COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

11	\cap	INED	A QT	LDII.	TTIII	DE	CEN	ITRO
U.	U.	IINER	AS	IRU	IIU	RC '	しヒロ	IIRU

PROGETTO DEFINITIVO

TRATTA CALTANISSETTA XIRBI - NUOVA ENNA (LOTTO 4A)

INTERFERENZE IDRAULICHE: VIABILITA'

Opere Tipologiche - Tombini Stradali

Relazione di calcolo tombino scatolare 2X2 su NV05E

SCALA:
-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

RS3U 40 D 29 CL N10000 002 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Apr-2020	F.Bavetta	Apr-2020	A.Barreca	Apr-2020	F.Arduini Apr-2020
								7, p. 2020
								A TATE
								EMP S.A.A. TONADA MANYA CONTRA ENDERO AND SERVICES SERVICES
								-

File: RS3U.4.0.D.29.CL.NI.00.0.002.A n. Elab.: 29_479_3

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA RS3U LOTTO CODIFICA 4 0 D 29 CL

CA DOCU

DOCUMENTO NI.00.0.0.002 REV. A

FOGLIO 2 di 90

INDICE

.1.	PREMESSA	3
.2.	CONDIZIONI DI CALCOLO DI INVILUPPO:	9
.3.	GEOMETRIA DELLA STRUTTURA	11
.4.	PROGETTO NUOVO TOMBINO	12
.4.1.	NORMATIVA DI RIFERIMENTO	12
.4.2.	UNITA' DI MISURA E SIMBOLOGIA	13
.4.3.	GEOMETRIA	13
.4.4.	MATERIALI	14
.4.5.	INQUADRAMENTO GEOTECNICO	15
.4.6.	INTERAZIONE TERRENO-STRUTTURA	16
.4.7.	MODELLAZIONE ADOTTATA	17
.4.8.	ANALISI DEI CARICHI	19
.5.	COMBINAZIONI DI CARICO	27
.6.	CARATTERISTICHE DELLE SOLLECITAZIONI	33
.6.1.	INVILUPPO SLU/SLV	33
.6.2.	INVILUPPO SLE (RARA)	37
.7.	VERIFICHE SLU/SLV/SLE	40
.7.1.	ARMATURE DI RIPARTIZIONE	46
.7.2.	RIEPILOGO E INCIDENZA ARMATURE	49
.8.	VERIFICHE GEOTECNICHE	50
.8.1.	BASE REACTION	50
.8.2.	VERIFICHE SLU IN CONDIZIONI DRENATE	53
.8.3.	VERIFICHE SLU IN CONDIZIONI NON DRENATE	63
.8.4.	VERIFICHE SLV IN CONDIZIONI DRENATE	72
.8.5.	VERIFICHE SLV IN CONDIZIONI NON DRENATE	82
.8.6.	TABELLA VERIFICHE GEOTECNICHE GEO	89
.8.7.	SOLLEVAMENTO PER GALLEGGIAMENTO UPL	90

1. PREMESSA

Nella presente relazione di calcolo è sviluppato il progetto, ai sensi delle norme attualmente vigenti NTC18, di una tipologia di sottopassi stradali lungo la linea ferroviaria "Messina-Catania-Palermo", facenti parte del nuovo collegamento Palermo-Catania, tratta Caltanissetta Xirbi-Enna (Lotto 4a) ubicati alle progressive 0+040 (NI03); 0+360 (NI06); 0+430 (NI05); 1+150 (NI04);1+360 (NI02) della viabilità NV05E.

Quanto riportato di seguito consentirà di verificare che il dimensionamento della struttura è stato effettuato nel rispetto dei requisiti di resistenza richiesti all'opera. Considerata l'identicità di tali opere dal punto di vista geometrico, il calcolo è stato effettuato nelle condizioni più gravose possibili in termini di strato di ricoprimento sulla soletta superiore e di caratteristiche sismiche, così come illustrato nello specifico nel \$2 – "CONDIZIONI DI CALCOLO DI INVILUPPO".

Si riportano di seguito le sezioni longitudinali, trasversali e uno stralcio planimetrico degli scatolari in oggetto, volti ad individuare le grandezze impiegate nel dimensionamento.

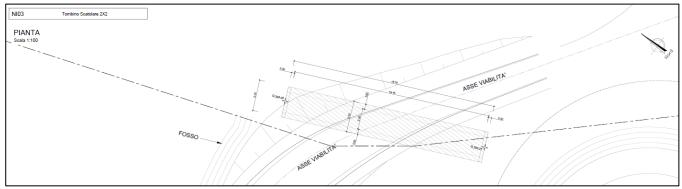


Figura 1a. Stralcio planimetrico dello scatolare NI03

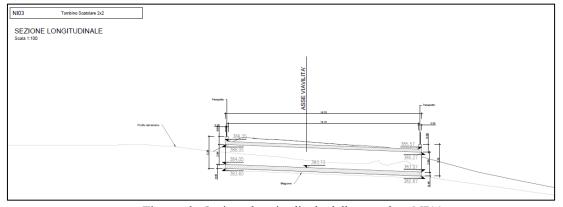


Figura 1b. Sezione longitudinale dello scatolare NI03

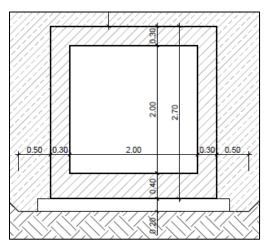


Figura 1c. Sezione trasversale dello scatolare NI03

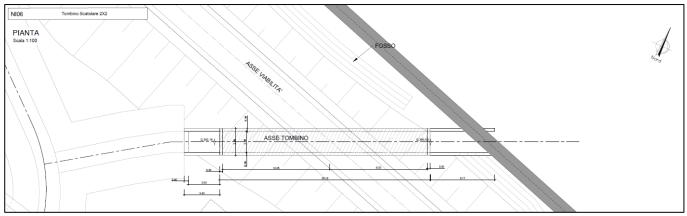


Figura 1a. Stralcio planimetrico dello scatolare NI06

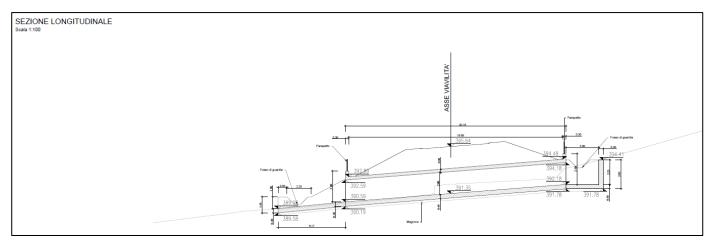


Figura 1b. Sezione longitudinale dello scatolare NI06

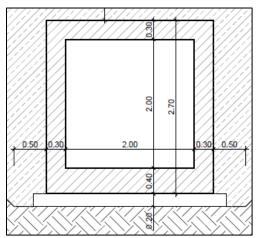


Figura 1c. Sezione trasversale dello scatolare NI06

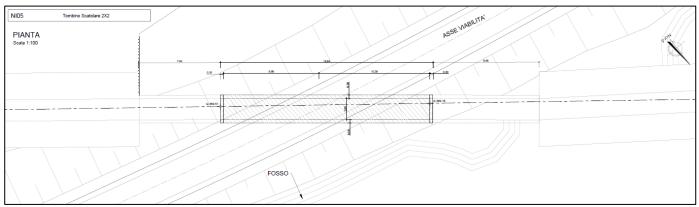


Figura 1a. Stralcio planimetrico dello scatolare NI05

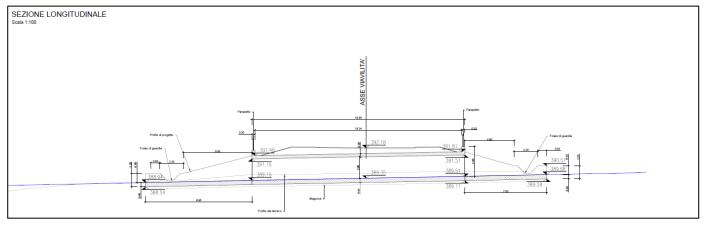


Figura 1b. Sezione longitudinale dello scatolare NI05

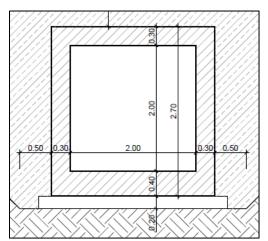


Figura 1c. Sezione trasversale dello scatolare NI05

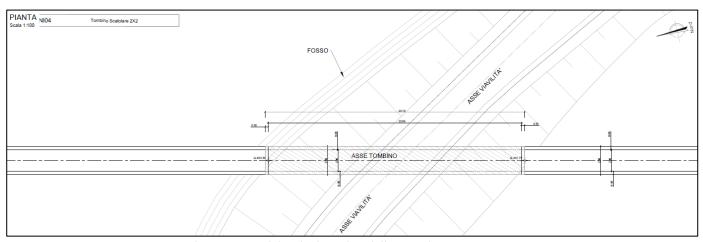


Figura 1a. Stralcio planimetrico dello scatolare NI04

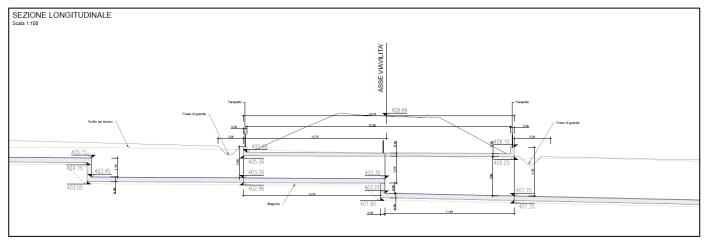


Figura 1b. Sezione longitudinale dello scatolare NI04

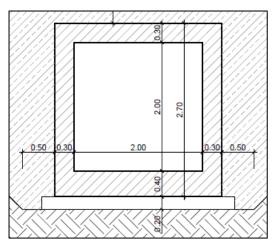


Figura 1c. Sezione trasversale dello scatolare NI04

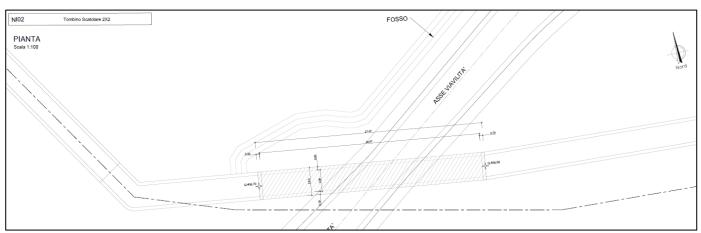


Figura 1a. Stralcio planimetrico dello scatolare NI02

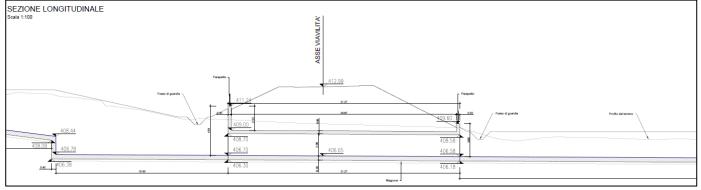


Figura 1b. Sezione longitudinale dello scatolare NI02

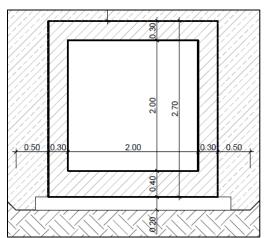


Figura 1c. Sezione trasversale dello scatolare NI02

.1. CONDIZIONI DI CALCOLO DI INVILUPPO:

Come precedentemente anticipato il calcolo di tali opere, aventi tutte la medesima dimensione (come visibile dalle sezioni trasversali sopra riportate), è stato effetuato nelle condizioni più gravose possibili in termini di strato di ricoprimento e di carichi sismici. Nel seguito si riportano delle tabelle di confronto in cui si riportano singolarmente le caratteristiche dei due sottopassi per quanto riguarda i paramtetri sopra enunciati e successivamente una tabella riepilogativa delle condizioni utilizzate nel calcolo e di cui se ne riporta lo sviluppo nel seguito. Per quanto riguarda il terreno di fondazione è stato considerato il **a2** (*Limi e limi argillosi con subordinate sabbie limose*) in quanto risulta essere, tra i terreni di fondazioni, quello con le caratteristiche di resistenza minori. Infine la falda è stata considerata nella situazione più sfavorevole possibile e quindi alla quota minore tra quelle che si misurano in corrispondenza delle opere, ovvero a $\mathbf{z_w} = \mathbf{4.5} \ \mathbf{m}$.:

- NI02 1+360:

GEOMETRIA			
Larghezza utile	Lint	2.00 m	luce interna scatolare
Altezza libera	Hint	2.00 m	altezza interna scatolare
Rinterro (superiore)	Hr	3.80 m	
Ricoprimento	Hric	4.00 m	Hs+Hr
Larghezza totale	Ltot	2.60 m	Lint+2xSPp
Altezza totale	Htot	2.70 m	Hint+SPs+SPf

Parametri sismici di progetto		
accelerazione massima orizzontale al bedrock	ago	0.096 g
fattore amplificazione massima spettro accelerazione	Fo	2.661 sec
periodo inizio tratto a velocità costante spettro acc. orizz.	T*c	0.462 sec
categoria sottosuolo		С
categoria topografica		T1
amplificazione topografica	S_T	1.000
smorzamento viscoso convenzionale	ξ	5%
fattore di correzione per x <> 5%	n	1.000

NI03 1+040:

GEOMETRIA			
Larghezza utile	Lint	2.00 m	luce interna scatolare
Altezza libera	Hint	2.00 m	altezza interna scatolare
Rinterro (superiore)	Hr	0.30 m	0
Ricoprimento	Hric	0.50 m	Hs+Hr
Larghezza totale	Ltot	2.60 m	Lint+2xSPp
Altezza totale	Htot	2.70 m	Hint+SPs+SPf

Parametri sismici di progetto		
accelerazione massima orizzontale al bedrock	ago	0.097 g
fattore amplificazione massima spettro accelerazione	Fo	2.656 sec
periodo inizio tratto a velocità costante spettro acc. orizz.	T*c	0.468 sec
categoria sottosuolo		С
categoria topografica		T1
amplificazione topografica	S_T	1.000
smorzamento viscoso convenzionale	ξ	5%
fattore di correzione per x <> 5%	η	1.000

NI04 1+150:

GEOMETRIA			
Larghezza utile	Lint	2.00 m	luce interna scatolare
Altezza libera	Hint	2.00 m	altezza interna scatolare
Rinterro (superiore)	Hr	3.10 m	
Ricoprimento	Hric	3.30 m	Hs+Hr
Larghezza totale	Ltot	2.60 m	Lint+2xSPp
Altezza totale	Htot	2.70 m	Hint+SPs+SPf

Parametri sismici di progetto		
accelerazione massima orizzontale al bedrock	ago	0.097 g
fattore amplificazione massima spettro accelerazione	Fo	2.656 sec
periodo inizio tratto a velocità costante spettro acc. orizz.	T*c	0.468 sec
categoria sottosuolo		C
categoria topografica		T1
amplificazione topografica	S_T	1.000
smorzamento viscoso convenzionale	ξ	5%
fattore di correzione per x <> 5%	n	1.000

- NI05 0+430:

GEOMETRIA			
Larghezza utile	Lint	2.00 m	luce interna scatolare
Altezza libera	Hint	2.00 m	altezza interna scatolare
Rinterro (superiore)	Hr	0.30 m	0
Ricoprimento	Hric	0.70 m	H_S+H_T
Larghezza totale	Ltot	2.60 m	Lint+2xSPp
Altezza totale	Htot	2.70 m	Hint+SPs+SPf

Parametri sismici di progetto	
accelerazione massima orizzontale al bedrock ago	0.097 g
fattore amplificazione massima spettro accelerazio Fo	2.656 sec
periodo inizio tratto a velocità costante spettro ac T*c	0.468 sec
categoria sottosuolo	C
categoria topografica	T1
amplificazione topografica S _T	1.000
smorzamento viscoso convenzionale ξ	5%
fattore di correzione per x $<> 5\%$	1.000

NI06 0+360:

GEOMETRIA			
Larghezza utile	Lint	2.00 m	luce interna scatolare
Altezza libera	Hint	2.00 m	altezza interna scatolare
Rinterro (superiore)	Hr	0.30 m	0
Ricoprimento	Hric	1.95 m	Hs+Hr
Larghezza totale	Ltot	2.60 m	Lint+2xSPp
Altezza totale	Htot	2.70 m	Hint+SPs+SPf

Parametri sismici di progetto	
accelerazione massima orizzontale al bedrock ago	0.097 g
fattore amplificazione massima spettro accelerazio Fo	2.656 sec
periodo inizio tratto a velocità costante spettro ac T*c	0.468 sec
categoria sottosuolo	C
categoria topografica	T1
amplificazione topografica S _T	1.000
smorzamento viscoso convenzionale \$	5%
fattore di correzione per x $<> 5\%$	1.000

- PARAMETRI DI CALCOLO:

GEOMETRIA			
Larghezza utile	Lint	2.00 m	luce interna scatolare
Altezza libera	Hint	2.00 m	altezza interna scatolare
Rinterro (superiore)	Hr	3.80 m	
Ricoprimento	Hric	4.00 m	Hs+Hr
Larghezza totale	Ltot	2.60 m	Lint+2xSPp
Altezza totale	Htot	2.70 m	Hint+SPs+SPf

Parametri sismici di progetto			
accelerazione massima orizzontale al bedrock	ago	0.097	g
fattore amplificazione massima spettro accelerazione	Fo	2.661	sec
periodo inizio tratto a velocità costante spettro acc. o	ο T*c	0.468	sec
categoria sottosuolo		C	
categoria topografica		T1	
amplificazione topografica	S_T	1.000	
smorzamento viscoso convenzionale	ξ	5%	
fattore di correzione per x <> 5%	η	1.000	

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LEGAMEN LTANISSE	ITO PALERMO TTA XIRBI-EN	A – CATANIA – P <i>i</i>) – CATANIA NA (LOTTO 4a)	ALERMO	
INVILUPPO - Tombino Scatolare 2x2:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	4 0 D 29	CL	NI.00.0.0.002	A	11 di 90

GEOMETRIA DELLA STRUTTURA

Il tombino sottopassa la strada adiacente alla linea ferroviaria ad una distanza fra piano rotabile ed estradosso soletta pari ad Hric. Esso ha dimensioni interne Lint \times Hint, con piedritti e soletta superiore di spessore Sp = Ss = Lint/10 +10cm, soletta inferiore di spessore Sf = Ss + 10cm. Nel seguito verrà esaminata una striscia di scatolare avente lunghezza di 1.00 m. Nella figura [Fig. 2] di cui al paragrafo precedente sono riportate schematicamente la geometria dell'opera e la simbologia adottata.

Le caratteristiche geometriche hanno la seguente simbologia (unità di misura metri):

Larghezza utile	Lint
Altezza libera	Hint
Spessore piedritti	Sp
Spessore soletta	Ss
Spessore fondazione	Sf
Altezza pacchetto stradale	Hs
Rinterro (superiore)	Hr
Ricoprimento	Hric
Larghezza totale	Ltot
Altezza totale	Htot

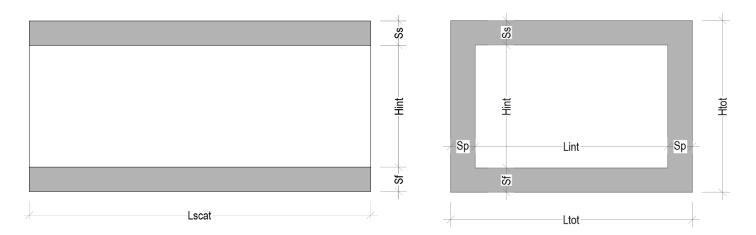


Figura 2. Simbologia adottata

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NI.00.0.0.002 A 12 di 90

.2. PROGETTO NUOVO TOMBINO

Nel presente paragrafo si riportano i calcoli volti alla progettazione di un nuovo tombino nel rispetto della norma attualmente vigente NTC18.

.2.1. NORMATIVA DI RIFERIMENTO

Tutte le calcolazioni sono state eseguite nel rispetto delle normativa NTC18 attualmente vigente.. In particolare si è fatto riferimento:

-	D.M. 17.01.2018	Nuove Norme Tecniche per le Costruzioni			
-	Circolare 21 Gennaio 2019, n. 7	Istruzione per l'applicazione dell'Aggiornamento delle "Norme Tecniche per le Costruzioni" di cui al DM 17 gennaio 2018			
-	RFI DTC INC PO SP IFS 001 A	Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sottobinario			
-	RFI DTC INC CS SP IFS 001 A	Specifica per la progettazione geotecnica delle opere civili ferroviarie			
-	EN 1992-1-1-1:2004	Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules of building			
-	RFI DTC SI PS MA IFS 001 C	Manuale di progettazione delle opere civili - Parte II - Sezione 2 Ponti e Strutture			
-	RFI DTC SI SP IFS 001 C	Capitolato Generale Tecnico di Appalto delle Opere Civili			
-	EC08	Eurocodice 8.			
-	Regolamento (UE) N.1299/2014 del 18 novembre 2014 della Commissione Europea	Specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea.			

INVILUPPO - Tombino Scatolare 2x2:	COMMESSA RS3U	LOTTO 4 0 D 29	CODIFICA	DOCUMENTO NI.00.0.0.002	REV.	FOGLIO 13 di 90
Relazione di calcolo	K330	4 0 D 29	CL	NI.00.0.0.002	A	13 01 90

.2.2. <u>UNITA' DI MISURA E SIMBOLOGIA</u>

Si utilizza il Sistema Internazionale (SI):

Unità di misura principali

- N (Newton) unità di forza

- m (metro) unità di lunghezza

- kg (kilogrammo) unità di massa

- s (secondo) unità di tempo

Unità di misura derivate da N

- (kiloNewton) 10^3 N

Si utilizzano i seguenti principali simboli con le relative unità di misura normalmente adottate:

 $\begin{array}{lll} \gamma & \text{(gamma)} & \text{peso dell'unit\'a di volume} & \text{(kN/m3)} \\ \sigma & \text{(sigma)} & \text{tensione normale} & \text{(N/mm2)} \\ \tau & \text{(tau)} & \text{tensione tangenziale} & \text{(N / mm2)} \end{array}$

e (epsilon) deformazione (m/m) -

φ (fi) angolo di resistenza (°)

.2.3. GEOMETRIA

Larghezza utile	Lint	2.00 m	luce interna scatolare
Altezza libera	Hint	2. 00 m	altezza interna scatolare
Spessore piedritti	Sp	0.30 m	(consigliato: $Sp = Ss$)
Spessore soletta	Ss	0.30 m	(consigliato: $Ss = Lint/10+10cm$.)
Spessore fondazione	Sf	0.40 m	(consigliato: $Sf = Ss + 10cm$.)
Altezza pacchetto stradale	Hs	0.20 m	
Rinterro (superiore)	Hr	3.80 m	
Ricoprimento	Hric	4.00 m	Hs+Hr
Larghezza totale	Ltot	2.60 m	Lint+2xSPp
Altezza totale	Htot	2.70 m	Hint+SPs+SPf

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA RS3U LOTTO CODIFICA 4 0 D 29 CL DOCUMENTO NI.00.0.0.002 REV.

FOGLIO 14 di 90

.2.4. MATERIALI

Per le opere in c.a. si adotta:

Calcestruzzo C (30/37) le cui caratteristiche principali sono:

- Resistenza cilindrica caratteristica:

 $f_{ck} = 30N/mm^2$

- Resistenza di calcolo a compressione semplice:

 $f_{cd} = \alpha_{cc} f_{ck} / \gamma_m$, dove:

- α_{cc} = 0.85 **e** γ_{m} =1.5;

 $- f_{cd} = 17 \text{ N/mm}^2$

- Resistenza di calcolo a trazione semplice:

 $f_{ctd} = f_{ctk} / \gamma_m$, dove:

- $\gamma_{\rm m} = 1.5$;

- $f_{ctd} = 1,35 \text{ N/mm}^2$.

- Modulo elastico:

 $Ec = 32836 \text{ N/mm}^2$

- Tolleranza di posa del copriferro = 10 mm;

- Classe di esposizione XA1

- Copriferro = 40 mm

- Condizioni ambientali: aggressive

- Apertura fessure limite: w1 = 0.2 mm

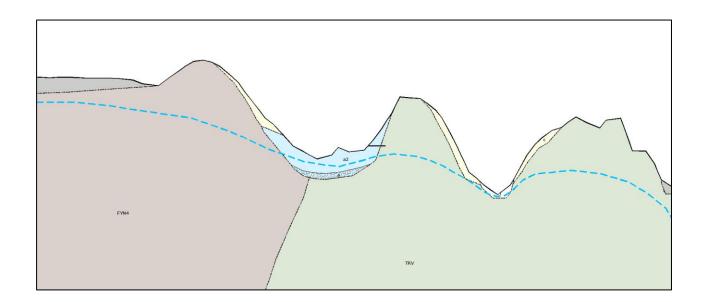
Acciaio da cemento armato normale B450C controllato in stabilimento. Le barre sono ad aderenza migliorata. Le caratteristiche meccaniche sono:

- Tensione caratteristica di snervamento: $f_{vk} = 450 \text{ Nmm}^2$

- Resistenza di calcolo dell'acciaio: $f_{yd} = f_{yk} / \gamma_s$ dove

 $- \gamma_s = 1.15 = 391 \text{ Nmm}^2$

- Allungamento D1 > 12%


- Modulo di elasticità: Es=206000 Nmm2

- Sovrapposizioni barre ≥ 40φ

.2.5. <u>INQUADRAMENTO GEOTECNICO</u>

Si riporta di seguito uno stralcio del profilo geotecnico della zona di riferimento:

Per l'inquadramento geotecnico si fa riferimento alla relazione geotecnica, della quale si riportano gli stralci significativi del profilo geotecnico e dei parametri geotecnici del terreno di fondazione, del rinterro e del rinfianco.

Lo strato significativo del profilo geotecnico è l'unità la cui descrizione nella relazione geotecnica è:

1) a2

Limi e limi argillosi con subordinate sabbie limose

Peso specifico terreno	γt	18.0 kN/m
angolo d'attrito terreno	ф	25.0 [°]
coesione efficace terreno	c'	10.0 kN/m2
coesione non drenata terreno	cu	50.0 kN/m2

I parametri geotecnici del rinterro e del terreno di rinfianco sono i seguenti:

Peso specifico rinterro	STRADALE	γt	19.0 kN/m	
angolo di attrito rinterro		Ø'	35.0 [°]	0.611 [rad]
coesione rinterro		cu	0.0 kN/m2	
Peso specifico terreno di rinfiano	со	γt	20.0 kN/m3	
angolo di attrito terreno di rinfia	unco	Ø'	38.0 [°]	0.663 [rad]
coesione terreno di rinfianco		cu	0.0 kN/m2	

INVILUPPO - Tombino Scatolare 2x2:	COMMESSA RS3U	LOTTO 4 0 D 29	CODIFICA	DOCUMENTO NI.00.0.0.002	REV.	FOGLIO 16 di 90
Relazione di calcolo	11030	4 0 D 29	CL	141.00.0.0.002	^	10 di 90

.2.6. INTERAZIONE TERRENO-STRUTTURA

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo:

•
$$s = B \cdot ct \cdot (q - \sigma v0) \cdot (1 - v^2) / E'_{op}$$

dove:

- -s = cedimento elastico totale;
- -B = lato minore della fondazione;
- ct = coefficiente adimensionale di forma ottenuto dalla interpolazione dei valori dei coefficienti proposti dal Bowles, 1960 (L = lato maggiore della fondazione):

ct =
$$0.853 + 0.534 \ln(L / B)$$
 rettangolare con L / B \leq 10 ct = $2 + 0.0089$ (L / B) rettangolare con L / B \geq 10

- -q = pressione media agente sul terreno;
- $-\sigma v0$ = tensione litostatica verticale alla quota di posa della fondazione;
- -v = coefficiente di Poisson del terreno;
- $-E'_{op}$ = modulo elastico operativo del terreno sottostante.

Il valore della costante di sottofondo kw è valutato attraverso il rapporto tra il carico applicato ed il corrispondente cedimento pertanto, si ottiene:

• kw =
$$E'_{op} / [(1-v2) \cdot B \cdot ct]$$

Di seguito si riportano in forma tabellare i risultati delle valutazioni effettuate per il caso in esame, avendo considerato per E'op il valore minimo tra quelli indicati per l'Unità Geotecnica in esame ed una dimensione longitudinale della fondazione ritenuta potenzialmente collaborante nella diffusione dei carichi:

Unità stratigrafica

1) a2

Descrizione unità stratigrafica

Limi e limi argillosi con subordinate sabbie limose

Modulo elastico medio terreno	E'op	20000 kN/m^2	(il minore tra i valori proposti)
Coefficiente di Poisson medio terreno	ν	0.3	
Lato minore della fondazione	В	2.6 m	
Lato maggiore della fondazione	L	20.0 m	
Rapporto dei lati	L/B	7.7	
Coefficiente adimensionale	ct	1.942	
Costante di sottofondo	Kw	4352 kN/m^3	

INVILUPPO - Tombino Scatolare 2x2:	COMMESSA RS3U	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	K330	4 0 D 29	CL	NI.00.0.0.002	A	17 di 90

.2.7. MODELLAZIONE ADOTTATA

Il modello di calcolo attraverso il quale viene schematizzata la struttura è quello di telaio chiuso su letto di molle alla Winkler. Il programma di calcolo utilizzato è un programma ad elementi finiti, il Sap 2000.

Le caratteristiche delle aste modellate con elementi frame sono le seguenti:

asta	base	altezza	descrizione
Asta 1	100 cm	40 cm	(soletta inferiore)
Aste 2, 4	100 cm	30 cm	(Piedritti)
Asta 3	100 cm	30 cm	(soletta superiore)

Le caratteristiche geometriche del modello e le coordinate dei nodi sono le seguenti:

Linterasse	2.30 m
Hinterasse	2.35 m
N.nodi	13
N.nodi sup	2
N.nodi inf	11
N.spazi inf	10

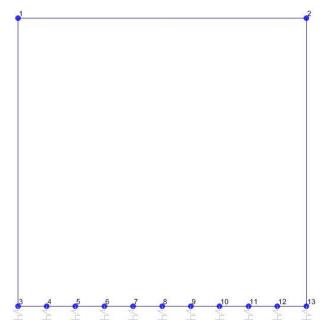


Figura 3. Numerazione nodi modello SAP

1N0a0	X	Z
1	0.000	2.350
2	2.300	2.350
3	0.000	0.000
4	0.230	0.000
5	0.460	0.000
6	0.690	0.000
7	0.920	0.000
8	1.150	0.000
9	1.380	0.000
10	1.610	0.000
11	1.840	0.000
12	2.070	0.000
13	2.300	0.000

Mada

INVILUPPO - Tombino Scatolare 2x2:	COMMESSA RS3U	LOTTO 4 0 D 29	CODIFICA	DOCUMENTO NI.00.0.0.002	REV.	FOGLIO 18 di 90
Relazione di calcolo	K330	4 0 D 29	CL	NI.00.0.0.002	A	16 ul 90

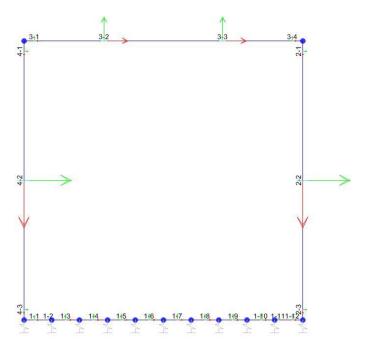


Figura 4: Individuazione elementi modello SAP

L'opera è stata considerata vincolata alla base mediante dei vincoli cedevoli in funzione delle caratteristiche elastiche del terreno di sottofondo.

La soletta inferiore viene divisa in 10 elementi per poter schematizzare, tramite le molle applicate, l'interazione terreno-struttura. Per la rigidezza delle molle, nel il caso in esame, si assume il valore del Modulo di reazione verticale desunto dai parametri della relazione geotecnica:

Rigidezza molle nodali SAP

8		
ks		4352 kN/m ³
nodi centrali (6,7,8,9,10)		
Linfl		0.230 m
Kcentrale	ks x Linfl x 1	1001 kN/m
nodi intermedi (4,5,11,12)		
Linfl		0.230 m
Kintermedio	1,5 x ks x Linfl x 1	1501 kN/m
nodi estremità (3,13)		
Linfl		0.265 m
Kestremità	2,0 x ks x Linfl x 1	2306 kN/m

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISSETTA XIRBI-ENNA (LOTTO 4a) INTERFERENZE IDRAULICHE					
INVILUPPO - Tombino Scatolare 2x2:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	4 0 D 29	CL	NI.00.0.0.002	A	19 di 90

.2.8. ANALISI DEI CARICHI

Si riportano di seguito i carichi utilizzati per il calcolo delle sollecitazioni e le verifiche delle sezioni della struttura in esame.

Peso proprio della struttura (condizione DEAD)

Il peso proprio delle solette e dei piedritti viene calcolato automaticamente dal programma di calcolo utilizzato considerando per il calcestruzzo $\gamma = 25 \text{kN/m3}$.

Peso specifico calcestruzzo armato	γds	25 kN/m^3	
peso singolo piedritto	Pp	7.50 kN/m	y cls x Sp
peso soletta superiore	Pss	7.50 kN/m	y cls x Ss
peso fondazione	Psf	$10.00~\mathrm{kN/m}$	$\gamma cls \times Sf$

Permanenti portati (condizione PERM)

1 (
peso specifico pacchetto stradale	γs	24 kN/m^3	
altezza pacchetto stradale	Hs	0.20 m	
peso pacchetto stradale	Ps	4.80 kN/m	$\gamma\sigma$ Hs
peso specifico rinterro	γr	19.0 kN/m^3	
altezza rinterro	Hr	3.80 m	
peso rinterro	Pr	72.20 kN/m	$\gamma r \times Hr$
peso specifico massetto di protezione	γm	24 kN/m^3	
altezza massetto di protezione	Hm	0.05 m	
peso massetto di protezione	Pm	1.20 kN/m	$\gamma m \times H m$
Permanente totale	G2p	78.20 kN/m	Ps + Pr + Pm
Permanente nodi 1 e 2	G2P	11.73 kN	G2p x Sp / 2

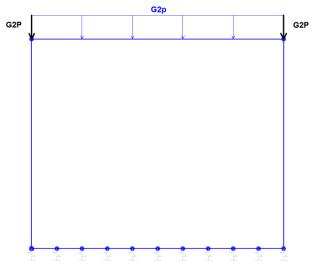


Figura 5. Condizione di carico PERM da SAP2000

INVILUPPO - Tombino Scatolare 2x2:	COMMESSA RS3U	LOTTO 4 0 D 29	CODIFICA	DOCUMENTO NI.00.0.0.002	REV.	FOGLIO 20 di 90
Relazione di calcolo	K330	4 0 D 29	CL	NI.00.0.0.002	A	20 di 90

Spinta del terreno	(condizioni	SDTSY A	(VCTQ2
Spinta dei terreno	(condizioni	5P 1 5A e	SPIDAI

angolo di attrito rinterro	Ø'	38.0 [°]	0.663 [rad]
coefficiente spinta attiva ka	ka	0.238		(1 - senO) / (1 + senO)
coefficiente spinta riposo ko	ko	0.384		(1 - senØ)
coefficiente spinta passiva kp	kp	4.204		(1 + senØ) / (1 - senØ)
Pressione estradosso soletta superiore	P1	30.06 k	$\kappa N/m^2$	ko x (G2p)
Pressione asse soletta superiore	P2	31.15 k	$\kappa N/m^2$	$ko \times (G2p + gr \times Ss / 2)$
Pressione asse soletta inferiore	Р3	48.31 k	$\kappa N/m^2$	$ko \times [G2p + gr \times (Ss + Hint + Sf / 2)]$
Pressione intradosso soletta inferiore	P4	49.77 k	$\kappa N/m^2$	$ko \times (G2p + gr \times Htot)$
Forza concentrata asse soletta superiore	F1	4.59 k	kN/m	(P1+ P2) / 2 x Ss / 2
Forza concentrata asse soletta inferiore	F2	9.81 k	kN/m	(P3+ P4) / 2 x Sf / 2

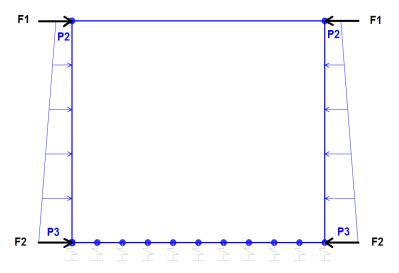


Figura 6. Condizione di carico SPTDX-SPTSX da SAP2000

I carichi concentrati nei nodi 1 e 3 (per la SPTSX) oppure 2 e 13 (per la SPTDX) rappresentano la parte di spinta del terreno esercitata su 1/2 spessore della soletta sup. e su 1/2 spessore della soletta inferiore.

Le due condizioni di carico SPTDX e SPTSX vengono applicate al modello con il loro valore al 100% (come visibile in figura 6 sopra). Lo sbilanciamento di tali condizioni (100% SPTSX e 60% SPTSX) viene tenuto in conto tramite opportuni coefficienti di combinazione, come è visibile in seguito al paragrafo § 5 - "Combinazioni di Carico" - del presente elaborato.

Carichi accidentali, ripartizione carichi verticali (condizione ACCM-STR)

Si assume il più gravoso tra i seguenti due schemi di carico:

- a) carico distribuito uniforme stradale
- b) schema di carico 1 § 5.1.3.3.3 Cap.5 NTC2018

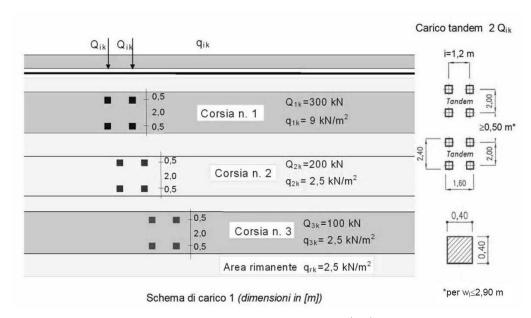


Figura 7 – Schema di Carico 1 del D.M. 17/01/2018

Carico distribuito per traffico stradale	qunif	20 kN/m^2	
Carico distribuito per corsia di carico	q1k	9 kN/m^2	Schema di carico 1 NTC§5.1.3.3.3
Carico concentrato impronta di carico	Q1k	150 kN	Schema di carico 1 NTC§5.1.3.3.3
N° Impronte di carico per asse	N_{i}	2	
N° Assi	N_a	2	
Dimensione trasversale impronta di carico	Bti	0.40 m	
Dimensione longitudinale impronta di carico	Bli	0.40 m	
Interasse trasversale strada impronte carico	iti	2. 00 m	
Interasse longitudinale strada impronte carico	ili	1.20 m	
Larghezza corsia di carico	w1	3.00 m	

Lo schema di carico 1, che prevede anche la presenza di carichi concentrati, viene ragguagliato allo schema di carico a) mediante una diffusione attraverso il pacchetto stradale e il rinterro fino alla linea d'asse della soletta superiore:

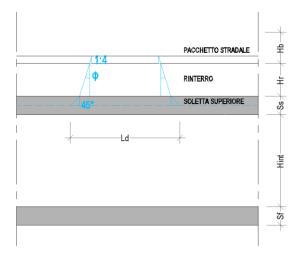


Figura 8. Diffusione dei carichi concentrati dello schema di carico 1

Ripartizione trasversale strada piano rotabile	rtpr	2.40 m	Bti+iti*(Ni-1)
Ripartizione longitudinale strada piano rotabile	rlpr	1.60 m	Bli+ili*(Na-1)
Larghezza di diffusione nel pacchetto stradale	Lds	0.10 m	Diffusione 1:4 nel pacchetto stradale
Larghezza di diffusione nel rinterro	Ldr	5.32 m	Diffusione secondo angolo attrito
Larghezza di diffusione nel cls	Ldc	0.30 m	Diffusione 45° nel cls
Larghezza trasv. di diffusione del carico	Ldt	8.12 m	rtpr + Lds + Ldr + Ldc
Larghezza long. di diffusione del carico	Ldl	7.32 m	rlpr + Lds + Ldr + Ldc
Carico ripartito verticale schema di carico 1	psdn1	19.09 kN/m^2	[Q1k*Ni*Na/(Ldl*Ldt)]+q1k
Carico distribuito massimo su soletta superiore	PQ1	20.00 kN/m^2	max (psch1 ; qunif)

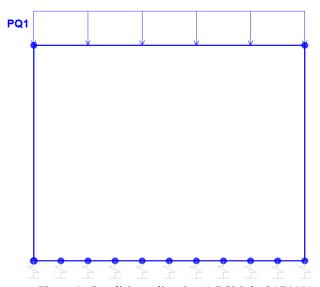


Figura 9. Condizione di carico ACCM da SAP2000

Spinta sui piedritti prodotta dal sovraccarico STRADALE (condizioni SPACCSX e SPACCDX)

Carico distribuito massimo per traffico stradale	SQ1	7.69	kN/m^2	Pq x Ko
Spinta semispessore soletta superiore	Fq1sup	1.15	kN/m	Pq x Ss / 2
spinta semispessore soletta inferiore	Fq1inf	1.54	kN/m	$Pa \times Sf / 2$

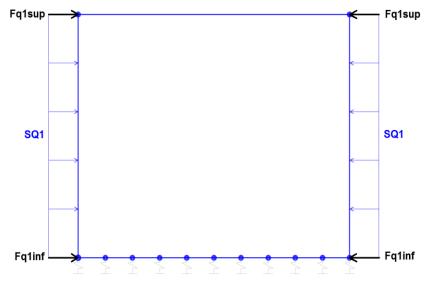


Figura 10. Condizione di carico SPACCSX e SPACCDX da SAP2000

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO
NUOVO COLLEGAMENTO PALERMO – CATANIA
TRATTA CALTANISSETTA XIRBI-ENNA (LOTTO 4a)
INTERFERENZE IDRAULICHE

INVILUPPO - Tombino Scatolare 2x2:	COMMESSA RS3U	LOTTO 4 0 D 29	CODIFICA	DOCUMENTO NI.00.0.0.002	REV.	FOGLIO 23 di 90
Relazione di calcolo	K330	4 0 D 29	CL	NI.00.0.0.002	A	23 til 90

Frenatura e accelerazione (condizione AVV-STR)

La forza di frenamento, agente nella direzione dell'asse della strada ed al livello della superficie stradale, è funzione del carico verticale totale agente sulla corsia convenzionale n. 1 ed è pari a:

$$q3 = 0.6 \cdot (2 * Ni * Q1k) + 0.10 \cdot q1k \cdot w1 \cdot L$$

Lunghezza zona caricata	L	2.60	$0.00 \; Lint + 2*Sp$
Largh. diffusione sulla soletta superiore	Ldiff	2.30	$0.00 \; Lint + Sp$
Acc. e fren. traffico stradale	Av	367.02 kN	0.6*(2*Ni*Q1k)+0.10*q1k*w1*L
Acc. e fren. traffico stradale distribuiti	qAV	-35.22 kN/m	Av / [Ldiff + max(Ldt; w1)]

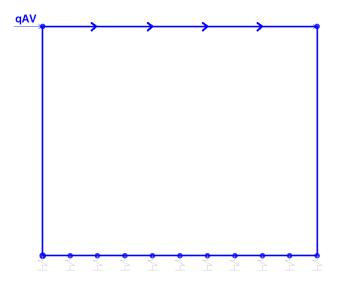


Figura 11. Condizione di carico AVV da SAP2000

Azioni termiche (condizione TERM)

Alla soletta superiore si applica una variazione termica uniforme pari a $\Delta t = \pm 15$ °C ed una variazione nello spessore tra estradosso ed intradosso pari a $\Delta t = \pm 5$ °C.

Variazione termica uniforme	∆Tunif	+-15.00	[°]	Sulla soletta superiore
Variazione termica differenziale	∆ Tdiff	+-5.00	[°]	Sulla soletta superiore
	Gradiente	+-16.67	$[^{\circ}/m]$	△ Tdiff / Ss

Ritiro igrometrico (condizione RITIRO)

Gli effetti del ritiro vanno valutati a "lungo termine" attraverso il calcolo dei coefficienti di ritiro finale ε cs (t , t0) e di viscosità φ (t , t0), come definiti nell'EUROCODICE 2- UNI EN 1992-1-1 Novembre 2005 e D. M. 17-01-2018.

I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura ed applicati nel modello come una variazione

INVILUPPO - Tombino Scatolare 2x2:	COMMESSA RS3U	LOTTO 4 0 D 29	CODIFICA	DOCUMENTO NI.00.0.0.002	REV.	FOGLIO 24 di 90
Relazione di calcolo	11000	40029	CL	NI.00.0.0.002	^	24 til 90

CONDIZIONI DI CARICO SISMICHE

Per il calcolo dell'azione sismica si utilizza il metodo dell' analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k. Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale Fh=kh*W Forza sismica verticale Fv=kv*W

I valori dei coefficienti sismici orizzontale kh e verticale kv

kh = a max /g $kv = \pm 0.5 \times kh$

Con riferimento alla nuova classificazione sismica del territorio nazionale, ai fini del calcolo dell'azione sismica secondo il DM 17/01/2018 viene assegnata all'opera una vita nominale VN ed una classe d'uso Cu; segue un periodo di riferimento VR=VN *CU.

A seguito di tale assunzione si ottiene allo stato limite ultimo SLV in funzione della Latitudine e Longitudine del sito in esame un valore dell'accelerazione pari ad ag, il cui valore è di seguito riportato, come desunto anche dalla relazione geotecnica. In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima per la determinazione delle forze di inerzia può essere valutata con la relazione:

$$amax = S * ag = Ss *St* ag$$

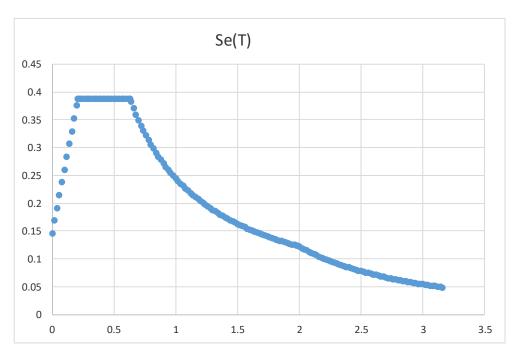
Le forze di inerzia sullo **scatolare** (masse di peso proprio soletta superiore e piedritti, rinterro e ballast, 20% treno di carico,...) sono pari alle masse moltiplicate per kh e kv ove: $kh = \beta M \times S \times ag/g$ e kv = kh/2. Essendo lo scatolare non libero di subire spostamenti relativi rispetto al terreno, $\beta M = 1$.

vita nominale	V_N	75 anni
classe d'uso	CL	III
coefficiente d'uso	C_{U}	1.50
vita di riferimento = $C_U * V_N$	$V_{ m R}$	112.5 anni
probabilità di superamento nel periodo di riferimento	$P_{ m VR}$	10%
periodo di ritorno del sisma	$T_{\scriptscriptstyle m R}$	1068 anni

Spettro di risposta in accelerazione della componente orizzontale

Coordinate del sito in oggetto:

Latitudine Longitudine


INVILUPPO - Tombino Scatolare 2x2:	COMMESSA RS3U	LOTTO 4 0 D 29	CODIFICA	DOCUMENTO NI.00.0.0.002	REV.	FOGLIO 25 di 90
Relazione di calcolo	K330	40029	CL	NI.00.0.0.002	A	25 ui 90

Parametri sismici di progetto		
accelerazione massima orizzontale al bedrock	ago	0.097 g
fattore amplificazione massima spettro accelerazione	Fo	2.661 sec
periodo inizio tratto a velocità costante spettro acc. orizz.	T*c	0.468
categoria sottosuolo		C
categoria topografica		T1
amplificazione topografica	S_{T}	1.000
smorzamento viscoso convenzionale	ξ	5%
fattore di correzione per $\xi <> 5\%$	η	1.000

Tab.3.2.V	S_S	C_{C}	S_S	C_{C}
A	1.00	1.00		
В	1.20	1.28		
С	1.50	1.35	1.50	1.35
D	1.80	1.83		
Е	1.60	1.56		

coefficiente amplificazione stratigrafica	S_S	1.500
coefficiente di amplificazione	S	1.500
coefficiente categoria sottosuolo	C_{C}	1.349
periodo inizio tratto a accelerazione costante = Tc / 3	$\mathrm{T_{B}}$	0.210 sec
periodo inizio tratto a velocità costante = Cc * T*c	T_{C}	0.631 sec
periodo inizio tratto a spostamento costante = $4 * ag/g + 1,6$	${ m T_D}$	1.988 sec
accelerazione massima orizzontale al suolo = Ss x St x ag/g	ago,max	0.146 g

SPETTRO ORIZZONTALE ELASTICO SLV

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COL	LEGAMEN LTANISSE	ITO PALERMO ITA XIRBI-ENI	A – CATANIA – PA) – CATANIA NA (LOTTO 4a)	ALERMO	
INVILUPPO - Tombino Scatolare 2x2:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	4 0 D 29	CL	NI.00.0.0.002	A	26 di 90

Accelerazioni	ner il d	calcolo	delle	forze	di inerzia	agenti sul	lo scatolare
riccciciazioin	PCI 11 \	carcoro	ucne	IUIZC	ai micizia	agenti bui	io ocatorare

Coefficiente di riduzione dell'acc max attes	sa al sito	β	1.000
$ao = kh = ago, max = S \times ag/g$	valore $PGA \times s$ catolare	ao = kh	0.1455 g
av = kv = kh / 2	valore $PGA \times s$ catolare	av = kv	0.0728 g

Forze di inerzia (condizione SismaH)

Forza di inerzia treno di carico - (%)	%	0%		
Forza orizzontale sulla soletta di copertura	F'h	12.47	kN/m	(Pss+G2p+%PQ1) x kh
Forza orizzontale su singolo piedritto	F"h	1.09	kN/m^2	$Pp \times kh$

Forze di inerzia (condizione SismaV)

Forza di inerzia treno di carico - (%) % 0% Forza verticale sulla soletta di copertura F''v 6.23 kN/m^2 (Pss+G2p+%PQ1) × kv

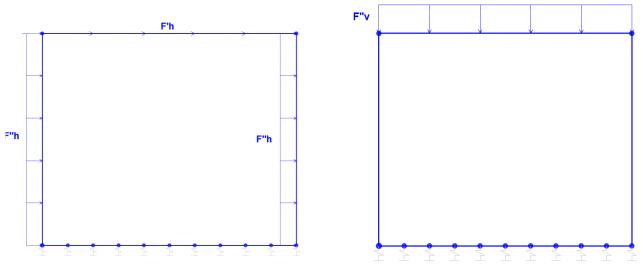


Figura 12. Condizione di carico SismaH e SismaV da SAP2000

Spinta sismica terreno - Teoria di WOOD (condizioni SPSDX e SPSSX)

Forza distribuita su uno solo dei piedritti qW 17.00 kN/m^2 (%PQ1+G2p+ $\gamma r \times Htot$) × (ago,max) Forza concentrata nodo superiore piedritto QWsup 2.55 kN $qW \times Ss / 2$ Forza concentrata nodo inferiore piedritto QWinf 3.40 kN $qW \times Sf / 2$

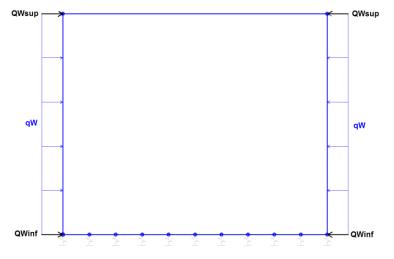


Figura 13. Condizione di carico SPSDX e SPSSX da SAP2000

COMMESSA CODIFICA LOTTO DOCUMENTO REV. FOGLIO INVILUPPO - Tombino Scatolare 2x2: RS3U 4 0 D 29 NI.00.0.0.002 Relazione di calcolo

COMBINAZIONI DI CARICO

Secondo le prescrizioni del D.M. 17/01/2018 le azioni di calcolo debbono essere cumulate secondo condizioni di carico tali da risultare più sfavorevoli ai fini delle singole verifiche, tenendo conto della ridotta probabilità di intervento simultaneo di tutte le azioni accidentali con i rispettivi valori più sfavorevoli.

Le combinazioni di carico generiche sono le seguenti:

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU): $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$ [2.5.1]
- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili: $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$ [2.5.2]
- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili: $G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$
- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine: $G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$
- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E: $E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$ [2.5.5]

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_i \psi_{2i} Q_{ki}$$
 [2.5.7]

Ai fini della determinazione dei valori caratteristici delle azioni dovute al traffico, si considerano le combinazioni riportate in Tabella 5.1.IV:

Tabella 5.1.IV - Valori caratteristici delle azioni dovute al traffico

	Carichi sulla carreggiata							
	Carichi verticali			Carichi orizz	ontali	Carichi verticali		
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q ₄	Carico uniformemente. distribuito		
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m ²		
2 a	Valore frequente			Valore caratteristico				
2 b	Valore frequente				Valore caratteristico			
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²		
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²		
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale						
(*) Ponti di 3	3ª categoria							

Da considerare solo se richiesto dal particolare progetto (ad es. ponti in zona urbana)

Da considerare solo se si considerano veicoli speciali

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U 4 0 D 29 CL NI.00.0.0.002 A 28 di 90

Per quel che riguarda i valori dei coefficienti parziali di sicurezza γ_{Gi} , γ_{Qi} e γ_{si} si considerano i valori riportati in Tabella 5.1.V:

Tabella 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

	Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
favorevoli	$\gamma_{\rm G1}$	0,90	1,00	1,00
sfavorevoli		1,10	1,35	1,00
favorevoli	$\gamma_{\rm G2}$	0,00	0,00	0,00
sfavorevoli		1,50	1,50	1,30
favorevoli	γο	0,00	0,00	0,00
sfavorevoli		1,35	1,35	1,15
favorevoli	γ_{Qi}	0,00	0,00	0,00
sfavorevoli		1,50	1,50	1,30
favorevoli	γε1	0,90	1,00	1,00
sfavorevoli		1,00 ⁽³⁾	1,00 ⁽⁴⁾	1,00
favorevoli	$\gamma_{\epsilon 2},\gamma_{\epsilon 3},\gamma_{\epsilon 4}$	0,00	0,00	0,00
sfavorevoli		1,20	1,20	1,00
	favorevoli favorevoli favorevoli favorevoli favorevoli favorevoli favorevoli favorevoli favorevoli	favorevoli sfavorevoli γ_{G1} favorevoli γ_{G2} favorevoli γ_{Q2} favorevoli γ_{Q1} favorevoli γ_{Q2} favorevoli γ_{Q1} favorevoli γ_{Q2} favorevoli γ_{Q1} favorevoli γ_{Q2}	favorevoli sfavorevoli γ_{G1} 0,90 1,10 1,10 favorevoli γ_{G2} 0,00 sfavorevoli γ_{G2} 1,50 favorevoli γ_{Q} 0,00 sfavorevoli γ_{Q} 0,00 sfavorevoli γ_{Q} 0,00 favorevoli γ_{Q} 0,00 favorevoli γ_{G1} 0,90 sfavorevoli γ_{E1} 0,90 favorevoli γ_{E1} 0,00 0,00 favorevoli γ_{E2} 0,00 0,00 favorevoli γ_{E3} 0,00 0,00	favorevoli sfavorevoli γ_{G1} 0.90 1.00 1.35 favorevoli sfavorevoli γ_{G2} 0.00 0.00 0.00 0.00 0.00 1.50 1.50 favorevoli sfavorevoli γ_{Q2} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i

(4) 1,20 per effetti locali

Per quel che riguarda i valori dei coefficienti di combinazione delle azioni variabili ψ si considerano i valori raccomandati per i ponti stradali:

Tabella 5.1.VI - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente Ψ ₁ (valori frequenti)	Coefficiente ψ ₂ (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	Vento a ponte scarico	0.6	0.0	0.0
Vento q ₅	SLU e SLE	0,6	0,2	0,0
75	Esecuzione	0,8		0,0
	Vento a ponte carico	0,6		
Nava a	SLU e SLE	0,0	0,0	0,0
Neve q₅	esecuzione	0,8	0,6	0,5
Temperatura	T_k	0,6	0,6	0,5

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U 4 0 D 29 CL NI.00.0.0.002 A 29 di 90

Le azioni descritte nel paragrafo precedente ed utilizzate nelle combinazioni di carico vengono di seguito riassunte:

Peso proprio	DEAD
Carichi permanenti	PERM-
Spinta del terreno sulla parete sinistra	SPTSX
Spinta del terrenno sulla parete destra	SPTDX
Carico Variabile Stradale	ACCM-
Spinta del carico stradale Sulla parete	SPACCSX
Spinta del carico stradale Sulla parete	SPACCD
Accelerazione e frenatura	AVV-STR
Variazione termica sulla soletta	ENV_TE
Ritiro	RITIRO
Azione sismica orizzontale	Sisma H-
Azione sismica verticale	Sisma V-
Incremento sismico della spinta	SPSDX/S

La 4 condizioni di carico:

 Δ Tuniforme =±15°

 Δ Tdifferenziale = $\pm 5^{\circ}$

e le loro 4 combinazioni sono state preventivamente inviluppate nella condizione ENV_TERM, la quale viene impiegata nelle successive combinazioni di carico per massimizzare gli effetti termici.

Nelle tabelle seguenti sono riportate le combinazioni di carico SLU, SLV e SLE utilizzate. Nelle combinazioni si tiene conto sia della spinta delle terre SPTSX al 100% e SPTDX al 100% che del loro sbilanciamento con SPTSX al 100% e SPTDX al 60%, sbilanciamento concorde con il verso di AVV e SISMAH per massimizzare le caratteristiche di sollecitazione. Lo sbilanciamento è tenuto in conto nelle combinazioni tramite i coefficienti evidenziati in rosso, corrispondenti ai coefficienti della spinta SPTDX moltiplicati per il coefficiente di combinazione 0,60.

Si riportano di seguito le combinazioni allo SLU di carico ritenute più significative in base all'esperienza. Combinazione fondamentale

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

INVILUPPO - Tombino Scatolare 2x2:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo	RS3U	4 0 D 29	CL	NI.00.0.0.002	А	30 di 90

	Combinazioni di carico SLU (non sismiche)												
	1slu	2slu	3slu	4slu	5slu	6slu	7slu	8slu	9slu	10slu	11slu	12slu	13slu
DEAD	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1	1.35	1.35	1.35	1.35	1.35
PERM-STR	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1	1.5	1.5	1.5	1.5	1.5
SPTSX	1	1	1	1	1.35	1.35	1	1	1	1.35	1.35	1.35	1.35
SPTDX	1	1	1	1.35	1.35	1.35	1.35	1.35	1.35	1	1	1	1
ACCM-STR	1.35	1.35	1.35	1.35	1.35	0	1.35	0	1.35	1.35	1.08	1.08	1.015
SPACCSX	0	0	0	0	0	0	0	0	0	1.45	0	0	0
SPACCDX	1.35	0	0	1.35	1.35	1.35	1.35	1.35	1.35	0	1.08	1.08	1.015
AVV	1.35	1.35	1.35	1.35	1.35	0	1.35	0	0	0	0	0	1.35
ENV_TERM	0	-0.9	0	0	0	0	-0.9	0	0.9	-0.9	-1.5	1.5	0.9
RITIRO	0	1.2	0	0	0	0	0	0	1.2	1.2	1.2	1.2	1.2

	Combinazioni di carico SLU (non sismiche)												
	14slu	15slu	16slu	17slu	18slu	19slu	20slu	21slu	22slu	23slu	24slu	25slu	26slu
DEAD	1.35	1.35	1.35	1.35	1.35	1.35	1.35	1	1.35	1.35	1.35	1.35	1.35
PERM-STR	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1	1.5	1.5	1.5	1.5	1.5
SPTSX	1	1	1	1	1.35	1.35	1	1	1	1.35	1.35	1.35	1.35
SPTDX	0.6	0.6	0.6	0.81	0.81	0.81	0.81	0.81	0.81	0.6	0.6	0.6	0.6
ACCM-STR	1.35	1.35	1.35	1.35	1.35	0	1.35	0	1.35	1.35	1.08	1.08	1.015
SPACCSX	0	0	0	0	0	0	0	0	0	1.45	0	0	0
SPACCDX	1.35	0	0	1.35	1.35	1.35	1.35	1.35	1.35	0	1.08	1.08	1.015
AVV	1.35	1.35	1.35	1.35	1.35	0	1.35	0	0	0	0	0	1.35
ENV_TERM	0	-0.9	0	0	0	0	-0.9	0	0.9	-0.9	-1.5	1.5	0.9
RITIRO	0	1.2	0	0	0	0	0	0	1.2	1.2	1.2	1.2	1.2

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 \text{ x } E_Y \pm 0.30 \text{ x } E_Z$$
 oppure $E = \pm 0.30 \text{ x } E_Y \pm 1.00 \text{ x } E_Z$

Combinazioni di Carico Sismiche									
	sh1	sh2	sh3	sh4	sv1	sv2	sv3	sv4	
DEAD	1	1	1	1	1	1	1	1	
PERM-STR	1	1	1	1	1	1	1	1	
SPTSX	1	1	1	1	1	1	1	1	
SPTDX	1	1	1	1	1	1	1	1	
ACCM-STR	0	0	0	0	0	0	0	0	
SPACCSX	0	0	0	0	0	0	0	0	
SPACCDX	0	0	0	0	0	0	0	0	
AVV-STR	0	0	0	0	0	0	0	0	
ENV_TERM	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	
RITIRO	0	0	0	0	0	0	0	0	
SISMA H-STR	1	1	1	1	0.3	0.3	0.3	0.3	
SISMA V-STR	0.3	-0.3	0.3	-0.3	-1	1	-1	1	
SPSDX	0	0	1	1	0	0	0.3	0.3	
SPSSX	1	1	0	0	0.3	0.3	0	0	

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA RS3U LOTTO CODIFICA DOCUMENTO REV. FOGLIO NI.00.0.0.002 A 31 di 90

	Co	mbinazio	ni di Cari	co Sismicl	he			
	sh5	sh6	sh7	sh8	sv5	sv6	sv7	sv8
DEAD	1	1	1	1	1	1	1	1
PERM-STR	1	1	1	1	1	1	1	1
SPTSX	1	1	1	1	1	1	1	1
SPTDX	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
ACCM-STR	0	0	0	0	0	0	0	0
SPACCSX	0	0	0	0	0	0	0	0
SPACCDX	0	0	0	0	0	0	0	0
AVV-STR	0	0	0	0	0	0	0	0
ENV_TERM	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5
RITIRO	0	0	0	0	0	0	0	0
SISMA H-STR	1	1	1	1	0.3	0.3	0.3	0.3
SISMA V-STR	0.3	-0.3	0.3	-0.3	-1	1	-1	1
SPSDX	0	0	1	1	0	0	0.3	0.3
SPSSX	1	1	0	0	0.3	0.3	0	0

Le combinazioni sismiche vanno eseguite in entrambe le direzioni pertanto le combinazioni SH vanno ripetute per Sisma H = -1 e le combinazioni SV per Sisma V = -0.3.

Si riportano infine,le combinazioni di carico agli stati limite di esercizio SLE ritenute più significative. Combinazione rara

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazioni di carico SLE							
	1sle	2sle	3sle				
DEAD	1	1	1				
PERM-STR	1	1	1				
SPTSX	1	1	1				
SPTDX	0.8	0.8	0.8				
ACCM-STR	0.75	0.75	0.75				
SPACCSX	0.75	0.75	0				
SPACCDX	0.75	0.75	0.75				
AVV-STR	-0.75	0.75	-0.75				
ENV_TERM	-0.6	0.6	-0.6				
RITIRO	0	0	1				

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA RS3U LOTTO CODIFICA 4 0 D 29 CL

NI.00.0

DOCUMENTO NI.00.0.0.002 REV. FOGLIO A 32 di 90

Combinazioni di carico SLE 4sle 5sle 6sle DEAD 1 1 1 PERM-STR 1 1 1 SPTSX 1 1 1 SPTDX 0.48 0.48 0.48 0.75 0.750.75 ACCM-STR 0.75 0.75 SPACCSX 0.75 0.75 0.75 SPACCDX AVV-STR -0.75 0.75-0.75 ENV_TERM -0.6 0.6 -0.6 RITIRO 0 0 1

Oltre alle verifiche agli stati limite ultimi di tipo strutturale, sono prese in considerazione anche le verifiche agli stati limite ultimi di tipo geotecnico secondo l'approccio 2 (A1+M1+R3) di cui alle NTC2018, relative a condizioni di collasso per carico limite dell'insieme fondazione-terreno.

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA RS3U

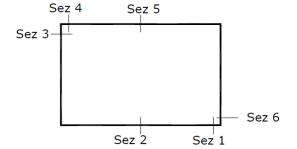
LOTTO CODIFICA DOCUMENTO REV. FOGLIO A 33 di 90

.4. <u>CARATTERISTICHE DELLE SOLLECITAZIONI</u>

.4.1. Inviluppo SLU/SLV

Text	m	Text	Text	Text	KN	KN	KN-m
Frame	Station	OutputCase	CaseType	StepType	P	V2	M3
1	0.25	ENVELOPE SLU SLV	Combination	Max	0.0	164.3	67.7
1	0.46	ENVELOPE SLU SLV	Combination	Max	0.0	165.4	59.5
1	0.67	ENVELOPE SLU SLV	Combination	Max	0.0	135.5	59.5
1	0.88	ENVELOPE SLU SLV	Combination	Max	0.0	138.6	36.4
1	1.09	ENVELOPE SLU SLV	Combination	Max	0.0	104.9	36.4
1	1.30	ENVELOPE SLU SLV	Combination	Max	0.0	108.0	14.9
1	1.51	ENVELOPE SLU SLV	Combination	Max	0.0	85.6	14.9
1	1.72	ENVELOPE SLU SLV	Combination	Max	0.0	87.9	-4.8
1	1.93	ENVELOPE SLU SLV	Combination	Max	0.0	73.6	-4.8
1	2.14	ENVELOPE SLU SLV	Combination	Max	0.0	75.9	-18.7
1	2.36	ENVELOPE SLU SLV	Combination	Max	0.0	58.1	-18.7
1	2.57	ENVELOPE SLU SLV	Combination	Max	0.0	60.4	-14.3
1	2.78	ENVELOPE SLU SLV	Combination	Max	0.0	39.0	-14.3
1	2.99	ENVELOPE SLU SLV	Combination	Max	0.0	41.3	16.9
1	3.20	ENVELOPE SLU SLV	Combination	Max	0.0	16.1	16.9
1	3.41	ENVELOPE SLU SLV	Combination	Max	0.0	18.4	54.2
1	3.62	ENVELOPE SLU SLV	Combination	Max	0.0	-25.2	54.2
1	3.83	ENVELOPE SLU SLV	Combination	Max	0.0	-22.9	93.8
1	4.04	ENVELOPE SLU SLV	Combination	Max	0.0	-72.4	93.8
1	4.25	ENVELOPE SLU SLV	Combination	Max	0.0	-71.6	107.0
1	0.25	ENVELOPE SLU SLV	Combination	Min	0.0	80.5	-87.5
1	0.46	ENVELOPE SLU SLV	Combination	Min	0.0	81.3	-98.1
1	0.67	ENVELOPE SLU SLV	Combination	Min	0.0	44.6	-98.1
1	0.88	ENVELOPE SLU SLV	Combination	Min	0.0	47.4	-108.7
1	1.09	ENVELOPE SLU SLV	Combination	Min	0.0	-29.4	-108.7
1	1.30	ENVELOPE SLU SLV	Combination	Min	0.0	-26.3	-102.3
1	1.51	ENVELOPE SLU SLV	Combination	Min	0.0	-70.5	-102.3
1	1.72	ENVELOPE SLU SLV	Combination	Min	0.0	-67.4	-86.4
1	1.93	ENVELOPE SLU SLV	Combination	Min	0.0	-104.5	-86.4
1		ENVELOPE SLU SLV			0.0	-101.4	-67.1
1		ENVELOPE SLU SLV			0.0	-131.3	-67.1
1		ENVELOPE SLU SLV			0.0	-128.2	-68.2
1	2.78	ENVELOPE SLU SLV	Combination	Min	0.0	-151.1	-68.2
1		ENVELOPE SLU SLV			0.0	-148.0	-69.2
1		ENVELOPE SLU SLV			0.0	-163.7	-69.2
1		ENVELOPE SLU SLV			0.0	-160.6	-62.7
1		ENVELOPE SLU SLV			0.0	-173.6	-62.7
1		ENVELOPE SLU SLV			0.0	-170.5	-52.3
1		ENVELOPE SLU SLV			0.0	-172.8	-52.3
1		ENVELOPE SLU SLV			0.0	-171.7	-46.3

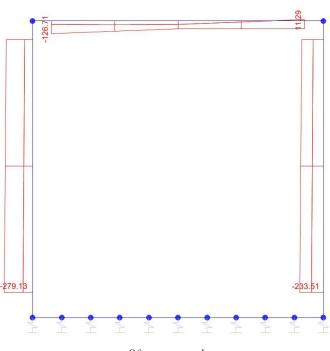
INVILUPPO - Tombino Scatolare 2x2:

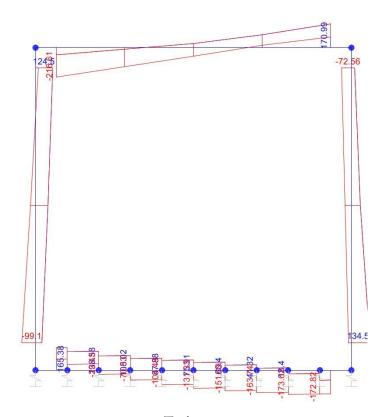

Relazione di calcolo

COMMESSA RS3U

LOTTO CODIFICA DOCUMENTO REV. FOGLIO CL NI.00.0.0.002

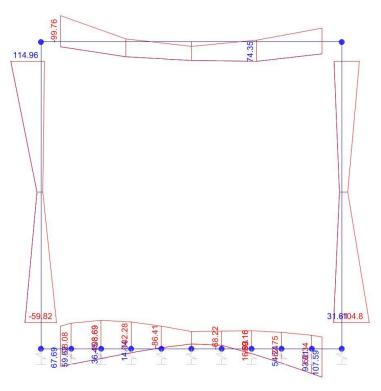
A 34 di 90


2	0.25 ENVELOPE SLU SLV	Combination	Max	-101.2	24.0	30.3
2	1.25 ENVELOPE SLU SLV	Combination	Max	-108.7	65.9	8.5
2	2.25 ENVELOPE SLU SLV	Combination	Max	-116.2	134.6	31.6
2	0.25 ENVELOPE SLU SLV	Combination	Min	-213.3	-72.6	-66.7
2	1.25 ENVELOPE SLU SLV	Combination	Min	-223.4	-47.0	-23.1
2	2.25 ENVELOPE SLU SLV	Combination	Min	-233.5	-22.1	-104.8
3	0.25 ENVELOPE SLU SLV	Combination	Max	-36.9	-54.5	18.3
3	1.25 ENVELOPE SLU SLV	Combination	Max	-38.9	-12.6	57.3
3	2.25 ENVELOPE SLU SLV	Combination	Max	-36.3	29.3	71.6
3	3.25 ENVELOPE SLU SLV	Combination	Max	-12.5	93.8	74.3
3	4.25 ENVELOPE SLU SLV	Combination	Max	11.3	171.0	46.3
3	0.25 ENVELOPE SLU SLV	Combination	Min	-126.7	-216.6	-99.8
3	1.25 ENVELOPE SLU SLV	Combination	Min	-102.9	-139.4	-10.8
3	2.25 ENVELOPE SLU SLV	Combination	Min	-79.2	-62.2	16.9
3	3.25 ENVELOPE SLU SLV	Combination	Min	-78.2	15.0	-6.3
3	4.25 ENVELOPE SLU SLV	Combination	Min	-79.9	75.5	-52.9
4	0.25 ENVELOPE SLU SLV	Combination	Max	-79.9	124.5	115.0
4	1.25 ENVELOPE SLU SLV	Combination	Max	-87.4	88.6	14.9
4	2.25 ENVELOPE SLU SLV	Combination	Max	-94.9	45.4	61.9
4	0.25 ENVELOPE SLU SLV	Combination	Min	-258.9	19.9	-12.7
4	1.25 ENVELOPE SLU SLV	Combination	Min	-269.0	-36.0	-7.4
4	2.25 ENVELOPE SLU SLV	Combination	Min	-279.1	-99.1	-59.8


SEZIONE	P	V2	M3
01	0.0	173.6	107.6
02	0.0	0.0	108.7
03	-79.9	134.6	115.0
04	0.0	216.6	99.8
05	0.0	0.0	74.3
06	-94.9	134.6	104.8

Diagrammi di inviluppo delle sollecitazioni: ENVELOPE SLU/SLV

Sforzo normale



Taglio

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U 4 0 D 29 CL NI.00.0.0.002 A 36 di 90

Momento Flettente

I valori V e M dei diagrammi corrispondono a quelli riportati nella tabella, mentre il valore dello sforzo normale P nei diagrammi (valore massimo) differisce da quello di verifica della tabella, pari a quello di compressione minimo.

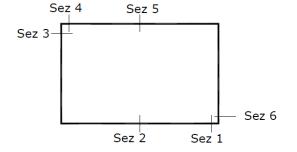
INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 37 di 90

.4.2. Inviluppo SLE (rara)

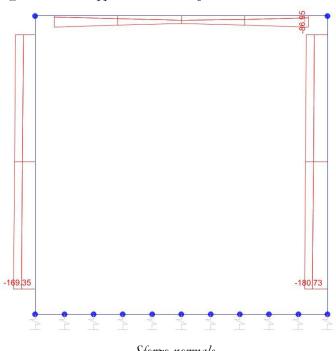
Text	m	Text	Text	Text	KN	KN	KN-m
Frame	Station	OutputCase	CaseType	StepType	P	V2	M3
	0.15	ENVELOPE SLERARA	Combination	Max	0.0	113.6	68.
	0.23	ENVELOPE SLERARA	Combination	Max	0.0	114.4	59.
	0.23	ENVELOPE SLERARA	Combination	Max	0.0	110.5	59.
	0.46	ENVELOPE SLERARA	Combination	Max	0.0	112.8	33.
	0.46	ENVELOPE SLERARA	Combination	Max	0.0	102.4	33
	0.69	ENVELOPE SLERARA	Combination	Max	0.0	104.7	9.
	0.69	ENVELOPE SLERARA	Combination	Max	0.0	93.4	9.
	0.92	ENVELOPE SLERARA	Combination	Max	0.0	95.7	-10.
	0.92	ENVELOPE SLERARA	Combination	Max	0.0	80.0	-10.
	1.15	ENVELOPE SLERARA	Combination	Max	0.0	82.3	-24
	1.15	ENVELOPE SLERARA	Combination	Max	0.0	62.3	-24
	1.38	ENVELOPE SLERARA	Combination	Max	0.0	64.6	-17
	1.38	ENVELOPE SLERARA	Combination	Max	0.0	40.2	-17
	1.61	ENVELOPE SLERARA	Combination	Max	0.0	42.5	-2
	1.61	ENVELOPE SLERARA	Combination	Max	0.0	13.8	-2
	1.84	ENVELOPE SLERARA	Combination	Max	0.0	16.1	15
	1.84	ENVELOPE SLERARA	Combination	Max	0.0	-33.7	15
	2.07	ENVELOPE SLERARA	Combination	Max	0.0	-31.4	36
	2.07	ENVELOPE SLERARA	Combination	Max	0.0	-87.7	36
	2.15	ENVELOPE SLERARA	Combination	Max	0.0	-86.9	44
	0.15	ENVELOPE SLERARA	Combination	Min	0.0	95.9	-25
	0.23	ENVELOPE SLERARA	Combination	Min	0.0	96.7	-33
	0.23	ENVELOPE SLERARA	Combination	Min	0.0	50.9	-33
	0.46	ENVELOPE SLERARA	Combination	Min	0.0	53.2	-45
	0.46	ENVELOPE SLERARA	Combination	Min	0.0	11.3	-45
	0.69	ENVELOPE SLERARA	Combination	Min	0.0	13.6	-47
	0.69	ENVELOPE SLERARA	Combination	Min	0.0	-11.6	-47
	0.92	ENVELOPE SLERARA	Combination	Min	0.0	-9.3	-45
	0.92	ENVELOPE SLERARA	Combination	Min	0.0	-31.9	-45
	1.15	ENVELOPE SLERARA	Combination	Min	0.0	-29.6	-41
	1.15	ENVELOPE SLERARA	Combination	Min	0.0	-49.6	-41
	1.38	ENVELOPE SLERARA	Combination	Min	0.0	-47.3	-55
	1.38	ENVELOPE SLERARA	Combination	Min	0.0	-64.8	-55
	1.61	ENVELOPE SLERARA	Combination	Min	0.0	-62.5	-65
	1.61	ENVELOPE SLERARA	Combination	Min	0.0	-77.3	-65
	1.84	ENVELOPE SLERARA	Combination	Min	0.0	-75.0	-68
	1.84	ENVELOPE SLERARA			0.0	-93.4	-68
	2.07	ENVELOPE SLERARA			0.0	-91.1	-61
	2.07	ENVELOPE SLERARA			0.0	-105.5	-61
	2.15	ENVELOPE SLERARA			0.0	-104.7	-54

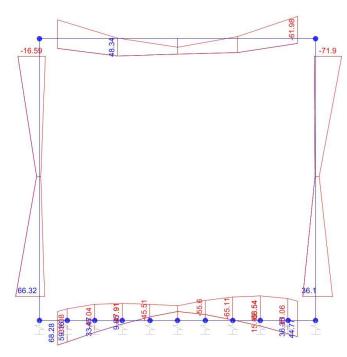


INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA RS3U LOTTO CODIFICA DOCUMENTO REV. FOGLIO NI.00.0.0.002 A 38 di 90


2	0.15	ENVELOPE SLERARA Combination	Max	-103.0	-6.3	3.5
2	1.15	ENVELOPE SLERARA Combination	Max	-110.5	24.1	1.6
2	2.15	ENVELOPE SLERARA Combination	Max	-118.0	64.4	36.1
2	0.15	ENVELOPE SLERARA Combination	Min	-165.7	-81.7	-71.9
2	1.15	ENVELOPE SLERARA Combination	Min	-173.2	-54.6	-10.0
2	2.15	ENVELOPE SLERARA Combination	Min	-180.7	-28.1	-46.6
3	0.15	ENVELOPE SLERARA Combination	Max	-9.6	-63.6	27.8
3	0.65	ENVELOPE SLERARA Combination	Max	-22.8	-13.3	48.3
3	1.15	ENVELOPE SLERARA Combination	Max	-36.0	37.1	43.7
3	1.65	ENVELOPE SLERARA Combination	Max	-29.7	87.4	38.8
3	2.15	ENVELOPE SLERARA Combination	Max	-16.5	137.8	13.9
3	0.15	ENVELOPE SLERARA Combination	Min	-87.0	-126.4	-51.9
3	0.65	ENVELOPE SLERARA Combination	Min	-73.7	-76.0	-1.3
3	1.15	ENVELOPE SLERARA Combination	Min	-60.5	-25.7	24.1
3	1.65	ENVELOPE SLERARA Combination	Min	-73.7	24.7	-5.7
3	2.15	ENVELOPE SLERARA Combination	Min	-87.0	75.0	-62.0
4	0.15	ENVELOPE SLERARA Combination	Max	-91.6	79.8	59.6
4	1.15	ENVELOPE SLERARA Combination	Max	-99.1	38.2	7.8
4	2.15	ENVELOPE SLERARA Combination	Max	-106.6	-10.8	66.3
4	0.15	ENVELOPE SLERARA Combination	Min	-154.4	-3.7	-16.6
4	1.15	ENVELOPE SLERARA Combination	Min	-161.9	-40.2	-3.3
4	2.15	ENVELOPE SLERARA Combination	Min	-169.4	-89.2	-14.3


SEZIONE	P	V2	M 3
01	0.0	114.4	68.3
02	0.0	0.0	68.5
03	-91.6	89.2	71.9
04	0.0	137.8	62.0
05	0.0	0.0	48.3
06	-106.6	89.2	66.3

Diagrammi di inviluppo delle sollecitazioni: ENVELOPE SLE (rara)

Sforzo normale

Momento Flettente

Il valore M dei diagrammi corrisponde a quello riportato nella tabella, mentre il valore dello sforzo normale P nei diagrammi (valore massimo) differisce da quello di verifica della tabella, pari a quello di compressione minimo.

Mcr

wk

Momento di prima fessurazione

Ampiezza di fessura

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISSETTA XIRBI-ENNA (LOTTO 4a) INTERFERENZE IDRAULICHE

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NI.00.0.0.002 A 40 di 90

.5. <u>VERIFICHE SLU/SLV/SLE</u>

	Oggetto:				
	Tombino NI00_INVILUPPO_NV05E - LOTTO4				
	Sezione n°. 01				
	Dati di Input:				
В	Base sezione rettangolare	1000	mm	Geometria della Sezion	e.
Н	Altezza sezione rettangolare		mm	H	<u>ıc.</u>
c'	Copriferro armatura sup. compressa		mm	As' c'	
С	Copriferro armatura inf. Tesa		mm	715 C	
d	Altezza utile = H-c		mm		В
fck	Resistenza caratt. Cilindrica calcestruzzo		MPa		Б
fyk	Resistenza caratt. Snervamento acciaio		MPa	As c	
Ned	Sforzo normale di calcolo [(+)Trazione]	0.0		715 C	
Med	Momento flettente di calcolo [(+)]	107.6			
Ved	Taglio di calcolo [(+)]	173.6			
Ted	Torsione di calcolo [(+)]		kNm		
Fi1	1° diametro armatura tesa	20	KI VIII		
Fi2	2° diametro armatura tesa	20			
n1	N°. Barre 1° armatura tesa	10	Armatura	tesa filante 3142 mm	na
n2	N°. Barre 2° armatura tesa			di raffittim. 0 mm	1
As'	Armatura superiore compressa	3142	mmq	V	- 1
As	Armatura inferiore tesa		mmq		
Fi Staffe	Diametro staffe		mm		
s. Staffe	Passo staffe	150	mm		
bracci	Numero Bracci staffe	2			
$\cot \theta$	(proiez.orizz.)/(proiez.vert.) puntone cls	2.0	[range: 1,0	0-2,5]	
alpha	angolo staffe/piegati rispetto all'orizzontale	90.0°		, ,	
Asw	Area a taglio per unità di lunghezza		mmq/m	0.00 cmq/m	
	Combinaz. SLE (rara,frequente,qperm)	R		0.00 cmq/ m	
Msle	Momento di esercizio [(+)]		kNm		
Nsle	Sforzo normale di esercizio [(+)Trazione]	0.0			
wk-lim	Stato limite apertura fessure (Freq.Perm)	0.20	,		
	Tensione limite cls comb. Rara	0.60 fck	111111		
sigcP-lim	Tensione limite els comb. Quasi Perm.	0.45 fck			
0	Tensione limite acc. Comb. Rara	0.80 fyk			
0.8011 1111	Dati di Output:	0.00 1/11			
	SLU - Momento e Taglio resistenti				
<s-n></s-n>	Momento Ultimo resistente dissipativo <s n=""></s>	S		Coeff.Sfrutt.Max	81%
Mrd Vrd	Momento ultimo resistente	215	kNm I-N	Coeff.Sfrutt. Coeff.Sfrutt.	30% 81%
Vrd	Taglio ultimo resistente senza staffe Taglio ultimo resistente	215		Coeff.Sifuit.	81%
Trd	Momento torcente ultimo resistente		kNm	Coeff.Sfrutt.	01/0
110	SLE - Tensioni e ampiezza fessure	U	VINIII	Coen.Siruit.	
Sigs-sup	Tensione barre superiori [(-)Compresso]	_10	Мра	Coeff.Sfrutt.	5%
Sigs-sup Sigs-inf	Tensione barre inferiori [(+)Teso]		мра Мра	Coeff.Sfrutt.	21%
Sigc-sup	Tensione cls superiore [(-)Compresso]		Мра Мра	Coeff.Sfrutt.	17%
Sigc-sup Sigc-inf	Tensione els inferiore [non reag.Trazione]		Мра	Cocii.oiruit.	11/0
oige-iiii	renorme do interiore [non reag. rrazione]	U	111Pa		

93 kNm

Coeff.Sfrutt.

37%

0.07 mm

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA

LOTTO CODIFICA

0.0 kN

3142 mmq

3142 mmq

150 mm

2

R

68.5 kNm

0.0 kN

0.20 mm

0.60 fck

0.45 fck

0.80 fyk

90.0°

mm

2.0 [range: 1,0-2,5]

0 mmq/m

20

0 kNm

10 Armatura tesa filante

O Armatura di raffittim.

DOCUMENTO NI.00.0.0.002 REV.

FOGLIO

Oggetto:

Tombino NI00_INVILUPPO_NV05E - LOTTO4 Sezione n°. 02

Dati	di	Input:

В	Base sezione rettangolare	1000	mm
Н	Altezza sezione rettangolare	400	mm
c'	Copriferro armatura sup. compressa	70	mm
c	Copriferro armatura inf. Tesa	70	mm
d	Altezza utile = $H-c$	330	mm
fck	Resistenza caratt. Cilindrica calcestruzzo	30	MPa
fyk	Resistenza caratt. Snervamento acciaio	450	MPa
Ned	Sforzo normale di calcolo [(+)Trazione]	0.0	kN
Med	Momento flettente di calcolo [(+)]	108.7	kNm

Taglio di calcolo [(+)] Ved

Ted Torsione di calcolo [(+)] Fi1 1° diametro armatura tesa

Fi2 2º diametro armatura tesa

N°. Barre 2° armatura tesa n2 As' Armatura superiore compressa

N°. Barre 1° armatura tesa

Armatura inferiore tesa As Fi Staffe Diametro staffe

s. Staffe Passo staffe bracci Numero Bracci staffe

n1

 $\cot\theta$ (proiez.orizz.)/(proiez.vert.) puntone cls

angolo staffe/piegati rispetto all'orizzontale alpha

Area a taglio per unità di lunghezza Asw <R-F-P> Combinaz. SLE (rara, frequente, qperm)

Msle Momento di esercizio [(+)] Nsle Sforzo normale di esercizio [(+)Trazione]

wk-lim Stato limite apertura fessure (Freq.Perm) sigcR-lim Tensione limite cls comb. Rara sigcP-lim Tensione limite cls comb. Quasi Perm. Tensione limite acc. Comb. Rara sigsR-lim

Dati di Output:

Geometria della Sezione:

Н		
As'	c'	
		В
As	С	

3142 mmq

0.00 cmq/m

0 mmq

	3LO - Moniento e Tagno resistenti			
$\langle S-N \rangle$	Momento Ultimo resistente dissipativo <s n=""></s>	S	Coeff.Sfrutt.Max	37%
Mrd	Momento ultimo resistente	360 kNm	Coeff.Sfrutt.	30%
Vrd	Taglio ultimo resistente senza staffe	215 kN	Coeff.Sfrutt.	0%
Vrd	Taglio ultimo resistente	215 kN	Coeff.Sfrutt.	0%
Trd	Momento torcente ultimo resistente	0 kNm	Coeff.Sfrutt.	
	SLE - Tensioni e ampiezza fessure			
Sigs-su	p Tensione barre superiori [(-)Compresso]	-19 Mpa	Coeff.Sfrutt.	5%
Sigs-inf	Tensione barre inferiori [(+)Teso]	77 Mpa	Coeff.Sfrutt.	21%
Sigc-su	p Tensione cls superiore [(-)Compresso]	-3 Mpa	Coeff.Sfrutt.	17%
Sigc-in	f Tensione cls inferiore [non reag.Trazione]	0 Mpa		
Mcr	Momento di prima fessurazione	93 kNm		
wk	Ampiezza di fessura	0.07 mm	Coeff.Sfrutt.	37%

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA

LOTTO CODIFICA DOCUMENTO NI.00.0.0.002 REV.

FOGLIO

D-4: 4: T----4

Tombino NI00_INVILUPPO_NV05E - LOTTO4 Sezione n°. 03

	Dati di Input:		
В	Base sezione rettangolare	1000	mm
Н	Altezza sezione rettangolare	300	mm
c'	Copriferro armatura sup. compressa	70	mm
c	Copriferro armatura inf. Tesa	70	mm
d	Altezza utile = $H-c$	230	mm
fck	Resistenza caratt. Cilindrica calcestruzzo	30	MPa
fyk	Resistenza caratt. Snervamento acciaio	450	MPa
Ned	Sforzo normale di calcolo [(+)Trazione]	-79.9	kN
Med	Momento flettente di calcolo [(+)]	115.0	kNm

Н As' c' As

Geometria della Sezione:

Med Ved Taglio di calcolo [(+)] Ted Torsione di calcolo [(+)] Fi1 1° diametro armatura tesa

Fi2 2º diametro armatura tesa N°. Barre 1° armatura tesa n1

N°. Barre 2° armatura tesa n2 As' Armatura superiore compressa As Armatura inferiore tesa

Fi Staffe Diametro staffe s. Staffe Passo staffe bracci Numero Bracci staffe

 $\cot\theta$ (proiez.orizz.)/(proiez.vert.) puntone cls angolo staffe/piegati rispetto all'orizzontale alpha

Asw Area a taglio per unità di lunghezza <R-F-P> Combinaz. SLE (rara, frequente, qperm)

Msle Momento di esercizio [(+)] Nsle Sforzo normale di esercizio [(+)Trazione] wk-lim Stato limite apertura fessure (Freq.Perm) sigcR-lim Tensione limite cls comb. Rara sigcP-lim Tensione limite cls comb. Quasi Perm.

Tensione limite acc. Comb. Rara sigsR-lim

В

3142 mmq

0 mmq

2 2.0 [range: 1,0-2,5]

mm

3142 mmq

3142 mmq

150 mm

R

-91.6 kN

0.60 fck

0.45 fck

0.80 fyk

0.20 mm

71.9 kNm

134.6 kN

20

0 kNm

10 Armatura tesa filante

O Armatura di raffittim.

90.0° 0 mmq/m

0.00 cmq/m

Dati di Output:

	SLU - Momento e Taglio resistenti			
<S-N $>$	> Momento Ultimo resistente dissipativo <s n=""></s>	S	Coeff.Sfrutt.Max	70%
Mrd	Momento ultimo resistente	243 kNm	Coeff.Sfrutt.	47%
Vrd	Taglio ultimo resistente senza staffe	193 kN	Coeff.Sfrutt.	70%
Vrd	Taglio ultimo resistente	193 kN	Coeff.Sfrutt.	70%
Trd	Momento torcente ultimo resistente	0 kNm	Coeff.Sfrutt.	
	SLE - Tensioni e ampiezza fessure			
Sigs-su	p Tensione barre superiori [(-)Compresso]	-32 Mpa	Coeff.Sfrutt.	9%
Sigs-in	f Tensione barre inferiori [(+)Teso]	106 Mpa	Coeff.Sfrutt.	29%
Sigc-su	p Tensione cls superiore [(-)Compresso]	-6 Mpa	Coeff.Sfrutt.	34%
Sigc-in	f Tensione cls inferiore [non reag.Trazione]	0 Mpa		
Mcr	Momento di prima fessurazione	59 kNm		
wk	Ampiezza di fessura	0.11 mm	Coeff.Sfrutt.	55%

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

Ved

Ted

Fi1

Fi2

n1

n2 As'

As

Fi Staffe

s. Staffe

bracci

 $\cot\theta$

alpha

Asw

<R-F-P>

COMMESSA

LOTTO

CODIFICA

DOCUMENTO NI.00.0.0.002

Geometria della Sezione: Н As'

As

REV.

FOGLIO

U	ggetto	:

Tombino NI00_INVILUPPO_NV05E - LOTTO4 Sezione n°. 04

Dati	Аi	Input:

Taglio di calcolo [(+)]

Torsione di calcolo [(+)]

1° diametro armatura tesa

2º diametro armatura tesa N°. Barre 1° armatura tesa

N°. Barre 2° armatura tesa

Armatura inferiore tesa

Numero Bracci staffe

Diametro staffe

Passo staffe

Armatura superiore compressa

(proiez.orizz.)/(proiez.vert.) puntone cls

Area a taglio per unità di lunghezza

Combinaz. SLE (rara, frequente, qperm)

angolo staffe/piegati rispetto all'orizzontale

В	Base sezione rettangolare	1000 m	nm
Н	Altezza sezione rettangolare	300 m	ım
c'	Copriferro armatura sup. compressa	70 m	ım
c	Copriferro armatura inf. Tesa	70 m	ım
d	Altezza utile = H-c	230 m	ım
fck	Resistenza caratt. Cilindrica calcestruzzo	30 N	1Pa
fyk	Resistenza caratt. Snervamento acciaio	450 N	1Pa
Ned	Sforzo normale di calcolo [(+)Trazione]	0.0 k	N
Med	Momento flettente di calcolo [(+)]	99.8 k	Nm

216.6 kN 0 kNm

20

10 Armatura tesa filante Armatura di raffittim.

3142 mmq 0 mmq

c'

В

3142 mmq 3142 mmq 12 mm

150 mm

2

2.0 [range: 1,0-2,5]

90.0°

0.80 fyk

1508 mmq/m 15.08 cmq/m

R

Msle Momento di esercizio [(+)] 62.0 kNm Nsle Sforzo normale di esercizio [(+)Trazione] 0.0 kN wk-lim Stato limite apertura fessure (Freq.Perm) 0.20 mm Tensione limite cls comb. Rara 0.60 fck sigcR-lim sigcP-lim Tensione limite cls comb. Quasi Perm. 0.45 fck

Tensione limite acc. Comb. Rara sigsR-lim

Dati di Output:

	3LO - Momento e Tagno Tesistenti			
<s-n></s-n>	Momento Ultimo resistente dissipativo <s n=""></s>	S	Coeff.Sfrutt.Max	89%
Mrd	Momento ultimo resistente	237 kNm	Coeff.Sfrutt.	42%
Vrd	Taglio ultimo resistente senza staffe	184 kN	Coeff.Sfrutt.	118%
Vrd	Taglio ultimo resistente	244 kN	Coeff.Sfrutt.	89%
Trd	Momento torcente ultimo resistente	2 kNm	Coeff.Sfrutt.	
	SLE - Tensioni e ampiezza fessure			
Sigs-sup	Tensione barre superiori [(-)Compresso]	-23 Mpa	Coeff.Sfrutt.	6%
Sigs-inf	Tensione barre inferiori [(+)Teso]	104 Mpa	Coeff.Sfrutt.	29%
Sigc-sup	Tensione cls superiore [(-)Compresso]	-5 Mpa	Coeff.Sfrutt.	29%
Sigc-inf	Tensione cls inferiore [non reag.Trazione]	0 Mpa		
Mcr	Momento di prima fessurazione	54 kNm		
wk	Ampiezza di fessura	0.11 mm	Coeff.Sfrutt.	53%

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA

LOTTO CODIFICA DOCUMENTO NI.00.0.0.002 REV.

FOGLIO

Oggetto:

Tombino NI00_INVILUPPO_NV05E - LOTTO4 Sezione n°. 05

Dati	di	Input:
------	----	--------

	-		
В	Base sezione rettangolare	1000	mm
Н	Altezza sezione rettangolare	300	mm
c'	Copriferro armatura sup. compressa	70	mm
c	Copriferro armatura inf. Tesa	70	mm
d	Altezza utile = $H-c$	230	mm
fck	Resistenza caratt. Cilindrica calcestruzzo	30	MPa
fyk	Resistenza caratt. Snervamento acciaio	450	MPa
Ned	Sforzo normale di calcolo [(+)Trazione]	0.0	kN
Med	Momento flettente di calcolo [(+)]	74.3	kNm

Geometria della Sezione:

 Н		
As'	c'	
		D
		В
As	С	

Taglio di calcolo [(+)] Ved Ted Torsione di calcolo [(+)]

Fi1 1° diametro armatura tesa

Fi2 2º diametro armatura tesa N°. Barre 1° armatura tesa n1

N°. Barre 2° armatura tesa n2 As' Armatura superiore compressa Armatura inferiore tesa As

Fi Staffe Diametro staffe s. Staffe Passo staffe

bracci Numero Bracci staffe $\cot\theta$ (proiez.orizz.)/(proiez.vert.) puntone cls

angolo staffe/piegati rispetto all'orizzontale alpha

Area a taglio per unità di lunghezza Asw <R-F-P> Combinaz. SLE (rara, frequente, qperm)

Msle Momento di esercizio [(+)] Nsle Sforzo normale di esercizio [(+)Trazione] wk-lim Stato limite apertura fessure (Freq.Perm)

sigcR-lim Tensione limite cls comb. Rara sigcP-lim Tensione limite cls comb. Quasi Perm. Tensione limite acc. Comb. Rara sigsR-lim

Н		
As'	c'	
		В
As	С	

0 kNm

0.0 kN

20

10 Armatura tesa filante 0 Armatura di raffittim. 3142 mmq 0 mmq

3142 mmq 3142 mmq

> 12 mm 150 mm

> > 2

2.0 [range: 1,0-2,5]

90.0°

1508 mmq/m

15.08 cmq/m

R

48.3 kNm 0.0 kN 0.20 mm

0.60 fck 0.45 fck 0.80 fyk

Dati di Output:

<s-n></s-n>	Momento Ultimo resistente dissipativo <s n=""></s>	S	Coeff.Sfrutt.Max	36%
Mrd	Momento ultimo resistente	237 kNm	Coeff.Sfrutt.	31%
Vrd	Taglio ultimo resistente senza staffe	184 kN	Coeff.Sfrutt.	0%
Vrd	Taglio ultimo resistente	244 kN	Coeff.Sfrutt.	0%
Trd	Momento torcente ultimo resistente	2 kNm	Coeff.Sfrutt.	
	SLE - Tensioni e ampiezza fessure			
Sigs-sup	Tensione barre superiori [(-)Compresso]	-18 Mpa	Coeff.Sfrutt.	5%
Sigs-inf	Tensione barre inferiori [(+)Teso]	81 Mpa	Coeff.Sfrutt.	23%
Sigc-sup	Tensione cls superiore [(-)Compresso]	-4 Mpa	Coeff.Sfrutt.	23%
Sigc-inf	Tensione cls inferiore [non reag.Trazione]	0 Mpa		
Mcr	Momento di prima fessurazione	54 kNm		
wk	Ampiezza di fessura	0.07 mm	Coeff.Sfrutt.	36%

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA

LOTTO

CODIFICA

DOCUMENTO NI.00.0.0.002 REV.

FOGLIO

Oggetto:

Tombino NI00_INVILUPPO_NV05E - LOTTO4 Sezione n°. 06

Dati	di	Input:

В	Base sezione rettangolare	1000 mm
Н	Altezza sezione rettangolare	300 mm
c'	Copriferro armatura sup. compressa	70 mm
c	Copriferro armatura inf. Tesa	70 mm
d	Altezza utile = $H-c$	230 mm
fck	Resistenza caratt. Cilindrica calcestruzzo	30 MPa
fyk	Resistenza caratt. Snervamento acciaio	450 MPa
Ned	Sforzo normale di calcolo [(+)Trazione]	-94.9 kN
Med	Momento flettente di calcolo [(+)]	104.8 kNm

Geometria della Sezione:

Momento flettente di calcolo [(+)] Med Ved Taglio di calcolo [(+)]

Ted Torsione di calcolo [(+)] Fi1 1° diametro armatura tesa

Fi2 2º diametro armatura tesa

N°. Barre 1° armatura tesa n1 N°. Barre 2° armatura tesa n2 As' Armatura superiore compressa

As Armatura inferiore tesa Fi Staffe Diametro staffe

s. Staffe Passo staffe bracci Numero Bracci staffe

(proiez.orizz.)/(proiez.vert.) puntone cls $\cot\theta$

angolo staffe/piegati rispetto all'orizzontale alpha

Area a taglio per unità di lunghezza Asw <R-F-P> Combinaz. SLE (rara, frequente, qperm)

Msle Momento di esercizio [(+)] Nsle Sforzo normale di esercizio [(+)Trazione] wk-lim Stato limite apertura fessure (Freq.Perm) sigcR-lim Tensione limite cls comb. Rara

sigcP-lim Tensione limite cls comb. Quasi Perm. Tensione limite acc. Comb. Rara sigsR-lim

Н		
As'	c'	
		В
As	С	

10 Armatura tesa filante

0 Armatura di raffittim.

3142 mmq 0 mmq

3142 mmq 3142 mmq 0 mm

134.6 kN

20

0

0 kNm

150 mm

2.0 [range: 1,0-2,5]

90.0°

0 mmq/m0.00 cmq/m

R 66.3 kNm

-106.6 kN 0.20 mm

0.60 fck 0.45 fck 0.80 fyk

Dati di Output:

	•			
<s-n></s-n>	Momento Ultimo resistente dissipativo <s n=""></s>	S	Coeff.Sfrutt.Max	69%
Mrd	Momento ultimo resistente	245 kNm	Coeff.Sfrutt.	43%
Vrd	Taglio ultimo resistente senza staffe	195 kN	Coeff.Sfrutt.	69%
Vrd	Taglio ultimo resistente	195 kN	Coeff.Sfrutt.	69%
Trd	Momento torcente ultimo resistente	0 kNm	Coeff.Sfrutt.	
	SLE - Tensioni e ampiezza fessure			
Sigs-sup	Tensione barre superiori [(-)Compresso]	-30 Mpa	Coeff.Sfrutt.	8%
Sigs-inf	Tensione barre inferiori [(+)Teso]	94 Mpa	Coeff.Sfrutt.	26%
Sigc-sup	Tensione cls superiore [(-)Compresso]	-6 Mpa	Coeff.Sfrutt.	31%
Sigc-inf	Tensione cls inferiore [non reag.Trazione]	0 Mpa		
Mcr	Momento di prima fessurazione	60 kNm		
wk	Ampiezza di fessura	0.09 mm	Coeff.Sfrutt.	46%

R

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISSETTA XIRBI-ENNA (LOTTO 4a) INTERFERENZE IDRAULICHE

NVILUPPO - Tombino Scatolare 2x2:	COMMESSA RS3U	LOTTO 4 0 D 29	CODIFICA	DOCUMENTO NI.00.0.0.002	REV.	FOGLIO 46 di 90
Relazione di calcolo	K330	4 0 D 29	CL	NI.00.0.0.002	А	46 di 90

Si riportano i coefficienti di sfruttamento nelle sezioni notevoli per le verifiche SLU/SLV/SLE:

	SINTESI	VERIFI	CHE SE	ZIONI	NOTE	VOLI:	
SL	VERIF	SEZ01	SEZ02	SEZ03	SEZ04	SEZ05	SEZ06
SLU	Med/Mrd	30%	30%	47%	42%	31%	43%
SLU	Ved/Vrd	81%	0%	70 %	89%	0%	69%
SLE	(sigse/sigsr)s	5%	5%	9%	6%	5%	8%
SLE	(sigse/sigsr)i	21%	21%	29%	29%	23%	26%
SLE	(sigæ/sigar)s	17%	17%	34%	29%	23%	31%
SLE	wk/wklim	37%	37 %	55%	53%	36%	46%
	MAX	81%	37%	70 %	89%	36%	69%
	MAX	89%					

I coefficienti di sfruttamento sono tutti inferiori all'unità e pertanto le verifiche risultano soddisfatte.

.5.1. ARMATURE DI RIPARTIZIONE

Le armature di ripartizione delle pareti e della soletta vengono dimensionate per sostenere gli effetti del ritiro igrometrico i quali generano una trazione pura per deformazioni impedite a causa della soletta inferiore gettata precedentemente e che può aver dissipato tali effetti.

La **\varepsilon** ritiro induce nel calcestruzzo una tensione di trazione superiore alla sua resistenza a trazione, ne deriva la fessurazione e il trasferimento di tutta la trazione sull'acciaio teso. Per ottenere delle fessure uniformemente distribuite e non concentrate in alcuni punti con ampiezze macroscopiche, si applica un principio di non plasticizzazione delle armature. Per limitare l'ampiezza delle fessure, pur distribuite, che si ottengono applicando tale principio, si applica quanto previsto al § 7.3.2 dell'Eurocodice 2 - UNI EN 1992 1-1: "Aree minime di armatura", in particolare la formula (7.1):

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO NI.00.0.0.002 A 47 di 90

 $As, min \cdot \sigma s = kc \cdot k \cdot fct, eff \cdot Act$

dove:

As,min è l'area minima di armatura nella zona tesa;

Act è l'area di calcestruzzo nella zona tesa. La zona tesa è quella parte della sezione che risulta in trazione subito dopo la formazione della prima fessura; è pari a tutta l'area della sezione per trazione pura, alla metà per flessione;

σs è la massima tensione ammessa nell'armatura subito dopo la formazione della fessura. Tale tensione può essere assunta pari alla tensione di snervamento fyk dell'armatura. Può essere però necessario fissare un valore minore per soddisfare i limiti di apertura delle fessure secondo il massimo diametro o la massima spaziatura tra le barre (vedere punto 7.3.3).

fct,eff è il valore medio della resistenza a trazione efficace del calcestruzzo al momento in cui si suppone insorgano le prime fessure;

fct,eff = fctm se la formazione delle fessure è prevista prima di 28d;

k è il coefficiente che tiene conto degli effetti di tensioni auto-equilibrate non uniformi, k=1

kc è il coefficiente che tiene conto del tipo di distribuzione delle tensioni all'interno della sezione subito prima della fessurazione e della variazione del braccio di leva; kc=1 per trazione, kc=0,4 per flessione, kc = $0.4 \cdot (1-\text{funz}(\sigma c))$ nel caso flessione combinata con sforzo normale.

base della sezione		1000 mm
altezza della sezione		300 mm
area sezione calcestruzzo	Act	300000 mm2
tensione di snervamento acciaio	fyk	450 Mpa
resist. Caratt. Cilindrica cls a compressione	fck	30 Mpa
tensione resistente cls a trazione	$fct,eff=0,3(fck)^{2/3}$	2.90 Mpa
coefficiente kc	kc	1.00
coefficiente k	k	1.00
area minima acciaio teso nella sezione	As,min	1931 mm2

P.to 7.3.3 EC2 1992:1-1): Dove è disposta l'armatura minima indicata al punto 7.3.2, le ampiezze delle fessure non dovrebbero essere eccessive se: per fessurazione causata principalmente da deformazioni impedite, il diametro delle barre non eccede quello dato nel prospetto 7.2N, dove la tensione nell'acciaio è quella che si ha subito dopo la fessurazione [cioè il termine σ s nell'espressione (7.1)];

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA RS3U LOTTO CODIFICA 4 0 D 29 CL DOCUMENTO NI.00.0.0.002 REV.

FOGLIO 48 di 90

prospetto 7.2N

Diametri massimi delle barre ϕ_s^* per il controllo della fessurazione¹⁾

Tensione nell'acciaio ²⁾ [MPa]		Diametro massimo delle barre [mm] $w_k = 0.4 \text{ mm}$ $w_k = 0.3 \text{ mm}$ $w_k = 0.2 \text{ mm}$				
160	40	32	25			
200	32	25	16			
240	20	16	12			
280	16	12	8			
320	12	10	6			
360	10	8	5			
400	8	6	4			
450	6	5	-			

I valori nel prospetto sono basati sulle seguenti assunzioni:

Il diametro massimo delle barre si raccomanda sia modificato come segue:

Trazione (la sezione è tutta tesa):

$$\phi_{s} = \phi_{s}^{*}(f_{\text{ct,eff}}/2,9) \ h_{\text{cr}}/(8(h-d))$$
(7.7N)

dove:

 ϕ_s è il diametro massimo "modificato" delle barre;

 ϕ_{s}^{*} è il diametro massimo dato nel prospetto 7.2N;

h è l'altezza totale della sezione;

 $h_{\rm cr}$ è l'altezza della zona tesa subito prima della fessurazione, considerando i valori caratteristici della forza di precompressione e delle forze assiali sotto la combinazione di azioni quasi-permanente;

d è l'altezza utile valutata rispetto al baricentro dello strato più esterno di armatura ordinaria.

Se tutta la sezione è tesa *h-d* è la minima distanza tra il baricentro dello strato di armatura e il lembo esterno della sezione (considerare ciascun lembo se la barra non è disposta simmetricamente).

Verifica armatura trasversale:

Φ trasv	16	mm	< Fs	Verifica soddisfatta
passo	100	mm		
n.strati	2			
As	4021	mm2		
σs	216	mm2	< fyk	Verifica soddisfatta
φ * s	12	mm		
hcr	300	mm		
h	300	mm		
c	50	mm		
d	250	mm		
φs	36	mm	(= Fs)	
	passo n.strati As os o*s hcr h c d	passo 100 n.strati 2 As 4021 σs 216 φ*s 12 hcr 300 c 50 d 250	passo 100 mm n.strati 2 As 4021 mm2 σs 216 mm2 φ*s 12 mm hcr 300 mm d 50 mm d 250 mm	passo 100 mm n.strati 2 As 4021 mm2 σs 216 mm2 < fyk φ*s 12 mm hcr 300 mm d 50 mm d 250 mm

c = 25 mm; $f_{\text{ct,eff}}$ = 2,9 MPa; h_{cr} = 0,5; (h - d) = 0,1 h; k_1 = 0,8; k_2 = 0,5; k_c = 0,4; k = 1,0; k_1 = 0,4 e k ' = 1,0. Sotto la combinazione di carico pertinente.

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 40 D 29 CL NI.00.0.0.002 A 49 di 90

.5.2. RIEPILOGO E INCIDENZA ARMATURE

A seguire il riepilogo delle armature del tombino:

Pareti di spessore	30 cm	
con armatura principale esterna	F20 /100	3142 mm2
con armatura principale interna	F20 /100	3142 mm2
Soletta superiore di spessore	30 cm	
con armatura principale superiore	F20 /100	3142 mm2
con armatura principale inferiore	F20 /100	3142 mm2
Soletta inferiore di spessore	40 cm	
con armatura principale superiore	F20 /100	3142 mm2
con armatura principale inferiore	F20 /100	3142 mm2

Le pareti non necessitano di armatura a taglio.

La soletta superiore necessita di armatura a taglio

F12 /150 dir.princ. /500 dir.trasv.

La soletta inferiore non necessita di armatura a tas

(Le armature a taglio sono state disposte ove non risultano soddisfatte le verifiche con Vrd senza armatura a taglio) Le armature di ripartizione sono:

	Armature di ripartizi	one:	Area:	% Arm. p	rıncıp	oale:
Pareti	F16 /100	2 strati	4021.2 mm2	64%	di	6283 mm2
Soletta superiore	F16 /100	2 strati	4021.2 mm2	64%	di	6283 mm2
Soletta inferiore	F16 /100	2 strati	4021.2 mm2	64%	di	6283 mm2

Incidenza armature:

			Spessore piedritti	Sp	0.30 m
Larghezza utile	Lint	2.00 m	Spessore soletta	Ss	0.30 m
Altezza libera	Hint	2.00 m	Spessore fondazione	Sf	0.40 m
incidenza sovrapp.		20%	copriferro	c	0.07 m

	Ø1	pass1	Ø2 sup/int	pass2	Ø3	pass3	Ø4	pass4	Øleg	Øleg	Øleg
Elem.	sup/int	[mm]	[mm]	[mm]	inf/ext	[mm]	inf/ext	[mm]	[mm]	pass1	pass2
	[mm]	[111111]	[111111]	[111111]	[mm]	[111111]	[mm]	[111111]	[111111]	[mm]	[mm]
piedritto	20	100	0	1000	20	100	0	1000	0	1000	1000
soletta	20	100	0	1000	20	100	0	1000	12	150	500
fondaz.	20	100	0	1000	20	100	0	1000	0	1000	1000
ripartiz.	16	100	Х	2 strati							
Elem.	LØ [m]	Lleg [mm]	Vol [m3]	Peso [kg]	inad [kg/m3]	Inc%					
piedritto	2.88	0.36	0.6	170	284	33%					
soletta	2.78	0.36	0.8	178	228	17 %					
fondaz.	2.98	0.46	1.0	176	170	17 %					
ripartiz.			3.0	348	115	33%					
	TOTALE		3.0	1044	346	100%					

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA RS3U 4 0 D 29 CL NI.00.0.0.002 REV. FOGLIO NI.00.0.0.002 A 50 di 90

.6. VERIFICHE GEOTECNICHE

.6.1. Base reaction

Le "base reaction" sono la risultante delle reazioni delle molle per ogni singola combinazione di carico:

SLU02 468.98 5.47 12.84 SLU03 468.98 5.47 12.84 SLU03 468.98 5.47 12.84 SLU04 468.98 59.99 71.77 SLU04 468.98 59.99 71.77 SLU05 468.98 22.27 32.37 SLU05 468.98 22.27 32.37 SLU06 406.88 16.81 19.52 SLU06 406.88 16.81 19.52 SLU07 468.98 59.99 71.77 SLU07 468.98 59.99 71.77 SLU08 278.80 54.52 58.93 SLU08 278.80 54.52 58.93 SLU09 468.98 54.52 58.93 SLU09 468.98 54.52 58.93 SLU10 468.98 -54.52 -58.93 SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU11 453.43 -25.12 -24.77 SLU13 453.57	TABLE: Base	TABLE: Base Reactions						
SLU01 468.98 22.27 32.37 SLU02 468.98 5.47 12.84 SLU02 468.98 5.47 12.84 SLU03 468.98 5.47 12.84 SLU03 468.98 5.47 12.84 SLU04 468.98 59.99 71.77 SLU04 468.98 59.99 71.77 SLU05 468.98 22.27 32.37 SLU05 468.98 22.27 32.37 SLU05 468.98 22.27 32.37 SLU06 406.88 16.81 19.52 SLU06 406.88 16.81 19.52 SLU07 468.98 59.99 71.77 SLU07 468.98 59.99 71.77 SLU08 278.80 54.52 58.93 SLU09 468.98 54.52 58.93 SLU09 468.98 54.52 58.93 SLU10 468.98 54.52 58.93 SLU11	OutputCase	GlobalFZ	GlobalFX	GlobalMY				
SLU01 468.98 22.27 32.37 SLU02 468.98 5.47 12.84 SLU03 468.98 5.47 12.84 SLU03 468.98 5.47 12.84 SLU04 468.98 59.99 71.77 SLU04 468.98 59.99 71.77 SLU05 468.98 22.27 32.37 SLU05 468.98 22.27 32.37 SLU05 468.98 22.27 32.37 SLU06 406.88 16.81 19.52 SLU06 406.88 16.81 19.52 SLU07 468.98 59.99 71.77 SLU07 468.98 59.99 71.77 SLU08 278.80 54.52 58.93 SLU09 468.98 54.52 58.93 SLU09 468.98 54.52 58.93 SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57	Text	KN	KN	KN-m				
SLU02 468.98 5.47 12.84 SLU03 468.98 5.47 12.84 SLU03 468.98 5.47 12.84 SLU04 468.98 59.99 71.77 SLU04 468.98 59.99 71.77 SLU05 468.98 22.27 32.37 SLU05 468.98 22.27 32.37 SLU06 406.88 16.81 19.52 SLU06 406.88 16.81 19.52 SLU07 468.98 59.99 71.77 SLU07 468.98 59.99 71.77 SLU08 278.80 54.52 58.93 SLU08 278.80 54.52 58.93 SLU09 468.98 54.52 58.93 SLU09 468.98 54.52 58.93 SLU10 468.98 -54.52 -58.93 SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU11 453.43 -25.12 -24.77 SLU13 453.57	SLU01	468.98	22.27	32.37				
SLU02 468.98 5.47 12.84 SLU03 468.98 5.47 12.84 SLU04 468.98 59.99 71.77 SLU04 468.98 59.99 71.77 SLU05 468.98 59.99 71.77 SLU05 468.98 22.27 32.37 SLU06 406.88 16.81 19.52 SLU06 406.88 16.81 19.52 SLU07 468.98 59.99 71.77 SLU07 468.98 59.99 71.77 SLU08 278.80 54.52 58.93 SLU09 468.98 59.99 71.77 SLU08 278.80 54.52 58.93 SLU09 468.98 54.52 58.93 SLU09 468.98 54.52 58.93 SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SH1 283.10	SLU01	468.98	22.27	32.37				
SLU03 468.98 5.47 12.84 SLU04 468.98 59.99 71.77 SLU04 468.98 59.99 71.77 SLU05 468.98 22.27 32.37 SLU05 468.98 22.27 32.37 SLU06 406.88 16.81 19.52 SLU06 406.88 16.81 19.52 SLU07 468.98 59.99 71.77 SLU07 468.98 59.99 71.77 SLU08 278.80 54.52 58.93 SLU09 468.98 59.99 71.77 SLU08 278.80 54.52 58.93 SLU09 468.98 54.52 58.93 SLU10 468.98 54.52 58.93 SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SH 283.10	SLU02	468.98	5.47	12.84				
SLU03 468.98 5.47 12.84 SLU04 468.98 59.99 71.77 SLU05 468.98 22.27 32.37 SLU05 468.98 22.27 32.37 SLU06 406.88 16.81 19.52 SLU06 406.88 16.81 19.52 SLU07 468.98 59.99 71.77 SLU07 468.98 59.99 71.77 SLU08 278.80 54.52 58.93 SLU08 278.80 54.52 58.93 SLU09 468.98 54.52 58.93 SLU10 468.98 54.52 58.93 SLU10 468.98 54.52 58.93 SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SH 283.10 -84.68 -132.09 SH2 274.50	SLU02	468.98	5.47	12.84				
SLU04 468.98 59.99 71.77 SLU05 468.98 59.99 71.77 SLU05 468.98 22.27 32.37 SLU06 406.88 16.81 19.52 SLU06 406.88 16.81 19.52 SLU07 468.98 59.99 71.77 SLU07 468.98 59.99 71.77 SLU08 278.80 54.52 58.93 SLU08 278.80 54.52 58.93 SLU09 468.98 54.52 58.93 SLU10 468.98 54.52 58.93 SLU10 468.98 -54.52 -58.93 SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50	SLU03	468.98	5.47	12.84				
SLU04 468.98 59.99 71.77 SLU05 468.98 22.27 32.37 SLU06 406.88 16.81 19.52 SLU06 406.88 16.81 19.52 SLU07 468.98 59.99 71.77 SLU07 468.98 59.99 71.77 SLU08 278.80 54.52 58.93 SLU08 278.80 54.52 58.93 SLU09 468.98 54.52 58.93 SLU09 468.98 54.52 58.93 SLU10 468.98 -54.52 -58.93 SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.5	SLU03	468.98	5.47	12.84				
SLU05 468.98 22.27 32.37 SLU06 468.98 22.27 32.37 SLU06 406.88 16.81 19.52 SLU06 406.88 16.81 19.52 SLU07 468.98 59.99 71.77 SLU07 468.98 59.99 71.77 SLU08 278.80 54.52 58.93 SLU09 468.98 54.52 58.93 SLU09 468.98 54.52 58.93 SLU10 468.98 -54.52 -58.93 SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.	SLU04	468.98	59.99	71.77				
SLU05 468.98 22.27 32.37 SLU06 406.88 16.81 19.52 SLU06 406.88 16.81 19.52 SLU07 468.98 59.99 71.77 SLU07 468.98 59.99 71.77 SLU08 278.80 54.52 58.93 SLU08 278.80 54.52 58.93 SLU09 468.98 54.52 58.93 SLU10 468.98 -54.52 -58.93 SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 2	SLU04	468.98	59.99	71.77				
SLU06 406.88 16.81 19.52 SLU06 406.88 16.81 19.52 SLU07 468.98 59.99 71.77 SLU07 468.98 59.99 71.77 SLU08 278.80 54.52 58.93 SLU08 278.80 54.52 58.93 SLU09 468.98 54.52 58.93 SLU10 468.98 -54.52 -58.93 SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH4 27	SLU05	468.98	22.27	32.37				
SLU06 406.88 16.81 19.52 SLU07 468.98 59.99 71.77 SLU07 468.98 59.99 71.77 SLU08 278.80 54.52 58.93 SLU09 468.98 54.52 58.93 SLU09 468.98 54.52 58.93 SLU10 468.98 -54.52 -58.93 SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50	SLU05	468.98	22.27	32.37				
SLU07 468.98 59.99 71.77 SLU08 278.80 54.52 58.93 SLU08 278.80 54.52 58.93 SLU09 468.98 54.52 58.93 SLU09 468.98 54.52 58.93 SLU10 468.98 -54.52 -58.93 SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.	SLU06	406.88	16.81	19.52				
SLU07 468.98 59.99 71.77 SLU08 278.80 54.52 58.93 SLU09 468.98 54.52 58.93 SLU09 468.98 54.52 58.93 SLU10 468.98 -54.52 -58.93 SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.5	SLU06	406.88	16.81	19.52				
SLU08 278.80 54.52 58.93 SLU09 468.98 54.52 58.93 SLU09 468.98 54.52 58.93 SLU10 468.98 -54.52 -58.93 SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.	SLU07	468.98	59.99	71.77				
SLU08 278.80 54.52 58.93 SLU09 468.98 54.52 58.93 SLU10 468.98 54.52 58.93 SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47	SLU07	468.98	59.99	71.77				
SLU09 468.98 54.52 58.93 SLU10 468.98 54.52 58.93 SLU10 468.98 -54.52 -58.93 SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47	SLU08	278.80	54.52	58.93				
SLU09 468.98 54.52 58.93 SLU10 468.98 -54.52 -58.93 SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63	SLU08	278.80	54.52	58.93				
SLU10 468.98 -54.52 -58.93 SLU11 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63	SLU09	468.98	54.52	58.93				
SLU10 468.98 -54.52 -58.93 SLU11 453.43 -25.12 -24.77 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63	SLU09	468.98	54.52	58.93				
SLU11 453.43 -25.12 -24.77 SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63	SLU10	468.98	-54.52	-58.93				
SLU11 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63	SLU10	468.98	-54.52	-58.93				
SLU12 453.43 -25.12 -24.77 SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63	SLU11	453.43	-25.12	-24.77				
SLU12 453.43 -25.12 -24.77 SLU13 453.57 -20.97 -15.07 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63	SLU11	453.43	-25.12	-24.77				
SLU13 453.57 -20.97 -15.07 SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63	SLU12	453.43	-25.12	-24.77				
SLU13 453.57 -20.97 -15.07 SH1 283.10 -84.68 -132.09 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63	SLU12	453.43	-25.12	-24.77				
SH1 283.10 -84.68 -132.09 SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63	SLU13	453.57	-20.97	-15.07				
SH1 283.10 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63	SLU13	453.57	-20.97	-15.07				
SH2 274.50 -84.68 -132.09 SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63	SH1	283.10	-84.68	-132.09				
SH2 274.50 -84.68 -132.09 SH3 283.10 17.07 -14.75 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63	SH1	283.10	-84.68	-132.09				
SH3 283.10 17.07 -14.75 SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63	SH2	274.50	-84.68	-132.09				
SH3 283.10 17.07 -14.75 SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63	SH2	274.50	-84.68	-132.09				
SH4 274.50 17.07 -14.75 SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63	SH3	283.10	17.07	-14.75				
SH4 274.50 17.07 -14.75 SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63				-14.75				
SV1 264.47 -25.40 -39.63 SV1 264.47 -25.40 -39.63		274.50	17.07	-14.75				
SV1 264.47 -25.40 -39.63		274.50	17.07	-14.75				
			-25.40	-39.63				
 SV2 293.13 -25.40 -39.63				-39.63				
	SV2	293.13	-25.40	-39.63				

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA RS3U

LOTTO CODIFICA DOCUMENTO REV. FOGLIO NI.00.0.0.002

A 51 di 90

lovia	202.42	25.40	20.62
SV2	293.13	-25.40	-39.63
SV3	264.47	5.12	-4.42
SV3	264.47	5.12	-4.42
SV4	293.13	5.12	-4.42
SV4	293.13	5.12	-4.42
SLU14	468.98	-20.84	-12.67
SLU14	468.98	-20.84	-12.67
SLU15	468.98	-37.64	-32.20
SLU15	468.98	-37.64	-32.20
SLU16	468.98	-37.64	-32.20
SLU16	468.98	-37.64	-32.20
SLU17	468.98	1.79	10.97
SLU17	468.98	1.79	10.97
SLU18	468.98	-35.92	-28.43
SLU18	468.98	-35.92	-28.43
SLU19	406.88	-41.39	-41.28
SLU19	406.88	-41.39	-41.28
SLU20	468.98	1.79	10.97
SLU20	468.98	1.79	10.97
SLU21	278.80	-3.67	-1.87
SLU21	278.80	-3.67	-1.87
SLU22	468.98	-3.67	-1.87
SLU22	468.98	-3.67	-1.87
SLU23	468.98	-97.63	-103.97
SLU23	468.98	-97.63	-103.97
SLU24	453.43	-68.23	-69.81
SLU24	453.43	-68.23	-69.81
SLU25	453.43	-68.23	-69.81
SLU25	453.43	-68.23	-69.81
SLU26	453.57	-64.08	-60.11
SLU26	453.57	-64.08	-60.11
SH5	283.10	-127.78	-177.13
SH5	283.10	-127.78	-177.13
SH6	274.50	-127.78	-177.13
SH6	274.50	-127.78	-177.13
SH7	283.10	-26.04	-59.78
SH7	283.10	-26.04	-59.78
SH8	274.50	-26.04	-59.78
SH8	274.50	-26.04	-59.78
SV5	264.47	-68.51	-84.67
SV5	264.47	-68.51	-84.67
SV6	293.13	-68.51	-84.67
SV6	293.13	-68.51	-84.67
SV7	264.47	-37.99	-49.46
SV7	264.47	-37.99	-49.46
SV8	293.13	-37.99	-49.46
SV8	293.13	-37.99	-49.46
-			•

Le terne di sollecitazioni N-H-M utilizzate nelle verifiche sono le seguenti, inviluppate per combinazioni SLU e per combinazioni SLV:

SLU	
Nmax	468.98 kN/m
Nmin	278.80 kN/m
Hmax	97.63 kN/m
Mmax	103.97 kNm/m
SLV	
Nmax	293.13 kN/m
Nmin	264.47 kN/m
Hmax	127.78 kN/m
Mmax	177.13 kNm/m

Le terne di sollecitazioni sopra elencate sono utilizzate a seguire per le verifiche geotecniche GEO a carico limite e a scorrimento secondo l'approccio 2 (A1-M1-R3) di cui al punto 6.4.2.1 delle NTC2018.

Le seguenti verifiche geotecniche sono distinguibili per:

Verifiche per combinazioni in fase statica e verifiche per combinazione in fase sismica:

Verifiche in condizioni drenate e verifiche in condizioni non drenate (in presenza di falda);

Verifiche per sforzo normale minimo e verifiche per sforzo normale massimo.

INVILUPPO - Tombino Scatolare 2x2:

COMMESSA RS3U

LOTTO CODIFICA DOCUMENTO NI.00.0.0.002

FOGLIO

REV.

Relazione di calcolo

4 0 D 29

.6.2. Verifiche SLU in condizioni drenate

SLU-Nmin:

Fondazioni Dirette Verifica in tensioni efficaci

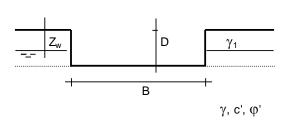
 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$

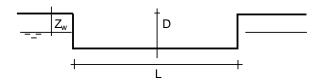
D = Profondità del piano di appoggio

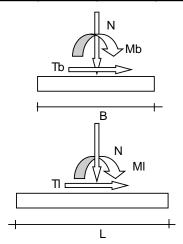
e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N)

(per fondazione nastriforme $e_L = 0$; $L^* = L$)


 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)


L* = Lunghezza fittizia della fondazione (L* = L - 2*e_L)


(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			azioni		proprietà del terreno		resistenze	
Metodo d	li calcolo		permanenti	temporanee variabili	tan φ'	c'	qlim	scorr
-	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	1.00
Stato Limite Ultimo	A2+M2+R2	0	1.00	1.30	1.25	1.25	1.80	1.00
	SISMA	0	1.00	1.00	1.25	1.25	1.80	1.00
Stat L	A1+M1+R3	0	1.30	1.50	1.00	1.00	2.30	1.10
	SISMA	0	1.00	1.00	1.00	1.00	2.30	1.10
Tensioni	Tensioni Ammissibili		1.00	1.00	1.00	1.00	3.00	3.00
Definiti da	al Progettista	•	1.00	1.00	1.00	1.00	2.30	1.10

(Per fondazione nastriforme L = 100 m)

2.60 (m)

L 100.00 (m)

D 6.50 (m)

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U NI.00.0.0.002

AZIONI

	valori d	di input	Valori di
	permanenti	temporanee	calcolo
N [kN]	278.80		278.80
Mb [kNm]	103.97		103.97
MI [kNm]	0.00		0.00
Tb [kN]	97.63		97.63
TI [kN]	0.00		0.00
H [kN]	97.63	0.00	97.63

Peso unità di volume del terreno

20.00 (kN/mc) γ1 18.00 (kN/mc)

Valori caratteristici di resistenza del terreno

Valori di progetto c' 10.00 (kN/mq) c' 10.00 (kN/mq) ϕ' 25.00 (°) φ' 25.00 (°) =

Profondità della falda

Zw

$$Zw = 4.50$$
 (m)
$$e_B = 0.37 \qquad \text{(m)}$$
 $e_L = 0.00 \qquad \text{(m)}$ $E^* = 1.85 \qquad \text{(m)}$ $E^* = 1.00 \qquad \text{(m)}$

q : sovraccarico alla profondità D

4.50

$$q = 110.00 (kN/mq)$$

γ : peso di volume del terreno di fondazione

$$\gamma = 8.00 \text{ (kN/mc)}$$

Nc, Nq, N γ : coefficienti di capacità portante

$$Nq = tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

$$Nq = 10.66$$

$$Nc = (Nq - 1)/tan\phi'$$

$$Nc = 20.72$$

$$N\gamma = 2*(Nq + 1)*tan\phi'$$

$$N\gamma = 10.88$$

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA

LOTTO CODIFICA DOCUMENTO FOGLIO NI.00.0.0.002

s_c, s_q, s_r: fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.00$$

$$s_q = 1 + B*tan\phi' / L*$$

$$s_q = 1.00$$

$$s_{\gamma} = 1 - 0.4*B* / L*$$

$$s_{\gamma} = 1.00$$

i_c, i_q, i_γ : <u>fattori di inclinazione del carico</u>

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$$

 $\theta = arctg(Tb/TI) =$ 0.00

0.00

(°)

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

0.00

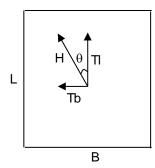
m =

2.00

(-)

 $i_a = (1 - H/(N + B^*L^* c' \cot g\phi'))^m$

$$i_a = 0.49$$


$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.43$$

$$i_v = (1 - H/(N + B^*L^* c' \cot g\phi'))^{(m+1)}$$

$$i_{\gamma} = 0.34$$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

d_c, d_q, d_γ : fattori di profondità del piano di appoggio

$$\begin{split} \text{per D/B*} &\leq 1; \ d_q = 1 + 2 \ D \ tan\phi' \ (1 - sen\phi')^2 \ / \ B^* \\ \text{per D/B*} &> 1; \ d_q = 1 + (2 \ tan\phi' \ (1 - sen\phi')^2) \ ^* \ arctan \ (D \ / \ B^*) \end{split}$$

$$d_{q} = 1.44$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi)$$

$$d_c = 1.49$$

$$d_{\gamma} = 1$$

$$d_{y} = 1.00$$

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA RS3U

DOCUMENTO

REV. A

LOTTO 4 0 D 29

CODIFICA CL

NI.00.0.0.002

FOGLIO

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan \varphi')^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_q = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi)$$

$$b_c =$$

$$b_{\gamma} = b_{q}$$

$$b_{\gamma} = 1.00$$

$g_c,\,g_q,\,g_\gamma$: fattori di inclinazione piano di campagna

$$g_{q} = (1 - \tan \beta_{p})^{2}$$

$$\beta_f + \beta_D =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi)$$

1.00

$$g_{\gamma} = g_{q}$$

$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = 1100.57$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 150.36$$

 (kN/m^2)

 (kN/m^2)

INVILUPPO - Tombino Scatolare 2x2:

COMMESSA RS3U

CODIFICA CL

DOCUMENTO

REV.

Relazione di calcolo

LOTTO 4 0 D 29

NI.00.0.0.002

FOGLIO

Verifica di sicurezza capacità portante

 $q_{lim}/\gamma_R =$

478.51

≥

q =

150.36 (kN/m²)

VERIFICA A SCORRIMENTO

Carico agente

Hd = 97.63 (kN)

Azione Resistente

 $Sd = N tan(\phi') + c' B^* L^*$

Sd = 167.09 (kN)

Verifica di sicurezza allo scorrimento

 $Sd/\gamma_R =$

151.9

≥

Hd =

97.63

(kN)

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

RS3U

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 4 0 D 29 NI.00.0.0.002

SLU-Nmax:

Fondazioni Dirette Verifica in tensioni efficaci

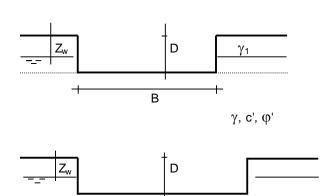
 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$

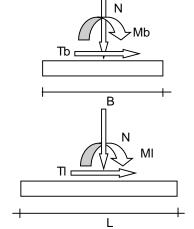
D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N)

(per fondazione nastriforme $e_L = 0$; $L^* = L$)


 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)


 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			azioni		proprietà del terreno		resistenze	
Metodo (di calcolo		permanenti	temporanee variabili	tan φ'	c'	qlim	scorr
4	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	1.00
mite o	A2+M2+R2	0	1.00	1.30	1.25	1.25	1.80	1.00
Stato Limite Ultimo	SISMA	0	1.00	1.00	1.25	1.25	1.80	1.00
Stat L	A1+M1+R3	0	1.30	1.50	1.00	1.00	2.30	1.10
	SISMA	0	1.00	1.00	1.00	1.00	2.30	1.10
Tensioni	Ammissibili	0	1.00 1.00 1.00 3.00		3.00	3.00		
Definiti d	al Progettista	•	1.00	1.00	1.00	1.00	2.30	1.10

(Per fondazione nastriforme L = 100 m)

В 2.60 (m)

L 100.00 (m)

D 6.50 (m)

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U NI.00.0.0.002

AZIONI

		valori d	di input	Valori di
		permanenti	temporanee	calcolo
N	[kN]	468.98		468.98
Mb	[kNm]	103.97		103.97
MI	[kNm]	0.00		0.00
Tb	[kN]	97.63		97.63
П	[kN]	0.00		0.00
Н	[kN]	97.63	0.00	97.63

Peso unità di volume del terreno

19.00 γ_1

(kN/mc) (kN/mc)

18.00

Valori caratteristici di resistenza del terreno Valori di progetto

10.00

(kN/mq)

(kN/mq) c' 10.00

25.00

(°)

25.00 (°)

1.00

Profondità della falda

4.50 Zw

(m)

 $e_B =$ 0.22 (m)

B* = 2.16

L* =

(m) (m)

0.00 $e_L =$

(m)

q : sovraccarico alla profondità D

q = 103.50 (kN/mq)

 γ : peso di volume del terreno di fondazione

8.00 $\gamma =$ (kN/mc)

Nc, Nq, Nγ: coefficienti di capacità portante

Nq =
$$tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

$$Nq = 10.66$$

$$Nc = (Nq - 1)/tan\phi'$$

$$N\gamma = 2*(Nq + 1)*tan\phi'$$

$$N\gamma = 10.88$$

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA

DOCUMENTO

LOTTO CODIFICA FOGLIO NI.00.0.0.002

s_c, s_q, s_r: fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.00$$

$$s_q = 1 + B*tan\phi' / L*$$

$$s_q = 1.00$$

$$s_{\gamma} = 1 - 0.4*B* / L*$$

$$s_{\gamma} = 1.00$$

i_c, i_q, i_γ : <u>fattori di inclinazione del carico</u>

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$$

0.00

 $\theta = arctg(Tb/TI) =$

0.00

2.00

(°)

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

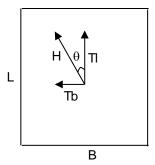
0.00

m =

(-)

 $i_a = (1 - H/(N + B^*L^* c' \cot g\phi'))^m$

 $i_{\alpha} =$ 0.65


$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.62$$

$$i_{\gamma} = (1 - H/(N + B^*L^* c' \cot g\phi'))^{(m+1)}$$

$$i_{\gamma} = 0.53$$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

d_c, d_q, d_γ : fattori di profondità del piano di appoggio

$$\begin{split} &\text{per D/B*} \! \leq 1; \; d_q = 1 \; + 2 \; D \; tan\phi' \; (1 \; - \; sen\phi')^2 \; / \; B^* \\ &\text{per D/B*} \! > 1; \; d_q = 1 \; + (2 \; tan\phi' \; (1 \; - \; sen\phi')^2) \; ^* \; arctan \; (D \; / \; B^*) \end{split}$$

$$d_{q} = 1.44$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi)$$

$$d_c = 1.49$$

$$d_{\gamma} = 1$$

$$d_{y} = 1.00$$

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA RS3U

CODIFICA CL LOTTO 4 0 D 29

DOCUMENTO NI.00.0.0.002 REV. A

FOGLIO

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan \varphi')^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_q = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi)$$

$$b_c =$$

$$b_{\gamma} = b_{q}$$

$$b_{\gamma} = 1.00$$

$g_c,\,g_q,\,g_\gamma$: fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

$$\beta_f + \beta_D =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi)$$

1.00

$$g_{\gamma} = g_{q}$$

$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = 1445.88$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 217.46$$

 (kN/m^2)

 (kN/m^2)

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA RS3U CODIFICA CL

LOTTO 4 0 D 29

DOCUMENTO NI.00.0.0.002 REV. FOGLIO

Verifica di sicurezza capacità portante

 $q_{lim}/\gamma_R =$

628.64

≥ q=

217.46 (kN/m²)

VERIFICA A SCORRIMENTO

Carico agente

Hd = 97.63

(kN)

(kN)

Azione Resistente

 $Sd = N tan(\phi') + c' B^* L^*$

Sd = 261.82

Verifica di sicurezza allo scorrimento

Sd / $\gamma_R =$

238.02

Hd =

≥

97.63

(kN)

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA RS3U

LOTTO 4 0 D 29 CODIFICA DOCUMENTO NI.00.0.0.002

REV.

FOGLIO

.6.3. Verifiche SLU in condizioni non drenate

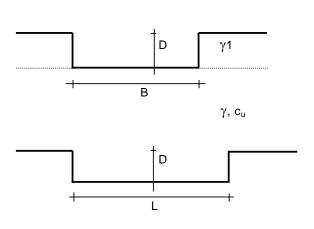
SLU-Nmin:

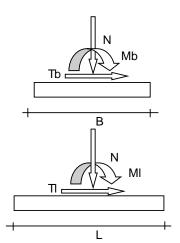
Fondazioni Dirette Verifica in tensioni totali

 $qlim = c_u \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq$

D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)


 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme $e_L = 0$; $L^* = L$)


 B^* = Larghezza fittizia della fondazione (B^* = $B - 2^*e_B$)

L* = Lunghezza fittizia della fondazione (L* = L - 2*e_L)

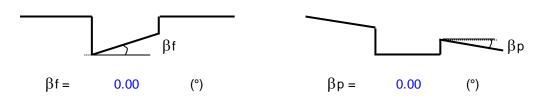
coefficienti parziali

		azioni		proprietà del terreno	resistenze		
Me	etodo di calco	olo	permanenti	temporanee variabili	Cu	qlim	scorr
4)	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00
Stato Limite Ultimo	A2+M2+R2	0	1.00	1.30	1.40	1.80	1.00
	SISMA	\circ	1.00	1.00	1.40	1.80	1.00
Stat L	A1+M1+R3		1.30	1.50	1.00	2.30	1.10
	SISMA O		1.00	1.00	1.00	2.30	1.10
Tensioni	Tensioni Ammissibili		1.00	1.00	1.00	3.00	3.00
Definiti da	al Progettista	•	1.00	1.00	1.00	2.30	1.10

(Per fondazioni nastriformi L=100 m)

В 2.60 (m)

100.00 (m)


6.50 (m)

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA RS3U CODIFICA LOTTO DOCUMENTO REV. FOGLIO NI.00.0.0.002

AZIONI

		valori	di input	Valori di
		permanenti	temporanee	calcolo
Ν	[kN]	278.80		278.80
Mb	[kNm]	103.97		103.97
MI	[kNm]	0.00		0.00
Tb	[kN]	97.63		97.63
TI	[kN]	0.00		0.00
Н	[kN]	97.63	0.00	97.63

Peso unità di volume del terreno

(kN/mc) 20.00 γ1 18.00 (kN/mc)

Valore caratteristico di resistenza del terreno

50.00 (kN/mq) c_{u}

0.37 (m) \mathbf{e}_{B} 0.00 (m) e_L

Valore di progetto

50.00 (kN/mq)

В* 1.85 (m)

L* 1.00 (m)

q : sovraccarico alla profondità D

130.00 (kN/mq)

γ : peso di volume del terreno di fondazione

18.00 (kN/mc) $\gamma =$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5.14

s_c: fattori di forma

$$s_c = 1 + 0.2 B^* / L^*$$

1.00 $s_c =$

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA RS3U LOTTO CODIFICA

DOCUMENTO NI.00.0.0.002 REV.

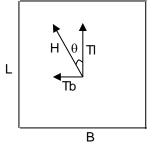
FOGLIO 65 di 90

i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

0.00

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$


2.00

0.00

$$\theta = \operatorname{arctg}(Tb/TI) =$$

(°)

0.00

(m=2 nel caso di fondazione nastriforme e m= $(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.83$$

d_c: fattore di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*

per D/B*> 1;
$$d_c = 1 + 0.4$$
 arctan (D / B*)

$$d_c = 1.57$$

b_c: fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1.00$$

g_c : fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c = 1.00$$

Carico limite unitario

$$q_{lim} = 931.64 \text{ (kN/m}^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 150.36 \text{ (kN/m}^2\text{)}$$

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 4 0 D 29
 CL
 NI.00.0.0.002
 A
 66 di 90

Verifica di sicurezza capacità portante

 $q_{lim}/\gamma_R = 40$

405.06

q =

≥

 $150.36 \text{ (kN/m}^2\text{)}$

97.63

(kN)

VERIFICA A SCORRIMENTO

Carico agente

Hd = 97.63

(kN)

Azione Resistente

 $Sd = cu B^* L^*$

Sd = 222.50 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 202.27 \geq Hd =

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA RS3U

LOTTO 4 0 D 29 CODIFICA CL DOCUMENTO NI.00.0.0.002

REV. A FOGLIO 67 di 90

INVILUPPO - Tombino Scatolare 2x2:

COMMESSA RS3U

CODIFICA CL

DOCUMENTO

REV. FOGLIO

Relazione di calcolo

LOTTO 4 0 D 29

NI.00.0.0.002

SLU-Nmax:

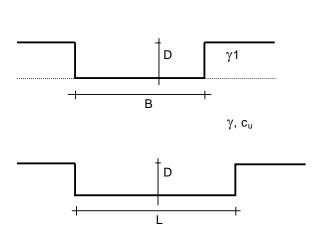
Fondazioni Dirette Verifica in tensioni totali

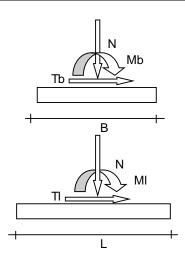
 $qlim = c_u \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq$

D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N)


(per fondazione nastriforme $e_L = 0$; $L^* = L$)


 B^* = Larghezza fittizia della fondazione (B^* = $B - 2^*e_B$)

 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

coefficienti parziali

			azi	oni	proprietà del terreno	resist	enze
Me	etodo di calco	lo	permanenti	temporanee variabili	Cu	qlim	scorr
40	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00
9	1.80	1.00					
	SISMA		1.00	1.00	1.40	1.80	1.00
Stat L	A1+M1+R3	0	1.30	1.50	1.00	2.30	1.10
A2+M2+R2	1.10						
Tensioni	Ammissibili	0	1.00	1.00	1.00	3.00	3.00
Definiti da	al Progettista	•	1.00	1.00	1.00	2.30	1.10

(Per fondazioni nastriformi L=100 m)

В 2.60 (m)

100.00 (m)


6.50 (m)

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA RS3U CODIFICA LOTTO DOCUMENTO REV. FOGLIO NI.00.0.0.002

AZIONI

		valori	di input	Valori di
		permanenti	temporanee	calcolo
N	[kN]	468.98		468.98
Mb	[kNm]	103.97		103.97
MI	[kNm]	0.00		0.00
Tb	[kN]	97.63		97.63
П	[kN]	0.00		0.00
Н	[kN]	97.63	0.00	97.63

Peso unità di volume del terreno

(kN/mc) 20.00 γ1

18.00 (kN/mc)

Valore caratteristico di resistenza del terreno

50.00 (kN/mq) c_{u}

0.22 (m) \mathbf{e}_{B}

0.00 (m) e_L

Valore di progetto

50.00 (kN/mq)

В* 2.16 (m)

L* 1.00 (m)

q : sovraccarico alla profondità D

130.00 (kN/mq)

γ : peso di volume del terreno di fondazione

18.00 (kN/mc) $\gamma =$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5.14

s_c: fattori di forma

$$s_c = 1 + 0.2 B^* / L^*$$

1.00 $s_c =$

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA RS3U

LOTTO CODIFICA DOCUMENTO NI.00.0.0.002 REV.

FOGLIO

i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

0.00

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

0.00

$$\theta = \arctan(Tb/TI) =$$

(°)

$$m = 2.00$$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.85$$

d_c: fattore di profondità del piano di appoggio

0.00

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*

per D/B*> 1;
$$d_c = 1 + 0.4$$
 arctan (D / B*)

$$d_c = 1.57$$

b_c: fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1.00$$

g_c: fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c = 1.00$$

Carico limite unitario

$$q_{lim} = 954.79 (kN/m2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 217.46 (kN/m^2)$$

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA RS3U LOTTO 4 0 D 29 CODIFICA CL DOCUMENTO REV. FOGLIO NI.00.0.0.002

Verifica di sicurezza capacità portante

 $q_{lim}/\gamma_R =$

415.12

≥ q =

217.46 (kN/m²)

VERIFICA A SCORRIMENTO

Carico agente

Hd = 97.63 (kN)

Azione Resistente

 $Sd = cu B^* L^*$

Sd = 258.79 (kN)

Verifica di sicurezza allo scorrimento

Sd/ $\gamma_R =$

235.27

≥ Hd =

97.63

(kN)

INVILUPPO - Tombino Scatolare 2x2:

COMMESSA

LOTTO CODIFICA DOCUMENTO

FOGLIO

REV.

Relazione di calcolo

RS3U

4 0 D 29

NI.00.0.0.002

.8.4. Verifiche SLV in condizioni drenate

SLV-Nmin:

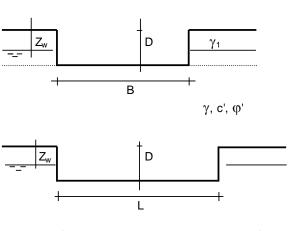
Fondazioni Dirette Verifica in tensioni efficaci

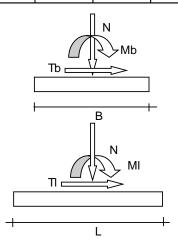
D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N)

(per fondazione nastriforme $e_L = 0$; $L^* = L$)


 B^* = Larghezza fittizia della fondazione (B^* = $B - 2^*e_B$)


 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			az	ioni	proprietà d	el terreno	resist	enze
Metodo	di calcolo		permanenti	temporanee variabili	tan φ'	c'	qlim	scorr
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	1.00
mite o	A2+M2+R2	0	1.00	1.30	1.25	1.25	1.80	1.00
Stato Limite Ultimo	SISMA	0	1.00	1.00	1.25	1.25	1.80	1.00
Stat L	A1+M1+R3	0	1.30	1.50	1.00	1.00	2.30	1.10
•	SISMA	0	1.00	1.00	1.00	1.00	2.30	1.10
Tension	i Ammissibili	0	1.00	1.00	1.00	1.00	3.00	3.00
Definiti d	al Progettista	•	1.00	1.00	1.00	1.00	2.30	1.10

(Per fondazione nastriforme L = 100 m)

В 2.60

D

(m) (m)

100.00

6.50 (m)

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U NI.00.0.0.002

AZIONI

	71210111					
	valori	di input	Valori di			
	permanenti temporanee		calcolo			
N [kN]	264.47		264.47			
Mb [kNm]	177.13		177.13			
MI [kNm]	0.00		0.00			
Tb [kN]	127.78		127.78			
TI [kN]	0.00		0.00			
H [kN]	127.78	0.00	127.78			

Peso unità di volume del terreno

20.00 γ_1

(kN/mc)

18.00

(kN/mc)

Valori caratteristici di resistenza del terreno

10.00

(kN/mq)

25.00 (°) Valori di progetto

c'

(kN/mq) (°)

25.00

10.00

Profondità della falda

4.50 Zw (m)

 $e_B =$ 0.67 (m)

0.00 $e_L =$ (m) B* = 1.26 (m)

L* = 1.00 (m)

q : sovraccarico alla profondità D

q = 110.00 (kN/mq)

γ : peso di volume del terreno di fondazione

8.00 $\gamma =$ (kN/mc)

Nc, Nq, Nγ: coefficienti di capacità portante

Nq =
$$tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

Nq = 10.66

 $Nc = (Nq - 1)/tan\phi'$

20.72 Nc =

 $N\gamma = 2*(Nq + 1)*tan\phi'$

 $N\gamma =$ 10.88

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA RS3U LOTTO CODIFICA 4 0 D 29 CL DOCUMENTO NI.00.0.0.002 EV. F

FOGLIO 74 di 90

s_c , s_q , s_γ : fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.00$$

$$s_q = 1 + B*tan\phi' / L*$$

$$s_q = 1.00$$

$$s_{\gamma} = 1 - 0.4*B* / L*$$

$$s_{\gamma} = 1.00$$

i_c , i_q , i_γ : fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$$

 $\theta = arctg(Tb/TI) =$

0.00

2.00

(°)

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

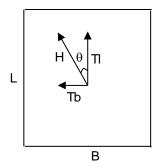
0.00

m =

(-)

 $i_{\alpha} = (1 - H/(N + B^*L^* c' \cot g\phi'))^m$

 $i_a = 0.34$


$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.27$$

$$i_{\gamma} = (1 - H/(N + B^*L^* c' \cot g\phi'))^{(m+1)}$$

$$i_{\gamma} = 0.20$$

(m=2 nel caso di fondazione nastriforme e m= $(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

d_c, d_q, d_γ : fattori di profondità del piano di appoggio

$$\begin{split} &\text{per D/B*} \!\! \leq 1; \; d_q = 1 \; + 2 \; D \; tan\phi' \; (1 \; - \; sen\phi')^2 \; / \; B^* \\ &\text{per D/B*} \!\! > 1; \; d_q = 1 \; + (2 \; tan\phi' \; (1 \; - \; sen\phi')^2) \; ^* \; arctan \; (D \; / \; B^*) \end{split}$$

$$d_{q} = 1.44$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi)$$

$$d_c = 1.49$$

$$d_{\gamma} = 1$$

$$d_{y} = 1.00$$

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA RS3U

CODIFICA CL LOTTO 4 0 D 29

DOCUMENTO NI.00.0.0.002 REV. A

FOGLIO

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan \varphi')^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_q = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi)$$

$$b_c =$$

$$b_{\gamma} = b_{q}$$

$$b_{\gamma} = 1.00$$

$g_c,\,g_q,\,g_\gamma$: fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

$$\beta_f + \beta_D =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi)$$

$$g_c =$$

1.00

$$g_{\gamma} = g_{q}$$

$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = 753.83$$

Pressione massima agente

$$q = N / B^* L^*$$

 (kN/m^2)

 (kN/m^2)

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA RS3U LOTTO 4 0 D 29 CODIFICA CL DOCUMENTO REV. FOGLIO NI.00.0.0.002

Verifica di sicurezza capacità portante

327.75 ≥ 209.81 (kN/m²) $q_{lim}/\gamma_R =$ q =

VERIFICA A SCORRIMENTO

Carico agente

Hd = 127.78 (kN)

Azione Resistente

 $Sd = N tan(\phi') + c' B^* L^*$

Sd = 148.53 (kN)

Verifica di sicurezza allo scorrimento

Sd/ $\gamma_R =$ (kN) 135.03 ≥ Hd = 127.78

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA RS3U LOTTO CODIFICA 4 0 D 29 CL DOCUMENTO NI.00.0.0.002 REV.

FOGLIO 77 di 90

• SLV-Nmax:

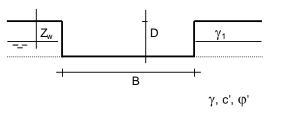
Fondazioni Dirette Verifica in tensioni efficaci

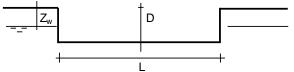
 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$

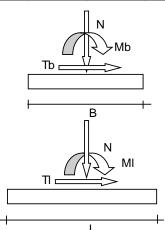
D = Profondità del piano di appoggio

e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)


 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)


 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)


(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			azioni		proprietà del terreno		resistenze	
Metodo di calcolo		permanenti	temporanee variabili	tan φ'	c'	qlim	scorr	
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	1.00
m ite o	A2+M2+R2	0	1.00	1.30	1.25	1.25	1.80	1.00
Stato Limite Ultimo	SISMA	0	1.00	1.00	1.25	1.25	1.80	1.00
Stat L	A1+M1+R3	0	1.30	1.50	1.00	1.00	2.30	1.10
	SISMA	0	1.00	1.00	1.00	1.00	2.30	1.10
Tensioni	Ammissibili	0	1.00	1.00	1.00	1.00	3.00	3.00
Definiti da	al Progettista	•	1.00	1.00	1.00	1.00	2.30	1.10

(Per fondazione nastriforme L = 100 m)

B = 2.60 (m)

L = 100.00 (m)

D = 6.50 (m)

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U NI.00.0.0.002

AZIONI

	valori d	Valori di	
	permanenti	calcolo	
N [kN]	293.13		293.13
Mb [kNm]	177.13		177.13
MI [kNm]	0.00		0.00
Tb [kN]	127.78		127.78
TI [kN]	0.00		0.00
H [kN]	127.78	0.00	127.78

Peso unità di volume del terreno

20.00 γ_1

(kN/mc)

18.00

(kN/mc)

Valori caratteristici di resistenza del terreno

10.00

(kN/mq)

25.00

(°)

Valori di progetto

c'

L* =

(kN/mq) (°)

25.00

10.00

1.00

Profondità della falda

Zw

 $e_L =$

4.50 (m)

 $e_B =$ 0.60 (m) (m)

B* = 1.39 (m) (m)

q : sovraccarico alla profondità D

0.00

q = 110.00 (kN/mq)

γ : peso di volume del terreno di fondazione

 $\gamma =$

8.00

(kN/mc)

Nc, Nq, Nγ: coefficienti di capacità portante

Nq =
$$tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

Nq = 10.66

 $Nc = (Nq - 1)/tan\phi'$

20.72 Nc =

 $N\gamma = 2*(Nq + 1)*tan\phi'$

 $N\gamma =$ 10.88

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA RS3U LOTTO CODIFICA 4 0 D 29 CL DOCUMENTO NI.00.0.0.002 EV.

FOGLIO 79 di 90

s_c, s_q, s_y: fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.00$$

$$s_q = 1 + B*tan\phi' / L*$$

$$s_q = 1.00$$

$$s_{\gamma} = 1 - 0.4*B* / L*$$

$$s_{v} = 1.00$$

i_c , i_q , i_γ : fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$$

0.00

 $\theta = arctg(Tb/TI) =$

0.00

2.00

(°)

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

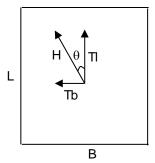
0.00

m =

(-)

 $i_{\alpha} = (1 - H/(N + B^*L^* c' \cot g\phi'))^m$

 $i_a = 0.38$


$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.32$$

$$i_v = (1 - H/(N + B^*L^* c' \cot g\phi'))^{(m+1)}$$

$$i_{\gamma} = 0.24$$

(m=2 nel caso di fondazione nastriforme e m= $(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

d_c, d_q, d_γ : fattori di profondità del piano di appoggio

$$\begin{split} \text{per D/B*} &\leq 1; \ d_q = 1 \ + 2 \ D \ tan\phi' \ (1 \ - \ sen\phi')^2 \ / \ B^* \\ \text{per D/B*} &> 1; \ d_q = 1 \ + (2 \ tan\phi' \ (1 \ - \ sen\phi')^2) \ ^* \ arctan \ (D \ / \ B^*) \end{split}$$

$$d_{q} = 1.44$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi)$$

$$d_c = 1.49$$

$$d_{\gamma} = 1$$

$$d_{y} = 1.00$$

INVILUPPO - Tombino Scatolare 2x2:

COMMESSA RS3U

CODIFICA CL

DOCUMENTO

REV. A FOGLIO

Relazione di calcolo

LOTTO 4 0 D 29

NI.00.0.0.002

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan \varphi')^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_{\alpha} =$$

$$b_q = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi)$$

$$b_c =$$

$$b_{\gamma} = b_{q}$$

$$b_{\gamma} = 1.00$$

$g_c,\,g_q,\,g_\gamma$: fattori di inclinazione piano di campagna

$$g_{q} = (1 - \tan \beta_{p})^{2}$$

$$\beta_f + \beta_D =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_{q} = 1.00$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi)$$

1.00

$$g_{\gamma} = g_{q}$$

$$g_{\gamma} =$$

1.00

Carico limite unitario

856.67

 (kN/m^2)

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 210.66$$

 (kN/m^2)

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA RS3U LOTTO 4 0 D 29 CODIFICA CL DOCUMENTO REV. FOGLIO NI.00.0.0.002

Verifica di sicurezza capacità portante

372.47 ≥ 210.66 (kN/m²) $q_{lim}/\gamma_R =$ q =

VERIFICA A SCORRIMENTO

Carico agente

Hd = 127.78 (kN)

Azione Resistente

 $Sd = N tan(\phi') + c' B^* L^*$

Sd = 164.52 (kN)

Verifica di sicurezza allo scorrimento

 $Sd/\gamma_R =$ (kN) 149.56 ≥ Hd = 127.78

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA RS3U 4 0 D 29 CL DOCUMENTO REV. FOGLIO Relazione di calcolo

.8.5. Verifiche SLV in condizioni non drenate

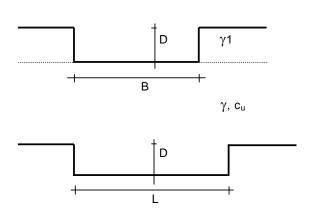
• SLV-Nmin:

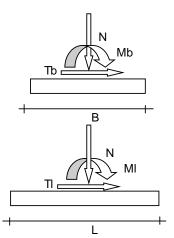
Fondazioni Dirette Verifica in tensioni totali

 $qlim = c_u \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq$

D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)


 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)


 B^* = Larghezza fittizia della fondazione (B^* = $B - 2^*e_B$)

 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

coefficienti parziali

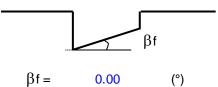
	azioni		proprietà del terreno	resist	enze		
Metodo di calcolo		permanenti	temporanee variabili	Cu	qlim	scorr	
4)	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00
mite 10	A2+M2+R2	\circ	1.00	1.30	1.40	1.80	1.00
Stato Limite Ultimo	SISMA	0	1.00	1.00	1.40	1.80	1.00
Stat L	A1+M1+R3	0	1.30	1.50	1.00	2.30	1.10
	SISMA	\circ	1.00	1.00	1.00	2.30	1.10
Tensioni	Ammissibili	0	1.00	1.00	1.00	3.00	3.00
Definiti da	al Progettista	•	1.00	1.00	1.00	2.30	1.10

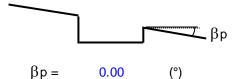
(Per fondazioni nastriformi L=100 m)

B = 2.60 (m)

L = 100.00 (m)

D = 6.50 (m)


INVILUPPO - Tombino Scatolare 2x2:


Relazione di calcolo

COMMESSA RS3U CODIFICA LOTTO

DOCUMENTO NI.00.0.0.002

REV. FOGLIO

AZIONI

		valori	Valori di	
		permanenti	calcolo	
N	[kN]	264.47		264.47
Mb	[kNm]	177.13		177.13
MI	[kNm]	0.00		0.00
Tb	[kN]	127.78		127.78
П	[kN]	0.00		0.00
Н	[kN]	127.78	0.00	127.78

Peso unità di volume del terreno

(kN/mc) 20.00 γ1

18.00 (kN/mc)

Valore caratteristico di resistenza del terreno

Valore di progetto

50.00 (kN/mq) 50.00 (kN/mq) c_{u}

0.67 (m) В* 1.26 (m) \mathbf{e}_{B}

0.00 (m) L* 1.00 (m) e_L

q : sovraccarico alla profondità D

130.00 (kN/mq)

γ : peso di volume del terreno di fondazione

18.00 (kN/mc) $\gamma =$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5.14

s_c: fattori di forma

$$s_c = 1 + 0.2 B^* / L^*$$

1.00 $s_c =$

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA RS3U LOTTO 4 0 D 29 CODIFICA DOCUMENTO CL NI.00.0.0.002

REV.

FOGLIO 84 di 90

i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

0.00

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

0.00

$$\theta = arctg(Tb/TI) =$$

(°)

0.00

$$m = 2.00$$

L H H TI

(m=2 nel caso di fondazione nastriforme e m= $(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.67$$

d_c: fattore di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*

per D/B*> 1;
$$d_c = 1 + 0.4$$
 arctan (D / B*)

$$d_c = 1.57$$

b_c: fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1.00$$

g_c : fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c = 1.00$$

Carico limite unitario

$$q_{lim} = 778.92 (kN/m^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 209.81 (kN/m^2)$$

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 4 0 D 29
 CL
 NI.00.0.0.002
 A
 85 di 90

Verifica di sicurezza capacità portante

 $q_{lim}/\gamma_R = 338.66 \ge q = 209.81 (kN/m^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 127.78 (kN)

Azione Resistente

 $Sd = cu B^* L^*$

Sd = 151.26 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 137.51 **\geq Hd** = 127.78 (kN)

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

COMMESSA RS3U LOTTO CODIFICA 4 0 D 29 CL DOCUMENTO NI.00.0.0.002 REV.

FOGLIO 86 di 90

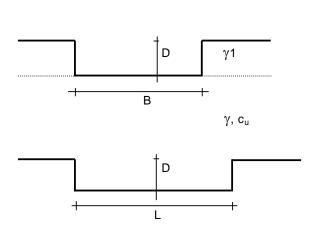
• SLV-Nmax:

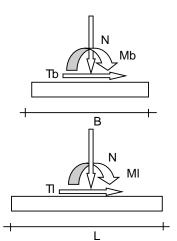
Fondazioni Dirette Verifica in tensioni totali

 $qlim = c_u \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq$

D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)


 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)


 $B^* = Larghezza$ fittizia della fondazione ($B^* = B - 2^*e_B$)

 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)

coefficienti parziali

			azioni		proprietà del terreno	resistenze	
Metodo di calcolo		permanenti	temporanee variabili	Cu	qlim	scorr	
40	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00
mite o	A2+M2+R2	0	1.00	1.30	1.40	1.80	1.00
Stato Limite Ultimo	SISMA	0	1.00	1.00	1.40	1.80	1.00
Stat L	A1+M1+R3	0	1.30	1.50	1.00	2.30	1.10
	SISMA	\circ	1.00	1.00	1.00	2.30	1.10
Tensioni Ammissibili		1.00	1.00	1.00	3.00	3.00	
Definiti da	al Progettista	•	1.00	1.00	1.00	2.30	1.10

(Per fondazioni nastriformi L=100 m)

B = 2.60 (m)

L = 100.00 (m)

D = 6.50 (m)

INVILUPPO - Tombino Scatolare 2x2:

Relazione di calcolo

COMMESSA RS3U LOTTO CODIFICA DOCUMENTO REV. FOGLIO NI.00.0.0.002

AZIONI

		valori	Valori di	
		permanenti	calcolo	
N	[kN]	293.13		293.13
Mb	[kNm]	177.13		177.13
MI	[kNm]	0.00		0.00
Tb	[kN]	127.78		127.78
П	[kN]	0.00		0.00
Н	[kN]	127.78	0.00	127.78

Peso unità di volume del terreno

(kN/mc) 20.00 γ1 18.00 (kN/mc) =

Valore caratteristico di resistenza del terreno

50.00

(kN/mq) c_{u}

0.60 (m) \mathbf{e}_{B} 0.00 e_L

(m)

Valore di progetto

50.00 (kN/mq)

В* 1.39 (m)

L* 1.00 (m)

q : sovraccarico alla profondità D

130.00 (kN/mq)

γ : peso di volume del terreno di fondazione

18.00 (kN/mc) $\gamma =$

Nc : coefficiente di capacità portante

 $Nc = 2 + \pi$

Nc = 5.14

s_c: fattori di forma

$$s_c = 1 + 0.2 B^* / L^*$$

1.00 $s_c =$

INVILUPPO - Tombino Scatolare 2x2: Relazione di calcolo

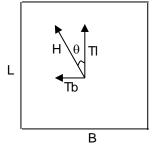
COMMESSA RS3U LOTTO CODIFICA 4 0 D 29 CL DOCUMENTO NI.00.0.0.002 REV.

FOGLIO 88 di 90

i_c: fattore di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

0.00


$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

2.00

0.00

$$\theta = arctg(Tb/TI) =$$

(°)

(m=2 nel caso di fondazione nastriforme e m= $(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

$$i_c = (1 - m H / (B*L* c_u*Nc))$$

$$i_c = 0.70$$

d_c: fattore di profondità del piano di appoggio

0.00

per D/B*
$$\leq$$
 1; d_c = 1 + 0,4 D / B*

per D/B*> 1;
$$d_c = 1 + 0.4$$
 arctan (D / B*)

$$d_c = 1.57$$

b_c: fattore di inclinazione base della fondazione

$$b_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = 1.00$$

g_c : fattore di inclinazione piano di campagna

$$g_c = (1 - 2 \beta_f / (\pi + 2))$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c = 1.00$$

Carico limite unitario

$$q_{lim} = 808.83 (kN/m^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 210.66 (kN/m^2)$$

INVILUPPO - Tombino Scatolare 2x2:
Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO RS3U 4 0 D 29 CL NI.00.0.0.002 A 89 di 90

Verifica di sicurezza capacità portante

 $q_{lim}/\gamma_R = 351.66 \ge q = 210.66 (kN/m^2)$

VERIFICA A SCORRIMENTO

Carico agente

Hd = 127.78 (kN)

Azione Resistente

 $Sd = cu B^* L^*$

Sd = 166.97 (kN)

Verifica di sicurezza allo scorrimento

Sd / γ_R = 151.79 ≥ **Hd** = 127.78 (kN)

.8.6. Tabella verifiche geotecniche GEO

I coefficienti di sfruttamento che si ottengono per le verifiche geotecniche GEO sono i seguenti:

Coefficienti di sfruttamento:						
	Qlim	Scorr	Esito			
SLU-CD_Nmin	31%	64%	OK			
SLU-CD_Nmax	35%	41%	OK			
SLV-CD_Nmin	64%	95%	OK			
SLV-CD_Nmax	57%	85%	OK			
SLU-CND_Nmin	37%	48%	OK			
SLU-CND_Nmax	52%	41%	OK			
SLV-CND_Nmin	62%	93%	OK			
SLV-CND_Nmax	60%	84%	OK			

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISSETTA XIRBI-ENNA (LOTTO 4a) INTERFERENZE IDRAULICHE					
INVILUPPO - Tombino Scatolare 2x2:	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	4 0 D 29	CL	NI.00.0.0.002	A	90 di 90

.8.7. Sollevamento per galleggiamento UPL

• La quota della falda si trova a una quota inferiore rispetto a quella del piano di imposta del tombino per cui è necessaria la verifica di sollevamento per galleggiamento (UPL) di cui al punto 6.2.4.2 delle NTC 2018. Se ne riporta di seguito lo svolgimento:

Verifica nei confronti dello stato limite di sollevamento (NTC §6.2.4.2)

Quota piano di posa dell'opera	Z	6.50	m	
Quota superficie piezometrica dal p.c.	z_w	4.50	m	
Peso specifico calcestruzzo armato	$\gamma_{\rm cls}$	25	kN/m^3	
peso singolo piedritto	Pp	7.50	kN/m	$\gamma_{\text{cls}} \ge S_p$
peso soletta superiore	Pss	7.50	kN/m	$\gamma_{\text{cls}} \ge S_s$
peso fondazione	Psf	10.00	kN/m	$\gamma_{\text{cls}} \ge S_f$
Coefficiente parziale azioni favorevoli	γ_{G1}	0.9		
Coefficiente parziale azioni sfavorevoli	γ_{G1}	1.1		
Peso totale opera	$G_{stb,k}$	32.50	kN/m	
Spinta idraulica	$V_{inst,k}$	20.00	kN/m2	$\gamma_{\rm w} * (z_{\rm w} \text{-} z)$
Peso totale opera di progetto	$G_{stb,d}$	29.25	kN/m	$G_{\text{stb,k}} x \gamma_{G1}$
Spinta idraulica di progetto	$V_{inst,d}$	22	kN/m2	$V_{\text{inst,k}} \ge \gamma_{G1}$
Vinst,d / Gstb,d - Coefficiente di sfruttamento	C.S.	75%	Verifica	Soddisfatta

Le verifiche risultano soddisfatte.