COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

U.O. INFRASTRUTTURE CENTRO

PROGETTO DEFINITIVO

TRATTA CALTANISSETTA XIRBI - NUOVA ENNA (LOTTO 4A)

Opere di sostegno di linea

TR01: Opere disostegno MU11

Relazione di calcolo

SCALA:
-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

RS3U 40 D 29 CL MU1100 001 B

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Gen-2020	M.Arcangeli	Gen-2020	A.Barreca	Gen-2020	F.Arduini
В	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Apr-2020	M:Arcangeli	Apr-2020	A.Barreca	Apr-2020	Apr-2020
								FERN 5.p. school 7 cook school
								A A A A A A A A A A A A A A A A A A A

File: RS3U.4.0.D.29.CL.MU.11.0.0.001.B

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISETTA XIRBI – ENNA (LOTTO 4/A)

OPERE DI SOSTEGNO DI LINEA LOTTO

40 D 29

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA	
RS3U	

CL

CODIFICA MU1100 001

DOCUMENTO

REV. FOGLIO 2 di 196

В

INDICE

1.	PREMI	ESSA		7
	1.1	DE	SCRIZIONE DELL'OPERA	
2.	NORM	ATIVA	DI RIFERIMENTO	12
3.	DOCUI	MENTI	DI RIFERIMENTO	12
4.	UNITÀ	DI MIS	SURA E SIMBOLOGIA	13
5.	CARA	ΓTERIS	TICHE DEI MATERIALI	14
	5.1	CA	LCESTRUZZO	14
	5.1	AC	CIAIO IN BARRE AD ADERENZA MIGLIORATA B450 C	17
6.	INQUA	DRAM	ENTO GEOTECNICO	18
7.	CRITE	RI DI V	ERIFICA	20
	7.1	VE	RIFICHE GEOTECNICHE (SLU) IN CONDIZIONI STATICHE	20
		7.1.1	VERIFICA A SCORRIMENTO	22
		7.1.2	VERIFICA A RIBALTAMENTO	23
		7.1.3	VERIFICA A CARICO LIMITE DELLA FONDAZIONE	23
		7.1.4	VERIFICA A STABILITÀ GLOBALE	23
	7.2	VE	RIFICHE GEOTECNICHE (SLV) IN CONDIZIONI SISMICHE	24
	7.3	VE	RIFICHE GEOTECNICHE (SLE)	26
		7.3.1	SPOSTAMENTI ATTESI IN CAMPO SLE	27
		7.3.2	SPOSTAMENTI PERMANENTI INDOTTI DAL SISMA	27
	7.4	VE	RIFICHE STRUTTURALI SLU	29
		7.4.1	CRITERI DI VERIFICA DELLE SEZIONI IN C.A	29
		7.4.2	VERIFICHE PER GLI STATI LIMITE ULTIMI A FLESSIONE - PRESSOFLESSIONE	29
		7.4.3	VERIFICA AGLI STATI LIMITE ULTIMI A TAGLIO	29
	7.5	VE	RIFICHE STRUTTURALI (SLE)	32
		7.5.1	VERIFICHE ALLE TENSIONI	32
		7.5.2	VERIFICHE A FESSURAZIONE	33

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 29	CL	MU1100 001	В	3 di 196

8.	ANAL	ISI DEI	CARICHI	35
	8.1	PES	SI PROPRI	35
	8.2	CA	RICHI PERMANENTI	38
		8.2.1	SOVRASTRUTTURA FERROVIARIA	38
		8.2.2	PARAPETTO METALLICO	38
		8.2.3	SPINTA DEL TERRENO	38
	8.3	CA	RICHI VARIABILI – MURO DI SOSTEGNO	40
		8.3.1	CARICHI MOBILI DA TRAFFICO FERROVIARIO	40
	8.4	VA	LUTAZIONE DELL'AZIONE SISMICA	41
		8.4.1	VITA NOMINALE	41
		8.4.2	CLASSE D'USO	41
		8.4.3	PERIODO DI RIFERIMENTO	41
		8.4.4	PARAMETRI SISMICI	41
9.	COME	SINAZIO	NI DI CARICO	46
10.	PROG	ЕТТО Е	VERIFICA DEL MURO DI SOSTEGNO "TIPO X ⁰ "	49
	10.1	DA	TI DI INPUT	49
	10.1	CA	LCOLO DELLE AZIONI	53
		10.1.1	FORZE VERTICALI E INERZIALI	53
		10.1.2	SPINTE IN CONDIZIONE STATICA	55
		10.1.3	SPINTE IN CONDIZIONE SISMICA +	56
		10.1.4	SPINTE IN CONDIZIONE SISMICA	57
	10.2	2 VE	RIFICHE GEOTECNICHE	58
		10.2.1 DRENA	VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C.	58
		10.2.2 DRENA	VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C.	60
		10.2.3	VERIFICA DI STABILITÀ GLOBALE – COND. DRENATE	64

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 4 di 196

		2.4 VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. N DRENATE	68
	10.2 NO.	2.5 VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. N DRENATE	70
	10.2	2.6 VERIFICA DI STABILITÀ GLOBALE – COND. NON DRENATE	74
	10.2	2.7 VERIFICA DEGLI SPOSTAMENTI SLD	<i>78</i>
	10.3	VERIFICHE STRUTTURALI	79
	10.3	3.1 CALCOLO DELLE SOLLECITAZIONI	<i>79</i>
	10.3	3.2 VERIFICHE SLU	81
	10.3	3.3 VERIFICHE SLE TENSIONE	83
	10.3	3.4 VERIFICHE SLE FESSURAZIONE	84
	10.3	3.5 CALCOLO INCIDENZA ARMATURA	85
11.	PROGETTO	O E VERIFICA DEL MURO DI SOSTEGNO "TIPO X1"	86
	11.1	DATI DI INPUT	86
	11.2	CALCOLO DELLE AZIONI	90
	11.2	2.1 FORZE VERTICALI E INERZIALI	90
	11.2	2.2 SPINTE IN CONDIZIONE STATICA	92
	11.2	2.3 SPINTE IN CONDIZIONE SISMICA +	93
	11.2	2.4 SPINTE IN CONDIZIONE SISMICA	94
	11.3	VERIFICHE GEOTECNICHE	95
		3.1 VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. ENATE	
	11.5 DR	3.2 VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. ENATE	97
	11.3	3.3 VERIFICA DI STABILITÀ GLOBALE – COND. DRENATE1	01
	11.3 NO	3.4 VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. N DRENATE	05
	11.3 NO	3.5 VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. N DRENATE	07
	11.3	3.6 VERIFICA DI STABILITÀ GLOBALE – COND. NON DRENATE	11

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 5 di 196

	11.3.7	VERIFICA DEGLI SPOSTAMENTI SLD	115
	11.4 VEI	RIFICHE STRUTTURALI	116
	11.4.1	CALCOLO DELLE SOLLECITAZIONI	116
	11.4.2	VERIFICHE SLU	118
	11.4.3	VERIFICHE SLE TENSIONE	120
	11.4.4	VERIFICHE SLE FESSURAZIONE	121
	11.4.5	CALCOLO INCIDENZA ARMATURA	122
12.	PROGETTO E	VERIFICA DEL MURO DI SOSTEGNO "TIPO 1"	123
	12.1 DA	ΓΙ DI INPUT	123
	12.2 CA	LCOLO DELLE AZIONI	127
	12.2.1	FORZE VERTICALI E INERZIALI	127
	12.2.2	SPINTE IN CONDIZIONE STATICA	129
	12.2.3	SPINTE IN CONDIZIONE SISMICA +	130
	12.2.4	SPINTE IN CONDIZIONE SISMICA -	131
	12.3 VEI	RIFICHE GEOTECNICHE	132
	12.3.1 DRENA	VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C	
	12.3.2 DRENA	VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C	
	12.3.3	VERIFICA DI STABILITÀ GLOBALE – COND. DRENATE	138
	12.3.4 NON D	VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - CRENATE	
	12.3.5 NON D	VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C	
	12.3.6	VERIFICA DI STABILITÀ GLOBALE – COND. NON DRENATE	148
	12.3.7	VERIFICA DEGLI SPOSTAMENTI SLD	152
	12.4 VEI	RIFICHE STRUTTURALI	153
	12.4.1	CALCOLO DELLE SOLLECITAZIONI	153
	12.4.2	VERIFICHE SLU	155

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 6 di 196

	12.4	4.3	VERIFICHE SLE TENSIONE	.157
	12.4	4.4	VERIFICHE SLE FESSURAZIONE	.158
	12.4	4.5	CALCOLO INCIDENZA ARMATURA	.159
13.	PROGETTO	O E V	ERIFICA DEL MURO DI SOSTEGNO "TIPO 2"	.160
	13.1	DAT	DI INPUT	. 160
	13.2	CAL	COLO DELLE AZIONI	. 164
	13.2	2.1	FORZE VERTICALI E INERZIALI	.164
	13.2	2.2	SPINTE IN CONDIZIONE STATICA	.166
	13.2	2.3	SPINTE IN CONDIZIONE SISMICA +	.167
	13.2	2.4	SPINTE IN CONDIZIONE SISMICA	.168
	13.3	VER	FICHE GEOTECNICHE	. 169
	13 DR		VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C.	.169
	13 DR		VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C.	.171
	13	3.3	VERIFICA DI STABILITÀ GLOBALE – COND. DRENATE	.175
			VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C.	.179
			VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C.	. 181
	13	3.6	VERIFICA DI STABILITÀ GLOBALE – COND. NON DRENATE	.185
	13	3.7	VERIFICA DEGLI SPOSTAMENTI SLD	.189
	13.4	VER	FICHE STRUTTURALI	. 190
	13.4	4.1	CALCOLO DELLE SOLLECITAZIONI	.190
	13.4	4.2	VERIFICHE SLU	.192
	13.4	4.3	VERIFICHE SLE TENSIONE	.194
	13.4	4.4	VERIFICHE SLE FESSURAZIONE	.195
	13.4	4.5	CALCOLO INCIDENZA ARMATURA	.196

1. PREMESSA

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo della direttrice ferroviaria Messina-Catania-Palermo, nuovo collegamento Palermo-Catania tratta Caltanisetta Xirbi – Enna (Lotto 4a).

1.1 DESCRIZIONE DELL'OPERA

Nella presente relazione sono illustrati i calcoli e le verifiche del muro di sostegno MU11 che si sviluppa dal km 0+100,35 al km 1+426,45 (Figura 1-1, Figura 1-3).

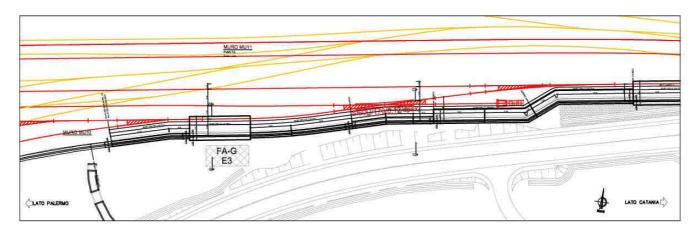


Figura 1-1 – TR01: Muro di sostegno in dx MU11 - Pianta.

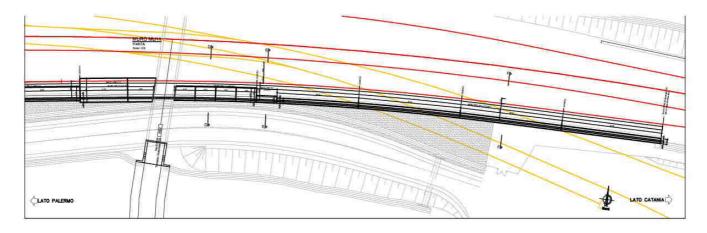


Figura 1-2 – TR01: Muro di sostegno in dx MU11 - Pianta.

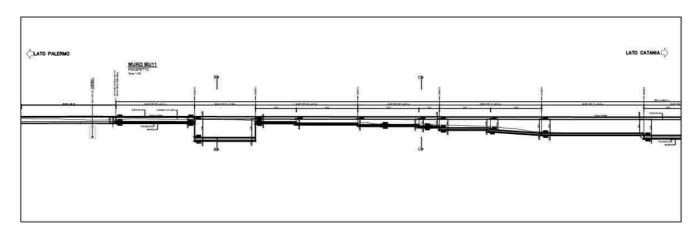


Figura 1-3 – TR01: Muro di sostegno in dx MU11 - Prospetto.

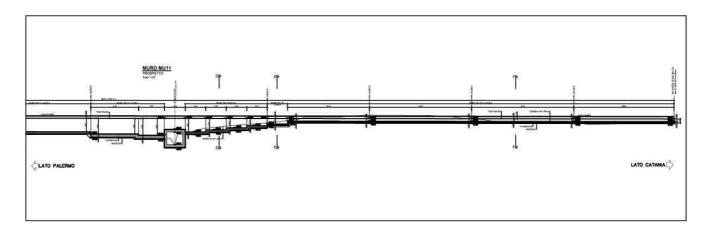


Figura 1-4 – TR01: Muro di sostegno in dx MU11 - Prospetto.

Quanto riportato di seguito consentirà di verificare che il dimensionamento della struttura è stato effettuato nel rispetto dei requisiti di resistenza richiesti all'opera.

L'altezza del muro è variabile con lo sviluppo dell'opera stessa da 1.00m a 1.30 m, con spessore del paramento in testa di 0.4m, spessore della soletta di fondazione che assume il valore di 0.40 m e larghezza della stessa di 2.00m.

E' stata individuata la tipologia di "muro di sostegno" le cui caratteristiche sono di seguito riassunte:

 muro "tipo x", per altezze del paramento in elevazione fino a 1.30 metri, la fondazione del muro è diretta ed è caratterizzata da una lunghezza di 1.50 m e spessore 0.40 m. Il ricoprimento sopra la zattera di valle è pari ad almeno 20 cm. L'altezza del paramento massima è pari a 1.30 m (Figura 1-2).

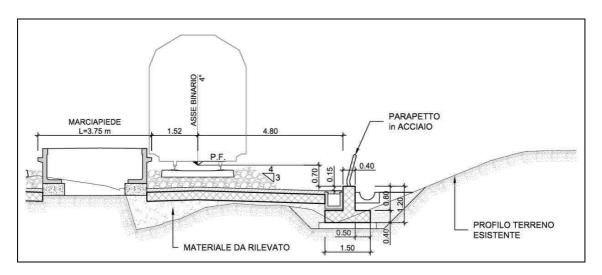


Figura 1-5 – TR01: Muro di sostegno in dx MU10– Sezione trasversale muro tipo x^0

• muro "tipo x¹", per altezze del paramento in elevazione da 1.20 a 2.00 metri, la fondazione del muro è diretta ed è caratterizzata da una lunghezza di 2.00 m e spessore 0.40 m. Il ricoprimento sopra la zattera di valle è pari ad almeno 20 cm. L'altezza del paramento massima è pari a 2.00 m (Figura 1-3).

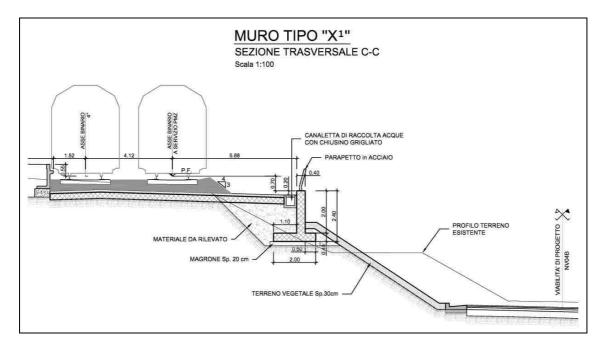


Figura 1-6 – TR01: Muro di sostegno in dx MU10– Sezione trasversale muro tipo x^1

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO CO TRATTA CA	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISETTA XIRBI – ENNA (LOTTO 4a) OPERE DI SOSTEGNO DI LINEA					
TR01: MURO DI SOSTEGNO IN DX MU11	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
RELAZIONE DI CALCOLO	RS3U	40 D 29	CL	MU1100 001	В	10 di 196	

muro "tipo 1", per altezze del paramento in elevazione comprese tra 2.00 e 4.00 metri, la fondazione del muro è diretta ed è caratterizzata da una lunghezza di 4.20 m e spessore 0.60 m.
 Il ricoprimento sopra la zattera di valle è pari ad almeno 20 cm. L'altezza del paramento massima è pari a 4.00 m (Figura 1-4).

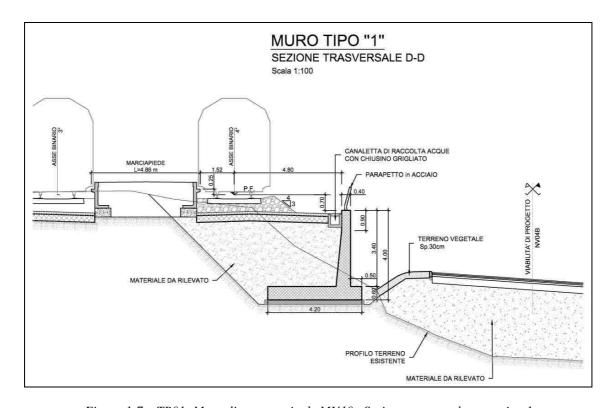


Figura 1-7 – TR01: Muro di sostegno in dx MU10– Sezione trasversale muro tipo 1

muro "tipo 2", per altezze del paramento in elevazione comprese tra 4.00 e 6.00 metri, la fondazione del muro è diretta ed è caratterizzata da una lunghezza di 7.00 m e spessore 1.00 m.
 Il ricoprimento sopra la zattera di valle è pari ad almeno 20 cm. L'altezza del paramento massima è pari a 6.00 m (Figura 1-5).

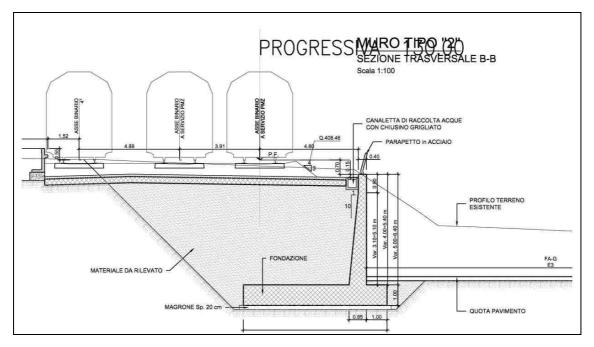


Figura 1-8 – TR01: Muro di sostegno in dx MU10– Sezione trasversale muro tipo 2

Di seguito si svolgerà la verifica per ogni tipo di muro precedentemente descritto caratterizzato dall'altezza di paramento massima.

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 12 di 196

2. NORMATIVA DI RIFERIMENTO

L'interpretazione dei risultati e la redazione della presente relazione sono stati effettuati nel rispetto della Normativa in vigore.

I principali riferimenti normativi sono i seguenti:

Norme Tecniche per le Costruzioni - D.M. 17-01-18 (NTC-2018);

Circolare n. 7 del 21 gennaio 2019 - Istruzioni per l'Applicazione dell'aggiornamento delle Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale 17 gennaio 2018;

Regolamento (UE) N.1299/2014 del 18 novembre 2014 della Commissione Europea. Relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.

Eurocodici EN 1991-2: 2003/AC:2010 - Eurocodice 1 - Parte 2

RFI DTC SI MA IFS 001 C del 21-12-18 - Manuale di Progettazione delle Opere Civili

3. DOCUMENTI DI RIFERIMENTO

Vengono presi a riferimento i seguenti elaborati grafici progettuali di pertinenza:

RS3U.4.0.D.29.P9.MU.11.0.0.001.B: <u>"Opere di sostegno di liniea – TR01: Muro di sostegno in dx MU11</u> – Pianta, prospetto e sezioni – Tav. 1 di 2"

RS3U.4.0.D.29.P9.MU.11.0.0.001.B: <u>"Opere di sostegno di liniea – TR01: Muro di sostegno in dx MU11</u> <u>— Pianta, prospetto e sezioni – Tav. 2 di 2"</u>

RS3U.4.0.D.29.TT.OC.00.0.0.002.A: "Opere civili – Elaborati generali OO. CC. – Tabella incidenze armature Opere Civili"

RS3U.4.0.D.29.GE.GE.00.0.0.001.C: <u>"Geotecnica – Elaborati generali – Relazione geotecnica generale delle opere all'aperto"</u>

OPERE DI SOSTEGNO DI LINEA

LOTTO

40 D 29

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO COMMESSA RS3U CODIFICA

DOCUMENTO MU1100 001

REV. FO

FOGLIO 13 di 196

4. UNITÀ DI MISURA E SIMBOLOGIA

Si utilizza il Sistema Internazionale (SI):

unità di misura principali

N (Newton) unità di forza

m (metro) unità di lunghezza

kg (kilogrammo-massa) unità di massa

s (secondo) unità di tempo

unità di misura derivate kN

(kiloNewton) 103N

MN (megaNewton) 106N

kgf (kilogrammo-forza) 1 kgf = 9.81 N

cm (centimetro) 10-2 m

mm (millimetro) 10-3 m

Pa (Pascal) 1 N/m2

kPa (kiloPascal) 103 N/m2

MPa (megaPascal) 106 N/m2

N/m3 (peso specifico)

g (accelerazione di gravità) ~9.81 m/s2

corrispondenze notevoli

1 MPa = 1 N/mm2

1 MPa ~ 10 kgf/cm2

Si utilizzano i seguenti principali simboli con le relative unità di misura normalmente adottate:

, (gamma) peso dell'unità di volume (kN/m3)

 σ (sigma) tensione normale (N/mm2)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO COMMESSA LOTTO
RS3U 40 D 29

CODIFICA

DOCUMENTO MU1100 001

REV. FOGLIO **B** 14 di 196

τ (tau) tensione tangenziale (N / mm2)

 ϵ (epsilon) deformazione (m/m)

5. CARATTERISTICHE DEI MATERIALI

Le caratteristiche dei materiali sono ricavate con riferimento alle indicazioni contenute nei capitoli 4 e 11 del D.M. 17 gennaio 2018. Nelle tabelle che seguono sono indicate le principali caratteristiche e i riferimenti dei paragrafi del D.M. citato.

5.1 CALCESTRUZZO

• Elemento strutturale: fondazione ed elevazione muro di sostegno

Classe di resistenza = C30/37;

Rck = resistenza cubica = 37 N/mm2;

fck = resistenza cilindrica caratteristica = 0.83 Rck = 30.71 N/ mm2;

fcm = resistenza cilindrica media = fck + 8 = 38.71 N/ mm2;

 $fcd = \alpha cc fck/\gamma c = 17.4 N/mm2;$

fctm = resistenza a trazione media = $0.30 \text{ x fck}^2/3 = 2.94 \text{ N/ mm}^2$;

fcfm = resistenza a traz. per flessione media = 1.20 x fctm = 3.53 N/ mm2;

fcfk = resistenza a traz. per flessione carati. = 0.70 x fcfm = 2.47 N/ mm2;

Ecm = modulo elast. tra 0 e 0.40 fcm = $22000 \times (\text{fcm}/10)^{\circ}0.3 = 33019.43 \text{ N/ mm}^{2}$;

Tolleranza di posa del copriferro = 10 mm;

Classe di esposizione XC4

Copriferro minimo c_{min}= 40 mm

Condizioni ambientali: aggressive

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA LOTTO
RS3U 40 D 29

CODIFICA

DOCUMENTO MU1100 001

REV. FOGLIO **B** 15 di 196

CALCOLO COPRIFERRO - § C4.1.6.1.3 ISTRUZIONI NTC 2018

• Elemento strutturale: fondazione ed elevazione muro di sostegno	<u> – mur</u>	o tipo X	⁰ , X ¹
Diametro (o diametro equivalente) barre longitudinali:	16	[mm]	
Diametro staffe:	10	[mm]	
Classe Calcestruzzo:	C30/3	7	
Condizioni ambientali:	Aggre	ssive	
Vita nominale costruzione:	75	[anni]	
Tolleranza di posa:	10	[mm]	
Copriferro staffe:			
Copriferro minimo c _{min} :	30	[mm]	
Copriferro nominale Netto Staffe:	40	[mm]	
Copriferro barre longitudinali:			
Copriferro nominale Netto barre longitudinali:	60	[mm]	
Copriferro nominale dal Baricentro della Barra longitudinale:		68	[mm]

Elemento strutturale: fondazione ed elevazione muro di sostegno – muro tipo 1

Diametro (o diametro equivalente) barre longitudinali:	20	[mm]
Diametro staffe:	10	[mm]
Classe Calcestruzzo:	C30/3	37
Condizioni ambientali:	Aggre	essive
Vita nominale costruzione:	75	[anni]
Tolleranza di posa:	10	[mm]
Copriferro staffe:		
Copriferro minimo c _{min} :	30	[mm]
Copriferro nominale Netto Staffe:	40	[mm]

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 16 di 196

70

[mm]

Copriferro barre longitudinali:

Copriferro nominale Netto barre longitudinali: 60 [mm]

Copriferro nominale dal Baricentro della Barra longitudinale: 70 [mm]

Elemento strutturale: fondazione ed elevazione muro di sostegni	<u>o – mur</u>	ro tipo 2
Diametro (o diametro equivalente) barre longitudinali:	20	[mm]
Diametro staffe:	10	[mm]
Classe Calcestruzzo:	C30/3	7
Condizioni ambientali:	Aggre	ssive
Vita nominale costruzione:	75	[anni]
Tolleranza di posa:	10	[mm]
Copriferro staffe:		
Copriferro minimo c _{min} :	30	[mm]
Copriferro nominale Netto Staffe:	40	[mm]
Copriferro barre longitudinali:		
Copriferro nominale Netto barre longitudinali:	60	[mm]

Copriferro nominale dal Baricentro della Barra longitudinale:

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 29	CL	MU1100 001	В	17 di 196

5.1 ACCIAIO IN BARRE AD ADERENZA MIGLIORATA B450 C

L'acciaio per cemento armato B450C è caratterizzato dai seguenti valori nominali delle tensioni caratteristiche di snervamento e rottura da utilizzare nei calcoli:

$f_{v \text{ nom}}$	450 N/mm ²
f _{t nom}	540 N/mm ²

Tabella 5-1 Tensioni caratteristiche acciaio.

E deve rispettare i requisiti indicati nella seguente tabella:

CARATTERISTICHE	REQUISITI	FRATTILE (%)
Tensione caratteristica di snervamento f _{yk}	$\geq f_{v \text{ nom}}$	5.0
Tensione caratteristica di rottura f_{tk}	$\geq f_{\rm t~nom}$	5.0
$(\mathbf{f}_t/\mathbf{f}_y)_{\mathbf{k}}$	≥1,15 <1,35	10.0
$(\mathbf{f}_{\mathrm{v}}/\mathbf{f}_{\mathrm{vnom}})_{\mathrm{k}}$	≤ 1,25	10.0
Allungamento $(A_{gt})_k$:	≥ 7,5 %	10.0
Diametro del mandrino per prove di piegamento a 90 ° e successivo raddrizzamento senza cricche: φ < 12 mm	4φ	
12≤ φ ≤ 16 mm	5 ф	
per $16 < \phi \le 25 \text{ mm}$	8 ф	
per $25 < \phi \le 40 \text{ mm}$	10 ф	

Tabella 5-2 Requisiti acciaio.

Inoltre si ha:

- Es = 210000 N/mm2
- Sovrapposizioni barre ≥ 40φ

Resistenza di calcolo dell'acciaio per la verifica agli SLU (γs=1.15):

Resistenza di calcolo a rottura per trazione e deformazione corrispondente:

- $fyd = fyk/\gamma s$ 391.3 N/mm2
- $\epsilon yd = fyd/Es 0.186\%$

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 18 di 196

6. INQUADRAMENTO GEOTECNICO

Il modello geotecnico di calcolo è stato definito sulla base di quanto riportato nella relazione geotecnica: Si riportano di seguito i terreni su cui poggiano i muri di sostegno lungo il tracciato, con i parametri fisici e meccanici ad essi assegnati. Da un'analisi dei dati a disposizione emerge che lo strato di terreno sul quale verrà impostato il piano di posa della fondazione dei muri di sostegno è caratterizzato dai valori dei parametri di calcolo riportati in Tabella 6-1. Per quanto riguarda i parametri meccanici assunti nel calcolo si sono considerati i valori medi dell'intervallo di variabilità riportato nel profilo geotecnico.

Unità litologiche da p.c.	da [m]	a [m]	γ [kN/m³]	c' _k [kPa]	φ' _k [°]	c _u [kPa]	E₀ [MPa]
FYN4	2.00	-	20	20.0	21	160	200

Tabella 6-1 – Valori di calcolo dei parametri geotecnici del terreno

In cui:

y = peso specifico del terreno;

 c'_k = coesione efficace;

 φ'_k = angolo d'attrito efficace;

 c_u = coesione non drenata;

 E_0 = Modulo dinamico del terreno;

Il rilevato a monte avrà superficie orizzontale.

La falda è posta a circa 5.00 metri dal piano campagna.

Per le caratteristiche dei rilevati ferroviari si assumono i seguenti parametri:

- peso volume, γ = 20 kN/m3;
- angolo d'attrito, $\varphi' = 38^{\circ}$;
- coesione efficace c' = 0 kPa.

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISETTA XIRBI – ENNA (LOTTO 4a) OPERE DI SOSTEGNO DI LINEA					IO
TR01: MURO DI SOSTEGNO IN DX MU11	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RELAZIONE DI CALCOLO	RS3U	40 D 29	CL	MU1100 001	В	19 di 196

Per l'inquadramento geotecnico si rimanda alla "Relazione geotecnica generale" e ai relativi profili geotecnici.

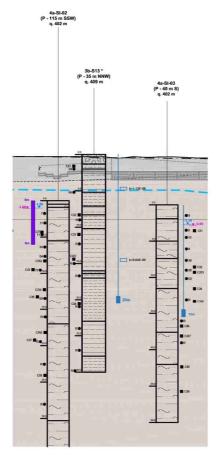


Figura 6-1 – Stralcio del profilo geotecnico.

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 20 di 196

7. CRITERI DI VERIFICA

7.1 VERIFICHE GEOTECNICHE (SLU) IN CONDIZIONI STATICHE

Nelle verifiche di sicurezza si è preso in considerazione tutti i meccanismi di stato limite ultimo sia a breve termine sia a lungo termine. Gli stati limite ultimi delle opere di sostegno si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno, e al raggiungimento della resistenza degli elementi strutturali che compongono le opere stesse.

Per i muri di sostegno su fondazione diretta si considerano i seguenti Stati Limite Ultimi:

SLU di tipo geotecnico (GEO)

- Scorrimento sul piano di posa;
- Collasso per carico limite del complesso fondazione-terreno;
- Ribaltamento:
- Stabilità globale del complesso opera di sostegno-terreno.

SLU di tipo strutturale (STR)

Raggiungimento della resistenza negli elementi strutturali.

La verifica di stabilità globale del complesso opera di sostegno – terreno deve essere effettuata, analogamente a quanto previsto al §6.8 delle NTC2018, secondo l'Approccio 1 – Combinazione 2 (A2+M2+R2), tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I delle NTC18.

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 2 con la combinazione (A1+M1+R3), tenendo conto dei valori dei coefficienti parziali riportati nelle 6.2.I, 6.2.II, 6.4.II e 6.4.VI delle NTC18.

Il progetto e la verifica dei muri di sostegno sono stati effettuati con l'ausilio di fogli di calcolo nei quali vengono implementate tutte le caratteristiche geometriche dei muri insieme ai parametri di resistenza geotecnica.

Per ogni tipologia di muro di sostegno studiata, si è verificato che le caratteristiche geometriche siano tali che il muro possa essere considerato a mensola con suola lunga (vedere Figura 7-1), così come previsto al §3.10.3.3. del Manuale di Progettazione delle Opere Civili (RFI DTC SI MA IFS 001 C).

Si è considerato, pertanto, che la spinta sull'opera di sostegno agisca sul piano verticale cd, assunto come il paramento virtuale del muro.

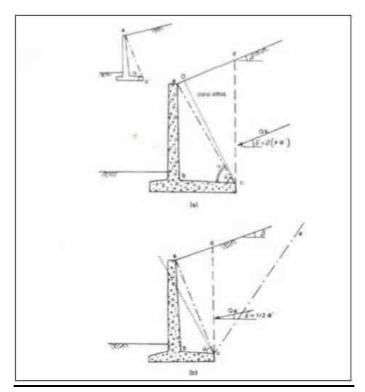
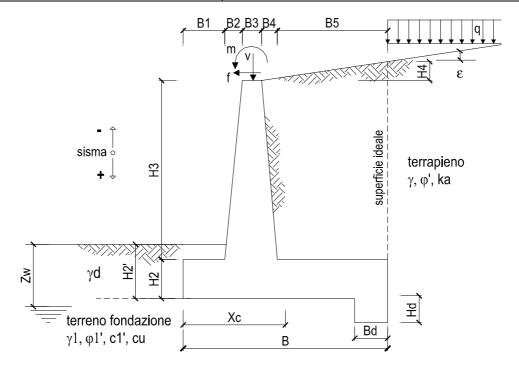


Figura 7-1 – Spinta sui muri di sostegno a mensola con suola lunga (caso a) e con suola corta (caso b).

Su tale paramento l'angolo di inclinazione δ della risultante della spinta (applicata ad 1/3 dell'altezza del paramento virtuale) si potrà assumere uguale all'angolo di inclinazione β del terrapieno, a meno che β non sia superiore all'angolo di resistenza al taglio del terreno ϕ ', nel qual caso si potrà assumere $\delta = \phi$ '.


Il terreno al di sopra della suola (abcd) è stato considerato stabilizzante nelle verifiche, e ad esso sono da applicarsi le forze d'inerzia in fase sismica.

Inoltre nella verifica a scorrimento e a ribaltamento dei muri di sostegno viene trascurata la resistenza passiva antistante il muro.

Nel nostro caso l'angolo di attrito fondazione-terreno nelle verifiche a scorrimento è pari a $\phi'_{\text{cv}} = \arctan \; (\tan \, \phi')$

Le caratteristiche geometriche sono riportate sinteticamente nel seguente schema:

7.1.1 VERIFICA A SCORRIMENTO

La verifica dell'equilibrio allo stato limite di scorrimento viene condotta confrontando l'azione resistente R_h, pari al prodotto della risultante delle forze verticali per il coefficiente d'attrito con l'azione instabilizzante, pari alla risultante di tutte le componenti orizzontali delle forze agenti sul muro.

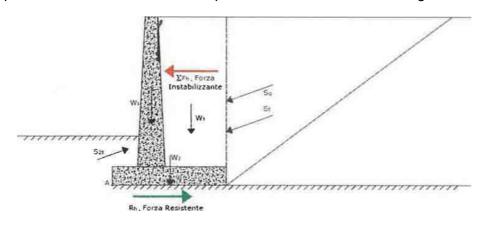


Figura 7-2 – Verifica a scorrimento.

In condizioni sismiche, ai fini del dimensionamento, si fa riferimento ad un sisma agente da monte verso valle del muro, in direzione orizzontale, dal basso verso l'alto e dall'alto verso il basso, in direzione verticale.

7.1.2 VERIFICA A RIBALTAMENTO

L'equilibrio allo stato limite è condotto confrontando il momento delle forze stabilizzanti e quello delle forze ribaltanti, entrambi rispetto all'estremo A di valle della fondazione.

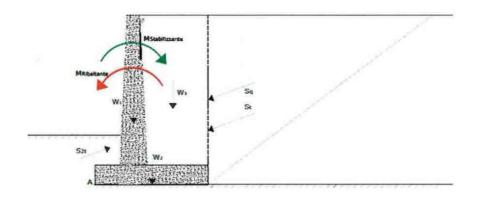


Figura 7-3- Verifica a ribaltamento.

7.1.3 VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Per il calcolo della capacità portante della fondazione si è fatto riferimento alla formula di Brinch-Hansen (1970) integrata dai coefficienti sismici di Paolucci e Pecker (1995), di seguito riportata:

$$q_{lim} = c' N_c s_c d_c i_c b_c g_c z_c + q N_a s_a d_a i_a b_a g_a z_a + 0.5 \gamma B N s_v d_v i_v b_v g_v z_v$$

$$F_s = q_{lim} / q_{es}$$

con $q_{es} = N / (B'*L')$ la pressione dovuta al carico verticale.

7.1.4 VERIFICA A STABILITÀ GLOBALE

Per le verifiche di stabilità dei pendii naturali si ricorre, nell'ambito dei metodi all'equilibrio limite, ai cosiddetti metodi delle strisce, in particolare il metodo di Bishop. Si ipotizza una superficie cilindrica di scorrimento potenziale, S, si suddivide idealmente la porzione di terreno delimitato da questa e dalla superficie topografica in n conci e si analizza l'equilibrio limite di ciascun concio.

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 24 di 196

7.2 VERIFICHE GEOTECNICHE (SLV) IN CONDIZIONI SISMICHE

L'analisi della sicurezza dei muri di sostegno in condizioni sismiche può essere eseguita mediante i metodi pseudo-statici e i metodi degli spostamenti.

L'analisi pseudo-statica si esegue mediante i metodi dell'equilibrio limite. Il modello di calcolo deve comprendere l'opera di sostegno, il volume di terreno a tergo dell'opera, che si suppone in stato di equilibrio limite attivo, e gli eventuali sovraccarichi agenti sul volume suddetto.

Nell'analisi pseudo-statica, l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nelle verifiche, i valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni

$$k_h = \beta_m \frac{a_g}{g}$$

 $k_v = \pm 0.5 \ k_h$

dove:

 β_m = coefficiente di riduzione dell'accelerazione massima attesa al sito;

a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{max} = S \cdot a_g = (S_S \cdot S_T) \cdot a_g$$

dove:

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) di cui al paragrafo 3.2.3.2 delle NTC18.

Nella precedente espressione, il coefficiente di riduzione dell'accelerazione massima attesa al sito è pari a:

 β_m = 0.38 nelle verifiche allo stato limite ultimo (SLV)

 β_m = 0.47 nelle verifiche allo stato limite di esercizio (SLD)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 25 di 196

Per muri non liberi di subire spostamenti relativi rispetto al terreno, il coefficiente β_m assume valore unitario

Nel caso di muri liberi di traslare o di ruotare intorno al piede, si può assumere che l'incremento di spinta dovuta al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di studi specifici, si deve assumere che tale incremento sia applicato a metà altezza del muro.

Lo stato limite di ribaltamento deve essere trattato impiegando coefficienti parziali unitari sulle azioni e sui parametri geotecnici (paragrafo 7.11.1 delle NTC18) e utilizzando valori di β_m incrementati del 50% rispetto a quelli innanzi indicati e comunque non superiori all'unità.

In condizioni sismiche deve essere soddisfatta la verifica di stabilità del complesso muro – terreno con i criteri indicati al paragrafo 7.11.4 delle NTC2018.

Il calcolo della spinta in condizioni sismiche è stato effettuato impiegando la Teoria di Mononobe – Okabe.

La teoria di Mononobe – Okabe fa uso del metodo dell'equilibrio limite e può essere considerata una estensione della teoria di Coulomb, in cui, alle usuali spinte al contorno del cuneo instabile di terreno, sono sommate anche le azioni inerziali orizzontali e verticali dovute all'accelerazione delle masse.

Le spinte Attiva e Passiva si calcolano come:

$$S_{a,t} = \frac{1}{2} \gamma \cdot k_{as} \cdot h^2 \cdot (1 \mp k_v)$$

Il coefficiente k_{as} è valutato, quindi, secondo tale formulazione, in cui i simboli usati sono:

φ = angolo di attrito interno del terrapieno;

 ψ = angolo di inclinazione rispetto all'orizzontale della parete interessata del muro;

 β = angolo di inclinazione rispetto all'orizzontale del profilo del terrapieno;

 δ = angolo di attrito terrapieno – muro;

 θ = angolo di rotazione addizionale definito come segue.

$$tan\theta = \frac{k_h}{1 \mp k_h}$$

Il coefficiente per stati di spinta attiva si divide in due casi:

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 26 di 196

$$\beta \leq \phi - \theta \rightarrow k_{as} = \frac{\sin^2(\psi + \phi - \theta)}{\cos\theta \cdot \sin^2\psi \cdot \sin(\psi - \theta - \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta - \theta)}{\sin(\psi - \theta - \delta) \cdot \sin(\psi + \beta)}}\right]^2}$$

$$\beta > \phi - \theta \rightarrow k_{as} = \frac{\sin^2(\psi + \phi - \theta)}{\cos\theta \cdot \sin^2\psi \cdot \sin(\psi - \theta - \delta)}$$

Il coefficiente per stati di spinta passiva è invece:

$$k_{ps} = \frac{\sin^2(\psi + \phi - \theta)}{\cos\theta \cdot \sin^2\psi \cdot \sin(\psi + \theta) \left[1 - \sqrt{\frac{\sin\phi \cdot \sin(\phi + \beta - \theta)}{\sin(\psi + \beta) \cdot \sin(\psi + \theta)}}\right]^2}$$

7.3 VERIFICHE GEOTECNICHE (SLE)

Per ciascun stato limite di esercizio deve essere rispettata la condizione [6.2.7] delle NTC 2018:

$$E_d \leq C_d$$

essendo E_d e C_d rispettivamente il valore di progetto dell'effetto delle azioni e il prescritto valore limite dell' effetto delle azioni (spostamenti, rotazioni, distorsioni, ecc.).

In particolare, dovranno essere valutati gli spostamenti delle opere di sostegno e del terreno circostante per verificarne la compatibilità con la funzionalità delle opere stesse e con la sicurezza e funzionalità dei manufatti adiacenti, anche a seguito di modifiche indotte sul regime delle pressioni interstiziali.

Per i lavori e le opere da realizzare in prossimità di linee ferroviarie già in esercizio, le verifiche agli SLE dovranno essere condotte assumendo come limite degli spostamenti indotti durante la costruzione sui binari in esercizio i valori limite dei difetti riferiti al secondo livello di qualità descritti nella specifica tecnica RFI TCAR ST AR 01 001 D "Standard di qualità geometrica del binario con velocità fino a 300 km/h" e relativi allegati.

Qualora vengano superati i limiti riferiti al primo livello di qualità, il progetto dovrà prevedere l'esecuzione di un monitoraggio del binario durante la costruzione al fine di controllare l'effettivo andamento delle deformazioni.

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 27 di 196

7.3.1 SPOSTAMENTI ATTESI IN CAMPO SLE

Gli spostamenti attesi in campo SLE dell'opera di sostegno, con le impostazioni di calcolo assunte (spinta attiva) sono di esigua entità, dell'ordine dei millimetri. Lo spostamento necessario per sviluppare lo stato limite di spinta attiva è legato anche al tipo di cinematismo della parete. Per terreni non coesivi con grado di addensamento medio - alto l'EC7 da spostamenti del seguente ordine di grandezza:

- Rotazione intorno alla sommità 0.002H
- Rotazione intorno alla base 0.005H
- Moto di traslazione 0.001H

In cui H è l'altezza del paramento del muro. Altri valori di riferimento sono stati ottenuti da Terzaghi.

Infine, un'altra fonte presa a riferimento è quella del NAFVAC 7.02 (DESIGN MANUAL). La figura riportata nel suddetto manuale mostra anche la curva di sviluppo della spinta in funzione dello spostamento. Anche in questo caso, per sabbia media, risulta ragionevole assumere uno spostamento atteso dell'ordine di 0.001H.

Gli spostamenti dei muri in progetto, quindi, in funzione dell'altezza massima del paramento risultano dell'ordine di pochi cm. Non si riscontrano quindi criticità sulle strutture presenti a monte del muro stesso, in quanto, vista la loro distanza dalla testa del paramento, non subiranno influenze significative.

Per quanto riguarda le distorsioni del muro, l'opera di sostegno risulta lineare in pianta e caricata in modo simmetrico a monte. Non verranno quindi a manifestarsi spinte dissimmetriche che possano generare distorsioni.

7.3.2 SPOSTAMENTI PERMANENTI INDOTTI DAL SISMA

Con riferimento alle condizioni di esercizio, sulla base delle indicazioni fornite dal RFI DTC SI CS MA IFS 001 C "Manuale di progettazione opere civili Parte II – Sezione 3", dovranno essere condotte verifiche nei confronti dello stato limite di danno. In particolare, gli spostamenti permanenti indotti dal sisma devono essere compatibili con la funzionalità dell'opera e con quella di eventuali strutture o infrastrutture interagenti con essa.

Lo spostamento SLD potrà essere determinato con analisi dinamiche avanzate o con i metodi degli spostamenti.

Nel caso particolare di muri di sostegno gli spostamenti permanenti potranno, in via semplificata, essere determinati con la seguente relazione:

$$d = (S_S \cdot S_T \cdot B) \cdot e^{A(\frac{a_c}{a_{max}})}$$

Dove:

S_S e S_T sono i coefficienti di amplificazione stratigrafica e topografica (§ 3.2.3.2 NTC2018);

a_{max} è l'accelerazione orizzontale massima attesa al sito (§ 7.11.6.2.1 NTC2018);

a_c è l'accelerazione critica e rappresenta il valore limite dell'accelerazione al di sotto dela quale l'opera non subisce spostamenti;

A, B sono coefficienti raccolti nella seguente tabella in funzione di a_{max} e della categoria di sottosuolo (Rampello et al., 2008).

Sottosuolo	Cat. A		Cat, B		Cat. C, D, E	
a _{max} /g	A	В	A	В	A	В
0.3 - 0.4	-7.5	1.21	-7.9	1.06	-7.4	0.56
0.2 - 0.3	-7.42	1.28	-7.79	1.11	-7.54	0.58
0.1 - 0.2	-7.48	0.65	-7.86	0.73	-8.05	0.86
≤ 0.1	-7.87	0.28	-7.86	0.3	-8.07	0.44

Tabella 7-1 – Coefficienti A e B da utilizzare per valutare gli spostamenti dei muri di sostegno nelle verifiche SLE.

L'accelerazione critica a_c sarà determinata imponendo che, nella verifica a scorrimento – effettuata prendendo a riferimento i valori caratteristici di azioni e resistenze (coefficienti γ_F e γ_M pari ad 1) – il rapporto R_d/E_d sia pari a 1.

In condizioni sismiche, il coefficiente di combinazione ψ per il carico variabile da traffico ferroviario, da utilizzare tanto nelle verifiche agli stati limite ultimi che di esercizio, dovrà essere posto pari a 0,2.

7.4 VERIFICHE STRUTTURALI SLU

Le verifiche di resistenza delle sezioni sono eseguite secondo il metodo semiprobabilistico agli stati limite. I coefficienti di sicurezza adottati sono i seguenti:

- coefficiente parziale di sicurezza per il calcestruzzo: 1.50;
- coefficiente parziale di sicurezza per l'acciaio in barre: 1.15;

Il paragrafo in oggetto illustra nel dettaglio i criteri generali adottati per le verifiche strutturali e geotecniche condotte nel progetto. Ulteriori dettagli di carattere specifico, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche.

7.4.1 CRITERI DI VERIFICA DELLE SEZIONI IN C.A.

Per le sezioni in cemento armato si effettuano:

- verifiche per gli stati limite ultimi a presso-flessione;
- verifiche per gli stati limite ultimi a taglio;
- verifiche per gli stati limite di esercizio.

7.4.2 VERIFICHE PER GLI STATI LIMITE ULTIMI A FLESSIONE - PRESSOFLESSIONE

Allo stato limite ultimo, le verifiche a flessione o presso-flessione sono condotte confrontando (per le sezioni più significative) le resistenze ultime e le sollecitazioni massime agenti, valutando di consequenza il corrispondente fattore di sicurezza.

7.4.3 VERIFICA AGLI STATI LIMITE ULTIMI A TAGLIO

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dal DM17/01/2018, per elementi con armatura a taglio verticali.

Si fa, pertanto, riferimento ai seguenti valori della resistenza di calcolo:

- resistenza di calcolo dell'elemento privo di armatura a taglio:

$$V_{Rd} = \max \left\{ \left[0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp} \right] b_w \cdot d; \ (v_{\min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d \right\}$$

- valore di progetto dello sforzo di taglio che può essere sopportato dall'armatura a taglio alla tensione di snervamento:

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 30 di 196

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot sin \alpha$$

- valore di progetto del massimo sforzo di taglio che può essere sopportato dall'elemento, limitato dalla rottura delle bielle compresse:

$$V_{Red} = 0.9 \cdot d \cdot b_w \cdot \alpha_e v \cdot f_{ed} (ctg\alpha + ctg\theta)/(1 + ctg^2 \theta)$$

Nelle espressioni precedenti, i simboli hanno i seguenti significati:

$$k = 1 + \sqrt{\frac{200}{d}} \le 2 \text{ con d in mm};$$

$$\rho_1 = \frac{A_{s1}}{b_{rr} \cdot d} \le 0.02;$$

A_{sl} è l'area dell'armatura tesa;

b_w è la larghezza minima della sezione in zona tesa;

$$\sigma_{\rm cp} = \frac{N_{\rm Ed}}{A_{\rm c}} < 0.2 \cdot f_{\rm cd};$$

N_{Ed} è la forza assiale nella sezione dovuta ai carichi;

A_c è l'area della sezione di calcestruzzo;

$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ok}^{1/2}$$

 $1 \le \cot \theta \le 2.5$ è l'inclinazione dei puntoni di calcestruzzo rispetto all'asse della trave;

A_{sw} è l'area della sezione trasversale dell'armatura a taglio;

s è il passo delle staffe;

 f_{vwd} è la tensione di snervamento di progetto dell'armatura a taglio;

 $\mathbf{f'}_{cd} = \mathbf{0.5} \cdot \mathbf{f}_{cd}$ è la resistenza ridotta a compressione del calcestruzzo d'anima;

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 31 di 196

 $\alpha_{cw} = 1$ è un coefficiente che tiene conto dell'interazione tra la tensione nel corrente compresso e qualsiasi tensione di compressione assiale.

Nel primo caso, si esegue il controllo delle tensioni nei materiali supponendo una legge costitutiva tensioni-deformazioni di tipo lineare. In particolare si controlla la tensione massima di compressione del calcestruzzo e di trazione dell'acciaio, verificando che:

 σ_c < 0.55 f_{ck} per combinazione di carico caratteristica (rara);

 σ_c < 0.40 f_{ck} per combinazione di carico quasi permanente;

 σ_s < 0.75 f _k per combinazione di carico caratteristica (rara).

Nel secondo caso, si assume che le condizioni ambientali del sito in cui sorge l'opera siano ordinarie e aggressive, rispettivamente per la zattera di fondazione e per il paramento verticale, e si verifica che il valore limite di apertura della fessura, calcolato per armature poco sensibili, sia al più pari ai seguenti valori nominali:

 $w_1 = 0.2$ mm per condizioni ambientali aggressive (comb. Frequente e quasi permanente);

w₂= 0.3 mm per condizioni ambientali ordinarie (comb. Frequente e quasi permanente).

7.5 VERIFICHE STRUTTURALI (SLE)

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

7.5.1 VERIFICHE ALLE TENSIONI

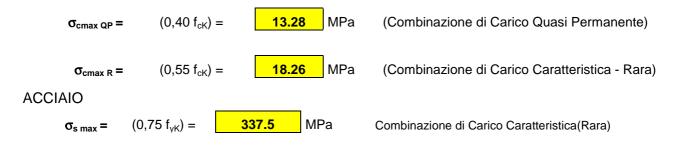
La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Manuale di progettazione opere civili"

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 far;
- per combinazioni di carico quasi permanente: 0,40 f_{ek};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.


Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{sk}$.

Per il caso in esame risulta in particolare :

<u>Muro di sostegno:</u>

CALCESTRUZZO

7.5.2 VERIFICHE A FESSURAZIONE

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Gruppi di esigenza Condizioni ambientali			Armatura					
		Combinazione di azione	Sensibile	Poco sensibile				
			Stato limite	wd	Stato limite	wd		
Ordinaria		frequente	ap. fessure	≤w ₂	ap. fessure	≤w ₃		
а	a Ordinarie	quasi permanente		≤w ₁	ap. fessure	≤w ₂		
Ь	Aggregaive	frequente	ap. fessure	≤w ₁	ap. fessure	≤w ₂		
b Aggressive		quasi permanente	decompressione	-	ap. fessure	≤w ₁		
Nata Assessa		frequente	formazione fessure	-	ap. fessure	≤w ₁		
c Molto Aggress	Molto Aggressive	quasi permanente	decompressione	-	ap. fessure	≤w ₁		

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE				
Ordinarie	X0, XC1, XC2, XC3, XF1				
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3				
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4				

Tabella 7-2 – Criteri di scelta dello stato limite di fessurazione e condizioni ambientali

Risultando:

w1 = 0.2 mm

w2 = 0.3 mm

w3 = 0.4 mm

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dalle specifiche RFI (Manuale di progettazione delle opere civili parte II sezione 2 – Requisiti concernenti la fessurazione per strutture in c.a., c.a.p. e miste acciaio-calcestruzzo) secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

Combinazione Caratteristica (Rara)

 $\delta_f \leq w_1 = 0.2 \, mm$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è è utilizzata la procedura prevista al punto "C4.1.2.2.4.5 Verifica allo stato limite di fessurazione" della Circolare n.7/19.

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISETTA XIRBI – ENNA (LOTTO 4a) OPERE DI SOSTEGNO DI LINEA				0	
TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO	COMMESSA RS3U	LOTTO 40 D 29	CODIFICA CL	DOCUMENTO MU1100 001	REV.	FOGLIO 35 di 196

8. ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono i carichi elementari che agiscono sulla struttura in oggetto. Tali azioni sono definite secondo le normative e sono utilizzate per la generazione delle combinazioni di carico nell'ambito delle verifiche di resistenza, in esercizio ed in presenza dell'evento sismico.

Tutti i carichi elementari si riferiscono all'unità di sviluppo del muro, pertanto sono tutti definiti rispetto all'unità di lunghezza.

8.1 PESI PROPRI

Il peso proprio del muro è calcolato in automatico dal foglio di calcolo elettronico.

I dati di input per i muri su fondazione diretta sono i seguenti:

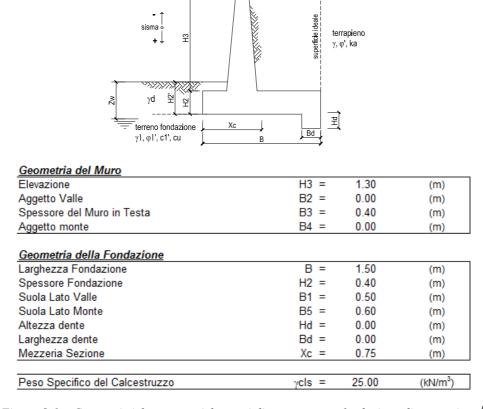
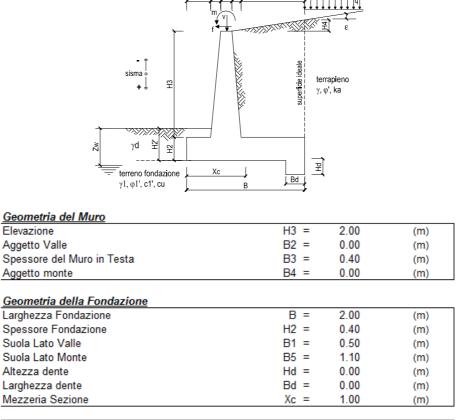
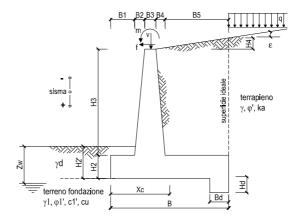



Figura 8-1 – Caratteristiche geometriche muri di sostegno con fondazione diretta – tipo x^0

γcls =


25.00

(kN/m³)

Elevazione

Peso Specifico del Calcestruzzo

Figura 8-2 – Caratteristiche geometriche muri di sostegno con fondazione diretta – tipo x^1

Elevazione	H3 =	4.00	(m)
Aggetto Valle	B2 =	0.00	(m)
Spessore del Muro in Testa	B3 =	0.40	(m)
Aggetto monte	B4 =	0.31	(m)
Geometria della Fondazione			
Larghezza Fondazione	B =	4.20	(m)
Spessore Fondazione	H2 =	0.60	(m)
Suola Lato Valle	B1 =	0.50	(m)
Suola Lato Monte	B5 =	2.99	(m)
Altezza dente	Hd =	0.00	(m)
Larghezza dente	Bd =	0.00	(m)
Mezzeria Sezione	Xc =	2.10	(m)
Peso Specifico del Calcestruzzo	γcls =	25.00	(kN/m³)

Figura 8-3 – Caratteristiche geometriche muri di sostegno con fondazione diretta – tipo 1

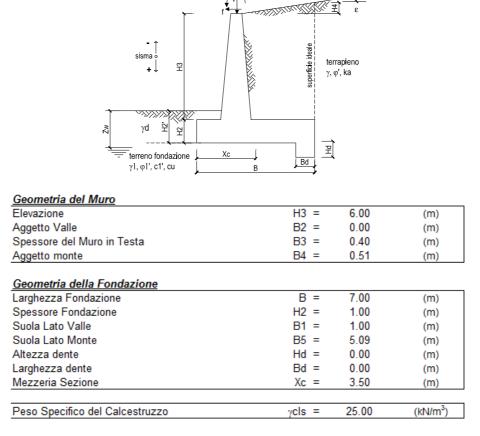


Figura 8-4 – Caratteristiche geometriche muri di sostegno con fondazione diretta – tipo 2

8.2 CARICHI PERMANENTI

8.2.1 SOVRASTRUTTURA FERROVIARIA

Il manuale di progettazione ove non si eseguano valutazioni più dettagliate prevede per la determinazione dei carichi permanenti portati relativi al peso della massicciata e dell'armamento (sovrastruttura ferroviaria) che potrà effettuarsi assumendo, convenzionalmente, un peso di volume pari a 18,0 kN/m³ applicato sull'impronta del ballast, per una altezza media fra il piano del ferro (P.F.) e l'estradosso del sub-ballast pari a 0,80 m (al carico è stato poi applicato un coefficiente parziale di sicurezza pari a 1,5).

 $p=18.0 \text{ kN/m}^3 \text{ x } 0.80 \text{ m} = 14.40 \text{ kPa}$

8.2.2 PARAPETTO METALLICO

Per il parapetto metallico si considerano le seguenti azioni agenti sul muro:

Vparapetto = 1.00 kN/m

8.2.3 SPINTA DEL TERRENO

A tergo del muro agisce la spinta del terreno del rilevato.

La spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta attiva ka.

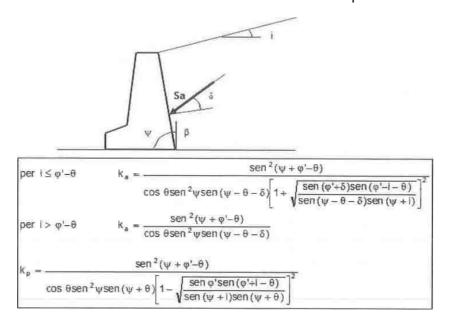
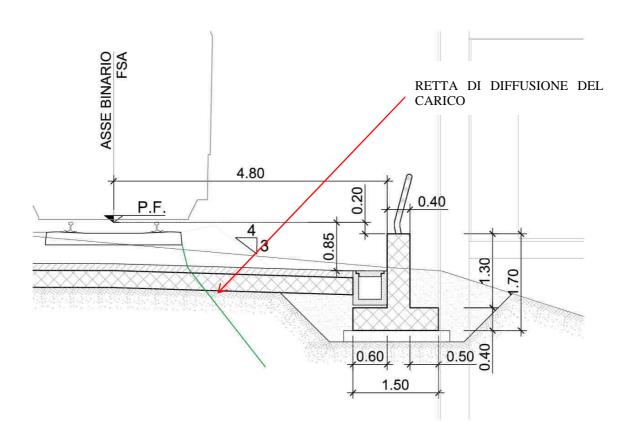


Figura 8-5 – Coefficiente di spinta attiva e passiva.

La spinta sull'opera di sostegno dovrà essere applicata sul piano verticale, assunto come paramento virtuale del muro, definito a partire dall'estremo a monte della scarpa di fondazione.

Su tale paramento l'angolo di inclinazione δ della risultante della spinta (applicata ad 1/3 dell'altezza del paramento virtuale) si potrà assumere uguale all'angolo di inclinazione β del terrapieno, a meno che β non sia superiore all'angolo di resistenza al taglio del terreno ϕ ', nel qual caso si assumerà $\delta = \phi$ '.

				valori caratteristici	valori di p	rogetto
Dati 0	Geotecnici			SLE	STR/GEO	EQU
)ati apieno	Angolo di attrito del terrapieno	(°)	φ'	38.00	38.00	38.00
_ =	Peso Unità di Volume del terrapieno	(kN/m³)	7	20.00	20.00	20.00
- G	Angolo di attrito terreno-superficie ideale	(°)	δ	0.00	0.00	0.00


Figura 8-6 – Dati geotecnici – muro tipo X

8.3 CARICHI VARIABILI - MURO DI SOSTEGNO

8.3.1 CARICHI MOBILI DA TRAFFICO FERROVIARIO

Dal momento che la retta di diffusione del carico SW2 non attraversa il cuneo di spinta, esso non viene considerato.

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 41 di 196

8.4 VALUTAZIONE DELL'AZIONE SISMICA

8.4.1 VITA NOMINALE

La vita nominale di un'opera strutturale V_N è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata. Nel presente caso l'opera viene inserita nella seguente tipologia di costruzione:

2) Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale La cui vita nominale è pari a: 75 anni.

8.4.2 CLASSE D'USO

In presenza di azioni sismiche, con riferimento alle conseguenze di un'interruzione di operatività o di un eventuale collasso, l'opera appartiene alla seguente classe d'uso:

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze dì un loro eventuale collasso.

Il coefficiente d'uso è pari a 1.50.

8.4.3 PERIODO DI RIFERIMENTO

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione al periodo di riferimento V_R ricavato, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso C_u .

Pertanto $V_R = 75 \times 1.5 = 112.5 \text{ anni.}$

8.4.4 PARAMETRI SISMICI

Fissata la vita di riferimento V_R , i due parametri T_R e P_{VR} sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante l'espressione:

$$T_R = -\frac{V_R}{\ln(1 - P_{VR})} = -\frac{C_{\omega}V_N}{\ln(1 - P_{VR})}$$

Stati Limite	$P_{V_{\overline{R}}}$: Probabilità di superamento nel periodo di riferimento	
CLUB TO THE TOTAL	SLO	81%
Stati limite di esercizio	SLD	63%
Capital telestropatations	SLV	10%
Stati limite ultimi	SLC	5%

Tabella 8-1 – Probabilità di superamento al variare dello stato limite considerato.

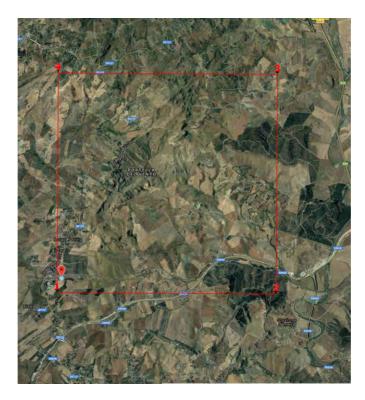


Figura 8-7 – Localizzazione del sito ove sorgerà l'opera.

Da cui si ottiene la seguente tabella:

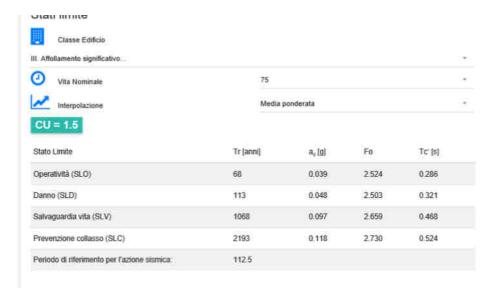


Tabella 8-2 – Parametri relativi all'azione sismica.

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale. Per la definizione dell'azione sismica si può fare riferimento a un approccio semplificato, che si basa sull'individuazione delle categorie di sottosuolo di riferimento in accordo a quanto indicato nel § 3.2.2 delle NTC2018. I terreni di progetto possono essere caratterizzati come appartenenti a terreni di Categoria C. In condizioni topografiche superficiali semplici si può adottare la seguente classificazione.

Categoria Caratteristiche della superficie topografica	
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Tabella 8-3 – Categorie topografiche.

L'area interessata risulta classificabile come T1.

In riferimento a quanto indicato nel §3.2.3.2.1 delle NTC2018 per la definizione dello spettro elastico in accelerazione è necessario valutare il valore del coefficiente $S = S_S S_T$ e di C_C in base alla categoria di sottosuolo e alle condizioni topografiche; si fa riferimento nella valutazione dei coefficienti alle tabelle di seguito riportate:

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 29	CL	MU1100 001	В	44 di 196

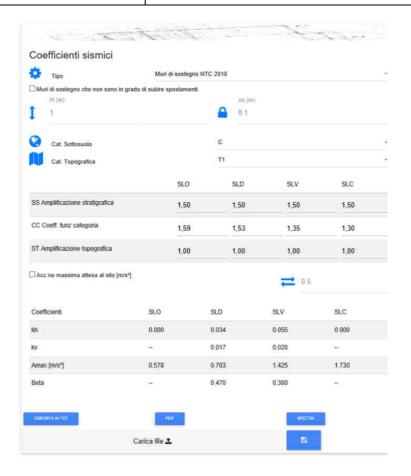
Categoria sottosuolo	S _S	Cc
A	1,00	1,00
В	$1.00 \le 1.40 - 0.40 \cdot F_o \cdot \frac{a_g}{g} \le 1.20$	1,10 · (T _C *) ^{-0,20}
С	$1,00 \le 1,70 - 0.60 \cdot F_a \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	1,25 · (T _C *) ^{-0,50}
E	$1.00 \le 2.00 - 1.10 \cdot F_o \cdot \frac{a_g}{g} \le 1.60$	1,15 · (T _C *) ^{-0,40}

Tabella 8-4 – Espressioni di S_S e C_C .

Categoria topografica	Ubicazione dell'opera o dell'intervento	ST
Ti	jæ.	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con pendenza media minore o uguale a 30°	1,2
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore di 30°	1,4

Tabella 8-5 – Valori massimi dei coefficienti di amplificazione topografica S_T.

valori dei coefficienti di amplificazione stratigrafica sono pari a S_s =1.5 e C_c = 1.350 valore del coefficiente di amplificazione topografica è posto pari a ST = 1.0


Dalla sezione dedicata al calcolo dei parametri sismici di base del programma "GeoStru", si ricavano i seguenti parametri dello spettro di risposta relativo al sito più gravoso.

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 45 di 196

9. COMBINAZIONI DI CARICO

Le combinazioni di carico prese in considerazione nelle verifiche sono state definite in base a quanto prescritto dalle NTC-2018 al par.2.5.3:

- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali A: $G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$ [2.5.6]

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_{i} \psi_{2i} Q_{ki}$$
 [2.5.7]

Per i muri di sostegno o per altre strutture miste ad essi assimilabili devono essere effettuate le verifiche con riferimento almeno ai seguenti stati limite:

SLU di tipo geotecnico (GEO)

- Scorrimento sul piano di posa;
- Collasso per carico limite del complesso fondazione-terreno;
- · Ribaltamento;
- Stabilità globale del complesso opera di sostegno-terreno;

SLU di tipo strutturale (STR)

• Raggiungimento della resistenza negli elementi strutturali.

La verifica di stabilità globale del complesso opera di sostegno-terreno deve essere effettuata secondo l'Approccio 1, con la Combinazione 2 (A2+M2+R2).

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 2, con la combinazione (A1+M1+R3).

Per ciascuna verifica si deve tenere conto dei coefficienti parziali per le azioni, dei parametri geotecnici e dei coefficienti di amplificazione per le verifiche di sicurezza, tutti riportati nelle seguenti tabelle.

Nella verifica a ribaltamento i coefficienti R3 si applicano agli effetti delle azioni stabilizzanti.

Coefficiente			EQU ⁽¹⁾	A1	A2
Azioni permanenti	favorevoli sfavorevoli	YG1	0,90 1,10	1,00 1,35	1,00
Azioni permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	YG2	0,00 1,50	0,00 1,50	0,00 1,30
Ballast ⁽³⁾	favorevoli sfavorevoli	YΒ	0,90 1,50	1,00 1,50	1,00 1,30
Azioni variabili da traffi- co ⁽⁴⁾	favorevoli sfavorevoli	YQ	0,00 1,45	0,00 1,45	0,00 1,25
Azioni variabili	favorevoli sfavorevoli	Ϋ́Qi	0,00 1,50	0,00 1,50	0,00
Precompressione	favorevole sfavorevo- le	ΥP	0,90 1,00 ⁽⁵⁾	1,00 1,00 ^(c)	1,00
Ritiro, viscosità e cedi- menti non imposti appo- sitamente	favorevole sfavorevo- le	γCe d	0,00 1,20	0,00 1,20	0,00 1,00

Tabella 9-1 - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU.

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ _M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an arphi_k'$	Υφ	1,0	1,25
Coesione efficace	c' _k	Υe	1,0	1,25
Resistenza non drenata	c _{uk}	Yeu	1,0	1,4
Peso dell'unità di volume	γγ	YY	1,0	1,0

Tabella 9-2 - Coefficienti parziali per i parametri geotecnici del terreno.

Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.1$
Ribaltamento	$\gamma_E = 1.15$
Resistenza del terreno a valle	$\gamma_R = 1.4$

Tabella 9-3 – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi dei muri di sostegno.

COEFFICIENTE	R2
$\gamma_{\rm R}$	1,1

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

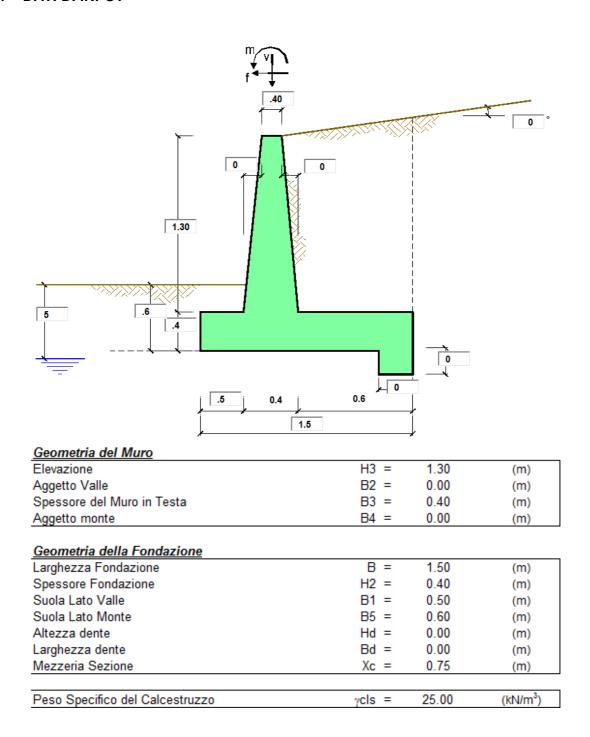
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 48 di 196

Tabella 9-4 – Coefficienti parziali per le verifiche do sicurezza di opere di materiali sciolti e fronti di scavo.

Le combinazioni sismiche, in maniera del tutto analoga alle combinazioni statiche, sono effettuate con l'approccio 2, ponendo però pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici e impiegando le resistenze di progetto con i coefficienti parziali γ_R indicati nella seguente tabella.

Verifica	Coefficiente parziale yr
Carico limite	1.2
Scorrimento	1.0
Ribaltamento	1.0
Resistenza del terreno a valle	1.2


Tabella 9-5 – Coefficienti parziali y_R per le verifiche agli stati limite (SLV) dei muri di sostegno.

Le verifiche pseudo-statiche di sicurezza dei fronti di scavo e dei rilevati in condizioni sismiche si eseguono adottando valori unitari dei coefficienti parziali del gruppo A e M per il calcolo delle azioni e dei parametri geotecnici di progetto e un coefficiente parziale γ_R pari a 1.2.

10. PROGETTO E VERIFICA DEL MURO DI SOSTEGNO "TIPO Xº"

10.1 DATI DI INPUT

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 50 di 196

Condizioni drenate

				valori caratt	eristici	valori di _l	orogetto
Dati G	Geotecnici			SLE		STR/GEO	EQU
- en	Angolo di attrito del terrapieno	(°)	φ'	38.00)	38.00	38.00
Dati errapieno	Peso Unità di Volume del terrapieno	(kN/m³)	γ	20.00)	20.00	20.00
	Angolo di attrito terreno-superficie ideale	(°)	δ	0.00		0.00	0.00
Fondazione	Condizioni		drenate	Non Dr	enate		
ıdaz	Coesione Terreno di Fondazione	(kPa)	c1'	20.00)	20.00	20.00
F	Angolo di attrito del Terreno di Fondazione	(°)	φ1'	21.00)	21.00	21.00
	Peso Unità di Volume del Terreno di Fondazione	(kN/m³)	γ1	20.00)	20.00	20.00
Dati Terreno	Peso Unità di Volume del Rinterro della Fondazione	(kN/m³)	γd	20.00)	20.00	20.00
=	Profondità "Significativa" (n.b.: consigliata H = 2*B)	(m)	Hs	4.00			
	Modulo di deformazione	(kN/m²)	E	20000)		
	Accelerazione sismica		a _g /g	0.097	(-)	1	
	Coefficiente Amplificazione Stratigrafico		a _g , y S _S	1.5	(-)		
.2			S _T	1.5		RIBALTA	MENTO
Sismici	Coefficiente Amplificazione Topografico				(-)		
Ö	Coefficiente di riduzione dell'accelerazione massima		βs	0.38	(-)	βs	0.57
Dati	Coefficiente sismico orizzontale		kh	0.05529	(-)	kh	0.08294
_	Coefficiente sismico verticale		kv	0.0276	(-)	kv	0.04147
	Muro libero di traslare o ruotare		•	si One			

				STR/GEO	RIB
	Coeff. di Spinta Attiva Statico	ka	0.238	0.238	0.238
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.265	0.265	0.279
inta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.267	0.267	0.283
S effi	Coeff. Di Spinta Passiva	kp	2.117	2.117	2.117
ပိ	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2.037	2.037	1.996
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	2.032	2.032	1.985

				valori caratteristici	valori di p	rogetto
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
Carichi	Sovraccarico permanente Sovraccarico su zattera di monte	(kN/m ²)	qp	16.62	21.61	21.61
Carichi ermanen	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
G E	Forza Verticale in Testa permanente	(kN/m)	vp	1.00	1.00	1.00
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
_	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q	0.00	0.00	0.00
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statich	(kN/m)	f	0.00	0.00	0.00
Statiche	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
S &	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione frequei	nte Ψ1	1.00	condizione quasi permane	nte Ψ2	0.00
.E @	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	0.00		
ich	Forza Orizzontale in Testa accidentale in condizioni sismicl	(kN/m)	fs	0.00		
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
0 0	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

Condizioni non drenate

Coeff. Di Spinta Passiva Sismica sisma -

					valor	valori caratteristici		valori di progetto	
Dati (Geotecnici				SLE		STR/GEO	EQU	
eno	Angolo di attrito del terrapieno		(°)	(<i>,</i>	38.00	38.00	38.00	
Dati Terrapieno	Peso Unità di Volume del terrapieno		(kN/m³)		/	20.00	20.00	20.00	
	Angolo di attrito terreno-superficie ideale		(°)		δ	0.00	0.00	0.00	
Dati Terreno Fondazione	Condizioni			○ dren	ate 🧿	Non Drenate			
daz	Resistenza a Taglio non drenata		(kPa)	С	u	160.00	160.00	160.00	
臣	Angolo di attrito Terreno-Fondazione		(°)	φ:		21.00	21.00	21.00	
2	Peso Unità di Volume del Terreno di Fondazione		(kN/m³)	γ	1	20.00	20.00	20.00	
erre	Peso Unità di Volume del Rinterro della Fondazione		(kN/m³)	γ	d	20.00	20.00	20.00	
=	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)	Н	5	4.00			
Da	Modulo di deformazione		(kN/m²)	E		20000			
							_		
	Accelerazione sismica			a _g /		7 (-)			
	Coefficiente Amplificazione Stratigrafico			S	_	(-)			
.SE	Coefficiente Amplificazione Topografico			S	т 1	(-)	RIBALTA	MENTO	
Dati Sismici	Coefficiente di riduzione dell'accelerazione massima			β	s 0.38	(-)	βs	0.57	
at:	Coefficiente sismico orizzontale			k			kh	0.08294	
	Coefficiente sismico verticale			k	v 0.027	6 (-)	kv	0.04147	
	Muro libero di traslare o ruotare				● si	○ no			
						STR/GEO	R	IB	
	Coeff. di Spinta Attiva Statico	ka	0.238		0.238	3	0.238		
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.265		0.265	5	0.279		
fficient Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.267		0.267	7	0.283		
Spi	Coeff. Di Spinta Passiva	kp	1.000		1.000)	1.000		
ő	Coeff. Di Spinta Passiva Sismica sisma +	kps+	1.000		1.000)	1.000		

				valori caratteristici	valori di p	progetto
Carichi	Agenti			SLE - sisma	STR/GEO	EQU
Carichi permanenti	Sovraccarico permanente Sovraccarico su zattera di monte	(kN/m²)	qp '	16.62	21.60	21.60
Carichi ermanen	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
S E	Forza Verticale in Testa permanente	(kN/m)	vp	1.00	1.00	1.00
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q	0.00	0.00	0.00
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statich	(kN/m)	f	0.00	0.00	0.00
atio	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
S &	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione freque	nte Ψ1	1.00	condizione quasi permane	nte Ψ2	0.00
.E @	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	0.00		
Condizioni Sismiche	Forza Orizzontale in Testa accidentale in condizioni sismicl	(kN/m)	fs	0.00		
	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
0 0	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

1.000

kps-

1.000

1.000

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U 40 D 29 CL MU1100 001 В 52 di 196

CARATTERISTICHE DEI MATERIALI STRUTTURALI

<u>Calcestruzzo</u>		<u>Acciaio</u>
classe cls C30/37 ▼		tipo di acciaio B450C 🔻
Rck 37	(MPa)	
fck 30	(MPa)	fyk = 450 (MPa)
fcm 38	(MPa)	
Ec 32837	(MPa)	γ s = 1.15
α _{οο} 0.85		
γc 1.50		fyd = fyk / γ s / γ E = 391.30 (MPa)
$f_{od} = \alpha_{oc} * f_{ok} / \gamma c $ 17.00	(MPa)	Es = 210000 (MPa)
$f_{ctm} = 0.30 * f_{ck}^{2/3}$ 2.90	(MPa)	ε _{ys} = 0.19%
Tensioni limite (tensioni ammissibili) condizioni statiche σ _c 18 Mpa σ _f 360 Mpa		coefficiente omogeneizzazione acciaio n = 15
		<u>Copriferro</u> (distanza asse armatura-bordo)
condizioni sismiche σ _c 18 Mpa		c = 6.80 (cm)
, , , , , , , , , , , , , , , , , , ,		c = 0.00 (cm)
σ _f 360 Mpa		Copriferro minimo di normativa (ricoprimento armatura)
		$c_{min} = 4.00$ (cm)
		• •
Valore limite di apertura delle fessure		Interferro tra I e II strato
Frequente w1	0.2 mm	i _{I-II} 5.00 (cm)
Quasi Permanente w1	0.2 mm	. ,

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 53 di 196

10.1 CALCOLO DELLE AZIONI

10.1.1 FORZE VERTICALI E INERZIALI

FORZE VERTICALI

- Peso del Mur	o (Pm)		SLE	STR/GEO	EQU/RIB
Pm1 =	(B2*H3*γcls)/2	(kN/m)	0.00	0.00	0.00
Pm2 =	(B3*H3*γcls)	(kN/m)	13.00	13.00	13.00
Pm3 =	(B4*H3*γcls)/2	(kN/m)	0.00	0.00	0.00
Pm4 =	(B*H2*γcIs)	(kN/m)	15.00	15.00	15.00
Pm5 =	(Bd*Hd*γcIs)	(kN/m)	0.00	0.00	0.00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	28.00	28.00	28.00
- Peso del terro Pt1 = Pt2 = Pt3 = Sovr = Pt =	eno e sovr. perm. sulla scarpa di monte del muro (Pt) (B5*H3*/) (0,5*(B4+B5)*H4*/) (B4*H3*/)/2 qp * (B4+B5) Pt1 + Pt2 + Pt3 + Sovr	(kN/m) (kN/m) (kN/m) (kN/m) (kN/m)	15.60 0.00 0.00 0.00 0.00 15.60	15.60 0.00 0.00 0.00 15.60	15.60 0.00 0.00 0.00 15.60
- Sovraccarico Sovr acc. Stat Sovr acc. Sisn	• • •	(kN/m) (kN/m)	0 0	0	

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

- Muro (Mm)			SLE	STR/GEO	EQU/RIB
Mm1 =	Pm1*(B1+2/3 B2)	(kNm/m)	0.00	0.00	0.00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	9.10	9.10	9.10
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	0.00	0.00	0.00
Mm4 =	Pm4*(B/2)	(kNm/m)	11.25	11.25	11.25
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00	0.00	0.00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	20.35	20.35	20.35
- Terrapieno e	sovr. perm. sulla scarpa di monte del muro				
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	18.72	18.72	18.72
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	0.00	0.00	0.00
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	18.72	18.72	18.72
- Sovraccarico	accidentale sulla scarpa di monte del muro				
	(B1+B2+B3+1/2(B4+B5))	(kNm/m)	0	0	
	n *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0		

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 54 di 196

- Inerzia orizzo Ps h =	MURO E DEL TERRAPIENO ntale e verticale del muro (Ps) Pm*kh	(kN/m)	1.55	2.32
Ps v=	Pm*kv	(kN/m)	0.77	1.16
- Inorzia orizzo	ntale e verticale del terrapieno a tergo del muro (Pts)	1		
Ptsh =	Pt*kh	(kN/m)	0.86	1.29
Ptsv =	Pt*kv	(kN/m)	0.43	0.65
1 101	T NV	(Marin)	0.40	0.00
- Incremento or	rizzontale di momento dovuto all'inerzia del muro (MF	⊃s h)		
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)	0.00	0.00
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)	0.75	1.13
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)	0.00	0.00
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)	0.17	0.25
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)	0.00	0.00
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	0.92	1.38
Incremente ve	erticale di momento dovuto all'inerzia del muro (MPs	v)		
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kNm/m)	0.00	0.00
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)	0.25	0.00
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)	0.25	0.00
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)	0.00	0.47
MPs5 v=	. ,	(kNm/m)	0.00	0.47
MPs v=	kv*Pm5*(B-Bd/2) MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	0.56	0.84
IVIPS V-	INPS I HINPS2+INPS3+INPS4+INPS5	(KIMII/III)	0.50	0.04
	izzontale di momento dovuto all'inerzia del terrapien			
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)	0.91	1.36
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)	0.00	0.00
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)	0.00	0.00
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)	0.91	1.36
- Incremento ve	erticale di momento dovuto all'inerzia del terrapieno (l	MPts v)		
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)	0.52	0.78
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)	0.00	0.00
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)	0.00	0.00
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)	0.52	0.78
10 1	111 to 1 - 1111 to 2 - 1111 to 0	(0.02	0.10

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 55 di 196

10.1.2 SPINTE IN CONDIZIONE STATICA

	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO	EQU/RIB
St =	0,5*y'*(H2+H3+H4+Hd)2*ka	(kN/m)	6.87	8.94	8.94
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	6.72	8.74	8.74
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	0.00	0.00	0.00
- Componente	orizzontale condizione statica				
Sth =	St*cos8	(kN/m)	6.87	8.94	8.94
Sqh perm =	Sq perm*cosδ	(kN/m)	6.72	8.74	8.74
Sqh acc =	Sq acc*cos8	(kN/m)	0.00	0.00	0.00
- Componente	verticale condizione statica				
Stv =	St*senô	(kN/m)	0.00	0.00	0.00
Sqv perm=	Sq perm*senδ	(kN/m)	0.00	0.00	0.00
Sqv acc =	Sq acc*sen₀	(kN/m)	0.00	0.00	0.00
- Spinta passiv	va sul dente				
Sp=½*g1'*Hd2	^{2*} ½* _{γ1} '*Hd ² *kp+(2*c ₁ '*kp ^{0.5} +γ1'*kp*H2')*Hd	0.00	0.00	0.00	

MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU/RIB	
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	3.90	5.06	5.06
MSt2 =	Stv*B	(kNm/m)	0.00	0.00	0.00
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	5.71	7.43	7.43
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	0.00	0.00	0.00
MSq2 perm=	Sqv perm*B	(kNm/m)	0.00	0.00	0.00
MSq2 acc =	Sqv acc*B	(kNm/m)	0.00	0.00	0.00
MSp = γ1'*l	-ld ³ *kp/3+(2*c1'*kp ^{0.5} +γ1'*kp*H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	0.00	0.00	0.00
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0.00	0.00	0.00
Mfext3 =	(vp+v)*(B1 +B2 + B3/2)	(kNm/m)	0.70	0.70	0.70

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 56 di 196

10.1.3 SPINTE IN CONDIZIONE SISMICA +

(vp+vs)*(B1 +B2 + B3/2)

Mfext3 =

	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU/RIB
- Spinta condiz		, L			
	0,5* ₇ '*(H2+H3+H4+Hd)²*ka	(kN/m)	6.87	6.87	6.87
	0,5*γ'*(1+kv)*(H2+H3+H4+Hd)²*kas ⁺ -Sst1 stat	(kN/m)	1.01	1.01	1.54
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	7.50	7.50	7.90
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	0.00	0.00	0.00
- Componente	orizzontale condizione sismica +				
Sst1h stat =	Sst1 stat*cos8	(kN/m)	6.87	6.87	6.87
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	1.01	1.01	1.54
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	7.50	7.50	7.90
Ssq1h acc=	Ssq1 acc*cosô	(kN/m)	0.00	0.00	0.00
- Componente	verticale condizione sismica +				
Sst1v stat =	Sst1 stat*senô	(kN/m)	0.00	0.00	0.00
Sst1v sism =	Sst1 sism*sen8	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*sen8	(kN/m)	0.00	0.00	0.00
- Spinta passiv	a sul dente				
) Hd ² *kps ⁺ +(2*c ₁ '*kps ^{+0.5} + _γ 1' (1+kv) kps ⁺ *H2')*Hd	(kN/m)	0.00	0.00	0.00
- Condizione si	LLA SPINTA DEL TERRENO E DEL SOVRACCARI smica +	co	SLE	STR/GEO	EQU/RIB
140 .4	0.44	/IN / >	2.00	2.00	2.00
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	3.90	3.90	3.90
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	0.57	0.57	0.87
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	6.37	6.37	6.71
MSsq2 =	Ssq1v * B	(kNm/m)	0.00	0.00	0.00
MSp =	γ_1 '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ 1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTARO	WILL ALLE CODZE ECTEDNE				
	OVUTI ALLE FORZE ESTERNE	/ Jahlan (ac.)		0.00	
Mfext1 =	mp+ms (f-) (-)*/U2 + U2)	(kNm/m)		0.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	

(kNm/m)

0.70

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 57 di 196

10.1.4 SPINTE IN CONDIZIONE SISMICA -

SPINTE DEL	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU/RIB
Sst1 stat =	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	6.87	6.87	6.87
Sst1 sism =	0,5*y'*(1-kv)*(H2+H3+H4+Hd)2*kas*-Sst1 stat	(kN/m)	0.63	0.63	0.97
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	7.54	7.54	8.00
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	0.00	0.00	0.00
	orizzontale condizione sismica -				
Sst1h stat =	Sst1 stat*cosô	(kN/m)	6.87	6.87	6.87
	Sst1 sism*cosô	(kN/m)	0.63	0.63	0.97
Ssq1h perm=	Ssq1 perm*cos8	(kN/m)	7.54	7.54	8.00
Ssq1h acc=	Ssq1 acc*cos8	(kN/m)	0.00	0.00	0.00
•	verticale condizione sismica -				
Sst1v stat =	Sst1 stat*sen8	(kN/m)	0.00	0.00	0.00
	Sst1 sism*senô	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*sen8	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*sen8	(kN/m)	0.00	0.00	0.00
- Spinta passiv					
Sp=½* _{γ1} ′(1-kv)	Hd ² *kps ⁻ +(2*c ₁ '*kps ^{-0.5} +γ1' (1-kv) kps ⁻ *H2')*Hd	(kN/m)	0.00	0.00	0.00
- Condizione si	LLA SPINTA DEL TERRENO E DEL SOVRACCARI smica -	co	SLE	STR/GEO	EQU/RIB
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	3.90	3.90	3.90
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	0.36	0.36	0.55
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
MSst2 sism =	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	6.41	6.41	6.80
MSsq2 =	Ssq1v * B	(kNm/m)	0.00	0.00	0.00
MSp =	γ ₁ '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} +γ1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		0.70	

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISETTA XIRBI – ENNA (LOTTO 4a) OPERE DI SOSTEGNO DI LINEA		10			
TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO	COMMESSA RS3U	LOTTO 40 D 29	CODIFICA CL	DOCUMENTO MU1100 001	REV.	FOGLIO 58 di 196

10.2 VERIFICHE GEOTECNICHE

10.2.1 VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. DRENATE

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Risultante forze verticali (N) N = Pm + Pt + v + Stv + Sqv perm + Sqv acc	57.56	(kN/m)	
Risultante forze orizzontali (T) T = Sth + Sqh + f	17.67	(kN/m)	
Coefficiente di attrito alla base (f) $f \hspace{0.2in} = \hspace{0.2in} tg\phi 1'$	0.38	(-)	
Fs scorr. (N*f+Sp)/T	1.25	>	1.1
VERIFICA AL RIBALTAMENTO (EQU)			
Momento stabilizzante (Ms) Ms = Mm + Mt + Mfext3	55.33	(kNm/m)	
Momento ribaltante (Mr) Mr = MSt + MSq + Mfext1+ Mfext2 + MSp	12.49	(kNm/m)	
Fs ribaltamento Ms / Mr	4.43	>	1.15
VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO)			
VERIFICA CARICO LIMITE DELLA FONDAZIONE (STR/GEO) Risultante forze verticali (N) N = Pm + Pt + v + Stv + Sqv (+ Sovr acc)	Nmin 57.56	Nmax 57.56	(kN/m)
Risultante forze verticali (N)			
Risultante forze verticali (N) N = Pm + Pt + v + Stv + Sqv (+ Sovr acc) Risultante forze orizzontali (T)	57.56	57.56 17.67	(kN/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 59 di 196

9.07

Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

350.87	(kN/m ²)
0.66	(-)
0.76 0.72	(-) (-)
	(-) (-)
0.01 1.49	(m) (m)
	(kN/m ²)
	(kPa) (°) (kN/m³)
	1.49

10.2.2 VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. DRENATE

Condizione sismica +

VERIFICA ALLO SCORRIMENTO

VER	FICA AL	LO SCORRIMENTO			
Risult N	ante forz	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	56.14	(kN/m)	
Risult T	ante forz	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	18.50	(kN/m)	
Coeffi f	ciente di =	attrito alla base (f) tgφ1'	0.38	(-)	
Fs	=	(N*f + Sp) / T	1.16	>	1
		RIBALTAMENTO			
Mome Ms	ento stabi =	lizzante (Ms) Mm + Mt + Mfext3	55.33	(kNm/m)	
Mome Mr	ento ribalt =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	12.60	(kNm/m)	
Fr	=	Ms / Mr	4.39	>	1
VER	FICA A	CARICO LIMITE DELLA FONDAZIONE			

Risultante forze verticali (N)	Nmin	Nmax	
N = Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	56.14	56.14	(kN/m)
Risultante forze orizzontali (T)			
T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh - Sp	18.50		(kN/m)
Risultante dei momenti rispetto al piede di valle (MM)			
$MM = \sum M$	40.15	40.15	(kNm/m)
Momento rispetto al baricentro della fondazione (M)	4.05	4.05	/ JaNies /es N
M = Xc*N - MM	1.95	1.95	(kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

LOTTO COMMESSA CODIFICA DOCUMENTO REV. FOGLIO RS3U 40 D 29 CL MU1100 001 61 di 196

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

ES carico lir	mite	F = alim*R*/ N	Nmin	8.61	>	12
qlim	(carico limite	unitario)		337.93	337.93	(kN/m ²)
(fondazione nas	striforme m = 2	2)				
$i\gamma = (1 - T/(N + I))$				0.63	0.63	(-)
iq = (1 - T/(N + ic = iq - (1 - iq)/(N + ic = iq - (1 - iq)/(N + ic = iq - (1 - iq)/(N + ic = iq - iq)/(N + iq - iq - iq)/(N + iq - iq - iq - iq)/(N + iq - iq	0.77	(1 in cond. nd)		0.74 0.69	0.74 0.69	(-) (-)
	•	valutati con le espressioni suggerit	e da Vesic (1975)			
$N_{\gamma} = 2*(Nq + 1)$	*tg(φ')	(0 in cond. nd)		6.20		(-)
Nc = (Nq - 1)/tg	ı(φ')	(2+π in cond. nd)		15.81		(-)
$Nq = tg^2(45 + \varphi)$	'/2)*e ^{(π*tg(φ'))}	(1 in cond. nd)		7.07		(-)
I valori di Nc, N	q e Ng sono s	tati valutati con le espressioni sugg	gerite da Vesic (197	75)		
B*= B - 2e	larghezza ed	quivalente		1.43	1.43	(m)
e = M / N	eccentricità			0.03	0.03	(m)
$q_0 = \gamma d^*H2'$	sovraccarico	stabilizzante		12.00		(kN/m ²)
γ1	peso unità di	volume terreno fondaz.		20.00		(kN/m ³)
φ1'		ito terreno di fondaz.		21.00		(°)
c1'	acceione torr	eno di fondaz.		20.00		(kN/mq)
•						

FS carico limite	F = qlim*B*/ N	Nmin	8.61	>	1.2
r 3 carico illilite		Nmax	8.61		1.2

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

RS3U 40 D 29

CODIFICA

DOCUMENTO MU1100 001

REV. FOGLIO **B 62 di 196**

Condizione sismica -

VERIFICA ALLO SCORRIMENTO

Risultante forze verticali (N)

N = Pm + Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv 53.01 (kN/m)

Risultante forze orizzontali (T)

T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh18.17 (kN/m)

Coefficiente di attrito alla base (f)

 $f = tg\phi 1'$ 0.38 (-)

 $Fs = (N^*f + Sp)/T$ 1.12 > 1

VERIFICA AL RIBALTAMENTO

Momento stabilizzante (Ms)

Ms = Mm + Mt + Mfext3 55.33 (kNm/m)

Momento ribaltante (Mr)

Mr = MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts 15.61 (kNm/m)

 $Fr = Ms/Mr \qquad 3.54 > 1$

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forze verticali (N) N = Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	Nmin 53.01	Nmax 53.01 (kN/m)
Risultante forze orizzontali (T) T = Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	18.17	(kN/m)
Risultante dei momenti rispetto al piede di valle (MM) $MM = \Sigma M$	38.17	38.17 (kNm/m)
Momento rispetto al baricentro della fondazione (M) M = Xc*N - MM	1.59	1.59 (kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 63 di 196

9.18

Nmax

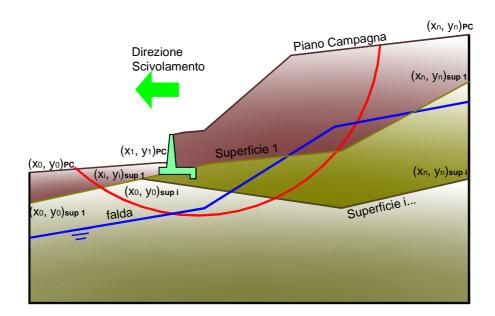
1.2

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

FS carico limite

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

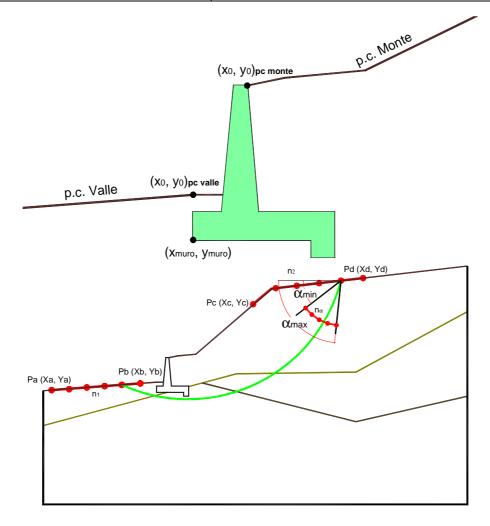

ES carico li	mite	F = alim*R*/ N	Nmin	9.18	>	12
qlim	(carico limite u	unitario)		337.98	337.98	(kN/m ²)
(fondazione na	striforme m = 2)					
$i\gamma = (1 - T/(N +$	B*c'cotgφ')) ^{m+1}			0.63	0.63	(-)
iq = (1 - T/(N + ic = iq - (1 - iq))	•	(1 in cond. nd)		0.74 0.69	0.74 0.69	(-) (-)
		alutati con le espressioni suggerite	da Vesic (1975)		. 74	
$N\gamma = 2*(Nq + 1)$		(0 in cond. nd)		6.20		(-)
$Nq = tg^{2}(45 + q)$ Nc = (Nq - 1)/tq		(1 in cond. nd) (2+π in cond. nd)		7.07 15.81		(-) (-)
			(10			
I valori di Nc, N	lg e Ng sono sta	ati valutati con le espressioni sugge	rite da Vesic (19	75)		
B*= B - 2e	larghezza equ	ivalente		1.44	1.44	(m) (m)
e = M / N	eccentricità			0.03	0.03	(m)
q ₀ =γd*H2'	sovraccarico :	stabilizzante		12.00		(kN/m ²)
Ψ1 71	_	olume terreno fondaz.		20.00		(kN/m ³)
c1' φ1'	coesione terre	no di fondaz. o terreno di fondaz.		20.00 21.00		(kN/mq) (°)

F = qlim*B*/N

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ODEDE DI COCTECNO DI LINEA			0		
TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO	COMMESSA RS3U	LOTTO 40 D 29	CODIFICA	DOCUMENTO MU1100 001	REV.	FOGLIO 64 di 196

10.2.3 VERIFICA DI STABILITÀ GLOBALE – COND. DRENATE

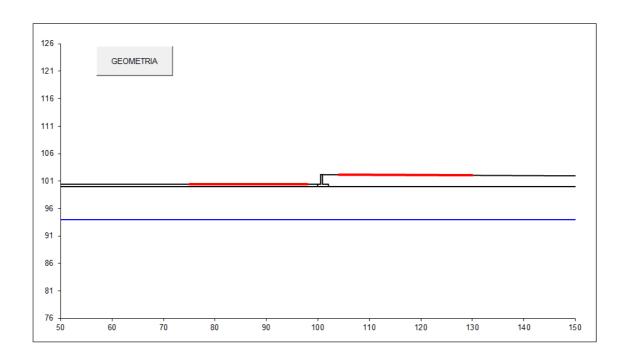
Le analisi di stabilità, di seguito riportate, sono state effettuate limitando la ricerca delle potenziali superfici di scorrimento critiche alla fascia più prossima alla linea ferroviaria.


	γ [kN/m³]	φ [°]	c [kPa]	Descrizione
materiale 1	20.00	38	0	Rilevato - riporto
materiale 2	20.00	18.5	20	FYN4
materiale 3				
materiale 4				

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 65 di 196

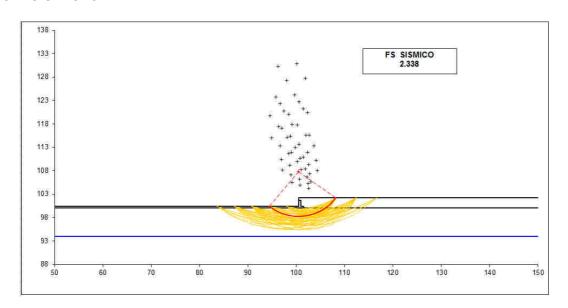


	p.c. va	lle		p.c. mo	nte		superfic	ie 1		superfic	ie 2		superfic	ie 3		£ 1.1	
		materiale 1					mater	iale 2 🔻		mater	riale 4	[mater	riale 2	√ Ida		
	x	у		X	у		x	у		х	у		X	у		x	у
0	100.000	100.400	0	100.900	102.400	0	50.000	100.000	0			0			0	50.000	94.000
1	50.000	100.400	1	150.000	102.400	1	150.000	100.000	1			1			1	150.000	94.000
2			2			2			2			2			2		
3			3			3			3			3			3		
4			4			4			4			4			4		
5			5			5			5			5			5		
6			6			6			6			6			6		
7			7			7			7			7			7		
8			8			8			8			8			8		
9			9			9			9			9			9		
10			10			10			10			10			10		

Sovraccarichi

		Xin	q_{in}	 Xfin	q_{fin}	% sisma
sovraccarico 1	✓	105.400	0	110.050	0	20%
sovraccarico 2						

#strisce
30


# Superfici Calcolate	FS Bishop				
149	STATICO	3.304			
149	SISMICO	2.338			

Condizioni statiche

Condizioni sismiche

10.2.4 VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. NON DRENATE

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Risultante for	ze verticali (N) Pm + Pt + v + Stv + Sqv perm + Sqv acc	57.56	(kN/m)	
Risultante forz	ze orizzontali (T) Sth + Sqh + f	17.67	(kN/m)	
Coefficiente d f =	i attrito alla base (f) tgφ1'	0.38	(-)	
Fs scorr.	(N*f + Sp) / T	1.25	>	1.1
VERIFICA A	L RIBALTAMENTO (EQU)			
Momento stal Ms =	bilizzante (Ms) Mm + Mt + Mfext3	55.32	(kNm/m)	
Momento riba Mr =	ltante (Mr) MSt + MSq + Mfext1+ Mfext2 + MSp	12.49	(kNm/m)	
Fs ribalta	mento Ms / Mr	4.43	>	1.15
VERIFICA (CARICO LIMITE DELLA FONDAZIONE (STR/GEO)			
Risultante for	ze verticali (N)	Nmin	Nmax	

Risultante forze verticali (N)			Nmin	Nmax	
N	=	Pm + Pt + v + Stv + Sqv (+ Sovr acc)	57.56	57.56	(kN/m)
		e orizzontali (T)			
T	=	Sth + Sqh + f - Sp	17.67	17.67	(kN/m)
Risult	ante dei i	momenti rispetto al piede di valle (MM)			
MM	=	Σ M	42.83	42.83	(kNm/m)
Momento rispetto al baricentro della fondazione (M)					
	=	Xc*N - MM	0.34	0.34	(kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 69 di 196

20.97

Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico lir	mite F = qlim*B*/ N	Nmin	20.97	>	1.4			
qlim	(carico limite unitario)		810.91	810.91	(kN/m ²)			
(fondazione nastriforme m = 2)								
iq = (1 - T/(N + I)) ic = (1 - m T / (I)) $i\gamma = (1 - T/(N + I))$	B* cu*Nc))		1.00 0.97	1.00 0.97	(-) (-)			
l valori di ic, iq e	e iγ sono stati valutati con le espressioni suggerite da	a Vesic (1975)						
Nq = $tg^2(45 + \varphi)$ Nc = (Nq - 1)/ tg N γ = 2*(Nq + 1)	(φ') (2+π in cond. nd)		1.00 5.14 0.00		(-) (-) (-)			
I valori di Nc, No	q e Ng sono stati valutati con le espressioni suggerit	e da Vesic (19	75)					
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.01 1.49	0.01 1.49	(m) (m)			
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		12.00		(kN/m ²)			
71	peso unità di volume terreno fondaz.		20.00		(kN/m ³)			
cu	res. al taglio nd terreno di fondaz.		160.00		(kPa)			
qiiii – cito ic	· 40 Hq Iq · 0,5 /1 B H/ I/							

10.2.5 VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. NON DRENATE

Condizione sismica +

VERIFICA ALLO SCORRIMENTO

VER	VERIFICA AL RIBALTAMENTO							
Fs	=	(N*f + Sp) / T	1.16	>	1			
Coef f	ficiente di =	attrito alla base (f) tgφ1'	0.38	(-)				
Risu T	ltante forz =	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	18.50	(kN/m)				
Risu N	ltante forz =	re verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	56.13	(kN/m)				

Fr	=	Ms / Mr	4.39	>
	ento ribalt =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	12.59	(kNm/m)
Mom Ms		lizzante (Ms) Mm + Mt + Mfext3	55.32	(kNm/m)

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forze verticali (N) N = Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	Nmin 56.13	Nmax 56.13 (kN/m)
Risultante forze orizzontali (T) T = Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	18.50	(kN/m)
Risultante dei momenti rispetto al piede di valle (MM) $MM = \Sigma M$	40.15	40.15 (kNm/m)
Momento rispetto al baricentro della fondazione (M) M = Xc*N - MM	1.95	1.95 (kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 71 di 196

20.61

20.61

1.2

Nmin

Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

F = qlim*B*/N

Fondazione Nastriforme

FS carico limite

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

cu	res. al taglio nd terreno di fondaz.	160.00		(kN/mq)	
γ1	peso unità di volume terreno fondaz.	20.00		(kN/m ³)	
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	12.00		(kN/m ²)	
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0.03 1.43	0.03 1.43	(m) (m)	
I valori di Nc, N	Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)				
	$\varphi'/2$)* $e^{(\pi^* t g(\varphi'))}$ (1 in cond. nd) $g(\varphi')$ (2+ π in cond. nd) 1)* $tg(\varphi')$ (0 in cond. nd)	1.00 5.14 0.00		(-) (-) (-)	
I valori di ic, iq	e iγ sono stati valutati con le espressioni suggerite da Vesic (1975)				
ic = (1 - m T /	- B*c'cotgφ')) ^m (1 in cond. nd) (B* cu*Nc)) B*c'cotgφ')) ^{m+1}	1.00 0.97	1.00 0.97	(-) (-) (-)	
(fondazione nastriforme m = 2)					
qlim	(carico limite unitario)	808.79	808.79	(kN/m ²)	

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 72 di 196

Condizione sismica -

VERIFICA ALLO SCORRIMENTO

F	s =	(N*f + Sp) / T	1.12	>	1
f	oefficiente =	e di attrito alla base (f) tgφ1'	0.38	(-)	
R T	isultante f =	forze orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	18.17	(kN/m)	
R N		forze verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	53.01	(kN/m)	

VERIFICA AL RIBALTAMENTO

Fr	=	Ms / Mr	3.54	>	1
	ento ribali =	tante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	15.61	(kNm/m)	
Mom Ms		ilizzante (Ms) Mm + Mt + Mfext3	55.32	(kNm/m)	

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forze verticali (N)	Nmin	Nmax	
N = Pm + Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	53.01	53.01	(kN/m)
Risultante forze orizzontali (T)			
T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh - Sp	18.17		(kN/m)
Risultante dei momenti rispetto al piede di valle (MM)			
$MM = \Sigma M$	38.17	38.17	(kNm/m)
Momento rispetto al baricentro della fondazione (M)			
M = Xc*N - MM	1.59	1.59	(kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 73 di 196

21.99

21.99

1.2

Nmin

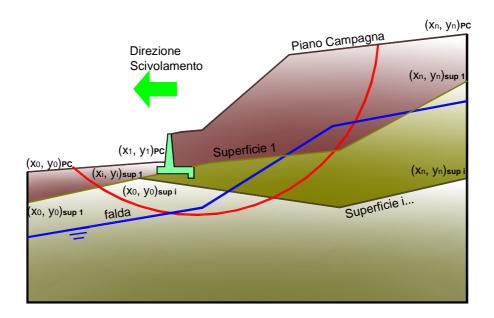
Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

F = qlim*B*/N

Fondazione Nastriforme

FS carico limite

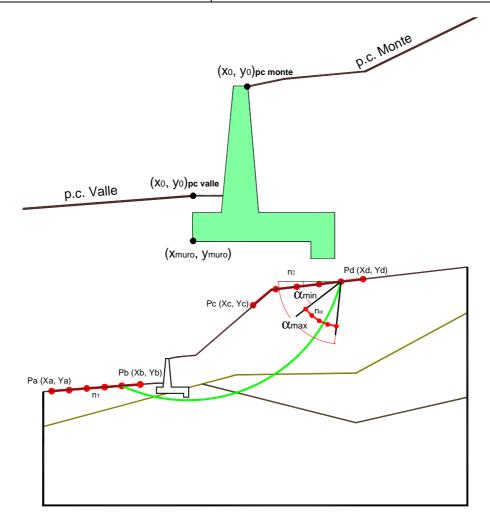

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

cu	res. al taglio nd terreno di fondaz.	160.00		(kN/mq)
γ1	peso unità di volume terreno fondaz.	20.00		(kN/m ³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	12.00		(kN/m ²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0.03 1.44	0.03 1.44	(m) (m)
I valori di Nc, N	Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)			
Nq = $tg^2(45 + e^2)$ Nc = $(Nq - 1)/t$ N γ = $2*(Nq + 1)$	g(φ') (2+π in cond. nd)	1.00 5.14 0.00		(-) (-)
I valori di ic, iq	e i γ sono stati valutati con le espressioni suggerite da Vesic (1975)			
ic = (1 - m T /	· B*c'cotgφ')) ^m (1 in cond. nd) (B* cu*Nc)) B*c'cotgφ')) ^{m+1}	1.00 0.97	1.00 0.97	(-) (-)
(fondazione na	striforme m = 2)			
qlim	(carico limite unitario)	809.42	809.42	(kN/m ²)

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LEGAME LTANISE	NTO PALERN ITA XIRBI – E	NA – CATANIA – MO – CATANIA INNA (LOTTO 4a)		0
TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO	COMMESSA RS3U	LOTTO 40 D 29	CODIFICA	DOCUMENTO MU1100 001	REV.	FOGLIO 74 di 196

10.2.6 VERIFICA DI STABILITÀ GLOBALE - COND. NON DRENATE

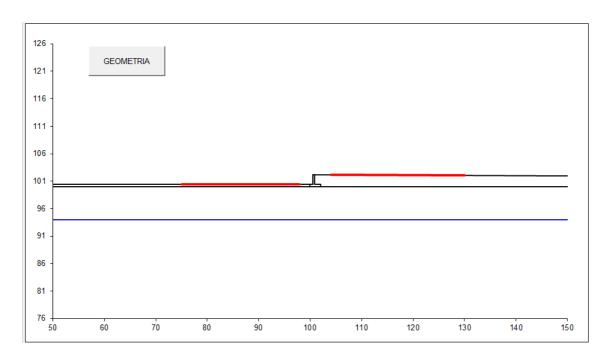
Le analisi di stabilità, di seguito riportate, sono state effettuate limitando la ricerca delle potenziali superfici di scorrimento critiche alla fascia più prossima alla linea ferroviaria.


	γ [kN/m³]	φ [°]	c [kPa]	Descrizione
materiale 1	20.00	38	0	Rilevato - riporto
materiale 2	20.00	18.5	160	FYN4
materiale 3				
materiale 4				

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

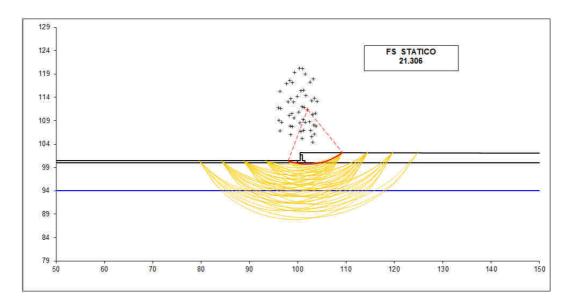
 RS3U
 40 D 29
 CL
 MU1100 001
 B
 75 di 196



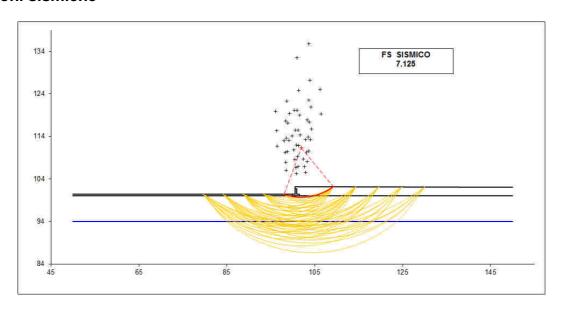
	p.c. va	lle		p.c. mo	nte		superfic	ie 1		superfic	ie 2		superfic	ie 3		£ 1.1	
		materiale 1					mater	iale 2		mater	riale 4	-	mater	riale 2		[olda	
	X	у		X	у		X	у		x	у		X	у		x	у
0	100.000	100.400	0	100.900	102.400	0	50.000	100.000	0			0			0	50.000	94.000
1	50.000	100.400	1	150.000	102.400	1	150.000	100.000	1			1			1	150.000	94.000
2			2			2			2			2			2		
3			3			3			3			3			3		
4			4			4			4			4			4		
5			5			5			5			5			5		
6			6			6			6			6			6		
7			7			7			7			7			7		
8			8			8			8			8			8		
9			9			9			9			9			9		
10			10			10			10			10			10		

Sovraccarichi

		Xin	q_{in}	 X _{fin}	q_{fin}	% sisma
sovraccarico 1	✓	105.400	0	110.050	0	20%
sovraccarico 2						



#strisce
30


# Superfici Calcolate	F Bisl	•
440	STATICO	21.306
149	SISMICO	7.125

Condizioni statiche

Condizioni sismiche

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 78 di 196

10.2.7 VERIFICA DEGLI SPOSTAMENTI SLD

Si riporta di seguito la verifica degli spostamenti permanenti indotti dal sisma per lo Stato Limite di Danno. Si è verificato che tale spostamento, determinato così come riportato all'interno del cap. 7.3.2 della presente relazione, risulti inferiore allo spostamento orizzontale massimo ammissibile in testa all'opera di sostegno, che può essere assunto, in condizioni sismiche, al più pari a 2cm.

ag	0.048					
a _g Ss	1.5					
St	1					
В	0.44					
Α	-8.07					
ac	0.136					
amax	0.072					
d =	1.5829E-04	mm	<	20	mm	OK

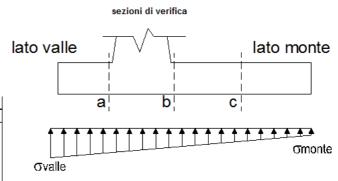
TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

LOTTO CODIFICA FOGLIO COMMESSA DOCUMENTO REV. RS3U 40 D 29 MU1100 001 79 di 196 CL

10.3 VERIFICHE STRUTTURALI

10.3.1 CALCOLO DELLE SOLLECITAZIONI

Reazione del terreno

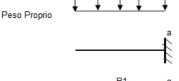

ovalle = N / A + M / Wgg

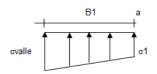
omonte = N / A - M / Wgg

A = 1.0*B2.00 (m²)

 $Wgg = 1.0*B^2/6$ 0.67 (m³)

2222	N	M	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
statico	78.60	11.29	56.24	22.36
Statico	78.60	11.29	56.24	22.36
sisma+	80.75	12.25	58.75	22.00
SiSiliaT	80.75	12.25	58.75	22.00
aia ma	76.45	12.54	57.03	19.42
sisma-	76.45	12.54	57.03	19.42




Mensola Lato Valle

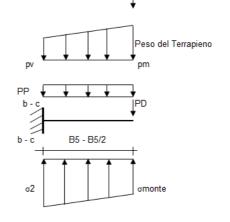
Peso Proprio. PP = 10.00 (kN/m) $Ma = \sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1\pm kv)$

 $Va = \sigma 1*B1 + (\sigma valle - \sigma 1)*B1/2 - PP*B1*(1±kv)$

caso	σvalle	σ1	Ma	Va
Caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
statico	56.24	47.77	5.43	21.00
	56.24	47.77	5.43	21.00
	58.75	49.56	5.68	24.23
sisma+	58.75	49.56	5.71	24.23
aiama	57.03	47.63	5.52	23.38
sisma-	57.03	47.63	5.49	23.38

Mensola Lato Monte

PP	=	10.00 (kN/m ²) peso proprio soletta fondazione
PD	=	0.00 (kN/m)	peso proprio dente


			•	•	
		Nmin	N max stat	N max sism	
pm	=	36.00	36.00	36.00	(kN/m ²)
pvb	=	36.00	36.00	36.00	(kN/m^2)
DVC	=	36 00	36.00	36.00	(kN/m ²)

 $Mb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5^2/2 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb)^*B5^2/6 - (pm-pvb)^*B$ $-(Stv+Sqv)^*B5-PD^*(1\pm kv)^*(B5-Bd/2)-PD^*kh^*(Hd+H2/2)+Msp+Sp^*H2/2$

 $Mc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2)^2/2 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(1 \pm kv)^*(B5/2)^2/3 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(1 \pm kv)^*(B5/2)^2/3 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(1 \pm kv)^*(B5/2)^2/3 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(1 \pm kv)^*(B5/2)^2/3 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(B5/2)^2/3 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(B5/2)^2/3 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(B5/2)^2/6 - (pm-pvc)^2/6 - (pm-pvc)$ -(Stv+Sqv)*(B5/2)-PD*(1±kv)*(B5/2-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

 $Vb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma 2b - \sigma_{monte})^*B5/2 - (pm - pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

 $Vc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma 2c - \sigma_{monte})^*(B5/2)/2 - (pm-pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

Stv+Stq

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 29	CL	MU1100 001	В	80 di 196

2222	omonte	σ2b	Mb	Vb	σ2 c	Mc	Vc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m ²]	[kNm]	[kN]
statico	22.36	40.99	-10.54	-15.76	31.68	-3.11	-10.44
	22.36	40.99	-10.54	-15.76	31.68	-3.11	-10.44
sisma+	22.00	42.21	-11.21	-16.68	32.11	-3.31	-11.12
sisma+	22.00	42.21	-11.21	-16.68	32.11	-3.31	-11.12
sisma-	19.42	40.11	-11.14	-16.46	29.77	-3.31	-11.07
	19.42	40.11	-11.14	-16.46	29.77	-3.31	-11.07

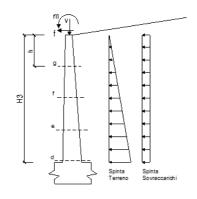
CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}}^* \gamma^* (1 \pm \text{kv})^* h^{2*} h/3$

 $\begin{array}{lll} \text{Mt sism} &= \frac{1}{2} \cdot \text{Na}_{\text{oriz.}} \cdot \gamma \cdot (1\pm kv) \cdot \text{Na}_{\text{oriz.}})^* h^{2*} h/2 & o *h/3 \\ \text{Mt sism} &= \frac{1}{2} \cdot \gamma \cdot (\text{Kas}_{\text{oriz.}}^* (1\pm kv) \cdot \text{Ka}_{\text{oriz.}})^* h^{2*} h/2 & o *h/3 \\ \text{Mq} &= \frac{1}{2} \cdot \text{Ka}_{\text{oriz.}}^* q^* h^2 \\ \text{M}_{\text{ext}} &= m + f^* h \end{array}$ $M_{inerzia} = \Sigma P m_i^* b_i^* kh$

N_{ext} = v


N $_{pp+inerzia}$ = $\Sigma Pm_i^*(1\pm kv)$

Vt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²

Vt sism = $\frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv)-Ka_{orizz.})*h^2$

 $Vq = Ka_{orizz}*q*h$ $V_{ext} = f$

 $V_{inerzia} = \Sigma Pm_i^*kh$

condizione statica

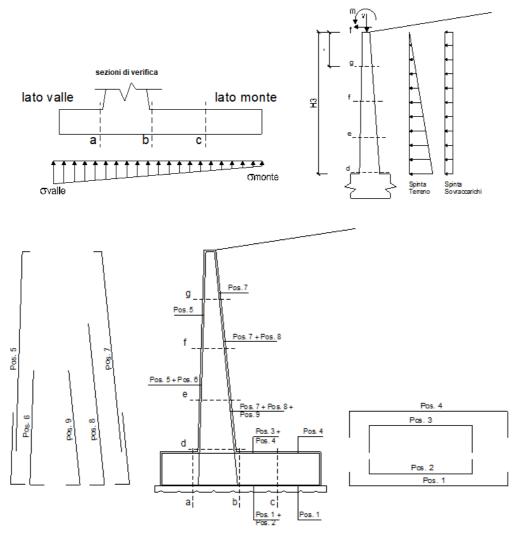
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
SEZIONE	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	1.80	6.01	8.33	0.00	14.34	1.00	18.00	19.00
e-e	1.35	2.54	4.68	0.00	7.22	1.00	13.50	14.50
f-f	0.90	0.75	2.08	0.00	2.83	1.00	9.00	10.00
g-g	0.45	0.09	0.52	0.00	0.61	1.00	4.50	5.50

sezione	h	Vt	Vq	V_{ext}	V _{tot}
Sezione	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	1.80	10.02	9.25	0.00	19.27
e-e	1.35	5.64	6.94	0.00	12.57
f-f	0.90	2.50	4.63	0.00	7.13
a-a	0.45	0.63	2.31	0.00	2 94

condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	1.80	4.62	0.68	7.14	0.00	0.90	13.34	1.00	18.50	19.50
e-e	1.35	1.95	0.29	4.02	0.00	0.50	6.76	1.00	13.87	14.87
f-f	0.90	0.58	0.08	1.79	0.00	0.22	2.67	1.00	9.25	10.25
g-g	0.45	0.07	0.01	0.45	0.00	0.06	0.59	1.00	4.62	5.62

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	Vinerzia	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	1.80	7.71	1.13	7.94	0.00	1.00	17.77
e-e	1.35	4.34	0.63	5.95	0.00	0.75	11.67
f-f	0.90	1.93	0.28	3.97	0.00	0.50	6.68
g-g	0.45	0.48	0.07	1.98	0.00	0.25	2.79


condizione sismica -

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	1.80	4.62	0.42	7.19	0.00	0.90	13.13	1.00	17.50	18.50
e-e	1.35	1.95	0.18	4.04	0.00	0.50	6.68	1.00	13.13	14.13
f-f	0.90	0.58	0.05	1.80	0.00	0.22	2.65	1.00	8.75	9.75
g-g	0.45	0.07	0.01	0.45	0.00	0.06	0.58	1.00	4.38	5.38

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	1.80	7.71	0.70	7.99	0.00	1.00	17.39
e-e	1.35	4.34	0.40	5.99	0.00	0.75	11.47
f-f	0.90	1.93	0.18	3.99	0.00	0.50	6.59
g-g	0.45	0.48	0.04	2.00	0.00	0.25	2.77

10.3.2 VERIFICHE SLU

Armatura minima

L'armatura minima principale in fondazione deve essere in percentuale non inferiore allo 0.20% dell'area di conglomerato.

L'armatura minima principale presente in zona tesa deve essere in percentuale non inferiore allo 0.15% dell'area di conglomerato per l'intera lunghezza.

L'armatura secondaria, ortogonale a quella principale, deve essere pari al massimo delle seguenti percentuali:

- 0.10% dell'area di conglomerato in entrambi i lembi;
- 20% dell'armatura principale.

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 82 di 196

$\underline{Muro\ h} = 1,3m\ su\ fondazione\ diretta$

ARMATURE

RELAZIONE DI CALCOLO

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato
1	5.0	16		5	5.0	16	
2	0.0	0		6	0.0	0	
3	0.0	0		7	5.0	16	
4	5.0	16		8	0.0	0	
				9	0.0	0	

Pertanto l'armatura secondaria sarà pari a:

sez a - a: $\phi 10/20$ cm (ripartitori in fondazione e in elevazione);

sez b – b: $\phi 10/20$ cm (ripartitori in fondazione);

sez c – c: ϕ 10/20cm (ripartitori in fondazione);

sez d - d: $\phi 10/20$ cm (ripartitori in fondazione);

sez e - e: ϕ 10/20cm (ripartitori in fondazione);

sez f – f: ϕ 10/20cm (ripartitori in fondazione);

sez g - g: $\phi 10/20$ cm (ripartitori in fondazione);

Sez.	M	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm²)	(cm ²)	(kNm)
a - a	3.93	0.00	0.40	10.05	10.05	132.18
b - b	-4.61	0.00	0.40	10.05	10.05	132.18
C - C	-1.18	0.00	0.40	10.05	10.05	132.18
d - d	6.61	14.00	0.40	10.05	10.05	134.16
e -e	3.40	10.75	0.40	10.05	10.05	133.70
f-f	1.37	7.50	0.40	10.05	10.05	133.24
g - g	0.31	4.25	0.40	10.05	10.05	132.78

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

	Sez.	V_{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	_
_	(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- -
	a - a	16.17	0.40	150.66	10	20	20	21.8	573.94	Armatura a taglio non necessaria
	b - b	14.94	0.40	150.66	10	20	20	21.8	573.94	Armatura a taglio non necessaria
	C - C	7.78	0.40	150.66	10	20	20	21.8	573.94	Armatura a taglio non necessaria
	d - d	11.91	0.40	152.40	10	20	20	21.8	573.94	Armatura a taglio non necessaria
	е -е	7.95	0.40	151.99	10	20	20	21.8	573.94	Armatura a taglio non necessaria
	f-f	4.65	0.40	151.59	10	20	20	21.8	573.94	Armatura a taglio non necessaria
	g - g	2.00	0.40	151.19	10	20	20	21.8	573.94	Armatura a taglio non necessaria

10.3.3 VERIFICHE SLE TENSIONE

Condizione Statica

Sez.	M	N	h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	2.99	0.00	0.40	10.05	10.05	0.22	9.85
b - b	-2.50	0.00	0.40	10.05	10.05	0.19	8.25
C - C	-0.61	0.00	0.40	10.05	10.05	0.04	2.00
d - d	5.08	14.00	0.40	10.05	10.05	0.36	9.87
е -е	2.61	10.75	0.40	10.05	10.05	0.18	3.53
f-f	1.05	7.50	0.40	10.05	10.05	0.06	0.45
g - g	0.24	4.25	0.40	10.05	10.05	0.02	-

Condizione Sismica

COHUIZIO	ic Jisiiiicu						
Sez.	M	N	h	Af	A'f	σC	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	3.90	0.00	0.40	10.05	10.05	0.29	12.86
b - b	-3.68	0.00	0.40	10.05	10.05	0.27	12.15
C - C	-0.95	0.00	0.40	10.05	10.05	0.07	3.14
d - d	6.19	13.64	0.40	10.05	10.05	0.45	13.62
е -е	3.20	10.48	0.40	10.05	10.05	0.23	5.46
f-f	1.30	7.32	0.40	10.05	10.05	0.08	1.04
g - g	0.29	4.16	0.40	10.05	10.05	0.02	-0.05

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

10.3.4 VERIFICHE SLE FESSURAZIONE

condizione Frequente

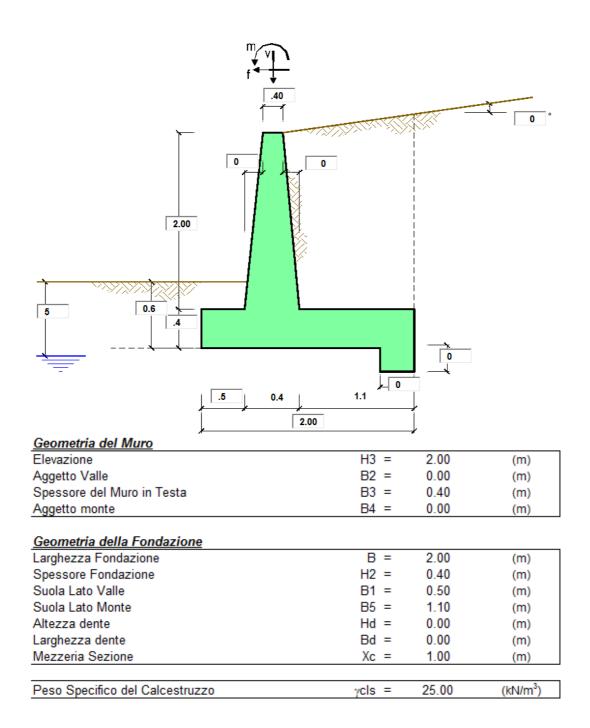
Sez.	M	N	h	Af	A'f	σc	σf	wk	W _{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	2.99	0.00	0.40	10.05	10.05	0.22	9.85	0.014	0.200
b - b	-2.50	0.00	0.40	10.05	10.05	0.19	8.25	0.012	0.200
C - C	-0.61	0.00	0.40	10.05	10.05	0.04	2.00	0.003	0.200
d - d	5.08	14.00	0.40	10.05	10.05	0.36	9.87	0.013	0.200
e -e	2.61	10.75	0.40	10.05	10.05	0.18	3.53	0.004	0.200
f-f	1.05	7.50	0.40	10.05	10.05	0.06	0.45	0.000	0.200
g - g	0.24	4.25	0.40	10.05	10.05	0.00	-	-	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

condizione Quasi Permanente

Sez.	M	N	h	Af	A'f	σc	σf	wk	W _{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	2.99	0.00	0.40	10.05	10.05	0.22	9.85	0.014	0.200
b - b	-2.50	0.00	0.40	10.05	10.05	0.19	8.25	0.012	0.200
C - C	-0.61	0.00	0.40	10.05	10.05	0.04	2.00	0.003	0.200
d - d	5.08	14.00	0.40	10.05	10.05	0.36	9.87	0.013	0.200
е -е	2.61	10.75	0.40	10.05	10.05	0.18	3.53	0.004	0.200
f-f	1.05	7.50	0.40	10.05	10.05	0.06	0.45	0.000	0.200
g - g	0.24	4.25	0.40	10.05	10.05	0.00	-	-	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)


10.3.5 CALCOLO INCIDENZA ARMATURA

	TIPO X	(⁰		
	MURO a mensola N	⁄IU11-TIPO X ⁰		
MU11	PARTE D'OPERA	INCIDENZA (Kg/mc)		
M	Elevazione	55		
	Fondazione	55		

11. PROGETTO E VERIFICA DEL MURO DI SOSTEGNO "TIPO X1"

11.1 DATI DI INPUT

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 87 di 196

Condizioni drenate

				valori carat	teristici	valori di	progetto
Dati (Geotecnici			SLE		STR/GEO	EQU
eno	Angolo di attrito del terrapieno	(°)	φ'	38.0	0	38.00	38.00
Dati errapieno	Peso Unità di Volume del terrapieno	(kN/m³)	7	20.0	0	20.00	20.00
Ter	Angolo di attrito terreno-superficie ideale	(°)	δ	0.00)	0.00	0.00
Fondazione	Condizioni		drenate	Non D	renate		
daz	Coesione Terreno di Fondazione	(kPa)	c1'	20.0	0	20.00	20.00
Fen	Angolo di attrito del Terreno di Fondazione	(°)	φ1'	21.0	0	21.00	21.00
	Peso Unità di Volume del Terreno di Fondazione	(kN/m³)	γ1	20.0	0	20.00	20.00
Dati Terreno	Peso Unità di Volume del Rinterro della Fondazione	(kN/m³)	γd	20.0	0	20.00	20.00
=	Profondità "Significativa" (n.b.: consigliata H = 2*B)	(m)	Hs	4.00)		
ā	Modulo di deformazione	(kN/m²)	Е	2000	0		
	Accelerazione sismica		a _q /g	0.097	(-)	1	
	Coefficiente Amplificazione Stratigrafico		Ss	1.5	(-)		
:5	Coefficiente Amplificazione Topografico		S _T	1	(-)	RIBALTA	MENTO
Jati Sismici	Coefficiente di riduzione dell'accelerazione massima		β_s	0.38	(-)	βs	0.57
	Coefficiente sismico orizzontale		kh	0.05529	(-)	kh	0.08294
Õ	Coefficiente sismico verticale		kv	0.0276	(-)	kv	0.04147
	Muro libero di traslare o ruotare			si 🔾 n	0		

				STR/GEO	RIB
	Coeff. di Spinta Attiva Statico	ka	0.238	0.238	0.238
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.265	0.265	0.279
inta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.267	0.267	0.283
S effi	Coeff. Di Spinta Passiva	kp	2.117	2.117	2.117
Ö	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2.037	2.037	1.996
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	2.032	2.032	1.985

				valori caratteristici	valori di p	rogetto
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
Carichi	Sovraccarico permanente Sovraccarico su zattera di monte	(kN/m ²)	qp	16.62	21.61	21.61
Carichi ermanen	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
G E	Forza Verticale in Testa permanente	(kN/m)	vp	1.00	1.00	1.00
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
_	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q	0.00	0.00	0.00
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statich	(kN/m)	f	0.00	0.00	0.00
Statiche	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
S &	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione frequei	nte Ψ1	1.00	condizione quasi permane	nte Ψ2	0.00
.E @	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	0.00		
iż ich	Forza Orizzontale in Testa accidentale in condizioni sismicl	(kN/m)	fs	0.00		
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
0 0	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

Condizioni non drenate

Coeff. Di Spinta Passiva Sismica sisma -

					valori	caratteristici	valori di	progetto
Dati (Geotecnici					SLE	STR/GEO	EQU
eno	Angolo di attrito del terrapieno		(°)	φ		38.00	38.00	38.00
Dati Terrapieno	Peso Unità di Volume del terrapieno		(kN/m³)	7		20.00	20.00	20.00
Ter	Angolo di attrito terreno-superficie ideale		(°)	δ	i	0.00	0.00	0.00
Dati Terreno Fondazione	Condizioni			○ drena	ite 💿	Non Drenate		
daz	Resistenza a Taglio non drenata		(kPa)	cu		160.00	160.00	160.00
Fon	Angolo di attrito Terreno-Fondazione		(°)	φ1		21.00	21.00	21.00
2	Peso Unità di Volume del Terreno di Fondazione		(kN/m³)	γ1		20.00	20.00	20.00
erre	Peso Unità di Volume del Rinterro della Fondazione		(kN/m³)	γd		20.00	20.00	20.00
=	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)	Hs		4.00		
Da	Modulo di deformazione		(kN/m²)	E		20000		
							_	
	Accelerazione sismica			a _g /g	0.097	(-)		
	Coefficiente Amplificazione Stratigrafico			Ss	1.5	(-)		
E	Coefficiente Amplificazione Topografico			St	1	(-)	RIBALTA	MENTO
Dati Sismici	Coefficiente di riduzione dell'accelerazione massima	1		β₅	0.38	(-)	βs	0.57
#	Coefficiente sismico orizzontale			kh	0.0552	9 (-)	kh	0.08294
	Coefficiente sismico verticale			kv	0.0276	(-)	kv	0.04147
	Muro libero di traslare o ruotare			(€ si	○ no		
					9	STR/GEO	- Ri	IB
	Coeff. di Spinta Attiva Statico	ka	0.238		0.238		0.238	
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.265		0.265		0.279	
fficient Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.267		0.267		0.283	
effic Spi	Coeff. Di Spinta Passiva	kp	1.000		1.000		1.000	
õ	Coeff. Di Spinta Passiva Sismica sisma +	kps+	1.000		1.000		1.000	

			- 1	valori caratteristici	valori di p	rogetto
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
Carichi permanenti	Sovraccarico permanente Sovraccarico su zattera di monte	(kN/m²)	qp	16.62	21.60	21.60
Carichi ermanen	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
S E	Forza Verticale in Testa permanente	(kN/m)	vp	1.00	1.00	1.00
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q	0.00	0.00	0.00
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statich	(kN/m)	f	0.00	0.00	0.00
atic	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
S &	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione freque		1.00	condizione quasi permane	nte Ψ2	0.00
.E @	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	0.00		
izio	Forza Orizzontale in Testa accidentale in condizioni sismicl	(kN/m)	fs	0.00		
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
0 0	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

1.000

kps-

1.000

1.000

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U 40 D 29 CL MU1100 001 В 89 di 196

CARATTERISTICHE DEI MATERIALI STRUTTURALI

<u>Calcestruzzo</u>		<u>Acciaio</u>
classe cls C30/37 ▼		tipo di acciaio B450C 🔻
Rck 37	(MPa)	
fck 30	(MPa)	fyk = 450 (MPa)
fcm 38	(MPa)	
Ec 32837	(MPa)	γ s = 1.15
α _{οο} 0.85		
γc 1.50		fyd = fyk / γ s / γ E = 391.30 (MPa)
$f_{od} = \alpha_{oc} * f_{ok} / \gamma c $ 17.00	(MPa)	Es = 210000 (MPa)
$f_{ctm} = 0.30 * f_{ck}^{2/3}$ 2.90	(MPa)	ε _{ys} = 0.19%
Tensioni limite (tensioni ammissibili) condizioni statiche σ _c 18 Mpa σ _f 360 Mpa		coefficiente omogeneizzazione acciaio n = 15
		<u>Copriferro</u> (distanza asse armatura-bordo)
condizioni sismiche σ _c 18 Mpa		c = 6.80 (cm)
, , , , , , , , , , , , , , , , , , ,		c = 0.00 (cm)
σ _f 360 Mpa		Copriferro minimo di normativa (ricoprimento armatura)
		$c_{min} = 4.00$ (cm)
		• •
Valore limite di apertura delle fessure		Interferro tra I e II strato
Frequente w1	0.2 mm	i _{I-II} 5.00 (cm)
Quasi Permanente w1	0.2 mm	. ,

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 90 di 196

11.2 CALCOLO DELLE AZIONI

11.2.1 FORZE VERTICALI E INERZIALI

FORZE VERTICALI

		Г	01.5	OTD/OFO	FOLUBIA
- Peso del Mui	ro (Pm)		SLE	STR/GEO	EQU/RIB
Pm1 =	(B2*H3*γcls)/2	(kN/m)	0.00	0.00	0.00
Pm2 =	(B3*H3*ycls)	(kN/m)	20.00	20.00	20.00
Pm3 =	(B4*H3*/cls)/2	(kN/m)	0.00	0.00	0.00
Pm4 =	(B*H2*ycls)	(kN/m)	20.00	20.00	20.00
Pm5 =	(Bd*Hd* ₇ cls)	(kN/m)	0.00	0.00	0.00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	40.00	40.00	40.00
- Peso del terr	eno e sovr. perm. sulla scarpa di monte del muro (Pt)				
Pt1 =	(B5*H3*/)	(kN/m)	44.00	44.00	44.00
Pt2 =	(0,5*(B4+B5)*H4* ₁ ')	(kN/m)	0.00	0.00	0.00
Pt3 =	(B4*H3* ₇ ')/2	(kN/m)	0.00	0.00	0.00
Sovr =	qp * (B4+B5)	(kN/m)	18.28	23.77	23.77
Pt =	Pt1 + Pt2 + Pt3 + Sovr	(kN/m)	62.28	67.77	67.77
- Sovraccarico	accidentale sulla scarpa di monte del muro				
Sovr acc. Stat	•	(kN/m)	0	0	
	n qs * (B4+B5)	(kN/m)	0	-	

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

- Muro (Mm)			SLE	STR/GEO	EQU/RIB
Mm1 =	Pm1*(B1+2/3 B2)	(kNm/m)	0.00	0.00	0.00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	14.00	14.00	14.00
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	0.00	0.00	0.00
Mm4 =	Pm4*(B/2)	(kNm/m)	20.00	20.00	20.00
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00	0.00	0.00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	34.00	34.00	34.00
- Terrapieno e	sovr. perm. sulla scarpa di monte del muro				
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	63.80	63.80	63.80
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	0.00	0.00	0.00
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	26.51	34.46	34.46
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	90.31	98.26	98.26
- Sovraccarico	accidentale sulla scarpa di monte del muro				
	(B1+B2+B3+1/2(B4+B5))	(kNm/m)	0	0	
	n *(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0		

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 91 di 196

	MURO E DEL TERRAPIENO ntale e verticale del muro (Ps) Pm*kh Pm*kv	(kN/m) (kN/m)	2.21 1.11	3.32 1.66
rs v-	FIII KV	(KIV/III)	1.11	1.00
- Inerzia orizzo	ntale e verticale del terrapieno a tergo del muro (Pts)			
Ptsh =	Pt*kh	(kN/m)	3.75	5.62
Ptsv =	Pt*kv	(kN/m)	1.87	2.81
	izzontale di momento dovuto all'inerzia del muro (MF		0.00	0.00
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)	0.00	0.00
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)	1.55	2.32
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)	0.00	0.00
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)	0.22	0.33
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)	0.00	0.00
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	1.77	2.65
- Incremento ve MPs1 v= MPs2 v= MPs3 v= MPs4 v= MPs5 v= MPs v=	erticale di momento dovuto all'inerzia del muro (MPs v kv*Pm1*(B1+2/3*B2) kv*Pm2*(B1+B2+B3/2) kv*Pm3*(B1+B2+B3+B4/3) kv*Pm4*(B/2) kv*Pm5*(B-Bd/2) MPs1+MPs2+MPs3+MPs4+MPs5	v) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m)	0.00 0.39 0.00 0.55 0.00 0.94	0.00 0.58 0.00 0.83 0.00 1.41
- Incremento or	izzontale di momento dovuto all'inerzia del terrapieno	(MPts h)		
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)	3.41	5.11
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)	0.00	0.00
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)	0.00	0.00
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)	3.41	5.11
	erticale di momento dovuto all'inerzia del terrapieno (N	MPts v)		
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)	1.76	2.65
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)	0.00	0.00
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)	0.00	0.00
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)	1.76	2.65

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 92 di 196

11.2.2 SPINTE IN CONDIZIONE STATICA

	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO	EQU/RIB
St =	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	13.70	17.81	17.81
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	9.49	12.34	12.34
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	0.00	0.00	0.00
- Componente	orizzontale condizione statica				
Sth =	St*cosô	(kN/m)	13.70	17.81	17.81
Sqh perm =	Sq perm*cos8	(kN/m)	9.49	12.34	12.34
Sqh acc =	Sq acc*cos8	(kN/m)	0.00	0.00	0.00
- Componente	verticale condizione statica				
Stv =	St*sen8	(kN/m)	0.00	0.00	0.00
Sqv perm=	Sq perm*senδ	(kN/m)	0.00	0.00	0.00
Sqv acc =	Sq acc*senδ	(kN/m)	0.00	0.00	0.00
- Spinta passiv	a sul dente				
Sp=½*g1'*Hd2* ½* _{γ1} '*Hd ² *kp+(2*c ₁ '*kp ^{0.5} + _γ 1'*kp*H2')*Hd		(kN/m)	0.00	0.00	0.00

MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCAR	ico	SLE	STR/GEO	EQU/RIB
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	10.96	14.25	14.25
MSt2 =	Stv*B	(kNm/m)	0.00	0.00	0.00
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	11.39	14.80	14.80
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	0.00	0.00	0.00
MSq2 perm=	Sqv perm*B	(kNm/m)	0.00	0.00	0.00
MSq2 acc =	Sqv acc*B	(kNm/m)	0.00	0.00	0.00
MSp = γ1'*l	Hd ³ *kp/3+(2*c1'*kp ^{0.5} +γ1'*kp*H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	0.00	0.00	0.00
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0.00	0.00	0.00
Mfext3 =	(vp+v)*(B1 +B2 + B3/2)	(kNm/m)	0.70	0.70	0.70

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

LOTTO COMMESSA CODIFICA DOCUMENTO REV. FOGLIO RS3U 40 D 29 MU1100 001 93 di 196

11.2.3 SPINTE IN CONDIZIONE SISMICA +

(vp+vs)*(B1 +B2 + B3/2)

Mfext3 =

	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU/RIB
	zione sismica +	" L		40.70	
	0,5* _/ '*(H2+H3+H4+Hd) ^{2*} ka	(kN/m)	13.70	13.70	13.70
	0,5*γ'*(1+kv)*(H2+H3+H4+Hd)²*kas*-Sst1 stat	(kN/m)	2.00	2.00	3.06
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	10.58	10.58	11.15
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas*	(kN/m)	0.00	0.00	0.00
- Componente	orizzontale condizione sismica +				
Sst1h stat =	Sst1 stat*cosô	(kN/m)	13.70	13.70	13.70
Sst1h sism =	Sst1 sism*cos8	(kN/m)	2.00	2.00	3.06
Ssq1h perm=	Ssq1 perm*cos8	(kN/m)	10.58	10.58	11.15
Ssq1h acc=	Ssq1 acc*cosô	(kN/m)	0.00	0.00	0.00
- Componente	verticale condizione sismica +				
	Sst1 stat*senô	(kN/m)	0.00	0.00	0.00
	Sst1 sism*senô	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*sen8	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*sen8	(kN/m)	0.00	0.00	0.00
- Spinta passiv	a sul dente				
) Hd ² *kps ⁺ +(2*c ₁ '*kps ^{+0.5} +γ1' (1+kv) kps ⁺ *H2')*Hd	(kN/m)	0.00	0.00	0.00
- Condizione s	ELLA SPINTA DEL TERRENO E DEL SOVRACCARI ismica +	со	SLE	STR/GEO	EQU/RIB
		_			
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	10.96	10.96	10.96
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	1.60	1.60	2.45
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	12.70	12.70	13.38
MSsq2 =	Ssq1v * B	(kNm/m)	0.00	0.00	0.00
MSp =	γ ₁ '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} +γ1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
	OVUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
		/ I.N.I / \		0.70	

(kNm/m)

0.70

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 94 di 196

11.2.4 SPINTE IN CONDIZIONE SISMICA -

SPINTE DEL	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU/RIB
	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	13.70	13.70	13.70
Sst1 sism =	0,5*γ'*(1-kv)*(H2+H3+H4+Hd)²*kas⁻-Sst1 stat	(kN/m)	1.25	1.25	1.94
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	10.65	10.65	11.30
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas	(kN/m)	0.00	0.00	0.00
- Componente	orizzontale condizione sismica -				
Sst1h stat =	Sst1 stat*cosô	(kN/m)	13.70	13.70	13.70
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	1.25	1.25	1.94
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	10.65	10.65	11.30
Ssq1h acc=	Ssq1 acc*cos8	(kN/m)	0.00	0.00	0.00
- Componente	verticale condizione sismica -				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	0.00	0.00	0.00
Sst1v sism =	Sst1 sism*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*sen8	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*sen8	(kN/m)	0.00	0.00	0.00
- Spinta passiv					
Sp=½*γ ₁ '(1-kv)	Hd ² *kps ⁻ +(2*c ₁ '*kps ^{-0.5} +γ1' (1-kv) kps ⁻ *H2')*Hd	(kN/m)	0.00	0.00	0.00
		_			
- Condizione si	LLA SPINTA DEL TERRENO E DEL SOVRACCARI smica -	СО	SLE	STR/GEO	EQU/RIB
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	10.96	10.96	10.96
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	1.00	1.00	1.55
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
MSst2 sism =	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	12.78	12.78	13.56
MSsq2 =	Ssq1v * B	(kNm/m)	0.00	0.00	0.00
MSp =	γ ₁ '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} +γ1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		0.70	

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISETTA XIRBI – ENNA (LOTTO 4a) OPERE DI SOSTEGNO DI LINEA					
TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO	COMMESSA RS3U	LOTTO 40 D 29	CODIFICA CL	DOCUMENTO MU1100 001	REV.	FOGLIO 95 di 196

11.3 VERIFICHE GEOTECNICHE

11.3.1 VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. DRENATE

VERIFICA ALLO SCORRIMENTO (STR/GEO)

N =	orze verticali (N) Pm + Pt + v + Stv + Sqv perm + Sqv acc	108.77	(kN/m)	
Risultante f	orze orizzontali (T) Sth + Sqh + f	30.15	(kN/m)	
Coefficiente f =	di attrito alla base (f) tgφ1'	0.38	(-)	
Fs sco	r. (N*f + Sp) / T	1.38	>	1.1
VERIFICA	AL RIBALTAMENTO (EQU)			
Momento st Ms =	abilizzante (Ms) Mm + Mt + Mfext3	132.96	(kNm/m)	
	paltante (Mr)	00.05		
Mr =	MSt + MSq + Mfext1+ Mfext2 + MSp	29.05	(kNm/m)	
Fs ribal		4.58	(KNm/m)	1.15
Fs ribal				1.15
Fs ribal	amento Ms / Mr			1.15 (kN/m)
VERIFICA Risultante for N =	camento Ms / Mr CARICO LIMITE DELLA FONDAZIONE (STR/GEO) prze verticali (N)	4.58 Nmin	> Nmax	
VERIFICA Risultante for the state of the st	CARICO LIMITE DELLA FONDAZIONE (STR/GEO) Orze verticali (N) Pm + Pt + v + Stv + Sqv (+ Sovr acc) Orze orizzontali (T)	4.58 Nmin 108.77	Nmax 108.77 30.15	(kN/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 96 di 196

6.21

Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico li	mite F = qlim*B*/ N		6.04		1.4
		Nmin	6.21	>	
qlim	(carico limite unitario)		353.52	353.52	(kN/m ²)
(fondazione na	striforme m = 2)				
$i\gamma = (1 - T/(N +$	B*c'cotgφ')) ^{m+1}		0.63	0.63	(-)
iq = (1 - T/(N + ic = iq - (1 - iq)	0177		0.73 0.69	0.73 0.69	(-) (-)
	e iγ sono stati valutati con le espressioni suggerite	da Vesic (1975)			
$N\gamma = 2*(Nq + 1)$			6.20		(-)
$Nq = tg^{2}(45 + q)$ Nc = (Nq - 1)/tq			7.07 15.81		(-) (-)
N= = +=2/45 ·	(Ω)* (π*(α(σ))) (4:		7.07		()
I valori di Nc, N	lq e Ng sono stati valutati con le espressioni sugge	rite da Vesic (19	975)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.04 1.91	0.04 1.91	(m) (m)
				0.04	
q ₀ =γd*H2'	sovraccarico stabilizzante		12.00		(kN/m ²)
φ1′ γ1	angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		21.00 20.00		(°) (kN/m³)
c1'	coesione terreno di fondaz.		20.00		(kPa)

11.3.2 VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. DRENATE

Condizione sismica +

VERIFICA ALLO SCORRIMENTO

Risultante dei momenti rispetto al piede di valle (MM)

Momento rispetto al baricentro della fondazione (M)

Xc*N - MM

 ΣM

VER	IFICA AL	LO SCORRIMENTO			
Risul N	tante forz	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	106.26	(kN/m)	
Risul T	tante forz	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	32.25	(kN/m)	
Coeff f	iciente di =	attrito alla base (f) tgφ1'	0.38	(-)	
Fs	=	(N*f + Sp) / T	1.26	>	1
VER	IFICA AL	RIBALTAMENTO			
Mom Ms	ento stab	ilizzante (Ms) Mm + Mt + Mfext3	132.96	(kNm/m)	
Mom Mr	ento ribalt =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	30.49	(kNm/m)	
Fr	=	Ms / Mr	4.36	>	1
<u>VER</u>	IFICA A	CARICO LIMITE DELLA FONDAZIONE			
Risul N	tante forz	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	Nmin 106.26	Nmax 106.26	(kN/m)
Risul T	tante forz	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	32.2	25	(kN/m)

97.27

8.99

97.27 (kNm/m)

8.99 (kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 98 di 196

5.77 >

Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico li	mite F = qlim*B*/ N	Nmin	5.77 5.77	>	1.2
qlim	(carico limite unitario)		335.02	335.02	(kN/m ²)
(fondazione nas	striforme m = 2)				
iq = (1 - T/(N + ic = iq - (1 - iq)/iq = (1 - T/(N + iq)/iq = (1 - T/(/(Nq - 1)		0.71 0.66 0.59	0.71 0.66 0.59	(-) (-)
I valori di ic, iq	e iγ sono stati valutati con le espressioni sugger	rite da Vesic (1975)			
Nq = $tg^2(45 + \varphi)$ Nc = (Nq - 1)/ tg N γ = 2*(Nq + 1)	g(φ') (2+π in cond. nd)		7.07 15.81 6.20		(-) (-) (-)
l valori di Nc, N	q e Ng sono stati valutati con le espressioni suç	ggerite da Vesic (197	(5)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.08 1.83	0.08 1.83	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		12.00		(kN/m ²)
c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		20.00 21.00 20.00		(kN/mq) (°) (kN/m³)
-					

REV.

FOGLIO

99 di 196

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO COMMESSA LOTTO CODIFICA DOCUMENTO

RS3U 40 D 29 CL MU1100 001

Condizione sismica -

VERIFICA ALLO SCORRIMENTO

Risultante forze verticali (N)

N = Pm + Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv 100.30 (kN/m)

Risultante forze orizzontali (T)

 $\Gamma = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh$ 31.56 (kN/m)

Coefficiente di attrito alla base (f)

 $f = tg\phi 1'$ 0.38 (-)

 $Fs = (N^*f + Sp) / T$ 1.22 > 1

VERIFICA AL RIBALTAMENTO

Momento stabilizzante (Ms)

Ms = Mm + Mt + Mfext3 132.96 (kNm/m)

Momento ribaltante (Mr)

Mr = MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts 37.89 (kNm/m)

 $Fr = Ms/Mr \qquad 3.51 > 1$

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forze verticali (N) N = Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	Nmin 100.30	Nmax 100.30 (kN/m)
Risultante forze orizzontali (T) T = Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	31.56	(kN/m)
Risultante dei momenti rispetto al piede di valle (MM) $MM = \Sigma M$	92.39	92.39 (kNm/m)
Momento rispetto al baricentro della fondazione (M) M = Xc*N - MM	7.91	7.91 (kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

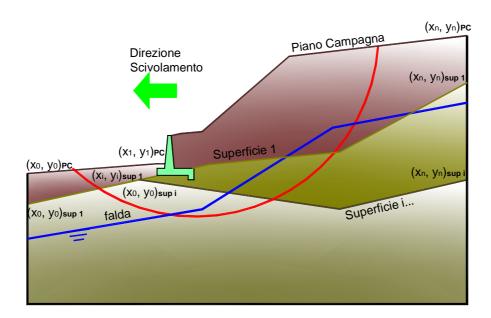
 RS3U
 40 D 29
 CL
 MU1100 001
 B
 100 di 196

6.14

Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

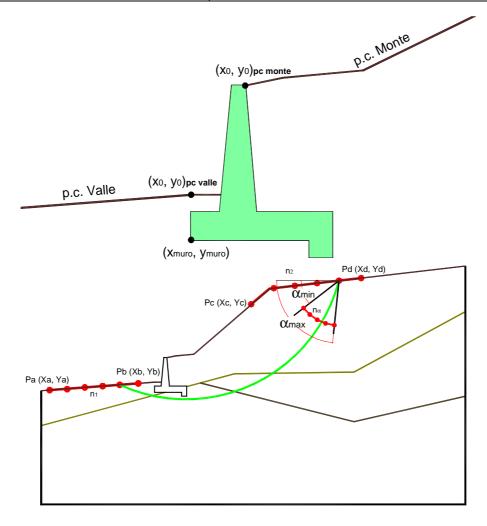

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico li	mite F = qlim*B*/ N	Nmin	6.14	>	1.2
qlim	(carico limite unitario)		334.57	334.57	(kN/m ²)
(fondazione na	striforme m = 2)				
iq = (1 - T/(N + ic = iq - (1 - iq)) $i\gamma = (1 - T/(N + iq))$	((Nq - 1)		0.70 0.66 0.59	0.70 0.66 0.59	(-) (-)
l valori di ic, iq	e iγ sono stati valutati con le espressioni s	uggerite da Vesic (1975)			
Nq = $tg^2(45 + q)$ Nc = $(Nq - 1)/tq$ N γ = $2*(Nq + 1)$	$g(\varphi')$ (2+ π in cond. nd)		7.07 15.81 6.20		(-) (-) (-)
l valori di Nc, N	q e Ng sono stati valutati con le espression	ni suggerite da Vesic (19	75)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.08 1.84	0.08 1.84	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		12.00		(kN/m ²)
c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		20.00 21.00 20.00		(kN/mq) (°) (kN/m³)
	10 1 1 1				

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LLEGAME LTANISE	NTO PALERI ITA XIRBI – E	NA – CATANIA – MO – CATANIA NNA (LOTTO 4a)		10
TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO	COMMESSA RS3U	LOTTO 40 D 29	CODIFICA CL	DOCUMENTO MU1100 001	REV.	FOGLIO 101 di 196

11.3.3 VERIFICA DI STABILITÀ GLOBALE – COND. DRENATE

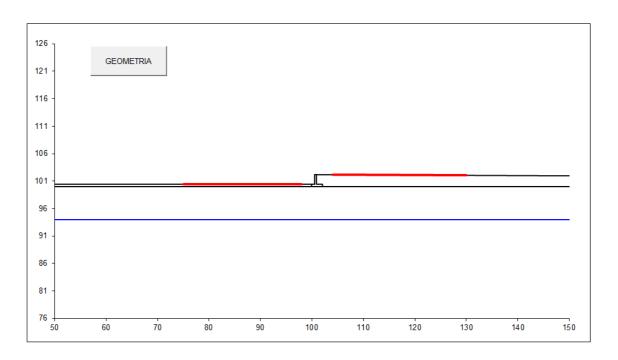
Le analisi di stabilità, di seguito riportate, sono state effettuate limitando la ricerca delle potenziali superfici di scorrimento critiche alla fascia più prossima alla linea ferroviaria.


	γ [kN/m³]	φ [°]	c [kPa]	Descrizione
materiale 1	20.00	38	0	Rilevato - riporto
materiale 2	20.00	18.5	20	FYN4
materiale 3				
materiale 4				

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

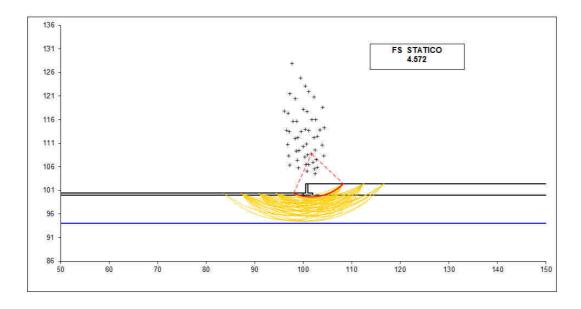
 RS3U
 40 D 29
 CL
 MU1100 001
 B
 102 di 196



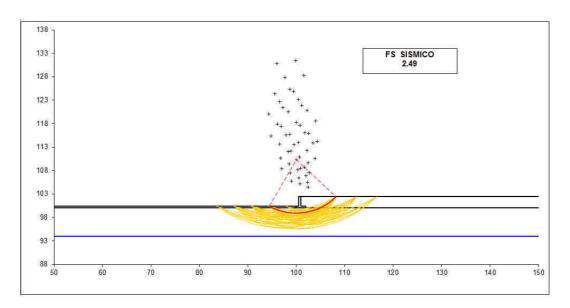
	p.c. va	lle		p.c. mo	nte		superfic	ie 1		superfic	ie 2		superfic	ie 3			
		materiale 1					mater	iale 2 🔻		□ mater	riale 4		mater	iale 2 🔻		[olda	
	X	у		x	у		x	у		x	у		х	у		X	У
0	100.000	100.400	0	100.900	102.400	0	50.000	100.000	0			0			0	50.000	94.000
1	50.000	100.400	1	150.000	102.400	1	150.000	100.000	1			1			1	150.000	94.000
2			2			2			2			2			2		
3			3			3			3			3			3		
4			4			4			4			4			4		
5			5			5			5			5			5		
6			6			6			6			6			6		
7			7			7			7			7			7		
8			8			8			8			8			8		
9			9			9			9			9			9		
10			10			10			10			10			10		

Sovraccarichi

		Xin	q_{in}	Xfin	q_{fin}	% sisma
sovraccarico 1	~	105.400	0	110.050	0	20%
sovraccarico 2						



#strisce
30


# Superfici Calcolate	F: Bish	•
146	STATICO	4.572
140	SISMICO	2.490

Condizioni statiche

Condizioni sismiche

11.3.4 VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. NON DRENATE

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Risultante dei momenti rispetto al piede di valle (MM)

Momento rispetto al baricentro della fondazione (M)

 ΣM

Xc*N - MM

MM =

Risu N	ltante forz =	e verticali (N) Pm + Pt + v + Stv + Sqv perm + Sqv acc	108.76	(kN/m)	
Risu T	ltante forz =	e orizzontali (T) Sth + Sqh + f	30.14	(kN/m)	
Coef f	ficiente di =	attrito alla base (f) tgφ1'	0.38	(-)	
Fs	scorr.	(N*f + Sp) / T	1.38	>	1.1
VER	RIFICA AL	L RIBALTAMENTO (EQU)			
Mom Ms	nento stab	ilizzante (Ms) Mm + Mt + Mfext3	132.95	(kNm/m)	
Mom Mr	nento ribali =	tante (Mr) MSt + MSq + Mfext1+ Mfext2 + MSp	29.05	(kNm/m)	
Fs	ribaltar	mento Ms / Mr	4.58	>	1.15
VER	RIFICA C	CARICO LIMITE DELLA FONDAZIONE (STR/GEO)			
Risu N	ltante forz =	e verticali (N) Pm + Pt + v + Stv + Sqv (+ Sovr acc)	Nmin 108.76	Nmax 108.76	(kN/m)
Risu T	ltante forz =	e orizzontali (T) Sth + Sqh + f - Sp	30.14	30.14	(kN/m)

103.90

4.86

103.90 (kNm/m)

4.86 (kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 106 di 196

14.11

Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico li	mite F = qlim*B*/ N	Nmin	14.11	>	1.4
qlim	(carico limite unitario)		803.10	803.10	(kN/m ²)
(fondazione nas	striforme m = 2)				
iq = (1 - T/(N + ic = (1 - m)T / (ic = (1 - m)T / (ic = (1 - T/(N + ic =	B* cu*Nc))		1.00 0.96	1.00 0.96	(-) (-)
I valori di ic, iq	e iγ sono stati valutati con le espressioni suggerite d	la Vesic (1975)			
$Nq = tg^{2}(45 + q)$ $Nc = (Nq - 1)/tg$ $N\gamma = 2*(Nq + 1)$	$g(\varphi')$ (2+ π in cond. nd)		1.00 5.14 0.00		(-) (-) (-)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggeri	te da Vesic (19	75)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.04 1.91	0.04 1.91	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		12.00		(kN/m ²)
71	peso unità di volume terreno fondaz.		20.00		(kN/m ³)
cu	res. al taglio nd terreno di fondaz.		160.00		(kPa)
4	40 4 4 4 4 4				

11.3.5 VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. NON DRENATE

Condizione sismica +

VERIFICA ALLO SCORRIMENTO

VER	VERIFICA AL RIBALTAMENTO							
Fs	=	(N*f + Sp) / T	1.26	>	1			
Coeff f	ficiente di =	attrito alla base (f) tgφ1'	0.38	(-)				
_	tante forz =	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	32.25	(kN/m)				
Risul N	tante forz =	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	106.26	(kN/m)				

Momento stabilizzante (Ms) Ms = Mm + Mt + Mfext3 132.95 (kNm/m) Momento ribaltante (Mr) Mr = MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts 30.49 (kNm/m)	Fr =	Ms / Mr	4.36	>	
Ms = Mm + Mt + Mfext3 132.95 (kNm/m)			30.49	(kNm/m)	
	Ms =	Mm + Mt + Mfext3	132.95	(kNm/m)	

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forze verticali (N) N = Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	Nmin 106.26	Nmax 106.26	(kN/m)
Risultante forze orizzontali (T) T = Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	32.25		(kN/m)
Risultante dei momenti rispetto al piede di valle (MM) $MM = \Sigma M$	97.27	97.27	(kNm/m)
Momento rispetto al baricentro della fondazione (M) M = Xc*N - MM	8.99	8.99	(kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 108 di 196

13.77

13.77

1.2

Nmin

Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

FS carico limite

qlim = c'Nc*ic + q_0 *Nq*iq + 0,5* γ 1*B*N γ *i γ

cu	res. al taglio nd terreno di fondaz.	160.00		(kN/mq)
71	peso unità di volume terreno fondaz.	20.00		(kN/m ³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	12.00		(kN/m ²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0.08 1.83	0.08 1.83	(m) (m)
l valori di Nc, N	Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)			
	$\phi'/2)^*e^{(\pi^*tg(\phi'))}$ (1 in cond. nd) $g(\phi')$ (2+ π in cond. nd) 1)*tg(ϕ') (0 in cond. nd)	1.00 5.14 0.00		(-) (-) (-)
I valori di ic, iq	e i γ sono stati valutati con le espressioni suggerite da Vesic (1975)			
ic = (1 - m T /	· B*c'cotgφ')) ^m (1 in cond. nd) (B* cu*Nc)) B*c'cotgφ')) ^{m+1}	1.00 0.96	1.00 0.96	(-) (-) (-)
(fondazione na	striforme m = 2)			
qlim	(carico limite unitario)	799.43	799.43	(kN/m ²)

F = qlim*B*/N

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA LOTTO
RS3U 40 D 29

CODIFICA

DOCUMENTO MU1100 001

REV.

FOGLIO **109 di 196**

Condizione sismica -

VERIFICA ALLO SCORRIMENTO

Risultante forze verticali (N)

N = Pm + Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv 100.30 (kN/m)

Risultante forze orizzontali (T)

T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh 31.56 (kN/m)

Coefficiente di attrito alla base (f)

 $f = tg\phi 1'$ 0.38 (-)

Fs = (N*f + Sp)/T 1.22 > 1

VERIFICA AL RIBALTAMENTO

Momento stabilizzante (Ms)

Ms = Mm + Mt + Mfext3 132.95 (kNm/m)

Momento ribaltante (Mr)

Mr = MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts 37.89 (kNm/m)

 $Fr = Ms/Mr \qquad 3.51 > 1$

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forze verticali (N) N = Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	100.30	Nmax 100.30 (kN/m)
Risultante forze orizzontali (T) T = Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	31.56	(kN/m)
Risultante dei momenti rispetto al piede di valle (MM) $MM = \Sigma M$	92.38	92.38 (kNm/m)
Momento rispetto al baricentro della fondazione (M) M = Xc*N - MM	7.91	7.91 (kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 110 di 196

14.70

14.70

1.2

Nmin

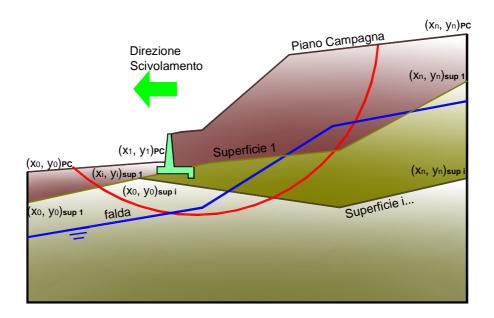
Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

F = qlim*B*/N

Fondazione Nastriforme

FS carico limite

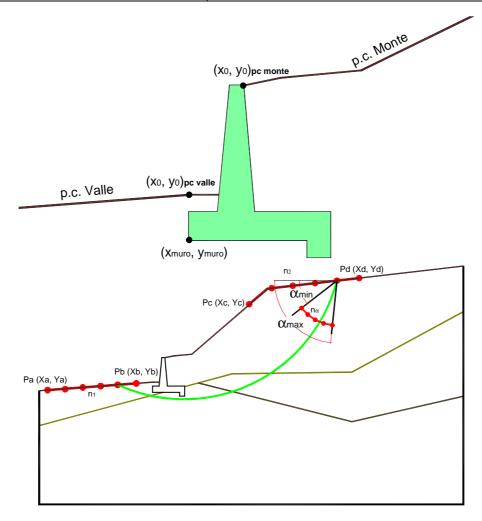

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

cu	res. al taglio nd terreno di fondaz.	160.00		(kN/mq)
71	peso unità di volume terreno fondaz.	20.00		(kN/m ³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	12.00		(kN/m ²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0.08 1.84	0.08 1.84	(m) (m)
l valori di Nc, N	Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)			
	$\phi'/2)^*e^{(\pi^*tg(\phi'))}$ (1 in cond. nd) $g(\phi')$ (2+ π in cond. nd) 1)* $tg(\phi')$ (0 in cond. nd)	1.00 5.14 0.00		(-) (-) (-)
I valori di ic, iq	e i γ sono stati valutati con le espressioni suggerite da Vesic (1975)			
ic = (1 - m T /	· B*c'cotgφ')) ^m (1 in cond. nd) (B* cu*Nc)) B*c'cotgφ')) ^{m+1}	1.00 0.96	1.00 0.96	(-) (-) (-)
(fondazione na	striforme m = 2)			
qlim	(carico limite unitario)	800.39	800.39	(kN/m ²)

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISETTA XIRBI – ENNA (LOTTO 4a) OPERE DI SOSTEGNO DI LINEA				10	
TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO	COMMESSA RS3U	LOTTO 40 D 29	CODIFICA	DOCUMENTO MU1100 001	REV.	FOGLIO 111 di 196

11.3.6 VERIFICA DI STABILITÀ GLOBALE - COND. NON DRENATE

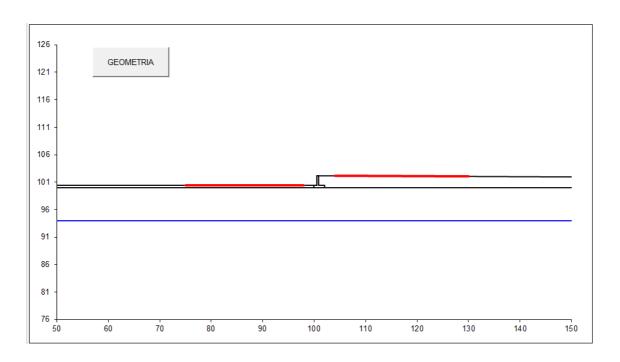
Le analisi di stabilità, di seguito riportate, sono state effettuate limitando la ricerca delle potenziali superfici di scorrimento critiche alla fascia più prossima alla linea ferroviaria.


	γ [kN/m³]	φ [°]	c [kPa]	Descrizione
materiale 1	20.00	38	0	Rilevato - riporto
materiale 2	20.00	18.5	160	FYN4
materiale 3				
materiale 4				

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

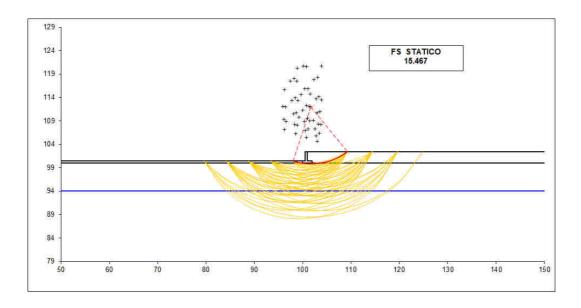
 RS3U
 40 D 29
 CL
 MU1100 001
 B
 112 di 196



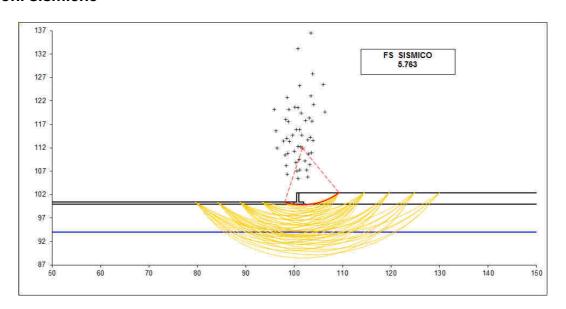
	p.c. va	lle		p.c. mo	nte		superfic	ie 1		superfic	ie 2		superfic	ie 3			
		materiale 1					mater	iale 2		□ mater	iale 4 🔻	[mater	iale 2 🔻		[olda	
	X	у		X	у		X	у		X	у		X	у		X	у
0	100.000	100.400	0	100.900	102.400	0	50.000	100.000	0			0			0	50.000	94.000
1	50.000	100.400	1	150.000	102.400	1	150.000	100.000	1			1			1	150.000	94.000
2			2			2			2			2			2		
3			3			3			3			3			3		
4			4			4			4			4			4		
5			5			5			5			5			5		
6			6			6			6			6			6		
7			7			7			7			7			7		
8			8			8			8			8			8		
9			9			9			9			9			9		
10			10			10			10			10			10		

Sovraccarichi

		Xin	q_{in}	 Xfin	q_{fin}	% sisma
sovraccarico 1	✓	105.400	0	110.050	0	20%
sovraccarico 2						



#strisce
30


# Superfici Calcolate	F: Bish	-
149	STATICO	15.467
149	SISMICO	5.763

Condizioni statiche

Condizioni sismiche

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 115 di 196

11.3.7 VERIFICA DEGLI SPOSTAMENTI SLD

Si riporta di seguito la verifica degli spostamenti permanenti indotti dal sisma per lo Stato Limite di Danno. Si è verificato che tale spostamento, determinato così come riportato all'interno del cap. 7.3.2 della presente relazione, risulti inferiore allo spostamento orizzontale massimo ammissibile in testa all'opera di sostegno, che può essere assunto, in condizioni sismiche, al più pari a 2cm.

ag	0.048					
a _g Ss	1.5					
St	1					
В	0.44					
Α	-8.07					
ac	0.165					
amax	0.072					
d =	6.1349E-06	mm	<	20	mm	OK

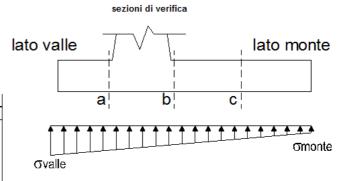
TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 116 di 196

11.4 VERIFICHE STRUTTURALI

11.4.1 CALCOLO DELLE SOLLECITAZIONI

Reazione del terreno


ovalle = N / A + M / Wgg

omonte = N / A - M / Wgg

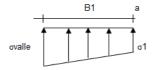
A = 1.0*B = 2.00 (m²)

 $Wgg = 1.0*B^2/6 = 0.67 (m^3)$

2222	N	M	σvalle	omonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
statico	108.77	4.86	61.67	47.10
Statico	108.77	4.86	61.67	47.10
sisma+	106.26	8.99	66.61	39.65
SISIIIaT	106.26	8.99	66.61	39.65
aia ma	100.30	7.91	62.02	38.28
sisma-	100.30	7.91	62.02	38.28

Mensola Lato Valle

Peso Proprio.

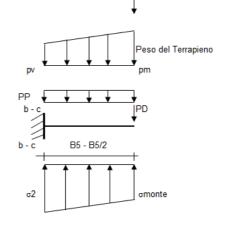

PP = 10.00 (kN/m)

 $Ma = \ \sigma 1^*B1^2/2 + (\sigma valle - \sigma 1)^*B1^2/3 - PP^*B1^2/2^*(1\pm kv)$

 $Va = \sigma 1*B1 + (\sigma valle - \sigma 1)*B1/2 - PP*B1*(1\pm kv)$

0000	σvalle	σ1	Ma	Va
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
statico	61.67	58.03	6.31	24.92
Statico	61.67	58.03	6.31	24.92
aiama I	66.61	59.87	6.76	28.17
sisma+	66.61	59.87	6.80	28.17
	62.02	56.09	6.29	25.87
sisma-	62.02	56.09	6.26	25.87

Mensola Lato Monte


PP	=	10.00 (kN/m²)	peso proprio soletta fondazione
PD	=	0.00 (kN/m)	peso proprio dente

			•	•	
		Nmin	N max stat	N max sism	
pm	=	61.61	61.61	61.61	(kN/m ²)
pvb	=	61.61	61.61	61.61	(kN/m^2)
DMC	_	61.61	61.61	61.61	(kN/m²)

 $\label{eq:mbeta} $$Mb=(\sigma_{monte}^{-}(pvb+PP)^{*}(1\pm kv))^{*}B5^{2}/2+(\sigma_{2}b-\sigma_{monte})^{*}B5^{2}/6-(pm-pvb))^{*}(1\pm kv)^{*}B5^{2}/3+(Stv+Sqv)^{*}B5-PD^{*}(1\pm kv)^{*}(B5-Bd/2)-PD^{*}kh^{*}(Hd+H2/2)+Msp+Sp^{*}H2/2)$$

 $Mc = (\sigma_{monte} - (pvc+PP)^*(1\pm kv))^*(B5/2)^2/2 + (\sigma 2c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(1\pm kv)^*(B5/2)^2/3 + (Stv+Sqv)^*(B5/2)+DD^*(1\pm kv)^*(B5/2-Bd/2)+DD^*kh^*(Hd+H2/2)+Msp+Sp^*H2/2)$

 $Vb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma 2b - \sigma_{monte})^*B5/2 - (pm-pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

Stv+Stq

 $Vc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma 2c - \sigma_{monte})^*(B5/2)/2 - (pm - pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv) + (\sigma 2c - \sigma_{monte})^*(B5/2)/2 - (pm - pvc)^*(B5/2)/2 - (Stv + Sqv) - PD^*(B5/2)/2 - (Stv + Sqv) - (Stv + Sq$

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 29	CL	MU1100 001	В	117 di 196

	omonte	σ2b	Mb	Vb	σ 2c	Mc	Vc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m ²]	[kNm]	[kN]
statico	47.10	55.11	-13.21	-22.55	51.10	-3.50	-12.38
	47.10	55.11	-13.21	-22.55	51.10	-3.50	-12.38
ainma I	39.65	54.48	-17.54	-29.18	47.06	-4.76	-16.63
sisma+	39.65	54.48	-17.54	-29.18	47.06	-4.76	-16.63
	38.28	51.34	-16.33	-27.30	44.81	-4.41	-15.44
sisma-	38.28	51.34	-16.33	-27.30	44.81	-4.41	-15.44

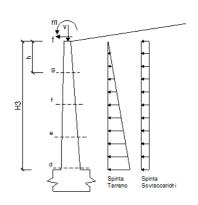
CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}}^* \gamma^* (1 \pm \text{kv})^* h^{2*} h/3$

 $\begin{array}{lll} \text{Mt sism} &= \frac{1}{2} *_{\gamma} *_{(Kas_{orizz} *_{(1\pm kv)} + Ka_{orizz})} *_{h}^{2*} *_{h}/2 & o *_{h}/3 \\ \text{Mq} &= \frac{1}{2} Ka_{orizz} *_{q} *_{h}^{2} \\ \text{M}_{ext} &= m + f *_{h} \end{array}$

 $M_{inerzia} = \Sigma P m_i^* b_i^* kh$


N_{ext} = v

N $_{pp+inerzia}$ = $\Sigma Pm_i^*(1\pm kv)$

Vt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²

 $Vt \ sism = \ {^{1\!\!/}_{2}} * \gamma * (Kas_{orizz.}*(1\pm kv)-Ka_{orizz.})*h^{2}$

 $Vq = Ka_{orizz}^*q^*h$ $V_{ext} = f$ $V_{inerzia} = \Sigma Pm_i^*kh$

condizione statica

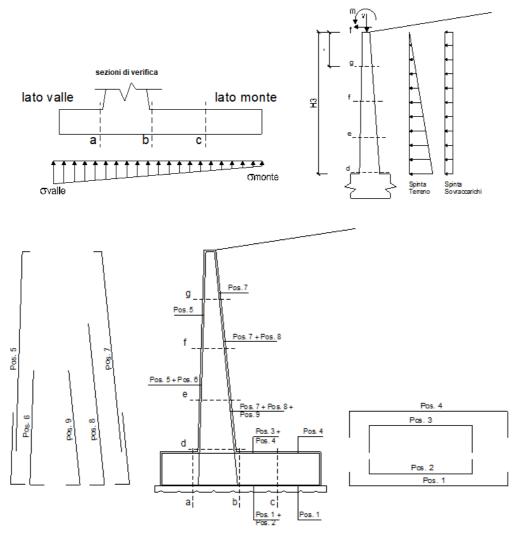
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
Sezione	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.00	8.25	10.28	0.00	18.53	1.00	20.00	21.00
e-e	1.50	3.48	5.78	0.00	9.26	1.00	15.00	16.00
f-f	1.00	1.03	2.57	0.00	3.60	1.00	10.00	11.00
g-g	0.50	0.13	0.64	0.00	0.77	1.00	5.00	6.00

sezione	h	Vt	Vq	V_{ext}	V _{tot}
SEZIONE	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.00	12.37	10.28	0.00	22.65
e-e	1.50	6.96	7.71	0.00	14.67
f-f	1.00	3.09	5.14	0.00	8.23
q-q	0.50	0.77	2.57	0.00	3.34

condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.00	6.34	0.93	8.82	0.00	1.11	17.20	1.00	20.55	21.55
e-e	1.50	2.68	0.39	4.96	0.00	0.62	8.65	1.00	15.41	16.41
f-f	1.00	0.79	0.12	2.20	0.00	0.28	3.39	1.00	10.28	11.28
g-g	0.50	0.10	0.01	0.55	0.00	0.07	0.73	1.00	5.14	6.14

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.00	9.52	1.39	8.82	0.00	1.11	20.83
e-e	1.50	5.35	0.78	6.61	0.00	0.83	13.58
f-f	1.00	2.38	0.35	4.41	0.00	0.55	7.69
q-q	0.50	0.59	0.09	2.20	0.00	0.28	3.16


condizione sismica -

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.00	6.34	0.58	8.87	0.00	1.11	16.90	1.00	19.45	20.45
e-e	1.50	2.68	0.24	4.99	0.00	0.62	8.53	1.00	14.59	15.59
f-f	1.00	0.79	0.07	2.22	0.00	0.28	3.36	1.00	9.72	10.72
a-a	0.50	0.10	0.01	0.55	0.00	0.07	0.73	1.00	4.86	5.86

sezione	h	Vt stat	Vt sism	Vq	V_{ext}	Vinerzia	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	2.00	9.52	0.87	8.87	0.00	1.11	20.36
e-e	1.50	5.35	0.49	6.66	0.00	0.83	13.33
f-f	1.00	2.38	0.22	4.44	0.00	0.55	7.59
g-g	0.50	0.59	0.05	2.22	0.00	0.28	3.14

11.4.2 VERIFICHE SLU

Armatura minima

L'armatura minima principale in fondazione deve essere in percentuale non inferiore allo 0.20% dell'area di conglomerato.

L'armatura minima principale presente in zona tesa deve essere in percentuale non inferiore allo 0.15% dell'area di conglomerato per l'intera lunghezza.

L'armatura secondaria, ortogonale a quella principale, deve essere pari al massimo delle seguenti percentuali:

- 0.10% dell'area di conglomerato in entrambi i lembi;
- 20% dell'armatura principale.

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 119 di 196

Muro h = 2,0m su fondazione diretta

ARMATURE

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato
1	5.0	16		5	5.0	16	
2	0.0	0		6	0.0	0	
3	0.0	0		7	5.0	16	_
4	5.0	16		8	0.0	0	
				9	0.0	0	

Pertanto l'armatura secondaria sarà pari a:

sez a - a: $\phi 10/20$ cm (ripartitori in fondazione e in elevazione);

sez b – b: $\phi 10/20$ cm (ripartitori in fondazione);

sez c – c: ϕ 10/20cm (ripartitori in fondazione);

sez d - d: $\phi 10/20$ cm (ripartitori in fondazione);

sez e - e: ϕ 10/20cm (ripartitori in fondazione);

sez f - f: $\phi 10/20$ cm (ripartitori in fondazione);

sez g - g: $\phi 10/20$ cm (ripartitori in fondazione);

Sez.	M	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm²)	(kNm)
a - a	6.80	0.00	0.40	10.05	10.05	132.18
b - b	-17.54	0.00	0.40	10.05	10.05	132.18
C - C	-4.76	0.00	0.40	10.05	10.05	132.18
d - d	18.53	21.00	0.40	10.05	10.05	135.15
e -e	9.26	16.00	0.40	10.05	10.05	134.44
f-f	3.60	11.00	0.40	10.05	10.05	133.73
g - g	0.77	6.00	0.40	10.05	10.05	133.03

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

	Sez.	V _{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	_
Ξ	(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- -
	a - a	28.17	0.40	150.66	10	20	20	21.8	573.94	Armatura a taglio non necessaria
	b - b	29.18	0.40	150.66	10	20	20	21.8	573.94	Armatura a taglio non necessaria
	C - C	16.63	0.40	150.66	10	20	20	21.8	573.94	Armatura a taglio non necessaria
	d - d	22.65	0.40	153.27	10	20	20	21.8	573.94	Armatura a taglio non necessaria
	е -е	14.67	0.40	152.65	10	20	20	21.8	573.94	Armatura a taglio non necessaria
	f-f	8.23	0.40	152.03	10	20	20	21.8	573.94	Armatura a taglio non necessaria
	g - g	3.34	0.40	151.40	10	20	20	21.8	573.94	Armatura a taglio non necessaria

11.4.3 VERIFICHE SLE TENSIONE

Condizione Statica

Sez.	M	N	h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	5.30	0.00	0.40	10.05	10.05	0.39	17.49
b - b	-9.42	0.00	0.40	10.05	10.05	0.70	31.07
C - C	-2.38	0.00	0.40	10.05	10.05	0.18	7.85
d - d	14.25	21.00	0.40	10.05	10.05	1.05	36.40
e -e	7.12	16.00	0.40	10.05	10.05	0.52	15.53
f-f	2.77	11.00	0.40	10.05	10.05	0.19	3.90
g - g	0.59	6.00	0.40	10.05	10.05	0.04	0.03

Condizione Sismica

COHUIZIO	ic Sisilica						
Sez.	M	N	h	Af	A'f	σC	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	6.76	0.00	0.40	10.05	10.05	0.50	22.30
b - b	-14.44	0.00	0.40	10.05	10.05	1.07	47.64
C - C	-3.98	0.00	0.40	10.05	10.05	0.30	13.14
d - d	17.20	20.45	0.40	10.05	10.05	1.27	46.35
е -е	8.65	15.59	0.40	10.05	10.05	0.63	20.71
f-f	3.39	10.72	0.40	10.05	10.05	0.24	5.95
g - g	0.73	5.86	0.40	10.05	10.05	0.04	0.20

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

11.4.4 VERIFICHE SLE FESSURAZIONE

condizione Frequente

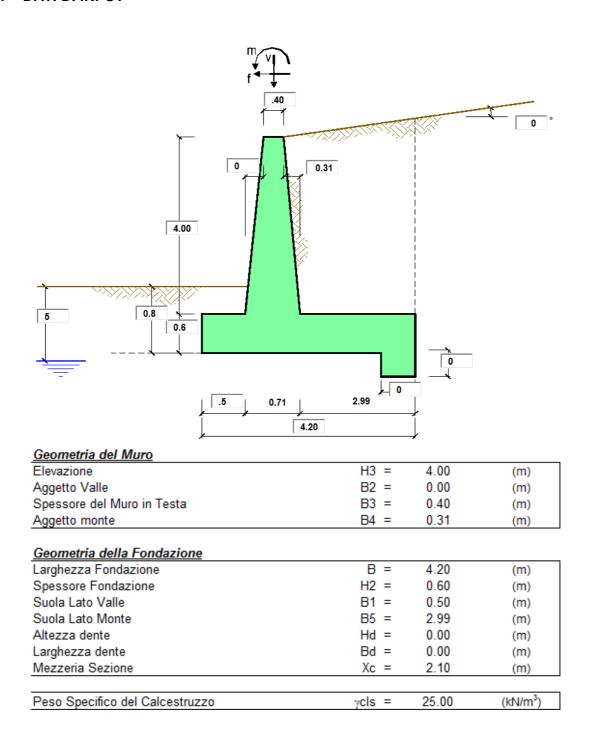
Sez.	M	N	h	Af	A'f	σc	σf	wk	W _{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	5.30	0.00	0.40	10.05	10.05	0.39	17.49	0.024	0.200
b - b	-9.42	0.00	0.40	10.05	10.05	0.70	31.07	0.043	0.200
C - C	-2.38	0.00	0.40	10.05	10.05	0.18	7.85	0.011	0.200
d - d	14.25	21.00	0.40	10.05	10.05	1.05	36.40	0.049	0.200
e -e	7.12	16.00	0.40	10.05	10.05	0.52	15.53	0.021	0.200
f-f	2.77	11.00	0.40	10.05	10.05	0.19	3.90	0.005	0.200
g - g	0.59	6.00	0.40	10.05	10.05	0.04	0.03	0.000	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

condizione Quasi Permanente

Sez.	M	N	h	Af	A'f	σc	σf	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	5.30	0.00	0.40	10.05	10.05	0.39	17.49	0.024	0.200
b - b	-9.42	0.00	0.40	10.05	10.05	0.70	31.07	0.043	0.200
C - C	-2.38	0.00	0.40	10.05	10.05	0.18	7.85	0.011	0.200
d - d	14.25	21.00	0.40	10.05	10.05	1.05	36.40	0.049	0.200
e -e	7.12	16.00	0.40	10.05	10.05	0.52	15.53	0.021	0.200
f-f	2.77	11.00	0.40	10.05	10.05	0.19	3.90	0.005	0.200
g - g	0.59	6.00	0.40	10.05	10.05	0.04	0.03	0.000	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)


11.4.5 CALCOLO INCIDENZA ARMATURA

	TIPO X	(¹
	MURO a mensola N	/U11-TIPO X ¹
MU11	PARTE D'OPERA	INCIDENZA (Kg/mc)
M	Elevazione	55
	Fondazione	55

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LLEGAME LTANISE	NTO PALERN TTA XIRBI – E	NA – CATANIA – 110 – CATANIA INNA (LOTTO 4a)		00
TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO	COMMESSA RS3U	LOTTO 40 D 29	CODIFICA CL	DOCUMENTO MU1100 001	REV.	FOGLIO 123 di 196

12. PROGETTO E VERIFICA DEL MURO DI SOSTEGNO "TIPO 1"

12.1 DATI DI INPUT

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

Muro libero di traslare o ruotare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 124 di 196

Condizioni drenate

			valori cara	valori caratteristici		progetto
<u>Geotecnici</u>			SLE	Ē	STR/GEO	EQU
Angolo di attrito del terrapieno	(°)	φ'	38.0	0	38.00	38.00
Peso Unità di Volume del terrapieno	(kN/m³)	7	20.0	0	20.00	20.00
Angolo di attrito terreno-superficie ideale	(°)	δ	0.0	0	0.00	0.00
Condizioni		drenate	Non D	renate		
Coesione Terreno di Fondazione	(kPa)	c1'	20.0	0	20.00	20.00
Angolo di attrito del Terreno di Fondazione	(°)	φ1'	21.0	0	21.00	21.00
Peso Unità di Volume del Terreno di Fondazione	(kN/m³)	γ1	20.0	0	20.00	20.00
Peso Unità di Volume del Rinterro della Fondazione	(kN/m³)	γd	20.0	0	20.00	20.00
Profondità "Significativa" (n.b.: consigliata H = 2*B)	(m)	Hs	8.0	0		
Modulo di deformazione	(kN/m²)	Е	2000	00		
Accelerazione sismica		a _g /g	0.097	(-)	1	
Coefficiente Amplificazione Stratigrafico		Ss	1.5	(-)		
Coefficiente Amplificazione Topografico		S _T	1	(-)	RIBALTA	MENTO
Coefficiente di riduzione dell'accelerazione massima		βs	0.38	(-)	βs	0.57
Coefficiente sismico orizzontale		kh	0.05529	(-)	kh	0.08294
Coefficiente sismico verticale		kv	0.0276	(-)	kv	0.04147
	Angolo di attrito del terrapieno Peso Unità di Volume del terrapieno Angolo di attrito terreno-superficie ideale Condizioni Coesione Terreno di Fondazione Angolo di attrito del Terreno di Fondazione Peso Unità di Volume del Terreno di Fondazione Peso Unità di Volume del Rinterro della Fondazione Profondità "Significativa" (n.b.: consigliata H = 2*B) Modulo di deformazione Accelerazione sismica Coefficiente Amplificazione Stratigrafico Coefficiente di riduzione dell'accelerazione massima Coefficiente sismico orizzontale	Angolo di attrito del terrapieno (°) Peso Unità di Volume del terrapieno (kN/m³) Angolo di attrito terreno-superficie ideale (°) Condizioni Coesione Terreno di Fondazione (kPa) Angolo di attrito del Terreno di Fondazione (°) Peso Unità di Volume del Terreno di Fondazione (kN/m³) Peso Unità di Volume del Rinterro della Fondazione (kN/m³) Profondità "Significativa" (n.b.: consigliata H = 2*B) (m) Modulo di deformazione (kN/m²) Accelerazione sismica Coefficiente Amplificazione Stratigrafico Coefficiente Amplificazione Topografico Coefficiente di riduzione dell'accelerazione massima Coefficiente sismico orizzontale	Angolo di attrito del terrapieno (°) φ' Peso Unità di Volume del terrapieno (kN/m³) γ' Angolo di attrito terreno-superficie ideale (°) δ Condizioni (Angolo di attrito del terrapieno (°) φ' 38.0 Peso Unità di Volume del terrapieno (kN/m³) γ' 20.0 Angolo di attrito terreno-superficie ideale (°) δ 0.00 Condizioni (kPa) c1' 20.0 Angolo di attrito del Terreno di Fondazione (kPa) c1' 20.0 Angolo di attrito del Terreno di Fondazione (kN/m³) γ1 20.0 Peso Unità di Volume del Terreno di Fondazione (kN/m³) γ1 20.0 Peso Unità di Volume del Rinterro della Fondazione (kN/m³) γd 20.0 Profondità "Significativa" (n.b.: consigliata H = 2*B) (m) Hs 8.00 Modulo di deformazione (kN/m²) E 2000 Accelerazione sismica a _g /g 0.097 Coefficiente Amplificazione Stratigrafico S _S 1.5 Coefficiente Amplificazione Topografico S _T 1 Coefficiente di riduzione dell'accelerazione massima Coefficiente sismico orizzontale kh 0.05529	Angolo di attrito del terrapieno (°) ϕ' 38.00 Peso Unità di Volume del terrapieno (kN/m³) γ' 20.00 Angolo di attrito terreno-superficie ideale (°) δ 0.00 Condizioni ϕ drenate ϕ Non Drenate Coesione Terreno di Fondazione (kPa) c1' 20.00 Angolo di attrito del Terreno di Fondazione (°) ϕ 1' 21.00 Peso Unità di Volume del Terreno di Fondazione (kN/m³) γ 1 20.00 Peso Unità di Volume del Rinterro della Fondazione (kN/m³) γ 1 20.00 Profondità "Significativa" (n.b.: consigliata H = 2*B) (m) Hs 8.00 Modulo di deformazione (kN/m²) E 20000 Accelerazione sismica ϕ 1 ϕ 2 ϕ 2 ϕ 3 ϕ 4 ϕ 6 ϕ 6 ϕ 7 ϕ 8 ϕ 8 ϕ 9	Angolo di attrito del terrapieno (°) φ' 38.00 38.00 Peso Unità di Volume del terrapieno (kN/m³) γ' 20.00 20.00 Angolo di attrito terreno-superficie ideale (°) δ 0.00 0.00 Condizioni (kPa) c1' 20.00 20.00 Angolo di attrito del Terreno di Fondazione (kPa) c1' 20.00 21.00 Angolo di attrito del Terreno di Fondazione (kN/m³) γ1 20.00 21.00 Peso Unità di Volume del Terreno di Fondazione (kN/m³) γ1 20.00 20.00 Peso Unità di Volume del Rinterro della Fondazione (kN/m³) γd 20.00 20.00 Profondità "Significativa" (n.b.: consigliata H = 2*B) (m) Hs 8.00 Modulo di deformazione Stratigrafico (kN/m²) E 20000 Accelerazione sismica (kN/m²) E 20000 Accelerazione Stratigrafico (S _S 1.5 (·) Coefficiente Amplificazione Topografico (S _T 1 (·) RIBALTA (Coefficiente di riduzione dell'accelerazione massima (R _S 0.38 (·) β _S (Coefficiente sismico orizzontale (Rh 0.05529 (·) kh

				STR/GEO	RIB
	Coeff. di Spinta Attiva Statico	ka	0.238	0.238	0.238
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.265	0.265	0.279
inta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.267	0.267	0.283
S effi	Coeff. Di Spinta Passiva	kp	2.117	2.117	2.117
ပိ	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2.037	2.037	1.996
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	2.032	2.032	1.985

si

○ no

			Γ	valori caratteristici	valori di p	rogetto
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
Carichi	Sovraccarico permanente Sovraccarico su zattera di monte	(kN/m ²)	qp	16.62	21.61	21.61
Carichi ermanen	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
ပိုင်း မြောင်	Forza Verticale in Testa permanente	(kN/m)	vp	1.00	1.00	1.00
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
	Sovraccarico Accidentale in condizioni statiche	(kN/m²)	q	0.00	0.00	0.00
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statich	(kN/m)	f	0.00	0.00	0.00
Statiche	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
స్ట్ర్ హ	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione freque	nte Ψ1	1.00	condizione quasi permane	nte Ψ2	0.00
.⊑ ø	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	0.00		
izio Pich	Forza Orizzontale in Testa accidentale in condizioni sismicl	(kN/m)	fs	0.00		
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
0 00	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

Condizioni non drenate

			valori car	atteristici	valori di progetto				
Dati (Geotecnici					SL	E	STR/GEO	EQU
eno	Angolo di attrito del terrapieno		(°)		φ'	38	.00	38.00	38.00
Dati Terrapieno	Peso Unità di Volume del terrapieno		(kN/m³)		7	20	.00	20.00	20.00
	Angolo di attrito terreno-superficie ideale		(°)		δ	0.	00	0.00	0.00
Dati Terreno Fondazione	Condizioni					Non 🕙 Non	Drenate		
daz	Resistenza a Taglio non drenata		(kPa)		cu	160).00	160.00	160.00
E E	Angolo di attrito Terreno-Fondazione		(°)		φ1'	21	.00	21.00	21.00
2	Peso Unità di Volume del Terreno di Fondazione		(kN/m³)		γ1	20	.00	20.00	20.00
e Te	Peso Unità di Volume del Rinterro della Fondazione		(kN/m ³)		γd	20	.00	20.00	20.00
Ē	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)		Hs	8.	00		
Da	Modulo di deformazione		(kN/m²)		Ε	200	000		
								_	
	Accelerazione sismica				a _g /g	0.097	(-)	1	
	Coefficiente Amplificazione Stratigrafico				S_S	1.5	(-)		
Dati Sismici	Coefficiente Amplificazione Topografico				S_T	1	(-)	RIBALTA	MENTO
<u>is</u>	Coefficiente di riduzione dell'accelerazione massima				β_s	0.38	(-)	βs	0.57
i <u>f</u>	Coefficiente sismico orizzontale				kh	0.05529	(-)	kh	0.08294
	Coefficiente sismico verticale			_	kv	0.0276	(-)	kv	0.04147
	Muro libero di traslare o ruotare				•	si C) no		
						STR	/GEO	- RI	В
	Coeff. di Spinta Attiva Statico	ka	0.238			0.238		0.238	
Έ	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.265			0.265		0.279	
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.267			0.267		0.283	
Spi	Coeff. Di Spinta Passiva	kp	1.000			1.000		1.000	
Ö	Coeff. Di Spinta Passiva Sismica sisma +	kps+	1.000			1.000		1.000	
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	1.000			1.000		1.000	

				valori caratteristici	valori di p	rogetto
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
	Sovraccarico permanente	(kN/m ²)	qp '	16.62	21.60	21.60
iz je	Sovraccarico su zattera di monte					
Carichi ermanen	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
Carichi permanenti	Forza Verticale in Testa permanente	(kN/m)	vp	1.00	1.00	1.00
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q	0.00	0.00	0.00
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statich	(kN/m)	f	0.00	0.00	0.00
atic	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
ਨੂੰ ਲੱ	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione frequer		1.00	condizione quasi permane	nte Ψ2	0.00
.⊑ o	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	0.00		
izie Pich	Forza Orizzontale in Testa accidentale in condizioni sismicl	(kN/m)	fs	0.00		
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
0 0	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U 40 D 29 CL MU1100 001 В 126 di 196

CARATTERISTICHE DEI MATERIALI STRUTTURALI

<u>Calcestruzzo</u>		<u>Acciaio</u>
classe cls C30/37 ▼		tipo di acciaio
Rck 37	(MPa)	
fck 30	(MPa)	fyk = 450 (MPa)
fcm 38	(MPa)	
Ec 32837	(MPa)	γ s = 1.15
α _{oc} 0.85		
γc 1.50		fyd = fyk / γ s / γ E = 391.30 (MPa)
$f_{od} = \alpha_{oc} * f_{ok} / \gamma c$ 17.00	(MPa)	Es = 210000 (MPa)
$f_{ctm} = 0.30 * f_{ck}^{2/3}$ 2.90	(MPa)	ε _{VS} = 0.19%
Tensioni limite (tensioni ammissibili) condizioni statiche σ _c 18 Mpa σ _f 360 Mpa		coefficiente omogeneizzazione acciaio n = 15 Copriferro (distanza asse armatura-bordo)
condizioni sismiche		(
σ _c 18 Mpa		c = 7.00 (cm)
σ _f 360 Mpa		
		Copriferro minimo di normativa (ricoprimento armatura)
		$c_{min} = 4.00$ (cm)
Valore limite di apertura delle fessure		Interferro tra I e II strato
Frequente w1	0.2 mm	i _{I-II} 5.00 (cm)
Quasi Permanente w1 ▼	0.2 mm	

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 127 di 196

12.2 CALCOLO DELLE AZIONI

12.2.1 FORZE VERTICALI E INERZIALI

FORZE VERTICALI

- Peso del Mu	ro (Pm)		SLE	STR/GEO	EQU/RIB
Pm1 =	(B2*H3*γcls)/2	(kN/m)	0.00	0.00	0.00
Pm2 =	(B3*H3* ₇ cls)	(kN/m)	40.00	40.00	40.00
Pm3 =	(B4*H3*γcls)/2	(kN/m)	15.50	15.50	15.50
Pm4 =	(B*H2*γcls)	(kN/m)	63.00	63.00	63.00
Pm5 =	(Bd*Hd*γcls)	(kN/m)	0.00	0.00	0.00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	118.50	118.50	118.50
$ \begin{array}{llllllllllllllllllllllllllllllllllll$					239.20 0.00 12.40 0.00 251.60
Sovr acc. Stat	accidentale sulla scarpa di monte del muro q * (B4+B5) n qs * (B4+B5)	(kN/m) (kN/m)	0 0	0	

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

- Muro (Mm)			SLE	STR/GEO	EQU/RIB
Mm1 = ` ´	Pm1*(B1+2/3 B2)	(kNm/m)	0.00	0.00	0.00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	28.00	28.00	28.00
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	15.55	15.55	15.55
Mm4 =	Pm4*(B/2)	(kNm/m)	132.30	132.30	132.30
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00	0.00	0.00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	175.85	175.85	175.85
- Terrapieno e s Mt1 = Mt2 = Mt3 = Msovr = Mt =	sovr. perm. sulla scarpa di monte del muro Pt1*(B1+B2+B3+B4+0,5*B5) Pt2*(B1+B2+B3+2/3*(B4+B5)) Pt3*(B1+B2+B3+2/3*B4) Sovr*(B1+B2+B3+1/2*(B4+B5)) Mt1 + Mt2 + Mt3 + Msovr	(kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m)	647.04 0.00 13.72 0.00 660.76	647.04 0.00 13.72 0.00 660.76	647.04 0.00 13.72 0.00 660.76
Sovr acc. Stat	accidentale sulla scarpa di monte del muro *(B1+B2+B3+1/2*(B4+B5)) n *(B1+B2+B3+1/2*(B4+B5))	(kNm/m) (kNm/m)	0 0	0	

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 128 di 196

	MURO E DEL TERRAPIENO ontale e verticale del muro (Ps)			
Ps h =		/I-N1/\	C . C . C	0.02
	Pm*kh	(kN/m)	6.55	9.83
Ps v=	Pm*kv	(kN/m)	3.28	4.91
- Inerzia orizzo	ontale e verticale del terrapieno a tergo del muro (Pts	5)		
Ptsh =	Pt*kh	(kN/m)	13.91	20.87
Ptsv =	Pt*kv	(kN/m)	6.96	10.43
		, ,		
- Incremento o	rizzontale di momento dovuto all'inerzia del muro (N	IPs h)		
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)	0.00	0.00
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)	5.75	8.63
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)	1.66	2.49
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)	1.04	1.57
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)	0.00	0.00
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	8.45	12.68
		, ,		
- Incremento v	erticale di momento dovuto all'inerzia del muro (MPs	s v)		
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kNm/m)	0.00	0.00
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)	0.77	1.16
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)	0.43	0.64
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)	3.66	5.49
MPs5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)	0.00	0.00
MPs v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	4.86	7.29
		(
- Incremento o	rizzontale di momento dovuto all'inerzia del terrapie	no (MPts h)		
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)	34.39	51.58
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)	0.00	0.00
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)	2.24	3.36
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)	36.63	54.94
		, ,		
- Incremento v	erticale di momento dovuto all'inerzia del terrapieno	(MPts v)		
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	` (kNm/m)	17.89	26.83
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)	0.00	0.00
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)	0.47	0.70
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)	18.36	27.53
			_	_

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 129 di 196

12.2.2 SPINTE IN CONDIZIONE STATICA

	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO	EQU/RIB
St =	0,5*y'*(H2+H3+H4+Hd)2*ka	(kN/m)	50.34	65.44	65.44
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	18.19	23.64	23.64
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	0.00	0.00	0.00
- Componente	orizzontale condizione statica				
Sth =	St*cos8	(kN/m)	50.34	65.44	65.44
Sqh perm =	Sq perm*cos8	(kN/m)	18.19	23.64	23.64
Sqh acc =	Sq acc*cos8	(kN/m)	0.00	0.00	0.00
- Componente	verticale condizione statica				
Stv =	St*senδ	(kN/m)	0.00	0.00	0.00
Sqv perm=	Sq perm*senô	(kN/m)	0.00	0.00	0.00
Sqv acc =	Sq acc*sen₀	(kN/m)	0.00	0.00	0.00
- Spinta passi	va sul dente				
Sp=½*g1'*Hd2	^{2*} ½* _{γ1} '*Hd ² *kp+(2*c ₁ '*kp ^{0.5} + _γ 1'*kp*H2')*Hd	(kN/m)	0.00	0.00	0.00

MOMENTI DE	LLA SPINTA DEL TERRENO E DEL SOVRACCARI	co	SLE	STR/GEO	EQU/RIB					
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	77.18	100.34	100.34					
MSt2 =	Stv*B	(kNm/m)	0.00	0.00	0.00					
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	41.83	54.38	54.38					
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	0.00	0.00	0.00					
MSq2 perm=	Sqv perm*B	(kNm/m)	0.00	0.00	0.00					
MSq2 acc =	Sqv acc*B	(kNm/m)	0.00	0.00	0.00					
$MSp = \gamma 1'' + Hd^{3*}kp/3 + (2*c1'*kp^{0.5} + \gamma 1'*kp*H2') + Hd^{2}/2$			0.00	0.00	0.00					
MOMENTI DO	MOMENTI DOVUTI ALLE FORZE ESTERNE									
Mfext1 =	mp + m	(kNm/m)	0.00	0.00	0.00					
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0.00	0.00	0.00					
Mfext3 =	(vp+v)*(B1 +B2 + B3/2)	(kNm/m)	0.70	0.70	0.70					

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 130 di 196

12.2.3 SPINTE IN CONDIZIONE SISMICA +

SPINTE DEL	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU/RIB
Sst1 stat =	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	50.34	50.34	50.34
Sst1 sism =	0,5*/'*(1+kv)*(H2+H3+H4+Hd)2*kas*-Sst1 stat	(kN/m)	7.36	7.36	11.24
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas+	(kN/m)	20.29	20.29	21.36
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	0.00	0.00	0.00
	orizzontale condizione sismica +				
Sst1h stat =	Sst1 stat*cosô	(kN/m)	50.34	50.34	50.34
	Sst1 sism*cosô	(kN/m)	7.36	7.36	11.24
Ssq1h perm=	Ssq1 perm*cos8	(kN/m)	20.29	20.29	21.36
Ssq1h acc=	Ssq1 acc*cos8	(kN/m)	0.00	0.00	0.00
- Componente	verticale condizione sismica +				
Sst1v stat =	Sst1 stat*sen8	(kN/m)	0.00	0.00	0.00
	Sst1 sism*senô	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*sen8	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*sen8	(kN/m)	0.00	0.00	0.00
- Spinta passiv					
Sp=½*γ ₁ ′(1+kv)	Hd ² *kps ⁺ +(2*c ₁ '*kps ^{+0.5} + ₇ 1' (1+kv) kps ⁺ *H2')*Hd	(kN/m)	0.00	0.00	0.00
- Condizione si	LLA SPINTA DEL TERRENO E DEL SOVRACCARI smica +	co	SLE	STR/GEO	EQU/RIB
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	77.18	77.18	77.18
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	11.29	11.29	17.24
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
MSst2 sism =	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	46.66	46.66	49.14
MSsq2 =	Ssq1v * B	(kNm/m)	0.00	0.00	0.00
MSp =	γ ₁ '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} +γ1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		0.70	

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 131 di 196

12.2.4 SPINTE IN CONDIZIONE SISMICA -

SPINTE DEL	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU/RIB
	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	50.34	50.34	50.34
Sst1 sism =	0,5*γ'*(1-kv)*(H2+H3+H4+Hd)²*kas⁻-Sst1 stat	(kN/m)	4.60	4.60	7.13
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	20.41	20.41	21.66
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas	(kN/m)	0.00	0.00	0.00
- Componente	orizzontale condizione sismica -				
Sst1h stat =	Sst1 stat*cosô	(kN/m)	50.34	50.34	50.34
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	4.60	4.60	7.13
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	20.41	20.41	21.66
Ssq1h acc=	Ssq1 acc*cos8	(kN/m)	0.00	0.00	0.00
- Componente	verticale condizione sismica -				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	0.00	0.00	0.00
Sst1v sism =	Sst1 sism*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*sen8	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*sen8	(kN/m)	0.00	0.00	0.00
- Spinta passiv					
Sp=½*γ ₁ '(1-kv)	Hd ² *kps ⁻ +(2*c ₁ '*kps ^{-0.5} +γ1' (1-kv) kps ⁻ *H2')*Hd	(kN/m)	0.00	0.00	0.00
		_			
- Condizione si	LLA SPINTA DEL TERRENO E DEL SOVRACCARI smica -	СО	SLE	STR/GEO	EQU/RIB
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	77.18	77.18	77.18
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	7.05	7.05	10.93
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
MSst2 sism =	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	46.95	46.95	49.82
MSsq2 =	Ssq1v * B	(kNm/m)	0.00	0.00	0.00
MSp =	γ ₁ '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} +γ1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		0.70	

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMI NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISETTA XIRBI – ENNA (LOTTO 4a) OPERE DI SOSTEGNO DI LINEA COMMESSA LOTTO CODIFICA DOCUMENTO REV.					
TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO	COMMESSA RS3U	LOTTO 40 D 29	CODIFICA CL	DOCUMENTO MU1100 001	REV.	FOGLIO 132 di 196

12.3 VERIFICHE GEOTECNICHE

12.3.1 VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. DRENATE

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Xc*N - MM

Risultante forz N =	re verticali (N) Pm + Pt + v + Stv + Sqv perm + Sqv acc	371.10	(kN/m)	
Risultante forz	re orizzontali (T) Sth + Sqh + f	89.08	(kN/m)	
Coefficiente di f =	attrito alla base (f) tgφ1'	0.38	(-)	
Fs scorr.	(N*f + Sp) / T	1.60	>	1.1
VERIFICA A	L RIBALTAMENTO (EQU)			
Momento stab	oilizzante (Ms) Mm + Mt + Mfext3	837.31	(kNm/m)	
Momento ribal	tante (Mr) MSt + MSq + Mfext1+ Mfext2 + MSp	154.71	(kNm/m)	
Fs ribalta	mento Ms / Mr	5.41	>	1.15
VERIFICA C	CARICO LIMITE DELLA FONDAZIONE (STR/G	iEO)		
Risultante forz	re verticali (N) Pm + Pt + v + Stv + Sqv (+ Sovr acc)	Nmin 371.10	Nmax 371.10	(kN/m)
Risultante forz	te orizzontali (T) Sth + Sqh + f - Sp	89.08	89.08	(kN/m)
Risultante dei MM =	momenti rispetto al piede di valle (MM) ΣM	682.60	682.60	(kNm/m)
Momento rispo	etto al baricentro della fondazione (M)	22.74	00.74	

96.71 96.71 (kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 133 di 196

4.21

Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico lir	mite	F = qlim*B*/ N	Manage	4.24		1.4
50 ' !'-		F !' * D*/ N	Nmin	4.21	>	
qlim	(carico limite u	unitario)		424.98	424.98	(kN/m^2)
(fondazione nas	striforme m = 2)				
iq = (1 - 1)(1 - 1)/	(Nq - 1)	(1 iii solid. lid)		0.66 0.60	0.66 0.60	(-) (-)
iq = (1 - T/(N +		(1 in cond. nd)	. ,	0.71	0.71	(-)
I valori di ic, iq e	e iγ sono stati v	valutati con le espressioni suggerit	te da Vesic (1975)			
$Nq = tg^{2}(45 + \varphi)^{2}$ Nc = (Nq - 1)/tg $N\gamma = 2*(Nq + 1)^{2}$	ı(φ')	(1 in cond. nd) (2+π in cond. nd) (0 in cond. nd)		7.07 15.81 6.20		(-) (-) (-)
I valori di Nc, No	q e Ng sono sta	ati valutati con le espressioni sugç	gerite da Vesic (19	75)		
e = M / N B*= B - 2e	eccentricità larghezza equ	uivalente		0.26 3.68	0.26 3.68	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico	stabilizzante		16.00		(kN/m ²)
c1' φ1' γ1		eno di fondaz. to terreno di fondaz. volume terreno fondaz.		20.00 21.00 20.00		(kPa) (°) (kN/m³)

12.3.2 VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. DRENATE

Condizione sismica +

VERIFICA ALLO SCORRIMENTO

Momento rispetto al baricentro della fondazione (M)

Xc*N - MM

VER	IFICA AL	LO SCORRIMENTO			
Risul N	tante forz	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	381.33	(kN/m)	
Risul T	tante forz	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	98.45	(kN/m)	
Coeff f	iciente di =	attrito alla base (f) tgφ1'	0.38	(-)	
Fs	=	(N*f + Sp) / T	1.49	>	1
VER	IFICA AL	RIBALTAMENTO			
Mom Ms	ento stabi =	ilizzante (Ms) Mm + Mt + Mfext3	837.31	(kNm/m)	
Mom Mr	ento ribalt =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	176.35	(kNm/m)	
Fr	=	Ms / Mr	4.75	>	1
VER	IFICA A	CARICO LIMITE DELLA FONDAZIONE			
Risul N	tante forz	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	Nmin 381.33	Nmax 381.33	(kN/m)
Risul T	tante forz	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	98.4	5	(kN/m)
Risul MM	tante dei =	momenti rispetto al piede di valle (MM) ΣΜ	680.32	680.32	(kNm/m)

120.48

120.48 (kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U 40 D 29 CL MU1100 001 135 di 196

3.76

Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico lir	mite F = qlim*B*/ N	Nmin	3.76	>	1.2
qlim	(carico limite unitario)		401.59	401.59	(kN/m ²)
(fondazione nas	striforme m = 2)				
$iq = (1 - T/(N + ic = iq - (1 - iq)/i\gamma = (1 - T/(N + iq)/iq = (1 - T/($	(Nq - 1)		0.68 0.63 0.56	0.68 0.63 0.56	(-) (-)
l valori di ic, iq	e i γ sono stati valutati con le espressioni suggerite	da Vesic (1975)			
Nq = $tg^2(45 + \varphi)$ Nc = (Nq - 1)/ tg N γ = 2*(Nq + 1)	,		7.07 15.81 6.20		(-) (-) (-)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni sugge	erite da Vesic (19	75)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.32 3.57	0.32 3.57	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		16.00		(kN/m ²)
c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		20.00 21.00 20.00		(kN/mq) (°) (kN/m³)
•					

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA LOTTO RS3U 40 D 29

CODIFICA

DOCUMENTO MU1100 001

REV. FOGLIO

136 di 196

Condizione sismica -

VERIFICA ALLO SCORRIMENTO

Risultante forze verticali (N)

Pm+Pt+vp+vs+Sst1v+Ssq1v+Psv+Ptsv360.87 (kN/m)

Risultante forze orizzontali (T)

Sst1h + Ssq1h + fp + fs +Ps h + Ptsh 95.81 (kN/m)

Coefficiente di attrito alla base (f)

tgo1' 0.38 (-)

1.45 1 $Fs = (N^*f + Sp) / T$

VERIFICA AL RIBALTAMENTO

Momento stabilizzante (Ms)

Mm + Mt + Mfext3 837.31 (kNm/m)

Momento ribaltante (Mr)

MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts 240.36 (kNm/m)

3.48 Fr = Ms / Mr 1

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forze verticali (N) N = Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	Nmin 360.87	Nmax 360.87	(kN/m)
Risultante forze orizzontali (T) T = Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	95.81		(kN/m)
Risultante dei momenti rispetto al piede di valle (MM) $MM = \Sigma M$	637.84	637.84	(kNm/m)
Momento rispetto al baricentro della fondazione (M) M = Xc*N - MM	119.98	119.98	(kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

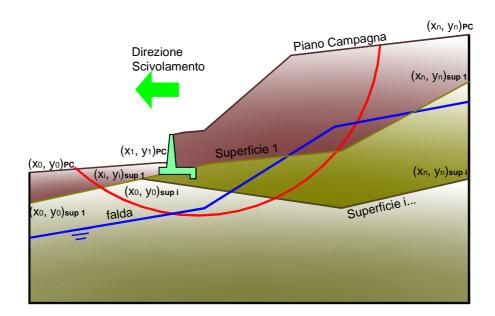
 RS3U
 40 D 29
 CL
 MU1100 001
 B
 137 di 196

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico lir	mite F = qlim*B*/ N	Nmin	3.90	>	1.2
qlim	(carico limite unitario)		397.67	397.67	(kN/m ²)
(fondazione nas	triforme m = 2)				
iq = (1 - T/(N + I)) ic = iq - (1 - iq)/(I) $i\gamma = (1 - T/(N + I))$	(Nq - 1)		0.68 0.63 0.56	0.68 0.63 0.56	(-) (-)
l valori di ic, iq e	e iγ sono stati valutati con le espressioni suggerite d	a Vesic (1975)			
$Nq = tg^{2}(45 + \varphi)$ Nc = (Nq - 1)/tg $N_{\gamma} = 2*(Nq + 1)$	(φ') (2+π in cond. nd)		7.07 15.81 6.20		(-) (-)
I valori di Nc, No	q e Ng sono stati valutati con le espressioni suggerit	e da Vesic (197	75)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.33 3.54	0.33 3.54	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		16.00		(kN/m ²)
c1' φ1' γ1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		20.00 21.00 20.00		(kN/mq) (°) (kN/m³)

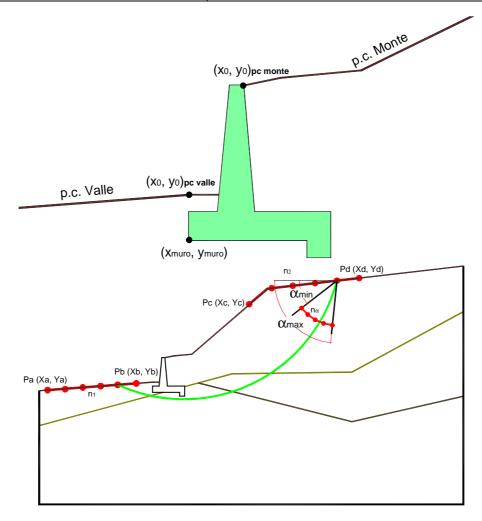

Nmax

3.90

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LLEGAME LTANISE	NTO PALERN TTA XIRBI – E	NA – CATANIA – 10 – CATANIA NNA (LOTTO 4a)		10
TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO	COMMESSA RS3U	LOTTO 40 D 29	CODIFICA	DOCUMENTO MU1100 001	REV.	FOGLIO 138 di 196

12.3.3 VERIFICA DI STABILITÀ GLOBALE – COND. DRENATE

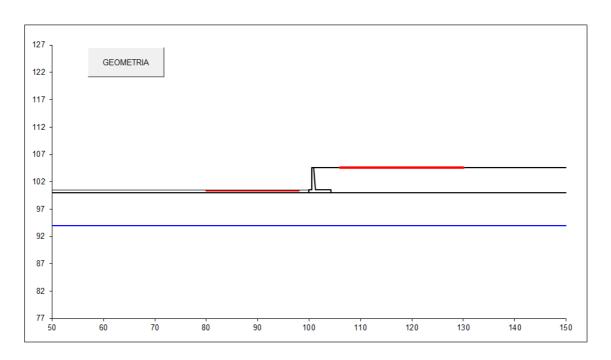
Le analisi di stabilità, di seguito riportate, sono state effettuate limitando la ricerca delle potenziali superfici di scorrimento critiche alla fascia più prossima alla linea ferroviaria.


	γ [kN/m³]	φ [°]	c [kPa]	Descrizione
materiale 1	20.00	38	0	Rilevato - riporto
materiale 2	20.00	18.5	20	FYN4
materiale 3				
materiale 4				

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

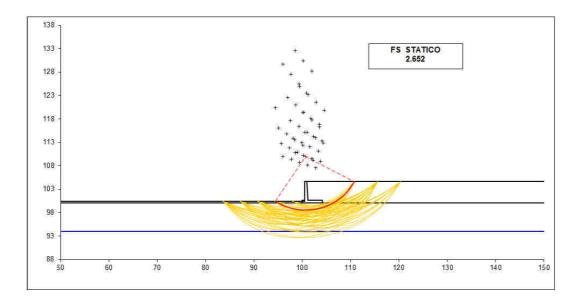
 RS3U
 40 D 29
 CL
 MU1100 001
 B
 139 di 196



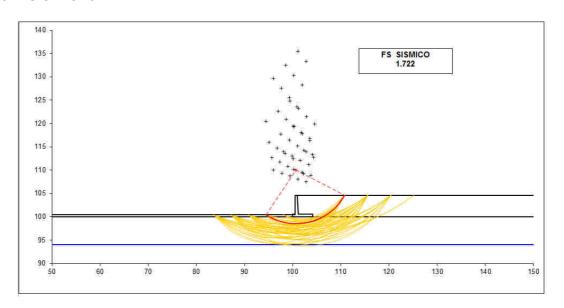
	p.c. va	lle		p.c. mo	nte		superfic	ie 1		superfic	ie 2		superfic	ie 3		f-1-1-	
		materiale 1					mater	iale 2 🔻		mater	iale 4		mater	riale 2		[olda	
	х	у		X	у		X	у		x	у		x	у		X	у
0	100.000	100.400	0	100.900	104.600	0	50.000	100.000	0			0			0	50.000	94.000
1	50.000	100.400	1	150.000	104.600	1	150.000	100.000	1			1			1	150.000	94.000
2			2			2			2			2			2		
3			3			3			3			3			3		
4			4			4			4			4			4		
5			5			5			5			5			5		
6			6			6			6			6			6		
7			7			7			7			7			7		
8			8			8			8			8			8		
9			9			9			9			9			9		
10			10			10			10			10			10		

Sovraccarichi

		Xin	q _{in}	X _{fin}	q_{fin}	% sisma
sovraccarico 1	~	107.600	0	112.250	0	20%
sovraccarico 2						



#strisce
30


# Superfici Calcolate	F: Bish	-
127	STATICO	2.652
121	SISMICO	1.722

Condizioni statiche

Condizioni sismiche

12.3.4 VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. NON DRENATE

VERIFICA ALLO SCORRIMENTO (STR/GEO)

District Control			
Risultante forze verticali (N) N = Pm + Pt + v + Stv + Sqv perm + Sqv acc	442.38	(kN/m)	
Risultante forze orizzontali (T) T = Sth + Sqh + f	89.07	(kN/m)	
Coefficiente di attrito alla base (f) $f \hspace{0.2in} = \hspace{0.2in} tg\phi 1'$	0.38	(-)	
Fs scorr. (N*f + Sp) / T	1.91	>	1.1
VERIFICA AL RIBALTAMENTO (EQU) Momento stabilizzante (Ms)			
Ms = Mm + Mt + Mfext3	1019.07	(kNm/m)	
Momento ribaltante (Mr) Mr = MSt + MSq + Mfext1+ Mfext2 + MSp	154.70	(kNm/m)	
Fs ribaltamento Ms / Mr	6.59	>	1.15
VERIFICA CARICO LIMITE DELLA FONDAZIONI	E (STR/GEO)		

Risultante forze verticali (N)	Nmin	Nmax		
N = Pm + Pt + v + Stv + Sqv (+ Sovr acc)	442.38	442.38	(kN/m)	
Risultante forze orizzontali (T)				
T = Sth + Sqh + f - Sp	89.07	89.07	(kN/m)	
			, ,	
Risultante dei momenti rispetto al piede di valle (MM)				
$MM = \sum M$	864.37	864.37	(kNm/m)	
Manager departs of basis and a della for designs (M)				
Momento rispetto al baricentro della fondazione (M)	64.60	C4 C0	/ I-NI/ >	
M = Xc*N - MM	64.62	64.62	(kNm/m)	

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 143 di 196

7.01

Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0,5* γ 1*B*N γ *i γ

FS carico li	mite F = qlim*B*/ N	7.01	>	1.4
qlim	(carico limite unitario)	793.07	793.07	(kN/m ²)
(fondazione na	striforme m = 2)			
iq = (1 - T/(N + ic = (1 - m T / (ic + ic = (1 - m T / (ic + ic = (1 - T/(N + ic = (1 - T	**	1.00 0.94	1.00 0.94	(-) (-)
l valori di ic, iq	e iγ sono stati valutati con le espressioni suggerite da Vesic (1975)		
Nq = $tg^2(45 + q)$ Nc = $(Nq - 1)/tq$ N γ = $2*(Nq + 1)$, ,	1.00 5.14 0.00		(-) (-) (-)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerite da Ves	ic (1975)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0.15 3.91	0.15 3.91	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	16.00		(kN/m ²)
71	peso unità di volume terreno fondaz.	20.00		(kN/m ³)
cu	res. al taglio nd terreno di fondaz.	160.00		(kPa)
1	40 4			

12.3.5 VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. NON DRENATE

Condizione sismica +

VERIFICA ALLO SCORRIMENTO

VERIFI	ICA A (CARICO LIMITE DELLA FONDAZIONE			
Fr	=	Ms / Mr	5.78	>	1
Moment Mr =		ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	176.34	(kNm/m)	
		izzante (Ms) Mm + Mt + Mfext3	1019.07	(kNm/m)	
VERIFI	ICA AL	RIBALTAMENTO			
Fs :	=	(N*f + Sp) / T	1.64	>	1
Coefficie f =		attrito alla base (f) tgφ1'	0.38	(-)	
	ite forze	orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	102.38	(kN/m)	
		verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	438.13	(kN/m)	

Risultante forze verticali (N) N = Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	Nmin 438.13	Nmax 438.13	(kN/m)
Risultante forze orizzontali (T) T = Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	102.38		(kN/m)
Risultante dei momenti rispetto al piede di valle (MM) $MM \ = \ \Sigma M$	820.15	820.15	(kNm/m)
Momento rispetto al baricentro della fondazione (M) M = Xc*N - MM	99.93	99.93	(kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 145 di 196

6.70

Nmax

1.2

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

FS carico limite

qlim = c'Nc*ic + q_0 *Nq*iq + 0,5* γ 1*B*N γ *i γ

ES carico li	mite F = alim*R*/ N	Nmin	6.70	>	12
qlim	(carico limite unitario)		783.96	783.96	(kN/m ²)
(fondazione na	striforme m = 2)				
iq = (1 - T/(N + ic = (1 - m T / iγ = (1 - T/(N +			1.00 0.93	1.00 0.93	(-) (-)
l valori di ic, iq	e i γ sono stati valutati con le espressioni suggerite (da Vesic (1975)			
$Nq = tg^{2}(45 + e^{2})$ Nc = (Nq - 1)/t $N\gamma = 2*(Nq + 1)$			1.00 5.14 0.00		(-) (-)
I valori di Nc, N	lq e Ng sono stati valutati con le espressioni sugger	ite da Vesic (197	75)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.23 3.74	0.23 3.74	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		16.00		(kN/m ²)
γ1	peso unità di volume terreno fondaz.		20.00		(kN/m ³)
cu	res. al taglio nd terreno di fondaz.		160.00		(kN/mq)

F = qlim*B*/N

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO COMMESSA RS3U LOTTO

40 D 29

CODIFICA

DOCUMENTO MU1100 001

REV. F

FOGLIO **146 di 196**

Condizione sismica -

VERIFICA ALLO SCORRIMENTO

Risultante forze verticali (N)

I = Pm + Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv 413.73 (kN/m)

Risultante forze orizzontali (T)

T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh 99.74 (kN/m)

Coefficiente di attrito alla base (f)

 $f = tg\phi 1'$ 0.38 (-)

Fs = (N*f + Sp)/T 1.59 > 1

VERIFICA AL RIBALTAMENTO

Momento stabilizzante (Ms)

Ms = Mm + Mt + Mfext3 1019.07 (kNm/m)

Momento ribaltante (Mr)

Mr = MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts 240.35 (kNm/m)

 $Fr = Ms/Mr \qquad 4.24 > 1$

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risulta	ante forze	e verticali (N)	Nmin	Nmax	
N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	413.73	413.73	(kN/m)

Risultante forze orizzontali (T)

T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh - Sp 99.74 (kN/m)

Risultante dei momenti rispetto al piede di valle (MM)

 $MM = \sum M \qquad 777.67 \quad 777.67 \quad (kNm/m)$

Momento rispetto al baricentro della fondazione (M)

M = Xc*N - MM 91.16 (kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U 40 D 29 CL MU1100 001 147 di 196

7.14

Nmax

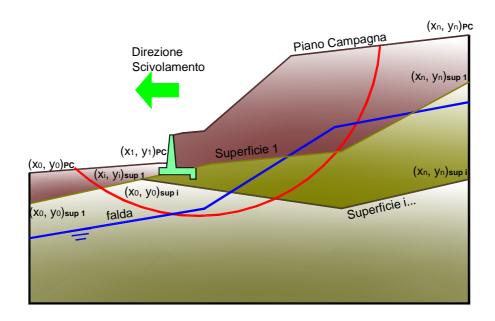
1.2

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

FS carico limite

qlim = c'Nc*ic + q_0 *Nq*iq + 0,5* γ 1*B*N γ *i γ

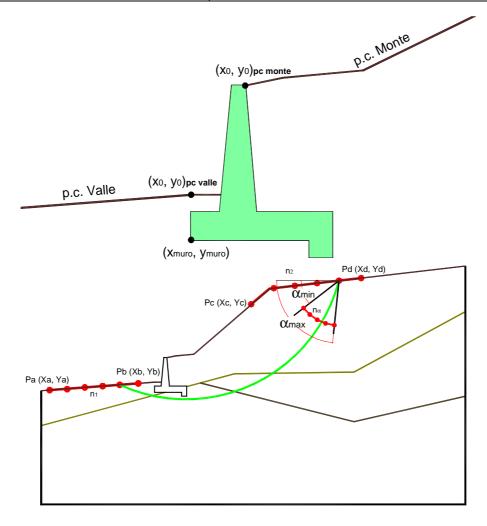

ES carico li	mite F = alim*R*/ N	Nmin	7.14	>	12
qlim	(carico limite unitario)		785.59	785.59	(kN/m ²)
(fondazione na	striforme m = 2)				
iq = (1 - T/(N + ic = (1 - m T / ir) + ir) = (1 - T/(N + ir) = (1 - T/(N + ir) + ir) = (1 - T/(N + i	B* cu*Nc))		1.00 0.94 	1.00 0.94	(-) (-) (-)
l valori di ic, iq	e iγ sono stati valutati con le espressioni suggerite d	a Vesic (1975)			
$Nq = tg^{2}(45 + e^{2})$ $Nc = (Nq - 1)/t_{1}$ $N\gamma = 2*(Nq + 1)$			1.00 5.14 0.00		(-) (-) (-)
l valori di Nc, N	q e Ng sono stati valutati con le espressioni suggerit	e da Vesic (197	75)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.22 3.76	0.22 3.76	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		16.00		(kN/m ²)
γ1	peso unità di volume terreno fondaz.		20.00		(kN/m³)
cu	res. al taglio nd terreno di fondaz.		160.00		(kN/mq)

F = qlim*B*/N

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LLEGAME LTANISE	NTO PALERN TTA XIRBI – E	NA – CATANIA – 10 – CATANIA NNA (LOTTO 4a)		10
TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO	COMMESSA RS3U	LOTTO 40 D 29	CODIFICA	DOCUMENTO MU1100 001	REV.	FOGLIO 148 di 196

12.3.6 VERIFICA DI STABILITÀ GLOBALE – COND. NON DRENATE

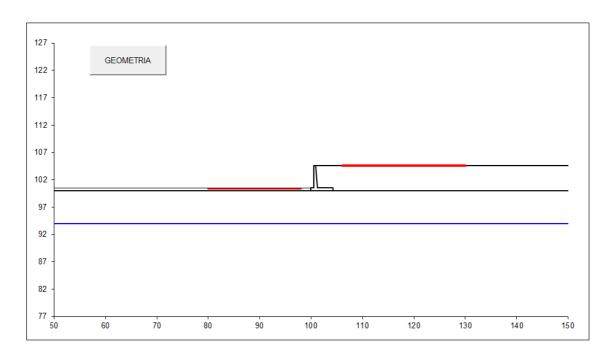
Le analisi di stabilità, di seguito riportate, sono state effettuate limitando la ricerca delle potenziali superfici di scorrimento critiche alla fascia più prossima alla linea ferroviaria.


	γ [kN/m³]	φ [°]	c [kPa]	Descrizione
materiale 1	20.00	38	0	Rilevato - riporto
materiale 2	20.00	18.5	160	FYN4
materiale 3				
materiale 4				

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 149 di 196

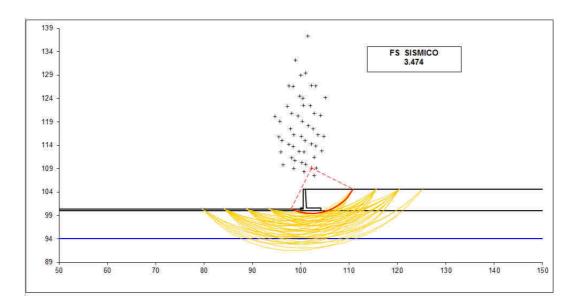


	p.c. va	lle		p.c. mo	nte		superfic	ie 1		superfic	cie 2		superfic	ie 3		foldo	
		materiale 1		\blacksquare			mater	iale 2		mater	riale 4		mater	riale 2		[olda	
	х	у		X	у		X	у		x	у		х	у		X	y
0	100.000	100.400	0	100.900	104.600	0	50.000	100.000	0			0			0	50.000	94.000
1	50.000	100.400	1	150.000	104.600	1	150.000	100.000	1			1			1	150.000	94.000
2			2			2			2			2			2		
3			3			3			3			3			3		
4			4			4			4			4			4		
5			5			5			5			5			5		
6			6			6			6			6			6		
7			7			7			7			7			7		
8			8			8			8			8			8		
9			9			9			9			9			9		
10			10			10			10			10			10		

Sovraccarichi

		Xin	Чin	 Xfin	9fin	% SiSma
sovraccarico 1	✓	107.600	0	112.250	0	20%
sovraccarico 2						

#strisce
30


# Superfici Calcolate	FS Bish	•
129	STATICO	7.716
129	SISMICO	3.474

Condizioni statiche

Condizioni sismiche

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 152 di 196

12.3.7 VERIFICA DEGLI SPOSTAMENTI SLD

Si riporta di seguito la verifica degli spostamenti permanenti indotti dal sisma per lo Stato Limite di Danno. Si è verificato che tale spostamento, determinato così come riportato all'interno del cap. 7.3.2 della presente relazione, risulti inferiore allo spostamento orizzontale massimo ammissibile in testa all'opera di sostegno, che può essere assunto, in condizioni sismiche, al più pari a 2cm.

ag	0.048					
a _g Ss	1.5					
St	1					
В	0.44					
Α	-8.07					
ac	0.224					
amax	0.072					
d =	8.2387E-09	mm	<	20	mm	OK

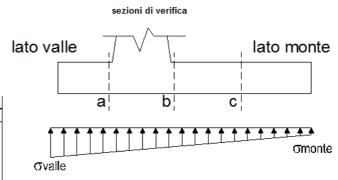
TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA FOGLIO DOCUMENTO REV. RS3U 40 D 29 MU1100 001 153 di 196 CL

12.4 VERIFICHE STRUTTURALI

12.4.1 CALCOLO DELLE SOLLECITAZIONI

Reazione del terreno


ovalle = N / A + M / Wgg

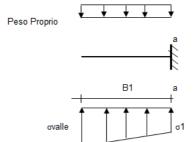
omonte = N / A - M / Wgg

A = 1.0*B (m²)4.20

 $Wgg = 1.0*B^2/6$ (m³)2.94

	N	M	σvalle	σmonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
statico	442.38	64.62	127.31	83.35
	442.38	64.62	127.31	83.35
sisma+	438.13	99.93	138.31	70.33
	438.13	99.93	138.31	70.33
sisma-	413.73	91.16	129.51	67.50
	413.73	91.16	129.51	67.50

Mensola Lato Valle


Peso Proprio. PP =

15.00 (kN/m)

 $Ma = \ \sigma 1^*B1^2/2 + (\sigma valle - \sigma 1)^*B1^2/3 - PP^*B1^2/2^*(1\pm kv)$

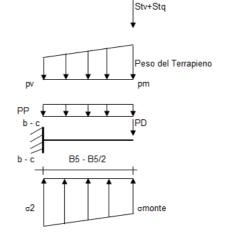
 $Va = \sigma 1*B1 + (\sigma valle - \sigma 1)*B1/2 - PP*B1*(1\pm kv)$

0000	σvalle	σ1	Ma	Va
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
statico	127.31	122.08	13.82	54.85
	127.31	122.08	13.82	54.85
	138.31	130.21	15.02	61.45
sisma+	138.31	130.21	15.08	61.45
sisma-	129.51	122.13	14.06	57.05
	129.51	122.13	14.01	57.05

Mensola Lato Monte

PP	=	15.00	(kN/m^2)	peso p
PD	=	0.00	(kN/m)	peso p

proprio soletta fondazione proprio dente


			•	•	
		Nmin	N max stat	N max sism	
pm	=	101.60	101.60	101.60	(kN/m ²)
pvb	=	101.60	101.60	101.60	(kN/m ²)
pvc	=	101.60	101.60	101.60	(kN/m ²)

 $Mb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5^2/2 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb)^*B5^2/6 - (pm-p$ $-(Stv+Sqv)*B5-PD*(1\pm kv)*(B5-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2$

 $Mc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2)^2/2 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(1 \pm kv)^*(B5/2)^2/3 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(1 \pm kv)^*(B5/2)^2/3 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(1 \pm kv)^*(B5/2)^2/3 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(1 \pm kv)^*(B5/2)^2/3 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(B5/2)^2/3 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(B5/2)^2/3 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(B5/2)^2/6 - (pm-pvc)^2/6 - (pm-pvc)$

-(Stv+Sqv)*(B5/2)-PD*(1±kv)*(B5/2-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

 $Vb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma 2b - \sigma_{monte})^*B5/2 - (pm - pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)$ $Vc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma 2c - \sigma_{monte})^*(B5/2)/2 - (pm-pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 29	CL	MU1100 001	В	154 di 196

	omonte	σ2b	Mb	Vb	σ 2c	Mc	Vc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m ²]	[kNm]	[kN]
statico	83.35	114.64	-102.01	-52.64	99.00	-31.33	-38.01
	83.35	114.64	-102.01	-52.64	99.00	-31.33	-38.01
	70.33	118.72	-149.14	-75.64	94.53	-46.30	-55.91
sisma+	70.33	118.72	-149.14	-75.64	94.53	-46.30	-55.91
sisma-	67.50	111.65	-139.29	-71.17	89.57	-43.04	-52.08
	67.50	111.65	-139.29	-71.17	89.57	-43.04	-52.08

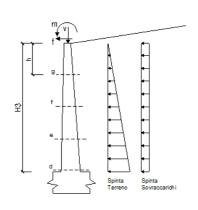
CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}}^* \gamma^* (1 \pm \text{kv})^* h^{2*} h/3$

 $\begin{array}{lll} \text{Mt sism} &= \frac{1}{2} * \gamma * (\text{Kas}_{\text{orizz}} * (1 \pm k v) + \text{Ka}_{\text{orizz}})^* h^{2*} h/2 & o * h/3 \\ \text{Mq} &= \frac{1}{2} * \text{Ka}_{\text{orizz}} * q^* h^2 & & \\ \text{Mext} &= m + f^* h & & & \\ \end{array}$

 $M_{inerzia} = \Sigma P m_i^* b_i^* kh$


N_{ext} = v

N $_{pp+inerzia}$ = $\Sigma Pm_i^*(1\pm kv)$

Vt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²

 $Vt \ sism = \ {^{1\!\!/}_{2}} * \gamma * (Kas_{orizz.}*(1\pm kv)-Ka_{orizz.})*h^{2}$

 $Vq = Ka_{orizz}^*q^*h$ $V_{ext} = f$ $V_{inerzia} = \Sigma Pm_i^*kh$

condizione statica

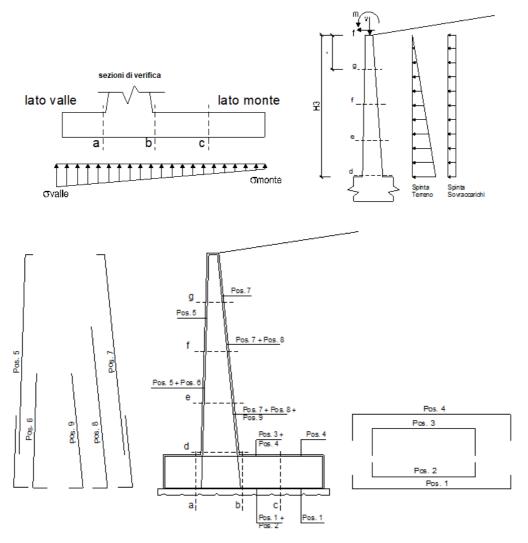
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
SEZIONE	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	65.97	41.11	0.00	107.08	1.00	55.50	56.50
e-e	3.00	27.83	23.12	0.00	50.95	1.00	38.72	39.72
f-f	2.00	8.25	10.28	0.00	18.52	1.00	23.88	24.88
q-q	1.00	1.03	2.57	0.00	3.60	1.00	10.97	11.97

sezione	h	Vt	Vq	V_{ext}	V _{tot}
Sezione	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	49.48	20.55	0.00	70.03
e-e	3.00	27.83	15.41	0.00	43.25
f-f	2.00	12.37	10.28	0.00	22.65
q-q	1.00	3.09	5.14	0.00	8.23

condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	50.75	7.42	35.27	0.00	5.57	99.01	1.00	57.03	58.03
e-e	3.00	21.41	3.13	19.84	0.00	2.97	47.35	1.00	39.79	40.79
f-f	2.00	6.34	0.93	8.82	0.00	1.25	17.34	1.00	24.54	25.54
g-g	1.00	0.79	0.12	2.20	0.00	0.29	3.41	1.00	11.27	12.27

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	38.06	5.57	17.64	0.00	3.07	64.33
e-e	3.00	21.41	3.13	13.23	0.00	2.14	39.91
f-f	2.00	9.52	1.39	8.82	0.00	1.32	21.04
q-q	1.00	2.38	0.35	4.41	0.00	0.61	7.74


condizione sismica -

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	50.75	4.63	35.49	0.00	5.57	96.43	1.00	53.97	54.97
e-e	3.00	21.41	1.95	19.96	0.00	2.97	46.30	1.00	37.65	38.65
f-f	2.00	6.34	0.58	8.87	0.00	1.25	17.04	1.00	23.21	24.21
a-a	1.00	0.79	0.07	2.22	0.00	0.29	3.38	1.00	10.67	11.67

sezione	h	Vt stat	Vt sism	Vq	V_{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.00	38.06	3.47	17.74	0.00	3.07	62.35
e-e	3.00	21.41	1.95	13.31	0.00	2.14	38.81
f-f	2.00	9.52	0.87	8.87	0.00	1.32	20.58
g-g	1.00	2.38	0.22	4.44	0.00	0.61	7.64

12.4.2 VERIFICHE SLU

Armatura minima

L'armatura minima principale in fondazione deve essere in percentuale non inferiore allo 0.20% dell'area di conglomerato.

L'armatura minima principale presente in zona tesa deve essere in percentuale non inferiore allo 0.15% dell'area di conglomerato per l'intera lunghezza.

L'armatura secondaria, ortogonale a quella principale, deve essere pari al massimo delle seguenti percentuali:

- 0.10% dell'area di conglomerato in entrambi i lembi;
- 20% dell'armatura principale.

Muro h = 4.0m su fondazione diretta

ARMATURE

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato
1	5.0	20		5	5.0	20	
2	0.0	0		6	0.0	0	
3	0.0	0		7	5.0	20	
4	5.0	20		8	0.0	0	
				9	0.0	0	

Pertanto l'armatura secondaria sarà pari a:

sez a - a: $\phi 10/20$ cm (ripartitori in fondazione e in elevazione);

sez b – b: ϕ 10/20cm (ripartitori in fondazione);

sez c – c: ϕ 10/20cm (ripartitori in fondazione);

sez d - d: $\phi 10/20$ cm (ripartitori in fondazione);

sez e – e: \$10/20cm (ripartitori in fondazione);

sez f – f: ϕ 10/20cm (ripartitori in fondazione);

sez g - g: $\phi 10/20$ cm (ripartitori in fondazione);

Sez.	M	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm²)	(cm²)	(kNm)
a - a	14.19	0.00	0.60	15.71	15.71	315.06
b - b	-126.78	0.00	0.60	15.71	15.71	315.06
C - C	-42.56	0.00	0.60	15.71	15.71	315.06
d - d	107.09	56.50	0.71	15.71	15.71	399.12
е -е	50.96	39.72	0.63	15.71	15.71	345.06
f-f	18.53	24.88	0.56	15.71	15.71	292.71
g - g	3.60	11.97	0.48	15.71	15.71	241.86

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	V_{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	_
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- -
a - a	58.18	0.60	212.70	10	20	20	21.8	916.23	Armatura a taglio non necessaria
b - b	55.73	0.60	212.70	10	20	20	21.8	916.23	Armatura a taglio non necessaria
C - C	49.67	0.60	212.70	10	20	20	21.8	916.23	Armatura a taglio non necessaria
d - d	70.04	0.71	246.47	10	20	20	21.8	1106.39	Armatura a taglio non necessaria
е -е	43.25	0.63	224.14	10	20	20	21.8	972.41	Armatura a taglio non necessaria
f-f	22.65	0.56	207.20	10	20	20	21.8	838.43	Armatura a taglio non necessaria
g - g	8.23	0.48	189.58	10	20	20	21.8	704.46	Armatura a taglio non necessaria

12.4.3 VERIFICHE SLE TENSIONE

Condizione Statica

Sez.	M	N	h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	11.56	0.00	0.60	15.71	15.71	0.32	15.22
b - b	-78.43	0.00	0.60	15.71	15.71	2.18	103.25
C - C	-25.11	0.00	0.60	15.71	15.71	0.70	33.06
d - d	82.38	56.50	0.71	15.71	15.71	1.72	71.81
е -е	39.20	39.72	0.63	15.71	15.71	1.01	36.42
f-f	14.25	24.88	0.56	15.71	15.71	0.46	13.11
g - g	2.77	11.97	0.48	15.71	15.71	0.11	1.48

Condizione Sismica

COMMIZION	ic oldillica						
Sez.	M	N	h	Af	A'f	σC	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	14.14	0.00	0.60	15.71	15.71	0.39	18.61
b - b	-126.78	0.00	0.60	15.71	15.71	3.52	166.91
C - C	-42.56	0.00	0.60	15.71	15.71	1.18	56.03
d - d	99.02	54.97	0.71	15.71	15.71	2.06	90.18
е -е	47.36	38.65	0.63	15.71	15.71	1.22	46.76
f-f	17.34	24.21	0.56	15.71	15.71	0.57	17.69
g - g	3.41	11.67	0.48	15.71	15.71	0.14	2.53

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

12.4.4 VERIFICHE SLE FESSURAZIONE

condizione Frequente

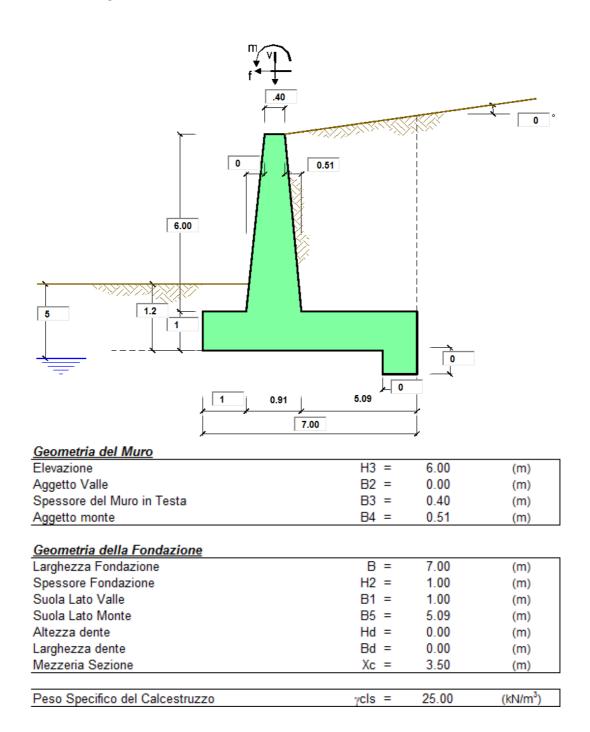
Sez.	M	N	h	Af	A'f	σc	σf	wk	W _{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	11.56	0.00	0.60	15.71	15.71	0.32	15.22	0.024	0.200
b - b	-78.43	0.00	0.60	15.71	15.71	2.18	103.25	0.161	0.200
C - C	-25.11	0.00	0.60	15.71	15.71	0.70	33.06	0.051	0.200
d - d	82.38	56.50	0.71	15.71	15.71	1.72	71.81	0.120	0.200
e -e	39.20	39.72	0.63	15.71	15.71	1.01	36.42	0.056	0.200
f-f	14.25	24.88	0.56	15.71	15.71	0.46	13.11	0.018	0.200
g - g	2.77	11.97	0.48	15.71	15.71	0.11	1.48	0.002	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

condizione Quasi Permanente

Sez.	M	N	h	Af	A'f	σc	σf	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	11.56	0.00	0.60	15.71	15.71	0.32	15.22	0.024	0.200
b - b	-78.43	0.00	0.60	15.71	15.71	2.18	103.25	0.161	0.200
C - C	-25.11	0.00	0.60	15.71	15.71	0.70	33.06	0.051	0.200
d - d	82.38	56.50	0.71	15.71	15.71	1.72	71.81	0.120	0.200
e -e	39.20	39.72	0.63	15.71	15.71	1.01	36.42	0.056	0.200
f-f	14.25	24.88	0.56	15.71	15.71	0.46	13.11	0.018	0.200
g - g	2.77	11.97	0.48	15.71	15.71	0.11	1.48	0.002	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)


12.4.5 CALCOLO INCIDENZA ARMATURA

	TIPO 1								
	MURO a mensola	MU11-TIPO1							
MU11	PARTE D'OPERA	INCIDENZA (Kg/mc)							
M	Elevazione	60							
	Fondazione	50							

13. PROGETTO E VERIFICA DEL MURO DI SOSTEGNO "TIPO 2"

13.1 DATI DI INPUT

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

Muro libero di traslare o ruotare

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 161 di 196

Condizioni drenate

				valori cara	tteristici	valori di progetto		
Dati 0	Geotecnici			SLE		STR/GEO	EQU	
Dati	Angolo di attrito del terrapieno	(°)	φ'	38.0	0	38.00	38.00	
Dati rrapie	Peso Unità di Volume del terrapieno	(kN/m³)	7	20.0	0	20.00	20.00	
	Angolo di attrito terreno-superficie ideale	(°)	δ	0.00)	0.00	0.00	
Fondazione	Condizioni		drenate	e Non D	renate			
daz	Coesione Terreno di Fondazione	(kPa)	c1'	20.0	0	20.00	20.00	
Fon	Angolo di attrito del Terreno di Fondazione	(°)	φ1'	21.0	0	21.00	21.00	
	Peso Unità di Volume del Terreno di Fondazione	(kN/m³)	γ1	20.0	0	20.00	20.00	
Dati Terreno	Peso Unità di Volume del Rinterro della Fondazione	(kN/m³)	γd	20.0	0	20.00	20.00	
; =	Profondità "Significativa" (n.b.: consigliata H = 2*B)	(m)	Hs	14.0	0			
Da	Modulo di deformazione	(kN/m²)	E	2000	00			
	Accelerazione sismica		a _q /g	0.097	(-)	1		
	Coefficiente Amplificazione Stratigrafico		S _S	1.5	(-)			
:5	Coefficiente Amplificazione Topografico		S_T	1	(-)	RIBALTA	MENTO	
Sismici	Coefficiente di riduzione dell'accelerazione massima		βs	0.38	(-)	βs	0.57	
Dati 8	Coefficiente sismico orizzontale		kh	0.05529	(-)	kh	0.08294	
Ö	Coefficiente sismico verticale		kv	0.0276	(-)	kv	0.04147	

				STR/GEO	RIB
	Coeff. di Spinta Attiva Statico	ka	0.238	0.238	0.238
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.265	0.265	0.279
inta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.267	0.267	0.283
S effi	Coeff. Di Spinta Passiva	kp	2.117	2.117	2.117
ပိ	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2.037	2.037	1.996
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	2.032	2.032	1.985

si

○ no

			Γ	valori caratteristici	valori di p	rogetto
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
Carichi	Sovraccarico permanente Sovraccarico su zattera di monte	(kN/m ²)	qp	16.62	21.61	21.61
Carichi ermanen	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
ပိုင်း မြောင်	Forza Verticale in Testa permanente	(kN/m)	vp	1.00	1.00	1.00
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
	Sovraccarico Accidentale in condizioni statiche	(kN/m²)	q	0.00	0.00	0.00
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statich	(kN/m)	f	0.00	0.00	0.00
Statiche	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
స్ట్ర్ హ	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	0.00	0.00
	Coefficienti di combinazione condizione freque	nte Ψ1	1.00	condizione quasi permane	nte Ψ2	0.00
.⊑ ø	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	0.00		
izio Pich	Forza Orizzontale in Testa accidentale in condizioni sismicl	(kN/m)	fs	0.00		
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
0 00	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

Condizioni non drenate

Coeff. Di Spinta Passiva Sismica sisma -

					-	valori ca	aratteristici	valori di	progetto
Dati (Geotecnici					5	SLE	STR/GEO	EQU
eno	Angolo di attrito del terrapieno		(°)		φ'	3	8.00	38.00	38.00
Dati Terrapieno	Peso Unità di Volume del terrapieno		(kN/m³)		7	2	0.00	20.00	20.00
	Angolo di attrito terreno-superficie ideale		(°)		δ	(0.00	0.00	0.00
Dati Terreno Fondazione	Condizioni			○ dre	enate	e 💿 No	n Drenate		
daz	Resistenza a Taglio non drenata		(kPa)	(cu	16	50.00	160.00	160.00
For	Angolo di attrito Terreno-Fondazione		(°)	(φ1'	2	1.00	21.00	21.00
2	Peso Unità di Volume del Terreno di Fondazione		(kN/m³)		γ1	2	0.00	20.00	20.00
erre	Peso Unità di Volume del Rinterro della Fondazione		(kN/m³)		γd	2	0.00	20.00	20.00
∓	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)	H	Hs	1	4.00		
Da	Modulo di deformazione		(kN/m²)		Е	2	0000		
	A I			_	-	0.007		7	
	Accelerazione sismica				g/g	0.097	(-)		
-5	Coefficiente Amplificazione Stratigrafico				Ss	1.5	(-)		
Ë	Coefficiente Amplificazione Topografico				S _T	1	(-)	RIBALTA	
Dati Sismici	Coefficiente di riduzione dell'accelerazione massima	1			βs	0.38	(-)	βs	0.57
Dati	Coefficiente sismico orizzontale Coefficiente sismico verticale				kh	0.05529	(-)	kh	0.08294
					kv	0.0276	(-)	kv	0.04147
	Muro libero di traslare o ruotare				•	si () no		
						STI	R/GEO	RI	В
	Coeff. di Spinta Attiva Statico	ka	0.238			0.238		0.238	
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.265			0.265		0.279	
fficient Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.267			0.267		0.283	
effic Spi	Coeff. Di Spinta Passiva	kp	1.000			1.000		1.000	
Ö	Coeff. Di Spinta Passiva Sismica sisma +	kps+	1.000			1.000		1.000	

			- 1	valori caratteristici	valori di p	rogetto
Carichi	<u>Agenti</u>			SLE - sisma	STR/GEO	EQU
Carichi permanenti	Sovraccarico permanente Sovraccarico su zattera di monte	(kN/m ²)	qp	16.62	21.60	21.60
Carichi ermanen	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
S E	Forza Verticale in Testa permanente	(kN/m)	vp	1.00	1.00	1.00
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
	Sovraccarico Accidentale in condizioni statiche	(kN/m ²)	q	0.00	0.00	0.00
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statich	(kN/m)	f	0.00	0.00	0.00
atic	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
S &	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	0.00	21.60 0.00 1.00 0.00 0.00 0.00 0.00 0.00	0.00
	Coefficienti di combinazione condizione freque		1.00	condizione quasi permane		0.00
.E @	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	0.00		
izio	Forza Orizzontale in Testa accidentale in condizioni sismicl	(kN/m)	fs	0.00		
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
0 0	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

1.000

kps-

1.000

1.000

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U 40 D 29 CL MU1100 001 В 163 di 196

CARATTERISTICHE DEI MATERIALI STRUTTURALI

<u>Calcestruzzo</u>		<u>Acciaio</u>
classe cls C30/37 ▼		tipo di acciaio
Rck 37	(MPa)	
fck 30	(MPa)	fyk = 450 (MPa)
fcm 38	(MPa)	
Ec 32837	(MPa)	γ s = 1.15
α _{oc} 0.85		
γ c 1.50		fyd = fyk / γ s / γ E = 391.30 (MPa)
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma c $ 17.00	(MPa)	Es = 210000 (MPa)
$f_{ctm} = 0.30 * f_{ck}^{2/3}$ 2.90	(MPa)	ε _{ys} = 0.19%
Tensioni limite (tensioni ammissibili) condizioni statiche σ _c 18 Mpa σ _f 360 Mpa		coefficiente omogeneizzazione acciaio n = 15
		<u>Copriferro</u> (distanza asse armatura-bordo)
condizioni sismiche σ _c 18 Mpa		c = 7.00 (cm)
,		C = 7.00 (cm)
σ _f 360 Mpa		Copriferro minimo di normativa (ricoprimento armatura)
		$c_{min} = 4.00$ (cm)
Valore limite di apertura delle fessure		<u>Interferro tra I e II strato</u>
Frequente w1	0.2 mm	i _{I-II} 5.00 (cm)
Quasi Permanente w1 ▼	0.2 mm	

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 164 di 196

13.2 CALCOLO DELLE AZIONI

13.2.1 FORZE VERTICALI E INERZIALI

FORZE VERTICALI

- Peso del Mur	o (Pm)		SLE	STR/GEO	EQU/RIB
Pm1 =	(B2*H3*ycls)/2	(kN/m)	0.00	0.00	0.00
Pm2 =	(B3*H3*γcls)	(kN/m)	60.00	60.00	60.00
Pm3 =	(B4*H3*γcls)/2	(kN/m)	38.25	38.25	38.25
Pm4 =	(B*H2*γcIs)	(kN/m)	175.00	175.00	175.00
Pm5 =	(Bd*Hd*γcIs)	(kN/m)	0.00	0.00	0.00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	273.25	273.25	273.25
- Peso del terro	eno e sovr. perm. sulla scarpa di monte del muro (Pt)				
Pt1 =	(B5*H3*γ')	(kN/m)	610.80	610.80	610.80
Pt2 =	(0,5*(B4+B5)*H4*γ')	(kN/m)	0.00	0.00	0.00
Pt3 =	(B4*H3*γ')/2	(kN/m)	30.60	30.60	30.60
Sovr =	qp * (B4+B5)	(kN/m)	0.00	0.00	0.00
Pt =	Pt1 + Pt2 + Pt3 + Sovr	(kN/m)	641.40	641.40	641.40
- Sovraccarico	accidentale sulla scarpa di monte del muro				
Sovr acc. Stat	q * (B4+B5)	(kN/m)	0	0	
Sovr acc. Sisn	n qs * (B4+B5)	(kN/m)	0		

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

		г			
- Muro (Mm)			SLE	STR/GEO	EQU/RIB
Mm1 =	Pm1*(B1+2/3 B2)	(kNm/m)	0.00	0.00	0.00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	72.00	72.00	72.00
Mm3 =	Pm3*(B1+B2+B3+1/3 B4)	(kNm/m)	60.05	60.05	60.05
Mm4 =	Pm4*(B/2)	(kNm/m)	612.50	612.50	612.50
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00	0.00	0.00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	744.55	744.55	744.55
- Terrapieno e s	sovr. perm. sulla scarpa di monte del muro				
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	2721.11	2721.11	2721.11
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	53.24	53.24	53.24
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	2774.36	2774.36	2774.36
- Sovraccarico	accidentale sulla scarpa di monte del muro				
	(B1+B2+B3+1/2(B4+B5))	(kNm/m)	0	0	
	(B1+B2+B3+1/2(B4+B5))	(kNm/m)	0		

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 165 di 196

- Inerzia orizzo	MURO E DEL TERRAPIENO ntale e verticale del muro (Ps)			
Ps h=	Pm*kh	(kN/m)	15.11	22.66
Ps v=	Pm*kv	(kN/m)	7.55	11.33
- Inerzia orizzo	ntale e verticale del terrapieno a tergo del muro (Pts))		
Ptsh =	Pt*kh	(kN/m)	35.46	53.19
Ptsv =	Pt*kv	(kN/m)	17.73	26.60
- Incremento o	rizzontale di momento dovuto all'inerzia del muro (MF	Ps h)		
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)	0.00	0.00
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)	13.27	19.90
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)	6.34	9.52
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)	4.84	7.26
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)	0.00	0.00
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	24.45	36.68
- Incremento ve MPs1 v= MPs2 v= MPs3 v= MPs4 v= MPs5 v= MPs v=	erticale di momento dovuto all'inerzia del muro (MPs kv*Pm1*(B1+2/3*B2) kv*Pm2*(B1+B2+B3/2) kv*Pm3*(B1+B2+B3+B4/3) kv*Pm4*(B/2) kv*Pm5*(B-Bd/2) MPs1+MPs2+MPs3+MPs4+MPs5	v) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m) (kNm/m)	0.00 1.99 1.66 16.93 0.00 20.58	0.00 2.99 2.49 25.40 0.00 30.87
- Incremento o	rizzontale di momento dovuto all'inerzia del terrapieno	o (MPts h)		
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)	135.08	202.63
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)	0.00	0.00
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)	8.46	12.69
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)	143.54	215.32
- Incremento ve	erticale di momento dovuto all'inerzia del terrapieno (l	MPts v)		
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kŃm/m)	75.23	112.84
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)	0.00	0.00
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)	1.83	2.75
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)	77.06	115.58

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 166 di 196

13.2.2 SPINTE IN CONDIZIONE STATICA

	TERRENO E DEL SOVRACCARICO condizione statica		SLE	STR/GEO	EQU/RIB
St =	0,5*y'*(H2+H3+H4+Hd)2*ka	(kN/m)	116.56	151.53	151.53
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	27.67	35.97	35.97
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	0.00	0.00	0.00
- Componente	orizzontale condizione statica				
Sth =	St*cos8	(kN/m)	116.56	151.53	151.53
Sqh perm =	Sq perm*cosδ	(kN/m)	27.67	35.97	35.97
Sqh acc =	Sq acc*cosô	(kN/m)	0.00	0.00	0.00
- Componente	verticale condizione statica				
Stv =	St*sen8	(kN/m)	0.00	0.00	0.00
Sqv perm=	Sq perm*senδ	(kN/m)	0.00	0.00	0.00
Sqv acc =	Sq acc*sen∂	(kN/m)	0.00	0.00	0.00
- Spinta passi	/a sul dente				
Sp=½*g1'*Hd2	!* ½* _{γ1} '*Hd ² *kp+(2*c ₁ '*kp ^{0.5} + _γ 1'*kp*H2')*Hd	0.00	0.00	0.00	

MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO			SLE	STR/GEO	EQU/RIB
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	271.98	353.57	353.57
MSt2 =	Stv*B	(kNm/m)	0.00	0.00	0.00
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	96.84	125.89	125.89
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	0.00	0.00	0.00
MSq2 perm=	Sqv perm*B	(kNm/m)	0.00	0.00	0.00
MSq2 acc =	Sqv acc*B	(kNm/m)	0.00	0.00	0.00
MSp = γ1'*l	Hd ³ *kp/3+(2*c1'*kp ^{0.5} + ₇ 1'*kp*H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp + m	(kNm/m)	0.00	0.00	0.00
Mfext2 =	(fp + f)*(H3 + H2)	(kNm/m)	0.00	0.00	0.00
Mfext3 =	(vp+v)*(B1 +B2 + B3/2)	(kNm/m)	1.20	1.20	1.20

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 167 di 196

13.2.3 SPINTE IN CONDIZIONE SISMICA +

SPINTE DEL	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU/RIB
	0,5* ₇ /*(H2+H3+H4+Hd)²*ka	(kN/m)	116.56	116.56	116.56
	0,5*·/*(1+kv)*(H2+H3+H4+Hd)²*kas*-Sst1 stat	(kN/m)	17.05	17.05	26.04
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas+	(kN/m)	30.86	30.86	32.50
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	0.00	0.00	0.00
554. 555	qo (zoa) ilao	(,	0.00	0.00	
- Componente	orizzontale condizione sismica +				
Sst1h stat =	Sst1 stat*cos8	(kN/m)	116.56	116.56	116.56
Sst1h sism =	Sst1 sism*cos8	(kN/m)	17.05	17.05	26.04
Ssq1h perm=	Ssq1 perm*cos8	(kN/m)	30.86	30.86	32.50
Ssq1h acc=	Ssq1 acc*cos8	(kN/m)	0.00	0.00	0.00
0					
- Componente v	verticale condizione sismica + Sst1 stat*senô	/IcN1/mm)	0.00	0.00	0.00
	Sst1 stat seno	(kN/m) (kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*senô	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*sen8	(kN/m)	0.00	0.00	0.00
Osq IV acc-	OSQT acc Sello	(101/111)	0.00	0.00	0.00
- Spinta passiv	a sul dente				
Sp=½*γ ₁ '(1+kv)	Hd ² *kps++(2*c ₁ '*kps+0.5+y1' (1+kv) kps+*H2')*Hd	(kN/m)	0.00	0.00	0.00
MOMENTI DE	LLA CDINTA DEL TEDDENO E DEL COVIDACCADI	co [
- Condizione si	LLA SPINTA DEL TERRENO E DEL SOVRACCARI smica +		SLE	STR/GEO	EQU/RIB
		_	•	•	
	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	271.98	271.98	271.98
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	39.78	39.78	60.76
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	108.01	108.01	113.75
MSsq2 =	Ssq1v * B	(kNm/m)	0.00	0.00	0.00
MSp =	_{γ1} '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + _γ 1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DO	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		1.20	

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 168 di 196

13.2.4 SPINTE IN CONDIZIONE SISMICA -

SPINTE DEL	TERRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU/RIB
	0,5*γ'*(H2+H3+H4+Hd)²*ka	(kN/m)	116.56	116.56	116.56
Sst1 sism =	0,5*γ'*(1-kv)*(H2+H3+H4+Hd)2*kas*-Sst1 stat	(kN/m)	10.64	10.64	16.50
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	31.05	31.05	32.95
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	0.00	0.00	0.00
- Componente	orizzontale condizione sismica -				
Sst1h stat =	Sst1 stat*cosô	(kN/m)	116.56	116.56	116.56
	Sst1 sism*cos8	(kN/m)	10.64	10.64	16.50
Ssq1h perm=	• •	(kN/m)	31.05	31.05	32.95
Ssq1h acc=	Ssq1 acc*cosδ	(kN/m)	0.00	0.00	0.00
	verticale condizione sismica -				
Sst1v stat =	Sst1 stat*sen∂	(kN/m)	0.00	0.00	0.00
	Sst1 sism*sen8	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*sen8	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*sen8	(kN/m)	0.00	0.00	0.00
- Spinta passiv					
Sp=½*γ ₁ ′(1-kv)	Hd ² *kps ⁻ +(2*c ₁ '*kps ^{-0.5} +γ1' (1-kv) kps ⁻ *H2')*Hd	(kN/m)	0.00	0.00	0.00
		_			
- Condizione si	LLA SPINTA DEL TERRENO E DEL SOVRACCARI smica -	co	SLE	STR/GEO	EQU/RIB
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	271.98	271.98	271.98
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	24.83	24.83	38.50
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
MSst2 sism =	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	108.68	108.68	115.33
MSsq2 =	Ssq1v * B	(kNm/m)	0.00	0.00	0.00
MSp =	γ ₁ '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} +γ1'*kps ^{+*} H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
	VUTI ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		1.20	

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERI NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISETTA XIRBI – ENNA (LOTTO 4a) OPERE DI SOSTEGNO DI LINEA					10
TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO	COMMESSA RS3U	LOTTO 40 D 29	CODIFICA CL	DOCUMENTO MU1100 001	REV.	FOGLIO 169 di 196

13.3 VERIFICHE GEOTECNICHE

13.3.1 VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. DRENATE

VERIFICA ALLO SCORRIMENTO (STR/GEO)

N	tante forze verticali (N) = Pm + Pt + v	+ Stv + Sqv perm + Sqv acc	915.65	(kN/m)		
Risultante forze orizzontali (T) T = Sth + Sqh + f 187.51 (kN/m)						
Coeff f	ficiente di attrito alla bas = tgφ1'	e (f)	0.38	(-)		
Fs	scorr.	(N*f + Sp) / T	1.87	>	1.1	
VER	RIFICA AL RIBALTAN	IENTO (EQU)				
Mom Ms	ento stabilizzante (Ms) = Mm + Mt +	Mfext3	3520.11	(kNm/m)		
	ento ribaltante (Mr)	. 15	470.50	/IN / >		
Mr	= MSt + MSq	+ Mfext1+ Mfext2 + MSp	479.50	(kNm/m)		
	= MSt + MSq ·	Ms / Mr	7.34	(KNm/m)	1.15	
Fs	ribaltamento	·			1.15	
Fs <u>VER</u>	ribaltamento	Ms / Mr			1.15 (kN/m)	
Fs <u>VER</u> Risult N	ribaltamento	Ms / Mr TE DELLA FONDAZIONE (STR/GEO) + Stv + Sqv (+ Sovr acc)	7.34 Nmin	> Nmax		
VER Risult N Risult T	ribaltamento EIFICA CARICO LIMI Itante forze verticali (N) = Pm + Pt + v Itante forze orizzontali (T = Sth + Sqh +	Ms / Mr TE DELLA FONDAZIONE (STR/GEO) + Stv + Sqv (+ Sovr acc)	7.34 Nmin 915.65	Nmax 915.65 187.51	(kN/m)	

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 170 di 196

3.87

Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

r 3 Carico II	IIIIC	r - qiiii b / N	Manager	2.07		1.4
FS carico li	mite	F = glim*B*/ N	Nmin	3.87	>	1.4
qlim	(carico limite un	itario)		533.85	533.85	(kN/m ²)
(fondazione na	striforme m = 2)					
$i\gamma = (1 - T/(N +$				0.62	0.62	(-)
iq = (1 - T/(N + ic = iq - (1 - iq))	• 1 11	(1 in cond. nd)		0.72 0.68	0.72 0.68	(-) (-)
l valori di ic, iq	e iγ sono stati val	utati con le espressioni suggerite (da Vesic (1975)			
$N_{\gamma} = 2*(N_q + 1)/(q + 1)$	2117	$2+\pi$ in cond. nd) in cond. nd)		6.20		(-) (-)
$Nq = tg^{2}(45 + q)$ Nc = (Nq - 1)/tq		1 in cond. nd)		7.07 15.81		(-)
I valori di Nc, N	lq e Ng sono stati	valutati con le espressioni sugger	ite da Vesic (19	75)		
e = M / N B*= B - 2e	eccentricità larghezza equiv	ralente		0.18 6.64	0.18 6.64	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico sta	abilizzante		24.00		(kN/m ²)
						(kN/m ³)
φ1' '1	•	terreno di fondaz. lume terreno fondaz.		21.00 15.43		(°)
c1'	coesione terreno	o di fondaz.		20.00		(kPa)

13.3.2 VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. DRENATE

Condizione sismica +

VERIFICA ALLO SCORRIMENTO

Fr	=	Ms / Mr	6.38	>	1
Mome Mr		tante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	552.06	(kNm/m)	
	ento stabi =	ilizzante (Ms) Mm + Mt + Mfext3	3520.11	(kNm/m)	
VER	IFICA AL	RIBALTAMENTO			
Fs	=	(N*f + Sp) / T	1.68	>	1
Coeffi f	ciente di =	attrito alla base (f) tgφ1'	0.38	(-)	
_	tante forz	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	215.05	(kN/m)	
Risult N	tante forz	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	940.94	(kN/m)	
VER	IFICA AL	LO SCORRIMENTO			

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante	forze verticali (N)	Nmin	Nmax	
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	940.94	940.94	(kN/m)
Risultante	forze orizzontali (T)			
T =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	215.05		(kN/m)
Risultante	dei momenti rispetto al piede di valle (MM)			
MM =	ΣΜ	3029.95	3029.95	(kNm/m)
Momento	rispetto al baricentro della fondazione (M)			
M =	Xc*N - MM	263.33	263.33	(kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 172 di 196

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

FS carico li	mite F = qlim*B*/ N	Nmin	3.40	>	1.2
qlim	(carico limite unitario)		496.95	496.95	(kN/m ²)
(fondazione na	striforme m = 2)				
iq = (1 - T/(N + ic = iq - (1 - iq)) $i\gamma = (1 - T/(N + iq))$	/(Nq - 1)		0.69 0.64 0.57	0.69 0.64 0.57	(-) (-)
l valori di ic, iq	e iγ sono stati valutati con le espressioni suggerite	da Vesic (1975)			
Nq = $tg^2(45 + q)$ Nc = (Nq - 1)/ tq N γ = 2*(Nq + 1)	, ,		7.07 15.81 6.20		(-) (-)
I valori di Nc, N	lq e Ng sono stati valutati con le espressioni sugge	rite da Vesic (19	75)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.28 6.44	0.28 6.44	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	24.00		(kN/m ²)	
c1' φ1' '/1	coesione terreno di fondaz. angolo di attrito terreno di fondaz. peso unità di volume terreno fondaz.		20.00 21.00 15.43		(kN/mq) (°) (kN/m³)
•	40 - 4 - 4 7 - 1 7 - 7				

Nmax

3.40

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO COMMESSA LOTTO

RS3U 40 D 29

CODIFICA

DOCUMENTO MU1100 001

REV.

FOGLIO 173 di 196

Condizione sismica -

VERIFICA ALLO SCORRIMENTO

Risultante forze verticali (N)

N = Pm + Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv 890.36 (kN/m)

Risultante forze orizzontali (T)

T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh 208.83 (kN/m)

Coefficiente di attrito alla base (f)

 $f = tg\phi 1'$ 0.38 (-)

Fs = (N*f + Sp)/T 1.64 > 1

VERIFICA AL RIBALTAMENTO

Momento stabilizzante (Ms)

Ms = Mm + Mt + Mfext3 3520.11 (kNm/m)

Momento ribaltante (Mr)

Mr = MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts 824.29 (kNm/m)

 $Fr = Ms/Mr \qquad 4.27 > 1$

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risulta	nte forze	verticali (N)	Nmin	Nmax	
N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	890.36	890.36	(kN/m)

Risultante forze orizzontali (T)

T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh - Sp 208.83 (kN/m)

Risultante dei momenti rispetto al piede di valle (MM)

 $MM = \Sigma M$ 2848.96 2848.96 (kNm/m)

Momento rispetto al baricentro della fondazione (M)

M = Xc*N - MM 267.32 267.32 (kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA RS3U CODIFICA CL

LOTTO

40 D 29

DOCUMENTO MU1100 001

REV. FOGLIO **B** 174 di 196

1.2

3.54

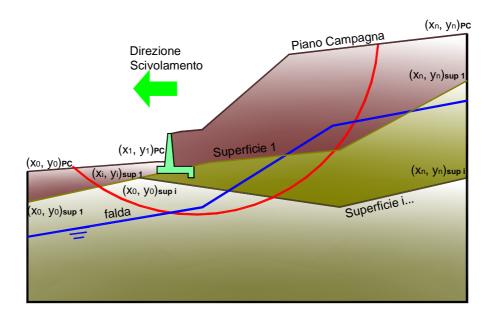
Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

FS carico limite

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

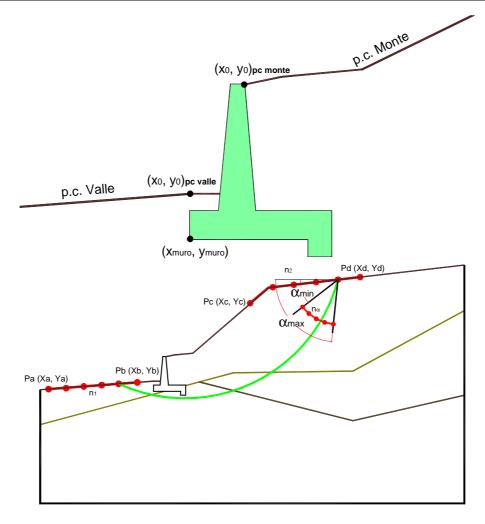

ES carico li	imite F = alim*R*/ N	Nmin	3.54	>	12
qlim	(carico limite unitario)		492.51	492.51	(kN/m ²)
(fondazione na	striforme m = 2)				
	B*c'cotgφ')) ^{m+1}		0.57	0.57	(-)
iq = (1 - T/(N + ic = iq - (1 - iq))			0.69 0.64	0.69 0.64	(-) (-)
l valori di ic, iq	e i γ sono stati valutati con le espressioni suggerite da '	Vesic (1975)			
	g(φ) (2+π in cond. nd))*tg(φ') (0 in cond. nd)		6.20		(-) (-)
$Nq = tg^2(45 + c)$	$\varphi'/2$)* $e^{(\pi^* t g(\varphi'))}$ (1 in cond. nd) $g(\varphi')$ (2+ π in cond. nd)		7.07 15.81		(-)
I valori di Nc, N	Nq e Ng sono stati valutati con le espressioni suggerite	da Vesic (197	5)		
B*= B - 2e	larghezza equivalente		6.40	6.40	(m)
e = M / N	eccentricità		0.30	0.30	(m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		24.00		(kN/m ²)
γ1	peso unità di volume terreno fondaz.	15.43		(kN/m³)	
c1' φ1'	coesione terreno di fondaz. angolo di attrito terreno di fondaz.		20.00 21.00		(kN/mq) (°)

F = qlim*B*/N

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO CO	LEGAME LTANISE	NTO PALERN ITA XIRBI – E	NA – CATANIA – 10 – CATANIA NNA (LOTTO 4a)		0
TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO	COMMESSA RS3U	LOTTO 40 D 29	CODIFICA CL	DOCUMENTO MU1100 001	REV.	FOGLIO 175 di 196

13.3.3 VERIFICA DI STABILITÀ GLOBALE – COND. DRENATE

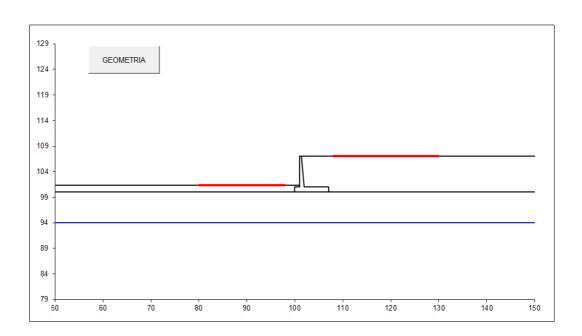
Le analisi di stabilità, di seguito riportate, sono state effettuate limitando la ricerca delle potenziali superfici di scorrimento critiche alla fascia più prossima alla linea ferroviaria.


	γ [kN/m³]	φ [°]	c [kPa]	Descrizione
materiale 1	20.00	38	0	Rilevato - riporto
materiale 2	20.00	18.5	20	FYN4
materiale 3				
materiale 4				

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

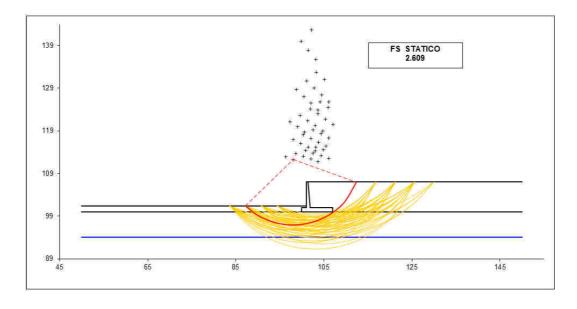
 RS3U
 40 D 29
 CL
 MU1100 001
 B
 176 di 196



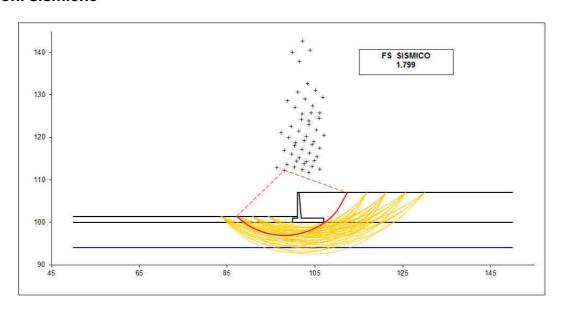
	p.c. va	lle		p.c. mo	nte		superfic	ie 1		superfic	ie 2		superfic	cie 3			
		materiale 1					mater	iale 2		mater	riale 4		mate	riale 2		[olda	
	x	у		X	у		X	у		x	у		х	у		X	у
0	100.000	101.400	0	101.400	107.000	0	50.000	100.000	0			0			0	50.000	94.000
1	50.000	101.400	1	150.000	107.000	1	150.000	100.000	1			1			1	150.000	94.000
2			2			2			2			2			2		
3			3			3			3			3			3		
4			4			4			4			4			4		
5			5			5			5			5			5		
6			6			6			6			6			6		
7			7			7			7			7			7		
8			8			8			8			8			8		
9			9			9			9			9			9		
10			10			10			10			10			10		

Sovraccarichi

		Xin	q _{in}	X _{fin}	q_{fin}	 % sisma
sovraccarico 1	~	110.000	0	114.650	0	20%
sovraccarico 2						



#strisce	
30	


# Superfici Calcolate	F\$ Bish	•
76	STATICO	2.609
70	SISMICO	1.799

Condizioni statiche

Condizioni sismiche

13.3.4 VERIFICA STATICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. NON DRENATE

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Risultante forze orizzontali (T)

MM =

 ΣM

Xc*N - MM

Sth + Sqh + f - Sp

Risultante dei momenti rispetto al piede di valle (MM)

Momento rispetto al baricentro della fondazione (M)

VEIXII IOAA	ELO SCORRIMENTO (STROLO)			
Risultante forz N =	e verticali (N) Pm + Pt + v + Stv + Sqv perm + Sqv acc	915.65	(kN/m)	
Risultante forz	e orizzontali (T) Sth + Sqh + f	187.50	(kN/m)	
Coefficiente di f =	attrito alla base (f) tgφ1'	0.38	(-)	
Fs scorr.	(N*f + Sp) / T	1.87	>	1.1
VERIFICA A	L RIBALTAMENTO (EQU)			
Momento stab Ms =	ilizzante (Ms) Mm + Mt + Mfext3	3520.11	(kNm/m)	
Momento ribal Mr =	tante (Mr) MSt + MSq + Mfext1+ Mfext2 + MSp	479.46	(kNm/m)	
Fs ribalta	mento Ms / Mr	7.34	>	1.15
VERIFICA C	CARICO LIMITE DELLA FONDAZIONE (STR/GEO)			
Risultante forz	e verticali (N) Pm + Pt + v + Stv + Sqv (+ Sovr acc)	Nmin 915.65	Nmax 915.65	(kN/m)

187.50

3040.65

164.13

187.50

(kN/m)

3040.65 (kNm/m)

164.13 (kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 180 di 196

5.73

Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

qlim = c'Nc*ic + q_0 *Nq*iq + 0,5* γ 1*B*N γ *i γ

r 3 carico II	inite F-qiiii B/N		E 70		1.4
FS carico li	mite F = qlim*B*/ N	Nmin	5.73	>	1.4
qlim	(carico limite unitario)		790.19	790.19	(kN/m ²)
(fondazione na	striforme m = 2)				
iq = (1 - T/(N + ic = (1 - m T / (ic = (1 - m T / (ic = (1 - T/(N + ic =	(B* cu*Nc))		1.00 0.93	1.00 0.93	(-) (-) (-)
l valori di ic, iq	e iγ sono stati valutati con le espressioni suggerite o	da Vesic (1975)			
$Nq = tg^{2}(45 + q)$ $Nc = (Nq - 1)/tq$ $N\gamma = 2*(Nq + 1)$	$g(\varphi')$ (2+ π in cond. nd)		1.00 5.14 0.00		(-) (-) (-)
I valori di Nc, N	q e Ng sono stati valutati con le espressioni suggeri	ite da Vesic (19	75)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.18 6.64	0.18 6.64	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		24.00		(kN/m ²)
71	peso unità di volume terreno fondaz.		20.00		(kN/m ³)
cu	res. al taglio nd terreno di fondaz.		160.00		(kPa)

13.3.5 VERIFICA SISMICA A RIBALTAMENTO, SCORRIMENTO E CARICO LIMITE VERTICALE - C. NON DRENATE

Condizione sismica +

VERIFICA ALLO SCORRIMENTO

VER	IFICA AL	LO SCORRIMENTO			
Risul N	tante forz	e verticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	940.94	(kN/m)	
Risul T	tante forz	e orizzontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	215.04	(kN/m)	
Coeff f	ficiente di =	attrito alla base (f) tgφ1'	0.38	(-)	
Fs	=	(N*f + Sp) / T	1.68	>	1
<u>VER</u>	RIFICA AL	. RIBALTAMENTO			
Mom Ms		lizzante (Ms) Mm + Mt + Mfext3	3520.11	(kNm/m)	
Mom Mr	ento ribalt =	ante (Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	552.03	(kNm/m)	
Fr	=	Ms / Mr	6.38	>	1
VER	RIFICA A	CARICO LIMITE DELLA FONDAZIONE			

Risultante forze verticali (N) N = Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	Nmin 940.94	Nmax 940.94	(kN/m)
Risultante forze orizzontali (T) T = Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	215.04		(kN/m)
Risultante dei momenti rispetto al piede di valle (MM) $MM = \Sigma M$	3029.98	3029.98	(kNm/m)
Momento rispetto al baricentro della fondazione (M) M = Xc*N - MM	263.30	263.30	(kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 CL
 MU1100 001
 B
 182 di 196

5.34

Nmax

1.2

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

FS carico limite

qlim = c'Nc*ic + q_0 *Nq*iq + 0.5* γ 1*B*N γ *i γ

ES carico li	mite F = alim*R*/ N	Nmin	5.34	>	12
qlim	(carico limite unitario)		779.87	779.87	(kN/m ²)
(fondazione na	striforme m = 2)				
iq = (1 - T/(N + ic = (1 - m T / iγ = (1 - T/(N +			1.00 0.92	1.00 0.92	(-) (-)
l valori di ic, iq	e iγ sono stati valutati con le espressioni suggerite	da Vesic (1975)			
$Nq = tg^{2}(45 + e^{2})$ Nc = (Nq - 1)/t $N\gamma = 2*(Nq + 1)$			1.00 5.14 0.00		(-) (-)
I valori di Nc, N	lq e Ng sono stati valutati con le espressioni sugge	erite da Vesic (19	75)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.28 6.44	0.28 6.44	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		24.00		(kN/m ²)
γ1	peso unità di volume terreno fondaz.		20.00		(kN/m ³)
cu	res. al taglio nd terreno di fondaz.		160.00		(kN/mq)

F = qlim*B*/N

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA LOTTO
RS3U 40 D 29

CODIFICA

DOCUMENTO MU1100 001

REV. FOGLIO **B** 183 di 196

Condizione sismica -

VERIFICA ALLO SCORRIMENTO

Risultante forze verticali (N)

N = Pm + Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv 890.36 (kN/m)

Risultante forze orizzontali (T)

T = Sst1h + Ssq1h + fp + fs + Ps h + Ptsh 208.83 (kN/m)

Coefficiente di attrito alla base (f)

 $f = tg\phi 1'$ 0.38 (-)

Fs = (N*f + Sp)/T 1.64 > 1

VERIFICA AL RIBALTAMENTO

Momento stabilizzante (Ms)

Ms = Mm + Mt + Mfext3 3520.11 (kNm/m)

Momento ribaltante (Mr)

Mr = MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts 824.26 (kNm/m)

 $Fr = Ms/Mr \qquad 4.27 > 1$

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Risultante forze verticali (N)

N = Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv

Nmin Nmax

890.36 (kN/m)

Risultante forze orizzontali (T)

T = Sst1h + Ssg1h + fp + fs + Ps h + Ptsh - Sp 208.83 (kN/m)

Risultante dei momenti rispetto al piede di valle (MM)

 $MM = \Sigma M$ 2848.99 (kNm/m)

Momento rispetto al baricentro della fondazione (M)

M = Xc*N - MM 267.29 (kNm/m)

TR01: MURO DI SOSTEGNO IN DX MU11

RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 29	CL	MU1100 001	В	184 di 196

5.62

Nmax

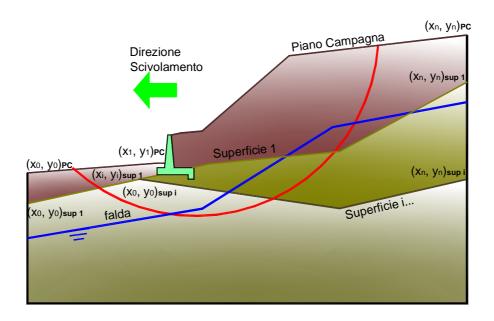
1.2

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

FS carico limite

qlim = c'Nc*ic + q_0 *Nq*iq + 0,5* γ 1*B*N γ *i γ

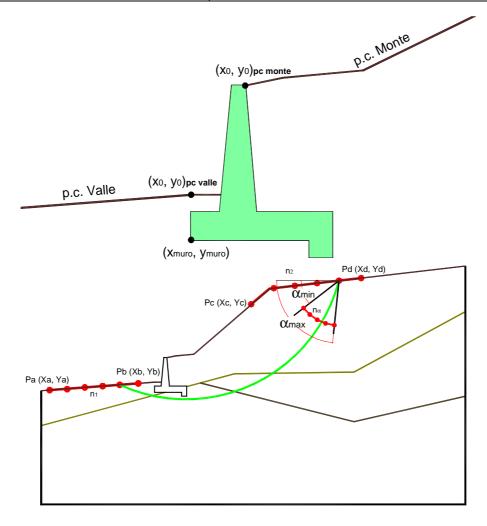

ES carico li	mite F = alim*R*/	Nmin	5.62	>	12
qlim	(carico limite unitario)		781.39	781.39	(kN/m ²)
(fondazione na	striforme m = 2)				
iq = (1 - T/(N + ic = (1 - m T / i + ic)) $i\gamma = (1 - T/(N + ic))$			1.00 0.92 	1.00 0.92	(-) (-)
l valori di ic, iq	e i γ sono stati valutati con le espression	ni suggerite da Vesic (1975)			
$Nq = tg^{2}(45 + t_{0})$ $Nc = (Nq - 1)/t_{0}$ $N\gamma = 2*(Nq + 1)$			1.00 5.14 0.00		(-) (-)
I valori di Nc, N	lq e Ng sono stati valutati con le espres	sioni suggerite da Vesic (197	75)		
e = M / N B*= B - 2e	eccentricità larghezza equivalente		0.30 6.40	0.30 6.40	(m) (m)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante		24.00		(kN/m ²)
γ1	peso unità di volume terreno fondaz.		20.00		(kN/m ³)
cu	res. al taglio nd terreno di fondaz.		160.00		(kN/mq)

F = qlim*B*/N

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO CO	LLEGAME LTANISE	NTO PALERN TTA XIRBI – E	NA – CATANIA – MO – CATANIA INNA (LOTTO 4a)		10
TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO	COMMESSA RS3U	LOTTO 40 D 29	CODIFICA CL	DOCUMENTO MU1100 001	REV.	FOGLIO 185 di 196

13.3.6 VERIFICA DI STABILITÀ GLOBALE - COND. NON DRENATE

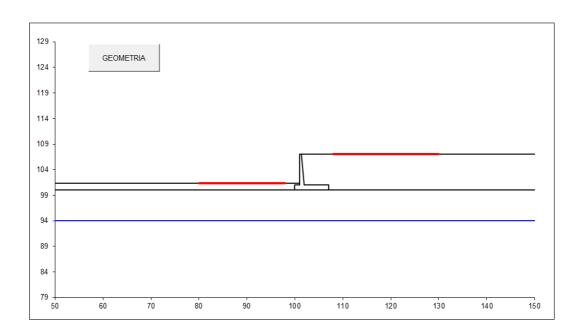
Le analisi di stabilità, di seguito riportate, sono state effettuate limitando la ricerca delle potenziali superfici di scorrimento critiche alla fascia più prossima alla linea ferroviaria.


	γ [kN/m³]	φ [°]	c [kPa]	Descrizione
materiale 1	20.00	38	0	Rilevato - riporto
materiale 2	20.00	18.5	160	FYN4
materiale 3				
materiale 4				

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

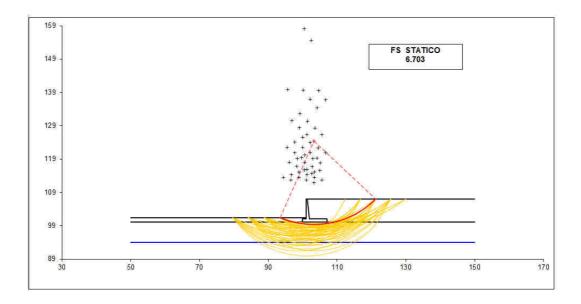
 RS3U
 40 D 29
 CL
 MU1100 001
 B
 186 di 196



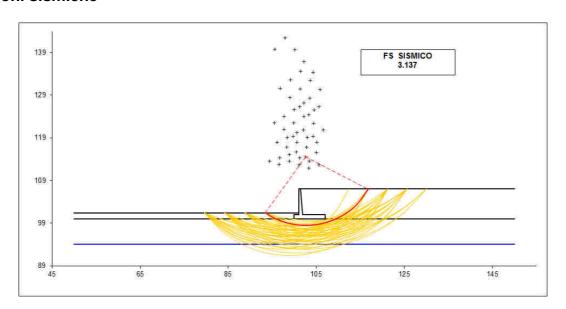
	p.c. va	lle		p.c. mo	nte		superfic	ie 1		superfic	ie 2		superfi	cie 3			
		materiale 1					mater	iale 2		□ mater	iale 4		mate	riale 2		[olda	
	x	у		X	у		X	у		x	у		X	у		X	у
0	100.000	101.400	0	101.400	107.000	0	50.000	100.000	0			0			0	50.000	94.000
1	50.000	101.400	1	150.000	107.000	1	150.000	100.000	1			1			1	150.000	94.000
2			2			2			2			2			2		
3			3			3			3			3			3		
4			4			4			4			4			4		
5			5			5			5			5			5		
6			6			6			6			6			6		
7			7			7			7			7			7		
8			8			8			8			8			8		
9			9			9			9			9			9		
10			10			10			10			10			10		

Sovraccarichi

		Xin	Чin	 Xfin	4fin	76 SISINA
sovraccarico 1	✓	110.000	0	114.650	0	20%
sovraccarico 2						



#strisce
30


# Superfici Calcolate	F: Bish	•
78	STATICO	6.703
/6	SISMICO	3.137

Condizioni statiche

Condizioni sismiche

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

RS3U	40 D 29	CL	MU1100 001	B	189 di 196
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

13.3.7 VERIFICA DEGLI SPOSTAMENTI SLD

Si riporta di seguito la verifica degli spostamenti permanenti indotti dal sisma per lo Stato Limite di Danno. Si è verificato che tale spostamento, determinato così come riportato all'interno del cap. 7.3.2 della presente relazione, risulti inferiore allo spostamento orizzontale massimo ammissibile in testa all'opera di sostegno, che può essere assunto, in condizioni sismiche, al più pari a 2cm.

ag	0.048					
a _g Ss	1.5					
St	1					
В	0.44					
Α	-8.07					
ac	0.262					
amax	0.072					
d =	1.1645E-10	mm	<	20	mm	OK

TR01: MURO DI SOSTEGNO IN DX MU11

RELAZIONE DI CALCOLO

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISETTA XIRBI - ENNA (LOTTO 4a) **OPERE DI SOSTEGNO DI LINEA**

LOTTO CODIFICA COMMESSA

CL

40 D 29

RS3U

DOCUMENTO REV. MU1100 001

FOGLIO 190 di 196

13.4 VERIFICHE STRUTTURALI

13.4.1 CALCOLO DELLE SOLLECITAZIONI

Reazione del terreno

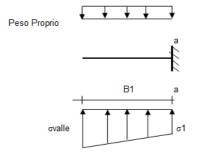
ovalle = N / A + M / Wgg

σmonte = N / A - M / Wgg

A = 1.0*B7.00 (m²)

 $Wgg = 1.0*B^2/6$ 8.17 (m³)

	N	M	σvalle	omonte
caso	[kN]	[kNm]	[kN/m ²]	[kN/m ²]
statico	915.65	164.13	150.90	110.71
	915.65	164.13	150.90	110.71
oiome I	940.94	263.30	166.66	102.18
sisma+	940.94	263.30	166.66	102.18
sisma-	890.36	267.29	159.92	94.47
	890.36	267.29	159.92	94.47


Mensola Lato Valle

Peso Proprio. PP = 25 00

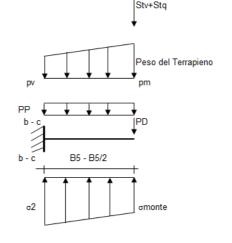
 $Ma = \sigma 1*B1^{2}/2 + (\sigma valle - \sigma 1)*B1^{2}/3 - PP*B1^{2}/2*(1\pm kv)$

 $Va = \sigma 1*B1 + (\sigma valle - \sigma 1)*B1/2 - PP*B1*(1±kv)$

0000	σvalle	σ1	Ma	Va
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
statico	150.90	145.16	62.00	123.03
	150.90	145.16	62.00	123.03
aiama I	166.66	157.45	68.95	136.36
sisma+	166.66	157.45	69.29	136.36
sisma-	159.92	150.57	66.25	129.56
	159.92	150.57	65.90	129.56

Mensola Lato Monte

PP	=	25.00 (kN/m ²)) peso proprio soletta fondazione
PD	=	0.00 (kN/m)	peso proprio dente


(kN/m)

			•	•	
		Nmin	N max stat	N max sism	
pm	=	120.00	120.00	120.00	(kN/m ²)
pvb	=	120.00	120.00	120.00	(kN/m ²)
pvc	=	120.00	120.00	120.00	(kN/m ²)

 $Mb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5^2/2 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb))^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/3 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/6 - (pm - pvb)^*(1 \pm kv)^*B5^2/$ -(Stv+Sqv)*B5-PD*(1±kv)*(B5-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

 $Mc = (\sigma_{monte} - (pvc + PP)^*(1\pm kv))^*(B5/2)^2/2 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(1\pm kv)^*(B5/2)^2/3 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(B5/2)^2/3 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 - (pm-pvc)^*(B5/2)^2/6 - (pm-pvc)^2/6 -$ -(Stv+Sqv)*(B5/2)-PD*(1±kv)*(B5/2-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

 $Vb = (\sigma_{monte} - (pvb + PP)^*(1\pm kv))^*B5 + (\sigma 2b - \sigma_{monte})^*B5/2 - (pm-pvb))^*(1\pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1\pm kv)^*B5/2 - (Stv + Sqv)^*B5/2 - (St$

 $Vc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma 2c - \sigma_{monte})^*(B5/2)/2 - (pm-pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv) + (D^*(1 \pm kv))^*(B5/2)/2 - (D^*($

TR01: MURO DI SOSTEGNO IN DX MU11 RELAZIONE DI CALCOLO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 29	CL	MU1100 001	В	191 di 196

	omonte	σ2b	Mb	Vb	σ2 c	Мс	Vc
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m ²]	[kNm]	[kN]
statico	110.71	139.94	-317.99	-100.15	125.32	-95.27	-68.67
	110.71	139.94	-317.99	-100.15	125.32	-95.27	-68.67
aiama I	102.18	149.07	-404.17	-119.04	125.62	-126.35	-89.35
sisma+	102.18	149.07	-404.17	-119.04	125.62	-126.35	-89.35
sisma-	94.47	142.06	-397.17	-115.68	118.26	-124.98	-88.12
	94.47	142.06	-397.17	-115.68	118.26	-124.98	-88.12

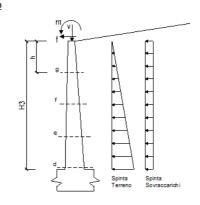
CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}}^* \gamma^* (1 \pm \text{kv})^* h^{2*} h/3$

 $\begin{array}{lll} \text{Mt sism} &= \frac{1}{2} * \gamma * (Kas_{orizz} * (1\pm kv) - Ka_{orizz})^* h^2 * h/2 & o * h/3 \\ \text{Mq} &= \frac{1}{2} * (Ka_{orizz} * q^* h^2 & & & \\ \text{Mext} &= m + f^* h & & & \\ \end{array}$

 $M_{inerzia} = \Sigma P m_i^* b_i^* kh$


N_{ext} = v

N $_{pp+inerzia}$ = $\Sigma Pm_i^*(1\pm kv)$

Vt stat = $\frac{1}{2}$ Ka_{orizz}* γ *(1±kv)*h²

Vt sism = $\frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv)-Ka_{orizz.})*h^2$

 $Vq = Ka_{orizz}*q*h$ $V_{ext} = f$ $V_{inerzia} = \Sigma Pm_i*kh$

condizione statica

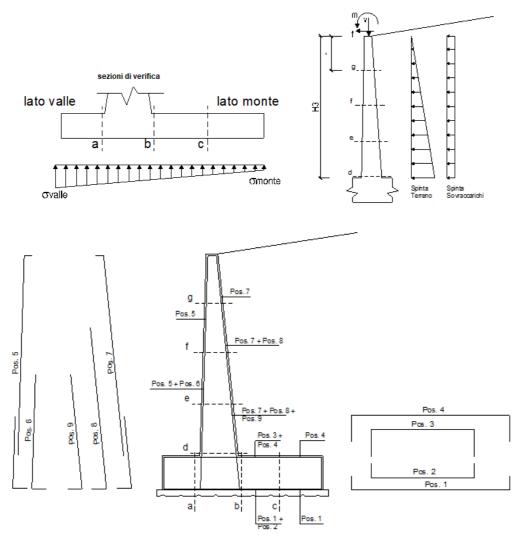
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
SEZIONE	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6.00	222.66	92.49	0.00	315.15	1.00	98.25	99.25
e-e	4.50	93.93	52.03	0.00	145.96	1.00	66.52	67.52
f-f	3.00	27.83	23.12	0.00	50.95	1.00	39.56	40.56
a-a	1.50	3.48	5.78	0.00	9.26	1.00	17.39	18.39

sezione	h	Vt	Vq	V_{ext}	V _{tot}
Sezione	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6.00	111.33	30.83	0.00	142.16
e-e	4.50	62.62	23.12	0.00	85.74
f-f	3.00	27.83	15.41	0.00	43.25
g-g	1.50	6.96	7.71	0.00	14.67

condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6.00	171.28	25.05	79.36	0.00	14.18	289.87	1.00	100.97	101.97
e-e	4.50	72.26	10.57	44.64	0.00	7.38	134.85	1.00	68.35	69.35
f-f	3.00	21.41	3.13	19.84	0.00	3.02	47.40	1.00	40.66	41.66
g-g	1.50	2.68	0.39	4.96	0.00	0.69	8.72	1.00	17.87	18.87

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6.00	85.64	12.53	26.45	0.00	5.43	130.05
e-e	4.50	48.17	7.05	19.84	0.00	3.68	78.73
f-f	3.00	21.41	3.13	13.23	0.00	2.19	39.95
9-9	1.50	5.35	0.78	6.61	0.00	0.96	13.71


condizione sismica -

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6.00	171.28	15.64	79.85	0.00	14.18	280.94	1.00	95.53	96.53
e-e	4.50	72.26	6.60	44.91	0.00	7.38	131.15	1.00	64.68	65.68
f-f	3.00	21.41	1.95	19.96	0.00	3.02	46.34	1.00	38.47	39.47
g-g	1.50	2.68	0.24	4.99	0.00	0.69	8.60	1.00	16.91	17.91

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	6.00	85.64	7.82	26.62	0.00	5.43	125.50
e-e	4.50	48.17	4.40	19.96	0.00	3.68	76.21
f-f	3.00	21.41	1.95	13.31	0.00	2.19	38.86
g-g	1.50	5.35	0.49	6.65	0.00	0.96	13.46

13.4.2 VERIFICHE SLU

Armatura minima

L'armatura minima principale in fondazione deve essere in percentuale non inferiore allo 0.20% dell'area di conglomerato.

L'armatura minima principale presente in zona tesa deve essere in percentuale non inferiore allo 0.15% dell'area di conglomerato per l'intera lunghezza.

L'armatura secondaria, ortogonale a quella principale, deve essere pari al massimo delle seguenti percentuali:

- 0.10% dell'area di conglomerato in entrambi i lembi;
- 20% dell'armatura principale.

Muro h = 6.0m su fondazione diretta

ARMATURE

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato
1	10.0	20		5	10.0	20	
2	0.0	0		6	0.0	0	
3	0.0	0		7	10.0	20	
4	10.0	20		8	0.0	0	
				9	0.0	0	

Pertanto l'armatura secondaria sarà pari a:

sez a - a: $\phi 10/20$ cm (ripartitori in fondazione e in elevazione);

sez b – b: ϕ 10/20cm (ripartitori in fondazione);

sez c – c: ϕ 10/20cm (ripartitori in fondazione);

sez d - d: $\phi 10/20$ cm (ripartitori in fondazione);

sez e - e: ϕ 10/20cm (ripartitori in fondazione);

sez f – f: ϕ 10/20cm (ripartitori in fondazione);

sez g - g: $\phi 10/20$ cm (ripartitori in fondazione);

Sez.	M	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm²)	(cm ²)	(kNm)
a - a	69.29	0.00	1.00	31.42	31.42	1091.58
b - b	-404.17	0.00	1.00	31.42	31.42	1091.58
C - C	-126.35	0.00	1.00	31.42	31.42	1091.58
d - d	315.15	99.25	0.91	31.42	31.42	1019.23
e -e	145.96	67.52	0.78	31.42	31.42	845.95
f-f	50.95	40.56	0.66	31.42	31.42	677.95
g - g	9.26	18.39	0.53	31.42	31.42	514.31

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	V _{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	_
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	- -
a - a	136.36	1.00	353.50	10	20	20	21.8	1607.72	Armatura a taglio non necessaria
b - b	119.04	1.00	353.50	10	20	20	21.8	1607.72	Armatura a taglio non necessaria
C - C	89.35	1.00	353.50	10	20	20	21.8	1607.72	Armatura a taglio non necessaria
d - d	142.16	0.91	349.52	10	20	20	21.8	1452.13	Armatura a taglio non necessaria
е -е	85.74	0.78	318.56	10	20	20	21.8	1231.72	Armatura a taglio non necessaria
f-f	43.25	0.66	286.40	10	20	20	21.8	1011.31	Armatura a taglio non necessaria
g - g	14.67	0.53	252.40	10	20	20	21.8	790.89	Armatura a taglio non necessaria

13.4.3 VERIFICHE SLE TENSIONE

Condizione Statica

Sez.	M	N	h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	55.87	0.00	1.00	31.42	31.42	0.45	20.78
b - b	-227.56	0.00	1.00	31.42	31.42	1.82	84.66
C - C	-62.03	0.00	1.00	31.42	31.42	0.50	23.08
d - d	242.42	99.25	0.91	31.42	31.42	2.36	85.82
е -е	112.28	67.52	0.78	31.42	31.42	1.43	45.38
f-f	39.20	40.56	0.66	31.42	31.42	0.69	17.85
g - g	7.12	18.39	0.53	31.42	31.42	0.19	3.01

Condizione Sismica

COMMIZION	ic Sisilica						
Sez.	M	N	h	Af	A'f	σC	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	68.95	0.00	1.00	31.42	31.42	0.55	25.65
b - b	-404.17	0.00	1.00	31.42	31.42	3.23	150.36
C - C	-126.35	0.00	1.00	31.42	31.42	1.01	47.00
d - d	289.87	96.53	0.91	31.42	31.42	2.81	105.80
е -е	134.85	65.68	0.78	31.42	31.42	1.71	56.71
f-f	47.40	39.47	0.66	31.42	31.42	0.83	22.94
g - g	8.72	17.91	0.53	31.42	31.42	0.23	4.28

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

13.4.4 VERIFICHE SLE FESSURAZIONE

condizione Frequente

Sez.	M	N	h	Af	A'f	σc	σf	wk	W _{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	55.87	0.00	1.00	31.42	31.42	0.45	20.78	0.023	0.200
b - b	-227.56	0.00	1.00	31.42	31.42	1.82	84.66	0.095	0.200
C - C	-62.03	0.00	1.00	31.42	31.42	0.50	23.08	0.026	0.200
d - d	242.42	99.25	0.91	31.42	31.42	2.36	85.82	0.096	0.200
e -e	112.28	67.52	0.78	31.42	31.42	1.43	45.38	0.051	0.200
f-f	39.20	40.56	0.66	31.42	31.42	0.69	17.85	0.018	0.200
g - g	7.12	18.39	0.53	31.42	31.42	0.19	3.01	0.003	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

condizione Quasi Permanente

Sez.	M	N	h	Af	A'f	σc	σf	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	55.87	0.00	1.00	31.42	31.42	0.45	20.78	0.023	0.200
b - b	-227.56	0.00	1.00	31.42	31.42	1.82	84.66	0.095	0.200
C - C	-62.03	0.00	1.00	31.42	31.42	0.50	23.08	0.026	0.200
d - d	242.42	99.25	0.91	31.42	31.42	2.36	85.82	0.096	0.200
e -e	112.28	67.52	0.78	31.42	31.42	1.43	45.38	0.051	0.200
f-f	39.20	40.56	0.66	31.42	31.42	0.69	17.85	0.018	0.200
g - g	7.12	18.39	0.53	31.42	31.42	0.19	3.01	0.003	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

13.4.5 CALCOLO INCIDENZA ARMATURA

	TIPO 2							
	MURO a mensola	MU11-TIPO2						
MU11	PARTE D'OPERA INCIDENZA (Kg/mc							
M	Elevazione	100						
	Fondazione	60						