COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

U.O. INFRASTRUTTURE CENTRO

PROGETTO DEFINITIVO

TRATTA CALTANISSETTA XIRBI - NUOVA ENNA (LOTTO 4A)

SCATOLARI DI APPROCCIO AI VIADOTTI SL01 - Scatolare di approccio al VI01 lato PA Relazione di calcolo scatolare

SCALA:
-

COMMESSA

LOTTO FASE ENTE TIPO DOC.

OPERA/DISCIPLINA

PROGR.

REV.

RS3U

40

2 9

SL0100

0 0 1

В

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Gen-2020	M.Arcangeli	Gen-2020	A.Barreca	Gen-2020	F.Arduini Apr-2020
В	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	- Apr-2020	M:Arcangeli	Apr-2020	A.Barreca	Apr-2020	Αρι-2020
								FERIN S.J. A zione Tecniss trutture Cent Egiptico A Tenno Cent
								//white
								*

File: RS3U.4.0.D.29.CL.SL.01.0.0.001.B

n. Elab.: 29 440

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	1 di 101

1.	PRI	EMESSA	3
2.	NO	RMATIVA DI RIFERIMENTO	5
3.	MA	TERIALI	7
	3.1	CALCESTRUZZO SCATOLARE	7
	3.2	ACCIAIO D'ARMATURA	7
	3.3	VERIFICA S.L.E.	8
	3.3.	.1 Verifica tensioni	8
	3.3.	.2 Verifica a fessurazione	9
4.	INC	QUADRAMENTO GEOLOGICO	. 10
5.	CAI	RATTERIZZAZIONE SISMICA	. 10
	5.1	VITA NOMINALE E CLASSE D'USO	. 11
	5.2	PARAMETRI DI PERICOLOSITÀ SISMICA	. 11
6.	МО	DELLAZIONE ADOTTATA	. 15
7.	AN	ALISI DEI CARICHI	. 18
	7.1	PESO PROPRIO DELLA STRUTTURA	. 18
	7.2	CARICHI PERMANENTI PORTATI	. 18
	7.3	Sovraccarico ferroviario	. 20
	7.3.	.1 Azioni verticali	. 20
	7.3.	.2 Azioni orizzontali	. 25
	7.4	AZIONE DEL VENTO	. 30
	7.5	AZIONI TERMICHE	. 34
	7.6	RITIRO	. 34
	7.7	AZIONE SISMICA	. 35
8.	СО	MBINAZIONI DI CALCOLO	. 37
9.	RIS	SULTATI E VERIFICHE	. 41
	9.1	VERIFICA SOLETTA SUPERIORE	. 44

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40
 D 29 CL
 SL 01 00 001
 B
 2 di 101

	9.1.1	Armature adottate e calcolo copriferro	46
	9.1.2	Verifica in condizioni statiche	47
	9.1.3	Verifica in condizioni sismiche	51
9	.2	VERIFICA PIEDRITTI	55
	9.2.1	Armature adottate e calcolo copriferro	56
	9.2.2	Verifica in condizioni statiche	57
	9.2.3	Verifica in condizioni sismiche	62
9	.3	VERIFICA SOLETTA INFERIORE	65
	9.3.1	Armature adottate e calcolo copriferro	66
	9.3.2	Verifica in condizioni statiche	67
	9.3.3	Verifica in condizioni sismiche	72
10.	VERI	FICHE GEOTECNICHE	75
1	0.1	VERIFICHE IN TERMINI DI TENSIONI EFFICACI (SLU)	76
1	0.2	VERIFICHE IN TERMINI DI TENSIONI TOTALI (SLU)	81
1	0.3	VERIFICHE IN TERMINI DI TENSIONI TOTALI (SLV)	84
11.	VERI	FICHE GEOTECNICHE CON RINTERRO LATERALE	88
1	1.1	VERIFICHE IN TERMINI DI TENSIONI EFFICACI (SLU)	89
1	1.2	VERIFICHE IN TERMINI DI TENSIONI TOTALI (SLU)	93
1	1.3	VERIFICHE IN TERMINI DI TENSIONI TOTALI (SLV)	96
12.	CALC	COLO INCIDENZA	99
1	2.1	CALCOLO INCIDENZA DELLA SOLETTA INFERIORE	99
1	2.2	CALCOLO INCIDENZA DEI PIEDRITTI	. 100
1	23	CALCOLO INCIDENZA DELLA SOLETTA SUPERIORE	101

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COL TRATTA CA	LEGAME LTANISSI	NTO PALERI	NA – CATANIA – 10 – CATANIA NNA LOTTO 4/A DOTTI	PALERM	0
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	3 di 101

1. PREMESSA

Il presente documento riguarda il dimensionamento dello scatolare SL01 di approccio al viadotto VI01 lato Palermo, posto alle progressive 1+265 km e 1+281 km e inquadrato all'interno dei lavori di costruzione del nuovo collegamento ferroviario Palermo-Catania, specificamente del Lotto 4 di tale progetto.

Lo scatolare presenta una sezione caratterizzata da due diverse altezze interne variabili da 9.00 m a 10.50 m (*Figura 4*) e larghezza della soletta inferiore crescente da 19.00 m e 20.00 m (*Figura 2*) dovuta ad una progressiva separazione dei binari. Lo spessore della soletta superiore si mantiene costante e pari a 1,20 m, così come quello della soletta inferiore pari a 1,50 m. I piedritti presentano uno spessore di 1,20 m ed inoltre è presente un setto interno di spessore pari a 1,20 m (*Figura 3*).

Di seguito inquadramento, pianta e sezioni.

Figura 1 - Inquadramento.

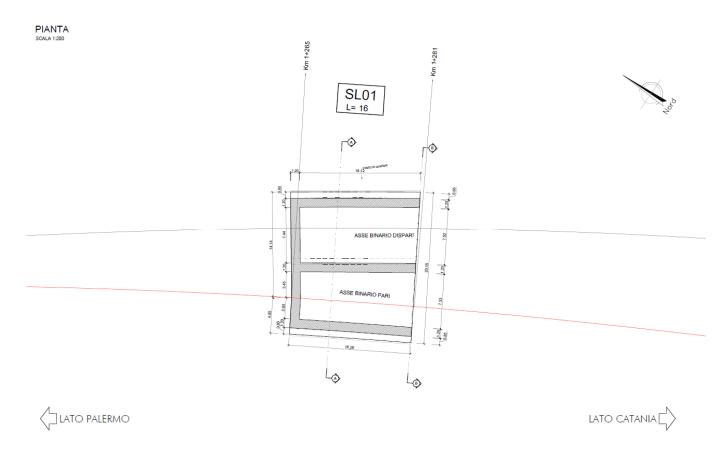


Figura 2 – Pianta.

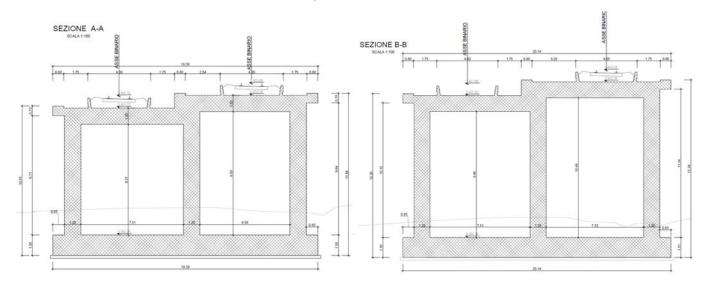


Figura 3 – Sezioni trasversali.

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COL TRATTA CA	LEGAME LTANISSI	NTO PALERI	NA – CATANIA – 10 – CATANIA NNA LOTTO 4/A DOTTI	PALERM	0
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	5 di 101

SEZIONE LONGITUDINALE SCALA 1:200

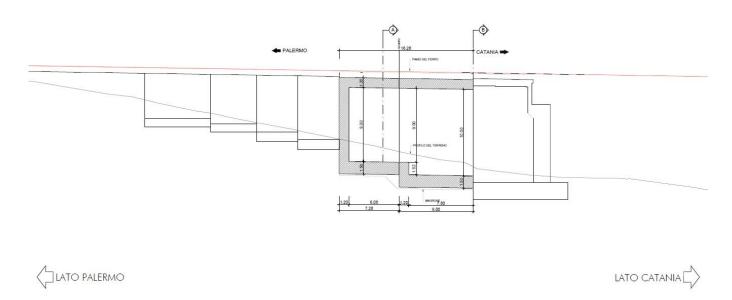


Figura 4 – Sezione longitudinale.

2. NORMATIVA DI RIFERIMENTO

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U 40 D 29 CL SL 01 00 001 B 6 di 101

La progettazione è conforme alle normative vigenti nonché alle istruzioni dell'Ente FF.SS.

- Rif. [1] Norme Tecniche per le Costruzioni D.M. 17-01-18 (NTC-2018);
- Rif. [2] Circolare n. 7 del 21 gennaio 2019 Istruzioni per l'Applicazione dell'aggiornamento delle Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale 17 gennaio 2018;
- Rif. [3] Eurocodici EN 1991-2: 2003/AC:2010 Eurocodice 1 Parte 2;
- Rif. [4] RFI DTC SI MA IFS 001 C del 21-12-18 Manuale di Progettazione delle Opere Civili;
- Rif. [5] RFI DTC SI SP IFS 001 C del 21-12-18 Capitolato generale tecnico di Appalto delle opere civili.

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40
 D 29 CL
 SL 01 00 001
 B
 7 di 101

3. MATERIALI

3.1 Calcestruzzo scatolare

Classe di resistenza C32/40 R_{ck}≥ 40 N/mm²

Classe di esposizione ambientale XC4

Copriferro nominale minimo 50 mm

Resistenza di calcolo del calcestruzzo per la verifica agli SLU (γ_C =1.5):

Resistenza di calcolo a rottura per compressione:

 f_{ck} 32 N/mm²

 $f_{cm} = f_{ck} + 8$ 40 N/mm²

 $f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_c$ 18.13 N/mm²

Resistenza di calcolo a rottura per trazione:

 $f_{ctm} = 0.3 \cdot f_{ck}^{2/3}$ 3.02 N/mm²

 $f_{ctk,5\%} = 0.70 \cdot f_{ctm}$ 2.12 N/mm²

 $f_{ctd} = f_{ctk}/\gamma_c 1.41 \text{ N/mm}^2$

 $f_{cfm} = 1.2 \cdot f_{ctm} \qquad \qquad 3.63 \text{ N/mm}^2$

 $f_{cfk.5\%} = 0.70 \cdot f_{cfm}$ 2.54 N/mm²

 $E_{cm}=22.000 [f_{cm}/10]^{0.3}$ 33346 N/mm²

3.2 Acciaio d'armatura

L'acciaio utilizzato è ad aderenza migliorata tipo B450C ed è caratterizzato dai seguenti valori nominali delle tensioni di snervamento e rottura:

 $f_{y, nom}$ 450 N/mm²

 $f_{t,nom}$ 540 N/mm²

Resistenza di calcolo dell'acciaio per la verifica agli SLU (y_s=1.15):

Resistenza di calcolo a rottura per trazione e deformazione corrispondente:

 $f_{vd} = f_{vk}/\gamma_s \qquad 391.3 \text{ N/mm}^2$

 $\varepsilon_{\text{vd}} = f_{\text{vd}}/E_{\text{s}}$ 0.186%

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	8 di 101

3.3 Verifica S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato.

3.3.1 Verifica tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio nelle combinazioni di carico "Rara" e "Quasi Permanente". I valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Manuale di progettazione Opere Civili RFI DTC SI MA IFS 001 C del 21-12-18"

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f_{ek};
- per combinazioni di carico quasi permanente: 0,40 f_{ck};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{vk}$.

Nel caso in esame pertanto si ha:

CALCESTRUZZO

Massima tensione allo SLE per combinazione caratteristica (rara):

 $\sigma_{\rm c} = 0.55 \cdot f_{\rm ck}$ 17.60 N/mm²

Massima tensione allo SLE per combinazione quasi permanente:

 $\sigma_{\rm c} = 0.40 \cdot f_{\rm ck}$ 12.80 N/mm²

ACCIAIO

Massima tensione allo SLE per combinazione caratteristica (rara):

 $\sigma_{\rm s} = 0.75 \, \rm f_{\rm vk}$ 337.5 N/mm²

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COL TRATTA CA	LEGAME LTANISSI	NTO PALERN	NA – CATANIA – 10 – CATANIA NNA LOTTO 4/A DOTTI	PALERM	0
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	9 di 101

3.3.2 Verifica a fessurazione

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente [NTC – Tabella 4.1.IV]:

Cruppi di			Armatura				
Gruppi di	Condizioni ambientali	Combinazione di azione	Sensibile		Poco sensibile		
esigenza			Stato limite	W _d	Stato limite	W _d	
	Ordinarie	frequente	ap. fessure	≤w ₂	ap. fessure	≤w ₃	
а	Ordinarie	quasi permanente	ap. fessure	≤w ₁	ap. fessure	≤w ₂	
b	Aggregaiya	frequente	ap. fessure	≤w ₁	ap. fessure	≤w ₂	
D	Aggressive	quasi permanente	decompressione	-	ap. fessure	≤w ₁	
	Molto Aggressive	frequente	formazione fessure	-	ap. fessure	≤w ₁	
С		quasi permanente	decompressione	-	ap. fessure	≤w ₁	

Tabella 1 – Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

Tabella 4.1.III – Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Risultando $w_1 = 0.2 \text{ mm}$ $w_2 = 0.3 \text{ mm}$ $w_3 = 0.4 \text{ mm}$

Alle prescrizioni normative presenti in NTC si aggiungono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, così come identificate nel par. 4.1.2.2.4.2 del DM 14.1.2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

Combinazione Caratteristica (Rara) $\delta_f \leq w_1 = 0.2 \ mm$

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COL TRATTA CA	LEGAME LTANISSI	NTO PALERN	NA – CATANIA – 10 – CATANIA NNA LOTTO 4/A DOTTI	PALERM	0
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	10 di 101

4. INQUADRAMENTO GEOLOGICO

Nel tratto in esame la stratigrafia è costituita da:

- Coltre (c)
- Formazione terravecchia: argille limose e argille marnose (TRV)

In particolare in corrispondenza della soletta inferiore è presente l'unità geotecnica TRV. Per tale unità, in accordo con quanto riportato nella relazione geotecnica, sono stati considerati i seguenti parametri:

UG	γ (kN/m³)	φ (°)	c' (kPa)	E (MPa)
TRV	21.0	20	23	40

La falda è posta alla quota di circa -10.0 m dal p.c.

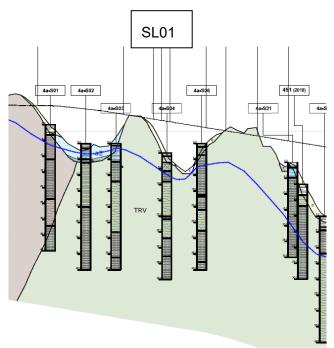


Figura 5 – Stratigrafia.

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	11 di 101

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17 gennaio 2018 e relativa circolare applicativa.

5.1 Vita nominale e classe d'uso

Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (V_N), intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (C_U)

In accordo con quanto riportato al punto 2.5.1.1 del Manuale di Progettazione delle Opere Civili –Ponti e Strutture, per l'opera in oggetto si considera una vita nominale V_N = 75 anni (categoria 2: "Altre opere nuove a velocità V<250 Km/h") e una classe d'uso III a cui è associato un coefficiente d'uso pari a C_u = 1.5.

I parametri di pericolosità sismica vengono quindi valutati in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_N per il coefficiente d'uso C_U , ovvero:

$$V_R = V_N \cdot C_U$$

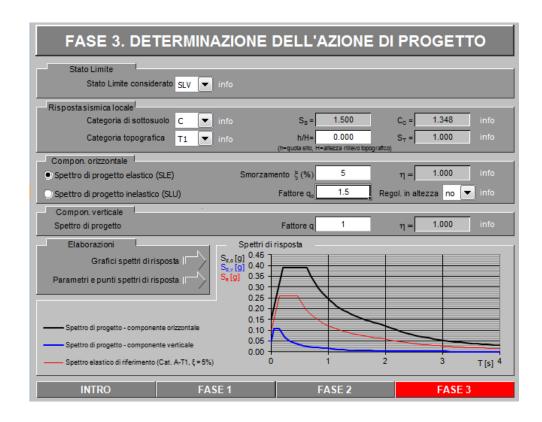
Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a $V_R = 75x1.5 = 112.5$ anni.

5.2 Parametri di pericolosità sismica

La valutazione dei parametri di pericolosità sismica, che costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali), dipendono, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (periodo di riferimento per valutazione azione sismica) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

Categoria sottosuolo C

In accordo a quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 14.01.08, si ottiene per il sito in esame:



I valori delle caratteristiche sismiche (a_g, F₀, T^{*}_C) per gli stati limite di normativa sono dunque:

SLATO	T_R	a_g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.040	2.519	0.286
SLD	113	0.048	2.503	0.321
SLV	1068	0.098	2.654	0.469
SLC	2193	0.119	2.729	0.523

- $a_g \rightarrow accelerazione orizzontale massima del terreno, espressa come frazione dell'accelerazione di gravità;$
- F₀→ valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T^{*}_C→ periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

L'azione sismica agente sulle masse strutturali della struttura scatolare è stata considerata con un approccio di tipo pseudo-statico. Esso consente di rappresentare il sisma mediante un'azione statica equivalente, costante nello spazio e nel tempo. In particolare è stata effettuata un'analisi statica equivalente con un'accelerazione orizzontale pari a quella di plateau dello spettro elastico (q=1).

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	14 di 101

Parametri e punti dello spettro di risposta orizzontale per lo stato limite SLV

Parametri indipendenti

STATO LIMITE	SLV
a _o	0.098 g
F _o	2.654
T _C *	0.469 s
Ss	1.500
Cc	1.348
S _T	1.000
q	1.000

Parametri dipendenti

S	1.500
η	1.000
T _B	0.211 s
Tc	0.632 s
Tn	1.992 s

Espressioni dei parametri dipendenti

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

$$T_{\rm B} = T_{\rm C} \, / 3 \qquad \qquad ({\rm NTC\text{-}07~Eq.~3.2.8}) \label{eq:TB}$$

$$T_{c} = C_{c} \cdot T_{c}^{*}$$
 (NTC-07 Eq. 3.2.7)

$$T_D = 4.0 \cdot a_g / g + 1.6$$
 (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D \\ S_e(T) &= a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \end{split}$$

Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_e(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	I [S]	Se [g]
	0.000	0.147
T _B ◀	0.211	0.390
Tc◀	0.632	0.390
	0.697	0.353
	0.762	0.323
	0.827	0.298
	0.891	0.276
	0.956	0.258
	1.021	0.241
	1.085	0.227
	1.150	0.214
	1.215	0.203
	1.280	0.193
	1.344	0.183
	1.409	0.175
	1.474	0.167
	1.538	0.160
	1.603	0.154
	1.668	0.148
	1.733	0.142
	1.797	0.137
	1.862	0.132
	1.927	0.128
T _□ ◀−	1.992	0.124
	2.087	0.113
	2.183	0.103
	2.278	0.095
	2.374	0.087
	2.470	0.080
	2.565	0.075
	2.661	0.069
	2.757	0.065
	2.852	0.060
	2.948	0.056
	3.044	0.053
	3.139	0.050
	3.235	0.047
	3.331	0.044
	3.426	0.042
	3.522	0.040
	3.617	0.038
	3.713	0.036
	3.809	0.034
	3.904	0.032
	4.000	0.031

O VI01: COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3U 40 D 29 CL SL 01 00 001 B 15 di 101

6. MODELLAZIONE ADOTTATA

Relazione di calcolo

Per l'analisi della struttura è stato sviluppato un modello di calcolo nel quale l'interazione strutturaterreno è stata simulata attraverso molle reagenti solo a compressione (analisi non lineare); la costante di sottofondo è stata assunta pari a 3000 kN/m³.

Tale valore è stato determinato, a partire dal valore di E dello strato di fondazione, attraverso la seguente relazione:

$$k_w = \frac{E}{(1 - v^2) \cdot B \cdot c_t}$$

dove:

E = modulo elastico del terreno:

v = coefficiente di Poisson =0.3;

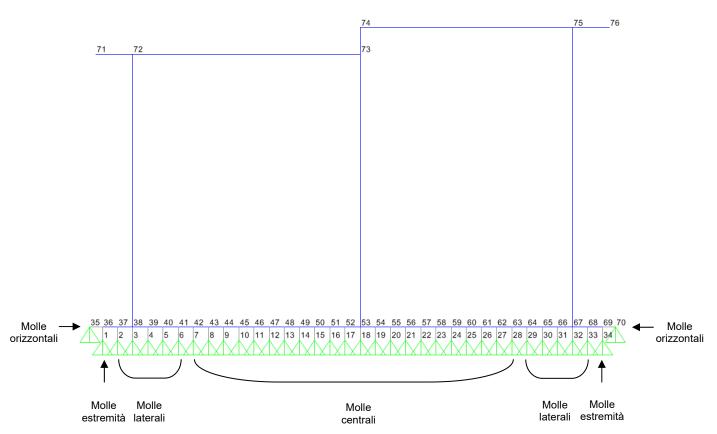
B = larghezza della fondazione.

 c_t = fattore di forma, coefficiente adimensionale valutato con le relazione ct = 0.853 + 0.534 ln(L/B) (per L/B \leq 10 con L lunghezza singolo concio).

unità	E	v	В	L	L/B	Ct	k _w
(-)	(MPa)	(-)	(m)	(m)	(-)	(-)	(kN/m ³)
TRV	40	0.3	19.8	16	0.81	0.74	3003

La rigidezza delle molle assegnate allo scatolare varia in base alla posizione delle stesse, in particolare dipende dall'interasse tra le molle che nel caso in esame è pari a i = 0.6 m.

Si definiscono quindi:


Molle centrali $k_{sc} = k_w \cdot i = 3000 \cdot 0.6 = 1800 \, kN/m$

Molle laterali $k_{sl} = k_w \cdot i \cdot 1.5 = 3000 \cdot 0.6 \cdot 1.5 = 2700 \, kN/m$

Molle di estremità $k_{se} = k_w \cdot \frac{i}{2} = 3000 \cdot 0.3 = 900 \ kN/m$

Molle orizzontali $k_{so} = \frac{k_w}{2} \cdot 1.5 = 2250 \ kN/m$

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COL TRATTA CA	LEGAME LTANISSI	NTO PALERI	NA – CATANIA – 10 – CATANIA NNA LOTTO 4/A DOTTI	PALERM	0
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	16 di 101

L'analisi delle strutture è stata condotta mediante il programma di calcolo agli elementi finiti SAP2000, prodotto dalla Computer and Structures inc. di Berkeley, California, USA.

Lo schema statico impiegato è quello di telaio costituito da elementi frame; in corrispondenza della intersezione tra tali elementi il programma genera in automatico dei nodi per garantire la continuità strutturale. Ad ogni elemento è assegnata la corrispondente sezione rettangolare in calcestruzzo, la cui geometria è definita dallo spessore dell'elemento stesso per una larghezza unitaria, dal momento che la struttura è risolta come piana.

Le sezione di calcolo ritenuta maggiormente significativa è collocata nei pressi dell'estremità in cui lo scatolare presenta larghezza maggiore. In particolare la larghezza della soletta inferiore risulta 19,80 m e l'altezza interna sinistra 9.45 m, mentre quella destra 10.50 m. La larghezza interna risulta pari a 7,80 m + 7,20 m interrotta dal setto centrale di spessore 1,20 m. I piedritti hanno spessore pari a 1.20 m, la soletta inferiore è spessa 1.50 m, mentre la soletta superiore 1.20 m.

Per le verifiche delle sezioni si è adottato il programma RC-SEC – Autore GEOSTRU.

In figura si riporta schematicamente la geometria dell'opera.

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI TRATTA CA	LEGAME LTANISS	NTO PALERI	NA – CATANIA – 10 – CATANIA NNA LOTTO 4/A DOTTI	PALERM	0
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	17 di 101

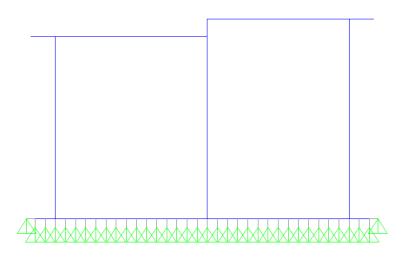


Figura 6 – Modello di calcolo.

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PAI NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISSETTA XIRBI-ENNA LOTTO 4/A SCATOLARI DI APPROCCIO AI VIADOTTI			PALERM	0	
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	18 di 101

7. ANALISI DEI CARICHI

7.1 Peso proprio della struttura

Il peso proprio della struttura è valutato automaticamente dal programma di calcolo attribuendo al c.a. un peso dell'unità di volume di $25~\rm kN/m^3$.

7.2 Carichi permanenti portati

Nella Tabella sottostante si riportano i carichi.

PERMANENTI PORTATI						
soletta superiore						
Υþ	20.00	kN/m³				
S_b	0.80	m	ballast + armamento			
W_b	16.00	kN/m²				

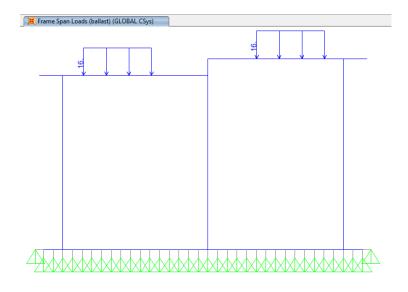


Figura 7 – Ballast.

Si considera inoltre la presenza della barriera inserendo un carico puntale pari a 16 kN.

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COLLEGAM TRATTA CALTANISS			ROVIARIA MESSINA – CATANIA – PALERMO AMENTO PALERMO – CATANIA IISSETTA XIRBI-ENNA LOTTO 4/A PPROCCIO AI VIADOTTI		
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA RS3U	LOTTO 40	CODIFICA	DOCUMENTO	REV. B	FOGLIO
Relazione di calcolo	1.000	40	D 29 CL	32 01 00 001	ь	19 01 101

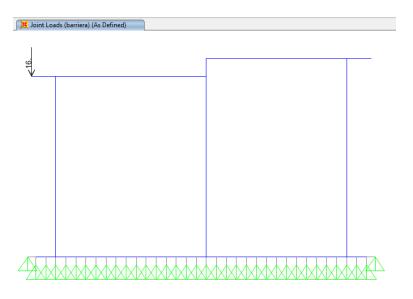


Figura 8 – Barriera antirumore.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISSETTA XIRBI-ENNA LOTTO 4/A SCATOLARI DI APPROCCIO AI VIADOTTI					
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	20 di 101

7.3 Sovraccarico ferroviario

7.3.1 Azioni verticali

Per la valutazione dei carichi verticali si è fatto riferimento a dei modelli di carico "teorici", come indicato dalla normativa vigente. In particolare sono stati considerati il treno di carico LM71, rappresentativo del traffico normale, e il treno di carico SW/2 rappresentativo del traffico pesante.

Il treno di carico LM71, schematizzato in Figura 9, è costituito da 4 assi da 250 kN disposti ad interasse di 1.6 m e da un carico distribuito di 80 kN/m in entrambe le direzioni per un'estensione illimitata, a partire da 0.8 m dagli assi di estremità.

Longitudinalmente i carichi assiali del modello di carico LM71 sono stati distribuiti uniformemente su 6.4 m.

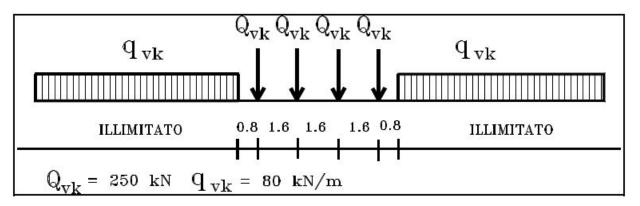
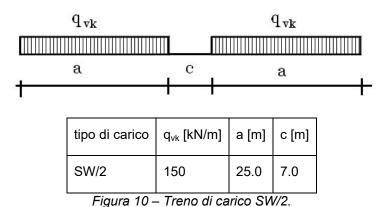



Figura 9 - Treno di carico LM71

Per questo modello di carico va inoltre considerata un'eccentricità del carico rispetto all'asse del binario pari a s/18 (s = 1435 mm). L'eccentricità è valutata sia in direzione x che –x, questo induce nella sezione in esame due momenti aggiuntivi, uno per l'eccentricità minore e uno per la maggiore.

Il treno di carico SW/2 invece è costituito da due carichi distribuiti di 150 kN/m aventi un'estensione di 25 m posti ad una distanza, c, di 7.0 m (Figura 10).

I valori caratteristici dei carichi sono stati moltiplicati per il coefficiente di adattamento α , il cui valore è riportato nella Figura 11.

modello di carico	coefficiente di adattamento α
LM71	1.1
SW/2	1.0

Figura 11 – Coefficiente di adattamento α

I coefficienti di incremento dinamico Φ che aumentano l'intensità dei modelli di carico teorici si assumono pari a Φ_2 o Φ_3 , in dipendenza del livello di manutenzione della linea. Nel caso in esame si è assunto il coefficiente Φ_3 corrispondente a linee con ridotto standard manutentivo:

$$\phi_3 = 2.16/(\sqrt{L_{\phi}} - 0.2) + 0.73$$
, con la limitazione $1.00 \le \Phi_3 \le 2.00$,

in cui L_{Φ} è la lunghezza caratteristica valutata secondo quanto riportato nella tab 5.2.II delle NTC18.

Nel caso in esame risulta quindi Φ_3 =1.24.

Trasversalmente i carichi sono stati ripartiti secondo una pendenza di 1 a 4 all'interno del ballast, ed secondo una pendenza di 1 a 1 all'interno della soletta in c.a.. Alla quota del piano medio della soletta superiore, considerando per la traversa una larghezza di 2.40 m, si ha pertanto

$$L_d = 2.40 + (s_b/4 + s_{ss}/2)\cdot 2 = 2.4 + (0.35/4 + 1.2/2)^2 = 3.78 \text{ m}$$

I carichi utilizzati sono riepilogati nella Tabella seguente:

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISSETTA XIRBI-ENNA LOTTO 4/A SCATOLARI DI APPROCCIO AI VIADOTTI					
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	22 di 101

Carichi accidenta	li mobili			ACCMOB
Modello LM71		coeff. $lpha$	1.10	
Modello SW/2		coeff. $lpha$	1.00	
Coeff. di increme	nto dinamico	\varnothing_3	1.24	
Larghezza di riparti	zione trasversale	L_{R}	3.78 m	
Modello di carico	SW/2			
Q SW/2			150.0 kN/m	
Treno SW2	$\alpha \cdot \Phi \cdot q_{vk}/L_R$	p_2	49.2 kN/m/m	
Modello di carico	LM71			
Q LM71			250.0 kN	
Interasse longitudir	nale		1.60 m	
Treno LM71	$CQ_{vk}/1.6/L_R$	p_2	56.4 kN/m ²	
		Treno binario	destro (curva)	
Eccentricità di cari	co LM71			
		e+	0.30	
		Me	63.94 kNm/m	
		p ₂₊	83.23 kN/m ²	
		p ₂₋	29.53 kN/m ²	
Eccentricità di cari	co LM71	e-	0.13	
		Me	27.71 kNm/m	
		p ₂₊	68.02 kN/m ²	
			44.75 kN/m ²	
		p ₂₋	ario sinistro	
Eccentricità di cari	co I M71	TIETIO DITIO	ario siliistro	
Leccriticità di can	GO LIVIT I	e+	0.08	
		Me	17.05 kNm/m	
			63.54 kN/m ²	
		p ₂₊		
		p ₂₋	49.22 kN/m ²	
Eccentricità di cari	co LM71	e-	0.08	
		Ме	17.05 kNm/m	
		p ₂₊	63.54 kN/m ²	
		p ₂₋	49.22 kN/m ²	

Nel modello di calcolo è stato considerato il treno di carico LM71 in quanto più gravoso.

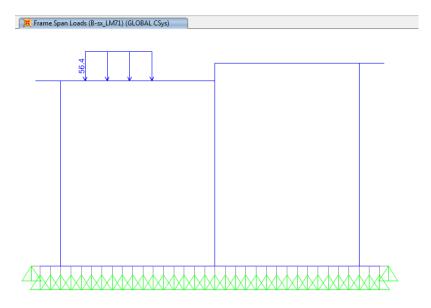


Figura 12 – Modello di carico LM71 binario sinistro.

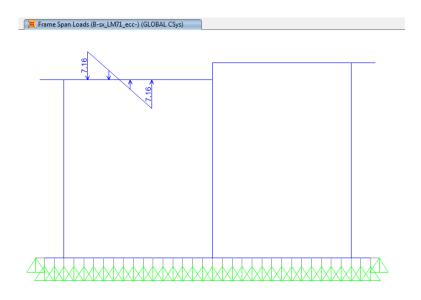


Figura 13 – Eccentricità (-) LM71 binario sinistro.

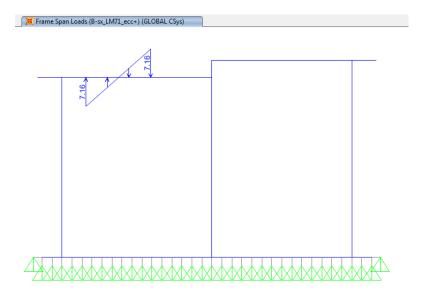


Figura 14 – Eccentricità (+) LM71 binario sinistro.

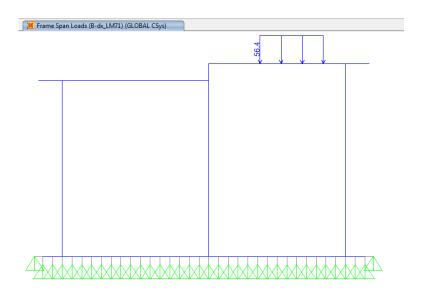


Figura 15 – Modello di carico LM71 binario destro.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISSETTA XIRBI-ENNA LOTTO 4/A SCATOLARI DI APPROCCIO AI VIADOTTI					
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	25 di 101

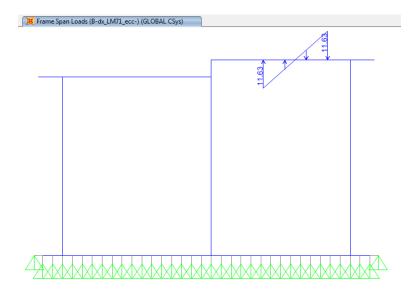


Figura 16 – Eccentricità (-) LM71 binario destro

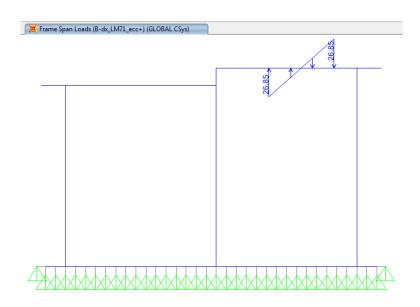


Figura 17 – Eccentricità (+) LM71 binario destro

7.3.2 Azioni orizzontali

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISSETTA XIRBI-ENNA LOTTO 4/A SCATOLARI DI APPROCCIO AI VIADOTTI						
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	26 di 101	

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse. Il valore caratteristico di tale forza sarà assunto pari a Q_{sk} = 100 KN. Tale valore deve essere moltiplicato per α (1.1 > 1).

Serpeggio LM71 (Si considera agente a livello rotaia più alta)					
	S	100.00 kN			
	α·S	110.00 kN			
	τ	29.10 kN/m			
Punto di app risp baricentro soletta s	uperiore	1.46 m			
Momento	Ms	160.60 KNm			
	d	2.52 m			
	ΔΝ	63.73 kN			
	Δσ+	67.44 kN/m ²			
	Δσ-	-67.44 kN/m ²			

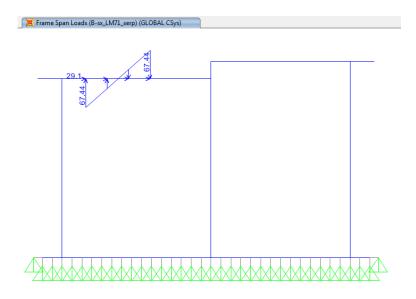


Figura 18 – Serpeggio LM71 binario sinistro.

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISSETTA XIRBI-ENNA LOTTO 4/A SCATOLARI DI APPROCCIO AI VIADOTTI					
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	27 di 101

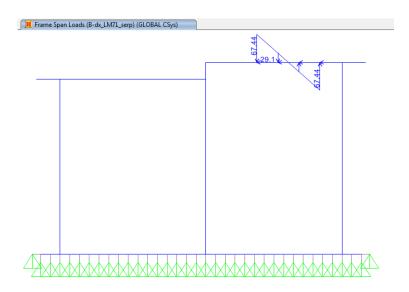


Figura 19 – Serpeggio LM71 binario destro

Azione di avviamento e frenatura (AVV)

L'avviamento e la frenatura sono azioni orizzontali ortogonali alla sezione di calcolo, e quindi non verranno prese in conto nel modello.

Forza centrifuga

Nei ponti ferroviari al di sopra dei quali il binario presenta un tracciato in curva deve essere considerata la forza centrifuga agente su tutta l'estensione del tratto in curva. La forza centrifuga si considera agente verso l'esterno della curva, in direzione orizzontale ed applicata alla quota di 1,80 m al di sopra del P.F.. I calcoli si basano sulla massima velocità compatibile con il tracciato della linea. Ove siano considerati gli effetti dei modelli di carico SW, si assumerà una velocità di 100 km/h. Il valore caratteristico della forza centrifuga si determinerà in accordo con la seguente espressione:

$$Q_{tk} = \frac{v^2}{g \cdot r} \cdot (f \cdot \alpha Q_{vk}) = \frac{V^2}{127 \cdot r} \cdot (f \cdot \alpha Q_{vk})$$

$$q_{tk} = \frac{v^2}{g \cdot r} \cdot (f \cdot \alpha q_{vk}) = \frac{V^2}{127 \cdot r} \cdot (f \cdot \alpha q_{vk})$$

Dove:

 $Q_{tk}-q_{tk}$ = valore caratteristico della forza centrifuga [kN -kN/m];

 $Q_{vk} - q_{vk}$ = valore caratteristico dei carichi verticali [kN -kN/m];

 α = coefficiente di adattamento;

v = velocità di progetto espressa in m/s;

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	28 di 101

V = velocità di pogetto espressa in km/h;

f = fattore di riduzione;

g = accelerazione di gravità in m/s²;

r = raggio di curvatura in m.

Nel caso di curva policentrica come valore del raggio r dovrà essere assunto un opportuno valore medio fra i raggi di curvatura che interessano la campata in esame. La forza centrifuga sarà sempre combinata con i carichi verticali supposti agenti nella generica configurazione di carico, e non sarà incrementata dai coefficienti dinamici. f è un fattore di riduzione dato in funzione della velocità V e della lunghezza Lf di binario carico.

$$f = \left[1 - \frac{V - 120}{1000} \left(\frac{814}{V} + 1.75\right) \cdot \left(1 - \sqrt{\frac{2.88}{L_f}}\right)\right]$$

Dove:

 L_f = lunghezza di influenza, in metri, della parte curva di binario carico sul ponte, che è la più sfavorevole per il progetto del ge-nerico elemento strutturale;

 $f = 1 \text{ per } V \neq 120 \text{ km/h o } L_f \neq 2,88 \text{ m};$ $f < 1 \text{ per } 120 \neq V \neq 300 \text{ km/h e } L_f > 2,88 \text{ m};$ f(V) = f(300) per V > 300 km/h.

Per il modello di carico LM 71 e per velocità di progetto superiori ai 120 km/h, saranno considerati due casi:

- (a) Modello di carico LM 71 e forza centrifuga per V = 120 km/h in accordo con le formule precedenti dove f = 1:
- (b) Modello di carico LM 71 e forza centrifuga calcolata secondo le precedenti espressioni per la massima velocità di progetto.

Inoltre, per ponti situati in curva, dovrà essere considerato anche il caso di assenza di forza centrifuga (convogli fermi). Per i modelli di carico LM71 e SW/0 l'azione centrifuga si dovrà determinare partendo dalle equazioni [5.2.9] e [5.2.10] considerando i valori di V, α , e f definiti nella seguente Tab. 5.2 II.b.

Tab. 5.2.II.b. - Parametri per determinazione della forza centrifuga

	Massima velo-		Azior	Carico verticale		
Valore di α	cità della linea [Km/h]	v	α	f		associato
	≥ 100	100	1	1	1 x 1 x SW/2	
SW/2	< 100	V	1	1	1 x 1 x SW/2	Φ x 1 x SW/2
		V	1	f	1 x f x (LM71"+"SW/0)	Φ x 1 x 1 x (LM71"+"SW/0)
LM71 e SW/0	> 120	120	α	1	$\alpha \times 1 \times$ (LM71"+"SW/0)	Φχαχ1χ
	≤ 120	V	α	1	α x 1 x (LM71"+"SW/0)	(LM71"+"SW/0)

Per la sezione in esame si ha:

Raggio di curvatura in metri	r	875	m
Lunghezza di influenza della parte curva di binario carico sul ponte	L _f	16.7	m
Velocità massima di progetto	V_{max}	120	km/h

Inoltre considerando il solo treno di carico LM71 e una velocità massima di progetto di 120 km/h, i casi di normativa si riducono al solo:

Modello di carico: LM71

Caso (a): Vmax ≤ 120 km/h				
V =	120	km/h		
α =	1.1			
f =	1			
qvk =	80	kN/m		
qtk =	11.4	kN/m		
Qvk =	250	kN		
Qtk =	35.6	kN		

In cui:

 α = valutato come al paragrafo 7.3.1

f = vale 1, come indicato in normativa per il caso in questione; $Q_{vk}-q_{vk}$ = sono i valori caratteristici dei carichi verticali del LM71

Considerando quindi l'interasse di 1,60 m tra gli assi di carico Q_{vk} , si ottiene una forza centrifuga pari a:

Qtk =	22.3	kN/m
-------	------	------

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISSETTA XIRBI-ENNA LOTTO 4/A SCATOLARI DI APPROCCIO AI VIADOTTI					
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	30 di 101

La forza centrifuga produrrà sulla soletta superiore, limitatamente alla lunghezza di ripartizione del LM71, un momento flettente e un carico distribuito orizzontale:

Forza centrifuga	(Si considera agente a 1.8	0 dal piano del ferro)		Binario destro		Centr
Treno LM71		F	22.30	kN/m	_	
		τ	5.90	kN/m/m		
Punto di app risp ba	ricentro soletta supe	eriore	3.19	m		
	Momento	Мс	71.14	kNm/m		
		d	2.52	m		
		ΔΝ	28.23	kN		
		Δσ+	29.87	kN/m ²		
		Δσ-	-29.87	kN/m ²		

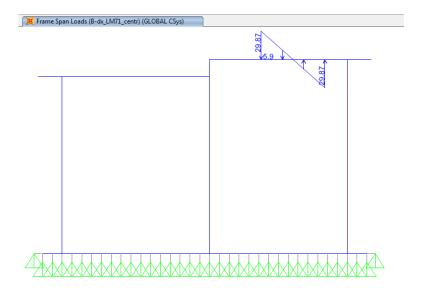


Figura 20 – Forza centrifuga da LM71 su binario destro.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISSETTA XIRBI-ENNA LOTTO 4/A SCATOLARI DI APPROCCIO AI VIADOTTI					
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	31 di 101

Lo scatolare in esame, essendo fuori terra, è soggetto alla pressione del vento.

$$p = q_r \cdot c_e \cdot c_p \cdot c_d$$

Siamo in zona 4 per cui si ha:

a _s (m)	400 (quota del terreno valutata sul livello del mare)
a _o (m)	500
k _s	0.360
$v_b = v_{b,o} (m/s)$	28 (velocità di riferimento del vento per as <= ao)
v _b (m/s)	 - (velocità di riferimento del vento per as > ao)
v _b (m/s)	28 (valore assunto nel calcolo)
q _r (N/mq)	490 (pressione cinetica di riferimento)

Classe di rugosità D categoria di esposizione II

kr	0.19
zo (m)	0.05
zmin (m)	4
cd	1 (coefficiente dinamico)
ct	1 (coefficiente di topografia)
z (m)	13 (altezza della struttura)

Coefficiente di esposizione						
ce (z)	2.47 (per z >= zmin)					
ce (z)	1.80 (per z < zmin)					
ce (z)	2.47 (valore assunto nel calcolo)					

Coefficiente di forma		
ср	0.8 (sopravento)	
	·	_

p (N/mq)	968 (pressione del vento sopravento)

Essendo il valore ottenuto inferiore a $1.5~\rm kN/m^2$ nei calcoli è stato assunto p= $1.5~\rm kN/m^2$ come indicato nel Manuale di Progettazione.

Di conseguenza il carico applicato alla sezione di calcolo è pari a:

|--|

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISSETTA XIRBI-ENNA LOTTO 4/A SCATOLARI DI APPROCCIO AI VIADOTTI					0
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	32 di 101

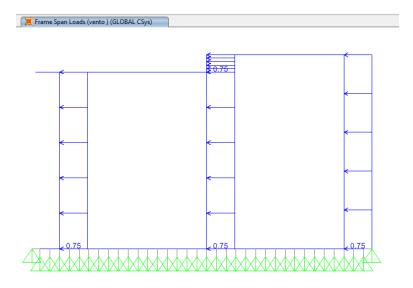


Figura 21 – Vento su struttura.

Si considera inoltre l'effetto del vento sulla barriera, considerando il peso proprio di 4 kN/m³ e un'altezza di 4 metri.

Vento Barriera	
Peso barriera	4 kN/m²
H barriera	4 m
Wbarr	16 kN
Taglio barriera	6 kN
Momento barriera	12 kNm

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI TRATTA CA	LLEGAME	NTO PALERI	NA – CATANIA – MO – CATANIA NNA LOTTO 4/A MOTTI	PALERM	0
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	33 di 101

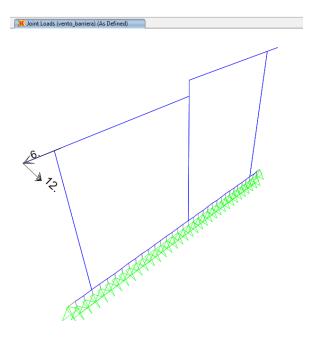


Figura 22 – Vento su barriera antirumore.

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISSETTA XIRBI-ENNA LOTTO 4/A SCATOLARI DI APPROCCIO AI VIADOTTI					0
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	34 di 101

7.5 Azioni termiche

Alla soletta superiore è stata applicata una variazione termica uniforme $\Delta T = \pm 15^{\circ}C$ ed un gradiente di temperatura tra estradosso ed intradosso pari a $\pm 5^{\circ}C$, come indicato dalla normativa vigente.

7.6 Ritiro

Gli effetti del ritiro sono stati valutati a lungo termine attraverso il calcolo dei coefficienti di ritiro finale $\varepsilon_{cs}(t,\,t_0)$ e di viscosità $\phi(t,\,t_0)$. Tali effetti sono stati considerati agenti solo sulla soletta superiore ed applicati nel modello come una variazione termica uniforme equivalente.

La deformazione totale da ritiro è formata da due componenti: la deformazione da ritiro per essiccamento e la deformazione da ritiro autogeno.

Classe cls =	C32/40	
f _{ck} =	32 Mpa	
f _{cm} =	40 Mpa	
Tipo di cemento =	₽	
A _c =	1 200 000 mm ²	area della sezione in cls
u =	1 000 mm	perimetro della sezione in cls a contatto con l'atmosfera
$h_0 = 2 A_c / u =$	2 400 mm	dimensione fittizia
RH =	75 %	umidità relativa ambientale
t =	25 550 giorni	età del cls nel momento considerato
t _s =	2 giorni	età del cls a partire dalla quale si considera l'effetto del ritiro da essiccamento

Deformazione per ritiro da essiccamento (ϵ_{cd})

La deformazione da ritiro per essiccamento si sviluppa lentamente, dal momento che è funzione della migrazione dell'acqua attraverso il cls indurito.

$$\epsilon_{\mathrm{cd},\infty}$$
 = \mathbf{k}_{h} $\epsilon_{\mathrm{cd},0}$
Prospetto 3.3 - Valori di \mathbf{k}_{h}

h ₀ (mm)	k _h
100	1.0
200	0.85
300	0.75
≥ 500	0.70

Per valori intermedi del parametro $\mathbf{h}_{\scriptscriptstyle 0}$ si procede con interpolazione lineare.

```
\epsilon_{cd,0} = -0,85 [(220 + 110 \alpha_{ds1}) exp(-\alpha_{ds2}\,f_{cm}\,/\,f_{cm0})] 10-6 \beta_{RH}
\alpha_{ds1} =
                                                                          0.11
\alpha_{ds2} =
f_{cm0} =
                                                                            10 Mpa
\beta_{RH} = 1,55 \; [1 - (RH \, / \; RH_0)^3] \; \; con \; RH_0 = 100\%
\beta_{RH} =
                                                                       0.896
                                                                      -0.432 ‰
\epsilon_{cd,0} =
                                                                       -0.302 %
                                                                                                      deformazione per ritiro da essiccamento a tempo infinito
\varepsilon_{cd.\infty} =
\varepsilon_{cd}(t) = \beta_{ds}(t,t_s) \ \varepsilon_{cd,\infty}
\beta_{ds}(t,t_s) = (t - t_s) / [(t - t_s) + 0.04 h_0^{3/2}] =
                                                                       0.845
\epsilon_{cd}(t) =
                                                                      -0.255 %
                                                                                                      deformazione per ritiro da essiccamento al tempo "t"
```

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISSETTA XIRBI-ENNA LOTTO 4/A SCATOLARI DI APPROCCIO AI VIADOTTI						
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	35 di 101	

Deformazione per ritiro autogeno (ϵ_{ca})

La deformazione da ritiro autogeno si sviluppa durante l'indurimento del cls: la maggior parte si sviluppa quindi nei primi giorni successivi al getto.

· ·	• •	99 1 11 1
$\epsilon_{\rm ca,\infty}^{} = -2.5 \; (f_{\rm ck}^{} - 10) \; 10^{-6} =$	-0.055 ‰	deformazione per ritiro autogeno a tempo infinito
$\varepsilon_{ca}(t) = \beta_{as}(t) \ \varepsilon_{ca,\infty}$		
$\beta_{as}(t) = 1 - \exp(-0.2 t^{0.5}) =$	1.000	
$\varepsilon_{ca}(t) =$	-0.055 ‰	deformazione per ritiro autogeno al tempo "t"
Deformazione totale da ritiro (ϵ_{cs})		
$\varepsilon_{\rm cs}(t) = \varepsilon_{\rm cd}(t) + \varepsilon_{\rm ca}(t) =$	-0.310 ‰	deformazione totale da ritiro al tempo "t"
$\varepsilon_{{ m cs},{}^{\infty}} = \varepsilon_{{ m cd},{}^{\infty}} + \varepsilon_{{ m ca},{}^{\infty}} =$	-0.357 ‰	deformazione totale da ritiro a tempo infinito

VARIAZIONE TERMICA UNIFORME EQUIVALENTE AL RITIRO

$$\begin{split} \Delta T_{\text{ritiro}} &= \epsilon_{\text{cs}}(t) \, / \, [(1 + \phi(t, t_0)) \, \alpha] \\ \phi(t, t_0) &= & 1.996 \\ \alpha &= & 1.00\text{E-}05 \, ^{\circ}\text{C}^{-1} \\ \Delta T_{\text{ritiro}} &= & -10.35 \, ^{\circ}\text{C-}1 \end{split}$$

7.7 Azione sismica

L'azione sismica agente sulle masse strutturali è stata considerata con un approccio di tipo pseudostatico. Esso consente di rappresentare il sisma mediante una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

AZIONE SISMICA SU STRUTTURA			Sisma H
		SVL	
	a_g	0.099 g	
	S_S	1.50	
	S_T	1.00	
	F_0	2.65	
	η	1.00	
Spettro T _B - T _C	$S_e(T_B - T_C)$	0.394 g	
Forza orizzontale su soletta sup. permanenti		18.10 kN/m	
Forza orizzontale su soletta sup. LM71		4.44 kN/m	
distanza baricentro treno - p.f.		1.80 m	
distanza baricentro treno - mezzeria soletta		3.20 m	
Momento LM71	M_s	14.20 kNm	
	d	2.52 m	
	ΔΝ	5.64 kN	
	Δσ+	5.96 kN/m^2	
	Δσ-	-5.96 kN/m ²	
Forza orizzontale dei piedritti		11.81 kN/m	

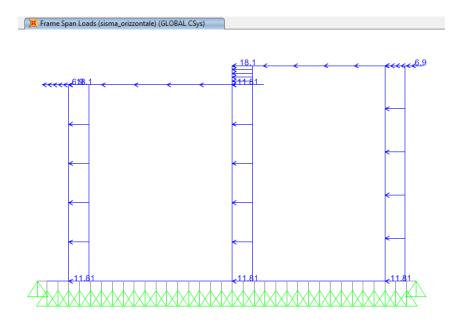


Figura 23 – Sisma orizzontale.

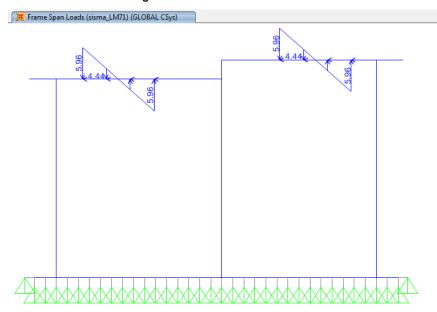


Figura 24 – Sisma orizzontale LM71.

8. COMBINAZIONI DI CALCOLO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine;

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

Le azioni impiegate nella definizione delle combinazioni di carico sono riepilogate nella Tabella 2.

azione	Load Case Name
peso proprio	DEAD
ballast + armamento	ballast
carico verticale LM71 sul binario sinistro	B-sx_LM71
carico verticale LM71 sul binario destro	B-dx_LM71
carico dovuto all'eccentricità (-) del modello LM71 sul binario sinistro	B-sx_LM71_ecc-
carico dovuto all'eccentricità (+) del modello LM71 sul binario sinistro	B-sx_LM71_ecc+
carico dovuto all'eccentricità (-) del modello LM71 sul binario destro	B-dx_LM71_ecc-
carico dovuto all'eccentricità (+) del modello LM71 sul binario destro	B-dx_LM71_ecc+
azione di serpeggio sul binario sinistro	B-sx_LM71_serp
azione di serpeggio sul binario destro	B-dx_LM71_serp
forza centrifuga sul binario destro	B-dx_LM71_centr
vento sulla struttura	vento
ritiro della soletta superiore	ritiro
variazione termica uniforme sulla soletta superiore	termica uniforme
variazione termica a farfalla sulla soletta superiore	termica farfalla
peso proprio barriera antirumore	barriera
vento su barriera antirumore	vento barriera
azione sismica orizzontale dovuta al peso proprio e ai carichi permanenti	sisma H
azione sismica orizzontale del LM71	sisma_LM71

Tabella 2 –Riepilogo carichi.

Nelle Tabelle seguenti sono elencate le combinazioni di carico impiegate nelle verifiche.

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40
 D 29 CL
 SL 01 00 001
 B
 38 di 101

										-
combinazioni di car	ico agli	SLU								
	slu1	slu2	slu3	slu4	slu5	slu6	slu7	slu8	slu9	slu10
DEAD	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1.35
ballast	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
B-sx_LM71	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45
B-sx_LM71_ecc+	1.45	1.45	1.45	1.45	0.00	0.00	0.00	0.00	1.45	1.45
B-sx_LM71_ecc-	0.00	0.00	0.00	0.00	1.45	1.45	1.45	1.45	0.00	0.00
B-sx_LM71_serp	1.45	1.45	1.45	1.45	-1.45	-1.45	-1.45	-1.45	1.45	1.45
B-sx_LM71_centr										
B-dx_LM71	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45
B-dx_LM71_ecc+	1.45	1.45	0.00	0.00	1.45	1.45	0.00	0.00	1.45	1.45
B-dx_LM71_ecc-	0.00	0.00	1.45	1.45	0.00	0.00	1.45	1.45	0.00	0.00
B-dx_LM71_serp	-1.45	-1.45	1.45	1.45	-1.45	-1.45	1.45	1.45	-1.45	-1.45
B-dx_LM71_centr	0.00	0.00	1.45	1.45	0.00	0.00	1.45	1.45	0.00	0.00
vento	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.50	1.50
ritiro	1.20	0.00	1.20	0.00	1.20	0.00	1.20	0.00	1.20	0.00
termica uniforme	-0.90	0.90	-0.90	0.90	-0.90	0.90	-0.90	0.90	-0.90	0.90
termica farfalla	0.90	-0.90	0.90	-0.90	0.90	-0.90	0.90	-0.90	0.90	-0.90
barriera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.35	1.35
vento barriera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.50	1.50

Tabella 3 – Combinazioni di carico agli SLU in condizioni statiche.

combinazioni di car	combinazioni di carico agli SLV											
	sis1	sis2	sis3	sis4	sis5	sis6	sis7	sis8	sis9	sis10		
DEAD	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
ballast	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
B-sx_LM71	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20		
B-sx_LM71_ecc+	0.20	0.20	0.20	0.20	0.00	0.00	0.00	0.00	0.20	0.20		
B-sx_LM71_ecc-	0.00	0.00	0.00	0.00	0.20	0.20	0.20	0.20	0.00	0.00		
B-sx_LM71_serp	0.20	0.20	0.20	0.20	-0.20	-0.20	-0.20	-0.20	0.20	0.20		
B-sx_LM71_centr												
B-dx_LM71	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20		
B-dx_LM71_ecc+	0.20	0.20	0.00	0.00	0.20	0.20	0.00	0.00	0.20	0.20		
B-dx_LM71_ecc-	0.00	0.00	0.20	0.20	0.00	0.00	0.20	0.20	0.00	0.00		
B-dx_LM71_serp	-0.20	-0.20	0.20	0.20	-0.20	-0.20	0.20	0.20	-0.20	-0.20		

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	39 di 101

B-dx_LM71_centr	0.00	0.00	0.20	0.20	0.00	0.00	0.20	0.20	0.00	0.00
vento	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ritiro	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00
termica uniforme	-0.50	0.50	-0.50	0.50	-0.50	0.50	-0.50	0.50	-0.50	0.50
termica farfalla	0.50	-0.50	0.50	-0.50	0.50	-0.50	0.50	-0.50	0.50	-0.50
barriera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00
vento barriera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
sisma_orizzontale	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Sisma_LM71	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Tabella 4 – Combinazioni di carico agli SLV.

combinazioni di car	ico rare	(SLE) p	er verifi	ca tensi	oni					
	rar1	rar2	rar3	rar4	rar5	rar6	rar7	rar8	rar9	rar10
DEAD	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ballast	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
B-sx_LM71	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
B-sx_LM71_ecc+	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	1.00	1.00
B-sx_LM71_ecc-	0.00	0.00	0.00	0.00	1.00	1.00	1.00	1.00	0.00	0.00
B-sx_LM71_serp	1.00	1.00	1.00	1.00	-1.00	-1.00	-1.00	-1.00	1.00	1.00
B-sx_LM71_centr										
B-dx_LM71	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
B-dx_LM71_ecc+	1.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00
B-dx_LM71_ecc-	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00
B-dx_LM71_serp	-1.00	-1.00	1.00	1.00	-1.00	-1.00	1.00	1.00	-1.00	-1.00
B-dx_LM71_centr	0.00	0.00	1.00	1.00	0.00	0.00	1.00	1.00	0.00	0.00
vento	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00
ritiro	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00
termica uniforme	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60
termica farfalla	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60
barriera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00
vento barriera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00

Tabella 5 – Combinazioni di carico rare (SLE) per verifica tensioni.

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40
 D 29 CL
 SL 01 00 001
 B
 40 di 101

	£ 1	f0	f 0	£ 1	£ F	f 0	f 7	f 0	f0	f40
	fes1	fes2	fes3	fes4	fes5	fes6	fes7	fes8	fes9	fes10
DEAD	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ballast	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
B-sx_LM71	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
B-sx_LM71_ecc+	0.60	0.60	0.60	0.60	0.00	0.00	0.00	0.00	0.60	0.60
B-sx_LM71_ecc-	0.00	0.00	0.00	0.00	0.60	0.60	0.60	0.60	0.00	0.00
B-sx_LM71_serp	0.60	0.60	0.60	0.60	-0.60	-0.60	-0.60	-0.60	0.60	0.60
B-sx_LM71_centr										
B-dx_LM71	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
B-dx_LM71_ecc+	0.60	0.60	0.00	0.00	0.60	0.60	0.00	0.00	0.60	0.60
B-dx_LM71_ecc-	0.00	0.00	0.60	0.60	0.00	0.00	0.60	0.60	0.00	0.00
B-dx_LM71_serp	-0.60	-0.60	0.60	0.60	-0.60	-0.60	0.60	0.60	-0.60	-0.60
B-dx_LM71_centr	0.00	0.00	0.60	0.60	0.00	0.00	0.60	0.60	0.00	0.00
vento	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00
ritiro	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00
termica uniforme	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60
termica farfalla	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60	0.60	-0.60
barriera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00
vento barriera	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	1.00

Tabella 6 – Combinazioni di carico rare (SLE) per verifica fessurazione.

combinazioni di carico quasi permane	nti (SLE) per ve	erifica tensioni
	qpe1	qpe2
DEAD	1.00	1.00
ballast	1.00	1.00
B-sx_LM71	0.00	0.00
B-sx_LM71_ecc+	0.00	0.00
B-sx_LM71_ecc-	0.00	0.00
B-sx_LM71_serp	0.00	0.00
B-sx_LM71_centr	0.00	0.00
B-dx_LM71	0.00	0.00
B-dx_LM71_ecc+	0.00	0.00
B-dx_LM71_ecc-	0.00	0.00
B-dx_LM71_serp	0.00	0.00

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISSETTA XIRBI-ENNA LOTTO 4/A SCATOLARI DI APPROCCIO AI VIADOTTI						
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	41 di 101	

B-dx_LM71_centr	0.00	0.00
vento	0.00	0.00
ritiro	1.00	-
termica uniforme	-0.50	0.50
termica farfalla	0.50	-0.50
barriera	-	-
vento barriera	-	-

Tabella 7 – Combinazioni di carico quasi permanenti (SLE) per verifica tensioni.

9. RISULTATI E VERIFICHE

Nelle immagini a seguire si riportano i digrammi di inviluppo delle sollecitazioni per gli stati limite ultimi statici e sismici e per gli stati limite d'esercizio.

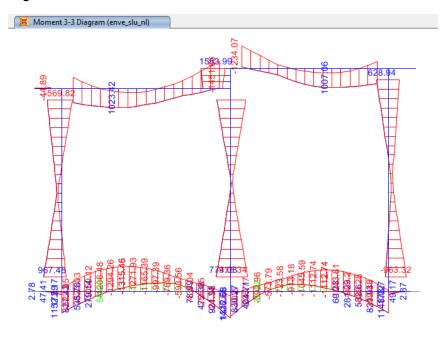


Figura 25 – Momento flettente enve-SLU.

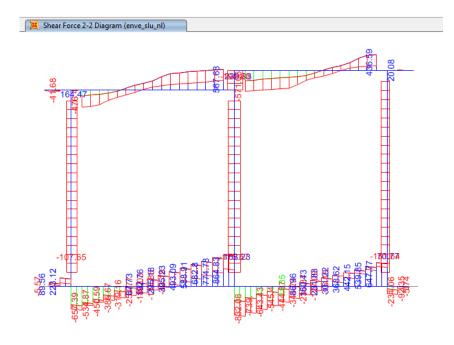


Figura 26 – Taglio enve-SLU.

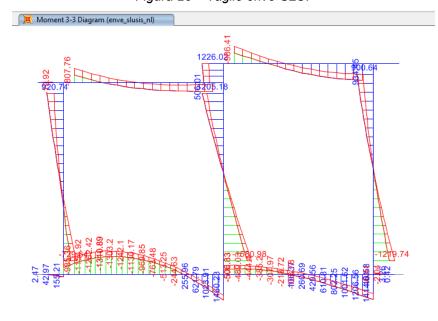


Figura 27 – Momento flettente enve-SLV.

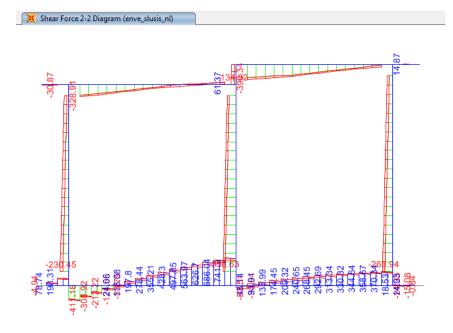


Figura 28 – Taglio enve-SLV.

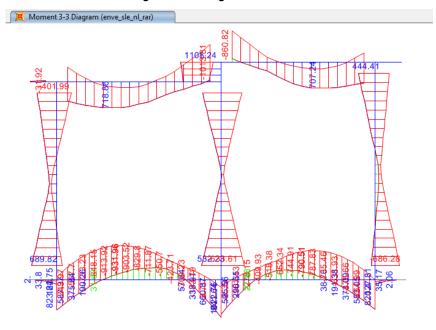


Figura 29 – Momento flettente enve-SLE rara tensioni.

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISSETTA XIRBI-ENNA LOTTO 4/A SCATOLARI DI APPROCCIO AI VIADOTTI						
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo	RS3U	40	D 29 CL	SL 01 00 001	B	44 di 101	

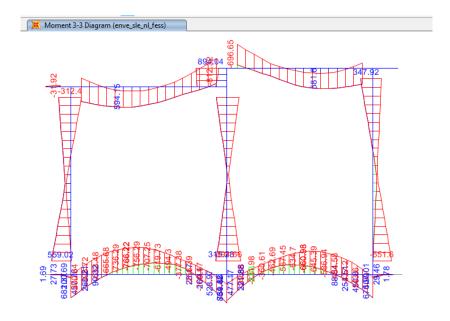


Figura 30 – Momento flettente enve-SLE rara fessurazione.

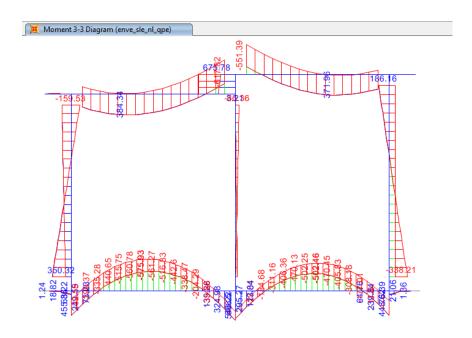


Figura 31 – Momento flettente enve-SLE quasi permanente.

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40
 D 29 CL
 SL 01 00 001
 B
 45 di 101

Nelle tabelle seguenti si riportano le sollecitazioni massime derivanti dalle analisi utilizzate nelle successive verifiche.

SLV		Р	V2	М3	Frame	Station	OutputCase
		KN	KN	KN-m	Text	m	Text
М3	max	111.99	-58.39	934.45	80	7.80	sis7_nl
М3	min	-99.90	-390.34	-986.41	80	0.60	sis8_nl
V2	max	72.18	61.37	81.29	79	8.40	sis2_nl
V2	min	-99.90	-390.34	-986.41	80	0.60	sis8_nl
Р	max	151.32	35.98	424.90	79	8.40	sis5_nl
Р	min	-111.66	-377.16	-950.73	80	0.60	sis4_nl

SLU		Р	V2	2 M3		Station	OutputCase
		KN	KN	KN-m	Text	m	Text
М3	max	94.43	-5.49	1023.42	79	3.04	slu1_nl
М3	min	-74.87	567.68	-1451.66	79	8.40	slu2_nl
V2	max	-74.87	567.68	-1451.66	79	8.40	slu2_nl
V2	min	-106.46	-571.06	-1234.07	80	0.60	slu8_nl
Р	max	248.30	282.51	414.62	79	5.48	slu5_nl
Р	min	-192.60	305.91	176.07	79	5.48	slu4_nl

SLE - RARA TENSIONI		Р	V2	V2 M3 F		Station	OutputCase
		KN	KN	KN-m	Text	m	Text
М3	max	68.47	-2.42	718.86	79	3.04	rar1_nl
М3	min	-49.01	401.64	-1013.31	79	8.40	rar2_nl
V2	max	-49.01	401.64	-1013.31	79	8.40	rar2_nl
V2	min	-70.93	-403.37	-860.82	80	0.60	rar8_nl
Р	max	174.59	199.90	291.17	79	5.48	rar5_nl
Р	min	-130.20	215.07	130.03	79	5.48	rar4_nl

SLE - RARA		Р	V2	М3	Frame	Station	OutputCase	
FESSUR	AZIONE	KN	KN	KN KN-m		m	Text	
М3	max	63.97	-3.33	594.15	79	3.04	fes1_nl	
М3	min	-27.05	321.26	-812.32	79	8.40	fes2_nl	
V2	max	-27.05	321.26	-812.32	79	8.40	fes2_nl	
V2	min	-38.49	-319.99	-696.65	80	0.60	fes8_nl	
Р	max	127.64	162.90	287.45	79	5.48	fes5_nl	
Р	min	-75.76	174.07	57.19	79	5.48	fes4_nl	

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40
 D 29 CL
 SL 01 00 001
 B
 46 di 101

SLE - Q.PE.		Р	V2	М3	Frame	Station	OutputCase
		KN	KN	KN-m	Text	m	Text
М3	max	53.95	-3.94	384.34	79	3.04	qpe1_nl
М3	min	-7.22	203.70	-617.82	79	8.40	qpe2_nl
V2	max	-7.22	203.70	-617.82	79	8.40	qpe2_nl
V2	min	-0.63	-198.32	-551.39	80	0.60	qpe2_nl
Р	max	53.95	-105.01	241.91	79	0.60	qpe1_nl
Р	min	-7.22	-97.59	-129.57	79	0.60	qpe2_nl

9.1.1 Armature adottate e calcolo copriferro

Si riassume di seguito l'armatura adottata.

 $As = 10\Phi 26$

 $As' = 15\Phi 26$

Staffe: Φ 10/20 a 4 bracci

La sezione risulta verificata con l'armatura prevista.

CALCOLO COPRIFERRO - § C4.1.6.1.3 ISTRUZIONI NTC

Dati Assegnati:

Diametro (o diametro equivalente) barre longitudinali:	26	[mm]
Diametro staffe:	10	[mm]
Classe Calcestruzzo:	C32/40	
Condizioni ambientali:	Aggressive	
Vita nominale costruzione:	75	[anni]
Incremento di 10 mm rispetto a vita nominale di 50 anni		
Tolleranza di posa:	10	[mm]

Copriferro staffe:

Copriferro nominale Netto Staffe: 60 [mm]

Copriferro barre longitudinali:

Copriferro nominale Netto barre longitudinali: 80 [mm]

Copriferro nominale dal Baricentro della Barra longitudinale: 93 [mm]

SL01 - Scatolare di approccio al viadotto VI01:

COMMESSA LOTTO CODIFICA REV. FOGLIO DOCUMENTO RS3U D 29 CL В 40 SL 01 00 001 47 di 101

Relazione di calcolo

9.1.2 Verifica in condizioni statiche

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A.

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40
ONLOLDTINOLLO	Olubbo.	002/10

Resis. compr. di progetto fcd: 181.30 daN/cm² Resis. compr. ridotta fcd': 90.65 daN/cm² 0.0020

Def.unit. max resistenza ec2: Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 333458 daN/cm² Resis. media a trazione fctm: 30.20 daN/cm² Coeff. Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Rare: 176.00 daN/cm² 176.00 Sc limite S.L.E. comb. Frequenti: daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.200 mm Sc limite S.L.E. comb. Q.Permanenti: 128.00 daN/cm² Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO -B450C Tipo:

Resist. caratt. snervam. fyk: 4500.0 daN/cm² Resist. caratt. rottura ftk: 4500.0 daN/cm² Resist. snerv. di progetto fyd: 3913.0 daN/cm² Resist. ultima di progetto ftd: 3913.0 daN/cm²

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm² Diagramma tensione-deformaz.: Bilineare finito

Coeff. Aderenza istantaneo 61*62: 1.00 Coeff. Aderenza differito B1*B2: 0.50

Sf limite S.L.E. Comb. Rare: 3375.0 daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	120.0
3	50.0	120.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.0	9.3	26

SL01	-	Scatolare	di	approccio	al	viadotto	VI01:
Relazione di calcolo							

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	48 di 101

2	45.0	9.3	26
3	-45.0	110.7	26
4	45.0	110.7	26
5	-45.0	103.0	26
6	45.0	103.0	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	2	8	26
2	3	4	8	26
3	5	6	3	26

ARMATURE A TAGLIO

Diametro staffe: 10 mm Passo staffe: 20.0 cm

Indicazione Barre Longitudinali di risvolto per ogni staffa:

 N°Staffa
 Barra
 Barra
 Barra
 Barra

 1
 12
 1
 3
 20

 2
 2
 9
 17
 4

Coordinate Barre generate di risvolto delle staffe:

N°Barra	X[cm]	Y[cm]
12	15.0	9.3
9	-15.0	9.3
17	-15.0	110.7

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx		Sforzo normale in daN applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez.		
Vy		Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordina		
N°Comb.	N	Mx	Vy	
1	-9443	102342	-549	
2	7487	-145166	56768	
3	7487	-145166	56768	
4	10646	-123407	-57106	
5	-24830	41462	28251	
6	19260	17607	30591	

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

 N° Comb. N Mx My

SL01 - Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	49 di 101

1	-6847	71886	0
2	4901	-101331	0
3	4901	-101331	0
4	7093	-86082	0
5	-17459	29117	0
6	13020	13003	0

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale in daN applicato nel Baricentro (+ se di compressione) Ν

Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	-6397 2705	59415 (92403) -81232 (-99434)	0 (0) 0 (0)
3	2705	-81232 (-99434)	0 (0)
4 5	3849 -12764	-69665 (-99923) 28745 (85750)	0 (0) 0 (0)
6	7576	5719 (137984)	0 (0)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in daN applicato nel Baricentro (+ se di compressione)
Mx	Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom. Fessurazione)
	con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	My
1	-5395	38434 (91711)	0 (0)
2	722	-61782 (-98957)	0 (0)
3	722	-61782 (-98957)	0 (0)
4	63	-55139 (-98726)	0 (0)
5	-5395	24191 (90008)	0 (0)
6	722	-12957 (-99934)	0 (0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.0 cm Interferro netto minimo barre longitudinali: 5.1 cm Copriferro netto minimo staffe: 7.0

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver

 $S=combinazione \ verificata\ /\ N=combin.\ non\ verificata$ Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione) Ν Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate Mx

Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa] As Totale

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic. As Totale
1	S	-9443	102342	-9433	204825	1.99 132.7(36.0)
2	S	7487	-145166	7465	-295287	2.03 132.7(36.0)
3	S	7487	-145166	7465	-295287	2.03 132.7(36.0)

SL01 - Scatolare di approccio al viadotto VI01:

Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	50 di 101

4	S	10646	-123407	10647	-296656	2.40 132.7(36.0)
5	S	-24830	41462	-24857	197585	4.58 132.7(36.0)
6	S	19260	17607	19251	218132	12.60 132.7(36.0)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00064	-50.0	120.0	0.00042	-45.0	110.7	-0.00196	-45.0	9.3
2	0.00089	-50.0	0.0	0.00065	-45.0	9.3	-0.00196	-45.0	110.7
3	0.00089	-50.0	0.0	0.00065	-45.0	9.3	-0.00196	-45.0	110.7
4	0.00090	-50.0	0.0	0.00066	-45.0	9.3	-0.00196	-45.0	110.7
5	0.00061	-50.0	120.0	0.00039	-45.0	110.7	-0.00196	-45.0	9.3
6	0.00069	-50.0	120.0	0.00047	-45.0	110.7	-0.00196	-45.0	9.3

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O qen. a, b, c x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	0.000023443	-0.002174519		
2	0.000000000	-0.000025743	0.000893272		
3	0.000000000	-0.000025743	0.000893272		
4	0.000000000	-0.000025800	0.000899550		
5	0.000000000	0.000023164	-0.002171922		
6	0.000000000	0.000023951	-0.002179246		

VERIFICHE A TAGLIO

bw

Diam. Staffe: 10 mm

Passo staffe: 20.0 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata Ved

Taglio di progetto [daN] = Vy ortogonale all'asse neutro
Taglio compressione resistente [daN] lato conglomerato [formula (4.1.28)NTC] Vcd

Vwd Taglio resistente [daN] assorbito dalle staffe

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] d | z

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Ctg Acw Coefficiente maggiorativo della resistenza a taglio per compressione Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] A.Eff Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

SL01 - Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	51 di 101

N°Comb	Ver	Ved	Vcd	Vwd	$d \mid z$	bw	Ctg	Acw	Ast	A.Eff
1	S	549	456891	6480011	1.7 100.8	100.0	1.000	1.000	0.1	16.4(0.0)
2	S	56768	444896	6288311	1.7 97.8	100.0	1.000	1.003	14.8	16.4(0.0)
3	S	56768	444896	6288311	1.7 97.8	100.0	1.000	1.003	14.8	16.4(0.0)
4	S	57106	445236	6284011	1.7 97.8	100.0	1.000	1.005	14.9	16.4(0.0)
5	S	28251	458715	6505911	1.7 101.2	100.0	1.000	1.000	7.1	16.4(0.0)
6	S	30591	457696	6434511	1.7 100.1	100.0	1.000	1.009	7.8	16.4(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

S = comb. verificata/ N = comb. non verificata Sc max

Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²] Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max Sf min Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²] Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

$N^{\circ}Comb$	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	32.2	-50.0	120.0	-1408	35.0	9.3	2300	53.1
2	S	44.1	-50.0	0.0	-1330	35.0	110.7	2800	79.6
3	S	44.1	-50.0	0.0	-1330	35.0	110.7	2800	79.6
4	S	37.6	-50.0	0.0	-1113	35.0	110.7	2750	79.6
5	S	11.8	-50.0	120.0	-702	35.0	9.3	2300	53.1
6	S	6.4	-50.0	120.0	-137	35.0	9.3	2300	53.1

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max wk	Mx fess	My fess
1	S	-0.00065	0	0.500	26.0	80	0.00035 (0.00035) 468 0.164 (0.20)	92403	0
2	S	-0.00060	0	0.500	26.0	80	0.00032 (0.00032) 427 0.138 (0.20)	-99434	0
3	S	-0.00060	0	0.500	26.0	80	0.00032 (0.00032) 427 0.138 (0.20)	-99434	0
4	S	-0.00051	0	0.500	26.0	80	0.00027 (0.00027) 425 0.116 (0.20)	-99923	0
5	S	-0.00036	0	0.500	26.0	80	0.00020 (0.00020) 463 0.091 (0.20)	85750	0
6	S	-0.00003	0	0.500	26.0	80	0.00001 (0.00001) 459 0.007 (0.20)	137984	0

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	17.1	-50.0	120.0	-768	35.0	9.3	2350	53.1
2	S	26.7	-50.0	0.0	-824	35.0	110.7	2800	79.6
3	S	26.7	-50.0	0.0	-824	35.0	110.7	2800	79.6
4	S	23.8	-50.0	0.0	-739	35.0	110.7	2800	79.6
5	S	10.6	-50.0	120.0	-501	35.0	9.3	2350	53.1
6	S	5.6	-50.0	0.0	-169	35.0	110.7	2750	79.6

9.1.3 Verifica in condizioni sismiche

daN/cm²

SL01 - Scatolare di approccio al viadotto VI01:

Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40
 D 29 CL
 SL 01 00 001
 B
 52 di 101

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C32/40

Resis. compr. di progetto fcd: 181.30 daN/cm² Resis. compr. ridotta fcd': 90.65 daN/cm²

Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035
Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec:333458daN/cm²Resis. media a trazione fctm:30.20daN/cm²

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:
Resist. ultima di progetto ftd:

Deform. ultima di progetto Epu:

4500.0 daN/cm²
daN/cm²
3913.0 daN/cm²
daN/cm²

Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef 2000000

Diagramma tensione-deformaz.: Bilineare finito

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	120.0
3	50.0	120.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.0	9.3	26
2	45.0	9.3	26
3	-45.0	110.7	26
4	45.0	110.7	26
5	-45.0	103.0	26
6	45.0	103.0	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

SL01 – Scatolare di approccio al viadotto VI01:

Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	53 di 101

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	2	8	26
2	3	4	8	26
3	5	6	3	26

ARMATURE A TAGLIO

Diametro staffe: 10 mm Passo staffe: 20.0 cm

Indicazione Barre Longitudinali di risvolto per ogni staffa:

N°Staffa Barra Barra Barra Barra 1 12 1 3 20 2 2 9 17 4

Coordinate Barre generate di risvolto delle staffe:

N°Barra	X[cm]	Y[cm]
12	15.0	9.3
9	-15.0	9.3
17	-15.0	110.7

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate
con verso positivo se tale da comprimere il lembo sup. della sez.

Vy Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordinate

N°Comb.	N	Mx	Vy
1	-11199	93445	-5839
2	9990	-98641	-39034
3	-7218	8129	6137
4	9990	-98641	-39034
5	-15132	42490	3598
6	11166	-95073	-37716

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.0 cm Interferro netto minimo barre longitudinali: 5.1 cm Copriferro netto minimo staffe: 7.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)
Mx Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic. As Totale
1	S	-11199	93445	-11184	204005	2.17 132.7(36.0)
2	S	9990	-98641	9972	-296366	3.00 132.7(36.0)
3	S	-7218	8129	-7235	205851	23.60 132.7(36.0)
4	S	9990	-98641	9972	-296366	3.00 132.7(36.0)

SL01 - Scatolare di approccio al viadotto VI01:

Relazione di calcolo

COMMESSA LOTTO FOGLIO CODIFICA DOCUMENTO REV. RS3U 40 D 29 CL SL 01 00 001 В 54 di 101

-15132 42490 -15116 202163 4.65 132.7(36.0) 5 S S 3.12 132.7(36.0) 6 11166 -95073 11138 -296867

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

$N^{\circ}Comb$	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00064	-50.0	120.0	0.00042	-45.0	110.7	-0.00196	-45.0	9.3
2	0.00004	-50.0	0.0	0.00042	-45.0 -45.0	9.3	-0.00196	-45.0 -45.0	110.7
3	0.00064	-50.0	120.0	0.00042	-45.0	110.7	-0.00196	-45.0	9.3
4	0.00090	-50.0	0.0	0.00066	-45.0	9.3	-0.00196	-45.0	110.7
5	0.00063	-50.0	120.0	0.00041	-45.0	110.7	-0.00196	-45.0	9.3
6	0.00090	-50.0	0.0	0.00066	-45.0	9.3	-0.00196	-45.0	110.7

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 x/d

Coeff. di riduz. momenti per sola flessione in travi continue C.Rid.

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	0.000023411	-0.002174224		
2	0.000000000	-0.000025788	0.000898222		
3	0.000000000	0.000023482	-0.002174884		
4	0.000000000	-0.000025788	0.000898222		
5	0.000000000	0.000023340	-0.002173565		
6	0.000000000	-0.000025809	0.000900516		

VERIFICHE A TAGLIO

bw

Diam. Staffe: 10 mm

Passo staffe: 20.0 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata Ved Taglio di progetto [daN] = Vy ortogonale all'asse neutro

Taglio compressione resistente [daN] lato conglomerato [formula (4.1.28)NTC] Vcd

Taglio resistente [daN] assorbito dalle staffe Vwd

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] $d \mid z$

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro

E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Ctg Coefficiente maggiorativo della resistenza a taglio per compressione Acw Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Ast Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] A.Eff Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb Ver Vcd Ctg A.Eff Ved Vwd d | z bw Ast Acw

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	55 di 101

1	S	5839	457095	64829111.7 100.8	100.0	1.000	1.000	1.5	16.4(0.0)
2	S	39034	445166	62849111.7 97.8	100.0	1.000	1.005	10.2	16.4(0.0)
3	S	6137	456638	64764111.7 100.7	100.0	1.000	1.000	1.6	16.4(0.0)
4	S	39034	445166	62849111.7 97.8	100.0	1.000	1.005	10.2	16.4(0.0)
5	S	3598	457556	64895111.7 100.9	100.0	1.000	1.000	0.9	16.4(0.0)
6	S	37716	445295	62833111.7 97.7	100.0	1.000	1.005	9.9	16.4(0.0)

9.2 Verifica piedritti

Nelle tabelle seguenti si riportano le sollecitazioni massime derivanti dalle analisi utilizzate nelle successive verifiche.

CI	_V	Р	V2	М3	Frame	Station	OutputCase
31	_V	KN	KN	KN-m	Text	m	Text
М3	max	-408.34	-110.76	1226.02	76	1.05	sis8_nl
М3	min	-770.72	-350.63	-1580.98	75	0.75	sis7_nl
V2	max	-377.31	-34.30	877.04	76	1.05	sis5_nl
V2	min	-770.72	-350.63	-1580.98	75	0.75	sis7_nl
Р	max	1.81	-102.87	680.86	70	11.25	sis8_nl
Р	min	-787.70	-320.31	-1447.79	75	0.75	sis4_nl

CI	LU	Р	V2	М3	Frame	Station	OutputCase
31	_0	KN	KN	KN-m	Text	m	Text
М3	max	-595.35	-106.46	1583.99	76	1.05	slu8_nl
М3	min	-658.40	-151.64	-963.32	70	0.75	slu7_nl
V2	max	-436.71	239.84	858.21	76	0.00	slu5_nl
V2	min	-542.26	-191.68	1066.69	76	0.00	slu4_nl
Р	max	-222.45	-90.96	263.14	70	11.25	slu8_nl
Р	min	-1398.39	0.92	-79.96	75	0.75	slu4_nl

SLE - RARA	TENCIONI	Р	V2	М3	Frame	Station	OutputCase
SLE - NANA	TENSIONI	KN	KN	KN-m	Text	m	Text
М3	max	-421.37	-70.93	1108.24	76	1.05	rar8_nl
М3	min	-482.06	-107.69	-686.28	70	0.75	rar7_nl
V2	max	-315.12	168.51	617.38	76	0.00	rar5_nl
V2	min	-386.92	-129.71	754.09	76	0.00	rar4_nl
Р	max	-160.68	-65.22	190.61	70	11.25	rar8_nl
Р	min	-1009.52	0.49	-56.76	75	0.75	rar4_nl

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	56 di 101

SLE -	RARA	Р	V2	М3	Frame	Station	OutputCase
FESSURAZIONE		KN	KN	KN-m	Text	m	Text
М3	max	-337.99	-38.49	894.04	76	1.05	fes8_nl
М3	min	-477.68	-85.67	-551.60	70	0.75	fes7_nl
V2	max	-284.25	122.16	488.17	76	0.00	fes5_nl
V2	min	-477.68	-85.67	-551.60	70	0.75	fes7_nl
Р	max	-156.30	-43.20	94.12	70	11.25	fes8_nl
Р	min	-911.52	2.01	-38.12	75	0.75	fes4_nl

SLE - Q.PE.		Р	V2	М3	Frame	Station	OutputCase
		KN	KN	KN-m	Text	m	Text
М3	max	-216.31	-0.63	675.78	76	1.05	qpe2_nl
М3	min	-470.26	-49.94	-338.21	70	0.75	qpe1_nl
V2	max	-449.78	53.95	350.32	68	0.75	qpe1_nl
V2	min	-470.26	-49.94	-338.21	70	0.75	qpe1_nl
Р	max	-146.33	0.63	-118.67	70	11.25	qpe2_nl
Р	min	-770.91	6.59	-4.07	75	0.75	qpe2_nl

9.2.1 Armature adottate e calcolo copriferro

Si riassume di seguito l'armatura adottata.

 $As = 15\Phi 26$

 $As' = 10\Phi 26$

Staffe: Φ 10/20 a 4 bracci

La sezione risulta verificata con l'armatura prevista.

CALCOLO COPRIFERRO - § C4.1.6.1.3 ISTRUZIONI NTC

Dati Assegnati:

Diametro (o diametro equivalente) barre longitudinali:	26	[mm]
Diametro staffe:	10	[mm]
Classe Calcestruzzo:	C32/40	
Condizioni ambientali:	Aggressive	
Vita nominale costruzione:	75	[anni]
Incremento di 10 mm rispetto a vita nominale di 50 anni		
Tolleranza di posa:	10	[mm]

Copriferro staffe:

Copriferro nominale Netto Staffe: 60 [mm]

SL01 - Scatolare di approccio al viadotto VI01:

Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40
 D 29 CL
 SL 01 00 001
 B
 57 di 101

Copriferro barre longitudinali:

Copriferro nominale Netto barre longitudinali: 80 [mm]

Copriferro nominale dal Baricentro della Barra longitudinale: 93 [mm]

9.2.2 Verifica in condizioni statiche

DATI GENERALI SEZIONE GENERICA IN C.A.

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40

Resis. compr. di progetto fcd: 181.30 daN/cm²
Resis. compr. ridotta fcd': 90.65 daN/cm²

Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035
Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec:333458daN/cm²Resis. media a trazione fctm:30.20daN/cm²Coeff. Omogen. S.L.E.:15.00

Sc limite S.L.E. comb. Rare:176.00daN/cm²Sc limite S.L.E. comb. Frequenti:176.00daN/cm²Ap.Fessure limite S.L.E. comb. Frequenti:0.200mmSc limite S.L.E. comb. Q.Permanenti:128.00daN/cm²Ap.Fess.limite S.L.E. comb. Q.Perm.:0.200mm

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:

Resist. caratt. rottura ftk:

Resist. snerv. di progetto fyd:
Resist. ultima di progetto ftd:

4500.0 daN/cm²

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

Sf limite S.L.E. Comb. Rare: 3375.0 daN/cm²

SL01 - Scatolare di approccio al viadotto VI01:

Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	58 di 101

Forma del Do Classe Conglo	Poligonale C32/40	
N°vertice:	X [cm]	Y [cm]
1 2	-50.0 -50.0	0.0 120.0
3	50.0	120.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.0	9.3	26
2	45.0	9.3	26
3	-45.0	110.7	26
4	45.0	110.7	26
5	-45.0	17.0	26
6	45.0	17.0	26

DATI GENERAZIONI LINEARI DI BARRE

Numero assegnato alla singola generazione lineare di barre N°Gen. N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione Numero di barre generate equidistanti cui si riferisce la generazione N°Barra Fin.

N°Barre

Diametro in mm delle barre della generazione Ø

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	2	8	26
2	3	4	8	26
3	5	6	3	26

ARMATURE A TAGLIO

Diametro staffe: 10 mm Passo staffe: 20.0 cm

Indicazione Barre Longitudinali di risvolto per ogni staffa:

N°Staffa Barra Barra Barra Barra 12 3 20 2 2 9 17 4

Coordinate Barre generate di risvolto delle staffe:

N°Barra	X[cm]	Y[cm]
12	15.0	9.3
20	15.0	110.7
9	-15.0	9.3
17	-15.0	110.7

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale in daN applicato nel Baric. (+ se di compressione) Ν Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez. Mx

Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordinate Vy

SL01 -	Scatolare	di	approccio	al	viadotto	VI01:	
Relazione di calcolo							

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	59 di 101

N°Comb.	N	Mx	Vy
1	59535	158399	-10646
2	65840	-96332	-15164
3	43671	85821	23984
4	54226	106669	-19168
5	22245	26314	-9096
6	139839	-7996	92

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	42137	110824	0
2	48206	-68628	0
3	31512	61738	0
4	38692	75409	0
5	16068	19061	0
6	100952	-5676	0

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx	
1 33799 89404 (107715)	0 (0)
2 47768 -55160 (-119160)	0 (0)
3 28425 48817 (113306)	0 (0)
4 47768 -55160 (-119160)	0 (0)
5 15630 9412 (156074)	0 (0)
6 91152 -3812 (0)	0 (0)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione $% \left(1\right) =\left(1\right) \left(1\right)$

N°Comb.	N	Mx	Му
1	21631	67578 (106228)	0 (0)
2	47026	-33821 (-141180)	0 (0)
3	44978	35032 (137891)	0 (0)
4	47026	-33821 (-141180)	0 (0)
5	14633	-11867 (-133763)	0 (0)
6	77091	-407 (0)	0 (0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

SL01 - Scatolare di approccio al viadotto VI01:

Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U 40 D 29 CL SL 01 00 001 60 di 101

Interferro netto minimo barre longitudinali: 5.1 cm Copriferro netto minimo staffe: 7.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione) Мх Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r, Mx Res, My Res) e (N, Mx, My)

Verifica positiva se tale rapporto risulta >=1.000

Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa] As Totale

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic. As Totale
1	S	59535	158399	59538	344755	2.17 132.7(36.0)
2	S	65840	-96332	65858	-254803	2.66 132.7(36.0)
3	S	43671	85821	43683	336969	3.90 132.7(36.0)
4	S	54226	106669	54236	342156	3.19 132.7(36.0)
5	S	22245	26314	22227	326364	12.25 132.7(36.0)
6	S	139839	-7996	139834	-289813	50.63 132.7(36.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-50.0	120.0	0.00138	-45.0	110.7	-0.02177	-45.0	9.3
ı							0.02.77		
2	0.00350	-50.0	0.0	0.00112	-45.0	9.3	-0.02487	-45.0	110.7
3	0.00350	-50.0	120.0	0.00130	-45.0	110.7	-0.02268	-45.0	9.3
4	0.00350	-50.0	120.0	0.00135	-45.0	110.7	-0.02207	-45.0	9.3
5	0.00350	-50.0	120.0	0.00119	-45.0	110.7	-0.02396	-45.0	9.3
6	0.00350	-50.0	0.0	0.00137	-45.0	9.3	-0.02190	-45.0	110.7

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	a	b	С	x/d	C.Rid.
1	0.000000000	0.000228309	-0.023897125		
2	0.000000000	-0.000256241	0.003500000		
3	0.000000000	0.000236474	-0.024876864		
4	0.000000000	0.000231018	-0.024222210		
5	0.000000000	0.000248020	-0.026262400		
6	0.000000000	-0.000229449	0.003500000		

VERIFICHE A TAGLIO

Diam. Staffe: 10 mm

Passo staffe: 20.0 cm [Passo massimo di normativa = 25.0 cm]

Ver

bw

Ctg

Acw

Ast A.Eff

1

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI-ENNA LOTTO 4/A SCATOLARI DI APPROCCIO AI VIADOTTI

DOCUMENTO

SL 01 00 001

REV.

FOGLIO

61 di 101

CODIFICA

D 29 CL

SL01 - Scatolare di approccio al viadotto VI01:

Relazione di calcolo

S = comb. verificata a taglio / N = comb. non verificata

Taglio di progetto [daN] = Vy ortogonale all'asse neutro Taglio compressione resistente [daN] lato conglomerato [formula (4.1.28)NTC] Ved Vcd

Taglio resistente [daN] assorbito dalle staffe Vwd

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] d | z

COMMESSA

RS3U

LOTTO

40

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

$N^{\circ}Comb$	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	10646	491581	6488811	3.9 105.6	100.0	1.000	1.027	2.6	15.7(0.0)
2	S	15164	496088		4.5 106.2		1.000	1.030		15.7(0.0)
3	S	23984	489070	6501811	4.1 105.8	100.0	1.000	1.020		15.7(0.0)
4	S	19168	490747	6493211	3.9 105.6	100.0	1.000	1.025	4.6	15.7(0.0)
5	S	9096	485611	6518711	4.4 106.1	100.0	1.000	1.010	2.2	15.7(0.0)
6	S	92	509389	6490611	3.9 105.6	100.0	1.000	1.064	0.0	15.7(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²] Sc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Xc max, Yc max Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²] Sf min Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	50.6	-50.0	120.0	-1244	35.0	9.3	2600	79.6
2	S	33.4	-50.0	0.0	-882	35.0	110.7	2300	53.1
3	S	28.6	-50.0	120.0	-648	35.0	9.3	2550	79.6
4	S	35.0	-50.0	120.0	-791	35.0	9.3	2550	79.6
5	S	9.1	-50.0	120.0	-167	35.0	9.3	2350	79.6
6	S	8.6	-50.0	0.0	90	35.0	110.7		

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
											•
1	S	-0.00057	0	0.835	26.0	80	0.00030 (0.00030)	513	0.155 (0.20)	107715	0
2	S	-0.00036	0	0.852	26.0	80	0.00019 (0.00019)	598	0.115 (0.20)	-119160	0
3	S	-0.00028	0	0.834	26.0	80	0.00015 (0.00015)	504	0.075 (0.20)	113306	0
4	S	-0.00036	0	0.852	26.0	80	0.00019 (0.00019)	598	0.115 (0.20)	-119160	0
5	S	-0.00003	0	0.834	26.0	80	0.00001 (0.00001)	439	0.006 (0.20)	156074	0
6	S	0.00000	0.00000						0.000 (0.20)	0	0

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	62 di 101

1	S	30.6	-50.0	120.0	-781	35.0	9.3	2650	79.6
2	S	16.8	-50.0	0.0	-265	35.0	110.7	2200	53.1
3	S	17.4	-50.0	120.0	-232	35.0	9.3	2050	79.6
4	S	16.8	-50.0	0.0	-265	35.0	110.7	2200	53.1
5	S	5.9	-50.0	0.0	-106	35.0	110.7	2300	53.1
6	S	5.7	-50.0	120.0	81	35.0	9.3		

9.2.3 Verifica in condizioni sismiche

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A.

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40		
	Resis. compr. di progetto fcd:	181.30	daN/cm ²	

Resis. compr. ridotta fcd': 90.65 daN/cm²
Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035
Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 333458 daN/cm² Resis. media a trazione fctm: 30.20 daN/cm²

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk:4500.0daN/cm²Resist. caratt. rottura ftk:4500.0daN/cm²Resist. snerv. di progetto fyd:3913.0daN/cm²Resist. ultima di progetto ftd:3913.0daN/cm²

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del D Classe Cong		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	120.0
3	50.0	120.0
4	50.0	0.0

DATI BARRE ISOLATE

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	63 di 101

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.0	9.3	26
2	45.0	9.3	26
3	-45.0	110.7	26
4	45.0	110.7	26
5	-45.0	17.0	26
6	45.0	17.0	26

DATI GENERAZIONI LINEARI DI BARRE

 $\begin{array}{ll} N^{\circ} \text{Gen.} & \text{Numero assegnato alla singola generazione lineare di barre} \\ N^{\circ} \text{Barra Ini.} & \text{Numero della barra iniziale cui si riferisce la generazione} \\ N^{\circ} \text{Barra Fin.} & \text{Numero della barra finale cui si riferisce la generazione} \end{array}$

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	2	8	26
2	3	4	8	26
3	5	6	3	26

ARMATURE A TAGLIO

Diametro staffe: 10 mm Passo staffe: 20.0 cm

Indicazione Barre Longitudinali di risvolto per ogni staffa:

N°Staffa Barra Barra Barra Barra 1 12 1 3 20 2 9 17 4

Coordinate Barre generate di risvolto delle staffe:

N°Barra	X[cm]	Y[cm]
12	15.0	9.3
9	-15.0	9.3
17	-15.0	110.7

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Vy	aN applicato nel Baric. (+ se di compressione) daNm] intorno all'asse X di riferimento delle coordinate e tale da comprimere il lembo sup. della sez. glio [daN] parallela all'asse Y di riferimento delle coordinate		
N°Comb.	N	Mx	Vy
1	40834	122602	-11076
2	77072	-158098	-35063
3	37731	87704	-3430
4	77072	-158098	-35063
5	-181	68086	-10287
6	78770	-144779	-32031

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

SL01 - Scatolare di approccio al viadotto VI01:

Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U 40 D 29 CL SL 01 00 001 64 di 101

Interferro netto minimo barre longitudinali: 5.1 cm Copriferro netto minimo staffe: 7.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione) Мх Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r, Mx Res, My Res) e (N, Mx, My)

Verifica positiva se tale rapporto risulta >= 1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic. As Totale
1	S	40834	122602	40831	309529	2.52 132.7(36.0)
2	S	77072	-158098	77071	-244367	1.55 132.7(36.0)
3	S	37731	87704	37731	308219	3.50 132.7(36.0)
4	S	77072	-158098	77071	-244367	1.55 132.7(36.0)
5	S	-181	68086	-155	291996	4.29 132.7(36.0)
6	S	78770	-144779	78761	-245121	1.70 132.7(36.0)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X.Y.O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00096	-50.0	120.0	0.00071	-45.0	110.7	-0.00196	-45.0	9.3
2	0.00080	-50.0	0.0	0.00057	-45.0	9.3	-0.00196	-45.0	110.7
3	0.00095	-50.0	120.0	0.00071	-45.0	110.7	-0.00196	-45.0	9.3
4	0.00080	-50.0	0.0	0.00057	-45.0	9.3	-0.00196	-45.0	110.7
5	0.00088	-50.0	120.0	0.00064	-45.0	110.7	-0.00196	-45.0	9.3
6	0.00081	-50.0	0.0	0.00058	-45.0	9.3	-0.00196	-45.0	110.7

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45 C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 $N^{\circ}Comb$ C.Rid. а b С x/d 0.000000000 -0.002201420 0.000026335 2 0.000000000 -0.000024944 0.000804767 3 0.000000000 0.000026281 -0.002200913 4 0.00000000 -0.000024944 0.000804767 --------0.000025607 -0.002194644 5 0.000000000 ----0.00000000 -0.000024972 0.000807906

VERIFICHE A TAGLIO

Diam. Staffe: 10 mm

Passo staffe: 20.0 cm [Passo massimo di normativa = 25.0 cm]

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	65 di 101

Ver		S = comb. verificata a taglio / N = comb. non verificata							
Ved		Taglio di progetto	[daN] = Vy	ortogonale :	all'asse neut	tro			
Vcd		Taglio compressio	aglio compressione resistente [daN] lato conglomerato [formula (4.1.28)NTC]						
Vwd		Taglio resistente [c	aglio resistente [daN] assorbito dalle staffe						
d z		Altezza utile media pesata sezione ortogonale all'asse neutro Braccio coppia interna [cm						[cm]	
		Vengono prese ne	lla media le	e strisce con	almeno un	estremo co	ompresso.		
		I pesi della media:	sono costit	uiti dalle stes	sse lunghezz	ze delle sti	risce.		
bw		Larghezza media r	esistente a	a taglio [cm] i	misurate par	allel. all'as	sse neutro		
		E' data dal rapport	o tra l'area	delle soprac	lette strisce	resistenti (e Dmed.		
Ctg		Cotangente dell'an							
Acw		Coefficiente maggi	iorativo del	la resistenza	a taglio per	compress	sione		
Ast		Area staffe+legatu	re strettan	n. necessarie	e a taglio per	metro di i	pil.[cm²/m]		
A.Eff		Area staffe+legatu							
		Tra parentesi è ind							
		L'area della legatu				J		a-	
		ta sulla direz. del ta							
			-9						
Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctq	Acw	Ast
							3		

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	11076	448535	6244311	1.7 97.1	100.0	1.000	1.019	2.9	16.4(0.0)
2	S	35063	463650	6350911	1.7 98.8	100.0	1.000	1.035	9.1	16.4(0.0)
3	S	3430	448191	6248311	1.7 97.2	100.0	1.000	1.017	0.9	16.4(0.0)
4	S	35063	463650	6350911	1.7 98.8	100.0	1.000	1.035	9.1	16.4(0.0)
5	S	10287	444104	6298711	1.7 98.0	100.0	1.000	1.000	2.7	16.4(0.0)
6	S	32031	463832	6348611	1.7 98.8	100.0	1.000	1.036	8.3	16.4(0.0)

9.3 Verifica soletta inferiore

Nelle tabelle seguenti si riportano le sollecitazioni massime derivanti dalle analisi utilizzate nelle successive verifiche.

SLV		Р	V2	М3	Frame	Frame Station Output	
		KN	KN	KN-m	Text	m	Text
М3	max	-271.99	330.32	1206.56	63	0.00	sis7_nl
М3	min	-587.50	-92.02	-1310.89	39	0.00	sis8_nl
V2	max	-587.50	686.04	479.62	49	0.60	sis8_nl
V2	min	-565.74	-308.92	-803.76	37	0.00	sis9_nl
Р	max	1.44	-13.83	0.38	66	0.00	sis1_nl
Р	min	-826.81	56.25	42.97	35	0.00	sis8_nl

SLU		Р	V2	М3	Frame Station Outp		OutputCase
		KN	KN	KN-m	Text	m	Text
М3	max	-325.89	734.16	921.98	49	0.00	slu7_nl
М3	min	-253.19	-50.51	-1315.46	41	0.00	slu8_nl
V2	max	-253.19	774.78	262.19	49	0.60	slu8_nl
V2	min	-256.86	-739.00	235.64	52	0.00	slu2_nl
Р	max	2.09	-65.04	1.99	66	0.00	slu3_nl
Р	min	-360.84	59.19	47.41	35	0.00	slu8_nl

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40
 D 29 CL
 SL 01 00 001
 B
 66 di 101

SLE - RARA TENSIONI		Р	V2	М3	Frame	Frame Station Output	
		KN	KN	KN-m	Text	m	Text
М3	max	-228.09	525.36	660.87	49	0.00	rar7_nl
М3	min	-177.24	-41.30	-931.96	41	0.00	rar8_nl
V2	max	-177.24	554.04	183.55	49	0.60	rar8_nl
V2	min	-179.63	-528.63	164.37	52	0.00	rar2_nl
Р	max	1.53	10.83	14.24	35	0.00	rar9_nl
Р	min	-248.86	41.76	33.80	35	0.00	rar8_nl

SLE - RARA		Р	V2	М3	Frame	Station	OutputCase	
FESSUR	AZIONE	KN	KN	KN-m	Text	m	Text	
М3	max	-159.16	436.88	528.97	49	0.00	fes7_nl	
М3	min	-108.41	-61.13	-766.22	41	0.00	fes8_nl	
V2	max	-108.41	465.55	104.73	49	0.60	fes8_nl	
V2	min	-111.58	-445.91	95.60	52	0.00	fes2_nl	
Р	max	1.18	-37.17	1.12	66	0.00	fes7_nl	
Р	min	-159.16	-353.88	-166.69	37	0.00	fes7_nl	

SLE - Q.PE.		Р	V2	M3 Frame Station Ou		OutputCase	
		KN	KN	KN-m	Text	m	Text
М3	max	-53.90	304.95	324.98	49	0.00	qpe1_nl
М3	min	7.22	-36.48	-575.93	42	0.00	qpe2_nl
V2	max	7.22	335.99	-39.88	49	0.60	qpe2_nl
V2	min	0.63	-325.75	-27.04	52	0.00	qpe2_nl
Р	max	7.22	-289.21	-199.37	37	0.00	qpe2_nl
Р	min	-53.90	-304.45	73.23	37	0.00	qpe1_nl

9.3.1 Armature adottate e calcolo copriferro

Si riassume di seguito l'armatura adottata.

 $As = 10\Phi 26$

 $As' = 15\Phi 26$

Staffe: Φ 10/20 a 4 bracci

SL01 - Scatolare di approccio al viadotto VI01:

Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40
 D 29 CL
 SL 01 00 001
 B
 67 di 101

La sezione risulta verificata con l'armatura prevista.

CALCOLO COPRIFERRO - § C4.1.6.1.3 ISTRUZIONI NTC

Dati Assegnati:

Diametro (o diametro equivalente) barre longitudinali: 26 [mm] Diametro staffe: 10 [mm] Classe Calcestruzzo: C32/40 Condizioni ambientali: Aggressive Vita nominale costruzione: 75 [anni] Incremento di 10 mm rispetto a vita nominale di 50 anni 10 Tolleranza di posa: [mm] Copriferro staffe: Copriferro nominale Netto Staffe: 60 [mm]

Copriferro barre longitudinali:

Copriferro nominale Netto barre longitudinali: 80 [mm]

Copriferro nominale dal Baricentro della Barra longitudinale: 93 [mm]

9.3.2 Verifica in condizioni statiche

DATI GENERALI SEZIONE GENERICA IN C.A.

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Moderat. aggressive

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resis. compr. di progetto fcd:	181.30	daN/cm ²
	Resis. compr. ridotta fcd':	90.65	daN/cm ²
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	333458	daN/cm ²
	Resis. media a trazione fctm:	30.20	daN/cm ²
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	176.00	daN/cm ²
	Sc limite S.L.E. comb. Frequenti:	176.00	daN/cm ²
	Ap.Fessure limite S.L.E. comb. Freque	enti: 0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	128.00	daN/cm ²
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm

SL01 - Scatolare di approccio al viadotto VI01:

Relazione di calcolo

COMMESSA LOTTO REV. FOGLIO CODIFICA DOCUMENTO RS3U D 29 CL SL 01 00 001 68 di 101 40

ACCIAIO -Tipo: B450C

Resist. caratt. snervam. fyk: 4500.0 daN/cm² Resist. caratt. rottura ftk: 4500.0 daN/cm² Resist. snerv. di progetto fyd: 3913.0 daN/cm² Resist. ultima di progetto ftd: 3913.0 daN/cm²

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm² Diagramma tensione-deformaz.: Bilineare finito

Coeff. Aderenza istantaneo 61*62: 1.00 Coeff. Aderenza differito B1*B2: 0.50

Sf limite S.L.E. Comb. Rare: 3375.0 daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0	0.0
2	-50.0	150.0
3	50.0	150.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.0	9.3	26
2	-45.0	140.7	26
3	45.0	140.7	26
4	45.0	9.3	26
5	-45.0	133.0	26
6	45.0	133.0	26

DATI GENERAZIONI LINEARI DI BARRE

Numero assegnato alla singola generazione lineare di barre N°Gen. N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione Numero della barra finale cui si riferisce la generazione N°Barra Fin.

Numero di barre generate equidistanti cui si riferisce la generazione N°Barre

Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26
2	2	3	8	26
3	5	6	3	26

ARMATURE A TAGLIO

Diametro staffe: 10 mm Passo staffe: 20.0 cm

Indicazione Barre Longitudinali di risvolto per ogni staffa:

N°Staffa Barra Barra Barra Barra 12 2 20 1 1 9 17 2 4 3

Coordinate Barre generate di risvolto delle staffe:

N°Barra X[cm] Y[cm]

SL01 -	Scatolare	di	approccio	al	viadotto	VI01:
Relazion	ne di calcolo					

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	69 di 101

12	15.0	9.3
9	-15.0	9.3
17	-15.0	140.7

6 36084 4741

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx Vy		Sforzo normale in daN applicato nel Baric. (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez. Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordinate				
N°Comb.	N	Mx	Vy			
			•			
1	32589	92198	73416			
2	25319	-131546	-5051			
3	25319	26219	77478			
4	25686	23564	-73900			
5	-209	199	-6504			

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Sforzo normale in daN applicato nel Baricentro (+ se di compressione) Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione) con verso positivo se tale da comprimere il lembo superiore della sezione					
N°Comb.	N	Mx	Му			
1	22809	66087	0			
2	17724	-93196	0			
3	17724	18355	0			
4	17963	16437	0			
5	-153	1424	0			
6	24886	3380	0			

5919

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale in daN applicato nel Baricentro (+ se di compressione) x Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mom.Fess con verso positivo se tale da comprimere il lembo superiore della sezione					
N	Mx	My			
15916	52897 (157506)	0 (0)			
10841	-76622 (-154965)	0 (0)			
10841	10473 (206248)	0 (0)			
11158	9560 (218400)	0 (0)			
-118	112 (109688)	0 (0)			
15916	-16669 (-202336)	0 (0)			
	Momento con verso N 15916 10841 10841 11158 -118	Momento flettente [daNm] intorno all'asse X di con verso positivo se tale da comprimere il len N Mx 15916 52897 (157506) 10841 -76622 (-154965) 10841 10473 (206248) 11158 9560 (218400) -118 112 (109688)	Momento flettente [daNm] intorno all'asse X di riferimento (tra parentesi Mor con verso positivo se tale da comprimere il lembo superiore della sezione N Mx My 15916 52897 (157506) 0 (0) 10841 -76622 (-154965) 0 (0) 10841 10473 (206248) 0 (0) 11158 9560 (218400) 0 (0) -118 112 (109688) 0 (0)		

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Mx	Momento flettente	daN applicato nel Baricentro e [daNm] intorno all'asse X di o se tale da comprimere il lem	riferimento (tra parentesi Mon	n.Fessurazione)
N°Comb.	N	Mx	My	

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	70 di 101

1	5390	32498 (150946)	0 (0)
2	-722	-57593 (-148386)	0 (0)
3	-722	-3988 (-141800)	0 (0)
4	-63	-2704 (-147947)	0 (0)
5	-722	-19937 (-147424)	0 (0)
6	5390	7323 (183159)	0 (0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.0 cm Interferro netto minimo barre longitudinali: 5.1 cm Copriferro netto minimo staffe: 7.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)
Mx Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >= 1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic. As Totale
1	S	32589	92198	32601	306203	3.34 132.7(45.0)
2	S	25319	-131546	25314	-425182	3.22 132.7(45.0)
3	S	25319	26219	25332	301652	11.70 132.7(45.0)
4	S	25686	23564	25716	301892	13.06 132.7(45.0)
5	S	-209	199	-230	285633	999.00 132.7(45.0)
6	S	36084	4741	36104	308396	75.61 132.7(45.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del conglomerato a compressione
Deform. unit. massima del conglomerato a compressione
Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Deform. unit. minima nell'acciaio (negativa se di trazione)
Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Deform. unit. massima nell'acciaio (positiva se di compress.)
Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-50.0	150.0	0.00100	-45.0	140.7	-0.03433	-45.0	9.3
2	0.00350	-50.0	0.0	0.00121	-45.0	9.3	-0.03115	-45.0	140.7
3	0.00350	-50.0	150.0	0.00097	-45.0	140.7	-0.03472	-45.0	9.3
4	0.00350	-50.0	150.0	0.00097	-45.0	140.7	-0.03470	-45.0	9.3
5	0.00350	-50.0	150.0	0.00088	-45.0	140.7	-0.03613	-45.0	9.3
6	0.00350	-50.0	150.0	0.00101	-45.0	140.7	-0.03414	-45.0	9.3

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

SL01 - Scatolare di approccio al viadotto VI01:

Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	71 di 101

C.Rid.	x/d	С	b	a	N°Comb
		-0.036832335	0.000268882	0.000000000	1
		0.003500000	-0.000246293	0.000000000	2
		-0.037250935	0.000271673	0.000000000	3
		-0.037228903	0.000271526	0.000000000	4
		-0.038749080	0.000281661	0.000000000	5
		-0.036629645	0.000267531	0.000000000	6

С

VERIFICHE A TAGLIO

bw

Ctg

Acw

Ast

A.Eff

Diam. Staffe: 10 mm

Passo staffe: 20.0 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata
Ved Taglio di progetto [daN] = Vy ortogonale all'asse neutro

Vcd Taglio compressione resistente [daN] lato conglomerato [formula (4.1.28)NTC]

Vwd Taglio resistente [daN] assorbito dalle staffe

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	73416	645793	89601146	5.0 140.8	100.0	1.000	1.012	13.3	16.3(0.0)
2	S	5051	641902		5.0 140.3		1.000	1.009	0.9	16.3(0.0)
3	S	77478	644331	89635146	5.0 140.8	100.0	1.000	1.009	14.1	16.3(0.0)
4	S	73900	644405	89634146	5.0 140.8	100.0	1.000	1.009	13.4	16.3(0.0)
5	S	6504	639216	89752146	5.0 141.0	100.0	1.000	1.000	1.2	16.3(0.0)
6	S	5919	646492	89585146	5.0 140.8	100.0	1.000	1.013	1.1	16.3(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1 2	S S	21.6 28.3	-50.0 -50.0	150.0 0.0	-768 -858	35.0 35.0	9.3 140.7	2350 2950	53.1 79.6
3	S	6.2	-50.0	150.0	-126	35.0	9.3	2350	53.1
4	S	5.6	-50.0	150.0	-99	35.0	9.3	2350	53.1
5	S	0.4	-50.0	150.0	-22	35.0	9.3	2350	53.1
6	S	2.1	-50.0	150.0	14	35.0	9.3		

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	72 di 101

Comb.	Ver	e1	e2	k2	Ø	Cf	esm-ecms	r max	wk	Mx fess	My fess
1	S	-0.00035	0	0.896	26.0	80	0.00019 (0.00019)	615	0.117 (0.20)	157506	0
2	S	-0.00040	0	0.860	26.0	80	0.00022 (0.00022)	554	0.121 (0.20)	-154965	0
3	S	-0.00004	0	0.868	26.0	80	0.00002 (0.00002)	612	0.012 (0.20)	206248	0
4	S	-0.00003	0	0.863	26.0	80	0.00002 (0.00002)	602	0.010 (0.20)	218400	0
5	S	0.00000	0	0.913	26.0	80	0.00000 (0.00000)	629	0.001 (0.20)	109688	0
6	S	-0.00005	0	0.833	26.0	80	0.00003 (0.00003)	526	0.014 (0.20)	-202336	0

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	10.4	-50.0	150.0	-427	35.0	9.3	2300	53.1
2	S	16.8	-50.0	0.0	-597	35.0	140.7	2950	79.6
3	S	1.1	-50.0	0.0	-45	35.0	140.7	2950	79.6
4	S	0.8	-50.0	0.0	-28	35.0	140.7	2950	79.6
5	S	5.8	-50.0	0.0	-209	35.0	140.7	2950	79.6
6	S	2.5	-50.0	150.0	-62	35.0	9.3	2350	53.1

9.3.3 Verifica in condizioni sismiche

DATI GENERALI SEZIONE GENERICA NON DISSIPATIVA IN C.A.

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante

Tipo di sollecitazione: Retta (asse neutro sempre parallelo all'asse X)

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Resis. compr. ridotta fcd': Def.unit. max resistenza ec2: Def.unit. ultima ecu:	C32/40 181.30 90.65 0.0020 0.0035	daN/cm² daN/cm²
	Diagramma tensione-deformaz.: Modulo Elastico Normale Ec:	Parabola-Rettangolo 333458	daN/cm²
	Resis. media a trazione fctm:	30.20	daN/cm ²
ACCIAIO -	Tipo:	B450C	doN/om²
	Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk:	4500.0 4500.0	daN/cm ² daN/cm ²
		3913.0	daN/cm²
	Resist. snerv. di progetto fyd: Resist. ultima di progetto ftd:	3913.0	daN/cm²
	Deform. ultima di progetto Itu.	0.068	uaiv/ciii-
	Modulo Elastico Ef	2000000	daN/cm²
	Diagramma tensione-deformaz.:	Bilineare finito	dui v/CIII

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Poligonale

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	73 di 101

Classe Conglo	omerato:	C32/40
N°vertice:	X [cm]	Y [cm]
1 2	-50.0 -50.0	0.0 150.0
3	50.0	150.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-45.0	9.3	26
2	-45.0	140.7	26
3	45.0	140.7	26
4	45.0	9.3	26
5	-45.0	133.0	26
6	45.0	133.0	26

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.Numero assegnato alla singola generazione lineare di barreN°Barra Ini.Numero della barra iniziale cui si riferisce la generazioneN°Barra Fin.Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	8	26
2	2	3	8	26
3	5	6	3	26

ARMATURE A TAGLIO

Vy

Diametro staffe: 10 mm Passo staffe: 20.0 cm

Indicazione Barre Longitudinali di risvolto per ogni staffa:

N°Staffa Barra Barra Barra Barra 1 12 1 2 20 2 4 9 17 3

Coordinate Barre generate di risvolto delle staffe:

N°Barra	X[cm]	Y[cm]
12	15.0	9.3
9	-15.0	9.3
17	-15.0	140.7

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx	Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate
	con verso positivo se tale da comprimere il lembo sup, della sez

Componente del Taglio [daN] parallela all'asse Y di riferimento delle coordinate

N°Comb. N Mx Vy 1 27199 120656 33032

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	74 di 101

2	58750 -131089	-9202
3	58750 47962	68604
4	56574 -80376	-30892
5	-144 38	-1383
6	82681 4297	5625

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.0 cm Interferro netto minimo barre longitudinali: 5.1 cm Copriferro netto minimo staffe: 7.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE ELASTICO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)
Mx Componente momento flettente assegnato [daNm] intorno all'asse X di riferimento delle coordinate

Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >= 1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic. As Totale
1	S	27199	120656	27176	285624	2.37 132.7(45.0)
2	S	58750	-131089	58759	-413415	3.14 132.7(45.0)
3	S	58750	47962	58749	304149	6.47 132.7(45.0)
4	S	56574	-80376	56546	-412211	5.08 132.7(45.0)
5	S	-144	38	-126	269372	999.00 132.7(45.0)
6	S	82681	4297	82699	318016	114.71 132.7(45.0)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO STATO LIMITE

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

$N^{\circ}Comb$	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00043	F0.0	150.0	0.00045	4E O	140.7	0.00104	4E O	0.2
I I	0.00062	-50.0	150.0	0.00045	-45.0	140.7	-0.00196	-45.0	9.3
2	0.00087	-50.0	0.0	0.00068	-45.0	9.3	-0.00196	-45.0	140.7
3	0.00067	-50.0	150.0	0.00050	-45.0	140.7	-0.00196	-45.0	9.3
4	0.00086	-50.0	0.0	0.00068	-45.0	9.3	-0.00196	-45.0	140.7
5	0.00057	-50.0	150.0	0.00041	-45.0	140.7	-0.00196	-45.0	9.3
6	0.00071	-50.0	150.0	0.00053	-45.0	140.7	-0.00196	-45.0	9.3

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb a b c x/d C.Rid.

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI TRATTA CA	LLEGAME	NTO PALER	INA – CATANIA – MO – CATANIA INNA LOTTO 4/A ADOTTI	PALERM	0
SL01 – Scatolare di approccio al viadotto VI01:	COMMESSA RS3U	LOTTO 40	CODIFICA D 29 CL	DOCUMENTO SL 01 00 001	REV. B	FOGLIO 75 di 101
Relazione di calcolo						

[cm]

1	0.000000000	0.000018314	-0.002126820	
2	0.000000000	-0.000020061	0.000866104	
3	0.000000000	0.000018684	-0.002130259	
4	0.000000000	-0.000020035	0.000862482	
5	0.000000000	0.000017985	-0.002123763	
6	0.000000000	0.000018958	-0.002132813	

VERIFICHE A TAGLIO

Vor

Diam. Staffe:	10	mm
---------------	----	----

Passo staffe: 20.0 cm [Passo massimo di normativa = 25.0 cm]

S = comb verificata a taglio / N = comb non verificata

A CI	5 – Comb. Verincata a taglio / N – Comb. Hon Verincata
Ved	Taglio di progetto [daN] = Vy ortogonale all'asse neutro
Vcd	Taglio compressione resistente [daN] lato conglomerato [formula (4.1.28)NTC]
Vwd	Taglio resistente [daN] assorbito dalle staffe
d z	Altezza utile media pesata sezione ortogonale all'asse neutro Braccio coppia interna
•	Vengono prese nella media le strisce con almeno un estremo compresso.
	I pesi della media sono costituiti dalle stesse lunghezze delle strisce.
bw	Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro
	E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

bw Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro
E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.
Ctg Cotangente dell'angolo di inclinazione dei puntoni di conglomerato
Acw Coefficiente maggiorativo della resistenza a taglio per compressione
Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz [cm²/m]
Tra parentesi è indicata la quota dell'area relativa alle sole legature.
L'area della legatura è ridotta col fattore L/d max con L=lungh.legat.projetta

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	33032	606345	8429314	6.0 132.5	100.0	1.000	1.010	6.4	16.3(0.0)
2	S	9202	596077	8192514	6.0 128.7	100.0	1.000	1.022	1.8	16.3(0.0)
3	S	68604	609393	8375514	6.0 131.6	100.0	1.000	1.022	13.3	16.3(0.0)
4	S	30892	595842	8195714	6.0 128.8	100.0	1.000	1.021	6.1	16.3(0.0)
5	S	1383	603880	8479014	6.0 133.2	100.0	1.000	1.000	0.3	16.3(0.0)
6	S	5625	611809		6.0 131.0		1.000	1.030	1.1	16.3(0.0)
					1					(/

10. VERIFICHE GEOTECNICHE

Le verifiche sono state eseguite considerando i risultati dell'analisi strutturale, in particolare, si è considerata la reazione alla base dell'opera rispetto al baricentro per le combinazioni di carico SLU e SIS secondo l'approccio 2 A1+M1+R3. Ai fini della verifica si considera un terreno di fondazione avente un angolo di resistenza al taglio ϕ ' di 25, una coesione efficace c' di 15 kPa e un peso dell'unità di volume di 19 kN/m³. Si precisa, inoltre, che si è assunta una profondità del piano di posa D pari allo spessore della soletta inferiore.

Di seguito la tabella riepilogativa delle azioni alla base con evidenziate in giallo le combinazioni che forniscono i valori di sollecitazione più gravosi.

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40
 D 29 CL
 SL 01 00 001
 B
 76 di 101

TABLE: Base Reactions							
OutputCase	CaseType	GlobalFX	GlobalFY	GlobalFZ	GlobalMX	GlobalMY	GlobalMZ
Text	Text	KN	KN	KN	KN-m	KN-m	KN-m
slu1_nl	NonStatic	-326.984	0	4010.229	0	-3677.2929	0
slu2_nl	NonStatic	-327.63	0	4010.229	0	-3677.2929	0
slu3_nl	NonStatic	31.185	0	4010.229	0	1265.283	0
slu4_nl	NonStatic	32.235	0	4010.229	0	1265.283	0
slu5_nl	NonStatic	0	0	4010.229	0	413.7129	0
slu6_nl	NonStatic	0	0	4010.229	0	413.7129	0
slu7_nl	NonStatic	360.132	0	4010.229	0	5356.2887	0
slu8_nl	NonStatic	360.843	0	4010.229	0	5356.2887	0
slu9_nl	NonStatic	-279.36	0	4031.829	0	-3112.7876	0
slu10_nl	NonStatic	-279.912	0	4031.829	0	-3112.7876	0
sis1_nl	NonStatic	730.216	0	2572.034	0	6338.347	0
sis2_nl	NonStatic	731.659	0	2572.034	0	6338.347	0
sis3_nl	NonStatic	780.757	0	2572.034	0	7020.0816	0
sis4_nl	NonStatic	781.528	0	2572.034	0	7020.0816	0
sis5_nl	NonStatic	776.172	0	2572.034	0	6902.6236	0
sis6_nl	NonStatic	776.938	0	2572.034	0	6902.6236	0
sis7_nl	NonStatic	825.992	0	2572.034	0	7584.3582	0
sis8_nl	NonStatic	826.808	0	2572.034	0	7584.3582	0
sis9_nl	NonStatic	730.216	0	2588.034	0	6505.547	0
sis10_nl	NonStatic	731.659	0	2588.034	0	6505.547	0

10.1 Verifiche in termini di tensioni efficaci (SLU)

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	77 di 101

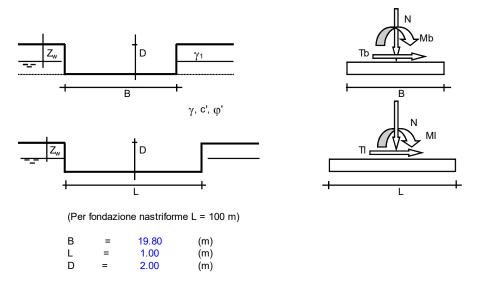
<u>Fondazioni Dirette</u> <u>Verifica in tensioni efficaci</u>

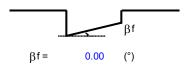
 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$

D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)


 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)


 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)


(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			az	ioni	proprieta del terreno		resist	enze
Metodo	di calcolo		permanenti	temporanee variabili	tan _φ '	c'	qlim	scorr
Stato Limite Ultimo	A1+M1+R1		1.30	1.50	1.00	1.00	1.00	1.00
	A2+M2+R2		1.00	1.30	1.25	1.25	1.80	1.00
	SISMA		1.00	1.00	1.25	1.25	1.80	1.00
Stat U	A1+M1+R3		1.30	1.50	1.00	1.00	2.30	1.10
0)	SISMA		1.00	1.00	1.00	1.00	2.30	1.10
Tension	Tensioni Ammissibili		1.00	1.00	1.00	1.00	3.00	3.00
Definiti d	al Progettista	0	1.00	1.00	1.00	1.00	2.30	1.10

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	78 di 101

Valori di progetto

AZIONI

		valori d	di input	Valori di
		permanenti	temporanee	calcolo
N	[kN]	4010.00		4010.00
Mb	[kNm]	5356.00		5356.00
MI	[kNm]	0.00		0.00
Tb	[kN]	361.00		361.00
TI	[kN]	0.00		0.00
Н	[kN]	361.00	0.00	361.00

Peso unità di volume del terreno

 $\gamma_1 = 20.00 \text{ (kN/mc)}$ $\gamma = 21.00 \text{ (kN/mc)}$

Valori caratteristici di resistenza del terreno

c' = 23.00 (kN/mq) c' = 23.00 (kN/mq) $<math>\phi' = 20.00 (°) \phi' = 20.00 (°)$

Profondità della falda

Zw = 10.00 (m)

 $e_B = 1.34$ (m) $B^* = 17.13$ (m) $e_L = 0.00$ (m) $L^* = 1.00$ (m)

q : sovraccarico alla profondità D

q = 40.00 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma = 15.04 \, (kN/mc)$

Nc, Nq, Ny: coefficienti di capacità portante

Nq =
$$\tan^2(45 + \phi'/2)^* e^{(\pi^* t g_{\phi'})}$$

Nq = 6.40

 $Nc = (Nq - 1)/tan_{\mathcal{O}}'$

Nc = 14.83

 $N\gamma = 2*(Nq + 1)*tan_{\phi}'$

 $N_{\gamma} = 5.39$

SL01 - Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	79 di 101

s_c, s_q, s_y: fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.03$$

$$s_{q} = 1 + B*tan_{0}' / L*$$

$$s_q = 1.02$$

$$s_{v} = 1 - 0.4*B* / L*$$

$$s_{\gamma} = 0.98$$

i_c, i_q, i_y : <u>fattori di inclinazione del carico</u>

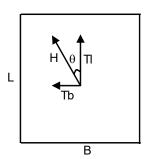
$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$$

$$\theta = \operatorname{arctg}(Tb/Tl) = 90.00$$

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

$$m = 1.94$$

$$i_q = (1 - H/(N + B*L* c' cotg_{(i)}))^m$$


$$i_c = i_a - (1 - i_a)/(Nq - 1)$$

$$i_c = 0.84$$

$$i_{\gamma} = (1 - H/(N + B*L* c' \cot g_{\phi}'))^{(m+1)}$$

$$i_{v} = 0.81$$

(-)(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2\theta + m_l cos^2\theta)$ in tutti gli altri casi)

d_c , d_q , d_γ : fattori di profondità del piano di appoggio

$$\begin{split} \text{per D/B*} &\leq 1; \ d_q = 1 + 2 \ D \ tan_{\phi'} \ (1 - sen_{\phi'})^2 \ / \ B^* \\ \text{per D/B*} &> 1; \ d_q = 1 + (2 \ tan_{\phi'} \ (1 - sen_{\phi'})^2) \ ^* \ arctan \ (D \ / \ B^*) \end{split}$$

$$d_{a} = 1.35$$

$$d_{c} = d_{q} - (1 - d_{q}) / (N_{c} tan_{\phi})$$

$$d_c = 1.41$$

$$d_{v} = 1$$

$$d_{v} = 1.00$$

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	80 di 101

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_{q} = (1 - \beta_{f} \tan_{\phi}')^{2}$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_{q} = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan_{\phi}')$$

$$b_c = 1.00$$

$$b_{y} = b_{q}$$

$$b_{\gamma} = 1.00$$

g_c , g_q , g_γ : fattori di inclinazione piano di campagna

$$g_q = (1 - tan \beta_p)^2$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan_{\phi}')$$

$$g_c = 1.00$$

$$g_{y} = g_{q}$$

$$g_{v} = 1.00$$

Carico limite unitario

$$q_{lim} = 753.86$$
 (kN/m²)

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 234.11 (kN/m^2)$$

Verifica di sicurezza capacità portante

$$q_{lim} / \gamma_R = 327.77 \ge q = 234.11 (kN/m^2)$$

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	81 di 101

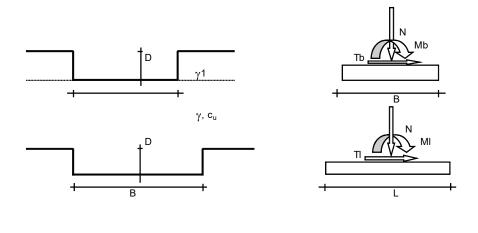
10.2 Verifiche in termini di tensioni totali (SLU)

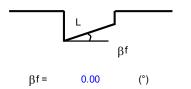
<u>Fondazioni Dirette</u> <u>Verifica in tensioni totali</u>

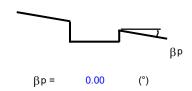
 $qlim = c_u \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq$

D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)


 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)


B* = Larghezza fittizia della fondazione (B* = B - 2*e_B)


 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

coefficienti parziali

			azioni		proprietà del terreno	resistenze	
Me	Metodo di calcolo		permanenti	temporanee variabili	C _u	qlim	scorr
	A1+M1+R1		1.30	1.50	1.00	1.00	1.00
Stato Limite Ultimo	A2+M2+R2		1.00	1.30	1.40	1.80	1.00
e Li	SISMA		1.00	1.00	1.40	1.80	1.00
Stat U	A1+M1+R3		1.30	1.50	1.00	2.30	1.10
0,	SISMA		1.00	1.00	1.00	2.30	1.10
Tensioni Ammissibili		1.00	1.00	1.00	3.00	3.00	
Definiti da	al Progettista	0	1.00	1.00	1.00	2.30	1.10

SL01 - Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U D 29 CL SL 01 00 001 В 82 di 101 40

В 19.80 (m) 1.00 (m) L D 2.00 (m)

AZIONI

		valori	di input	Valori di
		permanenti	temporanee	calcolo
N	[kN]	4010.00	0.00	4010.00
Mb	[kNm]	5356.00	0.00	5356.00
MI	[kNm]	0.00	0.00	0.00
Tb	[kN]	361.00	0.00	361.00
П	[kN]	0.00	0.00	0.00
Н	[kN]	361.00	0.00	361.00

Peso unità di volume del terreno

20.00 (kN/mc) = γ1 21.00 (kN/mc) =

Valore caratteristico di resistenza del terreno

200.00 (kN/mq)

1.34 (m) e_B 0.00 (m)

Valore di progetto

=

= 200.00 (kN/mq)

1.00

(m)

В* 17.13 (m) L*

q : sovraccarico alla profondità D

40.00 (kN/mq) q =

γ : peso di volume del terreno di fondazione

21.00 (kN/mc) γ =

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5.14

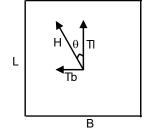
s_c: fattori di forma

 $s_c = 1 + 0.2 B^* / L^*$

 $s_c = 1.01$

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	83 di 101


i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$$

$$\theta = \operatorname{arctg}(\operatorname{Tb/TI}) = 90.00$$

$$m = 1.94$$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2_{\theta}+m_l cos^2_{\theta})$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.96$$

d_c: fattore di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*

per D/B*> 1;
$$d_c = 1 + 0.4$$
 arctan (D / B*)

$$d_c = 1.44$$

b_c : fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1.00$$

g_c: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c = 1.00$$

Carico limite unitario

$$q_{lim} = 1480.75 (kN/m^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 234.11 \text{ (kN/m}^2)$$

Verifica di sicurezza capacità portante

$$q_{lim}/\gamma_R =$$

$$q = 234.11 (kN/m^2)$$

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	84 di 101

10.3 Verifiche in termini di tensioni totali (SLV)

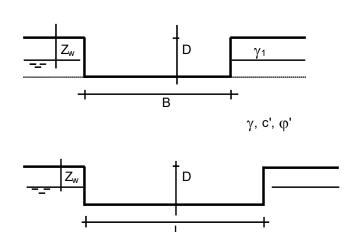
<u>Fondazioni Dirette</u> Verifica in tensioni efficaci

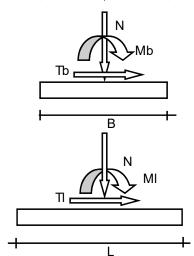
 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$

D = Profondità del piano di appoggio

e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)

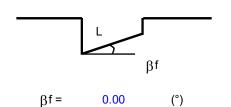

 B^* = Larghezza fittizia della fondazione (B^* = $B - 2^*e_B$)

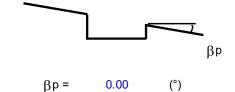

 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			az	azioni		proprietà del terreno		resistenze	
Metodo di calcolo		permanenti	temporanee variabili	tan _φ '	c'	qlim	scorr		
-	A1+M1+R1		1.30	1.50	1.00	1.00	1.00	1.00	
Limite imo	A2+M2+R2		1.00	1.30	1.25	1.25	1.80	1.00	
Stato Lim	SISMA		1.00	1.00	1.25	1.25	1.80	1.00	
Stat L	A1+M1+R3		1.30	1.50	1.00	1.00	2.30	1.10	
	SISMA		1.00	1.00	1.00	1.00	2.30	1.10	
Tensioni Ammissibili		1.00	1.00	1.00	1.00	3.00	3.00		
Definiti d	al Progettista	0	1.00	1.00	1.00	1.00	2.30	1.10	





SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40
 D 29 CL
 SL 01 00 001
 B
 85 di 101

(Per fondazioni nastriformi L=100 m)

B = 19.80 (m)

2.00

L = 1.00

=

D

(m) (m)

(...)

AZIONI

			valori	di input	Valori di
			permanenti	temporanee	calcolo
Г	Ν	[kN]	2572.00	0.00	2572.00
N	Λb	[kNm]	7584.00	0.00	7584.00
I	ΛI	[kNm]	0.00	0.00	0.00
	Tb	[kN]	827.00	0.00	827.00
	TI	[kN]	0.00	0.00	0.00
	Н	[kN]	827.00	0.00	827.00

Peso unità di volume del terreno

 $\gamma_1 = 20.00 \text{ (kN/mc)}$

 γ = 21.00 (kN/mc)

Valore caratteristico di resistenza del terreno

 $c_u = 200.00 (kN/mq)$

0.00

 $c_u = 200.00 \text{ (kN/mq)}$

Valore di progetto

 $e_B = 2.95$ (m)

=

 e_{L}

 $B^* = 13.90$ (m) $L^* = 1.00$ (m)

q : sovraccarico alla profondità D

q = 40.00 (kN/mq)

γ : peso di volume del terreno di fondazione

(m)

 $\gamma = 21.00 \text{ (kN/mc)}$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

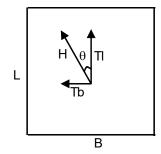
Nc = 5.14

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	86 di 101

s_c: fattori di forma

$$s_c = 1 + 0.2 B^* / L^*$$

$$s_c = 1.01$$


i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$$

$$\theta = \operatorname{arctg}(Tb/Tl) = 90.00$$

$$m = 1.93$$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.89$$

d_c: fattore di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*

per D/B*> 1;
$$d_c = 1 + 0.4$$
 arctan (D / B*)

$$d_c = 1.44$$

b_c: fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1.00$$

g_c: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c =$$

$$g_c = 1.00$$

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40
 D 29 CL
 SL 01 00 001
 B
 87 di 101

Carico limite unitario

$$q_{lim} = 1376.31$$
 (kN/m²)

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 185.00 (kN/m^2)$$

Verifica di sicurezza capacità portante

$$q_{lim} / \gamma_R = 598.4 \ge q = 185.00 (kN/m^2)$$

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	88 di 101

11. VERIFICHE GEOTECNICHE CON RINTERRO LATERALE

Al fine di considerare la condizione più gravosa si considera un rinterro di profondità 1,50 m e si eseguono nuovamente le verifiche a capacità portante in condizioni statiche e sismiche.

Si considera un volume di terreno di rinterro di profondità 1,50 m su una striscia di struttura profonda 1 metro. Dato il peso del terreno pari a 21 kN/m^3 riportato al capitolo 4, si ottiene un peso totale del rinterro (su un lato dello scatolare) pari a 26.8 kN.

Caso statico

Considerando il rinterro presente in entrambi i lati e un coefficiente parziale di sicurezza pari a 1,5, il carico verticale da aggiungere alle sollecitazioni precedenti diventa:

$$N_{SLU} = 80.4 \ kN$$

Il momento di calcolo non viene modificato in quanto le forze verticali rispetto al punto di calcolo del momento risultano uguali e opposte.

Caso sismico

In tal caso il peso del terreno non viene amplificato ma si considera l'inerzia ad esso associata.

Per il sito in questione, l'accelerazione sismica e i coefficienti Ss e St, forniscono un valore di kv pari a 0.074. Quindi è possibile valutare l'inerzia del terreno come: 26.8*0.074 = 1.98 kN. Considerando poi il terreno e l'inerzia di questo su entrambi i lati della struttura si ottiene una forza verticale, da aggiungere alle sollecitazioni ricavate in precedenza, pari a:

 $N_{SLV} = 57.6 kN$

SL01 - Scatolare di approccio al viadotto VI01: COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo

11.1 Verifiche in termini di tensioni efficaci (SLU)

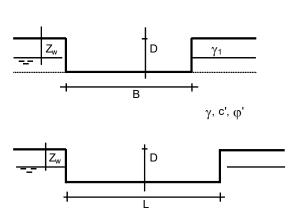
<u>Fondazioni Dirette</u> <u>Verifica in tensioni efficaci</u>

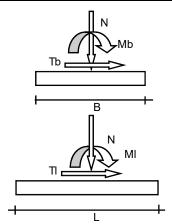
 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$

D = Profondità del piano di appoggio

e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)


 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)


 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			az	ioni	proprietà del terreno		resistenze	
Metodo di calcolo		permanenti	temporanee variabili	tan _φ '	c'	qlim	scorr	
	A1+M1+R1		1.30	1.50	1.00	1.00	1.00	1.00
mite	A2+M2+R2		1.00	1.30	1.25	1.25	1.80	1.00
Stato Limite Ultimo	SISMA		1.00	1.00	1.25	1.25	1.80	1.00
Stat L	A1+M1+R3	C	1.30	1.50	1.00	1.00	2.30	1.10
	SISMA		1.00	1.00	1.00	1.00	2.30	1.10
Tensioni Ammissibili		1.00	1.00	1.00	1.00	3.00	3.00	
Definiti d	al Progettista	0	1.00	1.00	1.00	1.00	2.30	1.10

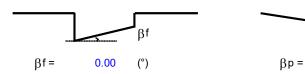
(Per fondazione nastriforme L = 100 m)

B = 19.80 (m)

L = 1.00 (m)

D = 3.00 (m)

SL01 - Scatolare di approccio al viadotto VI01: Relazione di calcolo


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	90 di 101

0.00

(°)

5βp

В 19.80 (m) = 1.00 L (m) 3.00 (m)

AZIONI

	valori o	di input	Valori di
	permanenti	temporanee	calcolo
N [kN]	4090.40		4090.40
Mb [kNm]	5356.00		5356.00
MI [kNm]	0.00		0.00
Tb [kN]	361.00		361.00
TI [kN]	0.00		0.00
H [kN]	361.00	0.00	361.00

Peso unità di volume del terreno

20.00 (kN/mc) 21.00 (kN/mc) =

Valori caratteristici di resistenza del terreno

Valori di progetto (kN/mq) 23.00 23.00 (kN/mq) φ' 20.00 (°) 20.00 (°)

Profondità della falda

Zw 10.00 (m)

e_B = 1.31 B* = 17.18 (m) (m) 0.00 L* = 1.00 (m) $e_L =$ (m)

q : sovraccarico alla profondità D

60.00 (kN/mq)

γ: peso di volume del terreno di fondazione

γ = 14.54 (kN/mc)

Nc, Nq, Ny: coefficienti di capacità portante

Nq = $\tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$

Nq = 6.40

 $Nc = (Nq - 1)/tan_{0}'$

14.83 Nc =

 $N\gamma = 2*(Nq + 1)*tan_{\mathcal{O}}'$

N_γ = 5.39

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	91 di 101

s_c, s_q, s_v : fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.03$$

$$s_q = 1 + B*tan\phi' / L*$$

$$s_{v} = 1 - 0.4*B* / L*$$

$$s_{v} = 0.98$$

$i_c,\,i_q,\,i_\gamma$: fattori di inclinazione del carico

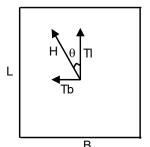
$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

1.94

 $\theta = arctg(Tb/TI) =$

90.00

(°)


$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$$

1.06

m =

1.94 (-)

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2\theta+m_l cos^2\theta)$ in tutti gli altri casi)

$III_1 - (2 + L / B) / (1 + L / B)$

 $i_q = (1 - H/(N + B*L* c' cotg_{()}))^m$

$$i_{q} = 0.87$$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.84$$

$$i_{\gamma} = (1 - H/(N + B*L* c' cotg_{0}'))^{(m+1)}$$

$$i_{y} = 0.81$$

d_c , d_q , d_γ : fattori di profondità del piano di appoggio

$$\begin{split} &\text{per D/B*}\underline{<} \ 1; \ d_q = 1 + 2 \ D \ tan_\phi' \ (1 - sen_\phi')^2 \ / \ B^* \\ &\text{per D/B*}\!\!> \ 1; \ d_q = 1 + (2 \ tan_\phi' \ (1 - sen_\phi')^2)^* \ arctan \ (D \ / \ B^*) \end{split}$$

$$d_q = 1.39$$

$$d_c = d_q - (1 - d_q) / (N_c tan_{\phi}')$$

$$d_c = 1.47$$

$$d_{v} = 1$$

$$d_{v} = 1.00$$

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	92 di 101

$b_c,\, b_q,\, b_\gamma$: fattori di inclinazione base della fondazione

$$b_{q} = (1 - \beta_{f} \tan_{\phi}')^{2}$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = b_q - (1 - b_q) / (N_c \tan_{\phi}')$$

$$b_c = 1.00$$

$$b_{y} = b_{q}$$

$$b_{\gamma} = 1.00$$

$g_c,\,g_q,\,g_\gamma$: fattori di inclinazione piano di campagna

$$g_{q} = (1 - \tan \beta_{p})^{2}$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan_{\phi}')$$

$$g_c = 1.00$$

$$g_{y} = g_{q}$$

$$g_{y} = 1.00$$

Carico limite unitario

$$q_{lim} = 938.86$$
 (kN/m²)

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 238.07$$
 (kN/m²)

Verifica di sicurezza capacità portante

$$q_{lim} / \gamma_R = 408.2 \ge q = 238.07 (kN/m^2)$$

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	93 di 101

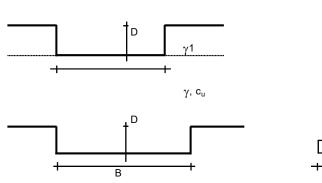
11.2 Verifiche in termini di tensioni totali (SLU)

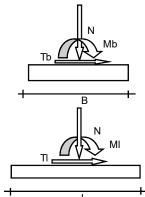
<u>Fondazioni Dirette</u> <u>Verifica in tensioni totali</u>

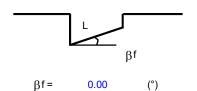
 $qlim = c_u \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq$

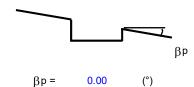
D = Profondità del piano di appoggio

e_B = Eccentricità in direzione B (e_B = Mb/N)


 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)


 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)


L* = Lunghezza fittizia della fondazione (L* = L - 2*e_L)


coefficienti parziali

			azi	oni	proprietà del terreno	resist	enze
Metodo di calcolo		permanenti	temporanee variabili	C _u	qlim	scorr	
	A1+M1+R1		1.30	1.50	1.00	1.00	1.00
mite o	A2+M2+R2		1.00	1.30	1.40	1.80	1.00
Stato Limite Ultimo	SISMA	U	1.00	1.00	1.40	1.80	1.00
Stat U	A1+M1+R3		1.30	1.50	1.00	2.30	1.10
O)	SISMA		1.00	1.00	1.00	2.30	1.10
Tensioni Ammissibili		1.00	1.00	1.00	3.00	3.00	
Definiti da	al Progettista	0	1.00	1.00	1.00	2.30	1.10

Valore di progetto

(m)

SL01 - Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	94 di 101

В 19.80 (m) 1.00 (m) 3.00 D (m)

AZIONI

		valori	di input	Valori di
		permanenti	temporanee	calcolo
N	[kN]	4090.40	0.00	4090.40
Mb	[kNm]	5356.00	0.00	5356.00
MI	[kNm]	0.00	0.00	0.00
Tb	[kN]	361.00	0.00	361.00
П	[kN]	0.00	0.00	0.00
H	[kN]	361.00	0.00	361.00

Peso unità di volume del terreno

20.00 (kN/mc) 21.00 (kN/mc)

Valore caratteristico di resistenza del terreno

200.00 (kN/mq) 200.00 (kN/mq) В* 1.31 (m) 17.18 (m) e_B 0.00 L* = 1.00

q : sovraccarico alla profondità D

q = 60.00 (kN/mq)

 γ : peso di volume del terreno di fondazione

(m)

 $\gamma = 21.00$ (kN/mc)

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5.14

=

 e_L

s_c: fattori di forma

 $s_c = 1 + 0.2 B^* / L^*$

s_c = 1.01

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	95 di 101

i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$$

$$\theta = \operatorname{arctg}(\text{Tb/TI}) = 90.00$$
 (°)

1.94

(m=2 nel caso di fondazione nastriforme e m= $(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.96$$

d_c: fattore di profondità del piano di appoggio

per D/B*< 1;
$$d_c = 1 + 0.4 D / B^*$$

per D/B*> 1;
$$d_c = 1 + 0.4$$
 arctan (D / B*)

$$d_c = 1.50$$

b_c : fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1.00$$

g_c : fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c = 1.00$$

Carico limite unitario

$$q_{lim} = 1557.55 \text{ (kN/m}^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 238.07 (kN/m^2)$$

Verifica di sicurezza capacità portante

$$q_{lim} / \gamma_R =$$

$$q = 238.07 (kN/m^2)$$

SL01 - Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	96 di 101

11.3 Verifiche in termini di tensioni totali (SLV)

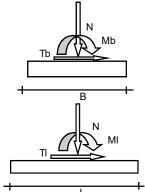
Fondazioni Dirette Verifica in tensioni totali

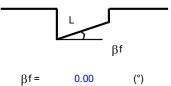
 $qlim = c_u \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq$

D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme $e_L = 0$; $L^* = L$)


 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)


 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

coefficienti parziali

			azioni		proprietà del terreno	resistenze	
Metodo di calcolo		permanenti	temporanee variabili	C _u	qlim	scorr	
	A1+M1+R1		1.30	1.50	1.00	1.00	1.00
Stato Limite Ultimo	A2+M2+R2		1.00	1.30	1.40	1.80	1.00
o Li Afim	SISMA		1.00	1.00	1.40	1.80	1.00
Stat L	A1+M1+R3		1.30	1.50	1.00	2.30	1.10
•	SISMA		1.00	1.00	1.00	2.30	1.10
Tensioni	Ammissibili		1.00	1.00	1.00	3.00	3.00
Definiti da	l Progettista	0	1.00	1.00	1.00	2.30	1.10

SL01 - Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U D 29 CL SL 01 00 001 В 97 di 101 40

В 19.80 (m) 1.00 (m) D 3.00 (m)

AZIONI

		valori	di input	Valori di				
		permanenti	temporanee	calcolo				
N	[kN]	2629.60	0.00	2629.60				
Mb	[kNm]	7584.00	0.00	7584.00				
MI	[kNm]	0.00	0.00	0.00				
Tb	[kN]	827.00	0.00	827.00				
TI	[kN]	0.00	0.00	0.00				
Н	[kN]	827.00	0.00	827.00				

Peso unità di volume del terreno

20.00 (kN/mc) 21.00 (kN/mc) γ

Valore caratteristico di resistenza del terreno

Valore di progetto 200.00 (kN/mq) 200.00 (kN/mq)

2.88 (m) В* = 14.03 (m) e_B

0.00 L* 1.00 (m) (m) e_L

q : sovraccarico alla profondità D

q = 60.00 (kN/mq)

γ : peso di volume del terreno di fondazione

21.00 (kN/mc) γ =

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5.14

s_c: fattori di forma

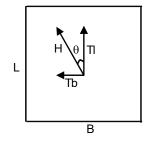
 $s_c = 1 + 0.2 B^* / L^*$

 $s_c = 1.01$

SL01 - Scatolare di approccio al viadotto VI01: Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40	D 29 CL	SL 01 00 001	В	98 di 101

i_c: <u>fattore di inclinazione del carico</u>


$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$$

$$\theta = arctg(Tb/TI) =$$

90.00

$$m = 1.93$$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.89$$

d_c: fattore di profondità del piano di appoggio

per D/B*< 1;
$$d_c = 1 + 0.4 D / B^*$$

per D/B*> 1;
$$d_c = 1 + 0.4$$
 arctan (D / B*)

$$d_c = 1.50$$

b_c : fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1.00$$

g_c: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c = 1.00$$

Carico limite unitario

$$q_{lim} = 1450.26 \text{ (kN/m}^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 187.40 \text{ (kN/m}^2)$$

Verifica di sicurezza capacità portante

$$q_{lim}/\gamma_R =$$

$$q = 187.40 \text{ (kN/m}^2)$$

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40
 D 29 CL
 SL 01 00 001
 B
 99 di 101

12. CALCOLO INCIDENZA

12.1 Calcolo incidenza della soletta inferiore

Si riportano i dati relativi all'armatura adottata e alla dimensione della sezione

As $10\Phi26$

As' $15\Phi26$

Armature di ripartizione Φ 20/20

Staffe Φ 10/20 a 4 bracci

Copriferro 93 mm

Altezza della sezione 1.50 m

Larghezza della sezione 1.00 m

Volume complessivo per una sezione profonda 1.00 m 1.5 m³

			Incidonza co	lotta inforioro				
		Incidenza soletta inferiore						
	armatura	a superiore	armatura	inferiore				
	arm princip	arm ripart	arm princip	arm ripart		staffe		
ф	26	20	26	20	ф	10		
A (cm2)	5.31	3.14	5.31	3.14	A (cm2)	0.785		
B (m)	1	1	1	1	Bs (m)	0.64		
H (m)	1.5	1.5	1.5	1.5	Hs (m)	1.34		
num/m	15	5	10	5	num/m	2		
V (cm3/m)	7963.94	1570.80	5309.29	1570.80	passo (cm)	20		
					V (cm3)	3110.18		
P (Kg/m)	62.52	12.33	41.68	12.33	P (Kg/m)	24.41		

Peso totale acciaio	153.27	Kg/m
Volume totale calcestruzzo	1.5	m ³
Incidenza	102.18	Kg/m ³
Incidenza con incremento 10%	112.4	Kg/m ³

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40
 D 29 CL
 SL 01 00 001
 B
 100 di 101

12.2 Calcolo incidenza dei piedritti

Si riportano i dati relativi all'armatura adottata e alla dimensione della sezione

As 15Φ26

As' $10\Phi26$

Armature di ripartizione Φ 20/20

Staffe Φ 10/20 a 4 bracci

Copriferro 93 mm

Altezza della sezione 1.20 m

Larghezza della sezione 1.00 m

Volume complessivo per una sezione profonda 1.00 m 1.2 m³

	Incidenza piedritti						
	armatura	controterra	armatur	a interna			
	arm princip	arm ripart	arm princip	arm ripart		staffe	
ф	26	20	26	20	ф	10	
A (cm2)	5.31	3.14	5.31	3.14	A (cm2)	0.79	
B (m)	1	1	1	1	Bs (m)	0.64	
H (m)	1.2	1.2	1.2	1.2	Hs (m)	1.04	
num/m	10	5	15	5	num/m	2	
V (cm3/m)	5309.29	1570.80	7963.94	1570.80	passo (cm)	20	
					V (cm3)	2638.94	
P (Kg/m)	41.68	12.33	62.52	12.33	P (Kg/m)	20.72	

Peso totale acciaio	149.57	Kg/m
Volume totale calcestruzzo	1.2	m ³
Incidenza	124.64	Kg/m ³
Incidenza con incremento 10%	137.11	Kg/m ³

SL01 – Scatolare di approccio al viadotto VI01: Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40
 D 29 CL
 SL 01 00 001
 B
 101 di 101

12.3 Calcolo incidenza della soletta superiore

Si riportano i dati relativi all'armatura adottata e alla dimensione della sezione

As $10\Phi 26$

As' $15\Phi26$

Armature di ripartizione Φ 20/20

Staffe Φ 10/20 a 4 bracci

Copriferro 93 mm

Altezza della sezione 1.20 m

Larghezza della sezione 1.00 m

Volume complessivo per una sezione profonda 1.00 m 1.2 m³

	Incidenza soletta superiore							
	armatura	a superiore	armatura	inferiore				
	arm princip	arm ripart	arm princip	arm ripart		staffe		
ф	26	20	26	20	ф	10		
A (cm2)	5.31	3.14	5.31	3.14	A (cm2)	0.785		
B (m)	1	1	1	1	Bs (m)	0.64		
H (m)	1.2	1.2	1.2	1.2	Hs (m)	1.04		
num/m	15	5	10	5	num/m	2		
V (cm3/m)	7963.94	1570.80	5309.29	1570.80	passo (cm)	20		
					V (cm3)	2638.94		
P (Kg/m)	62.52	12.33	41.68	12.33	P (Kg/m)	20.72		

Peso totale acciaio	149.57	Kg/m
Volume totale calcestruzzo	1.2	m ³
Incidenza	124.64	Kg/m ³
Incidenza con incremento 10%	137.11	Kg/m ³

L'incidenza considerata per la soletta superiore è pari a 140 kN/m³.