,0	0,0	0,0	24	6	2	6,3	6,3	37	0,0	-4,0	0,0	16,1	29,9	4,8	0,0	12	13	0,0	20	345	10
2.5	1,00		5 35	-7,4	0,0	0,0	25	14	6	6,3	6,3	35	0,0	-4,3	0,0	28,8	32,0	4,5	0,0	14	7	0,0	10	50	10
6	4,55	30	1 41	-8,0	0,0	0,0	25	16	6	6,3	6,3	41	0,0	5,2	0,0	28,8	32,0	4,5	0,0	16	9	0,0	10	50	10
8	4,55		3 41	-3,7	0,0	0,0	24	7	3	6,3	6,3	41	0,0	4,8	0,0	16,1	29,9	4,8	0,0	15	16	0,0	20	245	10
2.5	1,00		5 37	-6,3	0,0	0,0	25	12	5	6,3	6,3	37	0,0	-4,7	0,0	28,8	32,0	4,5	0,0	15	8	0,0	10	50	10
1	4,55	30	1 63	-13,3	0,0	0,0	27	24	11	8,8	6,3	54	0,0	8,6	0,0	28,8	32,0	4,5	0,0	27	14	0,0	10	50	10
2	4,55		3 54	5,7	0,0	0,0	25	11	4	6,3	6,3	51	0,0	-7,7	0,0	16,1	29,9	4,8	0,0	24	26	0,0	20	400	10
2.5	1,00		5 58	-13,3	0,0	0,0	27	24	11	8,8	6,3	51	0,0	-8,6	0,0	28,8	32,0	4,5	0,0	27	14	0,0	10	50	10
3	4,55	40	1 54	-12,2	0,0	0,0	26	18	8	8,4	6,4	1	0,0	13,1	0,0	41,1	42,7	7,1	0,0	31	22	0,0	10	50	10
4	4,55		3 22	10,5	0,0	0,1	24	17	7	6,8	7,4	1	0,0	10,4	0,0	23,0	29,9	7,6	0,0	24	35	0,0	20	440	10
2.5	1,00		5 51	-12,2	0,0	0,0	26	18	8	8,4	6,4	1	0,0	-13,1	0,0	41,1	42,7	7,1	0,0	31	22	0,0	10	50	10
5	4,55	40	1 60	-12,6	0,0	0,0	26	18	8	8,5	6,4	4	0,0	14,1	0,0	41,1	42,7	7,1	0,0	33	24	0,0	10	50	10
6	4,55		3 22	11,4	0,0	0,1	19	33	9	6,8	7,4	4	0,0	11,3	0,0	23,0	29,9	7,6	0,0	26	38	0,0	20	440	10
2.5	1,00		5 57	-12,6	0,0	0,0	26	18	8	8,5	6,4	4	0,0	-14,1	0,0	41,1	42,7	7,1	0,0	33	24	0,0	10	50	10
7	4,55	30	1 53	-13,9	0,0	0,0	21	47	15	9,1	6,3	53	0,0	8,9	0,0	28,8	32,0	4,5	0,0	28	15	0,0	10	50	10
8	4,55		3 57	5,9	0,0	0,0	25	12	5	6,3	6,3	48	0,0	-8,0	0,0	16,1	29,9	4,8	0,0	25	27	0,0	20	400	10
2.5	1,00		5 48	-13,9	0,0	0,0	21	47	15	9,1	6,3	48	0,0	-8,9	0,0	28,8	32,0	4,5	0,0	28	15	0,0	10	50	10

Verifica della snellezza dei pilastri.

Per la definizione della snellezza limite si considera lo sforzo normale massimo che, secondo quanto riportato sopra, è 238 kN circa.

La snellezza limite è pari a:

$$\lambda_{lim} = \frac{25}{\sqrt{\nu}}$$

CODIFICA

D 78 CL

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

LOTTO 02 COMMESSA

RS3H

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO

DOCUMENTO REVISIONE
FA 0500 001 A

FOGLIO 71di 115

dove:

 $v = N_{Ed} / (A_c \cdot f_{cd})$

è l'azione assiale adimensionale;

pertanto si ha che:

 $\lambda_{\text{lim}} = 79.06$

LOTTO

02

considerato che il calcestruzzo è C28/35 e che il pilastro è 30cm x 50cm.

La snellezza del pilastro è calcolata nel piano YZ e in quello XZ tramite la relazione:

 $\lambda = I_0/i$

 $I_0 = 405 cm$

 i_x = 8,66cm λ_{YZ} = 46.77<79.06 verifica soddisfatta i_x = 14.43cm λ_{XZ} = 28.06<79.06 verifica soddisfatta

	STAMPA PROGETTO S.L.U. Filo [Quota [T] [C] VERIFICA A PRESSO-FLESSIONE														- PII	ΔSTRI								
Filo	Quota	Т	С		VERIFIC		- 74	.iOivi			A TA		ЕТО	RSI	ONE									
Iniz Fin. Ctgθ	Iniz. Final N/Nc	r Sez a Bas	0	M Exd (t*m)		N Ed (t)	x/ εf%		Area b	cmq h	Co mb	V Exd	V Eyd	T Sdu (t*m)		V Ryd	TRd (t*m)	TRId (t*m)			ALon cmq		Staffe s Lun	
1	0,00	4	1 54	-17,4	3,0	-11,2	55	32	9,1	5,7	54	-1,4	-7,1	0,0	29,4	32,5	4,5	0,0	26	14	0,0	12	90	10
1	4,55	30	3 58	6,8	-0,6	-6,7	11	7	6,2	5,3	54	-1,4	-7,1	0,0	29,4	32,5	4,5	0,0	26	18	0,0	15	260	10
2.5	0,06	50	5 38	6,4	-5,6	-4,6	34	23	6,3	5,2	54	-1,4	-7,1	0,0	29,4	32,5	4,5	0,0	26	14	0,0	12	65	10
2	0,00	4	1 50	17,0	2,9	-11,2	56	32	9,0	5,8	51	-1,4	7,1	0,0	29,4	32,5	4,5	0,0	26	14	0,0	12	90	10
2	4,55	30	3 63	-6,8	-0,6	-6,7	11	7	6,2	5,3	51	-1,4	7,1	0,0	29,4	32,5	4,5	0,0	26	18	0,0	15	260	10
2.5	0,06	50	5 35	-6,4	-5,6	-4,6	34	23	6,3	5,2	51	-1,4	7,1	0,0	29,4	32,5	4,5	0,0	26	14	0,0	12	65	10
3	0,00	4	1 38	-15,8	-4,9	-17,6	40	32	7,4	8,9	38	2,8	-6,8	0,0	30,2	33,4	4,5	0,0	30	14	0,0	12	77	10
3	4,55	30	3 58	1,7	2,7	-10,5	7	6	4,9	6,6	38	2,8	-6,8	0,0	30,2	33,4	4,5	0,0	30	17	0,0	15	268	10
2.5	0,08	50	5 54	4,8	10,8	-17,5	41	32	5,7	10,7	38	2,8	-6,8	0,0	30,2	33,4	4,5	0,0	30	14	0,0	12	59	10
4	0,00	30	1 35	-15,8	4,9	-17,6	41	33	7,2	9,1	35	-2,8	-6,8	0,0	30,2	33,4	4,5	0,0	30	14	0,0	12	77	10
4	4,55		3 63	1,7	-2,7	-10,5	7	6	4,9	6,6	35	-2,8	-6,8	0,0	30,2	33,4	4,5	0,0	30	17	0,0	15	268	10
2.5	0,08		5 51	4,8	-10,8	-17,5	43	32	5,6	10,7	35	-2,8	-6,8	0,0	30,2	33,4	4,5	0,0	30	14	0,0	12	59	10
5	0,00	4	1 52	-2,3	-10,4	-19,0	50	33	7,1	9,7	44	2,9	6,8	0,0	30,3	33,6	4,5	0,0	30	13	0,0	12	78	10
5	4,55	30	3 48	-1,9	2,8	-11,5	7	6	4,9	6,6	44	2,9	6,8	0,0	30,3	33,6	4,5	0,0	30	17	0,0	15	268	10
2.5	0,08	50	5 52	1,7	11,1	-17,5	52	32	5,2	11,5	44	2,9	6,8	0,0	30,3	33,6	4,5	0,0	30	13	0,0	12	59	10
6	0,00	30	1 48	-2,0	10,5	-19,0	50	32	7,0	9,7	41	-2,9	6,8	0,0	30,3	33,6	4,5	0,0	30	13	0,0	12	78	10
6	4,55		3 53	-1,9	-2,8	-11,5	7	6	4,9	6,6	41	-2,9	6,8	0,0	30,3	33,6	4,5	0,0	30	17	0,0	15	268	10
2.5	0,08		5 48	1,5	-11,1	-17,5	53	32	5,1	11,5	41	-2,9	6,8	0,0	30,3	33,6	4,5	0,0	30	13	0,0	12	59	10
7	0,00	30	1 60	-18,2	-3,1	-12,1	50	31	9,5	5,8	60	1,4	-7,3	0,0	29,5	32,6	4,5	0,0	27	15	0,0	12	90	10
7	4,55		3 48	7,1	0,6	-6,8	11	7	6,2	5,3	60	1,4	-7,3	0,0	29,5	32,6	4,5	0,0	27	18	0,0	15	261	10
2.5	0,06		5 44	6,5	5,4	-5,8	31	21	6,3	5,2	60	1,4	-7,3	0,0	29,5	32,6	4,5	0,0	27	15	0,0	12	64	10
8	0,00	4	1 56	17,8	-3,0	-12,1	53	32	9,7	5,6	57	1,4	7,3	0,0	29,5	32,6	4,5	0,0	27	15	0,0	12	90	10
8	4,55	30	3 53	-7,1	0,6	-6,8	11	7	6,2	5,3	57	1,4	7,3	0,0	29,5	32,6	4,5	0,0	27	18	0,0	15	261	10
2.5	0,06	50	5 41	-6,5	5,4	-5,8	31	21	6,3	5,2	57	1,4	7,3	0,0	29,5	32,6	4,5	0,0	27	15	0,0	12	64	10

Verifiche SLD.

STAMPA PROGETTO S.L.U AZIONI S.L.D FONDAZIONE																											
Filo															VERIFICA A TAGLIO E TORSIONE												
Fin.		a Bas		GamRd	M Exd (t*m)	N Ed		εf% 100		Area		Co Nr	V Exd	V Eyd	T Sdu (t*m)	V Rxd	V Ryd	TRd (t*m)	TRId (t*m)	Coe Cls		ALon		staffe Lun	Ei		
1	0,00	11	1 44	1,00	-7,5	0,0	17	2	0	19,2	19,2	63	0,0	-7,7	0,0	43,6	75,9	55,4	0,0	6	10	0,0	17	94	10		
3 2.5	0,00		3 44 5 63		-7,5 -7,2	0,0 0,0	17 17	2	0	19,2 19,2	19,2 19,2	40 44	0,0 0,0	3,6 6,4	0,0 0,0	43,6 43,6	75,9 75,9	55,4 55,4	0,0 0,0	3 5	5 8	0,0 0,0	17 17	112 94	10 10		
3	0,00	11	1 32	1,00	10,7	0,0	27	2	1	19,2	19,2	38	0,0	-9,1	0,0	43,6	75,9	55,4	0,0	7	12	0,0	17	94	10		
5 2.5	0,00		3 60 5 42		-10,7 9,7	0,0 0,0	17 27	3 2	1	19,2 19,2	19,2 19,2	44 44	0,0 0,0	6,8 9,1	0,0 0,0	43,6 43,6	75,9 75,9	55,4 55,4	0,0 0,0	6 7	9 12	0,0 0,0	17 17	257 94	10 10		
5	0,00	11	1 53	1,00	-7,8	0,0	17	2	0	19,2	19,2	36	0,0	-7,3	0,0	43,6	75,9	55,4	0,0	6	10	0,0	17	94	10		

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 72di 115

								_										_						_	ㅗ,			
	STAMPA PROGETTO S.L.U														D I	FOND	10IZA	VE.										
															VERIFICA A TAGLIO E TORSIONE													
Iniz Fin. Ctgθ	Iniz. Final t			amRd	M Exd (t*m)	N Ed (t)		εf% 100		Area sup		Co Nr	V Exd	V Eyd	T Sdu (t*m)	V Rxd	V Ryd	TRd (t*m)	TRId (t*m)	Coe Cls		ALon cmq		staffe s Lun	Fi			
7 2.5	0,00	60 3 5 100 5 3		1,00 1,00	-8,6 -7,9	0,0 0,0	17 17	2	1 0	19,2 19,2	19,2 19,2	32 60	0,0 0,0	-4,5 8,5	0,0 0,0	43,6 43,6	75,9 75,9	55,4 55,4	0,0 0,0	4 7	6 11	0,0 0,0	17 17	157 94	10 10			
2 4 2.5	0,00 0,00	11 1 4 60 3 4 100 5 5	41	1,00 1,00 1,00	-7,5 -7,5 -7,2	0,0 0,0 0,0	17 17 17	2 2 2	0 0 0	19,2 19,2 19,2	19,2 19,2 19,2	58 45 41	0,0 0,0 0,0	-7,7 3,6 6,4	0,0 0,0 0,0	43,6 43,6 43,6	75,9 75,9 75,9	55,4 55,4 55,4	0,0 0,0 0,0	6 3 5	10 5 8	0,0 0,0 0,0	17 17 17	112				
4 6 2.5	0,00 0,00	11 1 3 60 3 5 100 5 4	57	1,00 1,00 1,00	10,7 -10,7 9,7	0,0 0,0 0,0	27 17 27	2 3 2	1 1 1	19,2 19,2 19,2	19,2 19,2 19,2	35 41 41	0,0 0,0 0,0	-9,1 6,8 9,1	0,0 0,0 0,0	43,6 43,6 43,6	75,9 75,9 75,9	55,4 55,4 55,4	0,0 0,0 0,0	7 6 7	12 9 12	0,0 0,0 0,0	17 17 17		10 10 10			
6 8 2.5	0,00 0,00	11 1 4 60 3 4 100 5 3	48	1,00 1,00 1,00	-7,8 -8,6 -7,9	0,0 0,0 0,0	17 17 17	2 2 2	0 1 0	19,2 19,2 19,2	19,2 19,2 19,2	33 37 57	0,0 0,0 0,0	-7,3 -4,5 8,5	0,0 0,0 0,0	43,6 43,6 43,6	75,9 75,9 75,9	55,4 55,4 55,4	0,0 0,0 0,0	6 4 7	10 6 11	0,0 0,0 0,0	17 17 17	157	10 10 10			
1 2 2.5	0,00 0,00		63	1,00 1,00 1,00	-14,2 -14,2 -14,2	0,0 0,0 0,0	17 17 17	4 4 4	1 1 1	19,2 19,2 19,2	19,2 19,2 19,2	42 58 47	0,0 0,0 0,0	-9,4 -7,8 9,4	0,0 0,0 0,0	43,6 43,6 43,6	75,9 75,9 75,9	55,4 55,4 55,4	0,0 0,0 0,0	8 6 8	12 10 12	0,0 0,0 0,0	17 17 17	312	10 10 10			
3 4 2.5	0,00 0,00	60 3 6		1,00 1,00 1,00	-13,5 -14,0 -13,5	0,0 0,0 0,0	17 17 17	4 4 4	1 1 1	19,2 19,2 19,2	19,2 19,2 19,2	58 58 62	0,0 0,0 0,0	-7,5 -5,9 7,5	0,0 0,0 0,0	43,6 43,6 43,6	75,9 75,9 75,9	55,4 55,4 55,4	0,0 0,0 0,0	6 5 6	10 8 10	0,0 0,0 0,0	17 17 17	352	10 10 10			
5 6 2.5	0,00 0,00	11 1 5 60 3 4 100 5 4		1,00 1,00 1,00	-13,7 -14,1 -13,7	0,0 0,0 0,0	17 17 17	4 4 4	1 1 1	19,2 19,2 19,2	19,2 19,2 19,2	48 48 52	0,0 0,0 0,0	-7,6 -5,9 7,6	0,0 0,0 0,0	43,6 43,6 43,6	75,9 75,9 75,9	55,4 55,4 55,4	0,0 0,0 0,0	6 5 6	10 8 10	0,0 0,0 0,0	17 17 17	352	10 10 10			
7 8 2.5	0,00 0,00		53 53 48	1,00 1,00 1,00	-14,5 -14,5 -14,5	0,0 0,0 0,0	17 17 17	4 4 4	1 1 1	19,2 19,2 19,2	19,2 19,2 19,2	32 48 37	0,0 0,0 0,0	-9,2 -8,0 9,2	0,0 0,0 0,0	43,6 43,6 43,6	75,9 75,9 75,9	55,4 55,4 55,4	0,0 0,0 0,0	7 6 7	12 10 12	0,0 0,0 0,0	17 17 17	312	10 10 10			

						STAM	PA	PRC	GE	ΙΤΟ	S.L.	U	AZIC	NI S.I	D	ELEV	AZION	IE							
Filo Iniz	Quota Iniz.	T r Sez	С	1	VERIFICA	A A PRE	SSO-	FLES	SIONE						VER	IFICA	АТА	GLIO	ЕТО	RSI	O N E				
Fin. Ctgθ		a Bas		M Exd (t*m)	M Eyd (t*m)	N Ed (t)		εf% 100		Area sup		Co mb	V Exd (t)	V Eyd (t)	T Sdu (t*m)	V Rxd (t)	V Ryd (t)	TRd (t*m)	TRId (t*m)	Coe Cls	Coe Sta	ALon cmq		Staffe s Lun	
1 3 2.5	4,55 4,55	1 30 50	1 42 3 38 5 38	-4,3 -3,0 -5,8	0,0 0,0 0,0	0,0 0,0 0,0	24 24 25	8 6 11	3 2 4	6,3 6,3 6,3	6,3 6,3 6,3	42 38 38	0,0 0,0 0,0	3,8 -3,9 -4,2	0,0 0,0 0,0	28,8 16,1 28,8	32,0 29,9 32,0	4,5 4,8 4,5	0,0 0,0 0,0	12 12 13	6 13 7	0,0 0,0 0,0	10 20 10	50 200 50	10 10 10
3 5 2.5	4,55 4,55		1 44 3 42 5 38	-5,3 2,1 -5,4	0,0 0,0 0,0	0,0 0,0 0,0	25 24 25	10 4 10	4 2 4	6,3 6,3 6,3	6,3 6,3 6,3	42 32 32	0,0 0,0 0,0	3,4 -3,1 -3,4	0,0 0,0 0,0	28,8 16,1 28,8	32,0 29,9 32,0	4,5 4,8 4,5	0,0 0,0 0,0	11 10 11	6 10 6	0,0 0,0 0,0	10 20 10	50 345 50	10 10 10
5 7 2.5	4,55 4,55	30	1 44 3 44 5 32	-5,7 -2,5 -4,3	0,0 0,0 0,0	0,0 0,0 0,0	25 24 24	11 5 8	4 2 3	6,3 6,3 6,3	6,3 6,3 6,3	44 44 32	0,0 0,0 0,0	3,9 3,6 -3,5	0,0 0,0 0,0	28,8 16,1 28,8	32,0 29,9 32,0	4,5 4,8 4,5	0,0 0,0 0,0	12 11 11	7 12 6	0,0 0,0 0,0	10 20 10	50 245 50	10 10 10
2 4 2.5	4,55 4,55	30	5 35	-4,3 -3,0 -5,8	0,0 0,0 0,0	0,0 0,0 0,0	24 24 25	8 6 11	3 2 4	6,3 6,3 6,3	6,3 6,3 6,3	47 35 35	0,0 0,0 0,0	3,8 -3,9 -4,2	0,0 0,0 0,0	28,8 16,1 28,8	32,0 29,9 32,0	4,5 4,8 4,5	0,0 0,0 0,0	12 12 13	6 13 7	0,0 0,0 0,0	10 20 10	50 200 50	10 10 10
4 6 2.5	4,55 4,55		1 41 3 47 5 35	-5,3 2,1 -5,4	0,0 0,0 0,0	0,0 0,0 0,0	25 24 25	10 4 10	4 2 4	6,3 6,3 6,3	6,3 6,3 6,3	41 37 35	0,0 0,0 0,0	3,4 -3,1 -3,4	0,0 0,0 0,0	28,8 16,1 28,8	32,0 29,9 32,0	4,5 4,8 4,5	0,0 0,0 0,0	11 10 11	6 10 6	0,0 0,0 0,0	10 20 10	50 345 50	10 10 10
6 8 2.5	4,55 4,55		1 41 3 41 5 37	-5,7 -2,5 -4,3	0,0 0,0 0,0	0,0 0,0 0,0	25 24 24	11 5 8	4 2 3	6,3 6,3 6,3	6,3 6,3 6,3	41 41 37	0,0 0,0 0,0	3,9 3,6 -3,5	0,0 0,0 0,0	28,8 16,1 28,8	32,0 29,9 32,0	4,5 4,8 4,5	0,0 0,0 0,0	12 11 11	7 12 6	0,0 0,0 0,0	10 20 10	50 245 50	10 10 10
1 2 2.5	4,55 4,55	30	1 63 3 51 5 58	-10,0 4,3 -10,0	0,0 0,0 0,0	0,0 0,0 0,0	29 24 29	14 8 14	7 3 7	8,8 6,3 8,8	6,3 6,3 6,3	54 51 51	0,0 0,0 0,0	7,2 -6,3 -7,2	0,0 0,0 0,0	28,8 16,1 28,8	32,0 29,9 32,0	4,5 4,8 4,5	0,0 0,0 0,0	23 20 23	12 21 12	0,0 0,0 0,0	10 20 10	50 400 50	10 10 10
3 4 2.5	4,55 4,55	40	1 54 3 58 5 51	-9,8 7,2 -9,8	0,0 0,0 0,0	0,0 0,0 0,0	25 24 25	14 12 14	6 4 6	8,4 6,8 8,4	6,4 7,4 6,4	54 51 51	0,0 0,0 0,0	10,2 -8,6 -10,2	0,0 0,0 0,0	41,1 23,0 41,1	42,7 29,9 42,7	7,1 7,6 7,1	0,0 0,0 0,0	24 20 24	17 29 17	0,0 0,0 0,0	10 20 10	50 440 50	10 10 10
5 6 2.5	4,55 4,55	40	1 60 3 53 5 57	-10,1 7,5 -10,1	0,0 0,0 0,0	0,0 0,0 0,0	26 24 26	15 12 15	6 5 6	8,5 6,8 8,5	6,4 7,4 6,4	53 48 48	0,0 0,0 0,0	10,7 -8,9 -10,7	0,0 0,0 0,0	41,1 23,0 41,1	42,7 29,9 42,7	7,1 7,6 7,1	0,0 0,0 0,0	25 21 25	18 30 18	0,0 0,0 0,0	10 20 10	50 440 50	10 10 10
7 8 2.5	4,55 4,55	30	1 53 3 57 5 48	-10,4 4,5 -10,4	0,0 0,0 0,0	0,0 0,0 0,0	29 24 29	14 9 14	7 3 7	9,1 6,3 9,1	6,3 6,3 6,3	53 48 48	0,0 0,0 0,0	7,6 -6,6 -7,6	0,0 0,0 0,0	28,8 16,1 28,8	32,0 29,9 32,0	4,5 4,8 4,5	0,0 0,0 0,0	24 21 24	13 22 13	0,0 0,0 0,0	10 20 10	50 400 50	10 10 10

						STA	MP	A PI	ROG	ETT	OS.	L.U	AZ	IONI	S.L.D.	- PIL	ASTRI								
Filo Iniz	Quota Iniz.	T r Sez	C		VERIFIC	A A PRES	FLES	SIONE						VER	IFICA	А ТА	GLIO	ЕТО	RSI	ONE					
Fin. Ctqθ		a Bas	n Co		M Eyd (t*m)	N Ed (t)			εc% 100	Area b		Co mb		V Eyd (t)	T Sdu (t*m)	V Rxd	V Ryd (t)	TRd (t*m)	TRId (t*m)	Coe Cls				Staffe Lun	Fi
1	0,00 4,55	4	1 54 3 58	-12,1 4,7	2,1 -0,4	-10,6 -7,4	7.0	16 7	13 4	9,1 6,2	5,7 5,3	54 54	-0,9 -0,9	-5,1 -5,1	0,0	29,4 29,4	32,5 32,5	4,5 4,5	0,0	19 19	10 13	0,0 0,0	12	90 260	10 10

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 73di 115

						STA	MPA PI	ROG	FTT	O.S.	LU	- Δ7	IONI 9	S.L.D.	- PII	ΔSTRI								_
Filo	Quota	Т	С		VERIFICA		SSO-FLES									А ТА		ЕТО	RSI	ONE				
Iniz Fin. Ctgθ	Iniz. Final t	Alt	n Co c mb	M Exd (t*m)	(t*m)	N Ed (t)	x/ εf% /d 100	100	Area b	h .	mb	V Exd	V Eyd	T Sdu (t*m)	(t)	V Ryd (t)	TRd (t*m)	TRId (t*m)	Cls	Sta	ALon cmq	Pas	Staffe Lun	
2.5		50	5 38	5,3	-3,8	-5,6	17	13	6,3	5,2	54	-0,9	-5,1	0,0	29,4	32,5	4,5	0,0	19	10	0,0	12	65	10
2 2 2.5	0,00 4,55	4 30 50	1 51 3 63 5 35	12,1 -4,7 -5,3	2,1 -0,4 -3,8	-10,6 -7,4 -5,6	16 7 17	13 4 13	9,0 6,2 6,3	5,8 5,3 5,2	51 51 51	-0,9 -0,9 -0,9	5,1 5,1 5,1	0,0 0,0 0,0	29,4 29,4 29,4	32,5 32,5 32,5	4,5 4,5 4,5	0,0 0,0 0,0	19 19 19	10 13 10	0,0 0,0 0,0	12 15 12	90 260 65	10 10 10
3 3 2.5	0,00 4,55	4 30 50	1 54 3 58 5 54	-4,4 1,1 3,1	-7,7 2,0 8,8	-17,7 -11,8 -16,2	17 3 18	16 4 16	7,4 4,9 5,7	8,9 6,6 10,7	38 38 38	2,5 2,5 2,5	-4,6 -4,6 -4,6	0,0 0,0 0,0	30,2 30,2 30,2	33,4 33,4 33,4	4,5 4,5 4,5	0,0 0,0 0,0	22 22 22	15 19 15	0,0 0,0 0,0	12 15 12	77 268 59	10 10 10
4 4 2.5	0,00 4,55	4 30 50	1 51 3 63 5 51	-4,4 1,1 3,1	7,7 -2,0 -8,8	-17,7 -11,8 -16,2	17 3 18	16 4 16	7,2 4,9 5,6	9,1 6,6 10,7	35 35 35	-2,5 -2,5 -2,5	-4,6 -4,6 -4,6	0,0 0,0 0,0	30,2 30,2 30,2	33,4 33,4 33,4	4,5 4,5 4,5	0,0 0,0 0,0	22 22 22	15 19 15	0,0 0,0 0,0	12 15 12	77 268 59	10 10 10
5 5 2.5	0,00 4,55	4 30 50	1 60 3 48 5 60	4,6 -1,2 -3,3	-7,9 2,0 9,1	-18,3 -12,7 -16,8	17 3 18	16 4 16	7,1 4,9 5,2	9,7 6,6 11,5	44 44 44	2,6 2,6 2,6	4,6 4,6 4,6	0,0 0,0 0,0	30,3 30,3 30,3	33,6 33,6 33,6	4,5 4,5 4,5	0,0 0,0 0,0	22 22 22	15 19 15	0,0 0,0 0,0	12 15 12	78 268 59	10 10 10
6 6 2.5	0,00 4,55	4 30 50	1 57 3 53 5 57	4,6 -1,2 -3,3	7,9 -2,0 -9,1	-18,3 -12,7 -16,8	17 3 18	16 4 16	7,0 4,9 5,1	9,7 6,6 11,5	41 41 41	-2,6 -2,6 -2,6	4,6 4,6 4,6	0,0 0,0 0,0	30,3 30,3 30,3	33,6 33,6 33,6	4,5 4,5 4,5	0,0 0,0 0,0	22 22 22	15 19 15	0,0 0,0 0,0	12 15 12	78 268 59	10 10 10
7 7 2.5	0,00 4,55	4 30 50	1 60 3 48 5 44	-12,6 4,9 5,4	-2,1 0,4 3,6	-11,3 -7,5 -6,6	16 7 16	13 5 12	9,5 6,2 6,3	5,8 5,3 5,2	60 60 60	0,9 0,9 0,9	-5,3 -5,3 -5,3	0,0 0,0 0,0	29,5 29,5 29,5	32,6 32,6 32,6	4,5 4,5 4,5	0,0 0,0 0,0	19 19 19	11 13 11	0,0 0,0 0,0	12 15 12	90 261 64	10 10 10
8 8 2.5	0,00 4,55	4 30 50	1 57 3 53 5 41	12,6 -4,9 -5,4	-2,1 0,4 3,6	-11,3 -7,5 -6,6	16 7 16	13 5 12	9,7 6,2 6,3	5,6 5,3 5,2	57 57 57	0,9 0,9 0,9	5,3 5,3 5,3	0,0 0,0 0,0	29,5 29,5 29,5	32,6 32,6 32,6	4,5 4,5 4,5	0,0 0,0 0,0	19 19 19	11 13 11	0,0 0,0 0,0	12 15 12	90 261 64	10 10 10

Le verifiche relative alle limitazioni dell'armatura degli elementi strutturali sono svolte dal programma di calcolo CDSWin.

Verifiche SLE.

Si riporta appresso la spiegazione delle sigle usate nelle tabelle di verifica aste in cls per gli stati limiti di esercizio.

Filo : Sulla prima riga numero del filo del nodo iniziale, sulla seconda quello

del nodo finale

Quota : Sulla prima riga quota del nodo iniziale, sulla seconda quota del nodo

finale

Tratto : Se una trave è suddivisa in più tratti sulla prima riga è riportato il

numero del tratto, sulla terza il numero di suddivisioni della trave

Com Cari : Indicatore della matrice di combinazione; la prima riga individua la

matrice delle combinazioni rare, la seconda la matrice delle combinazioni frequenti, la terza quella permanenti. Questo indicatore vale sia per la verifica a fessurazione che per il calcolo delle frecce

Fessu : Fessura limite e fessura di calcolo espressa in mm; se la trave non

risulta fessurata l'ampiezza di calcolo sarà nulla

Dist mm : Distanza fra le fessure

Concio : Numero del concio in cui si è avuta la massima fessura

Combin : Numero della combinazione ed in sequenza sollecitazioni per cui si è

avuta la massima fessura

Mf X : Momento flettente asse vettore X Mf Y : Momento flettente asse vettore Y

N : Sforzo normale

Frecce : Freccia limite e freccia massima di calcolo

Combin : Numero della combinazione che ha prodotto la freccia massima

Com Cari : Indicatore della matrice di combinazione; la prima riga individua la

matrice delle combinazioni rare per la verifica della tensione sul

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

LOTTO

LOTTO 02 COMMESSA

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO

RS3H 02 D 78 CL FA 0500 001 A 74di 115

calcestruzzo, la seconda la matrice delle combinazioni rare per la

DOCUMENTO

REVISIONE

FOGLIO

verifica della tensione sull'acciaio, la terza la matrice delle combinazioni permanenti per la verifica della tensione sul calcestruzzo

CODIFICA

σ_{cal}: Valore della tensione limite in Kg/cmq σ_{cal}: Valore della tensione di calcolo in Kg/cmq

Concio : Numero del concio in cui si è avuta la massima tensione

Combin : Numero della combinazione ed in sequenza sollecitazioni per cui si è

avuta la massima tensione

Mf X : Momento flettente asse vettore X Mf Y : Momento flettente asse vettore Y

N : Sforzo normale

								ST	AMP/	VER	IFICHE	S.L.E. FO	NDA	ZIONE							
					F	ESS	URA	ZIO	ΝE			FRECC	E			TE	NSI	ONI			
Filo In fi	Quota In Fi	Tra tto	Combi Caric		u. mm cal	dist mm		Com bin	Mf X (t*m)	Mf Y (t*m)	N (t)	Frecce mm limite calc	Com bin	Combinaz Carico	σ lim. Kg/cmq	σ cal. Kg/cmq	Co nc	Comb	Mf X (t*m)	Mf Y (t*m)	N (t)
1 3	0,00 0,00		Rara Freq Perm	0,4 0,3	0,000 0,000	0	3	5 1	-3,6 -3,2	0,0 0,0	0,0 0,0			Rara cls Rara fer Perm cls	150,0 3600 112,0	3,7 173 3,2	3 3 3	20 20 1	-3,6 -3,6 -3,2	0,0 0,0 0,0	0,0 0,0 0,0
3 5	0,00 0,00		Rara Freq Perm	0,4 0,3	0,000 0,000	0	3	5 1	-5,0 -4,5	0,0 0,0	0,0 0,0			Rara cls Rara fer Perm cls	150,0 3600 112,0	5,5 259 4,6	3 3 3	20 20 1	-5,4 -5,4 -4,5	0,0 0,0 0,0	0,0 0,0 0,0
5 7	0,00 0,00		Rara Freq Perm	0,4 0,3	0,000 0,000	0	3	5 1	-4,2 -3,9	0,0 0,0	0,0 0,0			Rara cls Rara fer Perm cls	150,0 3600 112,0	5,0 232 3,9	3 3 3	20 20 1	-4,9 -4,9 -3,9	0,0 0,0 0,0	0,0 0,0 0,0
2 4	0,00 0,00		Rara Freq Perm	0,4 0,3	0,000 0,000	0	3	5 1	-3,6 -3,2	0,0 0,0	0,0 0,0			Rara cls Rara fer Perm cls	150,0 3600 112,0	4,4 207 3,2	3 3 3	21 21 1	-4,4 -4,4 -3,2	0,0 0,0 0,0	0,0 0,0 0,0
4 6	0,00 0,00		Rara Freq Perm	0,4 0,3	0,000 0,000	0	3	5 1	-5,0 -4,5	0,0 0,0	0,0 0,0			Rara cls Rara fer Perm cls	150,0 3600 112,0	6,5 305 4,6	3 3 3	19 19 1	-6,4 -6,4 -4,5	0,0 0,0 0,0	0,0 0,0 0,0
6 8	0,00 0,00		Rara Freq Perm	0,4 0,3	0,000 0,000	0	3	5 1	-4,2 -3,9	0,0 0,0	0,0 0,0			Rara cls Rara fer Perm cls	150,0 3600 112,0	5,2 242 3,9	3 3 3	21 21 1	-5,1 -5,1 -3,9	0,0 0,0 0,0	0,0 0,0 0,0
1 2	0,00 0,00		Rara Freq Perm	0,4 0,3	0,000 0,000	0	3	5 1	-10,1 -9,6	0,0 0,0	0,0 0,0			Rara cls Rara fer Perm cls	150,0 3600 112,0	10,6 496 9,7	3 3 3	16 16 1	-10,4 -10,4 -9,6	0,0 0,0 0,0	0,0 0,0 0,0
3 4	0,00 0,00		Rara Freq Perm	0,4 0,3	0,000 0,000	0	3	2	-12,5 -12,4	0,0 0,0	0,0 0,0			Rara cls Rara fer Perm cls	150,0 3600 112,0	13,4 631 12,5	3 3 3	1 1 1	-13,3 -13,3 -12,4	0,0 0,0 0,0	0,0 0,0 0,0
5 6	0,00 0,00		Rara Freq Perm	0,4 0,3	0,000 0,000	0	3	2	-12,6 -12,4	0,0 0,0	0,0 0,0			Rara cls Rara fer Perm cls	150,0 3600 112,0	13,8 650 12,6	3 3 3	12 12 1	-13,7 -13,7 -12,4	0,0 0,0 0,0	0,0 0,0 0,0
7 8	0,00 0,00		Rara Freq Perm	0,4 0,3	0,000 0,000	0	3	5 1	-10,1 -9,7	0,0 0,0	0,0 0,0			Rara cls Rara fer Perm cls	150,0 3600 112,0	11,4 536 9,8	3 3 3	12 12 1	-11,3 -11,3 -9,7	0,0 0,0 0,0	0,0 0,0 0,0

								ST	AMP/	A VER	IFICHE	S.L.E. EL	EVA	ZIONE							
					F	ESSI	J R A	ZIO	ΝE			FRECC	E			TEN	NSI	ONI			
Filo In fi	Quota In Fi	Tra tto	Combi Caric		u. mm cal		Con cio	Com bin	Mf X (t*m)	Mf Y (t*m)	N (t)	Frecce mm limite calc	Com bin	Combinaz Carico	σ lim. Kg/cmq	σ cal. Kg/cmq	Co nc	Comb	Mf X (t*m)	Mf Y (t*m)	N (t)
1 3	4,55 4,55		Rara Freq Perm	0,4 0,3	0,000 0,000	0	5 5	6	-1,1 -0,9	0,0 0,0	0,2 0,0			Rara cls Rara fer Perm cls	168,0 3600 126,0	680	5 5 5	30 30 1	-1,6 -1,6 -0,9	0,2 0,2 0,0	0,3 0,3 0,0
3 5	4,55 4,55		Rara Freq Perm	0,4 0,3	0,000 0,000	0	5 5	3	-1,2 -1,1	0,1 0,0	0,0 0,0			Rara cls Rara fer Perm cls	168,0 3600 126,0	609	5 5 5	15 25 1	-1,6 -1,4 -1,1	0,5 0,5 0,0	-0,4 0,4 0,0
5 7	4,55 4,55		Rara Freq Perm	0,4 0,3	0,000 0,000	0	1	6	-1,3 -1,0	0,0 0,0	0,2 0,0			Rara cls Rara fer Perm cls	168,0 3600 126,0	592	1 1 1	31 31 1	-1,4 -1,4 -1,0	-0,2 -0,2 0,0	0,3 0,3 0,0
2 4	4,55 4,55		Rara Freq Perm	0,4 0,3	0,000 0,000	0	5 5	6	-1,1 -0,9	0,0 0,0	0,2 0,0			Rara cls Rara fer Perm cls	168,0 3600 126,0	680	5 5 5	30 30 1	-1,6 -1,6 -0,9	-0,2 -0,2 0,0	0,3 0,3 0,0
4 6	4,55 4,55		Rara Freq Perm	0,4 0,3	0,000 0,000	0	5 5	3 1	-1,2 -1,1	-0,1 0,0	0,0 0,0			Rara cls Rara fer Perm cls	168,0 3600 126,0	23,9 609 16,6	5 5 5	15 25 1	-1,6 -1,4 -1,1	-0,5 -0,5 0,0	-0,4 0,4 0,0

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 75di 115

								ST	AMP/	4 VER	IFICHE	S.L.E. EL	EVA	ZIONE							
					F	ESSU	J R A	ZIO	ΝE			FRECC	E			TEN	۱S۱	ONI			
Filo In fi	Quota In Fi	Tra tto	Combi Caric		u. mm cal		Con cio	Com bin	Mf X (t*m)	Mf Y (t*m)	N (t)	Frecce mm limite calc	Com	Combinaz Carico	σ lim. Kg/cmq	σ cal. Kg/cmq		Comb	Mf X (t*m)	Mf Y (t*m)	N (t)
6 8	4,55 4,55		Rara Freq Perm	0,4 0,3	0,000 0,000	0	1	6	-1,3 -1,0	0,0 0,0	0,2 0,0			Rara cls Rara fer Perm cls	168,0 3600 126,0	24,4 672	1 1 1	31 31 1	-1,6 -1,6 -1,0	-0,1 -0,1 0,0	0,3 0,3 0,0
1 2	4,55 4,55		Rara Freq Perm	0,4 0,3	0,000 0,000	0	5 1	4 1	-3,4 -3,2	-0,1 0,0	0,0 0,0			Rara cls Rara fer Perm cls	168,0 3600 126,0	1228	5 5 1	19 19 1	-4,6 -4,6 -3,2	-0,8 -0,8 0,0	-0,1 -0,1 0,0
3 4	4,55 4,55		Rara Freq Perm	0,4 0,3	0,196 0,000	378 0	3	2	6,8 6,6	0,0 0,0	0,0 0,0			Rara cls Rara fer Perm cls	168,0 3600 126,0	2024	3 3 3	22 22 1	7,5 7,5 6,6	0,0 0,0 0,0	0,1 0,1 0,0
5 6	4,55 4,55		Rara Freq Perm	0,4 0,3	0,205 0,210	378 378	3	2	7,1 6,9	0,0 0,0	0,0 0,0			Rara cls Rara fer Perm cls	168,0 3600 126,0	2182	3 3 3	22 22 1	8,1 8,1 6,9	0,0 0,0 0,0	0,1 0,1 0,0
7 8	4,55 4,55		Rara Freq Perm	0,4 0,3	0,000 0,000	0	5 1	4 1	-3,5 -3,3	0,1 0,0	0,0 0,0			Rara cls Rara fer Perm cls	168,0 3600 126,0	1274	5 5 1	19 19 1	-4,7 -4,7 -3,3	0,8 0,8 0,0	-0,1 -0,1 0,0

											PILA	STRI									
					F	ESS	URA	ZIO	ΝE			FRECC	E			ΤE	NSI	ONI			
Filo In fi	Quota In Fi	Tra tto	Combi Caric		u. mm cal	dist mm		Com bin	Mf X (t*m)	Mf Y (t*m)	N (t)	Frecce mm limite calc	Com bin	Combinaz Carico	σ lim. Kg/cmq	σ cal. Kg/cmq		Comb	Mf X (t*m)	Mf Y (t*m)	N (t)
1	0,00 4,55		Rara Freq Perm	0,4 0,3	0,000 0,000	0	1	5 1	3,0 3,0	0,3 0,0	-7,9 -7,7			Rara cls Rara fer Perm cls	168,0 3600 126,0	52,1 441 34,3	1 1 1	30 30 1	2,8 2,8 3,0	-0,8 -0,8 0,0	-7,1 -7,1 -7,7
2 2	0,00 4,55		Rara Freq Perm	0,4 0,3	0,000 0,000	0	1	4 1	-3,2 -3,0	0,0 0,0	-7,7 -7,7			Rara cls Rara fer Perm cls	168,0 3600 126,0	57,2 580 34,3	1 1 1	29 29 1	-4,0 -4,0 -3,0	-0,5 -0,5 0,0	-7,6 -7,6 -7,7
3	0,00 4,55		Rara Freq Perm	0,4 0,3	0,000 0,000	0	1	2	-0,2 -0,2	4,7 4,6	-13,8 -13,6			Rara cls Rara fer Perm cls	168,0 3600 126,0	117,4 1366 103,6	- 1	22 12 1	0,6 -0,1 -0,2	5,1 5,3 4,6	-14,9 -14,5 -13,6
4 4	0,00 4,55		Rara Freq Perm	0,4 0,3	0,000 0,000	0	1	2	-0,2 -0,2	-4,7 -4,6	-13,8 -13,6			Rara cls Rara fer Perm cls	168,0 3600 126,0	123,7 1478 103,6	- 1	16 16 1	-0,5 -0,5 -0,2	-5,4 -5,4 -4,6	-14,0 -14,0 -13,6
5 5	0,00 4,55		Rara Freq Perm	0,4 0,3	0,000 0,000	0	1	2	0,1 0,1	4,9 4,8	-14,5 -14,3			Rara cls Rara fer Perm cls	168,0 3600 126,0	133,3 1551 107,0	- 1	12 12 1	0,9 0,9 0,1	5,7 5,7 4,8	-15,5 -15,5 -14,3
6 6	0,00 4,55		Rara Freq Perm	0,4 0,3	0,000 0,000	0	1	2	0,1 0,1	-4,9 -4,8	-14,5 -14,3			Rara cls Rara fer Perm cls	168,0 3600 126,0	133,3 1551 107,0	1	12 12 1	0,9 0,9 0,1	-5,7 -5,7 -4,8	-15,5 -15,5 -14,3
7 7	0,00 4,55		Rara Freq Perm	0,4 0,3	0,000 0,000	0	1	5 1	3,1 3,1	-0,3 -0,1	-8,4 -8,2			Rara cls Rara fer Perm cls	168,0 3600 126,0	58,9 486 36,0	1 1 1	20 20 1	3,4 3,4 3,1	-0,9 -0,9 -0,1	-9,1 -9,1 -8,2
8	0,00 4,55		Rara Freq Perm	0,4 0,3	0,000 0,000	0	1	4	-3,2 -3,1	0,0 -0,1	-8,2 -8,2			Rara cls Rara fer Perm cls	168,0 3600 126,0	58,9 573 36,0	1 1 1	20 29 1	-3,4 -4,1 -3,1	-0,9 0,4 -0,1	-9,1 -8,1 -8,2

9.3.-.. Metodologia di verifica nodi trave-pilastro

Si distinguono due tipi di nodi:

- **interamente confinati**: quando in ognuna delle quattro facce verticali si innesta una trave; il confinamento si considera realizzato quando, su ogni faccia del nodo, la sezione della trave copre per almeno i 3/4 la larghezza del pilastro e, su entrambe le coppie di facce opposte del nodo, le sezioni delle travi si ricoprono per almeno i 3/4 dell'altezza;
- non interamente confinati: quando non appartenenti alla categoria precedente.

Il nodo deve essere progettato in maniera tale da evitare la sua rottura anticipata rispetto alle zone delle travi e dei pilastri in esso concorrenti.

In ogni nodo la capacità a taglio deve essere superiore o uguale alla corrispondente domanda.

La domanda a taglio agente nel nucleo di calcestruzzo del nodo può essere calcolata, per ciascuna direzione dell'azione sismica, come:

$$\begin{aligned} V_{jbd} &= \gamma_{Rd} \cdot \left(A_{S1} + A_{S2} \right) \cdot f_{yd} - V_C \quad \text{per nodi interni} \\ V_{jbd} &= \gamma_{Rd} \cdot A_{S1} \cdot f_{yd} - V_C \quad \text{per nodi esterni} \end{aligned} \tag{7.4.6}$$

Con γ_{Rd} = 1.10, As1 ed As2 rispettivamente l'area dell'armatura superiore ed inferiore della trave e V_C, la forza di taglio nel pilastro al di sopra del nodo, derivante dall'analisi in condizioni sismiche.

La capacità a taglio del nodo è fornita da un meccanismo a traliccio che, a seguito della fessurazione diagonale, vede operare contemporaneamente un meccanismo di taglio compressione ed un meccanismo di taglio trazione. Si devono pertanto soddisfare requisiti atti a garantire l'efficacia dei due meccanismi.

La compressione nel puntone diagonale indotta dal meccanismo a traliccio non deve eccedere la resistenza a compressione del calcestruzzo. In assenza di modelli più accurati, il requisito può ritenersi soddisfatto se:

$$V_{jbd} \le \eta \cdot f_{ed} \cdot b_j \cdot h_{je} \cdot \sqrt{1 - \frac{v_d}{\eta}}$$
 [7.4.8]

Con

$$\eta = \alpha_{j} \cdot \left(1 - \frac{f_{ek}}{250}\right) \quad \ \ con \ f_{ek} \ espresso \ in \ MPa \label{eq:eta_fit}$$

 $\alpha_i = 0.6$ (per nodi interni); 0.48 (per nodi esterni)

hjc è la distanza tra le giaciture più esterne delle armature del pilastro,

bj è la larghezza effettiva del nodo. Quest'ultima è assunta pari alla minore tra:

- a) la maggiore tra le larghezze della sezione del pilastro e della sezione della trave;
- b) la minore tra le larghezze della sezione del pilastro e della sezione della trave, ambedue aumentate di metà altezza della sezione del pilastro.

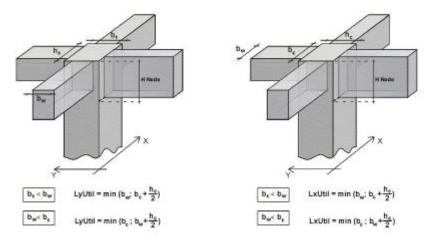
Per evitare che la massima trazione diagonale del calcestruzzo ecceda la f_{ctd} deve essere previsto un adeguato confinamento. In assenza di modelli più accurati, si possono disporre nel nodo staffe orizzontali di diametro non inferiore a 6 mm, in modo che:

$$\frac{\mathbf{A}_{\text{sh}} \cdot \mathbf{f}_{\text{ywd}}}{\mathbf{b}_{\text{i}} \cdot \mathbf{h}_{\text{iw}}} \ge \frac{\left[\mathbf{V}_{\text{jbd}} / \left(\mathbf{b}_{\text{j}} \cdot \mathbf{h}_{\text{jc}} \right) \right]^2}{\mathbf{f}_{\text{ctd}} + \mathbf{v}_{\text{d}} \cdot \mathbf{f}_{\text{cd}}} - \mathbf{f}_{\text{ctd}}$$
[7.4.10]

con A_{sh} è l'area totale della sezione delle staffe e h_{jw} è la distanza tra le giaciture di armature superiori e inferiori della trave.

In alternativa, l'integrità del nodo a seguito della fessurazione diagonale può essere garantita integralmente dalle staffe orizzontali se:

$$\begin{aligned} \mathbf{A}_{\text{sh}} \cdot \mathbf{f}_{\text{ywd}} &\geq \gamma_{\text{Rd}} \cdot (\mathbf{A}_{\text{s1}} + \mathbf{A}_{\text{s2}}) \cdot \mathbf{f}_{\text{yd}} \cdot (\mathbf{I} - 0.8 v_{\text{d}}) & \text{per nodi interni} \\ \mathbf{A}_{\text{sh}} \cdot \mathbf{f}_{\text{ywd}} &\geq \gamma_{\text{Rd}} \cdot \mathbf{A}_{\text{s2}} \cdot \mathbf{f}_{\text{yd}} \cdot (\mathbf{I} - 0.8 v_{\text{d}}) & \text{per nodi esterni} \end{aligned}$$
 [7.4.12]


Con $\gamma_{Rd} = 1.10$.

Per quanto riguarda le limitazioni di armatura si rimanda al §9.1.2.

9.4.-.. Verifica nodi trave – pilastro

SPECIFICHE CAMPI TABELLA DI STAMPA

Si riporta di seguito la spiegazione delle sigle usate nella tabella di stampa delle verifiche dei nodi trave-pilastro in calcestruzzo armato.

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 OTTO 02

FABBRICATO FA-05 - FA07 - RELAZIONE DI CALCOLO

LOTTO DOCUMENTO REVISIONE COMMESSA CODIFICA **FOGLIO** RS3H 78di 115 D 78 CL FA 0500 001 02 Α

Filo N.ro : Numero del filo fisso del pilastro a cui appartiene il nodo

Quota (m) : Quota in metri del nodo verificato

Nodo3d N.ro : Numerazione spaziale del nodo verificato

Posiz. Pilastro : Posizione del pilastro rispetto al nodo; SUP indica che il nodo verificato e' l'estremo inferiore di

un pilastro; INF indica che il nodo verificato e l'estremo superiore del pilastro

 $: Flag \ di \ nodo \ interno \ (SI=Interno \ X \ ed \ Y \ ; \ X=Solo \ Dir.X; \ Y=Solo \ Dir.Y; \ SP=Spigolo;$ Int.

 $NO=Esterno\ X\ o\ Y)$

Sez. : Numero di archivio della sezione del pilastro a cui appartiene il nodo

Rotaz : Rotazione di input del pilastro a cui appartiene il nodo

HNodo : Altezza del nodo in calcestruzzo su cui sono state effettuate le verifiche calcolata in funzione

dell'intersezione tra il pilastro e le travi convergenti

fck : Resistenza caratteristica cilindrica del calcestruzzo

fy : Resistenza caratteristica allo snervamento dell'acciaio delle armature

LyUtil : Larghezza utile del nodo lungo la direzione Y locale del pilastro

AfX : Area complessiva dei bracci in direzione X locale del pilastro

LxUtil : Larghezza utile del nodo lungo la direzione X locale del pilastro

AfY : Area complessiva dei bracci in direzione Y locale del pilastro

Njbd (X/Y) : Sforzo Normale associato al Taglio sul nodo nella direzione X/Y locale del pilastro.

Vjbd (X/Y) : Taglio agente sul nodo nella direzione X/Y locale del pilastro.

VjbR(X/Y): Resistenza biella compressa del nodo nella direzione X/Y locale del pilastro.

STATUS : Esito della verifica del nodo.

- NON VER: si supera la resistenza della biella compressa; non è verificata la formula [7.4.8]

- ELASTICO: il nodo verifica e rimane in campo non fessurato; le armature sono progettate con

la formula [7.4.10]

- FESSURATO: il nodo verifica e risulta fessurato; le armature sono progettate con la formula

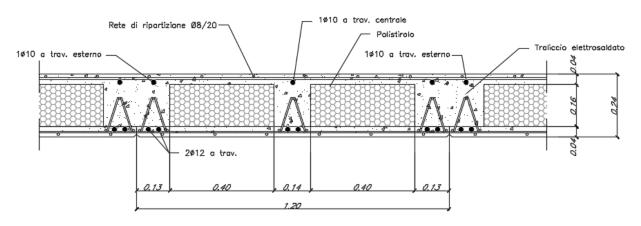
[7.4.11] per i nodi interni e con la formula [7.4.12] per i nodi esterni

									RIS	ULTAT	I VERIF	ICHE N	ODI CL	.S						
	IDENTIF	ICATI\	0		GEO	M.PIL	.ASTR	MATE	RIALE	DIR.	X loc.	DIR.	Y loc.	DIF	REZ. X loc	cale	DIF	REZ. Y loc	cale	
Filo	Quota	Nodo	Pos.	In	Sez	Rot	HNod	fck	fy	LyUt	AfX	LxUt	AfY	Njbd	Vjbd	VjbR	Njbd	Vjbd	VjbR	STATUS
N.ro	(m)	3D	Pila	t.	Nro	Grd	cm	kg/c	emq	cm	cmq	cm	cmq	kg	kg	kg	kg	kg	kg	
1	0,00	1	SUP.	SP	4	0	100	280	4500	60	5,2	55	11,1	10781	20993	69051	12049	45258	132687	FESS.
3	0,00	2	SUP.	Υ	4	90	100	280	4500	60	7,0	55	15,6	17504	29238	66441	13019	63649	131966	FESS.
5	0,00	3	SUP.	Υ	4	90	100	280	4500	60	7,2	55	13,8	17956	30019	66262	12419	56386	132413	FESS.
7	0,00	4	SUP.	SP	4	0	100	280	4500	60	5,3	55	11,6	5832	21193	70910	12604	47204	132275	FESS.
2	0,00	5	SUP.	SP	4	0	100	280	4500	60	5,2	55	11,3	10781	20993	69051	5794	45258	137251	FESS.
4	0,00	6	SUP.	Υ	4	90	100	280	4500	60	7,2	55	15,6	10437	29238	69181	13019	63649	131966	FESS.
6	0,00	7	SUP.	Υ	4	90	100	280	4500	60	7,4	55	13,8	11018	30019	68960	12419	56386	132413	FESS.
8	0,00	8	SUP.	SP	4	0	100	280	4500	60	5,3	55	11,8	5832	21193	70910	5832	47204	137224	FESS.

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 79di 115


[RIS	ULTAT	I VERIF	ICHE N	ODI CL	S						
		IDENTIF	ICATIV	0		GEO	M.PIL	.ASTR	MATE	RIALE	DIR.	X loc.	DIR.	Y loc.	DII	REZ. X loc	cale	DIF	REZ. Y loc	cale	
ĺ	Filo	Quota	Nodo	Pos.	In	Sez	Rot	HNod	fck	fy	LyUt	AfX	LxUt	AfY	Njbd	Vjbd	VjbR	Njbd	Vjbd	VjbR	STATUS
	N.ro	(m)	3D	Pila	t.	Nro	Grd	cm	kg/d	cmq	cm	cmq	cm	cmq	kg	kg	kg	kg	kg	kg	
	1	4,55	9	INF.	SP	4	0	50	280	4500	45	6,9	30	10,4	0	27045	51737	0	40568	75069	FESS.
	2	4,55	10	INF.	SP	4	0	50	280	4500	45	6,9	30	10,4	0	27045	51737	0	40568	75069	FESS.
	3	4,55	11	INF.	Υ	4	90	55	280	4500	50	10,4	30	13,8	0	40568	57486	0	54090	75069	FESS.
	4	4,55	12	INF.	Υ	4	90	55	280	4500	50	10,4	30	13,8	0	40568	57486	0	54090	75069	FESS.
	5	4,55	13	INF.	Υ	4	90	55	280	4500	50	10,4	30	13,8	0	40568	57486	0	54090	75069	FESS.
	6	4,55	14	INF.	Υ	4	90	55	280	4500	50	10,4	30	13,8	0	40568	57486	0	54090	75069	FESS.
	7	4,55	15	INF.	SP	4	0	50	280	4500	45	6,9	30	10,4	0	27045	51737	0	40568	75069	FESS.
	8	4,55	16	INF.	SP	4	0	50	280	4500	45	6,9	30	10,4	0	27045	51737	0	40568	75069	FESS.

10.-..VERIFICA SOLAIO

10.1.-..Premessa

Il solaio è del tipo a predalle di spessore 4+16+4, nella fase di getto si considera puntellato e pertanto nei paragrafi successivi si esegue la verifica del solaio nella fase di esercizio.

10.2.-..Analisi dei carichi

Dai paragrafi precedenti si ricavano le azioni agenti sul solaio di copertura

- Peso proprio (G ₁)	$= 3.48 \text{ kN/m}^2$
- Permanenti (G ₂)	$= 3.10 \text{ kN/m}^2$
- Accidentale cat. H1 (Q _{H1})	$= 0.50 \text{ kN/m}^2$
- Neve	$= 0.78 \text{ kN/m}^2$

10.3.-..Calcolo delle massime sollecitazioni agenti

Si considera uno schema statico a doppio appoggio su singola campata di luce pari a 4.45m, verificando il campo con luce maggiore.

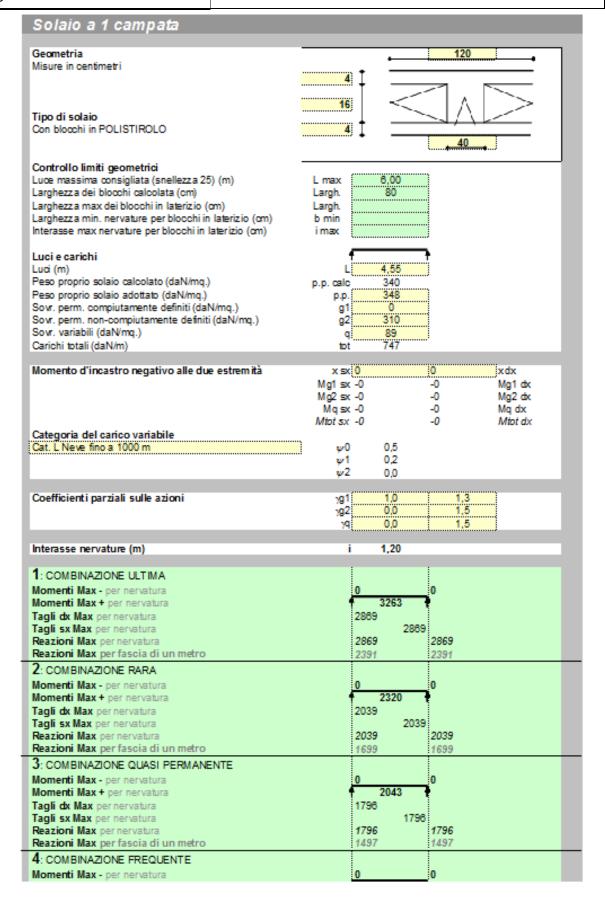
Le massime sollecitazioni agenti risultano pertanto pari a:

 $M_{SLU} = (1.3*3.48 + 1.5*3.1 + 1.5*0.5 + 1.5*0.5*0.78) * 1.20 * 4.55^2/8 = 32,63 kNm$

 $T_{SLU} = (1.3*3.48 + 1.5*3.1 + 1.5*0.5 + 1.5*0.5*0.78) * 1.20 * 4.55/2 = 28.55 kN$

 $M_{SLE,rara} = (3.48 + 3.1 + 0.5 + 0.5*0.78) * 1.20 * 4.55^2/8 = 23.20 \text{ kNm}$

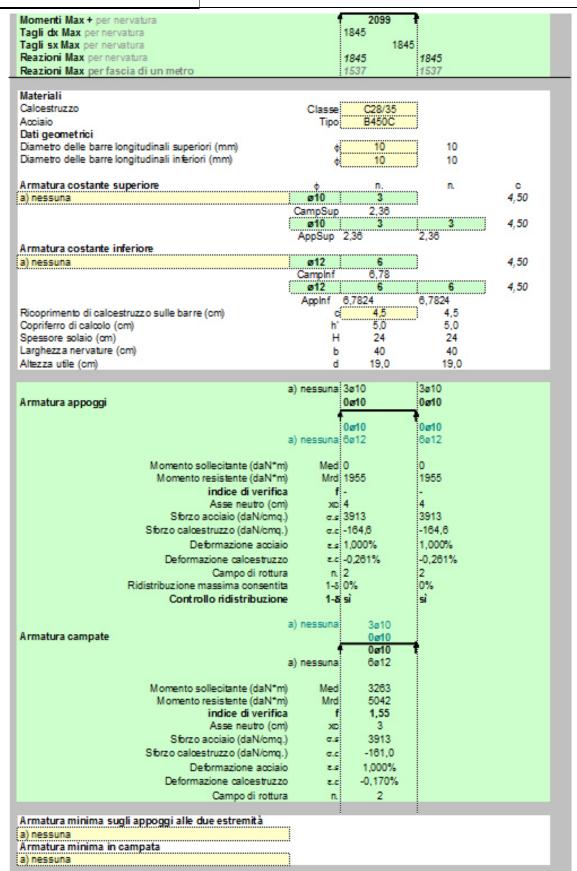
10.4.-..Verifica del solaio


Si esegue la verifica a flessione e taglio di una sezione a T equivalente alla predalla di larghezza 1.20m armata con $2\phi12$ inferiori ed $1\phi10$ superiore a travetto per cui risulta:

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 82di 115



INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 83di 115

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 84di 115

ī	controllo armatura minima scelta:	nessuna	sì	sì	
ı	Armatura appoggi	ф	n	n	С
ı	1	ø10	3	3	4,5
ı	sup.	ø10	-	-	4,5
ı	inf.	~40		•	4.5
ı	III.	Ø10 Ø12	6	6	4,5
ı	1: VERIFICHE IN COMBINAZIONE ULTIMA	D12			7,0
ı	Momento sollecitante (daN*m)	Med	n	0	
ı	Momento resistente (daN*m)		1955	1955	
ı	indice di verifica		-	-	
ı	Asse neutro (cm)	XC	4	4	
ı	Sforzo acciaio (daN/cmq.)		3913	3913	
ı	Sforzo calcestruzzo (daN/cmq.)		-164,6	-164,6	
ı	Deformazione acciaio		1,000%	1,000%	
ı	Deformazione calcestruzzo		-0,261%	-0,261%	
ı	Campo di rottura Ridistribuzione massima consentita		2 0%	2 0%	
ı	Controllo ridistribuzione	1-ο 1-δ		si	
ı	2: VERIFICHE IN COMBINAZIONE RARA		31	31	
ı	Z: VERIFICHE IN COMBINAZIONE RARA	as limite	2800	3800	
ı		σs IIIIIIE σS		0	
ı	indice di verifica lato acciaio		-	_	
ı		oc limite	174,3	174,3	
ı			0,0	0,0	
ı	indice di verifica lato cls		-	-	
ı	3: VERIFICHE IN COMBINAZIONE QUASI PERMANENTE				
ı		oc limite		130,7	
ı	testine at an other letter she			0,0	
ı	indice di verifica lato cls	T	-	-	
ı	Armatura campate	•	n.		С
ı		ø10	3		4,5
ı	sup.	ø10	-		4,5
ı	inf. _ş	ø10	-	•	4,5
ı	controllo armatura minima scelta:	ø12 nessuna	6 Si		4,5
ı	_	riessuria	51		
ı	1: VERIFICHE IN COMBINAZIONE ULTIMA	Med	2222		
ı	Momento sollecitante (daN*m) Momento resistente (daN*m)	Mrd			
ı	indice di verifica	f			
ı	Asse neutro (cm)	XC			
ı	Sforzo acciaio (daN/cmq.)	o.s	3913		
	Sforzo calcestruzzo (daN/cmq.)	σ.c	-131,7		
	Deformazione acciaio	2.5	-,		
	Deformazione calcestruzzo	8.0			
ı	Campo di rottura	n.	2		
ı	2: VERIFICHE IN COMBINAZIONE RARA				
ı		y Jai	4,88		
ı		as limite			
ı		σsillille			
ı	indice di verifica lato acciaio	f			
		oc limite	139,4		
		σC			
	indice di verifica lato cls	f	3,03		
	3: VERIFICHE IN COMBINAZIONE QUASI PERMANENTE				
		y	4,88		
		Jai ac limite			
		σC IIMI1€ σC			
	indice di verifica lato cls	f			
		σS			
	4: VERIFICHE IN COMBINAZIONE FREQUENTE	σS	1790		

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

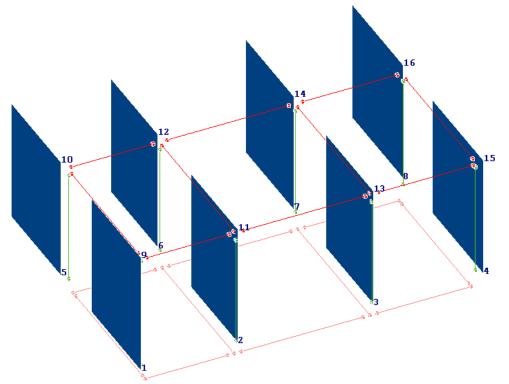
MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 85di 115

Verifiche a taglio						
1: con fasce piene				1		
	resistenti sx (daN)	VD4	4055			
	asse dell'appoggio)					
	resistent dx (daN)			4055		
•	asse dell'appoggio)			4000		
ascia pieria (dali a	asse dell'appoggio)	uz		-		
2: con fasce piene e barre longitudina	li tese	ф	n.		n.	
		ø10	3		3	
	sup.	ø10	-		-	
			1	1		
	inf.		-		-	
		ø12	6		6	
T	annintanti au (date)		5000			
	resistenti sx (daN)		5398			
	asse dell'appoggio) resistenti dx (daN)			5398		
	asse dell'appoggio)	d2				
lascia pieria (dali a	asse derrappoggio)	UZ.		-		
Verifiche di fessurazione						
CONDIZ AMBIENTALI ORDINARIE						
Appoggi						
	netro armature superiori	ф	10		10	
0	ombinazione frequente		0		0	
comb. frequente CONDIZ. AME	SIENTALI ORDINARIE	f	4,00		4,00	
combinaz	tione quasi permanente		0		0	
comb. quasi perm. CONDIZ. AME	BIENTALI ORDINARIE	f	3,20		3,20	
Campate		ф	42			
	metro armature inferiori					
comb. frequente CONDIZ. AME	ombinazione frequente					
	tione quasi permanen te					
comb. quasi perm. CONDIZ. AME		f		_		
, , , , , , , , , , , , , , , , , , , ,			,-			
Verifiche di snellezza						
		ρ				
		ρ				
	1	. limite tab				
		К	1			
	λ	limite calc	,			
		λ limite				
	indice di verifica	λ				
	indice di verifica	f	1,3	3		

11.-..VERIFICA DEGLI ELEMENTI STRUTTURALI IN TERMINI DI CONTENIMENTO DEL DANNO AGLI ELEMENTI NON STRUTTURALI (SLO)

Per le costruzioni ricadenti in classe d'uso III e IV si deve verificare che l'azione sismica di progetto non produca danni agli elementi costruttivi senza funzione strutturale tali da rendere temporaneamente non operativa la costruzione.


Nel caso delle costruzioni civili e industriali questa condizione si può ritenere soddisfatta quando gli spostamenti interpiano ottenuti dall'analisi in presenza dell'azione sismica di progetto relativa allo SLO siano inferiori a:

per tamponature collegate rigidamente alla struttura, che interferiscono con la deformabilità della stessa:

$$d_r \le 2 \times 0.005 h / 3 = 0.0033 h$$

Si riporta un'immagine contenente gli spostamenti allo SLO e una tabella contenente il valore degli spostamenti e il valore limite degli stessi.

						SPC	STAMENT	SISMICI RE	LATI\	/I			
	IDENT	IFICA	TIVO			IN۱	/ILUPPO S.	L.D.		INV	ILUPPO S.L	O.	
Filo N.ro	N.ro inf. sup. inf. sup. (m) (m) N.ro N.ro N.ro 1 0,00 4,55 1 9					Com bin Nro	Spostam. Calcolo (mm)	Spostam. Limite (mm)	Sis ma Nro	Com bin Nro	Spostam. Calcolo (mm)	Spostam. Limite (mm)	Stringa di Controllo Verifica
1 2 3	0,00 0,00	4,55 4,55	1 5 2 6	9 10 11 12	2 2 2	58 63 58 63	9,563 9,563 9,154	22,750 22,750 22,750	2 2 2 2	58 63 58 63	7,376 7,376 7,060	15,167 15,167 15,167	VERIFICATO VERIFICATO VERIFICATO VERIFICATO
4 5 6 7 8	0,00 0,00 0,00 0,00 0,00	4,55 4,55 4,55 4,55 4,55	3 7 4 8	13 14 15 16	2 2 2 2 2	60 57 60 57	9,154 9,310 9,310 9,996 9,996	22,750 22,750 22,750 22,750 22,750	2 2 2 2 2	60 57 60 57	7,060 7,181 7,181 7,710 7,710	15,167 15,167 15,167 15,167 15,167	VERIFICATO VERIFICATO VERIFICATO VERIFICATO VERIFICATO

Secondo quanto riportato nella tabella la verifica risulta soddisfatta.

12.-.. VERIFICA DI CAPACITÀ PORTANTE

Le azioni trasmesse in fondazione derivano dall'analisi del comportamento dell'intera opera, in genere condotta esaminando la sola struttura in elevazione alla quale sono applicate le pertinenti combinazioni delle azioni di cui al § 2.5.3 delle NTC2018. Sia per CD"A" sia per CD"B" il dimensionamento delle strutture di fondazione e la verifica di sicurezza del complesso fondazione-terreno devono essere eseguiti assumendo come azione in fondazione, trasmessa dagli elementi soprastanti, una tra le sequenti:

- quella derivante dall'analisi strutturale eseguita ipotizzando comportamento strutturale non dissipativo (v. § 7.3 NTC2018);
- quella derivante dalla capacità di resistenza a flessione degli elementi (calcolata per la forza assiale derivante dalla combinazione delle azioni di cui al § 2.5.3 delle NTC2018), congiuntamente al taglio determinato da considerazioni di equilibrio;
- quella trasferita dagli elementi soprastanti nell'ipotesi di comportamento strutturale dissipativo, amplificata di un coefficiente pari a 1,30 in CD"A" e 1,10 in CD"B";

Verranno svolte le verifiche di portanza sia nei confronti degli SLU che degli SLD

La verifica di portanza delle fondazioni per il manufatto in oggetto è stata effettuata tramite il software CDG della STS. Si riporta di segiuto il metodo utilizzato per il calcolo della portanza:

La verifica della capacità portante consiste nel confronto tra la pressione verticale di esercizio in fondazione e la pressione limite per il terreno, valutata secondo *Brinch-Hansen*:

$$q_{lim} = q Nq Yq iq dq bq gq sq + c Nc Yc ic dc bc gc sc + \frac{1}{2} G B' Ng Yg ig bg sg$$

dove

Caratteristiche geometriche della fondazione:

q = carico sul piano di fondazione

 $B = lato\ minore\ della\ fondazione$

 $L = lato\ maggiore\ della\ fondazione$

D = profondità della fondazione

 α = inclinazione base della fondazione

G = peso specifico del terreno

B' = larghezza di fondazione ridotta = B - 2 eB

L' = lunghezza di fondazione ridotta = L - 2 eL

Caratteristiche di carico sulla fondazione:

H = risultante delle forze orizzontali

N = risultante delle forze verticali

eB = eccentricità del carico verticale lungo B

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
RS3H	02	D 78 CL	FA 0500 001	Α	89di 115

eL = eccentricità del carico verticale lungo L

 $FhB = forza\ orizzontale\ lungo\ B$

 $FhL = forza\ orizzontale\ lungo\ L$

Caratteristiche del terreno di fondazione:

 β = inclinazione terreno a valle

c = cu = coesione non drenata (condizioni U)

c = c' = coesione drenata (condizioni D)

 Γ = peso specifico apparente (condizioni U)

 $\Gamma = \Gamma' = peso \ specifico \ sommerso \ (condizioni \ D)$

 $\phi = 0 = angolo\ di\ attrito\ interno\ (condizioni\ U)$

 $\phi = \phi' = angolo di attrito interno (condizioni D)$

Fattori di capacità portante:

$$Nq = \tan^2(\frac{\pi}{4} + \frac{\phi}{2})\exp(\pi + \tan\phi)$$
 (Prandtl-Caquot-Meyerhof)

$$Ng = 2(Nq + 1)\tan\phi$$
 (Vesic)

$$Nc = \frac{Nq - 1}{\tan \phi}$$
 in condizioni D (Reissner-Meyerhof)

$$Nc = 5,14$$
 in condizioni U

Indici di rigidezza (condizioni D):

$$Ir = \frac{G}{c' + q' \tan \phi}$$
 = indice di rigidezza

q' = pressione litostatica efficace alla profondità $D + \frac{B}{2}$

$$G = \frac{E}{2(1+\mu)}$$
 = modulo elastico tangenziale

E =modulo elastico normale

 μ =coefficiente di *Poisson*

$$Icr = \frac{1}{2} \exp \left[\frac{3,3 - 0,45 \frac{B}{L}}{\tan(45 - \frac{\phi'}{2})} \right] = \text{indice di rigidezza critico}$$

Coefficienti di punzonamento (Vesic):

$$Yq = Yg = \exp\left[\left(0.6\frac{B}{L} - 4.4\right)\tan\phi' + \frac{3.07\sin\phi'\log(2Ir)}{1 + \sin\phi'}\right] \text{ in condizioni drenate, per Ir } \leq \text{Icr}$$

$$Yc = Yq - \frac{1 - Yq}{Nq \times \tan\phi'}$$

Coefficienti di inclinazione del carico (Vesic):

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
RS3H	02	D 78 CL	FA 0500 001	Α	90di 115

$$ig = \left(\frac{1 - H}{N + B \times L \times c' \times \cot ang \phi'}\right)^{m+1}$$

$$iq = \left(\frac{1 - H}{N + B \times L \times c' \times \cot \phi'}\right)^{m}$$

$$ic = iq - \frac{1 - iq}{Nc \times \tan \phi'}$$
 in condizioni D
 $m \times H$

$$ic = 1 - \frac{m \times H}{B \times L \times cu \times Nc}$$
 in condizioni U

essendo:

$$m = mB\cos^2\Theta + mL\sin^2\Theta$$

$$mB = \frac{2 + \frac{B'}{L'}}{1 + \frac{B'}{L'}} \qquad mL = \frac{2 + \frac{L'}{B'}}{1 + \frac{L'}{B'}} \qquad \Theta = \tan^{-1} \frac{Fh \times B}{Fh \times L}$$

Coefficienti di affondamento del piano di posa (Brinch-Hansen):

$$dq = 1 + 2\tan\phi(1 - \sin\phi)^2 \arctan\frac{D}{R'}$$
 per D > B'

$$dq = 1 + 2\frac{D}{R'}\tan\phi(1 - \sin\phi)^2$$
 per D \le B'

$$dc = dq - \frac{1 - dq}{Nc \times \tan \phi}$$
 in condizioni D

$$dc = 1 + 0.4arc \tan \frac{D}{B'}$$
 per D > B' in condizioni U

$$dc = 1 + 0.4 \frac{D}{R'}$$
 per D \leq B' in condizioni U

Coefficienti di inclinazione del piano di posa:

$$bg = \exp(-2.7\alpha \tan \phi)$$

 $bc = bq = \exp(-2\alpha \tan \phi)$ in condizioni D
 $bc = 1 - \frac{\alpha}{147}$ in condizioni U
 $bq = 1$ in condizioni U)

Coefficienti di inclinazione del terreno di fondazione:

$$gc = gq = \sqrt{1 - 0.5 \tan \beta}$$
 in condizioni D
 $gc = 1 - \frac{\beta}{147}$ in condizioni U
 $gq = 1$ in condizioni U

Coefficienti di forma (De Beer):

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO

LO110 02					
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
RS3H	02	D 78 CL	FA 0500 001	Α	91di 115

$$sg = 1 - 0.4 \frac{B'}{L'}$$

$$sq = 1 + \frac{B'}{L'} \tan \phi$$

$$sc = 1 + \frac{B'}{L'} \frac{Nq}{Nc}$$

DATI GENERALI								
COEFFICIENTI PARZIALI GEOTECNICA								
		1	ΓABELLA M1	TABELLA M2				
Tangente Resist. Taglio			1,00					
Peso Specifico			1,00					
Coesione Efficace (c'k)			1,00					
Resist. a taglio NON drenata (cuk)		1,00					
Tipo Approccio			Combinazione Un	nica: (A1+M1+R3)				
Tipo di fondazione			Super	ficiale				
	COEFFICIENTE	R1	COEFFICIENTE R2	COEFFICIENTE R3				
Capacita' Portante				2,30				
Scorrimento				1,10				

Definizione della geometria della trave Winkler.

Si riporta di seguito la spiegazione delle sigle usate nella tabella di stampa dei dati geometrici delle travi Winkler.

Trave : numero sequenziale della trave

Asta3d : numero asta tipo in C.D.S. Win (spaziale)

Filo Iniz : primo filo fisso

Filo Fin. : secondo filo fisso

Nodo3d In. : numero Nodo3d primo filo fisso

Nodo3d Fin : numero Nodo3d secondo filo fisso

X3d In. : ascissa Nodo3d Iniziale

Y3d In. : ordinata Nodo3d Iniziale

Z3d In. : quota Nodo3d Iniziale

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 92di 115

X3d Fin : ascissa Nodo3d finale

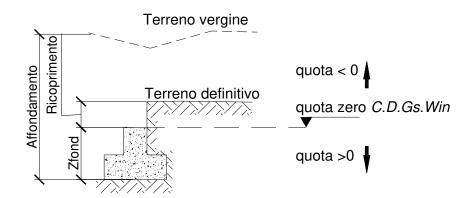
Y3d Fin : ordinata Nodo3d finale

Z3d Fin : quota Nodo3d finale

Xfond : ascissa baricentro fondazione

Yfond : ordinata baricentro fondazione

Zfond : quota baricentro base di fondazione nel riferimento di C.D.Gs. Win


Bfond : dimensione trasversale trave Winkler (a livello del magrone)

Lfond : dimensione longitudinale trave Winkler

	GEOMETRIA TRAVI WINKLER															
	IDENTIFICATIVO COORDINATE 3D ESTREMI ASTA WINKLER										DATI	IMPR	ONTA			
Trave	Ast3d	Fil	Fil	Nod3d	Nod3d	X3dIn.	Y3dln.	Z3dln.	X3dFin	Y3dFin	Z3dFin	Xfond	Yfond	Zfond	Bfond	Lfond
N.ro	N.ro	ln.	Fin	Iniz.	Fin.	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)
1	1	1	7	1	4	0,00	0,00	0,00	12,50	0,00	0,00	6,25	0,30	1,00	1,80	12,50
2	4	2	8	5	8	0,00	6,00	0,00	12,50	6,00	0,00	6,25	5,70	1,00	1,80	12,50
3	7	1	2	1	5	0,00	0,00	0,00	0,00	6,00	0,00	0,30	3,00	1,00	1,80	6,00
4	8	3	4	2	6	3,55	0,00	0,00	3,55	6,00	0,00	3,55	3,00	1,00	1,80	6,00
5	9	5	6	3	7	8,50	0,00	0,00	8,50	6,00	0,00	8,50	3,00	1,00	1,80	6,00
6	10	7	8	4	8	12,50	0,00	0,00	12,50	6,00	0,00	12,20	3,00	1,00	1,80	6,00

Definizione dei parametri geotecnici.

Si riporta di seguito la spiegazione delle sigle usate nella tabella di stampa della stratigrafia del terreno sottostante le travi *Winkler*.

NOTA: La quota zero di *C.D.Gs. Win* coincide con la quota numero zero dell'alberello quote di *C.D.S. Win* ma cambia la convenzione nel segno: infatti in C. D. Gs. le quote sono positive crescenti procedendo verso il basso, mentre in *C. D. S.* le quote sono positive crescenti verso l'alto.

CODIFICA

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

DOCUMENTO

FA 0500 001

REVISIONE

Α

FOGLIO

93di 115

MACROFASE FUNZIONALE 1

: numero di trave

OTTO 02 COMMESSA

FABBRICATO FA-05 - FA07 - RELAZIONE DI CALCOLO

Trave

LOTTO RS3H D 78 CL 02

Q.t.v. : quota terreno vergine

Q.t.d. : quota definitiva terreno

Q.falda : quota falda

InclTer : inclinazione terreno

Numero strato : Numero dello strato a cui si riferiscono i dati che seguono

Sp.str. : Spessore strato. L'ultimo strato ha spessore indefinito, pertanto

il relativo dato non viene stampato

Peso Sp : peso specifico

Fi : angolo di attrito interno in gradi

C' : coesione drenata

Cu : coesione non drenata

Mod.El. : modulo elastico

Poisson : coefficiente di Poisson

Gr.Sovr : grado di sovraconsolidazione

Mod.Ed : modulo edometrico

	STRATIGRAFIA TRAVI WINKLER														
Trave N.ro	Q.t.v. (m)	Q.t.d. (m)	Q.falda (m)	Incl Grd	Kw kg/cmc	Numero Strato	Sp.str. (m)	Peso Sp kg/mc	Fi' (Grd)	C' kg/cmq	Cu kg/cmq	Mod.El. kg/cmq	Poisson	Gr.Sovr	Mod.Ed. kg/cmq
1 - 6	1,00	0,00	8,50	0	2,00	1		1800	28,00	0,00	0,00	60,00	0,30	1,00	60,00

Sollecitazioni agenti sull'area d'impronta delle travi.

Si riporta di seguito la spiegazione delle sigle usate nella tabella di stampa delle risultanti delle sollecitazioni agenti sull'area d'impronta delle travi Winkler, nel sistema di riferimento locale (y=asse trave).

> Trave : numero di trave sequenziale

Comb. : Numero della combinazione a cui si riferiscono i dati che

seguono

Rv : Risultante delle pressioni verticali

: Risultante delle sollecitazioni agenti parallelamente all'asse x $\mathbf{V}\mathbf{x}$

locale dell' asta

: Risultante delle sollecitazioni agenti parallelamente all'asse y $\mathbf{V}\mathbf{y}$

locale dell' asta

Mrx : Momento risultante di asse vettore x nel sistema di riferimento

locale dell' asta (momento flettente)

Mry : Momento risultante di asse vettore y nel sistema di riferimento

locale dell' asta (momento torcente)

	RISUL	TANTI SOLLE	CITAZIONI TR	AVI WINKLER	- SLU	
Trave	Combinazione	Rv	Vx	Vy	Mrx	Mry
N.ro	N.ro	(kg)	(kg)	(kg)	kg*cm	kg*cm
1	A1/1	78152	0	0	185579	145053
	A1/2	77814	0	0	183875	143651
	A1/3	76614	0	0	178067	138679
	A1/4	78319	0	597	602490	145795
	A1/5	77981	0	597	600786	144394
	A1/6	76781	0	596	594978	139422
	A1/7	76893	0	994	872918	139917
	A1/8	73053	1291	0	171897	100458
	A1/9	72715	1291	0	170193	99056
	A1/10	71515	1289	0	164386	94085
	A1/11	68116	2079	0	155265	64355
	A1/12	78140	0	595	606056	148935
	A1/13	77802	0	595	604352	147533
	A1/14	76602	0	595	598544	142561
	A1/15	76714	0	992	876484	143056
	A1/16	72874	1288	0	175464	103598
	A1/17	72536	1287	0	173760	102196
	A1/18	71336	1285	0	167952	97224
	A1/19	67937	2074	0	158831	67495
	A1/20	76483	0	594	600922	144654
	A1/21	71217	1283	0	170329	99317
	A1/22	78498	0	598	598923	142656
	A1/23	78160	0	598	597219	141254
	A1/24	76960	0	598	591412	136282
	A1/25	77072	0	997	869352	136777
	A1/26	73232	1294	0	168331	97319
	A1/27	72894	1294	0	166627	95917
	A1/28	71694	1292	0	160820	90945
	A1/29	68295	2085	0	151699	61215
	A1/30	77080	0	598	589034	134189
	A1/31	71813	1294	0	158442	88852
	X+ A1/37	64619	3463	11546	3853886	182836
	X- A1/47	63871	3423	11412	3562727	181261
	Y+ A1/51	33107	5914	1775	1559588	178304
	Y- A1/53	81189	14503	4352	1678237	376700
0	A 1 /4	70150	0		105570	145050
2	A1/1 A1/2	78152 77814	0 0	0 0	185578 183874	145053 143651
	A1/2 A1/3	77614 76614	0	0	178067	138679
	A1/3 A1/4	78319	0	597	602489	145795
	A1/4 A1/5	76319 77981	0	597 597	602469	144394
	A1/5 A1/6	76781	0	597 596	594977	139422
	A1/6 A1/7	76761	0	994	872918	139917
	A1/7 A1/8	76693 79391	1403	994	182983	173613
	A1/8 A1/9	79391	1403	0	181279	173013
	A1/9 A1/10	79053 77853	1403	0	175471	167239
				0		
I	A1/11	78680	2402	U	173741	186279

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REVISIONE
 FOGLIO

 RS3H
 02
 D 78 CL
 FA 0500 001
 A
 95di 115

OLO	RISULTANTI SOLLECITAZIONI TRAVI WINKLER - SLU										
	t.			lt .							
Trave	Combinazione	Rv	Vx	Vy	Mrx	Mry					
N.ro	N.ro	(kg)	(kg)	(kg)	kg*cm	kg*cm					
	A1/12	78140	0	595	606055	148935					
	A1/13	77802	0	595	604351	147533					
	A1/14	76602	0	595	598543	142561					
	A1/15	76714	0	992	876484	143056					
	A1/16	79212	1400	0	186549	176753					
	A1/17	78874	1400	0	184845	175351					
	A1/18	77674	1400	0	179038	170379					
	A1/19 A1/20	78501 76483	2396	0 504	177307 600921	189419					
	A1/20 A1/21	76463 77555	0 1397	594 0	181415	144654 172472					
	A1/21 A1/22	77555 78498	0	598	598923	142656					
	A1/22 A1/23	78160	0	598	597219	141254					
	A1/24	76960	0	598	591411	136282					
	A1/25	77072	0	997	869351	136777					
	A1/26	79570	1406	0	179417	170473					
	A1/27	79232	1406	Ö	177713	169071					
	A1/28	78032	1406	Ö	171905	164100					
	A1/29	78859	2407	Ö	170175	183140					
	A1/30	77080	0	598	589034	134189					
	A1/31	78152	1408	0	169528	162006					
	X+ A1/32	64619	3463	11546	3853885	182836					
	X- A1/42	63871	3423	11412	3562726	181261					
	Y+ A1/48	81189	14503	4352	1678239	376700					
	Y- A1/54	33107	5914	1775	1559585	178304					
3	A1/1	36120	0	0	0	31498					
	A1/2	35986	0	0	0	31469					
	A1/3	35514	0	0	0	31360					
	A1/4	35109	268	0	0	23571					
	A1/5 A1/6	34976 34503	268 268	0 0	0 0	23541 23433					
	A1/7	33830	437	0	0	18148					
	A1/8	35379	0	625	161764	31594					
	A1/9	35246	Ö	626	161764	31565					
	A1/10	34773	Ö	627	161764	31456					
	A1/11	34279	Ö	1046	269607	31520					
	A1/12	35590	271	0	0	31799					
	A1/13	35457	271	0	0	31769					
	A1/14	34984	272	0	0	31661					
	A1/15	34310	444	0	0	26376					
	A1/16	35860	0	634	161764	39822					
	A1/17	35726	0	634	161764	39792					
	A1/18	35254	0	635	161764	39684					
	A1/19	34760	0	1061	269607	39748					
	A1/20	35304	274	0	0	37146					
	A1/21	35574	0	641	161764	45169					
	A1/22	34629	264	0	0	15343					
	A1/23	34496	264	0	0	15314					
	A1/24	34023	264	0	0	15205					

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 96di 115

Trave N.ro			RISUL	TANTI SOLLE	CITAZIONI TR	AVI WINKLER	- SLU	
N,ro	Trave	Combinaz	zione	Rv	Vx	Vy	Mrx	Mry
A1/25 33349 431 0 0 9920 A1/26 34899 0 617 161764 23366 A1/27 34765 0 617 161764 23337 A1/28 34293 0 618 161764 23337 A1/28 34293 0 618 161764 23239 A1/29 33799 0 1032 266607 23292 A1/30 33702 262 0 0 9720 A1/31 33972 0 612 161764 17743 X+ A1/35 18055 3226 968 415389 43628 X- A1/47 35083 6269 1880 415389 91531 Y+ A1/68 29123 1561 5202 1294467 44225 Y- A1/63 29123 1561 5202 1294467 44225 Y- A1/63 29123 1561 5202 1294467 44225 A1/1 35091 0 0 0 16640 A1/2 34953 0 0 0 0 16644 A1/2 34953 0 0 0 0 16652 A1/4 34848 266 0 0 0 10995 A1/6 34222 266 0 0 0 10995 A1/6 34222 266 0 0 0 10995 A1/7 34060 440 0 0 7244 A1/8 34300 0 606 123003 16812 A1/9 34162 0 606 123003 16815 A1/10 33673 0 607 123003 16812 A1/10 33673 0 607 123003 16824 A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 0 15815 A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 15818 A1/14 33951 264 0 0 15818 A1/14 33951 264 0 0 15818 A1/14 33991 0 602 123003 16824 A1/15 33789 437 0 0 12064 A1/16 34029 0 601 123003 16824 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21635 A1/19 32675 0 1003 205004 21758 A1/20 33771 262 0 0 0 15815 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21635 A1/19 32675 0 1003 205004 21758 A1/20 33771 262 0 0 0 19040 A1/21 33222 0 5999 123003 21634 A1/19 32675 0 1003 205004 21758 A1/22 35119 268 0 0 0 6175 A1/23 34981 268 0 0 0 6187 A1/24 34492 268 0 0 0 6175 A1/25 34330 444 0 0 0 2424 A1/26 34570 0 611 123003 11995 A1/26 34570 0 611 123003 11995 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 11995 A1/29 33417 0 1020 205004 21758 A1/29 33417 0 1020 205004 21758 A1/29 33417 0 1020 205004 21758 A1/29 33417 0 1020 205004 21718 A1/29 33417 0 1020 205004 21718 A1/29 33417 0 1020 205004 21718 A1/29 33417 0 615 123003 316615 57720 Y+ A1/58 26409 4146 4777 978161 26292	N.ro	N.ro		(kg)	(kg)		kg*cm	
A1/26 34899 0 617 161764 23366 A1/27 34765 0 617 161764 23337 A1/28 34293 0 618 161764 23329 A1/29 33799 0 1032 269607 23292 A1/30 33702 262 0 0 9720 A1/31 33972 0 612 161764 17743 X+ A1/35 18055 3226 968 415389 91531 Y+ A1/47 35083 6269 1880 415389 91531 Y+ A1/58 29123 1561 5202 1294467 44225 Y- A1/63 29123 1561 5202 1294467 44225 Y- A1/63 29123 1561 5202 1294467 44225 A1/1 35091 0 0 0 16640 A1/2 34953 0 0 0 0 6664 A1/3 34464 0 0 0 0 16652 A1/4 34848 266 0 0 0 19995 A1/5 34710 266 0 0 0 19995 A1/6 34222 266 0 0 0 11007 A1/7 34060 440 0 0 7244 A1/8 34300 0 606 123003 16812 A1/9 34162 0 606 123003 16812 A1/9 34162 0 606 123003 16815 A1/10 33673 0 607 123003 16824 A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 15815 A1/14 33951 264 0 0 15815 A1/15 347389 437 0 0 15815 A1/16 34929 0 601 123003 21632 A1/17 33891 0 602 123003 21635 A1/17 33891 0 602 123003 21635 A1/18 33403 0 6607 123003 21635 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21635 A1/17 33891 0 602 123003 21635 A1/18 33403 0 601 123003 21635 A1/18 33403 0 602 123003 21635 A1/18 33403 0 611 123003 11995 A1/22 35119 268 0 0 0 6175 A1/23 34981 268 0 0 0 6175 A1/24 34492 268 0 0 0 6175 A1/25 34330 444 0 0 0 2295004 1218 A1/26 34570 0 0 611 123003 11995 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 11995 A1/28 33944 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 26292			1/25					
A1/27 34765 0 617 161764 23337 A1/28 34293 0 618 161764 23329 A1/29 33799 0 1032 269607 23292 A1/30 33702 262 0 0 0 9720 A1/31 33972 0 612 161764 17743 X+ A1/35 18055 3226 968 415389 43628 X- A1/47 35083 6269 1880 415389 91531 Y+ A1/58 29123 1561 5202 1294467 44225 Y- A1/63 29123 1561 5202 1294467 44225 Y- A1/63 29123 1561 5202 1294467 44225 A1/4 34848 266 0 0 0 16644 A1/3 34464 0 0 0 0 16652 A1/4 34848 266 0 0 0 10995 A1/6 34722 2666 0 0 0 10995 A1/6 34722 2666 0 0 0 10998 A1/6 34222 2666 0 0 0 10998 A1/8 34300 0 606 123003 16815 A1/10 33673 0 607 123003 16812 A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 15815 A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 15815 A1/11 333891 0 602 123003 21632 A1/11 333891 0 602 123003 21632 A1/11 33282 0 601 123003 21632 A1/11 332875 0 1003 205004 21758 A1/12 33292 0 599 123003 24657 A1/12 33222 0 599 123003 24657 A1/12 33222 0 599 123003 24657 A1/12 33292 0 599 123003 24657 A1/12 33292 0 599 123003 24657 A1/12 34953 0 611 123003 11992 A1/12 34492 268 0 0 0 6175 A1/12 34930 444 0 0 0 2424 A1/12 33292 0 599 123003 24857 A1/12 34330 444 0 0 0 2424 A1/12 33292 0 599 123003 24857 A1/12 34330 444 0 0 0 2424 A1/12 33293 34981 268 0 0 0 6175 A1/12 34330 444 0 0 0 2424 A1/12 34492 268 0 0 0 6187 A1/12 34330 444 0 0 0 2424 A1/12 34492 268 0 0 0 6187 A1/12 34330 444 0 0 0 2424 A1/12 34493 268 0 0 0 6187 A1/12 34330 444 0 0 0 2424 A1/12 34492 268 0 0 0 6187 A1/12 34330 444 0 0 0 2424 A1/12 34493 268 0 0 0 6187 A1/12 34330 444 0 0 0 2424 A1/12 34493 268 0 0 0 6187 A1/12 34330 444 0 0 0 0 2424 A1/12 34493 268 0 0 0 6187 A1/12 34330 444 0 0 615 123003 8791 A1/12 34433 0 611 123003 11995 A1/12 34433 0								
A1/28 34293 0 618 161764 23229 A1/29 33799 0 1032 269607 23292 A1/30 33702 262 0 0 9720 A1/31 33972 0 612 161764 17743 X+ A1/35 18055 3226 968 415389 43628 X- A1/47 35083 6269 1880 415389 91531 Y+ A1/58 29123 1561 5202 1294467 44225 Y- A1/63 29123 1561 5202 1294467 44225 Y- A1/63 29123 1561 5202 1294467 44225 A1/4 34848 266 0 0 0 16644 A1/3 34464 0 0 0 0 16664 A1/3 34464 0 0 0 0 16664 A1/3 34464 0 0 0 0 16662 A1/4 34848 266 0 0 0 10995 A1/5 34710 266 0 0 0 10998 A1/6 34222 266 0 0 0 11007 A1/7 34060 440 0 0 0 7244 A1/8 34300 0 606 123003 16812 A1/9 34162 0 606 123003 16815 A1/10 33673 0 607 123003 16824 A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 15815 A1/13 34440 264 0 0 15818 A1/14 33951 264 0 0 15818 A1/14 33951 264 0 0 15815 A1/15 33789 437 0 0 0 15816 A1/16 34029 0 601 123003 21632 A1/16 34029 0 601 123003 21632 A1/17 33891 0 602 123003 21632 A1/18 33403 0 602 123003 21632 A1/17 33891 0 602 123003 21634 A1/18 33403 0 602 123003 21635 A1/19 32875 0 1003 205004 21758 A1/22 35119 268 0 0 0 6175 A1/22 34433 0 611 123003 11995 A1/28 33444 0 0 612 123003 11995 A1/28 33447 0 0 1020 205004 12118 A1/26 34570 0 611 123003 11995 A1/28 33444 0 0 612 123003 11995 A1/28 33444 0 611 123003 11995 A1/28 33444 0 611 123003 11995 A1/28 33444 0 615 123003 8791 A1/28 33444 0 615 123003 8791 A1/28 33447 0 615 123								
A1/29 33799 0 1032 269607 23292 A1/30 33702 262 0 0 0 9720 A1/31 33972 0 612 161764 17743 X+ A1/35 18055 3226 968 415389 91531 Y+ A1/58 29123 1561 5202 1294467 44225 Y- A1/63 29123 1561 5202 1294467 44225 Y- A1/63 29123 1561 5202 1294467 44225 Y- A1/63 29123 1561 5202 1294467 44225 A1/13 34846 0 0 0 0 166640 A1/2 34953 0 0 0 0 166640 A1/3 34464 0 0 0 0 166652 A1/4 34848 266 0 0 0 10995 A1/5 34710 266 0 0 0 10995 A1/6 34222 266 0 0 0 11007 A1/7 34060 440 0 0 0 7244 A1/8 34300 0 606 123003 16812 A1/9 34162 0 606 123003 16812 A1/9 34162 0 606 123003 16815 A1/10 33673 0 607 123003 16824 A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 15815 A1/13 34440 264 0 0 15815 A1/14 33951 264 0 0 15827 A1/15 33789 437 0 0 15815 A1/14 33951 264 0 0 15827 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21635 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 599 123003 24857 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6175 A1/23 34981 268 0 0 6175 A1/23 34981 268 0 0 6175 A1/24 3492 268 0 0 6175 A1/25 34330 444 0 0 0 2424 A1/17 33491 268 0 0 6175 A1/23 34981 268 0 0 6175 A1/24 3492 268 0 0 6178 A1/25 34330 444 0 0 0 2424 A1/17 33491 268 0 0 6175 A1/26 34330 444 0 0 0 2424 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 919040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/28 33494 268 0 0 6175 A1/29 33417 0 1020 205004 1218 A1/26 34570 0 611 123003 11995 A1/27 34433 0 611 123003 11992 A1/27 34433 0 611 123003 11992 A1/27 34433 0 611 123003 11992 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 52700 Y+ A1/58 26409 1416 4717 978161 26292								
A1/30 33702 262 0 0 9720 A1/31 33972 0 612 161764 17743 X+ A1/35 18055 3226 968 415389 43628 X- A1/47 35083 6269 1880 415389 91531 Y+ A1/58 29123 1561 5202 1294467 44225 Y- A1/63 29123 1561 5202 1294467 44225 Y- A1/63 29123 1561 5202 1294467 44225 A1/12 34953 0 0 0 16644 A1/2 34953 0 0 0 16652 A1/4 34848 266 0 0 10995 A1/5 34710 266 0 0 0 10995 A1/6 34222 266 0 0 0 10998 A1/6 34222 266 0 0 0 10998 A1/7 34060 440 0 0 0 7244 A1/8 34300 0 606 123003 16815 A1/10 33673 0 607 123003 16815 A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 15818 A1/14 33951 264 0 0 15818 A1/15 33789 437 0 0 15818 A1/16 34029 0 601 123003 21632 A1/17 33891 0 602 123003 21632 A1/18 33403 0 602 123003 21635 A1/18 33403 0 602 123003 21635 A1/19 32875 0 1003 205004 21758 A1/18 33403 0 602 123003 21632 A1/17 33891 0 602 123003 21634 A1/18 33403 0 602 123003 21634 A1/17 33891 0 602 123003 21634 A1/18 33403 0 602 123003 21634 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 19040 A1/21 33222 0 599 123003 21634 A1/19 32875 0 1003 205004 21758 A1/22 34570 0 611 123003 11995 A1/25 34330 444 0 0 0 2424 A1/26 34570 0 611 123003 11992 A1/27 34433 0 611 123003 11992 A1/28 33944 0 612 123003 11995 A1/28 33944 0 612 123003 11995 A1/28 33944 0 612 123003 11995 A1/28 33944 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292								
A1/31 33972 0 612 161764 17743 X+								
X+ A1/35 18055 3226 968 415389 43628 Y+ A1/58 29123 1561 5202 1294467 44225 Y- A1/63 29123 1561 5202 1294467 44225 4 A1/1 35091 0 0 0 16640 A1/2 34953 0 0 0 16644 A1/3 34464 0 0 0 16652 A1/4 34848 266 0 0 10998 A1/5 34710 266 0 0 10998 A1/6 34222 266 0 0 10998 A1/6 34222 266 0 0 10998 A1/7 34060 440 0 0 7244 A1/8 34300 0 606 123003 16815 A1/10 33673 0 607 123003 16815 A1/11								
X-								
Y+ A1/58 29123 (9123) 1561 (1561) 5202 (1294467) 44225 (4225) 4 A1/63 29123 1561 5202 1294467 44225 (4225) 4 A1/63 29123 1561 5202 1294467 44225 (4225) 4 A1/2 34953 0 0 0 16644 (A1/3) A1/3 34464 0 0 0 16652 (A1/4) A1/4 34848 266 (A) 0 0 10998 (A1/6) A1/5 34710 266 (A) 0 0 10998 (A1/6) A1/6 34222 (A1/6) 266 (A1/6) 0 0 11098 (A1/6) A1/7 34060 (A440) 0 0 0 7224 (A1/7) A1/8 34300 (A1/6) 0 606 (A1/23003) (A1/6) 16812 (A1/7) A1/10 33673 (A1/7) 0 607 (A1/7) 123003 (A1/7) 16812 (A1/7) A1/11 33146 (A1/7) 0 1012 (A1/7) 16824 (A1/7) 0 0 15818 (A1/7) A1/13 (A1/4)								
Y- A1/63 29123 1561 5202 1294467 44225 4 A1/1 35091 0 0 0 16644 A1/2 34953 0 0 0 16644 A1/3 34464 0 0 0 16652 A1/4 34848 266 0 0 10995 A1/5 34710 266 0 0 10995 A1/6 34222 266 0 0 11007 A1/7 34060 440 0 0 7244 A1/8 34300 0 606 123003 16815 A1/10 33673 0 607 123003 16815 A1/11 33673 0 607 123003 16824 A1/13 34440 264 0 0 15815 A1/13 34440 264 0 0 15827 A1/15 33789 437								
4 A1/1 35091 0 0 0 16640 A1/2 34953 0 0 0 0 16664 A1/3 34464 0 0 0 0 0 16652 A1/4 34948 266 0 0 0 10995 A1/5 34710 266 0 0 0 10998 A1/6 34222 266 0 0 0 11007 A1/7 34060 440 0 0 0 7244 A1/8 34300 0 606 123003 16812 A1/9 34162 0 606 123003 16815 A1/10 33673 0 607 123003 16824 A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 15815 A1/14 33951 264 0 0 0 15815 A1/14 33951 264 0 0 0 15827 A1/15 33789 437 0 0 1264 A1/16 34029 0 601 123003 21632 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21635 A1/18 33403 0 602 123003 21644 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 0 1758 A1/20 33771 262 0 0 0 617 A1/23 35119 268 0 0 6175 A1/23 34981 268 0 0 6175 A1/24 34492 268 0 0 6187 A1/25 34330 444 0 0 2 2424 A1/26 34570 0 611 123003 11992 A1/27 34433 0 611 123003 11992 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292								
A1/2 34953 0 0 0 16644 A1/3 34464 0 0 0 0 0 16652 A1/4 34848 266 0 0 0 10995 A1/5 34710 266 0 0 0 10998 A1/6 34222 266 0 0 0 11007 A1/7 34060 440 0 0 7244 A1/8 34300 0 606 123003 16815 A1/10 33673 0 607 123003 16815 A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 15815 A1/13 34440 264 0 0 15815 A1/14 33951 264 0 0 15827 A1/15 33789 437 0 0 0 15827 A1/16 34029 0 601 123003 21635 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21644 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 19040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 19040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6175 A1/24 34492 268 0 0 6175 A1/25 34330 444 0 0 2424 A1/26 34570 0 611 123003 11995 A1/28 33944 0 612 123003 12004 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 29977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292		1- /	1700	23123	1301	3202	1234407	44223
A1/3 34464 0 0 0 0 16652 A1/4 34848 266 0 0 0 10995 A1/5 34710 266 0 0 0 10998 A1/6 34222 266 0 0 0 11007 A1/7 34060 440 0 0 0 7244 A1/8 34300 0 606 123003 16812 A1/9 34162 0 606 123003 16815 A1/10 33673 0 607 123003 16852 A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 15815 A1/13 34440 264 0 0 15815 A1/14 33951 264 0 0 0 15815 A1/15 33789 437 0 0 1200 A1/16 34029 0 601 123003 21632 A1/17 33891 0 602 123003 21632 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21635 A1/18 33403 0 602 123003 21635 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 19040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6175 A1/23 34981 268 0 0 6175 A1/24 34492 268 0 0 6178 A1/24 34492 268 0 0 6175 A1/23 34981 268 0 0 6175 A1/23 34981 268 0 0 6175 A1/24 34492 268 0 0 6175 A1/25 34330 444 0 0 0 2424 A1/26 34570 0 611 123003 11995 A1/27 34433 0 611 123003 11995 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 11995 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 11995 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292	4							
A1/4 34848 266 0 0 0 10995 A1/5 34710 266 0 0 0 10998 A1/6 34222 266 0 0 0 11007 A1/7 34060 440 0 0 0 7244 A1/8 34300 0 606 123003 16812 A1/9 34162 0 606 123003 16812 A1/10 33673 0 607 123003 16824 A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 15815 A1/13 34440 264 0 0 15887 A1/15 33789 437 0 0 15887 A1/16 34029 0 601 123003 21632 A1/17 33891 0 602 123003 21632 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21634 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 1094 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6175 A1/23 34981 268 0 0 6178 A1/24 34492 268 0 0 6178 A1/24 34492 268 0 0 6178 A1/25 34330 444 0 0 0 2424 A1/26 34570 0 611 123003 11992 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 11995 A1/28 33944 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292								
A1/5 34710 266 0 0 0 10998 A1/6 34222 266 0 0 0 111007 A1/7 34060 440 0 0 0 7244 A1/8 34300 0 606 123003 16812 A1/9 34162 0 606 123003 16815 A1/10 33673 0 607 123003 16824 A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 15815 A1/13 34440 264 0 0 15815 A1/14 33951 264 0 0 15827 A1/15 33789 437 0 0 12064 A1/17 33891 0 602 123003 21632 A1/17 33891 0 602 123003 21632 A1/18 33403 0 602 123003 21634 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 0 19040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6175 A1/23 34981 268 0 0 6175 A1/24 34492 268 0 0 6175 A1/25 34330 444 0 0 0 2424 A1/26 34570 0 611 123003 11992 A1/27 34433 0 611 123003 11992 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292								
A1/6 34222 266 0 0 0 11007 A1/7 34060 440 0 0 0 7244 A1/8 34300 0 606 123003 16812 A1/9 34162 0 606 123003 16815 A1/10 33673 0 607 123003 16824 A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 0 15815 A1/13 34440 264 0 0 15815 A1/15 33789 437 0 0 12064 A1/16 34029 0 601 123003 21632 A1/17 33891 0 602 123003 21632 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21635 A1/18 33403 0 602 123003 21644 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 19040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6175 A1/24 34492 268 0 0 6175 A1/25 34330 444 0 0 0 2424 A1/26 34570 0 611 123003 11995 A1/26 34570 0 611 123003 11995 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 11995 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 11995 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292		1	A1/4	34848	266	0	0	10995
A1/7 34060 440 0 0 7244 A1/8 34300 0 606 123003 16812 A1/9 34162 0 606 123003 16815 A1/10 33673 0 607 123003 16815 A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 15815 A1/13 34440 264 0 0 15818 A1/14 33951 264 0 0 15827 A1/15 33789 437 0 0 12064 A1/16 34029 0 601 123003 21632 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21644 A1/19 32875 0 1003 205004 21758 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 <th></th> <th></th> <th>A1/5</th> <th></th> <th>266</th> <th>0</th> <th>0</th> <th></th>			A1/5		266	0	0	
A1/8 34300 0 606 123003 16812 A1/9 34162 0 606 123003 16815 A1/10 33673 0 607 123003 16824 A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 0 15815 A1/13 34440 264 0 0 15818 A1/14 33951 264 0 0 15827 A1/15 33789 437 0 0 12064 A1/16 34029 0 601 123003 21632 A1/17 33891 0 602 123003 21632 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21644 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 0 19040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6175 A1/24 34492 268 0 0 6175 A1/25 34330 444 0 0 0 2424 A1/26 34570 0 611 123003 11995 A1/27 34433 0 611 123003 11995 A1/27 34433 0 611 123003 11995 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 12904 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292								
A1/9 34162 0 606 123003 16815 A1/10 33673 0 607 123003 16824 A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 15815 A1/13 34440 264 0 0 15818 A1/14 33951 264 0 0 15827 A1/15 33789 437 0 0 12064 A1/16 34029 0 601 123003 21635 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21644 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 19040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0				34060	440			
A1/10 33673 0 607 123003 16824 A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 15815 A1/13 34440 264 0 0 15818 A1/14 33951 264 0 0 15827 A1/15 33789 437 0 0 12064 A1/16 34029 0 601 123003 21632 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21635 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 19040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6178 A1/24 34492 268 0 0					0			
A1/11 33146 0 1012 205004 16938 A1/12 34577 263 0 0 15815 A1/13 34440 264 0 0 15818 A1/14 33951 264 0 0 15827 A1/15 33789 437 0 0 12064 A1/16 34029 0 601 123003 21632 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21644 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 19040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6178 A1/24 34492 268 0 0 6187 A1/25 34330 444 0 0 2		1	A1/9	34162	0		123003	16815
A1/12 34577 263 0 0 15815 A1/13 34440 264 0 0 15818 A1/14 33951 264 0 0 15827 A1/15 33789 437 0 0 12064 A1/16 34029 0 601 123003 21632 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21644 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 19040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6178 A1/24 34492 268 0 0 6187 A1/25 34330 444 0 0 2424 A1/26 34570 0 611 123003 119		P	1 1/10	33673	0	607	123003	16824
A1/13 34440 264 0 0 15818 A1/14 33951 264 0 0 15827 A1/15 33789 437 0 0 12064 A1/16 34029 0 601 123003 21632 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21644 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 19040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6178 A1/24 34492 268 0 0 6187 A1/25 34330 444 0 0 2424 A1/26 34570 0 611 123003 11995 A1/28 33944 0 612 123003 <t< th=""><th></th><th></th><th></th><th>33146</th><th></th><th>1012</th><th>205004</th><th></th></t<>				33146		1012	205004	
A1/14 33951 264 0 0 15827 A1/15 33789 437 0 0 12064 A1/16 34029 0 601 123003 21632 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21634 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 19040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6175 A1/24 34492 268 0 0 6178 A1/25 34330 444 0 0 0 2424 A1/26 34570 0 611 123003 11992 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292				34577			0	15815
A1/15 33789 437 0 0 12064 A1/16 34029 0 601 123003 21632 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21644 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 19040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6178 A1/24 34492 268 0 0 6187 A1/25 34330 444 0 0 2424 A1/26 34570 0 611 123003 11992 A1/27 34433 0 611 123003 12004 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 <th></th> <th></th> <th></th> <th>34440</th> <th>264</th> <th>0</th> <th>0</th> <th></th>				34440	264	0	0	
A1/16 34029 0 601 123003 21632 A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21644 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 19040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6178 A1/24 34492 268 0 0 6187 A1/25 34330 444 0 0 2424 A1/26 34570 0 611 123003 11995 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 2974 A1/31 34124 0 615 123003 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
A1/17 33891 0 602 123003 21635 A1/18 33403 0 602 123003 21644 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 19040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6178 A1/24 34492 268 0 0 6187 A1/25 34330 444 0 0 2424 A1/26 34570 0 611 123003 11992 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 125								
A1/18 33403 0 602 123003 21644 A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 19040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6178 A1/24 34492 268 0 0 6187 A1/25 34330 444 0 0 0 2424 A1/26 34570 0 611 123003 11992 A1/27 34433 0 611 123003 11992 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292								
A1/19 32875 0 1003 205004 21758 A1/20 33771 262 0 0 19040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6178 A1/24 34492 268 0 0 6187 A1/25 34330 444 0 0 2424 A1/26 34570 0 611 123003 11992 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
A1/20 33771 262 0 0 19040 A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6178 A1/24 34492 268 0 0 6187 A1/25 34330 444 0 0 2424 A1/26 34570 0 611 123003 11992 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
A1/21 33222 0 599 123003 24857 A1/22 35119 268 0 0 6175 A1/23 34981 268 0 0 6178 A1/24 34492 268 0 0 6187 A1/25 34330 444 0 0 2424 A1/26 34570 0 611 123003 11992 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292								
A1/22 35119 268 0 0 0 6175 A1/23 34981 268 0 0 0 6178 A1/24 34492 268 0 0 0 6187 A1/25 34330 444 0 0 0 2424 A1/26 34570 0 611 123003 11992 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292								
A1/23 34981 268 0 0 0 6178 A1/24 34492 268 0 0 0 6187 A1/25 34330 444 0 0 0 2424 A1/26 34570 0 611 123003 11992 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292							123003	
A1/24 34492 268 0 0 6187 A1/25 34330 444 0 0 2424 A1/26 34570 0 611 123003 11992 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292							0	
A1/25 34330 444 0 0 2424 A1/26 34570 0 611 123003 11992 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292							-	
A1/26 34570 0 611 123003 11992 A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292								
A1/27 34433 0 611 123003 11995 A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292								
A1/28 33944 0 612 123003 12004 A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292								
A1/29 33417 0 1020 205004 12118 A1/30 34673 269 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292								
A1/30 34673 269 0 0 2974 A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292								
A1/31 34124 0 615 123003 8791 X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292								
X+ A1/35 23496 4198 1259 311615 32073 X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292								
X- A1/47 27977 4999 1499 311615 57720 Y+ A1/58 26409 1416 4717 978161 26292								
Y+ A1/58 26409 1416 4717 978161 26292								
Y- A1/63 26409 1416 4717 978161 26292								
		Y- A	A1/63	26409	1416	4717	978161	26292
5 A1/1 34859 0 0 0 13821	5		Δ1/1	3/1850	0	0	Λ	13821

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REVISIONE
 FOGLIO

 RS3H
 02
 D 78 CL
 FA 0500 001
 A
 97di 115

	RISUL	TANTI SOLLE	CITAZIONI TR	AVI WINKLER	- SLU	
Trave	Combinazione	Rv	Vx	Vy	Mrx	Mry
N.ro	N.ro	(kg)	(kg)	(kg)	kg*cm	kg*cm
,	A1/2	34720	0	0	0	13811
	A1/3	34227	0	0	0	13777
	A1/4	35249	269	0	0	16994
	A1/5	35110	269	0	0	16984
	A1/6	34617	269	0	0	16950
	A1/7	34876	451	0	0	19065
	A1/8	34060	0	602	114365	13918
	A1/9	33921	0	602	114365	13908
	A1/10	33428	0	602	114365	13874
	A1/11	32895	0	1004	190609	13939
	A1/12	34928	266	0	0	21160
	A1/13	34789	266	0	0	21150
	A1/14	34296	266	0	0	21116
	A1/15	34556	447	0	0	23231
	A1/16	33739	0	596	114365	18084
	A1/17	33600	0	596	114365	18074
	A1/18	33107	0	597	114365	18040
	A1/19	32575	0	994	190609	18105
	A1/20	34082	265	0	0	23893
	A1/21	32894	0	593	114365	20818
	A1/22	35569	271	0	0	12828
	A1/23	35430	271	0	0	12818
	A1/24	34937	271	0	0	12784
	A1/25	35197	455	0	0	14899
	A1/26	34381	0	608	114365	9752
	A1/27	34241	0	608	114365	9742
	A1/28	33749	0	608	114365	9708
	A1/29	33216	0	1014	190609	9773
	A1/30	35151	273	0	0	10006
	A1/31	33962	0	612	114365	6931
	X+ A1/32	27791	4966	1489	285424	45893
	X- A1/44	23303	4164	1249	285424	24805
	Y+ A1/48 Y- A1/53	26221	1406	4684	904773	21149
	Y- A1/53	26221	1406	4684	904773	21149
6	A1/1	36262	0	0	0	34692
	A1/2	36124	0	0	0	34612
	A1/3	35636	0	0	0	34327
	A1/4	37074	283	0	0	38692
	A1/5	36937	283	0	0	38612
	A1/6	36449	283	0	0	38327
	A1/7	36991	478	0	0	40994
	A1/8	35502	0	627	162031	34530
	A1/9	35365	0	628	162031	34450
	A1/10	34877	0	628	162031	34165
	A1/11	34371	0	1049	270052	34057
	A1/12	37543	286	0	0	46621
	A1/13	37405	286	0	0	46541
I	A1/14	36918	287	0	0	46256

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 98di 115

RISULTANTI SOLLECITAZIONI TRAVI WINKLER - SLU											
Trave	Combinazione	Rv	Vx	Vy	Mrx	Mry					
N.ro	N.ro	(kg)	(kg)	(kg)	kg*cm	kg*cm					
	A1/15	37459	484	0	0	48923					
	A1/16	35971	0	636	162031	42458					
	A1/17	35833	0	636	162031	42379					
	A1/18	35345	0	637	162031	42094					
	A1/19	34839	0	1063	270052	41986					
	A1/20	37230	289	0	0	51542					
	A1/21	35658	0	642	162031	47380					
	A1/22	36606	279	0	0	30763					
	A1/23	36468	279	0	0	30683					
	A1/24	35981	279	0	0	30398					
	A1/25	36522	472	0	0	33065					
	A1/26	35034	0	619	162031	26601					
	A1/27	34896	0	619	162031	26521					
	A1/28	34408	0	620	162031	26236					
	A1/29	33902	0	1035	270052	26128					
	A1/30	35668	277	0	0	25112					
	A1/31	34096	0	614	162031	20950					
	X+ A1/32	34407	6148	1844	423621	81988					
	X- A1/44	18873	3372	1011	423621	30080					
	Y+ A1/48	28970	1553	5175	1310951	42765					
	Y- A1/53	28970	1553	5175	1310951	42765					

	RISULTANTI SOLLECITAZIONI TRAVI WINKLER - SLD											
Trave	Combinazione	Rv	Vx	Vy	Mrx	Mry						
N.ro	N.ro	(kg)	(kg)	(kg)	kg*cm	kg*cm						
1	SLD/1	78152	0	0	185579	145053						
	SLD/2	77814	0	0	183875	143651						
	SLD/3	76614	0	0	178067	138679						
	SLD/4	78319	0	597	602490	145795						
	SLD/5	77981	0	597	600786	144394						
	SLD/6	76781	0	596	594978	139422						
	SLD/7	76893	0	994	872918	139917						
	SLD/8	73053	1291	0	171897	100458						
	SLD/9	72715	1291	0	170193	99056						
	SLD/10	71515	1289	0	164386	94085						
	SLD/11	68116	2079	0	155265	64355						
	SLD/12	78140	0	595	606056	148935						
	SLD/13	77802	0	595	604352	147533						
	SLD/14	76602	0	595	598544	142561						
	SLD/15	76714	0	992	876484	143056						
	SLD/16	72874	1288	0	175464	103598						
	SLD/17	72536	1287	0	173760	102196						
	SLD/18	71336	1285	0	167952	97224						
	SLD/19	67937	2074	0	158831	67495						
	SLD/20	76483	0	594	600922	144654						
	SLD/21	71217	1283	0	170329	99317						
	SLD/22	78498	0	598	598923	142656						
	SLD/23	78160	0	598	597219	141254						

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REVISIONE
 FOGLIO

 RS3H
 02
 D 78 CL
 FA 0500 001
 A
 99di 115

		RISUL	TANTI SOLLE	CITAZIONI TR	AVI WINKLER	- SLD	
Trave	Com	binazione	Rv	Vx	Vy	Mrx	Mry
N.ro		N.ro	(kg)	(kg)	(kg)	kg*cm	kg*cm
		SLD/24	76960	0	598	591412	136282
		SLD/25	77072	0	997	869352	136777
		SLD/26	73232	1294	0	168331	97319
		SLD/27	72894	1294	Ö	166627	95917
		SLD/28	71694	1292	Ö	160820	90945
		SLD/29	68295	2085	Ö	151699	61215
		SLD/30	77080	0	598	589034	134189
		SLD/31	71813	1294	0	158442	88852
	X+	SLD/37	64704	3188	10628	3895574	183776
	X-	SLD/44	63953	3151	10504	2947660	182468
	Y+	SLD/51	32839	5393	1618	1575607	181404
	Y-	SLD/51	81459	13376	4014	1695584	379810
	1-	OLD/33	01400	13370	4014	1033304	373010
2		SLD/1	78152	0	0	185578	145053
		SLD/2	77814	0	0	183874	143651
		SLD/3	76614	0	0	178067	138679
		SLD/4	78319	0	597	602489	145795
		SLD/5	77981	0	597	600785	144394
		SLD/6	76781	0	596	594977	139422
		SLD/7	76893	0	994	872918	139917
		SLD/8	79391	1403	0	182983	173613
		SLD/9	79053	1403	0	181279	172211
		SLD/10	77853	1403	0	175471	167239
		SLD/11	78680	2402	0	173741	186279
		SLD/12	78140	0	595	606055	148935
		SLD/13	77802	0	595	604351	147533
		SLD/14	76602	0	595	598543	142561
		SLD/15	76714	0	992	876484	143056
		SLD/16	79212	1400	0	186549	176753
		SLD/17	78874	1400	0	184845	175351
		SLD/18	77674	1400	0	179038	170379
		SLD/19	78501	2396	0	177307	189419
		SLD/20	76483	0	594	600921	144654
		SLD/21	77555	1397	0	181415	172472
		SLD/22	78498	0	598	598923	142656
1		SLD/23	78160	0	598	597219	141254
		SLD/24	76960	0	598	591411	136282
		SLD/25	77072	0	997	869351	136777
		SLD/26	79570	1406	0	179417	170473
		SLD/27	79232	1406	0	177713	169071
1		SLD/28	78032	1406	0	171905	164100
1		SLD/29	78859 77080	2407	0	170175	183140
		SLD/30	77080	0	598	589034	134189
	V .	SLD/31	78152	1408	0	169528	162006
	Χ+	SLD/32	64704	3188	10628	3895573	183776
	X-	SLD/41	63953	3150	10504	2947658	182468
	Y+ Y-	SLD/48 SLD/54	81459	13376	4014 1619	1695585	379810
	۲-	SLD/54	32839	5393	1618	1575604	181404

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REVISIONE
 FOGLIO

 RS3H
 02
 D 78 CL
 FA 0500 001
 A
 100di 115

	RISUL1	ANTI SOLLE	CITAZIONI TR	AVI WINKLER	- SLD	
Trave	Combinazione	Rv	Vx	Vy	Mrx	Mry
N.ro	N.ro	(kg)	(kg)	(kg)	kg*cm	kg*cm
3	SLD/1	36120	0	0	0	31498
	SLD/2	35986	Ö	Ö	Ö	31469
	SLD/3	35514	Ö	Ö	Ö	31360
	SLD/4	35109	268	0	0	23571
	SLD/5	34976	268	0	0	23541
	SLD/6	34503	268	0	0	23433
	SLD/7	33830	437	0	0	18148
	SLD/8	35379	0	625	161764	31594
	SLD/9	35246	0	626	161764	31565
	SLD/10	34773	0	627	161764	31456
	SLD/11	34279	0	1046	269607	31520
	SLD/12	35590	271	0	0	31799
	SLD/13	35457	271	0	0	31769
	SLD/14	34984	272	0	0	31661
	SLD/15	34310	444	0	0	26376
	SLD/16	35860	0	634	161764	39822
	SLD/17 SLD/18	35726 35254	0 0	634 635	161764 161764	39792 39684
	SLD/18 SLD/19	34760	0	1061	269607	39748
	SLD/19 SLD/20	35304	274	0	0	37146
	SLD/20 SLD/21	35574	0	641	161764	45169
	SLD/22	34629	264	0	0	15343
	SLD/23	34496	264	Ö	Ö	15314
	SLD/24	34023	264	Ö	Ö	15205
	SLD/25	33349	431	0	0	9920
	SLD/26	34899	0	617	161764	23366
	SLD/27	34765	0	617	161764	23337
	SLD/28	34293	0	618	161764	23229
	SLD/29	33799	0	1032	269607	23292
	SLD/30	33702	262	0	0	9720
	SLD/31	33972	0	612	161764	17743
	X+ SLD/32	17959	2950	885	322352	44384
	X- SLD/44	35178	5778	1733	322352	92287
	Y+ SLD/56 Y- SLD/60	29152	1436	4787 4707	1183714	44452
	Y- SLD/60	29152	1436	4787	1165679	44452
4	SLD/1	35091	0	0	0	16640
	SLD/2	34953	0	0	0	16644
	SLD/3	34464	0	0	0	16652
	SLD/4	34848	266	0	0	10995
	SLD/5	34710	266	0	0	10998
	SLD/6	34222	266	0	0	11007
	SLD/7	34060	440	0	0	7244
	SLD/8	34300	0	606	123003	16812
	SLD/9	34162	0	606	123003	16815
	SLD/10	33673	0	607	123003	16824
	SLD/11	33146	0	1012	205004	16938
	SLD/12 SLD/13	34577	263 264	0	0	15815
	SLD/13	34440	∠04	0	0	15818

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO

COMMESSA LOTTO DOCUMENTO REVISIONE CODIFICA FOGLIO RS3H 02 D 78 CL FA 0500 001 Α 101di 115

DLO	RISUL	TANTI SOLLE	CITAZIONI TR	AVI WINKLER	- SLD	
Trave	Combinazione	Rv	Vx	Vy	Mrx	Mry
N.ro	N.ro	(kg)	(kg)	(kg)	kg*cm	kg*cm
	SLD/14	33951	264	0	0	15827
	SLD/15	33789	437	0	0	12064
	SLD/16	34029	0	601	123003	21632
	SLD/17	33891	0	602	123003	21635
	SLD/18	33403	0	602	123003	21644
	SLD/19	32875	0	1003	205004	21758
	SLD/20	33771	262	0	0	19040
	SLD/21	33222	0	599	123003	24857
	SLD/22	35119	268	0	0	6175
	SLD/23	34981	268	0	0	6178
	SLD/24	34492	268	0	0	6187
	SLD/25 SLD/26	34330	444	0	0	2424
	SLD/26 SLD/27	34570 34433	0 0	611 611	123003 123003	11992 11995
	SLD/27 SLD/28	33944	0	612	123003	12004
	SLD/29	33417	0	1020	205004	12118
	SLD/29 SLD/30	34673	269	0	0	2974
	SLD/31	34124	0	615	123003	8791
	X+ SLD/32	23471	3855	1156	249494	32576
	X- SLD/44	28002	4599	1379	249494	58222
	Y+ SLD/56	26416	1302	4338	904993	26443
	Y- SLD/60	26416	1302	4338	892881	26443
5	SLD/1 SLD/2	34859 34720	0	0 0	0	13821 13811
	SLD/2 SLD/3	34227	0 0	0	0 0	13777
	SLD/3 SLD/4	35249	269	0	0	16994
	SLD/5	35110	269	Ö	Ö	16984
	SLD/6	34617	269	Ö	Ö	16950
	SLD/7	34876	451	0	Ō	19065
	SLD/8	34060	0	602	114365	13918
	SLD/9	33921	0	602	114365	13908
	SLD/10	33428	0	602	114365	13874
	SLD/11	32895	0	1004	190609	13939
	SLD/12	34928	266	0	0	21160
	SLD/13	34789	266	0	0	21150
	SLD/14	34296	266 447	0	0	21116
	SLD/15 SLD/16	34556 33739	447 0	0 596	0 114365	23231 18084
	SLD/16 SLD/17	33600	0	596 596	114365	18074
	SLD/17 SLD/18	33107	0	597	114365	18040
	SLD/19	32575	0	994	190609	18105
	SLD/20	34082	265	0	0	23893
	SLD/21	32894	0	593	114365	20818
	SLD/22	35569	271	0	0	12828
	SLD/23	35430	271	0	0	12818
	SLD/24	34937	271	0	0	12784
	SLD/25	35197	455	0	0	14899
	SLD/26	34381	0	608	114365	9752

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 102di 115

Trave			RISUL	TANTI SOLLE	CITAZIONI TR	AVI WINKLER	- SLD	
SLD/27 34241 0 608 114365 9742 SLD/28 33749 0 608 114365 9708 SLD/29 33216 0 1014 190609 9773 SLD/30 35151 273 0 0 0 10006 SLD/31 33962 0 612 114365 6931 X+ SLD/32 27817 4569 1370 288617 46288 X- SLD/44 23278 3823 1147 288617 25201 Y+ SLD/48 26228 1292 4307 905567 21267 Y- SLD/52 26228 1292 4307 905567 21267 Y- SLD/52 26228 1292 4307 905567 21267 Y- SLD/52 36124 0 0 0 34612 SLD/3 35636 0 0 0 0 34612 SLD/4 37074 283 0 0 336512 SLD/6 36449 283 0 0 336512 SLD/6 36449 283 0 0 336512 SLD/6 36449 283 0 0 34612 SLD/7 36991 478 0 0 40994 SLD/8 35502 0 627 162031 34530 SLD/9 35365 0 628 162031 34450 SLD/10 34877 0 628 162031 34455 SLD/11 34371 0 1049 270052 34057 SLD/12 37543 286 0 0 46521 SLD/13 37405 286 0 0 46521 SLD/14 36918 287 0 0 46256 SLD/15 37459 484 0 0 46256 SLD/16 35971 0 636 162031 42458 SLD/17 38833 0 636 162031 42458 SLD/17 38833 0 636 162031 42094 SLD/18 35345 0 637 162031 42094 SLD/19 34839 0 1063 270052 41986 SLD/19 34839 0 1063 270052 41986 SLD/23 36668 279 0 0 30683 SLD/23 36468 279 0 0 30683 SLD/23 36668 279 0 0 30683 SLD/24 35981 279 0 0 30683 SLD/25 36522 472 0 0 30683 SLD/26 35034 0 619 162031 26501 SLD/26 350			binazione	Rv	Vx	Vy	Mrx	Mry
SLD/28 33749 0 608 114365 9708 SLD/29 33216 0 10114 190609 9773 SLD/30 35151 273 0 0 10006 SLD/31 33962 0 612 114365 6931 X+ SLD/32 27817 4569 1370 288617 45288 X- SLD/44 23278 3823 1147 288617 25201 Y+ SLD/48 26228 1292 4307 914896 21267 Y- SLD/52 26228 1292 4307 905567 21267 Y- SLD/53 36636 0 0 0 34612 SLD/3 33636 0 0 0 34612 SLD/3 35636 0 0 0 34612 SLD/3 35636 0 0 0 34612 SLD/5 36937 283 0 0 38692 SLD/5 36937 283 0 0 38692 SLD/6 36449 283 0 0 38327 SLD/6 36449 283 0 0 0 34530 SLD/9 33365 0 628 162031 34450 SLD/10 34877 0 628 162031 34450 SLD/10 34877 0 628 162031 34450 SLD/11 34371 0 1049 270052 34057 SLD/12 37543 286 0 0 46621 SLD/13 37405 286 0 0 46621 SLD/14 36918 287 0 0 46256 SLD/15 37459 484 0 0 48923 SLD/16 35971 0 636 162031 42379 SLD/16 35971 0 636 162031 42379 SLD/18 35345 0 637 162031 42379 SLD/18 35345 0 637 162031 42379 SLD/18 35345 0 642 162031 42379 SLD/18 35688 0 642 162031 42379 SLD/12 36606 279 0 0 30763 SLD/23 36606 279 0 0 30763 SLD/25 36522 4772 0 0 30398 SLD/25 36522 4772 0 0 30398 SLD/25 36522 4772 0 0 30398 SLD/26 35034 0 666	N.ro			(kg)	(kg)	(kg)	kg*cm	kg*cm
SLD/29 33216 0				34241	0			
SLD/30								
SLD/31 33962 0 612 114365 6931								
X+ SLD/32								
X- SLD/44 23278 3823 1147 288617 25201 Y+ SLD/48 26228 1292 4307 914896 21267 Y- SLD/52 26228 1292 4307 905567 21267								
Y+ SLD/48 26228 1292 4307 914896 21267 6 SLD/1 36262 0 0 0 34692 SLD/2 36124 0 0 0 34612 SLD/3 35636 0 0 0 34327 SLD/4 37074 283 0 0 38612 SLD/5 36937 283 0 0 38612 SLD/6 36449 283 0 0 38327 SLD/7 36991 478 0 0 40994 SLD/8 35502 0 627 162031 34450 SLD/9 35365 0 628 162031 34450 SLD/10 34877 0 628 162031 34450 SLD/13 34371 0 1049 270052 34057 SLD/13 37453 286 0 0 46521 SLD/14 36918 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>								
Y- SLD/52 26228 1292 4307 905567 21267 6 SLD/1 36262 0 0 0 34692 SLD/3 365636 0 0 0 34327 SLD/4 37074 283 0 0 38692 SLD/5 36937 283 0 0 38692 SLD/6 36449 283 0 0 38327 SLD/7 36991 478 0 0 40994 SLD/8 35502 0 627 162031 34530 SLD/9 35365 0 628 162031 34450 SLD/10 34877 0 628 162031 34165 SLD/13 347405 286 0 0 46621 SLD/13 37405 286 0 0 46541 SLD/14 36918 287 0 0 46256 SLD/15 37459 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>								
6 SLD/1 36262 0 0 0 34692 SLD/2 36124 0 0 0 0 34612 SLD/3 35636 0 0 0 0 34327 SLD/4 37074 283 0 0 0 38692 SLD/5 36937 283 0 0 38692 SLD/5 36937 283 0 0 0 38612 SLD/6 36449 283 0 0 0 38327 SLD/6 36449 283 0 0 0 40994 SLD/8 35502 0 627 162031 34530 SLD/9 35365 0 628 162031 34450 SLD/9 35365 0 628 162031 34450 SLD/10 34877 0 628 162031 34450 SLD/11 34371 0 1049 270052 34057 SLD/12 37543 286 0 0 46621 SLD/13 37405 286 0 0 0 46621 SLD/14 36918 287 0 0 46621 SLD/15 37459 484 0 0 48923 SLD/16 35971 0 636 162031 42458 SLD/16 35971 0 636 162031 42379 SLD/18 35345 0 636 162031 42939 SLD/18 35345 0 636 162031 4294 SLD/19 34839 0 1063 270052 41986 SLD/20 37230 289 0 0 0 51542 SLD/21 35658 0 642 162031 47380 SLD/22 36606 279 0 0 30683 SLD/22 36606 279 0 0 30683 SLD/22 36606 279 0 0 30683 SLD/23 36468 279 0 0 0 30683 SLD/24 35981 279 0 0 30683 SLD/25 36522 472 0 0 30683 SLD/26 35034 0 619 162031 26601 SLD/27 34896 0 619 162031 26652 SLD/28 34096 0 619 162031 26651 SLD/29 33902 0 1035 270052 26128 SLD/24 18786 3086 925 428361 30707 Y+ SLD/44 28996 1429 4761 1325618 42953								
SLD/2 36124 0 0 0 34612 SLD/3 35636 0 0 0 34327 SLD/5 36937 283 0 0 38692 SLD/6 36449 283 0 0 38327 SLD/7 36991 478 0 0 40994 SLD/8 35502 0 627 162031 34530 SLD/9 35365 0 628 162031 34450 SLD/10 34877 0 628 162031 34165 SLD/11 34371 0 1049 270052 34057 SLD/13 37543 286 0 0 46621 SLD/13 37405 286 0 0 46541 SLD/14 36918 287 0 0 46256 SLD/15 37459 484 0 0 48923 SLD/16 35971 0 636 16		Υ-	SLD/52	26228	1292	4307	905567	21267
SLD/2 36124 0 0 0 34612 SLD/3 35636 0 0 0 34327 SLD/5 36937 283 0 0 38692 SLD/6 36449 283 0 0 38327 SLD/7 36991 478 0 0 40994 SLD/8 35502 0 627 162031 34530 SLD/9 35365 0 628 162031 34450 SLD/10 34877 0 628 162031 34165 SLD/11 34371 0 1049 270052 34057 SLD/13 37543 286 0 0 46621 SLD/13 37405 286 0 0 46541 SLD/14 36918 287 0 0 46256 SLD/15 37459 484 0 0 48923 SLD/16 35971 0 636 16	6		SLD/1	36262	0	0	n	34692
SLD/3 35636 0 0 0 34327 SLD/4 37074 283 0 0 38692 SLD/5 36937 283 0 0 38612 SLD/6 36449 283 0 0 38327 SLD/7 36991 478 0 0 40994 SLD/8 35502 0 627 162031 34530 SLD/10 34877 0 628 162031 34450 SLD/10 34877 0 628 162031 34450 SLD/11 34371 0 1049 270052 34057 SLD/12 37543 286 0 0 46621 SLD/13 37405 286 0 0 46541 SLD/14 36918 287 0 0 48923 SLD/15 37459 484 0 0 48923 SLD/16 35971 0 636 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>								
SLD/4 37074 283 0 0 38692 SLD/5 36937 283 0 0 38612 SLD/6 36449 283 0 0 38327 SLD/7 36991 478 0 0 40994 SLD/8 35502 0 627 162031 3450 SLD/10 34877 0 628 162031 34450 SLD/10 34877 0 628 162031 34450 SLD/11 34371 0 1049 270052 34057 SLD/12 37543 286 0 0 46621 SLD/13 37405 286 0 0 46541 SLD/14 36918 287 0 0 46256 SLD/15 37459 484 0 0 48923 SLD/16 35971 0 636 162031 42458 SLD/18 35345 0 636								
SLD/5 36937 283 0 0 38612 SLD/6 36449 283 0 0 38327 SLD/7 36991 478 0 0 40994 SLD/8 35502 0 627 162031 34530 SLD/10 34877 0 628 162031 34450 SLD/11 34371 0 1049 270052 34057 SLD/12 37543 286 0 0 46621 SLD/13 37405 286 0 0 46541 SLD/14 36918 287 0 0 46256 SLD/15 37459 484 0 0 48923 SLD/16 35971 0 636 162031 42458 SLD/17 35833 0 636 162031 42379 SLD/18 35345 0 637 162031 42094 SLD/20 37230 289 0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
SLD/6 36449 283 0 0 38327 SLD/7 36991 478 0 0 40994 SLD/8 35502 0 627 162031 34530 SLD/9 35365 0 628 162031 34450 SLD/10 34877 0 628 162031 34165 SLD/11 34371 0 1049 270052 34057 SLD/12 37543 286 0 0 46621 SLD/13 37405 286 0 0 46541 SLD/14 36918 287 0 0 46256 SLD/15 37459 484 0 0 48923 SLD/16 35971 0 636 162031 42458 SLD/17 35833 0 636 162031 42094 SLD/18 35345 0 637 162031 42094 SLD/19 34839 0 1								
SLD/8 35502 0 627 162031 34530 SLD/9 35365 0 628 162031 34450 SLD/10 34877 0 628 162031 34165 SLD/11 34371 0 1049 270052 34057 SLD/12 37543 286 0 0 46621 SLD/13 37405 286 0 0 46541 SLD/14 36918 287 0 0 46256 SLD/15 37459 484 0 0 48923 SLD/16 35971 0 636 162031 42458 SLD/17 35833 0 636 162031 4294 SLD/18 35345 0 637 162031 4294 SLD/19 34839 0 1063 270052 41986 SLD/20 37230 289 0 0 51542 SLD/21 35658 0								
SLD/9 35365 0 628 162031 34450 SLD/10 34877 0 628 162031 34165 SLD/11 34371 0 1049 270052 34057 SLD/12 37543 286 0 0 46621 SLD/13 37405 286 0 0 46541 SLD/14 36918 287 0 0 46256 SLD/15 37459 484 0 0 48923 SLD/16 35971 0 636 162031 42458 SLD/18 35345 0 637 162031 42094 SLD/18 3545 0 637 162031 42094 SLD/20 37230 289 0<			SLD/7	36991	478	0	0	40994
SLD/10 34877 0 628 162031 34165 SLD/11 34371 0 1049 270052 34057 SLD/12 37543 286 0 0 46621 SLD/13 37405 286 0 0 46541 SLD/14 36918 287 0 0 46256 SLD/15 37459 484 0 0 48923 SLD/16 35971 0 636 162031 42458 SLD/17 35833 0 636 162031 42379 SLD/18 35345 0 637 162031 42094 SLD/19 34839 0 1063 270052 41986 SLD/20 37230 289 0 0 51542 SLD/21 35658 0 642 162031 47380 SLD/22 36606 279 0 0 30683 SLD/23 36468 279				35502	0		162031	34530
SLD/11 34371 0 1049 270052 34057 SLD/12 37543 286 0 0 46621 SLD/13 37405 286 0 0 46541 SLD/14 36918 287 0 0 46256 SLD/15 37459 484 0 0 48923 SLD/16 35971 0 636 162031 42458 SLD/17 35833 0 636 162031 42379 SLD/18 35345 0 637 162031 42094 SLD/19 34839 0 1063 270052 41986 SLD/20 37230 289 0 0 51542 SLD/21 35658 0 642 162031 47380 SLD/22 36606 279 0 0 30763 SLD/23 36468 279 0 0 30398 SLD/24 35981 279 <td< th=""><th></th><th></th><th></th><th></th><th>0</th><th></th><th></th><th>34450</th></td<>					0			34450
SLD/12 37543 286 0 0 46621 SLD/13 37405 286 0 0 46541 SLD/14 36918 287 0 0 46256 SLD/15 37459 484 0 0 48923 SLD/16 35971 0 636 162031 42458 SLD/17 35833 0 636 162031 42379 SLD/18 35345 0 637 162031 42094 SLD/19 34839 0 1063 270052 41986 SLD/20 37230 289 0 0 51542 SLD/21 35658 0 642 162031 47380 SLD/22 36606 279 0 0 30763 SLD/23 36468 279 0 0 30398 SLD/24 35981 279 0 0 30398 SLD/25 36522 472 0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
SLD/13 37405 286 0 0 46541 SLD/14 36918 287 0 0 46256 SLD/15 37459 484 0 0 48923 SLD/16 35971 0 636 162031 42458 SLD/17 35833 0 636 162031 42379 SLD/18 35345 0 637 162031 42094 SLD/19 34839 0 1063 270052 41986 SLD/20 37230 289 0 0 51542 SLD/21 35658 0 642 162031 47380 SLD/22 36606 279 0 0 30763 SLD/23 36468 279 0 0 30383 SLD/24 35981 279 0 0 30398 SLD/25 36522 472 0 0 30365 SLD/26 35034 0 619 162031 26521 SLD/28 34408 0 620 1								
SLD/14 36918 287 0 0 46256 SLD/15 37459 484 0 0 48923 SLD/16 35971 0 636 162031 42458 SLD/17 35833 0 636 162031 42379 SLD/18 35345 0 637 162031 42094 SLD/19 34839 0 1063 270052 41986 SLD/20 37230 289 0 0 51542 SLD/21 35658 0 642 162031 47380 SLD/22 36606 279 0 0 30763 SLD/23 36468 279 0 0 30363 SLD/24 35981 279 0 0 30398 SLD/25 36522 472 0 0 33065 SLD/26 35034 0 619 162031 26501 SLD/27 34896 0 61								
SLD/15 37459 484 0 0 48923 SLD/16 35971 0 636 162031 42458 SLD/17 35833 0 636 162031 42379 SLD/18 35345 0 637 162031 42094 SLD/19 34839 0 1063 270052 41986 SLD/20 37230 289 0 0 51542 SLD/21 35658 0 642 162031 47380 SLD/22 36606 279 0 0 30763 SLD/23 36468 279 0 0 30683 SLD/24 35981 279 0 0 30398 SLD/25 36522 472 0 0 33065 SLD/26 35034 0 619 162031 26601 SLD/27 34896 0 619 162031 26521 SLD/28 34408 0 620 162031 26236 SLD/31 34096 0 614								
SLD/16 35971 0 636 162031 42458 SLD/17 35833 0 636 162031 42379 SLD/18 35345 0 637 162031 42094 SLD/19 34839 0 1063 270052 41986 SLD/20 37230 289 0 0 51542 SLD/21 35658 0 642 162031 47380 SLD/22 36606 279 0 0 30763 SLD/23 36468 279 0 0 30398 SLD/24 35981 279 0 0 30398 SLD/25 36522 472 0 0 33065 SLD/26 35034 0 619 162031 26601 SLD/27 34896 0 619 162031 26521 SLD/28 34408 0 620 162031 26236 SLD/31 34096 0 1035 270052 26128 SLD/31 34096 0 614<								
SLD/17 35833 0 636 162031 42379 SLD/18 35345 0 637 162031 42094 SLD/19 34839 0 1063 270052 41986 SLD/20 37230 289 0 0 51542 SLD/21 35658 0 642 162031 47380 SLD/22 36606 279 0 0 30763 SLD/23 36468 279 0 0 30683 SLD/24 35981 279 0 0 30398 SLD/25 36522 472 0 0 33065 SLD/26 35034 0 619 162031 26601 SLD/27 34896 0 619 162031 26521 SLD/28 34408 0 620 162031 26236 SLD/29 33902 0 1035 270052 26128 SLD/31 34096 0 614 162031 20950 X+ SLD/32 34494 566								
SLD/18 35345 0 637 162031 42094 SLD/19 34839 0 1063 270052 41986 SLD/20 37230 289 0 0 51542 SLD/21 35658 0 642 162031 47380 SLD/22 36606 279 0 0 30763 SLD/23 36468 279 0 0 30683 SLD/24 35981 279 0 0 30398 SLD/25 36522 472 0 0 33065 SLD/26 35034 0 619 162031 26601 SLD/27 34896 0 619 162031 26521 SLD/28 34408 0 620 162031 26236 SLD/29 33902 0 1035 270052 26128 SLD/30 35668 277 0 0 25112 SLD/31 34096 0 614 162031 20950 X+ SLD/32 34494 5666 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
SLD/19 34839 0 1063 270052 41986 SLD/20 37230 289 0 0 51542 SLD/21 35658 0 642 162031 47380 SLD/22 36606 279 0 0 30763 SLD/23 36468 279 0 0 30683 SLD/24 35981 279 0 0 30398 SLD/25 36522 472 0 0 33065 SLD/26 35034 0 619 162031 26601 SLD/27 34896 0 619 162031 26521 SLD/28 34408 0 620 162031 26236 SLD/29 33902 0 1035 270052 26128 SLD/30 35668 277 0 0 25112 SLD/31 34096 0 614 162031 20950 X+ SLD/32 34494 5666 1699 428360 82615 X- SLD/44 18786 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
SLD/20 37230 289 0 0 51542 SLD/21 35658 0 642 162031 47380 SLD/22 36606 279 0 0 30763 SLD/23 36468 279 0 0 30683 SLD/24 35981 279 0 0 30398 SLD/25 36522 472 0 0 33065 SLD/26 35034 0 619 162031 26601 SLD/27 34896 0 619 162031 26521 SLD/28 34408 0 620 162031 26236 SLD/29 33902 0 1035 270052 26128 SLD/30 35668 277 0 0 25112 SLD/31 34096 0 614 162031 20950 X+ SLD/32 34494 5666 1699 428360 82615 X- SLD/44 18786 3086 925 428361 30707 Y+ SLD/48 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
SLD/21 35658 0 642 162031 47380 SLD/22 36606 279 0 0 30763 SLD/23 36468 279 0 0 30683 SLD/24 35981 279 0 0 30398 SLD/25 36522 472 0 0 33065 SLD/26 35034 0 619 162031 26601 SLD/27 34896 0 619 162031 26521 SLD/28 34408 0 620 162031 26236 SLD/29 33902 0 1035 270052 26128 SLD/30 35668 277 0 0 25112 SLD/31 34096 0 614 162031 20950 X+ SLD/32 34494 5666 1699 428360 82615 X- SLD/44 18786 3086 925 428361 30707 Y+ SLD/48 28996 1429 4761 1325618 42953 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
SLD/22 36606 279 0 0 30763 SLD/23 36468 279 0 0 30683 SLD/24 35981 279 0 0 30398 SLD/25 36522 472 0 0 33065 SLD/26 35034 0 619 162031 26601 SLD/27 34896 0 619 162031 26521 SLD/28 34408 0 620 162031 26236 SLD/29 33902 0 1035 270052 26128 SLD/30 35668 277 0 0 25112 SLD/31 34096 0 614 162031 20950 X+ SLD/32 34494 5666 1699 428360 82615 X- SLD/44 18786 3086 925 428361 30707 Y+ SLD/48 28996 1429 4761 1325618 42953								
SLD/23 36468 279 0 0 30683 SLD/24 35981 279 0 0 30398 SLD/25 36522 472 0 0 33065 SLD/26 35034 0 619 162031 26601 SLD/27 34896 0 619 162031 26521 SLD/28 34408 0 620 162031 26236 SLD/29 33902 0 1035 270052 26128 SLD/30 35668 277 0 0 25112 SLD/31 34096 0 614 162031 20950 X+ SLD/32 34494 5666 1699 428360 82615 X- SLD/44 18786 3086 925 428361 30707 Y+ SLD/48 28996 1429 4761 1325618 42953								
SLD/24 35981 279 0 0 30398 SLD/25 36522 472 0 0 33065 SLD/26 35034 0 619 162031 26601 SLD/27 34896 0 619 162031 26521 SLD/28 34408 0 620 162031 26236 SLD/29 33902 0 1035 270052 26128 SLD/30 35668 277 0 0 25112 SLD/31 34096 0 614 162031 20950 X+ SLD/32 34494 5666 1699 428360 82615 X- SLD/44 18786 3086 925 428361 30707 Y+ SLD/48 28996 1429 4761 1325618 42953								
SLD/25 36522 472 0 0 33065 SLD/26 35034 0 619 162031 26601 SLD/27 34896 0 619 162031 26521 SLD/28 34408 0 620 162031 26236 SLD/29 33902 0 1035 270052 26128 SLD/30 35668 277 0 0 25112 SLD/31 34096 0 614 162031 20950 X+ SLD/32 34494 5666 1699 428360 82615 X- SLD/44 18786 3086 925 428361 30707 Y+ SLD/48 28996 1429 4761 1325618 42953								
SLD/26 35034 0 619 162031 26601 SLD/27 34896 0 619 162031 26521 SLD/28 34408 0 620 162031 26236 SLD/29 33902 0 1035 270052 26128 SLD/30 35668 277 0 0 25112 SLD/31 34096 0 614 162031 20950 X+ SLD/32 34494 5666 1699 428360 82615 X- SLD/44 18786 3086 925 428361 30707 Y+ SLD/48 28996 1429 4761 1325618 42953								
SLD/28 34408 0 620 162031 26236 SLD/29 33902 0 1035 270052 26128 SLD/30 35668 277 0 0 25112 SLD/31 34096 0 614 162031 20950 X+ SLD/32 34494 5666 1699 428360 82615 X- SLD/44 18786 3086 925 428361 30707 Y+ SLD/48 28996 1429 4761 1325618 42953			SLD/26	35034	0	619	162031	
SLD/29 33902 0 1035 270052 26128 SLD/30 35668 277 0 0 25112 SLD/31 34096 0 614 162031 20950 X+ SLD/32 34494 5666 1699 428360 82615 X- SLD/44 18786 3086 925 428361 30707 Y+ SLD/48 28996 1429 4761 1325618 42953				34896	0		162031	26521
SLD/30 35668 277 0 0 25112 SLD/31 34096 0 614 162031 20950 X+ SLD/32 34494 5666 1699 428360 82615 X- SLD/44 18786 3086 925 428361 30707 Y+ SLD/48 28996 1429 4761 1325618 42953								
SLD/31 34096 0 614 162031 20950 X+ SLD/32 34494 5666 1699 428360 82615 X- SLD/44 18786 3086 925 428361 30707 Y+ SLD/48 28996 1429 4761 1325618 42953								
X+ SLD/32 34494 5666 1699 428360 82615 X- SLD/44 18786 3086 925 428361 30707 Y+ SLD/48 28996 1429 4761 1325618 42953								
X- SLD/44 18786 3086 925 428361 30707 Y+ SLD/48 28996 1429 4761 1325618 42953								
Y+ SLD/48 28996 1429 4761 1325618 42953								
1- SLD/32 28996 1429 4/61 1305393 42953								
		Υ-	SLD/52	28996	1429	4/61	1305393	42953

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 103di 115

Verifica della portanza.

Si riporta di seguito la spiegazione delle sigle usate nella tabella di stampa della portanza delle fondazioni superficiali (travi *Winkler*, plinti e piastre) in condizioni drenate e non drenate.

Tabella 1: PARAMETRI GEOTECNICI

Trave, Plinto o Piastra : Numero elemento

Infiss : Infissione base fondazione dalla quota di terreno definitivo

(Zfond+Ricoprimento)

Tipo Tabella : Tipo di tabella (M1/M2) per i coeff. parziali per i parametri del

terreno

Gamma : Peso specifico totale di calcolo

Fi : Angolo di attrito interno di calcolo in gradi

Coes : Coesione drenata di calcolo
Mod.El. : Modulo elastico di calcolo
Poiss : Coefficiente di Poisson

P base : Pressione litostatica base di fondazione in condizioni drenate

Indice Rigid. : Indice di rigidezza
IndRig Crit. : Indice di rigidezza critico
Cu : Coesione non drenata

Pbase : Pressione litostatica base di fondazione in cond. non drenate

Tabella 2: COEFFICIENTI DI PORTANZA

Trave, Plinto o Piastra : Numero elemento

Nc: Coefficiente di portanza di Brinch-HansenNq: Coefficiente di portanza di Brinch-HansenNg: Coefficiente di portanza di Brinch-HansenGc: Coefficiente di inclinazione del terrenoGq: Coefficiente di inclinazione del terrenobc: Coefficiente di inclinazione del piano di posabq: Coefficiente di inclinazione del piano di posa

Igk: Coefficiente per effetti cinematiciComb.Nro: Numero della combinazione di caricoIcv: Coefficiente di inclinazione del caricoIqv: Coefficiente di inclinazione del caricoIgv: Coefficiente di inclinazione del carico

Dc: Coefficiente di affondamento del piano di posaDq: Coefficiente di affondamento del piano di posaDg: Coefficiente di affondamento del piano di posa

Sc: Coefficiente di formaSq: Coefficiente di formaSg: Coefficiente di formaPsic: Coefficiente di punzonamentoPsiq: Coefficiente di punzonamentoPsig: Coefficiente di punzonamento

Tabella 3: PORTANZA (per Risultanti)

Trave, Plinto o Piastra: Numero elemento in numerazione calcolo C.D.Gs. Win

Asta3d, Filo : Identificativo di input

Comb. : Numero della combinazione a cui si riferiscono i dati che

seguono

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	INTERRAMENT	O LINEA PE	R IL PROLUNG	ATANIA – PALERMO	ISTA DELL' AEF	OPORTO DI
	MACROFASE FILOTTO 02			DEL TRATTO DI LII	NEA INTERESSA	ATO.
FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO	COMMESSA RS3H	LOTTO 02	CODIFICA D 78 CL	DOCUMENTO FA 0500 001	REVISIONE A	FOGLIO 104di 115

Bx' : Base di fondazione ridotta lungo x per eccentricità By' : Base di fondazione ridotta lungo y per eccentricità

GamEf : Peso specifico efficace di calcolo

QlimV : Carico limite in condiz. drenate o non drenate comprensivo dei

Coeff. Parziali R1/R2/R3

N : Carico verticale agente

Coeff.Sicur. : Minimo tra i rapporti (QlimV/N) tra la condiz. drenata e quella

non drenata per la combinazione in esame

Tra tutte le combinazioni vengono riportati i seguenti dati:

Minimo CoeSic : Minimo coefficiente di sicurezza

N/Ar : Tensione media agente sull' impronta ridotta

Qlim/Ar : Tensione limite sull' impronta ridotta Status Verifica : Si possono avere i seguenti messaggi:

OK = Verifica soddisfatta

NONVERIF = Non verifica nei seguenti casi:

• Coefficiente di sicurezza minore di 1

• Se Bx=0 o By=0 per eccentricita' eccessiva dei carichi

• Se QlimV=0 per inclinazione dei carichi eccessiva a causa di forze orizzontali elevate

SCARICA = Verifica soddisfatta:Impronta non sollecitata o in trazione

DECOMPR = Verifica soddisfatta:

• lo sforzo agente sull'elemento è di trazione, ma la risultante dei carichi agenti sul terreno è di debole compressione per effetto del peso proprio dell'elemento stesso.

				PARAN	IETRI GEO	OTECNICI TR	AVI WIN	KLER - S.I	U.			
	IDENTIFIC	CATIVO				CONDIZ	IONE DR	ENATA			NON DF	RENATA
Trave												
N.ro	m	Tabel	kg/mc	Grd	kg/cmq	kg/cmq	on	kg/cmq	Rigid.	Crit.	kg/cmq	kg/cmq
1 -6	1,00	M1	1800	28,00	0,00	60,00	0,30	0,18	126,90	108,98		

					(COEFF	ICIENT	I DI PORTANZA	TRAVI \	VINKLE	R - CC	NDIZIC	NI DREI	NATE - S	.L.U.						
Trave	Brir	nch Hans	en	IclTe	Incl.	PianoP	osa	Comb	lgk	Coe	effIncl.C	ar.	Aff	ondamen	to		Forma		Pu	ınzoname	ento
Nro	Nc	Nq	Ng	Gc=Gq	Bc	Bq	Bg	N.ro	Sism	lcV	ΙqV	ΙgV	Dc	Dq	Dg	Sc	Sq	Sg	Psic	Psiq	Psig
1	25,80	14,72	16,72	1,00	1,00	1,00	1,00	A1/1	1,00	1,00	1,00	1,00	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
								A1/2	1,00	1,00	1,00	1,00	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
								A1/3	1,00	1,00	1,00	1,00	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
								A1/4	1,00	0,99	0,99	0,98	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
								A1/5	1,00	0,99	0,99	0,98	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
								A1/6	1,00	0,99	0,99	0,98	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
								A1/7	1,00	0,98	0,99	0,97	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
								A1/8	1,00	0,96	0,97	0,95	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
								A1/9	1,00	0,96	0,97	0,95	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
								A1/10	1,00	0,96	0,97	0,95	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
								A1/11	1,00	0,94	0,94	0,91	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
								A1/12	1,00	0,99	0,99	0,98	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
								A1/13	1,00	0,99	0,99	0,98	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
								A1/14	1,00	0,99	0,99	0,98	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
								A1/15	1,00	0,98	0,99	0,97	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
								A1/16	1,00	0,96	0,97	0,95	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
								A1/17	1,00	0,96	0,97	0,95	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REVISIONE
 FOGLIO

 RS3H
 02
 D 78 CL
 FA 0500 001
 A
 105di 115

COFFFICIENTI	DI PORTANZA TRAVI WINKLER - CONDIZIONI DRENATE - S.L.U.	
Trave Brinch Hansen IclTe Incl.PianoPosa	Comb Igk CoeffIncl.Car. Affondamento	Forma Punzonamento
Nro Nc Nq Ng Gc=Gq Bc Bq Bg	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sc Sq Sq Psic Psig Psig 1,08 1,08 0,94 1,00 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00 1,00 1,00 </td
2 25,80 14,72 16,72 1,00 1,00 1,00 1,00	A1/4 1,00 0,99 0,99 0,98 1,18 1,17 1,00 A1/6 1,00 0,99 0,99 0,98 1,18 1,17 1,00 A1/6 1,00 0,99 0,99 0,98 1,18 1,17 1,00 A1/6 1,00 0,99 0,99 0,98 1,18 1,17 1,00 A1/7 1,00 0,96 0,97 0,95 1,18 1,17 1,00 A1/8 1,00 0,96 0,97 0,95 1,18 1,17 1,00 A1/10 1,00 0,96 0,97 0,95 1,18 1,17 1,00 A1/11 1,00 0,96 0,97 0,95 1,18 1,17 1,00 A1/12 1,00 0,99 0,99 0,98 1,18 1,17 1,00 A1/13 1,00 0,99 0,99 0,98 1,18 1,17 1,00 A1/14 1,00 0,99 0,99 0,98 1,18 1,17 1,00 A1/15 1,00 0,99 0,99 0,98 1,18 1,17 1,00 A1/16 1,00 0,96 0,97 0,95 1,18 1,17 1,00 A1/17 1,00 0,96 0,97 0,95 1,18 1,17 1,00 A1/18 1,00 0,96 0,97 0,95 1,18 1,17 1,00 A1/18 1,00 0,96 0,97 0,95 1,18 1,17 1,00 A1/12 1,00 0,96 0,97 0,95 1,18 1,17 1,00 A1	1,08 1,08 0,94 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00 1,00 1,08 1,094 1,00 1,00 1,00 1,08 1,094 1,00 1,00 1,00 1,08 1,07 0,94 1,00 1,00 1,00 1,08 1,07 0,94 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00 1,00 1,08 1,08 0,94 1,00 1,00
3 25,80 14,72 16,72 1,00 1,00 1,00 1,00	A1/3 1,00 1,00 1,00 1,00 1,18 1,17 1,00 A1/4 1,00 0,99 0,99 0,98 1,18 1,17 1,00 A1/5 1,00 0,99 0,99 0,98 1,18 1,17 1,00 A1/5 1,00 0,99 0,99 0,98 1,18 1,17 1,00 A1/6 1,00 0,99 0,99 0,98 1,18 1,17 1,00 A1/7 1,00 0,98 0,98 0,96 1,18 1,17 1,00 A1/9 1,00 0,98 0,98 0,96 1,18 1,17 1,00 A1/1 1,00 0,99 0,99 0,98 1,18 1,17 1,00 A1/1 1,00 0,98 0,96 0,96 1,18 1,17 1,00 A1/1 1,00 0,98 0,98 0,96 1,18 1,17 1,00 A1/1 1,00 0,99 0,99 0,98 1,18 1,17 1,00 A1/2 1,00 0,98 0,98 0,96 1,18 1,17 1,00 A1/2 1	1,17

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REVISIONE
 FOGLIO

 RS3H
 02
 D 78 CL
 FA 0500 001
 A
 106di 115

7							COEFF	ICIENT	I DI PO	RTANZA	TRAVI V	VINKLE	R - CC	NDIZIO	NI DREI	IATE - S.I	L.U.						_
ĺ	Trave Nro	Brir Nc	nch Hanse Ng	en Ng	IcITe Gc=Gq	Incl.	PianoP Bq	osa	С	omb N.ro	lgk Sism		effIncl.C			ondament Dq		Sc	Forma Sq	Sg	Pu Psic	nzoname Psiq	nto Psig
	4	25,80	14,72	16,72	1,00	1,00	1,00	1,00	X+ X- Y-	A1/1 A1/2 A1/3 A1/4 A1/6 A1/7 A1/8 A1/9 A1/11 A1/12 A1/13 A1/14 A1/15 A1/15 A1/17 A1/18 A1/19 A1/20 A1/20 A1/21 A1/23 A1/24 A1/25 A1/26 A1/27 A1/28 A1/28 A1/30 A1/31 A1	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 0,99 0,98 0,98 0,98 0,98 0,99 0,99 0	1,00 1,00 0,99 0,99 0,98 0,98 0,98 0,98 0,99 0,99	1,00 1,00 0,98 0,98 0,96 0,96 0,96 0,96 0,96 0,96 0,96 0,96	1,18 1,18 1,18 1,18 1,18 1,18 1,18 1,18	1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17	1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16	0,88 0,88 0,88 0,88 0,88 0,88 0,88 0,88	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
	5	25,80	14,72	16,72	1,00	1,00	1,00	1,00	X+ X- Y+ Y-	A1/1 A1/2 A1/3 A1/4 A1/5 A1/6 A1/7 A1/8 A1/10 A1/11 A1/12 A1/13 A1/16 A1/17 A1/18 A1/19 A1/20 A1/21 A1/24 A1/25 A1/26 A1/27 A1/28 A1/29 A1/30 A1/31 A1/32 A1/31 A1/32 A1/34 A1/35 A1/36 A1/37 A1/36 A1/36 A1/37 A1/36 A1	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 0,99 0,99 0,98 0,98 0,98 0,98 0,98 0	1,00 1,00 1,00 0,99 0,99 0,98 0,98 0,98 0,98 0,99 0,99	1,00 1,00 1,00 0,98 0,98 0,96 0,96 0,96 0,96 0,96 0,96 0,96 0,96	1,18 1,18 1,18 1,18 1,18 1,18 1,18 1,18	1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17	1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16	0,88 0,88 0,88 0,88 0,88 0,88 0,88 0,88	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
	6	25,80	14,72	16,72	1,00	1,00	1,00	1,00		A1/1 A1/2 A1/3 A1/4 A1/5 A1/6 A1/7 A1/8 A1/9 A1/10 A1/11 A1/12 A1/13 A1/14 A1/15 A1/16 A1/16 A1/17 A1/18 A1/19	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 0,99 0,99 0,98 0,98 0,98 0,96 0,99 0,99 0,99 0,99 0,98 0,98 0,98	1,00 1,00 0,99 0,99 0,98 0,98 0,98 0,96 0,99 0,99 0,99 0,98 0,98 0,98	1,00 1,00 1,00 0,98 0,98 0,96 0,96 0,96 0,96 0,98 0,98 0,98 0,96 0,96 0,96 0,96 0,96	1,18 1,18 1,18 1,18 1,18 1,18 1,18 1,18	1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17	1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16	0,88 0,88 0,88 0,88 0,88 0,88 0,88 0,88	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 107di 115

				COEFF	ICIENT	I DI PORT <i>I</i>	NZA T	RAVI V	VINKLI	ER - CC	NDIZIC	NI DREI	NATE - S	.L.U.						
Trave	Brinch Hansen	lclTe	Incl	.PianoP	osa	Comb		lgk	Co	effIncl.C	ar.	Aff	ondamen	ito		Forma		Pu	ınzoname	ento
Nro	Nc Nq Ng	Gc=Gq	Bc	Bq	Bg	N.ro		Sism	lcV	ΙqV	ΙgV	Dc	Dq	Dg	Sc	Sq	Sg	Psic	Psiq	Psig
						A	/20	1,00	0,99	0,99	0,98	1,18	1,17	1,00	1,17	1,16	0,88	1,00	1,00	1,00
						Α	/21	1,00	0,98	0,98	0,96	1,18	1,17	1,00	1,17	1,16	0,88	1,00	1,00	1,00
							/22	1,00	0,99	0,99	0,98	1,18	1,17	1,00	1,17	1,16	0,88	1,00	1,00	1,00
							/23	1,00	0,99	0,99	0,98	1,18	1,17	1,00	1,17	1,16	0,88	1,00	1,00	1,00
							/24	1,00	0,99	0,99	0,98	1,18	1,17	1,00	1,17	1,16	0,88	1,00	1,00	1,00
							/25	1,00	0,98	0,98	0,96	1,18	1,17	1,00	1,17	1,16	0,88	1,00	1,00	1,00
							/26	1,00	0,98	0,98	0,96	1,18	1,17	1,00	1,17	1,16	0,88	1,00	1,00	1,00
							/27	1,00	0,98	0,98	0,96	1,18	1,17	1,00	1,17	1,16	0,88	1,00	1,00	1,00
							/28	1,00	0,98	0,98	0,96	1,18	1,17	1,00	1,17	1,16	0,88	1,00	1,00	1,00
							/29	1,00	0,96	0,96	0,93	1,18	1,17	1,00	1,17	1,16	0,88	1,00	1,00	1,00
							/30 /31	1,00	0,99	0,99	0,98	1,18	1,17 1.17	1,00 1.00	1,17	1,16	0,88	1,00 1.00	1,00	1,00 1,00
							/32	1.00	0,98 0.68	0,98 0.70	0,96 0.57	1,18 1.18	1,17	1.00	1,17 1.17	1.16	0,88 0.88	1.00	1,00 1.00	1,00
							/44	1.00	0,68	0,70	0,57	1,18	1,17	1.00	1,17	1,16	0,86	1.00	1,00	1,00
							/44	1.00	0,00	0,76	0,62	1,18	1,17	1.00	1,10	1,17	0,87	1.00	1,00	1,00
							/53	1.00	0,75	0.76	0,62	1.18	1.17	1.00	1,20	1.18	0,86	1.00	1.00	1,00
							700	1,00	0,70	0,70	0,02	1,10	1,17	1,00	1,20	1,10	0,00	1,00	1,00	1,00

					CARIO	CO LIMITI	E TRAVI WINKLER	- S.L.U.					
		ENTIIFICATIVO				NATE	NON DRENATE		_		SULTATI	1	
Trave N.ro	Asta3d N.ro	Comb N.ro	Bx' m	By' m	GamEf kg/mc	QLimV (t)	GamEf QLimV kg/mc (t)	N (t)	Coeff. Sicur.	Minimo CoeSic	N/Ar kg/cmq	QLim/Ar kg/cmq	Status Verifica
1	1	A1/1 A1/2 A1/3 A1/4 A1/5 A1/6 A1/7 A1/6 A1/7 A1/8 A1/9 A1/10 A1/11 A1/12 A1/13 A1/14 A1/15 A1/16 A1/17 A1/18 A1/16 A1/17 A1/18 A1/19 A1/20 A1/21 A1/20 A1/21 A1/22 A1/23 A1/24 A1/25 A1/26 A1/27 A1/28 A1/27 A1/28 A1/27 A1/28 A1/27 A1/28 A1/27 A1/30 A1/31 X+ A1/37 Y+ A1/51 Y- A1/53	1,76 1,76 1,76 1,76 1,76 1,76 1,77 1,77	12,45 12,45 12,45 12,35 12,35 12,35 12,46 12,46 12,46 12,46 12,46 11,46	1800 1800 1800 1800 1800 1800 1800 1800	556,9 557,0 557,3 545,6 545,7 545,9 538,3 538,5 538,5 538,6 525,9 545,2 545,4 537,9 546,1 537,9 546,1 538,7 545,1 538,7 545,1 538,7 545,1 538,7 545,1 546,1 546,3 538,9		78,2 77,8 76,6 78,3 76,9 73,1 72,7 71,5 68,1 77,8 76,6 76,9 72,9 72,5 71,3 67,9 76,5 71,2 77,0 77,1 73,2 77,0 77,1 73,2 71,7 68,3 71,1 81,2	7,13 7,16 7,27 6,97 7,00 7,11 7,00 7,37 7,41 7,53 7,72 6,98 7,01 7,12 7,01 7,38 7,42 7,54 7,74 7,13 7,55 6,96 6,99 7,10 6,99 7,36 7,39 7,52 7,71 7,93 7,55 5,66 9,39 4,04	4,04	0,39	1,59	\$
2	4	A1/1 A1/2 A1/3 A1/4 A1/5 A1/6 A1/7 A1/8 A1/9 A1/10 A1/11 A1/12 A1/13 A1/14 A1/15 A1/16 A1/17 A1/18 A1/19 A1/19 A1/20 A1/21	1,76 1,76 1,76 1,76 1,76 1,76 1,76 1,76	12,45 12,45 12,45 12,35 12,35 12,35 12,27 12,45 12,45 12,46 12,34 12,34 12,34 12,27 12,45 12,45 12,45 12,45 12,45	1800 1800 1800 1800 1800 1800 1800 1800	556,9 557,0 557,3 545,6 545,9 538,3 531,8 531,8 531,8 531,8 531,8 531,4 531,4 537,9 531,4 531,4 531,4 531,4 531,4 531,4 531,4 531,4		78.2 77.8 76.6 78.3 78.0 76.8 76.9 79.4 79.1 77.9 78.1 77.6 6 76.7 79.2 78.9 77.7 78.5 76.5 77.6	7,13 7,16 7,27 6,97 7,00 6,70 6,73 6,83 6,54 6,98 7,01 6,71 6,71 6,74 6,85 7,13 6,85				OK OK OK OK OK OK OK OK OK OK OK OK OK

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REVISIONE
 FOGLIO

 RS3H
 02
 D 78 CL
 FA 0500 001
 A
 108di 115

F		ΙΓ	FNTII	FICATIVO			10	CO LIMIT NATE	<u> </u>	WINKLER RENATE	- S.L.U.		RIS	SULTATI		
	Trave	Asta3d	(Comb	Bx'	By'	GamEf	QLimV	GamEf	QLimV	N (t)	Coeff.	Minimo	N/Ar	QLim/Ar	Status
	N.ro	N.ro	X+ X- Y+ Y-	N.ro A1/22 A1/23 A1/24 A1/25 A1/26 A1/26 A1/27 A1/28 A1/29 A1/30 A1/31 A1/32 A1/42 A1/48 A1/54	1,76 1,76 1,76 1,76 1,76 1,76 1,76 1,76	m 12,35 12,35 12,35 12,27 12,46 12,46 12,46 12,46 12,46 11,31 11,38 12,09 11,56	1800 1800 1800 1800 1800 1800 1800 1800	(t) 546,1 546,1 546,3 538,7 532,2 532,2 532,2 542,6 542,5 359,1 361,5 328,2 310,8	kg/mc	(t)	(t) 78,5 78,2 77,0 77,1 79,6 79,2 78,0 78,9 77,1 78,2 64,6 63,9 81,2 33,1	6,96 6,99 7,10 6,99 6,69 6,72 6,82 6,53 7,09 6,81 5,56 5,66 4,04 9,39	4,04	0,39	1,59	Verifica OK
	3	7	X+ X- Y+ Y-	A1/1 A1/2 A1/3 A1/4 A1/5 A1/6 A1/7 A1/8 A1/10 A1/11 A1/12 A1/13 A1/14 A1/15 A1/16 A1/17 A1/18 A1/19 A1/20 A1/21 A1/22 A1/23 A1/24 A1/25 A1/26 A1/27 A1/28 A1/29 A1/30 A1/31 A1/35 A1/47 A1/58 A1/63	1,78 1,78 1,79 1,79 1,79 1,78 1,78 1,78 1,78 1,78 1,78 1,78 1,78	6,00 6,00 6,00 6,00 6,00 6,00 5,91 5,91 5,84 6,00 6,00 5,91 5,91 6,00 6,00 6,00 6,00 6,00 6,00 6,00 5,91 5,91 5,91 5,91 5,91 5,91 5,91 5,91	1800 1800 1800 1800 1800 1800 1800 1800	276,5 276,5 276,5 272,8 272,8 272,7 270,2 264,6 264,5 264,3 256,1 271,9 271,8 263,7 263,5 255,3 271,2 262,9 273,7 273,7 273,7 273,7 273,7 273,7 273,7 273,7 273,7 273,7 274,2 265,4 265,3 265,1 266,3			36,1 36,0 35,5 35,1 35,0 34,5 35,2 34,8 35,5 35,0 34,3 35,5 35,0 34,3 35,5 34,0 35,6 34,6 34,6 34,0 33,3 34,9 34,9 34,9 34,9 34,9 34,9 34,9	7,66 7,68 7,79 7,77 7,80 7,99 7,47 7,60 7,47 7,64 7,67 7,77 7,85 7,36 7,38 7,47 7,34 7,68 7,39 7,90 8,13 7,60 8,14 7,82 9,01 4,80 5,72 5,72	4,80	0,35	1,67	OK OK<
	4	8		A1/1 A1/2 A1/3 A1/4 A1/5 A1/6 A1/7 A1/8 A1/9 A1/10 A1/11 A1/12 A1/13 A1/14 A1/15 A1/16 A1/17 A1/18 A1/18 A1/19 A1/20 A1/21 A1/22 A1/23 A1/24 A1/25	1,79 1,79 1,79 1,79 1,79 1,79 1,79 1,79	6,00 6,00 6,00 6,00 6,00 6,00 5,93 5,93 5,88 6,00 6,00 6,00 5,93 5,93 5,93 5,93 5,93 5,93 5,93 6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,0	1800 1800 1800 1800 1800 1800 1800 1800	278,2 278,2 278,1 274,3 274,2 274,1 271,5 267,0 266,8 259,1 273,5 273,6 273,5 270,9 266,4 266,4 266,2 258,1 265,7 274,8 274,8 274,7 274,8			35,1 35,0 34,5 34,5 34,7 34,2 34,1 34,3 34,2 33,7 33,1 34,6 34,4 34,0 33,9 33,4 32,2 35,1 35,1 35,1 35,1 34,5 34,5	7,93 7,96 8,07 7,87 7,90 8,01 7,97 7,78 7,81 7,92 7,82 7,91 7,95 8,06 8,02 7,83 7,86 7,97 7,86 8,09 8,00 7,83 7,86 7,96 7,93				OK OK OK <

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 109di 115

ļ							10			WINKLER -	- S.L.U.					
ļ	Trave	Asta3d		Comb	Bx'	By'	DRE GamEf	NATE QLimV	GamEf	RENATE QLimV	N	Coeff.	Minimo	SULTATI N/Ar	QLim/Ar	Status
ļ	N.ro	N.ro		N.ro	m	m	kg/mc	(t)	kg/mc	(t)	(t)	Sicur.	CoeSic	kg/cmq	kg/cmq	Verifica
			X+ X- Y+ Y-	A1/26 A1/27 A1/28 A1/29 A1/30 A1/31 A1/35 A1/47 A1/58 A1/63	1,79 1,79 1,79 1,79 1,80 1,79 1,77 1,76 1,78 1,78	5,93 5,93 5,93 5,88 6,00 5,93 5,73 5,78 5,26 5,26	1800 1800 1800 1800 1800 1800 1800 1800	267,6 267,6 267,4 259,7 275,1 267,8 170,6 170,0 172,5 172,5			34,6 34,4 33,9 33,4 34,7 34,1 23,5 28,0 26,4 26,4	7,74 7,77 7,88 7,77 7,93 7,85 7,26 6,08 6,53 6,53	6,08	0,28	1,67	OK OK OK OK OK OK OK OK
	5	9	X+ X- Y+ Y-	A1/1 A1/2 A1/3 A1/4 A1/5 A1/6 A1/7 A1/8 A1/9 A1/10 A1/11 A1/12 A1/13 A1/14 A1/15 A1/16 A1/17 A1/18 A1/19 A1/20 A1/21 A1/22 A1/23 A1/24 A1/25 A1/26 A1/27 A1/28 A1/29 A1/30 A1/31 A1/44 A1/48 A1/53	1,79 1,79 1,79 1,79 1,79 1,79 1,79 1,79	6,00 6,00 6,00 6,00 6,00 5,93 5,93 5,93 5,93 5,93 5,93 5,93 5,93	1800 1800 1800 1800 1800 1800 1800 1800	278,5 278,5 278,5 273,6 273,5 273,5 270,1 267,5 267,5 267,3 259,7 273,1 273,0 272,9 269,6 267,0 267,0 267,0 272,6 267,0 274,0			34,9 34,7 34,2 35,2 35,1 34,6 34,9 34,8 34,9 34,8 34,6 33,7 33,6 34,1 32,6 35,4 34,9 35,4 34,9 35,4 34,2 35,4 34,2 35,2 36,2 36,2 36,2 36,2 36,2 36,2 36,2 36	7,99 8,02 8,14 7,76 7,79 7,90 7,75 7,86 7,80 7,90 7,80 7,91 7,94 8,00 7,91 7,94 8,00 7,91 7,80 7,93 7,84 7,80 7,83 7,84 7,80 7,80 7,80 7,80 7,80 7,80 6,66 6,66	6,17	0,27	1,68	OK O
	6	10		A1/1 A1/2 A1/3 A1/4 A1/5 A1/6 A1/7 A1/8 A1/9 A1/10 A1/11 A1/12 A1/13 A1/14 A1/15 A1/16 A1/17 A1/18 A1/19 A1/20 A1/21 A1/23 A1/24 A1/25 A1/26 A1/27 A1/28 A1/29	1,78 1,78 1,78 1,78 1,78 1,78 1,78 1,78	6,00 6,00 6,00 6,00 6,00 5,91 5,91 5,91 5,91 5,91 5,91 6,00 6,00 6,00 6,00 6,00 6,00 5,91 5,91 5,91 5,91 5,91 5,91 5,91 5,91	1800 1800 1800 1800 1800 1800 1800 1800	276.2 276.2 276.1 271.3 271.2 267.9 264.3 264.2 264.0 255.8 270.5 270.4 270.5 263.4 263.2 255.1 263.2 255.1 263.2 255.1 263.2 255.1 263.2 255.1 263.2 255.1 263.2 255.1 263.2 255.1 263.2 255.1 263.2 255.1 272.1 272.0 268.7 272.1 272.0 268.7 265.0 265.0 265.0 265.0			36,3 36,1 35,6 37,1 36,9 36,4 37,0 35,5 35,4 37,5 37,4 36,9 37,5 36,0 35,8 35,3 36,0 35,7 36,5 36,5 36,0 36,5 36,0 36,5 36,0 36,0 36,0 36,0 36,0 36,0 36,0 36,0	7,62 7,64 7,75 7,32 7,34 7,44 7,47 7,57 7,44 7,20 7,23 7,32 7,32 7,35 7,45 7,36 7,56 7,36 7,57 7,59 7,70 7,57				OK OK OK OK OK OK OK OK OK OK OK OK OK O

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REVISIONE	FOGLIO
RS3H	02	D 78 CL	FA 0500 001	Α	110di 115

							CARIO	CO LIMITE	TRAVI	WINKLER	- S.L.U.					
		ID	ENTI	IFICATIVO			DRE	NATE	NON D	RENATE			RI	SULTATI		
Trav	е	Asta3d		Comb	Bx'	By'	GamEf	QLimV	GamEf	QLimV	N	Coeff.	Minimo	N/Ar	QLim/Ar	Status
N.ro)	N.ro		N.ro	m	m	kg/mc	(t)	kg/mc	(t)	(t)	Sicur.	CoeSic	kg/cmq	kg/cmq	Verifica
				A1/30	1,79	6,00	1800	272,6			35,7	7,64				OK
				A1/31	1,79	5,90	1800	265,4			34,1	7,78				OK
			X+	A1/32	1,75	5,75	1800	168,6			34,4	4,90	4,90	0,34	1,67	OK
			X-	A1/44	1,77	5,55	1800	165,0			18,9	8,74				OK
			Y+	A1/48	1,77	5,09	1800	166,1			29,0	5,73				OK
			Y-	A1/53	1,77	5,09	1800	166,1			29,0	5,73				OK

				PARAM	IETRI GEO	TECNICI TR	AVI WINI	(LER - S.I	D.			
I	DENTIFIC	CATIVO				CONDIZ	IONE DR	ENATA			NON DF	RENATA
Trave	Infiss	Tipo	Gamma	Fi'	C'	Mod.El	Poiss	P base	Indice	IndRig	Cu	P base
N.ro	m	Tabel	kg/mc	Grd	kg/cmq	kg/cmq	on	kg/cmq	Rigid.	Crit.	kg/cmq	kg/cmq
1 - 6	1,00	M1	1800	28,00	0,00	60,00	0,30	0,18	126,90	108,98		

									RTANZA	_							1			1		
Trave Nro	Brinch Hansen IcITe Incl.PianoF								omb I.ro	lgk Sism		effIncl.C		Aff Dc	ondamen Dq	to Dg	Sc	Forma Sq	Sq	Pu Psic	Inzoname Psiq	nto Psig
1	25,80	14,72	16,72	1,00	1,00	1,00	1,00	•	SLD/1	1,00	1,00	1,00	1,00	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/2 SLD/3	1,00	1,00	1,00	1,00	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/3 SLD/4	1,00 1,00	1,00 0,99	1,00 0,99	1,00 0,98	1,18 1,18	1,17 1,17	1,00 1,00	1,08 1,08	1,08 1,08	0,94 0,94	1,00 1,00	1,00 1,00	1,00 1,00
									SLD/5	1,00	0,99	0,99	0,98	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/6 SLD/7	1,00 1,00	0,99 0,98	0,99 0,99	0,98 0,97	1,18 1,18	1,17 1,17	1,00 1,00	1,08 1,08	1,08 1,08	0,94 0,94	1,00 1,00	1,00 1,00	1,00 1,00
									SLD/8	1,00	0,96	0,97	0,95	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/9	1,00	0,96	0,97	0,95	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/10 SLD/11	1,00 1.00	0,96 0.94	0,97 0,94	0,95 0.91	1,18 1,18	1,17 1,17	1,00 1.00	1,08 1,08	1,08 1.08	0,94 0.94	1,00 1.00	1,00 1,00	1,00 1.00
									SLD/12	1,00	0,99	0,99	0,98	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/13 SLD/14	1,00 1.00	0,99	0,99	0,98 0.98	1,18 1,18	1,17 1,17	1,00 1,00	1,08 1,08	1,08 1.08	0,94 0,94	1,00 1.00	1,00 1,00	1,00 1.00
									SLD/15	1,00	0,98	0,99	0,97	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/16	1,00	0,96 0.96	0,97 0,97	0,95 0.95	1,18	1,17	1,00	1,08	1,08 1.08	0,94	1,00 1.00	1,00	1,00
									SLD/17 SLD/18	1,00 1,00	0,96	0,97	0,95	1,18 1,18	1,17 1,17	1,00 1,00	1,08 1,08	1,08	0,94 0,94	1,00	1,00 1,00	1,00 1,00
									SLD/19	1,00	0,94	0,94	0,91	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/20 SLD/21	1,00 1.00	0,99 0.96	0,99 0,97	0,98 0,95	1,18 1,18	1,17 1,17	1,00 1,00	1,08 1,08	1,08 1.08	0,94 0.94	1,00 1.00	1,00 1,00	1,00 1,00
									SLD/22	1,00	0,99	0,99	0,98	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/23 SLD/24	1,00 1,00	0,99	0,99 0,99	0,98 0,98	1,18 1,18	1,17	1,00 1,00	1,08	1,08 1,08	0,94 0,94	1,00 1,00	1,00 1,00	1,00
									SLD/25	1,00	0,98	0,99	0,98	1,18	1,17 1,17	1,00	1,08 1,08	1,08	0,94	1,00	1,00	1,00 1,00
									SLD/26	1,00	0,96	0,97	0,95	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/27 SLD/28	1,00 1,00	0,96 0,96	0,97 0,97	0,95 0,95	1,18 1,18	1,17 1,17	1,00 1,00	1,08 1,08	1,08 1,08	0,94 0,94	1,00 1,00	1,00 1,00	1,00 1,00
									SLD/29	1,00	0,94	0,94	0,91	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/30 SLD/31	1,00 1,00	0,99 0,96	0,99 0,97	0,98 0,95	1,18 1,18	1,17 1,17	1,00 1,00	1,08 1,08	1,08 1,08	0,94 0,94	1,00 1,00	1,00 1,00	1,00 1,00
								X+	SLD/37	1,00	0,79	0,80	0,66	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
								X- Y+	SLD/44 SLD/51	1,00 1,00	0,79 0,69	0,80 0,71	0,66 0,59	1,18 1,18	1,17 1,17	1,00 1,00	1,08 1,08	1,08 1,08	0,94 0,94	1,00 1,00	1,00 1,00	1,00 1,00
								Y-	SLD/53	1,00	0,69	0,71	0,59	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
2	25,80	14,72	10.70	1,00	1,00	1,00	1.00		SLD/1	1.00	1.00	1.00	1.00	1.10	4.47	1.00	1.00	1.00	0.04	1.00	1.00	1.00
2	25,60	14,72	16,72	1,00	1,00	1,00	1,00		SLD/1	1,00 1,00	1,00 1,00	1,00 1,00	1,00 1,00	1,18 1,18	1,17 1,17	1,00 1,00	1,08 1,08	1,08 1,08	0,94 0,94	1,00 1,00	1,00 1,00	1,00 1,00
									SLD/3	1,00	1,00	1,00	1,00	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/4 SLD/5	1,00 1,00	0,99 0,99	0,99 0,99	0,98 0,98	1,18 1,18	1,17 1,17	1,00 1,00	1,08 1,08	1,08 1,08	0,94 0,94	1,00 1,00	1,00 1,00	1,00 1,00
									SLD/6	1,00	0,99	0,99	0,98	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/7 SLD/8	1,00 1,00	0,98 0,96	0,99 0,97	0,97 0,95	1,18 1,18	1,17 1,17	1,00 1,00	1,08 1,08	1,08 1,08	0,94 0,94	1,00 1,00	1,00 1,00	1,00 1,00
									SLD/9	1,00	0,96	0,97	0,95	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/10	1,00	0,96	0,97	0,95	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/11 SLD/12	1,00 1.00	0,94 0.99	0,94 0.99	0,91 0.98	1,18 1,18	1,17 1,17	1,00 1.00	1,08 1.08	1,08 1.08	0,94 0.94	1,00 1.00	1,00 1,00	1,00 1.00
									SLD/13	1,00	0,99	0,99	0,98	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/14 SLD/15	1,00 1,00	0,99 0,98	0,99 0,99	0,98 0,97	1,18 1,18	1,17 1,17	1,00 1,00	1,08 1,08	1,08 1,08	0,94 0,94	1,00 1,00	1,00 1,00	1,00 1,00
									SLD/16	1,00	0,96	0,97	0,95	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/17 SLD/18	1,00	0,96	0,97 0,97	0,95 0,95	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/18 SLD/19	1,00 1,00	0,96 0,94	0,97	0,95	1,18 1,18	1,17 1,17	1,00 1,00	1,08 1,08	1,08 1,08	0,94 0,94	1,00 1,00	1,00 1,00	1,00 1,00
									SLD/20	1,00	0,99	0,99	0,98	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/21 SLD/22	1,00 1.00	0,96 0.99	0,97 0,99	0,95 0.98	1,18 1,18	1,17 1,17	1,00 1.00	1,08 1,08	1,08 1.08	0,94 0,94	1,00 1.00	1,00 1,00	1,00 1,00
									SLD/23	1,00	0,99	0,99	0,98	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/24 SLD/25	1,00 1.00	0,99 0.98	0,99 0,99	0,98 0.97	1,18 1,18	1,17 1,17	1,00 1.00	1,08 1,08	1,08 1.08	0,94 0,94	1,00 1.00	1,00 1,00	1,00 1,00
									SLD/26	1,00	0,96	0,97	0,95	1,18	1,17	1,00	1,08	1,08	0,94	1,00	1,00	1,00
									SLD/27 SLD/28	1,00	0,96 0,96	0,97 0,97	0,95 0,95	1,18 1,18	1,17 1,17	1,00 1,00	1,08 1,08	1,08 1,08	0,94 0,94	1,00 1,00	1,00 1,00	1,00 1,00
II									3LD/28	1,00	0,96	0,97	0,95	1,10	1,17	1,00	1,00	1,08	0,94	1,00	1,00	1,00

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REVISIONE
 FOGLIO

 RS3H
 02
 D 78 CL
 FA 0500 001
 A
 111di 115

						COEFF	ICIENTI	DI PO	RTANZA	TRAVI V	VINKL	R - CC	NDIZIO	ONI DREI	NATE - S.	L.D.						
Trave Nro	Brir Nc	nch Hanse Ng	en Ng	IcITe Gc=Gq	Incl.	PianoP Bq	osa	C	Comb N.ro	Igk Sism	Coe	effIncl.C		1	ondament Dg		Sc	Forma Sq	Sq	Pu Psic	nzoname Psiq	nto Psig
NIC	No	149][- Ng	<u>ao-aq</u>	50	Бq	Dg .	X+ X- Y+ Y-	SLD/29 SLD/30 SLD/31 SLD/32 SLD/41 SLD/48 SLD/54	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	0,94 0,99 0,96 0,79 0,79 0,69 0,69	0,94 0,99 0,97 0,80 0,80 0,71 0,71	0,91 0,98 0,95 0,66 0,66 0,59 0,59	1,18 1,18 1,18 1,18 1,18 1,18 1,18	1,17 1,17 1,17 1,17 1,17 1,17 1,17	1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,08 1,08 1,08 1,08 1,08 1,08 1,08 1,08	1,08 1,08 1,08 1,08 1,08 1,08 1,08	0,94 0,94 0,94 0,94 0,94 0,94 0,94	1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 1,00 1,00 1,00 1,00
3	25,80	14,72	16,72	1,00	1,00	1,00	1,00	X+ X- Y+ Y-	SLD/1 SLD/2 SLD/3 SLD/4 SLD/5 SLD/6 SLD/7 SLD/8 SLD/10 SLD/11 SLD/12 SLD/17 SLD/18 SLD/17 SLD/18 SLD/17 SLD/18 SLD/19 SLD/10 SLD/17 SLD/18 SLD/19 SLD/21 SLD/23 SLD/24 SLD/25 SLD/26 SLD/27 SLD/28 SLD/29 SLD/26 SLD/26 SLD/27 SLD/26 SLD/27 SLD/26 SLD/26 SLD/26 SLD/26 SLD/27 SLD/26 SLD/26 SLD/26 SLD/26	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 0,99 0,98 0,98 0,98 0,98 0,99 0,99 0	1,00 1,00 1,00 0,99 0,99 0,98 0,98 0,98 0,99 0,99 0	1,00 1,00 1,00 0,98 0,98 0,96 0,96 0,96 0,96 0,96 0,96 0,96 0,96	1,18 1,18 1,18 1,18 1,18 1,18 1,18 1,18	1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17	1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16	0,88 0,88 0,88 0,88 0,88 0,88 0,88 0,88	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
4	25,80	14,72	16,72	1,00	1,00	1,00	1,00	X+ X- Y+ Y-	SLD/1 SLD/2 SLD/3 SLD/4 SLD/6 SLD/6 SLD/10 SLD/11 SLD/13 SLD/13 SLD/14 SLD/15 SLD/13 SLD/14 SLD/15 SLD/15 SLD/13 SLD/14 SLD/15 SLD/16 SLD/17 SLD/18 SLD/19 SLD/20 SLD/21 SLD/24 SLD/25 SLD/25 SLD/26 SLD/27 SLD/26 SLD/27 SLD/26 SLD/27 SLD/26 SLD/27 SLD/26 SLD/26 SLD/27 SLD/26 SLD/27 SLD/26 SLD/27 SLD/26 SLD/26 SLD/27 SLD/26 SLD/27 SLD/26 SLD/26 SLD/27 SLD/26 SLD/26 SLD/26 SLD/27 SLD/26 SLD/26 SLD/27 SLD/26 SLD/26 SLD/26 SLD/27 SLD/26 SLD/26 SLD/26 SLD/27 SLD/26 SLD/26 SLD/26 SLD/27 SLD/26 SLD/26 SLD/26 SLD/27 SLD/26 SLD/26 SLD/26 SLD/27 SLD/26 S	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 0,99 0,98 0,98 0,98 0,98 0,98 0,98 0	1,00 1,00 0,99 0,98 0,98 0,98 0,98 0,98 0,98 0	1,00 1,00 0,98 0,98 0,96 0,96 0,96 0,96 0,93 0,98 0,98 0,98 0,96 0,96 0,96 0,93 0,98 0,98 0,98 0,98 0,98 0,98 0,96 0,96 0,96 0,96 0,96 0,96 0,96 0,96	1,18 1,18 1,18 1,18 1,18 1,18 1,18 1,18	1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17	1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16	0,88 0,88 0,88 0,88 0,88 0,88 0,88 0,88	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
5	25,80	14,72	16,72	1,00	1,00	1,00	1,00		SLD/1 SLD/2 SLD/3 SLD/4 SLD/5 SLD/6 SLD/7 SLD/8 SLD/10 SLD/11	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 0,99 0,99 0,98 0,98 0,98 0,98 0,98	1,00 1,00 1,00 0,99 0,99 0,98 0,98 0,98 0,98 0,96	1,00 1,00 1,00 0,98 0,98 0,96 0,96 0,96 0,96 0,93	1,18 1,18 1,18 1,18 1,18 1,18 1,18 1,18	1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17	1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16	0,88 0,88 0,88 0,88 0,88 0,88 0,88 0,88	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 112di 115

	COEFFICIEN	I DI PORTANZA TRAVI WINKLER - CONDIZIONI DRENATE - S.L.D.	
Trave Brinch Hansen Nro Nc Nq Ng	IclTe Incl.PianoPosa Gc=Gq Bc Bq Bg	Comb Igk CoeffIncl.Car. Affondamento Forma N.ro Sism IcV IqV IgV Dc Dq Dg Sc Sq Sg	Punzonamento Psic Psiq Psig
		SLD/12 1,00 0,99 0,99 0,98 1,18 1,17 1,00 1,17 1,16 0,88 SLD/14 1,00 0,99 0,99 0,98 1,18 1,17 1,00 1,17 1,16 0,88 SLD/14 1,00 0,99 0,99 0,98 1,18 1,17 1,00 1,17 1,16 0,88 SLD/15 1,00 0,98 0,98 0,96 1,18 1,17 1,00 1,17 1,16 0,88 SLD/16 1,00 0,98 0,98 0,96 1,18 1,17 1,00 1,17 1,16 0,88 SLD/17 1,00 0,98 0,98 0,96 1,18 1,17 1,00 1,17 1,16 0,88 SLD/18 1,00 0,98 0,98 0,96 1,18 1,17 1,00 1,17 1,16 0,88 SLD/19 1,00 0,96 0,96 0,93 1,18 1,17 1,00 1,17 1,16 0,88 SLD/20 1,00 0,99 0,99 0,98 1,18 1,17 1,00 1,17 1,16 0,88 SLD/21 1,00 0,98 0,98 0,96 1,18 1,17 1,00 1,17 1,16 0,88 SLD/22 1,00 0,99 0,99 0,98 1,18 1,17 1,00 1,17 1,16 0,88 SLD/23 1,00 0,99 0,99 0,98 1,18 1,17 1,00 1,17 1,16 0,88 SLD/24 1,00 0,99 0,99 0,98 1,18 1,17 1,00 1,17 1,16 0,88 SLD/25 1,00 0,98 0,98 0,96 1,18 1,17 1,00 1,17 1,16 0,88 SLD/26 1,00 0,98 0,98 0,96 1,18 1,17 1,00 1,17 1,16 0,88 SLD/26 1,00 0,98 0,98 0,96 1,18 1,17 1,00 1,17 1,16 0,88 SLD/27 1,00 0,98 0,98 0,96 1,18 1,17 1,00 1,17 1,16 0,88 SLD/28 1,00 0,98 0,98 0,96 1,18 1,17 1,00 1,17 1,16 0,88 SLD/29 1,00 0,98 0,98 0,96 1,18 1,17 1,00 1,17 1,16 0,88 SLD/29 1,00 0,98 0,98 0,96 1,18 1,17 1,00 1,17 1,16 0,88 SLD/29 1,00 0,98 0,98 0,96 1,18 1,17 1,00 1,17 1,16 0,88 SLD/29 1,00 0,98 0,98 0,96 1,18 1,17 1,00 1,17 1,16 0,88 SLD/29 1,00 0,98 0,98 0,96 1,18 1,17 1,00 1,17 1,16 0,88 SLD/29 1,00 0,98 0,98 0,96 1,18 1,17 1,00 1,17 1,16 0,88 SLD/29 1,00 0,90 0,99 0,98 1,18 1,17 1,00 1,17 1,16 0,88 SLD/20 1,00 0,90 0,90 0,90 0,90 1,18 1,17 1,00 1,17	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00
6 25,80 14,72 16,72	2 1,00 1,00 1,00 1,00	SLD/1	1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00

					CARI	CO LIMITE	TRAVI	WINKLER	- S.L.D.					
	ID	ENTIIFICATIVO			DRE	NATE	NON D	RENATE			RI	SULTATI		
Trave	Asta3d	Comb	Bx'	By'	GamEf	QLimV	GamEf	QLimV	N	Coeff.	Minimo	N/Ar	QLim/Ar	Status
N.ro	N.ro	N.ro	m	m	kg/mc	(t)	kg/mc	(t)	(t)	Sicur.	CoeSic	kg/cmq	kg/cmq	Verifica
1	1	SLD/1	1,80	12,50	1800	575,1			78,2	7,36				OK
		SLD/2	1,80	12,50	1800	575,1			77,8	7,39				OK
		SLD/3	1,80	12,50	1800	575,1			76,6	7,51				OK
		SLD/4	1,80	12,50	1800	568,3			78,3	7,26				OK
		SLD/5	1,80	12,50	1800	568,3			78,0	7,29				OK
		SLD/6	1,80	12,50	1800	568,2			76,8	7,40				OK
		SLD/7	1,80	12,50	1800	563,6			76,9	7,33				OK
		SLD/8	1,80	12,50	1800	551,9			73,1	7,56				OK
		SLD/9	1,80	12,50	1800	551,8			72,7	7,59				OK
		SLD/10	1,80	12,50	1800	551,5			71,5	7,71				OK
		SLD/11	1,80	12,50	1800	535,5			68,1	7,86				OK
		SLD/12	1,80	12,50	1800	568,3			78,1	7,27				OK
		SLD/13	1,80	12,50	1800	568,3			77,8	7,30				OK
		SLD/14	1,80	12,50	1800	568,2			76,6	7,42				OK
		SLD/15	1,80	12,50	1800	563,6			76,7	7,35				OK
		SLD/16	1,80	12,50	1800	551,9			72,9	7,57				OK
		SLD/17	1,80	12,50	1800	551,8			72,5	7,61				OK
		SLD/18	1,80	12,50	1800	551,5			71,3	7,73				OK
		SLD/19	1,80	12,50	1800	535,5			67,9	7,88				OK
		SLD/20	1,80	12,50	1800	568,2			76,5	7,43				OK

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 113di 115

ļ		IF	ENTI	FICATIVO			10	CO LIMIT	10	WINKLER RENATE	- S.L.D.		DIG	SULTATI		•
	Trave	Asta3d		Comb	Bx'	Ву'	GamEf	QLimV	GamEf	QLimV	N	Coeff.	Minimo	N/Ar	QLim/Ar	Status
	N.ro	N.ro	X+ X- Y+ Y-	N.ro SLD/21 SLD/22 SLD/23 SLD/24 SLD/25 SLD/26 SLD/27 SLD/28 SLD/29 SLD/30 SLD/31 SLD/37 SLD/44 SLD/51 SLD/53	1,80 1,80 1,80 1,80 1,80 1,80 1,80 1,80	m 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50 12,50	1800 1800 1800 1800 1800 1800 1800 1800	(t) 551,5 568,3 568,2 563,6 551,9 551,5 535,5 5425,7 425,7 425,7 378,6 378,6	kg/mc	(t)	(t) 71,2 78,5 78,2 77,0 77,1 73,2 72,9 71,7 68,3 77,1 71,8 64,7 64,0 32,8 81,5	7,74 7,24 7,27 7,38 7,31 7,54 7,57 7,69 7,84 7,37 7,68 6,58 6,66 11,53 4,65	4,65	0,36	kg/cmq	Verifica OK
	2	4	X+ X- Y+ Y-	SLD/1 SLD/2 SLD/3 SLD/4 SLD/5 SLD/6 SLD/6 SLD/7 SLD/8 SLD/10 SLD/11 SLD/12 SLD/13 SLD/15 SLD/15 SLD/16 SLD/15 SLD/16 SLD/17 SLD/16 SLD/17 SLD/18 SLD/19 SLD/20 SLD/20 SLD/21 SLD/20 SLD/21 SLD/20 SLD/21 SLD/22 SLD/23 SLD/24 SLD/25 SLD/26 SLD/27 SLD/26 SLD/27 SLD/28 SLD/29 SLD/29 SLD/30 SLD/31 SLD/31 SLD/31 SLD/32 SLD/31	1,80 1,80 1,80 1,80 1,80 1,80 1,80 1,80	12,50 12,50	1800 1800 1800 1800 1800 1800 1800 1800	575,1 575,1 575,1 575,1 568,3 568,3 568,2 563,6 551,9 551,8 551,5 568,3 568,2 551,5 568,2 551,5 568,2 551,9 551,8 551,5 568,2 551,5 568,2 551,9 551,8 551,9 551,8 551,9 551,8 551,9 551,8 551,9 551,8 551,9 551,8 551,9 551,8 551,9 551,8 551,9 551,8 551,9 551,8 551,9 551,8 551,9 551,8 551,9 551,8 551,9 551,8 551,5 568,2 551,5 568,2 551,9 551,9 551,8 551,9 551,8 551,9 551,8 551,5 568,2 551,9 551,9 551,9 551,8 551,9 551,8 551,5 568,2 551,9 551,9 551,8 551,9 551,8 551,9 551,8 551,5 568,2 551,9 551,8 551,9 551,8 551,9 551,8 551,9 551,8 551,9 551,8 551,5 568,2 551,9 551,9 551,9 551,8 551,9 551,8 551,9 551,8 551,9			78.2 77.8 76.8 78.3 78.0 76.9 79.4 79.1 77.8 76.7 78.1 77.8 76.5 77.7 78.5 76.5 77.1 79.2 77.1 79.2 77.1 79.2 78.3 76.5 77.1 79.4 79.2 78.3 76.5 77.1 79.2 78.3 78.3 79.4 79.4 79.5 79.5 79.5 79.5 79.5 79.6 79.6 79.6 79.6 79.6 79.6 79.6 79.6	7,36 7,39 7,51 7,26 7,29 7,40 7,33 6,95 6,98 7,08 7,40 7,35 6,97 7,00 6,82 7,43 7,11 6,82 7,43 7,11 7,24 7,27 7,38 7,31 6,94 6,96 7,07 7,06 6,66 4,65 11,53	4,65	0,36	1,68	999999999999999999999999999999999999999
	3	7		SLD/1 SLD/2 SLD/3 SLD/3 SLD/4 SLD/5 SLD/6 SLD/7 SLD/8 SLD/10 SLD/11 SLD/11 SLD/12 SLD/13 SLD/14 SLD/15 SLD/18 SLD/19 SLD/17 SLD/18 SLD/19 SLD/20 SLD/21 SLD/22 SLD/23 SLD/24	1,80 1,80 1,80 1,80 1,80 1,80 1,80 1,80	6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00	1800 1800 1800 1800 1800 1800 1800 1800	280,2 280,2 280,2 275,5 275,5 275,5 272,4 272,1 272,1 272,0 266,4 275,5 275,5 272,4 272,1 272,1 272,0 266,4 275,5 275,5 275,5 275,5 275,5			36,1 36,0 35,5 35,1 35,0 34,5 33,8 35,4 34,3 35,5 35,0 34,3 35,5 35,9 35,3 35,3 34,8 35,3 34,8 35,3 34,8 35,3 35,4 35,9	7,76 7,78 7,89 7,85 7,88 8,05 7,99 7,72 7,72 7,74 7,77 7,74 7,77 7,87 7,94 7,59 7,62 7,72 7,66 7,80 7,65 7,96 7,99 8,10				00000000000000000000000000000000000000

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 114di 115

		ID	FNTIII	FICATIVO			10	O LIMIT NATE		WINKLER RENATE	- S.L.D.		RIS	SULTATI		
Trav N.r		ta3d I.ro		Comb N.ro	Bx' m	By' m	GamEf kg/mc	QLimV (t)	GamEf kg/mc	QLimV (t)	N (t)	Coeff. Sicur.	Minimo CoeSic	N/Ar kg/cmq	QLim/Ar kg/cmq	Status Verifica
N.II	<u>o </u>	<u> </u>	X+ X- Y+ Y-	SLD/25 SLD/26 SLD/27 SLD/28 SLD/29 SLD/30 SLD/31 SLD/32 SLD/44 SLD/56 SLD/60	1,80 1,80 1,80 1,80 1,80 1,80 1,80 1,80	6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00	1800 1800 1800 1800 1800 1800 1800 1800	272,4 272,1 272,1 272,0 266,4 275,5 272,0 188,7 205,3 205,3	ку/пс	(t)	33,3 34,9 34,8 34,3 33,8 33,7 34,0 18,0 35,2 29,2 29,2	8,17 7,80 7,83 7,93 7,88 8,17 8,01 10,50 5,36 7,04 7,04	5,36	0,33	1,75	OK OK OK OK OK OK OK OK OK OK
	4	8	X+ X- Y+ Y-	SLD/1 SLD/2 SLD/3 SLD/3 SLD/5 SLD/6 SLD/7 SLD/8 SLD/9 SLD/10 SLD/11 SLD/12 SLD/13 SLD/14 SLD/15 SLD/16 SLD/17 SLD/16 SLD/17 SLD/18 SLD/18 SLD/19 SLD/20 SLD/21 SLD/22 SLD/23 SLD/24 SLD/25 SLD/26 SLD/27 SLD/28 SLD/29 SLD/29 SLD/29 SLD/29 SLD/29 SLD/29 SLD/29 SLD/30 SLD/31 SLD/31 SLD/31 SLD/31 SLD/32 SLD/31 SLD/32 SLD/32 SLD/34 SLD/56 SLD/60	1,80 1,80 1,80 1,80 1,80 1,80 1,80 1,80	6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00	1800 1800	280,2 280,2 280,2 275,5 275,5 275,5 272,1 272,1 272,0 266,4 275,5			35,1 35,0 34,5 34,5 34,7 34,2 34,1 34,3 34,2 33,7 33,1 34,6 34,4 32,9 33,8 33,9 33,9 33,8 33,1 35,0 34,5 34,5 34,5 34,5 34,5 34,7 35,0 36,0 36,0 36,0 36,0 36,0 36,0 36,0 36	7,98 8,02 8,13 7,91 7,94 8,05 8,00 7,93 7,97 8,08 8,04 7,97 8,08 8,10 8,16 8,10 8,16 8,19 7,85 7,88 7,99 7,93 7,97 8,04 7,97 8,04 7,97 8,07 7,77	6,74	0,26	1,75	OK OK OK <
	5	9		SLD/1 SLD/2 SLD/3 SLD/4 SLD/5 SLD/6 SLD/7 SLD/8 SLD/9 SLD/10 SLD/11 SLD/12 SLD/13 SLD/14 SLD/15 SLD/16 SLD/17 SLD/16 SLD/17 SLD/18 SLD/19 SLD/20 SLD/21 SLD/21 SLD/22 SLD/23 SLD/24 SLD/25 SLD/25 SLD/25 SLD/26 SLD/27 SLD/28	1,80 1,80 1,80 1,80 1,80 1,80 1,80 1,80	6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00	1800 1800 1800 1800 1800 1800 1800 1800	280,2 280,2 280,2 275,5 275,5 275,5 272,1 272,1 272,0 266,4 275,5 275,5 275,5 275,5 275,5 275,5 275,5 275,5 275,5 275,5 275,5 275,5 275,5 275,5 275,5 275,5 275,5			34,9 34,7 34,2 35,2 35,1 34,6 34,1 33,9 34,8 34,6 33,7 33,6 33,7 33,6 34,1 32,9 35,4 34,9 35,4 34,9 35,4 34,1 32,9 35,4 34,1 34,1 35,2 35,1 35,1 36,1 36,1 36,1 36,1 36,1 36,1 36,1 36	8,04 8,07 8,19 7,82 7,85 7,96 7,81 7,99 8,02 8,14 8,10 7,89 7,92 8,03 7,88 8,07 8,10 8,22 7,75 7,78 7,78 7,78 7,78 7,78 7,78 7,74 7,92 8,06				\$

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1 LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 115di 115

						CARI	CO LIMITI	TRAVI	WINKLER	- S.L.D.					
	10	DENTII	FICATIVO				NATE		RENATE			RIS	SULTATI		
Trave N.ro	Asta3d N.ro		Comb N.ro	Bx' m	By' m	GamEf kg/mc	QLimV (t)	GamEf kg/mc	QLimV (t)	N (t)	Coeff. Sicur.	Minimo CoeSic	N/Ar kg/cmg	QLim/Ar kg/cmg	Status Verifica
	,	X+ X- Y+ Y-	SLD/29 SLD/30 SLD/31 SLD/32 SLD/44 SLD/48 SLD/52	1,80 1,80 1,80 1,80 1,80 1,80 1,80	6,00 6,00 6,00 6,00 6,00 6,00 6,00	1800 1800 1800 1800 1800 1800 1800	266,4 275,5 272,0 188,7 188,7 205,3 205,3		19	33,2 35,2 34,0 27,8 23,3 26,2 26,2	8,02 7,84 8,01 6,78 8,10 7,83 7,83	6,78	0,26	1,75	OK OK OK OK OK OK
6	10	X+ X- Y+ Y-	SLD/1 SLD/2 SLD/3 SLD/4 SLD/5 SLD/6 SLD/7 SLD/8 SLD/10 SLD/11 SLD/12 SLD/13 SLD/14 SLD/15 SLD/16 SLD/18 SLD/18 SLD/19 SLD/20 SLD/21 SLD/22 SLD/23 SLD/24 SLD/25 SLD/26 SLD/27 SLD/28 SLD/29 SLD/30 SLD/31 SLD/31	1,80 1,80 1,80 1,80 1,80 1,80 1,80 1,80	6,00 6,00 6,00 6,00 6,00 6,00 6,00 6,00	1800 1800 1800 1800 1800 1800 1800 1800	280,2 280,2 280,2 275,5			36,3 36,1 35,6 37,1 36,9 36,4 37,0 35,5 35,4 37,5 36,0 35,3 37,4 36,5 36,5 36,5 36,5 36,5 36,5 36,5 36,5	7,73 7,76 7,86 7,43 7,46 7,56 7,67 7,69 7,80 7,75 7,34 7,37 7,46 7,27 7,57 7,59 7,69 7,65 7,40 7,65 7,40 7,65 7,40 7,80 7,90 7,80 7,90 7,90 7,90 7,90 7,90 7,90 7,90 7,9	5,47	0,32	1,75	999999999999999999999999999999999999999

Verifica allo scorrimento.

La verifica allo scorrimento delle fondazioni superficiali è stata condotta calcolando la resistenza limite secondo la seguente relazione, che tiene in conto sia il contributo ad attrito che quello coesivo:

$$V_{res} = \frac{N}{\gamma_r} \times \frac{tg\varphi}{\gamma_\varphi} + \frac{A}{\gamma_r} \times \frac{C}{\gamma_C}$$

in cui:

 $\mathbf{g}_{\phi},\,\mathbf{g}_{C}$: Coefficienti parziali per i parametri geotecnici (NTC Tabella 6.2.II)

gr : Coefficienti parziali SLU fondazioni superficiali (NTC Tabella 6.4.1)

Si riporta di seguito la spiegazione delle sigle usate nella precedente relazione e nella relativa tabella di stampa.

Comb. : Numero combinazione a cui si riferisce la verifica

Tipo Elem. : Tipo di elemento strutturale: Trave/Plinto/Piastra

INTERRAMENTO LINEA PER IL PROLUNGAMENTO DELLA PISTA DELL' AEROPORTO DI FONTANAROSSA E PER LA MESSA A STI DEL TRATTO DI LINEA INTERESSATO.

MACROFASE FUNZIONALE 1

LOTTO 02

FABBRICATO FA-05 – FA07 - RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO REVISIONE FOGLIO
RS3H 02 D 78 CL FA 0500 001 A 116di 115

Elem. N.ro : Numero dell'elemento strutturale (numero Travata/Filo/Nodo3D) in base al tipo

elemento (Asta Winkler/Plinto/Platea)

N : Scarico verticale

 $\operatorname{tg} \, \varphi / \, \operatorname{g}_{\varphi} / \, \, : \, \operatorname{Coefficiente} \, \operatorname{attrito} \, \operatorname{di} \, \operatorname{progetto} \,$

 g_{r}

 $C/g_C/g_r$: Adesione di progetto

Area : Area ridotta

Vres : Resistenza allo scorrimento dell' elemento strutturale

Fh : Azione orizzontale trasmessa dall' elemento strutturale

Verifica : Flag di verifica allo scorrimento del singolo elemento. Se l'elemento è collegato

al resto della fondazione, la condizione di slittamento del singolo elemento non

pregiudica la verifica globale della intera fondazione

S(Vres) : Somma dei contributi resistenti dei vari elementi strutturali

S(Fh) : Somma dei contributi delle azioni orizzontali trasmesse dai vari elementi

strutturali

Verifica : Flag di verifica globale allo scorrimento della intera fondazione

Globale

Locale

				VERIFIC/	A ALLO SC	ORRIMENT	O - CONDIZI	ONI DRENAT	E			
IDENTIF	ICATIVO							RISULTATI				
Combinazione N.ro	Tipo Elem.	Elem N.ro	N (t)	Tg(fi)/ Gfi/Gr	C/Gc/Gr t/mq	Area mq	Vres (t)	Fh (t)	Verifica Locale	S(Vres) (t)	S(Fh) (t)	Verifica Globale
A1 / 33	TRAVE TRAVE TRAVE TRAVE TRAVE	1 2 3 4 5	50,19 64,62 18,05 23,50 27,79	0,244 0,244 0,244 0,244 0,244	0,00 0,00 0,00 0,00 0,00	19,869 19,929 9,776 10,204 10,278	12,23 15,74 4,40 5,72 6,77	9,36 12,05 3,37 4,38 5,18	OK OK OK OK OK	12,23 27,97 32,36 38,09 44,86	9,36 21,42 24,78 29,17 34,35	
	TRAVE	6	34.41	0.244	0.00	10,150	8.38	6.42	OK	53.24	40.77	OK